DISTRIBUTION DEMONSTRATION

SYSTEM

1

D

S

R

1

D

S

D

D

S

REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS)

ACCESSION NBR:8901130257 DOC.DATE: 89/01/06 NOTARIZED: YES DOCKET # FACIL:50-305 Kewaunee Nuclear Power Plant, Wisconsin Public Servic 05000305 AUTH.NAME AUTHOR AFFILIATION Wisconsin Public Service Corp. HINTZ, D.C. RECIP.NAME RECIPIENT AFFILIATION Document Control Branch (Document Control Desk) R

SUBJECT: Responds to NRC Bulletin 88-009, "Thimble Tube Thinning in Westinghouse Reactors."

DISTRIBUTION CODE: IE18D COPIES RECEIVED:LTR / ENCL / SIZE: TITLE: Bulletin 88-09 - Thimble Tube Thinning in Westinghouse Reactors

NOTES:

ACCELERATED

ES
ENCL A
1
D
1
$\mathbf{\tilde{1}}$ D
ī
1 5
1
1
▲

NOTE TO ALL "RIDS" RECIPIENIS:

PLEASE HELP US TO REDUCE WASTE! CONTACT THE DOCUMENT CONTROL DESK, ROOM P1-37 (EXT. 20079) TO ELIMINATE YOUR NAME FROM DISTRIBUTION LISTS FOR DOCUMENTS YOU DON'T NEED!

TOTAL NUMBER OF COPIES REQUIRED: LTTR 17 ENCL 16

WPSC (414) 433-1598 TELECOPIER (414) 433-1297

EASYLINK 6289*993

NRC-88-2

WISCONSIN PUBLIC SERVICE CORPORATION

600 North Adams • P.O. Box 19002 • Green Bay, WI 54307-9002

January 6, 1989

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555

Gentlemen:

Docket 50-305 Operating License DPR-43 Kewaunee Nuclear Power Plant Response To NRC Bulletin 88-09

Reference: 1) Letter from D. C. Hintz (WPSC) to Document Control Desk dated 11/7/88.

Upon further internal review of our response to NRC Bulletin 88-09 response submittal (reference 1) a concern was raised that the statement on the vendor's QA program could be misinterpreted.

The vendor does have a 10CFR50 Appendix B QA program that has been accepted by another nuclear utility. However the thimble tube inspections performed at the Kewaunee Plant were performed under Wisconsin Public Service Corporation's Appendix B QA program.

A revised attachment to the bulletin response which reflects this clarification is enclosed.

We apologize for any confusion or inconvenience that this may have caused.

If you have any further questions regarding this response please contact a member of my staff.

Sinderely

D. C. Hintz Vice President - Power Production

DR/jms Attach. cc - Mr. Robert Nelson, US NRC US NRC, Region III

Subscribed and Sworn to Before Me This 6th Dav of 1980 Notary Public, State of

My Commission Expires: June 23, 1991

Attachment

То

Letter from D. C. Hintz (WPSC) to Document Control Desk (NRC)

Dated

January 6, 1989

> Response to NRC Bulletin 88-09 "Thimble Tube Thinning in Westinghouse Reactors"

Bulletin 88-09 requests that Wisconsin Public Service Corporation (WPSC) establish a program to monitor thimble tube performance. This program is to include:

- Thimble tube wear acceptance criteria with technical justification,
- An appropriate inspection frequency with technical justification,
- An inspection methodology that is capable of adequately detecting wear of the thimble tubes.

The staff at the Kewaunee Nuclear Power Plant (KNPP) has been monitoring thimble performance since the March 1985 refueling outage. While a formal procedure based program does not exist, the actions that have been taken, as summarized below, address the criteria described in Bulletin 88-09.

During the 1985 refueling outage a qualified Nondestructive Examination (NDE) vendor working under the WPSC 10CFR50 Appendix B QA program was contracted to perform an eddy current inspection of all 36 thimble tubes. This inspection was done in response to wall thinning problems identified at other Westinghouse reactors. The eddy current inspection results showed that thinning was occurring at the lower core plate, and to a much lesser degree, at the diffuser plate and core support forging. The average wall loss at the core plate identified during this inspection was 41%.

During the 1987 refueling outage the same vendor was contracted to re-inspect the thimble tubes using eddy current methodology. This inspection showed an average wall loss of 52% at the lower core plate. See Table 1 for a summary of the 1985 and 1987 examination results.

Due to the extent of the wall loss identified during the 1987 eddy current inspection and recurring unrelated thimble tube blockage problems, WPSC decided to replace all 36 thimble tubes. This replacement was performed during the 1988 refueling outage. The new thimble tubes are slightly larger than the original tubes in both outside diameter (.313 vs .301 inches) and wall thickness (.051 vs .049 inches). A baseline eddy current inspection on the new thimble tubes was also performed during this outage. The data obtained will be used to provide more accurate wall loss determinations during future inspections.

The above actions demonstrate that WPSC has been aggressive in thimble tube monitoring and has already taken conservative corrective action when necessary (i.e. thimble tube replacement).

Future plans for monitoring thimble tube performance include eddy current inspections in 1993 and, contingent on the 1993 inspection results, in 1998. A five year inspection frequency is justified based upon inspection results from the original thimbles (41% average wall loss following 11 years of service, 52% average wall loss following 13 years of service). The examination frequency after 1998 will be dependent on the results of the previous two tests.

Eddy current inspection has been chosen to monitor the thimble tubes as it is accepted by the industry as the most cost effective and accurate means of deter-

mining the extent of the thimble tube degradation. By using a mix-phase angle to eliminate interferences from core structures and the baseline data obtained in 1988 an accurate wall loss determination is possible.

An acceptance criteria of 60% maximum wall loss was established based on the following relationship*:

$$P = [2E/(1 - \lambda^2)] (\dagger/D)^3$$

- Where P = critical value of external pressure = 2485 psig (Reactor Coolant System Design Pressure)
 - $E = Modulus of elasticity = 29 \times 10^6 psi$ (Metals Handbook, Vol. 1, 8th Edition, American Society for Metals)
 - λ = Poissons Ratio = .29 (Reactor Handbook, Vol. 1, Materials, Tipton)
 - D = Thimble Tube Outer Diameter = .313 in.
 - † = Critical Thimble Tube Wall Thickness
 - * Piping Handbook 5th Edition, Crocker

Using the values shown above and solving the relationship for t, a critical wall thickness of .011 in. was determined. This corresponds to 22% of the nominal thimble tube wall thickness of .051 in. or a 78% wall loss. For added conservatism and to account for any unexpected inspection inaccuracies an acceptance criteria of 60% was chosen. If a thimble tube is found to have a 60% wall loss as determined by the mix-phase angle results of an eddy current inspection, corrective action will be necessary. This action may include, but is not limited to, isolating the thimble via the installed valve, axially relocating the thimble to move the wear scar away from the contact area, or replacement of the thimble.

This inspection frequency and acceptance criteria will be documented in the Recommended Actions for the Operational Experience Assessment (OEA) associated with NRC Bulletin 88-09. It will also be added to the WPSC Commitment Tracking Program. These actions will assure monitoring of the thimble tubes at the frequency discussed above, and corrective actions.

In summary, KNPP does not have a formal proceduralized program for monitoring thimble tube performance. However, an effective monitoring program is evidenced by the actions taken over the last three years. These actions in conjunction with the inspections scheduled for the replacement thimbles address the criteria described in NRC Bulletin 88-09. Timely completion of future inspections is ensured through our existing OEA and Commitment Tracking programs. Additionally, WPSC is participating in the Westinghouse Owners Group project to develop an appropriate thimble tube inspection acceptance criteria.

Table 1

	<mark>% W</mark> all	Loss*
Thimble	<u>1985</u>	<u>1987</u>
G6 I5 M7 G9 C8 J10 E6** G2 B6 D7 G13 I7 E2 E10 L4 L9 H10 K7 C11 G4 H8 D5 J3 J12 F12 H1 G11 C3 H3 K4 F8 C9 J8 A8 I11 F5	$\begin{array}{c} 2.502 \\ 43 \\ 20 \\ 44 \\ 29 \\ 41 \\ 44 \\ 92 \\ 41 \\ 54 \\ 26 \\ 51 \\ 55 \\ 24 \\ 35 \\ 50 \\ 54 \\ 47 \\ 46 \\ 52 \\ 20 \\ 44 \\ 20 \\ 49 \\ 48 \\ 26 \\ 24 \\ 45 \\ 47 \\ 41 \\ 40 \\ 45 \\ 53 \\ 40 \\ 50 \\ 47 \\ 29 \end{array}$	49 31 55 47 78 50 68 *** 67 31 57 55 36 53 61 58 53 61 58 53 61 58 53 61 58 53 61 58 53 61 58 53 61 58 53 57 55 62 48 25 54 55 47 75 55 36 57 55 57 55 57 55 57 57 57 57 57 57 57
Average	40.7	52.1

- * Wall loss at the lower core plate determined from Mix-Phase Angle results of Eddy Current Inspection.
- ** Results of 1985 inspection questionable due to distorted signals (not included in average).

*** Blocked thimble.