GSI-191 RESOLUTION FOR KEWAUNEE POWER STATION

• KEWAUNEE TELECONFERENCE PARTICIPANTS:

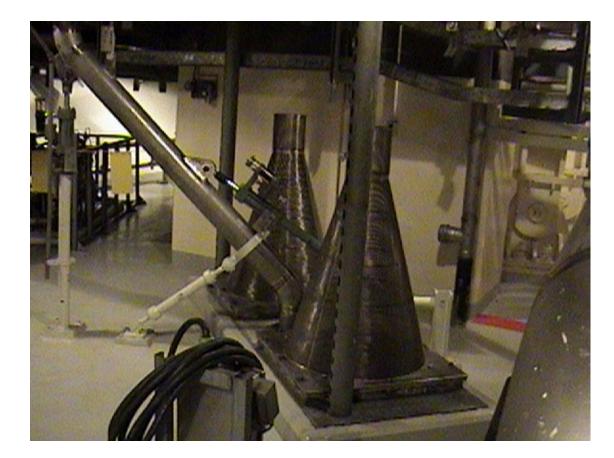
• DOMINION:

- JACK DILLICH, DIRECTOR NUCLEAR ENGINEERING
- MICHAEL L. MILLER, MANAGER NUCLEAR DESIGN ENGINEERING
- SCOTT PUTMAN, PROJECT MANAGER
- LORI CHRISTENSEN, MECHANICAL DESIGN ENGINEERING
- TOM BREENE, LICENSING
- JACK GADZALA, LICENSING
- PERFORMANCE CONTRACTING, INC. (PCI)
 - JIM BLEIGH, ENGINEERED SYSTEMS MANAGER
 - CHRIS KUDLA, CONSULTANT
- ALDEN RESEARCH LABORATORIES, INC. (ARL)
 - STU CAIN, PRESIDENT
- ATOMIC ENERGY OF CANADA LIMITED (AECL)
 - DAVID GUZONAS, PRINCIPAL SCIENTIST
 - DAVID RHODES, PRINCIPAL ENGINEER

- TODAY'S PRESENTATIONS WILL COVER MATERIAL WE INTEND TO PROVIDE IN OUR RAI RESPONSE
- THE FINAL RAI RESPONSE WILL BE PREPARED, REVIEWED AND APPROVED IN ACCORDANCE WITH OUR CORRESPONDENCE PROCESS

• REPLACEMENT STRAINER

- DESIGNED BY PCI
- TESTED BY PCI/AREVA/ARL



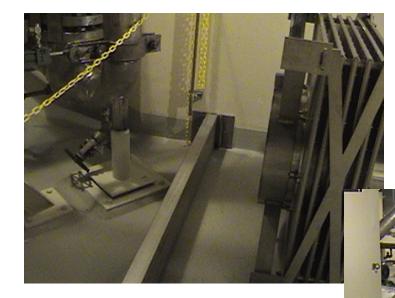
- INSTALLED 2006 REFUELING OUTAGE
 - STRAINER SURFACE AREA 768.7 FT2

ORIGINAL CONTAINMENT SUMP STRAINER MODULES - 39 FT2 TOTAL SURFACE AREA (TWO MODULES COMBINED)

- KEWAUNEE IS A SINGLE UNIT, 2-LOOP PWR
 - 597 MWe
 - NSSS BY WESTINGHOUSE
- KEWAUNEE DESIGN BASIS DEBRIS
 - REFLECTIVE METAL INSULATION (RMI) ON RCS
 - 40.3 FT3 TEMPMAT ON PRESSURIZER SURGE LINE PIPE SUPPORTS
 - ENCASED IN STAINLESS STEEL RIVETED PANELS
 - THIS DEBRIS SOURCE REPRESENTS 85% OF KEWAUNEE'S FIBROUS DEBRIS
 - OTHER FIBER IS PIPE COVER (2.44 FT3), CABLE INSULATION, THERMOBESTOS FIBER AND LATENT FIBER
 - PARTICULATE DEBRIS CONSISTS OF COATINGS, LATENT AND SMALL QUANTITY OF THERMOBESTOS

PRESSURIZER SURGE LINE (TEMPMAT)

TEMPMAT



NUKON

• KEWAUNEE DESIGN BASIS

- DESIGN BASIS RECIRCULATION FLOW
 - SINGLE TRAIN OPERATION
 - 1990 GPM RHR PUMP FLOW (INCLUDES PUMP RECIRC FLOW)
 - 1870 GPM THROUGH RECIRCULATION STRAINER
- RECIRCULATION STRAINER
 - 768.7 FT2 SURFACE AREA, 0.066 IN. PERFORATIONS
 - LOW APPROACH VELOCITY 0.0056 FT/SEC @ 1920 GPM FLOW THROUGH STRAINER (1870 GPM + 50 GPM MARGIN ADDED)
 - LOW APPROACH VELOCITY RESULTS IN MINIMAL TURBULENCE
- DEBRIS INTERCEPTORS INSTALLED TO PREVENT MATERIAL MOVING ALONG THE SUMP FLOOR FROM REACHING THE STRAINER

• DEBRIS INTERCEPTORS

• LARGE BREAK LOCA SCENARIO

- USING MAXIMUM RWST INJECTION FLOWS:
 - <u>T (TIME) + 0 MIN.</u>

START OF LOCA - START RCS INJECTION AND CONTAINMENT SPRAY

<u>T + 21 MIN.</u>

RWST REACHES 37% SWITCHOVER LEVEL (MANUAL SWITCHOVER)

<u>T+ 29 MIN.</u>

RECIRCULATION BEGINS

SUMP LEVEL 43.44 INCHES (MINIMUM) (40.5 IN. CONSERVATIVELY USED IN ANALYSES)

STRAINER SUBMERGED 6.19 INCHES (43.44 – 37.25 INCH STRAINER HEIGHT)

RCS INJECTION AND CONTAINMENT SPRAY CONTINUES

<u>T + 43 MIN.</u>

RCS INJECTION FLOW ENDS, CONTAINMENT SPRAY ENDS

SUMP LEVEL > 5.75 FT OF WATER

LONG TERM RECIRCULATION CONTINUES (NO RECIRC SPRAY)

• NET POSITIVE SUCTION HEAD (NPSH) MARGIN

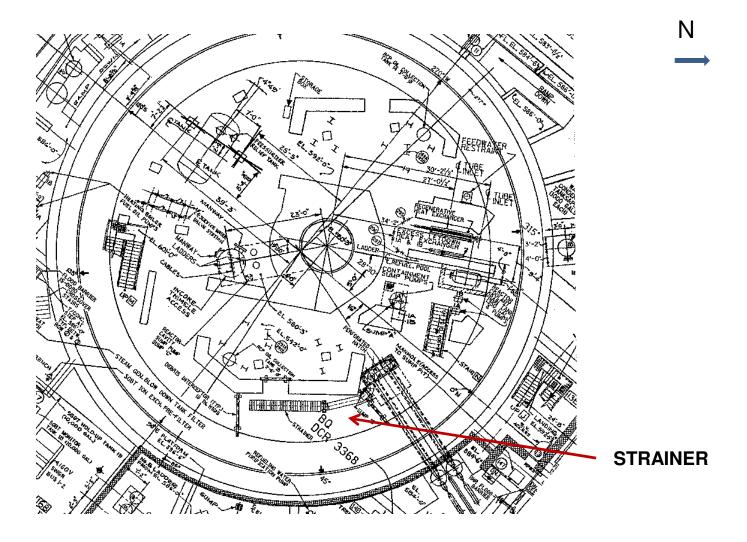
PARAMETER	HEAD (FT)	COMMENT
NPSH AVAILABLE	24.108	TOTAL WATER HEIGHT AT THE ONSET OF RECIRCULATION, MINUS PIPING FRICTION LOSSES [26.224 – 2.116]; USES 43.44 IN. SUMP LEVEL
NPSH REQUIRED	8	AT MANUFACTURER-SPECIFIED DESIGN FLOW RATE 2000 GPM (BOUNDS DESIGN BASIS FLOW DURING RECIRCULATION)
NPSH MARGIN	16.108	

- OVERVIEW OF FLUME TESTING
 - 2006 STRAINER HEAD LOSS FLUME TESTS
 - 2007 FIBER TRANSPORT TESTS
 - 2008 STRAINER HEAD LOSS FLUME TESTS (LARGE SCALE FLUME)

• 2006 TESTS

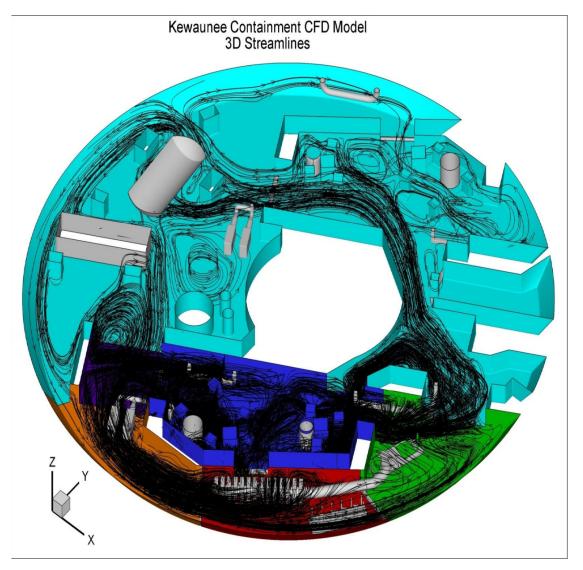
- ARL SMALL FLUME
- DESIGN BASIS DEBRIS LOAD
- POWDERED SODIUM ALUM SILICATE CHEM SURROGATE
- TESTED AT 2X DESIGN BASIS FLOW
- DEBRIS STIRRED IN FLUME AND OVERHEAD SPRAYS USED TO MINIMIZE SETTLING
- MAX HEAD LOSS WAS THIN BED TEST 3.79 FT OF WATER (CSHL + DEBRIS BED LOSSES) AT 2 X DESIGN BASIS FLOW
- SIGNIFICANTLY BELOW 10 FT OF WATER ACCEPTANCE CRITERIA

2006 TEST FLUME – MANUAL STIRRING

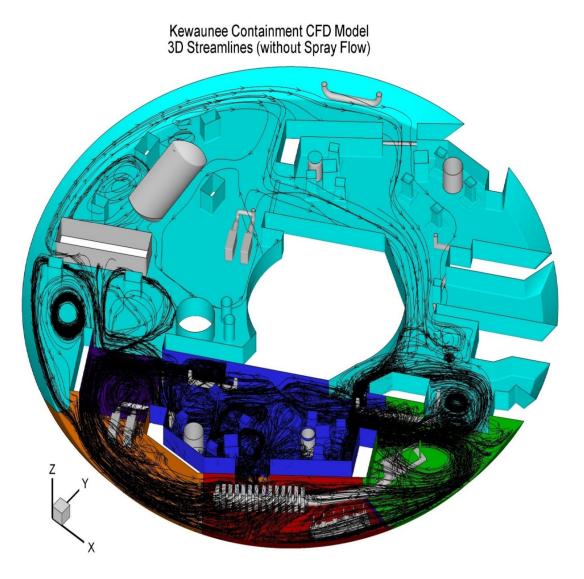

• 2007 TESTS

- FIBER TRANSPORT TESTS
- ARL SMALL FLUME
- DEBRIS INTERCEPTOR (C8X18.75 CHANNEL) IN FLUME; 3/8 IN. GAP MODELED
- DEBRIS SCALED TO DEBRIS INTERCEPTOR LENGTH (9.6% OF TOTAL DEBRIS)
- TESTED AT FLOW RATE EQUIV. TO CROSS SECTIONAL FLUID VELOCITY OVER SOUTH DEBRIS INTERCEPTOR, 0.113 FT/SEC
- TESTS RESULTED IN < 5% TRANSPORT OF FIBER DOWNSTREAM OF DEBRIS INTERCEPTOR
- NO THIN BED OCCURRED USING 12.2 FT2 STRAINER
- DEBRIS INTERCEPTORS IN COMBINATION WITH LOW SUMP POOL VELOCITIES AND LOW STRAINER APPROACH VELOCITY PROTECTS STRAINER FROM THIN BED

2007 TEST FLUME – FIBER TRANSPORT TESTS



- COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS
- TWO FLOW SIMULATIONS MODELED
 - INITIAL START OF RECIRC WITH INJECTION AND RECIRC FLOW OUT THE RCS BREAK, INJECTION SPRAY, AND RECIRC SUMP FLOW
 - LONG TERM RECIRCULATION RCS BREAK FLOW EQUAL TO RECIRCULATION FLOW, NO SPRAY
- MOST CONSERVATIVE SIMULATION (START OF RECIRC) USED WHEN DETERMINING DEBRIS SUBJECT TO TRANSPORT TOWARD THE STRAINER/DEBRIS INTERCEPTOR AREA
 - PLANT CONDITION LASTS APPROX. 14 MINUTES
- FOR SIMPLICITY, BOTH MODELS USE 40.5 INCH SUMP WATER LEVEL
 - MORE CONSERVATIVE THAN 43.44 IN. MIN. LEVEL AND LONG TERM SUMP LEVEL (> 5.75 FT)



19

• SIMULATION AT START OF RECIRC (INJECTION & RECIRC IN PROGRESS)

• SIMULATION DURING LONG TERM RECIRCULATION

• 2008 STRAINER TESTS

- ARL LARGE SCALE FLUME
- ALL FINE AND SMALL DEBRIS SUBJECT TO TRANSPORT PLACED IN FLUME
- WCAP-16530-NP USED TO CREATE CHEMICAL SURROGATE (ALOOH)
- DEBRIS INTERCEPTOR & 3/8 IN. GAP MODELED IN FLUME
- DEBRIS INTRODUCED FROM UPSTREAM DROP ZONE
- TOTAL HEAD LOSS (DEBRIS BED + CSHL) FOR DESIGN BASIS DEBRIS LOAD AT DESIGN BASIS FLOW RATE = 1.1 FT OF WATER
- TOTAL HEAD LOSS (DEBRIS BED + CSHL) FOR DESIGN BASIS DEBRIS LOAD PLUS ADDITIONAL FIBROUS, LATENT DEBRIS AND <u>DOUBLE CHEMICAL DEBRIS</u> <u>CONCENTRATION</u> FOR ADDED DEBRIS LOAD MARGIN = 3.28 FT OF WATER
- ALL TESTS SIGNIFICANTLY BELOW 10 FT OF WATER DESIGNATED BY KPS AS
 ACCEPTANCE CRITERIA

2008 TESTS – LARGE SCALE FLUME TESTS

• DESIGN BASIS CASE; WATER TEMP 105.8 F

- MAX HL 0.51036 + CSHL = 1.1034 FT WHEN TEMP-CORRECTED

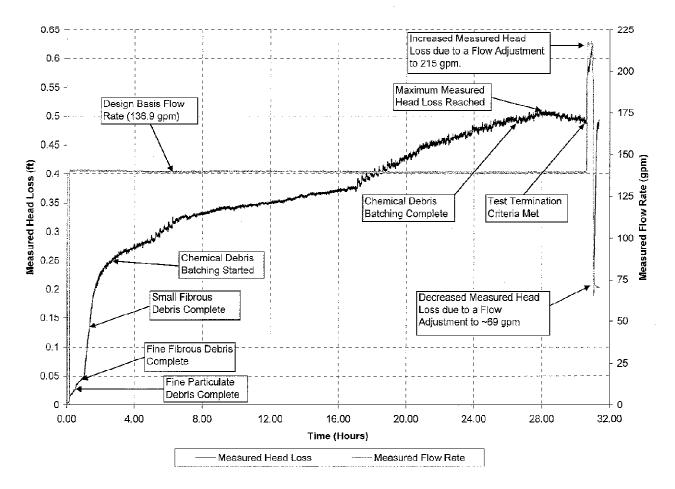
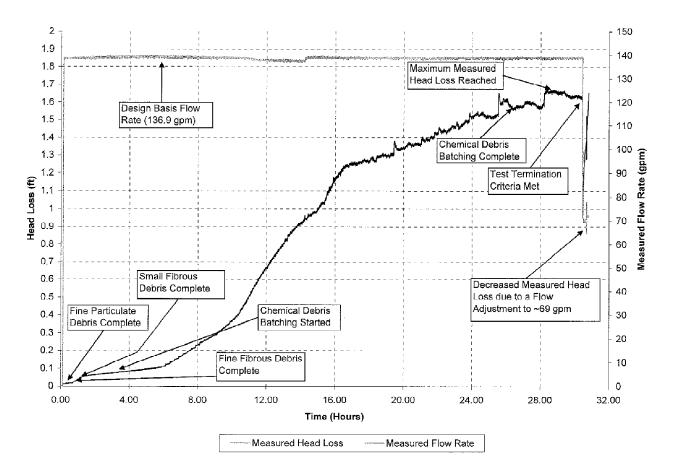
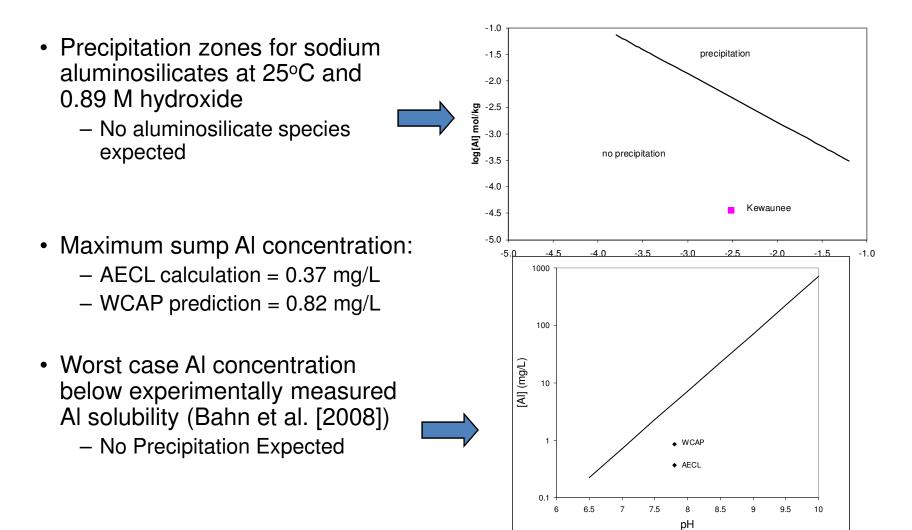


Figure 8-3: Test 3 Raw Data (Flow and Head Loss)

• DB CASE W/ADD'L FIBER, LATENT AND 200% CHEMICALS

- WATER TEMP 116.1 F; MAX HL 1.6697 + CSHL = 3.286 FT WHEN TEMP. CORRECTED




Figure 8-4: Test 9 Raw Data (Flow and Head Loss)

CHEMICAL EFFECTS USING WCAP

- AREVA PREPARED A CHEMICAL PRECIPITATION ANALYSIS FOR KEWAUNEE USING WCAP-16530-NP
- PRECIPITATE IS SODIUM ALUMINUM SILICATE (NaAlSi308)
- DESIGN BASIS CASE CALCULATED 8.286 mg/L CONCENTRATION

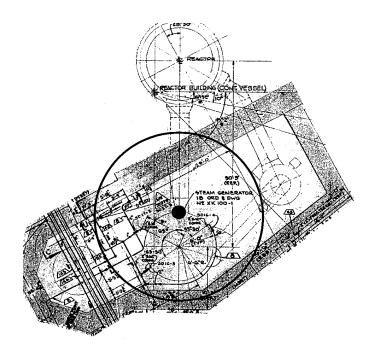
• CHEMICAL EFFECTS EVALUATION BY AECL

- AI RELEASE FROM SPRAYED ALUMINUM
- SHORT INJECTION SPRAY TIME (< ONE HOUR LBLOCA), NO RECIRCULATION SPRAY
- ICET TESTS SHOW VERY LITTLE AI RELEASE FOR SPRAY < 4 HOURS
 - SPRAYED COUPONS IN TEST 1 (PH 10, NO TSP) GAINED A SMALL AMOUNT OF WEIGHT, SUBMERGED COUPONS LOST OVER 25%
 - SEM IMAGES OF SPRAYED AL COUPONS SHOWED LITTLE CORROSION, WHILE SEM IMAGES OF SUBMERGED COUPONS SHOWED A THICK CRUST OF CORROSION PRODUCTS
 - OVER 90% OF AL RELEASED INTO SOLUTION FROM 3 SUBMERGED COUPONS
 - LESS THAN 10% FROM FIBERGLASS AND THE 56 SPRAYED ALUMINUM COUPONS
 - TOTAL WEIGHT LOSS = 0.15%, TWO ORDERS OF MAGNITUDE LESS THAN SUBMERGED COUPONS
 - LACK OF MECHANISM FOR CORROSION PRODUCT TRANSPORT AFTER SPRAY CEASES
 - EXPECT VERY LOW AI CONCENTRATION IN THE SUMP WATER FROM ALUMINUM COMPONENTS

NET POSITIVE SUCTION HEAD (NPSH) MARGIN

PARAMETER	HEAD (FT)	COMMENT
NPSH AVAILABLE	24.108	TOTAL WATER HEIGHT AT THE ONSET OF RECIRCULATION, MINUS PIPING FRICTION LOSSES [26.224 – 2.116]
MAXIMUM MEASURED DEBRIS LADEN STRAINER HEAD LOSS *	3.286	CLEAN STRAINER HEAD LOSS AND DEBRIS LADEN STRAINER HEAD LOSS COMBINED, TEMPERATURE- CORRECTED TO 65 DEG F
NPSH REQUIRED	8	AT MANUFACTURER-SPECIFIED DESIGN FLOW RATE 2000 GPM (BOUNDS DESIGN BASIS FLOW DURING RECIRCULATION)
NPSH MARGIN	12.822	

* MAXIMUM STRAINER HEAD LOSS (CSHL+DEBRIS BED HL) IS LIMITED TO 10 FT UNLESS STRUCTURAL REANALYSIS IS PERFORMED


- ITEMS REMAINING FOR GSI-191 RESOLUTION
 - REACTOR VESSEL CORE COOLING DOWNSTREAM EFFECTS
 - REACTOR VESSEL DOWNSTREAM EFFECTS EVALUATIONS HAVE BEEN COMPLETED FOR KEWAUNEE USING WCAP-16406-P AND WCAP-16793-NP
 - KEWAUNEE WILL REASSESS ITS EVALUATIONS UPON NRC ISSUANCE OF THE FINAL SAFETY EVALUATION FOR WCAP-16793-NP

A. BREAK SELECTION

- 1.A THREE ANALYZED BREAKS RESULTING IN WORST DEBRIS QUANTITY/COMBINATION
- 1.B ADDITIONAL BREAKS NOT ANALYZED AS WOULD NOT CHANGE DEBRIS SOURCE TERM DUE TO LARGE ZONES OF INFLUENCE
- 1.C RCS LOOP B CONTAINS PRESSURIZER
- 1.D RX VESSEL NOZZLE BREAK NOT A LIMITING BREAK

• BREAK SELECTION

O REFER TO SECOND KPS HANDOUT, PAGES 1 - 4

BREAK S3 RCS HOT LEG ZOI = 5.45 D R = 13'-2" -----

B. DEBRIS GENERATION / ZONE OF INFLUENCE

- 2. USE OF 5.45D FOR THERMOBESTOS
- 3. REPAIRS TO THERMOBESTOS & FIBERGLASS INSULATIONS
- 4. VERIFY LATENT DEBRIS IS FINES
- 5. TEMPMAT FINES
- 6. FIBER EROSION OVER MISSION TIME

C. DEBRIS CHARACTERISTICS

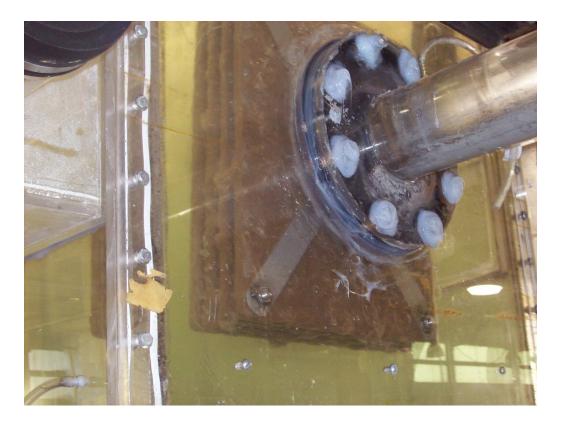
7.A THERMOBESTOS AS 100% FINES

7.B FIBERGLASS PIPE COVER SIZE DISTRIBUTION

D. LATENT DEBRIS

8. LATENT DEBRIS SAMPLING METHODOLOGY

E. DEBRIS TRANSPORT


- 9. DEBRIS INTERCEPTOR TESTS
- 10.A FIBERGLASS EROSION TESTS
- 10.B MINIMUM TUMBLING VELOCITY & DEBRIS SETTLING
- 10.C DURATION OF EROSION TESTS
- 11. EROSION OF THERMOBESTOS SEE QUESTION B.6
- 12. EROSION OF DEBRIS IN TEST FLUME
- 13. CFD IDENTIFICATION
- 13.A HOW DEBRIS INTERCEPTORS MODELED IN INPUT DECK
- 13.B LOCATIONS OF DRAINAGE

2007 FIBER TRANSPORT TESTS • 33% FIBROUS DEBRIS, 0.113 FT/SEC OVER DI (TEST 3B)

FLOW

2007 FIBER TRANSPORT TESTS • 33% FIBROUS DEBRIS, 0.113 FT/SEC OVER DI (TEST 3B)

2007 FIBER TRANSPORT TESTS

• 100% FIBROUS DEBRIS; 0.113 FT/SEC OVER DI (TEST 1B)

2007 FIBER TRANSPORT TESTS •100% FIBROUS DEBRIS; 0.113 FT/SEC OVER DI (TEST 1B)

• RAI E.9.j, E.13.a – e, E.15 AND E.16 • REFER TO SEPARATE HANDOUT BY ARL

E. DEBRIS TRANSPORT

- 13.C SIZE OF COMPUTATIONAL DOMAIN
- 13.D MAIN PHYSICAL MODELS
- 13.E BOUNDING SIMULATIONS
- 14. SETTLING ON UPPER ELEVATIONS
- 15. CONTOUR PLOTS OF VELOCITY AND TURBULENCE
- 16. DISTANCE OF DEBRIS ADDED IN TEST FLUME
- 17. DEBRIS FLOATATION

F. HEAD LOSS AND VORTEXING

18. CLEAN STRAINER HEAD LOSS METHODOLOGY 19.A MEASURED HEAD LOSS AND CSHL **19.B HEAD LOSS TEMPERATURE CORRECTION 19.C HED LOSS TEST METHODOLOGY 19.C.I DEBRIS INTRODUCTION** 19.C.II DEBRIS ADDITIONS AT < 100% FLOW RATE **19.C.III DEBRIS PREPARATION AND SURROGATE SIZE 19.C.IV DEBRIS CHARACTERISTICS FOR SURROGATES 19.C.V PROCEDURE STEPS 19.C.VI DESCRIPTION OF TEST FACILITY 19.C.VII DEBRIS INTRODUCTION TECHNIQUES**

- F. HEAD LOSS AND VORTEXING
 - 19.C.VIII THIN BED INCREMENTAL FIBER
 - 19.C.IX DEBRIS BY EACH DEBRIS ADDITION
 - **19.C.X SCALING FACTORS**
 - 19.C.XI FLOW RATES
 - 19.C.XII DENSITY-CORRECTED SURROGATES
 - 19.C.XIII STIRRING
 - 19.C.XIV DEBRIS THAT SETTLED
 - 19.C.XV AGGLOMERATION OF DEBRIS
 - 20. VORTEX EVALUATION CONDITIONS, ASSUMPTIONS
 - 21. VOIDING EVALUATION
 - 22. FLASHING
 - 23. HEAD LOSS PLOTS

F. HEAD LOSS AND VORTEXING

- 24. VENTED STRAINER
- 25. TEST TERMINATION
- 26. HEAD LOSS EXTRAPOLATION TO MISSION TIME
- 27. SCHEMATIC OF TEST FLUME
- 28. DEBRIS INTERCEPTOR DESIGN IN PLANT AND FLUME

G. NET POSITIVE SUCTION HEAD (NPSH)

- 29. BASIS FOR DESIGN FLOW RATES
- 30. BASIS FOR NPSH REQUIRED FOR RHR PUMPS
- 31. SUCTION LINE FRICTION LOSSES
- 32. SBLOCA VS. LBLOCA
- 33. HOT LEG INJECTION (NOT USED), UPI AND COLD LEG INJECTION BOUNDED BY NPSH CALC
- 34. HOLD UP VOLUMES IN CONTAINMENT
- 35. MANUAL OPERATION OF TWO TRAINS RHR IN RECIRC MODE

H. STRUCTURAL ANALYSES

- 36. DESIGN CODE
- **37. DESIGN MARGINS**
- 38. NO IMPINGEMENT ON STRAINER MODULES
- 39. DEBRIS INTERCEPTOR STRUCTURAL ADEQUACY

I. UPSTREAM EFFECTS

40. REFUELING CAVITY DRAIN LINE

J. DOWNSTREAM EFFECTS / IN-VESSEL

41. FINAL RESPONSE WITHIN 90 DAYS OF SER ISSUANCE

K. CHEMICAL EFFECTS

- 42. NO PLANT-SPECIFIC REFINEMENTS TO WCAP-16530-NP BASE MODEL
- 43. MIN/MAX PH

L. LICENSING BASIS

44. STRAINER SURVEILLANCE REQUIREMENTS

- NO CURRENT TECHNICAL SPECIFICATIONS
- TRANSITION TO IMPROVED TS WILL REQUIRE INSPECTION FOR DEBRIS, STRUCTURAL DISTRESS, ABNORMAL CORROSION
- CONTAINMENT INSPECTION PROCEDURES ALREADY IMPLEMENT THE NEW INSPECTION REQUIREMENTS