NUREG/CR-5201 MEA-2286

Experimental Assessments of Gundremmingen RPV Archive Material for Fluence Rate Effects Studies

Manuscript Completed: September 1988 Date Published: October 1988

Prepared by J.R. Hawthorne, A.L. Hiser

Materials Engineering Associates, Inc. 9700-B Martin Luther King, Jr. Highway Lanham, MD 20706-1837

Prepared for Division of Engineering Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 NRC FIN B8900

ABSTRACT

The 250-MW boiling water Gundremmingen reactor, KRB-A, in the Federal Republic of Germany (FRG) has been decommissioned by the utility owners. A joint USA/FRG/UK study, conceived by the U.S. Nuclear Regulatory Commission (NRC), is underway to evaluate material removed from the vessel by trepanning for a critical assessment of power reactor vs. test reactor environment effects. MEA, Staatliche MaterialPruefungsanstalt (MPA), and UKAEA-Harwell are responsible for the experimental phases of the joint program. The reactor vessel operated at ~ 288°C; the inner wall fluence estimate at the time of decommissioning was about 1 x 10^{19} n/cm², E > 1 MeV.

This report describes irradiation assessments of a welded forging segment believed to be archive material from the KRB-A vessel fabrication. Preirradiation verification tests of the material are also summarized. Charpy-V (C_v), compact tension (CT) and tension test specimens were irradiated in the 2-MW light water-cooled test reactor located at the Buffalo Materials Research Center. Five as-irradiated conditions and two postirradiation annealed conditions were evaluated. With 288°C irradiations, the elevation in 100 MPa/m temperature from fracture mechanics tests was found to match the elevation in 41-J temperature from C_v tests within 12°C. The latter elevation was predicted well by NRC's Regulatory Guide 1.99.

The L-C orientation data for the archive material vs. the vessel trepans suggest a fluence-rate effect. The C-L orientation data, however, do not. A test orientation dependence of radiation embrittlement sensitivity, described by the trepan material but not the archive material, is responsible and is anomalous.

CONTENTS

			Page
ABSI	TRACT		iii
LIST	C OF FIGU	RES	vii
LIST	C OF TABL	ES	x
FORE	EWORD	• • • • • • • • • • • • • • • • • • • •	xi
ACKN	NOWLEDGME	NT	xv
1.	INTRODU	CTION	1
2.	MEA INV	ESTIGATIONS	3
3.	KRB-A R	EACTOR VESSEL AND MATERIALS	5
4.	ARCHIVE	MATERIAL	6
5.	VERIFIC	ATION TESTS (PHASE 1)	7
6.	THROUGH	-THICKNESS PROPERTIES CHARACTERIZATION (PHASE 2)	10
7.	IRRADIA	TION ASSESSMENTS OF ARCHIVE BASE METAL (PHASE 3)	16
	7.1 Ir	radiation Experiment UBR-68	16
	7.2 Th	rough-Wall Fluence Determination	31
	7.3 UB	R Test Reactor vs. Service-Irradiation	
	Em	brittlement	31
	74 Fo	llow-On Irradiation Experiment Matrix	37
	7.4 10 75 Tr	radiation Experiment URP.78	42
	76 1	radiation Experiment URP.70.	42
	7.0 II 7.7 Ir	radiation Experiment UBR-80A	53
8.	DISCUSS	ION	56
9.	SUMMARY		58
REFI	ERENCES	•••••••••••••••••••••••••••••••••••••••	60
ΑΡΡΙ	ENDIX A	Preirradiation Qualification of Materials	
		Identified as KRB-A Archive	A-1
APPI	ENDIX B	Cutting Plans for KRB-A Archive Ring Forging	n 1
		Materials, code GED-A and code GED-2	D-1
APPI	ENDIX C	Through-Thickness Mechanical Properties of	
		KRB-A Archive Steel Forging GEB	C-1
APPI	ENDIX D	Daily Operating Temperature Records:	
		Irradiation Experiments UBR-68. UBR-78.	
		UBR-79A, UBR-80A	D-1
APP	ENDIX E	Neutron Dosimetry Determinations: Irradiation Experiments UBR-68 UBR-78 UBR-794 UBR-804	F-1
		Experimence OEC-00, OEC-70, OEC-77A, OEC-00A	ц-т

APPENDIX F	Charpy-V Data Tabulation and Computer Curve Fits for Unirradiated Condition Tests and Irradiation Experiments UBR-68, UBR-78, and	
	UBR-80A Tests	F-1
APPENDIX G	Fracture Toughness Test Results for Unirradiated, Irradiated and Postirradiation Annealed Conditions	G-1
APPENDIX H	Trepan G Fluence Determinations: Procedures and Results	H-1

LIST OF FIGURES

Figure		Page
1.	Charpy-V notch ductility data for the archive base metals vs. data from the KRB-A reactor vessel surveillance program	9
2.	Charpy-V notch ductility of Code GEB-2 material at four locations through the thickness	12
3.	Fracture toughness of Code GEB-2 material at four thickness locations	13
4.	J-R curves for four thickness locations in the Code GEB-2 material at 177°C and at 288°C	14
5.	J-R curves for the Code GEB-2 material showing the dependence of J-R curve level on test temperature	15
6.	Placement of specimens in Capsule A and Capsule B of Experiment UBR-68	17
7.	Charpy-V notch ductility of Code GEB-2 material after irradiation at 288°C to 8.8 x 10 ¹⁸ n/cm ² , E > 1 MeV (Experiment UBR-68)	19
8.	Charpy-V notch ductility of Code GEB-2 material after postirradiation annealing at 399°C (Experiment UBR-68)	20
9.	Charpy-V notch ductility of Code GEB-2 material after postirradiation annealing at 454°C (Experiment UBR-68)	21
10.	Fracture toughness of Code GEB-2 material after irradiation at 288°C to 8.6 x 10 ¹⁸ n/cm ² (Experiment UBR-68)	24
11.	J-R curves for unirradiated vs. UBR-68 irradiated conditions at 177°C	25
12.	J-R curves for unirradiated vs. UBR-68 irradiated conditions at 288°C	26
13.	J-R curves for the UBR-68 irradiated condition at 177°C vs. 288°C	27
14.	Fracture toughness of Code GEB-2 material after postirradiation annealing at 399°C for 168 h (Experiment UBR-68)	28
15.	Fracture toughness of Code GEB-2 material after postirradiation annealing at 454°C for 168 h (Experiment UBR-68)	29

Figure		Page
16.	J-R curves for unirradiated, UBR-68 irradiated and two postirradiated heatted conditions at 177°C	. 30
17.	Sampling locations in Trepan G for fluence determi- nations	. 34
18.	EG&G Idaho, Inc. fluence measurements for through- thickness positions in Trepan G	. 35
19.	Charpy-V notch ductility of KRB-A vessel material before and after irradiation service	. 36
20.	Placement of specimens in Capsule A and Capsule B of Experiment UBR-78	. 38
21.	Placement of Charpy-V, tensile, and 0.5T-CT specimens in Capsule A of Experiment UBR-79	. 40
22.	Placement of Charpy-V and tensile specimens in Capsule A of Experiment UBR-80	. 41
23.	Check tests of unirradiated condition, fracture toughness properties	. 43
24.	J-R curves from check tests at 177°C	. 44
25.	Embrittlement of the Code GEB-2 archive material by a fluence matching that received by the KRB-A reactor vessel in service (Experiment UBR-78)	. 45
26.	Fracture toughness of the Code GEB-2 material after irradiation at 288°C to 2.6 x 10 ¹⁸ n/cm ² (Experiment UBR-78)	. 46
27.	J-R curve for the UBR-78 irradiated condition at 177°C	. 48
28.	J-R curve for the UBR-78 irradiated condition at 288°C	. 49
29.	Embrittlement of the Code GEB-2 material by irradiation at 260°C vs. 275°C to ~ 8.6 x 10 ¹⁸ n/cm ² (Experiment UBR-79)	50
30.	Fracture toughness of the Code GEB-2 material after irradiation at 275°C to $\sim 8.6 \times 10^{18} \text{ n/cm}^2$ (Experiment UBR-79)	51
31.	J-R curves for unirradiated vs. UBR-79 irradiated conditions at 31°C	52

LIST OF FIGURES

Figure	<u>P</u>	age
32.	Embrittlement of the Code GEB-2 material by a high fluence, 288°C irradiation	54
33.	Trends of Charpy-V 41-J transition temperature increase and 24°C yield strength increase with neutron fluence at 288°C	55

LIST OF TABLES

<u>Table</u>	-	Page
1	Irradiation Experiment Matrix (ASTM L-C Orientation Specimens)	4
2	Chemical Compositions of Archival Materials, Surveil- lance Specimen Base Metal and KRB-A Trepan G	8
3	Tensile Properties of Code GEB-2, Axial Specimen Orientation	11
4	Summary of Postirradiation Notch Ductility Determin- ations	22
5	Average Tensile Data for KRB-A Archive Material	32
6	Gundremmingen Vessel KRB-A, Trepan G Dosimetry	33

FOREWORD

The work reported here was performed at Materials Engineering Associates (MEA) under the program, Structural Integrity of Water Reactor Pressure Boundary Components, F. J. Loss, Program Manager. The program is sponsored by the Office of Nuclear Regulatory Research of the U. S. Nuclear Regulatory Commission (NRC). The technical monitor for the NRC is Alfred Taboada.

Prior reports under the current contract are listed below:

- 1. J. R. Hawthorne, "Significance of Nickel and Copper to Radiation Sensitivity and Postirradiation Heat Treatment Recovery of Reactor Vessel Steels," USNRC Report NUREG/CR-2948, Nov. 1982.
- "Structural Integrity of Water Reactor Pressure Boundary Components, Annual Report for 1982," F. J. Loss, Ed., USNRC Report NUREG/CR-3228, Vol. 1, Apr. 1983.
- 3. J. R. Hawthorne, "Exploratory Assessment of Postirradiation Heat Treatment Variables in Notch Ductility Recovery of A 533-B Steel," USNRC Report NUREG/CR-3229, Apr. 1983.
- 4. W. H. Cullen, K. Torronen, and M. Kemppainen, "Effects of Temperature on Fatigue Crack Growth of A 508-2 Steel in LWR Environment," USNRC Report NUREG/CR-3230, Apr. 1983.
- 5. "Proceedings of the International Atomic Energy Agency Specialists' Meeting on Subcritical Crack Growth," Vols. 1 and 2, W. H. Cullen, Ed., USNRC Conference Proceeding NUREG/CP-0044, May 1983.
- W. H. Cullen, "Fatigue Crack Growth Rates of A 508-2 Steel in Pressurized, High-Temperature Water," USNRC Report NUREG/CR-3294, June 1983.
- 7. J. R. Hawthorne, B. H. Menke, and A. L. Hiser, "Notch Ductility and Fracture Toughness Degradation of A 302-B and A 533-B Reference Plates from PSF Simulated Surveillance and Through-Wall Irradiation Capsules," USNRC Report NUREG/CR-3295, Vol. 1, Apr. 1984.
- 8. J. R. Hawthorne and B. H. Menke, "Postirradiation Notch Ductility and Tensile Strength Determinations for PSF Simulated Surveillance and Through-Wall Specimen Capsules," USNRC Report NUREG/CR-3295, Vol. 2, Apr. 1984.
- 9. A. L. Hiser and F. J. Loss, "Alternative Procedures for J-R Curve Determination," USNRC Report NUREG/CR-3402, July 1983.

- 10. A. L. Hiser, F. J. Loss, and B. H. Menke, "J-R Curve Characterization of Irradiated Low Upper Shelf Welds," USNRC Report NUREG/CR-3506, Apr. 1984.
- 11. W. H. Cullen, R. E. Taylor, K. Torronen, and M. Kemppainen, "The Temperature Dependence of Fatigue Crack Growth Rates of A 351 CF8A Cast Stainless Steel in LWR Environment," USNRC Report NUREG/CR-3546, Apr. 1984.
- 12. "Structural Integrity of Light Water Reactor Pressure Boundary Components -- Four-Year Plan 1984-1988," F. J. Loss, Ed., USNRC Report NUREG/CR-3788, Sep. 1984.
- 13. W. H. Cullen and A. L. Hiser, "Behavior of Subcritical and Slow-Stable Crack Growth Following a Postirradiation Thermal Anneal Cycle," USNRC Report NUREG/CR-3833, Aug. 1984.
- 14. "Structural Integrity of Water Reactor Pressure Boundary Components: Annual Report for 1983," F. J. Loss, Ed., USNRC Report NUREG/CR-3228, Vol. 2, Sept. 1984.
- 15. W. H. Cullen, "Fatigue Crack Growth Rates of Low-Carbon and Stainless Piping Steels in PWR Environment," USNRC Report NUREG/CR-3945, Feb. 1985.
- 16. W. H. Cullen, M. Kemppainen, H. Hanninen, and K. Torronen, "The Effects of Sulfur Chemistry and Flow Rate on Fatigue Crack Growth Rates in LWR Environments," USNRC Report NUREG/CR-4121, Feb. 1985.
- 17. "Structural Integrity of Water Reactor Pressure Boundary Components: Annual Report for 1984," F. J. Loss, Ed., USNRC Report NUREG/CR-3228, Vol. 3, June 1985.
- 18. A. L. Hiser, "Correlation of C_v and K_{Ic}/K_{Jc} Transition Temperature Increases Due to Irradiation," USNRC Report NUREG/CR-4395, Nov. 1985.
- 19. W. H. Cullen, G. Gabetta, and H. Hanninen, "A Review of the Models and Mechanisms For Environmentally-Assisted Crack Growth of Pressure Vessel and Piping Steels in PWR Environments," USNRC Report NUREG/CR-4422, Dec. 1985.
- 20. "Proceedings of the Second International Atomic Energy Agency Specialists' Meeting on Subcritical Crack Growth," W. H. Cullen, Ed., USNRC Conference Proceeding NUREG/CP-0067, Vols. 1 and 2, Apr. 1986.
- 21. J. R. Hawthorne, "Exploratory Studies of Element Interactions and Composition Dependencies in Radiation Sensitivity Development," USNRC Report NUREG/CR-4437, Nov. 1985.

- 22. R. B. Stonesifer and E. F. Rybicki, "Development of Models for Warm Prestressing," USNRC Report NUREG/CR-4491, Jan. 1987.
- 23. E. F. Rybicki and R. B. Stonesifer, "Computational Model for Residual Stresses in a Clad Plate and Clad Fracture Specimens," USNRC Report NUREG/CR-4635, Oct. 1986.
- 24. D. E. McCabe, "Plan for Experimental Characterization of Vessel Steel After Irradiation," USNRC Report NUREG/CR-4636, Oct. 1986.
- 25. E. F. Rybicki, J. R. Shadley, and A. S. Sandhu, "Experimental Evaluation of Residual Stresses in a Weld Clad Plate and Clad Test Specimens," USNRC Report NUREG/CR-4646, Oct. 1986.
- 26. "Structural Integrity of Water Reactor Pressure Boundary Components: Annual Report for 1985," F. J. Loss, Ed., USNRC Report NUREG/CR-3228, Vol. 4, June 1986.
- 27. G. Gabetta and W. H. Cullen, "Application of a Two-Mechanism Model for Environmentally-Assisted Crack Growth," USNRC Report NUREG/CR-4723, Oct. 1986.
- 28. W. H. Cullen, "Fatigue Crack Growth Rates in Pressure Vessel and Piping Steels in LWR Environments," USNRC Report NUREG/CR-4724, Mar. 1987.
- 29. W. H. Cullen and M. R. Jolles, "Fatigue Crack Growth of Part-Through Cracks in Pressure Vessel and Piping Steels: Air Environment Results, USNRC Report NUREG/CR-4828 (in publication)
- 30. D. E. McCabe, "Evaluation of Surface Cracks Embedded in Reactor Vessel Cladding Unirradiated Bend Specimens," USNRC Report NUREG/CR-4841, May 1987.
- 31. H. Hanninen, M. Vulli, and W. H. Cullen, "Surface Spectroscopy of Pressure Vessel Steel Fatigue Fracture Surface Films Formed in PWR Environments," USNRC Report NUREG/CR-4863, July 1987.
- 32. A. L. Hiser and G. M. Callahan, "A User's Guide to the NRC's Piping Fracture Mechanics Data Base (PIFRAC)," USNRC Report NUREG/CR-4894, May 1987.
- 33. "Proceedings of the Second CSNI Workshop on Ductile Fracture Test Methods (Paris, France, April 17-19, 1985)," F. J. Loss, Ed., USNRC Conference Proceeding NUREG/CP-0064, (in publication).
- 34. W. H. Cullen and D. Broek, "The Effects of Variable Amplitude Loading on A 533-B Steel in High-Temperature Air and Reactor Water Environments," USNRC Report NUREG/CR-4929 (in publication).

- 35. "Structural Integrity of Water Reactor Pressure Boundary Components: Annual Report for 1986," F. J. Loss, Ed., USNRC Report NUREG/CR-3228, Vol. 5, July 1987.
- 36. F. Ebrahimi et al., "Development of a Mechanistic Understanding of Radiation Embrittlement in Reactor Pressure Vessel Steels: Final Report," USNRC Report NUREG/CR-5063, Jan. 1988.
- 37. J. B. Terrell, "Fatigue Life Characterization of Smooth and Notched Piping Steel Specimens in 288°C Air Environments," USNRC Report NUREG/CR-5013, May 1988.
- 38. A. L. Hiser, "Tensile and J-R Curve Characterization of Thermally Aged Cast Stainless Steels," USNRC Report NUREG/CR-5024, (in publication).
- 39. J. B. Terrell, "Fatigue Strength of Smooth and Notched Specimens of ASME SA 106-B Steel in PWR Environments," USNRC Report NUREG/CR-5136, (in publication).
- 40. D. E. McCabe, "Fracture Evaluation of Surface Cracks Embedded in Reactor Vessel Cladding: Material Property Evaluations," USNRC Report NUREG/CR-5207, (in publication).

ACKNOWLEDGMENT

The authors express their thanks to the NRC for funding this work and to C. Z. Serpan (NRC) for his helpful suggestions in the planning phase and his assistance in the acquisition of the archive material from the General Electric Company.

The authors also express their appreciation to the Kernkraftwerke Gundremmingen and to MaterialPruefungsanstalt (MPA) for their close cooperation during this study. The assistance of H. Flacke (Kernkraftwerke staff) in obtaining early vessel documentation and unused surveillance specimens and the assistance of Dr. J. Fohl (MPA) in obtaining a portion of the vessel trepan and his cooperation on other matters are gratefully acknowledged. Also, the contributions of J. W. Rogers (EG&G Idaho, Inc.) and Dr. G. Prillinger, Institut fur Kerntechnik und Energiewandlung E. V. (IKE), in establishing the neutron fluences received by the trepan material and the MEA irradiation assemblies are appreciated.

The authors thank the many persons in the MEA organization who made personal contributions to the experimental phases.

1. INTRODUCTION

The 250-MW boiling water Gundremmingen Reactor, KRB-A, located in the Federal Republic of Germany (FRG) was decommissioned by the utility owners in 1977. Prior to its decommissioning, the reactor vessel operated at a nominal temperature of 288°C and had an estimated inner wall fluence of 1×10^{19} n/cm², E > 1 MeV. In 1984, a remnant of a forging believed to be from the vessel construction was located by the U. S. Nuclear Regulatory Commission (NRC). The availability of this "archive" material and the service-degraded vessel material presented unique opportunity for qualifying the effects of long-term а irradiation on a prototypic reactor pressure vessel (RPV) steel. Specifically, the materials permitted verification tests of present prediction methods for radiation-induced embrittlement and the attenuation of radiation effects through the vessel thickness. Also, the materials allowed direct tests of the effect of fluence rate on the correlation of fracture toughness test methods with other mechanical test methods, such as the Charpy-V ($\rm C_v$) test method. Recognizing these possibilities, the NRC put in place a joint USA/FRG/UK program to investigate the vessel properties in both the as-irradiated and postirradiation annealed conditions and to conduct accelerated irradiation tests of the archive material for power vs. test reactor Materials Engineering Associates (MEA), comparisons. Material-Pruefungsanstalt (MPA), and UKAEA-Harwell are the lead laboratories for the three respective countries.

MEA's tasks include the development of mechanical properties data for the unirradiated (preservice) vessel condition using the archive material and the determination of fracture resistance changes produced by a light-water test reactor environment. MPA's responsibilities include vessel trepanning and the determination of postservice vessel properties and fluences. Institut fur Kerntechnik The und Energiewandlung E. V. (IKE) is providing dosimetry support to MPA. UKAEA-Harwell is conducting irradiation tests of the archive material, using a heavy water test reactor. Through a coupling of the UKAEA-Harwell and MEA results, the program will qualify the effects on embrittlement sensitivity of large neutron spectrum differences.

This report documents MEA studies to date on the archive material and through-vessel-wall fluence determinations made by EG&G Idaho, Inc. under MEA sponsorship. In addition, MEA results for the archive material are compared to mechanical properties data for trepanned material developed by MPA. Detailed findings of the MPA tests are given in References 1-3. Results of Harwell studies on archive material supplied by MEA are not yet published although preliminary (tentative) results were described at the 1986 Workshop on the KRB-A vessel material (Ref. 4). Irradiations by Harwell primarily were in a heavy-water reactor environment; whereas the KRB-A and the test reactor used by MEA are light-water reactors.

The MEA and MPA studies jointly have produced a set of anomalous results. The anomaly pertains to one test orientation of the vessel material only and may be indicative of a unique irradiation fluencerate effect. Resolution of the anomaly is viewed as highly important because of the potential impact on the applicability of NRC's Regulatory Guide 1.99 to long-term irradiation service at elevated temperature (Ref. 5). The studies are continuing.

 \mathcal{L}^{*}

ç

2. MEA INVESTIGATIONS

MEA investigations have progressed through three phases. Phase 1 involved experimental testing of the archive material to verify that it was a remnant of the KRB-A vessel's ring forging No. 7.1 as suggested by vendor records (Refs. 6 and 7) and other information available. Phase 2 developed through-thickness mechanical properties of the archive material, for use in indexing the irradiation effects to the vessel. Phase 3 produced notch ductility, fracture toughness, and tensile strength data for irradiated and postirradiation annealed conditions. Additionally, tests of through-wall fluences were made using a portion of the material trepanned from the vessel belt-line region. The irradiation matrix that evolved since undertaking the program is summarized in Table 1. The philosophy behind each matrix point is discussed in Section 7.

Experiment Irradiation Fluence Target Postirradiation^a Specimen Types Specimen Complement Test Conditions Temperature C, CT Tensile $(n/cm^2, E > 1 MeV)$ Codeb (°C) I, IA^c, IA₃₉₉, IA₄₅₄ C_v, 0.5T-CT^d, Tensile^e 8×10^{18} UBR-68 288 1 47 24 8 2.7 x 10¹⁸ I, IA₃₉₉, IA₄₅₄ C_v, 0.5T-CT, Tensile UBR-78^f 20 + 8^g 288 24 $2 + 2^{g}$ 8×10^{18} UBR-79A^f C., 0.5T-CT, Tensile 13 + 5^g I 275 6 2 UBR-80A^f 2.3×10^{19} C_v, Tensile 15 + 3^g 288 I 0 4

 Table 1
 Irradiation Experiment Matrix (ASTM L-C Orientation Specimens)

^a I = as-irradiated; IA₃₉₉ = irradiated + 399°C-168 h annealed; IA₄₅₄ = irradiated + 454°C-168 h annealed

b MEA assembly number

^C Unspecified anneal condition

d 12.7-mm (0.5-in.) thick compact tension specimen

e 5.74-mm (0.226-in.) gage diameter

^f Some C-L orientation C_v , tensile specimens included

g ASTM C-L orientation (C_v) or CMFL orientation (tensile)

3. KRB-A REACTOR VESSEL AND MATERIALS

The KRB-A reactor was placed in service in 1966. It represents an early prototype to boiling water reactors (BWR's) built by the General Electric Company. The belt-line region of the primary pressure vessel was constructed of several forged steel rings joined by circumferential submerged-arc (S/A) welding. Forging ring No. 7.1 was located at the elevation of the reactor fuel core (belt-line region). This ring has a thickness of 119 mm (4.7 in.) and is stainless steel clad on its inner surface. The steel type is 20NiMoCr26 which is similar to ASTM A 336 steel.

A reactor vessel surveillance program was implemented prior to commissioning (Refs. 7 and 8); some surveillance specimen capsules were later removed and tested (Ref. 9). In 1984, MEA obtained a few unirradiated (unused) surveillance specimens from the reactor facility, Kerkraftwerke Gundremmingen, which is owned by Rheinisch -Westfalisches Electrizitatswerk AG (RWE) and Bayernwerk AG (BAG). The specimen materials were of significant value to archive material verification.

Initially, a total of 15 trepans were removed from the vessel beltline region. Twelve of the 100-mm diameter trepans were taken from forging ring No. 7.1; three were taken from an adjoining forging (see References 1 and 3). In addition, 3 trepans were removed from a forging in the vessel's steam drum region (essentially a nil fluence exposure region). Trepan "G", from forging ring No. 7.1, contained the material analyzed for through-wall fluence levels.

4. ARCHIVE MATERIAL

The archive material was obtained from the General Electric Company's Vallecitos site. The material was in the form of two welded ring segments. The segments did not have a stainless steel weld overlay but did have the appearance of previous machining on the I.D. and O.D. surfaces (using a large turret milling machine) to remove out-of-roundness and/or to bring the material to the design-specified thickness. The inner diameter of the vessel at the belt line is about 3.7 m (12.1 ft). In this report, the as-forged (original) I.D. surface of the material is taken as the reference surface for indexing 1/8T, 1/4T, and other thickness locations. The visual appearances of the base metals suggest that they were a prolongation of a much larger ring forging. The circumferential weld is suspected of being a portion of the weld made for surveillance program material (Ref. 7).

One ring segment, approximately 119-mm thick and weighing about 1450 kg, was given the identification code GEB by MEA. The base metals on either side of the weld deposit were coded GEB-1 and GEB-2. The other ring segment weighed about 990 kg; its base metal portions were coded GEA-1 and GEA-2. To date the MEA and Harwell irradiation programs have used the base metal, GEB-2, exclusively. The test specimens for irradiation were removed from the 1/8Tthickness location. This sampling location does not conform to ASTM Standard Practice E 185 but was chosen for specific reasons stated in Section 6.

5. VERIFICATION TESTS (PHASE 1)

Objectives of the verification tests were the experimental determination of chemical composition, hardness, tensile properties, and notch ductility properties of each of the four base metals contained in the welded ring segments. Microstructures were also characterized. The findings are documented in detail in MEA Report No. MEA-2095 (see Appendix A). In brief, the individual and combined observations for the base metals are in good agreement with existing documentation for vessel forging ring No. 7.1.

Table 2 lists the chemical compositions of the four archive base metals and the chemical compositions of the base metal portions of the three, unused surveillance specimens tested. The composition of the forging as given by KRB-A vessel documentation and the composition of the trepanned material as determined by MPA are also given. From the similarity of values for the archive materials, it is reasonable to conclude that they are all from the same steel melt. More importantly, the archive material composition matches well the composition of forging ring No. 7.1 (trepans) as determined by MPA.

The microstructures of the four archive materials were found to be tempered upper bainite or tempered upper bainite in combination with free ferrite, depending on the distance from the as-forged surface (see Appendix A). The GEB-1 and GEB-2 materials have comparable Rockwell-B hardness levels and profiles. A small hardness difference in the center region (only) was found between the GEA-1 vs. GEA-2 materials. The Rockwell-B hardness values were comparable to those of the surveillance specimens.

The newly developed C_v notch ductility data for the archive materials (1/4T location) and data for the forging ring No. 7.1 (ASTM C-L test orientation) generated in the mid-1960's (Refs. 6-8) are illustrated in Fig. 1. Note the agreement. The C-L test orientation proved to be the "strong" orientation; the C_v upper shelf energy level of this orientation is about 155 J (114 ft-lb) compared to 103 J (76 ft-lb) for the L-C orientation.

Based on the evidence (old and new), MEA and MPA concluded that a high probability exists that the four base metals and the vessel forging No. 7.1 are from the same steel melt and that the base materials are representative of this vessel forging as first placed in service.

Material	Chemical Composition (wt-%)													
	С	Min	Si	Р	S	Ni	Cr	Mo	Cu	As	Sn	Sb	V	Al
GEA-1	0.23	0.70	0.23	0.017	0.013	0.77	0.37	0.66	0.15	0.021	0.021	0.007	0.031	
GEA-2	0.24	0.71	0.21	0.014	0.018	0.77	0.36	0.66	0.15	0.023	0.021	0.007	0.030	
GEB-1	0.23	0.71	0.21	0.017	0.019	0.78	0.36	0.66	0.16	0.023	0.021	0.007	0.031	
GEB-2	0.24	0.71	0.21	0.015	0.018	0 . 79	0.37	0.67	0.15	0.021	0.021	0.008	0.031	
(Average) ^a	0.24	0.71	0.22	0.016	0.017	0.78	0.37	0.66	0.15	0.022	0.021	0.007	0.031	
KRB-A Vessel ^b	0.22	0.78	0.24	0.019	0.017	0.82	0.38	0.62	c			-		
KRB-A Vessel ^d	0.22	0.71	0.22	0.013	0.012	0.75	0.38	0.62	0.16	0.02	0.03	<0.01	0.04	0.04
GEB-1 ^d	0.23	0.71	0.23	0.013	0.012	0.75	0.38	0.65	0.16	0.02	0.03	<0.01	0.04	0.02
D7M ^e	0.23	0.71	0.26	0.022	0.015	0.86	0.38	0.64	0.16					
D6E ^e	0.23	0.71	0.25	0.026	0.019	0.84	0.36	0.63	0.15					
D7Y ^e	0.24	0.71	0.25	0.022	0.015	0.85	0.37	0.65	0.16					
(Average) ^d	0.23	0.71	0.25	0.023	0.016	0.85	0.37	0.64	0.16					

Table 2 Chemical Compositions of Archival Materials, Surveillance Specimen Base Metal and KRB-A Trepan G

^a Average of GEA and GEB materials

^b From Ref. 6

^c Not reported

^d MPA composition determination by Quantovac Spectroscopy

^e Surveillance specimens

Fig. 1 Charpy-V notch ductility data for the archive base metals vs. data from the KRB-A reactor surveillance program for the same test orientation (ASIM C-L). Surveillance data for two fluence conditions are also shown.

6. THROUGH-THICKNESS PROPERTIES CHARACTERIZATION (PHASE 2)

The base metal GEB-2 was selected for the continuing program. This NRC/MEA decision, in part, reflected the large amount of material available. Also, it was decided that L-C orientation specimens (only) would be used for the balance of the program, including irradiation tests, to minimize cost.

Through-thickness properties of the GEB-2 base material were determined to establish baseline (reference) properties. (Note: The Phase 1 verification tests employed specimens from the 1/4T-thickness location only.) This information helped guide the choice of best forging sampling location for test reactor irradiation experiments. The properties investigated were notch ductility, tensile strength, and static fracture toughness, including J-R curve properties. Tests were in conformance with ASTM Standard Methods E 8, E 23, E 399, E 813, and E 1152 as applicable to the individual test methods and Procedures for testing the compact tension specimens (in conditions. case, 12.7-mm thick 0.5T-CT specimens) are outlined in this Appendix B provides diagrams used for the cutting of Reference 11. specimen blanks for the Phase 2 investigations and for the Phase 3 irradiation studies discussed below.

MEA Report No. 2159-A (see Appendix C) documents the primary MEA findings on through-thickness properties. The determinations made with full-size C, specimens (ASTM Type A), 5.74-mm diameter tensile specimens and 12.7-mm thick CT specimens (0.5T-CT) show a good uniformity of properties through the material. Table 3 summarizes the tensile test results. Yield strength differences are less than 21 MPa (3 ksi). Figures 2 through 5 illustrate the experimental C, and CT test data. Differences in brittle-ductile transition temperature indexed to the C_v 41-J energy level are on the order of 11°C and are order of 17°C for transitions indexed to the on the CT $K_{\rm J}$ 100 MPa/m toughness level. $C_{\rm v}$ upper shelf levels for the 1/8T-, 1/4T-, and 7/8T-thickness locations were the same but were somewhat higher than that of the 1/2T-thickness location (103 J vs. 90 J). No significant difference in upper shelf toughness due to thickness location was observed in CT specimen tests.

Based on the through-thickness properties uniformity, the l/8T-thickness position was selected over the l/4T-thickness position for the irradiation investigations. For the vessel itself, it was reasoned that the l/8T layer, having received the greater fluence in-service, would offer a high level of embrittlement for making comparisons for the fluence rate effects. Secondly, this layer better represents material associated with the small flaw case in Pressurized Thermal Shock (PTS) scenarios.

Thickness Location	Specimen Number	Tensile Strength		Yield 8 (0.2% (Strength Offset)	Elongation	Reduction of Area		
		(MPa)	(ksi)	(MPa)	(ksi)	(%)	(%)		
1/8T	GEB-T9	633	91.8	488	70.8	38.4	61.1		
	GEB-T10	633	91.8	488	70.8	39.6	65.4		
1/4T	GEB-T1	618	89.6	467	67.8	42.6	65.3		
	GEB-T4	621	90.0	471	68.3	38.4	66.8		
1/2T	GEB-T11	621	90.0	472	68.4	23.4 ^a	57.3		
	GEB-T12	621	90.0	467	67.8	40.6	61.6		
7/8T	GEB-T13	629	91.3	488	70.8	40.8	65.9		
	GEB-T14	631	91.6	488	70.8	40.0	66.4		

Table 3Tensile Properties of Code GEB-2, Axial Specimen Orientation
(5.74-mm diameter, 12.7-mm gage length)

^a Failed at gage mark

-

Fig. 2 Charpy-V notch ductility of Code GEB-2 material at four locations through the thickness.

Fig. 3 Fracture toughness of Code GEB-2 material at four thickness locations. Notice the similarity in toughness vs. temperature trends. Tests producing a J-R curve are indicated by a slash (/) through the data point.

DELTA a (in.)

Fig. 4 J-R curves for four thickness locations in the Code GEB-2 material at 177°C and at 288°C.

Fig. 5 J-R curves for the Code GEB-2 material showing the dependence of J-R curve level on test temperature. The J-R curve for -18°C (highest level curve) was terminated by cleavage fracture.

B-CAPSULE

1

Fig. 6b Placement of Charpy-V, tensile and 0.5T-CT specimens in Experiment UBR-68 (Capsule B; elevation view).

Fig. 7 Charpy-V notch ductility of Code GEB-2 material before and after irradiation at 288°C to $8.8 \times 10^{18} \text{ n/cm}^2$, E > 1 MeV. The irradiation was conducted in the light-water-cooled and moderated UBR test reactor (Experiment UBR-68).

Fig. 8 Charpy-V notch ductility of Code GEB-2 material before and after postirradiation annealing at 399°C for 168 h (Experiment UBR-68).

Fig. 9 Charpy-V notch ductility of Code GEB-2 material before and after postirradiation annealing at 454°C for 168 h (Experiment UBR-68).

Irradiation	Temperature	Fluence 2	Specimen Orientation (ASTM)	C 41-J Temperature				C, Upper Shelf Energy				
Assembly		x 10 ¹⁰ n/cm ² (E > 1 MeV)		Initial		Cha	nge ^a	I	nitial	C	hange ^a	
	(°C)			(°C)	(°F)	(∆°C)	(∆°F)	(J)	(ft-lb)	(A)	(∆ft-1b)	
Unirradiated (Set A)			L-C	-29	-20			103	76			
UBR-68 (399°C Anneal) (454°C Anneal)	288	8.76	L-C	-29 16 16	-20 60 60	44 28 43	80 50 75	103 94 94	76 69 69	9 20 20	7 15 15	
Unirradiated (Set B)			L-C C-L	-26 -40	-15 -40		_	107 155	79 114		_	
UBR-78	288	2.7	L-С ^b С-L	-26 -40	-15 -40	17 19	30 35	67 155	79 114	4 4	3 3	
UBR-79A	275	8.5	L-C C-L	-26 -40	-15 -40	47 C	85 c	107 155	79 114	9 ~31	7 ~22	
	260	8.8	L-C C-L	-26 -40	-15 -40	56 ~53	100 ~95	107 155	79 114	17 22	13 16	
UBR-80A	288	23.0	L-C C-L	-26 -40	-15 -40	64 c	115 c	107 155	79 114	19 36	14 26	
			b					c				

Table 4 Summary of Postirradiation Notch Ductility Determinations (UBR Experiments)

Change over previous condition (unirradiated or irradiated)

Untested irradiated condition

Not determined

22

specimens still available
in K_{Jc} 100 MPa/m temperature was found with the 0.5T-CT specimen tests (Fig. 10). Both determinations show the NRC's Regulatory Guide 1.99 Rev. 1 and Rev. 2 to be conservative. Specifically, Rev. 1 and Rev. 2 project transition temperature elevations of 67°C and 59°C, respectively, for this 0.15% Cu, 0.015% P, 0.79% Ni steel.

Referring to upper shelf toughness, only a small reduction in J level at 177° C was apparent after irradiation (Fig. 11). At 288°C, the data for the unirradiated and irradiated conditions are colinear (Fig. 12). Together, the J-R curves for the irradiated condition at 177° C and at 288°C describe only a small toughness reduction with an increase in temperature in this range (Fig. 13).

Postirradiation heat treatment at 399° C for 168 h resulted in full C_v upper shelf recovery but only partial 41-J transition temperature recovery (Fig. 8). The 454° C-168 h anneal, in contrast, produced full upper shelf recovery and essentially, full 41-J recovery (Fig. 9). The C_v upper shelf energy level of the annealed material is higher than that of the unirradiated material (114 J vs. 103 J, respectively). Whether or not this was due to the prior neutron exposure or just the duplex thermal treatment of 288°C-249 h + 399°C-168 h (or alternatively 454°C-168 h) has not been established. The unirradiated and irradiated condition tests were performed on the same impact test machine; accordingly, the difference is not experimental procedure related. MEA tests of unirradiated, thermally-conditioned A 302-B and A 533-B pressure vessel steels have indicated a similar effect of duplex heat treatments on upper shelf level (Ref. 11).

The 0.5T-CT specimen data for unirradiated, irradiated, and annealed conditions are compiled in Appendix G. Specimens that were postirradiation heat treated showed an inconsistent recovery in the transition regime. For the 399°C-168 h heat treated condition (Fig. 14), two specimens showed essentially no recovery when referenced to the mean curve for the irradiated condition but four others receiving this heat treatment indicated up to 80% recovery in transition temperature at the 100 MPa \sqrt{m} level. For the 454°C-168 h heat treated condition (Fig. 15), two specimens tested in the transition regime indicated essentially 100% recovery unlike three others which depicted < 50% recovery. The reason(s) for the inconsistent response to the annealing treatments has not been determined. In contrast, relatively low data scatter in the transition regime was found for both the unirradiated and the asirradiated material conditions (see Fig. 10). Both annealing heat treatments resulted in some recovery in J-R curve level at 177°C (Fig. 16). Consistent with C_{u} upper shelf trends, the anneal at 399°C for 168 h produced a higher toughness than that found for the unirradiated condition. On the other hand, the higher anneal temperature 454°C, did not provide complete recovery in the J-R curve level in contrast to the > 100% upper shelf recovery demonstrated by the C_{y} tests. Overall, the differences in the J-R curve levels among the four conditions are not large; possibly multiple tests at each condition would have yielded overlapping trend bands.

Fig. 10 Fracture toughness of Code GEB-2 material before and after irradiation at 288°C to 8.6 x 10^{18} n/cm² (Experiment UBR-68).

Fig. 11 J-R curves for unirradiated vs. UBR-68 irradiated conditions at 177°C. The irradiated condition test shows a slightly lower J-R curve level.

Fig. 12 J-R curves for unirradiated vs. UBR-68 irradiated conditions at 288°C. The curves are essentially colinear.

Fig. 13 J-R curves for the UBR-68 irradiated condition at 177°C and 288°C, showing a similarity in toughness level.

Fig. 14 Fracture toughness of Code GEB-2 material before and after postirradiation annealing at 399°C for 168 h. Individual data points show a variation in transition temperature ranging from 0% to 80% (Experiment UBR-68).

L

Fig. 15 Fracture toughness of Code GEB-2 material before and after postirradiation annealing at 454°C for 168 h. The wide variation in transition temperature recovery is not understood (Experiment UBR-68).

ł

Tensile test results are summarized in Table 5. A 76-MPa elevation in ambient temperature yield strength and a 59-MPa elevation in ultimate strength were produced by the irradiation. Tests at 288°C showed a 23-MPa elevation in yield strength and a 16-MPa elevation in ultimate strength. The 399°C-168 h and the 454°C-168 h postirradiation heat treatments achieved 70% and 100% recovery in yield strength, respectively. Accordingly, yield strength changes follow well the concomitant $C_{\rm w}$ 41-J transition temperature changes.

7.2 Through-Wall Fluence Determination

The fluence determinations made at various depths through the vessel wall, using a slice from Trepan G, are listed in Table 6 and are illustrated in Fig. 17. The determinations were made by EG&G Idaho, Inc. (J. W. Rogers) for MEA under subcontract. Details of the fluence determination procedures are given in Reference 12 (Appendix H).

Important to the thrust of the USA/FRG/UK program, the fluence to the inner-wall surface was much less than the original fluence estimate of 1×10^{19} n/cm², E > 1 MeV, made at the time of vessel decommissioning and the 8.8×10^{18} n/cm² fluence received by the UBR-68 irradiation experiment In turn, the planned 1:1 comparison of embrittlement for a fluence-rate-effects determination could not be made. (Note: Material for the through-wall fluence determination unfortunately was not available at the time of the UBR-68 irradiation test.)

Table 6 includes through-wall fluence projections (i.e., attenuated fluence values) by Revision 2 of Regulatory Guide 1.99. Figure 18 compares the projections against measurements. The projections of inwall fluences appear much higher than the measurements indexed to an assumed fission spectrum but are within 5 percent of adjusted measurement values indexed to the calculated spectrum. A best-fit equation for the fission spectrum based data has an exponent value of 0.41.

7.3 UBR Test Reactor vs. Service-Irradiation Embrittlement

 C_v data developed by MPA with Trepan C and G samples having the L-C and C-L orientation are illustrated in Fig. 19. The samples were from trepan specimen layer No. 2 which corresponds approximately to the 1/8T-thickness location. The data trend for the archive material from the UBR-68 experiment is also shown for comparison. The fluence to the trepan specimens (MPA determination) was approximately 2.4 x 10¹⁸ n/cm² or about one-third that received by the archive material. Nonetheless, the trepan L-C orientation tests describe a 60°C increase in 41-J temperature and a 50-J decrease in C_v upper shelf energy (referenced to the preirradiation properties of the archive material). Accordingly, the service-induced embrittlement is shown to be much greater than the accelerated (test reactor) irradiation-induced embrittlement. A second observation is that the trepan C-L orientation data describe only a 30°C increase in C_v 41-J transition temperature and a <10-J decrease in upper shelf energy

Experiment	Fluence	Orient.ª	Test Temp.	Yield Strength			Tensile Strength		
	(^b)		(°C)	(MPa)	(ksi)	(∆MPa) ^C	(MPa)	(ksi)	(AMPa) ^C
Unirradiated		Azial	24 to 32 288 -129	489.6 439.5 684.8	71.0 63.7 99.3		633.1 633.1 826.1	91.8 91.8 119.8	
		CMFL	24 to 32	492.6	71.4		634.5	92.0	
UBR-78 (288°C) As-Irradiated	2.7	Arial	31 ^d	516.3	74.9	26.7	652.8	94.7	19.7
		onfl	31 ^d	529.7	76.8	37.1	656.6	95.2	22.1
UBR-68 (288°C) As-Irradiated	8.7	Azial	23 ^d 288 ^d	564.1 462.6	81.8 67.1	74.5 23.1	691.5 648.8	100.3 94.1	58.4 15.7
Annealed (399°C-168 h)		Axial	22 ^d 288 ^d	511.2 448.0	74.1 65.0	22.6 8.5	647.0 625.9	93.8 90.8	13.9 -7.2
Annealed (454°C-168 h)		Arial	23 ^d 288 ^d	484.1 429.5	70.2 62.3	-5.5 -10.0	631.2 614.2	91.5 89.1	-1.9 -18.9
Annealed (399°C-48 h)		Axial	288 ^d	464.4	67.4	24.9	650.4	94.3	17.3
UBR-79 As-Irradiated (275°C)	8.5	Azial	31 ^d	565.3	82.0	75.7	703.1	102.0	70.0
As-Irradiated (260°C)	8.8	Arial	31 ^d	585.4	84.9	95.8	705.5	102.3	72.4
UBR-80 (288°C)	23.0	Axial	31	602.6	87.4	112.6	731.5	106.1	98.4

Table 5 Average Tensile Data for KRB-A Archive Material (1/8T Layer)

* Per ASTM E 399, Axial = Longitudinal; CMFL = Circumferential

 $b = 10^{19} \text{ n/cm}^2$ (E > 1 MeV)

^C Elevation relative to unirradiated condition data, same test orientation and temperature

d Single values only

Sample ID ^a	Mass	⁵⁴ Mn Bg/g (1/13/77)	> 1 MeV Neutron Fluence Rate ^b	>1 MeV R Neutron Fluence ^C	G 1.99 Rev > 1 MeV Fluence Projection	2 > 1 MeV Neutron Fluence ^e	> 0.1 MeV Neutron Fluence ^e	⁶⁰ Co Bq/g (1/13/77)	Thermal Neutron Fluence Rate ^b	Themal Neutron Fluence ^C
	(g)	(x 10 ⁵)	(x 10 ⁹)	(x 10 ¹⁸)	(x 10 ¹⁸)	(x 10 ¹⁸)	(x 10 ¹⁸)	(x 10 ⁵)	(x 10 ⁹)	(x 10 ¹⁸)
0.02T	1.8162	7.19 ± 0.49	14.60 ± 0.12	3.34 ± 0.28	3.34 ^f	2.59 ± 0.22	5.16 ± 0.43	6.00 ± 0.31	14.50 ± 0.08	3.23 ± 0.18
0.15T	1.7793	5.84 ± 0.36	11.80 ± 0.10	2.71 ± 0.22	2.92	2.38 ± 0.19	5.56 ± 0.45	2.89 ± 0.15	6.99 ± 0.36	1.60 ± 0.08
0.27T	2.8309	4.57 ± 0.28	9.29 ± 0.75	2.11 ± 0.17	2.57	2.05 ± 0.17	5.33 ± 0.43	1.62 ± 0.08	3.92 ± 0.20	0.90 ± 0.46
0.47T	1.1943	3.19 ± 0.20	6.28 ± 0.51	1.47 ± 0.12	2.09	1.59 ± 0.13	5.02 ± 0.41	0.87 ± 0.44	2.10 ± 0.11	0.48 ± 0.24
0.74T	1.7710	1.98 ± 0.13	4.02 ± 0.33	0.91 ± 0.75	1.58	1.18 ± 0.10	4.51 ± 0.37	0.56 ± 0.29	1.35 ± 0.07	0.31 ± 0.16
0.98T	1.6817	1.28 ± 0.08	2.59 ± 0.21	0.59 ± 0.48	1.23	0.80 ± 0.07	3.50 ± 0.29	0.61 ± 0.31	1.48 ± 0.08	0.34 ± 0.17

Table 6 Gundrenningen Vessel KRB-A, Trepan G Dosimetry

a Within the 1-mm (4.35-in.) thick slice sent to FGG Idaho [vessel thickness = 119 mm (4.7 in.)]

^b n/cm²-s⁻¹ (fission spectrum assumption)

^c n/an² (fission spectrum assumption)

d n/cm²

e n/cm² (calculated spectrum)

f Referenced to the 0.02T position

KRB-A TREPAN

Fig. 17 Sampling locations in Trepan G for fluence determinations.

Fig. 18 EG&G Idaho, Inc. fluence measurements for through-thickness positions in Trepan G. The upper graph compares the calculated spectrum vs. assumed fission spectrum determinalower graph shows tions; the vs. projected throughmeasured fluence attenuation. thickness (Note: 1 in. - 25.4 mm)

Fig. 19 Charpy-V notch ductility of KRB-A vessel material before and after irradiation service. The dashed line in the lower graph shows the effects of long-term (years) thermal conditioning without irradiation; the upper graph includes postirradiation data from accelerated (test reactor) exposures of the KRB-A archive Code GEB-2 material by MEA and Harwell (Ref. 2).

(Ref. 1). As noted in Fig. 19, a portion of the transition temperature elevation for the trepan material can be ascribed to a time-at-temperature effect without neutrons present. The above L-C vs. C-L data comparison together with the relative embrittlement sensitivity found in the UBR-68 experiment constitute the anomalous behavior referred to at the beginning of this report.

Prior experience in test reactor irradiation studies and the few comparisons of C-L vs. L-C orientation data available from power reactor surveillance programs have led investigators to expect roughly comparable elevations in 41-J transition temperature for L-C vs. C-L test orientations. A companion expectation is a greater "absolute" reduction in upper shelf level for that test orientation having the higher preirradiation C_v upper shelf energy, that is, the "strong" test orientation, for cases where the preirradiation difference is quite pronounced. This expectation is one reason that the projection of upper shelf reduction by the NRC Regulatory Guide 1.99 is given in terms of percent decrease rather than an absolute value for a given fluence.

7.4 Follow-On Irradiation Experiment Matrix (UBR-78, UBR-79, UBR-80)

To verify the anomalous behavior, and separately, to obtain a critical test of neutron spectra effects on irradiation embrittlement sensitivity, a set of three additional experiments was undertaken for the archive material. Irradiation parameters and specimen complements are indicated in Table 1. The specimen loadings of the three experiments are indicated in Figs. 20 to 22; daily operating temperature records are included in Appendix D.

The thrust of one new experiment, UBR-78, was the development of a set of data for a fluence closely matching that actually received by the 1/8T-thickness location of the vessel (Trepan C and G). As with experiment UBR-68, Capsule A contained C_v and tensile specimens and Capsule B contained 0.5T-CT specimens. The second experiment, UBR-79A, addressed the question of the effect of irradiation temperature on material irradiation sensitivity. Here, a reanalysis of the probable vessel wall operating temperature by the utility indicated a service temperature of 279°C for the vessel belt-line region, rather than 288°C. This best estimate was derived mainly from downcomer water temperature information. To test the irradiation temperature effect more critically, the target temperature for UBR-79A was 275°C, rather than 279°C. The target fluence was the same as that for the original 288°C experiment, UBR-68. In actuality, the C_v specimens in UBR-79A were irradiated at 260°C (Group 1) and 275°C (Group 2). The temperature difference resulted from the "piggybacking" of the six $0.5\overline{T}$ -CT specimens in with the C_v specimen array. The development of two temperature zones, however, proved fortuitous.

The third experiment, UBR-80, was undertaken to obtain high fluence, 288°C irradiation data for a light-water environment, for comparison with data being developed by Harwell for a heavy-water environment. The target fluence was 2.3×10^{19} n/cm². In the interest of a

UBR - 78

A-CAPSULE

253	316	273	263	Fe. NI. ND
333	334	328	330	Fe, CoAl
284	275	306	294	
255	327	321	265	Fe , Ni 238,
257	315	340	267	U
286	308	277	296	
332	326	338	336	COAL, AGAL
259	279	322	269	Fe, Ni, ND

.

UBR - 78

B-CAPSULE

Fig. 20b Placement of Charpy-V, tensile and 0.5T-CT specimens in Experiment UBR-78 (Capsule B; elevation view).

Fig. 21 Placement of Charpy-V, tensile, and 0.5T-CT specimens in Capsule A of Experiment UBR-79 (elevation view).

Fig. 22 Placement of Charpy-V and tensile specimens in Capsule A of Experiment UBR-80 (elevation view). Blank spaces were occupied by specimens for another MEA study for the NRC.

complete summation of MEA investigations on the archive material, data from the UBR-80 irradiation test are provided below. Data from the cited Harwell investigations are not expected until late 1989.

The C-L and L-C test orientations were included in all three irradiation assemblies (UBR-78, -79A, and -80A) to qualify the orientationdependence of radiation sensitivity for the reactor vessel material.

The specimens for the irradiation assemblies were removed from the code GEB-2 ring forging at locations adjoining but somewhat displaced from that supplying the unirradiated condition test specimens. As a precaution against possible property differences around the forging circumference, a number of extra specimens were cut along with the specimen complement for irradiation, for check-tests of unirradiated condition properties. Results from the CT check-test specimens are illustrated in Figs. 23 and 24. Good consistency of the data in terms of transition regime trends and J-R curve trends is observed. A similar consistency was observed for the $C_{\rm T}$ specimen data sets.

7.5 Irradiation Experiment UBR-78

 C_v data for the L-C orientation and the C-L (strong) orientation are presented in Fig. 25 and are tabulated in Appendix F. Appendix F also includes computer curve-fits of these data and curve-fits for the data from experiments 79A and 80A. The average fluences received by the UBR-78 experiment specimens, 2.7 x 10¹⁸ n/cm² (C_v , tensile) and 2.6 x 10¹⁸ n/cm² (0.5T-CT), essentially match 1:1 the fluences received by the Trepans C and G at their 1/8T-thickness location. Average fluence rate values determined from individual neutron dosimeters in irradiation experiments UBR-78, UBR-79A, and UBR-80 are included in Appendix E.

Unlike the trepan test results, the data from this experiment do show about equal C_v 41-J transition temperature elevations and about equal upper shelf energy reductions for the L-C and C-L test orientations. The reductions in upper shelf energy were small, that is, nominally 5 J or less. The elevations in 41-J transition temperature were also small, about 18°C.

A comparison of the C-L orientation results for the trepan vs. the archive material indicates a reasonably good agreement (Fig. 19) The transition temperature elevations are within 10° C; the upper shelf reductions are both less than 10 J. The data sets for the L-C orientation, on the other hand, reinforce the original anomalous indications for the trepan.

Data from the 0.5T-CT specimens irradiated in experiment UBR-78 are given in Appendix G. The 100 MPa/m temperature elevation is somewhat higher than the C_v 41-J temperature elevation. In the transition regime, the data lie between that from experiment UBR-68 and that for the unirradiated condition (Fig. 26). The 100 MPa/m transition temperature elevation is about 60% of the 100 MPa/m temperature elevation observed with experiment UBR-68. The J-R curves for 177°C

Fig. 23 Check tests of unirradiated condition, fracture toughness properties. The data match well the initial data for the transition region.

Fig. 24 J-R curves from check tests at 177° C. The new data match the prior data well although at Δa values less than 1 mm, the J levels for the check tests are slightly higher.

Fig. 25 Embrittlement of the Code GEB-2 archive material by a fluence matching that received by the KRB-A reactor vessel in service (Experiment UBR-78). Notice that the radiation-induced notch ductility changes for the weak orientation (upper graph) and the strong orientation (lower graph) are about equal, unlike observations for the vessel proper.

Fig. 26 Fracture toughness of the Code GEB-2 material before and after irradiation at 288°C to 2.6 x 10^{18} n/cm² (Experiment UBR-78) The trend for a 288°C irradiation to 8.6 x 10^{18} n/cm² is also indicated (see dashed curve).

I.

describe a higher J level than the J-R curves for the unirradiated condition at this temperature for Δa values up to 0.5 mm (Fig. 27); at higher Δa values, the J level for the irradiated condition is lower than that for the reference condition. For the 288°C test condition, the J-R curves tend to be lower than those for the unirradiated condition (Fig. 28). [Note: A number of 0.5T-CT specimens from UBR-78 remain untested. Because of the low embrittlement, the planned assessments of annealing response (see Table 1) will not be made.]

The data obtained from tensile specimens are included in Table 5 and are discussed in conjunction with the UBR-79A and UBR-80A test results in a later section.

7.6 Irradiation Experiment UBR-79A

The C_v data from this experiment are illustrated in Fig. 29. The C_v specimens in this assembly were irradiated at either 260°C (Group 1) or 275°C (Group 2), as stated in paragraph 7.4. The average fluences received were 8.5 x 10^{18} n/cm² and 8.8 x 10^{18} n/cm², respectively, and closely match the fluence (8.8 x 10^{18} n/cm²) of UBR-68. Accordingly, the data can be compared directly for an irradiation temperature effects determination.

The results show only a small influence of irradiation temperature on the change in notch ductility properties. Transition temperature elevations were, in order of increasing irradiation temperature: $56^{\circ}C$, $47^{\circ}C$, and $44^{\circ}C$. The comparison of $275^{\circ}C$ vs. $288^{\circ}C$ irradiation temperature effects is of particular interest to the KRB-A analysis since the various estimates of vessel in-wall temperatures at the belt line are within this temperature range. The data from experiments UBR-79A and UBR-68 indicate that the uncertainity in the irradiation service temperature is not of practical significance. In turn, it can be concluded that the currently estimated vessel service temperature at the belt line, $279^{\circ}C$, does not have a bearing on the anomalous C_{v} data for the trepan L-C vs. C-L orientation. This is supported by the few C_{v} data developed for the C-L test orientation in this experiment.

The tensile test results are given in Table 5. The elevations in yield strength and tensile strength compare well with those observed in the 288°C irradiation experiment.

The fracture toughness data are tabulated in Appendix G and are illustrated in Fig. 30. From the very limited data the transition temperature increase at the 100 MPa/m level would appear to exceed that found with the UBR-68 irradiation which had a comparable fluence $(\Delta T \ 68^{\circ}C \ vs. \ \Delta T \ 48^{\circ}C)$ and implies a somewhat higher material sensitivity to irradiation at 275°C, unlike the C_v or tensile specimen data. A relatively large decrease in J-R curve level due to irradiation is apparent at a test temperature of 31°C (Fig. 31), in contrast to the small decrease found for experiment UBR-68.

Fig. 27 J-R curve for the UBR-78 irradiated condition at 177°C. The J-R curve level is similar to that for the unirradiated condition.

Fig. 28 J-R curve for the UBR-78 irradiated condition at 288°C. The J-R curve level here is slightly lower than that for the unirradiated condition.

Fig. 29 Embrittlement of the Code GEB-2 material by irradiation at 260°C vs. 275°C to $\sim 8.6 \times 10^{18}$ n/cm². The upper and lower graphs present L-C orientation and C-L orientation data, respectively.

Fig. 30 Fracture toughness of the Code GEB-2 material before and after irradiation at 275° C to ~ 8.6 x 10^{18} n/cm² (Experiment UBR-79)

Fig. 31 J-R curves for unirradiated vs. UBR-79 irradiated conditions at 31°C. A fairly large reduction in J level is evident for the irradiated condition.

7.7 Irradiation Experiment UBR-80A

The experimental C_v data are illustrated in Fig. 32. The inclusion of C-L and L-C orientation specimens in this assembly provided a critical test of the orientation dependence of the upper shelf reduction. It should be noted that the blanks for the two specimen sets were located very close to one another and to the check test specimens in the archive material stock. A 36-J reduction in upper shelf energy level is described by the C-L orientation data whereas a 19-J reduction is found for the L-C orientation data. The greater reduction by the "strong" test orientation is consistent with the data from prior accelerated irradiation tests.

The transition temperature elevation recorded with this experiment, when joined with those of experiments UBR-68, UBR-78, and UBR-79A, provides the embrittlement trend with fluence shown in Fig. 33. The trend in yield strength with fluence is also shown. Where specimens of C-L and L-C orientations were available, a general independence of the yield strength elevation on test orientation is indicated. The data indicate the following relationship: $\Delta^{\circ}C$ (41-J temperature elevation) = 1.67 Δ MPa (yield strength elevation).

Fig. 32 Embrittlement of the Code GEB-2 material by a high fluence, 288°C irradiation. The upper and lower graphs present L-C orientation and C-L orientation data, respectively. The dashed curve in the upper graph indicates the data trend for a low fluence, 288°C irradiation test.

Fig. 33 Trends of Charpy-V 41-J transition temperature increase and 24°C yield strength increase with neutron fluence at 288°C. Data from 260°C and 275°C irradiation tests are also shown.

8. DISCUSSION

A reasonable explanation for the "anomalous" test orientation dependence of radiation embrittlement found for the material trepanned from the KRB-A vessel has not been provided by the second group of experiments with the archive material. Accordingly, the studies should continue.

The original NRC objective for the USA/FRG/UK investigation was to critically test the influence of fluence rate on irradiation embrittlement and postirradiation embrittlement relief by annealing. In view of the anomalous trepan data comparison, caution is advised in making a fluence-rate assessment in the present case. That is, the L-C orientation data for the archive material vs. the L-C orientation data for the vessel trepans suggest a fluence-rate effect while the C-L orientation data for the two materials do not. Fortunately, both test orientations of the trepan were evaluated at the outset; otherwise, potentially erroneous conclusions could have resulted. The prima facie evidence for the L-C orientation (only) could easily have provided a conclusion that a highly detrimental fluence-rate effect exists for this particular steel type or composition. The evidence now available does not preclude such a conclusion in the future, but the anomalously high radiation embrittlement sensitivity of the L-C orientation relative to the C-L orientation is not supported by present experience with other materials.

Metallurgical explanations for the anomalous set of results are being sought through state-of-the-art microscopy and direct analyses of the fracture surface properties, including composition. Perhaps some preferential radiation-induced segregation could be responsible for the greater embrittlement to the "weak" orientation compared to the "strong" orientation.

An explanation could reside in the fabrication history of the vessel ring forging itself. Nothwithstanding the good agreement found in verification tests between archive material and vessel material (composition, strength, microstructure, C-L orientation notch ductility), the documentation on preirradiation L-C orientation properties of the vessel material is practically nil. It is noted that ring forgings can exhibit significant differences in properties around their circumference. One forging material included in the second round of IAEA studies on the reliability of reactor pressure components (Refs. 13, 14, and 15) is an example. Carrying this forward, the properties of the archive material may not adequately represent the properties of the vessel material at the particular location at which the trepans were removed. The failure of trepan specimens annealed at 454°C to develop the same upper shelf level as the archive material specimens in the unirradiated condition (Ref. 1) may be indicative of such a scenario. In the broad sense, potential material variability in the preservice condition points to a conceivable problem in reactor vessel surveillance data applications on one hand, and a problem of data bank analyses for Regulatory Guide 1.99 application on the other, particularly at low fluences

where the potential for large percentage errors are greatest. The performance of routine "check tests" of preirradiation properties as a precaution in critical data applications is one means of improving on this situation.

In the case of the present USA/FRG/UK program, MEA and MPA have proposed that the anomaly be resolved by a test reactor irradiation of specimens made from the outer (low fluence exposure) ligaments of the trepan. MEA experiment designs are available for this purpose. If the same orientation dependence of embrittlement sensitivity is indicated by this irradiation test, it could be concluded that the anomaly is rooted in the material tested and not the difference in fluence rates involved (UBR vs. KRB-A service). If the same orientation dependence is not indicated, it will confirm the fluence-rate effect. In similar fashion, the approach precludes any uncertainties in later material comparisons by microscopy for the mechanistic cause.

9. SUMMARY

The accomplishments and primary observations of this investigation are:

- Two welded ring segments obtained by the NRC from General Electric Company have been identified to a high degree of certainty as archive material for ring No. 7.1 of the Gundremmingen KRB-A reactor vessel. Verification tests involved metallurgical and composition tests and archive material comparisons against unused surveillance specimens and portions of the vessel removed by trepanning.
- Notch ductility, fracture toughness (J-R curve), and tensile properties of the archive material through its thickness were determined experimentally using full-size C_v specimens, 0.5T-CT specimens, and 5.74-mm diameter oriented in ASTM L-C and tensile specimens C-L Relatively good uniformity in properties orientations. 1/8T-, 1/4T-, 1/2T-, was observed between and 7/8T-thickness locations. The C_y upper shelf energy level of the L-C orientation was about 30% lower than that of the C-L orientation (107 J vs. 155 J); the yield strengths of the two orientations were about the same.
- The fluences received in through-wall locations were determined for the KRB-A pressure vessel. The fluence at approximately the 1/8T-thickness location was 2.7×10^{18} n/cm² uncorrected for neutron spectrum shape (fission spectrum assumption) and 2.38×10^{18} n/cm² for the calculated neutron spectrum conditions at the vessel trepan location. The vessel inner-wall fluence is much lower than that originally projected by the FRG at the time of decommissioning.
- The archive material was irradiated in the light-water cooled and moderated UBR test reactor to 2.7, 8.8, and 23 x 10^{18} n/cm² at 288°C and to ~ 8.7 x 10^{18} n/cm² (E > 1 MeV) at 260°C and 275°C. Good agreement in 41-J transition temperature elevation was observed for the L-C vs. C-L orientation; the upper shelf energy reduction for the C-L orientation was about equal to that for the L-C orientation at the lowest fluence condition evaluated but was greater than that for the L-C orientation at the higher fluences.
- The L-C orientation C_v data for the archive material irradiated in the test reactor (accelerated irradiation conditions) describe less embrittlement than L-C orientation data for the vessel material at about the same fluence. This can be interpreted as a fluence rate effect indication. Comparisons of C-L orientation data for the archive material and trepan material, however, show about the same radiation embrittlement at a matching fluence.
The L-C orientation comparison assumes that the preirradiation properties of the archive material represent those of the vessel material which are unknown.

- The large difference in apparent radiation embrittlement sensitivity between the C-L "strong" test orientation (low) vs. the L-C "weak" test orientation (high) is anomalous; one approach for resolving the anomaly is described.
- The transition temperature shift from fracture toughness tests (measured at the 100 MPa/m level) tended to be slightly higher than that described by C_v tests for 288°C irradiation conditions. For fluences of ~ 2.7 x 10¹⁸ and ~ 8.6 x 10¹⁸ n/cm², the difference was 12°C and 4°C respectively.
- Upper shelf (J-R curve) fracture toughness was not degraded significantly by any of the test reactor irradiation exposures even though fluences were as high as $8.8 \times 10^{18} \text{ n/cm}^2$ (E > 1 MeV).

- K. Kussmaul, J. Fohl, and T. Weissenberg, "Investigation of Material from Decommissioned Reactor Pressure Vessel--A Contribution to the Understanding of Irradiation Embrittlement," presented to 1988 ASTM Symposium on Effects of Radiation on Materials, June 27-29, 1988, Andover, MA. (in publication).
- 2. J. Fohl, K. Kussmaul, and T. Weissenberg, "Assurance of the Pressure Vessel Integrity with Respect to Irradiation Embrittlement Activities in the Federal Republic of Germany," <u>Proceedings</u> of NEA/UNIPEDE Specialist Meeting on Life-Limiting and Regulatory Aspects of Core Internals and Pressure Vessels, Stockholm, Sweden, Oct. 14-16, 1987 (in publication).
- 3. K. Kussmaul and J. Fohl, "Assurance of Pressure Vessel Integrity with Respect to Irradiation Embrittlement," <u>Proceedings of ASTM-IAEA Specialists' Meeting on Irradiation Embrittlement and Aging of Reactor Vessels</u>, Phila., PA, May 27-29, 1987 (in publication).
- 4. C. English, "Irradiation of Gundremmingen Archive Materials in Harwell Reactors," UKAEA-Harwell presentation to 1986 Workshop on Validation of Surveillance Results, University of Stuttgart, FRG, Oct. 9-10, 1986.
- "Effects of Residual Elements on Predicted Radiation Damage to Reactor Vessel Materials," USNRC <u>Regulatory Guide 1.99</u>, Rev. 1, Apr. 1977.
- 6. Schleimar, "Untersuchungsbericht U4152," Technischer Uberwachungs-Verein Essen e.V., Henrishshutte, FRG, Dec. 11, 1964.
- Schleimar, "Reactor Vessel Test Ring: Plan for Preparation of Test Samples," Technischer Uberwachungs-Verein Essen e.V., Henrishshutte, FRG, July 8, 1964.
- "Akkumulierten Neutronendosis an der Reacktordruckbenhalterwant des Kernkraftwerkes Gundremmingen (KRB-I)," KGB-TUV Bayern e.V., Munchen, FRG, Sept. 7, 1977.
- 9. Von N. Eickelpasch and R. Seepolt, "Experimentelle Ermittlung der Neutronendosis des KRG-Druckgefabes und deren Betriebliche Bedeutung," Atomkernenergie (ATKE), Vol. 29(2), 1977, p. 149.
- A. L. Hiser, F. J. Loss, and B. H. Menke, "J-R Curve Characterization of Irradiated Low Upper Shelf Welds," USNRC Report NUREG/CR-3506, Apr. 1984.

- 11. J. R. Hawthorne, "Steel Impurity Element Effects on Postirradiation Properties Recovery by Annealing," <u>Influence of Radiation on Material Properties: 13th International Symposium (Part II), ASTM STP 956, F. A. Garner, C. H. Henager, Jr., and N. Igata, Eds., American Society for Testing and Materials, Phila. PA, 1987, pp. 461-679.</u>
- 12. "Analysis of Gundremmingen KRB-A Vessel Trepan," letter report JWR-04-87, EG&G Idaho (J. W. Rogers) to MEA (J. R. Hawthorne), Mar. 4, 1987.
- "Coordinated Research Programme on Analysis of the Behavior of Advanced Reactor Pressure Vessel Steels Under Neutron Irradiation," IWG-RRPC-78/81, International Atomic Energy Agency, Vienna, Austria, Oct. 17-18, 1977.
- 14. L. E. Steele, I. M. Davies, T. Ingham, and M. Brumovsky, "Results of the International Atomic Energy Agency (IAEA) Coordinated Research Programs on Irradiation Effects on Advanced Pressure Vessel Steels," <u>Effects of Radiation on Materials:</u> <u>Twelfth International Symposium</u>, ASTM STP 870, Vol. II, American Society for Testing and Materials, Phila., PA, 1985, pp. 863-899.
- 15. "Analysis of the Behavior of Advanced Reactor Pressure Vessel Steels Under Neutron Irradiation: Final Report of IAEA Coordinated Research Program 1977-1983," Technical Report Series 265, International Atomic Energy Agency, Vienna, Austria, 1986.

APPENDIX A

"Preirradiation Qualification of Materials Identified as KRB-A Archive"

J. R. Hawthorne

MEA Report No. MEA-2095

August 1985

PREIRRADIATION QUALIFICATION

OF MATERIALS IDENTIFIED

AS KRB-A ARCHIVE

J. R. Hawthorne

Prepared by

Materials Engineering Associates, Inc. 9700-B George Palmer Highway Lanham, MD 20706-1837

July 30, 1985

Prepared for

U. S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Materials Engineering Branch Washington, DC 20555

Contract: NRC-04-84-102

MEA-2095

PREIRRADIATION QUALIFICATION OF MATERIALS IDENTIFIED AS KRB-A ARCHIVE

J. R. Hawthorne

1. BACKGROUND

MEA has the task of irradiating and evaluating Gundremmingen reactor vessel archival materials in support of NRC research on long-term, in-MEA's results, irradiation effects. together with service determinations by MPA of the Federal Republic of Germany (FRG) on materials trepanned from the KRB-A vessel itself, will be analyzed for the effects of neutron exposure rate, steel composition, throughthickness damage attenuation, and for the correlation of Charpy-V (C_{y}) notch ductility vs. fracture toughness vs. strength. Properties recovery by postirradiation heat treatment will also be investi-The MEA and MPA programs are limited to studies of the base gated. metal. Studies of the girth welds are not being performed. The NRC decision to forego weld metal investigations stemmed from the FRG determination that more than one filler metal was employed in completing the weld thickness; that is, each weld has a composition variation through its thickness.

In April, 1985, two pieces of weldment identified by stamp markings as "KRB Vessel", were acquired from the General Electric Company (GE) -Vallecitos site. Each of the pieces represents a ring segment. One weighing approximately 3,200 lb. contains a circumferential weld deposit located at the half-height of the ring; the second, weighing only 450 lb., also contains a circumferential weld. In this case, the weld is placed closer to one edge than the other. Both segments are approximately 4-11/16 in. thick. The smaller piece was given the code GEA by MEA; the larger pieces was assigned the code GEB. In this report, GEA and GEB are termed "archive materials." The two base metals of GEA were given the code number GEA-1 and GEA-2, respectively; those of GEB have the code number GEB-1 or GEB-2.

Initial task objectives were the determination of the chemical composition, hardness, tensile strength and notch ductility of each of the four base metals contained in the welded ring segments. Microstructures were also to be identified. The findings were to establish whether or not the base metals are from the same parent material (or steel melt). Additionally, the results were to be compared against documentation for the KRB-A vessel to determine if the material acquired from GE is in fact archive material for the vessel. Specifically, the material from GE is believed to be a portion of forging ring no. 7.1 of the KRB-A vessel. This report summarizes the MEA findings on the archive materials to date.

2. APPROACH

A phased approach to the qualification of the archive materials was Phase 1 included determination of material chemistry at the chosen. one quarter thickness position in each of the base materials, that is, GEA-1, GEA-2, GEB-1 and GEB-2, referenced to their inner (I.D.) In addition, hardness levels and gradients through the surface. thickness from the outer (0.D.) surface to midthickness were to be established. Metallographic examinations were also a part of Phase 1 efforts. Phase 2 involved the cutting, machining and testing of standard C_v and 5.74 mm (0.226 in.) gage diameter tensile specimens from the 1/4T location in each of the materials. The specimens were to be removed in two orientations: axial and circumferential. Figures 1 and 2 are cutting plans developed for the removal of specimen blanks. Phase 3 (future) will develop through-thickness mechanical properties for the one base metal to be chosen, based on Phase 1 and 2 findings, for the main irradiation study.

In addition to the evaluation of material from the rings GEA and GEB, MEA tested three HAZ C, specimens from the original KRB-A vessel surveillance program primarily to obtain stock for check tests of the chemical composition of the surveillance base metal. The hardness of these specimens was also determined (before impact testing). The specimens, identified as D7M, D6E and D7Y were in the unirradiated, unaged condition and were obtained by Hawthorne (MEA) at the time of his visit to the reactor site. They were removed from top surface, 1/4T and 3/4T thickness positions, respectively, in the 122 mm (4.8 in.) thick weld made for the vessel surveillance program. Exact specimen locations in the weldment and other particulars are documented in Appendix A. In this regard, documentation which exists for the surveillance weld (and for the archive materials) is sparse. This is due, in part, to the vintage of the vessel and to the less stringent requirements generally in force at the time of vessel manufacture.

3. RESULTS

3.1 Chemical Composition Determinations

The chemical compositions of the archive materials are listed in Table 1 along with the composition of forging ring no. 7.1 given in the KRB-A documentation (Ref. 1). MEA findings for the base metal portion of the surveillance specimens D7M, D6E and D7Y are also included in this table. In the case of the archive materials, GEA and GEB, the determinations were made on drillings taken from a $38 \times 38 \times 13 \text{ mm}$ (1.5 x 1.5 x 0.5 in.) thick sample centered approximately on the 1/4T plane of each base metal (Note: The cutting diagrams in Figs. 1 and 2 illustrate the general locations of the $38 \times 38 \text{ mm} \times \text{full}$ thickness cutouts from which the stock for

Fig. 1 Cutting Plan for removal of Charpy-V (C_V) and tensile (T) specimens from the quarter thickness region of Ring GEA (Base Metals GEA-1 and GEA-2).

Fig. 2 Cutting Plan for removal of Charpy-V (C_v) and tensile (T) specimens from the quarter thickness region of Ring GEB (Base Metals GEB-1 and GEB-2).

Material	Chemical Compositions (Wt-%)												
	С	Mn	Si	P	S	Ni	Cr	Мо	Cu	As	Sn	Sb	V
GEA-1	0.23	0.70	0.23	0.017	0.013	0.77	0.37	0.66	0.15	0.021	0.021	0.007	0.031
GEA-2	0.24	0.71	0.21	0.014	0.018	0.77	0.36	0.66	0.15	0.023	0.021	0.007	0.030
GEB-1	0.23	0.71	0.21	0.017	0.019	0.78	0.36	0.66	0.16	0.023	0.021	0.007	0.031
GEB-2	0.24	0.71	0.21	0.015	0.018	0.79	0.37	0.67	0.15	0.021	0.021	0.008	0.031
KRB-A Vessel ^a Ring 7.1 Melt 931-137	0.22	0.78	0.24	0.019	0.017	0.82	0.38	0.62	b				
d7m ^c	0.23	0.71	0.26	0.022	0.015	0.86	0.38	0.64	0.16				
D6E ^C	0.23	0.71	0.25	0.026	0.019	0.84	0.36	0.63	0.15				
d7y ^c	0.24	0.71	0.25	0.022	0.015	0.85	0.37	0.65	0.16				

Table 1 Chemical Compositions of Archival Materials, Codes GEA and GEB

Reference: Schleimar, <u>Untersuchungsbericht U 4152</u>, Dec. 11, 1964. Not reported а Ъ

С Surveillance Specimens

A-7

composition and hardness determinations was obtained.) Composition determinations on the HAZ C, specimens also utilized drillings.

Composition data for the rings depict a close similarity in chemistry for all four archive materials. It appears reasonable that they were all from the same steel melt. The composition values also match well the reported composition for vessel ring no. 7.1 (Ref. 1). Furthermore, the archive material chemistries are close to the composition determinations for the individual surveillance specimens. In Table 1, the nickel content variation is not considered indicative of two or more materials at this time.

3.2 Hardness Determinations

Tests for material hardness and the hardness gradient in the ring thickness direction were made on the larger of the two pieces left over from the corner cutout after the chemical composition sample was removed (see Fig. 3). Pairs of indents were made at 12.7 mm (1/2 in.) intervals, starting at a location about 6.3 mm (1/4 in.) beneath the 0.D. surface. Hardness readings are listed in Table 2. Here, GEB-1 and GEB-2 are observed to have comparable hardness levels and profiles. GEA-1 and GEA-2, on the other hand, have a small hardness difference, especially at test depths no. 3 and 4. No particular significance can be attached to this difference at this time.

3.3 Microstructure Examinations

Microstructures of GEA-1, GEA-2, GEB-1 and GEB-2 are shown in Figs. 4, 5, 6 and 7 respectively. Through-thickness determinations were made for GEA-1 and GEB-1; only the 3/4T position was examined for GEA-2 and GEB-2. In general, the structures illustrated are tempered upper bainite or tempered upper bainite in combination with free ferrite. For both the GEA-1 and GEB-1 materials, a through-thickness gradient is apparent in terms of the amount of free ferrite present. While absent at the 3/4T and surface locations, a significant amount of ferrite is present at midthickness. Also note that GEA-1 shows a greater proportion of this consitiuent than GEB-1 which infers a slight difference in their primary heat treatment history (or original section size). On the other hand, the structures of the GEA-1 and GEB-1 are quite similar at the 3/4T (and presumably, the 1/4T) location. In contrast, the structure of GEA-2 shows a greater proportion of ferrite, compared to GEA-1 at the 3/4T location. This could be due to local banding and is being investigated further.

The microstructures of the base metal portions of the three HAZ C_v surveillance specimens are currently being established and will be compared to those of the archive materials. As noted above, the specimen represent top surface, 1/4T or 3/4T thickness positions in the weldment made for the vessel surveillance program.

3.4 Strength Determinations

Tensile strength determinations (1/4T location) are summarized in Table 3. In general, a major difference between axial and

Fig. 3 Schematic illustration showing locations of chemical composition and hardness test samples in base metal thickness.

Test Position	GI	EA-1	I GE <i>I</i>	Hardness A-2	(Rockwell GEE	L-B) 3-1	GEB-2		
1*	94.9		93.2	92.8	93.5	93.7	91.9	91.6	
2	94.9	94.1	92.4	93.3	93.0	93.2	92. 1	92.1	
3	94.8	94.8	90.5	90.3	92.0	91.7	91.4	91.9	
4	92.0	90.7	89.9	88.7	91.2	91.9	91.6	92.1	
5	89.8	89.1	89.3	89.3	90.6	91.6	89.3	89 . 9	
6	90.4	91.0	90.5	90.6	91.8	90.5	90.8	90 .9	

Table 2	In-Depth	Hardness	of	KRB-A	Archival	Materials
---------	----------	----------	----	-------	----------	-----------

* 1/4-in. below 0.D. surface

.

A. I.D. Surface B. 1/8T Location C. 1/2T Location

D. 3/4T Location E. 7/8T Location F. O.D. Surface

Fig. 6Microstructures of Base Metal GEB-1 through its thickness:A. I.D. SurfaceB. 1/8T LocationC. 1/2T LocationD. 3/4T LocationE. 7/8T LocationF. 0.D. Surface

I

Material Code	Orientation	Spec imen Number	Yield S	trength ^a	Tensile	Strength	Elongation in 12.7 mm	Reduction of Area
			(MPa)	(ksi)	(MPa)	(ksi)	(%)	(%)
GEA-1	Axial	T1 T4	507 514	73.5 74.5	652 658	94.5 95.4	36.2 37.2	61.6 61.1
	CMFL ^b	T5 T8	507 512	73.6 74.2	648 651	94.0 94.4	40.0 38.6	66.8 66.8
GEA-2	Axial	T1 T4	503 492	72.9 71.3	645 651	93.6 94.4	38.6 30.8	61.6 57.6
	CMFL	T5 T8	500 487	72.5 70.6	643 643	93.2 93.2	34.8	62.6
GEB-1	Axial	T1 T4	461 460	66.8 66.7	620 623	89.9 90.4	41.4 32.0	64.8 52.3
	CMFL	T5 T8	478 475	69.3 68.9	625 621	90.6 90.1	44.2 43.0	68.3 69.3
GEB-2	Axial	T1 T4	467 471	67.8 68.3	618 621	89.6 90.0	42.6 38.4	65.3 66.8
	CMFL	T5 T8	464 467	67.3 67.7	617 620	89.5 89.9	42.8 43.0	69.1 69.3

Table 3 Ambient Temperature Tensile Properties of Archive Materials

a 0.2% Offset (5.74-mm gage diameter specimens)
b

CMFL = Circumferential

circumferential (CMFL) test orientations was not observed for any of the four archive materials. Also, good agreement between properties of GEA-1 vs. GEA-2 and between properties of GEB-1 and GEB-2 is A significant difference in yield and tensile strengths, found. however, is noted on comparing GEA-1 and GEA-2 vs. GEB-1 and GEB-2. The reason for the lack of agreement is not known, although it could be related to some difference in postweld heat treatment condition, e.g., stress relief annealed vs. non-stress relief annealed, or a difference in locations of GEA and GEB in the original (full) ring forging, or a dissimilarity in specimen thickness positions in the forging. In regard to the last possibility, it is noted that the rings show evidence of rough machining, presumably from steps taken to make the rings "round" after fabrication. The depths of machining cuts on the O.D. and I.D. surfaces differ between GEA and GEB as pointed out in Figs. 1 and 2.

3.5 Notch Ductility Determinations

Charpy V-notch ductility test results obtained to date (1/4T location) are listed in Table 4 and are illustrated in Figs. 8 and 9. Unlike the tensile test findings, a large difference in notch ductility is observed between axial and circumferential orientations. Determinations at 93°C (200°F) for the axial orientation depict an upper shelf energy level approximately 30 percent lower than that of the circumferential direction. Compared to GEA, GEB materials have a somewhat higher upper shelf level consistent with their lower yield strength. The difference is more apparent in the axial orientation data.

In Figs. 8 and 9 the data developed for GEA and GEB are also compared to results developed in the mid-1960's for the vessel material (Ring 7.1, strong orientation) (Ref. 2,3). Overall, the results agree well with the earlier results. Table 5 lists the data developed by MEA for the three HAZ surveillance specimens. Figure 10 shows the results in relation to the data reported for the surveillance program. Again, a good correspondence is found.

4. SUMMARY

Two archive, forged rings carrying the stamp "KRB VESSEL" and containing a circumferential weld were acquired from GE-Vallecitos for the USA (NRC/MEA) - FRG (MPA) cooperative study of long-term, in service irradiation effects. The rings were given the identification codes GEA and GEB. MEA has developed chemical composition, hardness, strength and notch ductility properties for each of the base metals. The results show good agreement with existing documentation for forging ring no. 7.1 of the KRB-A vessel.

MEA also tested three Charpy V-notch HAZ surveillance specimens for notch ductility, hardness and composition. Results for these specimens agree well with prior data for the vessel surveillance program's HAZ material. In addition, the hardness and composition of the surveillance specimens (base metal portion) agree with MEA findings for the archive materials GEA and GEB.

Material Code	Orientation	lentation Specimen Number	Temper	ature	En	ergy	Expansion	
			(°C)	(°F)	(J)	(ft-lb)	(mm)	(mils)
GEA-1	Axial	16	-40	-40	15	11	0.254	10
(Code A12))	7	-18	0	34	25	0.584	23
		5	-1	30	41	30	0.711	28
		3	24	75	53	39	0.940	37
		9	49	120	92	68	1.397	55
		1	93	200	96	71	1.626	64
	CMFL ^a	32	-40	-40	24	18	0.406	16
		21	-18	0	29	21	0.432	17
		20	-1	30	61	45	0.914	36
		19	24	75	92	68	1.346	53
		22	49	120	123	91	1.676	66
		18	93	200	134	103	1.803	71

Table 4	Charpy-V	Notch	Ductility	of	Archive	Materials

^aCMFL - Circumferential Orientation

Material Code	Orientation	Specimen Number	Temperature		En	ergy	Expansion	
			(°C)	(°F)	(J)	(ft-lb)	(mm)	(mils)
GEA-2	Axial	16	-40	-40	18	13	0.229	9
(Code A22)		7	-18	0	24	18	0.432	17
		5	-1	30	34	25	0.610	24
		3	24	75	61	45	1.803	71
		9	49	120	84	62	1.321	52
		1	93	200	88	65	1.346	53
	CMFL ^a	32	-40	-40	11	8	0.178	7
		21	-18	0	39	29	0.610	24
		20	-1	30	52	38	0.940	37
		19	24	75	103	76	1.448	57
		22	49	120	119	88	1.778	70
		18	93	200	136	100	1.956	77

Table 4 (Continued) Charpy-V Notch Ductility of Archive Materials

^aCMFL - Circumferential Orientation

٩.

L

2

Material	Orientation	Specimen	Tempera	iture	En	ergy	Expansion	
Code		Number	(°C)	(°F)	(J)	(ft-1b)	(mm)	(mils)
GEB-1	Axial	16	-40	-40	23	17	0.381	15
(Code B12)		7	-18	0	37	27	0.660	26
•		5	-1	30	56	41	0.965	38
		3	24	75	76	56	1.245	49
		9	49	120	110	81	1.727	68
		1	93	200	108	80	1.651	65
	CMFL ^a	32	-40	-40	42	31	0.559	22
		21	-18	0	61	45	0.889	35
		20	-1	30	65	48	1.041	41
		19	24	75	107	79	1.626	64
		22	49	120	144	106	1.981	78
		18	93	200	141	104	2.210	87

Table 4 (Continued) Charpy-V Notch Ductility of Archive Materials

^aCMFL - Circumferential Orientation

Material Code	Orientation	Specimen Number	Tempe	rature	En	ergy	Expansion	
			(°C)	(°F)	(J)	(ft-lb)	(mm)	(mils)
GEB-2	Axial	16	-40	-40	24	18	0.457	18
(Code B22)	1	7	-18	0	35	26	0.660	26
		5	-1	30	54	40	0.868	34
		3	24	75	80	59	1.245	49
		9	49	120	102	75	1.753	61
		1	93	200	106	78	1.854	73
	CMFL ^a	32	-40	-40	35	26	0.533	21
		21	-18	0	50	37	0.868	34
		20	-1	30	71	52	1.092	43
		19	24	75	110	81	1.549	61
		22	49	120	146	108	1.829	72
		18	93	200	149	110	1.778	70

Table 4 (Continued) Charpy-V Notch Ductility of Archive Materials

^aCMFL - Circumferential Orientation

Fig. 8 Data developed for archive base metals (circumferential orientation) compared against surveillance program data for the same orientation. Surveillance data for two irradiated conditions are also shown.

.

Fig. 9 Data developed for archive base metals (axial orientation) compared against surveillance program data for the circumferential orientation. Surveillance data for two irradiated conditions are also shown.

Specimen Number	Orientation ^a	Thickness Location	Temperature		Energy		Expansion		Shear	Base Metal Hardness
			(°C)	(°F)	(J)	(ft-1b)	(mm)	(mils)	(%)	(Rockwell B)
D7M	TL	Top Surface	-20	-5	30	22	0.203	8	25	92.2, 93.7
D6E	TL	1/4 T	9 0	195	87	64	0.813	32	100	91.6, 92.1
D7Y	TL	3/4 T	10	50	42	31	0.457	18	44	92.6, 92.7

Table 5 Charpy-V Notch Ductility and Hardness of Surveillance Program Material (Melt 931 131)

^a Transverse to rolling direction

L

Fig. 10 Comparison of MEA data and prior data for surveillance base metal.

Differences in base metal yield strength and tensile strength were found on comparing GEA vs. GEB. Likewise, differences in C, notch ductility between the base metals of GEA vs. GEB were noted. In particular, upper shelf energy levels for the axial test orientation were not the same. Potential sources of the noted material variability are suggested; however, the materials do appear to come from the same steel melt as that used for ring no. 7.1 of the reactor vessel. The two base metals within each ring have comparable proper-Thus, the selection of the base metal for the balance of the ties. program reduces to two choices: that forming ring GEA or that forming Since the base metal remaining from GEA is a very small ring GEB. quantity, ring GEB should be the choice for the continuing program if at all possible.

REFERENCES

- 1. Schleimar, Untersuchungsbericht U4152, Dec. 11, 1964.
- "Stellungnahme Zur Akkumultierten Neutronendosis an der Reaktordruck behalter wand des Kernkraftwerkes Gundremmingen (KRB-1)," KGB-TUV, Bayern Munchen 07-09, 1977.
- 3. Von N. Eickelpasch und R. Seepolt, "Experimentelle Ermittlung der Neutronendosis des KRB-Druckgefabes und deren betriebliche Bedeutung," Atomkernenergie (ATKE) Bd. 29 (1977) Lfg. 2, p. 149.

APPENDIX A

Plan for the Preparation of Test Samples

_

DEE DE CIECTLE CLECTLE 4 THE O POP TO HEADERT DEPARTMENT JUL 1964 SEN JOSE, CALIFORNIA 144C-725D . Kith mount in m RECE ... nt. This õ H. M. CONNELLY 5 - 17 67 -Benrichshutte, 8 Ø 1238110 Schl./OL.-SHC12 LITHOYED ST DATE Here ЯO t.1 o DESIGN ENGINGERING DIGMEENING SECTION in : STEFAN STREETER General Electric, 7.68.40359 Subject: POWER EQUIPHENT DEPARTMENT Reactor Vessel Test Ring · . Print File Number 914-74 Speakers: Mr. Kobsa 2 . ا Mr. Kreckel Mr. Schleimer -00101 ant Proce Number NCC-2 DESIGN ENGINEERING ENGINEERING SECTION Plan for the Preparation of Test Samples

The test specimens requires by Paragraph 10.2 and Attachment C of APED Specification 21A1101 shall be prepared from the test ring fabricated from heat no. 931 131, the superinent from which piece is 1001 the reaction vessel was made: The results of tests perfor-med on this ring after 5 3/4 hours of stress relief at 600°C minimum are presented in the test ring material report previously submitted.

The test ring shall be devided into coupons per Drawing 7 AT-40359-18/12 Hand 3. These coupons shall be heat treated to simulate stress relief of the reactor vessel parts as follows:

The coupons per Drawing 3 AT-40359-18/3 shall be held at 600 to 630°C for an additional 15 hours, bringing the total time at stress relief temperature to 20 3/4 hours. Heating and cooling rates shall be the same as for the vessel pieces. The specimens for tests per Paragraph 10.2 of Specification 21A1101 shall be taken from this coupon.

The coupon per Drawing 3 AT-40359-18/1 shall be heat tested the same as above. The specimens for the Fabrication tests required by Attachment C to Specification 21A1101 shall be made from this coupon.

3.

05 7 x E. Otto

The coupon per Drawing 3 AT-40359-18/2 shall be held at 600 to 630°C for an additional 4 1/4 hours, bringing the total time at temperature to 10 hours. Heating and cooling rates shall be the same as for the reactor vessel parts. The specimens for the sur-veillance test program per Attachment C of Specification 21A1101 shall be made from these coupons.

The preparation of samples and their marking shall be in accor-dance with the above drawings and the attached sketches, except that marking Shall be only on One end. The weld heat affected none specimens shall be etched to determine the location of the fusion line. One fusion line shall be located the location of the fusion line. One region line scale be located within 1/8 inch (3 mm) from the center of the tensile specimens. The bottom of the notch of the Charpy V impact specimens shall be in the base metal within 1/8 inch (3 mm) from the fusion line within 1/8 inch (3 mm) from the fusion line within 1/8 inch (3 mm) from the fusion line within 1/8 inch (3 mm) from the fusion line within 1/8 inch (3 mm) from the fusion line

/Schleimer

• • •

Kohse

h

L

APPENDIX B

Cutting Plans for KRB-A Archive Ring Forging Materials, Code GEB-A and Code GEB-2

Table B-1 Cutting Diagrams Provided in Appendix B

Drawing No.

<u>Title</u>

433-CO-5000	Rev. O	KRB-A Matl. Piece GEB Cutting No. 2
433-CO-5001	Rev. 1	KRB-A Matl. Piece GEA Cutting No. 2
433-CO-5002	Rev. 2	KRB-A Matl. Piece GEB (Side 2) Cutting No. 3
433-CO-5003	Rev. O	KRB-A Matl. Piece GEB (Side 2) Cutting No. 3
433-C0-5004	Rev. 1	KRB-A Matl. Piece GEB (Side 2) Cutting No. 4
433-CO-5005	Rev. O	KRB-A Matl. Piece GEB (Side 2) Cutting No. 5
433-CO-5006	Rev. O	KRB-A Matl. Piece GEB (Side 2) Cutting No. 6
433-CO-5008	Rev. 0	KRB-A Matl. Piece GEB (Side 2) Cutting No. 7,
		Piece A
433-CO-5009	Rev. O	K Matl. Piece GEB (Side 2) Cutting No. 7,
		Piece B
433-CO-5010	Rev. O	KRB-A Matl. Piece GEB (Side 2) Cutting No. 7,
		Piece C
433-CO-5011	Rev. O	KRB-A Matl. Piece GEB (Side 2) Cutting No. 7,
		Piece D
433-CO-5012	Rev. 2	KRB-A Matl. Piece GEB (Side 2) Cutting No. 8
433-C0-5014	Rev. 1	KRB-A Matl. Piece, GEB (Side 2), Mods. to
		Cutting No. 7 and 8.

в-3

¥.

В-9

.

B-12

291

I

4

3

Ŧ

2

7

±.

2

REVISIONS DESCRIPTION

NT TICHKO DATE APV

C

E

RÉVI

SCALES ATS SHEET OF

L

ø

B

Α

5.5" MAX.

زار

6

311

£

5

301 USE MACHINING DWG. MEA-CO-SOOS REV.3

L

B-14

APPENDIX C

₽.

"Through-Thickness Mechanical Properties of KRB-A Archive Steel Forging GEB"

J. R. Hawthorne

MEA Report No. MEA-2159A

June 1986

MATERIALS ENGINEERING ASSOCIATES, INC.

MEA-2159A

THROUGH-THICKNESS MECHANICAL PROPERTIES OF KRB-A ARCHIVE STEEL FORGING GEB

J. R. Hawthorne

1. BACKGROUND

MEA has the task of irradiating and evaluating Gundremmingen reactor vessel archival materials in support of NRC research on long-term, in-service irradiation effects. MEA's results, together with determinations by Staatliche MaterialPruefungsanstalt (MPA) of the Federal Republic of Germany (FRG) on materials trepanned from the KRB-A vessel itself, will be analyzed for the effects of neutron exposure rate and through-thickness damage attenuation. The effects of steel compositions and the correlation of Charpy-V (C_{y}) notch ductility vs. fracture toughness vs. strength will be examined. The joint program will also investigate properties recovery by postirradiation heat treatment. The MEA and MPA efforts are limited to studies of the base metal. Studies of the girth welds are not being performed. The NRC decision to forego weld metal investigations stemmed from the FRG determination that more than one filler metal was employed in completing the weld thickness. Each weld thus could have a step-change in composition at some point in its thickness.

In April 1985, two pieces of weldment identified by stamp markings as "KRB Vessel" were acquired from the General Electric Company (GE) -Vallecitos site. Each of the pieces is a ring segment. One weighing approximately 7050 kg (3,200 lb) contains a circumferential weld deposit located at the half-height of the ring; the second, weighing only 990 kg (450 lb), also contains a circumferential weld. The weld in this case is closer to one edge of the ring segment than the other. Both segments are approximately 119-mm (4-11/16 in.) thick. The smaller piece has been given the code GEA by MEA; the larger piece has been assigned the code GEB. In this report, GEA and GEB are termed "archive materials." The two base metals of GEA are identified by the code numbers GEA-1 and GEA-2, respectively; those of GEB have the code number GEB-1 or GEB-2.

Initial task objectives were the determination of the chemical composition, microstructure, tensile strength, and notch ductility of each of the four base metals contained in the welded ring segments. MEA findings on these characteristics are given in Reference 1. From the composition tests, MEA and the NRC have concluded that the four base metals are from the same steel melt. Small differences in properties between the GEA-1 and GEA-2 vs. the GEB-1 and GEB-2 materials were found but may be a reflection of an (unknown) difference in heat treatment between the two ring segments. More important to this study, the findings, when compared against documentation for the KRB-A vessel, indicate a high probability that the four base materials and the vessel forging ring no. 7.1 were from the same steel melt and that the base materials are representative of the vessel forging as first placed in service.

2. APPROACH

The research plan called for a phased approach to the qualification of the materials from GE. Phase 1 focused on the determination of base metal chemistries, hardness levels and gradients through the thickness and microstructure determinations at points corresponding to the I.D. and 0.D. surfaces, and to the 1/8T-, 1/4T-, 1/2T-, and 3/4T-thickness Phase 2 involved the cutting, machining, and testing of locations. standard Charpy-V (C_v) and 5.74-mm (0.226-in.) gage diameter tensile specimens from the 1/4T location in each of the materials. The specimens were removed in two testing orientations: axial and circum-The Phase 1 and Phase 2 findings are documented in ferential. Reference 1. The Phase 3 effort, reported here, assesses the throughthickness properties of the GEB-2 material selected for the continuing investigations. The information acquired on property gradients was to provide one basis for choosing one material thickness location for the subsequent (MEA) irradiation tests.

were notch Properties evaluated in Phase 3 ductility, tensile strength, static fracture toughness including and J-R curve behavior. Test procedures for the 0.5T-CT specimens are described in Reference 2. Tests were in conformance with ASTM Standard Methods E 8, E 23, E 399, and E 813 as applicable to the individual methods and test conditions.

3. SPECIMEN BLANKING AND MACHINING

Figures 1, 2, and 3 are cutting diagrams used for the acquisition of the specimen blanks. Not all blanks indicated were used for the development of through-thickness properties. The remainder are being applied to irradiation test needs. Note that the axial (weak) test orientation is depicted throughout; the ASTM Method E 399 defines this orientation as orientation code C-L.

Individual specimens were machined in accordance with MEA drawings MEA-CO-5002 Rev. 3, MEA-C1-5001 Rev. 1 Type 2, or MEA-A0-5003 Rev. 0 (see Figs. 4, 5, and 6). The 0.5T-CT specimens were fatigue precracked for a distance of 1.78 mm (0.070 in.), corresponding to an a/W ratio of 0.5. The K_f (maximum) for the entire distance of fatigue crack growth was less than 22 MPa/m (20 ksi/in.). The CT specimens selected for testing in the upper shelf temperature regime were side grooved by 20% (10% each side) using a Vee-shaped cutter having the contour of the C_y specimen (see Fig. 4).

4. RESULTS

The experimental results are listed in Tables 1 through 6. The C_v data are illustrated in Fig. 7; K_J toughness determinations via CT tests are summarized in Fig. 8. J-R curves from tests of the four thickness locations at 66°C (150°F) are compared in Fig. 9.

Referring first to Table 1, the tensile strength determinations show a high degree of uniformity through the thickness. The difference in yield strength between the near surface locations (1/8T and 7/8T) and the midthickness location is less than 21 MPa (3 ksi); the difference in tensile strength between the two thickness positions is even less. Accordingly, the presence of free ferrite in the microstructure of the midwall location and absence of this component in the near surface location (Ref. 1) did not have a significant effect on material strength.

The C_v notch ductility determinations also revealed a high degree of uniformity through the thickness (see Fig. 7). A good correspondence of properties between the 1/8T- and the 7/8T-thickness positions again is observed. For the 1/4T- vs. 1/2T-thickness positions, good agreement of the data up to an energy level of about 81 J (60 ft-1b) is found; above this level, the energy absorption curves diverge such that the upper shelf level of the 1/4T specimens is greater than that of the 1/2T specimens. Important to the selection of thickness position for irradiation, the 1/4T vs. 1/8T positions have the same apparent C_v upper shelf levels [103 J (76 ft-1b)] and nearly the same C_v 41-J transition temperatures [-29°C (-20°F) vs. -18°C (0°F)].

The results of through-thickness 0.5T-CT specimen tests generally support the C_v and tensile test indications. Referring to Fig. 8, the K_J transition indications for 1/8T vs. 1/4T are displaced by about 17°C (30°F). Although somewhat greater than that observed in the C_v results, the displacement may be due to the greater thickness of the 0.5T-CT specimen. With this specimen, its greater thickness would encompass a greater proportion of "near surface" material than the C_v (see cutting diagrams). Such material could be expected to have a lower transition than the material closer to the central region of the forging. Comparable upper shelf performances were found for the four test locations however (see Fig. 9).

It is pointed out that the toughness values listed in Tables 3 to 6 and illustrated in Figs. 8 and 9 are based on the ambient temperature flow stress and thus are approximate values only. Tests to define the flow stress vs. temperature relationship for the range of interest [-140°C (240°F) to 288°C (550°F)] are scheduled for Phase 4. These data are expected by July 1986 and will be included in MEA's monthly progress report to the sponsor.

5. SUMMARY

The tensile strength, notch ductility, and fracture toughness of material code GEB-2 has been determined for 1/8-, 1/4T-, 1/2T-, and 7/8T-thickness locations and the axial (weak) test orientation. Good correspondence of properties between locations has been observed. Strength differences are less than 21 MPa (3 ksi). Differences in transition temperature indexed to the C_v 41-J energy level and to the K_J 100-MPa/m toughness level are on the order of 11°C and 17°C, respectively. Upper shelf levels measured by C_v or CT test methods were the same for the four thickness positions.

Based on the findings reported here, MEA proposed that the 1/8T thickness position be used for the irradiation investigation (Ref. 3). In the vessel itself, this layer would have received a greater serviceinduced fluence than the 1/4T layer and, additionally, would better represent the small flaw case in PTS. This suggestion was accepted by the NRC (Ref. 4) on Jan. 30, 1986.

REFERENCES

- 1. J. R. Hawthorne, "Preirradiation Qualification of Materials Identified as KRB-A Archive," MEA-2095, August 1985.
- A. L. Hiser, F. J. Loss, and B. H. Menke, "J-R Curve Characterization of Irradiated Low Upper Shelf Welds," USNRC Report NUREG/CR-3506, Washington, D.C., April 1984.
- 3. Letter from J. R. Hawthorne (MEA) to C. Z. Serpan (NRC) dated Jan. 27, 1986.
- 4. Telecom from C. Z. Serpan (NRC) to J. R. Hawthorne (MEA) on Jan. 30, 1986.

Fig. 1 Cutting plan for removal of Charpy-V (C_v) and tensile (T) specimens from the quarter-thickness location (1/4T) of ring segment GEB (base metals GEB-1 and GEB-2). Individual specimens represent axial or circumferential test orientations.

C-6

Fig. 2 Cutting plan for removal of Charpy-V (C_v) and tensile (T) specimens from the 1/8T, 1/2T, and 7/8T locations of ring segment GEB (base metal GEB-2). The specimens represent the axial test orientation only.

Fig. 3 Cutting plan for removal of 0.5T-CT fracture toughness specimens from the 1/8T, 1/4T, 1/2T, and 7/8T locations of ring segment GEB (base metal GEB-2). Axial test orientation.

C-8

Fig. 4 Design of the Charpy-V (C_v) specimen.

C-9

C-10

Fig. 6 Design of the 0.5T-CT fracture toughness test specimen.

Fig. 7 Charpy-V notch ductility of code GEB-2 material at four locations through the thickness.

Fig. 8 Fracture toughness of code GEB-2 material at four locations through the thickness.

C-13

Fig. 9 J-R curve determinations for code GEB-2 material at four locations through the thickness (upper shelf test condition).

Thickness Location	Specimen Number	Ter	nsile ength	Yield 8 (0.2% (Strength Offset)	Elongation	Reduction
		(MPa)	(ksi)	(MPa)	(ksi)	(%)	(%)
1/8T	GEB-T9	633	91.8	488	70.8	38.4	61.1
	GEB-T10	633	91.8	488	70.8	39.6	65.4
1/4T	GEB-T1	618	89.6	467	67.8	42.6	65.3
	GEB-T4	621	90.0	471	68.3	38.4	66.8
1/2T	GEB-T11	621	90.0	472	68.4	23.4 ^a	57.3
	GEB-T12	621	90.0	467	67.8	40.6	61.6
7/8T	GEB-T13	629	91.3	488	70.8	40.8	65.9
	GEB-T14	631	91.6	488	70.8	40.0	66.4

Table l	Tensile Properties	of Code	GEB-2, Axial	Orientation
	(5.74-mm diameter,	12.7-mm	gage length))

^a Failed in gage mark

.

Thickness Layer	Specimen Number	Tes Temper	st rature	Er Abso	nergy orption	Late Expan	ral sion	Shear
		(°C)	(°F)	(J)	(ft-lb)	(mm)	(mils)	(%)
1/8T	36	-1	30	62	46	0.940	37	
	37	-57	-70	24	18	0.305	12	10
	38	-40	-40	33	24	0.457	18	
	43	-18	0	43	32	0.432	17	34
	44	93	200	100	74	0.868	34	100
	45	-1	30	62	46	0.533	21	47
	46	49	120	104	77	1.956	69	100
	33	-29	-20	43	32	0.686	27	
	34	-79	-110	. 9	7	0.127	5	0
	35	-40	-40	35	26	0.508	20	
	39	-18	0	56	41	0 •559	22	35
	40	93	200	107	79	1.981	78	-99
	41	49	120	103	76	0.868	34	100
	42	24	75	95	70	1.600	63	
1/4т	16	-40	-40	24	18	0.457	18	
1, 11		-18	0	35	26	0.660	26	
	5	-1	30	54	40	0.868	34	
	3	24	75	80	59	1.245	49	
	9	49	120	102	75	1.753	61	
	1	93	200	106	78	1.854	73	100
1/2T	50	-1	30	48	35	0.762	3 0	
	51	-57	-70	16	12	0.178	7	16
	52	-40	-40	29	21	0.432	17	
	63	-18	0	43	32	0.457	18	34
	64	93	200	9 0	66	0.838	33	100
	65	-1	30	57	42	0.508	20	44
	66	49	120	90	66	1.524	60	
	47	-23	-10	33	24	0.584	23	
	48	-79	-110	11	8	0.127	5	0
	49	-40	-40	19	14	0.254	10	
	59	-18	0	2/	20	0.330	13	34
	60	93	200	90	66	1.549	61	99
	61	49	120	81	60	0.762	30	100
	62	24	75	84	62	1.295	51	
7/8T	56	-1	30	57	42	0.838	33	
-	57	-57	-70	30	22	0.279	11	16
	58	-40	-40	33	24	0.559	22	
	71	-18	0	46	34	0.483	19	56
	72	93	200	100	74	0.868	34	100
	73	-1	30	66	49	0.584	23	50
	74	49	120	9 8	72	1.346	53	99
	53	-29	-20	37	27	0.635	25	
	54	-79	-110	11	8	0.102	4	0
	55	-40	-40	31	23	0.457	18	
	67	-18	0	53	39	0 •559	22	35
	68	93	200	104	77	1.930	76	100
	69	49	120	111	82	0 •9 40	37	100
	70	24	75	92	68	1.499	59	

Table 2	Charpy-V	Notch	Ductility	of	Code	GEB-2,Axial	Orientation
---------	----------	-------	-----------	----	------	-------------	-------------

Specimen	Tompo	est	(a/W) _o a	∆a _m b	∆a _p c	∆a _p -∆a _m	JI	c	ĸ	ſc	К _{βс}	^T avg	$\sigma_{\mathbf{f}}$	σy
Number	Tempe	lacure					MEA	ASTM	MEA	ASTM		MEA		
	(°C)	(°F)		(mm)	(mm)	(mm)	(kJ/m ²)	(kJ/m ²)	(MPa√m)	(MPa√m)	(MPa√m)		(MPa)	(MPa)
GEB2-A6	-140	-220	0.509	d			8.9		46.0	45.5	43.4		773.9	703.2
GEB2-A13	-118	-180	0.508	<u> </u>			26.0		78.2	65.3	61.4		738.0	667.4
GEB2-A4	-90	-130	0.502				36.1		91.8	60.1	64.8		695.9	625.3
GEB2-A15	-76	-105	0.509				36.2		91.7	52.6	63.8		676.5	605.7
GEB2-A2	-68	-90	0.517				67.8		125.4	59.6	72.9		665.8	595.0
GEB2-A14	 57	-70	0.515	-			63.7	ود الوجي أكري	121.5	50.8	70.9		651.7	580.7
GEB2-A1	-46	-50	0.502				121.6		167.5	56.4	79.8		638.3	567.1
GEB2-A3	-34	-30	0.516				165.7		195.3	59.3	83.4		624.4	552.9
GEB2-A5 ^e	-18	0	0.509				137.4	118.1	177.3	164.4			607.0	535.0
GEB2-A18 ^e	65	150	0.525	6.05	5.72	-0.33	129.2	127.4 ^f	170.0	168.3		99	538.6	463.0
GEB2-A17 ^e	177	350	0.522	6.53	6.19	-0.34	81.7	81.5	133.0	132.9		115	504.5	420.2
GEB2-A16 ^e	288	550	0.514	6.09	6.04	-0.05	117.4	110 . 5 ^f	156.9	152.2		56	536.4	439.5

J-R Curve Results for Code GEB (Side 2) Table 3 (Axial Orientation, Layer 1/8T)

a Pretest a/W b Measured crack growth

^C Crack growth predicted by compliance

^d Cleavage failure precluded determination of this quantity ^e Side grooved by 20% ^f Valid J_{IC}, per ASTM E 813-81

C-17

I.

	Specimen Number	Test Temperature		(a/W) _o a	∆a _m b	∆a _p ^c	∆a _p -∆a _m	J _{Ic}		ĸj	ſc	к _{вс}	^T avg	σ _f	σy
	Number	reape	lacure					MEA	ASTM	MEA	ASTM		MEA		
		(°C)	(°F)		(mm)	(mm)	(mm)	(kJ/m ²)	(kJ/m ²)	(MPa√m)	(MPa√m)	(MPa√m)		(MPa)	(MPa)
	GEB2-B13	-118	-180	0.506	d			11.9		52.9	51.3	47.5		726.4	653.5
	GEB2-B27	-107	-160	0.504				19.6		67.8	59.9	55.3		707.9	634.3
	GEB2-B4	-90	-130	0•497				33.6		88.6	58.1	62.7		680.6	606.1
	GEB2-B15	-76	-105	0.517				28.8		81.9	52.9	59.2		659.5	584.2
ဂိ	GEB2-B2	-68	-90	0.508				38.8		94.9	58.1	63.0		647.9	572.2
18	GEB2-B14	-57	-70	0.507				20.1	-	68.2	50.5	52.5		632.7	556.4
	GEB2-B26	-57	-70	0.526				81.2		137.1	45.1	72.8		632.7	556.4
	GEB2-B1	-46	-50	0.506				63.9		121.5	56.1	68.1		618.2	541.3
	GEB2-B25	-34	-30	0.510				80.6		136.1	50.6	70.2		603.2	525.7
	GEB2-B6	-29	-20	0.509				118.2	هم ويونون متدائرو	164.7	56.1	75.2		597.2	519.5
	GEB2-B5	-18	0	0.505				141.0		179.7	53.7	76.5		584.5	506.3
	GEB2-B3 ^e	-7	20	0.504				177.7	169.5	201.3	196.6			572.6	493.8
	GEB2-B18 ^e	65	150	0.519	5.40	4.97	-0.43	152.2	132 .9^f	184.5	172.4		125	512.6	430.7
	GEB2-B17 ^e	177	350	0.516	6.04	6.03	-0.01	98.0	83.5 ^f	145.7	134.5		84	481.4	395.6
	GEB2-B16 ^e	288	550	0.521	6.14	6.05	-0.09	82.5	84.1 ^f	131.5	132.8		62	525.2	436.7

Table 4 J-R Curve Results for Code GEB (Side 2) (Axial Orientation, Layer 1/4T)

^C Crack growth predicted by compliance

^d Cleavage failure precluded ^e Side grooved by 20% determination of this quantity ^f Valid J_{Ic}, per ASTM E 813-81

a Pretest a/W b Measured crack growth

Specimen	Specimen Test		(a/W) _o a	∆a _m b	∆a _p c	∆a _p -∆a _m	J	c	ĸ	lc	ĸ _{βc}	^T avg	$\sigma_{\mathbf{f}}$	σy
Number	Tempe	rature					MEA	ASTM	MEA	ASTM		MEA		
	(°C)	(°F)		(mm)	(mm)	(mm)	(kJ/m ²)	(kJ/m ²)	(MPa√m)	(MPa√m)	(MPa√m)		(MPa)	(MPa)
GEB2-C13	-118	-180	0.509	d			12.5		54.3	52.4	48.3		721.6	652.2
GEB2-C4	-90	-130	0.512				23.0		73.2	53.3	56.8		677.7	607.4
GEB2-C15	-76	-105	0.502				25.5		77.0	36.8	57.4		657.4	586.7
GEB2-C2	-68	-9 0	0.511				51.6		109.4	60.2	67.4		646.3	575.3
GEB2-C14	-57	-70	0.524				65.1		122.8	49.6	69.8		631.6	560.3
GEB2-C1	-46	-50	0.520				74.3		131.0	55.9	70.7		617.6	545.9
GEB2-C3	-34	-30	0.505				135.7		176.7	47.7	78.3		603.2	531.0
GEB2-C6	-29	-20	0.515		-		185.3		206.3	54.5	82.4		597.4	525.1
GEB2-C5 ^e	-7	20	0.515	6.10	6.12	0.02	167.0	167.2 ^f	195.2	195.3		78	573.6	500•4
GEB2-C18 ^e	65	150	0.510	6.36	5.85	-0.51	155.5	159.4	186.5	188.8		99	515.0	438.6
GEB2-C17 ^e	177	350	0.509	6.65	6.17	-0.48	115.4	120 . 1 ^f	158.1	161.3		73	482.3	399.7
GEB2-C16 ^e	288	550	0.498	5.92	6.23	0.31	110.2	99.5 ^f	152.0	144.4		53	520.2	429.8
^a Pretest	 a/W		^C Crack gr	owth pred	icted	d Cleavage	failure p	recluded	e Si	de groove	ed by 20%			

Table 5 J-R Curve Results for Code GEB (Side 2) (Axial Orientation, Layer 1/2T)

^a Pretest a/W ^b Measured crack growth

by compliance

^d Cleavage failure precluded determination of this quantity ^e Side grooved by 20% f Valid J_{IC}, per ASTM E 813-81

C-19

Table 6J-R Curve Results for Code GEB (Side 2)
(Axial Orientation, Layer 7/8T)

æ.

Specimen	Toma	est	(a/W) _o a	∆a _m b	∆a _p c	∆a _p -∆a _m	J	[c	K	Jc	K _{βc}	Tavg	σ _f	σ _v
Number	тешре	rature					MEA	ASTM	MEA	ASTM		MEA		,
	(°C)	(°F)		(mm)	(mm)	(mm)	(kJ/m ²)	(kJ/m ²)	(MPa√m)	(MPa√m)	(MPa√m)		(MPa)	(MPa)
GEB2-E13	-118	-180	0.499	d			16.8		62.8	62.9	53.8		736.5	670.7
GEB2-E5	-101	-150	0.502				29.7		83.5	61.1	62.6		709.3	643.0
GEB2-E4	-90	-130	0.515				64.1		122.4	57.7	74.2		692.5	626.0
GEB2-E15	-76	-105	0.504				70.0		127.6	58.9	74.2		672.3	605.3
GEB2-E2	-68	-90	0.520				63.6		121.5	38.7	71.9		661.2	593.9
GEB2-E14	-57	-70	0.509				126.1		170.9	50.6	81.5		646.5	578.9
GEB2-E3	-51	-60	0.507				161.0		192.9	51.1	84.6	-	638.8	570.9
GEB2-E1	-46	-50	0.516				170.5		198.4	50.9	85.0		632.5	564.5
GEB2-E6	-29	-20	0.510				174.5		200.1				612.3	543.6
GEB2-E18 ^e	65	150	0.515	6.43	6.25	-0.18	134.2	134.4	173.3	173.4		114	529.9	457.1
GEB2-E17 ^e	177	350	0.502	6.46	6.21	-0.25	108.5	104 . 2 ^f	153.3	150.3		69	497.2	418.2
GEB2-E16 ^e	288	550	0.506	6.16	6.10	-0.06	89.9	88.5 ^f	137.3	136.2		53	535.0	448.4
a Pretest	a/W		^c Crack gr	owth pred	icted	^d Cleavage	failure p	orecluded	e _{Si}	ide groove	ed by 20%			
Measured crack growth		by compl	iance		determina	ation of t	his quant:	ity ^f Va	alid J _{Tc} ,	per ASTM	E 813-8	1		

C-20

н
APPENDIX D

Daily Operating Temperature Records: Irradiation Experiments UBR-68, UBR-78, UBR-79A, UBR-80A Operating Temperature Records for UBR-68

(Capsules A and B)

UBR - 68

A-CAPSULE

I.

Fig. D-2 Thermocouple Placements on Charpy-V and Tension Test Specimens in Capsule B (UBR-68).

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

EXPERIMENT TEMPERATURE PERFORMANCE RECORD

EXPERIMENT NUMBER: UBR 68 A, B DATE: 5-4-86 OBSERVER: KCM

TC: TEMPERATURES, °F

UNIT A	UNIT B	UNIT C
1529	1546	1
2	2559	2
3549	3	3
4554	456 1	4
5556	5	5
6559	6	6
7 560	7	7
8556	8	8
9 <u>533</u>	9564	9
10505(?)	10	10
11548 *	11556	11
12543	12560	12
13	13	13
14	14 556	14
15	15 *	15
16	16 534	16
* = CTC	* = CTC	* - CTC
TEMPS TAKEN AT: A <u>1850</u>	B <u>1914</u>	c
AVERAGE: A 544	B553	c

(Excluding CTC)

9700-B GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA • (301) 577-9490

4

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

EXPERIMENT TEMPERATURE PERFORMANCE RECORD

EXPERIMENT NUMBER: UBR 68 A, B DATE: 5-5-86 OBSERVER: DAS

TC: TEMPERATURES, *F

<u></u>	NIT A	UNIT B	UNIT C
1	5361	543	1
2	2	560	2
3	3	561	3
4	4	560	4
5	558 5	559	5
6	5716	547	6
7	7	562	7
8	557 8	561	8
9	-5419	563	9
10	<u>521 (?)</u> 10	559	10
11	554 * 11	556	11
12	_ 12		12
13	13	540	13
14	14	555	14
15	15		15
16		536	16
* = CTC	* = C1		* = CTC
TEMPS TAKEN AT · A	0001 R	0847	с.
	<u> </u>	554	°
AVERAGE: A	B	JJ4	۲

(Excluding CTC)

STRUCTURAL INTEGRITY TECHNOLOGY CORPOSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

EXPERIMENT TEMPERATURE PERFORMANCE RECORD

EXPERIMENT NUMBER: UBR 68 A, B DATE: 5-6-86 OBSERVER: DAS

TC: TEMPERATURES, °F

	UNIT A	UNIT B	UNIT C
	1536	1545	1
	2534	2560	2
	3 557	3 <u>560</u>	3
	4562	4559	4
	5	5	5
	6	6548	6
	7550	7 <u>562</u>	7
	8 556	8 562	8
	9 542	9 562	9
	10 531	10 559	10
	11 555 *	11 557	11
	12	12 _	12
	13	13 542	13
	14	14	14
	15	15 551 *	15
	16	16 536	16
*	- CTC	* = CTC	* = CTC
TEMPS TAKEN AT:	A 0854	B 0848	С
AVERAGE	<u>ــــــــــــــــــــــــــــــــــــ</u>	B 555	с
		······································	·

(Excluding CTC)

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

EXPERIMENT TEMPERATURE PERFORMANCE RECORD

EXPERIMENT NUMBER: UBR 68 A.B. DATE: 5-7-86 OBSERVER: DAS

TC: TEMPERATURES, °F

	UNIT A		UNIT B	UNIT C
1	537	1	54 1	1
2	537	2	558	2
3	559	3	560	3
4	564	4	559	4
5	558	5	559	5
6	572	6	547	6
7	550	7	562	7
8	557	8	561	8
9	544	9	563	9
10	529	10	558	10
	555 *	11	556	11
12	-	12	-	12
13	•	13	538	13
14		14	554	14
15		15	550 *	15
16	-	16	534	16
- * = CT(C	* = CT(C	* = CTC
TEMPS TAKEN AT: A	1249	В	1300	с
AVERAGE: A	551	B	554	C

(Excluding CTC)

STRUCTURAL INTEGRITY TECHNOLOGY

CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

EXPERIMENT TEMPERATURE PERFORMANCE RECORD

EXPERIMENT NUMBER: UBR 68 A, B DATE: 5-8-86 OBSERVER: DAS

TC: TEMPERATURES, °F

UNIT A	UNIT B	UNIT C
1 539	1542	1
2 547	2 559	2
3 559	3 560	3
4 564	4 560	4
5 558	5 559	5
6 571	6	6
7 551	7562	7
8 559	8562	8
9544	9564	.9
10	10560	10
11555 *	11558]]
12	12	12
13	13539	13
14	14	14
15	15551 *	15
16	16 535	16
* = CTC	* = CTC	* = CTC
TEMPS TAKEN AT: A0901	B 0853	с
AVERAGE: A552	B <u>554</u>	с

(Excluding_CTC)

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

EXPERIMENT TEMPERATURE PERFORMANCE RECORD

EXPERIMENT NUMBER: UBR 68 A, B DATE: 5-12-86 OBSERVER: DAS

TC: TEMPERATURES, °F

UNIT A	UNIT B	UNIT C
1 54 1	1532	1
254 1	2548	2
3 558	3 551	3
4564	4553	4
5574	556	5
6	6544	6
7 569	7 553	7
8 560	8 556	8
9 538	9 558	9
10 -	10 551	10
11 550*	11 551	11
12 -	12 -	12
13	13 534	13
14	14 555	14
15	15 550 *	15
16	16 534	16
* = CTC	* = CTC	* = CTC
TEMPS TAKEN AT . A DODO	B 00/0	CIC
1200 A	B0842	C
AVERAGE: A <u>555</u>	B <u>548</u>	С

(Excluding CTC)

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

EXPERIMENT TEMPERATURE PERFORMANCE RECORD

EXPERIMENT NUMBER: UBR 68 A, B DATE: 5-13-86 OBSERVER: DAS

TC: TEMPERATURES, °F

UNIT A	UNIT B	UNIT C
1531	1532	1
2 528	2549	2
3	3	3
4551	4553	4
553	557	5
6	6	6
7561	7553	7
8546	8	8
9528	9558	9
10	10 551	10
11 534 *	11 551	. 11
12	12	12
13	13 535	13
14	14556	14
15	15 551 *	15
16	16 536	16
* = CTC	* = CTC	* = CTC
TEMPS TAKEN AT: A 1600	B 1606	C
	B 5/0	°
AVERAGE: A	D	٠

(Excluding CTC)

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

EXPERIMENT TEMPERATURE PERFORMANCE RECORD

EXPERIMENT NUMBER: UBR 68 A, B DATE: 5-15-86 OBSERVER: DAS

TC: TEMPERATURES, °F

UNIT A	UNIT B	UNIT C
1534	1534	1
2	2549	2
3545	3549	3
4	4552	4
5 <u>.</u> 565	554	5
6568	6 544	6
7561	7548	7
8 544	8 555	8
9 531	9 556	9
10 -	10 550	10
11 534 *	11 550	11
12 -	12 -	12
13	13 535	13
14	14 553	14
15	15 550 *	15
16	16 534	16
* = CTC	* = CTC	* = CTC
TENDO TAVEN ATL A LCOO	P 1501	· · · · · · · · · · · · · · · · · · ·
ILMPS IAKEN AT: A 1530	B1501	·
AVERAGE: A544	в547	C

(Excluding CTC)

ı.

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

EXPERIMENT TEMPERATURE PERFORMANCE RECORD

EXPERIMENT NUMBER: UBR 68 A, B DATE: 5-19-86 OBSERVER: CLM

TC: TEMPERATURES, °F

	UNIT A		UNIT B	UNIT C	
i	540	. 1 <u></u>	535	1	
2	531	2	548	2	
3	547	3_	548	3	
4	558	4_	550	4	
5	563	5	554	5	
6	572	6	546	6	
7	554	7	540	7	
8	539	8_	555	8	
9	536	9	556	.9	
10	.	10	552	10	
11	<u> </u>	11	552	11	
12		12		12	
13	-	13 _	537	13	
14		14 _	553	14	
15		15 _	544 *	15	
16		16 _	537	16	
* = C1	C	* = CTC	:	* = CTC	
TEMPS TAKEN AT: A	0815	в	0810	с	-
AVERAGE: A	546	в	547	C	_
(Excluding CTC)	503		· ·	·	

#

Operating Temperature Records for UBR-78

(Capsule A)

UBR - 78

D-16

STRUCTURAL INTEGRITY TECHNOLOGY

CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

DATE 8-18-87	TIME 1025	OBSERVER <u>WEP</u>
	UNIT A	UNIT B
TC	TEMP, °F	TEMP, °F
1	548	472 +
2	549	_ *
3	<u> </u>	456 ‡
4	535	550
5	542	541
6	538	551
7	*	547
8	544	537
9	554	547
10	558	542
11	547	551
12	551	540
13	553	542
14	554	539
15	558	535
16		
AVG.	545	544

UBR 78 DAILY TEMPERATURE PERFORMANCE RECORD

COMMENTS UNIT A : TC Nos. 1,14,15 not applicable to Cv,tensile specimen array + Suspect TC detached from specimen

NOTE:	1.	Temps are "omnical" unless otherwise noted
	2.	─ = not included in avg.
		\star = CTC
		D-17

STRUCTURAL INTEGRITY TECHNOLOGY

CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

DATE 8-19-87	TIME 1130	OBSERVER WEP
	UNIT A	UNIT B
тс	TEMP, °F	TEMP, °F
1	552	454)‡
2	553	*
3	521‡	454
4	540	564
5	546	557
6	54 1	567
7	*	561
8	547	548
9	557	559
10	561	555
11	550	567
12	554	558
13	556	558
14	558	551
15	562	553
. 16		
AVG.	549	558
COMMENTS UNIT A : TC N + Suspect T	os. 1,14,15 not applica	able to Cv,tensile specimen arra
NOTE: 1. 2	$\frac{1}{1000} = 1000 \text{ specific operations}$	ess otherwise noted

UBR 78 DAILY TEMPERATURE PERFORMANCE RECORD

) = not included in avg.

*

STRUCTURAL INTEGRITY TECHNOLOGY

CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

DATE	8-20-87	TIME0955	OBSERVER WEP	
		UNIT A	UNIT B	
	TC	TEMP, °F	TEMP, °F	
	1	549	(441)=	
	2	550	*	
	3	<u>517</u> ‡	447)‡	
	4	536	562	
	5	543	555	
	6	538	564	
	7	*	559	
	8	545	544	
	9	555	555	
	10	559	552	
	11	548	565	
	12	552	555	
	13	554	557	
	14	557	548	
	15	560	552	
	16			
	AVG.	546	556	
COMMENT	S <u>UNIT A : TC Nos.</u> +	1,14,15 not applica	able to Cv,tensile specim	en array
	+ Suspect TC de	tached from specime	en	
NOTE:	l. Temp	os are "omnical" unl	ess otherwise noted	
	2.	<pre>> = not included * = CTC</pre>	l in avg.	
		D-19		

UBR-78 DAILY TEMPERATURE PERFORMANCE RECORD

Operating Temperature Records for UBR-79

(Capsule A)

Fig. D-5 Thermocouple Placements on Charpy-V, Tensile and Compact Tension Specimens in Capsule A (UBR-79).

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

DAILI IEMPERAIURE PERFORMANCE RECOM	DAILY	EMPERATURE PE	ERFORMANCE	RECORD
-------------------------------------	-------	---------------	------------	--------

DATE 9-13-87	TIME1758	OBSERVER	WEP	
	UNIT 79A			
TC	TEMP, °F			
1	494			
2	520			
3	510			
4	506			
5	526			
6	506			
7	534			
8	528			
9	485 *			
10	527			
11	OPEN			
· 12	519			
13	515			
14	532			
15	494			
16				
AVG.				

COMMENTS (UBR-79A) C Set No. 1 : TC Nos. 2,5,8,12,14 ; Cv Set No. 2 : Balance of TC's

NOTE:

1. Temps are "omnical" unless otherwise noted

 \bigcirc = not included in avg.

=

2.

STRUCTURAL INTEGRITY TECHNOLOGY

CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

DAILY TEMPERATURE PERFORMANCE RECORD

DATE 9-13-87	TIME 2012	OBSERVER WEP
	UNIT 79A	
TC	TEMP, °F	
1	507	
2	533	
3	523	
4	519	
5	537	
6	510	
7	546	
8	539	
9	498*	
10	539	
11	OPEN	
• 12	529	
13	526	
14	544	
15	507	
16		
AVG.		
COMMENTS		·
NOTE: 1.	Temps are "omnical" un	nless otherwise noted
2.	<pre>> = not include * = CTC</pre>	ed in avg.

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

DATE 9-14-87	TIME 0915	OBSERVER <u>KCM</u>	
	UNIT 79A		
TC	TEMP, °F	s.	
1	507	÷	
2	536		
3	524		
4	520		
5	54 1		
6	510		
7	549		
8	543		
9	495*		
10	540		
11	OPEN		
12	533		
13	528		
14	548		
15	507		
16			
AVG.	_		
COMMENTS			
NOTE: I	. Temps are "omnical" un	less otherwise noted	
2	$\therefore \qquad \bigcirc = \text{ not include}$	d in avg.	

9700-B GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA • (301) 577-9490

.

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

۰.

·,	DAILY TEMPERATURE PE	RFORMANCE RECORD
DATE 9-15-87	TIME 1654	OBSERVER <u>KCM</u>
	UNIT 79A	
TC	TEMP, F	
1	491	
2	522	
3	508	
4	505	
5	528	
6	498	
7	536	
8	533	
9	490*	
10	540	
11	open	
- 12	527	
13	521	
14	542	
15	502	
16		
AVG.		
COMMENTS		
NOTE: 1.	Temps are "omnical" un	less otherwise noted

* = CTC D-25

•

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

		DAILY TEMPERATURE PERFORMANCE RECORD		JORD
DATE	9-15-87	TIME 2031	OBSERVER	KCM
		UNIT 79A		
	TC	TEMP, °F		
	1	510		
	2	539.5		
	3	527		
	4	522		
	5	543		
	6	510		
	7	545		
	8	539		
	9	495*		
	10	534		
	11	open		
	12	527		
	13	54 1		
	14	521		
	15	501	·	
	16	••••••••••••••••••••••••••••••••••••••		
	AVG.	_		
OMMENT	S			
				
OTE:	1.	Temps are "omnical" un	less otherwis	se noted
	2.	🔵 = not include	d in avg.	
		* = CTC	-	

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

DATE	9-16-87	TIME 1755	OBSERVER <u>KCM</u>
		UNIT 79A	
	TC	TEMP, °F	
	1	503	
	2	533	
	3	519	
	4	515	
	5	536	
	6	502	
	7	542	
	8	536	
	9	487*	
	10	533	
	11	open	
	12	525	
	13	519	
	14	539	
	15	499	
	16		
	AVG.		
OMMENTS	5		

NOTE: 1. Temps are "omnical" unless otherwise noted 2. = not included in avg. * = CTC D-27

•

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

DAILY TEMPERATURE PERFORMANCE RECORD

DATE	9-16-87	TIME 1758	OBSERVER KCM	
		UNIT 79A		
	TC	TEMP, °F		
	1	495		
	2	525		
	3	519		
	4	515		
	5	527		
	6	496		
	7	529		
	8	526		
	9	485		
	10	520		
	11	open		
	12	513		
	13	512		
	14	533		
	15	493		
	16			
	AVG.	_		
COMMENTS	•			
NOTE :	1.	Temps are "omnical" un	less otherwise note	d
	2.	= not include	ed in avg.	
		* = CTC D-28		

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA • (301) 577-9490

·

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

·.	<u> </u>	DAILY TEMPERATURE PER	RFORMANCE REC	CORD
DATE <u>9-17-8</u>	37	TIME 1002	OBSERVER	WEP
		INTE 704		
		UNII 79A		
	TC	TEMP, F		
	1	499		
	2	528		
	3	514		
	4	509		
	5	531		
	6	497		
	7	537		
	8 ,	525		
	9	485*		
	10	525		
	11	open		
	12	519		
	13	513		
	14	532		
	15	493		
	15			
	10			
. /	AVG.			
COMMENTS				
NOTE:	l. Te	mps are "omnical" un	less otherwis	se noted
	2.	= not included	l in avo	
		* = CTC D 20		
		D-29		

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

		DAILY TEMPERATURE PI	ERFORMANCE REC	ORD
DATE	9-20-87	TIME 1937	OBSERVER	WEP
		1111TT 704		
	TC	UNII / JA TEMD ^o f		
	10			
	1	504		2
	2	522		
	3	515		
	4	517		
	5	531		
	6	505		
	7	534		
	8	529		
	9	500*		
	10	528		
	11	open		
	12	523		
	13	520		
	14	531		
	15	497		
	16			
	AVG.			
COMMENT	S			
		а. 		
NOTE:	1.	Temps are "omnical" un	less otherwis	e noted
	2.	◯ = not include	ed in avg.	

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

DATE 9-22-87	TIME	1030	OBSERVER	WEP
		IINTT 79A		
TC		TEMP, °F		
1		505	_	
2		531	_	
3		518	_	
4		521	-	
5		542	_	
6		508	-	
7	_	543	-	
8		539	-	
9		500*		
10	-	536		
11		open		
12		536		
13		529		
14		544		
.15		505		
16				
AVG.				
OMMENTS				
				•
OTE:	l. Temps are	"omnical"	unless otherwis	e noted
	2.	not inclu	led in avg.	
	* =	CTC		

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

DAILY TEMPERATURE PERFORMANCE RECORD

DATE 9-2	22-87	TIME 1657	OBSERVER	KCM
		UNIT 79A		
	TC	TEMP, °F		
	1	503		ţ
	2	529		
	3	515		
	4	518		
	5	540.5		
	6	505		
	7	54 1		
	8	536		
	9	500 *		
	10	533		
	11	Open		
	12	533		
	13	526		
	14	54 1		
	15	501		
	16			
	AVG.			
COMMENTS				
NOTE :	l. Te	mps are "omnical" un	less otherwis	se noted
	2.	\bigcirc = not include	ed in avg.	

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

DAILY	TEMPERATURE	PERFORMANCE	RECORD
DUTE		T DIG ORDIOD	ICD OO ICD

DATE 9-23-	-87		OBSERVER	KCM
		UNIT 79A		
	TC	TEMP, °F		
	1	505		
	2	529		
	3	517		
	4	519		
	5	537		
	6	503		
	7	537		
	8	533		
	9	500 *		
	10	537		
	11	open		
	12	526		
	13	518		
	14	530		
	15	491		
	16			
	AVG.			
COMMENTS				
IOTE :	l. Ter	nps are "omnical" un	less otherwise	noted
	2.	🔵 = not include	d in avg.	
		* = CTC D-33		

9

MATERIALS ENGINEERING ASSOCIATES, INC.

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

DATE <u>9-24</u>	4-87	TIME 1430	OBSERVER	DJM	
		UNIT 79A			
	TC	TEMP, °F			
	1	500	_		
	2	526	_		
	3	512	_		
	4	516	-		
	5	538	-		
	6	503	-		
	7	539	-		
	8	534	-		
	9	500*	-		
	10	530	-		
	11	open			
	12	531			
	13	524			
	14	539			
	15	499			
	16				
	AVG.				
COMMENTS			-		
NOTE:	1.	Temps are "omnical"	unless otherwis	se noted	
	2.	🔵 = not inclu	ded in avg.		
		* = CTC			

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

DAILY TEMPERATURE PERFORMANCE RECORD

DATE	9-25-87	TIME 0828	OBSERVER <u>CLM</u>
		UNIT 79A	
	TC	TEMP, °F	
	1	493	_
	2	520	_
	3	506	_
	4	508	_
	5	531	_
	6	496	_
	7	533	
	8	527	_
	9	490 *	
	10	525	_
	11	open	
	12	525	-
	13	518	_
	14	533	_
	15	493	_
	16		_
	AVG.		_
COMMENTS		••••••••••••••••••••••••••••••••••••••	-
NOTE:	1.	Temps are "omnical"	unless otherwise noted
	2.	🔵 = not inclu	ded in avg.
		* = CTC	

DATE

MATERIALS ENGINEERING ASSOCIATES, INC.

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

 DAILY TEMPERATURE PERFORMANCE RECORD

 10-1-87
 TIME 1354
 OBSERVER DJM

	UNIT 79A
тс	TEMP, °F
1	498
2	530
3	515
4	512
5	538
6	503
7	542
8	536
9	<u> 490* </u>
10	532
11	open
12	528
13	520
14	54 1
15	499
16	
AVG.	

COMMENTS

NOTE:

1. Temps are "omnical" unless otherwise noted

2.

=

D-36
Operating Temperature Records for UBR-80

(Capsule A)

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

IG DAILY TEMPERATURE PERFORMANCE RECORD

DATE IC	-4-87	TIME1843	OBSERVER <u>KCM</u>	
		AOS TINU		
	TC	TEMP, [•] F		
	1	550		
	2	560		
	3	547		
	4	552		
	5	551		
	6	559		
	7	556		
	8	560		
	9	535		
	10	534		
	11	549		
	12 .	554		
	13	562		
	14	544		
	15	536		
	16	543		
	17	536		
COMMENTS	A	vg: <u>548</u>		
	······			
IOTE:	1. 1	Cemps are "omnical" un	less otherwise noted	
	2.	○ = not ittclude	d in avg.	
		* ≕ CTC	39	

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA . (301) 577-9490

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

IG DAILY TEMPERATURE PERFORMANCE RECORD

DATE	10-5-87		TIME 1023	OBSERVER_KCM
			UNIT 80A	
	TC		TEMP, °F	
	1		539	_
	2		560	_
	3		553	
	4	<i>.</i> .	559	_
	5		548	
	6		559	-
	7		559	-
	8		563	-
	9		531	-
	10		532	- -
	11		547	-
	12		559	-
	13		567	-
	14		544	-
	15		540	- · · ·
	16		554	-
	17		543	-
COMMENTS	5	Áv	3:550	
NOTE :		1. Temp: 2	s are "omnical") = not inclu = CTC D-	unless otherwise noted ded in avg. 40

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA 4 (301) 577-9490

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

IG DAILY TEMPERATURE PERFORMANCE RECORD

DATE 10-6-87	TIME1137	OBSERVER D.IM
	UNIT 80A	
тс	TEMP, °F	
1	539	
2	560	
3	556	
4	563	
5	549	
6	560	
7	56 1	
8	565	
9	530	
10	532	
11	547	
12	561	
13	570	
14	543	
15	540	
16	556	
17	540	
OMMENTS	g:	
OTE: J. Temp	s are "omnical" un	nless otherwise noted
2.	→ = not include * = CTC	ed in avg.
	D-41	

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

IG DAILY TEMPERATURE PERFORMANCE RECORD

DATE 10-7-87	T	'IME 1039	OBSERVER <u>KCM</u>
		UNIT 80A	
I	C	temp, °f	
	1	537	
:	2	560	
:	3	555	
L	b	562	
:	5	548	
(i	560	
7	,	562	
8	}	565	
9	1	529	
10	I	531	
11		546	
12		561	
13		570	
14		544	
15		54 1	
16		557	
17		531	
COMMENTS	Avg	550	
NOTE:	l. Temps	are "omnical" u	nless otherwise noted
	2.) = not include	ed in avg.
	×	= CTC D-42	

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

		G DAILI IEMPERATURE P	ERFORMANCE REC	
DATE	10-8-87	TIME1141	OBSERVER	DJM
		UNIT 80A		
	тс	TEMP °F		
	1			
	1	*	-	
	2	560)		
	3	559		
	4	566		
	5	552	•	
	6	563		
	7	565		
	8	569		
	9	532		
	10	534		
	11	549		
	12	564		
	13	573		
	14	546		
	15	543		
	16	560		
	17	533		
OMMENTS	3	Avg:553		
OTE:	1.	Temps are "omnical" (unless otherwi	se noted
	2.) = not inclu	ded in ave	
		* = CTC		

STRUCTURAL INTEGRITY TECHNOLOGY

CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

IG DAILY TEMPERATURE PERFORMANCE RECORD

DATE	10-12-87	TIME 0901	OBSERVERKCM
		UNIT 80A	
	TC	TEMP, °F	
	1	538	
	2	555	
	3	551	
	4	557	
	5	547	
	6	558	
	7	559	
	8	561	
	9	530	
	10	531	
	11	546	
	12	557	
	13	565	
	14	542	
	15	538	
	16	551	
	17	531	
COMMENTS	1	Avg:548	
1			
NOTE:	I. T	emps are "omnical" un	less otherwise noted
	2.	<pre>> = not include * = CTC D-44</pre>	d in avg.

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA • (301) 577-9490

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

IG DAILY TEMPERATURE PERFORMANCE RECORD

DATE 10-13-87	TIME_1549	OBSERVER DJM	
	UNTT 804		
	UNIT OUR		
TC	TEMP, [°] F		
1	538		
2	554		
3	552		
4	558		
5	547		
6	558		
7	560		
8	563		
9	530		
10 .	54 1		
11	546		
12	 560		
13	569		
14	543		
15	540		
16	555		
17	531		
COMMENTS	Avg: <u>550</u>		
NOTE: I.	Temps are "omnical" unl	less otherwise noted	

2.
$$\bigcirc$$
 = not included in avg.

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA 4 (301) 577-9490

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

IG DAILY TEMPERATURE PERFORMANCE RECORD

DATE	10-14-87	TIME_0806	OBSERVER	КСМ
		UNIT 80A		
	TC	TEMP, °F		
	1	539		
	2	560 *		
	3	555		
	4	562		
	5	550		
	6	56 1		
	7	563		
	8	566		
	9	531		
	10	533		
	11	548		
	12	560		
	13	569		
	14	543		
	15	540		
	16	555		
	17	532		
	A	vg: 517		
COMMENTS	<u> </u>			
NOTE :	1. Tem 2. (ps are "omnical" un = not includeo	less otherwis 1 in avg.	se noted
		* = CTC D-46		

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

1G DAILY TEMPERATURE PERFORMANCE RECORD

DATE 10-15-87	TIME 1314	OBSERVER DJM
	UNIT 80A	
TC	TEMP, °F	
1	527	
· •		
2		
3	554	
4	562	
5 .	549	
6	560	
7	562	
8	566	
9	530	
10	532	
11	547	
12	560	
13	571	
14	544	
15	54 1	
16	556	
17	531	
COMMENTS	wg:550	
NOTE: 1. Ten 2. 0	nps are "omnical" unl	ess otherwise noted
	* = CTC	

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA • (301) 577-9490

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

IG DAILY TEMPERATURE PERFORMANCE RECORD

DATE	10-19-87	TIME 0230	OBSERVER WEP
		UNIT 80A	
	TC	TEMP, °F	
	1	539	
	2	558	
	-	550	
	5		
	4		
	5		
	6	559	
	7	556	
	8	561	
	9	533	
	10	533	
	11	548	
	12	557	
	13	564	
	14	543	
	15	538	
	16	549	
	17	533	
	A	.vg: 550	
COMMEN	TS		
NOTE:	l. Tem	ps are "omnical" unl	ess otherwise noted
	2. (<pre>> = not included * = CTC</pre>	l in avg.

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

DATE	10-20-87	TIME 1251	OBSERVER	DJM
		UNIT 80A		
	TC	TEMP, °F		
	1	538	-	
	2	553*	-	
	3	549	-	
	4	551	-	
	5	54 1	-	
	6	551	-	
	7	558	-	
	8	562	_	
	9	529	-	
	10	531	_	
	11	546		
	12	558		
	13	568		
	14	563		
	15	539		
	.16	553	-	
	17	532		
	-	Avg:548		
COMMENTS)	đ		
				3
IOTE:	1.	Temps are "omnical"	unless otherwis	e noted
	2.	🔾 = not inclu	ded in avg.	

STRUCTURAL INTEGRITY TECHNOLOGY

CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

 .	IG DAILY TEMPERATURE PERFORMANCE RECORD				
DATE10-21-87	TIM	ſE <u>1520</u>	OBSERVER	CLM	······
		UNIT 80A			
тс		TEMP, °F			
1	-	540			
2	-	562*			
3	-	565			
4	-	574			
5	_	563			
6		574			
7	_	574			
8		579		x	
9		545			
10		546			
11		561			
12	_	5 7 3			
13		583			
14	_	557			
15		553			
16	_	566			
17		545			
COMMENTS	Avg:	562			
NOTE:	Temps at	re "omnical" u	nless otherwi	se noted	

— — — = not included in avg.

2.

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA (301) 577-9490

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

IG	DAILY	TEMPERATURE	PERFORMANCE	RECORD	

DATE 10-22-87	TIME	OBSERVER DJM
	UNIT 80A	
тс	TEMP, °F	
ĺ	538	
2	558)*	-
3	552	_
4	560	-
5	550	
6	560	
7	56 1	-
8	565	
9	532	-
10	533	
11	549	-
12	559	
13	569	• · · · · · · · · · · · · · · · · · · ·
14	543	•
15	540	
16	552	
17	553	
COMMENTS	Avg: 551	
IOTE : I	. Temps are "omnical"	unless otherwise noted
2	. 🔵 = not inclu	ded in avg.
	* = CTC D-51	

STRUCTURAL INTEGRITY TECHNOLOGY

CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

-25-87	TI	ME1649	OBSERVER	WEP
		UNIT 80A		
тс		TEMP, °F		
1		542		
2		564		
3		554		
4		561		
5		553		
6		561		
7		560		
8		567		
9		539		
10	-	541		
11	-	555		
12	-	559		
13	-	571		
14	-	549		
15	· -	546		
16	-	553		
17	_	536		
	Avg:	554		

9700-B GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA (301) 577-9490

D-52

×

= CTC

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

IG DAILY TEMPERATURE PERFORMANCE RECORD

UNIT 80A TC TEMP, °F 1 541 2 555 * 3 553 4 563 5 552 6 560 7 560 8 568 9 536 10 538 11 553	
TC TEMP, $^{\circ}F$ 1 541 2 555 3 553 4 563 5 552 6 560 7 560 8 568 9 536 10 538 11 553	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
8 568 9 536 10 538 11 553	
9 536 10 538 11 553	
10 538 11 553	
11. 553	
12558	
13570	
14547	
15545	
16	
17534	
COMMENTS	

NOTE:

1. Temps are "omnical" unless otherwise noted

2. \bigcirc = not included in avg.

×

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA 4 (301) 577-9490

STRUCTURAL INTEGRITY TECHNOLOGY

CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

		IG DAILY TEMPERATURE PERFORMANCE RECORD				
DATE	10-27-87	TIM	E <u>0934</u>	OBSERVER	WEP	
			UNIT 80A			
	TC		TEMP, °F			
	1		54.2			
	2		564 *			
	3	-	554			
	4		564			
	5	-	551			
	6		560			
	7		560			
	8		568			
	9		536			
	10		538			
	11		554			
	12		560			
	13		574			
	14		548			
	15		547			
	16		557			
	17		535			
OMMENT	s	Avg: _	553			

○ = not included in avg.

2.

D-54

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA • (301) 577-9490

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

		IG DAILY TEMPERATURE PERFORMANCE RECORD			CORD
DATE	28-87	TI	ME <u>1829</u>	OBSERVER	KCM
			UNIT 80A		
	TC		TEMP, °F		
	1	-	534		
	2	-	550 *		
	3	-	550		
	4	-	559		
	5	-	546		
	6	-	534		
	7	-	555		
	8	-	556		
	9	-	535		
	10	_	533		
	11	-	549		
	12	-	554		
	13		568		
	14	-	54 1		
	15	-	540		
	16	-	549		
	17		528		
COMMENTS		Avg:	546		
NOTE :	1	. Temps a	re "omnical" u	inless otherwi	se noted

= CTC D-55

2.

*

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA 4 (301) 577-9490

= not included in avg.

STRUCTURAL INTEGRITY TECHNOLOGY

CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

DATE	10-29-87	TIME 0713	OBSERVER WEP
	TC	UNIT 80A TEMP, °F	
	I	534	
	2	557	
	3	549	
	4	559	
	5	546	
	6	555	
	7	556	
	8	564	
	9	531	
	10	533	
	11	548	
	12	554	
	13	567	
	14	54 1	
	15	540	
	16	549	
	17	529	
OMMENTS		Avg: <u>548</u>	

🔵 = not included in avg.

2.

D-56

9700-5 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20705-1897 USA • (00.1) 577-9490

STRUCTURAL INTEGRITY TECHNOLOGY

CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

		G DAILY	TEMPERATURE	PERFORMANCE REC	CORD	
DATE	10-30-87	TI	ME <u>1016</u>	OBSERVER	DJM	
			UNIT 80A			
	TC		TEMP, °F			
	1	-	534	-		
	2	-	550*	-		
	3	-	548	-		
	4	. <u>-</u>	558	_		
	5	-	546	-		
	6	-	554	-		
	7	-	555			
	8	-	563	-		
	9		531	-		
	10	-	533	-		
	11	-	548	-		
	12	_	552	-		
	13	_	565	-		
	14		540	-		
	15		538	-		
	16		546			
	17	_	528			
OMMENTS		Avg:	546			
OTE:	۱.	Temps a	re "omnical"	unless otherwis	se noted	
	2.	\bigcirc	= not inclue	ded in avg.		
		*	= CTC			

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA 4 (301) 577-9490

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

DATE 11-1-87	T	ME 2040	OBSERVER	WEP
		UNIT 80A		
Т	C	TEMP, °F		
1		534		
2		557		
3	i i	544		
4		552		
5		546		
6		554		
7		553		
8		560		
9		532		
10		534		
11		548		
12		551		
13		561		
14		54 1		
15		538		
16		543		
17	-	530		
OMMENTS	Avg:	546		
OTE:	l. Temps a	are "omnical" un	less otherwis	se noted
	2.	= not include	ed in avg.	
	*	= CTC		

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

DATE <u>11-2-8</u>	7	TIME1151	OBSERVER	KCM
		UNIT 80A		
	TC	TEMP, °F		
	1	537		
	2	555*		
	3	550		
	4	560		
	5	549		
	6	558		
	7	557		
	8	566		
	9	534		
	10	536		
	11	551		x.
	12	556		
	13	569		
	14	544		
	15	542		
	16	550		
	17	532		
MMENTS	ł	Avg: <u>549</u>		

NOTE:

1. Temps are "omnical" unless otherwise noted

2. \bigcirc = not included in avg.

×

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA • (301) 577-9490

TES, INC.

LTIONS

MATERIALS ENGINEERING ASSOCIATES, INC.

STRUCTURAL INTEGRITY TECHNOLOGY

CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

IG DA	ILY TEMPERATURE P	ERFORMANCE REC	CORD		
11-1-87	TIME 2040	OBSERVER	WEP		
	UNIT 80A				
TC	TEMP, °F				
1	534				
2	557				
3	544				
4	552				
5	546				
6	554				
7	553				
8	560				
9	532				
10	534				
11	548				
12	551				
13	561				
14	541				
15	538				
16	543				
17	530				
Αν	g: <u>546</u>			<u>.</u>	
l. Temp	s are "omnical" u	nless otherwi	se noted		
2. (🔵 = not includ	ed in avg.			
	* = CTC D-58				301) 577-9490

GE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA 4 (301) 577-9490

STRUCTURAL INTEGRITY TECHNOLOGY

CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

		IG DAILY	TEMPERATURE F	ERFORMANCE REC	CORD
DATE	1-3-87	TI	ME1721	OBSERVER	КСМ
	тс		UNIT 80A TEMP, °F		
	1		534		
	2		550 *		
	3		548		
	4		558		
	5		546		
	6		555		
	7		555		
	8		564		
	9		531		
	10		534		
	11		549		
	12		553		
	13	-	567		
	14	-	540		
	15	-	538		
	16	-	546		
	17	-	528		
COMMENTS		Avg:	547		<u></u> *
NOTE :		1. Temps a 2	nre "omnical" u = not includ = CTC D-61	unless otherwis led in avg.	se noted

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA (301) 577-9490

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE . FRACTURE MECHANICS TESTING . IRRADIATIONS

DATE	11-5-87	TIME_0922	OBSERVER	WEP
		11NTT 80A		
		UNIT OOR		
	TC	TEMP, F		
	1	533		
	2	557 *		
	3	547		
	4	557		
	5	546		
	6	555		
	7	554		
	8	564		
	9	531		
	10	534		
	11	549		
	12	553		
	13	568		
	14	540		
	15	538		
	16	546		
	17	528		
OMMENTS	A	vg:547		

NOTE:

1. Temps are "omnical" unless otherwise noted

= not included in avg.

2.

D-62

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA • (301) 577-9490

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

DATE11-8-87	TI	ME1846	OBSERVER	WEP	
		UNIT 80A			
TC		TEMP, °F			
1		535			
2		557*	•		
3		544	• ·		
4		552			
5		547			
6		554			
7		552			
8		560			
9		533			
10		535			
11		550			
12		551			
13	-	562			
14	-	54 1			
15	-	538			
16	-	543			
17	-	530			
OMMENTS	Avg:	546			

IG DAILY TEMPERATURE PERFORMANCE RECORD

NOTE:

1. Temps are "omnical" unless otherwise noted

D-63

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA (301) 577-9490

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

-	IG DAILY TEMPERATURE PER	RFORMANCE RECORD
ATE <u>11-10-87</u>	TIME_1253	OBSERVER <u>D.IM</u>
	UNIT 80A	
TC	TEMP, °F	
1	535	
2	551 *	
3	549	
4	560	
5	548	
6	557	
7	556	
8	566	
9	532	
10	535	
11	551	
12	554	
13	569	
14	54 1	
15	539	
16	548	
17	529	
MMENTS	Avg:548	

9700-B GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA (301) 577-9490

STRUCTURAL INTEGRITY TECHNOLOGY CORROSION FATIGUE • FRACTURE MECHANICS TESTING • IRRADIATIONS

		IG DAILY	TEMPERATURE P	ERFORMANCE REG	CORD	
DATE 11-	12-87	T]	IME 1418	OBSERVER	DJM	
			UNIT 80A			
	TC		TEMP, °F			
	1		534			
	2		551			
	3		549			
	4		560			
	5		548			
	6		556			
	7		556			
	8		566			
	9		533			
	10		535			
	11		551			
	12		555			
	13	-	571			
	14	-	543			
	15	-	54 1			
	16	-	549			
	17	-	530			
COMMENTS		Avg:	549			
NOTE :		l. Temps a	ire "omnical" u	nless otherwis	se noted	
		2.	= not include	ed in avg.		

 \bigcirc = not includ * = CTC

9700-8 GEORGE PALMER HIGHWAY, LANHAM, MARYLAND 20706-1837 USA . (301) 577-9490

APPENDIX E

Neutron Dosimetry Determinations: Irradiation Experiments UBR-68, UBR-78 UBR-79A, UBR-80A

References

- ----

- J. W. Rogers, "Neutron Fluence Rates for MEA-UBR Experiments: Letter Report JWR-34-86", Idaho Nuclear Engineering Laboratory, 17 November 1986.
- J. W. Rogers, "Neutron Fluence Rates for MEA-UBR Experiments: Letter Report JWR-53-87", Idaho Nuclear Engineering Laboratory, 6 November 1987.
- J. W. Rogers, "Neutron Fluence Rates for MEA-UBR Experiments: Letter Report JWR-29-88", Idaho Nuclear Engineering Laboratory, 10 August 1988.

Neutron Dosimetry Determinations

Based on Fission Spectrum Assumption

for UBR-68 (Capsules A and B)

Monitor/Segment ^a		Fluence Rate ^b x 10 ¹² (Average)	Monitor Location in Specimen Array	
 Al	(Fe)	5.58	Specimens A25 to A30	
	(Ni)	5.61	-	
A3	(Fe)	5.70	Specimens A27 to A34	
A4	(Fe)	6.28	Specimens A7 to A29	
A2	(Fe)	6.30	Specimens A9 to A35	
A5	(Fe)	6.44	Specimens A26 to A31	
	(Ni)	6.50	-	
A6	(Fe)	6.73	Specimens A23 to A36	
A7	(Fe)	7.24	Specimens A24 to A8	
AS	(Fe)	7.18	Specimens A21 to A28	
	(AgCo)	4.14 ^C	-	
Via	1 (²³⁸ 0)	8.26 ⁰ (9.42) ^e	Filler piece, Specimens A32 to A8	
	(Fe)	6.63		
	(Ni)	6.72		

Table E-1 Irradiation Experiment UER-68 Capsule A Fluence-Rate Monitor Results (Ref. 1)

- ^a See Fig. 6 in main text for monitor locii. The Fe,Ni and 238 U results are based on >1 MeV 235 U fission spectrum averaged cross sections of 115.2, 156.8, and 441 millibarns respectively. Corrections for epithermal neutron contributions are based on Co-Cadmium ratios obtained from a special MEA-HEDL-UER mockup experiment irradiation (applies to Tables E-2 to E-6 also). b Fission spectrum assumption; n/cm^2-s^{-1} (E >1 MeV) unless noted.
- ^c Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections.
- d Average of separate determinations for 95Zr, 103Ru, 137Cs, 140Bala.
- e Calculated spectrum value.

Summary, Capsule UBR-68A

- 1. Average neutron fluence (all specimens): 8.6 x 10^{18} n/cm² E >1 MeV (calculated spectrum fluence).
- 2. Average dpa (E >1 MeV): 1.39×10^{-2} .
- 3. Exposure hours: 249.0 (C-2 facility).

fonitor/Segment ^a		Fluence Rate ^b x 10 ¹² (Average)	Monitor Location in Specimen Array	
B1	(Fe)	7.24	Between layers 1 and 2	
B3	(Fe) (Ni)	3.64° 7.04 6.87	Between layers 3 and 4	
B5	(Fe) (Ni)	6.82 6.67	Between layers 6 and 7	
B 6	(Fe) (CO)	6.71 3.40	Between layers 8 and 9	
B7	(Fe) (Ni)	6.52 6.39	Between layers 10 and 11	
B2 B8	(Fe) (Fe)	-d- 6.65 ^e	Between layers 2 and 3 Immediately below layer 11	
Vial	. (²³⁸ U)	8.31 ^f (9.47)9	Between layers 4 and 5	
	(Fe) (Ni)	6.79 6.97		

Table E-2 Irradiation Experiment UBR-68 Capsule B Fluence-Rate Monitor Results (Ref. 1)

- ^a See Fig. 6 in main text for monitor locii. The Fe,Ni and ²³⁸U results are based on >1 MeV ²³⁵U fission spectrum averaged cross sections of 115.2, 156.8, and 441 millibarns, respectively. ^b Fission spectrum assumption; n/cm^2-s^{-1} (E >1 MeV) unless noted. ^c Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction
- rates and their cross sections.
- d Lost in decanning experiment.
- e Based on one dosimeter section only (data for two other sections not available). f Average of separate determinations for ⁹⁵Zr, ¹⁰³Ru, ¹³⁷Cs, ¹⁴⁰Bala.

g Calculated spectrum value.

Summary, Capsule UBR-68B

- Average neutron fluence (all specimens): 8.76 x 10^{18} n/cm² E >1 Mev (calculated spectrum fluence). 1.
- Average dpa (E >1 MeV): 1.42×10^{-2} . 2.
- Exposure hours: 249.0 (C-2 facility). 3.

Neutron Dosimetry Determinations

Based on Fission Spectrum Assumption

for UBR-78 (Capsules A and B)
Monitor/S	Segment ^a	Fluence Rate ^b x 10 ¹² (Average)	Monitor Location in Specimen Array		
A2	(Fe) (Ni)	6.50 6.26	Immediately above layer 1		
A3	(Fe) (Co)	6.59 1.96 ^C	Between layers 1 and 2		
A 4	(Fe) (Ni)	-d- -d-	Between layers 3 and 4		
A5	(Fe)	6.80	Between layers 5 and 6		
A 6	(AgCo)	2.08 ^e	Between layers 6 and 7		
A7	(Fe) (Ni)	6.82 6.75	Between layers 7 and 8		
Vial	(²³⁸ U)	7.83 ^f (8.93) ^g	Between layers 4 and 5		
	(Fe) (Ni)	6.71 6.74			

Table E-3 Irradiation Experiment UBR-78 Capsule A Fluence-Rate Monitor Results (Ref. 2)

See Fig. 20 in main text for monitor locii. The Fe, Ni and ²³⁸U results are based on >1 MeV ²³⁵U a fission spectrum averaged cross sections of 115.2, 156.8, and 441 millibarns, respectively. b Fission spectrum assumption; n/cm^2-s^{-1} (E >1 MeV) unless noted.

С Based on one dosimeter section only.

d Not available.

е Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction rates and their cross sections. Average of separate determinations for ⁹⁵Zr, ¹⁰³Ru, ¹³⁷Cs, ¹⁴⁰BaLa.

f

g Calculated spectrum value.

Summary, Capsule UBR-78A

1. Average neutron fluence (all specimens): 2.67 x 10^{18} n/cm² E >1 Mev (calculated spectrum fluence).

- 2. Average dpa (E >1 MeV): 0.43×10^{-2} .
- 3. Exposure hours: 78.0 (B-4 facility).

I

Monitor/Segment ^a		Fluence Rate ^b x 10 ¹² (Average)	Monitor Location in Specimen Array		
B11	(Fe)	6.29	Specimen A3 to E3		
B12	(Fe)	6.79	Specimen A4 to Cl		
B10	(Fe) (Ni)	6.31 ^C 5.76	Specimen Dl to D3		
B13	(Fe) (Ni)	7.22 7.10	Specimen D6 to D4		
B8	(Fe)	5.71	Specimen El to B6		
B9	(Fe) (Co)	6.61 1.95 ^d	Specimen C2 to B1		
Vial	(²³⁸ U)	7.32 ^e (8.24) f	Filler piece, Specimen D2 to A5		
	(Fe) (Ni)	6.17 6.30			

Table E-4 Irradiation Experiment UER-78 Capsule B Fluence-Rate Monitor Results (Ref. 2)

^a See Fig. 20 in main text for monitor locii. The Fe,Ni and ²³⁸U results are based on >1 MeV ²³⁵U fission spectrum averaged cross sections of 115.2, 156.8, and 441 millibarns, respectively. b Fission spectrum assumption; n/cm^2-s^{-1} (E >1 MeV) unless noted.

^C Based on two dosimeter sections only (data for two other sections not available).

d Based on one dosimeter section only.

Average of separate determinations for 95Zr, 103Ru, 137Cs, 140Bala. е

f Calculated spectrum value.

Summary, Capsule UBR-78B

1. Average neutron fluence (all specimens): 2.60 x 10^{18} n/cm² E >1 Mev (calculated spectrum fluence).

2. Average dpa (E >1 MeV): 0.42×10^{-2} .

3. Exposure hours: 78.0 (B-4 facility).

Neutron Dosimetry Determinations

Based on Fission Spectrum Assumption

for UBR-79 (Capsule A)

Monitor/Segment ^a		Fluence Rate ^b x 10 ¹² (Average)	Monitor Location in Specimen Array		
A3	(Fe)	6.64	Immediately above layer 1		
I	(00)	3.30			
A 8	(Fe)	6.62	Between layers 2 and 3		
	(Ni)	6.34	-		
A21	(Fe)	6.76	Between layers 5 and 6		
	(Ni)	6.50	-		
A13	(Fe)	6.87	Between layers 7 and 8		
	(Ni)	6.60_	-		
	(AgCo)	3.38 ^C			
Vial	(²³⁸ 0)	8.05 ^d	Filler piece, laver 4		
		(9.18) ^e			
	(Fe)	6.77			
	(Ni)	6.53			

Table E-5 Irradiation Experiment UBR-79A Capsule A Fluence-Rate Monitor Results (Ref. 3)

fission spectrum averaged cross sections of 115.2, 156.8, and 441 millibarns, respectively.

b Fission spectrum assumption; $n/cm^2 - s^{-1}$ (E >1 MeV) unless noted.

Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction С rates and their cross sections.

Average of separate determinations for ⁹⁵Zr, ¹⁰³Ru, ¹³⁷Cs. ¹⁴⁰BaLa. d

е Calculated spectrum value.

Summary, Capsule UBR-79A

1. Average neutron fluence C, Group no. 1: 8.5×10^{18} n/cm² E >1 MeV (calculated spectrum fluence). C, Group no. 2: 8.8×10^{18} n/cm² E >1 MeV. CT specimens: 8.6×10^{18} n/cm² E >1 MeV. 2. Average dpa (E >1 MeV): C_V Group no. 1: 1.38 x 10^{-2} . C_v Group no. 2: 1.43 x 10⁻² 1.39×10^{-2} CT Specimens 3. Exposure hours: 250 .03 (B-4 facility).

ł

Neutron Dosimetry Determinations

Based on Fission Spectrum Assumption

for UBR-80 (Capsule A)

۰ X ;

Monitor/S	Segment ^a	Fluence Rate ^b x 10 ¹² (Average)	Monitor Location in Specimen Array
		(opoonna, mray
A20	(Fe) (Ni)	6.45 6.21	Immediately above layer l
A2	(Fe)	6.50	Between layers 2 and 3
All		3.15 ^C	Between layers 3 and 4
A27	(Fe)	6.57	Between layers 4 and 5
	(Ni)	6.25	
A10	(Fe)	-d-	Between layers 6 and 7
A26	$(\mathbf{\omega})$	3.25 ^C	Between layers 7 and 8
A7	(Fe)	6.82	Between layers 8 and 9
	(Ni)	6.49	-
Vial	(²³⁸ U)	7.87 ^e	Between layers 5 and 6
		(8.97) ^I	-
	(Fe)	6.42	
	(Ni)	6.65	

Table E-6 Irradiation Experiment UBR-80 Capsule & Fluence-Rate Monitor Results (Ref. 3)

^a See Fig. 22 in main text for monitor locii. The Fe,Ni and ²³⁸U results are based on >1 MeV ²³⁵U fission spectrum averaged cross sections of 115.2, 156.8, and 441 millibarns, respectively. ^b Fission spectrum assumption; n/cm^2-s^{-1} (E >1 MeV) unless noted.

Thermal fluence rate corrected for epithermal neutron contributions based on ¹⁰⁹Ag and ⁵⁹Co reaction С rates and their cross sections.

d Not available.

е Average of separate determinations for ⁹⁵Zr, ¹⁰³Ru, ¹³⁷Cs, ¹⁴⁰Bala.

f Calculated spectrum value.

Summary, Capsule UBR-80A

1. Average neutron fluence (GEB-2 specimens only); 2.25 x 10^{19} n/cm² E > 1 MeV (calculated spectrum).

2. Average dpa (E >1 MeV): 3.65×10^{-2}

3. Exposure hours: 657.98 (B-4 facility).

APPENDIX F

Charpy-V Data Tabulation and Computer Curve Fits for Unirradiated Condition Tests and Irradiation Experiment UBR-68, UBR-78, UBR-79A, and UBR-80A Tests

OVERVIEW

The data curve fitting procedure employed the hyperbolic tangent curve fitting method. Two curves are provided here for each data set: the curve illustrated in the first figure for the set shows the results obtained with the available data; the curve in the companion figure is the result obtained when four fictitious data points (5 ft-lb energy absorption) are added at a temperature that is 50° F below the intercept of a line representing a linearized transition region, with the abscissa. The line in this case is an eyeball fit to the data; the choice of a larger temperature shift (up to 100° F) was found not to influence the result appreciably.

The intentional addition of the fictitious data serves to force the curve to a reasonably low, positive value in the toe region. This device is particularly useful for those cases where data are lacking in the toe region for guiding the computer in its setting of bounding conditions. It will be noted that the American Society for Testing and Materials has not issued a standard method or a standard guide for curve-fitting C_{xy} data for the irradiated condition.

Unirradiated Condition Charpy-V Test Results

Including Special Check Test Data

No	Specimen Number	Piece/ Row	(°F)	Energy (ft-lb)	Lat Exp (mils)	Shear (%)
1	34	32	-110	7.0	5	0
2	37	31	-70	18.0	18	10
3	38	3 1	-40	24.0	18	<100
4	35	32	-40	26.0	20	<100
5	33	32	-20	32.0	27	<100
6	43	31	0	32.0	29	34
7	39	32	0	41.0	38	35
8	36	3 1	30	46.0	37	<100
9	45	31	30	46.0	40	47
10	42	32	75	70.0	63	<100
11	41	32	120	76.0	66	100
12	46	3 1	120	77.0	69	100
13	44	3 1	200	74.0	65	100
14	40	32	200	79.0	78	- 99

<u>Code GEB (Side 2) - Unirradiated Condition</u> 1/8T Thickness Location ASTM L-C Orientation

F-4

Temperature (°F)

 $Cv = A + B \tanh[(T - To)/C]$

	English	Metric
A =	43.39	58.84
B =	36.53	49.53
C =	86.89	48.27
To -	= 14.56	-9.69
Cv = 30 ft-lb or 41.7 J when l	「 = −18 . 9	-28.3

Cv data File : U-1/8A

Temperature (°F)

 $Cv = A + B \tanh[(T - To)/C]$

	English	Metric
A =	41.68	56.51
B =	38.90	52.75
C =	95.43	53.01
To =	9.42	-12.55
Cv = 30 ft-1b or 41.7 J when T	= -20.1	-29.0

4 points added at location given by '0' symbol. 4 points at (-150,5)

No	Specimen Number	Piece/ Row	Temp (°F)	Energy (ft-lb)	Lat Exp (mils)	Shear (%)
1	16	12	-40	18.0	18	<100
2	7	12	0	26.0	26	<100
3	5	12	30	40.0	34	<100
4	3	1 1	75	59.0	49	<100
5	9	12	120	75.0	61	<100
6	1	1 1	200	78.0	73	100

<u>Code GEB (Side 2) - Unirradiated Condition</u> 1/4T Thickness Location ASTM L-C Orientation

Temperature (°F)

 $Cv = A + B \tanh[(T - To)/C]$

									English	Metric
							A =	=	46.38	62.88
							B	=	32.94	44.66
							C =	=	65.06	36.15
							To	=	45.12	7.29
Cv	=	30	ft-1b	or	41.7	J	when	т	= 9.6	-12.4

No	Specimen Number	Piece/ Row	Temp (°F)	Energy (ft-lb)	Lat Exp (mils)	Shear (%)
1	32	1 1	-40	26.0	21	<100
2	21	1 1	0	37.0	34	<100
3	20	1 1	30	52.0	43	<100
4	19	1 1	75	81.0	61	<100
5	22	1 1	120	108.0	72	100
6	18	1 1	200	110.0	70	100

<u>Code GEB (Side 2) - Unirradiated Condition</u> 1/4T Thickness Location ASTM C-L Orientation

Temperature (°F)

 $Cv = A + B \tanh[(T - To)/C]$

	English	Metric
A =	68.04	92.25
B =	44.63	60.51
C =	59.03	32.79
To =	53.48	11.93
Cv = 30 ft - 1b or 41.7 J when T	= -21.2	-29.5

Cv data File : U-1/4C

Temperature (°F)

 $Cv = A + B \tanh[(T - To)/C]$

								English	Metric	
							A =	58.34	79.10	
							B =	58.30	79.05	
		•					C =	91.40	50.78	
							To =	34.08	1.15	
Cv	=	30	ft-1b	or	41.7	J	when T	= -14.5	-25.8	

4 points added at location given by '0' symbol. 4 points at (-100,5)

No	Specimen Number	Piece/ Row	Temp (°F)	Energy (ft-lb)	Lat Exp (mils)	Shear (%)
1	48	32	-110	8.0	6	0
2	51	31	-70	12.0	10	16
3	4 9	32	-40	14.0	10	<100
4	52	31	-40	21.0	17	<100
5	47	32	-10	24.0	23	<100
6	59	32	0	20.0	21	34
7	63	31	0	32.0	31	34
8	50	31	30	35.0	30	<100
9	65	31	30	42.0	37	44
10	62	32	75	62.0	51	<100
11	61	32	120	60.0	55	100
12	66	31	120	66.0	60	<100
13	60	32	200	66.0	61	99
14	64	31	200	66.0	64	100

Code GEB (Side 2) - Unirradiated Condition 1/2T Thickness Location ASTM L-C Orientation

۲

.

Cv data File : U-1/2A

Temperature (°F)

 $Cv = A + B \tanh[(T - To)/C]$

		English	Metric
	A =	38.21	51.80
	B =	28.12	38.12
	C =	58.98	32.77
	To =	25.99	-3.34
Cv = 30 ft - 1b or 41.7 J wh	ien T	= 8.3	-13.2

Cv data File : U-1/2A

Cv = 30 ft-1b or 41.7 J when T = 5.9 -14.5

4 points added at location given by '0' symbol. 4 points at (-125,5)

No	Specimen Number	Piece/ Row	Temp (°F)	Energy (ft-lb)	Lat Exp (mils)	Shear (%)
1	54	32	-110	8.0	5	0
2	57	31	-70	22.0	19	16
3	55	32	-40	23.0	18	<100
4	58	31	-40	24.0	22	<100
5	53	32	-20	27.0	25	<100
6	71	31	0	34.0	32	56
7	67	32	0	39.0	36	35
8	56	31	30	42.0	33	<100
9	73	3 1	30	49.0	42	50
10	70	32	75	68.0	59	<100
11	74	31	120	72.0	53	99
12	69	32	120	82.0	69	100
13	72	31	200	74.0	67	100
14	68	32	200	77.0	76	100

<u>Code GEB (Side 2) - Unirradiated Condition</u> 7/8T Thickness Location ASTM L-C Orientation

Temperature (°F)

Cv = A + B tanh[(T - To)/C]

									Er	nglish	Metric	
							Ĥ 4	=		45.14	61.20	
							B :	=		33.51	45.43	
							C :			74.75	41.53	
							То	=		22.22	-5.43	
Cv	=	30	ft-1b	or	41.7	J	when	т	8	-14.2	-25.7	

4 points added at location given by '0' symbol. 4 points at (-140,5)

No	Specimen	Piece/	Temp	Energy	Lat Exp	Shear
	Number	Row	(°F)	(ft-1b)	(mils)	(%)
1	256	C1	-60	18.0	18	<100
2	270	C2	-40	26.0	24	<100
3	303	D3	-20	31.0	31	<100
4	293	D2	0	35.0	35	<100
5	260	C1	20	35.0	33	<100
6	266	C2	40	41.0	39	<100
7	276	C3	60	49.0	47	<100
8	280	C3	150	79.0	72	95
9	283	D1	230	77.0	75	100
10	312A	F1	230	81.0	73	100
11	345	8F-CMFLÞ	-40	32.0	30	<100
12	325	8F-CMFL	0	61.0	50	<100
13	339	8F-CMFL	230	114.0	84	100
14	331	8F-CMFL	230	114.0	94	100

<u>Check Tests for Experiments UB-78, 79, & 80</u> Code GEB (Side 2) - Unirradiated Condition ASTM L-C Orientation^a

a Unless noted
b CMFL = ASTM C-L orientation

ş

ð

Cv

Temperature (°F)

 $Cv = A + B \tanh[(T - To)/C]$

								English	Metric
						A =		50.58	68.57
						B =	:	30.73	41.67
						C =	5	81.92	45.51
						То	=	60.51	15.84
=	30	ft-1b	or	41.7	J	when	т	= -5.8	-21.0

Irradiation Experiment UBR-68

1

No	Specimen Number	Piece/ Row	Temp (°F)	Energy (ft-lb)	Lat Exp (mils)	Shear (%)
1	97	4B 1	-40	11.0	14	<100
2	94	4B 1	0	14.0	17	<100
3	90	4B 2	10	18.0	20	<100
4	78	4A 1	40	29.0	30	<100
5	107	4C 1	50	28.0	32	<100
6	104	4C 2	80	36.0	36	<100
7	83	4A 2	80	37.0	37	<100
8	117	4D 1	100	49.0	47	<100
9	112	4D 2	120	49.0	48	<100
10	110	4C 1	200	69.0	60	98
11	113	4D 2	240	72.0	61	100
12	77	4A 1	260	67.0	59	100

Experiment UB-68 Unit B Code GEB (Side 2) - As-Irradiated Condition ASTM L-C Orientation

hint .

Cv data File : U68I

Temperature (°F)

 $Cv = A + B \tanh[(T - To)/C]$

								English	Metric
							A =	38.95	52.81
							B =	33.00	44.75
							C =	94.88	52.71
							To =	81.61	27.56
Cv	=	30	ft-1b	or	41.7	J	when T	= 55.2	12.9

4 points added at location given by '0' symbol. 4 points at (-90,5) Experiment UB-68 Unit B Code GEB (Side 2) - Postirradiation Annealed 399°C (750°F) - 168h ASTM L-C Orientation

No	Specimen Number	Piece/ Row	Temp (°F)	Energy (ft-lb)	Lat Exp (mils)	Shear (%)
1	114	4D 2	-80	2.0	5	<100
2	98	4B 1	-40	15.0	13	<100
3	102	4C 2	-30	20.0	22	<100
4	91	4B 2	0	24.0	29	<100
5	118	4D 1	0	33.0	29	<100
6	80	4A 1	30	38.0	36	<100
7	82	4A 2	40	40.0	38	<100
8	100	4C 2	80	66.0	53	<100
9	95	4B 1	100	83.0	67	<100
10	175	51	110	72.0	59	<100
11	86	4A 2	200	82.0	70	100
12	76	4A 1	200	86.0	79	100

 $Cv = A + B \tanh[(T - To)/C]$

E	nglish	Metric
A =	44.69	60.59
B =	42.07	57.04
C =	78.97	43.87
To =	36.63	2.57
Cv = 30 ft-1b or 41.7 J when T =	7.8	-13.4

4 points added at location given by '0' symbol. 4 points at (-100,5) Experiment UB-68 Unit B Code GEB (Side 2) - Postirradiation Annealed 454°C (850°F) - 168h ASTM L-C Orientation

No	Specimen Number	Piece/ Row	Temp (°F)	Energy (ft-lb)	Lat Exp (mils)	Shear (%)
1	116	4D 1	-80	11.0	12	<100
2	106	4C 1	-65	15.0	15	<100
3	81	4A 1	-40	25.0	26	<100
4	93	4 B 1	-20	26.0	24	<100
5	87	4A 2	0	34.0	33	<100
6	92	4B 2	20	48.0	36	<100
7	79	4A 1	40	63.0	49	<100
8	120	4D 1	60	63.0	54	<100
9	84	4A 2	100	75.0	66	90
10	109	4C 1	140	92.0	63	98
11	103	4C 2	200	81.0	68	100
12	99	4C 2	200	85.0	65	100

.

÷# .

Cv data File : U68A2

Temperature (°F)

 $Cv = A + B \tanh[(T - To)/C]$

	English	Metric
A =	46.91	63.60
B =	39.11	53.02
C =	72.75	40.42
To =	18.91	-7.27

Cv = 30 ft-lb or 41.7 J when T = -14.8 -26.0

Cv = A + B tanh[(T - To)/C]

	English	Metric
A =	44.61	60.48
B =	42.17	57.18
C =	82.32	45.73
To =	13.22	-10.43

Cv = 30 ft-1b or 41.7 J when T = -16.5 -27.0

4 points added at location given by '0' symbol. 4 points at (-120,5) Irradiation Experiment UBR-78

.

No	Specimen	Piece/	Temp	Energy	Lat Exp	Shear
	Number	Row	(°F)	(ft-1b)	(mils)	(%)
1	286	D1	-40	16.0	15	<100
2	275	C3	-30	17.0	16	<100
3	284	D1	0	26.0	23	<100
4	267	C2	20	33.0	29	<100
5	296	D2	40	27.0	26	<100
6	277	C3	40	36.0	32	<100
7	255	C1	60	42.0	37	<100
8	306	D3	80	52.0	47	<100
9	269	C2	110	56.0	50	<100
10	308	D3	160	72.0	65	99
11	257	C1	220	74.0	75	<100
12	316	F3	240	77.0	75	100
13	322	E 2	240	81.0	83	100
14	326	8F-CMFL ^b	-40	14.0	14	<100
15	333	8F-CMFL	-20	22.0	19	<100
16	328	8F-CMFL	0	41.0	33	<100
17	322	8F-CMFL	10	45.0	38	<100
18	336	6E-CMFL	40	49.0	45	<100
19	338	6E-CMFL	240	110.0	81	100
20	334	8F-CMFL	240	112.0	71	100

Experiment UB-78 Unit A Code GEB (Side 2) - As-Irradiated Condition ASTM L-C Orientation^a

a Unless noted b CMFL = ASTM C-L orientation

Temperature (°F)

 $Cv = A + B \tanh[(T - To)/C]$

								En	glis	h	Metric
						A =	=		44.6	2	60.49
						B =	E		36.0	7	48.91
						C =	=	1	04.3	7	57.99
						То	=		68.5	3	20.30
0	£+=15	<u>_</u>	41	7	т	uhan	т	-	22	7	-1 6

Cv

Cv = 30 ft-lb or 41.7 J when T = 21.3 -6.0

4 points added at location given by '0' symbol. 4 points at (-110,5)

1

Cv data File : UBR-78 (CMFL)

Temperature (°F)

Cv = A + B tanh[(T - To)/C]

	A = B = C = To =	English -552.96 702.45 423.33 -514.67	Metric -749.71 952.40 235.18 -303.71
= 30 ft-1b or 41.7 J	To = when T	-514.67	-303.71

Cv

Temperature (°F)

 $Cv = A + B \tanh[(T - To)/C]$

	English	Metric
A =	56.13	76.11
B =	58.31	79.06
C =	113.35	62.97
To =	44.08	6.71

Cv = 30 ft-lb or 41.7 J when T = -10.6 -23.7

4 points added at location given by 'O' symbol. 4 points at (-115,5) Irradiation Experiment UBR-79A

No	Specimen Number	Piece/ Row	Temp (°F)	Energy (ft-lb)	Lat Exp (mils)	Shear (%)
1	261	C1	15	13.0	13	<100
2	285	D1	45	24.0	19	<100
3	295	D2	60	30.0	27	<100
4	281	C3	100	39.0	31	<100
5	305	D3	230	68.0	60	100
6	278	C3	230	75.0	69	98
7	341	6E-CMFLÞ	230	98.0	81	100
8	298	D2	20	12.0	11	<100
9	287	D1	65	24.0	17	<100
10	307	D3	80	29.0	27	<100
11	289	D1	120	45.0	38	<100
12	309	D3	160	55.0		<100
13	297	D2	220	68.0	59	100
14	310	D3	260	65.0	55	99
15	348	6E-CMFLb	60	34.0	27	<100
16	344	6E-CMFL	105	52.0	39	<100
17	342	6E-CMFL	240	94.0	69	100
18	346	6E-CMFL	280	91.0	77	100

Experiment UB-79 Unit A Code GEB (Side 2) - As-Irradiated Condition ASTM L-C Orientation^a

a Unless noted
b CMFL = ASTM C-L Orientation

Temperature (°F)

 $Cv = A + B \tanh[(T - To)/C]$

								E	nglish	Metric
						A	=		36.33	49.25
						В	Ξ		37.67	51.07
						С	=		109.81	61.01
						Τc) =	:	93.33	34.07
_	30	ft-1b	or	41.7	T	when	ч	_	74 7	23.7

Cv

4 points added at location given by '0' symbol. 4 points at (-60,5)

Irradiation Experiment UBR-80A

No	Specimen Number	Piece/ Row	Temp (°F)	Energy (ft-lb)	Lat Exp (mils)	Shear (%)
1	314	8F3	0	10.0		<100
2	288	D1	35	14.0	14	<100
3	313	8F3	50	22.0	16	<100
4	320	6E3	60	16.0	12	<100
5	300	D2	80	28.0	22	<100
6	304	D2	100	30.0	29	<100
7	319	6E3	110	34.0	28	<100
8	311	D3	120	29.0	26	<100
9	301	D2	140	41.0	37	<100
10	317	8F3	150	42.0	37	<100
11	299	D2	160	47.0	44	<100
12	290	D1	200	63.0	54	98
13	312	8F3	240	66.0	66	100
14	318	6E3	270	65.0	58	100
15	291	D1	300	63.0	58	100
16	337	6E-CMFLÞ	220	90.0	69	99
17	329	8F-CMFL	240	87.0	66	100
18	347	6E-CMFL	270	87.0	71	100

Experiment UB-80 Unit A Code GEB (Side 2) - As-Irradiated Condition ASTM L-C Orientation^a

a Unless noted
b CMFL = ASTM C-L Orientation

Temperature (°F)

$Cv = A + B \tanh[(T - To)/C]$

	English	Metric
A =	38.75	52.54
B =	28.99	39.31
C =	86.59	48.10
To =	131.70	55.39

Cv = 30 ft-1b or 41.7 J when T = 104.7 40.4

4

. •

APPENDIX G

Fracture Toughness Test Results for Unirradiated, Irradiated and Postirradiation Annealed Conditions

.

Table of Contents

Overview	G-3					
Unirradiated Condition (1/8T)	G-5					
Irradiated Condition, Experiment UBR-68	G-12					
Irradiated (Experiment UBR-68)-Annealed (at 399°C for 168 h) Condition	G-18					
Irradiated (Experiment UBR-68)-Annealed (at 454°C for 168 h) Condition						
Unirradiated Condition Check-Tests	G-26					
Irradiated Condition, Experiment UBR-78	G-31					
Irradiated Condition, Experiment UBR-79	G-37					

٠

Overview

The fracture toughness results provided in this appendix include those for all of the irradiation experiments and those for the unirradiated condition at the 1/8T location only (this location is consistent with that used for the irradiation experiments). A table summarizing the fracture toughness results is given for each condition. All evaluations of the J integral use the modified form of J, J_M , as opposed to those formulations specified in ASTM Standards E 813 and E 1152. J_M gives the same J values as the ASTM standards when maximum J values (J_{MAX}) from cleavage fracture tests are used, and only small changes in J_{Ic} values for J-R curve tests.

The transition regime data (K_{Jc}) are plotted and curve-fit to an exponential function, as given by

$$K_{L_c} = A + B \exp(T/C)$$

with A, B, and C evaluated from non-linear regression analysis. For the case of the annealed conditions only (with few data points), coefficient "A" was assigned a value of zero to improve the fitting results. The dashed lines given on each plot represent upper and lower bound curves at a 95% confidence level.

Lastly, for each condition, a summary sheet is provided for each test which resulted in a J-R curve. These summary sheets include a graphical plot of the J-R curve data, reference information for the test, and evaluation of the data using power law and linear curvefitting methodologies. For the power law analyses, the data given under "MEA power law" utilize a user-defined range of data points in the power law curve fit; J_{Ic} is defined as the intersection of this power law curve with the 0.15 mm exclusion line. The "E 813-87" results are from an analysis using that ASTM standard, whereby J_{Ic} is defined as the intersection of the power law curve with a line parallel to the blunting line but offset by 0.2 mm. In general, the "E 813-87" values of J_{Ic} are higher than the "MEA power law" values of J_{Ic} .

The linear curve fit analyses are based upon ASTM Standard E 813-81. Specifically, values given under "E 813-81" are from a strict interpretation of that standard, whereas values given under "All Data" are from an analysis using all data points between the 0.15 mm and 1.5 mm exclusion lines. For both linear analyses, J_{IC} is defined as the intersection of the linear curve with the ASTM blunting line (J = 2 $\sigma_f \Delta a$, with σ_f the flow strength).

For all four J-R curve analyses (and for cleavage fracture tests as well), $K_{\rm Lc}$ values are evaluated from:

$$K_{\rm Jc} = \sqrt{J_{\rm Ic} \cdot E/(1 - \nu^2)}$$

where E is the value of Young's modulus at the test temperature and ν is Poisson's ratio (0.3). For cleavage fracture tests, J at fracture (i.e., J_{MAX}) is used in place of J_{Ic} . (K_{βc} values are calculated for cleavage fracture tests, as in Ref. G-1.)

 ${\rm T}_{\rm avg}$ values are average values of tearing modulus, T, as given by the equation

$$T = \frac{E}{\sigma_f^2} \frac{dJ}{da}$$

For the linear analyses, dJ/da is taken to be the slope of the line. For the power law analyses, dJ/da is given from a closed form solution (see Appendix H of Reference G-2), as an average slope between the exclusion lines.

In the attached tables, values of J_{Ic} and K_{Jc} referred to as "ASTM" are from an ASTM E 813-81 analysis using J_M (for J-R curve tests); for cleavage fracture tests, K_{Jc} values are actually K_Q values using the procedures in ASTM standard E 399.

REFERENCES

- G-1. A. L. Hiser, "Correlation of C_v and K_{Ic}/K_{Jc} Transition Temperature Increases Due to Irradiation, "USNRC Report NUREG/CR-4395, Nov. 1985.
- G-2. A. L. Hiser, F. J. Loss and B. H. Menke, "J-R Curve Characterization of Irradiated Low Upper Shelf Welds," USNRC Report NUREG/CR-3506, Apr. 1984.

Unirradiated Condition (1/8T)

.

Specimen	Tempe	est	(a/W) _o a	∆a _m b	∆a _p c	∆a _p -∆a _m	J	ic.	ĸ	Ic	К _{βс}	T _{avg}	σ_{f}	σy
nduber	тетре	lacuic					MEA	ASTM	MEA	ASTM		MEA		•
	(°C)	(°F)		(mm)	(mm)	(mm)	(kJ/m ²)	(kJ/m ²)	(MPa√m)	(MPa√m)	(MPa√m)		(MPa)	(MPa)
GEB2-A6	-140	-220	0.509	d			8.9		46.0	45.5	43.4		773.9	703.2
GEB2-A13	-118	-180	0.508				26.0		78.2	65.3	61.4		738.0	667.4
GEB2-A4	-9 0	-130	0.502				36.1		91.8	60.1	64.8		695.9	625.3
GEB2-A15	-76	-105	0.509				36.2		91.7	52.6	63.8		676.5	605.7
GEB2-A2	-68	-90	0.517				67.8		125.4	59.6	72.9		665.8	595.0
GEB2-A14	-57	-70	0.515				63.7		121.5	50.8	70.9		651.7	580.7
GEB2-A1	-46	-50	0.502			-	121.6		167.5	56.4	79.8		638.3	567.1
GEB2-A3	-34	-30	0.516				165.7		195.3	59.3	83.4		624.4	552.9
GEB2-A5 ^e	-18	0	0.509				137.4	118.1	177.3	164.4			607.0	535.0
GEB2-A18 ^e	65	150	0.525	6.05	5.72	-0.33	129.2	127.4 ^f	170.0	168.8		99	538.6	463.0
GEB2-A17 ^e	177	350	0.522	6.53	6.19	-0.34	81.6	80.4 ^f	133.0	132.0		115	504.5	420.2
GEB2-A16 ^e	288	550	0.514	6.09	6.04	-0.05	117.4	110.5 ^f	156.9	152.2		56	536.4	439.5

Table G-1 Fracture Toughness Results for Code GEB (Side 2), Unirradiated Condition

a Pretest a/W ^b Measured crack growth

^C Crack growth predicted by compliance

^d Cleavage failure precluded determination of this quantity ^e Side grooved by 20% f Valid J_{Ic}, per ASIM E 813-81

G-6

							I	<jc =="" a="" th="" ·<=""><th>+ B exp(T/C)</th></jc>	+ B exp(T/C)
								Metric	English
						A	=	39.61	36.04
						В	=	321.80	292.85
						C	=	46.90	84.41
Upper	Bound	к	=	100	when	Temp	=	-86	-123
	Ave.	к	=	100	when	Temp	=	-78	-109
Lower	Bound	к	×	100	when	Temp	=	-71	-96

TEST SPECIMEN DATA

Test Temperature	=	-18°C	
Percent Side Groove	=	20%	
Specimen Thickness	=	12.7 mm	
Initial Crack Length	=	12.95 mm	Init a/W = .509
Flow Stress	=	607 MPa	
Youngs Modulus	=	208200 MPa	(Estimated Value)
POWER LAW DATA J = C	; ((Delta a)N	
		MEA Power Law	E813-87
Jic	=	137.4 kJ/m ²	157.5 kJ/m ²
Kjc	=	177.3 MPa√m	189.8 MPa√m
Exponent N	=	.6317	.6317
Coefficient C	=	317.4 kJ∕m²	317.4 kJ/m²
LEAST SQUARE LINEAR L	.It	NE (ASTM) J =	M (Delta a) + B
	_	All Data	E813-81
Jic	=	118.1 kJ/m ²	118.1 kJ/m ²
Kjc	=	164.4 MPa√m	164.4 MPa√m
Slope M	=	214544.3 kJ/m	3214544.3 kJ∕m ³
Intercept B	=	97.3 kJ∕m²	97.3 kJ∕m²
Validity (E813-81)	=	VALID	
Validity (E813-87)	=	VALID	
Validity (E1152-87)	=	VALID	
J maximum allowed	=	377.6 kJ/m ²	(Jmax=B*Flow stress/20)
Delta a max. allowed	=	1.25 mm	(Delta a max = 0.1*bo)
Final Delta a	=	1.51 mm	
Poisson's Ratio (v)	=	.3	
Points Left	=	0 Poir	nts Right = 0

Coefficient C	° =	259.2 kJ∕m²	258.8 kJ/m ²
T (average)	=	99	95
LEAST SQUARE LINEAR	LI	NE (ASTM) J = M	(Delta a) + B
	_	All Data	E813-81
Jic	=	119.9 kJ/m ²	127.4 kJ/m ²
Kjc	=	163.7 MPa√m	168.8 MPa√m
Slope M	=	145279.1 kJ∕m ³	139283.5 kJ∕m ³
Intercept B	=	103.7 kJ∕m²	110.9 kJ/m²
T (ASTM)	=	102	98
Validity (E813-81)	=	VALID	
Validity (E813-87)	=	INVALIDc (.33	mm vs .27 mm)
Validity (E1152-87)	=	INVALID3 (.33	mm vs .18 mm)
J maximum allowed	=	324.1 kJ/m ² (Jmax=B*Flow stress/20)
Delta a max. allowed	=	1.2 mm (Delta a max = 0.1*bo)
Final Delta a	=	5.72 mm	
Poisson's Ratio (v)	=	.3	
Points Left	=	4 Point:	s Right = 2

TEST SPECIMEN DATA

Test Temperature	×	177°C	
Percent Side Groove	=	20%	
Specimen Thickness	=	12.7 mm	
Initial Crack Length	=	13.26 mm I	nit a/W = .522
Final Crack Length	=	19.79 mm F	'inal a∕W = .779
Flow Stress	=	504.5 MPa	
Youngs Modulus	=	197100 MPa	(Estimated Value)
POWER LAW DATA J = (C ((Delta a)H	
· · · · · ·	_	MEA Power Law	_E813-87_
Jic	=	81.6 kJ/m ²	108 kJ/m²
Kjc	=	133 MPa√m	152.9 MPa√m
J (@J/T=8.8)	=	393.2 kJ∕m²	
Exponent N	=	.673	.6113
Coefficient C	Ħ	217.4 kJ/m ²	222.1 kJ/m ²
T (average)	=	115	107
I FORT CONODE I THEOD I	T 1	NE (ASTM) I = M (De	(1+a-a) + B
LENSI SWONKE LINENK I			
LENST SWORKE LINERK		All Data	E813-81
Jic	= 11	All Data 80.4 kJ/m ²	<u>E813-81</u> 80.4 kJ/m ²
Jic Kjc	<u></u> 	<u>All Data</u> 80.4 kJ/m ² 132 MPa√m	<u>E813-81</u> 80.4 kJ/m ² 132 MPa/m
Jic Kjc Slope M		<u>All Data</u> 80.4 kJ/m ² 132 MPa√m 147542.3 kJ/m ³	<u>E813-81</u> 80.4 kJ/m ² 132 MPa√m 147542.3 kJ/m ³
Jic Kjc Slope M Intercept B		<u>All Data</u> 80.4 kJ/m ² 132 MPa√m 147542.3 kJ/m ³ 68.6 kJ/m ²	<u>E813-81</u> 80.4 kJ/m ² 132 MPa√m 147542.3 kJ/m ³ 68.6 kJ/m ²
Jic Kjc Slope M Intercept B T (ASTM)		<u>All Data</u> 80.4 kJ/m ² 132 MPa√m 147542.3 kJ/m ³ 68.6 kJ/m ² 114	<u>E813-81</u> 80.4 kJ/m ² 132 MPa√m 147542.3 kJ/m ³ 68.6 kJ/m ² 114
Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81)		<u>All Data</u> 80.4 kJ/m ² 132 MPa√m 147542.3 kJ/m ³ 68.6 kJ/m ² 114 VALID	<u>E813-81</u> 80.4 kJ/m ² 132 MPa√m 147542.3 kJ/m ³ 68.6 kJ/m ² 114
Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87)		<u>All Data</u> 80.4 kJ/m ² 132 MPa√m 147542.3 kJ/m ³ 68.6 kJ/m ² 114 VALID INVALIDc ⟨.34 mm	E813-81 80.4 kJ/m ² 132 MPa√m 147542.3 kJ/m ³ 68.6 kJ/m ² 114 vs .27 mm)
Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87)		All Data 80.4 kJ/m ² 132 MPa√m 147542.3 kJ/m ³ 68.6 kJ/m ² 114 VALID INVALIDc (.34 mm INVALID1, 3 (.34	<u>E813-81</u> 80.4 kJ/m ² 132 MPa√m 147542.3 kJ/m ³ 68.6 kJ/m ² 114 vs .27 mm) mm vs .18 mm)
Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87) J maximum allowed		All Data 80.4 kJ/m ² 132 MPa√m 147542.3 kJ/m ³ 68.6 kJ/m ² 114 VALID INVALIDc (.34 mm INVALID1, 3 (.34 306 kJ/m ² (Jmax=B	E813-81 80.4 kJ/m² 132 MPa√m 147542.3 kJ/m³ 68.6 kJ/m² 114 vs .27 mm) mm vs .18 mm) *Flow stress/20)
Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87) J maximum allowed Delta a max. allowed		All Data 80.4 kJ/m² 132 MPa√m 147542.3 kJ/m³ 68.6 kJ/m² 114 VALID INVALIDc (.34 mm INVALID1, 3 (.34 306 kJ/m² 1.21 mm (Del)	E813-81 80.4 kJ/m² 132 MPa√m 147542.3 kJ/m³ 68.6 kJ/m² 114 vs .27 mm) mm vs .18 mm) *Flow stress/20) ta a max = 0.1*bo)
Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87) J maximum allowed Delta a max. allowed Final Delta a		All Data 80.4 kJ/m² 132 MPa√m 147542.3 kJ/m³ 68.6 kJ/m² 114 VALID INVALIDc (.34 mm INVALID1, 3 (.34 306 kJ/m² 1.21 mm 6.18 mm	E813-81 80.4 kJ/m ² 132 MPa√m 147542.3 kJ/m ³ 68.6 kJ/m ² 114 vs .27 mm) mm vs .18 mm) *Flow stress/20) ta a max = 0.1*bo)
Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87) J maximum allowed Delta a max. allowed Final Delta a Poisson's Ratio (v)		All Data 80.4 kJ/m² 132 MPa√m 147542.3 kJ/m³ 68.6 kJ/m² 114 VALID INVALIDc (.34 mm INVALID1, 3 (.34 306 kJ/m² 1.21 mm .3	E813-81 80.4 kJ/m² 132 MPa√m 147542.3 kJ/m³ 68.6 kJ/m² 114 vs .27 mm) mm vs .18 mm) *Flow stress/20) ta a max = 0.1*bo)

G-11

Irradiated Condition, Experiment UBR-68

Specimen Number	Test		(a/W) _o a	∆a _m b	∆ap ^c	∆a _p -∆a _m	JI	c	К _Ј	c	К _{вс}	^T avg	$\sigma_{\mathbf{f}}$	σy
	(°C)	(°F)		(mm)	(mm)	(mm)	MEA (kJ/m ²)	ASTM (kJ/m ²)	MEA (MPa√m)	ASTM (MPa√m)	(MPa√m)	MEA	(MPa)	(MPa)
GEB2-A20	80	-112	0.531	d			16.1		61.3	57.4	52.6		719.7	656.9
GEB2-A29	-50	-58	0.514				18.1		64.7	65.2	53.2		680.9	617.7
GEB2-A25	-35	-31	0.528				29.4		82.3	69.9	60.1		663.2	599.7
GEB2-A24	-25	-13	0.490				61.4		118.7	71.7	70.8		652.2	588.4
GEB2-A31	-18	0	0.513				75.8		131.7	67.2	73.4		644.7	580.7
GEB2-A30	-5	+23	0.514				107.5		156.6	50.6	77.7		631.6	567.2
GEB2-A19	0	+32	0.554		;		117.1		163.4	51.5	78.6		626.8	562.2
GEB2-A36	40	+104	0.509	5.93	5.44	-0.49	139.1	97.7 ^e	177.0	148.3		133	593.1	526.2
GEB2-A7 ^f	177	+350	0.511	6.35	6.36	+0.01	106.7	107.3 ^e	152.0	152.5		62	542.2	465.9
GEB2-A9 ^f	28 8	+550	0.501	7.40	6.85	-0.55	100.4	98.1 ^e	145.0	143.4		44	574.1	485.2

Table G-2 Fracture Toughness for Code GEB (Side 2), I Condition (Irradiated Experiment UBR-68)

^aPretest a/W ^bMeasured crack growth

^c Crack growth predicted by compliance ^d Cleavage failure precluded determi-

nation of this quantity

e Valid J_{IC}, per ASTM E 813-81 f Side grooved by 20%

G-13

								Metric	English
						A	Ŧ	33.26	30.27
						В	=	136.23	123.98
						С	3	42.71	76.89
Upper	Bound	к	=	100	when	Temp	=	-37	-35
	Ave.	к	*	100	when	Temp	=	-30	-23
Lower	Bound	к	=	100	when	Temp	=	-24	-11

TEST SPECIMEN DATA

Test Temperature	=	288°C	
Percent Side Groove	=	20%	
Specimen Thickness	=	12.7 mm	
Initial Crack Length	=	12.73 mm In	it a/W = .501
Final Crack Length	=	20.13 mm Fi	nal a/W = .792
Flow Stress	=	574.1 MPa	
Youngs Modulus	=	190800 MPa	(Estimated Value)
POWER LAW DATA J = () ((Delta a)N	
	_	MEA Power Law	E813-87
Jic	=	100.4 kJ/m ²	110.7 kJ/m ²
Kjc	=	145 MPa√m	152.3 MPa√m
J (@J/T=8.8)	=	300.5 kJ∕m²	
Exponent N	=	.3973	.38
Coefficient C	=	177 kJ/m²	175.2 kJ/m ²
T (average)	=	44	42
-			
LEAST SQUARE LINEAR L	. 11	IE (ASTM) J = M (Del	<u>ta a) + B</u>
LEAST SQUARE LINEAR L	<u> I </u>	HE (ASTM) J = M (Del All Data	$\frac{\mathbf{ta} \ \mathbf{a} \mathbf{b} + \mathbf{B}}{\mathbf{E} \mathbf{B} 1 3 - \mathbf{B} 1}$
LEAST SQUARE LINEAR L Jic	<u>41.</u> =	HE (ASTM) J = M (Del All Data 98.1 kJ/m ²	$\frac{\text{ta a} + B}{\frac{\text{E813-81}}{98.1 \text{ kJ/m}^2}}$
<u>LEAST SQUARE LINEAR L</u> Jic Kjc	<u>- 1 </u> = =	HE (ASTM) J = M (Del All Data 98.1 kJ∕m ² 143.4 MPa√m	<u>ta a) + B</u> <u>E813-81</u> 98.1 kJ/m ² 143.4 MPa√m
LEAST SQUARE LINEAR L Jic Kjc Slope M	 	<u>HE (ASTM) J = M (Del</u> <u>All Data</u> 98.1 kJ∕m ² 143.4 MPa√m 81452.4 kJ∕m ³	<u>ta a) + B</u> <u>E813-81</u> 98.1 kJ/m ² 143.4 MPa√m 81452.4 kJ/m ³
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B	<u> </u> 	<u>HE (ASTM) J = M (Del</u> <u>All Data</u> 98.1 kJ∕m ² 143.4 MPa√m 81452.4 kJ∕m ³ 91.2 kJ∕m ²	<u>ta a) + B</u> <u>E813-81</u> 98.1 kJ/m ² 143.4 MPa√m 81452.4 kJ/m ³ 91.2 kJ/m ²
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM)	<u>- I </u> = = = =	<u>HE (ASTM) J = M (Del</u> <u>All Data</u> 98.1 kJ∕m ² 143.4 MPa√m 81452.4 kJ∕m ³ 91.2 kJ∕m ² 47	<u>ta a) + B</u> <u>E813-81</u> 98.1 kJ/m ² 143.4 MPa√m 81452.4 kJ/m ³ 91.2 kJ/m ² 47
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81)	<u>- 1 k</u> = - = - = - = -	<u>HE (ASTM) J = M (Del</u> <u>All Data</u> 98.1 kJ∕m ² 143.4 MPa√m 81452.4 kJ∕m ³ 91.2 kJ∕m ² 47 VALID	<u>ta a) + B</u> <u>E813-81</u> 98.1 kJ/m ² 143.4 MPa√m 81452.4 kJ/m ³ 91.2 kJ/m ² 47
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87)	<u>+11</u> = = = = = =	$\frac{1E (ASTM) J = M (Del)}{All Data}$ 98.1 kJ/m ² 143.4 MPa \sqrt{m} 81452.4 kJ/m ³ 91.2 kJ/m ² 47 VALID INVALIDc (.55 mm v:	<u>ta a) + B</u> <u>E813-81</u> 98.1 kJ/m ² 143.4 MPa√m 81452.4 kJ/m ³ 91.2 kJ/m ² 47 5 .25 mm)
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87)	<u> </u> 	$\frac{\text{IE (ASTM)} J = M (Del)}{\text{All Data}}$ 98.1 kJ/m ² 143.4 MPa \sqrt{m} 81452.4 kJ/m ³ 91.2 kJ/m ² 47 VALID INVALIDc (.55 mm v: INVALID3 (.55 mm v:	<u>ta a) + B</u> <u>E813-81</u> 98.1 kJ/m ² 143.4 MPa√m 81452.4 kJ/m ³ 91.2 kJ/m ² 47 5 .25 mm) 5 .19 mm)
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87) J maximum allowed		$\frac{\text{IE (ASTM)} J = M (Del)}{\text{All Data}}$ 98.1 kJ/m ² 143.4 MPa \sqrt{m} 81452.4 kJ/m ³ 91.2 kJ/m ² 47 VALID INVALIDc (.55 mm v: 363.6 kJ/m ² (Jmax=)	ta a) + B E813-81 98.1 kJ/m ² 143.4 MPa√m 81452.4 kJ/m ³ 91.2 kJ/m ² 47 s .25 mm) s .19 mm) B*Flow stress/20)
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E813-87) Validity (E1152-87) J maximum allowed Delta a max. allowed		$\frac{\text{AE (ASTM)} J = M (Del)}{\text{All Data}}$ 98.1 kJ/m ² 143.4 MPa \sqrt{m} 81452.4 kJ/m ³ 91.2 kJ/m ² 47 VALID INVALIDc (.55 mm v: 363.6 kJ/m ² (Jmax=) 1.27 mm (Delta)	$\frac{ta a) + B}{E813-81}$ 98.1 kJ/m ² 143.4 MPa \sqrt{m} 81452.4 kJ/m ³ 91.2 kJ/m ² 47 s .25 mm) s .19 mm) B*Flow stress/20) a a max = 0.1*bo)
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87) J maximum allowed Delta a max. allowed Final Delta a		$\frac{\text{AE (ASTM)} J = M (Del)}{All Data}$ 98.1 kJ/m ² 143.4 MPa \sqrt{m} 81452.4 kJ/m ³ 91.2 kJ/m ² 47 VALID INVALIDc (.55 mm v: 363.6 kJ/m ² (Jmax=) 1.27 mm (Delt: 6.85 mm	$\frac{ta a) + B}{E813-81}$ 98.1 kJ/m ² 143.4 MPa \sqrt{m} 81452.4 kJ/m ³ 91.2 kJ/m ² 47 s .25 mm) s .19 mm) B*Flow stress/20) a a max = 0.1*bo)
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87) J maximum allowed Delta a max. allowed Final Delta a Poisson's Ratio (v)		$\frac{\text{AE (ASTM)} J = M (Del)}{All Data}$ 98.1 kJ/m ² 143.4 MPa \sqrt{m} 81452.4 kJ/m ³ 91.2 kJ/m ² 47 VALID INVALIDc (.55 mm v: 363.6 kJ/m ² (Jmax=) 1.27 mm (Delt; 6.85 mm .3	$\frac{ta a) + B}{E813-81}$ 98.1 kJ/m ² 143.4 MPa \sqrt{m} 81452.4 kJ/m ³ 91.2 kJ/m ² 47 s .25 mm) s .19 mm) B*Flow stress/20) a a max = 0.1*bo)

Irradiated (Experiment UBR-68)

Annealed (at 399°C for 168 h)

Specimen Number	Tempe	est rature	(a/W) ^a	∆a _m b	∆a _p ^c	∆a _p -∆a _m	JI	.c	ĸJ	íc	К _{βс}	T _{avg}	σ _f	σy
	Londo						MEA	ASTM	MEA	ASTM		MEA		
	(°C)	(°F)		(mm)	(mm)	(mm)	(kJ/m ²)	(kJ/m^2)	(MPa√m)	(MPa√m)	(MPa√m)		(MPa)	(MPa)
GEB2-A27	-80	-112	0.520	d			23.8		74.5	56.9	58.0		686.0	623.2
GEB2-A21	- 57	-71	0.512				55.7		113.5	49.9	69.7		655.8	592.7
GEB2-A26	-50	-58	0.512				75.0		131.6	49.2	73.6		647.2	584.0
GEB2-A32	-34	-29	0.522				41.2		97.4	51.6	63.3		628.4	564.9
GEB2-A33	-18	0	0.507				137.4		117.4	49.6	79.8		611.0	547.0
GEB2-A35	0	+32	0.528				129.7		171.9	50.9	77.2		593.1	528.5
GEB2-A10 ^e	177	+350	0.506	f	6.75	f	133.5	129.5g	170.0	167.5	-	89	508.5	432.2

Table G-3 Fracture Toughness Results for Code GEB (Side 2), IA Condition (Irradiated Experiment UBR-68, Annealed at 399°C for 168 h)

^a Pretest a/W ^b Measured crack growth ^c Crack growth predicted

by compliance

^d Cleavage failure precluded deter-mination of this quantity ^e Side grooved by 20% f Cannot be determined

^g Valid J_{Ic}, per ASTM E 813-81

					Kjc = B * exp(T/C)						
								Metric	English		
						В	=	180.10	163.90		
						С	=	106.84	192.32		
Upper	Bound	к	=	100	when	Temp	=	-96	-141		
	Ave.	κ	=	100	when	Temp	=	-63	-81		
Lower	Bound	к	=	100	when	Temp	=	-45	-49		

Irradiated (Experiment UBR-68)

Annealed (at 454°C for 168 h)

Specimen Number	Tempe	est rature	(a/W) ^a	∆a _m b	∆a _p c	∆a _p -∆a _m	JI	ic.	ĸj	ſc	К _{ВС}	T _{avg}	$\sigma_{\mathbf{f}}$	σy
							MEA	ASTM	MEA	ASTM		MEA		
	(°C)	(°F)		(mm)	(mm)	(mm)	(kJ/m ²)	(kJ/m^2)	(MPa√m)	(MPa√m)	(MPa√m)		(MPa)	(MPa)
GEB2-A23	-110	-166	0.528	d			11.3		51.6	49.1	46.4		711.2	644.1
GEB2-A34	-90	-130	0.524				52.7		110.9	52.1	70.3		681.6	614.4
GEB2-A8	-65	-85	0.519				51.6		109.4	47.0	67.7		647.6	580.1
GEB2-A28	-38	-36	0.524				59.4		117.0	45.4	67.4		614.6	546.6
GEB2-All	-24	-11	0.519				111.7		160.1	47.4	75.3		599.0	530.7
GEB2-A12 ^e	177	+3 50	0.541	6.28	6.04	-0.24	123.7	120.2 ^f	163.7	161.3		83	490.2	409.3

Table G-4 Fracture Toughness Results for Code GEB (Side 2), IA Condition (Irradiated Experiment UBR-68, Annealed at 454°C for 168 h)

^a Pretest a/W ^b Measured crack growth

^C Crack growth predicted by compliance

^d Cleavage failure precluded ^e Side grooved by 20% determination of this quantity ^f Valid J_{Ic}, per ASTM E 813-81

Kjc = B + exp(T/C)

								Metric	English
						В	=	186.99	170.17
						C	=	114.93	206.87
Upper	Bound	к	=	100	when	Temp	=-	-102	-152
•••	Ave.	к	=	100	when	Temp	=	-72	-97
Lower	Bound	к	=	100	when	Temp	=	-54	-65

Unirradiated Condition Check-Tests

Table G-5 Fracture Toughness Results for Code GEB (Side 2), Unirradiated Condition (Check-Tests)

Specimen	Temper	est	(a/W) _o a	∆a _m b	∆ap ^c	∆a _p −∆a _m	JI	ic.	к _Ј	ſc	К _{вс}	T _{avg}	σ _f	σy
the set	remper	acure					MEA	ASTM	MEA	ASTM		MEA		
	(°C)	(°F)		(mm)	(mm)	(mm)	(kJ/m ²)	(kJ/m ²)	(MPa√m)	(MPa√m)	(MPa√m)		(MPa)	(MPa)
GEB2-8E4	-107	-160	0.507	d			26.5		78.1	55.1	60.7		720.9	650.4
GEB2-8E5	-73	-100	0.509				63.8		121.8	49.7	72.4		672.4	601.7
GEB2-8C4	-40	-40	0.509				113.9		161.9	50.1	73.0		631.2	559.9
GEB2-8C6	31	88	0.517	6.06	4.76	-1.30	222.1	130.1	223.9	171.4		157	562.2	483.8
GEB2-8C5 ^e	177	350	0.656	4.18	3.78	-0.40	109.4	108.3	153.9	153.2		83	504.5	420.2
GEB2-8E6 ^e	177	350	0.515	6.71	5.66	-1.15	136.0	137.7	171.6	172.7		87	504.5	420.2

^a Pretest a/W ^b Measured crack

^C Crack growth predicted by compliance

 d Cleavage failure precluded determination of this quantity e Side grooved by 20%

TEST SPECIMEN DATA

Test Temperature	×	31°C	
Percent Side Groove	=	0%	
Specimen Thickness	=	12.7 mm	
Initial Crack Length	=	13.13 mm	Init a/W = .517
Final Crack Length	=	19.19 mm	Final a/W = .755
Flow Stress	=	562.2 MPa	
Youngs Modulus	=	205400 MPa	(Estimated Value)
POWER LAW DATA J = C	: (Delta a)N	
		MEA Power Law	E813-87
Jic	=	222.1 kJ/m ²	219.7 kJ/m ²
Kjc	=	223.9 MPa√m	222.7 MPa√m
J (@J/T=8.8)	=	1014.6 kJ/m ²	
Exponent N	=	.6059	.6864
Coefficient C	=	419.4 kJ/m²	415.8 kJ/m ²
T (average)	=	157	178
LEAST SQUARE LINEAR L	IN	IE (ASTM) J = M	(Delta a) + B
	_	All Data	E813-81
Jic	=	<u>All Data</u> 175.2 kJ/m ²	<u></u>
Jic Kjc		<u>All Data</u> 175.2 kJ∕m² 198.9 MPa√m	<u></u>
Jic Kjc Slope M		<u>All Data</u> 175.2 kJ∕m² 198.9 MPa√m 272884.1 kJ∕m ³	<u></u>
Jic Kjc Slope M Intercept B		<u>All Data</u> 175.2 kJ/m² 198.9 MPa√m 272884.1 kJ/m ³ 132.7 kJ/m ²	<u>E813-81</u> 130.1 kJ∕m² 171.4 MPa√m 331812.5 kJ∕m ³ 91.7 kJ∕m²
Jic Kjc Slope M Intercept B T (ASTM)		<u>All Data</u> 175.2 kJ/m ² 198.9 MPa√m 272884.1 kJ/m ³ 132.7 kJ/m ² 177	<u>E813-81</u> 130.1 kJ∕m² 171.4 MPa√m 331812.5 kJ∕m ³ 91.7 kJ∕m² 216
Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81)		<u>All Data</u> 175.2 kJ/m ² 198.9 MPa√m 272884.1 kJ/m ³ 132.7 kJ/m ² 177 INVALIDb, c <1	<u>E813-81</u> 130.1 kJ/m ² 171.4 MPa√m 331812.5 kJ/m ³ 91.7 kJ/m ² 216 1.29 mm vs .9 mm)
Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87)		<u>All Data</u> 175.2 kJ/m ² 198.9 MPa√m 272884.1 kJ/m ³ 132.7 kJ/m ² 177 INVALIDb, c (1 INVALIDc (1.29	<u>E813-81</u> 130.1 kJ/m ² 171.4 MPa√m 331812.5 kJ/m ³ 91.7 kJ/m ² 216 1.29 mm vs .9 mm) 9 mm vs .32 mm)
Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87)		<u>All Data</u> 175.2 kJ/m ² 198.9 MPa√m 272884.1 kJ/m ³ 132.7 kJ/m ² 177 INVALIDb, c (1 INVALIDc (1.29 INVALID3 (1.29)	<u>E813-81</u> 130.1 kJ/m ² 171.4 MPa√m 331812.5 kJ/m ³ 91.7 kJ/m ² 216 1.29 mm vs .9 mm) 9 mm vs .32 mm) 9 mm vs .18 mm)
Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87) J maximum allowed		<u>All Data</u> 175.2 kJ/m ² 198.9 MPa√m 272884.1 kJ/m ³ 132.7 kJ/m ² 177 INVALIDb, c (1 INVALIDc (1.29 INVALID3 (1.29 344.6 kJ/m ² (3)	E813-81 130.1 kJ/m² 171.4 MPa√m 331812.5 kJ/m³ 91.7 kJ/m² 216 216 0 mm vs<.9
Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87) J maximum allowed Delta a max. allowed		<u>All Data</u> 175.2 kJ/m ² 198.9 MPa√m 272884.1 kJ/m ³ 132.7 kJ/m ² 177 INVALIDb, c (1 INVALIDc (1.29) INVALID3 (1.29) 344.6 kJ/m ² (3) 1.23 mm	$\frac{E813-81}{130.1 \text{ kJ/m}^2}$ 171.4 MPa/m 331812.5 kJ/m ³ 91.7 kJ/m ² 216 1.29 mm vs .9 mm) 9 mm vs .32 mm) 9 mm vs .18 mm) 9 mm vs .18 mm) 1 max=B*Flow stress/20) 1 Delta a max = 0.1*bo)
Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87) J maximum allowed Delta a max. allowed Final Delta a		<u>All Data</u> 175.2 kJ/m ² 198.9 MPa√m 272884.1 kJ/m ³ 132.7 kJ/m ² 177 INVALIDb, c (1 INVALIDc (1.29) INVALID3 (1.29) 344.6 kJ/m ² (3) 1.23 mm (4.76 mm)	E813-81 130.1 kJ/m ² 171.4 MPa/m 331812.5 kJ/m ³ 91.7 kJ/m ² 216 1.29 mm vs .9 mm) 9 mm vs .32 mm) 9 mm vs .18 mm) 9 mm vs .18 mm) 1max=B*Flow stress/20) 1Delta a max = 0.1*bo)
Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-81) Validity (E813-87) Validity (E1152-87) J maximum allowed Delta a max. allowed Final Delta a Poisson's Ratio (v)		<u>All Data</u> 175.2 kJ/m ² 198.9 MPa√m 272884.1 kJ/m ³ 132.7 kJ/m ² 177 INVALIDb, c (1) INVALIDc (1.29) INVALID3 (1.29) 344.6 kJ/m ² (3) 1.23 mm (4.76 mm) .3	E813-81 130.1 kJ/m ² 171.4 MPa/m 331812.5 kJ/m ³ 91.7 kJ/m ² 216 1.29 mm vs .9 mm) 9 mm vs .32 mm) 9 mm vs .18 mm) 9 mm vs .18 mm) 1 max=B*Flow stress/20) 1 Delta a max = 0.1*bo)

G-29

ı.

Irradiated Condition, Experiment UBR-78

Fracture Toughness Results for Code GEB (Side 2), Irradiated Condition (Experiment UBR-78) Table G-6

Specimen	Tempe	est rature	(a/W) ^a	۵an ^b	∆ap ^C	∆a _p -∆a _m	JI	ic	ĸ	ſc	К _{ВС}	Tavg	σ _f	σy
	Impo						MEA	ASTM	MEA	ASTM		MEA		
	(°C)	(°F)		(mm)	(mm)	(mm)	(kJ/m ²)	(kJ/m ²)	(MPa√m)	(MPa√m)	(MPa√m)		(MPa)	(MPa)
GEB2-8D3	-110	-166	0.510	d			5.0		46.6	45.3 ^e	44.2		800.7	737.0
GEB2-8B4	-9 0	-130	0.506				21.8		71.3	53.2	59.5		771.1	707.3
GEB2-8A2	-80	-112	0.516				29.2		82.4	55.5	64.3		757.1	693.2
GEB2-8D6	-50	-58	0.504				42.4		98. 0	51.9	68.5		718.3	654.0
GEB2-8B3	-40	-40	0.509				61.9		119.4	52.4	74.5		706.4	641.9
GEB2-8D1	-30	-22	0.495				62.5		119.8	47.8	73.8		695.0	630.3
GEB2-8B2	-25	-13	0.499				101.9		152.9	50.7	81.5		689.6	624.7
GEB2-8D4 ^f	0	+32	0.505				162.3		192.2				664.2	598.5
GEB2-8A5g	177	350	0.546	7.33	6.61	-0.72	121.8	114 . 3 ^h	162.4	157.3		56	579.6	502.2
GEB2-8B5 ^g	288	550	0.537	5.55	5.63	+0.08	86.9	81.1 ^h	135.0	130.4		48	611.5	521.5

^d Cleavage failure precluded deter-

g Side grooved by 20% ^h Valid J_{IC}, per ASIM E 813-81

- ^a Pretest a/W ^b Measured crack growth ^c Crack growth predicted
 - by compliance

e Valid K_{Ic}, per ASTM E 399 f Data exceed the 0.15 mm exclusion before cleavage

•

	Kjc	=	A	+	B	exp(T/C)
--	-----	---	---	---	---	----------

								Metric	English
						A	=	68.25	62.11
						В	=	195.75	178.14
						C	=	27.00	48.60
Upper	Bound	к	=	100	when	Temp	=	-59	-74
• •	Ave.	к	=	100	when	Temp	=	-49	-56
Lower	Bound	к	×	100	when	Temp	=	-41	-42

G-35

TEST SPECIMEN DATA

Test Temperature	=	288°C	
Percent Side Groove	=	20%	
Specimen Thickness	=	12.7 mm	
Initial Crack Length	=	13.65 mm In	it a/W = .537
Final Crack Length	=	19.2 mm Fi	nal a/W = .755
Flow Stress	=	611.5 MPa	
Youngs Modulus	=	190800 MPa	(Estimated Value)
POWER LAW DATA J = C	•	(Belta a) ^N	
		MEA Power Law	E813-87
Jic	=	86.9 kJ/m ²	95.4 kJ/m ²
Kjc	=	135 MPa√m	141.4 MPa√m
J (@J/T=8.8)	=	226.9 kJ/m²	
Exponent N	=	.4849	.5214
Coefficient C	=	179.8 kJ∕m²	185.2 kJ∕m²
T (average)	=	48	53
LEAST SQUARE LINEAR L	I١	IE (ASTM) J = M (Del	taa) + B
	_	All Data	E813-81
Jic	=	74.7 kJ/m ²	81.1 kJ/m ²
Kjc	=	125.2 MPa√m	130.4 MPa√m
Slope M	=	114079 kJ/m ³	107644.7 kJ∕m ³
Intercept B	=	67.7 kJ/m²	74 kJ∕m²
T (ASTM)	=	58	55
Validity (E813-81)	=	VALID	
Validity (E813-87)	æ	VALID	
Validity (E1152-87)	=	INVALID1	
J maximum allowed	-	359 kJ/m ² (Jmax=B*)	Flow stress/20)
Delta a max. allowed	=	1.18 mm (Delta	a a max = 0.1*bo)
Final Delta a	=	5.63 mm	
Poisson's Ratio (v)	=	.3	
Points Left	=	1 Points Rig	ht = 1

Irradiated Condition, Experiment UBR-79

Fracture Toughness Results for Code GEB (Side 2), Irradiated Condition (Experiment UBR-79) Table G-7

Specimen	n Test Temperature		(a/W) ₀ a	∆a _m b	∆a _p c	∆a _p −∆a _m	JI	c	ĸJ	ſc	к _{вс}	T _{avg}	σ _f	σ _y
number	Tembe						MEA	ASTM	MEA	ASTM		MEA		
	(°C)	(°F)		(mm)	(mm)	(mm)	(kJ/m ²)	(kJ/m ²)	(MPa√m)	(MPa√m)	(MPa√m)		(MPa)	(MPa)
GEB2-8F2	-110	-116	0.504	d		••••••••••••••••••••••••••••••••••••••	9.5		47.3	. 46.7 ^e	44.1		747.9	682.9
GEB2-8F5	-40	-40	0.502				15.9		60.5	54.8	50.1		653.6	587.8
GEB2-8F4	-15	+5	0.494				66.8		123.6	57.2	70.0		626.2	559.7
GEB2-8F3	+5	+41	0.513		-		63.6		120.2	54.0	67.7		606.7	539.5
GEB2-8F6	+15	+5 9	0.503				50.8		107.4	54.4	63.9		597.8	530.2
GEB2-8F1	+31	+88	0.508	6.48	5.29	-1.19	142.8	98.9	179.6	149.4		126	584.6	516.3

a Pretest a/W ^b Measured crack growth ^c Crack growth predicted

by compliance

^d Cleavage failure precluded deter-mination of this quantity ^e Valid K_{Ic}, per ASTM E 399

Kjc = A + B exp(T/C)

								Metric	English
						A	=	37.05	33.72
						В	=	75.18	68.42
						C	=	55.73	100.31
Upper	Bound	к	=	100	when	Temp	=	-37	-35
•••	Ave.	к	Ξ	100	when	Temp	=	-10	14
Lower	Bound	к	=	100	when	Temp	=	7	45

TEST SPECIMEN DATA

Test Temperature	=	31°C	
Percent Side Groove	=	0%	
Specimen Thickness	=	12.7 mm	
Initial Crack Length	=	12.9 mm	Init $a/W = .508$
Final Crack Length	=	19.38 mm	Final a/W = .763
Flow Stress	=	584.6 MPa	
Youngs Modulus	=	205500 MPa	(Estimated Value)
POWER LAW DATA J = (<u> </u>	(Delta a) ^N	
		MER Power L	aw <u>E813-87</u>
Jic	=	142.8 kJ/m ²	157.9 kJ/m ²
Kjc	=	179.6 MPa/m	188.8 MPa√m
J (@J/T=8.8)	=	499.1 kJ/m ²	
Exponent N	=	.6418	.6684
Coefficient C	*	327.3 kJ/m ²	328.2 kJ/m²
T (average)	=	126	131
· · · · · · · · · · · · · · · · · · ·			
LEAST SQUARE LINEAR L	. 11	IE (ASTM) J	= M (Delta a) + B
LEAST SQUARE LINEAR L	<u>41.</u>	NE (ASTM) J All Data	<u>= M (Delta a) + B</u> <u></u>
LEAST SQUARE LINEAR L	<u>41.</u> 	<u>HE (ASTM) J All Data</u> 98.9 kJ/m ²	<u>= M (Delta a) + B</u> <u>E813-81</u> 98.9 kJ/m ²
LEAST SQUARE LINEAR L Jic Kjc	<u>41.</u> 	<u>IE (ASTM) J All Data</u> 98.9 kJ/m ² 149.4 MPa/m	<u>= M (Delta a) + B</u> <u>E813-81</u> 98.9 kJ/m ² 149.4 MPa√m
LEAST SQUARE LINEAR L Jic Kjc Slope M	<u> </u> 	<u>IE (ASTM) J</u> <u>All Data</u> 98.9 kJ∕m ² 149.4 MPa√m 246405.1 kJ	<u>= M (Delta a) + B</u> <u>E813-81</u> 98.9 kJ/m ² 149.4 MPa√m /m ³ 246405.1 kJ/m ³
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B	 	<u>IE (ASTM) J All Data</u> 98.9 kJ/m ² 149.4 MPa√m 246405.1 kJ 78.1 kJ/m ²	<u>= M (Delta a) + B</u> <u>E813-81</u> 98.9 kJ/m ² 149.4 MPa√m /m ³ 246405.1 kJ/m ³ 78.1 kJ/m ²
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM)	<u> </u> 	<u>IE (ASTM) J All Data</u> 98.9 kJ/m ² 149.4 MPa√m 246405.1 kJ 78.1 kJ/m ² 148	<u>= M (Delta a) + B</u> <u>E813-81</u> 98.9 kJ/m ² 149.4 MPa√m /m ³ 246405.1 kJ/m ³ 78.1 kJ/m ² 148
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81)	<u>41.</u> 	<u>IE (ASTM) J</u> All Data 98.9 kJ∕m ² 149.4 MPa√m 246405.1 kJ 78.1 kJ∕m ² 148 INVALIDc	$ = M (Delta a) + B \\ E813-81 \\ 98.9 kJ/m^2 \\ 149.4 MPa\sqrt{m} \\ /m^3 246405.1 kJ/m^3 \\ 78.1 kJ/m^2 \\ 148 \\ (1.18 mm vs .97 mm) $
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87)		<u>IE (ASTM) J</u> <u>All Data</u> 98.9 kJ∕m ² 149.4 MPa√m 246405.1 kJ 78.1 kJ∕m ² 148 INVALIDc INVALIDc	$= M (Delta a) + B$ $= \frac{E813-81}{98.9 \text{ kJ/m}^2}$ $149.4 \text{ MPa}\sqrt{m}$ 246405.1 kJ/m^3 78.1 kJ/m^2 148 $(1.18 \text{ mm vs .97 mm})$ $(1.18 \text{ mm vs .29 mm})$
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87)		<u>IE (ASTM) J</u> <u>All Data</u> 98.9 kJ/m ² 149.4 MPa√m 246405.1 kJ 78.1 kJ/m ² 148 INVALIDc INVALIDc INVALID3	$= M (Delta a) + B$ $= \frac{E813-81}{98.9 \text{ kJ/m}^2}$ $149.4 \text{ MPa}\sqrt{m}$ 246405.1 kJ/m^3 78.1 kJ/m^2 148 (1.18 mm vs .97 mm) (1.18 mm vs .29 mm) (1.18 mm vs .18 mm)
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87) J maximum allowed		<u>IE (ASTM) J</u> <u>All Data</u> 98.9 kJ/m ² 149.4 MPa√m 246405.1 kJ 78.1 kJ/m ² 148 INVALIDc INVALIDc INVALID3 365 kJ/m ²	= M (Delta a) + B $= B (Delta a) + B$
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87) J maximum allowed Delta a max. allowed	<u> </u> 	<u>IE (ASTM) J</u> <u>All Data</u> 98.9 kJ/m ² 149.4 MPa√m 246405.1 kJ 78.1 kJ/m ² 148 INVALIDc INVALIDc INVALID3 365 kJ/m ² 1.25 mm	= M (Delta a) + B $= B (Delta a) + B$ $= B (Delta a) + B$ $= B (Delta a) + B (Delta$
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87) J maximum allowed Delta a max. allowed Final Delta a		<u>IE (ASTM) J</u> <u>All Data</u> 98.9 kJ/m ² 149.4 MPa√m 246405.1 kJ 78.1 kJ/m ² 148 INVALIDc INVALIDc INVALID3 365 kJ/m ² 1.25 mm 5.29 mm	= M (Delta a) + B $= B (Delta a) + B$ $= B (Delta a) + B$ $= B (Delta a) + B (Delta$
LEAST SQUARE LINEAR L Jic Kjc Slope M Intercept B T (ASTM) Validity (E813-81) Validity (E813-87) Validity (E1152-87) J maximum allowed Delta a max. allowed Final Delta a Poisson's Ratio (v)	<u> </u> 	<u>All Data</u> <u>All Data</u> <u>98.9 kJ/m²</u> 149.4 MPa√m 246405.1 kJ 78.1 kJ/m ² 148 INVALIDc INVALIDc INVALID3 365 kJ/m ² 1.25 mm 5.29 mm .3	= M (Delta a) + B E813-81 98.9 kJ/m ² 149.4 MPa√m /m ³ 246405.1 kJ/m ³ 78.1 kJ/m ² 148 (1.18 mm vs .97 mm) (1.18 mm vs .18 mm) (Jmax=B*Flow stress/20) (Delta a max = 0.1*bo)

APPENDIX H

Trepan G Fluence Determinations: Procedures and Results

March 4, 1987

Mr. J. R. Hawthorne Materials Engineering Associates 9700-B George Palmer Highway Lanham, MD 20706-1837

ANALYSES OF GUNDREMMINGEN KRB-A VESSEL TREPAN - JWR-04-87

Dear Russ,

The through-thickness slice of the Gundremmingen KRB-A vessel trepan (G,115°) which we received from MPA Universitat Stuttgart has been sampled, the radioactivities of the samples measured and the fast neutron fluences calculated for each sample. Samples were taken by cutting through the slice with an ordinary hacksaw. Samples were taken at the 0.02T, 0.15T, 0.27T, 0.47T, 0.74T and 0.98T depths referenced to the cladding interface with the steel. A diagram is attached showing the size, shape, dimensions and locations of the cuts and pieces. The orientations of all pieces were carefully documented and the pieces are shaped or marked for positive identification. A portion of three depths (0.02T, 0.15T and 0.27T) was dissolved to make standard radioactive sources to verify that results from the solid pieces were correct. All samples and pieces have been retained for future use if necessary.

It was possible to measure the ⁵⁴Mn activity in the material without chemical separation using calibrated Ge detector based gamma-ray spectrometry. A half-life of 312.2 ± 0.1 days was used for ⁵⁴Mn. A cross section of 115 ± 6 millibarns for the ⁵⁴Fe(n,p)⁵⁴Mn reaction was used to determine >1MeV "fast" neutron fluence rates and fluences assuming a ²³⁵U fission neutron energy spectrum. The material was assumed to be 97.07 weight percent iron.

Based on a cobalt content of 0.02 weight percent in the material, it was possible to measure the reaction rate for the ${}^{59}\tilde{Co}(n,\gamma){}^{60}$ Co reaction. The 60 Co activity was measured by gamma-ray spectrometry. A half-life of 5.271±0.001 years was used for 60 Co. A cross section of 37.2 barns was used to determine "thermal" neutron fluence rates and fluences. No corrections were made for epithermal neutron response.

J. R. Hawthorne March 4, 1987 JWR-04-87 Page 2

To obtain the saturated reaction rates at the end of irradiation (January 13, 1977) the irradiation history provided by MPA was used. From the history a total exposure of 2643 effective full power days was calculated.

The results are summarized in the attached table. The estimated uncertainties given in this table are for the 1σ confidence level and include only those components associated with the counting and cross section. No estimates of the errors due to the exposure history or actual cross sections have been included.

If you have any questions or comments please contact me.

Very truly yours,

Kogers

JW Rogers Chemcial Science

clt

۱

Attachments: As Stated

cc: J. O. Zane, EG&G Idaho (w/o Attach.)

GUNDREMMINGEN VESSEL KRB-A SAMPLE RESULTS

Sample ID	Mass(g)	⁵⁴ Mn Bq/g (1-13-77)	>1MeV Neutron Fluence Rate <u>(n/cm²/s)</u>	>1MeV Neutron \$Fluence (n/cm ²)	⁶⁰ Co Bq/g 	Thermal Neutron Fluence Rate <u>(n/cm²/s)</u>	Thermal Neutron FFluence (n/cm ²)
0.02T	1.8162	7.19+0.49E5	1.46 <u>+</u> 0.12E10	3.34 <u>+</u> 0.28E18	6.00 <u>+</u> 0.31E5	1.45 <u>+</u> 0.08E10	3.23 <u>+</u> 0.18E18
0.15T	1.7793	5.84 <u>+</u> 0.36E5	1.18 <u>+</u> 0.10E10	2.71 <u>+</u> 0.22E18	2.89 <u>+</u> 0.15E5	6.99 <u>+</u> 0.36E9	1.60 <u>+</u> 0.08E18
0.27T	2.8309	4.57 <u>+</u> 0.28E5	9.29 <u>+</u> 0.75E9	2.11 <u>+</u> 0.17E18	1.62 <u>+</u> 0.08E5	3.92 <u>+</u> 0.20E9	8.95 <u>+</u> 0.46E17
0.47T	1.1943	3.19 <u>+</u> 0.20E5	6.28 <u>+</u> 0.51E9	1.47 <u>+</u> 0.12E18	8.70 <u>+</u> 0.44E4	2.10 <u>+</u> 0.11E9	4.80<u>+</u>0.24E 17
0.74T	1.7710	1.98 <u>+</u> 0.13E5	4.02 <u>+</u> 0.33E9	9.13 <u>+</u> 0.75E17	5.61 <u>+</u> 0.29E4	1.35 <u>+</u> 0.07E9	3.10 <u>+</u> 0.16E17
0.98T	1.6817	1.28 <u>+</u> 0.08E5	2.59 <u>+</u> 0.21E9	5.89 <u>+</u> 0.48E17	6.13 <u>+</u> 0.31E4	1.48 <u>+</u> 0.08E9	3.39 <u>+</u> 0.17E17

H-4

MAR | 4 1988

March 7, 1988

J. R. Hawthorne Materials Engineering Associates, Inc. 9700-B George Palmer Highway Lanham, MD 20706-1837

FAST NEUTRON DISTRIBUTIONS IN GUNDREMMINGEN VESSEL KRB-A - JWR-10-88

Dear Russ:

Based upon your request of 3-2-88 for the subject information I have complied the attached summary of results. These results are based on the calculated neutron spectra found in the report IKE 6-FB-35 (NUREG/CR-4791) by G. Prillinger and the ⁵⁴Mn reaction rates measured at our laboratory. The ENDF/B-V Dosimetry File cross-section data was used to obtain the spectrum averaged cross-sections. If you have any questions or comments please let me know.

Very truly yours,

vaers

JW Rogers Chemical Science

clt

Attachment: As Stated

cc: G. Prillinger, IKE C. Z. Serpan, NRC-HQ J. O. Zane, EG&G Idaho (w/o Attach)

FAST NEUTRON DISTRIBTUIONS IN GUNDREMMINGEN VESSEL KRB-A

(G, 117⁰)

Location ⁽¹⁾	54 _{Mn Ba/a} (2)	>1 MeV <u>n/cm²/sec</u>	>1 MeV <u>n/cm</u> ²	>0.1 MeV <u>n/cm²/sec</u>	>0.1 MeV <u>n/cm</u> 2	Ratio <u>0.1/1.0</u>
0.02T	7.19 <u>+</u> 0.49E5	1.13 <u>+</u> 0.09E10	2.59 <u>+</u> 0.22E18	2.25 <u>+</u> 0.18E10	5.16 <u>+</u> 0.43E18	1.99
0.15T	5.84 <u>+</u> 0.36E5	1.04 <u></u> 40.09E10	2.38 <u>+</u> 0.19E18	2.42 <u>+</u> 0.20E10	5.56 <u>+</u> 0.45E18	2.33
0.27T	4.57 <u>+</u> 0.28E5	8.95 <u>+</u> 0.72E9	2.05 <u>+</u> 0.17E18	2.32 <u>+</u> 0.19E10	5.33 <u>+</u> 0.43E18	2.59
0.47T	3.19 <u>+</u> 0.20E5	6.94 <u>+</u> 0.56E9	1.59 <u>+</u> 0.13E18	2.19 <u>+</u> 0.18E10	5.02 <u>+</u> 0.41E18	3.15
0.74T	1.98 <u>+</u> 0.13E5	5.14 <u>+</u> 0.42E9	1.18 <u>+</u> 0.10E18	1.97 <u>+</u> 0.16E10	4.51 <u>+</u> 0.37E18	3.83
0.98T	1.28 <u>+</u> 0.08E5	3.47 <u>+</u> 0.28E9	7.95 <u>+</u> 0.65E17	1.53 <u>+</u> 0.12E10	3.50 <u>+</u> 0.29E18	4.40

(1) Relative to steel-cladding interface with a steel thickness of 4.35 inches.

(2) On 1-13-77.

NRC FORM 335 U.S. NUCLEAR REGULA BIBLIOGRAPHIC		1. REPORT NUMBER (Assigned by DDC) NUREG/CR-5201 MEA-2286						
4. TITLE AND SUBTITLE (Add Volume No., if appr EXPERIMENTAL ASSESSMENTS OF G MATERIAL FOR FULENCE RATE FEE	2. (Leave blank)							
		3. RECIPIENT'S ACCESSION NO.						
7. AUTHOR(S)		5. DATE REPORT COMPLETED						
J.R. Hawthorne, A.L. Hiser		MONTH YEAR						
9. PERFORMING ORGANIZATION NAME AND N	Zin Codel	September	1988					
Materials Engineering Associat	MONTH	YEAR						
9700-B Martin Luther King, Jr	October	1988						
Lanham, Maryland 20706-1837			6. (Leave blank)					
			8. (Leave blank)					
12. SPONSORING ORGANIZATION NAME AND Division of Engineering	10. PROJECT/TASK/WORK UNIT NO.							
U. S. Nuclear Regulatory Comm	kesearch		11. FIN NO.					
Wasington, DC 20555		B8900						
13. TYPE OF REPORT								
Technical Report								
15. SUPPLEMENTARY NOTES	······································	14. (Leave viank)						
16. ABSTRACT (200 words or less)			1	****				
The 250-MW boiling water Gundremmingen reactor, KRB-A, in the Federal Republic of Germany (FRG) has been decommissioned. A joint USA/FRG/UK study is underway to evaluate material removed from the vessel for a critical assessment of power reactor vs. test reactor environment effects. The vessel operated at 288 °C; the inner wall fluence estimate at decommissioning was about 1 x 10 ¹⁹ n/cm ² , E > 1 MeV.								
This report describes test reactor irradiation assessments of a forging segment believed to be archive material from the KRB-A vessel fabrication. Charpy-V (C_v), compact tension (CT) and tension test specimens were evaluated in five as-irradiated and two postirradiation annealed conditions. With 288°C irradiations, the elevation in 100 MPa/m temperature was found to match the elevation in 41-J temperature tests within 12°C. The latter elevation was predicted well by Regulatory Guide 1.99. The L-C orientation data for the archive material vs. the vessel trepans suggest a								
fluence-rate effect. The C-L orientation data, however, do not. A test orientation dependence of radiation embrittlement sensitivity, described by the trepan material but not the archive material is responsible and is anomalous.								
17. KEY WORDS AND DOCUMENT ANALYSIS								
Gundremmingen KRB-A ReactorA CRadiation EmbrittlementPrePostirradiation AnnealingNotCompact Tension TestFraFluence Rate EffectsNew20NiMoCr26 SteelTest	336 Steel essure Vessels tch Ductility acture Toughness itron Dosimetry st Reactor							
18 AVAILABILITY STATEMENT		19 SECHELT	Y CLASS (This report)	21 NO OF PAGES				
Unlimited	Unclass	sified	LING. UF FAGES					
UNITUICEO	.	20. SECURITY Unclass	r CLASS (This page) sified	22. PRICE S				

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

SPECIAL FOURTH-CLASS RATE POSTAGE & FEES PAID USNRC PERMIT No. G-67

120555003911 3 1 US NRC-ACRS EXECUTIVE DIRECTOR P-315 WASHINGTON 3 1AN1RF1R5 DC