Water Resource Report 61

GROUNDWATER RESOURCES OF THE BERWICK-BLOOMSBURG-DANVILLE AREA, EAST-CENTRAL PENNSYLVANIA

by John H. Williams and David A. Eckhardt U.S. Geological Survey

Prepared by the United States Geological Survey, Water Resources Division, in cooperation with the Pennsylvania Geological Survey

PENNSYLVANIA GEOLOGICAL SURVEY

FOURTH SERIES

HARRISBURG

First Printing, 1987 Second Printing, 1988 Quotations from this report may be published if credit is given to the Pennsylvania Geological Survey

ISBN: 0-8182-0084-7

ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PURCHASED FROM STATE BOOK STORE, P. O. BOX 1365 HARRISBURG, PENNSYLVANIA 17105

CONTENTS

	Page
Abstract	1
Introduction	2
Location and physiographic setting	2
Groundwater use	3
Methods of investigation	4
Acknowledgements	4
Geologic setting	4
Bedrock	4
Unconsolidated deposits	7
Hydrogeologic description of the aquifers	7
Bedrock aquifers	7
Glacial-outwash aquifer	10
Groundwater flow system	10
Water budget	10
Recharge	11
Movement and discharge	12
Water-level fluctuations	15
Water-yielding characteristics of the aquifers	13
Well construction	18
Well yield	20
Reported yield	20
Specific capacity	20
Effects of pumping rate on specific capacity	21
	21
Effects of pumping duration on specific capacity	22
Recovery	
Hydrogeologic factors affecting well yields	26 26
Water-bearing zones	26
Lithology	27
Topography	28
Fracture traces	28
Estimated well yield	29
Well interference	29
Water-quality characteristics of the aquifers	32
Physical characteristics	32
Temperature	32
Turbidity	34
Chemical characteristics	35
Dissolved solids and specific conductance	38
Hardness	38
Iron and manganese	39
Nitrate	40
Chloride	40
Sulfate	41
Hydrogen sulfide	41
Trace elements	41
Petroleum products	41

	Page
Summary description of the aquifers	42
Glacial outwash	42
Mauch Chunk Formation	42
Pocono Formation	42
Catskill Formation	42
Trimmers Rock Formation	43
Harrell and Mahantango Formations	43
Marcellus Formation	43
Onondaga and Old Port Formations	43
Keyser and Tonoloway Formations	44
Wills Creek Formation	44
Bloomsburg Formation	44
Mifflintown, Keefer, and Rose Hill Formations	44
Tuscarora Formation	45
Summary and conclusions	45
References	46
Factors for converting inch-pound units to International System units (SI)	47

ILLUSTRATIONS

FIGURES

Figure	1.	Maps showing the location, physiographic features, and population centers	2
		of the study area	2
		Map showing the structural setting of the study area	7
	3.	Photograph showing planar fractures or joints developed in the Mahan-	~
		tango Formation	8
		Photograph showing solution openings in the Keyser Formation	8
		Logs of well-bore flow in selected wells	13
	6.	Generalized block diagram showing the effects of deep iron ore mines on	
		the groundwater resources in areas along the flanks of the ridge between	
		Danville and Bloomsburg	16
	7.	Photograph showing sand and gravel dredge pools along Fishing Creek west	
		of Light Street	16
	8.	Histogram showing precipitation at Millville in water year 1981 and	
		hydrographs of corresponding water levels in wells Co-305 (glacial out-	
		wash) at Mifflinville and Co-307 (Tonoloway Formation) at Berwick	17
	9.	Hydrographs showing a comparison of water-level fluctuations in wells	
		Co-310 and Co-190 at Bloomsburg for the 1981 calendar year	18
	10.	Schematic drawing of a pumping well and the equation for determining	
		specific capacity	21
	11.	Graphs of variable-rate pumping tests of wells Nu-158 and Nu-187	23
	12.	Logs of well-bore flow in selected wells under pumping conditions	24
	13.	Histograms showing the distribution of water-bearing zones with depth	27
	14.	Hydrograph of water-level fluctuations observed in well Co-448 in response	
		to nearby industrial pumping, October 30 to November 17, 1981	32
	15.	Generalized diagram showing the relationship among well spacing,	
		bedding-related permeability, and groundwater flow in response to pumping	33
	16.	Generalized block diagram showing the hydrologic relationship between	
		wells completed in the Mifflintown, Keefer, and Rose Hill Formations along	
		the flanks of Montour Ridge and its eastern extension between Danville	
		and Bloomsburg	34

Page

Figure	17.	Hydrographs showing the effects of industrial pumping on water levels observed in test hole Co-154 and well Co-310 at Bloomsburg, August 19	
		to September 9, 1981	35
	18.	Graph showing temperature logs of selected wells, a composite log based on median values for 26 wells, and the estimated geothermal gradient .	35
	19.	Graph showing cumulative percentages of hardness for the Keyser and Tonoloway Formations, Harrell and Mahantango Formations, and Cats-	
		kill Formation	39

PLATE

(in pocket)

Plate 1. Geologic map of the Berwick-Bloomsburg-Danville area, east-central Pennsylvania, showing the locations of wells and springs.

TABLES

			Page
Table	1.	Major groundwater users in the Berwick-Bloomsburg-Danville area	3
	2.	Index to geophysical logs and well-bore-flow tests for selected wells	5
	3.	Description of bedrock geologic units	6
	4.	Hydrogeologic logs of selected wells	8
	5.	Water budgets for selected drainage basins	11
	6.	Groundwater contribution to runoff for selected drainage basins	11
	7.	Summary of water-level changes in selected wells measured in December	
		1980 and April 1981	17
	8.	Summary of well and casing depths of domestic wells	19
	9.	Summary of reported yields of domestic wells	20
	10.	Summary of reported yields of nondomestic wells	20
	11.	Summary of specific capacities of pump-tested wells	22
	12.	Reduction of specific capacity in selected wells with increased pumping rate	25
	13.	Reduction of specific capacity in selected wells with increased pumping	
		duration	26
	14.	Median specific capacities of wells by topographic setting	28
	15.	Comparison of the specific capacities of wells located on fracture traces	
		with the specific capacities of all wells in the same hydrogeologic settings	28
		Estimated 24-hour well yields of the aquifers	29
	17.	Results of multiple-well pumping tests	30
		Median concentrations of selected dissolved constituents in the aquifers	36
	19.	Summary of field measurements of specific conductance and total hard-	
		ness in the aquifers	37
		Occurrence of hydrogen sulfide in the aquifers	41
		Chemical analyses of water from selected wells	48
		Trace-element and organic-indicator analyses of water from selected wells	52
		Record of selected wells and test holes	53
	24.	Record of selected springs	76

GROUNDWATER RESOURCES OF THE BERWICK-BLOOMSBURG-DANVILLE AREA, EAST-CENTRAL PENNSYLVANIA

by

John H. Williams and David A. Eckhardt

ABSTRACT

The area of investigation is in the valley of the North Branch Susquehanna River and surrounding uplands, and occupies parts of Columbia, Luzerne, Montour, and Northumberland Counties in east-central Pennsylvania. Two major towns in the area, Bloomsburg and Danville, are supplied by surface water, but Berwick and other communities depend on groundwater, as do many industrial and commercial facilities and almost all rural homeowners.

The bedrock underlying the area is of Silurian, Devonian, and Mississippian age and includes gradational sequences of noncarbonate and carbonate lithologies. The bedrock units are folded in broad anticlinoria and synclinoria typical of the Appalachian Mountain section of the Valley and Ridge province. In the bedrock aquifers, groundwater flows through secondary-permeability features such as fractures, bedding-plane separations, and solution openings. The bedrock aquifers have a strong directional permeability along bedding strike. The development of secondary permeability is largely controlled by the amount of calcareous material in an aquifer. and the carbonate rock of the Keyser and Tonoloway Formations is, accordingly, the most productive bedrock aguifer.

Unconsolidated deposits of sand, gravel, silt, and clay, primarily of glacial origin, overlie much of the bedrock. The most extensive stratified deposit is the sand and gravel outwash of late Wisconsinan age that occupies the Susquehanna River and Fishing Creek valleys. Because of its high primary permeability, the glacial-outwash aquifer has a great capacity to receive, store, and transmit water.

Well yields for the aquifers were estimated from data on specific capacity, depth to waterbearing zones, and water levels. The median estimated well yields for the aquifers range from 5 gallons per minute for the Trimmers Rock Formation to 190 gallons per minute for glacial outwash. The highest yields from wells in the study area typically can be developed in the glacial-outwash aguifer and in bedrock aquifers containing significant amounts of carbonate rock. About one of every four wells completed in the outwash sand and gravel is capable of yielding 410 gallons per minute or more. About one of every four wells completed in the Keyser and Tonoloway Formations, the Onondaga and Old Port Formations, and the Wills Creek Formation is capable of yielding 620, 310, and 130 gallons per minute or more, respectively.

The results of 139 chemical analyses show that groundwater chiefly is the calcium bicarbonate type. Most groundwater tapped by wells is usable for domestic supply and human consumption, although hardness, iron, manganese, and hydrogen sulfide gas that exceed maximum recommended concentrations may cause problems locally. Water from aquifers containing carbonate rock generally is hard to very hard. Iron concentrations that exceed 300 µg/L were observed in 46 percent of the wells sampled and manganese concentrations that exceed 50 μ g/L were observed in 40 percent of the wells. Hydrogen sulfide gas was detected in 9 percent of the wells sampled. Problems with concentrations that exceed recommended limits for these constituents are more common in groundwater from the Devonian rocks that contain black shale, although excess manganese also is a common problem in the glacial-outwash aguifer.

INTRODUCTION

This report concerns the hydrogeologic system of the Berwick-Bloomsburg-Danville area in eastcentral Pennsylvania. The aquifers that underlie the area, the groundwater flow system, and the wateryielding capabilities of the aquifers are described, the factors that affect well yields are discussed, and the quality of groundwater in the area is characterized. The study was conducted from September 1979 to September 1982 as part of the continuing appraisal of the groundwater resources of Pennsylvania by the U.S. Geological Survey and the Pennsylvania Geological Survey.

Groundwater is a main source of supply for domestic, municipal, industrial, and commercial use in the Berwick-Bloomsburg-Danville area. As the economic and population growth continues, the importance of developing and managing the groundwater resources becomes crucial. The information in this report will assist municipal and waterauthority officials, planning boards, consulting geologists and engineers, well drillers, commercial and industrial concerns, regulatory agencies, and rural homeowners in the development and management of groundwater.

LOCATION AND PHYSIOGRAPHIC SETTING

The study area is in the valley of the Susquehanna River and surrounding uplands in east-central Pennsylvania (Figure 1). The 370-square-mile area includes the Berwick, Bloomsburg, Mifflinville, Millville, and Washingtonville $7\frac{1}{2}$ -minute quadrangles, and the northern halves of the Catawissa, Danville, and Riverside $7\frac{1}{2}$ -minute quadrangles. The area occupies central Columbia County, almost all of Montour County, and parts of west-central Luzerne and northern Northumberland Counties.

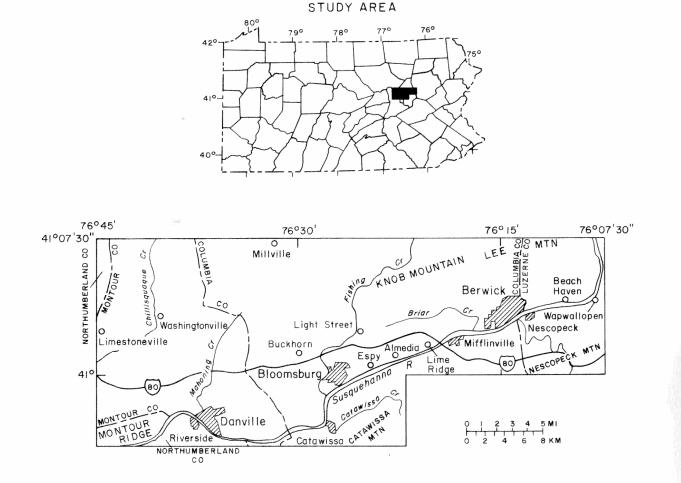


Figure 1. Location, physiographic features, and population centers of the study area.

The area lies within the Appalachian Mountain section of the Valley and Ridge physiographic province. The topography ranges from relatively flat terraces and floodplains along the Susquehanna River and its major tributaries to steeply wooded slopes of mountain ridges. Altitudes range from 440 feet above sea level at the Susquehanna River at Danville to 1,760 feet above sea level on Knob Mountain, east of Orangeville. Major tributaries to the Susquehanna River include parts of Fishing Creek, Mahoning Creek, Catawissa Creek, Briar Creek, and Nescopeck Creek. The northwestern part of the study area is drained by Chillisquaque Creek, which flows to the West Branch Susquehanna River.

The major centers of population are found along the Susquehanna River and include Berwick, Nescopeck, Mifflinville, Bloomsburg, Catawissa, Danville, and Riverside. Interstate Route 80 transects the study area in an east-west direction.

GROUNDWATER USE

Table 1 shows an inventory of the major groundwater users in the Berwick-Bloomsburg-Danville area in 1980. The boroughs of Berwick, Bloomsburg, Catawissa, Danville, Mifflinville, Millville, and Orangeville have public water supplies and distribution systems. Bloomsburg and Danville are supplied by surface water. The Bloomsburg Water Authority withdraws about 2.5 Mgal/d (million gallons per day) from Fishing Creek, and the Danville Water Authority withdraws about 1.7 Mgal/d from the Susquehanna River. Merck Chemical Company withdraws about 0.5 Mgal/d from the Susquehanna River at Riverside.

In 1980, about 4.7 Mgal/d of water was obtained from wells and springs by the major groundwater users. Additional groundwater is pumped from wells and springs to meet rural domestic, agri-

County	Name	Estimated groundwater withdrawal in 1980 (gal/d)	Aquifer	Source and remarks
Columbia	Bloomsburg Mills, Inc.	600,000	Old Port and Keyser Fms.	3 drilled wells pumped for 4 months for air conditioning
	Champion Valley Farms	500,000	Onondaga and Old Port Fms.	3 drilled wells pumped for cooling and cleaning
	Catawissa Water Authority Consolidated Cigar Co.	155,000	Catskill Fm. Wills Creek Fm.	6 drilled wells and 3 springs 1 drilled well, pumped at 200 gal/min for air condi- tioning
	Keystone Water Co. (Berwick)	2,900,000	Old Port and Keyser Fms.	3 drilled wells
	Mifflin Township Water Authority	55,000	Glacial outwash	2 drilled wells
	Millville Water Authority	85,800	Alluvium and till; Mahantango Fm.	1 drilled well and 2 dug wells
	Orangeville Water Authority	13,800	Catskill Fm.	1 drilled well and 6 springs
	Scenic Knolls Water Co.	10,000	Wills Creek and Bloomsburg Fms.	3 drilled wells
	Schultz Electroplating, Inc.	6,000	Bloomsburg Fm.	1 drilled well
	Wonderview Water Co.	28,000	Trimmers Rock and Mahantango Fms.	3 drilled wells
Luzerne	Citizens Water Co.	8,000	Trimmers Rock Fm.	1 drilled well and 3 springs
Montour	Geisinger Medical Center	148,000	Mifflintown and Keefer Fms.	3 drilled wells (70 percent) and 1 spring
	Mahoning Township Water Authority	186,000	Keyser Fm. and upper member of Rose Hill Fm.	2 drilled wells
	TRW, Inc.	30,000	Keyser and Tonoloway Fms.	2 drilled wells
Northumber- land	Hillside Estates	6,000	Mahantango Fm.	2 drilled wells

Table 1. Major Groundwater Users in the Berwick-Bloomsburg-Danville Area

cultural, and small commercial needs in areas outside those served by public supplies. Groundwater accounts for about half of the total water used in the study area.

METHODS OF INVESTIGATION

Nearly 800 wells and test holes were inventoried for measurements of well and casing depth, depth to water and water-bearing zones, and well yield and drawdown (Table 23). The inventory included almost all public-supply wells and most industrial and commercial wells. Selected springs also were inventoried (Table 24). Nine observation wells were drilled by the U.S. Geological Survey. Five of these 6-inch-diameter wells were completed in bedrock, and four wells having 6-inch-diameter slotted casing were completed in glacial outwash. Eleven auger holes were drilled in glacial outwash; four of the auger holes were cased with 2-inch-diameter slotted pipe. Information was collected on about 130 pumping tests; U.S. Geological Survey personnel conducted or assisted in most of the tests. Twentyeight of the pumping tests were multiple-well tests involving a pumping well and one or more observation wells. Borehole geophysical logs were run on 43 wells. Well-bore-flow tests were made in 25 wells (Table 2) by the brine-tracing method outlined by Patten and Bennett (1962). Continuous water-level records were obtained for varying periods of time at 16 wells. Synoptic water-level measurements were made on 79 wells along the Susquehanna River between Bloomsburg and Berwick in December 1980 and April 1981. Field determinations of specific conductance and hardness were obtained from 299 wells (Table 23), and water samples for laboratory analyses were collected from 139 wells (Tables 21 and 22).

The bedrock geology was mapped by Inners (1978, 1981), Way (in press), Williams (1980), Berg and others (1980), and Nickelsen (1978, written communication). The geologic base map (Plate 1) was compiled by the U.S. Geological Survey and the Pennsylvania Geological Survey.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the cooperation and assistance of the landowners, companies, municipalities, and state agencies who provided information on wells, granted permission to drill test holes, and allowed access to wells. Many well drillers provided information and assistance. Special thanks is extended to Gene Wieand of Wieand Brothers Drilling for his interest and time.

The Susquehanna River Basin Commission provided additional funds for detailed work along the Susquehanna River between Berwick and Bloomsburg. The authors thank Gregory Senko of the Commission for his able assistance in field work and data storage and retrieval. The authors also thank Timothy Gregorowicz and David Hassrick of Bloomsburg State College, Department of Geology, for field work on the well inventory.

GEOLOGIC SETTING

BEDROCK

The bedrock or consolidated rock that underlies the Berwick-Bloomsburg-Danville area is of Silurian, Devonian, and Mississippian age and includes sedimentary noncarbonate and carbonate lithologies. The bedrock units are briefly described in Table 3, and the areal distribution of the formations is shown on Plate 1.

Large-scale folding and subsequent erosion largely account for the outcrop patterns of the bedrock units shown on Plate 1. The bedrock has been folded into a series of anticlinoria and synclinoria (Figure 2). The major structural trend is N70-75 °E. Bedding dips typically are 35 to 45 degrees along the limbs of the folds. The Light Street fault, a major thrust fault, transects the study area. The fault generally follows the structural trend in the stratigraphic sequence of the Wills Creek Formation through the Mahantango Formation.

The bedrock has been systematically fractured by two major sets of joints. One set of planar fractures is oriented parallel to the structural grain (strike joints) and the other set is at right angles to the structural grain (dip joints). The joints range from continuous fractures that transect a large stratigraphic sequence to discontinuous breaks that are restricted to single beds. Most strike and dip joints are oriented normal to bedding planes. Strike joints fan across the major folds. The joints are moderately to steeply inclined and dip north and south in south- and north-dipping beds, respectively. Dip joints are approximately vertical regardless of structural setting (Inners, 1981). Oblique joints, irregular fractures, and cleavage-plane partings are also present. All fractures in the bedrock tend to close with depth because of increasing overburden pressures.

Well no.	Co-45	Co60	Co-61	Co-62	Co-70	Co-85	Co-154	Co-190	Co-205	Co-206	Co-212
Depth of											
logs	270	226	350	120	473	444	40	400	244	60	120
					TYPE OI	• 100					
Tempera- ture	Х	х	Х		х	X	х	Х	Х	х	х
Fluid con- ductance	Х	х	Х	Х	Х	х		Х	Х		х
Caliper	Х	Х	х	х	х	x		х	Х	Х	Х
Electric Gamma	X		x	x	X X	X X	X X	X X	X X	х	
Well-bore flow	х	х	х	х	.X	А	А	А	Δ.	~	
Nonpumping						х			х		х
Pumping	х		х								х
Well no.	Co-245	Co-304	Co-305	Co-306	Co-307	Co-308	Co-310	Co-448	Co-452	Co-459	Co-460
Depth of											
logs	440	200	68	124	300	52	220	145	500	136	120
Tempera- ture	Х	х	х	x	х	x	Х	x	X		X
Fluid con- ductance	х	х		х	х			х	х		х
Caliper	х	х		х	х		х	х	x	Х	Х
Electric	Х	Х		х	х		Х	х	X	х	Х
Gamma	Х	Х	х	Х	Х	X			Х	х	
<i>Well-bore flow</i> Nonpumping Pumping	х	x		х	х			x	Х		X X
Well no.	Co-461	Co-505	Co-562	Lu-438	Lu-452	Lu-453	Lu-454	Lu-471	Mt-29	Mt-30	Mt-31
Depth of											
logs	195	568	152	230	102	300	200	471	300	400	505
Tempera-	X	X	*****	x	X	х	X	х	X	X	x
ture Fluid con- ductance	х	х		х		х	х	х	х	х	
Caliper	x	х	х	х	х	х	х	х	х	x	х
Electric	Х	х	х	х		х	Х	х	х	Х	х
Gamma	х	х		х	х	х	Х	х	х		Х
<i>Well-bore flow</i> Nonpumping Pumping		X		X X		Х	Х	x	х		
Well no.	Mt-108	Mt-154	Mt-175	Mt-181	Mt-186	Mt-255	Nu-157	Nu-158	Nu-187	Nu-188	
Depth of											
logs	265	156	285	250	276	223	300	300	96	72	
Tempera-	x	х	X	х	x	x	X	Х	x		
ture Fluid con- ductance	Х	X	x	x	х	х	х	х	х	х	
Caliper	Х	х	х	X	х	х	х	X	х	х	
Electric		х		x	X		Х	Х	Х	Х	
Gamma		Х		х	Х		х	Х	Х	Х	
Well-bore flow Nonpumping					x	x		х			
Pumping	х		X					х	х	x	

Table 2. Index to Geophysical Logs and Well-Bore-Flow Tests for Selected Wells¹

¹Logs and data on well-bore-flow tests are on file with the U.S. Geological Survey, Harrisburg, Pennsylvania.

System	Geologic unit	Thickness (feet)	Lithologic description
Mississippian	Mauch Chunk Formation	² 2,500	Interbedded grayish-red shale, siltstone, and sandstone, calcareous in part.
	Pocono Formation	600-650	White to light-gray quartzitic sandstone and pebble con- glomerate; some interbeds of dark-gray shale.
Devonian	Catskill Formation Duncannon Member	1,100	Repetitive fining-upward cycles of greenish-gray and grayish- red sandstone, grayish-red siltstone, and grayish-red shale that are mostly 30 to 65 feet thick.
	Sherman Creek Member Irish Valley Member	2,500 1,800-2,000	Interbedded grayish-red shale, siltstone, and sandstone. Interbedded shale, siltstone, and sandstone; alternating gray to greenish gray and grayish red in the upper part; mostly gray to greenish gray in the lower part.
	Trimmers Rock Formation	2,500	Predominantly interbedded gray to dark-gray siltstone and shale; considerable amount of sandstone in the upper part and shale in the lower.
	Harrell Formation Mahantango Formation	100	Dark-gray shale, interbedded with siltstone in the upper part
	Tully Member	50-60	Interbedded argillaceous limestone and calcareous shale; dark gray, fossiliferous.
	Lower member	1,100-1,200	Greenish to dark-gray shale, locally calcareous; some calcareous and fossiliferous siltstone beds in the upper part.
	Marcellus Formation Onondaga Formation	300 50-175	Dark-gray fissile shale, pyritic and carbonaceous. Interbedded gray argillaceous limestone and calcareous shale in the upper part; gray to dark-gray noncalcareous to very calcareous shale in the lower part.
	Old Port Formation	150	Variable lithologic sequence, consisting of dark-gray, slightly calcareous chert, locally sandy and fossiliferous, in the upper part; dark-gray calcareous shale in the middle part; dark-gray fine- to coarse-grained, cherty, fossiliferous limestone in the
Devonian and Silurian	Keyser Formation	125	lower part. Gray to bluish-gray limestone, fine- to coarse-grained, thin to thick-bedded; laminated, argillaceous and dolomitic in the upper part; coarse grained and highly fossiliferous in the middle part; nodular, argillaceous, and fossiliferous in the lower part calcareous shale interbeds increase in frequency in the upper part.
Silurian	Tonoloway Formation	200	Laminated, gray to dark-gray, fine-grained limestone; con- siderable dolomitic limestone and dolostone in the lower part calcareous shale interbeds increase in frequency and thickness toward base.
	Wills Creek Formation	600-700	Interbedded calcareous shale, argillaceous dolostone and limestone, and calcareous siltstone; gray, yellowish gray, and greenish gray in the upper part; variegated greenish gray yellowish gray, and grayish red purple in the lower part.
	Bloomsburg Formation	500	Grayish-red shale containing interbeds of grayish-red siltstone calcareous in part; 30-foot-thick interval of grayish-red sand stone in the upper part.
	Mifflintown Formation	200	Dark-gray limestone and calcareous shale in the upper part dark-gray calcareous shale containing interbeds of coarse grained limestone in the lower part.
	Keefer Formation	40	Light-gray quartzitic sandstone and siltstone containing in terbeds of greenish-gray shale.
	Rose Hill Formation Upper member	120	Interbedded shale, limestone, and sandstone; mostly gray to
	Middle member	60	greenish gray. Reddish-purple hematitic sandstone containing interbeds o
	Lower member	720	greenish-gray to reddish-purple shale in the upper part. Greenish-gray shale containing interbeds of gray calcareou
	Tuscarora Formation	350	sandstone and reddish-brown hematitic sandstone. Interbedded light-gray quartzitic sandstone and grayish-green shale.

Table 3. Description of Bedrock Geologic Units¹

¹Adapted from Inners (1981). ²Only the lower 1,000 feet is exposed in the study area.

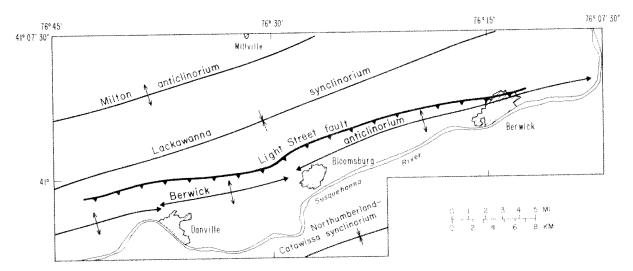


Figure 2. Structural setting of the study area (from Inners, 1978; Inners and Way, 1979; Williams, 1980; Inners, 1981; and Way, in press).

UNCONSOLIDATED DEPOSITS

The unconsolidated deposits of sand, gravel, silt, and clay that overlie the bedrock are largely the result of glaciation. There is evidence that several glacial advances occurred during Pleistocene time. Early advances in pre-Wisconsinan time covered the study area. Early Wisconsinan glaciation covered approximately 20 percent of the area (Inners, 1978, 1981). The terminal moraine in the Susquehanna River valley near Berwick marks the extent of the latest glacial advance in late Wisconsinan time.

The glacial deposits can be broadly subdivided into two groups—nonstratified and stratified deposits. The nonstratified deposits are till, which is a generally unsorted mixture of clay, silt, sand, gravel, and boulders, largely of local origin, that was directly deposited by a glacier. Pre-Wisconsinan and Wisconsinan tills are found in the study area. Till masks the bedrock in much of the area and has a thickness of generally less than 20 feet, although deposits 50 to 100 feet thick are present locally along the southern base of Knob and Lee Mountains.

Stratified deposits include poorly to well-sorted sand, gravel, silt, and clay that were transported and deposited by glacial meltwater as ice-contact or outwash deposits. Pre-Wisconsinan stratified deposits, locally more than 50 feet thick, are found in the Light Street-Buckhorn area north of Bloomsburg. The most extensive stratified deposits are late Wisconsinan sand and gravel outwash deposits found in the Susquehanna River and Fishing Creek valleys. In general, the thickness and coarseness of the outwash decrease downstream from the late Wisconsinan glacial border. Along the Susquehanna River upstream from Wapwallopen, silt and clay are locally interbedded with the outwash sand and gravel. Many of the recent alluvial and colluvial deposits in the area are reworked glacial sediments.

HYDROGEOLOGIC DESCRIPTION OF THE AQUIFERS

BEDROCK AQUIFERS

Groundwater in the bedrock formations is present in secondary openings along fractures and bedding-plane separations (Figure 3). Primary permeability of bedrock in the area is negligible. Solution of calcareous material, especially along fractures and bedding planes, greatly increases the secondary permeability of carbonate rock (Figure 4). The ability of the bedrock aquifers to store and transmit water, as well as to yield water to wells, depends on the size, interconnection, and spacing of secondary openings. Fractures and bedding-plane partings cause hairline separations that allow movement of groundwater. The separations in competent lithologies, such as sandstone, dolostone, and limestone, tend to remain more open than the separations in the less competent shales.

The size of secondary openings in carbonate lithologies may be greatly enlarged by removal of calcareous material. Openings several feet wide have been penetrated in wells drilled into the Tonoloway,

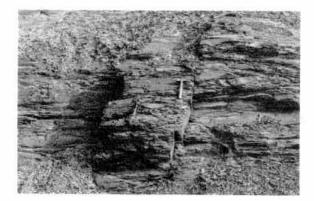


Figure 3. Planar fractures or joints developed in the Mahantango Formation. Groundwater occurs in secondary openings along fractures and bedding-plane separations in the bedrock aquifers.

Keyser, and Old Port Formations. Solution of calcareous material also appears to be important in the development of permeability in the dominantly noncarbonate rocks. As indicated by hydrogeologic logs of wells Co-306 and Nu-158 (Table 4), many water-bearing zones in the noncarbonate-rock aquifers appear to be associated with vein calcite and calcareous cement.

Figure 4. Solution openings in the Keyser Formation. Development of solution openings, primarily along fractures and bedding-plane separations, greatly increases the secondary permeability of carbonate rock.

In a stratigraphic sequence, the density of fractures differs from bed to bed, and some fractures may be restricted to single beds. In addition, the susceptibility of the rock to solution differs from bed to bed depending on the amount of calcareous material present. These factors, as well as the presence of bedding-plane separations, create

Table 4. Hydrogeologic Logs of Selected Wells

Depth (feet below land surface)	Hydrogeologic description
Co-305	
	Glacial outwash
0-39	Sand, grayish-brown, medium to coarse, containing quartz and rock fragments, and gravel, fine to coarse pebble lithologies in gravel include sandstone, siltstone, shale, quartz-pebble conglomerate, quartzite, chert and metamorphic rock.
39-55	Sand, grayish-brown, fine to coarse, containing quartz and rock fragments including particulate anthracite coal, and some fine gravel; pebble lithologies in gravel include those listed above plus anthracite coal
55-65	Sand, grayish-brown, medium, containing quartz and rock fragments, and gravel, fine to coarse; grave content increases toward base; casing slotted from 55 to 65 feet. Marcellus Formation
64-68	Shale, dark-gray, silty, noncalcareous.
Co-306	
	Glacial outwash
0-5	Sand, light-brown, silty, fine, and gravel, medium.
0-39	Sand, light-brown, fine, and gravel, medium to coarse. Water-bearing zone at 35 feet (3 gal/min, cased off) <i>Marcellus Formation</i>
39-55	Shale, gray, calcareous.
55-60	Shale, gray, calcareous; some vein calcite; water-bearing zone at 60 feet (3 gal/min).
60-70	Shale, gray, slightly calcareous; fossil fragment.
70-75	Shale, gray, calcareous; some vein calcite; water-bearing zone at 74 feet (20 gal/min).
75-80	Shale, gray, slightly calcareous.
80-85	Shale, gray, calcareous; calcite veins up to 0.1 inch wide.
85-125	Shale, gray, slightly calcareous; some vein calcite.

(Yields in parentheses are the discharges produced by the air-rotary drillstem at the given depth)

Table 4. (Continued)

Depth (feet below land surface) Hydrogeologic description
Co-307	
	Glacial outwash
0-45	Sand, light-brown, medium, and gravel, fine to coarse; sandstone boulders at 27 and 32 feet; water-bearing
	zone at 37 feet (1 gal/min, cased off).
	Tonoloway Formation
45-55	Limestone, grav, fine-grained.
55-65	Limestone, light-gray, fine-grained; some vein calcite; water-bearing zone at 62 feet (3 gal/min).
65-70	Limestone, dark-gray, fine-grained; cuttings smelled of hydrogen sulfide during drilling.
70-80	Limestone, dark-gray, fine- and medium-grained; some vein calcite.
80-95	Limestone, gray and dark-gray, fine- and medium-grained; abundant vein calcite.
95-100	Limestone, gray, fine-grained, and vein calcite; weathered yellowish brown; water-bearing zone at 96 feet (20 gal/min).
100-105	Limestone, gray, fine-grained; some vein calcite; cuttings smelled of hydrogen sulfide during drilling.
105-112	Limestone, dark-gray, medium-grained; vein calcite, some coarse-grained.
112-113	Vein calcite, coarse-grained.
113-116	Limestone, dark-gray, fine- to medium-grained; some vein calcite.
116-120	Limestone, gray, fine- to medium-grained; water-bearing zone at 116 feet (40 gal/min).
120-125	Limestone, gray, fine-grained; abundant vein calcite.
125-130	Limestone, gray, fine- and medium-grained; some vein calcite.
130-135	Limestone, gray, fine-grained.
135-140	Limestone, light-gray, fine-grained, and vein calcite, coarse-grained.
140-150	Dolostone, light-gray, fine-grained.
150-155	Dolostone, light-gray, fine-grained, shaly; some vein calcite.
155-160	Dolostone, light-gray, fine-grained, shaly, and vein calcite, coarse-grained.
160-170	Dolostone, light-gray, fine-grained; some fine-grained pyrite. Limestone, light-gray, fine-grained; yield increased between 120 and 180 feet (90 gal/min).
170-180	Limestone, light-gray, line-grained; yield increased between 120 and 160 feer (50 gab min).
180-185	Limestone and dolostone, light-gray, fine-grained.
185-210	Dolostone, light-gray, fine-grained; some vein calcite. Limestone and dolostone, light-gray, fine-grained, shaly; some vein calcite.
210-215	
215-220	Limestone, light-gray, fine-grained. Wills Creek Formation
220-225	Dolostone, light-gray, fine-grained, and shale, greenish-gray.
225-235	Limestone, light-gray, fine-grained; some fine-grained pyrite.
235-240	Limestone and dolostone, light-gray, fine-grained, shaly; some fine-grained pyrite.
240-245	Limestone, gray, fine- and medium-grained. Limestone, light-gray, fine- and medium-grained; some coarse-grained vein calcite.
245-255	Dolostone, gray, fine- and medium-grained, and shale, greenish-gray.
255-265	Dolostone, gray, fine- and inculture grained, and share, greenish gray.
265-270 270-275	Limestone, gray, fine-grained.
275-280	Shale, greenish-gray, and dolostone, gray, fine-grained, shaly.
280-285	Dolostone, gray, fine-grained.
285-290	Limestone and dolostone, dark-gray, fine- and medium-grained.
290-293	Dolostone, gray, fine- and medium-grained; coarse-grained vein calcite at 292 feet.
293-295	Dolostone, gray, fine-grained, shaly.
295-300	Shale, greenish-gray, and dolostone, gray, fine-grained; yield increased between 280 and 300 feet (11) gal/min).
Nu-158	
	Mahantango Formation
0-15	Soil, brownish-orange, clayey; some fragments of shale.
15-35	Shale, gray, calcareous; brownish stains; water-bearing zones at 22 and 30 feet.
35-80	Shale, dark-gray, calcareous.
80-85	Shale, dark-gray, slightly calcareous.
85-95	Shale, dark-gray, calcareous; abundant vein calcite; some finely disseminated pyrite; water-bearing zon at 88 feet.
95-140	Shale, dark-gray, calcareous; some vein calcite and finely disseminated pyrite; water-bearing zone at 108 feet
140-155	Shale, dark-gray, slightly calcareous.
155-160	Shale, dark-gray, calcareous; some vein calcite.
160-235	Shale, dark-gray, slightly calcareous; some brownish stains. Shale, dark-gray, slightly calcareous; some finely disseminated pyrite; water-bearing zone at 289 feet
235-300	Shale, dark-gray, slightly calcareous; some thely disseminated pyrile, water-bearing zone at 269 feet

abrupt changes in permeability at bedding contacts. These permeability changes at bedding contacts, the presence of strike joints, and a common bedding dip of 35 to 45 degrees cause the characteristic development of directional permeability in the bedrock aquifers along bedding strike.

In general, the bedrock aquifers display relatively small, discrete zones of high permeability that are surrounded by large blocks of unfractured, lowpermeability rock. Overall, the bedrock aquifers display relatively low storage capabilities due to the large amount of unfractured rock.

GLACIAL-OUTWASH AQUIFER

Groundwater is present in primary openings between grains in unconsolidated deposits. The ability of the unconsolidated deposits to store and transmit water depends on grain size, degree of sorting, saturated thickness, and areal extent of saturation. Locally, only the late Wisconsinan outwash deposits have significant permeability and areal saturation. The sand and gravel deposits of the glacial-outwash aquifer are highly permeable and have significant storage capabilities. In general, the thickest saturated deposits are found along Fishing Creek upstream from Orangeville and along the Susquehanna River upstream from Mifflinville.

The areal extent of the outwash aquifer and its thickness observed in wells and test holes are shown on Plate 1. Generalized sections of the outwash aquifer in selected areas are also presented on Plate 1.

The glacial-outwash aquifer is discontinuous. Sections A-A' and C-C' indicate that thick glacial aquifers are present locally along the upper outwash-terrace area northeast of Beach Haven. The outwash aquifers occur up to 100 feet above the Susquehanna River. Along the Susquehanna River north of Wapwallopen, 70 feet of saturated glacial deposits occurs below the level of the river. However, as previously mentioned, significant amounts of silt and clay are found interbedded with the outwash sand and gravel in this area.

At Nescopeck (section D–D '), the Susquehanna River flows on bedrock, and the greatest aquifer thickness is present 3,000 feet away from the river. At Mifflinville (section E–E '), a buried channel is present about 1,000 feet away from the Susquehanna River. A bedrock high, in part, isolates the buried-channel-deposit aquifer from the river. The hydrogeologic log of one well, Co–305, completed in the glacial outwash of the buried channel is presented in Table 4. A hydrogeologic section across the outwash terrace along Fishing Creek north of Orangeville (section F-F') indicates a relatively uniform aquifer thickness of about 50 feet of saturated deposits under the creek.

GROUNDWATER FLOW SYSTEM

WATER BUDGET

Precipitation in the Berwick-Danville area is about 40 inches per year. The precipitation represents about 700 million gallons per square mile per year and, except for through-flowing streams, is the source of all fresh water in the area. Water leaves the area as water vapor in the atmosphere, as streamflow, and as groundwater flow. A water budget represents a balance of the components of the hydrologic system as follows:

$$P = R + WL$$

where	P =	annual precipitation, in inches
	R =	groundwater and surface-water run-
		off (total streamflow), in inches
	WL =	water loss (evapotranspiration), in
		inches

This form of the budget implies that groundwater flow across basin boundaries is negligible, and that changes in groundwater and soil-moisture storage also are negligible for the budget period.

Water budgets were calculated for the East Branch Chillisquaque Creek and Fishing Creek drainage basins above U.S. Geological Survey gaging stations 01553600 and 01539000 (Table 5). The locations of the gaging stations are shown on Plate 1. The period 1962–77 was used to represent average climatic conditions, the period 1963–66 was used for drier than average conditions, and the period 1972–75 was used for wetter than average conditions.

In the East Branch Chillisquaque Creek basin, about 43 percent of the average annual precipitation is discharged as streamflow, and most of the remainder is lost as evapotranspiration. Average annual water losses for the wet and dry periods were 45 and 66 percent, respectively. The basin is located in a lowland underlain by shale and is probably representative of similar settings in the study area.

In the Fishing Creek basin, about 57 percent of the average annual precipitation is discharged as streamflow. Average annual water losses for the wet

Basin name	U.S. Geological	Drainage					Water	
	Survey gaging- station number	area (square miles)	Water years	Precipitation ¹ (inches)	Runoff (inches)	Percent runoff	loss (inches)	Percent water loss
East Branch	01553600	9.48	1962-77	40.4	17.2	43	23.2	57
Chillisquaque			1963-66	33.3	11.4	34	21.9	66
Creek			1972-75	50.3	27.1	54	22.8	45
Fishing	01539000	247	1962-77	40.4	22.9	57	17.5	43
Creek			1963-66	33.3	17.4	52	15.9	48
			1972-75	50.3	31.9	63	18.4	37

Table 5. Water Budgets for Selected Drainage Basins

National Oceanic and Atmospheric Administration station at Millville.

and dry periods were 37 and 48 percent, respectively. Fishing Creek drains an upland area underlain by sandstone and shale and glacial deposits, mostly north of the study area. On the average, annual water losses are 6 inches less for Fishing Creek than for East Branch Chillisquaque Creek. The lower evapotranspiration for the Fishing Creek basin is attributed to lower annual temperatures and greater runoff from steeper slopes in the upland basin. Although the proportion of precipitation that was annual water loss varied, the amount of water losses remained relatively constant during dry and wet periods in both basins.

RECHARGE

The main source of groundwater recharge is precipitation. From May to September, when evapotranspiration rates are highest and there is a soil-moisture deficit, only a small proportion of rainfall reaches the water table. During the late fall, winter, and early spring, when evapotranspiration is minimal and the soil-moisture deficit has been satisfied, infiltrating rainfall and snowmelt readily recharge the groundwater system.

Groundwater recharge occurs in all areas upgradient from valley discharge points (streams and springs), but the rate of recharge in any specific area is largely controlled by the slope of the land, the infiltration capacity of surficial cover, and the ability of the underlying aquifer to transmit water from the recharge area. The gentle topography and coarse texture of the glacial-outwash terraces provide important areas for recharge. Road surfaces, parking lots, rooftops, and other impermeable surfaces reduce the area available for groundwater recharge and increase runoff to streams.

Groundwater discharge to streams was determined by separating the base-flow component of total runoff on streamflow hydrographs. The groundwater discharge in Table 6 approximates the amounts of annual recharge (assuming that there is no change in storage from year to year and that groundwater evapotranspiration is negligible) in the selected drainage basins for water years 1964 (below average precipitation), 1970 (average precipitation), and 1973 (above average precipitation). By assuming that recharge equals groundwater discharge, recharge was estimated to average about 8.3 inches per year (270 (gal/min)/mi² [gallons per minute per square mile]) in the East Branch Chillisquaque Creek basin and about 15 inches per year (490 (gal/min)/mi²) in the Fishing Creek basin. On average, it is estimated that about one fourth of

Table 6. Groundwater Contribution to Runoff for Selected Drainage Basins

Water year		1964			1970			1973			1964, 1970, 197 Average	3
Basin name	Totai runoff (inches)	Ground- water contri- bution (inches)	Percent ground- water	Total runoff (înches)	Ground- water contri- bution (inches)	Percent ground- water	Total runoff (inches)	Ground- water contrí- bution (inches)	Percent ground- water	Total runoff (inches)	Ground- water contri- bution (inches)	Percent ground- water
East Branch Chillisquaque Creek	16.2	6.7	41	16.9	8.4	50	23,5	9.9	42	18.9	8.3	44
Fishing Creek	19.9	14.2	72	21.6	14.9	69	31.7	16.9	53	24.4	15.3	63

annual precipitation recharges the groundwater system.

MOVEMENT AND DISCHARGE

Groundwater moves through openings in the aquifer from areas of higher to areas of lower hydraulic head. The water table is a subdued expression of the topography. Therefore, in general, groundwater flow is from areas of higher to areas of lower elevation.

Three types of flow systems in the report area are local, intermediate, and regional. Much of the groundwater flow is local, and the nearest stream serves as the discharge point. Drainage divides of local groundwater flow systems coincide closely with surface-water divides. Groundwater in the intermediate system flows under local stream basins and discharges to downstream points of the streams or to larger streams. Only a very small percentage of groundwater flow bypasses the local and intermediate systems and becomes part of the deep, regional flow system.

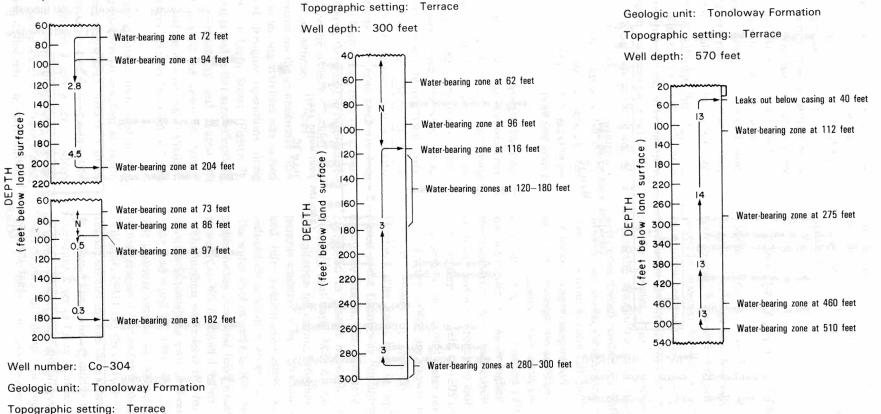
As groundwater flows, hydraulic head is lost due to frictional resistance to flow through interstices and fractures. Thus, hydraulic-head gradients are an indication of aquifer permeability. Highly permeable aquifers have less resistance to flow, and, therefore, greater amounts of water are able to move through these rocks under smaller gradients. The relatively low gradients associated with the glacial-outwash terrace, less than 50 feet per mile, indicate high permeabilities. In contrast, head gradients in the upland areas underlain by lowerpermeability rock of the Tuscarora and Pocono Formations may be greater than 1,000 feet per mile.

The greatest topographic gradients typically are across bedding strike, which is the direction of minimum permeability. Groundwater follows a steplike flow pattern in response to the variable permeabilities across bedding strike. In valleys where the highly permeable carbonate rocks of the Keyser and Tonoloway Formations form an effective drain, hydraulic-head gradients do not closely follow topographic gradients. Groundwater flow is largely toward the carbonate-rock aquifer and then along bedding strike within that aquifer toward points of discharge.

Wells that penetrate water-bearing zones having different hydraulic heads serve as a short circuit to the natural flow system. The amount of well-bore flow depends on the difference in head between water-bearing zones and the location and permeability of the zones. Well-bore flow may connect local, intermediate, or regional flow systems. Wellbore flow measured in eight wells is illustrated in Figure 5.

In uplands, deeper water-bearing zones have lower hydraulic heads than shallow zones, and the flow is downward. Water levels generally are lower in deeper wells than in shallow wells. Head differences between zones probably are on the order of tens of feet, but may be greater than 100 feet near large topographic breaks. Downward flow was measured in two wells, Co-245 and Nu-158, which are located in upland draws. The wells provide a short circuit that connects the local and intermediate flow systems. Downward flow decreases the amount of available drawdown to a well and may cause local dewatering of the shallow aquifer. Measured downward flows, about 1 to 5 gal/min (gallons per minute), exceed the amount that would normally be pumped from a domestic well, and, where such wells are closely spaced, the downward flow may exceed the local recharge rate.

In valleys, deeper water-bearing zones have higher hydraulic heads than shallow zones, and the flow is upward. Water levels generally are higher in deeper wells than in shallow wells. Composite water levels for wells that tap major deep waterbearing zones in discharge areas may be tens of feet higher than those for surrounding shallow wells. Some deep wells in valleys are flowing wells. In other wells, the upper water-bearing zones act as thieving zones, and no indication of upward flow can be seen at the land surface. Although upward flow increases the available drawdown to a well, it is not always desirable. Water produced from the deeper zones typically is higher in dissolved solids, and upward flow may contaminate shallow aquifers. Calcium sulfate water under high hydraulic head is present at a depth of 290 feet in well Mt-31. This well, located in a valley flat, taps the Old Port and Keyser Formations and yields water having a total-dissolved-solids content of 1,040 mg/L (milligrams per liter), which exceeds the recommended limit for drinking water set by the U.S. Environmental Protection Agency (1976a). Well Co-505, which had 13 gal/min of upward well-bore flow, is contrary to this generalization. The water produced from the major water-bearing zone at 550 feet in the well contained less than one half the total dissolved solids than the water produced from shallower zones.


Downward flow was measured in wells Co-304 and Lu-454, both of which are located in the Sus-

Well number: Co-245

Geologic unit: Sherman Creek Member of the Catskill Formation

Topographic setting: Upland draw

Well depth: 440 feet

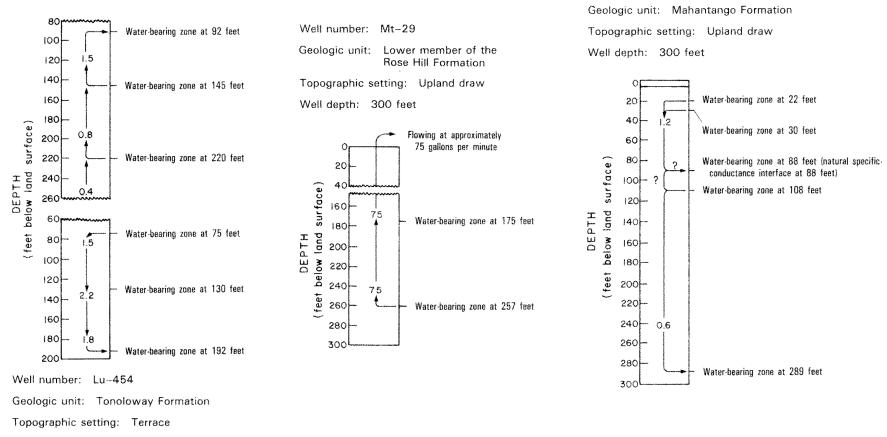
Well number: Co-307

Geologic unit: Tonoloway Formation

Topographic setting: Terrace

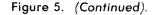
Well depth: 200 feet

Figure 5. Well-bore flow in selected wells. Arrows and numbers signify direction and rate of flow in gallons per minute; N indicates no measurable flow.


Well number: Co-505

Well number: Lu-453

Geologic unit: Mahantango Formation


Topographic setting: Terrace

Well depth: 300 feet

Well number: Nu-158

Well depth: 200 feet

quehanna River valley. Possibly, groundwater flows parallel to the river for a distance before discharging, or the lower water-bearing zones in these wells may be part of the regional flow system.

Upward flow is common in wells drilled in the interbedded sandstone, limestone, and shale of the Mifflintown, Keefer, and Rose Hill Formations on the limbs of the Berwick anticlinorium. This hydrogeologic setting is along the flanks of Montour Ridge and its eastern extension between Danville and Bloomsburg. Shales commonly are confining beds for coarser grained and calcareous beds in these formations. Large vertical head differences are found along the limbs of the anticlinorium, where steep topographic gradients parallel the bedding dip, and many flowing wells are encountered. Upward flows measured in wells were generally less than 10 gal/min. An extreme example is well Mt-29, where flow in the well was 75 gal/min upward from a water-bearing zone at a depth of 257 feet (Figure 5): the hydraulic head in the well was 69 feet above land surface.

The natural groundwater flow system has been altered along the flanks of the ridge between Danville and Bloomsburg in areas where deep mining of sedimentary iron ore in the upper part of the Rose Hill Formation occurred in the l800's (Inners and Williams, l983). Abandoned deep mines can act as a drain, effectively dewatering overlying waterbearing zones. Wells drilled into the mines provide a short circuit for water perched by overlying confining shales (Figure 6). The most extensive deep mines are found in the Mahoning Creek gap at Danville and on the northern flank of the ridge northeast of Danville. Where the mines are flooded, they may serve as significant sources of water.

A more recent impact on the groundwater flow system from surficial mining activities was caused by sand and gravel dredging operations along Fishing Creek west of Light Street (Figure 7). Removal of sand and gravel in this area effectively increased aquifer permeability and caused the hydraulic gradient toward the creek to flatten. Reportedly, this caused the dewatering of shallow, dug wells (30 to 40 feet deep) in the town of Light Street.

Water-temperature gradients measured in most wells approach the geothermal gradient at depths greater than 300 feet below land surface. This indicates that most groundwater flow occurs within 300 feet of land surface. Fresh water circulates deeper than 600 feet below land surface in much of the study area. Saline water was encountered, however, in two wells drilled into the Marcellus and Mahantango Formations at depths of 300 to 350 feet. The wells, Co-382 and Lu-471, are in valleys at altitudes of 580 and 500 feet above sea level, respectively.

WATER-LEVEL FLUCTUATIONS

Water levels in wells fluctuate in response to changes in recharge and discharge of the groundwater system. Water-level fluctuations primarily are caused by seasonal changes in recharge. Groundwater levels generally start to decline in April and continue to decline throughout the summer. During the summer, high evapotranspiration rates reduce the amount of water reaching the water table, even though rainfall is slightly higher in the summer than during the other seasons. Water levels tend to stabilize in early fall, primarily because of decreased evapotranspiration losses. Rain and snowmelt recharge the aquifers from late fall to early spring, and water levels rise. In well Co-45 at Bloomsburg, for the period 1970 to 1980, April and September showed the highest and lowest mean monthly water levels, respectively. The difference in mean water levels for these months was 2.1 feet.

Hydrographs of wells Co-305 and Co-307, and precipitation for the 1981 water year (October 1980 to September 1981), are shown in Figure 8. The greatest amount of recharge occurred during February. The water level in well Co-307, completed in the Tonoloway Formation, rose 6.4 feet during the month. The water level in well Co-305, completed in glacial outwash, rose 1.8 feet in February and early March. About 6 inches of precipitation fell during February. Although comparable amounts of precipitation occurred in June and July, evapotranspiration losses significantly reduced the amount of water reaching the aquifers. The water level in well Co-305 remained relatively stable during June and July, while the water level in well Co-307 declined 1.3 feet.

The median water-level rise for 79 wells in the Berwick-Bloomsburg area between December 22, 1980, and April 30, 1981, was 2.5 feet (Table 7). The seasonal water-level changes varied according to topography and aquifer lithology (Gerhart and Williams, 1981). On the average, the observed fluctuation on hilltops was three times greater than that in valleys. The wells in valleys are near the Susquehanna River or Fishing Creek, which have nearly constant heads and moderate seasonal water-level fluctuations. In hilltop and slope settings, shale aquifers show the least water-level fluctuation

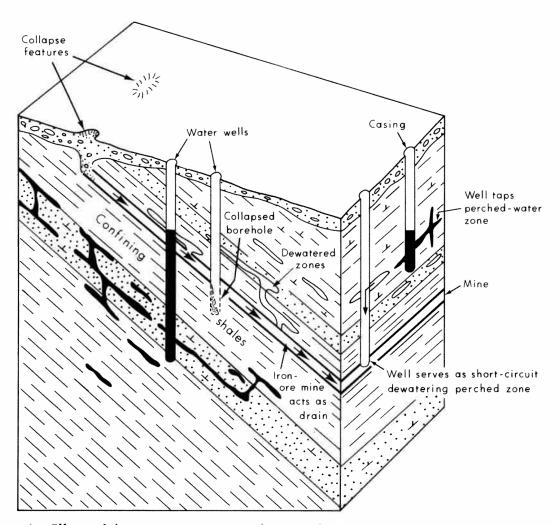


Figure 6. Effects of deep iron-ore mines on the groundwater resources in areas along the flanks of the ridge between Danville and Bloomsburg (from Inners and Williams, 1983).

Figure 7. Sand and gravel dredge pools along Fishing Creek west of Light Street. Dredging operations reportedly caused the dewatering of shallow, dug wells in Light Street.

because the low permeability of the shale decreases the recharge and drainage capability. In valleys, the sand and gravel aquifer shows less water-level fluctuation than bedrock aquifers because of its greater storage capability (greater storage means greater volumes of water drained per foot of water-level decline).

Groundwater levels also fluctuate in response to changes in discharge from the aquifers due to pumping (Figure 9). The water level in well Co-310 at Bloomsburg, completed in the Keyser Formation, fluctuates in response to pumping of an industrial well field located about 2,500 feet to the east (Figure 9). The well field was pumped from June 2 to September 4, 1981 (except for 5 days in late June and early July) for air-conditioning water at a rate in the range of 500 to 1,000 gal/min. This increased discharge from the aquifer accentuated the seasonal

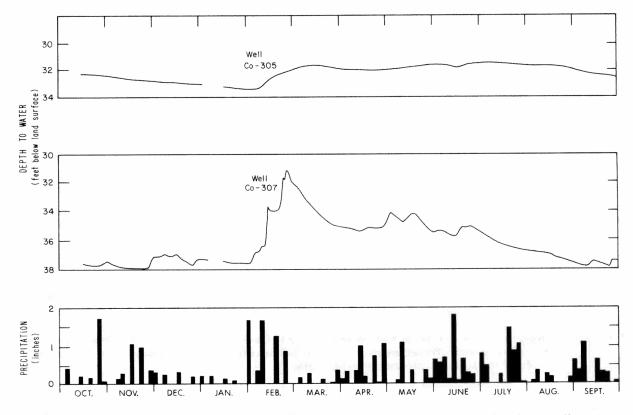


Figure 8. Precipitation at Millville in water year 1981 and corresponding water levels in wells Co–305 (glacial outwash) at Mifflinville and Co–307 (Tonoloway Formation) at Berwick.

Table 7.	Summary of Water-Leve	Changes in Selected	Wells Between Decem	ber 1980 and April 1981
----------	-----------------------	---------------------	---------------------	-------------------------

	Median water-level fluctuation (feet) ¹							
Lithology	Hilltop	Slope	Valley	All				
Sand and gravel		1.9 (2)	1.5 (10)	1.5 (12)				
Shale	-0.1(2)	3.2 (25)	2.3 (12)	2.4 (39)				
Sandstone and shale	7.8 (5)	4.8 (3)		6.3 (39)				
Sandstone, limestone, and shale	10.7 (2)	6.6 (1)	1.9 (1)	7.3 (4)				
Carbonate rock and shale	6.1 (1)	1.6 (3)	3.4 (5)	2.8 (9)				
Carbonate rock			2.5 (7)	2.5 (7)				
All	6.9 (10)	3.0 (34)	2.3 (35)	2.5 (79)				

¹Positive number denotes a water-level rise from December 1980 to April 1981. Number of wells is in parentheses.

water-level decline in well Co-310. The water level in well Co-310 declined 6.5 feet during this period. During the same time period, well Co-190, located nearby but not affected by pumpage, showed a water-level decline of less than 1 foot. The well field was pumped on an intermittent basis until September 28. The water level in well Co-310 recovered 4.9 feet from September 28 to December 31, 1981, whereas the water level in well Co-190 rose only 0.3 foot during the same period.

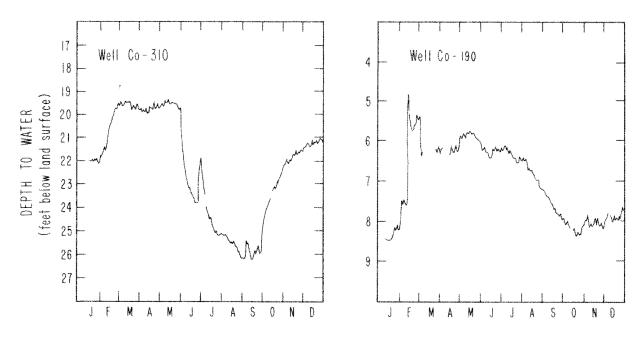


Figure 9. Comparison of water-level fluctuations in wells Co–310 and Co–190 at Bloomsburg for the 1981 calendar year. Water levels in well Co–310 are affected by the pumping of an industrial well field for summer air-conditioning water.

WATER-YIELDING CHARACTERISTICS OF THE AQUIFERS

WELL CONSTRUCTION

In the area of investigation, dug wells, springs, and, most commonly, drilled wells are used for groundwater withdrawal. Air-rotary or cable-tool methods are used to drill wells.

Depths of drilled wells that were inventoried range from 33 to 610 feet. About 70 percent of the inventoried wells were drilled for domestic, small commercial, or other purposes for which yields of 5 to 10 gal/min are generally adequate. The median depth of domestic wells is 125 feet. The median depth of wells drilled for public, industrial, or other high-yield uses is 220 feet. Most domestic wells are 6 inches in diameter, and nondomestic wells range from 6 to 10 inches in diameter.

Casing is installed in wells to prevent surficial deposits and weathered bedrock from collapsing into the well bore and to prevent near-surface water from entering the well. Typically, steel casing is seated several feet into solid bedrock and the remainder of the well is completed as an open hole. Although most drillers prefer to complete domestic wells in bedrock, this is not always practical where thick saturated sand and gravel glacial deposits are present. In these areas, the well may be completed as an open-ended cased hole, or the lower part of the casing may be slotted. Where the glacialoutwash aquifer is tapped for high-yield purposes, screens and natural or artificial gravel packs typically are used.

The depth of a domestic well depends on the yield capabilities of the aquifer, depth to water-bearing zones, and, in some cases, depth to solid bedrock. Deep wells are drilled at low-permeability sites not only to penetrate additional water-bearing zones, but also to provide well-bore storage. A statistical summary of well and casing depths of domestic wells for the various geologic units is given in Table 8.

Casing depths are related to the susceptibility of the aquifer to weathering and to the thickness of surficial deposits. The deepest casing depths are found in the Keyser and Tonoloway Formations because these carbonate rocks have the greatest susceptibility to weathering. About one of every four wells in these formations requires more than 100 feet of casing. Wells drilled into the friable sandstone beds locally found at the top of the Old Port Formation may require deep casing to prevent well-bore collapse. A domestic well (Nu-251) in Riverside that penetrated 3 feet of water-bearing sand at depth required 76 feet of casing. About one of every four domestic wells in the Sherman Creek Member of the Catskill Formation requires more

		Well dep	th (feet below la	nd surface)			Casing	depth (feet below	w land surface))
Aquifer	Number of wells	75 Percent ¹	50 Percent ¹ (median)	25 Percent ¹	Range	Number of wells	75 Percent ¹	50 Percent ¹ (median)	25 Percent ¹	Range
Sand and gravel										
Glacial outwash	9		35		19-64	5		45		34-64
Sandstone and shale										
Mauch Chunk Formation	2		175		150-200	2		21		20-21
Catskill Formation	112	100	125	170	30-300	111	21	36	47	20-106
Duncannon Member	1		85			1		24		
Sherman Creek Member	58	100	125	175	30-300	57	21	36	60	20-100
Irish Valley Member	53	100	130	165	50-275	53	20	40	44	20-106
Trimmers Rock Formation	67	123	197	275	35-523	53	20	22	39	16-81
Shale										
Harrell and Mahantango Formations	146	90	125	175	31-470	130	20	22	40	5-132
Marcellus Formation	40	71	87	123	50-285	36	20	30	42	11-71
Bloomsburg Formation	16	116	175	211	75-265	15	20	20	30	16-57
Carbonate rock and shale										
Onondaga and Old Port Formations	30	61	93	156	30-335	28	23	35	48	13-85
Wills Creek Formation	43	70	98	170	25-300	37	23	40	71	16-190
Carbonate rock										
Keyser and Tonoloway Formations	28	80	169	210	47-348	26	29	43	100	20-250
Sandstone, limestone, and shale										
Mifflintown, Keefer, and Rose	38	125	182	223	73-394	33	21	40	51	13-121
Hill Formations										
Mifflintown and Keefer Formations	7		125		73-315	7		36		20-50
Rose Hill Formation	31	128	189	223	4-100 August	27	20	41	51	13-121
Upper member	14	125	195	230	93-280	12	38	53	88	20-121
Middle and lower members	17	131	175	219	75-394	15	20	26	41	13-43

Table 8. Summary of Well and Casing Depths of Domestic Wells

¹Percentage of wells in which depth is equaled or exceeded.

than 60 feet of casing because of thick deposits of till overlying much of its outcrop area.

Some wells drilled through the Mifflintown and Keefer Formations into the upper member of the Rose Hill Formation penetrate abandoned iron-ore mines (Figure 6). Four wells that intersect iron-ore mines required 70 to 121 feet of casing. One well that hit a mine void at 160 feet was abandoned, as casing to that depth was considered to be impractical (Inners and Williams, 1983).

Difficulties may arise where drilling is done through glacial-outwash deposits and highly weathered carbonate rock using an air-rotary rig. Lost air circulation is a common problem in both types of rock. In the outwash deposits, isolated boulders, which are found interbedded with the finer grained deposits, can cause drilling problems. In highly weathered carbonate rock, "floating" boulders (solid rock surrounded by weathered materials) may be a source of difficulty. Where the outwash deposits are saturated, sand, silt, and clay may flow, making it difficult to keep the hole open. A com-

mon practice used when drilling sand and gravel and weathered rock is drilling and driving. The repetitious procedure involves drilling very short intervals of rock followed by driving the casing through the drilled interval; in some wells, the casing is driven ahead of the drilled interval.

WELL YIELD

Reported Yield

The reported yields presented in Tables 9 and 10 were, for the most part, determined by the driller on the basis of a short-term drillstem or bailer test when the well was completed. Reported yields based on drillers' completion tests appear to approximate the maximum short-term yield of the wells in most cases, but may not be accurate under certain conditions. In aquifers of high permeability, such as sand and gravel or carbonate rock containing solution cavities, much of the water may be forced back into the aquifer during a drillstem test rather than

Table 9.	Summary	of Reported	Yields of	Domestic	Wells

	Number	Median well depth -	R	eported yield (g	gal/min)	
Aquifer	of wells	(feet below) land surface)	75 Percent ¹	50 Percent ¹ (median)	25 Percent ¹	Range
Sand and gravel	4	44		20	-	15-50
Shale	168	122	5	10	15	.5-50
Sandstone and shale	163	150	6	8	10	.5-60
Sandstone, limestone, and shale	31	191	5	10	20	2-50
Carbonate rock and shale	63	110	6	12	20	2-100
Carbonate rock	28	165	10	20	30	3-150

¹Percentage of wells in which yield is equaled or exceeded.

Ta	ble	10	. :	Summary	y of	Reported	l Yields	of	Nond	lomestic	Wells
----	-----	----	-----	---------	------	----------	----------	----	------	----------	-------

	Number	Median well depth -	R	eported yield (g	gal/min)	
Aquifer	of wells	(feet below) land surface)	75 Percent ¹	50 Percent ¹ (median)	25 Percent ¹	Range
Sand and gravel	8	58	vin mode.	40		18-100
Shale	31	300	8	15	50	1-225
Sandstone and shale	19	300	20	32	64	3-100
Sandstone, limestone, and shale	7	305	The product	93		10-300
Carbonate rock and shale	22	224	23	38	49	20-184
Carbonate rock	14	280	65	160	383	24-900

¹Percentage of wells in which yield is equaled or exceeded.

pushed to the surface. In deep wells of low or moderate yield, drillers' completion tests may not be long enough to distinguish between well-bore storage and well yield.

Nondomestic wells, which include municipal, industrial, and commercial wells, generally have higher reported yields than domestic wells because (1) nondomestic wells commonly are deeper and penetrate more water-bearing zones; (2) a greater proportion of nondomestic wells are located in valleys, the topographic setting that generally has the highest yields; (3) the average diameter of nondomestic wells is greater; and (4) many of the higher domestic yields are underestimated because drillers commonly do not determine exact discharges for yields exceeding those considered adequate for household use.

Specific Capacity

A better measure of the yield capabilities of a well is its specific capacity. Specific capacity is the discharge of a well in gallons per minute per foot of drawdown [(gal/min)/ft] (Figure 10). Specific capacities can be determined from drillstem and bailer tests, as well as actual pumping tests. Specific capacities of wells reported by drillers on the basis of drillstem and bailer tests are presented in Table 23. The rate at which the well was blown or bailed is the reported yield. The specific capacities reported by drillers are considered to be rough estimates and were not used in relating well yields to various hydrogeologic factors.

Pumping tests provide the most reliable data on specific capacity. One hundred fifteen wells were

pump tested by drillers, consultants, and U.S. Geological Survey personnel. The specific capacities and the pumping rates and durations for these tests are given in Table 23. The specific-capacity data are summarized by aquifer in Table 11.

Effects of Pumping Rate on Specific Capacity

Variable-rate pumping-test data indicate that specific capacity decreases as the pumping rate increases. Specific capacity decreases with increasing pumping rate because of increases in well loss (i.e., frictional losses due to turbulence) and, in some cases, the lowering of the pumping water level during pumping below water-bearing zones. When the water level in a well is drawn below a producing zone, the zone becomes free flowing and is no longer progressively stressed by increasing drawdown. Any further increase in drawdown causes an increase in yield from lower zones only.

Figure 11 shows the results of variable-rate pumping tests on wells Nu-158 and Nu-187. In well Nu-187, the water levels associated with discharge rates of 16, 29, and 63 gal/min were above both producing zones. Decreases in specific capacity are attributed to aquifer and well losses only. About one third of the drawdown at 29 and 64 gal/min was due to these types of losses.

In well Nu-158, the pumping water level at a 24 gal/min pumping rate was above all of the waterbearing zones. Pumping at 60 gal/min drew the water level below the two shallowest zones at 22 and 30 feet. The pumping rate increase resulted in a 65

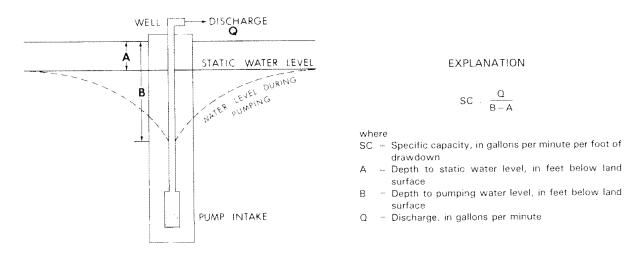


Figure 10. Schematic drawing of a pumping well and the equation for determining specific capacity.

	Number	Median well depth		Specific capac	ity [(gal/min).	∕ft]
Geologic unit or lithology	of wells	(feet below) land surface)	75 Percent ¹	50 Percent ¹ (median)	25 Percent ⁱ	Range
Glacial outwash	10	66	3.7	11	19	1.4-84
Catskill Formation	15	165	.16	.39	1.2	.08-3.8
Sherman Creek Member	13	275	.14	.39	1.8	.08-3.8
Irish Valley Member	2	91		.44		.3453
Trimmers Rock Formation	8	200	.06	.13	.37	.0355
Harrell and Mahantango Formations	16	263	.06	.27	.79	.03-2.5
Marcellus Formation Onondaga and Old Port	15	255	.07	.19	.50	.03-18
Formations	13	259	1.2	3.2	9.3	.47-350
Keyser and Tonoloway						
Formations	18	205	1.6	4.6	20	.35-280
Wills Creek Formation	15	170	1.8	3.1	5.3	.23-18
Bloomsburg Formation	5	228	.09	.18	.50	.0364
Mifflintown and Keefer Formations	3	250	sampana),	.13		.1037
Rose Hill Formation	8	266	.05	.21	1.1	.03-1.4
Upper member	4	264	.16	.71	1.3	.10-1.4
Middle and lower members	4	201	.04	.06	.62	.0380
Shale	35	268	.07	.23	.50	.03-18
Sandstone and shale	23	200	.12	.22	.55	.03-3.8
Sandstone, limestone, and shale	11	250	.07	.13	.80	.03-1.4
Carbonate rock and shale	28	202	1.5	3.1	5.5	.23-350
Carbonate rock	18	205	1.6	4.6	20	.35-280

Table 11. Summary of Specific Capacities of Pump-Tested Well	Table 11.	Summary of	Specific	Capacities of	Pump-Tested	Wells
--	-----------	------------	----------	---------------	-------------	-------

¹Percentage of wells in which specific capacity is equaled or exceeded.

percent reduction in specific capacity. At 75 gal/min, the water level was below all but the deepest producing zone. The decrease in specific capacity from the 60 to the 75 gal/min rate was 50 percent. Well-bore-flow tests during the pumping of well Nu-158 at 24 gal/min indicate that 75 percent of the well yield is produced by the water-bearing zones at 22 and 30 feet and 20 percent is produced by the zones at 88 and 108 feet (Figure 12).

The approximate doubling of discharge rate during pumping tests in 10 wells caused a 24 to 67 percent reduction in specific capacity (Table 12). The reduction in specific capacity for five wells in which the pumping water level fell below the water-bearing zone or zones ranged from 50 to 67 percent, and the median was 59 percent. The reduction in specific capacity for five wells in which aquifer and well losses were the only factors ranged from 24 to 41 percent, and the median was 38 percent.

Effects of Pumping Duration on Specific Capacity

Data from long-term pumping tests indicate that specific capacity decreases with increasing pumping time. The specific capacity of wells that are pumped continuously will decrease until (1) natural discharge from the groundwater system has been decreased by an amount equal to the pumping rate; (2) recharge to the groundwater system is increased by an amount equal to the pumping rate; or (3) the sum of decreased natural discharge and increased recharge equals the pumping rate (Carswell and Lloyd, 1979). Valleys, especially along the Susquehanna River and its major tributaries, are the best areas for decreasing natural discharge or inducing recharge from surface water. Upland areas near drainage-basin divides have the least amount of available water. The reduction of specific capacity after 24 hours of continuous pumping as

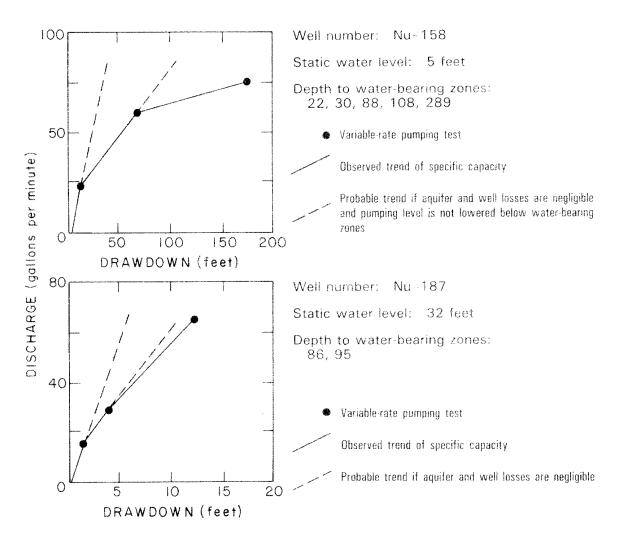
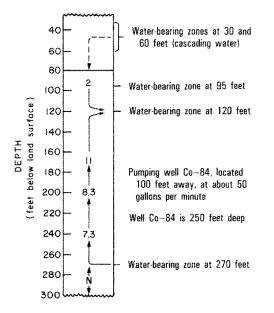
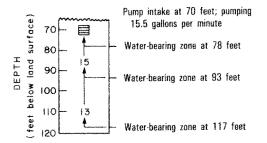


Figure 11. Variable-rate pumping tests of wells Nu-158 and Nu-187.

compared to 1-hour values in 15 wells ranged from 17 to 90 percent, and the median decrease was 38 percent (Table 13). On the average, about two thirds of the decrease in specific capacities occurred after 8 hours of pumping. Six wells pumped continuously for 48 hours had a median decrease in specific capacity of 12 percent from 24 to 48 hours.


Recovery

All domestic wells and most nondomestic wells are not pumped continuously but are shut off and allowed to recover between pumping periods. Recovery yield, the rate at which water flows into the well bore after pumping has stopped, is critical in low-yield domestic wells that depend on well-bore storage and in nondomestic wells that are pumped beyond their long-term capacity during peakdemand periods. Recovery yield was measured after the completion of pumping tests in 13 wells that tap noncarbonate-rock aquifers. The median recovery yield measured in the wells at 40 feet of residual drawdown was 7.5 gal/min. The median recovery yield divided by the residual drawdown (40 feet) is 0.19 (gal/min)/ft. This recovery "specific capacity" is comparable to median specific capacities calculated from pumping tests for the various noncarbonate rocks. Lack of sufficient recovery data prevented a similar comparison for the other aquifers. Well number: Co-85


Geologic unit: Sherman Creek Member of the Catskill Formation

Topographic setting: Valley flat

Well depth: 448 feet

Well number: Co-212 Geologic unit: Mahantango Formation Topographic setting: Terrace Well depth: 120 feet

Well number: Nu-158 Geologic unit: Mahantango Formation Topographic setting: Upland draw Well depth: 300 feet

Water-bearing zones at 22, 30, and

Pump intake at 40 feet; pumping

40 feet

C

20

40

ě

Well number: Lu-471

Geologic unit: Mahantango Formation Topographic setting: Terrace Well depth: 471 feet

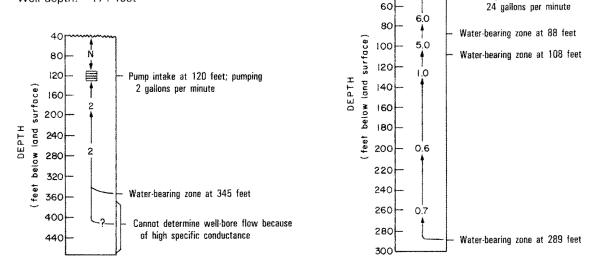


Figure 12. Well-bore flow in selected wells under pumping conditions. Arrows and numbers signify direction and rate of flow in gallons per minute; N indicates no measurable flow.

24

	Well number	Aquifer	Topographic setting	Lower pumping rate (gal/min)	Specific capacity at lower pumping rate [(gal/min)/ft]	Higher pumping rate (gal/min)	Specific capacity at higher pumping rate [(gal/min)/ft]	Percent reduction
ing	Co-205	Wills Creek Formation	Terrace	77	2.2	136	1.1	50
Increased pumping rate caused water level to be drawn below water-bearing zone or zones.	Co-209	Sherman Creek Member of Catskill Formation	Upland draw	7	.16	12	.06	62
ng rat below	Mt-1	Tonoloway Formation	Valley flat	25	2.1	50	.69	67
Increased pumpi level to be drawn zone or zones.	Mt-6	Upper member of Rose Hill Formation	Upland draw	50	1.4	110	.68	51
ncrease wel to l one or	Nu-158	Mahantango Formation	Upland draw	24	2.1	60	.87	59
2 6 E			Med	lian percent reduc	tion = 59		مورد و مردوم می و در مردوم و م مردوم و مردوم و	
did be ing	Co-52	Old Port Formation	Terrace	650	17	1,170	13	24
rate vel to r-bear	Co-204	Wills Creek Formation	Terrace	85	12	140	7.4	38
mping iter le wate s.	Co-307	Tonoloway Formation	Terrace	36	32	89	20	38
ed pur ise wa below	Mt-2	Keyser Formation	Valley flat	100	13	200	7.7	41
Increased pumping rate did not cause water level to be drawn below water-bearing zone or zones.	Nu-187	Keyser Formation	Terrace	16	11	29	7.3	34
ZGGZ			Med	lian percent reduc	ction = 38			an al a fange an

Table 12. Reduction of Specific Capacity in Selected Wells with Increased Pumping Rate

25

				Specific ca	apacity [(gal/min)/ft]
Well number	Aquifer	Topographic setting	1-hour	8-hour ¹	24-hour ¹	48-hour ¹
Co- 66	Sherman Creek Member of Catskill Formation	Upland draw	1.4	(51)	0.30 (72)	
204	Wills Creek Formation	Теггасе	11	9.6 (12)	9.0 (17)	7.8 (28)
207	Glacial outwash	do.	7.0	5.7 (19)	4.6 (35)	-
448	Old Port Formation	do.	25	9.0 (64)	2.6 (90)	- <u>1</u>
505	Tonoloway Formation	do.	3.0	2.1 (30)	2.0 (34)	_
Lu-486	Glacial outwash	do.	28	21 (25)	18 (36)	16 (43)
Mt- 1	Tonoloway Formation	Valley flat	4.8	2.0 (58)		waakeew"
2	Keyser Formation	do.	20	12 (38)	10 (50)	8.3 (59)
4	do.	do.	12	7.1 (39)	5.0 (18)	
6	Upper member of Rose Hill Formation	Upland draw			3.3	1.4
14	Keyser Formation	Valley flat	55	47 (15)	(relevant)	41 (25)
16	Old Port Formation	do.	6.5	5.9 (9)	5.3 (18)	-
18	do.	do.	1.1	.67 (39)		
29	Lower member of Rose Hill	Upland draw	-	.92	.80	.76
	Formation					30.0
31 Nu-187	Keyser Formation do.	Valley flat do.	16 7.4	13 (20) 4.7 (36)	9.9 (38) 4.2 (43)	99.0 (44)

Table 13. Reduction of Specific Capacity in Selected Wells with Increased Pumping Duration

¹Percent reduction from 1-hour specific capacity is in parentheses.

HYDROGEOLOGIC FACTORS AFFECTING WELL YIELDS

Water-Bearing Zones

The yield of a well depends largely on the size and number of water-bearing zones that it penetrates. As a well is drilled deeper and more waterbearing zones are penetrated, the yield of the well increases. In general, however, as well depth increases, the size of water-bearing zones decreases and the vertical distance between zones increases.

Figure 13 shows the distribution of water-bearing zones with depth for noncarbonate rocks, and for carbonate and interbedded carbonate and noncarbonate rocks. In general, the vertical spacing between water-bearing zones in noncarbonate aquifers is greater than that for aquifers that contain carbonate rock. In both groups of aquifers, the greatest number of producing zones is between 50 and 100 feet below land surface. Between 100 and 300 feet below land surface, the vertical spacing of waterbearing zones increases more rapidly with depth in aquifers containing noncarbonate rocks than in aquifers containing carbonate beds. In both groups of aquifers, the greatest vertical spacing—about one producing zone for every 200 feet of hole sampled—is between 400 and 600 feet below land surface. The difference in well-yield capabilities between noncarbonate and carbonate aquifers is attributed, in part, to the difference in the number and spacing of producing zones and, in part, to the greater size of openings in the solution-prone rocks.

Reported yields of individual water-bearing zones indicate a decrease in opening size with depth. The amount of decrease in opening size with depth is controlled by lithology. Yields of more than a few gallons per minute are uncommon for water-bearing

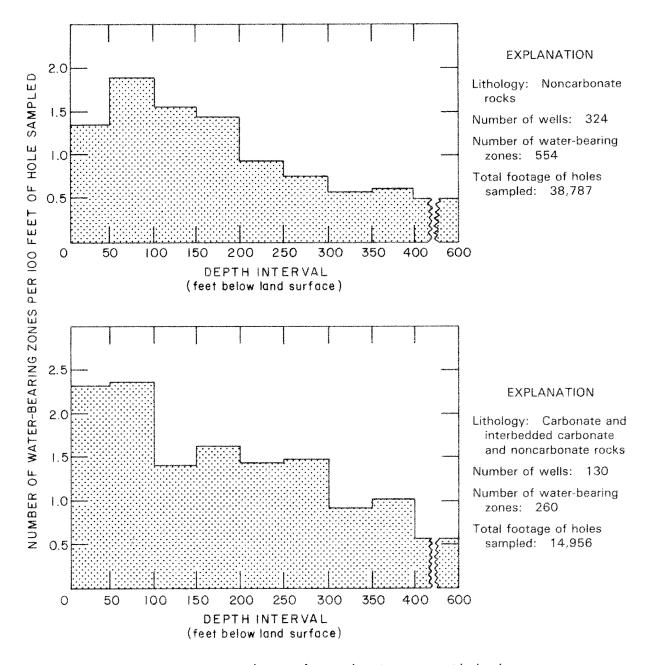


Figure 13. Distribution of water-bearing zones with depth.

zones below 300 feet in shale aquifers. Due to the more competent nature of coarse-grained beds, water-bearing zones remain more open to slightly greater depth in aquifers containing sandstones. Although one well reportedly penetrated a waterbearing zone having a yield of 40 gal/min at 450 feet, significant yields below 400 feet are believed to be uncommon in aquifers containing interbedded sandstone and shale.

Large yields may be obtained from deep zones in aquifers containing carbonate beds. In general, the limestones of the Keyser and Tonoloway Formations show the greatest yield capability at depth. In well Co-505, completed in the Tonoloway Formation near Lime Ridge, a water-bearing zone at a depth of 550 feet reportedly yielded over 200 gal/min.

Lithology

Lithology is a major factor controlling well yield. Wells completed in the glacial-outwash aquifer have the highest specific capacities. Specific capacities of these wells range from 1.4 to 84 (gal/min)/ft and have a median value of 11 (gal/min)/ft. In bedrock aquifers, well yields are closely related to the amount of carbonate rock penetrated. Wells in the carbonate-rock sequence (Keyser and Tonoloway Formations) have a median specific capacity of 4.6 (gal/min)/ft. The interbedded carbonate rocks and shales of the Onondaga, Old Port, and Wills Creek Formations have the next highest median specific capacity, 3.1 (gal/min)/ft. Specific capacities of wells in the Mifflintown, Keefer, and Rose Hill Formations, composed mostly of shale and sandstone with some limestone, have a range of 0.03 to 1.4 (gal/min)/ft. In general, the noncarbonate-rock aquifers, including the shales of the Harrell, Mahantango, Marcellus, and Bloomsburg Formations and the interbedded sandstones and shales of the Catskill and Trimmers Rock Formations, have specific capacities an order of magnitude less than those for the carbonate-rock aquifer.

Topography

Topographic position is a significant factor that affects well yield. Wells in valleys generally have the highest yields and wells on hilltops have the lowest (Table 14). The median specific capacity for wells in valleys is 3 to 24 times greater than the me-

Table 14.	Median Specific Capacities of Wells by
	Topographic Setting

	Median specific capacity [(gal/min)/ft]					
Aquifer	Hilltop ¹	Slope ¹	Valley ^{1,2}			
Shale	0.10 (3)	0.17 (6)	0.31 (26)			
Sandstone and shale	.04 (3)	.18 (7)	.39 (13)			
Sandstone, limestone, and shale	.04 (2)	.10 (5)	.95 (4)			
Carbonate rock and shale	.34 (1)	1.8 (3)	3.4 (24)			
Carbonate rock	1.7 (1)	4.9 (1)	6.0 (16)			

Number of wells is in parentheses.

²Includes valley flat, terrace, and upland draw settings.

dian for wells on hilltops. Wells on slopes show specific capacities between those for wells in valley and hilltop settings.

Differences in well yield among topographic settings are related to several factors: (1) valleys commonly are zones of more intense fracturing; (2) hydraulic gradients are toward valleys, and large volumes of water pass through these settings before being discharged; and (3) greater saturated thicknesses of sand and gravel in valleys provide for more recharge, storage, and transmission of water to underlying bedrock aquifers.

Fracture Traces

Fracture traces are natural linear features visible on aerial photographs that possibly are surface expressions of zones of fracture concentration in the underlying bedrock. They generally consist of topographic, vegetational, and soil-tonal alinements. Hydrogeologists in some areas have reported that wells drilled on fracture traces have higher yields than randomly located wells (Lattman and Parizek, 1964).

Specific capacities of wells intentionally located on fracture traces by hydrogeologists were compared with the median specific capacity for all wells located in the same hydrogeologic settings (Table 15). Only six of the 12 wells located on fracture

Table 15.	Comparison of the Specific Capacities
	of Wells Located on Fracture Traces
	with the Specific Capacities of All
	Wells in the Same Hydrogeologic
	Settings

	Fractur	Median specific			
Hydrogeologic setting ¹	Well number	Specific capacity [(gal/min)/ft]	capacity of all wells in hydro- geologic setting		
Carbonate rock; valley	Mt- 1 2 14 15 31	0.70 7.7 41 1.1 23	6.0		
Carbonate rock and shale; valley	Mt- 16 17 32	5.3 2.7 .47	3.2		
Shale; valley	Mt- 30 Nu-158	.07 .87	.31		
Shale; slope	Nu-157	1.2	.15		
Sandstone, limestone, and shale; valley	Mt- 29	.80	.95		

""Valley" includes valley flat, terrace, and upland draw settings.

traces had specific capacities greater than the corresponding median value. These data suggest that only a certain proportion of the linear features that were mapped on aerial photographs as fracture traces were actually underlain by zones of fracture concentration. Inaccurate field location may also account for the lack of success at some fracturetrace sites.

ESTIMATED WELL YIELD

Table 16 shows estimated 24-hour well yields for the aquifers. The well yields were estimated from data on specific capacity, depth to water-bearing zones, and water levels. Specific capacities were adjusted to a common 24-hour pumping period based on the data in Table 13. The adjusted specific capacities were multiplied by the median available drawdown for each aquifer to obtain the estimated well yield. Available drawdown was defined as the difference in depth between the static water level and the shallowest water-bearing zone.

WELL INTERFERENCE

When the cones of depression of closely spaced pumped wells overlap, one well is said to interfere with another because of the increased drawdown that occurs in each well. The amount of interference is largely dependent on the degree of hydraulic connection between the water-bearing zones tapped by the wells, which varies widely from site to site. Data collected during this study, however, reveal the importance of bedding-related permeability in wellinterference problems in bedrock aquifers.

The total yield of a group of closely spaced wells that are pumped simultaneously may be significantly less than the sum of yields of the individual wells that make up the well field. A good example of this type of interference problem is found at the Catawissa Water Authority well field. The pumping of well Co-84 at 50 gal/min causes 13 gal/min of cumulative well-bore flow in well Co-85, located about 100 feet away (Figure 12). The wells are connected by a common water-bearing zone penetrated in well Co-85 at 120 feet below land surface. Simultaneous pumping of these two wells significantly decreases their individual yields.

Table 17 shows the results of multiple-well pumping tests conducted by drillers, consultants, and

	3 <i>C</i> = 3 ¹ = 1	Estimated well yield ¹ (gal/min)			
Aquifer	Median available drawdown ³	75 Percent ²	50 Percent ² (median)	25 Percent ²	
Sand and gravel					
Glacial outwash	26	58	190	410	
Sandstone and shale	42	5	10	16	
Catskill Formation	41	5	10	36	
Sherman Creek Member	43	5	11	50	
Irish Valley Member	41	-	11		
Trimmers Rock Formation	43		5		
Shale	42	2	7	15	
Harrell and Mahantango Formations	39	1	7	22	
Marcellus Formation	47	3	8	23	
Bloomsburg Formation	46		6	-	
Carbonate rock and shale	38	46	100	210	
Onondaga and Old Port Formations	33	40	91	310	
Wills Creek Formation	40	47	99	130	
Carbonate rock					
Keyser and Tonoloway Formations	44	47	180	620	
Sandstone, limestone, and shale Mifflintown, Keefer, and Rose Hill Formations	70	3	10	56	

Table 16. Estimated 24-Hour Well Yields of the Aquifers

¹Based on specific-capacity data adjusted to 24-hour pumping period and median available drawdown.

²Percentage of wells in which yield is equaled or exceeded.

³Based on data on depth to water-bearing zones and water levels.

Length of test (hours)	Pumped well	Pumping rate (gal/min)	Drawdown (feet)	Observation well	Drawdown (feet)	Distance (feet)	Observation well	Drawdown (feet)	Distance (feet)	Remarks
						G	lacial outwash			,
6	Co-305	38	3.7	Co-311	0.5	117	Co-309	0.2	444	Aquifer for well Co-309 is Marcellus Formation.
3.5	Lu-455	36	2.9	Lu-454	1.0	9		0.2		Aquifer for well Lu-454 is Mahantango Formation.
8.5	Lu-491	150	22	Lu-450	5.4		Lu-490	5.9	100	Aquifer for well Lu-450 is Mahantango Formation.
0,0	LAL 121	100	day land	134 450	5.4				100	requirer for wen extrao is intenumente rormation.
26	C . 10	45.	10	C . (1	n /		skill Formation		1.4.4	
3.5 2	Co-49 Co-61	45+ 11	38 90	Co-61 Co-49	3± 1.0	90 90	Co-62	5.4	144 89	
48	Co-01 Co-139	40	276	Co-140	68	350	Co-62	4.4		Well Co-140 is 60 feet higher in altitude at ground surfac
70	00-139	40	270	00-140	08	550				than well Co-139.
48	Co-140	55	252	Co-139	74	350				
						Maha	ntango Formati	on		
3	Lu-454	9.7	75	Lu-455	.2	9				Aquifer for well Lu-455 is glacial outwash.
2	Mt-178	15	50	Mt-153	.9	385				and and a set the set of a set of the set of
2	Nu-157	18	15	Nu-185	2.3	390		_		
40	Nu-158	60	70	Nu-157	1±	423	Nu-159	1+	292	
				Nu-180	14	787				
						Mar	cellus Formatio	n		
24	Mt-30	20	284	Mt-31	.3	400	Mt-32	.4	530	Aquifer for well Mt-31 is Keyser Formation; aquifer for we
						100	1720 5744		200	Mt-32 is Old Port Formation.
					()nondaga a	nd Old Port Fo	rmations		
24	Mt-16	160	30	Mt-17	14	15				
24	Mt-17	120	45	Mt-16	12	15			-	
24	Mt-32	73	155	Mt-30	.9	130	Mt-31	None	530	Aquifer for well Mt-30 is Marcellus Formation; aquifer fo well Mt-31 is Keyser Formation.
28	Co~448	200	90	Co-441	1.3	500	Co-447	None	1,100	Aquifer for well Co-447 is Tonoloway Formation.
24	Co-505	290	123	Co-441	None	600	Co-447	None	1,000	Aquifer for well Co-448 is Old Port Formation.
				Co-448	< 1	190	pagagatha			
3	Co-307	36	1.1	Co-308	.1	258				Aquifer for well Co-308 is glacial outwash.
						Keyser and	Tonoloway For	mations		
18	Mt-1	50	63	Mt-2	1.5	182	-			
2	Mt-2	200	26	Mt-1	20	182				
10	Mt-3	250	60	Mt-1	6.0	183			_	
2.3	Nu-187	16	1.4	Nu-188	.4	60	Nu-189	None	80	
24	Nu-187	63	15	Nu-191	.8	100				Aquifer for well Nu-191 is glacial outwash.
2	Nu-188	12	13	Nu-187	.4	60	Nu-189	None	30	
						Wills	Creek Formatio	On		
48	Co-204	140	19	Co-205	1.6	201	_		_	
48	Co-205	136	125	Co-204	1.5	201	فسليب			
5	Co-571	175	16	Co-580	2.0	24	Co-581	.3	34	
				Co-582	1.9	64	Co-583	.4	66	
						Rose	Hill Formation	7		
4.3	Mt-29	70	65	Mt-123	40	460	Mt-124	None	330	Well Mt-123 is 40 feet higher in altitude at ground surface than the other wells.

30

U.S. Geological Survey personnel. If the aquifers were ideal aquifers (isotropic, homogeneous, and areally extensive), drawdown would decrease symmetrically and logarithmically away from the pumped well. However, drawdowns measured in observation wells during pumping tests were erratic, especially in the bedrock aquifers. The relatively low storage capabilities and discrete nature of permeability in the bedrock aquifers cause large differences in drawdown between wells that are in hydraulic connection with the pumped well and wells that are not in hydraulic connection with the pumped well. Drawdown in observation wells having good hydraulic connection with the pumping well may approach that observed in the pumping well, whereas little to no observable drawdown occurs in those wells that are poorly connected.

Saturated sand and gravel generally behaves more like an ideal aquifer than does fractured bedrock. Departure from ideal conditions in the glacialoutwash aquifer is largely caused by variations in the thickness of saturated sand and gravel. Test drilling shows that the thickness of the saturated sand and gravel can change from more than 50 feet to zero within several hundred feet. Drawdowns from a hypothetical pumping well in the outwash aquifer were simulated using the 2-D, finitedifference model of Trescott and others (1976) under some typical hydrologic conditions. Actual drawdown would depart from simulated drawdown depending on the nonhomogeneity and anisotropy of the aquifer and the presence of recharge or impermeable boundaries.

Simulated drawdowns after 48 hours of pumping in the glacial-outwash aquifer are as follows:

Pumping rate	Hydraulic conductivity (ft/day)	Drawdown (feet)				
		At pumped well	Distance from pumped well (feet) 35 100 250			
(gal/min)			4.0	1.4	0.1	
50	100	10				
100	100	24	8.4	2.8		
100	200	11	5.1	2.2	,÷	
200	200	30	11	4.4	. 8	

Saturated thickness = 40 feet.

Specific yield = 0.15.

The simulated drawdowns are in the range observed during the limited number of tests conducted on the outwash aquifer.

During multiple-well pumping tests in the bedrock aquifers, significant interference was observed only between wells that tapped at least part of the same stratigraphic interval. Maximum well interference observed during pumping tests 4 to 72 hours long in the various lithologies was as follows:

		ped well	Observation well		
Lithology	Pumping rate (gal/min)	Drawdown (feet)	Drawdown (feet)	Distance from pumped well (feet)	
Shale	60	70	14	787	
Sandstone and shale	55	252	74	350	
Sandstone, shale, and limestone	75	65	40	460	
Carbonate rock and carbonate rock and shale	200	26	29	180	

The observation wells that showed the maximum interference occurred updip, downdip, or along strike from the pumping well. However, in each case, the observation well tapped some of the same beds as the pumping well. This observation reemphasizes the importance of bedding-related permeability in the bedrock.

Individual water-bearing zones developed along selected beds can be recognized over significant distances along strike in the bedrock aquifers. Well interference problems will occur between wells that tap these zones. A good example is found at the Champion Valley Farms well field at Lime Ridge. Well Co-448 is located about 900 feet west of the Champion Valley Farms well field (wells Co-197, Co-198, and Co-199), which is pumped at a rate of about 350 gal/min for 5.5 days per week. The pumping of the well field causes significant drawdown in well Co-448, as shown in Figure 14. Calcareous chert beds yielding about 200 gal/min were penetrated in well Co-448 at depths of 142 and 152 feet below land surface. Although well Co-448 was drilled to 180 feet, the well bore collapsed at the deeper water-bearing cavern at 152 feet. In the driller's log for well Co-199, water-bearing zones were indicated at 170 and 180 feet. Reportedly, well interference occurs between wells Co-198 and Co-199. According to the driller's log, well Co-108 penetrated water-bearing caverns at 120 and 130 feet below land surface. Well Co-108 is located 1,250 feet east of the well field. Wells Co-108, Co-198, Co-199, and Co-448 probably tap the same waterbearing zones developed along two solution-prone, calcareous chert beds in the Old Port Formation for a distance of more than 2,000 feet along bedding strike. Well Co-448 showed a 90 percent reduction in specific capacity from 1 to 24 hours of pumping, the largest reduction observed in all pumping

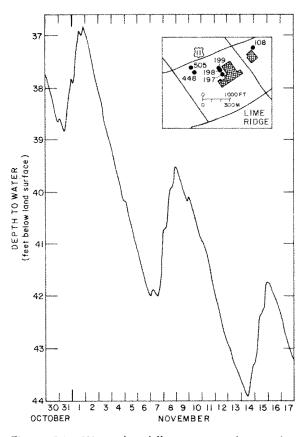


Figure 14. Water-level fluctuations observed in well Co–448 in response to nearby industrial pumping, October 30 to November 17, 1981.

tests. At least part of this decreased capacity caused by lowered water levels can be attributed to interference from pumping at wells Co-198 and Co-199.

It is worthwhile to note that negligible drawdown occurred in well Co-448 during the pumping of well Co-505 at 290 gal/min. Well Co-505 is about 190 feet across bedding strike from well Co-448 and is completed in the Keyser and Tonoloway Formations. The water level in well Co-505 does not appear to be affected by pumping of wells Co-198 and Co-199, even though it is at nearly the same distance from the pumping wells as is well Co-448.

Assuming a bedding dip of 35 degrees, flat topography, and well depths of 400 feet, wells located more than 500 feet across bedding strike typically will not show significant interference (Figure 15). Where bedding dips are more shallow, such as on the noses of major folds, well interference may occur at greater distances across bedding strike. In addition, where steep topographic gradients parallel bedding dip, such as along the flanks of Montour Ridge and its eastern extension, interference may occur between wells located across strike at significant distances.

Well interference has been observed in two areas along the southern flank of the ridge about 1.5 miles east of Danville between nondomestic wells that tap deep, confined water-bearing zones in the Mifflintown, Keefer, and Rose Hill Formations and domestic wells located in an updip direction (Figure 16). In one area, when a deep, nondomestic well (Mt-29) was allowed to flow at 75 gal/min for about 4 hours, 40 feet of drawdown was observed in a domestic well (Mt-123) located about 460 feet updip of well Mt-29. No drawdown was observed during the test in another domestic well (Mt-124) located about 300 feet downdip. In a nearby area, the pumping of the Mahoning Township Water Authority well field (wells Mt-5 and Mt-6) affected water levels in two updip domestic wells located up to 700 feet away. No downdip wells were known to be affected.

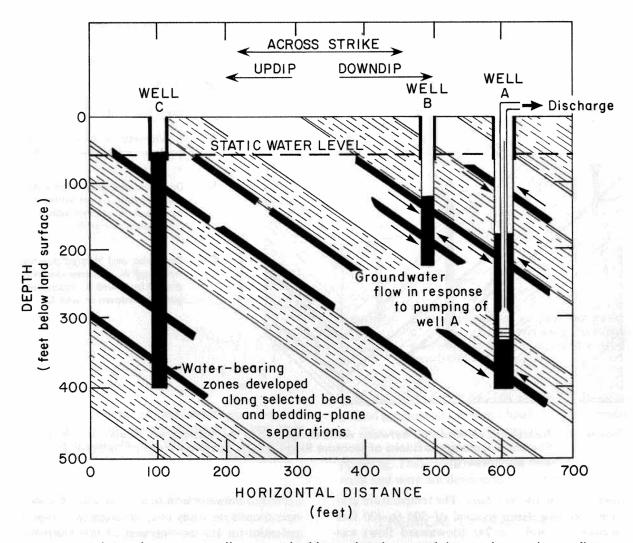
The hydraulic connection between the bedrock and glacial-outwash aquifers largely depends on the amount of fracturing in the rock that separates water-bearing zones in the bedrock from the saturated sand and gravel. If a bedrock well penetrates water-bearing zones that intersect the bedrock-unconsolidated rock contact, pumping of the well can cause significant drawdown in wells completed in the glacial-outwash aquifer. An example of good interconnection of the glacialoutwash and bedrock aquifers is shown in Figure 17. Test hole Co-154, completed in glacial outwash and till, and well Co-310, completed in carbonate bedrock, display similar water-level fluctuations caused by the pumping of an industrial well field completed in the carbonate-rock aquifer located, respectively, about 4,000 and 2,500 feet away.

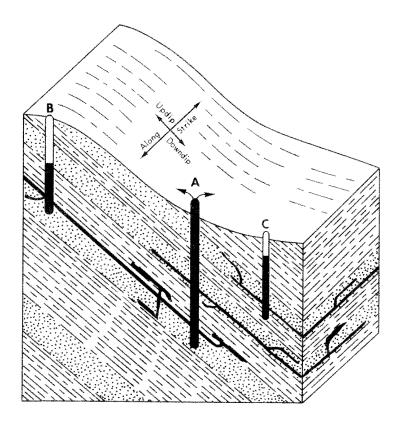
WATER-QUALITY CHARACTERISTICS OF THE AQUIFERS

PHYSICAL CHARACTERISTICS

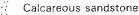
Temperature

The temperature of groundwater is affected by the geothermal gradient, groundwater flow paths, air temperature, and, to a limited extent, the return of water used for air conditioning. The temperature of discharge water was measured from 85 wells sampled for laboratory analyses. In addition, temperature logs were run on 39 wells ranging in depth from 68 to 558 feet (Table 2).




Figure 15. Relationship among well spacing, bedding-related permeability, and groundwater flow in response to pumping.

The temperature of groundwater discharged by wells ranged from $51 \,^{\circ}$ F to $59 \,^{\circ}$ F, and the median was $54 \,^{\circ}$ F. The temperature of water discharged from a well is largely dependent on the depth and relative yield of the water-bearing zones that it penetrates. Deeper zones typically produce warmer water than shallow zones due to the effect of the geothermal gradient. The geothermal gradient, as determined from temperature logs in wells at depths having minimal flow, is about 1 °F per 100 feet. For example, well Co-505, which has a major waterbearing zone at 550 feet, produces water having a temperature about 3 °F warmer than the median value for all wells.


Figure 18 shows temperature logs for wells Co-245, Co-452, and Co-505. A composite temperature log based on median values computed at 50-foot intervals for 26 deep wells also is presented. The slope of the composite temperature gradient approaches that of the geothermal gradient below 300 feet. This indicates the lack of significant groundwater flow below 300 feet in most aquifers.

Well Co-452 provides an example of a temperature log representing typical hydrologic conditions. Flow in the well bore between water-bearing zones and, to some limited degree, in the aquifer itself masks the geothermal gradient in the upper 300 feet of the temperature log. Below this depth, the temperature gradient of water in the well bore is controlled by the geothermal gradient.

In wells that have flow between shallow and deep water-bearing zones, the effects of the geothermal gradient on the temperature of water in the well bore may be dampened. Downward flow moves colder water from shallow zones down the well bore, and upward flow moves warmer water from

EXPLANATION

Water-bearing zone Confining shale

Nondomestic well tapping deep, confined water-bearing zones.

- B Domestic well located updip from well A; groundwater withdrawal from well A causes significant drawdown in well B.
- C Domestic well located downdip from well A; groundwater withdrawal from well A causes negligible drawdown in well C.

Figure 16. Hydrologic relationship between wells completed in the Mifflintown, Keefer, and Rose Hill Formations along the flanks of Montour Ridge and its eastern extension between Danville and Bloomsburg.

deep zones up the well bore. The temperature gradients for the depth interval of 300 to 400 feet measured in well Co-245 (downward flow) was 0.4 °F per 100 feet and in well Co-505 (upward flow) was 0.1 °F per 100 feet.

Lloyd and Growitz (1977) found that in York County the temperature of shallow groundwater varied with seasonal changes in air temperature. Carswell and Lloyd (1979) found that in Monroe County the temperature of groundwater at about 300 feet below the water table varied with the average annual air temperature. Although sufficient temperature data are unavailable in this area, similar relationships between groundwater and seasonal and average-annual air temperatures are believed to exist in the Berwick-Bloomsburg-Danville area.

The temperature of groundwater also may be affected by the return of water used for cooling to an aquifer. The only well known to be used for the return of cooling water is well Co-69 in Berwick. During the summer, groundwater is pumped from well Co-68 at a rate of about 200 gal/min and is used for air conditioning. The warm water is then returned to the aquifer by well Co-69. No groundwater heat pumps are known to be in operation in the study area, although there is good potential for the development of this alternative energy source. Groundwater heat pumps extract heat from well water using a refrigeration system. During the summer, the system may be reversed, and the heat pump can be used for cooling. The well yield typically needed for a groundwater heat pump, 5 to 15 gal/min, can be found in most local hydrogeologic settings. In settings where a sufficient yield may not be obtainable, such as on a hilltop underlain by sandstones and shales, more efficient heat pumps requiring less than 5 gal/min could be used.

Turbidity

Turbidity is a cloudiness in water caused by suspended material such as sand, silt, clay, or colloidal precipitates of iron or manganese. In most cases, turbidity in water produced from bedrock aquifers is negligible after wells have been developed. Turbidity may be a problem in wells that tap glacial deposits, where casing does not adequately seal water from overlying unconsolidated

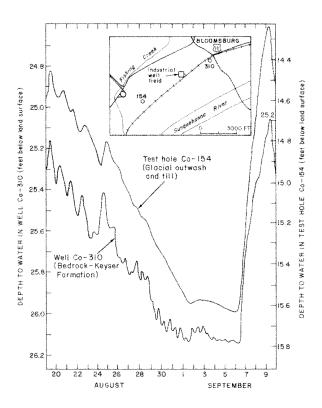


Figure 17. Effects of industrial pumping on water levels observed in test hole Co-154 and well Co-310 at Bloomsburg, August 19 to September 9, 1981.

material, or where mud-filled solution zones are present in bedrock. As an example, well Mt-2, completed in the solution-prone Keyser Formation, had to be abandoned because of a recurring problem of suspended clay.

Dewatering of a water-bearing zone may cause a well that normally produces clear water to yield turbid water. The turbidity may be related to the drying and sloughing of clay and oxide coatings along dewatered fractures. Two wells have shown turbidity attributable to dewatering effects. Well Co-157 developed a turbidity problem during a period of low water levels in the early winter of 1980, but the turbidity cleared as water levels rose in February 1981. In well Nu-180, the water level dropped 14 feet during a 48-hour pumping test at a nearby well and turbid water was noticed; the turbidity persisted in well Nu-180 for several days after the pumping test ended.

Domestic wells drilled in glacial outwash commonly use open-ended casing, and fine particulate matter may be suspended in water from some of these wells. The use of well screens and gravel packs tends to prevent turbidity in properly developed wells in glacial outwash.

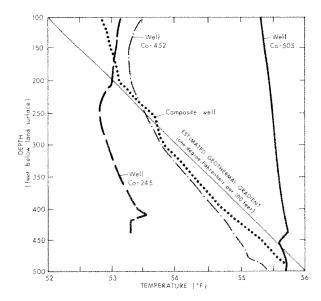


Figure 18. Temperature logs of selected wells, a composite log based on median values for 26 wells, and the estimated geothermal gradient.

Wells Co-154 and Co-308 in glacial outwash yielded groundwater having a black-colored turbidity. The source of the turbidity is probably particulate coal that enters the slotted casing during pumping. These wells were installed as observation wells and were not developed for water-supply use.

CHEMICAL CHARACTERISTICS

The chemical quality of groundwater in the Berwick-Bloomsburg-Danville area was evaluated on the basis of field determinations of specific conductance and hardness of water from 299 wells and laboratory chemical analyses of water from 139 wells. Field values of specific conductance and hardness are presented in Table 23. Results of the laboratory chemical analyses for major ions, metals, nutrients, and other common parameters are reported in Table 21. Most of the chemical analyses were done by the U.S. Geological Survey Laboratory in Doraville, Georgia, but data from other laboratory sources were used selectively. Additional analyses for selected trace metals and organic compounds were made on water from 18 wells (Table 22). The groundwater-quality data are summarized by aquifer in Tables 18 and 19.

In general, groundwater in the study area is mainly of the calcium bicarbonate type. The calcium bicarbonate water occurs in the glacial-outwash and shallow bedrock aquifers (generally less than 300 feet deep) where there is active circulation of

															Hard (CaC		
Aquifer	Number of samples	Silica (SiO ₂)	Iron (Fe) (µg/L)	Manganese (Mn) (µg/L)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Sulfate (SO ₄)	Chloride (Cl)	Fluoride (F)	Nitrate+nitrite (NO ₃ +NO ₂ , as N)	Orthophosphate (PO ₄ , as P)	Dissolved solids	Calcium and magnesium	Noncarbonate	Alkalinity (CaCO ₃)
Glacial outwash	7-11	12	250	475	13	3.8	6.7	1.3	32	5.0	0.1	0.2	0.01	95	49	26	19
Mauch Chunk Formation	1	5.7	10	1	1.6	.7	.4	.2	.7	.6	.1	.3	.01	15	7	0	7
Catskill Formation	19-23	12	220	28	12	4.0	5.4	.6	3.4	6.4	.1	1.9	.01	93	50	12	33
Sherman Creek Member	12-16	11	175	10	14	3.4	5.8	.6	11	7.0	.1	2.4	.02	98	56	14	36
Irish Valley Member	7	16	260	90	3.4	4.7	5.4	.6	1.4	4.4	.1	.1	.01	63	28	1	16
Trimmers Rock Formation	8	13	63	35	7.8	50	4.4	.5	8.2	3.9	.1	1.6	.01	78	42	11	24
Harrell and Mahantango Formations	18	14	660	55	24	3.8	8.6	.6	16	4.4	.1	.1	.01	144	76	7	56
Marcellus Formation	6-7	16	1,100	180	41	10	12	.9	46	23	.1	.02	.01	265	160	22	130
Onondaga and Old Port Formations	3-8	7.3	510	5	56	18	15	2.1	48	20	.1	3.8	.01	301	185	54	118
Keyser and Tonoloway Formations	8-13	11	110	6	70	20	10	1.2	78	20	.1	.9	.01	374	240	102	140
Wills Creek Formation	8-12	8.4	25	8	38	12	5.3	.6	19	18	.1	2.9	.01	196	130	44	108
Bloomsburg Formation	10-11	9.6	280	30	22	5.4	3.7	.7	20	5.2	.1	2.2	.09	125	77	23	43
Mifflintown and Keefer Formations	7	8.1	37	38	22	4.7	5.4	.5	16	9.0	.1	.6	.01	135	79	19	84
Rose Hill Formation	15-17	7.4	85	125	21	9.9	2.5	.6	8.9	1.6	.2	.08	.01	100	91	8.0	81
Upper member	4-5	9.5	28	7	21	4.2	4.0	.3	12	4.1	.2	.04	.01	90	84	18	75
Middle and lower members	11-12	7.0	360	160	17	10	1.3	.8	6.3	1.5	.2	.1	.01	100	91	7	93
Recommended limit (U.S. Environmental Protection Agency, 1976a, b)			300	50			250		250	250	1.7	10		500			

61

Table 18. Median Concentrations of Selected Dissolved Constituents in the Aquifers

(Concentrations are in milligrams per liter except where otherwise indicated)

		pecific co µmho/cm	nductance at 25 °C)				hardness as CaCO ₃)	
Aquifer	Number of samples	75 Percent ¹	50 Percent ¹ (median)	25 Percent ¹	Number of samples	75 Percent ¹	50 Percent ¹ (median)	25 Percent ¹
Sand and gravel								
Glacial outwash	13	98	142	291	10	34	50	58
Sandstone and shale	102	77	111	161	96	34	34	51
Mauch Chunk Formation	a 2		20		2		17	
Catskill Formation	68	70	100	156	57	34	34	51
Duncannon Member	1	-	60		1		17	
Sherman Creek Membe	er 34	65	102	179	33	34	51	68
Irish Valley Member	33	82	100	149	33	34	34	51
Trimmers Rock Formatic	on 32	103	133	176	27	34	51	51
Devonian shale	94	224	320	400	91	86	120	154
Harrell and Mahantango Formations	68	219	300	377	66	86	120	154
Marcellus Formation	26	299	366	452	25	77	137	162
Carbonate rock and shale	30	218	338	531	26	137	176	263
Onondaga and Old Port Formations	17	207	347	675	14	162	214	330
Wills Creek Formation	13	238	320	465	12	136	154	180
Carbonate rock								
Keyser and Tonoloway Formations	21	360	408	668	20	158	202	280
Silurian shale Bloomsburg Formation	10	131	205	405	7	51	86	103
Sandstone, limestone, and								
shale	29	147	180	225	29	60	86	103
Mifflintown and Keefer Formations	9	147	200	270	9	51	103	103
Rose Hill Formation	20	146	175	219	20	68	77	86
Upper member	7	145	200	230	7	68	68	86
Middle and lower members	13	140	70	210	13	60	86	95

Table 19. Summary of Field Measurements of Specific Conductance and Total Hardness in the Aquifers

¹Percentage of samples in which field measurement value was equaled or exceeded.

groundwater. A few wells completed in bedrock zones where groundwater does not actively circulate may tap water of the sodium chloride type. Only two of these "salt wells" (Co-471 and Co-382) were inventoried in the study area, and the problem of saline water in shallow aquifers is not widespread in this area of Pennsylvania. Sodium sulfate water was present in one well (Co-190) in the Marcellus Formation, and calcium sulfate water was present in two wells (Mt-31 and Nu-189) in the Keyser and Tonoloway Formations.

Most groundwater tapped by wells is acceptable for domestic supply and human consumption, although hardness, iron and manganese, and hydrogen sulfide gas in excess of recommended limits cause problems locally. These water-quality problems are generally associated with certain bedrock units. Hardess of groundwater, caused primarily by dissolved calcium and magnesium, causes "scale" encrustation in pipes and boilers, and poor lathering of soap products. Iron and manganese may impart a bitter taste to water and cause staining of plumbing fixtures and laundry. Hydrogen sulfide gas commonly is present in groundwater from dark-shale aquifers, such as the Harrell, Mahantango, or Marcellus Formations. The gas imparts a disagreeable (rotten egg) odor when it effervesces from tap water. In the following sections, these dissolved constituents and others that affect the quality of groundwater in the Berwick-Bloomsburg-Danville area are discussed.

Dissolved Solids and Specific Conductance

The concentration of dissolved solids typically is used as a criterion of water quality and for comparison of water from different hydrogeologic settings. In groundwater that is not affected significantly by man's activities, the concentration of dissolved solids in groundwater, and the corresponding specific conductance, is governed chiefly by the composition of the rock material through which the water passes and by the length of time the water is in contact with this material. Some of the dissolved solids in groundwater, however, are derived initially from atmospheric precipitation. Wood (1980) estimated that precipitation that has been concentrated by evaporation and transpiration may account for about 35 mg/L of the total dissolved solids reaching the groundwater system. Man's activities, such as application of fertilizers and pesticides, waste disposal in landfill and sewage systems, de-icing of highways using salts, and accidental spills of chemical compounds, may affect the type and increase the amount of dissolved solids in groundwater.

Specific conductance is a measure of the electrical conductivity of an aqueous solution at a given temperature, and results are reported in micromhos per centimeter (μ mho/cm) at 25 °C. Because the conductivity of water is directly related to concentrations of certain dissolved constituents in a sample, specific conductance (which is easily measured in the field) commonly is used as a measure of dissolved-solids concentration.

Total dissolved solids, in milligrams per liter, of a sample of groundwater in the Berwick-Bloomsburg-Danville area can be estimated by multiplying the field value of specific conductance in micromhos per centimeter by 0.63. This equivalence factor was developed from data obtained from all aquifers in the area. It agrees with results from other areas in Pennsylvania (Johnson, 1970; Carswell and Lloyd, 1979; Becher and Root, 1981). The relationship between dissolved solids and specific conductance varies from this value for individual geologic units. The differences are due in part to the varying effects on specific conductance of the different dissolved constituents derived from the geologic units.

The highest median dissolved-solids concentrations and specific conductances were observed in groundwater from the Harrell-to-Wills Creek stratigraphic sequence (Tables 18 and 19). Water from the carbonate-rock aquifer, the Keyser and Tonoloway Formations, has the highest median dissolvedsolids concentration (374 mg/L) and specific conductance (408 μ mho/cm). In general, the dissolvedsolids concentration increases as the carbonate content increases in an aquifer. In the calcium bicarbonate groundwater common in most of the Berwick-Bloomsburg-Danville area, calcium and magnesium make up most of the dissolved solids, although sodium, chloride, and sulfate also may contribute.

The maximum recommended limit for total dissolved solids in drinking water is 500 mg/L (U.S. Environmental Protection Agency, 1976a). The equivalent of this level for specific conductance is about 860 μ mho/cm. Nine wells (3 percent of total wells) had dissolved-solids concentrations or specific conductances greater than the recommended limit. The high level of dissolved solids in these wells generally is due to excessive sodium chloride, calcium sulfate, or sodium sulfate in bedrock zones where groundwater does not actively circulate.

Hardness

The hardness of water depends chiefly upon the concentrations of calcium and magnesium in solution. As a result, aquifers containing soluble carbonate rock generally show the greatest hardness. Water having excess hardness causes scale incrustation in pipes and boilers, requires more soap for lathering, and readily leaves a curd deposit on bathtubs and wash basins.

Total hardness may be expressed as milligrams per liter of $CaCO_3$. Ranges of hardness are expressed in the following descriptive terms (Hem, 1970):

Soft	0-60 mg/L
Moderately hard	61-120 mg/L
Hard	121-180 mg/L
Very hard	>180 mg/L

Hardness increases as the carbonate content increases in an aquifer, as shown in Figure 19. Groundwater from glacial-outwash and Mississip-

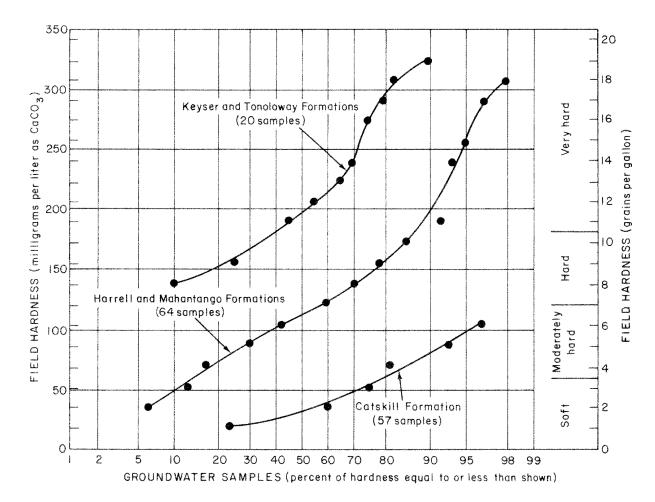


Figure 19. Cumulative percentages of hardness for the Keyser and Tonoloway Formations, Harrell and Mahantango Formations, and Catskill Formation.

pian and Devonian sandstone and shale aquifers, such as the Mauch Chunk, Catskill, and Trimmers Rock Formations, generally is soft, whereas groundwater from aquifers containing shales that are locally calcareous, such as the Harrell, Mahantango, and Bloomsburg Formations, is moderately hard. The carbonate rocks of the Keyser and Tonoloway Formations commonly yield very hard water.

The U.S. Environmental Protection Agency does not specify drinking-water standards for total hardness, but the American Water Works Association (Bean, 1962) suggests that water should not contain more than 80 mg/L of hardness. Fifty-three percent of the field measurements for hardness (Table 23) exceeded the suggested limit. Water conditioners installed in plumbing systems reduce hardness to more acceptable levels by replacing calcium and magnesium ions in solution with sodium ions, but those people who must reduce their dietary intake of sodium should be aware of this.

Iron and Manganese

Iron and manganese commonly are found in low concentrations in groundwater, but these metals may constitute an objectionable impurity even at low concentrations. Recommended limits for iron (300 μ g/L [micrograms per liter]) and for manganese (50 μ g/L) have been established by the U.S. Environmental Protection Agency (1976a) because an excess of either metal may cause a bitter taste and staining on laundry and plumbing fixtures. Natural sources of iron and manganese are sulfides, oxides, and hydroxides common in most rocks and soils. Slightly acidic, poorly buffered groundwater

may dissolve up to $5,000 \ \mu g/L$ of iron (Hem, 1970). As water pressure is lowered during withdrawal of groundwater from an aquifer and the water is exposed to air, ferrous iron in solution oxidizes and precipitates as reddish-brown ferric iron. This precipitate may stain or even clog pumps, pipes, and plumbing fixtures. Manganese precipitation leaves a black stain and also may clog pumps and plumbing systems. Concentrations of less than $1,000 \ \mu g/L$ iron or $300 \ \mu g/L$ manganese may be effectively treated by filters attached to the plumbing systems.

Concentrations of iron greater than the recommended limit may be found in groundwater from any aquifer in the Berwick-Bloomsburg-Danville area. Dissolved iron exceeded 300 μ g/L in 46 percent of water samples. The problem of iron is most noticeable in the Devonian shales of the Harrell, Mahantango, and Marcellus Formations, from which 17 of the 25 samples exceeded the recommended limit. The median concentration of iron was 660 µg/L in the Harrell and Mahantango Formations and 1,100 μ g/L in the Marcellus Formation. The highest concentration of iron was observed in the Harrell and Mahantango Formations in well Co-60 (2,900 μ g/L). Iron concentrations greater than 1,000 μ g/L also were observed in groundwater from glacial outwash, and from the Marcellus, Onondaga, and Old Port Formations.

Excessive concentration of manganese is also a problem in many aquifers. About 40 percent of the water samples exceeded the recommended limit for manganese. Groundwater from glacial outwash had the highest median concentration of manganese (600 μ g/L) and the highest individual concentration (8,100 μ g/L) in well Co-308. Fourteen of 17 samples from the Marcellus Formation and the middle and lower members of the Rose Hill Formation contained manganese in excess of the recommended limit.

Nitrate

Nitrate typically is the principal form of nitrogen in groundwater, but nitrite or ammonium may be present in reducing environments where dissolved oxygen has been depleted from the groundwater. Sources of nitrate generally are associated with biological material. This includes fecal waste from stock animals and humans, and nitrate produced in soils and leguminous plants by nitrification of atmospheric nitrogen. Fertilizers and decaying mulch also supply nitrate. In general, excess nitrate in soils dissolves with infiltrating water and reaches the groundwater system primarily during recharge events.

The maximum recommended concentration of nitrate in drinking water is 10 mg/L, expressed as nitrogen (U.S. Environmental Protection Agency, 1976a). Nitrate levels higher than this may cause methemoglobinemia in infants, and families using springs, dug wells, or inadequately cased drilled wells near on-lot septic systems or other sources of nitrates should be aware of potential problems with their water.

Median nitrate concentrations for the geologic units are less than 1 mg/L, except for the Bloomsburg, Catskill, Trimmers Rock, Old Port and Onondaga, and Wills Creek Formations. The elevated median concentrations may be traced to agricultural fertilizers and rural septic systems in these areas. Only one well sampled, Co-188, contained nitrate (17 mg/L as N) in excess of the recommended limit, and failure of the on-lot septic system at this site is the suspected cause.

Chloride

Primary sources of chloride in groundwater in the study area are evaporite deposits and connate brines, and contamination by de-icing salts, septic and sewage systems, and solid-waste disposal. The highest median concentrations of dissolved chloride were observed in the groundwater from the Marcellus-to-Wills Creek stratigraphic sequence. The concentrations in these formations probably reflect the lithologic presence of chloride in this stratigraphic sequence, although man-made contamination may affect concentrations in some wells.

The recommended limit for chloride in drinking water is 250 mg/L (U.S. Environmental Protection Agency, 1976b), primarily for reasons of taste. One well (Lu-471) tapped saline water in the Mahantango Formation that contained 1,500 mg/L of chloride. Another well in the Marcellus Formation, Co-382, contained water with 1,300 mg/L of chloride. Both of these wells are deeper than 300 feet, are located in valleys, and tap saline water from shales of low permeability. The saline water from deep zones in the valleys probably represents connate water that has been diluted but not flushed completely in areas of restricted groundwater circulation. Although the potential exists for saline water in deep wells in valleys underlain by shale, the problem does not appear to be widespread in the study area.

Sulfate

Solution of evaporite deposits (for example, gypsum) and oxidation of pyrite (FeS₂) and other sulfides are the most common sources of sulfate in the study area, although industrial and municipal wastes also may introduce sulfate to groundwater. The highest median concentrations of sulfate were observed in groundwater from the Marcellus, Onondaga and Old Port, and Keyser and Tonoloway Formations. Groundwater from four wells contained sulfate concentrations that exceeded the recommended limit of 250 mg/L (U.S. Environmental Protection Agency, 1976a) for drinking water; these wells were Co-307 (Tonoloway and Wills Creek Formations), Mt-31 (Keyser Formation), Nu-189 (Tonoloway Formation), and Co-190 (Marcellus Formation). Man-made contamination is suspected in well Co-190.

The upper part of the Silurian stratigraphic sequence contains evaporite deposits. As exemplified by wells Co-307 and Mt-31, wells drilled in valleydischarge areas that penetrate the Keyser-to-Wills Creek sequence at depth may produce groundwater having relatively high sulfate concentrations. In general, however, the shallow flow system in this gypsum-bearing sequence has been flushed of sulfate by active circulation of groundwater. Well Nu-189, which is only 120 feet deep and produced water having a sulfate concentration of 1,300 mg/L, is an exception to this generalization.

Hydrogen Sulfide

Hydrogen sulfide is a gas formed from decomposition of organic matter and sulfide or sulfate minerals in an acidic reducing environment. The rotten egg odor of hydrogen sulfide is distinctive and can be detected in water containing concentrations less than 0.5 mg/L (Hem, 1970). Hydrogen sulfide concentrations may be reduced to less objectionable levels by aeration or chemical treatment.

Hydrogen sulfide was detected in 58 of 651 wells, or in about 9 percent of the wells. It was observed most commonly in wells in Devonian shale aquifers (Table 20), such as the Harrell, Mahantango, and Marcellus Formations. Williams (1980) noted that about 28 percent of wells in the Devonian shale in the Danville area contained hydrogen sulfide. Hydrogen sulfide was detected in two wells, Co-154 and Co-308, drilled in glacial outwash. In both of these wells, the dissolved gas may come from upward flow of groundwater and gas into the glacial outwash from underlying Devonian shale bedrock.

Table 20. Occurrence of Hydrogen Sulfide in the Aquifers

Aquifer	Number of wells containing H ₂ S	Number of wells inventoried	Percent
Glacial outwash	2	20	10
Mauch Chunk Formation	0	3	0
Pocono Formation	0	0	-
Catskill Formation	1	122	.8
Trimmers Rock	11	82	13
Formation			
Harrell and Mahantango Formations	26	157	17
Marcellus Formation	10	48	21
Onondaga and Old Port Formations	5	50	10
Keyser and Tonoloway Formations	1	45	2.2
Wills Creek Formation	1	55	1.8
Bloomsburg Formation	1	26	3.8
Mifflintown and Keefer Formations	0	12	0
Rose Hill Formation	0	31	0
Total	58	651	8.9

Trace Elements

Elements that typically are present in groundwater at concentrations of less than 1.0 mg/L commonly are called trace elements (Hem, 1970). Results of 18 analyses for selected trace elements in the groundwater of Columbia and Luzerne Counties are in Table 22. Many of the wells were selected for analyses because contamination was suspected, and the results may not represent widespread water-quality characteristics of the aquifers. The analyses show that concentrations of analyzed trace elements, except for concentrations in test hole Co-154, are lower than the recommended limits for drinking water set by the U.S. Environmental Protection Agency (1976a, 1976b). The concentration of nickel in test hole Co-154 was 16,000 μ g/L, which may indicate local contamination caused by nearby waste disposal.

Petroleum Products

Spills or leaks of gasoline and other petroleum products can seriously degrade groundwater quality. The solubility of gasoline in water is about 50 mg/L (McKee and others, 1972), but an odor and taste threshold exists at about 0.005 mg/L (Matis, 1971). Petroleum products readily absorb to soil particles, particularly in the unsaturated zone, and slow release of the fuel to infiltrating water may preclude use of groundwater in an affected area for an extended period of time. The odor of a petroleum product was detected in two isolated wells in the study area, well Co-60 at Millville and well Co-310 at Bloomsburg. The source or cause of contamination was not determined for either well.

SUMMARY DESCRIPTION OF THE AQUIFERS

GLACIAL OUTWASH

Stratified deposits of glacial-outwash sand and gravel are present in the Susquehanna River and Fishing Creek valleys. The thickest, most areally extensive saturated sand and gravel deposits are found along the Susquehanna River upstream from Mifflinville and along Fishing Creek above Orangeville.

The median estimated well yield for the glacialoutwash aquifer is 190 gal/min. About one of every four wells is capable of yielding 410 gal/min or more. Where the outwash aquifer is tapped for high yields, well screens and natural or artificial gravel packs are used. Drilling problems associated with the outwash deposits include the loss of air circulation when using air-rotary equipment, isolated boulders deflecting drilling bits, and flowing sand, silt, and clay filling the well bore.

Water from the glacial-outwash aquifer generally is soft and has very low to moderate concentrations of dissolved solids. The median dissolvedsolids concentration is 95 mg/L. Manganese concentrations in excess of the recommended limit are a common problem. Wells that are without screens or are improperly developed may produce water containing suspended sediment.

MAUCH CHUNK FORMATION

The Mauch Chunk Formation consists of interbedded grayish-red shale, siltstone, and sandstone, and is in part calcareous. It crops out only in the northeastern and southeastern corners of the study area, and little information is available on the water-yielding and water-quality characteristics of the aquifer. Reported yields for two domestic wells, 150 and 200 feet deep, that are located in valleys are 10 and 20 gal/min, respectively. Water-quality data from two wells indicate that the aquifer yields soft water having very low concentrations of dissolved solids.

POCONO FORMATION

The Pocono Formation, which consists of white to light-gray quartzitic sandstone and conglomerate and some interbeds of dark-gray shale, forms the crest of Knob, Lee, and Catawissa Mountains. No information is available on the water-yielding and water-quality characteristics of the Pocono Formation, but its upland setting suggests that wells completed in the aquifer would be deep and low yielding. The aquifer probably yields soft water having a low concentration of dissolved solids.

CATSKILL FORMATION

The Catskill Formation consists of interbedded shale, siltstone, and sandstone that form a broad, dissected highland. The formation is divided into the Duncannon, Sherman Creek, and Irish Valley Members.

Only limited information on the water-yielding and water-quality characteristics of the Duncannon Member is available. An 85-foot-deep well reportedly yielded 30 gal/min of soft water having a very low concentration of dissolved solids.

The median estimated well yield for the Sherman Creek Member is 11 gal/min. About one of every four wells drilled in the Sherman Creek Member is capable of yielding 50 gal/min or more. The median depth of domestic wells is 125 feet. About one of every four domestic wells requires 60 feet of casing or more, because thick glacial deposits overlie much of the outcrop area at the base of Knob and Lee Mountains. The aquifer generally yields soft to moderately hard water having a very low to low concentration of dissolved solids. The median dissolved-solids concentration is 98 mg/L.

The median estimated well yield for the Irish Valley Member, based on only two pump-tested wells, is 11 gal/min. The median depth of domestic wells is 130 feet, and about three of every four domestic wells are 165 feet deep or less. The aquifer generally yields soft water that has very low to low concentrations of dissolved solids. The median dissolved-solids concentration is 63 mg/L.

The maximum interference observed between wells in the Catskill Formation occurred during a 48-hour test, in which the pumping of a well at 55 gal/min caused 74 feet of drawdown in a well located 350 feet away.

TRIMMERS ROCK FORMATION

The Trimmers Rock Formation consists of interbedded gray to dark-gray siltstone and shale, with sandstone in the upper part. It has a median estimated well yield of 5 gal/min. The aquifer underlies a wide range of topographic settings, and well yields vary accordingly. About one of every four domestic wells is more than 275 feet deep. The median depth of casing for domestic wells completed in the aquifer is 22 feet. Water from the aquifer generally yields soft water having a low dissolved-solids concentration. The median dissolved-solids concentration is 78 mg/L. Hydrogen sulfide is a common problem in water from the lower part of the aquifer, where dark-gray shale is abundant.

HARRELL AND MAHANTANGO FORMATIONS

The Harrell Formation consists of dark-gray shale. Interbeds of siltstone are present in the upper part. The Mahantango Formation is composed of greenish-gray to dark-gray shale, which is locally calcareous.

The median estimated well yield for the Harrell and Mahantango Formations is 7 gal/min. About one of every four wells completed in the aquifer is capable of yielding 22 gal/min or more. About three of every four domestic wells are 175 feet deep or less and have less than 40 feet of casing.

The aquifer generally yields moderately hard to hard water that has moderate amounts of dissolved solids. The median concentration of dissolved solids is 144 mg/L. Excessive iron and manganese are common water-quality problems. About 17 percent of wells completed in the aquifer yield water containing hydrogen sulfide. One 470-foot-deep domestic well yielded saline water having a chloride concentration of 1,500 mg/L.

The maximum interference between wells observed in the aquifer occurred during a 40-hour test in which the pumping of one well at 60 gal/min caused 14 feet of drawdown in another well located 787 feet away.

MARCELLUS FORMATION

The Marcellus Formation consists of dark-gray fissile shale. The median estimated well yield for the aquifer is 8 gal/min. About one of every four wells completed in the Marcellus Formation is capable of yielding 23 gal/min or more. The median well and casing depths for domestic wells are 87 feet and 30 feet, respectively.

The Marcellus Formation generally yields the poorest quality water of all aquifers in the study area. It contains moderately hard to hard water that has moderate to high concentrations of dissolved solids. The median concentration of dissolved solids is 265 mg/L. High concentrations of iron and manganese are a common water-quality problem. Hydrogen sulfide was found to be a problem in about 21 percent of the wells in the Marcellus Formation. A 320-foot-deep domestic well produced saline water having a chloride concentration of 1,300 mg/L.

ONONDAGA AND OLD PORT FORMATIONS

The Onondaga Formation is composed of interbedded gray to dark-gray calcareous shale and gray argillaceous limestone. The Old Port Formation consists of interbedded dark-gray chert, calcareous shale, and limestone. Friable sandstone is present locally in the upper part of the Old Port Formation.

The median estimated yield of the Onondaga and Old Port Formations is 91 gal/min. About one of every four wells drilled in the aquifer will potentially yield 310 gal/min or more. About three of every four domestic wells are less than 157 feet deep. The median depth of casing for domestic wells is 35 feet, although one well that penetrated friable sandstone at depth required 76 feet of casing to prevent the well from filling with sand.

In one example, individual water-bearing solution zones developed along two calcareous chert beds in the Old Port Formation were penetrated by wells over a distance of 2,000 feet. High-yield wells that tap such common zones will show significant well interference.

The Old Port and Onondaga Formations generally yield hard to very hard water having moderate to very high concentrations of dissolved solids. The median dissolved-solids concentration is 301 mg/L. Water-quality problems caused by hydrogen sulfide and excessive iron and manganese concentrations occur locally.

KEYSER AND TONOLOWAY FORMATIONS

The Keyser Formation is composed of gray to bluish-gray, thin- to thick-bedded limestone. The limestone is, in part, argillaceous and dolomitic. The Tonoloway Formation consists of laminated, gray to dark-gray limestone; dolostone occurs in the lower part. These two formations are the primary carbonate-rock aquifer in the study area.

The median estimated well yield for the Keyser and Tonoloway Formations is 180 gal/min. About one of every four wells completed in the carbonaterock aquifer will potentially yield 620 gal/min or more. Deep water levels and significant thicknesses of weathered rock are associated with the aquifer. As a result, about one of every four domestic wells is more than 210 feet deep and requires 100 feet, or more, of casing. Wells that penetrate mud-filled solution zones that are not cased off may produce turbid water.

During a multiple-well pumping test lasting 72 hours in the carbonate-rock aquifer, a well pumped at 200 gal/min caused 20 feet of drawdown in an observation well located 182 feet away. Twenty-six feet of drawdown was observed in the pumping well. In another example of well interference in the aquifer, pumping during the summer months from a high-production well field caused significant drawdown (about 5 feet) in a well located 2,500 feet away.

The Keyser and Tonoloway Formations generally yield hard to very hard water that has moderate to high concentrations of dissolved solids. The median dissolved-solids concentration of 374 mg/L is the highest of all of the aquifers. The highest median sulfate concentration, 78 mg/L, was also observed in water from the carbonate-rock aquifer, and water from three wells exceeded the recommended limit for sulfate. High concentrations of sulfate are most common in water from deep wells drilled in valley discharge areas of the carbonate-rock aquifer.

WILLS CREEK FORMATION

The Wills Creek Formation is composed of interbedded calcareous shale, argillaceous dolostone and limestone, and calcareous siltstone. The formation is gray, yellowish gray, and greenish gray in the upper part and variegated greenish gray, yellowish gray, and grayish red purple in the lower part. The median estimated well yield for the Wills Creek Formation is 99 gal/min. About one of every four wells completed in the aquifer is capable of yielding 130 gal/min or more. Domestic wells have a median depth of 98 feet. About one of every four domestic wells completed in the aquifer requires 71 feet or more of casing because of significant thicknesses of weathered bedrock.

The Wills Creek Formation generally yields hard to very hard water that has moderate to high concentrations of dissolved solids. The median dissolved-solids concentration for the aquifer is 196 mg/L.

BLOOMSBURG FORMATION

The Bloomsburg Formation consists of grayishred shale containing interbeds of siltstone. The median estimated well yield for the aquifer is 6 gal/min. About one of every four domestic wells is 211 or more feet deep, and about three of every four domestic wells have 30 feet or less of casing.

The Bloomsburg Formation generally yields soft to moderately hard water having moderate to high concentrations of dissolved solids. The median dissolved-solids concentration is 125 mg/L. In general, the water quality of the aquifer is good, and concentrations of dissolved constituents in excess of recommended limits are uncommon.

MIFFLINTOWN, KEEFER, AND ROSE HILL FORMATIONS

The Mifflintown Formation consists mostly of dark-gray calcareous shale and limestone. The Keefer Formation is composed of light-gray quartzitic sandstone and siltstone containing interbeds of greenish-gray shale. The Rose Hill Formation is divided into three members. The upper member consists of mostly gray to greenish-gray, interbedded shale, limestone, and sandstone; the middle member consists of reddish-purple sandstone containing interbeds of greenish-gray to reddish-purple shale in the upper part; and the lower member consists of greenish-gray shale containing interbeds of gray calcareous sandstone and reddish-brown hematitic sandstone.

The median estimated well yield for the Mifflintown, Keefer, and Rose Hill Formations is 10 gal/min. About one of every four wells completed in the aquifer is capable of yielding 56 gal/min or more. The aquifer underlies a wide range of topographic settings, and well yields vary accordingly. Specific-capacity data suggest that valley wells drilled in the aquifer are about 10 and 20 times more productive than wells drilled on slopes and hilltops, respectively. In general, deep domestic wells are drilled in upland areas because of significant depths to water-bearing zones. About one of every four domestic wells in the aquifer is 223 feet deep or more.

During the 1800's, deep mining of iron ore in the uppermost Rose Hill Formation occurred in areas along the flanks of the ridge between Danville and Bloomsburg. Now abandoned, these deep mines serve as effective drains that dewater overlying rocks in the Mifflintown and Keefer Formations. Deep wells that are cased below the mines may be required in this setting. It is possible that flooded deep mines could provide significant quantities of good-quality water.

In the Mifflintown, Keefer, and Rose Hill Formations the median depth of casing in domestic wells is 40 feet. However, four domestic wells that penetrated iron ore mines at depth required 70 to 121 feet of casing.

During a multiple-well test lasting 4 hours in the Rose Hill Formation, allowing a well to flow at 75 gal/min caused 40 feet of drawdown in a well located 460 feet away. Interference between wells also was reported during the pumping of a municipal well field. Significant drawdown occurred in domestic wells up to 700 feet away.

The Mifflintown, Keefer, and Rose Hill Formations generally yield moderately hard water having low to moderate concentrations of dissolved solids. Median dissolved-solids concentrations are as follows: Mifflintown and Keefer Formations, 135 mg/L; upper member of the Rose Hill Formation, 90 mg/L; and middle and lower members of the Rose Hill Formation, 100 mg/L. Iron and manganese concentrations that exceed recommended limits are common problems in the middle and lower members of the Rose Hill Formation.

TUSCARORA FORMATION

The Tuscarora Formation consists of interbedded light-gray quartzitic sandstone and grayishgreen shale. No information is available on the groundwater resources of the Tuscarora Formation, but its upland setting suggests that wells completed in the aquifer will be deep and low yielding. The aquifer probably yields soft water having a low dissolved-solids concentration.

SUMMARY AND CONCLUSIONS

The Berwick-Bloomsburg-Danville area annually receives an average of 40 inches of precipitation, about one fourth of which recharges the groundwater system. Groundwater is contained in unconsolidated glacial deposits and the underlying bedrock, and it flows from areas of greater altitude to points of discharge (springs and streams) under the gravitational influence of hydraulic-head gradients. In 1980, about 4.7 Mgal/d of water was obtained from wells and springs by the major groundwater users in the study area.

The most important unconsolidated-rock aquifer is the glacial-outwash deposits found along the Susquehanna River and Fishing Creek. The sand and gravel deposits of the glacial-outwash aquifer are highly permeable and have significant storage capabilities. Locally, up to 50 to 70 feet of saturated outwash is present in the Susquehanna River and Fishing Creek valleys.

The bedrock aquifers are gradational sequences of sandstone, shale, and carbonate rock. Groundwater in the bedrock aquifers moves along secondary permeability features, such as fractures and bedding-plane separations. The size of secondary openings in carbonate rocks can be greatly enlarged by removal of calcareous material. The most significant amount of carbonate rock is found in the Wills Creek-to-Onondaga stratigraphic sequence. Within this sequence, the carbonate rock of the Keyser and Tonoloway Formations forms the most favorable bedrock aquifer for obtaining high-yield wells.

The yield of a well depends largely on the size and number of water-bearing zones that it penetrates. The size and number of water-bearing zones decreases with increasing depth, although high yields may occur from deep water-bearing zones in aquifers containing carbonate beds.

Lithology is a major factor controlling well yields. Carbonate-rock and interbedded carbonaterock and shale aquifers have median specific capacities more than 10 times greater than shale and interbedded sandstone and shale aquifers. Wells completed in sand and gravel of the glacial-outwash aquifer may have the highest specific capacities.

Topography is another significant factor that affects well yields. The median specific capacities for wells in valleys is from 3 to 24 times greater than the medians for wells on hilltops. Wells on slopes have specific capacities between those for wells in valley and hilltop settings.

The specific capacity of a well decreases with increasing pumping rate and duration of pumping. Doubling of the pumping rate in selected wells caused a 24 to 67 percent reduction in specific capacity. The median reduction for wells in which the pumping water level fell below a water-bearing zone or zones was 59 percent. The median reduction for wells in which aquifer and well losses were the only factors was 38 percent. The reduction of specific capacity after 24 hours of continuous pumping as compared to 1-hour values in selected wells ranged from 17 to 90 percent, and the median decrease was 38 percent. On the average, about two thirds of the decrease in specific capacities occurred after 8 hours of pumping.

The bedrock aquifers have a strong directional permeability along bedding strike. During multiplewell pumping tests in the bedrock aquifers, significant interference was observed only between wells that tapped at least part of the same stratigraphic interval. Interference between wells that are competing for the same water increases the drawdown in each well and will reduce the available specific capacity of each well. The degree of interference is largely dependent on the hydraulic connection between the water-bearing zones that the wells mutually tap.

The groundwater in the Berwick-Bloomsburg-Danville area is chiefly of the calcium bicarbonate type, and most water tapped by wells is acceptable for domestic supply and human consumption. Concentrations of hardness, iron, and manganese that exceed recommended limits, however, may cause some problems in certain aquifers. Hardness in water, caused principally by dissolved calcium and magnesium, is chiefly a problem in aquifers containing carbonate rock. Accordingly, the carbonate rocks of the Keyser and Tonoloway Formations generally yield very hard water, whereas water from shales that are locally calcareous, such as in the Mahantango and Marcellus Formations, is moderately hard. Groundwater from the glacial-outwash aquifer and the sandstone and shale aquifers, such as the Catskill and Trimmers Rock Formations, generally is soft.

Iron and manganese concentrations that exceed recommended limits can be found in groundwater from any aquifer in the study area, although problems are most noticeable in the Devonian shales of the Harrell, Mahantango, and Marcellus Formations. Excessive dissolved manganese commonly was observed in groundwater from glacial outwash, the Marcellus Formation, and the middle and lower members of the Rose Hill Formation. Excessive iron and manganese are problems to the extent that the metals impart a bitter taste to water, stain fixtures and laundry, and clog plumbing systems, but water conditioning will alleviate the most serious problems.

Hydrogen sulfide gas, which imparts a rotten egg odor to groundwater, was detected in 58 of 651 wells, or in about 9 percent of the total. It was present most commonly in wells in the Devonian shale aquifers, such as the Harrell, Mahantango, and Marcellus Formations.

REFERENCES

- Bean, E. H. (1962), Progress report on water-quality criteria, American Water Works Association Journal, v. 54, p. 1313– 1331.
- Becher, A. E., and Root, S. I. (1981), Groundwater and geology of the Cumberland Valley, Cumberland County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 50, 95 p.
- Berg, T. M., Edmunds, W. E., Geyer, A. R., and others, compilers (1980), *Geologic map of Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Map 1, scale 1:250,000, 3 sheets.
- Carswell, L. D., and Lloyd, O. B., Jr. (1979), Geology and groundwater resources of Monroe County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 47, 61 p.
- Gerhart, J. M., and Williams, J. H. (1981), Recovery of groundwater levels from drought conditions in two areas of the Susquehanna River basin in Pennsylvania, Pennsylvania Geology, v. 12, no. 3, p. 2-6.
- Hem, J. D. (1970), Study and interpretation of the chemical characteristics of natural water, U.S. Geological Survey Water-Supply Paper 1473, 2nd ed., 363 p.
- Inners, J. D. (1978), Geology and mineral resources of the Berwick quadrangle, Luzerne and Columbia Counties, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Atlas 174c, 34 p.
- [1981], Geology and mineral resources of the Bloomsburg and Mifflinville quadrangles and part of the Catawissa quadrangle, Columbia County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Atlas 164cd, 152 p.
- Inners, J. D., and Way, J. H. (1979), The Light Street thrust fault, northeastern Pennsylvania, Geological Society of America Abstracts with Programs, v. 11, no. 1, p. 17.
- Inners, J. D., and Williams, J. H. (1983), Clinton iron-ore mines of the Danville-Bloomsburg area, Pennsylvania: their geology, history, and present-day environmental effects, Annual Field Conference of Pennsylvania Geologists, 48th, Danville, Pa., Guidebook, p. 53-63.
- Johnston, H. E. (1970), Ground-water resources of the Loysville and Mifflintown quadrangles in south-central Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 27, 96 p.
- Lattman, L. H., and Parizek, R. R. (1964), Relationship between fracture traces and the occurrence of ground water in carbonate rocks, Journal of Hydrology, v. 2, p. 73-91.

- Lloyd, O. B., Jr., and Growitz, D. J. (1977), Ground-water resources of central and southern York County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 42, 93 p.
- Matís, J. R. (1971), Petroleum contamination of ground water in Maryland, Ground Water, v. 9, no. 6, p. 57-61.
- McKee, J. E., Laverty, F. B., and Hertel, R. (1972), *Gasoline in ground water*, Journal of the Water Pollution Control Federation, v. 44, p. 293-302.
- Patten, E. P., and Bennett, G. D. (1962), Methods of flow measurement in well bores, U.S. Geological Survey Water-Supply Paper 1544-C, p. C1-C28.
- Trescott, P. C., Pinder, G. F., and Larson, S. P. (1976), Finitedifference model for aquifer simulation in two dimensions with results of numerical experiments, U.S. Geological Survey Techniques of Water-Resources Investigations TWI 7–C1, 116 p.

- U.S. Environmental Protection Agency (1976a), National primary drinking water regulations, Report EPA-57019-76-001.
- (1976b), National secondary drinking water regulations, Report EPA-57019-76-000.
- Way, J. H. (in press), Geology and mineral resources of the Washingtonville and Millville quadrangles, Montour and Columbia Counties, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Atlas 154cd.
- Williams, J. H. (1980), The hydrogeology of the Danville area, Pennsylvania, State College, Pennsylvania State University, M.S. thesis, 251 p.
- Wood, C. R. (1980), Groundwater resources of the Gettysburg and Hammer Creek Formations, southeastern Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 49, 87 p.

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

Multiply inch-pound units	By	To obtain SI units
inch	2.540	centimeter (cm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
square mile (mi ²)	2.590	square kilometer (km ²)
gallon per minute (gal/min)	0.06308	liter per second (L/s)
million gallons per day (Mgal/d)	3,785	kiloliter per day (kL/d)
gallon per minute per foot [(gal/min)/ft]	0.2069	liter per second per meter [(L/s)/m]
gallon per minute per square mile [(gal/min)/mi ²]	0.2436	liter per second per square kilometer [(L/s)/km ²]
micromhos (µmho)	1.0	microsiemens (µS)

Temperature in degrees Fahrenheit (°F) can be converted to degrees Celsius (°C) as follows: °F = 1.8 °C + 32

Milligrams per liter (mg/L) is an expression of concentration that is equivalent to parts per million (ppm) and is equal to 1,000 micrograms per liter (μ g/L). Micrograms per liter is equivalent to parts per billion (ppb).

TABLE 21. CHEMICAL ANALYSES OF WATER FROM SELECTED WELLS

(Quantities are in milligrams per liter except where otherwise indicated)

Well number	Date of sample	Silica (SiO ₂)	Iron (Fe) (µg/L)	Manga- nese (Mn) (µg/L)	Calcium (Ca)	Magne- sium (Mg)	Sodium (Na)	Potas- sium (K)	Sulfate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	Nitro- gen (NO ₂ +NO ₃ , as N)	Ortho- phos- phorus (P)	Dis- solved solids	Hard- ness (CaCO ₃)	Noncar- bonate hard- ness (CaCO ₃)	Alka- linity (CaCO ₃)	pH (units)	Spe- cific con- duc- tance (µmho/cm at 25°C)
Co- 80 111 154 305 308 379 Lu-452 455 486 490 491	8/10/71 3/ 3/82 12/ 8/81 10/20/80 8/ 3/81 6/ 3/81 7/ 2/81 11/ 6/80 1/25/73 12/ 6/73 11/13/73	7.8 10 12 17 9.9 19 15 11 15 11	100 230 10 250 14,000 60 8,200 1,600 3,550 280 40	70 21 2,100 350 8,100 10 3,000 600 	9.4 80 11 110 7.1 17 7.2 14 14 12	3.7 20 3.5 22 3.1 3.9 1.4 5.0 3.4 3.9	2.8 11 3.9 15 3.2 7.5 2.6 12 7.3 6.1	GL 1.1 3.5 .8 1.3 1.3 .8 1.3 .8 1.3 	ACIAL OUTWAS 31 16 33 22 12 14 35 11 46 35 37	10 4.7 13 5.0 12 3.6 17 2.5 10 3.0 1.8	0.1 <.1 .2 .1 <.1 .0 <.1	0.41 3.5 .04 2.8 .04 3.2 .01 .01 .20 .16 4.6	<0.010 .050 .000 .010 .040 <.010 .100	144 66 331 80 472 59 125 55 95	110 39 280 42 370 31 59 24 56 49 46	34 31 22 27 0 26 36 5 	76 8 260 15 400 5 23 19 17 24 15	6.9 6.2 7.9 6.1 6.7 5.7 6.4 6.4 6.0 6.5 6.2	109 608 123 804 93 180 73 180 142 136
						-			CHUNK FORM			.28	<.010	- 15	7	0	7	6.0	18
Lu-422	6/24/81	5.7	10	<1	1.6	.7	.4	.2	.7	.6	<.1	.28	<.010	15				0.0	10
									SKILL FORMA						A				
Co- 49 61 66 84 85 245 372 411 503 504 522 565 584 Lu-512	2/ 8/68 8/12/80 1/ 8/68 6/23/76 8/18/81 4/14/81 8/27/81 8/19/81 8/27/81 11/ 5/81 9/22/81 11/ 5/81 2/18/82 9/29/81	12 	150 370 200 <10 920 30 10 40 620 50 520 50 2,000 47 220	0 70 <10 380 <1 1 20 10 26 1,200 29 8 340	14 33 12 15 26 3.5 4.0 4.2 15 1.9 22 30	3.6 	6.3 	 2.2 .5 .9 .8 .5 .2 .6 .4 .5 .3	man Creek M 51 29 12 51 35 17 14 11 11 11 11 11 .8 .3 2.3 2.5 1.0 2.0 1.6	4.0 9.6 8.0 6.5 16 50 5.3 2.4 34 6.4 1.9 7.4 9.7 1.1 23 .6	.0 .1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1	3.7 1.9 1.4 4.8 5.4 4.5 .47 1.7 2.5 4.7 1.6 2.4 4.7 .03 7.7 .02	.020 .020 .020 .010 .090 .040 .070 <.010 .010 .030 .010 .060 <.010	$108 \\ 95 \\ 110 \\ 90 \\ 162 \\ 230 \\ 2 \\ 78 \\ 134 \\ 50 \\ 37 \\ 46 \\ 100 \\ 26 \\ 143 \\ 125 \\ 125 \\ 100 \\ 1$	60 50 60 83 110 58 50 95 19 16 18 54 9 85 87	40 33 0 34 37 37 0 16 57 12 3 10 10 0 40 0	20 17 75 26 46 72 59 34 38 7 13 8 44 14 45 110	6.0 7.8 6.5 6.8 6.9 7.0 7.9 7.8 5.8 6.9 7.0 5.8 6.1 6.7 7.8	 388 183 123 222 75 46 63 164 21 228 206
								Iris	sh Valley Me	mber									
Co-244 377 421 562 567 585 Nu-162	2/23/82 6/ 3/81 6/25/81 10/ 8/81 11/ 9/81 2/23/82 8/ 6/80	9.8 16 10 18 16 20 14	260 210 260 260 36 2,500 1,600	13 90 40 150 130 480 40	2.8 2.0 2.9 17 12 3.4 12	3.2 2.8 4.3 6.5 5.4 4.7 4.8	2.7 3.2 6.7 8.6 14 5.4 4.4	.6 .5 .8 .7 .6 .4 .7	1.4 .5 .2 1.0 11 4.2 28	2.7 .3 14 5.7 4.4 1.4 7.7	<.1 .1 <.1 .3 .1 .2 .1	3.7 .14 1.5 .11 .09 .02 2.6	<.010 .050 <.010 <.010 <.010 .020 .000	43 36 53 101 100 63 93	20 17 25 69 52 28 50	14 1 13 0 0 0 37	6 16 12 71 60 33 13	5.9 6.1 5.2 7.6 7.8 6.9	58 49 100 170 148 79 150

								TRIMMERS	ROCK FORMA	TION									
Co-215 354 364 365 368 Mt-160 186 237	4/ 8/82 2/23/82 4/ 2/82 2/18/82 8/ 3/81 2/23/82 11/12/81 3/ 3/82	11 12 9.7 20 13 10 13 19	9 1,700 42 190 120 74 26 52	8 220 9 85 20 34 65 35	3.8 11 5.8 5.2 9.8 5.9 18 23	2.2 3.4 5.4 7.0 6.9 3.3 4.7 8.5	2.6 3.9 3.7 9.6 4.9 3.6 5.8 13	0.1 .3 1.2 .5 1.0 .3 .7 .5	5.0 6.9 8.3 5.6 24 8.1 15 14	2.9 3.8 6.6 2.5 5.6 1.6 4.0 4.2	<.1 <.1 <.1 <.1 <.1 <.1 <.1 .2 .1	3.6 1.4 6.0 .28 4.9 1.9 .90 .02	<0.010 <.010 <.010 .020 <.010 <.010 <.010 .050	49 68 73 82 96 51 97 143	19 41 37 42 53 28 64 92	10 10 27 0 38 12 12 0	9 31 10 50 15 16 52 100	6.0 6.6 6.1 7.4 6.6 7.0 7.9 8.0	1 1 1 1 1 2
					una fil bininististu") els 1996 qu			HARREL	L FORMATIO	N									
Co-336 Lu-371	8/20/81 8/26/81	15 86	1,700 900	90 40	3.0 8.0	2.5 2.3	3.0 3.3	.3 1.4	9.7 14	.9 4.6	<.1 <.1	.06 1.1	<.010 <.010	44 54	18 29	5 19	13 10	6.9 6.6	
					49.444.489	****		MAHANTA	NGO FORMAT	ION									
Co- 56 60 126 212 320 333 454 468 Lu-372 434 453 456 471 Mt-153 178 Nu-157	12/18/73 5/14/81 8/20/81 6/3/81 6/24/81 8/13/81 8/13/81 7/22/81 8/13/81 7/30/81 11/18/81 8/26/81 1/22/81 8/ 6/80 8/18/81 11/ 4/81	8.5 12 6.7 17 24 19 14 14 16 17 16 13 11 8.1 20 21 19	860 29,000 2,200 1,800 7,900 20 410 100 50 120 16 30 3,500 580 120 740	$\begin{array}{r} 40\\ 590\\ 40\\ 50\\ 3,000\\ 20\\ 10\\ 20\\ 80\\ 140\\ 28\\ 10\\ 200\\ 430\\ 60\\ 130\\ \end{array}$	26 35 4.1 35 53 18 13 4.9 32 31 32 19 23 70 33 27 9.4	3.5 11 2.5 9.9 12 3.2 3.4 1.7 7.4 6.9 6.4 3.4 3.7 20 7.5 6.7 3.8	107 29 3.0 18 11 5.7 3.8 1.3 16 9.1 12 30 5.3 1,000 8.2 9.4 4.7	27 2.2 .6 .6 .8 .3 .4 1.0 1.9 .2 .3 .4 .6 3.1 .6 .5 .3	15 31 .4 18 22 5.2 16 13 22 21 27 14 16 2.8 20 23 9.4	172 83 5.7 15 86 2.0 5.5 2.0 12 1.3 6.3 3.6 4.1 1,500 1.6 1.4 .7	.2 <.1 <.1 .1 <.1 .1 .2 .2 .2 .2 .2 .1 .6 .2 .1	$\begin{array}{c} .28\\ .02\\ 4.1\\ <.01\\ 2.5\\ .49\\ 1.1\\ 1.9\\ .06\\ .07\\ .60\\ .06\\ .15\\ .02\\ .07\\ .01\\ <.01\\ \end{array}$.100 <.010 <.010 .050 <.010 .030 .010 <.010 <.010 <.010 <.010 .010 .050 .070 .040	429 267 48 194 261 91 77 48 174 153 161 144 99 2,670 165 145 72	80 130 21 130 58 46 19 110 110 61 73 260 110 95 39	0 77 13 0 130 0 19 17 0 9 9 0 16 150 0 2 0	11 56 8 130 51 59 27 2 110 110 97 100 57 120 93 39	8.0 6.1 7.8 7.1 7.3 6.6 4.8 8.4 7.4 7.4 8.0 7.4 8.0 7.0	4,7
								MARCELL	US FORMATI	ON								h hanne e fan se	
Co-187 190 306 452 Lu-438 Mt- 30 175	4/14/81 8/26/81 6/23/81 7/15/81 8/ 5/80 9/13/73 4/13/81	9.5 11 15 18 16 20	180 1,100 320 530 3,000 7,000 14,000	<1 270 200 70 160 1,500	60 32 55 37 41 78 40	13 8.6 9.6 10 7.2 26 15	9.6 500 4.5 14 7.3 30	1.0 2.4 .4 .8 1.6	46 760 47 38 26 20 61	28 23 14 2.0 3.2 155 35	<.1 .1 <.1 .1 .2 .2	3.0 .02 .01 <.01 .13 .00 .03	<.010 <.010 <.010 .020 .000 <.010	265 1,600 212 198 178 840 297	200 120 180 130 130 300 160	63 0 67 4 12 32	140 430 110 130 120 100 130	7.4 7.8 7.8 6.6	2,
						andrahilda kalantar kapana kurina (k. 1976)		ONONDA	GA FORMATI	ON									
Co-188 441 Mt- 17	9/23/81 8/ 4/81 9/17/73	7.3 7.3	60 400 3,350	<10 20 0	100 72 38	23 15 8.0	28 15	2.7	76 40 46	59 38 2.0	<0.1 <.1	17 3.2 .02	0.000	492 306 268	340 240 126	140 72	200 170 100	7.7 7.0	
				ng, mili paga ma Ang, mang panahana			anna fan an san fan fan skin skin skin sen en de sen er skin fan sen er skin fan sen er skin fan sen fan sen f	OLD PO	RT FORMATI	ON						an an a tha tha tha tha tha she are an			
Co- 58 59 183 Mt- 16 32	4/ 1/68 4/ 1/68 8/13/81 9/ 4/73 1/29/74	7.7	100 0 620 11,000 1,100	10 0	35 48 65	6.2 20 20	5.4	.7	34 210 50	20 20 11 7.0 72	.0 .0 <.1 	5.0 7.0 4.3 .10 .03	. 020	296 274 156 832 438	170 140 110 200 240	54 26 53 	116 114 60 120 128	7.2 7.4 6.5	
			BRANCORD AN BARRAND				alfa 1914, ka wa shekeya ka w a ka wasan 1919	KEYSE	R FORMATIO	N						nan anan amanakan na 1600 mmataka keta	anator (a - 16 July) Jake and Alexandro (Alexandro		1 - A10 - 20 - 10 - 20 - 20 - 20 - 20 - 20 -
Co- 57 310 Mt- 2 14	4/ 1/68 8/ 4/81 5/24/71 4/16/74	2.3	0 2,000 40 1,100	430 10 0	94 65 33	18 11 25	18 8.7	1.3	78 62 20 61	132 66 20 20	.0 <.1 .1	4.8 .01 4.0 1.4	<.010 .010	434 372 250 374	120 310 210 180	0 130 43	125 180 167 184	7.3 6.8 7.7	ť

CHEMICAL ANALYSES

TABLE 21. (CONTINUED)

Well number	Date of sample	Silica (SiO ₂)	Iron (Fe) (µg/L)	Manga- nese (Mn) (µg/L)	Calcium (Ca)	Magne- sium (Mg)	Sodium (Na)	Potas- sium (K)	Sulfate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	Nitro- gen (NO ₂ +NO ₃ , as N)	Ortho- phos- phorus (P)	Dis- solved solids	Hard- ness (CaCO ₃)	Noncar- bonate hard- ness (CaCO ₃)	Alka- linity (CaCO ₃)	pH (units)	Spe- cific con- duc- tance (µmho/cm at 25°C)
								KEYSER FOR	MATION (CON	TINUED)			energi e tento interio de la coloridade de la coloridad						
Mt -31 Nu-187 188 189	12/29/72 12/ 3/81 11/24/81 11/24/81	11 11 20	300 9 13 390	0 3 3 10	152 75 107 350	28 13 24 120	22 34 10	1.7 2.0 .9	625 84 190 1,300	76 38 46 13	.1 .2 1.4	.00 6.4 4.4 .12	.090 <.010 <.010	1,040 345 518 1,890	550 240 370 1,400	120 230 1,200	140 120 140 130	7.8 7.7 7.6	557 796 2,070
							a de la de la desta de la d	TONOLO	WAY FORMATI	ON									
Co-304 307 410 505 Mt- 15	10/20/80 7/ 1/81 6/ 3/81 10/13/81 4/23/74	12 16 8.4 9.2	10 460 110 4 370	10 80 20 2 0	38 110 64 34 64	8.7 33 18 19 20	4.9 7.5 13 2.3	.6 1.0 1.7 .5	28 270 48 23 110	6.3 6.6 31 2.9 7.0	.1 .3 .1 .1	1.7 .86 .83 .05 .00	.010 <.010 .060 .010	163 521 278 175 382	130 410 230 160 258	37 290 84 23	94 120 150 140 160	7.7 7.5 7.4 8.2	282 736 505 294
			 Second statistics 					WILLS (CREEK FORMAT	ION									
Co- 70 86 87 106 159 201 204 205 404 413 453 457	7/ 7/81 5/13/73 5/13/73 8/13/81 8/ 4/81 8/ 5/80 10/23/80 10/29/80 6/25/81 6/25/81 7/22/81 7/30/81	12 11 9.3 9.6 7.0 7.0 7.6 7.1 7.2	1,900 20 20 10 30 420 10 10 20 230 170 70	50 50 <1 10 2 3 2 <1 60 60 10	63 37 53 39 45 37 25 38	25 8.7 23 20 7.6 10 15 7.5	17 4.6 7.0 6.0 2.4 8.0 1.2 3.9	.9 .7 .8 .6 .5 .7 .6 .6	140 15 12 26 82 23 32 2.3 14 8.6 2.4	29 18 19 10 18 12 71 35 29 15 7.4 10	.2 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1	.46 .11 .13 4.8 8.4 3.0 2.8 1.6 6.3 2.5 7.5 7.7	<.010 <.010 <.010 .000 	375 220 219 166 296 217 174 163 143 160	260 110 130 230 180 150 80 140 130 120 130	120 5 0 51 120 40 	140 105 110 77 110 140 140 120 87 98 75 93	7.7 5.0 5.0 7.9 7.8 7.5 8.2 7.3 7.6 8.1 7.1	644 276 509 400
								BLOOMSI	BURG FORMATI	ON									
Co- 45 88 357 437 455 460 461 462 463 569	4/ 9/81 5/13/73 7/21/81 7/21/81 7/21/81 7/29/81 7/29/81 7/29/81 12/ 8/81	12 14 20 8.8 9.2 8.1 10 8.1 8.7 16	280 250 760 1,100 980 60 6,200 8,000 70 30 8	130 30 8 180 30 2 50 5,300 5,300 2 1 7	43 9.1 12 15 32 21 97 24 28 18	11 3.0 3.4 3.4 6.7 6.9 18 4.2 6.9 3.6	9.3 3.0 2.7 1.7 4.6 3.4 37 9.6 3.7 3.7	1.1 .6 .7 .6 1.5 6.0 5.4 .5 .7	30 20 7.3 16 2.0 7.7 20 36 32 19 20	56 2.5 1.0 1.0 5.2 1.0 8.5 100 11 6.7 1.5	0.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <	5.0 .10 2.2 .01 2.9 4.3 2.5 .74 8.9 1.5 1.5	0.710 .110 .130 <.010 .070 <.010 .020 .220 <.010 .110	213 130 60 76 70 128 113 459 148 125 93	150 64 35 44 51 110 81 320 77 98 60	110 0 16 13 20 29 38 86 54 23 22	46 67 19 31 31 79 43 230 23 75 38	7.7 5.0 6.7 7.7 6.8 6.9 6.2 6.5 6.5 7.8 7.2	387 89 102 112 234 188 864 226 208 152
							M	IFFLINTOWN	AND KEEFER	FORMATIONS	1978 ⁻ 1990 - 1971 -			(-1)-(1 ⁻¹) ⁻⁽¹ -1)-(1 ⁻¹) ⁻⁽¹ -1) ⁻⁽¹⁾ (1) ⁻⁽					
Co-128 157 331 332 355 570 586	2/17/82 2/23/82 2/17/82 2/17/82 2/18/82 12/17/81 3/ 3/82	8.3 7.2 14 7.9 6.2 8.1 10	7 100 11 37 410 8 200	$3 \\ 13 \\ 1,500 \\ 38 \\ 27 \\ 100 \\ 65$	46 18 38 20 11 22 30	6.8 3.3 4.7 4.6 4.4 5.8 8.7	2.9 3.2 11 25 8.4 2.1 5.4	.4 .8 .2 .8 .5 .7	30 7 24 19 .7 16 5.5	9.0 12 12 8.5 32 3.5 2.4	<.1 <.1 .2 <.1 .1 .1	.58 2.9 3.6 .11 4.8 .04 .02	<.010 .020 .010 <.010 <.010 <.010	166 83 179 136 88 97 135	140 59 110 69 46 79 110	43 28 19 0 42 14 0	100 31 95 84 4 65 120	7.9 6.5 7.4 7.9 6.1 8.0 7.8	287 135 300 225 164 171 229

Se

									LL FORMATIO	4									
									r Member										
Mt-181 185 221 227 235	10/ 6/81 11/12/81 2/23/82 4/ 8/82 2/23/82	8.4 11 9.5 9.7 7.6	140 54 54 9 28	76 140 140 7 3	24 23 23 20 21	12 11 11 4.2 3.3	2.7 4.0 66 4.6 2.4	.6 .3 <.1 <.1 .4	12 32 21 8.9 2.2	4.1 1.6 20 1.0 9.8	.2 .1 .2 <.1	.04 .03 .01 <.10 1.6	<.010 <.010 <.010 <.010 <.010	117 128 46 90 84	110 100 67 66	21 28 	88 75 81 69 51	7.9 7.9 8.0 7.7 6.7	216 208 262 146 156
							1	Middle and	Lower Membe	er 5									
Mt- 29 36 123 176 214 245 247 248 249 250 251 255	7/14/80 9/22/81 8/18/81 8/17/81 9/22/81 9/22/81 9/22/81 9/23/81 9/23/81 9/30/81 4/28/82	7.2 10 7.5 7.3 6.1 6.2 6.1 6.7 7.6 7.4	400 360 1,500 30 10 90 80 30 1,300 940	90 160 340 120 10 <10 130 200 330 510 440	24 28 17 11 17 63 14 21 7 1.9 22	13 13 14 6.3 8.8 12 10 9.4 9.7 8.4 16	.6 .6 .6 3.2 2.5 3.9 1.4 7.0 .4 1.3	1.2 1.0 .6 .4 .9 .6 .6 .8 .8 .8 .6 1.5	6.5 14 4.7 3.3 2.6 14 37 11 3.2 11 .3 6.0	.6 4.0 1.9 1.4 .8 1.6 8.6 1.8 1.4 7.2 .8 1.1	.2 .2 .2 .1 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	.40 .01 .01 .02 4.2 .20 .03 5.7 .05 <.10	.010 .010 .010 .006 .140 .020 .000 .000 .060 <.010 <.010	126 118 102 57 93 233 93 100 100 44 129	110 120 100 53 79 210 76 91 57 39 120	0 23 7 8 11 67 2 0 16 3 1	120 110 93 45 68 140 74 93 41 36 120	7.6 7.7 7.1 7.4 7.4 8.0 7.2 6.6 7.5	240 246 200 178 96 164 374 164 184 162 78 237

						I	Dissolve	ed trac (µg/L)	e metal	ls							c indicator (mg/L)	
Well number	Geo- logic unit ²	Date of sample	Arsenic (As)	Beryllium (Be)	Cadmium (Cd)	Chromium (Cr)	Hexavalent chromium (Cr ⁺⁶)	Copper (Cu)	Cyanide (CN)	Lead (Pb)	Mercury (Hg)	Nickel (Ní)	Selenium (Se)	Zinc (Zn)	Oil and grease	Dissolved organic carbon	Suspended organic carbon	Phenol (µg/L)
Co-154	Qgo	12- 8-81	1	<1	1	<10	<1	42	<10	3	<0.1	1,600	<1	400	<1	7.2	3.3	3
190	Dmr	8-26-81	5	<10	2	10	<1	3	<10	5	.2	5	<1	10	1	3.7	>5.0	<1
308	Qgo	8- 3-81	20	0	1	10	<1	2	<10	1	<.1	5	<1	10	2	1.0		
310	DSk	8- 4-81	12	1	1	10	<1	1	<10	1	<.1	4	<1	4	1	2.0		0
357	Sb	7-21-81	2	<1	1	<10	0	35	<10	3	<.1	1	0	7	0	8.5		0
371	Sb	7-21-81	10	<1	<1	<10	0	13	<10	3	<.1	1	0	10	1	.4		0
436	Dcs	8-27-81	1	<10	2	<10	<1	8	<10	3	.2	4	<1	10	1	6.0	.2	<1
453	Swc	7-22-81	1	<1	<1	10	0	24	<10	12	<.1	1	0	<4	0	.6		0
454	Dmh	7-22-81	1	<1	<1	<10	0	98	<10	19	<.1	18	1	60	1	<.3	440 MIC 188	0
455	Sb	7-21-81	2	<1	3	<10	0	13	<10	3	.1	2	0	20	1	.3		0
457	Swc	7-30-81	3	1	1	10	<1	3	<10	1	<.1	2	1	9	1	3.4	.2	8
460	Sb	7-29-81	1	<1	2	<10	<1	14		32	<.1	4	0	90				
461	Sb	7-28-81	22	<1	1	<10	<1	11	<10	12	.1	15	0	160	0	15	3.4	0
462	Sb	7-29-81	2	1	1	10	<1	53	<10	1	<.1	4	<1	100	0	4.0	.3	2
463	Sb	7-29-81	4	1	1	10	<1	8	<10	1	<.1	4	<1	20	0	10		4
569	Sb	12- 8-81	2	<1	<1	<10	<1	24	<10	1	<.1	5	<1	15	<1	5.6	.1	<1
570	Sm	12-17-81	1	<1	2	10	<1	<1	<10	<1	.1	<1	<1	5	<1	.3	.2	5
Lu-434	Dmh	7-30-81	1	1	1	10	<1	5	<10	1	<.1	2	<1	4	0	4.2		6
Recommende	ed limit ³		50	-	10	50	50	41,000	200	50	2		10	⁴ 5,000				41

TABLE 22. TRACE-ELEMENT AND ORGANIC-INDICATOR ANALYSES OF WATER FROM SELECTED WELLS

¹Analyzing agency: U.S. Geological Survey, Central Laboratory, Atlanta, Georgia.

²Geologic unit: Qgo, Glacial outwash; Dcsc, Sherman Creek Member of Catskill Formation; Dmh, Mahantango Formation; Dmr, Marcellus Formation; DSk, Keyser Formation; Swc, Wills Creek Formation; Sb, Bloomsburg Formation; Smk, Mifflintown and Keefer Formations.

³U.S. Environmental Protection Agency (1976a, 1976b).

 $^{\rm 4} The$ given level is for controlling undesirable taste and odor quality.

TABLE 23. RECORD OF SELECTED WELLS AND TEST HOLES

- Well location: The number is that assigned to identify the well or test hole. It is prefixed by a two-letter abbreviation of the county. The lat-long is the coordinates, in degree and minutes, of the southeast corner of a 1-minute quadrangle within which the well is located.
- Use: A, air conditioning; C, commercial; H, domestic and small commercial; I, irrigation; N, industrial; D, observation; P, public supply; R, recreation; S, stock; T, institution; U, test hole.

Topographic setting: C, stream channel; H, hilltop; S, hillside; T, terrace; V, valley flat; W, upland draw.

- Aquifer: Qal, alluvium; Qgo, glacial outwash; Qt, till; Mmc, Mauch Chunk Formation; Dcd, Duncannon Member of Catskill Formation; Dcsc, Sherman Creek Member of Catskill Formation; Dciv, Irish Valley Member of Catskill Formation; Dtr, Trimmers Rock Formation; Dh, Harrell Formation; Dmh, Mahantango Formation; Dmr, Marcellus Formation; Don, Onondaga Formation; Do, Old Port Formation; DSk, Keyser Formation; Sto, Tonoloway Formation; Swc, Wills Creek Formation; Sb, Bloomsburg Formation; Smk, Mifflintown and Keefer Formations; Sru, upper member of Rose Hill Formation; Srm, middle member of Rose Hill Formation; Srl, lower member of Rose Hill Formation.
- Lithology: dls, dolostone, limestone, and shale; ls, limestone; lsd, limestone and dolostone; lss, limestone and shale; sd, sand; sg, sand and gravel; sh, shale; sls, sandstone, limestone, and shale; slt, silt; sssh, sandstone and shale.
- Static water level: Depth--F, flows but head is not known; minus sign indicates that water level is above land surface. Date--month/iast two digits of year.

Reported yield: gal/min, gallons per minute.

Specific capacity: (gal/min)/ft, gallons per minute per foot of drawdown.

Pumping rate: gal/min, gallons per minute. Where no pumping rate is indicated, specific capacities were determined from drillstem and bailer test data reported by drillers.

Hardness: mg/L, milligrams per liter.

Specific conductance: mmho/cm at 25°C, micromhos per centimeter at 25 degrees Celsius.

Well	location					Alti- tude of land	Торо-	
Number	Lat-Long	Owner	Driller	Year	Use	surface (feet)	graphic	Aquifer/ lithology
indino e i	Laveng			compreted	030	(1000)	secong	COLUMBIA
Co- 1	4100-7627	Howers			н	490	Т	
45 47	4100-7626 4107-7632	Numers U.S. Geological Survey Millville Water Authority	Ralph Meyers	1970	0 P	690 630	H V	Qgo/sg Sb/sh Qa1/sg
48 49	4059-7627 4057-7627	Magee Carpet Co. Catawissa Water Authority			N P	475 480	T V	Do/1ss Dcsc/sssh
51 52	4059-7627 4059-7627	Bloomsburg Mills, Inc. do.	Kohl Brothers do.	1940	A	490	T T	Do/lss
52 53 56	4059-7627 4059-7627 4107-7632	do. Millville Water	do. Norman Hagenbuch	1944 1964 1953	A A P	490 490 630	r T V	Do/lss Do/lss Dmh/sh
57	4103-7613	Authority Keystone Water Co.	Cresswell	1957	Р	500	т	DSk/1s
58	4103-7613	do.	do .	1957	Р	500	т	Do/lss
59 60	4103-7613 4107-7631	do. Jerre Wright	do .	1957	P C	500 630	T V	Do/lss Dmh/sh
61	4056-7627	Catawissa Water Authority			Р	480	V	Dcsc/sssh
62 63	4056-7627 4059-7626	do. Bloomsburg Packing Co.	Kohl Brothers	1946	P N	485 480	V V	Dcsc/sssh Dmr/sh
66 68	4104-7624 4103-7614	Orangeville Water Co. Consolidated Cigar	R. R. Hornberger Joseph Wright	1963 1957	P A	670 540	W T	Dcsc/sssh Swc/d1s
69 70	4103-7614 4103-7615	Corp. do. Keystone Water Co.	do. Cresswell	1957 1957	A P	540 525	T T	Swc/dls Swc/dls
84	4057-7627	Catawissa Water			Р	475	v	Dcsc/sssh
85	4057-7627	Authority do.	Alvin Swank and Son	1981	Р	480	٧	Dcsc/sssh
86	4102-7619	Scenic Knolls		1950	р	605	S	Swc/d1s
87	4102-7619	do .		1964	Р	610	S	Swc/dls
88 90	4102-7619 4104-7619	do. Yohey	R. R. Hornberger Champion	1966 1978	Р Н	675 980	S Н	Sb/sh Dciv/sh
91	4100-7621	G. Breisch	do.	1978	H	920	Ĥ	Dtr/sssh
92	4101-7621	J. Johnson	Stackhouse	1972	н	500	٧	Dmr/sh
93 94	4100-7618 4100-7618	Pete Diehl B. Diehl	Champion do.	1977 1977	H H	670 740	S S	Dciv/sssh Dciv/sssh
95	4104-7616	Steve Yeager	do.	1978	н	630	š	Dmh/sh
96 97	4105-7616 4105-7616	Stanley Belles Ronald Davis	W. C. Fenstemaker	1970	H	970	S	Dcsc/sssh
98	4101-7618	Don Shrader	Champion Roy Zimmerman	1968 1967	H	1,055 510	H T	Dciv/sssh Dmr/sh
99	4105-7620	Alan Nagle	Champion	1973	н	940	S	Dcsc/sssh
100 101	4105-7620 4104-7621	Edward Fink Robert Markle	do.	1971 1978	H H	930 945	S S	Dcsc/sssh
102	4101-7622	Bloomsburg Carpet	do. R. R. Hornberger	1978	N	945 495	T	Dcsc/sssh DSk/ls
103 104	4103-7618 4100-7615	St. Peter's Church Pennsylvania Department of Transportation	do. do.	1967 1966	H H	700 880	H S	Sb/sh Dcsc/sssh
105	4104-7618		do.	1966	Н	500	Т	Dmr/sh
106 108	4102-7621 4101-7620	D. Dickson Poloron	Stackhouse R. R. Hornberger	1977 1970	H N	645 510	S V	Swc/dls Do/lss
109	4102-7622	Schultz Electroplating	do.	1973	N	705	S	Sb/sh
110 111	4102-7622 4106-7622	do. Fred Cleaver, Jr.	do. Clifton Buck	1973 1968	N H	705 616	S T	Sb∕sh Qgo∕sg
112	4105-7624	Norpole	R. R. Hornberger		H	580	Т	Qgo/sg
113	4105-7624	Raymond Ribble	Virgil Buck	1980	Н	590	Т	Dcsc/sssh
114 115	4106-7622 4104-7624	Ray Messersmith Keith Musselman	Stackhouse Champion	1975	H H	580 920	T S	Dcsc/sssh Dcsc/sssh
116	4102-7624	Donald Thomas	Stackhouse	1973	н	690	н	Swc/dls
$\frac{117}{118}$	4103-7625 4103-7623	Judy Krumheller Graig Gibney	do. Champion	1972 1974	H H	550 955	s s	Dcsc/sssh
119	4103-7623	Ed Campbell	Stackhouse	1974	н Н	955 555	S	Dciv/sssh Dcsc/sssh
120	4103-7624	R. Whitmeyer	Alvin Swank and Son	1979	н	1,000	S	Dtr/sssh
121 122	4102-7604 4104-7623	Charles Baylor Edward Haugh	R. R. Hornberger do.	1973 1966	H H	820 890	S W	Dtr/sssh Dciv/sssh
123	4104-7623	James Cox	do.	1968	н	880	W	Dciv/sssh
124 125	4102-7624 4102-7624	Harry Wenner	Stackhouse	1977	Н	775	S	Dmh/sh
125	4102-7624 4102-7625	Kingston Steve Truesdale	Champion Ronald Randler	1975 1978	H H	650 620	S W	Dmh/sh Dmh/sh
127 128	4102-7625 4101-7624	Robert Beers Pennsylvania Power and Light Co.	R. R. Hornberger do.	1977 1972	н С	530 720	T S	Dmh/sh Smk/1ss
129	4101-7628	Carl Welliver	do.	1967	н	560	S	Dmh/sh
130	4101-7628	do.	Clifton Duck	***	н	520	v	Qgo/sg
131 132	4101-7628 4100-7624	Jim Kreamer Joe Crawford	Clifton Buck Stackhouse	1974 1976	H H	615 485	S V	Smk/sls DSk/ls
133	4100-7624	Venice Koons	Champion	1970	H	485	v	Dmr/sh

RECORD OF WELLS

	Casi			Static lev					and the second second		
Total depth below land surface	Depth	Diameter	Depth(s) to water- bearing zone(s)	Depth below land surface	Date measured	Reported yield	Specific capacity [(gal/min)/ft]/ pumping rate	Pumping period	Hard- ness	Specific conduc- tance (umho/cm	Well
(feet) COUNTY	(feet)	(inches)	(feet)	(feet)	(mo/yr)	(gal/min)	(gal/min)	(hours)	(mg/L)	at 25°C)	numbe
18				11	6/80		A 1 Marcolation and 2 of an in Antonio Marcola and a strategy of a summy state of grants			e a y	Co- 1
282 12	32	6	115;163	83	4/81	1 60	.03/1	1	****	480	45 47
202 205	48 14	8 10		42 11	1/30 8/80	***	5.6/185 1.2/45	24 3	* - *		48 49
498 550 420 500	94 115 77 21	8 10 12 8		25 35 30	3/58 11/64 11/64	60	3.2/542 13/1,170 3.8/620 .23/39	8 24 24 5	462 57	980 345	51 52 53 56
160 90 87 225 375	63 75 58 40	12 12 12 8	92;140;200	31 30 32 5 14	6/81 6/81 6/81 5/81 7/80		280/300 340/200 350/300 2.5/15 .19/8	24 24 24 1 1	200 240 184 124	540	57 58 59 60 61
275 525 465 284	14 42 16	6 8 6 10		11 7 64	8/80 5/46 10/63	225	.42/16	1	51	100	62 63 66 68
151 473	75	10 12	120;140;260; 340;390;420;	37	5/81	380	5,3/83	1	240	675	69 70
250	28	8	450		***	55		age == 100	NO. 100 L 101	10 Be //	84
448	30	8	30;60;95; 120;270		No. ANY GAL	100	***				85
190 402 415 275 200 70 165 150 150 150 150 120 150 100 125 175 80 67	42 20 20 20 20 20 44 40 20 71 20 20 20 30 30 30 47 50	7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	70;103;157 205 125;160 42;68 130;158 130;60;158 130;60;70 74;98 120 75 105 60;90 75 62	80 48 25 114 32 20	8/66 9/81 5/71 5/66 12/66	8 5 6 30 15 5 10 20 5 12 15 8 40 3 30 30	.02/ 		290 34 68 17 222 102 	470 90 183 516 200	86 87 88 90 91 92 93 94 95 96 97 97 98 99 90 100 101 102 103 103
$\begin{array}{c} 173\\ 300\\ 390\\ 495\\ 47\\ 33\\ 62\\ 120\\ 175\\ 151\\ 61\\ 100\\ 193\\ 400\\ 215\\ 75\\\\ 223\\ 125\\ 100\\ 66\\ 200\\ \end{array}$	21 184 27 21 46 34 55 70 8 31 40 20 33 33 33 55 100 36 41	686666666666666666666666666666666666666	110;165 130;220;280 33 62 105;150 150 38;60 75 165;190 175 59;89;91 190 105;116 40;63	101 34 40 18 13 24 12 80 	11/80 7/70 6/73 6/73 7/68 6/80 6/80 6/80 10/66 6/80 4/77 10/66 6/80 4/77 10/72	350 9 5 20 20 20 7 14 8 12 8 12 8 1 5 8 5 8 13 30	1. 1/200 1. 7/ 1. 7/	24	120 254 51 34 17 68 17 68 34 103 34 171	140 600 101 82 70 125 50 135 100 120 58 218 65 260	106 108 109 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
175 125 47 53	24 50 27 35	6 6 6	76;93;130 105 47 45	44 2 100 3 15	8/80 6/80 10/74 4/76 3/70	3 10 10 30	.02/ 1.00/ 1.4/		137 68 51 308	185 90 75 380	129 130 131 132 133

				-			1	
						Alti-		
						tude of	Tana	
Well	location			Year		land surface	Topo- graphic	Aquifer/
Number	Lat long	Owner	Driller	completed	Use	(feet)	setting	lithology
Number	Lat-Long	owner	Diffier	Compreded				
Co-134	4100-7624	Isola	Champion	1970	н	480	¥	Dmr/sh
135	4101-7625	Donald Meckley		1967	н	750	S	Sru/sls
136	4100-7625	Атосо	Champion	1974 1978	H H	495 840	V S	Sto/lsd Sru/sls
137	4100-7627	Mary Hill Catawissa Water	Stackhouse	1970	P	480	v	Dcsc/sssh
138	4057-7626	Authority			·			
139	4056-7626	do.	Alvin Swank and Son	1979	Р	780	W	Dcsc/sssh
140	4056-7626	do .	do .	1979	P	720	W	Dcsc/sssh
141	4101-7619	U.S. Geological Survey		1979 1979	0	500 505	T T	Qgo/sg Qgo/sg
142 143	4101-7618 4102-7617	do. do.		1979	ŏ	490	Ť	Qgo/sg
143	4100-7618	do.		1979	Ŭ	570	S	Qt/sd
146	4102-7618	do.		1979	U	505	т	Qgo/sg
147	4102-7618	do .		1979	U	500	T	Qgo/sg
148	4102-7617	do .		1979 1979	U U	520 510	T T	Qgo/slt Qgo/sg
149	4102-7618	do. do.		1979	U	495	Ť	Qgo/sg
150 151	4103-7616 4104-7625	do.		1979	Ŭ	585	Ŵ	Qt/sd
151	4059-7628	do.		1979	U	470	Т	Qgo/sd
153	4059-7628	U.S. Geological Survey		1979	U	465	Ţ	Qgo/sg
154	4059-7628	do .		1979	0	470 520	T S	Qgo/sg Dcsc/sssh
155	4056-7627	Susquehanna Dairy			N	520	3	003073331
156	4102-7625	Association Willard Thomas	Clifton Buck	1956	н	550	т	Swc/dls
150	4102-7623	James Magee	R. R. Hornberger	1968	н	785	S	Smk/sls
158	4102-7621	Robert Neyhard	do.	1966	н	760	н	Sb/sh
159	4102-7617	Harold Wertman	do.	1975	Н	485 485	V V	Swc/dls Qgo/sg
160	4102-7617	do .	R. R. Hornberger	1977	H N	485	v	Sto/1sd
161	4101-7622	Bloomsburg Carpet Industries	R. R. Hornberger	1977	a	455	•	5007754
162	4101-7621	Col-Mont Vo-Tech	do.	1967	Р	565	S	Swc/dls
163	4101-7622	Robert Holdren	do.	1966	н	500	٧	Sto/1sd
164	4101-7622	John Wolf		1880	н	520	S V	Swc/d1s Dmh/sh
165	4101-7621	Cindy Yorty	Alvin Swank and Son	1980 1972	H H	485 490	v	Dmh/sh
166 167	4101-7621 4101-7620	Claire Wagner Gerald Young	Stackhouse R. R. Hornberger	1966	н	495	v	Dmh/sh
167	4101-7619	Walter Hause	Alvin Swank and Son	1979	н	520	Ŷ	DSk/1s
169	4101-7619	John Horeck	Champion	1973	н	520	V	Sto/1sd
170	4103-7614	Pennsylvania Department		1977	U	548	Ť	Qgo/sg
		of Transportation		1977	U	472	С	Do/lss
173	4103-7613 4101-7620	do. David Belles	Virgil Buck	1975	н	525	v	Don/1ss
182 183	4101-7620	Richard Huber	Champion	1976	н	515	V	Do/lss
184	4106-7637	Allen Gardner	Virgil Buck	1977	Н	780	н	Dmh/sh
185	4104-7614	Drew Heckman	Champion	1968	н	660	S V	Dmh/sh Dmh/sh
186	4058-7628	J. Streater	R. R. Hornberger	1968	I	470	v	Diarry Sti
187	4059-7628	L. Wintersteen			н	490	v	Dmr/sh
188	4059-7628	do.		1935	н	490	٧	Don/1ss
189	4059-7626	Kawneer, Inc.	R. R. Hornberger	1966	N	470	V.	Dmr/sh
190	4100-7626	do.	do.	1966	N	475	۷	Dmr/sh
	1050 7501	Handomitau Hatan Ca	do	1967	Р	630	S	Dtr/sssh
191	4059-7624	Wonderview Water Co.	do.	1907		000	Ū.	
192	4059-7624	do.			Р	760	S	Dtr/sssh
193	4059-7624	do.	R. R. Hornberger	1977	Р	760	S	Dtr/sssh
195	4103-7616	Joseph Alley	Champion	1972	H	515 500	V T	Swc/dls Do/lss
196	4101-7620	Champion Valley Farms		1963 1963	N N	500	T	Do/lss
197	4101-7621 4101-7621	do. do.		1963	N	500	Ť	Do/1ss
198 199	4101-7621	do.	R. R. Hornberger	1968	N	500	Т	Do/1ss
200	4103-7637	Paul Whalon	Virgil Buck	1972	н	575	S	Dmh/sh
201	4103-7615	John DiBattista	Champion	1975	H	530	V T	Swc/dls Qgo/sg
202	4101-7620	Scott Sweeny			H H	505 505	I T	Ugo/sg Dmr/sh
203	4101-7620	do. Columbia County	R. E. Kresge	1970	N	510	Ť	Swc/d1s
204	4102-7619	Development Authority	n nieżyć					
205	4102-7619	do.	do .	1970	N	510	Ţ	Swc/dls
206	4102-7617	Mifflin Township Water	R. R. Hornberger	1971	Р	490	T	Qgo/sg
		Authority	de	1074	Р	490	т	Qgo/sg
207	4102-7617	do.	do. Kohl Brothers	1974 1970	P	490 600	Ŵ	Dcsc/sssh
. 209 210	4100-7618 4056-7627	do. Catawissa Lumber Co.	Koni Brothers	1970	N	550	S	Dcsc/sssh
210	4056-7627	do.			N	525	S	Dcsc/sssh
212	4101-7620	Helen Rupert			Н	500	Ţ	Dmr/sh
213	4101-7620	do.		1070	H H	500 695	Т Н	Qgo∕sg Smk∕sĭs
214	4101-7625	Paul Eyerly	R. R. Hornberger	1978	н Н	505	T	Dmr/sh
217 218	4202-7617 4106-7633	Lupini R. Eckroth	Stackhouse	1978	н	740	Ś	Dmh/sh
210	4100-1000	K. LORIOUI						

RECORD OF WELLS

					Static lev	: water vel						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	depth below land surface	Depth	Diameter	to water- bearing zone(s)	below land surface	measured	yield	capacity [(gal/min)/ft]/ pumping rate	period	ness	conduc- tance (umho/cm	Well number
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												Co-134
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	75	40	6	52	5	6/80	15					135 136
												137 138
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	400	43	8				60	.16/45	48			139
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	400	42	8				60	.22/55	48			140 141
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47	42	2									142
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												143 144
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			÷	~ - ~								146
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												147 148
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												149 150
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												151
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												152 153
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	35	2	***	12	6/80						154
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200			~ ~ ~		***	***	~~~				155
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												156
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	215	18								103	210	157 158
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												159 160
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												161
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	155	74	6	89;130;148	53	6/80		1.8/40	48			162
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												163 164
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	175	***			13		2			256	380	165
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												166 167
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80	72	6		49	6/80	35			222	360	168
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												169 170
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				100 Mar. 400.			ala ili 19	ato 100 mil	aiq 760 (ai)	***	Test Lines Lines	173
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												182 183
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	275	20	6		****		3					184
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												185 186
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				360;470								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												187 188
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												189 190
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				156;308								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		81	6	261	35	1/6/	30					191
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												192 193
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75	31	6	53	21	7/80	10					195
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												196 197
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	600	40	8		***		440	silge 206-1984				198
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												199 200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												201 202
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110	~ ~ ~	~~~		38	12/80				170	400	203
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	273				31	10/80	85	7.4/141	48	180	430	204
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												205 206
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												207
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												209 210
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	465						3			120	300	211 212
65 52 12/80 137 250 2	33	***	~		20	9/80					~ ~ ~	213
												214 217
348 21 6 110 1 13/ 360 2	348	21	6	110			1			137	360	218

					1	r	1	Г
							**	
							montu ne	
						Alti-	-	
							1	
						tude of	Tana	
Well	location			Veren		land	Topo-	Aquifon/
				Year		surface	graphic	Aquifer/
Number	Lat-Long	Owner	Driller	completed	Use	(feet)	setting	lithology
L			5 5 11	1007	11	045		Dunk / ak
Co-219	4105-7633	Dale Stiner	R. R. Hornberger	1967	н	845	H	Dmh/sh
220	4106-7633	S and S Auto Works	Clifton Buck	1978	Н	660	V	Dmh/sh
222	4106-7633	Ted Heaps	Stackhouse	1980	H	670	V	Dmh/sh
223	4106-7633	do.	do.	1980	н	680	۷	Dmh/sh
224	4106-7633	do.	do.	1980	Н	675	V	Dmh/sh
226	4106-7633	James Nolan	Virgil Buck	1978	н	750	н	Dmh/sh
227	4104-7630	Stackhouse	Stackhouse	1978	н	800	S	Dtr/sssh
228	4103-7631	Dave Ortman	do.	1978	Н	1,000	н	Dtr/sssh
229	4103-7631	do.	<u></u>		н	1,000	Н	Dtr/sssh
230	4103-7631	Jack Rowe	Stackhouse	1973	Н	985	Н	Dtr/sssh
231	4102-7631	Roy Ruckle	Clifton Buck	1975	н	750	٧	Dtr/sssh
232	4102-7631	do.	do.	1960	Н	770	V	Dtr/sssh
233	4102-7631	do.	Stackhouse	1978	н	770	٧	Dtr/sssh
234	4106-7631	Charles Laver	Clifton Buck	1974	н	795	S	Dmh/sh
235	4106-7631	Stine			н	620	V	Dmh/sh
236	4104-7631	do.	R. R. Hornberger	1980	S	760	v	Dtr/sssh
237	4103-7632	Eckroth	Virgil Buck	1969	Ĥ	940	Ĥ	Dtr/sssh
238	4104-7630	Frank Stackhouse	Stackhouse	1973	C	775	C	Dtr/sssh
				1963	н	770	v	Dtr/sssh
239	4104-7630	do. Sandlon	do.	1963	н	930	s	Dtr/sssh
240	4103-7631	Sandler						
241	4104-7631	L. Millard	Stackhouse	1978	H	980	H	Dciv/sssh
242	4104-7631	Cluane Bardo	do.	1974	S	760	S	Dtr/sssh
243	4103-7632	David Bowers	Stackhouse	1973	H	840	S	Dtr/sssh
244	4103-7632	Dutch Hill Church	do.	1977	н	935	S	Dtr/sssh
245	4057-7627	Catawissa Bottling	Alvin Swank and Son	1981	N	550	W	Dcsc/sssh
				4070		500		Deduction als
246	4104-7630	Randy Lawton	Stackhouse	1972	Н	590	S	Dciv/sssh
248	4104-7636	James Cyphers	Ronald Randler	1966	H	555	V	Dmh/sh
249	4104-7634	Dale Zeisloft	Stackhouse		н	645	S	Dmh/sh
250	4105-7634	Donald Zeisloft	Clifton Buck	1974	н	680	S	Dmh/sh
251	4104-7634	Steve Zeisloft	do.	1975	H	650	S	Dmh/sh
252	4102-7633	Urlich	Stackhouse	1978	н	1,050	н	Dtr/sssh
253	4103-7635	Myron Diehl	Clifton Buck	1967	н	940	S	Dtr/sssh
254	4105-7634	Rishel	do.	1980	Н	635	W	Dmh/sh
255	4106-7631	Jerry Boone	do.		Н	740	н	Dmh/sh
256	4135-7606	Raymond Williams	R. R. Hornberger	1966	н	745	S	Dmh/sh
257	4106-7633	William Schneeweis	do.	1976	н	720	S	Dmh/sh
258	4107-7632	Dale Stackhouse	Virgil Buck	1978	н	805	н	Dmh/sh
301	4100-7622	U.S. Radium Corp.	Wieand Brothers	1979	0	490	T	Qgo/sg
302	4100-7622	do.	do.	1980	0	490	T	Qgo/sg
303	4100-7622	do.	do.	1979	0	490	Т	Qgo/sg
304	4102-7617	U.S. Geological Survey	Alvin Swank and Son	1980	0	490	Т	Sto/lsd
						545	-	0 /
305	4101-7618	do.	do.	1980	0	515	T	Qgo/sg
306	4101-7621	do.	do.	1980	0	490	Ţ	Dmr/sh
307	4102-7616	do.	do.	1980	0	505	Т	Sto/lsd
200	1100 7010	4-	4-	1000	0	495	т	000/00
308 309	4102-7616 4102-7618	do. P Lupini	do.	1980	0 H	495 510	Ť	Qgo/sg Dmr/sh
		R. Lupini		1980	н С	490	T	DMr/sn DSk/1s
310	4100-7626	William Coombs	Alvin Swank and Son			490 510	Ť	Qgo/sg
311	4101-7618	Foster Hudelson	D D Haushaman	1069	Н	630	S	
312	4058-7631	Ray Gross	R. R. Hornberger	1968	н			Don/lss
313	4101-7616	Wilkes Pools	Channelan	1077	C	880	S	Dscs/sssh
314	4058-7631	Lycoming Sand Co.	Champion	1977	H	645	Ý	DSk/1s
315	4059-7630	James Roth	R. R. Hornberger	1977	н	700	S	Sb/sh
316	4102-7620	Arden Sitler	Champion	1970	н	740	S	Sb/sh
317	4103-7619	Orvil Weaver	do.	1972	н	745	Ţ	Dh/sh
318	4103-7619	do.	do.	1976	Н	740	T	Dmh/sh
320	4103-7619	Charles Sheatler		1971	U	720	Т	Dmh/sh
321	4103-7619	do .	****	1976	Н	720	Т	Dmh/sh
322	4103-7619	do.	Champion	1976	н	705	Т	Dmh/sh
323	4103-7619	Powlus	do.	1971	н	580	٧	Swc/dls
324	4103-7619	C. Hornberger	do.	1971	н	585	٧	Swc/dls
325	4103-7619	James Powlus	do.	1971	н	585	٧	Swc/dls
326	4103-7618	Carl Strausser		1958	н	560	٧	Swc/d1s
327	4103-7618	Jesse Traugh	R. R. Hornberger	1967	н	540	v	Swc/d1s
328	4103-7619	Orvil Weaver	Champion	1972	Н	750	Т	Dh/sh
329	4102-7613	Lew Andrezzi	do.	1969	н	500	Ť	Dmh/sh
330	4100-7624	Liberty Chevrolet			н	490	Ť	Sto/1sd
331	4059-7628	Jeff Fritz	Stackhouse	1980	н	500	Ŷ	Smk/sls
332	4059-7629	Bell Telephone Co.	Wieand Brothers	1974	C	500	v	Smk/s1s
332	4104-7614	Randall Kishbaugh	Champion	1978	Н	800	S	Dmh/sh
333	4104-7614		do.	1978	H	805	S	Dmh/sh
		do.		1975	н Н	700	S	Dmh/sh
335	4104-7618	D. Tyson	do.				S	Dh/sh
336	4104-7618	Slovic	do.	1975	H	785		
337	4104-7615	Eskin Balah Kalahaan	Roy Zimmerman	1967	H	710	S T	Dmh/sh
340	4103-7618	Ralph Kelchner	Champion	1972 1974	н н	580 570	T	DSk/ls Swc/dls
341	4103-7618	Lillian Robbins	do.	19/4	п	370	I	3W6/015

RECORD OF WELLS

			1	Static	water		Marka and Ar		9		
Total depth below land surface (feet)	Casir Depth Di (feet) (i	iameter	Depth(s) to water- bearing zone(s) (feet)	Depth below land surface (feet)		Reported yield (gal/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard-	Specific conduc- tance (umho/cm at 25°C)	Weil number
205 320	21	6	25;63	26 10	9780 9780	2	.03/ .03/5	1	120 17	285 750	Co-219 220
300	20 20	6 6		12 18	9/80 9/80	1	.03/1	1	17	775	222 223
	20	6		15	9/80	1	** **	ar 15 -		520	224
185	40	6	130;175	18 40	9/80 10/80	4	.03/		188 68	190	226 227
				31	10/80	2			51 34	130 78	228 229
72 30	20	6	27			1	.06/		51	135	230 231
80									34	92	232
40 90	20	***	65;87			6	.07/	100 at 10	51 188	210 360	233 234
14 mar 14			aa ta wa	~~~			int an an		120 51	350 144	235 236
65 123				13	10/80	10. 10. 10.			34 34	92 165	237 238
123		-		15	10/80	~~~~			34	125	239
240 123	41	6	118	37	11/80	10		an an an			240 241
200 104	21 21	6 6	180 101	1	10/80	12 6			51 51	200 195	242 243
142 440	40 40	6 8	62;128 72;94;204; 412	49 32	11/80 2/81	15	. 12/40	22	34 120	58 385	244 245
90 90	28 22	6 6	85 55;85	10	7/66	8 4	.05/		***	~ ~ ~	246 248
420 123	22	6	70;120	16 27	11/80 11/80	10	.15/		103 86	315 305	249 250
70	20	6	65	32	5/75	6	.20/				251
175 55	20	6	51	40 19	11/80 5/67	6	.21/			120	252 253
60 130	52	6	80;130	12	11/80				120	385	254 255
115 175	21 20	6 6	45;65;108 30	15 8	6/66 10/76	5	.05/		***	****	256 267
140	22	6	110;130	30	2/78	6	.06/	er w. m	137	420	258
35 35	35 30	6 6				10 mm m	an an an				301 302
37 200	37 58	6 6	73;86;97; 182	28	12/80	100	21/19	1	154	280	303 304
68	68 42	6 6	60;74	32 21	12/80 6/81	50 25	10/38 1.7/17	б 1	54 188	118 395	305 306
300 53	47 50	6	62;96;116; 150;275	37 26	12/80 7/81	120 6	89/20 1.4/12	1	428	800 800	307 308
69 360	40 40	6 8	* * *	38 21	9/80 12/80	250	.44/5 3.9/75	1	86 19	220 730	309 310
35				32	10/80				-		311
52	22	6 	42	15	6/68	9	.24/				312 313
150 95	45 20	6 6	130 90	10	11/77						314 315
175 75	20 40	6 6	75;145 40;63	8	7/72	8 6	an an an			***	316 317
100	20	6	70			8					318
100 200		6		27 35	11/80 11/80	was not re-	10 m 44	***	137	340	320 321
150 40	20 40	•б б	127	8	11/80	15	ung der 100	Alle Ann Alle			322 323
50 50	30	6 6	45 45	12	2/71	20 20	100 AB AL			***	324 325
85	16	6		15	11/80	10		a	154	435	326
93 100	80 40	6 6	88 75	7 50	10/67 8/72	50 5	3.9/		***		327 328
125	28	6	100;115	11	12/80	10 20	-an air air			345	329 330
125 350	30 43	6		12	12/80	5	.13/30		103	300 280	331
150	20	6	84;262	2 31	11/74 12/80			48	68		332 333
100 150	20 20	6 6	80 130	44 50	12/80 12/80	10 8					334 335
100 133	40 26	6 6	85 88;100;128	36	12/80	10		***			336 337
75	22	6	48	23	11/72	14					340
75	45	6	55	15	8/74	20			un de ser	dar son her	341

		T			[
						Alti-		
						tude of	T	
Well 1	location			Year		land surface	Topo- graphic	Aquifer/
Number	Lat long	Owner	Driller	completed	Use	(feet)	setting	lithology
Number	Lat-Long	Uwner			L		L	
Co-342	4103-7619	Bertie Dennis	Clifton Buck	1967	н	565	W	Dmh/sh
343	4103-7619	Nelson Kulf	do.	1967 1977	HU	605 515	S T	Dmh/sh Qgo/sg
344	4101-7620	Columbia County		1977	U	515	1	(90) 39
345	4102-7619	Development Authority do.		1977	U	510	Т	Qgo/sg
346	4102-7619	do.		1977	U	520	Т	Qgo/sg
347	4101-7619	do.		1977	U	520	Ţ	Qgo/sg
348	4102-7619	Robert Krum	Stackhouse	1980	н	510 510	T T	Do/lss Do/lss
349	4101-7619	do.	P P Horeborgon	1960	H H	910	н	Dtr/sssh
350 351	4058-7630 4058-7630	W. Diehl R. Fetterman	R. R. Hornberger Wieand Brothers	1960		575	S	Dmh/sh
353	4100-7631	R. Snyder	Stackhouse	1973	н	625	S	Dmh/sh
354	4100-7632	Eugene Wagner	R. R. Hornberger	1966	С	880	W	Dtr/sssh
355	4101-7625	James Vance			H	700	Н	Smk/sls
356	4103-7623	Robert Thomas	Alvin Swank and Son	1976	Н	755 735	S W	Dmh/sh Sb/sh
357	4102-7622	Roland Michael		1940	H	670	S	Sb/sh
358 359	4102-7624 4102-7624	Hock do.			н	700	ŝ	Sb/sh
360	4102-7621	B. F. Haney	Clifton Buck	1969	Н	640	W	Swc/dls
361	4102-7622	Robert Eckrote	do.	1968	н	630	S	Swc/dls
362	4103-7621	George Acornley	Alvin Swank and Son	1975	н	700	S	Dmh/sh
363	4057-7628	Charles Karns			Н	480	V H	Dcsc/sssh Dtr sssh
364	4058-7629	Mildred Deussen			H H	860 775	H	Dtr/sssh
365 366	4058-7627 4059-7626	Pierce Breech Fay Young	Alvin Swank and Son	1973	н	825	н	Dtr/sssh
367	4058-7626	Charles Creasy			H	830	н	Dtr/sssh
368	4058-7625	William Slusser	Clifton Buck	~	н	885	н	Dtr/sssh
369	4104-7616	Kenneth Helm			н	640	S	Dmh/sh
370	4104-7615	Jay Welsh	Champion	1976	н	675 745	S S	Dmh/sh Sb/sh
371	4102-7622	Benard Bafile	Stackhouse Clifton Buck	1978 1971	H C	540	V	Dcsc/sssh
372 373	4103-7629 4059-7627	Clair Hock ARCO	Wieand Brothers	1980	ŏ	480	Ť	Swc/dls
374	4104-7617	John Fester	R. R. Hornberger	1967	Ĥ	680	Т	Dmh/sh
375	4106-7628	George Duncan	Virgil Buck	1977	н	730	S	Dmh/sh
376	4106-7628	do.	do.	1963	н	700	W	Dmh/sh
377	4104-7628	N. Gross	do.	1978	H H	1,010 945	H S	Dciv/sssh Dciv/sssh
378	4105-7626	Richard Puterbaugh	R. R. Hornberger	1966 1971	н	580	v	Qgo/sg
379 380	4105-7624 4107-7632	Matthew Zoppetti Millville Water		1980	P	630	Ŷ	Qal/sg
500	4107-7032	Authority						
381	4102-7624	William Botke	Alvin Swank and Son		Н	760	S	Sto/1sd
382				1076	н	585 970	V S	Dmh/sh Dtr/sssh
383	4106-7626	Amos Harvey	Clifton Buck	1976 1978	H H	1,005	5	Dtr/sssh
384 385	4106-7626 4107-7625	P. Cain Calvin Brown	Virgil Buck Clifton Buck	1967	H	635	v	Dmh/sh
386	4106-7624	Joseph White	do.	1974	н	810	Н	Dtr/sssh
387	4103-7625	R. Kile	Stackhouse	1978	н	785	S	Dcsc/sssh
388	4105-7627	Francis Purcell	Clifton Buck	1974	н	860	ş	Dciv/sssh
389	4103-7615	Sam's Auto Sales	Clifton Duck	1981	H H	520 945	т н	Swc/dls Dcsc/sssh
390	4104-7628	Robert Dewald	Clifton Buck R. R. Hornberger	1968 1966	H	945 890	W	Dcsc/sssh
391 392	4104-7628 4104-7628	Carl Shaner Harry Welliver	Clifton Buck	1967	н	940	Ĥ	Dciv/sssh
392	4103-7628	Howard Funk	do.	1967	Ĥ	960	н	Dcsc/sssh
394	4102-7628	Charles Turner	R. R. Hornberger	1966	н	820	Н	Dtr/sssh
395	4104-7629	David Walters		1974	н	655	V V	Dtr/sssh
396	4104-7630	do.	Clifton Buck	1974	н Н	585 585	V V	Dciv/sssh Dciv/sssh
397 398	4104-7630 4103-7629	do. Columbia Asphalt Co.	Clifton Buck	1974	Н	620	Š	Dcsc/sssh
398 399	4103-7629	do.	***		ć	590	S	Dcsc/sssh
400	4104-7615	John Magrone			н	565	W	Qgo/sg
401	4104-7615	do.	J. F. Harrison	1979	Н	565	W	Dmr/sh
402	4102-7618	Briar Heights Lodge	R. R. Hornberger	1976	C	590 645	W H	Sb∕sh Swc∕dls
404	4100-7629	Quality Inn	do، Stackhouse	1973 1972	С Н	645 590	H W	Dmh/sh
405 406	4101-7630 4105-7615	Joseph Levan Rothery	Champion	1974	H	1,055	S	Dciv/sssh
400	4106-7621	Earl Eveland	R. R. Hornberger	1977	н	635	٧	Qgo/sg
408	4104-7620	Donald Miller	do.	1966	Н	685	¥	Dtr/sssh
409	4105-7624	Matthew Zoppetti		1973	н	575	V N	Qgo/sg
410	4101-7629	Craig Laidacker	R. R. Hornberger	1966	H	475 950	W H	Sto/lsd Dcsc/sssh
411	4104-7628	George Crawford	Stackhouse P P Hornberger	1975 1973	H H	950 585	W	Dmh/sh
412 413	4101-7627	Barbara Pfleegor Mariano Construction Co.	R. R. Hornberger Stackhouse	1973	н	500	V	Swc/dls
413 414	4100-7625 4105-7615	Richard Dent	Champion	1974	н	1,015	S	Dciv/sssh
	4105-7615	Edward Shultz	do.	1976	н	1,030	S	Dciv/sssh
415		Alex Keris	do.	1975	н	1,020	S	Dciv/sssh
415 416	4105-7615	RICK ICT IS						
416 417	4105-7615	Edmund Persans	do.	1974	н	1,020	S	
416				1974 1972 1966	H H H	1,020 1,050 1,040	S H S	Dciv/sssh Dcsc/sssh Dciv/sssh

				Static lev	water el			n a con can ann comaranna			
Total depth below land surface (feet)	Depth	sing Diameter (inches)	Depth(s) to water~ bearing zone(s) (feet)	Depth below land surface (feet)	Date measured (mo/yr)	Reported yield (gal/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conduc- tance (µmho/cm at 25°C)	Well number
46 65 25	25 40 23	6 6 6	42 61	7 28	5/67 5/67	9 10	.26/ .43/				Co-342 343 344
25 25	20 24	6 6				***					345 346
25 120 54	85 39	6 6	***			6	, ng da ng				347 348 349
303 98	35	6		67 19	12/80 11/78	1	100, 100, 100, 444 M. M. M.				350 351
147 300	30 29	6 7	82;198;258	26 48	12/78 10/78	30	. 12 /		51	101	353 354
125 115	75 18	6	an, an an ay set an 10 an an	57 50 45	12/80 12/80		***		51	169	355 356 357
				45 37 13	12/80 12/80 12/80						358 359
81 47		6	45	25 18	12/80 8/68	20	1.3/				360 361
125 82	20	б		28 33	12/80 12/80						362 363
160 300				32 66 31	12/80 12/80 12/80		144		51 51	109 98	364 365 366
120	32	6		31 42	12/80 12/80						367 368
150 125	55 40	6 6	70;120	14 43	12/80 12/80	an in an					369 370
174 85			~ ~ ~ ~	37 9 15	3/81 4/81 4/81		.18/3 .67/17	1 2	51 51	110 177	371 372 373
115 130	35 23	6	75;85;108 90;120	75 17	5/67 5/81	8 7	.20/		103	210	374 375
68 170	20 32	6 6	87;155	17 56	5/81 6/81	7	.06/		137 17	340 45	376 377
90 45 18	45 45 18	6 6 48	50;78	27	5/81	5 100	.14/		34 34 34	63 94 140	378 379 380
200 320	184	6		139 F	5/81 1/81	70	4.9/7	1		4500	381 382
100 230	31 20	б б	60;100 175;210	90	12/78	4	.04/				383 384
51 207 248	40 23 62	6 6 6	48 175 123;241	12 145	9/67 11/74	21 4 20	1.1/		34 68 34	85 125 104	385 386 387
76	47	6	72	28 38	9/74 5/81	8	.17/		180	495	388 389
133 175	23 20	6 6	78;130 71;138	64	12/68	7 8	.12/		68	160	390 391
134 127 255	20 23	6 6 6	77;130 94;125 176	71 72 67	11/67 4/67	10 10 2	.18/ .20/ .03/		34 51	86 110	392 393 394
56 50	41 30	6 6	56 45		8/66	7	.007		, L L ,		395 396
50	30	6	43	8 29	8/74 4/81	10	. 37 /				397 398
30	~~~			60 23	4/81 5/81						399 400 401
67 414 179	65 20 106	6 6 10	65	28 19 69	5/81 2/76 5/73	40 200 75	4.0/		 154	300	401 402 404
75 100	29 40	6 6	74 80			17 8			51	148	405 406
40 435	43 24	6 6	45;97;376	19 15	1/77 6/66	15 3			34	300	407 408
64 63 198	64 30 21	6 6 6	60 198	10 34 93	4/73 10/66 6/81	20 10 6	1.00/ .53/		189 51	425 120	409 410 411
31 73	22	6	****	6 9	6/81 6/81	30 20	3.6/8	1	137	320	412 413
150 175	21 75	6 6	115 135			6 6 7				***	414 415 416
150 175 150	60 60 20	6 6 6	120 154 133	76	6/81	7 10 8			17 34	47 71	416 417 418
130 100	106 70	6 6	110;125 78	65	10/66	7 8	.13/		86	200	419 420

		TT						
						WI III WAARDOO HAA		
Ho11	location					Alti- tude of	Tapa	
Number	Lat-Long		Driller	Year completed	Use	land surface (feet)	Topo- graphic setting	Aquifer/ lithology
Co-421	4105-7615	William Kreischer	Champion	1977	H	890	S	Dciv/sssh
422	4106-7616	Camp Louise	do.	1969	н	1,120	S	Mmc/sssh
423	4107-7616	do.	Champion .	1070	н	1,130	S	Mmc/sssh
424 425	4105-7615 4106-7615	Eugene Collins Kenneth Hess	Champion do.	1970 1973	H H	1,040 1,020	H S	Dciv/sssh Dcsc/sssh
426	4106-7615	Donald Lynn	do.	1973	Ĥ	990	Š	Dcsc/sssh
427	4106-7616	Leonard Wilkinson	do.	1974	Н	930	S	Dcsc/sssh
428 429	4105-7616 4104-7617	Lester Seely Lewis Abrams	do. R. R. Hornberger	1975 1977	H H	925 900	s s	Dciv/sssh Dtr/sssh
430	4106-7616	David Hook	Champion	1974	Н	940	s	Dcsc/sssh
431	4105-7616	Joseph Zowalski	do.	1972	н	985	S	Dcsc/sssh
432 433	4105-7616	Kenneth Slusser	do.	1974	н	990	S	Dcsc/sssh
433	4105-7616 4105-7616	David Whitenight John Stevens	do. do.	1977 1976	н н	960 950	s s	Dciv/sssh Dciv/sssh
435	4106-7614	Jack Dent	do.	1973	H	1,000	S	Dciv/sssh
436	4104-7625	Klingerman Boarding		1960	н	580	٧	Dcsc/sssh
437 438	4101-7625 4106-7614	Light Street Grange Curtis Fultz	Champion	1929 1972	H H	595 1,020	S S	Sb/sh Dciv/sssh
439	4106-7614	Jack Beck	do.	1972	H	980	Ŵ	Dcsc/sssh
440	4105-7613	Reba Richards			н	710	W	Dtr/sssh
441	4101-7621 4101-7621	Gary Swisher			н	500	Ţ	Don/1ss
443 446	4101-7621	William Jones Baker Trailer Park			H	500 520	T S	Dmr/sh Sto/lss
448	4101-7621	Champion Valley Farms	Wieand Brothers	1981	N	500	Ť	Do/lss
452	4101-7622	Bloomsburg Water Co.	R. R. Hornberger	1967	Ρ	500	Т	Dmr/sh
453	4101-7627	Gary Hock	Alvin Swank and Son	1979	н	650	S	Swc/dls
454 455	4101-7627 4102-7622	Thomas Shaffer		1980	н	610	S	Dmh/sh
455	4101-7627	E. O. Franz, Sr. Columbia County Waste	Stackhouse	1960 1974	н 0	695 640	S W	Sb/sh Sto/lsd
457	4101-7627	Authority 1 Columbia County Waste			Н	650	S	Swc/d1s
458	4101-7627	Authority 4 Columbia County Waste	Stackhouse	1974	0	655	S	Swc/d1s
459	4101-7627	Authority 5 Columbia County Waste	do.	1974	0	665	н	Sto/lsd
460	4101-7627	Authority 6 Columbia County Waste	do.	1974	0	530	W	Sb/sh
461	4101-7627	Authority 7 Columbia County Waste	do.	1974	0	640	W	Sb/sh
462	4101-7627	Authority 8 M. Anderson			н	490	v	Sb/sh
463	4101-7627	Shultz			H	490	v	Sb/sh
464	4100-7614	Cy Mowery	R. R. Hornberger	1966	Н	1,025	S	Dcd/sssh
465 466	4100-7614 4102-7613	Lee Schell Richard Yoder	Champion	1976 1974	H	930 782	Н	Dcsc/sssh Dtr/sssh
467	4101-7620	Helen Rupert	Champion	1974	H H	500	S T	Dmr/sh
468	4101-7620	do.		1981	н	500	Т	Dmr/sh
469 470	4106-7613	William Carrathers	Champion	1972	H	1,010	S	Dcsc/sssh
470	4106-7613 4100-7614	Martin Carrathers Pennsylvania Department	do. R. R. Hornberger	1972 1966	H H	982 835	S W	Dcsc/sssh Dcsc/sssh
		of Transportation						
472 473	4101-7614 4105-7618	Arlen Payne Frank Rivera	Champion	1974 1975	H H	804 950	S S	Dciv/sssh Dcsc/sssh
473	4105-7618	Jay Welsh	Champion	1975	H	950 940	S	Dcsc/sssh Dcsc/sssh
501	4105-7618	David Laubach	do.	1973	н	950	S	Dcsc/sssh
502 503	4103-7617 4105-7617	Briar Creek Park	Alvin Swank and Son	1973	P	670	H	Swc/dls
503	4105-7618	Darvin Bower John Hrinda	Champion	1977 1958	н н	1,010 880	S W	Dcsc/sssh Dcsc/sssh
505	4101-7621	Champion Valley Farms	Wieand Brothers	1981	N	500	Ť	Sto/1sd
506	4104-7619	Wayne Girton	Champion	1975	н	950	S	Dcsc/sssh
507 508	4105-7618 4105-7618	Clarence O'Neal Robert Gower	do. do.	1973 1972	H H	975 965	H	Dcsc/sssh Dcsc/sssh
509	4105-7618	Doyle Keck	do.	1972	Н	980	н	Dcsc/sssh
510	4105-7617	William Farrell	do.	1973	н	970	н	Dcsc/sssh
511 512	4105-7617 4105-7618	Karl Pennebaker John Shultz	do. do.	1974	H H	1,000 940	S S	Dosc/sssh
512	4105~7618	Shultz	do.	1978 1974	н Н	940 950	S	Dcsc/sssh Dcsc/sssh
514	4104-7617	Thelma Keck	do.	1972	н	750	S	Dciv/sssh
515	4104-7617	do.	Stackhouse	1979	Н	750	S	Dciv/sssh
516 517	4105-7618 4105-7618	Rodney Diehl Cindy Weaver	Champion do.	1972 1974	н н	910 910	S S	Dcsc/sssh Dcsc/sssh
518	4105-7618	R. Samsel	do.	1974	H	925	S	Dcsc/sssh
519	4105-7618	Eldon Benjamín	do.	1968	н	1,025	S	Dcsc/sssh
520 521	4104-7621 4058-7629	John Babich A and S Auto Body	Stackhouse	1968	н н	825 495	W V	Dtr/sssh Dmr/sh
521	4058-7629	A and S Auto Body Michael Bobraski	R. R. Hornberger	1979 1977	н Н	495 925	W	Dmr/sn Dcsc/sssh
523	4101-7615	Gary Frace	Champion	1970	Н	870	н	Dciv/sssh

RECORD OF WELLS

	TANAN A CE P LI A P AMERICAN IN CAMPA AND A CO		Static	: water /el			:			
Total depth below land surface (feet)	Casing Depth Diame (feet) (inch		Depth below land surface (feet)	Date measured (mo/yr)	Reported yield (gal/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conduc- tance (umho/cm at 25°C)	Well number
100	70 6			~~~	6			34 17	93 19	Co-421 422
150	20 6		32	6/81	8			17	20	422
185	60 6	140;175	113	6/81	10	m		17	41	424
100 100	40 6 20 6		10	1/79	8 12			17 34	47 78	425 426
125	20 6		26	6/81	8			68	158	427
125	40 6				8			34	74	428 429
90 100	20 6 20 6		40	1/77	5 10	100 min da.				430
100	30 6	84	30	8/72	7					431
175	20 6 20 6				5 6					432 433
100 125	40 6		55	6/81	7			17	47	434
150	40 6	60;120			12			100		435
90 145	90 6		15 29	8/81 7/81		.12/4 .64/3	3 1	103 51	278 112	436 437
175	60 6		80	7/72	16			34	87	438
175	100 6				10			 34	150	439 440
			19	4/82				291	580	441
P 1 10 10			19	4/82	Ar					443
155	32 8		14 26	4/82 8/81	150	2.2/200		395	750	446 448
500	54 7	110;171;330 361;410	; 28	5/81	60	.84/34	1	137	335	452
			25 63	7/81 7/81		* - *		120 34	255 70	453 454
									234	455
220	62 6		120 101	6/79 7/81	24	2.7/9		171	290	456 457
									213	458
170	29 6		54	7/79				137	275	459
190	39 6		114	7/81		1.7/11	1	86	200	459
125	26 6		9	7/81	15 12	.36/3	1 2		920	461
200	29		0 77	7/81		10372			52.0	462
										463
85	24 6		45	12/66	30			17	60 97	464 465
125 100	30 6 20 6		40	4/76	22 6			34 34	108	465
106			30	6/81		.13/5	1	120	300	467
90 105	60 6		33 65	7/81 9/72		.05/3	1	120	330	468 469
100	80 6				8					470
80	65 6		7	6/66	50	3.9/			was dan an	471
165	40 6		27	 8/81	10			17	34	472 473
125	42 6	96			8					474
100	35 6		23	8/81	7	. 34/25				501 502
250 125	60 6		111 84	8/81 8/81		3.4/9	1	34	50	503
36			15	11/81		2.4/20	1	34	67	504
570	40 8	550		9/81	360	2.0/280	24	154	300	505
125	30 6 40 5		113 74	8/81 8/81		.08/3	1	34	70	506 507
120	25 6	105			8					508
135	36 6		40	7/72	10 5			34 34	84 60	509 510
200 150	40 6 80 6				5					511
100	35 6	78			8			-14 in 14		512
125 125	42 6 20 6		48	8/72	6 7					513 514
323					3			86	205	515
75 150	42 6 40 6		5	11/72	8 8					516 517
150	40 6 80 6				10			17	47	518
150	70 б	130	29	8/81	10	077		51	180	519 520
85 123	20 6 41 6		15 5	4/68 9/81	5	.07/		51 68	350	521
135	23 6	55;127	60	3/77	10			E 1	185	522 523
150	40 6	75;150			6			51	153	523

					T	1	1	1
						Alti-		
					1	tude of	-	
Well	location	_		Year		land surface	Topo- graphic	Aquifer/
Number	Lat-Long	Owner	Driller	completed	Use	(feet)	setting	lithology
					L		 	
Co-524 525	4101-7615 4101-7616	Glen Whitmore James Hyde	Champion do.	1970 1974	H H	830 865	H S	Dciv/sssh Dtr/sssh
526	4106-7621	Twin Bridges County	Wieand Brothers	1976	P	625	T	Qgo/sg
		Park					_	
527 528	4106-7621 4105-7619	Ruth Sterner	Champion	1967 1973	H H	625 900	T S	Qgo/sg
526	4100-7614	David McMurtrie Mike Grant	Champion	1973	H	925	н	Dcsc/sssh Dcsc/sssh
556	4100-7614	Kenneth Haskell	Champion	1969	Н	870	W	Dcsc/sssh
557	4100-7615	Gordon Derr	do.	1970	н	902	S	Dciv/sssh
558 559	4101-7618 4104-7619	Charmaine Keefer Edward Ruckel	Clifton Buck	1968 1976	H H	510 875	T W	Dmh/sh Dcsc/sssh
560	4104-7619	John Rakich	Champion	1973	Н	960	S	Dciv/sssh
561	4104-7619	Charles Wike	do.	1976	н	960	S	Dciv/sssh
562	4058-7625	Hitoshi Sato	Ronald Randler	1981	н	880	Н	Dtr/sssh
563 564	4104-7620 4103-7619	Rodney Grasley Gerald Wolfe	Champion Clifton Buck	1973 1968	H H	685 600	V S	Dtr/sssh Dmh/sh
565	4105-7621	Lester Dietterick	Champion	1978	н	1,000	š	Dcsc/sssh
566	4105-7616	Ronald Davis	do.	1974	н	1,055	Н	Dciv/sssh
567	4104-7621	William Correll	Stackhouse	1981 1968	H H	780 595	W S	Dciv/sssh Dmr/sh
568 569	4058-7631 4102-7622	William Berger Evelyn Stauffer	Clifton Buck Stackhouse	1968	H	595 730	ь Н	Sb/sh
570	4101-7625	Harold Buch		1979	H	770	S	Smk/sls
571	4059-7627	ARCO	Wieand Brothers	1980	0	480	Ť	Swc/d1s
572 573	4059-7627 4059-7627	do.	do. do.	1980 1980	0 0	480 480	T T	Swc/d1s Swc/d1s
574	4100-7631	R. Snyder		1900	н	625	Ś	Dmh/sh
575	4059-7630	Benard George	Alvin Swank and Son	1972	н	1,000	W	Sr1/s1s
576	4059-7631	William McGinley	do.	1977	н	900	W	Srl/sls
577 578	4059-7632 4059-7633	Ben Mourey Kenneth Girton	R. R. Hornberger do.	1969 1974	н н	825 790	W W	Sru/sls Sru/sls
584	4055-7627	Rohrbach Farms	Roy Zimmerman	1968	н	965	Ĥ	Dcsc/sssh
585	4104-7631	R. Faust		1974	н	970	S	Dciv/sssh
586	4101-7625	Scerbo Medical Center	Stackhouse	1981	Н	685	Н	Smk/s1s
								LUZERNE
Lu-368	4104-7609	Beach Haven Fire	Champion	1973	С	540	S	Dmnh/sh
369	4105-7612	Virgil Rhinard	R. R. Hornberger	1966	Ĥ	1,010	S	Dciv/sssh
370	4105-7611	Arthur Varner	Champion	1974	н	820	S	Dh/sh
371 372	4105-7610 4105-7611	Herb Brader Bill Weadon	do. do.	1972 1974	H H	840 810	S S	Dh/sh Dmh/sh
373	4104-7611	Nebbie DiAugstine	do.	1974	н	640	S	Dmr/sh
375	4106-7612	Bart Gunther	R. R. Hornberger	1967	н	1,020	W	Dcsc/sssh
376	4105-7613	Harold Kessler	Champion	1973	H	910	W W	Dtr/sssh
377 378	4105-7612 4106-7612	Larue Bogart Earl Keller	do. do.	1976 1973	H H	880 1,010	w S	Dtr/sssh Dciv/sssh
380	4102-7609	Larry Kline		1974	Н	880	Ŵ	Dtr/sssh
381	4102-7610	do.	Champion	1974	н	940	W	Dciv/sssh
382 383	4102-7610 4102-7610	Donald Steinhaver Whitmire	Champion	1974 1974	H H	910 900	W W	Dciv/sssh Dciv/sssh
384	4102-7610	Tom Aten	do.	1974	н	875	Ŵ	Dciv/sssh
385	4102-7608	Roland Deischaine	do.	1974	н	960	W	Dcsc/sssh
417	4103-7613	Pennsylvania Department		1977	U	480	С	Dmr/sh
418	4103-7613	of Transportation do.		1977	U	486	С	Dmr/sh
419	4104-7608	Salem Township	Champion	1970	н	580	S	Dmh/sh
420	4105-7608	Michail Mont	do. Clifton Buck	1972	Н	560	S	Dmh/sh Dmh/sh
421 422	4104-7610 4104-7610	Steven Zwolinski Gene Kmetovicz	Clifton Buck do.	1968 1967	H H	540 570	S S	Dmh/sh Dmh/sh
423	4104-7610	Wellington Davenport			н	515	v	Dmh/sh
424	4104-7610	Gene Killian	Clifton Buck	1967	Н	535	S	Dmnh/sh
425	4104-7610	Steve Molnor	Champion R. R. Hornberger	1976	Н	560 645	S T	Dmh/sh Dmh/sh
426 427	4104-7609 4104-7609	Robert Price George Griffin	R. R. Hornberger Reichard	1967 1957	н н	645 645	T T	Dmh/sh Dmh/sh
428	4104-7609	Robert Price	R. R. Hornberger	1973	н	560	S	Dmh/sh
429	4106-7608	Fred Hummel	Champion	1976	P	540	Т	Dtr/sssh
430 431	4104-7608 4104-7613	Clarence Fox Bennie Naunczek	Champion	1946 1977	н н	500 640	V S	Dmh/sh Dmh/sh
431	4104-7613	do.	do.	1976	C	640	S	Dmh/sh
433	4104-7613	Robert Pinterich	do.	1976	н	640	S	Dmr/sh
434	4104-7609	William Davis	do.	1973	н	525	٧	Dmh/sh
436 437	4104-7609 4104-7610	Russel Burke Sheldon Molyneaux	do. do.	1973 1974	н Н	560 538	S S	Dmh/sh Dmh/sh
437	4104-7611	Watts	Virgil Buck	1974	H	740	Ч	Dmr/sh
439	4105-7608	Pennsylvania Power and		1970	Ü	820	S	Dmh/sh
440	4105-7608	Light Co. do.		1970	U	722	s	Dmh/sh
440	4105-7608	do.		1970	U	677	T	Qgo/sg
442	4105-7608	do.		1970	Ŭ	661	Т	Dmh/sh

-/	Total	-	Static lev	water el							
Total depth below land surface (feet)	Casi Depth [(feet) [Diameter	Depth(s) to water- bearing zone(s) (feet)	Depth below land surface (feet)	Date measured (mo/yr)	Reported yield (gal/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conduc- tance (µmho/cm at 25°C)	Well number
90 175 50	40 20 47	6 6 8	70 145	64 7	9/81 9/81	10 6 60			34 51	95 111	Co-524 525 526
$\begin{array}{c} 28\\ 200\\ 300\\ 75\\ 150\\ 55\\ 275\\ 200\\ 200\\ 151\\ 75\\ 40\\ 80\\ 175\\ 98\\ 81\\ 120\\ 300\\ 68\\ 30\\ 30\\ 30\\ 147\\ 175\\ 125\\ 125\\ 125\\ 190\\ 115\\ 235\\\\ 198\end{array}$	31 35 40 40 56 33 40 45 28 20 20 20 20 20 20 20 20 20 20 20 20 20	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 10 6 10 6 6 6 6	115;173 65 90;130 52 150;250 160 176 70 55 38 70;160 62;78 62;78 81;120;230	10 19 46 4 35 109 18 20 109 18 20 14 26 29 	7/67 9/81 7/68 9/81 9/81 11/81 10/68 12/81 9/80 9/80 9/80 9/80 9/80 9/80 9/80 9/80	20 8 20 8 10 6 20 6 10 20 8 20 6 10 20 8 20 6 10 20 8 20 19 15 	 	4 4 1 5 5 5 	 17 68 51 120 17 68 103 68 34 103	 53 225 160 115 120 26 137 158 137 158 225 86 220	527 528 555 556 557 559 560 561 562 563 564 565 566 567 568 570 571 572 573 574 577 576 577 578 584 585 586
COUNTY				 *** * - */164*14/01*14* 						055	1
$\begin{array}{c} 100\\ 95\\ 125\\ 100\\ 125\\ 275\\ 215\\ 300\\ 125\\ 125\\ 140\\ 140\\ 170\\ 175\\ 125\\ 275\\ 16\end{array}$	25 40 113 68 40 30 21 35 20 80 42 20 42 20 42 20 42 20 42	666666666666666	70 55;85 75 98 60;240 119;210 180;215 86 105 80;130 85;135 125;165 130;155 125;165 130;155 140;270 	40 25 34 80 35 35 	4/73 10/66 12/80 12/80 9/67 4/74 4/74	12 9 7 12 6 4 3 5 7 8 	.14/		128 85 103 85 85 34	255 111 210 220 125 	Lu-368 369 370 371 372 373 375 376 377 378 380 381 382 383 384 384 385 417
49 175 100 145 85 100 160 160 180 125 90 55 125 100 175 100 100 230 445	20 20 21 29 20 109 62 80 16 20 20 20 20 20 20 21 	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	155 76 64;82 57;92 132 120;155 120 72 140 80 85 35 85;220	5 36 22 11 63 62 48 25 14 35 7 2 71 	 7/80 8/68 12/67 7/80 10/80 8/73 7/80 7/80 7/80 7/80 7/80 7/80 7/80 8/70	12 6 20 14 10 10 5 6 8 15 15 15	1.4/ .35/ .32/2 .41/ .31/ .08/5 .10/2		171 171 171 103 120 171 171 171 171 171 171 86 68 68 120 154 137 154 137 137	295 230 300 120 220 340 345 200 220 190 255 335 295 410 300 	418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 431 432 433 434 436 437 438 439
74 231 198	117 68	6 6		65 54	12/70 12/70			80 - 20 - 20 80 - 20 - 20 80 - 20 - 20		40 mm 40	440 441 442

		T T					Ι	
					adverture Area A			
						Alti-		
						tude of		
Well	location					land	Торо-	
	Τ		D.(11)	Year	1/20	surface	graphic	Aquifer/ lithology
Number	Lat-Long	Owner	Driller	completed	Use	(feet)	setting	richorogy
Lu-443	4105-7608	Pennsylvania Power and		1970	U	657	S	Dmh/sh
Luito		Light Co.						
444	4105-7608	do.		1970	U	643	S	Dmh/sh
445	4105-7608	do.		1970 1970	U U	663 642	S S	Dmh/sh Qal/sq
446 447	4105-7608 4105-7608	do. do.		1970	U	640	s	Dmh/sh
447	4105-7608	do.		1970	บั	683	ŝ	Dmh/sh
449	4105-7608	do .		1970	U	663	T	Qgo/sg
450	4105-7608	do .		1970	U	607	T	Qgo/sg
451	4105-7611	Samuel Knorr	Clifton Buck	1967	Н	860	S T	Dtr/sssh
452	4104-7609	U.S. Geological Survey do.	Alvin Swank and Son	1980 1980	0	645 550	S	Qgo/sg Dmh/sh
453 454	4104-7609 4103-7611	do.	Alvin Swank and Son	1980	ő	530	Ť	Dmh/sh
455	4103-7611	do.	do.	1980	ŏ	530	Ť	Qgo/sg
456	4104-7609	Brad Smith	do.	1980	H	580	т	Dmh/sh
457	4101-7613	John Robbins	Champion	1976	Н	510	V	Dtr/sssh
458	4104-7608	Malvern Wolfe	do.	1970	н	500 975	T S	Dh/sh
459	4202-7609	Hoyt Readler	R. R. Hornberger	1967 1975	H H	580	T	Dciv/sssh Dmh/sh
460 461	4203-7612 4105-7611	Robert Selic Wilson Vandermark	Champion R. R. Hornberger	1959	н	945	Ś	Dtr/sssh
462	4105-7611	Gerald Karchner	do.	1967	н	835	š	Dh/sh
463	4105-7612	Richard Bognar		1976	н	880	S	Dtr/sssh
464	4105-7611	Debra Golomb	Champion	1970	н	700	W	Dmh/sh
465	4104-7613	Bennie Naunczek	do.	1971	н	780	S	Dmh/sh
466	4104-7613	Larry Feissnor	do.	1973 1976	H H	760 500	S T	Dmh/sh Dmr/sh
468 469	4103-7612 4103-7612	William Seigfred Walter Ryman		1980	S	590	н	Dmh/sh
409	4103-7609	Rudy Felix			Ĥ	500	Ť	Dmh/sh
472	4105-7608	Pennsylvania Power and		1970	U	649	S	Dmh/sh
		Light Co.		1070		700	c	Dunk (ak
473	4105-7608	do.		1970	U U	702 667	s s	Dmh/sh Dmh/sh
474 475	4105-7608 4105-7608	do. do.		1970 1970	U	680	s	Dmh/sh
476	4105-7608	do.		1970	Ŭ	683	Š	Dmh/sh
477	4105-7608	do.		1970	Ŭ	646	W	Dmh/sh
478	4105-7608	do.		1970	U	667	S	Dmh/sh
479	4105-7608	do .		1970	U	704	ş	Dmh/sh
481	4105-7609	William Sink		1050	H	675 615	T T	Dmh/sh Dmh/sh
482 483	4103-7611 4106-7607	William Zettle Pennsylvania Power and		1958 1973	H U	505	Ť	Dtr/sssh
405	4100-7007	Light Co.		1975	0			,
484	4105-7607	do.		1973	U	505	Т	Qgo/sg
485	4105-7607	do.	_ ~ -		U	505	Ţ	Qgo/sg
486	4105-7607	do.		1973	N	501 505	T T	Qgo/sg
487 488	4105-7607 4105-7607	do. do.		1972 1972	N U	505	Ť	Qgo/sg Qgo/sg
489	4105-7608	do.		1972	Ŭ	505	Ť	Qgo/sg
490	4105-7608	do.		1973	Ň	615	Т	Qgo/sg
491	4105-7608	do.		1973	N	620	Т	Qgo/sg
492	4106-7610	John Krisanda	Champion	1975	н	940	S	Dtr/sssh
493	4106-7610	Lemuel Sitler	do -	1973	Н	885 805	W W	Dciv/sssh Dciv/sssh
494 495	4106-7610 4106-7610	George Honse Frank Peters	do. do.	1975 1976	H H	930	w S	Dciv/sssh
495	4106-7610	do.	do.	1972	н	940	Š	Dciv/sssh
497	4106-7609	Russel Baer	do.	1981	Ĥ	880	S	Dciv/sssh
498	4106-7610	Thomas Holloway	do.	1974	н	960	S	Dcsc/sssh
499	4106-7611	Frank Bloom	do.	1976	н	1,040	S	Dcsc/sssh
500	4101-7610	Harold Seward		1976	Н	922	S	Dcsc/sssh Dciv/sssh
501 502	4102-7610 4101-7611	Mark Adams Callahan	Champion	1974 1974	H H	910 930	H H	Dcsc/sssh
502	4102-7611	Orville Benjamin	champ ion	1974	н	903	S	Dtr/sssh
504	4105-7613	Harry Bombushime	Champion	1973	Ĥ	1,040	Ĥ	Dtr/sssh
505	4105-7613	Donald McCoy	do.	1974	н	960	W	Dtr/sssh
506	4105-7613	Michael Kennedy	do.	1974	H	1,000	W	Dtr/sssh
507	4100-7608	Charles Jurewicz		1974 1974	н	990 865	H S	Mmc/sssh Dcsc/sssh
508	4101-7612	David Fuller	Champion	1974	H	1,015	S	Dciv/sssh
509 510	4106-7612 4101-7612	Jim Switzer Wilton Shiner	Roy Zimmerman	1972	н	842	W	Dcsc/ssst
510	4107-7609	Robert Boston	Champion	1973	н	878	S	Dcsc/sssh
513	4107-7610	William Crisbell	do.	1972	U	885	S	Dcsc/sssh
514	4106-7610	Nick Dalberto	do.	1976	U	1,030	W	Dciv/ssst
515	4106-7610	Paul Reichard	do.	1973	H	950	W	Dciv/ssst
516	4104-7610	Beach Haven Community Board		1968	н	510	V	Dmh/sh
	1100 7000	Pennsylvania Power and	Champion	1977	н	520	т	Dtr/sssh
517	4106-7608					520		001/3330

				Static lev							
Total depth below land surface (feet)		ig iameter inches)	Depth(s) to water- bearing zone(s) (feet)	Depth below land surface (feet)	Date measured (mo/yr)	Reported yield (gal/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conduc- tance (µmho/cm at 25°C)	Well number
110	9	6		17	9/70						Lu-443
227	47	6		32	12/70						444
144	~~ -			21	12/70						445
168 263	38 42			29 35	12/70 12/70		***	*** -	~~~		446 447
117	17			29	12/70	***	age the an				448
208 176	101 95	2		62 14	12/70 12/70						449 450
117	52	6	113	32	8/80	8	.09/		34	75	451
300	100 56	6 6	92:145:220	62 51	10/80 10/80	20 5	84/60 .05/4	1 2	68	237 233	452 453
200	56	6	75;130	22	12/80	6	.13/10	3	103	138	454
55 130	55 50	6 6		20 36	12/80 10/80	30	12/36	4	34 86	82 135	455 456
35	30	6	33	12		12					457
175	45 55	6 6	120;135 110			5 15	100 Mill 144			* = *	458 459
	55 	ь 	145	~		10		~~~	86	142	460
90			100	64 25	12/80	10	.10/				461 462
130 200	110 23	6 6	120 140;195	25 60	11/67 6/76	25	.10/=				463
125	30	6	90	8	12/80	10			~	* = *	464 465
100 175	20 30	6 6	70;95 155	30 100	8/71 3/73	12 10					466
85			40;70	5	6/76	25		** ** **			468 469
340 470	132 48	6 6	340	81 22	12/80 12/80	35	.03/2	1		4450	471
	20	6		31	12/70	the state					472
~ ~ ~	11	6		34	12/70	** ** **					473
~ = ~	45	1	14° 100 100	27	12/70						474 475
1999 AND AND 1999 AND AND				28 18	12/70 10/70	age van 100 100 aan ook			***		476
* ~ ~	25	1	tan dat pas	5	12/70					an	477 478
			*	26 6	12/70 12/70						479
50				4	4/81						481 482
196 54	52	8		93 16	4/81 1/73						483
91	91	8									484
44	44	2		12	5/81						485
58 75	58 75	12 3		7 24	5/81 8/72		16/495 27/9	54 1	54 70	180 200	486 487
55								~~ ~			488
23				9	12/73		1.6/65	7	49	142	489 490
				17	11/73		7.0/150	9	46	136	491
100 100	20 20	6 6	45;80 76			6 12		dan man ak Mar mar an	34	102	492 493
150	20	6	85			5			* **		494
150 130	20 20	6 6	130 110	10	11/72	6 8			34 34	88 94	495 496
125	25	6	112		**! 14	10					497
125 150	32 60	6 6	95 103			6 8				1000 000 000 1000 000	498 499
245	37	6	80;220	50	2/76	22	~~ *				500
230 300	32 20	6 6	140;215 230	30 160	3/74 4/74	18 2					501 502
125	32	6	65;110	20	7/74						503
300 250	20 20	6 6	180;205 190			6 6					504 505
250	20	6	210	*****		7					506
200 185	21 24	6	105;180 125;160	50 40	8/74 3/74	20 20			51	140	507 508
185	24 30	6 6	125;160	40 35	3/74 11/72	6			34		509
112	30	6	81;107			3	-an -an		102	200	510 512
175 110	70 20	6 б	153 93	35	11/72	6 10			102	200	513
150	20	6	120		-	6					514 515
125 51	35 21	6 6	104 42;47	45 12	1/73 10/68	6 40		10 M. W.			515
100	62	6	73	24	8/80		.43/15	8		140	517
100	J.	÷	15	4T	0,00		/ 2.0	0			

					1	1	1	
						A1+i	404 V0 V A	
						Alti- tude of		
Well	location					land	Topo-	
Murmh a u	lat lang	Ormon	Durillon	Year	lino	surface	graphic	Aquifer/
Number	Lat-Long	Owner	Driller	completed	Use	(feet)	setting	lithology
								MONTOUR
Mt- 1	4058-7634	Mahoning Township Authority	Moody and Associates	1969	Ρ	610	۷	Sto/1sd
2	4058-7634	do.	do.	1969	Р	610	٧	DSk/1s
3 4	4058-7634 4058-7634	do. do.	Wieand Brothers do.	1978 1978	P P	610 610	V V	DSk/1s DSk/1s
5	4058-7635	do.	R. R. Hornberger	1966	P	790	W	Sru/sls
6	4058-7635	do.	do.	1960	Р	790	W	Sru/sls
7	4058-7635	do.	do.	1960	Р	850	S	Srm/sls
8	4058-7635	do.	do.	1960	Ρ	850	S	Srm/sls
9 10	4057-7634 4057-7634	María Joseph Manor	do.	1960	T T	535 535	V V	Dmh/sh
11	4057-7634	do. do.	do. do.	1961	Ť	535	v	Dmh/sh Dmh/sh
12	4057-7634	do.		1965	Ť	535	v	Dmh/sh
14	4059-7638	Red Roof Inn	Wieand Brothers	1973	С	500	٧	DSk/ls
15	4059-7638	do.	do .	1973	C	500	V	Sto/1sd
16	4059-7638	Sheraton Inn	do.	1978	С	505	۷	Do/1ss
17	4059-7638	do.	do.	1973	С	505	۷	Don/lss
18	4059-7638	Holiday Inn		1967	Ç	515	V	Do/lss
19 20	4058-7636 4058-7636	Geisinger Medical Center	R. R. Hornberger	1961 1961	T T	560 560	W W	Smk/sls Smk/sls
20	4058-7636	do. do.		1961	Ť	560	W	Smk/sis Smk/sis
22	4058-7634	Frosty Valley Country Club	R. R. Hornberger	1966	I	640	Ŵ	Swc/dls
23	4058-7633	C. Seitz	Ronald Randler	1978	Н	660	S	DSk/ls
24	4059-7637	Sunnybrook Park	do.	1978	Н	490	V T	Sru/sls
25 26	4057-7636 4057-7636	TRW, Inc. do.	R. R. Hornberger do.	1975	N	467 467	T T	DSk/ls Sto/lsd
27	4057~7636	Roselon Yarns, Inc.	do.	1967	N	470	Ť	Swc/dls
29	4058-7634	Charles Keiter	Wieand Brothers	1979	Р	895	W	Sr1/s1s
30	4059-7638	Holiday Inn	do .	1973	С	520	V	Dmr/sh
31 32	4059-7638 4059-7638	do. do.	do. do.	1972 1973	C C	515 515	V V	DSk/ls Do/lss
33	4059-7637	David Shoemaker	R. R. Hornberger	1975	н	580	S	Swc/dls
34	4059-7644	Steve Rine	Wieand Brothers	1975	H	670	H	DSk/1s
35	4057-7632	Brown Catering	R. R. Hornberger	1968	C	900	W	Dtr/sssh
36	4058-7641	Mitchell Duffy	do.	1976	н	955	н	Sr1/s1s
37	4058-7642	Eugene Appleman	Wieand Brothers	1972	н	620	S	Dmr/sh
38 39	4059-7642 4059-7642	Robert Foust Earnest Bower	Ronald Randler R. R. Hornberger	1976 1967	H H	660 638	S W	Dmh/sh Dmh/sh
40	4059-7641	Robert Reedy	Ronald Randler	1967	Ĥ	620	Ŵ	Dtr/sssh
41	4059-7641	Paul Appleman	R. R. Hornberger	1975	Н	590	W	Dmh/sh
42 43	4058-7643	Donald Golder George Buckley	do. Bonald Bandlon	1968	Н	630	S	Dmh/sh
43 44	4058-7642 4059-7642	P. Kohl	Ronald Randler do.	1967 1967	H H	590 650	S S	Dmh/sh Dmh/sh
45	4059-7641	Arthur Reedy	R. R. Hornberger	1966	н	630	S	Dmh/sh
46	4058-7633	Pennsylvania Society for Prevention of	do.	1968	н	645	S	Sto/1sd
47	4058-7633	Cruelty to Animals Chester Adams	do.	1967	н	660	S	DSk/1s
47	4058-7633	Robert Fry	do.	1967	н	670	S	Do/lss
49	4058-7632	Stuart Hartman	Ronald Randler	1974	н	690	S	DSk/1s
50	4058-7632	Clewell Vending	do.	1967	н	630	٧	Dmr/sh
51	4058-7632	William Linker	Wieand Brothers	1975	H	670	S	Dmh/sh
52 53	4058-7634 4058-7634	Harry Stamey D. Schuller	R. R. Hornberger do.	1973 1974	н Н	750 650	S S	Sb/sh Swc/dls
54	4058-7634	Harold Henry	do.	1968	Н	730	S	Sb/sh
55	4058-7634	Harvey Houseknect	do .	1977	н	630	S	Sto/1sd
56 57	4058-7634 4058-7639	Robert Albertini	do. Denald Dandley	1975	H	715	S	Sb/sh
57 58	4058-7639	Paul Earlston George Lewellyn	Ronald Randler R. R. Hornberger	1973 1967	H H	900 780	S W	Srl/sls Srl/sls
59	4101-7638	Randall Billmeyer	Wieand Brothers	1977	н	880	Ĥ	Dtr/sssh
60	4100-7642	Peter Cooper	do .	1977	н	600	S	Dh/sh
61	4100-7642	R. Hedding	Ronald Randler	1978	н	720	S	Dh/sh
62 63	4100-7642 4101-7640	James Dunkle William Starr	do.	1969 1977	H H	730 740	S S	Dmh/sh
63 64	4101-7643	Henry Schmidt	do. do.	1977	н Н	520	S V	Dtr/sssh Dmr/sh
65	4101-7642	M. Stahl	Wieand Brothers	1979	н	530	S	Do/lss
66	4101-7643	Kenneth Permar	R. R. Hornberger	1967	н	580	S	Do/lss
67	4102-7641	Rick Burkhart	Ronald Randler	1977	Н	540	S	Do/1ss
	4102-7641	John Tanner	R. R. Hornberger	1970	н	580	S	Don/lss
68 69	4101-7643	Ralph Swartz	Ronald Randler	1976	н	525	S	Do/lss

				Static lev	water Mel		nor/ e .				
Total depth below land surface (feet)	Depth	ing Diameter (inches)	Depth(s) to water- bearing zone(s) (feet)	Depth below land surface (feet)	Date measured (mo/yr)	Reported yield (gal/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conduc- tance (µmho/cm at 25°C)	Well number
COUNTY	(////				(1.30.,,					L
332	114	8	122	47	8/69	50	. 70/50	12	205	370	Mt- 1
328	92	8	99;191;241	46	8/69	300	7.7/200	72		416	2
298 298	42 112	6 10	99;277	116	11/78	15	3.8/200	48			3 4
305	59	7	95;130;198;		1/66	300	1.1/75	72			5
312	43	6	287;290;302 60;207;245; 258;275;312		9/60	125	1.4/50				6
						10 10					7 8
610	35	8	210;350;430			62					9 10
257 210	45	7				50 50					10
350 205				7	11/80 4/74	10	41 /220	24			12 14
205	65 70	8 8		19 15	4/74	200 80	41/330 1.1/73	24			15
309	45	8	51;88;210;	15	10/73	600	5.3/158	24			16
95	36	8	237;239;285 40;50;65; 70;80	15	10/73	125	2.7/122	24			17
300		7		5	9/67	60	.67/80	8			18 19
400	34 34	7				60					20
314 213	63 22	7 8	45.103.007	 F	7 166	190 100	2.5/				21 22
213	66	o	45;183;207	F	7/66	100	2.0/				
213	119	6	175;210	96	7/78	30	.88/				23 24
93 200	21 109	6 10	90	5 23	8/78 4/75	30 450	.67/ 19/500	24			24
100		6		28			38/85	8			26 27
308	73	10	150;185;230; 280	30	6/67		18/380	24	***	may kep tala	27
300	42	8	175;257	-69	7/80	200	.80/103		120	240	29
438 505	36 31	8 8	82;130;280 290	 F	6/80	10 900	.07/20 9.0/207	24 60		1,000	30 31
218	35	8	45;80;95;	12	1/74	80	.47/73	24			32
215	63	6	130;155 140:203	68	10/78	4					33
223	93	6	202			25					34
390	40	7	84;140;256; 315;369;384	115	5/68	60	.22/60				35
215	20	б	140;195	80	11/78	2			120	239	36
127 40	20 27	6 5	50;70;85 40	15	6/76	15 30	3.0/				37 38
90	21	6	70;82	20	3/67	5	.07/				39
223 33	20 20	6 6	200	7	7/67 11/78	1 25	.03/				40 41
95	5	6	31;60;80			5	.06/				42
76 35	51 15	6 6	74 34		11/78	30 20	1.00/				43 44
200	21	6	190	8	7/66	5	.03/				45
75	57	6	65	35	7/68	40	1.00/		THE HE SH		46
165 215	21 41	6 6	70;118;163	60 41	8/67 11/78	20 2	. 31 /				47 48
169	42	6	165	82	11/78	5					49
88 123	44 20	6 6	75;85 74;86	19	11/78	10 8	.13/				50 51
150	21	6		44	8/73	8					52
155 215	42 51	6 6	102;164;189	20 50	10/74 7/68	8 12	.07/				53 54
185	124	6	102,104,189	125	8/77	20					55
195 153	41 26	6 5				6 5					56 57
75	40	6	53;60;64;68	1	6/67	30	.41/				58
398	21 20	6	42;68	125 F	6/80 6/80	1 20	.03/5 .55/9	1	154	270 368	59 60
98 150	31	6 6	145	26	6/80 10/78	20	.03/		154		61
122	20	6	90;120	60	9/69	3	.03/			107	62 63
202 93	27 11	6 6	188 80	48 11	6/80 10/78	3 10	.03/			107	63 64
173	64	6	136;150	28	6/80	20				315	65
95 83	51 50	6 6	65;90;91 80	30 44	4/67 12/77	50 20	.77/			440 105	66 67
	46	ě	56;68;86	43	7/70	12				205	68
90 86	39	6	80	33	6/80	20	.77/			165	69

TABLE 23,

		T			r	· · · · · · · · · · · · · · · · · · ·	r	1
						Alti-		
Well	location					tude of land	Торо-	
Number	Lat-Long	Owner	Driller	Year completed	Use	surface (feet)	graphic setting	Aquifer/ lithology
Mt- 71	4100-7639	Anna Schenk	Ronald Randler	1967	H	895	S	Dtr/sssh
72 73	4100-7639	Andras	do.	1966	Н	900	S	Dtr/sssh
74	4100-7639 4101-7640	Roland Reedy Harry Hawkins	do. do.	1966 1969	H	900 542	S S	Dtr/sssh Dmr/sh
75	4102-7639	Russell Hendrickson	R. R. Hornberger	1976	Н	620	S	Dmr/sh
76	4102-7638	Leon Vandine	do.	1976	Н	620	S	Dmr/sh
77 78	4100-7639 4100-7640	Edward Barry Ronald Horne	Wieand Brothers	1976	Н	680	W	Dtr/sssh
79	4102-7640	Village Inn	Ronald Randler R. R. Hornberger	1977 1974	H C	825 509	S V	Dtr/sssh Don/lss
80	4103-7640	Danville Area Jointure Schools	do.	1968	T	565	S	Do/1ss
81 82	4103-7640 4103-7640	Bell Telephone Co. Rand Parker	Champion R. R. Hor n berger	1975 1966	H H	540 520	S S	Do/lss Do/lss
83	4102-7641	Wayne Leighow	Wieand Brothers	1900	Н	520	v	Do/lss Do/lss
84	4102-7641	Jesse Kelley			н	530	Ŷ	Do/lss
85 86	4102-7640 4104-7641	Marvin Funk L. Martz	D D Harrison	1957	Н	525	V	Dmr/sh
87	4103-7642	Jerry Gresh	R. R. Hornberger Wieand Brothers	1968 1977	H H	520 760	V S	Do/lss Sto/lsd
88	4103-7642	Richard Hoffman	do.	1976	Н	740	S	Sto/Isd
89	4104-7642	Dean Hebner	R. R. Hornberger	1976	Н	665	S	Do/lss
90 91	4103-7641	Jay Sitler	Wieand Brothers	1976	Н	582	S	DSk/1s
91	4103-7641 4104-7640	Lon Tarr William McMichael	do. R. R. Hornberger	1977 1969	H H	680 515	S V	DSk/ls Dmr/sh
93	4105-7638	Clarence McMichael	do.	1967	Н	580	Ŵ	Dmh/sh
94	4105-7638	Jimmy Holdren	do.	1966	н	605	S	Dmh/sh
95 96	4106-7638 4107-7638	Dale Sommers Karl McWilliams	do.	1968	н	665	S	Dmh/sh
97	4106-7637	Allen Dewald	do. do.	1966 1967	H H	720 712	S S	Dmh/sh Dmh/sh
98	4106-7637	Hershey	do.	1966	н	712	ŝ	Dmh/sh
99	4106-7637	McGargle	Clifton Buck	1968	н	680	S	Dmh/sh
100 101	4106-7637 4106-7637	George Holdren	R. R. Hornberger	1968	н	730	S	Dmh/sh
102	4103-7639	Bryon Sheatler Richard Baker	Virgil Buck Ronald Randler	1978 1966	H H	660 530	S V	Dmh/sh Dmr/sh
103	4102-7638	Fred Moser	R. R. Hornberger	1967	н	565	v	Dmr/sh
104	4103-7637	Norma Bartlett	Virgil Buck	1972	н	525	S	Dmh/sh
105 106	4103-7636 4103-7637	Harvey Davis Wayne Day	R. R. Hornberger do.	1973 1973	н н	640 550	W S	Dmh/sh
107	4104-7637	S. Stoltzfus	Ronald Randler	1973	H	535	S	Dmh/sh Dmh/sh
108	4104-7638	Jonas Beiler	do.	1976	н	535	Š	Dmr/sh
109	4104-7639	Robert McMichael	R. R. Hornberger	1967	Н	545	۷	Dmr/sh
110 112	4104-7638 4106-7643	Sanford Brown David Strouse	Wieand Brothers Ronald Randler	1974 1980	H H	565 610	V S	Dmh/sh Dmr/sh
113	4106-7643	Mary Hall	do.	1966	Н	605	S	Dmr/sh
114	4106-7641	Joseph Davis	Stackhouse	1972	н	575	Ϋ́	Dmr/sh
115	4106-7641	Exchange Grange	Ronald Randler	1967	н	580	V	Dmh/sh
116 117	4106-7641 4106-7640	Warrior Run School Franklin Shupp	R. R. Hornberger Ronald Randler	1966 1967	Т Н	645 665	S H	Dmr/sh Dmh/sh
118	4106-7641	David Litchard	R. R. Hornberger	1967	Н	640	S	Dmin/sh
119	4106-7642	Robert Brouse	Ronald Randler	1968	н	590	S	Dmh/sh
120 121	4107-7642	Hal Thomas	Wieand Brothers	1976	Н	650	S	Dmh/sh
122	4107-7640 4107-7640	Leonard Lyons James Turri	Ronald Randler R. R. Hornberger	1969 1975	S H	685 670	S S	Dmh/sh Dmh/sh
123	4058-7634	Edward James	Stackhouse	1975	H	940	W	Srl/sls
124	4058-7634	Kenneth Ackerman	Kraemer	1979	Н	875	W	Sr1/s1s
125 126	4102-7641 4102-7644	Roy Ulrich D. Fleming	R. R. Hornberger	1967	H	560	S	Do/lss
120	4102-7644	James Temple	Norman Hagenbuch R. R. Hornberger	1969 1967	H H	670 550	H V	Swc/dls Swc/dls
128	4102-7644	Wayne Mincemoyer	Wieand Brothers	1972	H	560	v	Sto/lsd
129	4104-7643	Earl Harris	do.	1976	н	660	S	Sto/1sd
130 131	4103-7642 4102-7643	Guy McCollum Frank Smith	R. R. Hornberger	1967	Н	700	S	Sto/lsd
132	4105-7644	Edward Beachel	Wieand Brothers R. R. Hornberger	1977 1966	H H	720 540	S V	DSk/ls Don/lss
133	4106-7642	Ronald Miller	do.	1967	н	565	۷	Dmh/sh
134	4106-7643	Albert Brown	do.	1967	Н	605	S	Dmr/sh
135 136	4100-7643 4100-7643	Ronald Randler Alicia Bridge	Ronald Randler do.	1976 1979	H H	600 620	S S	Dmh/sh Dmh/sh
137	4100-7643	Richard Smith	do.	1979	н Н	600	S	∪min/sn Dmih/sh
138	4100-7641	Kenneth Burrows	R. R. Hornberger	1972	R	740	S	Dmh/sh
139	4101-7641	Loren Girton	do.	1972	н	660	S	Dmh/sh
140 141	4101-7643 4101-7643	D. Ale Grace Bankus	Wieand Brothers Ronald Randler	1978 1968	H H	620 510	S V	Do/lss
142	4101-7644	John Styer	R. R. Hornberger	1968	н Н	510	s	Do/lss Do/lss
143	4102-7640	James Betz	Ronald Randler	1967	н	520	V	Do/lss
144	4104-7641	Maynard Lawton	do.	1969	Н	525	V	Do/lss
145 146	4104-7640 4106-7640	Kenneth Bryfogle Pennsylvania Power and	Gordon Hill R. R. Hornberger	1980 1974	C R	525 645	V H	Do/lss Dmc/ch
	100-7040		K. K. nornberger	19/4	ĸ	045	п	Dmr/sh
		Light Co.						
147 148	4105-7639 4106-7639	Light Co. do. do.	do. do.	1972 1974	R R	560 605	S W	Dmr/sh

			Static lev	water rel		997 1977 - 1979 - 1989 1999 - 1999 1999 1999 1999 1999	• · · · · · · ·	· · · ·		
Total depth below land surface (feet)	Casing Depth Diamete (feet) (inches		Depth below land surface (feet)	Date measured (mo/yr)	Reported yield (gal/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conduc- tance (pmho/cm at 25°C)	Well number
167 195	20 6 27 6	50;70;165 55;135;193	36 55	5/67 6/66	40 10	.82/				Mt- 71 72
173	31 6	45;125;170	35	6/66	5	.04/	~			73
82 110	20 6 20 6	80 55;95	1 42	7/69 6/80	6 12	.07/			265	74 75
80	20 6	68	1	6/80	15				295	76
398 160	20 6 16 6	65 155	20 73	6/80 6/80	1 7	.08/			183 162	77 78
29	23 6		5	6/80	12			170	347	79
215	44 7	85;158;210	60	1/68	30	.19/				80
150 130	30 6 25 6	75;130 86;115	17	7/66	8 3			900	2,400	81 82
73 30	20 6	37	16	6/80	60			171 103	328 388	83 84
210		10°	15	6/80				68	401	85
60 298	23 6 20 6	29;49;56 255	2	2/68	50 10	.86/	ana ana ana. Tana ana ina			86 87
298	60 6	248						188	379	88
155 173	20 6 38 6	60 120;147	46	5/76	3 15					89 90
348	250 6	316;330	157	7/80	30			282	605	91
205 415	20 6 30 6	175;205 45:87:196:296	7 7	7/80 7/80	3 2	.03/		120 137	381 554	92 93
225	20 6	175;215	5	6/66	1	.03/				94
304 70	26 6 19 6	117 50;56	25 20	4/68 8/66	1 30	.03/		120 103	399 253	95 96
1 30	18 6	100;120	17	7/80	2	.03/		OF MA MA	An 19 m	97
170 257	36 6	164 210	25 10	8/66 5/68	20 4	.14/ .03/				98 99
155	24 6	121;149	б	2/68	5	.03/				100
155 84	20 6 16 6	30;80;140 25;50;84	20 16	5/78 5/66	4 6	.03/ .09/				101 102
50	26 6	46;48	5	6/67	15	.33/				103
218 80	20 6 30 6	75;210;218	26	2/73	4 10					104 105
250	21 6		10	8/73	1			34	399	106
180 268	16 6 19 6	180 60;260	12 14	7/80 7/80	2 1	.03/				107 108
81	42 6	63			4	.06/	any unit unit		400	109
346 118	21 6	236;251	25	7/80	4			17 67	460	110 112
75 70	22 6 28 6	73	15	12/66	7 12	.12/				113 114
35	28 6 25 6	68 33		3/67	12	.48/				114
215 122	82 7 52 6	118;184 85;120	60 32	12/66	15 10	.10/				116 117
184		50;105;180	22	6/67 11/67	8	.05/		530	1,150	118
80 248	35 6 18 6	45;78 203	46	7/80	50 10	3.3/				119 120
200	10 6	105	15	5/69	1	.03/		180	448	121
175 150	20 6 21 6		10	7/73 7/80	3 30				210	122 123
136			1	7/80	25			68	120	124
128 300	26 6	120 165;225;285	2 150	7/80 4/69	40 20	.41/		120	208	125 126
33	20 6	25;27	11	5/67	40	1.8/		239		127
80 223	41 6 63 6	185	12 93	7/80 7/80	30 20			154	408	128 129
195	136 6	170;189	100	5/67	5	.05/		171	367	130
248 215	63 6 23 6	150;198 26;195	115 6	7/80 7/80	12 3	.03/				131 132
51	50 6	50	4	8/67	40	.85/				133
123 102	29 6 8 6	69 100	22 36	9/67 12/76	2	.03/ .15/10				134 135
77	22 6	75	33	7/79	20	.45/				136
82 430	8 6 18 6	78	36 21	7/77 7/80	40 1	4.0/		154	325	137 138
150	20 6				3			120	300	139
122 45	84 6 30 6	97;101 30;44	40 7	7/78 6/68	30 40					140 141
160	48 6	69;157	50	3/68	5	.05/				142
48 38	43 6 31 6	42 38	20 5	3/67 9/69	20 6	2.0/				143 144
150	20 6		18	7/80	45			100		145
255	52 6		60	7/80	*	.19/30	12	188	442	146
200	41 6	75;90;140;200) 7	7/80	23			137	480	147

							· ·	
						CONCOURS IN		
						Alti-		
						tude of		
Well	location			******		land	Topo-	
	1	-		Year		surface	graphic	Aquifer/
Number	Lat-Long	Owner	Driller	completed	Use	(feet)	setting	lithology
L		1			1		1	
Mt-149	4106-7640	Richard Hess		1969	н	570	S	Dmr/sh
150	4107-7639	Joseph Murray	R. R. Hornberger	1975	н	700	W	Dmh/sh
151	4107-7637	Ross McCollum	do.	1977	н	765	н	Dmh/sh
152	4100-7641	Kenneth Burrows	do.	1968	н	780	S	Dtr/sssh
153	4100-7636	Daniel Wetzel	Alvin Swank and Son	1980	Н	550	V	Dmh/sh
154	4059-7635	Pinebrook Homes	Stackhouse	1980	н	735	S	Sru/sls
156	4100-7636	Carl Hartman	R. R. Hornberger	1976	Н	560	S	Dmh/sh
157	4102-7635	Linda Synder	do.	1967	Н	825	V	Dtr/sssh
158	4100-7636	Gary Morris		1976	н	690	н	Dmh/sh
159	4100-7637	Joe Hess	R. R. Hornberger	1975	Н	808	S	Dtr/sssh
160	4100-7637	do .	do.	1974	н	760	S	Dtr/sssh
161	4100-7637	Ben Hess	do .	1975	Н	810	S	Dtr/sssh
162	4100-7637	do .	do.	1977	н	849	Н	Dtr/sssh
163	4100-7637	do.	Neil Negley	1978	н	852	H	Dtr/sssh
164	4102-7635	Clyde Gray	R. R. Hornberger	1977	H	890	S	Dciv/sssh
165	4102-7633	Mike Mausteller	do.	1968	Н	1,143	H	Dciv/sssh
166	4104-7637	Donald Robbins	Ronald Randler	1967	H	549	V	Dmh/sh Sup/dla
167	4059-7636	Kocker Lot 3	Virgil Buck	1978	Н	540 540	S S	Swc/dls Swc/dls
168	4059-7636 4059-7636	Kocker Lot 4	do.	1978 1978	н н	540	S	Swc/d1s
169 170		Kocker Lot 5	do.	1978	н Н	540 540	S	Swc/dls
170	4059-7636	Kocker Lot 6 Kocker Lot 7	do.		H	540	S	Swc/d1s
172	4059-7636 4059-7636	Kocker Lot 9	do.	1978 1978	н	540	S	Swc/dls
172	4104-7604		do. Gordon Hill	1978	C	525	V	Do/lss
175	4104-7638	Kenneth Bryfogle	Ronald Randler	1980	H	525	S	Dmr/sh
175	4058-7634	Jonas Beiler Mark Cook	do.	1978	Н	1,030	S	Srl/sls
170	4059-7634	L. Santini		1901	H	1,280	н	Srl/sls
178	4100-7636	Joseph Siats	Wieand Brothers	1981	H	555	V N	Dmh/sh
181	4059-7635	Joseph Cady	Stackhouse	1981	H	725	s	Sru/sls
182	4059-7636	Kocker Lot 14	Virgil Buck	1979	Н	540	ŝ	Swc/dls
182	4059-7636	Kocker Lot 9	do.	1979	H	540	S	Swc/dls
184	4059-7636	Kocker Lot 8	do.	1979	н	540	S	Swc/d1s
185	4058-7635	Pinebrook Homes	Stackhouse	1981	н	810	Š	Sru/sls
186	4057-7632	Keener	do.	1981	н	930	й	Dtr/sssh
187	4058-7631	William Barnes	do.	1981	н	740	s	Dtr/sssh
188	4058-7631	do.	R. R. Hornberger		H	760	ŝ	Dtr/sssh
189	4058-7634	Robert McCaffery	do.	1975	н	650	S	Swc/dls
190	4103-7640	Washingtonville Town		1928	U	570	v	Do/lss
		Hall						
191	4104-7639	Dairyman's Coop		1928	Т	545	v	Dmh/sh
		Association						
194	4058-7636	Geisinger Medical Center		1930	Т	590	S	Sb/sh
202	4059-7638	Dutch Pantry	R. R. Hornberger	1974	С	510	¥	Do/lss
203	4059-7638	do.	do.	1973	С	510	V	Do/lss
204	4059-7638	Metal Wire Recovery	do.	1967	N	510	V	Swc/dls
205	4059-7638	do.	do.	1966	N	510	V	Swc/dls
206	4059-7639	Howard Johnson's	Kohl Brothers	1973	С	630	V	Dmr/sh
207	4059-7639	do.	do.	1973	С	630	¥	Dmr/sh
				4077		0.05		
208	4058-7638	Wayne Bassett		1977	н	905	Н	Srl/sls
209	4058-7638	James Connell	Alvin Swank and Son	1978	н	940	S	Sr1/s1s
210	4059-7643	E. Hildebrand	Ronald Randler	1978	н	685	S	Dmh/sh
211	4058-7643	M. Prowant	Roy Zimmerman	1973	Н	615	U	DSk/1s Dmb/sb
212	4059-7644	R. Schreck	do. P P Hornberger	1976	н н	600 520	H W	Dmh/sh Dmh/sh
213 214	4058-7644 4059-7634	C. Ríne Milton Hartman	R. R. Hornberger do.	1958 1975	н Н	520 875	W	Dmh/sh Srl/sls
214	4059-7635	Truman Mitchell	do.	1975	H	740	s	Sb/sh
215	4058-7635	Russell Weaver	do.	1966	H	600	S	Swc/dls
210	4057-7636	Myron Fenstermac	Norman Hagenbuch	1968	Н	515	S	Swc/dls
218	4058-7635	Lewis Riley	R. R. Hornberger	1967	Н	600	S	Swc/d1s
219	4057-7635	Charles Confer	do.	1976	Н	585	S	Sto/1sd
220	4058-7634	George Pappas	Wieand Brothers	1977	н	720	Š	Sb/sh
221	4058-7635	W. Raup	Virgil Buck	1978	н	765	S	Sru/sls
222	4058-7636	John Hubicki	R. R. Hornberger	1967	н	680	S	Sru/sls
223	4058-7634	James Blue		1966	Н	810	S	Smk/s1s
224	4057-7635	Kline Albeck	R. R. Hornberger	1967	н	565	S	Swc/dls
225	4058-7637	Glen Hagenbuch	Ronald Randler	1968	н	570	S S	Sr1/sssh
226	4057-7635	John Krum	do.	1967	н	582	S	Sto/1sd
227	4058-7636	Goven Saienni	R. R. Hornberger	1966	Н	680	S	Sru/sls
228	4058-7636	John Hubicki	do.	1968	н	680	S	Sru/sls
229	4059-7638	Pennsylvania Department	Kohl Brothers	1970	н	515	V	Swc/dls
		of Transportation						
231	4100-7639	George Dietr		1968	н	620	W	Dh/sh
232	4059-7638	May's Drive-In		1968	н	510	W	Do/lss
233	4100-7636	Jay Hummer	Wieand Brothers	1974	н	670	S	Dmh/sh
234	4059-7635	John Burke		1975	Н	605	S	Dmr/sh
235	4059-7637	Larry Mordan	Ronald Randler	1977	Н	575	S	Sru/sls
236	4059-7639	Mobil Soott Edwards	Uicand Buckhone	1966	H	580	S V	Dmh/sh Dtm/sssh
237	4100-7636	Scott Edmeads	Wieand Brothers	1977	н	555	¥	Dtr/sssh

RECORD OF WELLS

				Static lev	water			_		-	
Total depth below land surface (feet)	Depth	sing Diameter (inches)	Depth(s) to water- bearing zone(s) (feet)	Depth below land surface (feet)	Date measured (mo/yr)	Reported yield (gal/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conduc- tance (umho/cm at 25°C)	Well number
70 135 195 506 125 153 100 215 195 135 275 275 315 105 153 76 95 140 170 170 170 170 170 155 285 285 189 175 250 200 145 223 223	31 20 20 20 35 35 35 36 40 20 20 20 20 20 20 20 20 20 20 20 20 20	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	 90;185 89;134;291 25 120 92;98 80 92;101 92;101 92;101 92;101 90;120 85;160 90;150 80;110;145 50;198 160;235 60;115;160 95;170 95;140 	$\begin{array}{c} 14\\ 5\\ 25\\ 60\\ 4\\\\ 11\\ 51\\ 40\\\\ 95\\\\ 95\\\\ 35\\ 5\\ 30\\ 30\\ 40\\ 45\\ 40\\ 40\\ 18\\ 6\\ 17\\ 165\\ 2\\ 73\\ 30\\ 30\\ 35\\ 60\\ 39\end{array}$	7/80 7/80 7/80 7/80 8/68 8/80 9/80 10/80 4/75 11/80 9/67 11/78 7/78 7/78 7/78 7/78 7/78 7/78 11/78 11/78 11/78 11/78 11/81	4 15 1 10 3 6 3 3 5 15 15 5 5 12 5 7 25 6 6 5 20 18 5	 .03/ .25/13 .04/ .04/ .04/ .06/ .04/ .06/ .03/3 .07/3 .03/1 .29/15 .10/ .03/ .04/ .04/ .04/ .04/ .03/3 .07/3 .03/1 .29/15		188 120 239 200 86 52 103 34 51 -34 103 103 68 103 -	450 310 280 86 250 252 285 90 77 180 132 355 132 355 132 355 132 355 132 355 132 355 132 355 235 185 115 125 222 200 230 160	Mt-149 150 151 152 153 154 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 175 176 177 178 181 182 183 184 185
200 197 115 230	45 60 61 40	6 6 6	100;160	58 68 25	11/81	14 50 10	.18/7	6 	68 	160 	187 188 189 190
200 528 75 190 70 175 300 400	28 20 22 36 119 98 60	 6 8 7 8 8	 36;50;65 35;105;165 120;180;240 95;160;245; 320:370	20 68 15 20 11 -3 5 20	 4/74 9/73 1/67 8/66 5/73 6/73	25 28 120 	.15/26 	11 8 4 19 24			191 194 202 203 204 205 206 207
394 263 126 110 305 215 215 190 80 95 190 198 200 216 210 216 210 88 255 260	42 41 20 40 43 81 20 20 20 51 34 91 20 81 81 46 190	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	320;370 215;370 135;185 53;68 85 180 69;96 60;90;98 150;205 65;205 84 120;150;248 86;175;200	70 	10/77 11/78 6/78 10/78 11/66 3/68 12/67 10/66 8/77 7/78 12/67 9/81 8/67 10/66 2/68 1/70	2 6 7 6 15 3 5 4 5 6 7 20 30 4 20	 		 51 17 68 68	98 98 280 165 145	208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
155 175 175 155 128 95 198	22 21 30 54 21 18	6 6 6 6 6 6	38;81;124;137 114;165 43;80;143;155 120 40;89 180	30	5/68 6/68 10/78 10/78 11/78 11/66 5/77	10 6 4 10 20 60	.07/ .04/ .50/ .31/		 68 103	148 220	231 232 233 234 235 236 237

Well Number	location Lat-Long	Owner	Driller	Year completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer/ lithology
Mt-238	4059-7639	ARCO		1974	ін	560	S	Dmh/sh
239	4100-7637	Joseph Kistner		1968	Н	605	ŝ	Dmh/sh
240	4100-7637	Darwin Ditty		1967	Н	640	S	Dmh/sh
241	4100-7636	Howard Tanner	Not but use	1967	н	680	н	Dmh/sh
242	4059-7638	Stewart Venblehn		1967	н	495	W	Sb/sh
243	4100-7637	Mark Roberts	Ronald Randler	1968	н	635	S	Dmh/sh
244	4059-7637	First Baptist Church		1977	Н	530	S	Swc/dls
245	4058-7637	James Hagenbuch	Ronald Randler	1979	н	595	S	Sr1/s1s
247	4059-7637	Walter Halterman	do.	1980	H	545	Н	Sb/sh Srl/sls
248 249	4058-7637 4058-7638	Gordon Raup Wayne Myers	do. Virgil Buck	1981 1978	H H	565 800	W S	Sr1/s1s Sr1/s1s
250	4058-7637	George Wagner	Ronald Randler	1978	Н	870	H	Sr1/s1s
251	4058-7641	B. Ludwig		1980	н	1,010	н	Srl/sls
252	4108-7643	E. Donahue	Wieand Brothers	1979	н		н	Dtr/sssh
253	4108-7643	G. Leonard	do.	1979	Н	~ ~ ~	S	Dtr/sssh
254	4058-7635	J. Stanko	R. R. Hornberger		н	750	S	Sru/sls
255	4058-7634	Thomas Forney	Stackhouse	1982	Н	1,030	н	Srl/sls
							NO	RTHUMBERLAN
lu-157 158	4056-7637 4056-7637	Fisher Realty do.	Wieand Brothers do.	1980 1980	P P	595 570	S W	Dmh/sh Dmh/sh
150	403047037	00.	d 0 .	1900	r	570	n	Duni7 30
159	4056-7637	Haefner		1979	н	605	S	Dmh/sh
160	4056-7637	Larry Bohner	R. R. Hornberger	1967	Н	565	S	Dmh/sh
161	4056-7634	Allen Shaffer	do.	1966	Н	465	٧	Dciv/sssł
162	4056-7635	Wayne Brouse	do.	1960	н	485	V	Dciv/sssk
164	4106-7644	Thelma Strouse	Ronald Randler	1974	н	580	S	Don/lss
165	4106-7644	James Styer	do.	1974	Н	560 525	S T	Don/lss Swc/dls
166 167	4057-7637 4056-7639	William Snyder Richard Heller	R. R. Hornberger Ronald Randler	1972 1969	H H	525 475	T	DSk/ls
168	4056-7639	Harold Whitenight	R. R. Hornberger	1967	H	460	Ť	Dmh/sh
169	4057-7637	Daniel Fitzgerald	do.	1967	н	470	Ť	Swc/dls
170	4057-7638	Ralph Shannon	do.	1966	Ĥ	530	Ť	Dmr/sh
171	4057-7638	Fred Reed	do.	1966	С	530	т	Dmr/sh
172	4057-7637	Arthur Fryling	do.	1966	Н	500	т	Swc/dls
173	4056-7637	Nevin Beishline	do.	1966	н	610	S	Dmh/sh
174	4057-7637	Stanley Adler	Norman Hagenbuch	1966	Н	550	V	Dmh/sh
175	4057-7639	Riverside Church	Virgil Buck	1978	н	495	T	Swc/dls
176 177	4056-7638 4057-7637	Schmidt Alex Oshirak	R. R. Hornberger Ronald Randler	1970 1976	H H	540 470	S T	Dtr/sssh Don/lss
178	4057-7637	Raymond Howell	R. R. Hornberger	1978	Н	480	Ť	Do/lss
		.	5					
179	4057-7639	Terry Fry	do.	1977	Н	485	T	Swc/dls
180 184	4056-7637 4056-7637	F. Maresa	Wigand Prothenr	1976 1977	H H	605 705	S S	Dmh/sh Dtr/sssh
184 185	4056-7637 4056-7637	Adam Rivito Pinebrook Homes	Wieand Brothers Stackhouse	1977	н Н	615	S	Dur/sssn Dmh/sh
185	4057-7638	Shirley Steffen	R. R. Hornberger	1966	Н	470	T	Sb/sh
187	4057-7637	Time Markets	Alvin Swank and Son	1973	н	480	Ť	DSk/ls
188	4057-7637	David Cooper			н	480	Т	DSk/ls
189	4057-7637	Fred Geringer	Alvin Swank and Son	1972	н	480	Т	Sto/1sd
190	4057-7637	do .			н	480	Ţ	Qgo/sg
191	4057-7637	S. Wintersteen			H	465	T	Qgo/sg
193	4055-7646	Beverly Cook		1977	Н	640	S V	Dtr/sssh Sto/lsd
194 195	4055-7645 4055-7645	Richard Smith Steve Klinger		1974 1977	н Н	560 540	v S	Sto/iso Dmh/sh
195	4055-7645	Steve Klinger Scott Erdman		1977	н Н	540 550	S	Dmr/sh
190	4057-7639	D. Barnhart	Ronald Randler	1978	H	470	Ŷ	Sb/sh
198	4057-7640	James Thomas	R. R. Hornberger	1977	Н	470	v	Swc/dls
199	4056-7640	Charles Brogan	do.	1976	Ĥ	470	٧	Swc/dls
200	4056-7641	William Cole	do.	1975	Н	500	S	Sb/sh
251	4157-7638	C. Benjamin	Ronald Randler	1980	н	510	Т	Do/lss

RECORD OF WELLS

			0	Static lev	water el					a contraction of the second se	
Total depth below land surface (feet)	Depth	ing Diameter (inches)	Depth(s) to water- bearing zone(s) (feet)	Depth below land surface (feet)	Date measured (mo/yr)	Reported yield (gal/min)	Specific capacity [(gal/min)/ft]/ pumping rate (gal/min)	Pumping period (hours)	Hard- ness (mg/L)	Specific conduc- tance (umho/cm at 25°C)	Well number
131	45	6		29	5/74	8			n m m		Mt-238
74	22	6	40;61	20	5/68	6	.11/				239 240
70 95	34 40	6 6	60;68 55;68;85	30 30	10/67 4/67	10 7	.12/	10 M T			240
76	23	6	65	13	7/67	25	.68/				242
82	20	Ğ	65;70;80	42	7/68	30	3.8/	44. 300 Dec			243
70	20	6	55;65	10	1/77	20					244
261	13	6	100;255	116	9/81	20	.36/		68	160	245 247
265 137	16 15	6 6	260 130	59 59	9/81 9/81	3 20	.27/		171 86	380 160	247
80	13 20	6 6	60:75	20	9/81	8	.13/		86	180	249
191	14	6	185	82	11/78	7	.08/		51	170	250
97	43	6	87		10° W 100	10			51	78	251
523	42	6	178			* - *	10 an 10	an yn 'n	* * *		252
448	39	6	100	82	6/79	1	100- 000 (MI		***		253 254
200 223	105 40	6 6	76	46	4/82		.05/3	1	86	210	255
COUNTY		•			47 GE						
300	42	6	56;91;115;148	26	5/80	20	1.2/18	2	51	100	Nu-157
300	22	6	22;30;88; 108;289	4	7/80	60	.87/60	40	86	181	158
130	****			56	5/80						159
95 80	39 32	6 6	45;87;91 60;75	44 29	7/67 6/80	8 7	.16/		51	190	160 161
80	36	ю 	41	29	8/80	35	.53/15	1	51	150	162
80	14	6	75		0700		.00/10				164
74	13	6	70				** ** **	***		er de m	165
175	106	6		40	10/72	6	***			~~~~	166
75	21	6		25	2/69	35	1.2/		***	***	167 168
105 150	20 31	6 6	27;103 140	25 20	6/67 3/67	40 3	.03/	an de ap	***	****	169
63	32	6	58	10	9/66	6	.14/~~~		que Phe Aux		170
75	38	6	45;61	20	12/66	10	.20/	also ever water	****		171
95	69	6		40	9/66	7	.16/		~~~		172
155	31	6	71;109;146	20	11/66	4	.03/				173 174
65 110	27 87	6 6	40;55;60 110	16	11/66	25 10	.74/				179
180	60	6	110	17	11/78		an an an	~ ~ ~			176
61	29	6	55	13	4/76	18	.49/	a			177
335	41	6	48;71;104; 203;309	43	7/67	20	.07/	ant sets the	No. 997 - 997	w	178
98	92	6	98	53	11/78	40	AN1 AN1 AN1				179 180
125 398	20	6	300	38 76	5/80 12/78	2	yaa 100 000 100 000 000				180
398 123	20	6	300	76 38	12/78	12	100 AN TT		51	135	185
70	20	6	50;60	20	7/66	20	.57/		~~~	141 WO 804	186
96	83	6	86;95	32	11/81	40	4.2/63	24	188	600	187
80			69	32	11/81	10 M AL	.88/12	2	274	795	188 189
120 47				31 32	11/81 11/81	***	.35/7	1	855	2,100 625	189
4/		***	***	32 21	12/81						190
205	60	6	134:175	100	5/77	7		***		* * *	193
185	167	6		20	6/74	150					194
226	42	6	165;195	85	11/77	5				10-10-10-	195
151	63	6	64;140	2	11/77	8 20	24 /				196 197
137 42	21 33	6 6	130 38	16	8/78	20	.24/		***		197
42 53	33 40	6 6	38 49	16	1/76	50		***	***		199
75	57	6		20	8/75	10			***		200
90	76	6	70	68	1/80	14	<i>in to</i> 10-		* * *		251

TABLE 24. RECORD OF SELECTED SPRINGS

Spring location: The number is that assigned to identify the spring. It is prefixed by a two-letter abbreviation of the county. The lat-long is the coordinates, in degrees and minutes, of the southeast corner of a 1-minute quadrangle within which the spring is located.

Use: H, domestic; P, public supply; T, institution.

Topographic setting: S, hillside; T, terrace; W, upland draw.

Aquifer: Qgo, glacial outwash; Dcsc, Sherman Creek Member of the Catskill Formation; Smk, Mifflintown and Keefer Formations.

Lithology: sg, sand and gravel; sls, sandstone, limestone, and shale; sssh, sandstone and shale.

Reported discharge: gal/min, gallons per minute.

Spring	location	,			Altitude of land surface	Topographic	Aquifer/	Reported discharge
Number	Lat-Long	Owner	Name of spring	Use	(feet)	Topographic setting	lithology	(gal/min)
Co-Sp-2	4104-7624	Orangeville Water Co.	No. 1	Р	670	W	Dcsc/sssh	18
4	4056-7626	Catawissa Water Authority	Upper Hoffman	Р	1,280	S	Dcsc/sssh	14
5	4056-7626	do.	Lower Hoffman	Ρ	1,200	S	Dcsc/sssh	14
6	4056-7626	d o .	Gensel	Р	770	W	Dcsc/sssh	10
9	4101-7622	P. Hartkorn		н	490	Т	Qgo/sg	2
Mt-Sp-1	4058-7636	Geisinger Medical Center		Т	540	W	Smk/sls	

٠