A	AREVA NP Inc., an AREVA and Siemens company
AREVA	$38-9083598-000$

Susquehanna River Thermal Plume and Dilution Modeling Bell Bend Nuclear Power Plant

AREVA NP Inc.

17 June 2008

Surfacewater Modeling Group

Environmental Resources Management
350 Eagleview Boulevard

Suite 200

Exton, PA 19341

CONTENTS

1. OBJECTIVE 7
2. METHODOLOGY 8
2.1. CORMIX 8
2.2. GEMSS 9
3. DATASETS 11
3.1. Spatial data 11
3.2. Boundary condition data 12
Susquehanna River temperature and solids data 12
Susquehanna River flow and water surface elevation data 12
Meteorological data 13
Susquehanna Steam Electric Station (SSES) data 13
Bell Bend Nuclear Power Plant (BBNPP) data 14
4. SIMULATIONS AND RESULTS 16
4.1. Thermal plume configuration and size 17
Near-field 17
Far-field 18
4.2. Pennsylvania standards 20
4.3. Dilution results 22
Near-field 22
Far-field 23
4.4. Travel Times 24
Near-field 24
Far-field 24
5. REFERENCES 27
5.1. General References 27
5.2. GEMSS References 28
6. PORTRAIT-FORMATTED FIGURES 30
7. LANDSCAPE-FORMATTED TABLES AND FIGURES 40
APPENDIX A: GEMSS THEORY, ASSUMPTIONS AND APPLICABILITY. 67
APPENDIX B: CORMIX DATA AND RESULTS 68
APPENDIX C: GEMSS DATA AND RESULTS 69

LIST OF FIGURES

Figure 1 GEMSS finite difference grid .. 30
Figure 2 USGS Station No. 01536500 (Susquehanna River at Wilkes-Barre) information sheet
\qquad

Figure 3 USGS Station No. 01540500 (Susquehanna River at Danville) information sheet....... 32
Figure 4 Low flow statistics at Wilkes-Barre ... 33
Figure 5 Monthly statistics at Wilkes-Barre.. 34
Figure 6 Near-field thermal plume orientation and size for Scenario 1....................................... 35
Figure 7 Near-field thermal plume orientation and size for Scenario 2....................................... 36
Figure 8 Near-field thermal plume orientation and size for Scenario 3....................................... 37
Figure 9 Near-field thermal plume orientation and size for Scenario 4 38
Figure 10 Near-field thermal plume orientation and size for Scenario 5..................................... 39
Figure 11 Excess temperature versus downstream distance for all five scenarios..................... 41
Figure 12 Near-field plume surface area versus temperature rise isotherms for all five scenarios

Figure 13 Near-field plume volume versus temperature rise isotherms for all five scenarios..... 43
Figure 14 Excess temperature at the surface for cumulative SSES and BBNPP impacts for
\qquad
Figure 15 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 145

Figure 16 Excess temperature at the surface for incremental BBNPP impact for Scenario 1 46
Figure 17 Excess temperature at the bottom for incremental BBNPP impact for Scenario 1 47
Figure 18 Excess temperature at the surface for cumulative SSES and BBNPP impacts for
\qquad
Figure 19 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 2

Figure 20 Excess temperature at the surface for incremental BBNPP impact for Scenario 2 50
Figure 21 Excess temperature at the bottom for incremental BBNPP impact for Scenario 2 51
Figure 22 Excess temperature at the surface for cumulative SSES and BBNPP impacts for
\qquad
Figure 23 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 353
Figure 24 Excess temperature at the surface for incremental BBNPP impact for Scenario 3 54
Figure 25 Excess temperature at the bottom for incremental BBNPP impact for Scenario 3 55
Figure 26 Excess temperature at the surface for cumulative SSES and BBNPP impacts for Scenario 4 56
Figure 27 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 4 57
Figure 28 Excess temperature at the surface for incremental BBNPP impact for Scenario 4 58
Figure 29 Excess temperature at the bottom for incremental BBNPP impact for Scenario 4 59
Figure 30 Excess temperature at the surface for cumulative SSES and BBNPP impact for Scenario 5 60
Figure 31 Excess temperature at the bottom for cumulative SSES and BBNPP impact for Scenario 5 61
Figure 32 Excess temperature at the surface for incremental BBNPP impact for Scenario 5 62
Figure 33 Excess temperature at the bottom for incremental BBNPP impact for Scenario 5 63
Figure 34 Near-field dilution versus downstream distance for all five scenarios 64
Figure 35 Dilution value locations 65
Figure 36 Fully-mixed concentrations for dilution study 66

LIST OF TABLES

Table 1 Characteristics of the models 8
Table 2 CORMIX bathymetric-related parameter values 11
Table 3 CORMIX discharge structure-related parameter values 14
Table 4 Parameter values for the simulations. 15
Table 5 Simulation summary with scenario descriptions 17
Table 6 Near-field plume area $\left(\mathrm{ft}^{2}\right)$ and volume $\left(\mathrm{ft}^{3}\right)$. 18
Table 7 Near-field plume area $\left(\mathrm{m}^{2}\right)$ and volume $\left(\mathrm{m}^{3}\right)$. 18
Table 8 Protected use receiving water body temperatures, F 21
Table 9 Extreme period analysis of plume size 22
Table 10. Near-field dilution values 23
Table 11 Distance from BBNPP discharge 24
Table 12 Near-field travel times obtained from CORMIX simulations. 24
Table 13 Travel times (hours) for various locations of interest 26
Table 14 Travel times (minutes) for various locations of interest 26
Table 15 Dilution values and related distances for various locations of interest 40

RESPONSIBLE STAFF

The model application and report were prepared by Edward M. Buchak, Shwet Prakash, and Venkat S. Kolluru of ERM's Surfacewater Modeling Group. Quality Assurance reviews were performed George A. Krallis, also a member of ERM's Surfacewater Modeling Group.

UNITS

Conventional units are used in the analysis (foot-pound-seconds) rather than SI units (meters-kilograms-seconds). Conventional units were used because nearly all the data sources use those units and because Pennsylvania water quality standards are also written in conventional units. For significant results, SI units are noted in parentheses

Temperatures are denoted " F ", as in "the maximum Susquehanna River was observed to be 86.5 F". Temperature differences are denoted " F ", as in "the maximum temperature rise is $33.8^{\circ} \mathrm{F}$.

1. OBJECTIVE

ERM's Surfacewater Modeling Group has been contracted by AREVA NP Inc. (AREVA), to compute the size and configuration of the thermal plume from the cooling tower blowdown discharge at the proposed Bell Bend Nuclear Power Plant (BBNPP) and to compute the dilution rates for this same discharge for various locations of interest.

Specifically, the assignment included the following tasks:

- Assemble relevant information
- Review applicable agency standards for thermal discharges
- Perform CORMIX computations for centerline dilution and lateral distribution
- Compute 50 mile dilution
- Provide dilution and travel time estimates at additional locations, namely
- the nearest shoreline,
- the maximum impacted shoreline,
- the point on the shoreline where the site property ends,
- the nearest recreational shore (beach),
- the nearest public water supply intake, and
- the plant's cooling water intakes for all units.
- 50 ft from the discharge

2. METHODOLOGY

To compute the size and configuration of the thermal plume and provide the dilution rates at the specified locations identified by AREVA, two types of models were used. These models are CORMIX for the near-field and GEMSS ${ }^{\circledR}$ for the far-field. To show the cumulative thermal effects of the BBNPP, the size and configuration of the thermal plume from the existing cooling tower blowdown discharge from the Susquehanna Steam Electric Station (SSES) was also computed.

Descriptions of the two models are presented in the following sections; Table 1 summarizes their characteristics (U.S. Atomic Energy Commission, 1974).

Table 1 Characteristics of the models

CORMIX		GEMSS	
Dimension	Longitudinal	Yes	(4) Complete-field
	Lateral	Yes	Yes
	Vertical	Yes	Yes
Mathematical approach	(1) Phenomenological	Yes	
Approximations	(not strictly applicable for phenomenological models)	(3) Finite difference	
Model verification	Yes	Yes	
Computer program	(1) Proprietary (must be purchased, source code unavailable)	(2) Available on request (open source but requires user registration to obtain)	

2.1. CORMIX

The Cornell Mixing Zone Expert System (CORMIX) is primarily a design tool that has also been used by regulatory agencies to estimate the size and configuration of proposed and existing mixing zones resulting from wastewater discharges. CORMIX is a near-field model, i.e., it applies to the region adjacent to the discharge structure in which the wastewater plume is recognizable as separate from the ambient water and its trajectory is dominated by the discharge rate, effluent density, and geometry of the discharge structure. The CORMIX calculation is based on defining the various hydraulic zones an effluent plume traverses when introduced into a receiving waterbody, then applying an analytical solution or empirical relationship to compute the plume trajectory and dilution rate in each zone. Each of these analytical solutions and empirical relationships has been validated by the developers and other researchers against laboratory and field studies. CORMIX has been applied to many cases and is recognized by the USEPA as an appropriate model.

CORMIX v5.0GT (the latest version) was used for the BBNPP calculations (MixZon Inc. 2007).
CORMIX has several limitations. It assumes steady-state conditions and unidirectional, uniform flow in the receiving waterbody. Secondly, CORMIX has simplified geometric capabilities. It assumes an idealized waterbody with straight sides and a single, positive bottom slope or no slope at all. CORMIX cannot consider multiple discharge structures with overlapping plumes.

Because CORMIX does not apply to the far-field, which is the region in the receiving waterbody in which the ambient flow fields dominate the transport of wastewater, a three-dimensional hydrodynamic, transport, and fate model is generally used to compute the trajectory and dilution of the wastewater plume in the far-field.

2.2. GEMSS

The hydrodynamic model chosen to assess the far-field characteristics of the thermal plume and dilution is the Generalized Environmental Modeling System for Surface Waters (GEMSS ${ }^{\circledR}$).
GEMSS is an integrated system of 3-D hydrodynamic and transport modules embedded in a geographic information and environmental data system. GEMSS is in the public domain and has been used for similar studies throughout the USA and worldwide. ERM's Surfacewater Modeling Group has special expertise with the model in that ERM staff contributes to the source code and has completed many applications with the model.

GEMSS ${ }^{\circledR}$ includes a grid generator and editor, control file generator, 2-D and 3-D post processing viewers, and an animation tool. It uses a database approach to store and access model results. The database approach is also used for field data; as a result, the GEMSS viewers can be used to display model results, field data or both, a capability useful for understanding the behavior of the prototype as well as for calibrating the model. The field data analysis features can be used independently using GEMSS modeling capability.

GEMSS ${ }^{\circledR}$ was developed in the mid-1980's as a hydrodynamic platform for transport and fate modeling. The hydrodynamic platform ("kernel") provides 3-D flow fields from which the distribution of various constituents can be computed. The constituent transport and fate computations are grouped into modules. GEMSS modules include thermal analysis, water quality, sediment transport, particle tracking, oil and chemical spills, entrainment, and toxics.

The theoretical basis of the hydrodynamic kernel of GEMSS is the three-dimensional Generalized, Longitudinal-Lateral-Vertical Hydrodynamic and Transport (GLLVHT) model which was first presented in Edinger and Buchak (1980) and subsequently in Edinger and Buchak (1985). The GLLVHT computation has been peer reviewed and published (Edinger and Buchak, 1995; Edinger, et al., 1994). The kernel is an extension of the well known longitudinal-vertical transport model that forms the hydrodynamic and transport basis of the Corps of Engineers' water quality model CE-QUAL-W2. Improvements to the transport scheme, construction of the constituent modules, incorporation of supporting software tools, GIS interoperability, visualization tools, graphical user interface (GUI), and post-processors have been developed by Kolluru et al. (1998; 1999; 2003a; 2003b).

Applications of GEMSS ${ }^{\circledR}$ and its individual component modules have been accepted by regulatory agencies in the U.S. and Canada. GEMSS-based studies have been accepted by the U.S. Environmental Protection Agency (EPA), and state agencies including those of California, Massachusetts, Pennsylvania, Louisiana, Texas, New York, and Delaware. Washington State's Department of Ecology has adopted GEMSS as a tool for estuarine and water quality modeling. Most recently GEMSS has been published as a recommended three-dimensional hydrodynamic
and water quality model in studies funded by EPA and by the Water Environment Research Foundation (WERF).

GEMSS ${ }^{\circledR}$ has been used for ultimate heat sink analyses at Comanche Peak, Farley, and Arkansas Nuclear One. In Pennsylvania, it has been applied at PPL's Brunner Island Steam Electric Station on the lower Susquehanna River, Exelon's Cromby and Limerick Generating Stations on the Schuylkill River, and at several other electric power facilities. River applications for electric power facilities have been made on the Susquehanna (Brunner Island), the Missouri (Labadie), the Delaware (Mercer and Gilbert), the Connecticut (Connecticut Yankee), and others.

A GEMSS ${ }^{\circledR}$ application requires two types of data: (1) spatial data, primarily the waterbody shoreline and bathymetry, but also the locations, elevations, and configurations of man-made structures and (2) temporal data, that is, time-varying boundary condition data defining tidal elevation, inflow rate and temperature, inflow constituent concentration, outflow rate, and meteorological data. All deterministic models, including GEMSS, require uninterrupted timevarying boundary condition data. There can be no long gaps in the datasets and all required datasets must be available during the span of the proposed simulation period.

For input to the model, the spatial data is encoded primarily in two input files: the control and bathymetry files. These files are geo-referenced. The temporal data is encoded in many files, each file representing a set of time-varying boundary conditions, for example, meteorological data for surface heat exchange and wind shear, or inflow rates for a tributary stream. Each record in the boundary condition files is stamped with a year-month-day-hour-minute address. The data can be subjected to quality assurance procedures by using GEMSS to plot, then to visually inspect individual data points, trends and outliers. The set of input files and the GEMSS ${ }^{\circledR}$ executable constitute the model application.

The theory, assumptions, and basis for applicability of GEMSS are presented in Appendix A: GEMSS Theory, Assumptions and Applicability. Inasmuch as the BBNPP is a proposed facility, the model has not been verified for this application by comparing computed and observed values.

3. DATASETS

The datasets used to apply CORMIX and GEMSS to the BBNPP site are described below.

3.1. SPATIAL DATA

The spatial data required for the near- and far-field models (CORMIX and GEMSS, respectively) are the Susquehanna River depths and widths (the "bathymetry") and the location of the shoreline. For use in GEMSS, the spatial data are required to be geo-referenced to Pennsylvania State Plane - North, ft.

The bathymetry and shoreline datasets were obtained from the US Army Corps of Engineers, Philadelphia District (USACE), who provided digital terrain maps (TIN's), shoreline data in ARC/INFO interchange file format (e00), and cross-section data from their FEMA HEC-RAS model (Arabatzis, 2008). The transmittal letter contains a qualifier that "this data may not be suitable for other engineering design purposes". The data coverage was from River Mile 205 (Scranton) to River Mile 104 (Millersburg, halfway between Sunbury and Harrisburg). The BBNPP site is at River Mile 165. The cross-section data were converted to a point bathymetry file with an approximate spacing of 500 ft longitudinally. More spatially-detailed bathymetric contours in the immediate vicinity of the SSES intake and discharge were obtained from Pennsylvania Power and Light Company (1978), FIGURE 2.4-3.

The contours were digitized and geo-referenced and combined with the data obtained from the USACE. The combined dataset was used to create the GEMSS finite difference grid, shown in Figure 1. The grid extends from $4,500 \mathrm{ft}$ upstream of the SSES intake to 15 miles downstream, with decreasing detail in the downstream direction. Typical horizontal resolution near the BBNPP site is 30 ft by 50 ft , and 85 ft by 5500 ft at the downstream end. The vertical layers (not shown) are 1 ft thick so that there are typically 8-12 layers representing the depth of the Susquehanna River near the BBNPP site.

Values of the depth and width for CORMIX's simpler representation of the Susquehanna in the vicinity of the BBNPP were also derived from the USACE and the Pennsylvania Power and Light Company (1978) FIGURE 2.4-3. The elevation of the bottom of the Susquehanna River at the BBNPP discharge was found to be at 476 ft . The CORMIX parameter values are shown in Table 2; the scenarios are introduced and discussed in Section 4.

Table 2 CORMIX bathymetric-related parameter values

Parameter	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5
Average depth, ft	11.5	10	13.8	10.8	13.8
Depth at the discharge, ft	11.5	10	13.8	10.8	13.8
Width, ft	750	680	790	720	790

3.2. BOUNDARY CONDITION DATA

Boundary condition data are used to estimate surface heat exchange at the water surface and to compute the flow of mass and energy entering and leaving the model domain. All simulations used steady values of the boundary condition data.

All values for the boundary conditions discussed in the following sections are summarized in Table 4.

To capture the seasonal behavior of the thermal plume, a summer and a winter period were chosen for simulation. Inasmuch as the boundary condition datasets are cataloged monthly, this approach required choosing a single month to represent these periods and obtaining the corresponding boundary condition data. The representative summer and winter months were chosen on the basis of the observed occurrences of the maximum and minimum temperature, described below.

Susquehanna River temperature and solids data

Ecology III has measured water temperatures 1620 ft upstream of the SSES intake structure on the west bank of the Susquehanna River daily beginning in 1974 (Ecology III, Inc., 2008). Maximum and minimum temperatures occur in August and January and these months were selected to be representative of summer and winter conditions. The maximum water temperature of 86.5 F was recorded on 15 Aug 1988 and 4 Aug 2007. A minimum water temperature of 32.0 F was recorded numerous times in January.

Total mineral solids (TMS) values for the Susquehanna River were obtained from Sargent \& Lundy (2008b), Att. 3, Table 4, using the "SSES" values for 2/23/2006 for winter and 8/16/2006 for summer.

Susquehanna River flow and water surface elevation data

Flow rates in the Susquehanna River are measured at United States Geological Survey (USGS) sites upstream of the BBNPP site at Wilkes-Barre (Station No. 01536500) and downstream of the site at Danville (Station No. 01540500). In addition there are several statistical summaries of low and mean flows at these stations. These summaries are discussed below.

USGS flow data and statistics for the stream gauges at Wilkes-Barre and at Danville are found at the USGS website http://waterdata.usgs.gov/pa/nwis/inventory/?site_no=01536500\& and http://waterdata.usgs.gov/pa/nwis/inventory/?site_no=01540500\&, respectively. Screenshots of both are provided as Figure 2 and Figure 3. For the selected January and August simulations, mean and low flows at the site are required to show the extremes of the computed size of the thermal plume and the downstream dilution values. Data and statistics for the Wilkes-Barre gauge, upstream of the site, were used in this analysis.

Low flow frequency statistics generated by Pennsylvania Department of Environmental Protection (PA DEP) for the Wilkes-Barre gauge can be found at the PA DEP website
http://pa.water.usgs.gov/pc38/flowstats/lowflow.ASP?WCI=stats\&WCU;ID=2415. A screenshot of the web site is provided as Figure 4. This website provides a value of 890 cfs for the annual 7-day, 10-year low flow (7Q10) rate over the post-regulation period in the Susquehanna River, 1980 to 1996. This annual 7Q10 value was multiplied by the PA DEP's default multiplier to convert the annual 7Q10 to a monthly 7Q10 rate. The default multiplier for January is 3.2, and the default multiplier for August is 1.4 (PA DEP, 2003).

The monthly mean flows used in the simulations for January and August were derived from the historical record at the Wilkes-Barre stream gauge for the period 1980 to 1996. These data were retrieved from the USGS website referenced above for Wilkes-Barre. The monthly data are provided in Figure 5.

For each selected flow, the corresponding water surface elevation was obtained from the rating table presented as Attachment 7 in Ecology III (1991).

Meteorological data

To compute surface heat exchange, the coefficient of surface heat exchange (K) and equilibrium temperature (E) method was used. Monthly average and extreme values of K and E for National Weather Service sites in the USA are cataloged by the Environmental Protection Agency (Environmental Protection Agency, 1971). The nearest cataloged site to BBNPP is Avoca, Pennsylvania (WBAN 14777), 27 miles to the northeast. Other candidate sites considered for this study were located at Williamsport-Lycoming County Airport (WBAN 14778), which is 43 miles WNW of the site and at Penn Valley Airport, Selinsgrove (WBAN 14770) which is 43 miles WSW of the site. Values from the Avoca site were chosen because of its nearness to the BBNPP site.

For these simulations, the extreme values shown in FIGURE 104 (Environmental Protection Agency, 1971) were used.

Susquehanna Steam Electric Station (SSES) data

The location of the SSES intake and discharge structures was obtained from PP\&L Drawing No. E105151. This drawing was scanned, digitized and geo-referenced to Pennsylvania State Plane - North, ft. The general configuration and dimensions of the SSES discharge structure were obtained from Bechtel DRAWING No. C-95. The SSES intake structure was assumed to draw from the bottom of the Susquehanna River.

For implementation in CORMIX, the discharge structure-related parameter values are shown in Table 3.

Table 3 CORMIX discharge structure-related parameter values

CORMIX parameter	
Surface, single- or multi-port	Multi-port with 72 individual ports
Opening diameter, in	4
Horizontal angle, degrees	0
Vertical angle, degrees	45
Height, ft	0 (at river bottom)

The CORMIX variable "height" is the distance of the ports above the waterbody bottom. Bechtel DRAWING No. C-95 indicates rocks placed nearly to the height of the ports (15 in above the nominal bottom). For this calculation, it was assumed the ports are located at the bottom.

The SSES intake and discharge rates and temperature rise were obtained from PPL Susquehanna, LLC (2006b) Page 4.1-1 and 4.1-2.

Total mineral solids (TMS) values for the SSES discharge were obtained from Sargent \& Lundy (2008b), Att. 3, Table 4, using the "BLOW DOWN" values for 2/23/2006 for winter and $8 / 16 / 2006$ for summer. These values represent a concentration factor of about four times.

Bell Bend Nuclear Power Plant (BBNPP) data

The location of the BBNPP intake and discharge structures was obtained from Sargent \& Lundy DRAWING NO. CSK-014, REV 1. The drawing contained the site utilization plan for BBNPP overlaid on the existing SSES site. The BBNPP discharge structure was assumed to be identical to the SSES discharge structure. The BBNPP intake structure was assumed to draw from the bottom of the Susquehanna River.

Maximum and average intake and discharge rates for the BBNPP were obtained from Sargent \& Lundy (2008b), Page 4 of 33.

Discharge temperature rises for BBNPP were derived as follows:
The discharge temperature rise for the summer (August) scenario was calculated by subtracting the maximum observed summer ambient temperature of 86.5 F from the 90 F discharge temperature provided by Sargent \& Lundy (2008a). The 90 F discharge temperature represents Option 1b, i.e., no auxiliary heat exchanger (Page 4), yielding a discharge temperature rise of $3.5^{\circ} \mathrm{F}$.

The temperature rise for the winter (January) scenario was calculated as follows. First the discharge temperature was estimated by assuming the MDT1 option (conservative in that the approach temperature is higher than for the other options), then by choosing the January average wet bulb temperature of 23.8 F (Page 9, Sargent \& Lundy, 2008a) and an approach temperature of $30^{\circ} \mathrm{F}$ (Fig. 6-1 of that same report), and finally by incrementing the latter by $6^{\circ} \mathrm{F}$, as noted on Page 24 of that same report for the 90 F approach curve. The resulting discharge temperature for the January scenario is 65.8 F . The January ambient temperature was
subtracted from the January discharge temperature to obtain the discharge temperature rise of $33.8^{\circ} \mathrm{F}$.

Total mineral solids (TMS) values for BBNPP discharge were assumed to be equal to the SSES values.

Table 4 Parameter values for the simulations

Parameter	Units	Winter	Source	Summer	Source
Month		January		August	
Extreme ambient temperature	F	32.0	Ecology III, Inc., 2008	86.5	Ecology III, Inc., 2008
Discharge temperature	F	65.8	Sargent \& Lundy, 2008a	90.0	Sargent \& Lundy, 2008b
Temperature rise	${ }^{\circ} \mathrm{F}$	33.8	calculated	3.5	calculated
Discharge TMS	mg/l	556	Sargent \& Lundy, 2008b	642	Sargent \& Lundy, 2008b
Average intake rate	gpm	27,850	Sargent \& Lundy, 2008b	27,850	Sargent \& Lundy, 2008b
Maximum intake rate	gpm	34,460	Sargent \& Lundy, 2008b	34,460	Sargent \& Lundy, 2008b
Average discharge rate	gpm	9,290	Sargent \& Lundy, 2008b	9,290	Sargent \& Lundy, 2008b
Maximum discharge rate	gpm	11,170	Sargent \& Lundy, 2008b	11,170	Sargent \& Lundy, 2008b
Low Susquehanna River flow	cfs	2,848	PA DEP, 2003 / USGS website	1,246	PA DEP, 2003 / USGS website
Low Susquehanna River elevation	ft	486.8	Ecology III, Inc., 1991	486.0	Ecology III, Inc., 1991
Mean Susquehanna River flow	cfs	12,482	USGS website	4,473	USGS website
Mean Susquehanna River elevation	ft	489.8	Ecology III, Inc., 1991	487.5	Ecology III, Inc., 1991
Susquehanna river TMS	mg/l	134	Sargent \& Lundy, 2008b	196	Sargent \& Lundy, 2008b
Heat exchange coefficient (K)	$\begin{aligned} & \text { BTU } \mathrm{ft}^{-2} \\ & \text { day }^{-1}{ }^{\circ} \mathrm{F}^{-1} \\ & \hline \end{aligned}$	58	Environmental Protection Agency, 1971	104	Environmental Protection Agency, 1971
Equilibrium Temperature (E)	F	34	Environmental Protection Agency, 1971	85	Environmental Protection Agency, 1971

4. SIMULATIONS AND RESULTS

Five scenarios were simulated with both CORMIX and GEMSS ${ }^{\circledR}$. The scenarios are summarized in Table 5 and consist of combinations of summer and winter mean and low Susquehanna River flow conditions. For each scenario, design values of the SSES and BBNPP intake and discharge rates, temperatures, and total dissolved minerals were used as shown in Table 5. Parameters common to all scenarios are shown in Table 4.

For both models, the term "excess temperature" is used. Excess temperature is the increase in temperature over background temperature ("ambient" or "natural") due to a heated water discharge.

To show both the incremental impact of the BBNPP thermal plume as well as the cumulative impact of the combined SSES and BBNPP thermal plumes, two sets of simulations were made with GEMSS for each scenario. In the first set of simulations a single excess temperature was included in the model, the sources of which were the temperature rises for the SSES discharge and for the BBNPP discharge. This set of simulations showed the combined thermal plume for two discharges, i.e., the cumulative plume. The second set of simulations included only the BBNPP discharge as the source of excess temperature, but did include the SSES discharge to correctly model its effect on the ambient temperature. This set of simulations showed the thermal plume due solely to the BBNPP discharge, i.e., the incremental plume.

Including both discharges in a single CORMIX simulation is not possible because CORMIX is incapable of modeling two plumes simultaneously. For the near-field, only the BBNPP was modeled. This approach is satisfactory because in the near-field, the plumes do not overlap due to the 380 ft separation of the SSES and BBNPP discharges.

Table 5 Simulation summary with scenario descriptions

Parameter	Scenario 1 Summer mean flow (August)	Summer low flow (August)	Sinter mean flow (January)	Sinter low flow (January)	Annual mean flow (January)
Susquehanna River flow, cfs	4,473	1,246	12,482	2,848	12,800
Water surface elevation, ft	487.5	486.0	489.8	486.8	489.8
Susquehanna River Temperature, F	86.5	86.5	32.0	32.0	32.0
SSES					31.0
Temperature rise, deg F	12.5	12.5	31.0	32,300	42,300
Intake rate, gpm	42,300	42,300	42,300	42,300	
Discharge rate, gpm	11,200	11,200	11,200	11,200	11,200
BBNPP					
Temperature rise, deg F	3.5	3.5	33.8	33.8	
Intake rate, gpm	34,458	34,458	34,458	34,458	34,458
Discharge rate, gpm	11,172	11,172	11,172	11,172	11,172

4.1. Thermal plume configuration and size

The thermal plume was first modeled using CORMIX for the near-field region and then using GEMSS ${ }^{\circledR}$ for the far-field region. Use of these two models provides a detailed near-field plume configuration along with the far-field plume behavior for non-uniform channel geometry.

Near-field

CORMIX was used for near-field modeling of the thermal plume. The winter scenarios (Scenarios 3, 4 and 5) used an ambient river temperature of $32 \mathrm{~F}(0 \mathrm{C})$. CORMIX has an inherent limitation that requires that the ambient temperature be at least $39.2 \mathrm{~F}(4 \mathrm{C})$. In CORMIX, the ambient temperature is used to compute density and to establish the buoyancy differential between the effluent and ambient water. Since water has its maximum density at 4 C which decreases with both increasing and decreasing temperature, there are temperatures above 39.2 F with densities identical to temperatures below this value. In this case 46 F (7.8 C) has a density identical to the density of water at 32 F . This temperature was used in the winter CORMIX simulations.

The BBNPP discharge structure was assumed to be identical in configuration to the SSES diffuser. The ambient and effluent characteristics were taken directly from Table 2 through Table 5 and the discharge was modeled in CORMIX as a heated discharge using the heat loss coefficients listed in Table 5. The near-field plumes from the five scenarios are shown in Figure 6 for Scenario 1, Figure 7 for Scenario 2, Figure 8 for Scenario 3, Figure 9 for Scenario 4, and Figure 10 for Scenario 5. Note that CORMIX automatically sets the spatial scaling and thus the scales varies from one diagram to the next. The wide discharge line passing through the origin $(0,0,0)$ along the y-axis depicts the diffuser of length 108 ft in all these diagrams.

Scenario 2 with the smallest Susquehanna River flow has the largest near-field plume as there is limited mixing near the diffuser, resulting in an expanded near-field region. Scenario 4 has the plume with the highest peak temperature due to the largest temperature rise $\left(33.8^{\circ} \mathrm{F}\right)$ combined with the lowest Susquehanna River flow. During the summer period, Scenario 2 has the plume with the higher peak temperature due to lower Susquehanna River flow compared to Scenario 1. The excess temperature values in the near-field along the downstream distance for all five scenarios are shown in Figure 11.

In the near-field, the excess temperature decreases to small values due to rapid mixing. During the summer period, the discharge has an excess temperature of $3.5^{\circ} \mathrm{F}\left(1.9^{\circ} \mathrm{C}\right)$ which decreases to $0.13^{\circ} \mathrm{F}\left(0.07^{\circ} \mathrm{C}\right)$ and to $0.29^{\circ} \mathrm{F}\left(0.16^{\circ} \mathrm{C}\right)$ within 50 ft of the discharge for Scenarios 1 and 2 , respectively. The winter period shows excess temperatures decreasing to $0.5^{\circ} \mathrm{F}\left(0.3^{\circ} \mathrm{C}\right), 1.75^{\circ} \mathrm{F}$ $\left(0.97^{\circ} \mathrm{C}\right)$ and $0.5^{\circ} \mathrm{F}\left(0.3^{\circ} \mathrm{C}\right)$ for Scenarios 3,4 and 5 , respectively at 50 ft .

It is also desirable to compute the surface area and volume of the plume at different temperature rise isotherms. These areas and volumes provide an estimate of how much of the waterbody is affected by the thermal discharge. Figure 12 shows the area of the plume and Figure 13 shows the volume of the plume for the five scenarios against the temperature rise on the x-axis. A larger area (and volume) of the waterbody is impacted at lower temperature rise levels. These areas and volumes decrease with increasing temperature rise levels. A summary of these plots is shown in Table 6 which lists the areas and volumes for preset temperature rise levels.

Table 6 Near-field plume area (ft^{2}) and volume (ft^{3})

Excess, ${ }^{\circ} \mathrm{F}$	Scenario 1		Scenario 2		Scenario 3		Scenario 4		Scenario 5	
	Area	Volume								
10	-	-	-	-	98	12.8	118	15.4	91	12.0
5	-	-	-	-	118	15.5	569	305.7	110	14.4
3	21	2.8	26	3.4	152	27.6	1739	2851.5	133	21.9
2	67	8.8	83	10.9	352	136.8	4034	15759.5	314	118.3
1	113	14.8	296	89.8	1462	2358.6	achie achieved in near-field	Not achieved in near-field	1285	1960.4

Table 7 Near-field plume area (m^{2}) and volume (m^{3})

Excess, ${ }^{\circ} \mathrm{C}$	Scenario 1		Scenario 2		Scenario 3		Scenario 4		Scenario 5	
	Area	Volume								
5.6	-	-	-	-	9	1.2	11	1.4	8	1.1
2.8	-	-	-	-	11	1.4	53	28.4	10	1.4
1.7	2	0.3	2	0.3	14	2.6	162	264.9	12	2.0
1.1	6	0.8	8	1.0	33	12.7	375	1464.1	29	11.0
0.6	10	1.4	28	8.4	136	219.1	Not achieved in near-field	Not achieved in near-field	119	182

Far-field

GEMSS ${ }^{\circledR}$ was set up to model the far-field thermal plume emerging from the BBNPP discharge for the five scenarios. All five scenarios were run under two different setups to capture both the
cumulative and incremental thermal plume. The first setup included both the SSES and BBNPP discharges as excess temperature sources while the second setup included only the BBNPP discharge as an excess temperature source. This approach facilitated studying the thermal plume from BBNPP combined with the SSES thermal plume as well as studying it separately.

Scenarios 2 and 4 represent the low flow conditions during summer and winter periods, respectively. In general, during these conditions, the thermal plume is able to spread out due to decreased ambient velocities. The diffuser is closer to the western shore and thus Scenarios 1 and 3, which represent the mean flow conditions for summer and winter respectively, show that the thermal plume is pushed towards the western shore due to higher ambient velocities. Scenario 5, which is similar to Scenario 3, exhibits similar plume characteristics. This process, however, does not decrease the overall mixing of the discharge because during the high flow periods there is more water available to mix and the river surface elevations are higher.

The cumulative impacts of the SSES and the BBNPP for the surface and bottom thermal plumes are shown in Figure 14 and Figure 15 for Scenario 1, Figure 18 and Figure 19 for Scenario 2, Figure 22 and Figure 23 for Scenario 3, Figure 26 and Figure 27 for Scenario 4, and finally in Figure 30 and Figure 31 for Scenario 5. During the summer period, the excess temperature from BBNPP is small ($3.46^{\circ} \mathrm{F}$). However, the thermal plume at the bottom shows excess temperatures greater than the BBNPP temperature rise because the temperature rise from the SSES discharge is large ($12.5^{\circ} \mathrm{F}$). The extent of this combined thermal plume, however, is very small. The surface excess temperatures are less than $0.2^{\circ} \mathrm{F}\left(0.1^{\circ} \mathrm{C}\right)$ for Scenario 1 , less than $0.8^{\circ} \mathrm{F}\left(0.4^{\circ} \mathrm{C}\right)$ for Scenario 2, less than $0.6^{\circ} \mathrm{F}\left(0.3^{\circ} \mathrm{C}\right)$ for Scenario 3, less than $0.6^{\circ} \mathrm{F}\left(0.3^{\circ} \mathrm{C}\right)$ for Scenario 4 and less than $0.6^{\circ} \mathrm{F}\left(0.3^{\circ} \mathrm{C}\right)$ for Scenario 5 . Since the discharge is located near the river bottom, the combined thermal plume near the bottom shows a slightly increased maximum excess temperature with less than $2.7^{\circ} \mathrm{F}\left(1.5^{\circ} \mathrm{C}\right)$ for Scenario 1 , less than $3.0^{\circ} \mathrm{F}\left(1.7^{\circ} \mathrm{C}\right)$ for Scenario 2 , less than $13.5^{\circ} \mathrm{F}\left(7.5^{\circ} \mathrm{C}\right)$ for Scenario 3 , less than $25.0^{\circ} \mathrm{F}$ $\left(13.9^{\circ} \mathrm{C}\right)$ for Scenario 4 and less than $13.5^{\circ} \mathrm{F}\left(7.5^{\circ} \mathrm{C}\right)$ for Scenario 5 . The extent of these plumes at the bottom are, however, very small ($2.7^{\circ} \mathrm{F}$ contour for Scenario 1 near BBNPP discharge is only 75 ft). Both mean flow simulations (Scenario 1 and Scenario 3) have lower maximum excess temperature compared to their respective low flow counterparts for the period (Scenario 2 and Scenario 4). The plumes for Scenario 1, Scenario 3 and Scenario 5 are pushed against the western shoreline while the plumes for Scenario 2 and Scenario 4 are more spread out laterally. Scenario 5 (also Scenario 3 which is very similar) has the highest river flow which pushes the plume further towards the western shoreline compared to the other scenarios and, when combined with the shallow, near-shore bathymetry produces a small recirculation eddy that helps replace the water withdrawn from the intakes. This phenomenon results in the thermal plume extending upstream as seen in Figure 30 and Figure 31.

The second setup shows the thermal plume attributable only to the BBNPP discharge, i.e, the incremental impact. Under this setup the thermal plumes for the summer period are considerably smaller (Figure 16 and Figure 17 for Scenario 1 and Figure 20 and Figure 21 for Scenario 2) as the BBNPP discharge has a small excess temperature ($3.5^{\circ} \mathrm{F}$). During the winter period, the BBNPP excess temperature from the discharge is higher at $33.8^{\circ} \mathrm{F}\left(18.8^{\circ} \mathrm{C}\right)$. The maximum excess temperature seen at the surface are at less than $0.04^{\circ} \mathrm{F}\left(0.02^{\circ} \mathrm{C}\right)$ for Scenario 1 , less than $0.3^{\circ} \mathrm{F}\left(0.2^{\circ} \mathrm{C}\right)$ for Scenario 2, less than $0.35^{\circ} \mathrm{F}\left(0.20^{\circ} \mathrm{C}\right)$ for Scenario 3, less than
$0.3^{\circ} \mathrm{F}\left(0.2^{\circ} \mathrm{C}\right)$ for Scenario 4 and less than $0.35^{\circ} \mathrm{F}\left(0.20^{\circ} \mathrm{C}\right)$ for Scenario 5 . The bottom excess temperatures are, however, in the same range as the combined thermal plume with maximum values at less than $2.5^{\circ} \mathrm{F}\left(1.4^{\circ} \mathrm{C}\right)$ for Scenario 1 , less than $3.0^{\circ} \mathrm{F}\left(1.7^{\circ} \mathrm{C}\right)$ for Scenario 2 , less than $13.0^{\circ} \mathrm{F}\left(7.2^{\circ} \mathrm{C}\right)$ for Scenario 3 , less than $25.0^{\circ} \mathrm{F}\left(13.9^{\circ} \mathrm{C}\right)$ for Scenario 4 and less than $13.0^{\circ} \mathrm{F}\left(7.2^{\circ} \mathrm{C}\right)$ for Scenario 5. The plumes are shown in Figure 24 and Figure 25 for Scenario 3, Figure 28 and Figure 29 for Scenario 4, and Figure 32 and Figure 33 for Scenario 5. The extent of the bottom plume is very small (the $0.25^{\circ} \mathrm{F}$ contour is only 400 ft from the discharge for Scenario $1,0.30^{\circ} \mathrm{F}$ is only 300 ft from the discharge for Scenario $2,1.3^{\circ} \mathrm{F}$ is only 600 ft from the discharge for Scenario $3,2.5^{\circ} \mathrm{F}$ is only 650 ft from the discharge for Scenario 4 and $1.3^{\circ} \mathrm{F}$ is only 580 ft from the discharge for Scenario 5)

4.2. Pennsylvania standards

Pennsylvania provides the following criteria for temperature (Pa. Code, Chapter 93. Water Quality Standards, § 93.7. Specific water quality criteria):
"Maximum temperatures in the receiving water body resulting from heated waste sources are regulated under Chapters 92, 96 and other sources where temperature limits are necessary to protect designated and existing uses. Additionally, these wastes may not result in a change by more than $2^{\circ} \mathrm{F}$ during a 1 -hour period."

The protected water use for the Susquehanna River adjacent to BBNPP is Warm Water Fishery (WWF), as shown in Pa. Code, Chapter 93. Water Quality Standards, § 93.9k. Drainage List K as WWF ("Warm Water Fishes-Maintenance and propagation of fish species and additional flora and fauna which are indigenous to a warm water habitat") for the reach from the Lackawanna River to West Branch Susquehanna River. The WWF temperatures and temperatures for two other protected uses are presented in Table 8. These values represent the maximum allowable water temperatures at an unspecified distance downstream of the discharge where fully-mixed conditions occur.

Table 8 Protected use receiving water body temperatures, F
CWF=Cold Water Fishes; WWF=Warm Water Fishes; TSF=Trout Stocking

SYMBOL:	TEMP	1	TEMP
$\mathbf{2}$	TEMP		
CRITICAL USE:	CWF	WWF	TSF
PERIOD			
January 1-31	38	$\mathbf{4 0}$	40
February 1-29	38	$\mathbf{4 0}$	40
March 1-31	42	$\mathbf{4 6}$	46
April 1-15	48	$\mathbf{5 2}$	52
April 16-30	52	$\mathbf{5 8}$	58
May 1-15	54	$\mathbf{6 4}$	64
May 16-31	58	$\mathbf{7 2}$	68
June 1-15	60	$\mathbf{8 0}$	70
June 16-30	64	$\mathbf{8 4}$	72
July 1-31	66	$\mathbf{8 7}$	74
August 1-15	66	$\mathbf{8 7}$	80
August 16-30	66	$\mathbf{8 7}$	87
September 1-15	64	$\mathbf{8 4}$	84
September 16-30	60	$\mathbf{7 8}$	78
October 1-15	54	$\mathbf{7 2}$	$\mathbf{7 2}$
October 16-31	50	$\mathbf{6 6}$	66
November 1-15	46	$\mathbf{5 8}$	58
November 16-30	42	$\mathbf{5 0}$	50
December 1-31	$\mathbf{4 0}$	$\mathbf{4 2}$	42

The SSES NPDES permit does not contain specific discharge temperature limits (PPL Susquehanna, LLC, 2006a), although the station is required to meet WWF water temperatures (Table 8) and to limit temperature changes to $2^{\circ} \mathrm{F}$ per hour.

Experience with other sites and an examination of the language in the PA DEP guidance document (PA DEP, 2003) indicates PA DEP may include in the NPDES permit for BBNPP an end-of-pipe limit of 110 F and a heat load limit based on the difference between ambient temperature and the critical use temperatures shown in Table 8. Because actual limits are set when the NPDES permit is issued, no definitive statement can be made regarding the thermal discharge limits that will be set for the BBNPP, except to note that SSES does not have either the 110 F or the heat load limit. In developing the NPDES permit conditions for BBNPP, PA DEP may choose to consider the cumulative effects of the combined SSES and BBNPP thermal.

Because the WWF temperature limits vary by season as shown in Table 8, limiting blowdown temperatures to less than the maximum WWF temperature of 87 F does not guarantee that the system will be in compliance with WWF temperatures at other times. To assess compliance at seasonal extremes, additional near-field simulations were made to determine the size of the thermal plume under conditions when blowdown temperatures are at a maximum and Susquehanna River temperatures are at a minimum, yielding the maximum temperature rise in the River. These simulations utilized average Susquehanna River flows to represent a severe, but not extreme, case. The comparison metric is the distance along the centerline downstream of the BBNPP discharge where WWF temperatures are attained. These distances are shown in Table 9. In this table, the blowdown temperature rise is the difference between the blowdown temperature and the WWF ambient stream temperature (PPL Susquehanna, LLC, 2006a). The

WWF ambient stream temperature is an assumed natural temperature typically used by the PA DEP in computing waste heat load allocations. The target excess temperature in Table 9 is the difference between the WWF ambient temperature and the WWF temperature limit; this difference represents the excess temperature isotherm at which the WWF temperature limit is attained.

Table 9 Extreme period analysis of plume size

Period	WWF, F	WWF ambient, F	Blowdown temperature,	Blowdown temperature rise, ${ }^{\circ} \mathrm{F}$	Target excess temperature for compliance, ${ }^{\circ} \mathrm{F}$	Centerline distance to WWF, ft
January 1-31	40	35	65.8	30.8	5.0	1.0
July 1-31	87	75	90	15.0	12.0	0.3
August 1-15	87	74	90	16.0	13.0	0.3
August $16-30$	87	74	90	16.0	13.0	0.3

Centerline distances are very small and none of the target excess temperature contours reach the water surface. The results of this calculation indicate that BBNPP blowdown plume will be in compliance with WWF temperatures during other WWF periods.

4.3. DILUTION RESULTS

Using the near-field and far-field models, dilution of a numerical, non-decaying dye representing only the BBNPP discharge was computed along with the thermal plume. The dye was released at a nominal concentration of $100 \mathrm{mg} / \mathrm{l}$. The results are reported as "dilution", defined as in Equation 1 where $C_{\text {Discharge }}$ is the concentration of dye released from the discharge ($100 \mathrm{mg} / \mathrm{l}$) and C is the concentration at a particular location of interest. To obtain the concentration of any other constituent at a location at which dilution is available, Equation 2 can be used.

Equation 1

Dilution $=\frac{C_{\text {Discharge }}}{C}$

Equation 2

$C=\frac{C_{\text {Discharge }}}{\text { Dilution }}$

Near-field

CORMIX simulations for thermal plume provided near-field dilution values. These dilution values are shown in Figure 34 and in Table 10 for all five scenarios. Note that Scenario 2 has the lowest dilution as this is the scenario with the lowest Susquehanna River flow while Scenario 3 has the highest dilution due to high Susquehanna River flow. The dilution values range from 11 to 70 near the end of the near-field region. Any subsequent dilution occurs in the far-field region and was modeled using GEMSS ${ }^{\circledR}$.

Table 10. Near-field dilution values

Scenario	Dilution (50') from BBNPP Discharge
Scenario 1	26.9
Scenario 2	11.8
Scenario 3	67
Scenario 4	19.2
Scenario 5	68.7

Far-field

The far-field dilution values obtained from GEMSS ${ }^{\circledR}$ at different locations of interest (shown in Figure 35) are listed in Table 15, shown in Section 7 Landscape-formatted tables and figures. The model was run for a period of 21 days which was sufficient to achieve a steady state. The numerical dye used to compute dilution values eventually spreads across the entire crosssection of the river resulting in fully-mixed conditions. The distance at which these fully-mixed conditions are achieved varies with different scenarios and is also listed in Table 11. All locations beyond this fully-mixed region will have same fully-mixed concentration that can be computed using Equation 3. Figure 36 shows the fully-mixed concentrations obtained from GEMSS ${ }^{\circledR}$ for the five scenarios. The italicized numbers on the plots show values computed from Equation 3 for these scenarios. Equation 4 shows an example calculation for Scenario 1.

Equation 3

$$
C_{\text {Fully Mixied }}=\frac{C_{\text {River }} * Q_{\text {River }}+C_{\text {BBVPP }} * Q_{B B N P P}}{Q_{\text {River }}+Q_{\text {BBNPP }}}
$$

Equation 4

$$
C_{F u l l y M i x e d}=\frac{0.0 * 4351.83+100.0 * 24.89}{4351.83+24.89}=0.57 \mathrm{mg} / l
$$

Scenario 2 again has the highest fully-mixed concentration and the lowest dilution while Scenario 3 has the lowest fully-mixed concentration and the highest dilution.

Table 11 Distance from BBNPP discharge

Location Distance from the BBNPP discharge (ft)		Distance from the BBNPP discharge (m)
SSES cooling water intake	1050	320
BBNPP cooling water intake	650	198
Nearest Shoreline	300	91
Maximum impacted shoreline	Scenario dependent (see Table $15)$	Scenario dependent (see Table $15)$
Property boundary	330	101
S Hicks Ferry Rd	3250	991
Fully-mixed	Scenario dependent (see Table $15)$	Scenario dependent (see Table $15)$
Public water supply intake (Danville)	158,400	48,280
Recreational shore (Sunbury)	264,000	80,467

4.4. Travel Times

For the near-field, CORMIX provided the travel time for the peak to reach a distance 50 ft from the discharge. For the far-field, travel times were computed by releasing a numerical dye from the BBNPP discharge structure, then determining its arrival time at the locations of interest with GEMSS. The dye was released over a 1-hour duration at a concentration of $100 \mathrm{mg} / \mathrm{l}$. The concentrations of the dye were then studied at the locations listed in Table 11 to obtain the time of arrival of the peak concentration. The arrival time was used to compute the travel time from the BBNPP discharge.

Near-field

As stated, CORMIX provided the travel times for the spill to reach a distance 50 ft from the discharge. Travel times for the five scenarios in the near-field are listed in Table 12. Scenario 3 with the highest Susquehanna River flow rate has the shortest travel time of 45 seconds, while Scenario 2 with the lowest Susquehanna River flow rate has the longest travel time of 110 seconds.

Table 12 Near-field travel times obtained from CORMIX simulations

Scenario	Travel Time (minutes)	Travel Time (seconds)
Scenario 1	1.38	83
Scenario 2	1.83	110
Scenario 3	0.75	45
Scenario 4	1.63	98
Scenario 5	0.74	44

Far-field

The 1-hour dye release from the BBNPP discharge was simulated and then the concentrations at various locations were studied to detect the passage of the peak concentration. The
difference in times between the release and the peak at these locations was used to estimate the travel time to these locations. Locations downstream of the GEMSS ${ }^{\circledR}$ grid were also beyond the fully-mixed location as seen in Table 11. Thus, the travel times to these locations were computed by adding the time needed to travel to these locations from fully-mixed location using the average flow velocity and the time taken to reach the fully-mixed location as shown in Equation 5 and Equation 6. The travel times to these locations are listed in Table 13 in hours and in Table 14 in minutes.

As was the case for the near-field times, the travel times are usually shortest for Scenario 3 and longest for Scenario 2. However, there are two locations (nearest the shoreline and nearest the property boundary) where Scenario 4 has the longest travel time. This result is due to the plume configuration and the location of interest relative to the discharge. Scenario 4 has a higher Susquehanna River flow rate than Scenario 2. The higher rate pushes the plume further downstream. The near-shore and property boundary locations are close to the discharge and thus the plume takes longer to get to these locations once it has been pushed away from the BBNPP discharge.

Equation 5

Equation 6

$u_{\text {avg }}=\frac{Q_{\text {Riv }}}{\text { CSArea }_{\text {Riv }}}$

TravelTime $_{\text {Loc }}=$ travel time to the location of interest

Time $_{\text {FullyMixed }}=$ travel time to the fully-mixed location
$D_{\text {Loc }}$ and $D_{\text {FullyMised }}=$ distance to the location of interest and fully-mixed location

CSArea $_{\text {Riv }}$ and $Q_{\text {Riv }}=$ cross-sectional area and flow rate for Susquehanna River

Table 13 Travel times (hours) for various locations of interest

Location		Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5
SSES cooling water intake	Surface	2.92	6.67	2.08	5.58	2.00
	Bottom	3.08	7.00	2.08	5.42	2.00
BBNPP cooling water intake	Surface	2.33	3.58	1.67	4.83	1.58
	Bottom	2.33	3.83	1.58	4.83	1.50
Nearest Shoreline	Surface	1.92	1.33	1.17	2.58	1.17
	Bottom	1.92	1.42	1.08	2.25	1.08
Property boundary	Surface	1.67	1.17	1.08	2.25	1.08
	Bottom	1.67	1.17	1.00	1.92	1.00
Maximum impacted shoreline	Surface	2.08	5.50	1.25	3.50	1.25
	Bottom	2.17	5.75	1.33	2.83	1.25
S Hicks Ferry Rd	Surface	2.08	3.08	1.42	2.50	1.42
	Bottom	2.08	3.58	1.42	2.67	1.42
Public water supply intake (Danville)	Surface	154	480	64	220	63
	Bottom	154	480	64	220	63
Recreational shore (Sunbury)	Surface	290	925	119	420	117
	Bottom	290	925	119	420	117

Table 14 Travel times (minutes) for various locations of interest

Location		Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5
SSES cooling water intake	Surface	175	400	125	335	120
	Bottom	185	420	125	325	120
BBNPP cooling water intake	Surface	140	215	100	290	95
	Bottom	140	230	95	290	90
Nearest Shoreline	Surface	115	80	70	155	70
	Bottom	115	85	65	135	65
Property boundary	Surface	100	70	65	135	65
	Bottom	100	70	60	115	60
Maximum impacted shoreline	Surface	125	330	75	210	75
	Bottom	130	345	80	170	75
S Hicks Ferry Rd	Surface	125	185	85	150	85
	Bottom	125	215	85	160	85
Public water supply intake (Danville)	Surface	9240	28800	3840	13200	3780
	Bottom	9240	28800	3840	13200	3780
Recreational shore (Sunbury)	Surface	17400	55500	7140	25200	7020
	Bottom	17400	55500	7140	25200	7020

5. REFERENCES

5.1. General References

Arabatzis, M. M. 2008. Letter to Edward M. Buchak, with accompanying DVD. Planning Division, Philadelphia District, Corps of Engineers. Wanamaker Building, 100 Penn Square East, Philadelphia, PA 19107-3390. 1 April.

Bechtel DRAWING No. C-95, Rev 12, E-105196-1. "MAKEUP-DISCHARGE WATER PIPE DETAILS".

Ecology III, Inc. 1991. "Depth-Level-Flow Relationship of the Susquehanna River at the Susquehanna SES Environmental Laboratory", 804 Salem Blvd., Berwick, PA 18603. October.

Ecology III, Inc. 2008. "River temperature method of analysis, 1974-2008". 804 Salem Blvd., Berwick, PA 18603.

Environmental Protection Agency. 1971. Effect of Geographical Location on Cooling Pond Requirements and Performance, in Water Pollution Control Research Series. Report No. 16130 FDQ, Environmental Protection Agency, Water Quality Office, Washington, District of Columbia. March.

MixZon Inc. 2007. CORMIX, Mixing Zone Expert System. License Id 33651953, Cormix Version v5.0GT, Service Release v5.0.1.0, RuleBase Version v5.0, Hydro Version v5.0.

PA DEP. 2003. Implementation Guidance for Temperature Criteria, PA DEP ID\# 391-2000-017. October 3, 1997 with minor changes made through December 18, 2003.

PA DEP website
http://pa.water.usgs.gov/pc38/flowstats/lowflow.ASP?WCI=stats\&WCU;ID=2415 (Low-Flow Statistics for Pennsylvania Streams, Reference Gage:01536500, accessed 4/21/2008)

Pa. Code, Chapter 93. Water Quality Standards, § 93.7. Specific water quality criteria
Pennsylvania Power and Light Company. 1978. Susquehanna Steam Electric Station, Units 1 \& 2 Environmental Report Operating License Stage (Volumes 1, 2, and 3), May.

PETERS CONSULTANTS, INC. 2008. Forest Disturbance Exhibit. File No.:2085. 17 March.

PP\&L Drawing No. E105151, Rev. No. 20. "Susquehanna S. E. S. Unit 1 \& 2, Site \& Yard Development, Plant Location Site Plan".

PPL Susquehanna, LLC. 2006a. Supplemental Environmental Report, Extended Power Uprate, Susquehanna Steam Electric Station, PPL Susquehanna, LLC, Unit 1, Docket No. 50-387, License No. NPF-014; Unit 2, Docket No. 50-388, License No. NPF-022. March.

PPL Susquehanna, LLC. 2006b. Appendix E Applicant's Environmental Report - Operating License Renewal Stage, Susquehanna Steam Electric Station, PPL Susquehanna, LLC , Unit 1, Docket No. 50-387, License No. NPF-014; Unit 2, Docket No. 50-388, License No. NPF-022. September.

Sargent \& Lundy DRAWING No. CSK-014, Rev 1. "GRADING AND DRAINAGE PLAN, SHEET 13, BELL BEND NUCLEAR POWER PLANT". FILENAME CSK-014.DGN.

Sargent \& Lundy. 2008a. Report No. 2008-06824 Rev. 0, "Engineering and Economic Evaluation of the Integrated Heat Rejection Cycle, Bell Bend Nuclear Power Plant, Unistar Nuclear Energy". April.

Sargent \& Lundy. 2008b. Calc No. 2008-08550, Rev 0A "Bell Bend Water Balance Calculation". 1 April.
U.S. Atomic Energy Commission, Directorate of Regulatory Standards. Regulatory Guide 4.4 Reporting Procedure for Mathematical Models Selected to Predict Heated Effluent Dispersion In Natural Water Bodies. May.

USGS website http://waterdata.usgs.gov/pa/nwis/inventory/?site_no=01536500\& (Summary of All Available Data, USGS 01536500 Susquehanna River at Wilkes-Barre, PA, accessed 4/21/2008) and http://waterdata.usgs.gov/pa/nwis/inventory/?site_no=01540500\& (Summary of All Available Data, USGS 01540500 Susquehanna River at Danville, PA, accessed 4/21/2008)

5.2. GEMSS REFERENCES

Edinger, J. E. and E. M. Buchak. 1980. Numerical Hydrodynamics of Estuaries in Estuarine and Wetland Processes with Emphasis on Modeling, (P. Hamilton and K. B. Macdonald, eds.). Plenum Press, New York, New York, pp. 115-146.

Edinger, J. E. and E. M. Buchak. 1985. Numerical Waterbody Dynamics and Small Computers. Proceedings of ASCE 1985 Hydraulic Division Specialty Conference on Hydraulics and Hydrology in the Small Computer Age. American Society of Civil Engineers, Lake Buena Vista, FL. Aug. 13-16.

Edinger, J. E. and E. M. Buchak. 1995. Numerical Intermediate and Far-field Dilution Modelling. Journal Water, Air and Soil Pollution 83: 147-160, 1995. Kluwer Academic Publishers, The Netherlands.

Edinger, J. E., E. M. Buchak, and M. D. McGurk. 1994. Analyzing Larval Distributions Using Hydrodynamic and Transport Modelling. Estuarine and Coastal Modeling III. American Society of Civil Engineers, New York.

Kolluru, V. S., E. M. Buchak and J. E. Edinger, 1998. "Integrated Model to Simulate the Transport and Fate of Mine Tailings in Deep Waters," in the Proceedings of the Tailings and Mine Waste '98 Conference, Fort Collins, Colorado, USA, January 26-29.

Kolluru, V. S., E. M. Buchak, J. Wu, 1999. "Use of Membrane Boundaries to Simulate Fixed and Floating Structures in GLLVHT." In Spaulding, M.L, H.L. Butler (eds.). Proceedings of the 6th International Conference on Estuarine and Coastal Modeling. pp. 485-500.

Kolluru, V. S., J. E. Edinger, E. M. Buchak and P. Brinkmann 2003a. "Hydrodynamic Modeling of Coastal LNG Cooling Water Discharge." Journal of Energy Engineering. Vol. 129, No. 1, April 1, 2003. pp 16-31.

Kolluru, V.S. and Mike Fichera, 2003b. "Development and Application of Combined 1-D and 3-D Modeling System for TMDL Studies." Proceedings of the Eighth International Conference on Estuarine and Coastal Modeling. American Society of Civil Engineers. pp. 108-127, 2003.

6. PORTRAIT-FORMATTED FIGURES

Figure 1 GEMSS finite difference grid
The green lines are surface contours.

New! Subseribe to NWISWeb notifizations
USGS 01536500 Susquehanna River at Wilkes-Barre, PA

Stream/River Site

LOCATION
Latitude 41*1503", Longitude 75052'52" NAD27
Luzerne County, Pennsylvania . Hydrologic Unit 02050107

DESCRIPTION

Drainage area: 9,960 square miles
Datum of gage: $510 . E 6$ feet above sea level NAVDEB.
AVAILABLE DATA:

Data Type	Begin Date	End Date	Count
Real-time	This is a real-time site		
Daily Data			
Discharge, cubic feet per second	1899-04-01	2008-04-27	39838
Daily Statistics			
Discharge, cubie feet per second	1899-04-01	2007-09-30	39629
Monthly Statistics			
Discharge, cubie feet per second	1699-04	2007-09	
Annual Statistics			
Discharge, eubie feet per second	1899	2007	
Peak strearnflow	1786-10-05	2007-03-16	122
Field medisurements	1899-03-30	2008-04-11	752
Field/Lab water-quality simples	1963-10-17	2007-03-19	10

OPERATION:

Record for this site is maintained by the USGS Pennsylvania Water Science Center Email quéstions about this site to Pennsylvania Water-Data Inquiries

ADDITIONAL INFORMATION
gtation.--01536500 guggurhanna fiver at wilkeg-EAhar.
FA

Figure 2 USGS Station No. 01536500 (Susquehanna River at Wilkes-Barre) information sheet

Figure 3 USGS Station No. 01540500 (Susquehanna River at Danville) information sheet

Figure 4 Low flow statistics at Wilkes-Barre

USGS Surface-Water Monthly Statistics for the Nation

The statistics generated from this site are based on approved daily-mean dataland may not match those published by the USGS in official publications. The user is responsible for assessment and use of statistics fr this site For more details on why the statistics may not match, elick here.

USGS 01536500 Susquehanna River at Wilkes-Barre, PA

		Aveilsble dete for thin sita			Tim-ximax Mathy mixitur			\square	00			
		Luzerne County, Pennsylvania Hydrologir Unit Code 02050107 Letitude $41^{\circ} 153^{\prime \prime}$, Longitude $75^{\circ} 52^{\prime} 52^{\prime \prime}$ NaD27 Drainage area 9,960 square miles Gage datum 510. E6 feet above sea level NAMDEB						Output HTMLable Tab-mararat zexelest sut	$\begin{aligned} & \text { format: } \\ & \text { sall data } \\ & \text { sat data } \\ & \hline \text { gut format } \end{aligned}$			
00060, Discharge, cubie feet peer secound,												
YEAR	Monthly mean in eff (Calculation Periodi 1980-01-01->1996-12-30) Period-of-recond for statistical calculation restricted by user											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1980	7,779	3,326	31,090	37,530	11,500	3,701	4,497	1,975	1,152	1,762	4,645	7,363
1981	2,290	40,790	12,550	11,970	15,020	8,667	3,694	2,535	3,769	14,000	16,970	11,510
1982	10,240	16,870	32,150	30,600	7,935	20,760	7,568	2,45B	1,339	1,267	3,487	8,053
1983	6,995	18,160	19,070	51,430	31,020	8,614	3,637	1,877	1,171	1,338	5,446	34,770
1984	5,548	36,800	15,660	50,110	31,200\|	14,800	10,800	7,481	3,254	1,995	4,493	19,310
1985	9,432	B, B69	21,270\|	14,260	5,520\|	3,692	2,828	1, $\mathrm{B06}$	4,752	6,413	17,260	17,210
1986	12,160	18,620	42,820	21,230	10,770	11,930	6,083	8,627	2,581	6,45-4	21,960	20,430
1987	B,313	4,682	24,780	35,420	6,451	4,690	5,725	2,001	8,459	5,971	8,365	14,200
198E	6,334	16,060	19,730	13,220	19,150\|	4,155	2,357	1,985	3,293	2, E8B	12,090	5,955
1989	5,107	7,206	13,360	25,890	38,140	24,420	6,968	2.695	3,167	8,969	14,190	5,239
1990	14,550	37,320\|	17,650\|	22,600	21,320\|	6,815	5,823	3,874	2,957	24,180	22,160	28,540
1991	20,500	19,540	27,590\|	21,420	10,990	2,712	1,311	1,346	1,209	1,919	5,246	11,190
1992	12,460	B,367	24,330\|	26,780	14,270\|	10,660	6,203	10,040	7,683	9,541	22,580	15,820
1993	23,150	5,857	22,170	100,000	12,800	4,445	2,039	1,569	2,166	3,162	16,940	19,600
1994	6,917	17,430	43,670	61,030	11,450	11,650	9,344	19,560	7,105	5,356	10,760	18,080
1995	19,380	B,199	20,670	14,180	6,508	4,091	1,841	1,352	1,079	9,809	15,750	10,600
1996	40,740	19,470	21,020	32,350	36,730\|	8,321	8,785	4,846	4,778	13,040	29,540	44,610
Mean of monthly Discharge	12,500	16,900	24,100	33,500	17.100	9,070	5,270	4,470	3,520	6,950	13,600	17,200
** No Incomplete data have been used for statistizal calculation												

Figure 5 Monthly statistics at Wilkes-Barre

Figure 6 Near-field thermal plume orientation and size for Scenario 1
Scenario 1 is summer mean flow. The CORMIX graphical engine automatically scales diagrams; scales vary from one figure to the next.

Figure 7 Near-field thermal plume orientation and size for Scenario 2
Scenario 2 is summer low flow.

Figure 8 Near-field thermal plume orientation and size for Scenario 3
Scenario 3 is winter mean flow. The CORMIX graphical engine automatically scales diagrams; scales vary from one figure to the next.

Figure 9 Near-field thermal plume orientation and size for Scenario 4
Scenario 4 is winter low flow.

Figure 10 Near-field thermal plume orientation and size for Scenario 5
Scenario 5 is average annual flow.
LANDSCAPE-FORMATTED TABLES AND FIGURES
Table 15 Dilution values and related distances for various locations of interest
The location of the property boundary was taken from PETERS CONSULTANTS, INC. (2008).

Dilution at...	Scenario 1		Scenario 2		Scenario 3		Scenario 4		Scenario 5	
SSES cooling water intake	2598	2623	Does not reach	Does not reach	289	167	Does not reach	Does not reach	287	166
BBNPP cooling water intake	936	918	Does not reach	Does not reach	285	179	Does not reach	Does not reach	279	176
Nearest Shoreline	623	623	Does not reach	Does not reach	208	138	Does not reach	Does not reach	200	134
Maximum impacted shoreline	101	90	44	44	108	85	106	106	108	86
Distance of maximum impacted shoreline from BBNPP Discharge (ft)	3000	2275	8000	8000	1750	1975	8000	4450	1750	1975
Property boundary	620	620	9265	13233	224	132	Does not reach	5850	216	128
S Hicks Ferry Rd	101	101	57	53	109	102	Does not reach	5850	216	128
Fully-mixed	175	175	46	46	500	500	111	111	500	500
Distance to fullymixed (ft)		41300		53000		66300		26150		66300
Locations Beyond Fully-mixed Region										
Public water supply intake (Danville)	175	175	46	46	500	500	111	111	500	500
Recreational shore (Sunbury)	175	175	46	46	500	500	111	111	500	500

Figure 11 Excess temperature versus downstream distance for all five scenarios

Figure 12 Near-field plume surface area versus temperature rise isotherms for all five scenarios

Figure 13 Near-field plume volume versus temperature rise isotherms for all five scenarios

Figure 14 Excess temperature at the surface for cumulative SSES and BBNPP impacts for Scenario 1
Scenario 1 is summer mean flow; note that the temperature scale varies from diagram to diagram.

Figure 15 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 1
Scenario 1 is summer mean flow.

Figure 16 Excess temperature at the surface for incremental BBNPP impact for Scenario 1
Scenario 1 is summer mean flow.

Figure 17 Excess temperature at the bottom for incremental BBNPP impact for Scenario 1
Scenario 1 is summer mean flow.

Figure 18 Excess temperature at the surface for cumulative SSES and BBNPP impacts for Scenario 2
Scenario 2 is summer low flow.
SURFACEWATER MODELING GROUP

[^0]

Figure 20 Excess temperature at the surface for incremental BBNPP impact for Scenario 2
Scenario 2 is summer low flow.

[^1]Scenario 2 is summer low flow.

Figure 22 Excess temperature at the surface for cumulative SSES and BBNPP impacts for Scenario 3
Scenario 3 is winter mean flow.

[^2]

Figure 24 Excess temperature at the surface for incremental BBNPP impact for Scenario 3
Scenario 3 is winter mean flow.

[^3]Scenario 3 is winter mean flow.

Figure 26 Excess temperature at the surface for cumulative SSES and BBNPP impacts for Scenario 4
Scenario 4 is winter low flow.

Figure 27 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 4
Scenario 4 is winter low flow.

Figure 28 Excess temperature at the surface for incremental BBNPP impact for Scenario 4
Scenario 4 is winter low flow.

Figure 29 Excess temperature at the bottom for incremental BBNPP impact for Scenario 4
Scenario 4 is winter low flow.

Figure 30 Excess temperature at the surface for cumulative SSES and BBNPP impact for Scenario 5
Scenario 5 is average annual flow.
SURFACEWATER MODELING GROUP
ENVIRONMENTAL RESOURCES MANAGEMENT

Figure 31 Excess temperature at the bottom for cumulative SSES and BBNPP impact for Scenario 5
Scenario 5 is average annual flow.
SURFACEWATER MODELING GROUP
ENVIRONMENTAL RESOURCES MANAGEMENT

Figure 32 Excess temperature at the surface for incremental BBNPP impact for Scenario 5
Scenario 5 is average annual flow.

[^4]Scenario 5 is average annual flow.
SURFACEWATER MODELING GROUP
ENVIRONMENTALRESOURCES MANAGEMENT

Figure 34 Near-field dilution versus downstream distance for all five scenarios

Figure 35 Dilution value locations

Figure 36 Fully-mixed concentrations for dilution study
Curves show values obtained from GEMSS simulations and the italicized text shows values obtained from fully-mixed analytical calculation (Equation 3).

GEMSS ${ }^{\circledR}$ uses many models written in FORTRAN code that computes time-varying velocities, water surface elevations, and water quality constituent concentrations in rivers, lakes, reservoirs, estuaries, and coastal waterbodies. The computations are done on a horizontal and vertical grid that represents the waterbody bounded by its water surface, shoreline, and bottom. The water surface elevations are computed simultaneously with the velocity components. The water quality constituent concentrations are computed from the velocity components and elevations. Included in the computations are boundary condition formulations for friction, wind shear, turbulence, inflow, outflow, surface heat exchange, and water quality kinetics.

The flow and constituent fields are discretized in time, and the computation marches forward in time steps of 100 s to 900 s , computing the dependent variables throughout the grid at each of these steps. To march the calculations through time, boundary condition data consisting of meteorological data; inflow rates, temperatures, and constituent concentrations; and outflow rates are required. These boundary conditions data are assembled as separate input files.

The theoretical basis of the three dimensional model was first presented in Edinger and Buchak (1980) and subsequently in Edinger and Buchak (1985) under the previous name called GLLVHT. It provides three-dimensional, time-varying simulations of rivers, lakes, impoundments, estuaries and coastal water bodies. GEMSS has been peer reviewed and published (Edinger and Buchak, 1995; Edinger, et al., 1994 and 1997). The fundamental computations are an extension of the well known longitudinal-vertical transport model that was developed by J. E. Edinger Associates, Inc. beginning in 1974 and summarized in Buchak and Edinger (1984). This model forms the hydrodynamic and transport basis of the Corps of Engineers' water quality model CE-QUAL-W2 (U. S. Army Engineer Waterways Experiment Station, 1986).

The hydrodynamic and transport relationships used in the GLLVHT are developed from the horizontal momentum balance, continuity, constituent transport and the equation of state. The basic relationships are given in Edinger and Buchak (1980, 1985 and 1995). These relationships have six unknowns ($\mathrm{U}, \mathrm{V}, \mathrm{W}$ - velocities in x , y and z directions, respectively, η - water surface elevation, ρ - density, C_{n} - constituent n) in six equations with the momentum and constituent dispersion coefficients $\left(A_{x}, A_{y}, A_{z}, D_{x}, D_{y}, D_{z}\right)$ evaluated from velocities and the density structure.

In the x and y momentum balances, the forcing terms are the barotropic or water surface slope, the baroclinic or density gravity slope, the Coriolis acceleration, the advection of momentum in each of the three coordinate directions, the dispersion of momentum in each of the coordinate directions and the specific momentum as would apply to a high velocity discharge. The baroclinic and barotropic slopes are arrived at from the hydrostatic approximation to vertical momentum and horizontal differentiation of the density-pressure integral by Leibnitz' rule. The baroclinic slope is seen to be the vertical integral of the horizontal density gradient and becomes the major driving force for density-induced flows due to discharge buoyancy.

The hydrodynamic equations are semi-implicit in time. The semi-implicit integration procedure has the advantage that computational stability is not limited by the Courant condition that $\Delta \mathrm{x} / \Delta \mathrm{t}$, $\Delta \mathrm{y} / \Delta \mathrm{t}<\left(\mathrm{gh}_{\mathrm{m}}\right)^{1 / 2}$ where h_{m} is the maximum water depth that can lead to inefficiently small time
steps of integration. Since the solutions are semi-implicit (for example, explicit in the constituent transport and the time lagged momentum terms) the stability is controlled by the Torrence condition $(\mathrm{U} \Delta \mathrm{t} / \Delta \mathrm{x}, \mathrm{V} \Delta \mathrm{t} / \Delta \mathrm{y}<1 ; \Delta \mathrm{x}$ and $\Delta \mathrm{y}$ are grid sizes in x and y directions, respectively). Hence, the integration time step can be chosen to realistically represent the details of the boundary data which is about 15 minutes for tides and up to one hour for meteorological data.

The vertical momentum dispersion coefficient and vertical shear is presently (but not limited to) evaluated from a Von Karman relationship modified by the local Richardson number, Ri, which is defined as the ratio of vertical buoyant acceleration to vertical momentum transfer (Leendertse, 1989). Higher order turbulence closure schemes (two equations k- ω second moment closure model by Mellor and Yamada, 1982) are also included in the module. The longitudinal and lateral dispersion coefficients are scaled to the dimensions of the grid cell using the dispersion relationships developed by Okubo and modified to include the velocity gradients of the velocity field using Smagorinsky relationship. The wind stress and bottom shear stress are computed using quadratic relationships with appropriate friction coefficients.

A summary of the hydrodynamic model characteristics is given in Table 1.
Table 1 Features of GEMSS-HDM

Property	Description	Advantage
$\Delta X, \Delta Y, \Delta Z$	Variable from cell to cell. Curvilinear	Fit shorelines precisely, provide more refined grid detail where needed. Each cell has its own orientation for accurate orientation of winds
Layer/ cell addition subtraction	Yes	Allows adding and subtracting layers over large water surface elevation changes. Flooding and drying of tidal flats and marshes.
Interior Boundaries	Yes	Representation of interior structures such as breakwaters, marinas, underflow/overflow curtain walls.
Vertical momentum	Included. Relaxes Hydrostatic Approx.	Important for draw down at outflow structures, mixing devices, and accurate representation of water surfaces in regions of large horizontal velocity changes.
Discharge Momentum	All three directions	Used for proper representation of high velocity discharges.
Time Stepping Solution	Implicit solution over all space on each time step.	Not limited by the Courant wave speed criterion of $\Delta t<$ $\Delta \mathrm{x} /(\mathrm{gHmax})^{0.5}$. Typical time step for 3-D baroclinic circulation is approximately 15 minutes
Coriolis Acceleration	Variable with latitude. Incorporated in implicit part of the time step computations.	Can do large water bodies with large time steps.
Transport Scheme	Quickest, Ultimate	Better prediction of constituent profiles in regions of sharp changes
Turbulence Closure	Higher Order Schemes	Better description of turbulence in regions of rapid changes in bathymetry and around structures. Also at density interfaces.
Wind Speed	Variable through time and across grid	Realistic representation of wind events on a water body.

Property	Description			
Surface Heat				
Exchange				Time varying term
:---				
by term heat budget	Accurate representation of diurnal variations in heat exchange.			

The model is built to accept a large number of transport constituents and constituent relationships depending on the water quality model being used. The list of transport variables available in GLLVHT to analyze flushing, entrainment, thermal pollution, boundary exchange, etc. is given below.

- Temperature
- Salinity
- Excess Temperature
- Instantaneous Tracer Dye
- Continuous Tracer Dye

1. Mathematical Formulation

1.1 Model Description

The hydrodynamic and transport relationships used in the GLLVHT are developed from the horizontal momentum balance, continuity, constituent transport and the equation of state. The horizontal momentum balances for the horizontal velocity components, U and V in the x - and y-coordinate horizontal directions, with z taken positive downward are

$$
\begin{align*}
& \partial \mathrm{U} / \partial \mathrm{t}=\mathrm{g} \partial \mathrm{z}^{\prime} / \partial \mathrm{x}-\mathrm{g} / \rho \mathrm{f}^{\prime} \mathrm{z}^{\prime}(\partial \rho / \partial \mathrm{x}) \partial \mathrm{z}+\mathrm{fV}-\partial \mathrm{UU} / \partial \mathrm{x}-\partial \mathrm{VU} / \partial \mathrm{y}-\partial \mathrm{WU} / \partial \mathrm{z}+\mathrm{SM}_{\mathrm{x}} \\
& +\partial \mathrm{A}_{\mathrm{x}}(\partial \mathrm{U} / \partial \mathrm{x}) / \partial \mathrm{x}+\partial \mathrm{A}_{\mathrm{y}}(\partial \mathrm{U} / \partial \mathrm{y}) / \partial \mathrm{y}+\partial \mathrm{A}_{\mathrm{z}}(\partial \mathrm{U} / \partial \mathrm{z}) / \partial \mathrm{z} \\
& \begin{array}{r}
\partial \mathrm{V} / \partial \mathrm{t}=\mathrm{g} \partial \mathrm{z}^{\prime} / \partial \mathrm{y}-\mathrm{g} / \rho \\
\int_{z^{\prime}}^{z}(\partial \rho / \partial \mathrm{y}) \partial \mathrm{z}-\mathrm{fU}-\partial \mathrm{UV} / \partial \mathrm{x}-\partial \mathrm{VV} / \partial \mathrm{y}-\partial \mathrm{WV} / \partial \mathrm{z}+\mathrm{SM}_{\mathrm{y}} \\
\\
+\partial \mathrm{A}_{\mathrm{x}}(\partial \mathrm{~V} / \partial \mathrm{x}) / \partial \mathrm{x}+\partial \mathrm{A}_{\mathrm{y}}(\partial \mathrm{~V} / \partial \mathrm{y}) / \partial \mathrm{y}+\partial \mathrm{A}_{\mathrm{z}}(\partial \mathrm{~W} / \partial \mathrm{z}) / \partial \mathrm{z}
\end{array} \tag{A-1}
\end{align*}
$$

Local continuity for the vertical velocity component W is

$$
\begin{equation*}
\partial \mathrm{W} / \partial \mathrm{z}=-\partial \mathrm{U} / \partial \mathrm{x}-\partial \mathrm{V} / \partial \mathrm{y} \tag{A-3}
\end{equation*}
$$

Vertically integrated continuity for the surface elevation, z^{\prime}, is

$$
\begin{equation*}
\partial \mathrm{z}^{\prime} / \partial \mathrm{t}=-\int_{z}^{h}(\partial \mathrm{U} / \partial \mathrm{x}) \mathrm{dz}-\int_{z}^{h}(\partial \mathrm{~V} / \partial \mathrm{y}) \mathrm{dz} \tag{A-4}
\end{equation*}
$$

The constituent transport relationship for n number of constituents (for example, salinity, dye and sediment) is

$$
\begin{align*}
\partial \mathrm{C}_{\mathrm{n}} / \partial \mathrm{t} & =-\partial \mathrm{UC}_{\mathrm{n}} / \partial \mathrm{x}-\partial \mathrm{VC}_{\mathrm{n}} / \partial \mathrm{y}-\partial \mathrm{WC}_{\mathrm{n}} / \partial \mathrm{z}+\partial\left(\mathrm{D}_{\mathrm{x}} \partial \mathrm{C}_{\mathrm{n}} / \partial \mathrm{x}\right) / \partial \mathrm{x} \\
& +\partial\left(\mathrm{D}_{\mathrm{y}} \partial \mathrm{C}_{\mathrm{n}} / \partial \mathrm{y}\right) / \partial \mathrm{y}+\partial\left(\mathrm{D}_{\mathrm{z}} \partial \mathrm{C}_{\mathrm{n}} / \partial \mathrm{z}\right) / \partial \mathrm{z}+\mathrm{H}_{\mathrm{n}} \tag{A-5}
\end{align*}
$$

And, the equation of state relating density, r, to constituents is

$$
\begin{equation*}
\rho=\mathrm{f}\left(\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{n}}\right) \tag{A-6}
\end{equation*}
$$

These relationships have six unknowns ($\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{z}^{\prime}, \mathrm{r}, \mathrm{C}_{\mathrm{n}}$) in six equations, assuming that the momentum and constituent dispersion coefficients $\left(A_{x}, A_{y}, A_{z}, D_{x}, D_{y}, D_{z}\right)$ can be evaluated from velocities and the density structure.

In the x and y momentum balances, the right-hand terms are successively the barotropic or water surface slope, the baroclinic or density gravity slope, the Coriolis acceleration, the advection of momentum in each of the three coordinate directions, the dispersion of momentum in each of the coordinate directions and the specific momentum as would apply to a high velocity discharge.

The baroclinic and barotropic slopes are arrived at from the hydrostatic approximation to vertical momentum and horizontal differentiation of the density-pressure integral by Leibnitz' rule. The baroclinic slope is seen to be the vertical integral of the horizontal density gradient and becomes the major driving force for density-induced flows due to discharge buoyancy.

The specific momentum terms, SM_{x} and SM_{y}, are evaluated from the velocity and flow rate of a discharge into a model cell as Udis*Qdis/(Dx*Dy*Dz) where Dx, Dy and Dz are the model cell dimensions. The specific momentum is directed vectorially parallel to the direction of the discharge velocity.

1.2 NUMERICAL SCHEME

The hydrodynamic relationships are integrated numerically, implicitly forward in time, by evaluating the horizontal momentum balances as

$$
\begin{aligned}
& \partial \mathrm{U} / \partial \mathrm{t}=\mathrm{g} \partial \mathrm{z}^{\prime} / \partial \mathrm{x}+\mathrm{F}_{\mathrm{x}} \quad(\mathrm{~A}-7) \\
& \partial \mathrm{V} / \partial \mathrm{t}=\mathrm{g} \partial \mathrm{z}^{\prime} / \partial \mathrm{y}+\mathrm{F}_{\mathrm{y}} \quad(\mathrm{~A}-8)
\end{aligned}
$$

where U, V and z^{\prime} are taken simultaneously forward in time and all the other terms are incorporated in the forcing functions F_{x} and F_{y} and are lagged in time. Equations (A-7) and (A8) are substituted (either by cross-differentiation or algebraically from the finite difference forms) into vertically integrated continuity to give the surface wave equation of

$$
\begin{equation*}
\partial^{2} \mathrm{z}^{\prime} / \partial \mathrm{t}^{2}+\mathrm{g} \partial\left(\mathrm{H} \partial \mathrm{z}^{\prime} / \partial \mathrm{x}\right) / \partial \mathrm{x}+\mathrm{g} \partial\left(\mathrm{H} \partial \mathrm{z}^{\prime} / \partial \mathrm{y}\right) / \partial \mathrm{y}=\partial / \partial \mathrm{x}\left(z^{\prime} \mathrm{F}_{\mathrm{x}} \partial \mathrm{z}\right)+\partial / \partial \mathrm{y}\left(\int_{z^{\prime}}^{h} \mathrm{~F}_{\mathrm{y}} \partial \mathrm{z}\right) \tag{A-9}
\end{equation*}
$$

where z^{\prime} is the surface displacement and H is the total water column depth. The surface wave equation has second order derivative in time which makes solving of Equation (A-9) quite cumbersome. So, the second order time derivative is converted to first order by expanding $\delta^{2} z^{\prime} / \delta t^{2}$ using Equation (A-4).

The computational steps in GLLVHT on each time step of integration are: (1) to evaluate F_{x} and F_{y} from $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{r}$ known from the previous time step; (2) to solve the surface wave equation for new z ' for the spatial grid using a modified form of Gauss-Jordan elimination by back substitution; (3) to solve for new U and V using Equations (A-7) and (A-8); (4) to solve for W using Equation (A-3); (5) to re-evaluate z^{\prime} from Equation (A-4) for precision; and, (6) to solve the constituent relationships, Equations (A-5).

The semi-implicit integration procedure has the advantage that computational stability is not limited by the Courant condition that $\mathrm{Dx} / \mathrm{Dt}, \mathrm{Dy} / \mathrm{Dt}<\left(\mathrm{gh}_{\mathrm{m}}\right)^{1 / 2}$ where h_{m} is the maximum water depth that can lead to inefficiently small time steps of integration. Since the solutions are semi-implicit (for example, explicit in the constituent transport and the time lagged momentum terms) the stability is controlled by the Torrence condition (UDt/Dx, VDt/Dy <1). Hence, the integration time step can be chosen to realistically represent the details of the boundary data which is about 15 minutes for tides and up to one hour for meteorological data.

There are a number of auxiliary relationships which enter the computations. First, the vertical momentum dispersion coefficient and vertical shear is presently (but not limited to) evaluated from a Von Karman relationship modified by the local Richardson number, Ri, (the ratio of vertical buoyant acceleration to vertical momentum transfer) as

$$
\begin{equation*}
\mathrm{A}_{\mathrm{z}}=\mathrm{kLm}^{2} / 2\left[(\partial \mathrm{U} / \partial \mathrm{z})^{2}+(\partial \mathrm{V} / \partial \mathrm{z})^{2}\right]^{1 / 2} \operatorname{Exp}(-1.5 \mathrm{Ri}) \tag{A-10}
\end{equation*}
$$

where k is the Von Karman constant; Lm is a mixing length that can be a function of depth; and, Ri is the local Richardson number. The Richardson number function is from Leendertse and Liu (1975). The longitudinal and lateral dispersion coefficients are scaled to the dimensions of the grid cell using the dispersion relationships developed by Okubo (1971) of

$$
\begin{equation*}
\mathrm{D}_{1}=5.84 \times 10^{-4}\left(\mathrm{~L}_{1}\right)^{1.1} \tag{A-11}
\end{equation*}
$$

where D_{1} is the longitudinal or lateral dispersion coefficient in square meters per second and L_{1} is the longitudinal or lateral cell dimension in meters.
Wind surface stress enters the relationships for each of the coordinate directions as

$$
\begin{equation*}
\mathrm{A}_{\mathrm{z}} \partial \mathrm{U} /\left.\partial \mathrm{z}\right|_{\mathrm{z}^{\prime}}=\mathrm{WS}_{\mathrm{x}} \tag{A-12}
\end{equation*}
$$

and,

$$
\begin{equation*}
\mathrm{A}_{\mathrm{z}} \partial \mathrm{~V} /\left.\partial \mathrm{z}\right|_{\mathrm{z}^{\prime}}=\mathrm{WS}_{\mathrm{y}} \tag{A-13}
\end{equation*}
$$

where $\mathrm{W}\left(\mathrm{W}_{\mathrm{x}}\right)$ and $\mathrm{W}\left(\mathrm{W}_{\mathrm{y}}\right)$ are surface shear functions of wind speed.
Bottom friction enters the computations through a Chezy friction relationship as

$$
\begin{aligned}
& A_{z} \partial \mathrm{U} /\left.\partial \mathrm{z}\right|_{\mathrm{h}}=\left(\mathrm{g} / \mathrm{C}_{\mathrm{h}}^{2}\right) \mathrm{U}^{2} \\
& \mathrm{~A}_{\mathrm{z}} \partial \mathrm{~V} /\left.\partial \mathrm{z}\right|_{\mathrm{h}}=\left(\mathrm{g} / \mathrm{C}_{\mathrm{h}}^{2}\right) \mathrm{V}^{2}
\end{aligned}
$$

where C_{h} is the local Chezy friction coefficient and h is the bottom elevation at which bottom friction is evaluated.

Transport computation is explicit in time. It is developed so that transport coefficients can be computed once and used for all constituents during that time step at a given " n ", " k " location. The solution time is not too sensitive to the number of constituents being examined. Constituent computations are performed using a higher order transport scheme. This scheme uses second order upwind differencing following the method of Mei and Plotkin (1985). The scheme includes an adjustment factor to account for "undershoots" and "overshoots" that normally occurs in any higher order scheme in the presence of sharp gradients. The adjustment factor is computed using local second order and first order gradients similar to ULTIMATE (1988).

The model is built to accept a large number of transport constituents and constituent relationships. The basic parameter obtained from the water quality model is the constituent flux, $\mathrm{H}(\mathrm{n}, \mathrm{k}, \mathrm{nc})$. For example $\mathrm{H}(\mathrm{n}, \mathrm{k}, 4)=-\mathrm{KR}_{4} * \mathrm{C}(\mathrm{n}, \mathrm{k}, 4) *$ dxdydz for the decay of constituent 4. Dxdydz is the volume of the grid cell and KR_{4} is the decay constant).

2. NumErical ConFiguration

2.1 GRID AND COORDINATE TRANSFORMATIONS

Rectilinear (quasi-curvilinear) grid for mapping to different detail in different parts of a waterbody is used in GEMSS. Horizontal grid dimensions changing with depth is also used. The model domain is a space staggered finite difference grid with elevations and constituent concentrations computed at cell centers and velocities through cell interfaces. This scheme facilitates implementation of control volume approach resulting in perfect water balance.

Both Z-level and sigma level methods are used for gridding in the vertical direction. Z-level allows the use of variable layer thicknesses in the vertical direction and facilitates implementation of the layer cell add and subtract algorithm for modeling tidal flats; It also allows the use thicker layers in deeper water. Sigma level model is described in Section 7.

The curvilinear model grid is obtained using GridGen tool of GEMSS. GridGen is an automated grid generation tool which is a menu and mouse driven graphical software that allows the user to develop rectilinear as well as curvilinear coordinates from digitized maps containing shorelines and bathymetric soundings, transects and contours. These maps are loaded in GEMSS using widely used shaped file format (.shp, .dbf, .shx, .sbn, .sbx, .prj files) of ESRI. For applications where no digital maps are available, GEMSS has a unique format .GShp which can be used to draw waterbodies and specify depths for subsequent gridding. This format is normally used to set up some simple waterbodies such as rectangular basin etc.

2.2 Wetting and drying

The basic model variable for water surface elevation, Z, is relative to a local datum at the top of a fixed horizontal layer, KT. When the water surface rises so that it enters a new layer, the current thick layer is divided into two, Z is modified and KT is decremented by 1 . The reverse action is taken on falling water surface. When the rising surface floods dry cells, they are also activated (and deactivated when dried again). Wetting and drying is important to account for tidal flats and wetlands.

2.3 ARRAY STRUCTURE

Hydrodynamic variables identified by surface cell number " n " and vertical layer " k " as for example $\mathrm{U}(\mathrm{n}, \mathrm{k}), \mathrm{V}(\mathrm{n}, \mathrm{k}), \mathrm{W}(\mathrm{n}, \mathrm{k}), \mathrm{Az}(\mathrm{n}, \mathrm{k})$. Constituent and water quality variables identified with a water quality constituent number, "nc", as C(n,k,nc). This approach reduces array storage and simplifies computational loops.

2.4 SOLUTION METHOD

HDM used a family of fully implicit schemes, either the banded matrix solver (small grids) or the preconditioned conjugate gradient, successive over relaxation, or modified strongly implicit methods (large grids). After performing a series of numerical experiments on conventional problems as well as real world applications, the preconditioned conjugate gradient method is the ultimate solution method used in HDM because of its less computer storage, CPU time and high convergence speed.

2.5 SOURCES, SINKS AND SPECIFIC MOMENTUM

Discharges/Intakes (e.g. river inflows, outfalls, marine disposals, thermal intakes and discharges etc.) are introduced as sources/sinks to the continuity and transport equations; in addition, sub grid scale jet discharge can be accommodated using a source term for the momentum equations as discussed in the description section. Sources and sinks for continuity equation are applied using the flow rate variable $\mathrm{Q}(\mathrm{n}, \mathrm{k})$ and for transport equations using the constituent flux variable, $\mathrm{H}(\mathrm{n}, \mathrm{k}, \mathrm{nc})$. Constituent fluxes are also computed from water quality routines.

3. Program Structure

3.1 Model design

The unique design of GEMSS gives the user the power of writing adaptation routines to introduce different initial conditions, time variant boundary conditions, replace existing algorithms for source and sink computations related to water quality, sediment transport etc. and nonstandard features or customize the output. In this scheme GEMSS-HDM behaves like a black box. Efficient routines for specifying input time varying data to the model such as meteorological data, inflows, discharge loads, time series boundary data using standards formats (e.g., Microsoft Excel csv format). Separate control switches and input "cards" for hydrodynamics and water quality constituents. Examples of input cards for hydrodynamics include specifying time of beginning and ending computations; types of outputs and their starting and ending times and frequencies; location and characteristics of inflows, discharges and intakes including recirculation coupling; control cards for water quality routines include in addition specification of rate parameters and specifying different combinations of constituents that might be required for a particular simulation.

3.2 INTERFACE TO OTHER MODELS

The design structure of GLLVHT is very flexible to accommodate different three dimensional water quality models. Examples include 1) EPA's EUTRO and the Corps' CE-QUAL-ICM (Integrated Compartment Model), sources of water quality kinetics routines.

3.3 Programming Language and Operating System

GEMSS numerical models are written in FORTRAN 90 and developed on Compaq's Visual Fortran compiler that runs on Windows NT and XP operating systems. We have also developed add-on tools for GEMSS that takes advantage of multi language programming (e.g. linking Visual Basic or Visual C++ with FORTRAN) available in Visual Fortran.

4. BOUNDARY CONDITIONS

The model handles a wide variety of boundary conditions through the use of control file generator module of GEMSS and they are listed below.

1. Fresh water inflows and outflows.
2. Outfall discharges.
3. Water intakes.
4. Powerplant intake and discharges. Specific discharge momentum for high velocity discharges.
5. Instantaneous dye releases; useful for flushing and each water parcel residence time computations.
6. Continuous dye releases; useful for dilution computations for wastewater discharges; screening tool for design scenarios.
7. Intantaneous and continuous oil, chemical and sewage spills.
8. Forced open boundary; option for different types of distribution along the boundary, tidal elevation amplification factor, tidal elevation lag time.
9. Free open boundary; use of first and higher order derivations of elevation, velocity and constituents.
10. Radiation boundary; used for elevation, velocity and constituents.
11. Slugging different regions of water body.
12. Interior boundaries for representation of interior structures such as breakwaters, marinas, weirs, gates, culverts, underflow/overflow curtain walls.
13. Surface precipitation/exchange.
14. Bottom deposition/releases.
15. Re-circulation boundary.
16. Entrainment source and target; used for larval and bio-organisms entrainment computations in water intakes.
17. Velocity boundary; used when no information is available other than field data from current meters.
18. Bubblers;
19. Distributed flows; used for representing non-point sources.
20. Grid cell activation/non-activation; quick way to alter the grid pattern.

5. Transport Schemes

The transport module in GEMSS-SHWET is capable of running in fully explicit to fully implicit mode in vertical direction while performing explicit computations in the horizontal direction. A Finite difference scheme is based on control volume (cv) approach. Let's assume transport in 1D as shown in figure 1 .

Figure 1 1-D transport schematic
The mass balance based on the CV approach can be written as:

$$
\begin{align*}
& C^{n+1}=C^{n}-\left(\text { Mass }_{\text {in }}+(\text { Mass })_{\text {out }}\right. \tag{1}\\
& \text { Mass }_{\text {in }}=(\operatorname{adv})_{\mathrm{w}}+(\text { Dif })_{\mathrm{w}} \tag{2}\\
& \text { Mass }_{\text {out }}=(\mathrm{adv})_{\mathrm{E}}+(\text { Dif })_{\mathrm{E}} \tag{3}\\
& (\text { Adv })_{\mathrm{w}}=\operatorname{Cour}_{\mathrm{w}}{ }^{*} C_{\mathrm{fw}} \tag{4}\\
& (\text { Adv })_{\mathrm{E}}=\operatorname{Cour}_{\mathrm{E}}^{*} C_{\mathrm{fE}} \tag{5}\\
& \text { Cour }_{\mathrm{E}}=\frac{\mathrm{U}_{\mathrm{E}}{ }^{*} \mathrm{dt}}{\mathrm{dx}} \tag{6}
\end{align*}
$$

Where, C_{fw} and C_{fE} are the face concentration values at the west and east cell faces respectively. Cour $_{w}$ and Cour $_{E}$ are the courant numbers defined at the west and the east cell faces respectively. Unlike velocities, concentrations are defined at the cell centers in GEMSS and thus interpolation needs to be done in order to calculate the required face concentrations. The various transport schemes used in GEMSS differ in the interpolation scheme used to calculate these face concentration.

The transport scheme can also be Explicit or Implicit. In a fully explicit scheme, all the terms used to calculate the face concentrations are from the current time step while in a fully implicit scheme the face concentrations are calculated based on the concentrations at the next time step. Implicit formulation requires solving matrix and thus is computationally expensive. On the other hand implicit formulation relaxes the time step constraints. In GEMSS, the vertical transport can
be solved using the implicit scheme. It also allows for different combinations (weightage) of Explicit-Implicit formulation. This weightage can be specified in the form of two parameters θ_{a} and θ_{d}. The variable θ_{a} specifies the contribution of implicit formulation for advective transport in the vertical direction and the variable θ_{d} specifies the contribution of implicit formulation for diffusive transport. The transport equation in 3 -dimension with implicit and explicit formulation can thus be written as

$$
\begin{align*}
\frac{\mathrm{C}_{\mathrm{i}}^{n+1}-\mathrm{C}_{i}^{n}}{\Delta t} & =(\mathrm{Adv})_{\mathrm{EX}}+(\mathrm{AdV})_{\mathrm{EY}}+(\mathrm{Dif})_{\mathrm{EX}}+(\mathrm{Dif})_{\mathrm{EX}}+\left(1-\theta_{\mathrm{a}}\right)(\mathrm{Adv})_{\mathrm{EZ}}+\theta_{\mathrm{a}}(\mathrm{Adv})_{I Z} \\
& +\left(1-\theta_{\mathrm{d}}\right)(\mathrm{Dif})_{\mathrm{EZ}}+\theta_{\mathrm{d}}(\mathrm{Dif})_{\mathrm{IZ}} \tag{7}
\end{align*}
$$

Where, $(\mathrm{Adv})_{\mathrm{EX}},(\mathrm{Adv})_{\mathrm{EY}}$ and $(\mathrm{Adv})_{\mathrm{EZ}}$ are the explicit part of the advective fluxes in the x, y and z directions respectively and $(\mathrm{Dif})_{\mathrm{EX}},(\mathrm{Dif})_{\mathrm{EY}}$ and $(\mathrm{Dif})_{\mathrm{EZ}}$ are the explicit part of the diffusive fluxes in the x, y and z directions respectively. $(\mathrm{Adv})_{\mathrm{IZ}}$ and (Dif) $)_{\mathrm{IZ}}$ are the implicit part of the advective and diffusive fluxes in the z direction.

When $\theta_{a}=\theta_{d}=0$, then the transport equation is completely explicit and when $\theta_{a}=\theta_{d}=1$, then the transport equation is completely implicit in the z direction. Note that the transport in x and y are always solved explicitly. When $\theta_{\mathrm{a}}=\theta_{\mathrm{d}}=0.55$, then the transport scheme is called CrankNicholson in the z direction.

The explicit transport schemes used in GEMSS are:
a) Upwind
b) QUICKEST
c) QUICKEST + ULTIMATE

5.1 UpWIND Scheme

Upwind is the simplest transport scheme of first order with the upstream bias. That is it assumes that the concentration at the face is equal to the concentration of the grid upstream of the face. So, if the velocity at the right face is positive (left to right) then the concentration at the right face is C_{i} and if the velocity at the right face is negative then the concentration at the right face will be C_{i+1}. Figure 2 shows the choice of these concentration values.

Figure 2 1-D transport schematic with face values for UPWIND scheme

For the East face (E),
If $u_{i} \geq 0$ then, $\mathrm{C}_{\mathrm{fe}}=\mathrm{C}_{\mathrm{i}}$

If $\mathrm{u}_{\mathrm{i}} \leq 0$ then,
$\mathrm{C}_{\mathrm{fe}}=\mathrm{C}_{\mathrm{i}+1}$
For the West face (W)
If $u_{i-1} \geq 0$ then,
$\mathrm{C}_{\mathrm{fw}}=\mathrm{C}_{\mathrm{i}-1}$
If $u_{i-1} \leq 0$ then,
$\mathrm{C}_{\mathrm{fw}}=\mathrm{C}_{\mathrm{i}}$
Using these face values, the advective flux is calculated. For the diffusive flux, central differencing at the cell face is applied. This gives, for the east face, the following expression for diffusion:

$$
\begin{align*}
& (\text { Dif })_{E}=a_{E}\left(C_{i+1}-C_{i}\right) \tag{8}\\
& a_{E}=\frac{D_{x} * d t}{(\Delta x)^{2}} \tag{9}
\end{align*}
$$

where D_{x} is the horizontal diffusion coefficients in x -direction.

5.2 QUICKEST SCHEME

The QUICKEST (Quadratic Upstream Interpolation for Convective Kinematics with Estimated Streaming Terms) scheme originally developed by Leonard (1979) has been extended to three dimensions and incorporated in GEMSS. Unlike upwind scheme, it is third order accurate and performs well for sharp gradients. Both advection and diffusion are solved using the QUICKEST algorithm with the diffusion flux calculation based on Spasojevic et. al. (1994). QUICKEST
employs a three point upstream biased interpolation scheme to calculate the face concentrations for the cell. The selection of Upstream (U), Current(C) and Downstream (D) cells is according to the following figure 3

Figure 3 1-D transport schematic with face values for QUICKEST scheme
For the East face (E),
If $\mathrm{u}_{\mathrm{i}} \geq 0$ then,
$\mathbf{U}=\mathrm{i}-1, \mathbf{C}=\mathrm{i}$ and $\mathbf{D}=\mathrm{i}+1$
If $u_{i} \leq 0$ then,
$\mathbf{U}=\mathrm{i}+2, \mathbf{C}=\mathrm{i}+1$ and $\mathbf{D}=\mathrm{i}$
For the West face (W)
If $u_{i-1} \geq 0$ then,
$\mathbf{U}=\mathrm{i}-2, \mathbf{C}=\mathrm{i}-1$ and $\mathbf{D}=\mathrm{i}$
If $\mathrm{u}_{\mathrm{i}-1} \leq 0$ then,
$\mathbf{U}=\mathrm{i}-1, \mathbf{C}=\mathrm{i}$ and $\mathbf{D}=\mathrm{i}+1$
Using this nomenclature, the concentrations are defined as $C_{\mathbf{U}}, C_{C}$ and C_{D} for the upstream, current and the downstream cell respectively. Then the face concentration for west face is written, using QUICKEST interpolation, as

$$
\begin{equation*}
C_{f w}=\frac{C_{i}+C_{i-1}}{2}+\frac{\text { Cour }_{w}}{2}\left(C_{i}-C_{i-1}\right)-\frac{1}{6}\left(1-\text { Cour }_{w}^{2}\right)\left(C_{u}-2 * C_{C}+C_{D}\right) \tag{10}
\end{equation*}
$$

Similarly for the east face the concentration is,

$$
\begin{equation*}
C_{f e}=\frac{C_{i}+C_{i+1}}{2}+\frac{\text { Cour }_{e}}{2}\left(C_{i+1}-C_{i}\right)-\frac{1}{6}\left(1-\text { Cour }_{e}^{2}\right)\left(C_{u}-2 * C_{C}+C_{D}\right) \tag{11}
\end{equation*}
$$

Using these face concentration, the advective fluxes are calculated in all the three directions. The diffusive fluxes are given in the form of following equations 12 and 13

$$
\begin{align*}
& (\text { Dif })_{w}=a_{w}\left[\left(C_{i}-C_{i-1}\right)-\frac{\text { Cour }_{w}}{2}\left(C_{U}-2 * C_{C}+C_{D}\right)\right] \tag{12}\\
& (\text { Dif })_{E}=a_{E}\left[\left(C_{i+1}-C_{i}\right)-\frac{\text { Cour }_{w}}{2}\left(C_{U}-2 * C_{C}+C_{D}\right)\right] \tag{13}
\end{align*}
$$

5.3 QUICKEST WITH ULTIMATE

The QUICKEST scheme is not monotonous, i.e., it produces overshoots and undershoots. Thus in order to avoid these oscillations, a universal limiter based on Leonard's work (1991) can also be applied. This limiter is called ULTIMATE (Universal Limiter for Transient Interpolation Modeling of the Advective Transport Equation) and is applied to each cell faces individually. The algorithm requires the calculation of the CURV and DEL as defined in the equations 14 and 15

$$
\begin{align*}
& \mathrm{CURV}=\mathrm{C}_{\mathbf{D}}+\mathrm{C}_{\mathbf{U}}-2 * \mathrm{C}_{\mathbf{C}} \tag{14}\\
& \mathrm{DEL}=\mathrm{C}_{\mathbf{D}}-\mathrm{C}_{\mathbf{U}} \tag{15}
\end{align*}
$$

Depending on the values of CURV and DEL, the ULTIMATE limiter is applied to maintain it monotonic.

- If \mid CURV $|\leq 0.6| \mathrm{DEL} \mid$, then the face concentration calculated by QUICKEST is used.
- If \mid CURV $|\geq|$ DEL \mid, then $\mathrm{C}_{\mathrm{f}}=\mathrm{C}_{\mathrm{c}}$.
- Otherwise $\mathrm{C}_{\text {REF }}$ is computed according to the equation 16

$$
\begin{equation*}
C_{R E F}=C_{U}+\frac{C_{C}-C_{U}}{\text { Cour }_{f}} \tag{17}
\end{equation*}
$$

If DEL >0, chose C_{f} so that $\mathrm{C}_{\mathbf{C}}<\mathrm{C}_{\mathrm{f}}<\min \left[\mathrm{C}_{\mathrm{REF}}, \mathrm{C}_{\mathrm{D}}\right]$
If $\mathrm{DEL}<0$, chose C_{f} so that max $\left[\mathrm{C}_{\mathrm{REF}}, \mathrm{C}_{\mathrm{D}}\right]<\mathrm{C}_{\mathrm{f}}<\mathrm{C}_{\mathrm{C}}$

5.4 Example Application

In order to further illustrate the difference in these algorithms consider a 2-D problem. The following results are obtained for a simplified reservoir problem with transport only in x and Z direction. The grid sizes are uniform. The reservoir is subjected to meteorology data and the results were plotted for different combination of explicit-implicit transport schemes. The results shown here are for the three explicit schemes with three different combinations of θ_{a} and θ_{d}. The chosen values for $\theta_{\mathrm{a}}\left(=\theta_{\mathrm{d}}\right)$ are $0.00,0.55$ and 1.00. A schematic of the reservoir is shown in figure 4.

Figure 4
Schematic of 2-D transport problem to illustrate the difference between various transport schemes

The results for this problem are shown in Figures 5 through 7 using the three transport schemes and 3 different values of implicit weighting. It is expected that the reservoir will be stratified and the formation of this stratification (temperature vertical profile) is more realistic when higher order schemes, QUICKEST or QUICKEST+ULTIMATE, are used.

Figure 5 Vertical profile of temperature using UPWIND

Figure $5 \quad$ Vertical profile of temperature using QUICKEST

Figure 5 Vertical profile of temperature using QUICKEST with ULTIMATE

The scheme selection should be problem and goal specific. When the focus is on computational efficiency UPWIND can be used. This computational efficiency is compromised when the higher order schemes are adopted but they result in much better stratification and also QUICKEST+ULTIMATE smoothes out any computational overshoots/undershoots.

6. Horizontal Diffusivity

The hydrodynamic model in GEMSS solves the turbulence time average Reynolds momentum equations in the three dimensions. These momentum equations are in the form of Equation-1.

$$
\begin{equation*}
\frac{\partial U_{i}}{\partial t}+U_{j} \frac{\partial U_{i}}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left(K_{H} \frac{\partial U_{i}}{\partial x_{j}}-\overline{u_{i} u_{j}}\right)+F \tag{1}
\end{equation*}
$$

K_{H} is the horizontal dispersion which includes molecular diffusion along with the small scale transport (scalar as well as momentum) which is not solved by the coarse numerical grid resolution. Thus the dispersion coefficient is estimated based on the horizontal resolution adopted and, in some cases, local velocity shear. GEMSS provides two options to estimate the horizontal dispersion based on these approaches. The two options, Okubo and Smagorinsky, are discussed here.

6.1 OkUbo

When this option is chosen, the horizontal diffusion in both x and y directions are estimated separately based on the resolution in the respective directions. The horizontal diffusion in this case is computed using equation 2 (Okubo, 1971).

$$
\begin{align*}
& K_{x}=C_{x} *(\Delta x)^{n} \tag{2}\\
& K_{y}=C_{y} *(\Delta y)^{n} \tag{3}
\end{align*}
$$

Thus the dispersion decreases as horizontal resolution increases and approaches zero when the grid sizes are infinitesimally small. A zero diffusion in this case means that the all transport can be modeled as advection at such small length scale.

6.2 SMAGORINSKY

This option is based on the work of Smagorinsky (1963). Using this approach the horizontal dispersion is estimated as

$$
\begin{equation*}
K_{H}=C_{H}(\Delta x * \Delta y)\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+\frac{1}{2}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^{2}\right] \tag{4}
\end{equation*}
$$

Note that the diffusion increases with increasing local turbulence (velocity shear) and decreases with increasing horizontal resolution. The diffusion is same in both x and y direction and is referred to as horizontal diffusion. The constant C_{H} works well in the range of 0.1 to 0.5 .

6.3 Example Application

To illustrate the difference between the two approaches consider the case of Jobos Bay, Puerto Rico. A heated water discharge plume analysis was performed by JEEAI for Jobos Bay. The location of this discharge and the model domain are shown in Figure 1.

Figure 1 Model grid for Jobos Bay, Puerto Rico
The heated water is released at $1000 \mathrm{cfs}(450000 \mathrm{gpm})$ into the bay which creates a local turbulence. This small scale turbulence is responsible for increased mixing in the vicinity. Thus it is very important to account for this mixing. When Okubo approach is used, only the horizontal grid resolution is used but Smagorinsky approach also accounts for the localized turbulent mixing. Figures 2 and 3 show the discharge plume using the two approaches. It can be seen that higher temperature exists in the case of Okubo which is not present when Smagorinsky is used. Smagorinsky formulation, in this case, allows more localized dispersion. With Smagorinsky, the plume is at a lower temperature but with wider extent while with Okubo, the plume is at higher temperature with smaller extent.

Discharge Plume: Okubo

Figure 2 Thermal discharge plume using Okubo formulation for horizontal diffusivity

Figure 3 Thermal discharge plume using Smagorinsky formulation for horizontal diffusivity

7. GEMSS SIGMA VERSION

GEMSS can be run as both z-grid and sigma grid (σ-grid) in the vertical direction. The Hydrodynamic model along with the Transport and Water-quality model allows the σ-stretching for applications that deal with rapidly changing bathymetry.

7.1 THEORETICAL BACKGROUND

The σ-stretching is obtained by transforming the vertical direction in to the σ-coordinate system. This σ-coordinate system is defined as follows so the free water surface is always at $\sigma=0$ and the bottom is always at $\sigma=-1$. This transformation allows the same number of vertical layers throughout the model domain and can be written as:

$$
\begin{equation*}
\sigma=\frac{z-\eta}{H+\eta} \tag{1}
\end{equation*}
$$

Where $\eta=$ Free Surface Elevation and is measured positive upwards

$$
\mathrm{H}=\mathrm{Bottom} \text { depth and is measured negative downwards }
$$

Also, let $\mathrm{D}(=\mathrm{H}+\eta)$ be the total water column depth.
Thus, when $\mathrm{z}=\eta, \sigma=0$ and when $\mathrm{z}=-\mathrm{H}, \sigma=-1$.

Figure 4 Schematic showing Sigma Stretching in GEMSS
The σ-coordinate transformation equations are
Continuity:

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{1}{D} \frac{\partial \omega}{\partial \sigma}+\frac{1}{D} \frac{\partial \eta}{\partial t}=0 \tag{2}
\end{equation*}
$$

Momentum Equation:

$$
\begin{align*}
& \frac{\partial u}{\partial t}+\frac{\partial u u}{\partial x}+\frac{\partial u v}{\partial y}+\frac{1}{D} \frac{\partial u w}{\partial \sigma}-f v+g \frac{\partial \eta}{\partial x}+\frac{g D}{\rho_{0}} \int_{\sigma}^{0}\left[\frac{\partial \rho}{\partial x}-\frac{\sigma}{D} \frac{\partial D}{\partial x} \frac{\partial \rho}{\partial \sigma}\right] d \sigma=\frac{1}{D} \frac{\partial}{\partial \sigma}\left[\frac{K_{M}}{D} \frac{\partial U}{\partial \sigma}\right]+F_{x} \tag{3}\\
& \frac{\partial v}{\partial t}+\frac{\partial u v}{\partial x}+\frac{\partial v v}{\partial y}+\frac{1}{D} \frac{\partial v w}{\partial \sigma}-f u+g \frac{\partial \eta}{\partial y}+\frac{g D}{\rho_{0}} \int_{\sigma}^{0}\left[\frac{\partial \rho}{\partial y}-\frac{\sigma}{D} \frac{\partial D}{\partial y} \frac{\partial \rho}{\partial \sigma}\right] d \sigma=\frac{1}{D} \frac{\partial}{\partial \sigma}\left[\frac{K_{M}}{D} \frac{\partial V}{\partial \sigma}\right]+F_{y} \tag{4}
\end{align*}
$$

Temperature Equation:

$$
\begin{equation*}
\frac{\partial T}{\partial t}+\frac{\partial T u}{\partial x}+\frac{\partial T v}{\partial y}+\frac{1}{D} \frac{\partial T w}{\partial \sigma}=\frac{1}{D} \frac{\partial}{\partial \sigma}\left[\frac{K_{H}}{D} \frac{\partial T}{\partial \sigma}\right]+F_{T} \tag{5}
\end{equation*}
$$

Salinity Equation:

$$
\begin{equation*}
\frac{\partial S}{\partial t}+\frac{\partial S u}{\partial x}+\frac{\partial S v}{\partial y}+\frac{1}{D} \frac{\partial S w}{\partial \sigma}=\frac{1}{D} \frac{\partial}{\partial \sigma}\left[\frac{K_{H}}{D} \frac{\partial S}{\partial \sigma}\right]+F_{S} \tag{6}
\end{equation*}
$$

Where ω is the velocity component normal to sigma surface and can be transformed back to true vertical velocity using the following equation:

$$
\begin{equation*}
W=\omega+u\left[\sigma \frac{\partial D}{\partial x}+\frac{\partial \eta}{\partial x}\right]+v\left[\sigma \frac{\partial D}{\partial y}+\frac{\partial \eta}{\partial y}\right]+\sigma \frac{\partial D}{\partial t}+\frac{\partial \eta}{\partial t} \tag{7}
\end{equation*}
$$

The F_{x} etc., terms are horizontal diffusion terms and are defined as follows:

$$
\begin{aligned}
& F_{x}=\frac{\partial}{\partial x}\left(A_{x} \frac{\partial u}{\partial x}\right)+\frac{\partial}{\partial y}\left(A_{y} \frac{\partial u}{\partial y}\right) \\
& F_{y}=\frac{\partial}{\partial x}\left(A_{x} \frac{\partial v}{\partial x}\right)+\frac{\partial}{\partial y}\left(A_{y} \frac{\partial v}{\partial y}\right) \\
& F_{T}=\frac{\partial}{\partial x}\left(D_{x} \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(D_{y} \frac{\partial T}{\partial y}\right) \\
& F_{S}=\frac{\partial}{\partial x}\left(D_{x} \frac{\partial S}{\partial x}\right)+\frac{\partial}{\partial y}\left(D_{y} \frac{\partial S}{\partial y}\right)
\end{aligned}
$$

7.2 IMPLEMENTATION

Setting up of Sigma stretching in GEMSS is easy but requires some caveats. To run GEMSS with the σ-grid, a σ layering should be adopted first. There is no limit to the maximum or minimum number of layers and the number should be adopted based on the level of vertical resolution desired. Since the number of verticals grids do no change throughout the model
domain, time considerations are usually an important factor to consider while choosing the number of layers. Once the desired number of layers is chosen, the user needs to provide the sigma level information to GEMSS. These sigma levels divide the sigma layers and are equal to the total number of layers +1 . For instance, if 4 layers are required with a uniform distribution then the sigma levels will be $0,-0.25,-0.5,-0.75$ and -1.0 . This is the only user input required by the user to setup the sigma stretching and can be supplied through the control file editor.

When sigma stretching is used some limitations need to be remembered while setting up the output. Sigma model requires the specification of a vertical datum. This vertical datum is the same as the initial elevation supplied by the user in the control file editor under the grid tab. This initial datum refers to the surface layer ' $k t$ '. All other layers (up to the maximum number of sigma layers) are referred to as ' k ' layers under kt. Thus if the user needs the output for the top two sigma layers then in any output setting, planes ' kt ' and ' 1 layers under kt ' should be chosen.

7.3 Example Application

To further illustrate the gridding and display the results of a GEMSS-Sigma stretching simulation please consider the case of Susquehanna River, PA. Figure 2 shows the 3-D render of the river and Figure 3 shows the horizontal river grid. The river bathymetry along an East-West plane as shown in figure 3 is shown in figure 4.

Figure 5
3-D render of Susquehanna River bathymetry

Figure 6 Susquehanna River horizontal grid

Figure 7 Susquehanna River bathymetry along thalweg (blue line in Figure 3)

Over the course of a year, Susquehanna River experiences several storms and low flow periods. The gauge at the downstream end (Marietta) shows the water surface elevation to be ranging between 240 ft to $254 \mathrm{ft}(73.15 \mathrm{~m}$ to 77.42 m). Also, the river section between 20000 ft and 30000 ft there is a very sharp gradient in the bottom bathymetry. During normal and low flows, there is a formation of riffles in this section. Thus due to the high water surface variation and the presence of sharp bottom gradients a highly resolved z-grid is not possible. GEMSS was run with z-grid layering of $10 \mathrm{ft}(3.05 \mathrm{~m})$ to successfully model the river but the vertical resolution was less than desired. The z-grid is shown in figure 5. To model the river with a better vertical resolution, sigma stretching was adopted. With sigma stretching the vertical resolution ranged from 0.66 ft $(0.2 \mathrm{~m})$ to $4.6 \mathrm{ft}(1.4 \mathrm{~m})$ from the shallowest water column depth (low flow) to deepest water column depth (storm events). A typical water surface elevation profile during normal flow period is shown in figure 6 . The Sigma layering with 5 layers is also shown for the water column.

Figure 8 Susquehanna River vertical z-grid

Figure 9 Susquehanna River Water Surface Elevation and Sigma layering
8. VERTICAL DIFFUSIVITY

The hydrodynamic model in GEMSS solves the turbulence time average Reynolds momentum equations in the three dimensions. These momentum equations are in the form of Equation-1.

$$
\frac{\partial U_{i}}{\partial t}+U_{j} \frac{\partial U_{i}}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left(v \frac{\partial U_{i}}{\partial x_{j}}-\overline{u_{i} u_{j}}\right)+F
$$

(Equation 1)

The \mathbf{F} terms represents the pressure gradient and baroclinic terms. The term $-\overline{u_{i} u_{j}}$ represents the turbulence time averaging and when multiplied by ϱ_{0} is called Reynolds stresses. For computational purposes Reynolds stress is assumed to be proportional to the mean-velocity gradients as shown in Equation-2.

$$
-\overline{u_{i} u_{j}}=v_{t}\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right)-\frac{2}{3} k \delta_{i j}
$$

(Equation 2)
ν_{t} is called the turbulent viscosity and is not a fluid property like the molecular viscosity ν. The turbulent viscosity is a property of the flow and thus may vary considerably from one point in the flow to the other. This provides the basis of a conceptual turbulence model which requires estimation of this turbulence viscosity by parameterizing the turbulence in the flow.

There are several models in the literature that parameterize the turbulence to estimate the eddy viscosity. Some of these models estimate them by relating them to the mean velocity distribution (0 Equation) or a constant value provided by trial and error. Other models account for the transport of turbulence quantities by solving transport equations (1-Equation or 2-Equation) for them. GEMSS allows the use of all the three turbulence models discussed and the correct choice of a particular model depends on the problem considered and flow properties.

8.1 0-EQUATION

The first choice of a turbulence model is the 0-Equation model and is the simplest and most time efficient model. The model is based on Prandtl's mixing length approach that attributes the eddy viscosity to mean fluctuating velocity and mixing length $\left(\mathrm{L}_{\mathrm{m}}\right)$. This mean fluctuating velocity ($\left.\overline{\mathrm{U}}\right)$, he then postulated, is equal to the product of the mean velocity gradient and the mixing length. Thus we get

$$
\begin{aligned}
& \bar{U}=L_{m}\left|\frac{\partial U}{\partial z}\right| \\
& v_{t}=\bar{U} L_{m}=L_{m}^{2}\left|\frac{\partial U}{\partial z}\right|
\end{aligned}
$$

The mixing length approach has been and can be applied with great success and computational efficiency for relatively simple flows. Since the mixing length $\left(\mathrm{L}_{\mathrm{m}}\right)$ can specified by a simple empirical formula, 0 -Equation models are very computationally efficient as compared to 1-/2- Equation models that require solution of transport equations. GEMSS allows user to select various possible mixing length relationships. All of these available empirical relationships are shown here.

8.2 Prandtl

The mixing length is estimated as a function of the layer width and is given by Equation-5 below.

$$
L_{m}=\kappa^{*} z
$$

(Equation 5)
Where $\kappa(=0.4)$ is the von Karman constant and z is the vertical layer width.

8.3 Parabolic

Introduced by Engelund (1978) the mixing length has a parabolic distribution over the depth of the channel and is given by Equation-6 below.

$$
L_{m}=\kappa * z *\left(1-\frac{z}{H}\right)
$$

(Equation 6)

Where z is the distance of layer from the bottom wall and H is the total depth of the channel.

8.4 Nikuradse

The mixing length is given by the Equation-7 below (Rodi, 1993).

$$
L_{m}=H\left[0.14-0.08\left(1-\frac{z}{H}\right)^{2}-0.06\left(1-\frac{z}{H}\right)^{4}\right]
$$

(Equation 7)

RNG (RE NORMALIZATION GROUP)

Based on the RNG model of Yakohot and Orszag (1986) the turbulent viscosity is calculated using the Equation-8 below.

$$
v_{t}=v\left[1+M A X\left\{3 * \kappa^{4}\left(\frac{z * u_{*}}{v}\right)^{3} *\left(1-\frac{z}{H}\right)^{3}-C_{1}\right\}\right]^{1 / 3}
$$

(Equation 8)

8.5 1-EQUATION

The next level of turbulence models solves transport equation for the turbulence quantities. This requires sacrificing the simple direct link between the fluctuating velocity scale and solving a more rigorous transport equation which is time consuming. The eddy viscosity concept is still used for this model but its estimation is no more done using a mixing length. The velocity fluctuation and thus the turbulent mixing can then be characterized by the seemingly most appropriate scale of turbulence, the turbulent kinetic energy (k) per unit mass. ' k ' is a direct measure of the intensity of turbulent fluctuations and is used according to the Equation-9 for the calculation of turbulent eddy viscosity.

$$
\begin{equation*}
v_{t}=S_{m} * \sqrt{k} L \tag{Equation9}
\end{equation*}
$$

Where S is computed based on Richardson number $\left(\mathrm{G}_{\mathrm{H}}\right)$ and L is the turbulence macro-scale. They are defined as shown in Equation-10 to Equation-11.

$$
\begin{align*}
& L=\left[0.14-0.14\left(\frac{z}{H}\right)^{2}\right] H \tag{Equation10}\\
& S_{m}=\frac{B_{1}^{-1 / 3}-A_{1} A_{2} G_{H}\left[\left(B_{2}-3 A_{2}\right)\left(1-\frac{6 A_{1}}{B_{1}}\right)-3 C_{1}\left(B_{2}+6 A_{1}\right)\right]}{\left[1-3 A_{2} G_{H}\left(6 A_{1}+B_{2}\right)\right]\left(1-9 A_{1} A_{2} G_{H}\right)} \\
& G_{H}=\left(\frac{L^{2}}{k}\right)\left(\frac{g}{\rho_{0}} \frac{\partial \rho}{\partial z}\right)
\end{align*}
$$

(Equation 11)
(Equation 12)

The turbulent kinetic energy (k) is solved using the transport Equation-13 which requires additional parameters D_{q} and D_{H} given by Equation-14 to Equation-16.

$$
\frac{\partial k}{\partial t}+U \frac{\partial k}{\partial x}+V \frac{\partial k}{\partial y}+W \frac{\partial k}{\partial z}=\frac{\partial}{\partial z}\left(D_{q} \frac{\partial k}{\partial z}\right)+2 v_{t}\left(\frac{\partial U}{\partial z}\right)^{2}+2 v_{t}\left(\frac{\partial V}{\partial z}\right)^{2}+\frac{2 g}{\rho_{0}} D_{H} \frac{\partial \rho}{\partial z}-\frac{2 k^{3 / 2}}{B_{1} L}
$$

(Equation 13)

$$
D_{q}=S_{q} * \sqrt{k} L \quad \text { and } \quad D_{H}=S_{H} * \sqrt{k} L
$$

$$
\begin{equation*}
S_{m}=\frac{\left[1-\frac{6 A_{1}}{B_{1}}\right] A_{2}}{\left[1-3 A_{2} G_{H}\left(6 A_{1}+B_{2}\right)\right]\left(1-9 A_{1} A_{2} G_{H}\right)} \tag{Equation15}
\end{equation*}
$$

The constants used in the equations are according to Mellor Yamada (1982) as $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}, \mathrm{C}_{1}, \mathrm{E}_{1}\right.$, $\left.\mathrm{E}_{2}, \mathrm{~S}_{\mathrm{q}}\right)=(0.92,0.74,16.6,10.1,0.08,1.8,1.33,0.2)$.

8.6 2-EQUATION

The next level of turbulence models solves transport equation for the turbulent kinetic energy along with a length-scale unlike the 1 -Equation model. The length-scale is subject to transport processes in a similar manner as the energy. The length-scale equation does not have to contain only L but can be any combination of $k_{a} L_{b}$. The 2-Equation model used in GEMSS is based on Generic Length Scale (GLS) model proposed by Umlauf and Burchard (2003); Warner et. al. (2005). The first equation in GLS approach is a standard equation of transport of k (equation 16), but the second equation is for the generic length scale ψ (equation 17).

$$
\frac{\partial k}{\partial t}+U \frac{\partial k}{\partial x}+V \frac{\partial k}{\partial y}+W \frac{\partial k}{\partial z}=\frac{\partial}{\partial z}\left(D_{q} \frac{\partial k}{\partial z}\right)+2 v_{t}\left(\frac{\partial U}{\partial z}\right)^{2}+2 v_{t}\left(\frac{\partial V}{\partial z}\right)^{2}+\frac{2 g}{\rho_{0}} D_{H} \frac{\partial \rho}{\partial z}-\varepsilon
$$

where ϵ is the dissipation and is given by the following relationship

$$
\begin{aligned}
& \varepsilon=\left(C_{\mu}^{0}\right)^{3+p / n} k^{3 / 2+m / n} \psi^{-1 / n} \\
& \frac{\partial \psi}{\partial t}+U \frac{\partial \psi}{\partial x}+V \frac{\partial \psi}{\partial y}+W \frac{\partial \psi}{\partial z}=\frac{\partial}{\partial z}\left(D_{q} \frac{\partial \psi}{\partial z}\right)+2 v_{t} c_{1} \frac{\psi}{k}\left(\frac{\partial U}{\partial z}\right)^{2}+2 v_{t} c_{1} \frac{\psi}{k}\left(\frac{\partial V}{\partial z}\right)^{2} \\
& +c_{2} \frac{g}{\rho_{0}} \frac{\psi}{k} D_{H} \frac{\partial \rho}{\partial z}-\frac{\psi}{k} c_{3} \varepsilon F_{\text {wall }}
\end{aligned}
$$

Where c_{3} takes the value of $c^{-}{ }_{3}$ in stably stratified flows and $c^{+}{ }_{3}$ in unstable flows. The generic length scale is defined as

$$
\psi=\left(C_{\mu}^{0}\right)^{p} k^{m} \psi^{n}
$$

The advantage of a GLS scheme is that it can be used to formulate existing 2-equation turbulence models or new closures with different values of parameters such as p, m, n, c_{1} etc. In GEMSS three explicit turbulence models are formulated (can be chosen from the dropdown menu) along with a general model with user specified parameter values. The three explicit formulations are Mellor-Yamada 2.5 order turbulence closure (or k - $k l$; Mellor and Yamada 1974), Jones-Launder model (or $k-\epsilon$; Jones and Launder 1972) and Kolmogorov model (or $k-\omega$; Kolmogorov 1942, Saffman 1970).

The solution of Equation-16 in conjunction with Equation-17 gives the values of k and ψ which are used in the same fashion as in 1-Equation models to obtain the turbulence viscosity and vertical diffusivities for scalar quantities.

Results

Results obtained from a simplified 2-dimensional (width averaged) flow problem and an estuarine system using the three different options for vertical diffusivity are shown in figure 1 and 2 respectively.

Figure 1: Horizontal velocity in a width average flow system with inflow at upstream and head boundary at downstream

Figure 2: Horizontal velocity in an estuarine system with river discharge at upstream and head boundary at open sea

9. References

Buchak, E. M. and J. E. Edinger. 1984. Generalized, Longitudinal-Vertical Hydrodynamics and Transport: Development, Programming and Applications. Prepared for U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Miss. Contract No. DACW39-84-M-1636. Prepared by J. E. Edinger Associates Wayne, PA. Document No. 84-18-R. June.

Buchak, E. M., V. S. Kolluru, C-C. Chen, S. Zhang. 1997. "Programming a Tool to Visualize Hydrodynamic and Water Quality Data in 3-D" in Scientific Computing \& Automation. Gordon Publications, Morris Plains, NJ 07950-0650.

Edinger, J. E. and E. M. Buchak. 1980. Numerical Hydrodynamics of Estuaries in Estuarine and Wetland Processes with Emphasis on Modeling, (P. Hamilton and K. B. Macdonald, eds.). Plenum Press, New York, New York, pp. 115-146.

Edinger, J. E., and E. M. Buchak. 1985. "Numerical Waterbody Dynamics and Small Computers". Proceedings of ASCE 1985 Hydraulic Division Specialty Conference on Hydraulics and Hydrology in the Small Computer Age. American Society of Civil Engineers, Lake Buena Vista, FL. Aug. 13-16.

Edinger, J. E., E. M. Buchak, and M. D. McGurk. 1994. Analyzing Larval Distributions Using Hydrodynamic and Transport Modelling. Estuarine and Coastal Modeling III. American Society of Civil Engineers, New York.

Edinger, J. E. and E. M. Buchak. 1995. Numerical Intermediate and Far Field Dilution Modelling. Journal Water, Air and Soil Pollution 83: 147-160,1995. Kluwer Academic Publishers, The Netherlands.

Edinger, J. E., E. M. Buchak and V. Kolluru, 1997. Flushing and Mixing in a Deep Estuary, in press Journal Water, Air and Soil Pollution, Kluwer Academic Publishers, The Netherlands, February.

Kolluru, V. S., E. M. Buchak and J. E. Edinger, 1998. Integrated Model to Simulate the Transport and Fate of Mine Tailings in Deep Waters to be published in the Proceedings of the Tailings and Mine Waste ' 98 Conference, Fort Collins, Colorado, USA, January 26-29.

Kolluru, V.S., M.L. Spaulding and E. Anderson, 1994. A three dimensional dimensional subsurface oil dispersion model using a particle based approach, Proceedings of the 17th Arctic and Marine Oil Spill Program (AMOP) Technical Seminar,Vancouver, British Columbia, Canada, pp. 867-894, Vol. 2.

Leendertse, J. J. 1989. A New Approach to Three-Dimensional Free-Surface Flow Modeling. Prepared for The Netherlands Rijkswaterstaat. R-3712-NETH/RC. The RAND Corporation, Santa Monica, CA 90406-2138. ISBN: 0-8330-0947-8. March.
Leonard, A. (1979). "A stable and accurate convective modeling procedure based on quadratic upstream interpolation." Comp. Methods Applied Mech. Eng., Vol. 19, 59-98.

Leonard, B. P. (1991). "The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection." Comp. Methods Applied Mech. Eng., Vol. 88, 17-74.
Okubo, A. 1971 Oceanic diffusion diagrams. Deep-Sea Research 18:789-802.
Prandtl, L., 1926, " Uber die ausgebieldete Turbulenz. Verh. 2nd Intl Kong. F"ur Tech. Mech., Zurich. [English transl. NACA Tech. Memo. 435, 62]

Rodi, W. 1993. Turbulence Models and Their Application in Hydraulics, 3rd edition, IAHR, A.A. Balkema, Rotterdam.

Spasojevic, M. and F. M. Holly, Jr., 1994. Three-Dimensional Numerical Solution of MobileBed Hydrodynamics. Prepared for U.S. Army Engineer District, New Orleans. Monitored by U. S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Smagorinsky, J. 1963 General circulation experiments with the primitive equations, I. The basic experiment. Mon. Weather Rev. 91, 99-164.

Spasojevic, M. and Forrest M. Holly, Jr. "Three-dimensional numerical simulation of Mobilebed hydrodynamics". US Army Corps of engineers, Waterways Experiment Station.
U. S. Army Engineer Waterways Experiment Station, Environmental Laboratory, Hydraulics Laboratory. 1986. CE-QUAL-W2: A Numerical Two-Dimensional, Laterally Averaged Model of Hydrodynamics and Water Quality; User's Manual. Instruction Report E-86-5. Prepared for

Department of the Army, U.S. Army Corps of Engineers, Washington, DC. Final Report. August.

Yakhot, V. and Orszag, S. 1986. "Renormalization group analysis of turbulence 1: Basic Theory," J. Sci. Comput. 1(1), 3-51.

Mellor, G.L. and T. Yamada (1982). Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851-875.

Galperin, B., L. H. Kantha, S. Hassid, and A. Rosati, A Quasi-equilibrium turbulent energy model for geophysical flows, J. Atmosph. Sci., 45, 55--62, 1988.

10. AGENCY - REVIEWED APPLICATIONS

Facility and waterbody	Application	Review agency	Date
Chattahoochie River, GA	Temperature	Georgia EPD	1975
Kootenay River, British Columbia, Canada	Temperature	Environment Canada	1984
Nechako River, British Columbia, Canada	Temperature	Nechako Fisheries Conservation Project	1987
Ocmulgee River, GA	BOD and Dissolved Oxygen	Georgia EPD	1990
Pigeon River, NC	Temperature	North Carolina	1992
East Branch Perkiomen Creek, PA	Temperature	Pennsylvania Fish Commission and Pennsylvania DER	1992
Maggie Creek/Humboldt River, NV	Temperature	Bureau of Land Management	1993
L'Etang Estuary, N.B., Canada	Papermill discharge dilution	Environment New Brunswick	1994
Port Arthur canal system, TX	Temperature, nitrates, dissolved oxygen, algae	Texas Natural Resources Conservation Commission	1994
Temperature Cantle River Reservoir, Alta.,	Alberta Environment	1981	
Monongahela River, PA	Temperature	Pennsylvania DER	1982

Facility and waterbody	Application	Review agency	Date
Patuxent River Estuary, MD	Temperature, dissolved oxygen and fish larvae	Maryland Power Plant Siting Commission	1986
Budd Inlet on Puget Sound, WA	Temperature, salinity and nutrient cycles	Washington Department of Ecology	1986
Coosa River and Weiss Reservoir, GA	Temperature	Georgia EPD	1986
Nechako Reservoir, British Columbia, Canada	Temperature	Nechako Fisheries Conservation Project, British Columbia Power Commission	$\begin{aligned} & 1988, \\ & 1994 \end{aligned}$
Lake Sinclair, GA	Temperature and dissolved oxygen	Georgia EPD	1990
Clinton Lake, IL	Temperature	Illinois Water Pollution Control Board	1993
Chaleur Bay, New Brunswick, Canada	Temperature and salinity	Environment Canada	1988
Cooper River, SC	Temperature, salinity and dilutions	South Carolina Fisheries Commission	1988
Nechako Reservoir, British Columbia, Canada	Temperature	Nechako Fisheries Conservation Project	1988
Delaware River Estuary, DE	Temperature and salinity	Delaware DNRC	1989
East Waterway on Puget Sound, WA	Temperature, salinity and dilution	Washington Department of Ecology	1989
Webber Cove on Malpeque Bay, P.E.I., Canada	Temperature, salinity, coliforms, dissolved oxygen	Environment Canada	1991
Safe Shutdown Impoundment	Temperature	US NRC	1992
Garden State Paper facility on the Passaic River, NJ	Temperature, chlorine	New Jersey DEP	1996
San Diego Gas and Electric	Temperature	EPA Region IX	1995

Facility and waterbody	Application	Review agency	Date
Encina generating station, Pacific coast, CA			
Cogeneration facilitate at the Brooklyn Navy Yard basin, NY	Temperature	NY State Department of Environmental Conservation	1994
Plant Branch, Lake Sinclair, GA	temperature	Georgia Department of Environmental Conservation	1996
Wagner Generating Station on Baltimore Harbor, MD	Temperature, larvae	Maryland Power Plant Siting Agency	1994
Courtney Bay, N.B., Canada	Temperature, salinity, dissolved oxygen, dilution, metals	Environment New Brunswick	1994

GLLVHT model predicted thermal plume in an estuary. The picture was obtained using Qual View.

APPENDIX B: CORMIX DATA AND RESULTS

CORMIX Input

Scenario 01

CORMIX2 PREDICTION FILE:
22
222

CORMIX MIXING ZONE EXPERT SYSTEM

Subsystem CORMIX2: Multiport Diffuser Discharges CORMIX Version 5.0GT
HYDRO2 Version 5.0.1.0 December 2007

RECOMPUTED SOURCE CONDITIONS FOR RISER GROUPS:

FLOW CLASSIFICATION
222222222222222222222222222222222222222
2 Flow class (CORMIX2) $=$ MU2 2
2 Applicable layer depth HS $=3.512$
22222222222222222222222222222222222222
MIXING ZONE / TOXIC DILUTION / REGION OF INTEREST PARAMETERS C0 $=0.3460 \mathrm{E}+01$ CUNITS $=$ deg.F NTOX $=0$

```
NSTD = 1 CSTD =0.9000E+02
REGMZ = 0 3048.00 XMAX = 3048.00
X-Y-Z COORDINATE SYSTEM:
    ORIGIN is located at the bottom and the diffuser mid-point:
        81.08 m from the RIGHT bank/shore.
    X-axis points downstream, Y-axis points to left, Z-axis points upward.
NSTEP = 50 display intervals per module
NOTE on dilution/concentration values for this HEATED DISCHARGE (IPOLL=3):
    S = hydrodynamic dilutions, include buoyancy (heat) loss effects, but
        provided plume has surface contact
    C = corresponding temperature values (always in "degc"!),
        include heat loss, if any
---
---
BEGIN MOD201: DIFFUSER DISCHARGE MODULE
Due to complex near-field motions: EQUIVALENT SLOT DIFFUSER (2-D)
GEOMETRY
Profile definitions:
    BV = Gaussian 1/e (37%) half-width, in vertical plane normal to
trajectory
    BH = top-hat half-width, in horizontal plane normal to trajectory
    S = hydrodynamic centerline dilution
    C = centerline concentration (includes reaction effects, if any)
\begin{tabular}{ccccccc}
X & Y & Z & S & C & BV & BH \\
0.00 & 0.00 & 0.00 & 1.0 & \(0.346 \mathrm{E}+01\) & 0.01 & 16.46
\end{tabular}
** WATER QUALITY STANDARD OR CCC HAS BEEN FOUND **
    The pollutant concentration in the plume falls below water quality
standard
    or CCC value of 0.900E+02 due to mixing in this control volume.
The actual extent of the zone at whose boundary the water quality
    standard or the CCC is exceeded will be smaller than the control
    volume outflow values predicted below.
```

END OF MOD201: DIFFUSER DISCHARGE MODULE

--
BEGIN MOD271: ACCELERATION ZONE OF UNIDIRECTIONAL CO-FLOWING DIFFUSER
In this laterally contracting zone the diffuser plume becomes VERTICALLY FULLY

MIXED over the entire layer depth (HS = 3.51m).
Ful1 mixing is achieved after a plume distance of about five
layer depths from the diffuser.
Profile definitions:
$\mathrm{BV}=$ layer depth (vertically mixed)
BH = top-hat half-width, in horizontal plane normal to trajectory
S = hydrodynamic average (bulk) dilution
$\mathrm{C}=$ average (bulk) concentration (includes reaction effects, if any)

X	Y	Z	S		C	BV
0.00	0.00	0.00	1.0	$0.346 \mathrm{E}+01$	0.01	16.46
0.33	0.00	0.04	4.8	$0.724 \mathrm{E}+00$	0.08	16.35
0.66	0.00	0.07	6.3	$0.546 \mathrm{E}+00$	0.15	16.25
0.99	0.00	0.11	7.5	$0.459 \mathrm{E}+00$	0.21	16.16
1.32	0.00	0.14	8.6	$0.405 \mathrm{E}+00$	0.28	16.07
1.65	0.00	0.18	9.4	$0.366 \mathrm{E}+00$	0.35	15.99
1.98	0.00	0.21	10.2	$0.338 \mathrm{E}+00$	0.42	15.91
2.30	0.00	0.25	11.0	$0.315 \mathrm{E}+00$	0.49	15.83
2.63	0.00	0.28	11.7	$0.296 \mathrm{E}+00$	0.56	15.76
2.96	0.00	0.32	12.3	$0.281 \mathrm{E}+00$	0.63	15.70
3.29	0.00	0.35	12.9	$0.267 \mathrm{E}+00$	0.70	15.63
3.62	0.00	0.39	13.5	$0.256 \mathrm{E}+00$	0.77	15.57
3.95	0.00	0.42	14.1	$0.246 \mathrm{E}+00$	0.84	15.52
4.28	0.00	0.46	14.6	$0.237 \mathrm{E}+00$	0.91	15.46
4.61	0.00	0.49	15.1	$0.229 \mathrm{E}+00$	0.98	15.41
4.94	0.00	0.53	15.6	$0.221 \mathrm{E}+00$	1.05	15.36
5.27	0.00	0.56	16.1	$0.215 \mathrm{E}+00$	1.12	15.32
5.60	0.00	0.60	16.6	$0.209 \mathrm{E}+00$	1.19	15.27
5.93	0.00	0.63	17.0	$0.203 \mathrm{E}+00$	1.26	15.23

RECOMPUTED SOURCE CONDITIONS FOR RISER GROUPS:

FLOW CLASSIFICATION
222222222222222222222222222222222222222
2 Flow class (CORMIX2) $=$ MU2 2
2 Applicable layer depth HS $=3.052$
2222222222222222222222222222222222222
MIXING ZONE / TOXIC DILUTION / REGION OF INTEREST PARAMETERS C0 $=0.3460 \mathrm{E}+01$ CUNITS $=$ deg.F
NTOX $=0$
NSTD $=1$
REGMZ $=0$$\quad$ CSTD $=0.9000 \mathrm{E}+02$
XINT $=3048.00 \mathrm{XMAX}=3048.00$
X-Y-Z COORDINATE SYSTEM:
ORIGIN is located at the bottom and the diffuser mid-point:
81.08 m from the RIGHT bank/shore.

X-axis points downstream, Y-axis points to left, Z-axis points upward. NSTEP $=50$ display intervals per module

NOTE on dilution/concentration values for this HEATED DISCHARGE (IPOLL=3):
$S=$ hydrodynamic dilutions, include buoyancy (heat) loss effects, but provided plume has surface contact
$\mathrm{C}=$ corresponding temperature values (always in "degC"!), include heat loss, if any

BEGIN MOD201: DIFFUSER DISCHARGE MODULE
Due to complex near-field motions: EQUIVALENT SLOT DIFFUSER (2-D) GEOMETRY

Profile definitions:
$B V=$ Gaussian 1/e (37\%) half-width, in vertical plane normal to trajectory

BH = top-hat half-width, in horizontal plane normal to trajectory
$\mathrm{S}=$ hydrodynamic centerline dilution
$\mathrm{C}=$ centerline concentration (includes reaction effects, if any)

X	Y	Z	S	C	BV	BH
0.00	0.00	0.00	1.0	$0.346 E+01$	0.01	16.46

The pollutant concentration in the plume falls below water quality standard
or CCC value of $0.900 \mathrm{E}+02$ due to mixing in this control volume.
The actual extent of the zone at whose boundary the water quality standard or the CCC is exceeded will be smaller than the control volume outflow values predicted below.

```
---
-------------------------------------------------------------------------------------
BEGIN MOD271: ACCELERATION ZONE OF UNIDIRECTIONAL CO-FLOWING DIFFUSER
In this laterally contracting zone the diffuser plume becomes VERTICALLY
FULLY
    MIXED over the entire layer depth (HS = 3.05m)
        Ful7 mixing is achieved after a plume distance of about five
        layer depths from the diffuser.
    Profile definitions:
        BV = layer depth (vertically mixed)
        BH = top-hat half-width, in horizontal plane normal to trajectory
        S = hydrodynamic average (bulk) dilution
        C = average (bulk) concentration (includes reaction effects, if any)
```

X	Y	Z	S	C	BV	BH
0.00	0.00	0.00	1.0	$0.346 \mathrm{E}+01$	0.01	16.46
0.33	0.00	0.03	2.6	$0.134 \mathrm{E}+01$	0.08	16.14
0.66	0.00	0.06	3.2	$0.107 \mathrm{E}+01$	0.15	15.84

0.33	0.00	0.06	3.2	$0.137 \mathrm{E}+01$	0.08
0.66	0.00	0.06	3.15 .14		
0.99	0.00	0.09	$0.926 \mathrm{E}+00$	0.15	15.84
1.32	0.00	0.12	4.2	$0.832 \mathrm{E}+00$	0.28
1.65	0.00	0.15	4.5	15.56	
1.96 .29					

1.35	0.00	0.15	4.5	$0.763 \mathrm{E}+00$	0.34
1.98	0.00	0.18	4.9	$0.711 \mathrm{E}+00$	0.41
1.04 .04					
2.30	0.00	0.21	5.2	$0.668 \mathrm{E}+00$	0.48
2.63	0.00	0.24	$5.500 .633 \mathrm{E}+00$	0.54	14.58
2.96	0.00	0.37			

2.63	0.00	0.27	5.7	$0.603 \mathrm{E}+00$	0.61
2.96	0.00	0.30	6.0	$0.577 \mathrm{E}+00$	0.67
3.29	0.00	0.34	6.2	$0.555 \mathrm{E}+00$	0.74
3.62	0.00	13.98			
3.95	0.00	0.37	6.5	0.535 E	13.80

3.62	0.00	0.37	6.5	$0.535 \mathrm{E}+00$	0.80
3.95	0.00	0.40	$6.70 .517 \mathrm{E}+00$	0.87	13.63
4.28	0.00	0.43	6.9	$0.501 \mathrm{E}+00$	0.94
4.61	0.00	0.46	7.13 .42		
4.94	0.00	$0.486 \mathrm{E}+00$	13.00	13.17	

4.61	.00	0.46	7.1	$0.486 \mathrm{E}+00$	1.00
4.94	0.00	0.49	7.3	$0.473 \mathrm{E}+00$	1.07
5.27	0.00	0.49	13.03		

5.27	0.00	0.52	$7.50 .460 \mathrm{E}+00$
5.60	0.00	0.55	$7.70 .449 \mathrm{E}+00$
5.93	0.00	0.58	$7.90 .439 \mathrm{E}+00$

Scenario 03

CORMIX2 PREDICTION FILE:
222
222

CORMIX MIXING ZONE EXPERT SYSTEM

Subsystem CORMIX2: Mu7tiport Diffuser Discharges CORMIX Version 5.0GT HYDRO2 Version 5.0.1.0 December 2007

RECOMPUTED SOURCE CONDITIONS FOR RISER GROUPS:
Properties of riser group with 1 ports/nozzies each:

FLOW CLASSIFICATION
22
2 Flow class (CORMIX2) $=\quad$ MU2 2
2 Applicable 1ayer depth HS $=44.21 \quad 2$
2222222222222222222222222222222222222
MIXING ZONE / TOXIC DILUTION / REGION OF INTEREST PARAMETERS
C0 $=0.3381 \mathrm{E}+02$ CUNITS $=$ deg.F
NTOX $=0$
$\begin{array}{ll}\text { NSTD }=1 & \text { CSTD }=0.9000 \mathrm{E}+02 \\ \text { REGMZ }=0\end{array}$
XINT $=3048.00$ XMAX $=3048.00$

```
X-Y-Z COORDINATE SYSTEM
    ORIGIN is located at the bottom and the diffuser mid-point:
    81.08 m from the RIGHT bank/shore
    X-axis points downstream, Y-axis points to left, Z-axis points upward.
NSTEP = 50 display intervals per module
NOTE on dilution/concentration values for this HEATED DISCHARGE (IPOLL=3):
    S = hydrodynamic dilutions, include buoyancy (heat) loss effects, but
        provided plume has surface contact
    C = corresponding temperature values (always in "degC"!)
        include heat loss, if any
---
----------------------------------------------------------------
--
BEGIN MOD201: DIFFUSER DISCHARGE MODULE
    Due to complex near-field motions: EQUIVALENT SLOT DIFFUSER (2-D)
GEOMETRY
    Profile definitions:
    BV = Gaussian 1/e (37%) half-width, in vertical plane normal to
trajectory
    BH = top-hat half-width, in horizontal plane normal to trajectory
    S = hydrodynamic centerline dilution
    C = centerline concentration (includes reaction effects, if any)
                Xlllllll
                0.00
** WATER QUALITY STANDARD OR CCC HAS BEEN FOUND **
    The pollutant concentration in the plume falls below water quality
standard
    or CCC value of 0.900E+02 due to mixing in this control volume.
    The actual extent of the zone at whose boundary the water quality
    standard or the CCC is exceeded will be smaller than the control
    volume outflow values predicted below.
END OF MOD201: DIFFUSER DISCHARGE MODULE
```



```
\begin{tabular}{lllllll}
X & Y & Z & S & C & BV & BH \\
0.00 & 0.00 & 0.00 & 1.0 & \(0.338 \mathrm{E}+02\) & 0.01 & 16.46 \\
0.33 & 0.00 & 0.04 & 10.6 & \(0.318 \mathrm{E}+01\) & 0.08 & 16.44 \\
0.66 & 0.00 & 0.08 & 14.6 & \(0.231 \mathrm{E}+01\) & 0.17 & 16.41 \\
0.99 & 0.00 & 0.13 & 17.7 & \(0.191 \mathrm{E}+01\) & 0.25 & 16.39 \\
1.32 & 0.00 & 0.17 & 20.3 & \(0.167 \mathrm{E}+01\) & 0.34 & 16.37 \\
1.65 & 0.00 & 0.21 & 22.5 & \(0.150 \mathrm{E}+01\) & 0.42 & 16.36 \\
1.98 & 0.00 & 0.25 & 24.6 & \(0.137 \mathrm{E}+01\) & 0.50 & 16.34 \\
2.30 & 0.00 & 0.29 & 26.5 & \(0.128 \mathrm{E}+01\) & 0.59 & 16.32 \\
2.63 & 0.00 & 0.34 & 28.2 & \(0.120 \mathrm{E}+01\) & 0.67 & 16.31 \\
2.96 & 0.00 & 0.38 & 29.9 & \(0.113 \mathrm{E}+01\) & 0.76 & 16.29 \\
3.29 & 0.00 & 0.42 & 31.5 & \(0.107 \mathrm{E}+01\) & 0.84 & 16.28 \\
3.62 & 0.00 & 0.46 & 32.9 & \(0.103 \mathrm{E}+01\) & 0.93 & 16.27 \\
3.95 & 0.00 & 0.50 & 34.4 & \(0.984 \mathrm{E}+00\) & 1.01 & 16.25 \\
4.28 & 0.00 & 0.55 & 35.7 & \(0.946 \mathrm{E}+00\) & 1.09 & 16.24 \\
4.61 & 0.00 & 0.59 & 37.0 & \(0.913 \mathrm{E}+00\) & 1.18 & 16.23 \\
4.94 & 0.00 & 0.63 & 38.3 & \(0.883 \mathrm{E}+00\) & 1.26 & 16.22 \\
5.27 & 0.00 & 0.67 & 39.5 & \(0.855 \mathrm{E}+00\) & 1.35 & 16.21 \\
5.60 & 0.00 & 0.72 & 40.7 & \(0.830 \mathrm{E}+00\) & 1.43 & 16.20 \\
5.93 & 0.00 & 0.76 & 41.9 & \(0.808 \mathrm{E}+00\) & 1.51 & 16.19 \\
6.25 & 0.00 & 0.80 & 43.0 & \(0.787 \mathrm{E}+00\) & 1.60 & 16.18 \\
6.58 & 0.00 & 0.84 & 44.1 & \(0.767 \mathrm{E}+00\) & 1.68 & 16.17 \\
6.91 & 0.00 & 0.88 & 45.1 & \(0.749 \mathrm{E}+00\) & 1.77 & 16.17 \\
7.24 & 0.00 & 0.93 & 46.2 & \(0.732 \mathrm{E}+00\) & 1.85 & 16.16
\end{tabular}
```

7.57	0.00	0.97	47.2	$0.716 \mathrm{E}+00$	1.93	16.15
7.90	0.00	1.01	48.2	$0.702 \mathrm{E}+00$	2.02	16.14
8.23	0.00	1.05	49.2	$0.688 \mathrm{E}+00$	2.10	16.14
8.56	0.00	1.09	50.1	$0.675 \mathrm{E}+00$	2.19	16.13
8.89	0.00	1.14	51.0	$0.662 \mathrm{E}+00$	2.27	16.12
9.22	0.00	1.18	52.0	$0.651 \mathrm{E}+00$	2.36	16.12
9.55	0.00	1.22	52.9	$0.640 \mathrm{E}+00$	2.44	16.11
9.88	0.00	1.26	53.8	$0.629 \mathrm{E}+00$	2.52	16.11
10.20	0.00	1.30	54.6	$0.619 \mathrm{E}+00$	2.61	16.10
10.53	0.00	1.35	55.5	$0.609 \mathrm{E}+00$	2.69	16.10
10.86	0.00	1.39	56.3	$0.600 \mathrm{E}+00$	2.78	16.09
11.19	0.00	1.43	57.2	$0.591 \mathrm{E}+00$	2.86	16.09
11.52	0.00	1.47	58.0	$0.583 \mathrm{E}+00$	2.94	16.09
11.85	0.00	1.51	58.8	$0.575 \mathrm{E}+00$	3.03	16.08
12.18	0.00	1.56	59.6	$0.567 \mathrm{E}+00$	3.11	16.08
12.51	0.00	1.60	60.4	$0.560 \mathrm{E}+00$	3.20	16.08
12.84	0.00	1.64	61.1	$0.553 \mathrm{E}+00$	3.28	16.08
13.17	0.00	1.68	61.9	$0.546 \mathrm{E}+00$	3.36	16.07
13.50	0.00	1.72	62.7	$0.539 \mathrm{E}+00$	3.45	16.07
13.83	0.00	1.77	63.4	$0.533 \mathrm{E}+00$	3.53	16.07
14.15	0.00	1.81	64.2	$0.527 \mathrm{E}+00$	3.62	16.07
14.48	0.00	1.85	64.9	$0.521 \mathrm{E}+00$	3.70	16.07
14.81	0.00	1.89	65.6	$0.515 \mathrm{E}+00$	3.79	16.07
15.14	0.00	1.93	66.3	$0.510 \mathrm{E}+00$	3.87	16.07
15.47	0.00	1.98	67.0	$0.504 \mathrm{E}+00$	3.95	16.07
15.80	0.00	2.02	67.7	$0.499 \mathrm{E}+00$	4.04	16.06
16.13	0.00	2.06	68.4	$0.494 \mathrm{E}+00$	4.12	16.06
16.46	0.00	2.10	69.1	$0.489 \mathrm{E}+00$	4.21	16.06
Cumulative travel time $=$ 45.3349 sec Plume centerline may exhibit slight discontinuities in transition to subsequent far-field module.						

Scenario 04

CORMIX2 PREDICTION FILE:

222
222
CORMIX MIXING ZONE EXPERT SYSTEM
Subsystem CORMIX2: Mu7tiport Diffuser Discharges CORMIX Version 5.0GT
HYDRO2 Version 5.0.1.0 December 2007

BEGIN MOD271: ACCELERATION ZONE OF UNIDIRECTIONAL CO-FLOWING DIFFUSER
In this laterally contracting zone the diffuser plume becomes VERTICALLY FULLY MIXED over the entire layer depth (HS = 3.29m) Full mixing is achieved after a plume distance of about five layer depths from the diffuser.

Profile definitions:
BV = layer depth (vertically mixed)
BH = top-hat half-width, in horizontal plane normal to trajectory $\mathrm{S}=$ hydrodynamic average (bulk) dilution $\mathrm{C}=$ average (bulk) concentration (includes reaction effects, if any)

X	Y	Z	S	C	BV	BH
0.00	0.00	0.00	1.0	$0.338 \mathrm{E}+02$	0.01	16.46
0.33	0.00	0.03	3.7	$0.926 \mathrm{E}+01$	0.08	16.28
0.66	0.00	0.07	4.8	$0.712 \mathrm{E}+01$	0.15	16.12
0.99	0.00	0.10	5.6	$0.604 \mathrm{E}+01$	0.21	15.97
1.32	0.00	0.13	6.3	$0.536 \mathrm{E}+01$	0.28	15.82
1.65	0.00	0.16	6.9	$0.488 \mathrm{E}+01$	0.34	15.68
1.98	0.00	0.20	7.5	$0.451 \mathrm{E}+01$	0.41	15.55
2.30	0.00	0.23	8.0	$0.422 \mathrm{E}+01$	0.48	15.43
2.63	0.00	0.26	8.5	$0.398 \mathrm{E}+01$	0.54	15.31
2.96	0.00	0.30	9.0	$0.377 \mathrm{E}+01$	0.61	15.20
3.29	0.00	0.33	9.4	$0.360 \mathrm{E}+01$	0.67	15.10
3.62	0.00	0.36	9.8	$0.345 \mathrm{E}+01$	0.74	15.00
3.95	0.00	0.40	10.2	$0.332 \mathrm{E}+01$	0.80	14.91
4.28	0.00	0.43	10.6	$0.320 \mathrm{E}+01$	0.87	14.82
4.61	0.00	0.46	10.9	$0.309 \mathrm{E}+01$	0.94	14.73
4.94	0.00	0.49	11.3	$0.300 \mathrm{E}+01$	1.00	14.65
5.27	0.00	0.53	11.6	$0.291 \mathrm{E}+01$	1.07	14.58
5.60	0.00	0.56	11.9	$0.283 \mathrm{E}+01$	1.13	14.50
5.93	0.00	0.59	12.3	$0.276 \mathrm{E}+01$	1.20	14.43
6.25	0.00	0.63	12.6	$0.269 \mathrm{E}+01$	1.27	14.36
6.58	0.00	0.66	12.9	$0.263 \mathrm{E}+01$	1.33	14.30
6.91	0.00	0.69	13.2	$0.257 \mathrm{E}+01$	1.40	14.24
7.24	0.00	0.72	13.4	$0.252 \mathrm{E}+01$	1.46	14.18
7.57	0.00	0.76	13.7	$0.246 \mathrm{E}+01$	1.53	14.12
7.90	0.00	0.79	14.0	$0.242 \mathrm{E}+01$	1.59	14.07
8.23	0.00	0.82	14.3	$0.237 \mathrm{E}+01$	1.66	14.02
8.56	0.00	0.86	14.5	$0.233 \mathrm{E}+01$	1.73	13.97
8.89	0.00	0.89	14.8	$0.229 \mathrm{E}+01$	1.79	13.92
9.22	0.00	0.92	15.0	$0.225 \mathrm{E}+01$	1.86	13.88
9.55	0.00	0.95	15.3	$0.221 \mathrm{E}+01$	1.92	13.84
9.88	0.00	0.99	15.5	$0.218 \mathrm{E}+01$	1.99	13.80
10.20	0.00	1.02	15.8	$0.214 \mathrm{E}+01$	2.06	13.76
10.53	0.00	1.05	16.0	$0.211 \mathrm{E}+01$	2.12	13.73
10.86	0.00	1.09	16.2	$0.208 \mathrm{E}+01$	2.19	13.70
11.19	0.00	1.12	16.5	$0.205 \mathrm{E}+01$	2.25	13.67
11.52	0.00	1.15	16.7	$0.203 \mathrm{E}+01$	2.32	13.64
11.85	0.00	1.19	16.9	$0.200 \mathrm{E}+01$	2.38	13.62
12.18	0.00	1.22	17.1	$0.197 \mathrm{E}+01$	2.45	13.60
12.51	0.00	1.25	17.4	$0.195 \mathrm{E}+01$	2.52	13.58
12.84	0.00	1.28	17.6	$0.192 \mathrm{E}+01$	2.58	13.56
13.17	0.00	1.32	17.8	$0.190 \mathrm{E}+01$	2.65	13.54
13.50	0.00	1.35	18.0	$0.188 \mathrm{E}+01$	2.71	13.53
13.83	0.00	1.38	18.2	$0.186 \mathrm{E}+01$	2.78	13.52
14.15	0.00	1.42	18.4	$0.184 \mathrm{E}+01$	2.85	13.51
14.48	0.00	1.45	18.6	$0.182 \mathrm{E}+01$	2.91	13.50
14.81	0.00	1.48	18.8	$0.180 \mathrm{E}+01$	2.98	13.49
15.14	0.00	1.51	19.0	$0.178 \mathrm{E}+01$	3.04	13.49
15.47	0.00	1.55	19.2	$0.176 \mathrm{E}+01$	3.11	13.48
15.80	0.00	1.58	19.4	$0.174 \mathrm{E}+01$	3.17	13.48
16.13	0.00	1.61	19.6	$0.173 \mathrm{E}+01$	3.24	13.48
16.46	0.00	1.65	19.8	$0.171 \mathrm{E}+01$	3.29	13.47
7ative	vel t			97.9689 sec		

Cumulative travel time
97.9689 sec

Plume centerline may exhibit slight discontinuities in transition to subsequent far-field module.

END OF MOD271: ACCELERATION ZONE OF UNIDIRECTIONAL CO-FLOWING DIFFUSER

Scenario 05
CORMIX2 PREDICTION FILE:

81.08 m from the RIGHT bank/shore.

X-axis points downstream, Y-axis points to left, Z-axis points upward NSTEP = 50 display intervals per module

```
NOTE on dilution/concentration values for this HEATED DISCHARGE (IPOLL=3):
    S = hydrodynamic dilutions, include buoyancy (heat) loss effects, but
        provided plume has surface contact
    c = corresponding temperature values (always in "degc"!),
        include heat loss, if any
---
----
BEGIN MOD201: DIFFUSER DISCHARGE MODULE
```

```
Due to complex near-field motions: EQUIVALENT SLOT DIFFUSER (2-D)
GEOMETRY
    Profile definitions:
    BV = Gaussian 1/e (37%) half-width, in vertical plane normal to
trajectory
    BH = top-hat half-width, in horizontal plane normal to trajectory
    S = hydrodynamic centerline dilution
    C = centerline concentration (includes reaction effects, if any)
\begin{tabular}{ccccccc}
X & Y & Z & S & C & BV & BH \\
0.00 & 0.00 & 0.00 & 1.0 & \(0.338 \mathrm{E}+02\) & 0.01 & 16.46
\end{tabular}
** WATER QUALITY STANDARD OR CCC HAS BEEN FOUND ** 
The pollutant concentration in the plume falls below water quality
standard
    or CCC value of 0.900E+02 due to mixing in this control volume.
The actual extent of the zone at whose boundary the water quality
    standard or the CCC is exceeded will be smaller than the control
    volume outflow values predicted below.
END OF MOD201: DIFFUSER DISCHARGE MODULE
------------------------------------------------------------------------------------
-------------------------------------------------------------------------------
BEGIN MOD271: ACCELERATION ZONE OF UNIDIRECTIONAL CO-FLOWING DIFFUSER
    In this laterally contracting zone the diffuser plume becomes VERTICALLY
FULLY
    MIXED over the entire layer depth (HS = 4.21m).
        Full mixing is achieved after a plume distance of about five
        layer depths from the diffuser.
    Profile definitions:
        BV = layer depth (vertically mixed)
        BH = top-hat half-width, in horizontal plane normal to trajectory
    S = hydrodynamic average (bulk) dilution
    C = average (bulk) concentration (includes reaction effects, if any)
```

X	Y	Z	S	C	BV	BH
0.00	0.00	0.00	1.0	$0.338 \mathrm{E}+02$	0.01	16.46
0.33	0.00	0.04	10.9	$0.311 \mathrm{E}+01$	0.08	16.44
0.66	0.00	0.08	15.0	$0.226 \mathrm{E}+01$	0.17	16.42
0.99	0.00	0.13	18.1	$0.187 \mathrm{E}+01$	0.25	16.40
1.32	0.00	0.17	20.7	$0.163 \mathrm{E}+01$	0.34	16.38
1.65	0.00	0.21	23.1	$0.146 \mathrm{E}+01$	0.42	16.36
1.98	0.00	0.25	25.2	$0.134 \mathrm{E}+01$	0.50	16.34
2.30	0.00	0.29	27.1	$0.125 \mathrm{E}+01$	0.59	16.33
2.63	0.00	0.34	28.9	$0.117 \mathrm{E}+01$	0.67	16.31
2.96	0.00	0.38	30.6	$0.110 \mathrm{E}+01$	0.76	16.30
3.29	0.00	0.42	32.2	$0.105 \mathrm{E}+01$	0.84	16.29
3.62	0.00	0.46	33.8	$0.100 \mathrm{E}+01$	0.93	16.28
3.95	0.00	0.50	35.2	$0.960 \mathrm{E}+00$	1.01	16.26
4.28	0.00	0.55	36.6	$0.924 \mathrm{E}+00$	1.09	16.25
4.61	0.00	0.59	37.9	$0.891 \mathrm{E}+00$	1.18	16.24
4.94	0.00	0.63	39.2	$0.862 \mathrm{E}+00$	1.26	16.23
5.27	0.00	0.67	40.5	$0.835 \mathrm{E}+00$	1.35	16.22
5.60	0.00	0.72	41.7	$0.811 \mathrm{E}+00$	1.43	16.21
5.93	0.00	0.76	42.9	$0.788 \mathrm{E}+00$	1.51	16.20
6.25	0.00	0.80	44.0	$0.768 \mathrm{E}+00$	1.60	16.20
6.58	0.00	0.84	45.2	$0.749 \mathrm{E}+00$	1.68	16.19
6.91	0.00	0.88	46.3	$0.731 \mathrm{E}+00$	1.77	16.18
7.24	0.00	0.93	47.3	$0.715 \mathrm{E}+00$	1.85	16.17
7.57	0.00	0.97	48.4	$0.699 \mathrm{E}+00$	1.93	16.16
7.90	0.00	1.01	49.4	$0.685 \mathrm{E}+00$	2.02	16.16

8.23	0.00	1.05	$50.40 .671 \mathrm{E}+00$	2.10	16.15
8.56	0.00	1.09	$51.40 .658 \mathrm{E}+00$	2.19	16.15
8.89	0.00	1.14	$52.30 .646 \mathrm{E}+00$	2.27	16.14
9.22	0.00	1.18	$53.30 .635 \mathrm{E}+00$	2.36	16.13
9.55	0.00	1.22	$54.20 .624 \mathrm{E}+00$	2.44	16.13
9.88	0.00	1.26	$55.10 .614 \mathrm{E}+00$	2.52	16.12
10.20	0.00	1.30	$56.00 .604 \mathrm{E}+00$	2.61	16.12
10.53	0.00	1.35	$56.90 .595 \mathrm{E}+00$	2.69	16.12
10.86	0.00	1.39	$57.70 .586 \mathrm{E}+00$	2.78	16.11
11.19	0.00	1.43	$58.60 .577 \mathrm{E}+00$	2.86	16.11
11.52	0.00	1.47	$59.40 .569 \mathrm{E}+00$	2.94	16.10
11.85	0.00	1.51	$60.20 .561 \mathrm{E}+00$	3.03	16.10
12.18	0.00	1.56	$61.10 .554 \mathrm{E}+00$	3.11	16.10
12.51	0.00	1.60	$61.90 .546 \mathrm{E}+00$	3.20	16.10
12.84	0.00	1.64	$62.70 .540 \mathrm{E}+00$	3.28	16.09
13.17	0.00	1.68	$63.50 .533 \mathrm{E}+00$	3.36	16.09
13.50	0.00	1.72	$64.20 .526 \mathrm{E}+00$	3.45	16.09
13.83	0.00	1.77	$65.00 .520 \mathrm{E}+00$	3.53	16.09
14.15	0.00	1.81	$65.8 \quad 0.514 \mathrm{E}+00$	3.62	16.09
14.48	0.00	1.85	$66.50 .508 \mathrm{E}+00$	3.70	16.09
14.81	0.00	1.89	$67.20 .503 \mathrm{E}+00$	3.79	16.09
15.14	0.00	1.93	$68.00 .497 \mathrm{E}+00$	3.87	16.08
15.47	0.00	1.98	$68.70 .492 \mathrm{E}+00$	3.95	16.08
15.80	0.00	2.02	$69.40 .487 \mathrm{E}+00$	4.04	16.08
16.13	0.00	2.06	$70.10 .482 \mathrm{E}+00$	4.12	16.08
16.46	0.00	2.10	$70.80 .477 \mathrm{E}+00$	4.21	16.08
Cumulative Plume ce to sub	ave1 line ent	$=$ exh fiel	44.3011 se t slight discon odule.	nuiti	in tr
END OF MOD271: ACCELERATION ZONE OF UNIDIRECTIONAL CO-FLOWING DIFFUSER					

APPENDIX C: GEMSS DATA AND RESULTS

GEMSS ${ }^{\circledR}$ Input

Scenario 01

\$GEMSSMode1Results, 32
\$GEMSS-SHWETControlFile, 4. 24
\$Creation Date: 4/16/2008
\$Waterbody Name: Susquehanna 3
\$Modeler Name: SP
\#
\# 1: Scenario variables,
\#
"IntGDS,","Option to use GEMSS data structure,", 1
"Scenario,",", Scenario file path and name,","C:\GEMSS \backslash APPS \backslash Susquehanna
3\output\Scenario 01_01 NC,"
"DoText2MDBConversion,","Use Scenario Output Direct Database converion,",1,1
"Zipoutputfile,","Zip text output files after creating the database,", 0,0
"DoCompUsingGEMSSOutput,","Run Mode1 Using Existing GEMSS Contour Output
Text Files,", 0
"GEMSSHDMInputFile,", "Existing GEMSS Contour output Header Text
Files,"."
\#
\# 2: Grid variables,
\#
"igrid,","Switch to read grid data from a file,",1,1
"GridFile,","Grid file name,","C:\GEMSS\APPS\Susquehanna
3\Grid\Susquehanna River 05’ 474min.g3g,","4/23/2008 12:36:08
PM,","4/28/2008 12:20:10 PM,"
"InputHDatumunit,","Input grid data is in geographic coordinate system switch,",0
"UseLinearConversionIn,", "Use linear conversion for input grid data,",1
"cstypeIn,","Input coordinate conversion mode,",0
"cscodeIn,","Input coordinate conversion zone number,",0,None
"csdatumin, ", "Input UTM datum,",0
"InputVDatumunit,","Input grid data is in geographic coordinate system
switch,",0
"OutputHDatumunit,","Output grid data is in geographic coordinate system switch, ", 0
"UseLinearConversionOut,","Use linear conversion for output grid data,",1
"cstypeout,",","Output coordinate conversion mode,",0
"cscodeout,"," "Output coordinate conversion zone number,", 0 , None
"csdatumout,","Output UTM datum,",0
"OutputVDatumúnit,","Output grid data is in geographic coordinate system
switch, ", 0
"iupmgrid,","Switch to set up different k layers,",0
"km_p,","Vertical array size,",-99
"nzds,","Number of vertical layer domains,",-99
"nzdstr,"","Starting vertical layer number'for each domain,",-99
"nzend,",","Ending vertical layer number for each domain,",-99
"dzd,","Layer thickness in each domain,",-99
"igpsfmt,","Switch to write grid file gps format for use in Arcview,",0
"elioption,","switch to Use TVD From Boundary Condition File or Initial
elevation,", 0
"eli,","Initial elevation,",487.5
"iwbs,","Waterbody switches,", i
"eldatum,","Reference elevation of 3 rd layer in meters,",0
"UseSigmaStretching,","Switch to Use Sigma stretching,",0
"NSLeve1,","Number of'sigma Levels,",0
"SigDistType,","Sigma Layer Distribution type,",0
"sleve1,","User Defined Sigma Distribution,",0.0
"ZtoSigmaBCDepthTransform, ","Use BC Depth Transformation from vertical to
Sigma Leve1,",0
"SmoothBathy,","Switch to Perform Bathymetry Smoothening,",0
"S1pMax,","Maximum Allowable Slope for bathymetry smoothening,",0
"NSmoothCycle,"," "Number of Smoothening cycles,", 0
\#
\#3: Meteorological variables,
\#
"MetDataType,","Switch to use Meteorological time varying data; VB use
verion; Number of Meteorology variables,", $0,2.2,14$
"metss,","Use Meteorological data in current simulation status,",1
"Metfile1,","Meteorological time varying data input file
name,","No_Data_File,'
"metinterp,","Switch to perform interpolation on met data,", 0
"ievap;EvapscaleFactor,","Switch for evaporation;Evaporation scale
facotr, ", 1,1
"iwndhyd,'","
"ta,","'temperature of air C,",21,0
"td,"," ${ }^{\text {Dew }}$ point temperature $\mathrm{C}, \mathrm{",13,0}$
"twb,", "Wet bulb temperature c,",13,0
"rt,","response temperature C,",20,0
"phi,"","wind direction degrees,", 90
"wad,","Wind speed m/sec,", 5, 0
"solrad,","Solar radiation $\mathrm{W} / \mathrm{m} \wedge 2, ", 120,0$
"ps,","Atmoshpheric pressure mm of $\mathrm{Hg}, \mathrm{"}, 760$
"ishe,"," Surace heat exchange method,", 1
"KEMethod,","Method to Compute K and E,",0
"cshe,","Coefficient of surface heat exchange w/m2/c,",24.59
"te,","Equlibrium temperature C,",85,1
"secchi,","Secchi depth; light transmission depth m,",-99
"rsts,","Vegetative and Topographic Shading Factor; 0 to 1.0,",-99
"wscoef,",","wind she1tering coefficient; 0 to 1.0,",-99
"iwsf,","'Wind speed function,",1
"MetInterpolationMethod,","Met'Interpolation Method,", 0
"IDWPOW,","Exponent value for inverse weighting scheme,",0
"MetVarInterpSwitch;MetVarInterp,","Met Individual1 interpolatey switch and interpolation methods, ", 0
**

* Meteorological Scale Factor Variables,
**
"UseMetRegionSF;MetRegionSFSS,", "Met factor switch,",0,0
**
* Meteorological Dynamic Shading Variables,

"UseDSHDRegionSF;DSHDRegionSFSS,","Met dynamic shading switch,",0,0
**
* Icel Growth Model Variables,
**
"UseIGModel; UseIGModelStatus,","Switch to control the use of ice growth mode 1 and status,",0,0

* Wave Model Variables,
**
"iwvc;iwvcss,","Wave model activation switch and status,",0,0
\# \# 4: Constituents,
\#
"itrc,","Transport switch; computation status; number of variables,",1,1,5

variables,",0,0,0
"iwqaddc,","Water quality ADD model switch; computations status; number of
variables,",0,0,0
"iGAMC,","Algae mode1 computations; status,",0,0
"nGAMs,"',"Number of algae,",0,1
"UseGAMInsideWQM,","Use Generalized Algae Mode1 inside water Quality
Mode1,",0
"isnec,",""Sediment nutrient exchange computations,",0,0
"iPTM,",","Particle transport model computations,",0,0 0
"istc,","Sediment transport model computations,",0,0
"nstcs," ", "Number of sediment transport type,",0,i
"ientc,"',"Entrainment computations,",0,0
"nezones,",","Number of entrainment zones, ", 0,1
"iatc,","Optional to add more constituents,", 0,0
"natc,"," ${ }^{\text {Number of additional constituents,",0,1 }}$
"icfmc,","Coliform Bacteria Mode1 computations,", 0,0
"ncfmcs,","Number of coliform bacteria type,", 0
"iCKMc;iCKMcss,","Chlorine kinetics Model computations and status,",0,0
"nCKMc,","Number of chlorine kinetics type,",0
"iMGM;iMGMss,","Macrophyte grouth model computations and status,",0,0
"nMGMS,","Number of macrophyte type, ", 0,1
"UseMGMInsidewQM,","Use Macrophyte Grouth Mode1 inside water Quality
Mode1,",0
"Writé'ransportOutput,", "Write TRM model internal variables to GEMSS output output,",0
"WriteWQMOutput,","Write WQM mode1 internal variables to GEMSS output output,",0
"WriteSFMOutput,","Write SFM model internal variables to GEMSS output output,",0
"WriteWQADDOutput,","Write WQADD mode1 internal variables to GEMSS output output, ${ }^{\prime}, 0$
"WriteGAMOutput,","Write GAM mode1 internal variables to GEMSS output output,",0
"WriteÉNMOutput,","Write ENM mode1 internal variables to GEMSS output output,",0
"WriteUDCOutput,","Write UDM mode1 internal variables to GEMSS output output,",0
"WriteCFMOutput,","Write CFM mode1 internal variables to GEMSS output
output,",0
"WritesTMOutput,","Write STM model internal variables to GEMSS output output, ", 0
"WriteMGMOutput,","Write MGM mode1 internal variables to GEMSS output output,",0
"WriteckMoutput,","Write CKM model internal variables to GEMSS output output,",0
"WritePTMOutput,","Write PTM model internal variables to GEMSS output output,",0
"cnum,","Number of Constituents,", 5
"Index,",","Mode1 Name,","Identifier; Cannot be Modified,","User Given
Name,","Activity of Constituent,","Output Time,","Units,","Transport
Switch,'
"C0,","'Transport,"., I_Temp,"I_Temp,",1,1,1,1
"C1,","'Transport,",'I_Saln,"I-Saln,",',1,0,1
"C2,"',"Transport,",', I_1Dye,"I_7Dye,",1,1,0,1
"C3,","Transport,", I_CDye,"I_CDye,",1,1,0,1
"C4,"',"Transport,",I_Exst,"I_Exst,", 1, 1, 1, 1
\#
\# 5: Mode1 switches,
\#
"Use3DMode1,","Switch to control 3D model simulations,",1,3.7
"issflw,","switch on/off ssflow input data that is available in the sscontrol.csv,",1
"itrcs,","transport computation algorithm switch,",1
"udwtf,",","advection theta in z-direction,", 0
"vdwft,"," "diffusion theta in z-direction,",0
"HOTSIniTime,","HOTS initization time period,",-99
"itrbs,","Turbulence scheme,",1
"itrbsm,","Turbulence sub mode $1, ", 1$
"itrbparam," ","Turbulence parameters," $0,1,1,2.44,2.44,0.9,0.5,1,2.53$
"imx1s,","Mixing 1ength scheme,",1
"ihmdcx,","momentum diffusion coefficient scheme selector in x-
direction,",",
"ihmdcy,","momentum diffusion coefficient scheme selector in y -
direction,",2
"hmdcx,","'momentum diffusion coefficient in x-direction
m2/sec,"',0.00584,1.1
"hmdcy,",""momentum diffusion coefficient in y-direction
m2/sec,", "0.00584,1.1
"prnm,","'Prandt1 number,",10
"ihtdcx,'","transport diffusion coefficient scheme in x-direction,",3
"ihtdcy,","transport diffusion coefficient scheme in y-direction,",3
"htdcx,","transport diffusion coefficient in x-direction m2/sec,",",
"htdcy,",""transport diffusion coefficient in y-direction $\mathrm{m} 2 / \mathrm{sec}$, ",,
"idnf,","Density function selector,", 2
"ideep,","Compressibility usage,",1
"ichezy,","Chezy coefficient selector,", 0
"ilchezy,",","Limiting Chezy selector,",0"
"chezy,","Chezy coefficient; Czo;do;n,",40,
"WSCoeffType,", "Wind stress coefficient type, ", 0
"WSConstA,",","Wind stress constant A,",0.8
"WSConstB,","Wind stress constant B,",0.065
"icors,","Coriolis force selector,",0
"RefLatoption; Reflat,", "Referene Latitude option; Reference Latitude value, ", 0,40
"ivaterms,"," "Vertical acceleration terms,",0
"idbg,","Debug switch,",0
"tvdscheck,",","time varying data consistency check,",0
"iWDLayers,",","Use wetting and drying of layers,", 1
"1raddthk,",","Layer addition thickness m,",0.8
"1rsubthk,"',"Layer subtraction thickness m,",0.8
"StabilizeInversionFlag,","StabilizeInversionFiag,", 0
"InvCoeff,","InvCoeff,",-99
"iUsed1DModel," "Switch'to use 1D mode1; Switch grid has 1D mode1,", 0, 0,1
"Computestat,","Statisdtical method to output variables,", 0
"StatFreq;StatUnit,","Statisdtical frequency and unit to write output
variables,",0,0
"StatStarttíme,",","Start time for statistical computations,", 39539
"StatEndTime,","End time for statistical computations,",39543
"ReturnTime1DDn,","Return time,",0
"Usezcheck,","Controlz z calculations,",0
"zstabilityFactor,","Stability factor for z,",0
"CheckTimeStepusingnewValues,","Redo computations using new time step
values,",0
"UseWindRamp,","Use time ramp function for larger wind speeds,",0
"NumWindRampLevels,","Number of time step intervale for the wind ramp
function,",1
"Ramplimitwindspeed,","Limiting wind speed for the usege of time ramp
function,",0
"WriteBCTVD,"," Write boundary condition time varying data files in time
Series output files,",0
"WriteBCLoads,","Write boundary condition data as loads in time series output files,",0
"WriteSDTVD,","Write sediment data time varying data files in time series outoput files,", 0
"SSDataType,","Source and sinks data type for use in boundary conditon data writing procedure,",1
"iDo1DHDM,","Do 1D hydrodynamics,",1
"isetdt1DAsdt,","Set 1D mode1 time'step same as 3D mode1,",0
"ZAmpliticationFactor,","Z amplification factor for stability checks,",4
"CGCLimit1,","Conjugate Gradient Computation Error Limit 1,",1,-7
"CGCLimit2,'","Conjugate Gradient Computation Error Limit 2,"', 1, -9
"UseRampFlowFunction,","Use ramp flow function to stabilize the model
simulation,",0
"NumRampFlowBCs,","Number of ramp flow boundary conditions,",0,
"SaveCSDataInArray,", "Convert cross-section data to depth vs width
array,",0
"DelHforCS,","Depth interval for depth vs width array computations,",0.1
"HDMVersionNumber,", "Use far-field/near-field modeling approach,",0
"CapitollakeVarsswi,"", "Switch for Capitol lake variables,",0,0
\#
\# 6:
Simulation time variables,
\#
"stryear,","Mode1 start time year,", 2008
"strmonth,", "Mode1 srart time month,",4
"strday,", "'Mode1 start time day,",1
"strhour,", "Mode1 start hour,",0
"strmin,", "Mode1 start minutes,", 0
"endyear," ""Mode1 end time year,", 2008
"endmonth,","Mode1 end month year,", 4
"endday,", "Mode1 end day,", 21
'endhour,","Mode1 end hour,",0
"endmin,", "Mode1 end minutes,", 0
"MaxTimesiots,","Maximun number of output time slots used in outputs,",2
"id7tt,","Time step control switch,",0,1
"dltminm,","Minimum time step,",60
"d7t7imit,","'Start Up time step,", 60
"omega,","тíme step under relaxation factor,", 0.75
\#
\# 7: Derived variables,
\#
"idv,","Option to use derived variables computations,",0
\#
\# 8: Probability Plume variables,
\#
"ComputeProPlume,","Computation of Probability Plume,",0
\#
\# 9: Snapshot output variables,
\#
"isnp,","Snapshot output selector,",1,2.2
"isnpss,","
"snpfile,","Snapshot output file path and

"iMetInfo,","Switch to write meteorology to snapshot output,",0
"ivolumeBalance,","Volume Balance switch,",1
"imassBalance,","'Mass Balance switch,", 0
"nsnp,","Number of snapshot output times,",2
"snpyear,","Snapshot output year,", 2008,2008
"snpmonth,"," "Snapshot output month,", 4,4
"snpday,","'Snapshot output day,",1,3
"snphour," ""Snapshot output hour,",0,0
"snpmin,", "Snapshot output minutes,",0,0
"snpfrequ,"," "Snapshot output frequency unit,", 1, 2
"snpfreq,","'Snapshot output frequency value,",1,1
"nsnpkpk; kpk,", "Number of snapshot output K pianes; output K plane
values,",1,51
"nsnpkpkv;kpv,", "Number of snapshot output variables for selected K
planes; output variable ID values,",6,1,19,20,21,22,23
"nsnpjpj̇;jpj,","Number of snapshot output j planes; output j plane values,",0
"nsnpjpjv;jpv,","Number of snapshot outputvariables for selected J planes;
output variable ID values,",0
"nsnpipi;ipi,","Number of snapshot output I planes; output I plane
values,",0
"nsnpipiv;ipv,", "Number of snapshot output variables for selected I
planes; output variable ID values,",0
"nsnpijpij,","Number of snapshot output I J points,",0
"snpijpi;snpijpj;snpijpnm,","Snapshot output
"information,",ICe11, JCe11, Location names
"nsnpijpv;ijpv,","Snapshot output number of output variables for all
selected IJ cells; output variable IDs for all selected IJ cells,",0

```
"Hydvar,","Hydrodynamic constituent name,",Surface Elevation,U -
velocity,V - velocity,W - Velocity,Density,Momentum Diffusivity,Chezy,Flow
Rate
"hdunits,","Constituent unit type,",0,0,0,0,0,0,0,0
"hdamp,","'scaling factor,",100,1,1,1,1,10000,1,1
"hddigits,","Number of digits to print in the snapshot,",2,2,2,2,2,2,2,2
Scaling factor, No. of digits, ConstituentID, Constituent name, Output
Type, Units
1,2,I_Temp,I_Temp,1 : Concentration,0 : C
1,2,I_Saln,I_Saln,1 : Concentration,0 : ppt
1,2,I_1Dye,I_1Dye,1 : Concentration,0 : mg/1
1,2,I_CDye,I_CDye,1 : Concentration,0 : mg/1
1,2,I_Exst,I_Exst,1 : Concentration,0 : deg C
"Stat3DSnapShot,","Do stat analysis for 3D Snapshot,",0
"DV3DSnapShot,","Derived variables for 3D Shapshot,",0
"ProbPlumeSnapshotStatus,","Status to write probability plume data to the
snapshot output,",0
"WriteMetSnapshot,","Switch to write meteorology variable output to
snapshot,",0
"SnpOutputMetVars,","Numberof meteorology variables;Output meteorology
variable ID to snapshot,",0
"WriteICESnapshot,","Write ice growth mode1 output variables,",0
"WriteWaveSnapshot,","Write wave mode1 output variables,",0
"WriteTransportSnapshot,","Write TRM mode1 internal variables to snapshot
output,",0
"WriteWQMSnapshot,","Write WQM mode1 internal variables to snapshot
output,",0
"WriteSFMSnapshot,","Write SFM mode1 internal variables to snapshot
output,",0
"WriteWQADDSnapshot,","Write WQADD mode1 internal variables to snapshot
output,",0
"WriteGAMSnapshot,","Write GAM mode1 internal variables to snapshot
output,",0
"WriteENMSnapshot,","Write ENM mode1 internal variables to snapshot
output,",0
"WriteUDCSnapshot,","Write UDM mode1 internal variables to snapshot
output,",0
"WriteCFMSnapshot,","Write CFM mode1 internal variables to snapshot
output,",0
"WriteSTMSnapshot,","write STM mode1 internal variables to snapshot
output,",0
"WriteMGMSnapshot,","Write MGM mode1 internal variables to snapshot
output,",0
"WriteCKMSnapshot,","Write CKM mode1 internal variables to snapshot
output,",0
"WritePTMSnapshot,","Write PTM model internal variables to snapshot
output,",0
#########################################################################
# 10: Console output variables,
#######################################################################
"icle,","Console output selector,",1,1.1
"icless,","Ouput status,",1
"ncle,","Number of console ouput times,",2
"cleyear,","Console output year,",2008,20008
"clemonth,",""Console output month,",4,4
"cleday,",""onsole output day,",1,1
"clehour,","Console output hour,",0,2
"clemin,","'Console output minutes,",'0,0
"clefrequ,","Console output frequency unit,",0,1
"clefreq,",","Console output frequency value,",,1,1
"nclep,","Number of Console output I J points,",1
"clei;clej;clenm;clenijpk;clenijpv,","Console'output
information,",ICe11,JCe11,Location names,Number of K, Number of Variables
"cleP1,","Point 1,",119,17,"c1,",1,1
"clek1,",'"Console output number of K values and k layer values for point
1,",1,30
"clev1,","Console output number of output variables and variable IDs for
point i,",1,1
    "Stat3DConsole,","Do stat analysis for 3D Console,",0
"DV3DConsole,","Derived Variables for 3D Console,",0
"WriteICEConsole,","Write ice growth mode1 output variables,",0
"WriteWaveConsole,","Write wave model output variables,",0
"WriteTransportConsole,","Write TRM mode7 internal varíables to console
output,",0
"WriteWQMConsole,","Write WQM mode1 internal variables to console
output,",0
"WriteSFMConsole,","Write SFM mode1 internal variables to console
output,",0
"WriteWQADDConsole,","Write WQADD mode1 internal variables to console
output,",0
```

"Writegamconsole,","Write GAM mode1 internal variables to console output,", 0
"WriteENMConsole,","Write ENM mode1 internal variables to console output,",0
"WriteUDCConsole,","Write UDM mode1 internal variables to console output,",0
"WriteCFMConsole,","Write CFM mode1 internal variables to console output,",0
"WritesTMConsole,","Write STM mode1 internal variables to console output,",0
"WritemGMConsole,","write MGM model internal variables to console output,", 0
"WriteckMConsole,","write CKM mode1 internal variables to console output,",0
"WritePTMConsole,","Write PTM mode1 internal variables to console
output, ", 0
\#
\# 11: Diagnostic output variables,
\#
"idgn,","Diagnostic output selector,",0
\#
\# 12: Restart output variables,
\#
"irst,","Restart output selector,",0
\#
\# 13: Time series output variables,
\#
"itsr,","Time series output selector,",1,4.2
"itsrss,"," "Ouput status,",1
"tsrfile,","Time series output file path and
name,","C:\GEMSS\APPS\Susquehanna 3\output\Scenario 01_01 NC_TSM.txt,"
"ntsr,","Number of time steries output times,",1
"tsryear,","Time series output year,",2008
"tsrmonth,","Time series output month,",4
"tsrday,","Time series output day,",1"
"tsrhour," "TTime series output hour,",0
"tsrmin,", "Time series output minutes,',",0
"tsrfrequ,",""Time series output frequency unit,",",1
"tsrfreq,",","Time series output frequency value,",1
"ntsrp,", "Number of time series output points, ", í
"tsri;tsrj;tsrnm;tsrnijpk;tsrnijpv,","Time series output
information,",ICe11,JCe11, Location names,Number of K, Number of Variables
"tsp1,",","Point 1,",172,27,"T1,", 30,0
"tsP2,",'"Point 2,",'166,26',"т2,",0,0
"tsP3,","'Point 3,",'159,25,"Т3,",0,0
"tsp4,'"',"Point 4,',',155,25,"'т4,",",0,0
"tsP5,","Point 5,",151,25,"T5,","0,0
"tsP6,'","'Point 6,",'148,25,"'т6,",',0,0
"tsP7,",","Point 7,"',144,23,"T7,", 0,0
"tsP8,",","Point 8,",140,23,"T8,",", 0,0
"tsp9,'","Point 9,",'136,21,"т9,",',0,0
"tsp10," ", "Point 10,",128,25, "T11,", 0,0
"tsp11,"','"Point 11,",126,20,"'12,"',0,0
"tsrk1,","Time series output number of k values and K layer values for point
$1, ", 30,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,2$ 6,27,28,29,30
"tsrk2,","Time series output number of K values and k layer values for point $2, \prime, 0$
"tsrk3,","Time series output number of k values and K layer values for point 3,",0
"tsrk4,","Time series output number of K values and K layer values for point 4,", 0
"tsrk5," "Time series output number of K values and K layer values for point 5,",0
"tsrk6,","Time series output number of K values and K layer values for point 6,", 0
"tsrk7," ""Time series output number of K values and K layer values for point $7, ", 0$
"tsrk8,","Time series output number of K values and K layer values for point 8,",0
"tsrk9,","Time series output number of K values and K layer values for point 9,", 0
"tsrk10,","Time series output number of K values and K layer values for point 10,",0
'tsrk11,","Time series output number of K values and K layer values for point 11,", 0
"tsrv1,","Time series output number of output variables and variable IDs for point 1,",0
"tsrv2,","Time series output number of output variables and variable IDs
for point 2,",0
"tsrv3,","Time series output number of output variables and variable IDs for point 3,",0
"tsrv4,","Time series output number of output variables and variable IDs for point $4, ", 0$
"tsrv5,","Time series output number of output variables and variable IDs for point 5,",0
"tsrv6,","Time series output number of output variables and variable IDs for point 6,",0
"tsrv7,","Time series output number of output variables and variable IDs
for point 7,",0
"tsrv8,","Tíme series output number of output variables and variable IDs
for point $8, ", 0$
"tsrv9,","Time series output number of output variables and variable IDs for point 9,",0
"tsrv10,","Time series output number of output variables and variable IDs
for point 10,",0
"tsrv11,","Time series output number of output variables and variable IDs
for point'11,",0
"Stat3DTimeSeríes,","Do stat analysis for 3D time series,",0
"DV3DTimeSeries,","'Derived Variables for 3D time series,",0
"ProbPlumeTimeSeriesStatus,","Status to write probability plume data to the time series output,",0
"WriteMetTimeSeries,","Switch to write meteorology variable output to time
series,",0
"TSOutputMetVars,", "Numberof meteorology variables; Output meteorology variable ID to time series,",0
"WriteICETimeSeries,","Write ice growth mode1 output Variables,",0
"WriteWaveTimeSeries,","Write wave mode1 output Variables,",0
"WriteTransportTimeseries,", "Write TRM model internal varíables to time series output,",0
"WriteWQMTimeSeries,",'Write WQM mode1 internal variables to time series output,",0
"WriteSFMTimeSeries,","Write SFM model internal variables to time series output,",0
"WriteWQADDTimeSeries,","Write WQADD model internal variables to time series output,",0
"WriteGAMTimeSeries,","Write GAM mode1 internal variables to time series output,",0
"WriteENMTimeSeries,","Write ENM model internal variables to time series output,",0
"WriteUDCTimeSeries,","Write UDM model internal variables to time series output,",0
"WriteCFMTimeSeries,","Write CFM model internal variables to time series
output,",0
"WriteSTMTimeSeries,","write STM model internal variables to time series output,",0
"WriteMGMTimeseries,","Write MGM mode1 internal variables to time series output,",0
"WriteCKMTimeSeries,","Write CKM model internal variables to time series output,",0
'WritePTMTimeSeries,","Write PTM model internal variables to time series output,", 0
"itrn,","Time series transport output selector,",0
\#
\# 14: Vertical profile output variables,
\#
"ivpf,", "Vertical profile output selector,",0,4
\#
\# 15: GPP contour output variables
\#
"igpp,","GPP output selector,",1,2.2
"igppss,","'Ouput status,",1
"gppctmfile,","Contour output contour file path and
name,","C:\GEMSS \APPS\Susquehanna 3\Output\Scenario 01_01 NC_CTM.txt,"
"gpphdmfile,","Contour output header file path and
name,","C:\GEMSS \APPS\Susquehanna 3\output\Scenario 01_01 NC_HDM.txt,"
"gppgrdfile,","Contour output element file path and

"WritegppAtA11Surfaces,","Option to write output at a1 1
ce11s,", 1
"ngppkpk; gppkpk,","Number of GPP contour output K planes; output K plane
va1ues,",0
"ngppjpj;gppjpj,","Number of GPP contour output J planes; output J plane
"ngppipi;"gppipi,","Number of GPP contour output I planes; output I plane
va1ues,",0
"ngpp,","Number of GPP contour output times,",1
"gppyear,","'GPP contour output year,",2008
"gppmonth,","GPP contour output month,",4
"gppday,","'GPP contour output day,",1
"gpphour,", "GPP contour output hour,",0
","gppmin,","'GPP contour output minutes,", 0
"gppfrequ,",","GPP contour output frequency unit,",1
"gppfreq,"," ${ }^{\text {GPP contour output frequency value,", } 6 ~}$
"ngppv; gppv,","GPP contour output number of output variables for all
selected IJ ceils; GPP contour output variable IDs for selected
location,", $8,1,2,3,4,19,21,22,23$
"Stat3DContour,",","Do stat analysis for 3D contour,",0
"DV3DContour,","'Derived Variables for 3D contour, ", 0
"Probplumecontourstatus,","Status to write probability plume data to the contour output,",0
"WriteMetcontour,","Switch to write meteorology variable output to GPP contour,", 0
"gppoutputMetVars,","Numberof meteorology variables;Output meteorology variable ID to GPP contour,",0
"WriteICEContour,","Write ice growth model output Variables,", 0
"WriteWaveContour,", "Write wave model output variables,",0
"WriteTransportContour,","Write TRM model internal variables to contour output,", 0
"WriteWQMContour,","Write WQM model internal variables to contour output,",0
"WriteSFMContour,","Write SFM model internal variables to contour output, ", 0
"WriteWQADDContour,","Write WQADD mode1 internal variables to contour output,",0
"WriteGAMContour,","Write GAM mode1 internal variables to contour output,",0
"WriteENMContour,","Write ENM mode1 internal variables to contour output,", 0
"Writeudćcontour,","Write UDM mode1 internal variables to contour output,",0
"WriteCFMContour,","Write CFM mode1 internal variables to contour output,", 0
"WriteSTMContour,","Write STM mode1 internal variables to contour output,",0
"WriteMGMContour,","Write MGM mode1 internal variables to contour output,", 0
"WritećKMContour,", "Write CKM mode1 internal variables to contour output,",0
"WritePTMContour,","Write PTM mode1 internal variables to contour output,",0
\#
\# 16: QualView velocity field output variables,
\#
"icvf,", "Velocity field output for Qual view selector,",0
\#
\# 17: Qualview contour output variables,
\#
"icnt,","Qual view contour output selector,",0
\#
\# 18: Current meter type output variables,
\#
"idcm,","Current meter type output selector,",0
\#
\# 19: TMDL Output variables,
\#
"iTML,","TML output selector,",0,1.1
\#
\# 20: 0il spil output variables,
\#
"isVF,", "oi 1 spi 11 output selector,", 0
\#
\#21: User defined output variables 1 ,
\#
"iudol,","User defined variable output selector1,", 0
\# \#22: User defined output variables 2,
\#
"iudo2,","User defined variable output selector2,", 0
\# \#23: User defined output variables 3,
\#
"iudo3,","User defined variable output selector3,", 0
\# \#24: User defined output variables 4,
\#
"iudo4,","user defined variable output selector4,",0
\# \#25: User defined output variables 5,
\#
"iudo5,","User defined variable output selector5,",0
\#
\# 26: NCF NETCDF output variables,
\#
"inCF,","NETCDF output selector,",0
\#
\# 27: CFD output variables,
\# "WriteCFDOutput; writeCFDOutputS,","Switch to Turn on CFD output; Ouput status,",0,0
\#
\# 28: Initial conditions; constant and spatial data,
\#
"iicff,","Initial condition far field file use,", $0,2.5,27$
"icffile,","Initial condition far field file,","No_Data_File,"
"icDoSTInterpolate,","Do Spatial and Temporal Interpolation,",0
"RestartTolerancetime, ","Time toloerance for using restart file,",0
"AdjustICData,","Adjust initial conditoin data using data before the model
simulation time,",1
"NumInterpserarchcycles,","Number of smoothening cycles,",1
"DoFourbyFoursearch,","Switch to activate 4 nearby cell's approach,",1
"DoEightByEightSearch,"," "Switch to activate 8 nearby cells approach,", 1
",smoothcoefficient,", "Factor to control parent cel1 dependency,",0
".IPIStart,",","Interpolation starting I cell index,",1
"IPIEnd,",","Interpolation ending I ce11 index,",250'
"IPJStart,",","Interpolation starting J cell index,",1
"IPJEnd,","Interpolation ending J cell index,", 50
"DoRecursivesmoothening,","Do recursive smoothéning on all cells,", 0
"ICInterpolationscheme,","Initial condition interpolation scheme,",0
"IDWPOW, ","Power for interpolation,",2
"ICGeoFiléstatus,",","Initial Condition Geo File Status,",0
"ICGeofilename, ","'Initial Condition Geo File Name, ", "No, Data_File,"
"WFNorth,","Weighting factor in the north direction",", 1
"WFSouh,",","Weighting factor in the south direction "", 1
"WFWest,",","Weighting factor in the west direction, ", 1
"WFEast,"," $w e i g h t i n g$ factor in the east direction ,", 1
"WFNorthwest,",","weighting factor in the north west direction ,", 1
"WFNorthEast,",","weighting factor in the north east direction ,",", 1
"WFSouthwest,",","weighting factor in the sout westh direction ",", 1
"wFSouthEast,",",weighting factor in the south east direction ",",1
"ICGeostnfilestatus,","Use field data stations look up file,",0
"ICGeostnfilename,","Field data station look up file
name, "," "No_Data_Fīe,"
"UseRT,","Use response temperature for background temperature,",1
"UseStnBGTemp,","Use field data station for setting up background
temperature, ", 0
"QuadInterpolationType," "Interpolation method for quadrilateral shape,",1
"Dopointinterpolation,", "Use field station location for point
interpolation method,", i
"UseConstituentData,","Use constituent data only from restart file,",0
"Useonlyvelocities,","Use only velocities and elevation,",0
"constituentstartTime,","Constituent start time from restart file,",39554
"FielDataDepthType,","Field data depth measurement type,",1
"VBUseNumConstituents,","Number of constituents, ",0
"UseTVICData,","Use time varying initial condition data,",0
"nicp,","Number of initial conditon points,", 2
"icpnm,","Constituent name; User does not change the name or the
order,", I_Temp, I_Saln
"icpid,",","Initiā condition id,",1,2
"ict,","Initial condition data type,",4,4
"icdsg,","SSFlow station number to be used for the specific
constituent, ", 1,1
"icifn,","File name for using it when ict value is set to 2 ,",
"icifn_1,","File name for using it for initial condition
1,","No_Data_File,"
"icín_ $\overline{2}$,","File name for using it for initial condition
2,","No_Data_File,"
"icv,","Initīal condition constituent value,",-99,-99
"icu,","Initial condition constituent unit when ict is set to $1, ",-99,-99$
"icstd,",","Initial condition start date,","04/01/2008,","04/01/2008,",
"icstt,",","Initial condition start time,","00:00,","00:00,"
"icxst,","Initial condition x starting location specified as I index,",1,1
"icxend,","Initial condition x ending location specified as I
index,",2550,250
"icjst,","Initial condition y starting location specified as j index,",1,1
"icjend,","Initial condition y ending location specified as j
index,",50,50
"ickst ","Initial condition z starting location specified as k
index,", '999,999
"ickend,","Initial condition z ending location specified as k index,",-
999,-999
"icswtype,","Initial condition type,",0,0
"ictvtype,","Initial condition time varying type,",0,0

	\#\#\#\#\#\#\#
	mber of k layers,", 50
	04.066,",'"Profile value at k = 1,",-99,-99
	"502.066,","'Profile value at k = 3,",-99,-99
	"501.066,","Profile value at k = 4,",-99,-99
	"500.066,","Profile value at k = 5,",-99,-99
	"499.066,',"'Profile value at k = 6,",-99,-99
	'498.066, ", "Profile value at k = 7,",-99,-99
	"497.066,","Profile value at k = 8,",-99,-99
	'496.066,","Profile value at k = 9,",-99,-99
	"495.066,","Profile value at $k=10, ",-99,-99$
	"494.066, "', "Profile value at k = 11, "',-99,--99
	"493.066,","Profile value at k = 12,",-99,-99
	"492.066, ", "Profile value at k = 13,'",-99,--99
	"491.066,","Profile value at $\mathrm{k}=14, \mathrm{C},-99,-99$
	"490.066, "', "Profile value at k = 15,',',-99,'-99
	"489.066,", "Profile value at $k=16, ",-99,-99$
	"488.066, ", "Profile value at k = 17, ", -99,-99
	"487.066,","Profile value at k = 18, ", -99,-99
	"486.066,",'"Profile value at k = 19,"',-99,-99
	"485.066,","Profile value at $\mathrm{k}=20, \mathrm{l},-99,-99$
	'484.066,","Profile value at $k=21,{ }^{\text {c }}$, $483.069,-99$
	"483.066,","Profile value at k = 22,",-99,-99
	"482.066,','"Profile value at k = 23,",--99,-99
	"481.066,","Profile value at k = 24,",-99,-99
	"480.066,","Profile value at $k=25, \mathrm{\prime},-99,-99$
	"479.066,","Profile value at k = 26,",-99,-99
	"478.066, ", "Profile value at k = 27, ",'-99,--99
	"477.066, ", "Profile value at k = 28,',',-99,--99
	"475.066, "', "Profile value at k = 30, "',-99,--99
	"474.066,","Profile value at k = 31, ','-99,-99
	"473.066,","Profile value at k = 32,",-99,-99
	'472.066,'", "Profile value at k = 33,"',-99,'-99
	"471.066, ", "Profile value at k = 34,",--99,-99
	"470.066,","Profile value at $k=35, ",-99,-99$
	"469.066, "', "Profile value at k = 36,"',-99,--99
	"468.066,","Profile value at k = 37,",-99,-99
	"467.066,","Profile value at k = 38,",-99,-99
	"465.066,","Profile value at k = 40,",-99,-99
	'464.066,',','Profile value at k = 41, ', --99,-99
	"463.066, ", "Profile value at $k=42, \underline{\prime}$,-99,--99
	"462.066,'",'Profile value at k = 43,"',-99,-99
	"461.066,",'"Profile value at k = 44, ",-99,-99
	"460.066, ", "Profile value at $k=45$, ,',-99,--99
	"459.066,",'"Profile value at $k=46$, ', -99,-99
	"458.066,'",'"Profile value at k = 47, ", --99,-99
	"457.066,","Profile value at $k=48$, ",-99,-99
	"456.066,',','Profile value at k = 49,"',-99,-99
	\$
	\$ "ndsg,","Number of ssflows,",6
	"ndsgdtr,", "Number of Distributed Networks,",0
	Total Number of Variables, ", $6,52,67,1.9,37$ "vbuse2,","Number of ssFlows for Current Boundary; BC Index,",1, 1
	"vbuse3,",","boundary condition mode,","Discharge,",Discharge "dsgm,","Boundary Condition Mode,",0,0 : Discharge
	"dsgss,","'Boundary Condition Status,",1,1
	"dsgnm,","Boundary Condition Name, ", "upstream, ", Upstream
	"dsgdt(1), ", "Input Data Type for Hydrodynamics,", 1,1 : Constant
	"dsgdt(2),","Input Data Type for Transport and water Quality,",1,1
	Constant
	"dsgifn(1),","TVD Input File Name for Hydrodynamics,","No_Data_File,", No_Data_File
	"dsgifn (2),", "TVD Input File Name for Transport and water
	Qualit,","No, Data_File,", No_Data_File
	"dsgqfn,"," Qualifier File Name for Transport and water Qua1it,","No_Data_File,", No_Data_File "dsgip (1), ","Time Varying Input Data Interpolation Scheme for $\mathrm{H}, \mathrm{C}, 0,0$: No Interpolation
	Interpolation"dsgip(2),","Time Varying Input Data Interpolation Scheme for $\mathrm{w}, \mathrm{"}, 0,0$: NoInterpolation
	"dsgdc,","Grid Domain Type,",3,3 : 3D Mode1

\$ Rates and Constants for GEMSS-WQADD

"iwqaddc,", "Water Quality ADD switch; number of variables; Number of
parameters; Number of regions, ", 0,0,0,0
\$
\$ Rates and Constants for GEMSS-GAM

"iGAM,","Algae Mode1: Switch; Number of Algae; Number of Variables for
Each Algae; number of regions, ", 0, 0, 0,0

$\$$ Rates and Constants for GEMSS-CFM
\$
"iCFM,","Bacteria Mode1: Switch; Number of Bacterias; Number of parameters
for Each Bacteria; Number of regions, ", 0, 0, 0,0
\$
\$ Rates and Constants for GEMSS-UDF

"iUDC,", "User Defined Mode1: Switch; Number of variables; Number of parameters for Each Coliform; Number of regions,", 0,0,0,0
\$1.
$\$$ Rates and Constants for GEMSS-ENT
\$
"iENT,","Entrainment Mode1: Switch; Number of Entrainments; Number of Paraments for Each Variables; Number of regions, ", 0, 0,0,0

$\$$ Rates and Constants for GEMSS-STM
\$
"istc,","Sediment Transport Mode1 Computations: Switch; Number of
Entrainments; Number of Paraments for Each Variables; Number of
regions,",0,0,0,0
\$
\$ Rates and Constants for GEMSS-MGM
\$
"iMGM,","Macrophytes Mode1: Switch; Number of Macrophytes; Number of Variables for Each Macrophytes; number of regions, ", 0, 0,0,0
\$
\$ Rates and Constants for Chlorine Kinetics module-CKM
\$1.
"iCKM,", "Chlorine Kinetics Module: Module tpe; Number of variables; Number of parameters for each variable; Number of regions,", $0,0,0,0$
\$
\$ Particle Transport Variables for GEMSS-PTM,

"iPTM,", "particle transport mode1 computations,",0,0
\$
\$ Miscellaneous data,

"vbuse1,","Number of columns and rows,",4,0

Scenario 02

\$GEMSSMode1Results, 14
\$GEMSS-SHWETContro1File,4.24
\$Creation Date: 4/16/2008
\$Waterbody Name: Susquehanna 3
\$Modeler Name: SP
\#
\# 1: Scenario variables,
\#
"IntGDS,","Option to use GEMSS data structure,", 1
"Scenario,"," "Scenario file path and name,", "C: \GEMSS $\backslash A P P S \backslash$ Susquehanna
$3 \backslash$ output\ŚSenario 02_01 NC,
"DoText2MDBConversion,","Use Scenario Output Direct Database
"onverion,",1,1
"ZipoutputFile,","zip text output files after creating the database,",0,0
"DoCompUsingGEMSSOutput,","Run Model Using Existing GEMSS Contour Output
Text Files,", 0
"GEMSSHDMInputFile,","Existing GEMSS Contour Output Header Text Files,",","
\#
\# 2:
Grid variables,
\#
"igrid,","Switch to read grid data from a file,",1,1
"GridFile,","Grid file name,", "C: \GEMSS $\backslash A P P S \backslash S u s q u e h a n n a$
$3 \backslash$ Grid \backslash Susquehanna River 05 474Min.g3g,","4/23/2008 12:36:08
PM,","4/28/2008 12:20:10 PM,"
"InputHDatumUnit,","Input grid data is in geographic coordinate system switch,",0
"UseLinearconversionIn,","Use linear conversion for input grid data,",1
"cstypeIn,","Input coordinate conversion mode,",0

```
"cscodeIn,","Input coordinate conversion zone number,",0,None
"csdatumIn,","Input UTM datum,",0
"InputVDatumUnit,","Input grid data is in geographic coordinate system
switch,",0
    "OutputhḊatumUnit,","Output grid data is in geographic coordinate system
switch,",0
"UseLinearConversionOut,","Use linear conversion for output grid data,",1
"cstypeOut,","Output coordinate conversion mode,",0
"cscodeOut,","Output coordinate conversion zone number,",0,None
"csdatumOut,","Output UTM datum,",0
"OutputVDatumUnit,","Output grid data is in geographic coordinate system
switch,",0
"iupmgrid,","Switch to set up different k layers,",0
"km_p,","Vertical array size,",-99
"nzds,","Number of vertical \ayer domains,",-99
"nzdstr,","Starting vertical layer number for each domain,",-99
"nzend,","Ending vertical layer number for each domain,",-99
"dzd,","Layer thickness in each domain,",-99
"igpsfmt,","Switch to write grid file gps format for use in ArcView,",0
"elioption,","switch to Use TVD From Boundary Condition File or Initial
elevation,",0
"eli,","Initial elevation,",486
"iwbs,","Waterbody switches,", 1
"eldatum,","Reference elevation of 3rd layer in meters,",0
"UseSigmastretching,","Switch to use sigma stretching,",0
"NSLeve1,","Number of'sigma Levels,",0
"SigDistType,","Sigma Layer Distribution type,",0
"sleve1,","User Defined Sigma Distribution,",0.0
"ZtoSigmaBCDepthTransform,","Use BC Depth Transformation from vertical to
Sigma Leve1,",0
"SmoothBathy,","Switch to Perform Bathymetry Smoothening,",0
"SlpMax,","Maximmum Allowable Slope for bathymetry smoothening,",0
"NSmoothCycle,","Number of Smoothening cycles,",0
#########################################################################
#3: Meteorological variables,
#########################################################################
"MetDataType,","Switch to use Meteorological time varying data; VB Use
verion; Number of Meteorology variables,",0,2.2,14
"metss,","Use Meteorological data in current simulation status,",1
"Metfi1e1,","Meteorological time varying data input file
name,","No_Data_File,
"metinterp,","Switch to perform interpolation on met data,",0
"ievap;EvapScaleFactor,","Switch for evaporation;Evaporation scale
facotr,",1,1
"iwndhyd,",""Use wind in hydrodynamics computations,",0
"ta,","temperature of air C,",21,0
"td,"',"Dew point temperature c,",13,0
"twb,","Wet bulb temperature c,",,13,0
"rt,","response temperature C,",20,0
"phi,",""Wind direction degrees,",90
"wad,","Wind speed m/sec,",5," 0
"cc,","cloud coverage octai,",2
"so1rad,","Solar radiation W/m^2,",120,0
"ps,","Atmoshpheric pressure mm of'Hg,",760
"ps,",","Surace heat pressure mm of of Hg, He method,",i
"KEMethod,","Method to Compute K and E,",0
"cshe,","Coefficient of surface heat exchange w/m2/c,",24.59
"'te,","'Equlibrium temperature C,",85,1
"secchi,","Secchi depth; light transmission depth m,",-99
"rsts,","Vegetative and Topographic Shading Factor; 0 to 1.0,",-99
"wscoef,",","Wind she1tering coefficient; 0 to 1.0,",-99
"iwsf,","'Wind speed function,",1
"MetInterpolationMethod,","Met Interpolation Method,",0
"IDWPOW,","Exponent value'for inverse weighting scheme,",0
"MetVarInterpSwitch;MetVarInterp,","Met Individual1 interpolatey switch
and interpolation methods,",0
*************************************************************************
* Meteorological Scale Factor Variables,
***************************************************************************
"UseMetRegionSF;MetRegionSFSS,","Met factor switch,",0,0
***************************************************************************
* Meteorological Dynamic shading Variables,
*************************************************************************
"UseDSHDRegionSF;DSHDRegionSFSS,","Met dynamic shading switch,",0,0
**********************************************************************
* Icel Growth Model Variables,
***********************************************************************
"UseIGMode1;UseIGMode1Status,","Switch to control the use of ice growth
mode1 and status,",0,0
***********************************************************************
* Wave Model Variables,
```

```
***********************************************************************
"iwvc;iwvcss,","Wave mode1 activation switch and status,",0,0
######################################################################
# 4: Constituents,
######################################################################
"itrc,","Transport switch; computation status; number of variables,",1,1,5
"iwqc,","Water quality mode1 type; computation status; number of
variables,",0,0,0
"iwqaddc,","Water quality ADD mode1 switch; computations status; number of
variables,",0,0,0
"iGAMc,","A1gae mode1 computations; status,",0,0
"nGAMs,"',"Number of algae,",0,1
"UseGAMInsideWQM,","Use Generalized Algae Model inside Water Quality
Mode1,",0
"isnec,","Sediment nutrient exchange computations,",0,0
"iPTM,","Particle transport mode1 computations,",0,0
"istc,","Sediment transport mode1 computations,",0,0
"nstcs,","Number of sediment transport type,",0,1
"ientc,",'"Entrainment computations,",0,0
"nezones,","Number of entrainment zones,",0,1
"iatc,","optiona1 to add more constituents,",0,0
"natc,","Number of additiona1 constituents,",0,1
"icfmc,","Coliform Bacteria Mode1 computations,",0,0
"ncfmcs,","Number of coliform bacteria type,",0
"iCKMC;iCKMCss,","Chlorine kinetics Model computations and status,",0,0
"nCKMC,","Number' of chlorine kinetics type,",0
"iMGM;iMGMss,","Macrophyte grouth mode1 computations and status,",0,0
"nMGMS,","Number of macrophyte type,",0,1
"UseMGMInsideWQM,","Use Macrophyte Grouth Model inside Water Quality
Mode1,",0
"WriteTransportOutput,",'Write TRM mode1 internal variables to GEMSS
output output,",0
"WriteWQMOutput,","Write WQM mode1 internal variables to GEMSS output
output,",0
"WriteSFMOutput,","Write SFM model internal variables to GEMSS output
output,",0
'WriteWQADDOutput,",'Write WQADD mode1 internal variables to GEMSS output
output,",0
"WriteGAMOutput,","write GAM mode1 internal variables to GEMSS output
output,",0
"WriteENMOutput,","write ENM mode1 internal variables to GEMSS output
output,",0
"WriteUDCOutput,","Write UDM mode1 internal variables to GEMSS output
output,",0
"WriteCFMOutput,","write CFM mode1 internal variables to GEMSS output
output,",0
"WriteSTMOutput,","write STM model internal variables to GEMSS output
output,",0
"WriteMGMOutput,","write MGM model internal variables to GEMSS output
output,",0
"WriteCKMOutput,","write CKM mode1 internal variables to GEMSS output
output,",0
"WritePTMOutput,","write PTM model internal variables to GEMSS output
output,",0
"cnum,","Number of Constituents,",5
"Index,","Mode1 Name,","Identifier; Cannot be Modified,","User Given
Name,','"Activity of Constituent,", "Output Time,","Units,","Transport
Switch,"
"C0,","Transport,", I_Temp,"I_Temp,",1,1,1,1
"C1,",'"Transport,",I_Saln,"I_Saln,",1,1,0,1
"C2,",'"Transport,",I_1Dye,"I_1Dye,",1,1,0,1
"C3,"',"Transport,",I_CDye,"I_CDye,'',1,1,0,1
"C4,"',"Transport,",I_Exst,"I_Exst,",1,1,1,1
######################################################################
########################
######################################################################
"Use3DMode1,","Switch to control 3D mode1 simulations,",1,3.7
"Use3DMode,",'Switch to control 3D model simulations,",1,3.7 inflob on/off ssflow input data that is available in the
sscontrol.csv,",1
"itrcs,","transport computation algorithm switch,",1
"udwtf,"',"advection theta in z-direction,",0
"vdwft,"',"diffusion theta in z-direction,",0
"HOTSIniTime,","HOTS initization time period,",-99
"itrbs,","Turbu7ence scheme,",1
"itrbsm,","Turbulence sub mode1,",1
"itrbparam,","Turbulence parameters,",0,1,1,2.44,2.44,0.9,0.5,1,2.53
"imx\s,","Mixing length scheme,",1
"ihmdcx,","momentum diffusion coefficient scheme selector in x-
"inmdcx,","mom
"ihmdcy,",''momentum diffusion coefficient scheme selector in y-
direction,",2
```

```
'hmdcx,","momentum diffusion coefficient in x-direction
m2/sec,"',0.00584,1.1
"hmdcy,","momentum diffusion coefficient in y-direction
m2/sec,"'0.00584,1.1
"prnm,","Prandt1' number,",10
"ihtdcx,","transport diffusion coefficient scheme in x-direction,",3
"ihtdcy,"," transport diffusion coefficient scheme in y-direction,","3
"htdcx,","transport diffusion coefficient in x-direction \(\mathrm{m} 2 / \mathrm{sec}, "\),
"htdcy,","transport diffusion coefficient in y-direction m2/sec,",,
"idnf,"," \({ }^{\text {Density function selector,", } 2}\)
"ideep,", "Compressibility usage,",1
"ichezy,","Chezy coefficient selector,",0
"ilchezy,",","Limiting Chezy selector,",0
"chezy,","'chezy coefficient; Czo;do;n,",40,
"WSCoeffType,", "Wind stress coefficient type, ", 0
"WSConstA,"," Win , stress constant \(A, ", 0.8\)
"WSConstB,","Wind stress constant \(\mathrm{B}, \mathrm{"}, 0.065\)
"icors,","Coriolis force selector,",0
"RefLatoption;RefLat,","Referene Latitude option; Reference Latitude
Value,",0,40
"ivaterms,","Vertical acceleration terms,",0
"idbg,","Debug switch,",0
"tvdschéck,","time varying data consistency check,",0
"iwDLayers,","Use wetting and drying of layers,",1
"1raddthk,",","Layer addition thickness m,",0.8
"7rsubthk,",", Layer subtraction thickness m,",0.8
"StabilizeInversionFlag,","StabilizeInversionFlag,",0
"InvCoeff,","InvCoeff,",-99
"iused1DModé1,","Switch' to use 1D mode1; Switch grid has 1D mode1,", \(0,0,1\)
"Computestat,","Statisdtical method to output variables,",0
"StatFreq;Statunit,","Statisdtical frequency and unit to write output
variables,",0,0
"StatStarttime,","Start time for statistical computations,", 39539
"StatEndTime,","End time for statistical computations,",39543
"ReturnTime1DDn,","Return time,",0
"Usezcheck,","Control z calculations,", 0
"zstabilityFactor,","Stability factor for \(z, ", 0\)
"CheckTimeStepUsingNewValues,","Redo computations using new time step
values,",0
"UseWindramp,","Use time ramp function for larger wind speeds,",0
"NumWindRampLeve1s,","Number of time step intervale for the wind ramp
function,",1
"RampLimitwindspeed,","Limiting wind speed for the usege of time ramp
function,",0
"WriteBCTVD,","Write boundary condition time varying data files in time
Series output' files,",0
"WriteBCLoads,","Write boundary condition data as loads in time series
output files,", 0
"WriteSDTVD,","Write sediment data time varying data files in time series
outoput files,'",0
"SSDataType,","source and sinks data type for use in boundary conditon
data writing procedure,",1
"iDo1DHDM,","Do 1D hydrodynamics,",1
"iSetdt1DAsdt,","Set 1D model time'step same as 3D model,",0
"ZAmpliticationFactor,","Z amplification factor for stability checks,", 4
"CGCLimit1,","Conjugate Gradient Computation Error Limit 1,",1,-7
"CGCLimit2,'",'"Conjugate Gradient Computation Error Limit 2,",',1,-9
"UseRampFlowFunction,","Use ramp flow function to stabilize the model
simulation,",0
"NumRampFlowBCs,","Number of ramp flow boundary conditions,",0,
"SavecSDataInArray,","Convert cross-section data to depth vs width
array,",0
"DelHforcs,","Depth interval for depth vs width array computations,",0.1
"HDMVersionnumber,","Use far-field/near-field modeling approach,",0
"CapitolLakevarsswi,","Switch for Capitol 1ake variables, ", 0,0
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\# 6: Simulation time variables
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
"stryear,","Mode1 start time year,", 2008
"strmonth,","Mode1 srart time month,", 4
"strday,","Mode1 start time day,",1
"strhour," ""Model start hour,",0
"strmin,", "Mode1 start minutes,", 0
"endyear,","Mode1 end time year,", 2008
"endmonth, "',"Mode1 end month year,", 4
"endday,","'Mode1 end day,",21
"endhour," "Mode1 end hour,", 0
"endmin,", "Mode1 end minutes,", 0
"MaxTimesiots,","Maximun number of output time slots used in outputs,",2
"idltt,","Time step control switch,",0,1
"d7tminm,","Minimum time step,",60
```

"d7tlimit,","Start Up time step,", 60
"omega,","Time step under relaxation factor,",0.75
\#
\# 7: Derived variables,
\#
"idv,","Option to use derived variables computations,",0
\#
\# 8: Probability Plume variables,
\#
"ComputeProPlume,","Computation of Probability Plume,",0
\#
\# 9: Snapshot output variables,
\#
"isnp,","Snapshot output selector,",1,2.2
"isnpss,","'Ouput status,",1
"snpfile,","Snapshot output file path and
name,","C:\GEMSS \APPS\Susquehanna 3\Output\Scenario 02_01 NC.snp,"
"iMetInfo,","Switch to write meteorology to snapshot output,", 0
"ivolumeBalance,","Volume Balance switch,",1
"iMassBalance,","Mass Balance switch,",0
"nsnp,","Number of snapshot output times,",2
"snpyear,","'Snapshot output year,",2008,2008
"snpmonth,","Snapshot output month,",4,4
"snpday,","'Snapshot output day,",1,3
"snphour,"'"'Snapshot output hour,", 0,0
"snpmin,", "Snapshot output minutes,",0,0
"snpfrequ,","Snapshot output frequency unit,",1,2
"snpfreq,","Snapshot output frequency value,",1,1
"nsnpkpk;kpk,", "Number of snapshot output K planes; output K plane
values,",1,51
"nsnpkpkv;kpv,", "Number of snapshot output variables for selected K
planes; output variable ID values,", $6,1,19,20,21,22,23$
"nsnpjpj;jpj,", "Number of snapshot output J planes; output j plane values,",0
"nsnpjpjv;jpv,","Number of snapshot outputvariables for selected j planes;
output variable'ID values,",0
"nsnpipi;ipi,","Number of'snapshot output I planes; output I plane
values,",0
"nsnpipiv;ipv,", "Number of snapshot output variables for selected I
planes; output variable ID values,", 0
"nsnpijpij,","Number of snapshot output I J points,",0
"snpijpi;snpijpj;snpijpnm,","Snapshot output
information,", ICe11, JCe11, Location names
"nsnpijpv;ijpv,","Snapshot output number of output variables for all
selected IJ ce11s; output variable IDs for al1 selected IJ ce11s,",0
"HydVar,","Hydrodynamic constituent name,", Surface Elevation, u -
velocity, V - Velocity, w - Velocity, Density, Momentum Diffusivity, Chezy, Flow
Rate
"hdunits,", "Constituent unit type,", $0,0,0,0,0,0,0,0$
"hdamp,","'scaling factor,",100,1,1,1,1,10000,1,1
"hddigits,","Number of digits to print in the snapshot,", 2, 2, 2, 2, 2, 2, 2, 2
Scaling factor, No. of digits, ConstituentID, Constituent name, Output
Type, Units
1,2, I_Temp, I_Temp,1 : Concentration, 0 : C
1,2,I_Saln,I_Saln,1 : Concentration,0 : ppt
1,2, I_1Dye, I_1Dye,1 : Concentration, $0: \mathrm{mg} / 1$
1,2,I_CDye, I_CDye, 1 : Concentration,0 : mg/1
1,2,I_Exst, I_Exst,1 : Concentration,0 : deg C
"Stat3DSnapShot,","Do stat analysis for 3D Snapshot,",0
"DV3DSnapShot,","Derived Variab1es for 3D Shapshot,",0
"ProbplumesnapshotStatus,","Status to write probability plume data to the snapshot output,",0
"writeMetSnapshot,","Switch to write meteorology variable output to
snapshot,",0
"SnpOutputMetVars,", "Numberof meteorology variables;Output meteorology variable ID to snapshot,",0
"WriteICESnapshot,","write ice growth mode1 output Variables,",0
"WriteWaveSnapshot,", "Write wave mode1 output variables,",0
"WriteTransportSnapshot,", "Write TRM model internal variables to snapshot output,",0
"WriteWQMSnapshot,","Write WQM model internal variables to snapshot output,", 0
"WriteSFMSnapshot,","Write SFM mode1 internal variables to snapshot output,",0
"WriteWQADDSnapshot,", "Write WQADD mode1 internal variables to snapshot output,",0
"WriteGAMSnapshot,","write GAM model internal variables to snapshot output,",0
"WriteENMSnapshot,","write ENM model internal variables to snapshot
output,",0
"WriteUDCSnapshot,","Write UDM mode1 internal variables to snapshot output,", 0
"WriteCFMSnapshot,","Write CFM mode1 internal variables to snapshot output,", 0
"Writeśmnsnapshot,", "Write STM mode1 internal variables to snapshot output,",0
"WriteMGMSnapshot,","Write MGM mode1 internal variables to snapshot output,", 0
"WriteCKMSnapshot,","write CKM mode1 internal variables to snapshot output,",0
"WritePTMSnapshot,","Write PTM mode1 internal variables to snapshot
output,",0
\#
\# 10: Console output variables,
\#
"icle,","Console output selector,",1,1.1
"icless,"," "Ouput status,",1
"nc1e,","'Number of console ouput times,", 2
"cleyear,"," "Console output year,",2008,20008
"clemonth,",","Console output month,",4,4
"cleday,"," "Console output day,", 1,1
"clehour,","Console output hour,",
"clemin,", "Console output minutes,'", 0,0
"clefrequ,",""Console output frequency unit,", 0,1
"clefreq, ", "'Console output frequency value, ",1,1
"nclep,","'Number of Console output I J points, ", 1
"clei;clej;clenm;clenijpk;clenijpv,","Console output
information,",ICe11, JCell, Location names, Number of K , Number of Variables
"clep1,","'Point 1,",119,17,"c1,",1,1
"clek1,","'Console output number of' k values and k layer values for point
1,", 1,30
"cléevi,","Console output number of output variables and variable IDs for point 1,",1,1
"Stat3DConsole,","Do stat analysis for 3D Console,",0
"DV3DConsole,","'Derived Variables for 3D Console,", 0
"WriteICECOnsole,"," Write ice growth mode1 output Variables,", 0
"Writewaveconsole," ", "write wave model output variables,",0
"WriteTransportConsole,","Write TRM model internal variables to console output,",0
"WriteWQMConsole,", "Write WQM mode1 internal variables to console output, ", 0
"WriteSFMConsole,","Write SFM mode1 internal variables to console output,",0
"WriteWQADDConsole,","Write WQADD mode1 internal variables to console output,",0
"WriteGAMConsole,","Write GAM mode1 internal variables to console output,",0
"WriteENMConsole,","Write ENM mode1 internal variables to console output,",0
"WriteUDC'Console,","Write UDM mode1 internal variables to console output,",0
"WriteCFMConsole,","Write CFM mode1 internal variables to console output,",0
"WritestMconsole,","write STM mode1 internal variables to console output,", 0
"WriteMGMConsole,","Write MGM mode1 internal variables to console output,", 0
"WritecKMConsole,","Write CKM mode1 internal variables to console output,",0
"WritePTMConsole,","Write PTM model internal variables to console output,", 0
\#
\# 11: Diagnostic output variables,
\#
"idgn,","Diagnostic output selector,",0
\#
\# 12: Restart output variables,
\#
"irst,","Restart output selector,",0
\#
\# 13: Time series output variables,
\#
"itsr,","Time series output selector,",1,4.2
"itsrss,","Ouput status,",1
"tsrfile,","Time series output file path and
name,","C: \GEMSS\APPS\Susquehanna $3 \backslash$ Output \Scenario 02_01 NC_TSM.txt,"
"ntsr,","Number of time steries output times,", 1
"tsryear,","Time series output year,", 2008
"tsrmonth,"," "Time series output month,", 4
"tsrday,","Time series output day,",1
"tsrhour,", "Time series output hour,", 0

```
"tsrmin,","Time series output minutes,",0
"tsrfrequ,","Time series output frequency unit,",1
"tsrfreq,","Time series output frequency value,",1
"ntsrp,","Number of time series output points,",',
"tsri;tsrj;tsrnm;tsrnijpk;tsrnijpv,","Time series output
information,",ICe11,JCe11,Location names,Number of K, Number of Variables
"tsP1,","Point 1,",119,17,"T1,",1,1
"tsrki,","Time series output number of K values and K layer values for
point 1,",1,30
"tsrv1,","Time series output number of output variables and variable IDs
for point 1,",1,1
"Stat3DTimeSeries,",","Do stat analysis for 3D time series,",0
"DV3DTimeSeries,","Derived Variables for 3D time series,",0
"ProbPlumeTimeSeriesStatus,","Status to write probability plume data to
the time series output,",0
"WriteMetTimeSeries,","Switch to write meteorology variable output to time
series,",0
"TSOutputMetVars,","Numberof meteorology variables;Output meteorology
variable ID to time series,",0
"WriteICETimeSeries,","Write ice growth model output Variables,",0
"WriteWaveTimeSeries,","Write wave model output Variables,",0
"WritteTransportTimeSeries,","Write TRM model internal variables to time
series output,",0
"WriteWQMTimeSeries,","Write WQM model internal variables to time series
output,",0
"WriteSFMTimeSeries,","Write SFM mode1 internal variables to time series
output,",0
"WriteWQADDTimeSeries,","Write WQADD mode1 internal variables to time
series output,",0
    "WriteGAMTimeSeries,","Write GAM model internal variables to time series
output,",0
"WriteENMTimeSeries,","Write ENM mode1 internal variables to time series
output,",0
"WriteUDCTimeSeries,","Write UDM model internal variables to time series
output,",0
"WriteCFMTimeSeries,","Write CFM model internal variables to time series
output,",0
"WriteSTMTimeSeries,","Write STM model internal variables to time series
output,",0
"WriteMGMTimeSeries,","Write MGM model internal variables to time series
output,",0
"WriteCKMTimeSeries,","Write CKM model internal variables to time series
output,",0
"WritePTMTimeSeries,","Write PTM model internal variables to time series
output,",0
"itrn,","Time series transport output selector,",0
#########################################################################
# 14: Vertical profile output variables,
#########################################################################
"ivpf,","Vertical profile output selector,",0,4
#########################################################################
# 15: GPP contour output variables,
######################################################################
"igpp,","GPP output selector,",1,2.2
'igppss,'","ouput status,",1
gppctmfile,","Contour output contour file path and
name,","C:\GEMSS\APPS\Susquehanna 3\Output\Scenario 02_01 NC_CTM.txt,"
"gpphdmfile,","Contour output header file path and
name,","c:\GEMSS\APPS\Susquehanna 3\Output\Scenario 02_01 NC_HDM.txt,"
"gppgrdfile,","Contour output element file path and
name,","C:\GEMSS\APPS\Susquehanna 3\Output\Scenario 02_01 NC_GRD.txt,"
"WritegppAtAllSurfaces,","Option to write output at al> surface and
ce71s,",1
"ngppkpk;;gppkpk,","Number of GPP contour output K planes; output K plane
va\ues,",0
"ngppjpj;gppjpj,","Number of GPP contour output J planes; output J plane
va1ues,",0
"ngppipi;gppipi,","Number of GPP contour output I planes; output I plane
values,",0
'ngpp,","Number of GPP contour output times,",1
"gppyear,",""GPP contour output year,", 2008
"gppmonth,","GPP contour output month,",4
"gppday,","'GPP contour output day,",1
"gpphour,","GPP contour output hour,",0
"gpphour,","GPP contour output hour,",",0
"gppfrequ,","GPP contour output frequency unit,",1
"gppfreq,","GPP contour output frequency value,",}
"ngppv; gppv,","GPP contour output number of output variables for al1
selected IJ ceils; GPP contour output variable IDs for selected
location,",8,1,2,3,4,19,21,22,23
"Stat3DContour,","Do stat analysis for 3D contour,",0
```

"DV3DContour,","Derived Variables for 3D contour,",0
"ProbplumeContourstatus,","Status to write probability plume data to the contour output,",0
"writemettcontour,","Switch to write meteorology variable output to GPP contour,", 0
"gppoutputMetVars,","Numberof meteorology variables;Output meteorology variable ID to GPP contour,",0
"WriteICEContour,", "Write ice growth model output Variables,",0
"WriteWaveContour,", "Write wave model output variables,",
"WriteTransportContour,","Write TRM mode1 internal variables to contour output,",0
"WriteWQMContour,", "Write WQM mode1 internal variables to contour output,",0
"WriteSFMContour,","Write SFM mode1 internal variables to contour output,",0
"WriteWQADDContour,","Write WQADD mode1 internal variables to contour output,",0
"WriteGAMContour,", "Write GAM mode1 internal variables to contour output,", 0
"WriteENMContour,","Write ENM mode1 internal variables to contour output,",0
"WriteUDĆContour,","Write UDM mode1 internal variables to contour output, ", 0
"WriteCFMContour,","Write CFM mode1 internal variables to contour output,",0
"WritestMcontour,","write STM mode1 internal variables to contour output, ", 0
"WriteMGMContour,","Write MGM mode1 internal variables to contour output,",0
"WriteCKMContour,","Write CKM mode1 internal variables to contour output,",0
"WritePTMContour,","Write PTM mode1 internal variables to contour output,", 0
\# \# 16: Qualview velocity field output variables,
\#
"icvf,","Velocity field output for Qual view selector,", 0
\#
\# 17: Qualview contour output variables,
\#
"icnt,","Qual View contour output selector,", 0
\#
\# 18: Current meter type output variables,
\#
"idcm,","Current meter type output selector,", 0
\#
\# 19: TMDL output Variables,
\#
"iTML,","TML output selector,",0,1.1
\#
\# 20: oil Spil output variables,
\#
"iSVF,","Oi1 Spil1 output selector,",0
\#
\#21: User defined output variables 1,
\#
"iudo1,","User defined variable output selector1,",0
\#
\#22: User defined output variables 2,
\#
"iudo2,", "User defined variable output selector2,",0
\#
\#23: User defined output variables 3,
\#
"iudo3,","User defined variable output selector3,",0
\#
\#24: User defined output variables 4,
\#
"iudo4,","User defined variable output selector4,",0
\# \#25: User defined output variables 5,
\#
"iudo5,","User defined variable output selector5,",0
\#
\# 26: NCF NETCDF output variables,
\#
"iNCF,","NETCDF output selector,",0
\#
\# 27: CFD output variables,
\#
"WriteCFDOutput; WriteCFDOutputS,", "Switch to Turn on CFD output; Ouput status,",0,0
\#
\# 28:
Initial conditions; constant and spatial data,
\#
"iicff,","Initial condition far field file use,",0,2.5,27
"icffile,","Initial condition far field file,","No_Data_File,"
"icDosTInterpolate,","Do spatial and Temporal Interpolation,",0
"RestartToleranceTime,","Time toloerance for using restart file,",0
"AdjustICData,","Adjust initial conditoin data using data before the mode1
simulation time',",1
"NumInterpSerarchcycles,", "Number of smoothening cycles,",1
"DoEightByEightSearch,","Switch to activate 8 nearby cel1s approach,",1
"Smoothcoefficient,","Factor to control parent cel1 dependency,",0
"IPIStart,","Interpolation starting I ce11 index,",1
"IPIEnd,","Interpolation ending I cel1 index,",250
"IPJStart,",","Interpolation starting J cel1 index,",1
"IPJEnd,","'Interpolation ending J cell index,", 50
"DoRecursiveSmoothening,","Do recursive smoothening on all ce11s,",0
"ICInterpolationScheme,","Initial condition interpolation scheme,",0
"IDWPOW,", "Power for interpolation,",2
"ICGeoFiléStatus,","Initial Condition Geo File Status,", 0
"ICGeoFileName,","Initial Condition Geo File Name,","No_Data_File,"
"WFNorth," "Weighting factor in the north direction",",1
"WFSouh,",","Weighting factor in the south direction ,",i
"WFWest,",","Weighting factor in the west direction ,", 1
"WFEast,","weighting factor in the east direction ,", 1
"WFNorthWest,",",Weighting factor in the north west direction ,", 1
"WFNorthEast,",","Weighting factor in the north east direction ,",", 1
"WFSouthwest, ", "Weighting factor in the sout westh direction ,",", 1
"WFSouthEast,"," "Weighting factor in the south east direction ",",1
"ICGeoStnFilestatus,","
"ICGeoStnFilename,","Field data station look up file
name,","No_Data_File,"
"USeRT,'","Use response temperature for background temperature,",1
"UseStnBĠTemp,","Use field data station for setting up background
temperature,", 0
"QuadInterpolationType,","Interpolation method for quadrilateral shape,",1
"DopointInterpolation,", "Use field station location for point
interpolation method,", i
"UseConstituentData,"," "Use constituent data only from restart file,",0
"Useonlyvelocities,","Use only velocities and elevation,",0
"ConstituentStartTime,","Constituent start time from restart file,", 39554
"Fie1DataDepthType,","Field data depth measurement type,",1
"VBUseNumConstituents,", "Number of constituents,",0
"UseTVICData,","Use time varying initial condition data,", 0
"nicp,","Number of initial conditon points,", 2
"icpnm,","Constituent name; User does not change the name or the "order," "I_Temp,I_Saln
"icpid,",","Initiā condition id,",1,2
"ict,","Initial condition data type,",4,4
"icdsg,","SSFlow station number to be used for the specific
constituent,",1,1
"icifn,","File name for using it when ict value is set to $2, "$,
"icifn_1,","File name for using it for initial condition
1,","No_Data_File,"
"iccifn_2,","File name for using it for initial condition
2,","No_Data_File,"
"icv,",""Initīal condition constituent value,",-99,-99
"icu,","Initial condition constituent unit when ict is set to 1,",-99,-99
"icstd,",","Initial condition start date,","04/01/2008,", "04/01/2008,"
"icstt,",", Initial condition start time,","00:00,","00:00,"
"icxst,"',"Initial condition x starting'location specified as I index,", 1,1
"icxend,","Initial condition x ending location specified as I
index,",250,250
"icjst,"," Initial condition y starting location specified as j index,",1,1
"icjend,","Initial condition y ending location specified as j
index,", 50,50
"ickst,","Initial condition z starting location specified as k
index,","999,999
"ickend,","Initial condition z ending location specified as k index,",-
999,-999
"icswtype,","'Initial condition type,",0,0
"ictvtype,","Initial condition time varying type,", 0,0
\#
\# 28: Initial conditions, Profile data,
\#
"kmax,","number of k layers,", 50
"504.066,","Profile value at $k=1, ",-99,-99$
"503.066,","Profile value at k = 2,",-99,-99

"dsgstd, ", "Boundary Condition Start Date,","04/01/2008,",04/01/2008	
	隹
	Bo
	dsgst,", "Starting Grid Cel1 Index in x-Direction,", 173,173
	Ending Grid Cell Index in x-Direction, ",173,173
	"'jdsgst,", "Starting Grid Cell 1 Index in y-Direction,",35,35
	Ending Grid Cell Index in y-Directio
	"kdsgst,","Starting Vertical Layer Number in z-Direction,",-999,-999 : КВ
	"kdsgend " "Ending Vertical Layer Number in z-Direction " -999,-999 : KB
	"dsgcolor,", "Selected Region Color,",7993779,7993779
	grangess," "Selected Region Display Status
	"'dsgdr,", "Recirculation Boundary Condition Number,", 1,1
	"
	"hdsgm,", "Use Momentum Distribution for Vertical Discharge, ", 1,1 : Area
	"fdsgd,","'Hydrodynamic Flow / Load,",0,0 : Along x-Direction
	dsgm,","'Hydrodynamic Mode,",2,2 : Flow Rat
	"fdsgu,", "Hydrodynamic Mode Unit,",3,3 : gpm
	"sdsg,", "Discharge Conduit Shape,",-99,-99 : Not Used
	"pdsg,","Discharge Conduit Angle from Positive z-Axis,",-99, Not Applicab
	"tdsg, ", 'Discharge Conduit Angle from Positive x-Axis,",-99, Not Applicable
	"1dsg,","Discharge Conduit Length in meters,",-99,Not Applic
	"wdsg,","Discharge Conduit width in meters,",-99, Not Applicable
	"dsgnp,", "Number of Ports in the Discharge Conduit,", -99, Not Applicable
	"qdsg,", "Value to be Used for Flow Rate, ",0,0 : Use Existing Flow Rate
	dsgstructurew,",'"Structure Width,', -99, Not Applicable
	"dsgstructureu,","Structure Width Units,",-99, Not Applicable
	gFlowExp,", "Flow Exponent,",-99,Not Appli
	"dsgFlowCoeff,", "Flow Coefficient,", -99, Not Applicable
	"dsgFlowMode, ", "Hydrodynamic Mode, ", -99, Not Applicable
	"dsgFlowUnit,","Hydrodynamic Mode Unit,",-99, Not Applicable
	"dsgFlowValue, ${ }^{\text {c }}$, Hydrodynamic Mode Value, , -99, Not Applicable
	"dsgFlowheadDiffFw,", "Head Difference for Flow withdrawal Usi
	Stru, ,-99, Not Applicable "dsgFlowHeadDifffwUnits,","Heade Difference Units for Flow withdrawal,",-
	99,Not Applicable
	, Not App
	Struc, ",-99, Not Applicable
	"dsgFlowHeadDiffFDUnits,", "Head Difference Units for Flow Discharge,",-
	99,Not Applicable
	"dsgrt,","Hydrodynamic Mode Value Adjustment Factor,",-99, Not Applicable
	"dsgrc(i_Temp), ", Temperature Data Type, ,0,0 : (I_Temp) Concentration
	"dsgvu(I_Temp),","Temperature Unit / Status,", -99,Not Applicable
	"dsgv(I_Temp),", "Temperature Value,", -99, Not Applicable
	"dsgrc(I_Saln), ", "Salinity Data Type,",0,0 : ($\mathrm{I}_{\text {_Saln) }}$ Concentration
	"dsgvu(I_Saln),","Salinity Unit/ Status,",-99, Not Applicable
	"dsgv(I_Saln),","Salinity Value,", -99, Not Applicable
	"dsgrc(I_IDye),", "Instantaneous Dye Data Type,",0,0 : (I_IDye)
	Concentration
	"dsgvu(I_IDye),","Instantaneous Dye Unit / Status,", -99, Not Applicable
	"dsgv(I_IDye), "Instantaneous Dye value, , -99, Not Applicable
	"dsgrc(I_CDye),","Continuous Dye Data Type,",0,0 : (I_Cdye) Concentration
	"dsgvu(I_CDye),","Continuous Dye Unit / Status,", -99,Not Applicable
	"dsgv(I_CDye),", "Continuous Dye Value,", -99, Not Applicable
	"dsgrc(I_Exst),", "Excess Temperature Data Type,",0,0 : (I_Exst)
	oncentrati
	"dsgvu(I_Exst),","Excess Temperature Unit / Status,", -99,Not Applicable
	"dsgv(I_Exst),","Excess Temperature Value,",-99, Not Applicable
	"vbuse2,", "Number of ssFlows for Current Boundary; BC Index,",1, 6
	"vbuse3,","boundary condition mode,","Discharge,",Discharge
	"dsgm, ", "Boundary Condition Mode, ",0,0 : Discharge
	"dsgss,", "Boundary Condition Status,",1,1
	"dsgnm,",'"Boundary Condition Name, ", "BBnPP_Ou, ", BBnPP_Ou
	"dsgdt(1),","Input Data Type for Hydrodynamics,",1,1 : Constant
	"dsgdt(2),","Input Data Type for Transport and Water Quality,",1,1
	Constant
	"dsgifn(1),","TVD Input File Name for
	Hydrodynamics,", "No_Data_File,", No_Data_File
	"dsgifn(2),", "TVD Input File Name for Transport and water
	Qualit,", "No_Data_File,", No_Data_File
	"dsgqfnst,","Use Qualifier File for Transport and Water Quality, ", 0,0
	"dsgqfo,","Qualifier File Name for Transport and water Qualite
	Qdsgip(1), ", "Time Varying Input Data Interpolation Scheme for H, ", 0,0 : No
	Interpolation
	"dsgip(2),","Time Varying Input Data Interpolation Scheme for w, ", 0,0 : No
	Interpolation "dsgdc,","Grid Domain Type,",3,3 : 3D Mode7

\$ Rates and Constants for GEMSS-CFM
\$1.
"iCFM,","Bacteria Mode1: Switch; Number of Bacterias; Number of parameters
for Each Bacteria; Number of regions,", $0,0,0,0$
\$
\$ Rates and Constants for GEMSS-UDF

"iUDC,", "User Defined Mode1: Switch; Number of variables; Number of
parameters for Each Coliform; Number of regions, ", 0, 0,0,0

$\$$ Rates and Constants for GEMSS-ENT
\$
"iENT,","Entrainment Mode1: Switch; Number of Entrainments; Number of Paraments for Each Variables; Number of regions, ", 0, 0, 0, 0
\$
\$ Rates and Constants for GEMSS-STM

"istc,","Sediment Transport Mode1 Computations: Switch; Number of
Entrainments; Number of Paraments for Each Variables; Number of
regions,",0,0,0,0
\$
$\$$ Rates and Constants for GEMSS-MGM
\$
"iMGM,","Macrophytes Mode1: Switch; Number of Macrophytes; Number of
Variables for Each Macrophytes; number of regions, ", 0,0,0,0

\$ Rates and Constants for Chlorine Kinetics module-CKM
\$
"iCKM,", "Chlorine Kinetics Module: Module tpe; Number of variables; Number of parameters for each variable; Number of regions,",0,0,0,0
\$1.
\$ Particle Transport Variables for GEMSS-PTM,
\$
"iPTM,","particle transport mode1 computations,",0,0
\$
\$ Misce11aneous data,
\$
"vbuse1,","Number of columns and rows,",4,0

Scenario 03

\$GEMSSMode1Resu7ts, 32
\$GEMSS-SHWETControlFile, 4.24
\$Creation Date: 4/16/2008
\$Waterbody Name: Susquehanna 3
\$Modeler Name: SP
\#
\# 1: Scenario variables,
\#
"IntGDS,","Option to use GEMSS data structure,", 1
"Scenario,"," Scenario file path and name,","C:\GEMSS \APPS\Susquehanna
3\Output\Scenario 03_01 NC,
"DoText2MDBConversion,","Use Scenario Output Direct Database converion,",1,1
"ZipoutputFile,","zip text output files after creating the database,",0,0
"DoCompUsingGEMSSOutput,","Run Model Using Existing GEMSS Contour Output
Text Files,", 0
"GEMSSHDMInputFile,","Existing GEMSS Contour Output Header Text
Files," " "
\#
\# 2: Grid variables,
\#
"igrid,","Switch to read grid data from a file,",1,1
"GridFile,","Grid file name,","C:\GEMSS ${ }^{\text {(APPS }}$ Susquehanna
$3 \backslash$ Grid\Susquehanna River 05’ 47̇4Min.g3g,","4/23/2008 12:36:08
PM,","4/28/2008 12:20:10 PM,"
"InputHDatumUnit,","Input grid data is in geographic coordinate system switch,",0
"UseLinearConversionIn,","Use linear conversion for input grid data,",1
"cstypeIn,","Input coordinate conversion mode,",0
"cscodeIn,","'Input coordinate conversion zone number,", 0, None
"csdatumin,", "Input UTM datum,",0
"InputVDatumUnit,","Input grid data is in geographic coordinate system
switch,",0
"OutputHDatumUnit,", "Output grid data is in geographic coordinate system switch,",0
"UseLinearConversionOut,","Use linear conversion for output grid data,",1
"cstypeout,","'Output coordinate conversion mode,",0
"cscodeout,"," "Output coordinate conversion zone number,", 0, None
"csdatumOut,", "Output UTM datum,",0

```
"OutputVDatumUnit,","Output grid data is in geographic coordinate system
switch,",0
"iupmgrid,","Switch to set up different k layers,",0
"km_p,","Vertica1 array size,",-99
"nzds,"',"Number of vertical jayer domains,",-99
"nzdstr,","Starting vertical layer number for each domain,",-99
"nzend,","Ending vertical layer number for each domain,",-99
"dzd,","Layer thickness in each domain,",-99
"igpsfmt,","Switch to write grid file gps format for use in ArcView,",0
"elioption,","switch to Use TVD From Boundary Condition File or Initial
elevation,",'0
"eli,","Initial elevation,",489.8
"iwbs,","Waterbody switches,", 1
"eldatum,","Reference elevation of 3rd layer in meters,",0
"UseSigmastretching,","Switch to Use Sigma stretching,",0
"NSLeve1,","Number of Sigma Levels,",0
"SigDistType,","Sigma Layer Distribution type,",0
"Sleve1,","User Defined Sigma Distribution,",0.0
"ZtoSigmaBCDepthTransform,","Use BC Depth Transformation from vertical to
Sigma Leve1,",0
"SmoothBathy,","Switch to Perform Bathymetry Smoothening,",0
"S1pMax,","Maximum A1lowable Slope for bathymetry smoothening,",0
'NSmoothCycle,","Number of Smoothening Cycles,",0
######################################################################
#3: Meteorological variables,
######################################################################
"MetDataType,","Switch to use Meteorological time varying data; vB Use
verion; Number of Meteorology variables,",0,2.2,14
"metss,","Use Meteorological data in current simulation status,",1
"Metfilei,","Meteorological time varying data input file
name,","No_Data_File,"
"metinterp,","Switch to perform interpolation on met data,",0
"ievap;EvapscaleFactor,","Switch for evaporation;Evaporation scale
facotr,",1,1
"iwndhyd,","Use wind in hydrodynamics computations,",0
"ta,",","temperature of air C,",21,0
"td,'","Dew point temperature c,",13,0
"twb,","Wet bulb temperature C,",13,0
"rt,","response temperature C,",20,0
",phi,'","Wind direction degrees,",90
"wad,"',"Wind speed m/sec,",5,0
"cc,","cloud coverage octal,",2
"so1rad,","Solar radiation W/m^2,",120,0
"ps,","Atmoshpheric pressure mm of'Hg,",760
"ishe,","Surace heat exchange method,",1
"KEMethod,","Method to Compute K and E,",0
"cshe,","Coefficient of surface heat exchange w/m2/c,",13.71
"te,","'Equlibrium temperature C,",34,1
"secchi,","Secchi depth; light transmission depth m,",-99
"rsts,","Vegetative and Topographic Shading Factor;'0'to 1.0,",-99
"wscoef',","wind sheltering coefficient; 0 to 1.0,",-99
"iwsf,","wind speed function,",1
"MetInterpolationMethod,","Met Interpolation Method,",0
"IDWPOW,","Exponent value'for inverse weighting scheme,",0
"MetVarInterpSwitch;MetVarInterp,","Met Individual1 interpolatey switch
and interpolation methods,",0
and interpolation methods,,o
***********************************************************************
* Meteorological Scale Factor Variables,
**********************************************************************
"UseMetRegionSF;MetRegionSFSS,","Met factor switch,",0,0
***********************************************************************
* Meteorological Dynamic Shading Variables,
**********************************************************************
"UseDSHDRegionSF;DSHDRegionSFSS,","Met dynamic shading switch,",0,0
*************************************************************************
* Ice1 Growth Mode1 Variables,
**************************************************************************
"UseIGMode1;UseIGMode1Status,","Switch to control the use of ice growth
mode1 and status,",0,0
***********************************************************************
* Wave Mode1 Variables,
**********************************************************************
"iwvc;iwvcss,","wave mode1 activation switch and status,",0,0
######################################################################
##4###################
#########################################################################
"itrc,","Transport switch; computation status; number of variables,",1,1,5
"iwqc,",'"water quality mode1 type; computation status; number of
variables,",0,0,0
"iwqaddc,","Water quality ADD model switch; computations status; number of
"iwqaddc,","Water
```

```
"iGAMC,","Algae mode1 computations; status,",0,0
"nGAMs,","Number of algae,",0,1
"UseGAMInsideWQM,","Use Generalized Algae Model inside Water Quality
Mode1,",0
"isnec,","Sediment nutrient exchange computations,",0,0
"iPTM,","Particle transport mode1 computations,",0,0
"istc,","Sediment transport mode1 computations,",0,0
"nstcs,","Number of sediment transport type,",0,1
"ientc,","Entrainment computations,",0,0
"nezones,","Number of entrainment zones,",0,1
"iatc,","Optiona1 to add more constituents,",0,0
"natc,","Number of additional constituents,",0,1
"icfmc,","Coliform Bacteria Mode1 computations,",0,0
"ncfmcs,","Number of coliform bacteria type,",0
"iCKMC;iCKMCss,","Chlorine kinetics Mode7 Computations and status,",0,0
"nCKMC,","Number of chlorine kinetics type,",0
"iMGM;iMGMss,","Macrophyte grouth mode1 computations and status,",0,0
"nMGMS,","Number of macrophyte type,",0,1
"UseMGMInsideWQM,","Use Macrophyte Grouth Mode1 inside water Quality
Mode1,",0
"WriteTransportOutput,","Write TRM model internal variables to GEMSS
output output,",0
    "WriteWQMOutput,","Write WQM mode1 internal variables to GEMSS output
output,",0
"WriteSFMOutput,","Write SFM model internal variables to GEMSS output
output,",0
"WriteWQADDOutput,","Write WQADD model internal variables to GEMSS output
output,",0
"WriteGAMOutput,","Write GAM mode1 internal variables to GEMSS output
output,",0
"WriteENMOutput,",'Write ENM mode1 internal variables to GEMSS output
output,",0
"WriteUDCOutput,","Write UDM mode1 internal variables to GEMSS output
output,",0
"WriteCFMOutput,","Write CFM model internal variables to GEMSS output
output,",0
"WriteSTMOutput,","Write STM mode1 internal variables to GEMSS output
output,",0
"WriteMGMOutput,",'Write MGM model internal variables to GEMSS output
output,",0
"WriteCKMOutput,","Write CKM mode1 internal variables to GEMSS output
output,",0
"WritePTMOutput,","write PTM mode1 internal variables to GEMSS output
output,",0
"cnum,","Number of Constituents,",5
"Index,","Mode1 Name,","Identifier; Cannot be Modified,","User Given
Name,","Activity of Constituent,","Output Time,","Units,","Transport
Switch,"
"C0,",'"Transport,'", I_Temp,"'I_Temp,",1,1,1,1
"C1,'',''Transport,'",I_Saln,"I_Saln,',1,1,0,1
"C2,","Transport,",I_1Dye,"I_1Dye,",1,1,0,1
"C3,","Transport,",I_CDye,"I_CDye,",1,1,0,1
"C4,","Transport,",I_Exst,"I_Exst,",1,1,1,1
######################################################################
# 5: Mode1 switches,
######################################################################
"Use3DMode1,","Switch to contro1 3D mode1 simulations,",1,3.7
"issflw,","switch on/off ssflow input data that is available in the
sscontrol.csv,",1
"itrcs,",",transport computation algorithm switch,",1
"udwtf,"',"advection theta in z-direction,",0
"vdwft,"',"diffusion theta in z-direction,",0
"HOTSIniTime,","HOTS initization time period,",-99
"itrbs,","Turbu7ence scheme,",1
"itrbsm,","Turbulence sub mode`,",1
"itrbparam,","Turbu7ence parameters,",0,1,1,2.44,2.44,0.9,0.5,1,2.53
"imxls,","Mixing length scheme,",1
"ihmdcx,","momentum diffusion coefficient scheme selector in x-
direction,",2
"ihmdcy,","momentum diffusion coefficient scheme selector in y-
direction,",2
"hmdcx,","momentum diffusion coefficient in x-direction
m2/sec,",0.00584,1.1
"hmdcy,","momentum diffusion coefficient in y-direction
m2/sec,"'0.00584,1.1
"prnm,", "Prandt1 number,",10
"ihtdcx,","transport diffusion coefficient scheme in x-direction,",3
"ihtdcy,","transport diffusion coefficient scheme in y-direction,",3
"htdcx,","transport diffusion coefficient in x-direction m2/sec,","
'htdcy,","transport diffusion coefficient in y-direction m2/sec,",',
"idnf,","Density function selector,",2
```

```
"ideep,","Compressibility usage,",1
"ichezy,","Chezy coefficient se1ector,",0
"i1chezy,","Limiting Chezy selector,",0
"chezy,","Chezy ,coefficient; Czo;do;n,",40,,
"WSCoeff'ype,","Wind stress coefficient'type,",0
"WSConstA,","Wind stress constant A,",0.8
"WSConstB,","Wind stress constant B,",0.065
"icors,","Coriolis force selector,",0
"RefLatOption;RefLat,","Referene Latitude Option; Reference Latitude
va1ue,",0,40
"ivaterms,","Vertical acceleration terms,",0
"idbg,","Debug switch,",0
"tvdscheck,",","time varying data consistency check,",0
"iWDLayers,","Use wetting and drying of layers,",1
"7raddthk,","Layer addition thickness m,",0.8
"lrsubthk,"","Layer subtraction thickness m,",0.8
"StabilizeInversionF1ag,","StabilizeInversionFlag,",0
"InvCoeff,","Invcoeff,",-99
"iused1DMOde'1,","Switch to use 1D mode1; Switch grid has 1D mode1,",0,0,1
"ComputeStat,","Statisdtical method to output variables,",0
"StatFreq;StatUnit,","Statisdtical frequency and unit to write output
variables,",0,0
"StatStarttime,","Start time for statistical computations,",39539
"StatEndTime,","End time for statistical computations,",39543
"ReturnTime1DDn,","Return time,",0
"UseZCheck,","Control z calculations,",0
"zStabilityFactor,","Stability factor for z,",0
"CheckTimeStepUsingNewValues,","Redo computations using new time step
values,",0
"UseWindRamp,","Use time ramp function for larger wind speeds,",0
"NumWindRampLeve1s,","Number of time step intervale for the wind ramp
function,",1
"RampLimitwindSpeed,","Limiting wind speed for the usege of time ramp
function,",0
"WriteBCTVD,","Write ,"boundary condition time varying data files in time
Series output' files,",0
"WriteBCLoads,","Write boundary condition data as loads in time series
output files,",0
"WriteSDTVD,","Write sediment data time varying data files in time series
outoput files',",0
"SSDataType,","Source and sinks data type for use in boundary conditon
data writing procedure,",1
"iDo1DHDM,","Do 1D hydrodynamics,",1
"iSetdt1DAsdt,","Set 1D model time'step same as 3D model,",0
"ZAmpliticationFactor,","Z amplification factor for stability checks,",4
"CGCLimit1,"","Conjugate Gradient Computation Error Limìt 1,",1,-7
"CGCLimit2,","Conjugate Gradient Computation Error Limit 2,",'1,,-9
"UseRampFlowFunction,","Use ramp flow function to stabilize the model
simulation,",1
"NumRampFlowBCs,","Number of ramp flow boundary conditions,",6,
"BCNum1,","Ramp fiow values for boundary condition
number1,",1,"Upstream",1,12482,1,6,1
"BCNum2,","Ramp flow values for boundary condition
number2,",',","Downstream",1,12361,1,6,1
"BCNum3,'",',Ramp flow values for boundary condition
number3,",3,"SSES_In",0,0,0,0,1
"BCNum4,",",'Ramp flow values for boundary condition
number4,',',4,"SSES_Ou",0,0,0,0,1
"BCNum5,","Ramp f7ow values for boundary condition
number5,"',5,"BBNPP_In",0,0,0,0,1
"BCNum6,',",'Ramp flow values for boundary condition
number6,"',6,"BBnPP_Ou",0,0,0,0,1
"SaveCSDataInArray,","Convert cross-section data to depth vs width
array,",0
"DelHforcs,","Depth interva1 for depth vs width array computations,",0.1
"HDMVersionNumber,","Use far-field/near-field modeling approach,",0
"CapitolLakeVarsSwi,","Switch for Capitol lake variables,",0,0
#########################################################################
# 6: Simulation time variables,
#########################################################################
"stryear,","Mode1 start time year,",2008
"strmonth,","Mode1 srart time month,",4
"strday,","Mode1 start time day,",1
"strhour,","Mode1 start hour,",0
"strmin,","Mode1 start minutes,",0
"endyear,","Model end time year,",2008
"endmonth,",","Mode1 end month year,'",4
"endday,","Mode1 end day,",21
"endhour,","Mode1 end hour,",0
"endmin,","Mode1 end minutes,",0
"MaxTimeslots,","Maximun number of output time slots used in outputs,",2
```

"idltt,","Time step control switch,",0,1
"d7tminm,","Minimum time step,",10
"d7tlimit,"," "Start Up time step,", 60
"omega,","Time step under relaxation factor,", 0.75
\# \# 7: Derived variables
\#
"idv,","Option to use derived variables computations,", 0
\#
\# 8: Probability Plume variables,
\#
"ComputeProplume,","Computation of Probability Plume,",0
\#
\# 9: Snapshot output variables,
\#
"isnp,","Snapshot output selector,",1,2.2
"isnpss,","Ouput status,",1
"snpfile,","Snapshot output file path and
name,","C:\GEMSS\APPS\Susquehanna $3 \backslash$ Output \backslash Scenario 03_01 NC.snp,"
"imetInfo,","Switch to write meteorology to snapshot output,",0
"ivolumebalance,"," volume Balance switch,",1
"imassBalance,","'mass Balance switch,",0
"nsnp,","Number'of snapshot output times,", 2
"snpyear,","Snapshot output year,",2008,2008
"snpmonth,",","Snapshot output month,",4,4
"snpday,","'Snapshot output day,",1,3
"snphour,","Snapshot output hour,",0,0
"snpmin,", "Snapshot output minutes,",",0,0
"snpfrequ,"," Snapshot output frequency unit,", 1, 2
"snpfreq,", "Snapshot output frequency value,",",1,1
"nsnpkpk;kpk,","Number of snapshot output K planes; output K plane
values,",1,51
"nsnpkpkv; kpv,", "Number of snapshot output variables for selected k
planes; output variable ID values,",6,1,19,20,21,22,23
"nsnpjpji;jpj,","Number of snapshot output J planes; output J plane values, ", 0
"nsnpjpjv;jpv,","Number of snapshot outputvariables for selected J planes;
output variable ID values,",0
"nsnpipi;ipi,","Number of snapshot output I planes; output I plane
values,",'0
"nsnpipiv;ipv,","Number of snapshot output variables for selected I
planes; output variable ID values,", 0
"nsnpijpij,","Number of snapshot output I J points,",0
"snpijpi;snpijpj;snpijpnm,","Snapshot output
information,",ICe11,JCe11,Location names
"nsnpijpv;ijpv,","Snapshot output number of output variables for all
selected IJ cells; output variable IDs for all selected IJ cells, ", 0
"HydVar,","Hydrodynamic constituent name,",Surface Elevation, U -
velocity, V - Velocity, W - Velocity, Density, Momentum Diffusivity, Chezy, Flow
Rate
"hdunits,","Constituent unit type, ", $0,0,0,0,0,0,0,0$
"hdamp,","Scaling factor,",100,1,1,1,1,10000,1,1
"hddigits,","Number of digits to print in the snapshot,",2,2,2,2,2,2,2,2
Scaling factor, No. of digits, ConstituentID, Constituent name, Output
Type, Units
1,2,I_Temp,I_Temp,1 : Concentration,0 : C
1,2,I_Saln,I_Saln,1 : Concentration,0 : ppt
1,2,I_1Dye,I_1Dye,1 : Concentration,0 : mg/1
1,2,I_CDye,I_CDye,1 : Concentration,0 : mg/1
1,2,I_Exst,I_Exst,1 : Concentration,0 : deg C
"Stat3DSnapshot,","Do stat analysis for 3D Snapshot,",0
"DV3DSnapshot,","'Derived Variables for 3D shapshot,",0
"ProbplumesnapshotStatus,","Status to write probability plume data to the snapshot output,",0
"WriteMetSnapshot,","Switch to write meteorology variable output to snapshot,",0
"SnpoutputMetVars,","Numberof meteorology variables;Output meteorology variable ID to snapshot,",0
"WriteICESnapshot,","Write ice growth mode1 output Variables,", 0
"WriteWaveSnapshot,","Write wave mode1 output variables,",0
"WriteTransportSnapshot,","Write TRM mode1 internal variables to snapshot output,", 0
"WriteWQMSnapshot,","Write WQM mode1 internal variables to snapshot
output,",0
"WriteSFMSnapshot,","Write SFM mode1 internal variables to snapshot
output,",0
"WriteWQADDSnapshot,","Write WQADD mode1 internal variables to snapshot output,",0
"WriteGAMSnapshot,", "Write GAM mode1 internal variables to snapshot
output,",0
"WriteENMSnapshot,","Write ENM model internal variables to snapshot output,",0
"WriteUDCSnapshot,", "Write UDM model internal variables to snapshot output,",0
"WriteCFMSnapshot,", "write CFM model internal variables to snapshot output,",0
"WriteSTMSnapshot,","Write STM model internal variables to snapshot output,", 0
"WriteMGMSnapshot,","write MGM mode1 internal variables to snapshot output,",0
"WriteCKMSnapshot,", "write CKM model internal variables to snapshot output,",0
"WritePTMSnapshot,","Write PTM model internal variables to snapshot output,",0
\#
\# 10: Console output variables,
\#
"icle,","Console output selector,",1,1.1
"icless,",","Ouput status,",1
"ncle,","Number of console ouput times,",2
"cleyear,","Console output year,", 2008,2008
"clemonth,",", Console output month,",4,4
"cleday,","'Console output day,",1,1'
"clehour,", "Console output hour,", 0,2
"clemin,"," "Console output minutes,",0,0
"clefrequ,",","Console output frequency unit,", 0,0
"clefreg,", "Console output frequency value,"', 1,10
"nclep,","Number of Console output I J points,",1
"clei;clej;clenm;clenijpk;clenijpv,","Console output
information,", ICe11, JCe11, Location names, Number of K, Number of Variables
"clep1,","'Point 1,",119,17,"C1,",1,1
"clek1,"," "Console output number of K values and K layer values for point
1,",1,30'
"clev1,","Console output number of output variables and variable IDs for
point 1,",1,1
"Stat3DConsole,","Do stat analysis for 3D Console,", 0
"DV3DConsole,"',"Derived variables for 3D Console,", 0
"WriteICEConso1e,","Write ice growth mode1 output Variables,",0
"WriteWaveConsole,","write wave mode1 output Variables,",0
"WriteTransportConsole,", "Write TRM model internal varíables to console output,",0
"WriteWQMConsole,","Write WQM model internal variables to console output,", 0
"WriteSFMConsole,","Write SFM model internal variables to console output,",0
"WriteWQADDConsole,", "Write WQADD model internal variables to console output,",0
"WriteGAMConsole,",'"Write GAM mode1 internal variables to console
output,", 0
"WriteENMConsole,", "Write ENM model internal variables to console
output,",0
"WriteUDCConsole,", "Write UDM model internal variables to console
output,", 0
"WriteCFMConsole,", "Write CFM model internal variables to console
output,",0
"WriteSTMConsole,","Write STM model internal variables to console
output,",0
"WriteMGMConsole,", "Write MGM model internal variables to console output,", 0
"WriteCKMConsole,","Write CKM model internal variables to console output,",0

output,",0
\#
\# 11: Diagnostic output variables,
\#
"idgn,","Diagnostic output selector,",0
\#
\# 12: Restart output variables,
\#
"irst,","Restart output selector,",0
\#
\# 13: Time series output variables,
\#
"itsr,","Time series output selector,",1,4.2
"itsrss,"," 0 ouput status,",1
"tsrfile,","Time series output file path and

"ntsr,","Number of time steries output times,",1
"tsryear,","Time series output year,",2008
"tsrmonth,","Time series output month,", 4

```
"tsrday,","Time series output day,",1
"tsrhour,","Time series output hour,",0
"tsrmin,", "Time series output minutes,", 0
"tsrfrequ,","Time series output frequency unit,", 1
"tsrfreq,","'Time series output frequency value,",', 1
"ntsrp,","Number of time series output points,",11
"tsri; tsrj; tsrnm;tsrnijpk;tsrnijpv,","Time series output
information,", ICe11, JCe11, Location names, Number of K, Number of Variables
"tsP1,", "Point 1,",172,27,"T1,",30,0
"tsP2,","'Point 2,",166,26,"Т2,",0,0
"tsP3,"',"Point 3,"'159,25,"T3,",0,0
"tsP4,"',"Point 4,"',155,25,"T4,'",0,0
"tsP5,","Point 5,",151,25,"T5,",0,0
"tsP6,'"',"Point 6,'",148,25,"'т6,"',0,0
"tsP7,"',"Point 7,"',144,23,"'T7,'",0,0
'tsP8,","Point 8,",140,23,"T8,",0,0
"tsP9,","'Point 9,",136,21,"Т9,",0,0
"tsP10, "',"'Point 10,"',128,25, "'T11, ", 0,0
"tsp11,"',"Point 11,",'126,20,'"т12,", 0,0
"tsrk1,","Time series output number of \(K\) values and \(K\) layer values for
point
\(1, ", 30,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,2\)
6,27,28,29,30
"tsrk2,","דime series output number of \(K\) values and \(K\) layer values for
point 2,",0
"tsrk3,","Time series output number of \(K\) values and \(K\) layer values for
point 3,",0
"tsrk4,","Time series output number of \(K\) values and \(K\) layer values for
point \(4, ", 0\)
"tsrk5,","Time series output number of \(K\) values and \(K\) layer values for
point 5,",0
"tsrk6,","Time series output number of \(K\) values and \(K\) layer values for
point 6,", 0
'tsrk7,","Time series output number of \(K\) values and \(K\) layer values for
point 7",", 0
"tsrk8,","Time series output number of \(K\) values and \(K\) layer values for
point 8,",0
"tsrk9,","Time series output number of \(K\) values and \(K\) layer values for
point 9,",0
'tsrk10,"',"Time series output number of \(K\) values and \(K\) layer values for
point 10,",0
'tsrk11,","Time series output number of \(K\) values and \(K\) layer values for
point 11,", 0
"tsrv1,","'Time series output number of output variables and variable IDs
for point 1,",0
"tsrv2,","Time series output number of output variables and variable IDs
for point 2,",0
'tsrv3,","Tíme series output number of output variables and variable IDs
for point 3,",0
"tsrv4,","Time series output number of output variables and variable IDs
for point \(4, ", 0\)
"tsrv5,","Time series output number of output variables and variable IDs
for point 5,",0
"tsrv6,","Time series output number of output variables and variable IDs
for point 6,",0
"tsrv7,","Time series output number of output variables and variable IDs
for point 7,",0
"tsrv8,","Tíme series output number of output variables and variable IDs
for point 8,",0
"tsrv9,","Time series output number of output variables and variable IDs
for point 9,",0
"tsrv10,","'ime series output number of output variables and variable IDs
for point 10,",0
"tsrv11,","Time series output number of output variables and variable IDs
for point 11,",0
"Stat3DTimeSeries,","Do stat analysis for 3D time series,",0
"DV3DTimeSeries,","Derived Variables for 3D time series,",0
"ProbplumeTimesériesStatus,","status to write probability'plume data to
the time series output,",0
"WriteMetTimeSeries,","Switch to write meteorology variable output to time
series,",0
"TSOutputMetVars,","Numberof meteorology variables;output meteorology
variable ID to time series,",0
"WriteICETimeSeries,","Write ice growth mode1 output Variables,",0
"WriteWaveTimeseries,", "Write wave model output variables,", 0
"WriteTransportTimeseries,","Write TRM model internal variables to time
series output,",0
"WriteWQMTimeSeries,", "Write WQM model internal variables to time series
output,, 0
"WriteSFMTimeSeries,","Write SFM model internal variables to time series
output,",0
```

```
"WriteWQADDTimeSeries,","Write WQADD model internal variables to time
series output,",0
"WriteGAMTimeSeries,","Write GAM model internal variables to time series
output,",0
"WriteENMTimeSeries,","Write ENM model internal variables to time series
output,",0
"WriteUDCTimeSeries,","Write UDM model internal variables to time series
output,",0
"WriteCFMTimeSeries,","Write CFM model internal variables to time series
output,",0
"WriteSTMTimeSeries,","Write STM model internal variables to time series
output,",0
"WriteMGMTimeSeries,","Write MGM model internal variables to time series
output,",0
"WriteCKMTimeSeries,","Write CKM model internal variables to time series
output,",0
"WritePTMTimeSeries,","Write PTM model internal variables to time series
output,",0
"itrn,","Time series transport output selector,",0
######################################################################
# 14: Vertical profile output variables,
######################################################################
"ivpf,","vertical profile output selector,",0,4
######################################################################
# 15: GPP contour output variables,
######################################################################
"igpp,","GPP output selector,",1,2.2
"igppss'","Ouput status,",1
"gppctmfi1e,","Contour output contour file path and
name,","C:\GEMSS\APPS\Susquehanna 3\Output\Scenario 03_01 NC_CTM.txt,"
"gpphdmfile,","Contour output header file path and
name,","C:\GEMSS\APPS\Susquehanna 3\output\Scenario 03_01 NC_HDM.txt,"
"gppgrdfile,","Contour output element file path and
name,","C:\GEMSS\APPS\Susquehanna 3\Output\Scenario 03_01 NC_GRD.txt,"
"writegppAtA11Surfaces,","Option to write output at al1 surface and
ce11s,",1
"ngppkpk;;gppkpk,","Number of GPP contour output K planes; output K plane
values,",0
"ngppjpj;;gppjpj,","Number of GPP contour output J planes; output J plane
va1ues,",0
"ngppipi;gppipi,","Number of GPP contour output I planes; output I plane
values,",0
"ngpp,","Number of GPP contour output times,",1
"gppyear,","GPP contour output year,",2008
"gppmonth,","GPP contour output month,",4
"gppday,",",GPP contour output day,",1
"gpphour,","GPP contour output hour,",0
"gppmin,","GPP contour output minutes,",0
"gppfrequ,","GPP contour output frequency unit,",1
"gppfreq,","GPP contour output frequency value,",6
"ngppv; gppv,","GPP contour output number of output variables for all
selected IJ ce11s; GPP contour output variable IDs for selected
location,",8,1,2,3,4,19,21,22,23
"Stat3DContour,","Do stat analysis for 3D contour,",0
"DV3DContour,","Derived variables for 3D contour,",0
"ProbPlumeContourStatus,","Status to write probability plume data to the
contour output,",0
"WriteMetContour,","Switch to write meteorology variable output to GPP
contour,",0
"gppOutputMetVars,","Numberof meteorology variables;Output meteorology
variable ID to GPP contour,",0
"WriteICEContour,","Write ice growth mode1 output variables,",0
"WriteWaveContour,","Write wave mode1 output variables,",0
"WriteTransportContour,","Write TRM model internal variables to contour
"WriteTran
"WriteWQMContour,","Write WQM model internal variables to contour
output,",0
"WriteSFMContour,","Write SFM model internal variables to contour
output,",0
"WriteWQADDContour,","Write WQADD model internal variables to contour
output,",0
"WriteGAMContour,","Write GAM model internal variables to contour
output,",0
"WriteENMContour,","Write ENM model internal variables to contour
output,",0
"WriteUDCCOntour,","Write UDM mode1 internal variables to contour
output,",0
"WriteCFMContour,","Write CFM model internal variables to contour
output,",0
"WriteSTMContour,",'"Write STM mode1 internal variables to contour
output,",0
```

"WriteMGMContour,","Write MGM mode1 internal variables to contour output,",0
"WriteCKMContour,","write CKM mode1 internal variables to contour output,",0
"WritePTMContour,","Write PTM mode1 internal variables to contour
output,",0
\#
\# 16: Qualview velocity field output variables,
\#
"icvf,","Velocity field output for Qual View selector,",0
\#
\# 17: Qualview contour output variables,
\#
"icnt,","Qual view contour output selector,",0
\#
\# 18: Current meter type output variables,
\#
"idcm,","Current meter type output selector,",0
\#
\# 19: TMDL Output Variables,
\#
"iTML,","TML output selector,",0,1.1
\#
\# 20: 0i 1 spi 1 output variables,
\#
"iSVF,", "oi 1 Spil 1 output selector, ", 0
\# \#21: User defined output variables 1 ,
\#
"iudo1,","User defined variable output selector1,",0
\# \#22: User defined output variables 2,
\#
"iudo2,","User defined variable output selector2,",0
\#
\#23: User defined output variables 3,
\#
"iudo3,", "User defined variable output selector3,",0
\#
\#24: User defined output variables 4,
\#
"iudo4,","User defined variable output selector4,",0
\#
\#25: User defined output variables 5,
\#
"iudo5,","User defined variable output selector5,",0
\#
\# 26: NCF NETCDF output variables,
\#
"inCF,","NETCDF output selector,",0
\#
\# 27: CFD output variables,
\#
"WriteCFDOutput; WriteCFDOutputS,", "Switch to Turn on CFD output; Ouput status,",0,0
\#
\# 28: Initial conditions; constant and spatial data,
\#
"iicff,","Initial condition far field file use,", 0, 2. 5, 27
"icffile,","Initial condition far field file,","No_Data_File,"
"icDoSTInterpolate,","Do Spatial and Temporai Interpolation,", 0
"RestartToleranceTíme,","Time toloerance for using restart fife,",0
"AdjustICData,","Adjust initial conditoin data using data before the model
simulation time,",1
"NumInterpserarchČycles,", "Number of smoothening cycles,",1
"DoFourByFourSearch,","Switch to activate 4 nearby ce17s approach,",1
"DoEightByEightSearch,","Switch to activate 8 nearby cells approach,",1
"Smoothcoefficient,","Factor to control parent cel1 dependency,", 0
"IPIStart,","Interpoiation starting I ce17 index,", 1
"IPIEnd,","Interpolation ending I ce71 index,", 250
"IPJStart,","Interpolation starting J cel7 index,", 1
"IPJEnd,","Interpolation ending J cel7 index,",50
"DoRecursívesmoothening,","Do recursive smoothening on all cells,", 0
"ICInterpolationscheme,","Initial condition interpolation scheme,", 0
"IDWPOW,", "Power for interpolation,", 2
"ICGeofiléstatus,", "Initial Condition Geo File status,", 0
"ICGeoFileName,","Initial Condition Geo File Name,","No_Data_File,"
"WFNorth,","weighting factor in the north direction,", 1
"WFSouh,",""weighting factor in the south direction ,",1
"WFWest,"',"weighting factor in the west direction ,", 1
"WFEast,"',"weighting factor in the east direction ,",1

[^5]\$
"iCKM,","Chlorine Kinetics Module: Module tpe; Number of variables; Number of parameters for each variable; Number of regions,", $0,0,0,0$

\$ Particle Transport variables for GEMSS-PTM,
\$
"iPTM,","particle transport mode1 computations,",0,0

\$ Misce11aneous data,
\$
"vbuse1,","Number of columns and rows,",4,0

Scenario 04

\$GEMSSMode1Results, 32
\$GEMSS-SHWETControlFile, 4.24
\$Creation Date: 4/16/2008
\$waterbody Name: Susquehanna 3
\$Modeler Name: SP
\#
\# 1: Scenario variables,
\#
"IntGDS,","Option to use GEMSS data structure,", 1
"Scenario,","'Scenario file path and name,","C:\GEMSS\APPS\Susquehanna
3\output\Scenario 04_01 NC,'
"DoText2MDBConversion,","Use Scenario Output Direct Database
converion, ", 1, 1
"ZipoutputFile,","Zip text output files after creating the database,",0,0
"Docompusinggemssoutput,","Run Mode1 Using Existing GEMSS Contour Output
Text Files,", 0
"GEMSSHDMInputFile,","Existing GEMSS Contour Output Header Text
Files,",","
\# \# 2: Grid variables,
\#
"igrid,","Switch to read grid data from a file,",1,1
"GridFile,","Grid file name,","C: \GEMSS\APPS\Susquehanna
$3 \backslash$ Grid \backslash Susquehanna River 05' 474Min.g3g,","4/23/2008 12:36:08
PM,","4/28/2008 12:20:10 PM,"
"InputhDatumunit,","Input grid data is in geographic coordinate system switch,",0
"UseLinearConversionIn,", "Use linear conversion for input grid data,",1
"cstypeIn,",","Input coordínate conversion mode,",0
"cscodeIn,"',"Input coordinate conversion zone' number,", 0 , None
"csdatumIn,", "Input UTM datum,",0
"InputVDatumunit,","Input grid data is in geographic coordinate system
switch, ",0
"OutputhDatumUnit,","Output grid data is in geographic coordinate system switch,",0
"UseLinearConversionOut,","Use linear conversion for output grid data,",1
"cstypeOut,",","Output coordinate conversion mode,",0
"cscodeout,",","Output coordinate conversion zone number,", 0 , None
"csdatumout,","Output UTM datum,",0
"OutputVDatumunit,","Output grid data is in geographic coordinate system switch, ", 0
"iupmgrid,","Switch to set up different k layers,",0
"km_p,","Vertical array size,",-99
"nzds,",",Number of vertical 1ayer domains,",-99
"nzdstr,",""Starting vertical layer number for each domain,",-99
"nzend, ", "Ending vertical layer number for each domain,",-99
"dzd,"," "Layer thickness in each domain,",-99
"igpsfmt,","Switch to write grid file gps format for use in Arcview,",0
"elioption,",","switch to Use TVD From Boundary Condition File or Initial
elevation,",’o
"eli,'","Initial elevation,",486.80
"iwbs,","Waterbody switches,", 1
"eldatum,","Reference elevation of 3rd layer in meters,",0
"UseSigmastretching,","Switch to Use Sigma stretching,",0
"NSLeve1,","Number of Sigma Levels,",0
"SigDistȚype,","Sigma Layer Distribution type,",0
"slevel,","User Defined Sigma Distribution,",0.0
"ZtoSigmaBCDepthTransform,","Use BC Depth Transformation from vertical to
Sigma Leve1,",0
"SmoothBathy,","Switch to Perform Bathymetry Smoothening,",0
"Slpmax,","Maximum Allowable Slope for bathymetry smoothening,",0
"NSmoothcycle,"," "Number of Smoothening cycles,", 0
\# \#3: Meteorological variables,
\#
"MettDataType,","Switch to use Meteorological time varying data; VB Use verion; Number of Meteorology variables,", $0,2.2,14$
"metss,","Use Meteorological data in current simulation status,",1 "Metfilei,","Meteorological time varying data input file
name,","No_Data_File,'
"metinterp,","Switch to "perform interpolation on met data,",0
"ievap;EvapscaleFactor,","Switch for evaporation;Evaporation scale
facotr,",1,1
"iwndhyd,",","Use wind in hydrodynamics computations,",0
"ta,","temperature of air C,",21,0
"td,","Dew point temperature C,",13,0
"twb,", "Wet bulb temperature C,",13,0
"rt,","response temperature $\mathrm{C}, \mathrm{",20,0}$
"phi,",","wind direction degrees,",90
"wad,","Wind speed m/sec,",5, 0
"cc,","Cloud coverage octal,", 2
"solrad,","solar radiation $\mathrm{w} / \mathrm{m} \wedge 2, ", 120,0$
"ps,","Atmoshpheric pressure mm of' Hg ,", 760
"ishe,","Surace heat exchange method,",1
"KEMethod,","Method to Compute K and E,", 0
"cshe,","'Coéfficient of surface heat exchange $\mathrm{w} / \mathrm{m} 2 / \mathrm{c}, \mathrm{"}, 13.71$
"te,","Equlibrium temperature C,",34,1
"secchi",","Secchi depth; light transmission depth m,",-99
"rsts,","'vegetative and Topographic Shading Factor;'0’to 1.0,",-99
"wscoef,'","Wind sheltering coefficient; 0 to $1.0, ",-99$
"iwsf,","Wind speed function,",1
"MetInterpolationMethod,","Met Interpolation Method,",0
"IDWPOW,","Exponent value'for inverse weighting scheme,",0
"MetVarInterpSwitch;MetVarInterp,","Met Individual1 interpolatey switch and interpolation methods, ",0

* Meteorological Scale Factor Variables,

"UseMetRegionSF; MetRegionSFSS,","Met factor switch,",0,0

* Meteorological Dynamic Shading Variables,

"UseDSHDRegionSF;DSHDRegionSFSS,", "Met dynamic shading switch,", 0,0 **
* Ice1 Growth Mode1 Variables,

"UseIGMode1; UseIGMode1Status,","Switch to control the use of ice growth mode1 and status,",0,0
**
* Wave Mode1 Variables,

"iwvc;iwvcss,","wave model activation switch and status,",0,0
\#
\# 4: Constituents,
\#
"itrc,","'Transport switch; computation status; number of variables,",1,1,5
"iwqc,"," "water quality mode1 type; computation status; number of
variables,", 0,0,0

variables,", 0,0,0
"iGAMC,","'A1gae mode1 computations; status,",0,0
"nGAMs,",'"Number of algae,",0,1
"UseGAMInsideWQM,","Use Generalized Algae Mode1 inside water Quality
Mode1,", 0
"isnec,"," "Sediment nutrient exchange computations,",0,0
"iPTM,",","Particle transport mode1 computations,", 0,0
"istc,","Sediment transport mode1 computations,",0,0
"nstcs,",","Number of sediment transport type,",0,1
"ientc,",","Entrainment computations,",0,0
"nezones,","Number of entrainment zones, ", 0,1
"iatc,",","optional to add more constituents,", 0,0
"natc, ",'"Number of additional constituents,", 0,1
"icfmc,","Coliform Bacteria Model computations,", 0,0
"ncfmcs,","Number of coliform bacteria type,",0
"iCKMC; ickMcss,","chlorine kinetics Mode1 computations and status,", 0,0
"nCKMC,","Number' of chlorine kinetics type,", 0
"iMGM;iMGMss,","Macrophyte grouth mode1 computations and status,",0,0
"nMGMS,","Number of macrophyte type, ", 0,1
"UseMGMInsidewQM,", "Use Macrophyte Grouth Mode1 inside water Quality
Mode1,",0
"WriteTransportOutput,","Write TRM mode1 internal variables to GEMSS
output output,",0
"WriteWQMOutput,", "Write WQM model internal variables to GEMSS output output,",0
"WriteSFMOutput,","Write SFM mode1 internal variables to GEMSS output output,",0
"WriteWQADDOutput,","Write WQADD mode1 internal variables to GEMSS output
output,",0
"WriteGAMOutput,","Write GAM mode1 internal variables to GEMSS output output,", 0
"WriteENMOutput,","Write ENM mode1 internal variables to GEMSS output output,",0
"WriteUDCOutput,","Write UDM model internal variables to GEMSS output output,",0
"WriteCFMOutput,","Write CFM model internal variables to GEMSS output output,",0
"WritesTMOutput,","Write STM model internal variables to GEMSS output output,",0
"WriteMGMOutput,","write MGM model internal variables to GEMSS output output,",0
"WriteCKMOutput,","Write CKM mode1 internal variables to GEMSS output output,",0
"WritePTMOutput,","Write PTM model internal variables to GEMSS output "utput,", 0
"cnum,","Number of Constituents,",5
"Index,",""Mode1 Name,","Identifier; Cannot be Modified,","User Given Name,","'Activity of Constituent,", "Output Time,","Units,","Transport
Switch,'
"C0,","'Transport,", I_Temp, "I_Temp,", 1, 1, 1, 1
"C1,","'"Transport,",', I-Saln, "I_Saln,", 1, 1,, 1
"C2,"',"Transport,",'I_1Dye,"I_7Dye,",1,1,0,1
"C3,",","Transport,",', I_CDye,"I_CDye,",",1,1,0,1
\#
\# 5: Model switches,
\#
"Use3DModel,","Switch to control 3D model simulations,",1,3.7
"issflw,","switch on/off ssflow input data that is available in the
sscontrol.csv,",1
"itrcs,","transport computation algorithm switch,",1
"udwtf,",","advection theta in z-direction,", 0
"vdwft,","diffusion theta in z-direction,",0
"HOTSIniTime,","HOTS initization time period,",-99
"itrbs,","Turbulence scheme,",1
"itrbsm, ", "Turbulence sub mode 1 ,", 1
"itrbparam,","Turbulence parameters,",0,1,1,2.44,2.44,0.9,0.5,1,2.53
"imxls,","Mixing length scheme,",1
"ihmdcx,","momentum diffusion coefficient scheme selector in x -
direction,",2
"ihmdcy,",",momentum diffusion coefficient scheme selector in y-
direction,", 2
"hmdcx,","momentum diffusion coefficient in x-direction
m2/sec, "', 0.00584,1.1
"hmdcy,",","momentum diffusion coefficient in y-direction
m2/sec,",0.00584,1.1
"prnm,","Prandt 1 number,", 10
"ihtdcx,","transport diffusion coefficient scheme in x-direction,", 3
"ihtdcy,","transport diffusion coefficient scheme in y-direction,",3
"htdcx,","transport diffusion coefficient in x-direction m2/sec,","
"htdcy,","transport diffusion coefficient in y-direction m2/sec,",,
"idnf,", "Density function selector,",2
"ideep,","Compressibility usage,",1
"ichezy,","Chezy coefficient selector,", 0
"ilchezy,",","Limiting Chezy selector,",0
"chezy,","Chezy coefficient; Czo;do;n,",40,
"WSCoeff'ype,", "Wind stress coefficient type, ", 0
"WSConstA,"," W ind stress constant A,", 0.8
"WSConstB,",","Wind stress constant B,",0.065
"icors,","Coriolis force selector,",0
"RefLatoption; RefLat,","Referene Latitude Option; Reference Latitude Value, ",0,40
"ivaterms,","vertical acceleration terms,",0
"idbg,","Debug switch,",0
"tvdscheck,","time varying data consistency check,",0
"iwDLayers,","Use wetting and drying of layers,",1
"1raddthk,",","Layer addition thickness m,",0.8
"1rsubthk,",", Layer subtraction thickness m, ", 0.8
"StabilizeInversionFlag,","StabilizeInversionFlag,",0
"InvCoeff,","InvCoeff,",-99
"iused1DMode’,","Switch' to use 1D mode1; Switch grid has 1D mode1,", 0, 0, 1
"Computestat,", "Statisdtical method to output variables,", 0
"StatFreq;StatUnit,","Statisdtical frequency and unit to write output
variables,",0,0
"StatStartTíme,","Start time for statistical computations,",39539
"StatEndTime,","End time for statistical computations,", 39543
"ReturnTime1DDn,","Return time,",0
"Usezcheck,","Control z calculations,",0
"ZStabilityFactor,","Stability factor for $z, ", 0$
"CheckTimeStepUsingNewValues,","Redo computations using new time step values,",0
"UseWindRamp,","Use time ramp function for larger wind speeds,",0
"NumWindRampLevels,", "Number of time step intervale for the wind ramp
function,",1
"RampLimitWindSpeed,","Limiting wind speed for the usege of time ramp
function, ", 0
"WriteBCTVD,", "write boundary condition time varying data files in time
Series output files,",0
"WriteBCLoads,","Write boundary condition data as loads in time series output files,",0
"WriteSDTVD,","Write sediment data time varying data files in time series outoput files,",0
"SSDataType,","Source and sinks data type for use in boundary conditon data writing procedure,",1
"iDo1DHDM,","Do 1D hydrodynamics,",1
"iSetdt1DAsdt,","Set 1D model time step same as 3D mode1,",0
"ZAmpliticationFactor,","Z amplification factor for stability checks,",4
"CGCLimit1,", "Conjugate' Gradient Computation Error Limit 1,",1,-7
"CGCLimit2,","Conjugate Gradient Computation Error Limit 2,",1,-9
"UseRampFlowFunction,","Use ramp flow function to stabilize the model
simulation,",0
"NumRampFlowBCs,","Number of ramp flow boundary conditions,",0,
"SaveCSDataInArray,","Convert cross-section data to depth vs width
array,",0
"DelHforcs,","Depth interval for depth vs width array computations,",0.1
"HDMVersionNumber,", "Use far-field/near-field modeling approach,",0
"CapitolLakeVarsSwi,","Switch for Capitol 1ake variables,",0,0
\#
\# 6: Simulation time variables,
\#
"stryear,",""Mode1 start time year,", 2008
"strmonth," ", "Mode1 srart time month,",4
"strday,","Mode1 start time day,",1
"strhour,","Mode1 start hour,",0
"strmin,", "Mode1 start minutes,", 0
"endyear,", "Mode1 end time year,", 2008
"endmonth,","Mode1 end month year,",4
"endday,"','Mode1 end day,", 21
"endhour,", "Mode1 end hour,",0
"endmin,","Mode1 end minutes,",0
"MaxTimeSlots,","Maximun number of output time slots used in outputs,",2
"id7tt,","Time step control switch,",0,1
"dltminm,","Minimum time step,",60
"d7tlimit,", "Start up time step,",60
"omega,","Time step under relaxation factor,", 0.75
\#
\# 7: Derived variables,
\#
"idv,","Option to use derived variables computations,",0
\#
\# 8: Probability Plume variables,
\#
"Computeproplume,", "Computation of Probability Plume,",0
\#
\# 9: Snapshot output variables
\#
"isnp,","Snapshot output selector,",1,2.2
"isnpss,","Ouput status,",1
"snpfile,","Snapshot output file path and
name,", "'С: \GEMSS \APPS\Susquehanna 3\Output\Scenario 04_01 NC.snp,"
"iMetInfo,","Switch to write meteorology to snapshot output,", 0
"iVolumeBalance,","Volume Balance switch,",1
"iMassBalance,","Mass Balance switch,",0
"nsnp,","Number of snapshot output tímes,",2
"snpyear,","Snapshot output year,",2008,2008
"snpmonth,"',"Snapshot output month,",4,4
"snpday,"',"Snapshot output day,",1,3
"snphour,", "Snapshot output hour,",0,0
"snpmin,", "Snapshot output minutes,",0,0
"snpfrequ,","Snapshot output frequency unit,", 1, 2
"snpfreq,", "Snapshot output frequency value,",1,1
"nsnpkpk;kpk,", Number of snapshot output K planes; output K plane
values,',1,51
"nsnpkpkv;kpv,", "Number of snapshot output variables for selected K
planes; output variable ID values,",6,1,19,20,21,22,23
'nsnpjpj;jpj,", "Number of snapshot output J planes; output J plane
values,",0
"nsnpjpjv;jpv,","Number of snapshot outputvariables for selected J planes
output variab1e ID values,",0

```
"nsnpipi;ipi,","Number of snapshot output I planes; output I plane
values,",0
"nsnpipiv;ipv,","Number of snapshot output variables for selected I
planes; output variable ID values,",0
"nsnpijpij,","Number of snapshot output I J points,",0
"snpijpi;snpijpj;snpijpnm,","Snapshot output
#nformation,",IC\11,JCe11,Location names
"nsnpijpv;ijpv,","Snapshot output number of output variables for all
selected IJ cells; output variable IDs for all selected IJ cel1s,",0
"HydVar,","Hydrodynamic constituent name,",Surface Elevation,U -
velocity,', - velocity,w - Velocity,Density,Momentum Diffusivity,Chezy,Flow
Rate
"hdunits,","Constituent unit type,",0,0,0,0,0,0,0,0
"hdamp,","Scaling factor,",100,1,1,1,1,10000,1,1
"hddigits,","Number of digits to print in the snapshot,",2,2,2,2,2,2,2,2
Scaling factor, No. of digits, ConstituentID, Constituent name, Output
Type, Units
1,2,I_Temp,I_Temp,1 : Concentration,0 : C
1,2,I_Saln,I_Saln,1 : Concentration,0 : ppt
1,2,I_1Dye,I_1Dye,1 : Concentration,0 : mg/l
1,2,I_CDye,I_CDye,1 : Concentration,0 : mg/1
1,2,I_Exst,I_Exst,1 : Concentration,0 : deg C
"Stat3DSnapShot,","Do stat analysis for 3D Snapshot,",0
"DV3DSnapShot,","Derived Variab1es for 3D ShapShot,",0
"ProbPlumeSnapshotStatus,","Status to write probability plume data to the
snapshot output,",0
"WriteMetSnapshot,","Switch to write meteorology variable output to
snapshot,",0
"SnpOutputMetVars,","Numberof meteorology variables;Output meteorology
variable ID to snapshot,",0
"WriteICESnapshot,","Write ice growth mode1 output variables,",0
"WriteWaveSnapshot,","write wave model output variables,",0
"WriteTransportSnapshot,","Write TRM mode7 internal variables to snapshot
output,",0
"WriteWQMSnapshot,","Write WQM mode1 internal variables to snapshot
output,",0
'WriteSFMSnapshot,","Write SFM model internal variables to snapshot
output,",0
"WriteWQADDSnapshot,","Write WQADD mode1 internal variables to snapshot
output,",0
"WriteGAMSnapshot,","Write GAM mode1 internal variables to snapshot
output,",0
"WriteENMSnapshot,","Write ENM mode1 internal variables to snapshot
output,",0
"WriteUDCSnapshot,","Write UDM mode1 internal variables to snapshot
output,",0
"WriteCFMSnapshot,","Write CFM mode1 internal variables to snapshot
output,",0
"WriteSTMSnapshot,","Write STM mode1 internal variables to snapshot
output,",0
"WriteMGMSnapshot,","Write MGM mode1 internal variables to snapshot
output,",0
"WriteCKMSnapshot,","Write CKM mode1 internal variables to snapshot
output,",0
"WritePTMSnapshot,","Write PTM mode1 internal variables to snapshot
output,",0
######################################################################
# 10: Console output variables,
######################################################################
"icle,","Console output selector,",1,1.1
"icless',","Ouput status,",1
"ncle,","Number of console ouput times,".2
"cleyear,","Console output year,",2008,2008
"clemonth,","'Console output month,",4,4
"cleday,","'console output day,",1,1,
"clehour,","Console output hour,"',0,2
"clemin,", "'Console output minutes,",0,0
"clefrequ,"","Console output frequency unit,",0,1
"clefreq,",","Console output frequency value,",'1,1
"nclep,","Number of Console output I J points,",1
"clei;clej;clenm;clenijpk;clenijpv,","Console output
information,",ICel1, JCe11,Location'names,Number of K, Number of variables
"cleP1,","Point 1,",119,17,"c1,",1,1
"clek1,","Console output number of K values and K layer values for point
1,",1,30'
"clévi,","Console output number of output variables and variable IDs for
"clev1,","Con
"Stat3DConsole,","Do stat analysis for 3D Console,",0
"DV3DConsole,","Derived variables for 3D Console,",0
"WriteICEConsole,","Write ice growth mode1 output Variables,",0
"WriteWaveConsole,","Write wave model output Variables,",0
```

"WriteTransportConsole,","Write TRM mode1 internal variables to console output,",0
"WriteWQMConsole,","Write WQM model internal variables to console output,",0
"WriteSFMConsole,","Write SFM model internal variables to console output,",0
"WriteWQADDConsole,","Write WQADD model internal variables to console output,", 0
"WriteGAMConsole,","Write GAM model internal variables to console output,",0
"WriteENMConsole,", "Write ENM model internal variables to console output,",0
"WriteUDCConsole,","Write UDM model internal variables to console output,", 0
"WriteCFMConsole,", "Write CFM model internal variables to console output,",0
"WriteSTMConsole,","Write STM model internal variables to console output,",0
"WriteMGMConsole,","write MGM model internal variables to console output,",0
"WriteCKMConsole,"," Write CKM model internal variables to console output,",0
"WritePTMConsole,","Write PTM model internal variables to console
output,", 0
\#
\# 11: Diagnostic output variables,
\#
"idgn,","Diagnostic output selector,",0
\#
\# 12: Restart output variables,
\#
"irst,","Restart output selector,",0
\#
\# 13: Time series output variables,
\#
"itsr,","Time series output selector,",1,4.2
"itsrss,"," "Ouput status,",1
"tsrfile,","Time series output file path and
name,","C: \GEMSS \APPS\Susquehanna 3\output\Scenario 04_01 NC_TSM.txt,"
"ntsr,","Number of time steries output times,",1
"tsryear,","Time series output year,",2008
"tsrmonth,","Time series output month,",4
"tsrday,","'Time series output day,",1
"tsrhour,","Time series output hour,",
"tsrmin,"," "Time series output minutes,",0
"tsrfrequ,","Time series output frequency unit,",1
"tsrfreq,","'Time series output frequency value,", 1
"ntsrp,", "Number of time series output points,", i1
"tsri;tsrj;tsrnm;tsrnijpk;tsrnijpv,","Time series output
information,", ICe11, JCe11, Location names, Number of K , Number of Variables
"tsp1,", "Point 1,",172,27,"T1,",30,0
"tsP2,"',"Point 2,",166,26,"T2,",0,0
"tsP3,","Point 3,",159,25,"T3,",0,0
"tsP4,"',"Point 4,",'155,25,"T4,",0,0
"tsP5,'","Point 5,'",151,25,"T5,",0,0
"tsP6,","Point 6,",148,25,"T6,",0,0
"tsP7,","'Point 7,",144,23,"T7,",0,0
"tsP8,"',"Point 8,"',140,23,"T8,'",0,0
"tsP9,'","Point 9,"',136,21,"T9,",0,0
"tsP10,", "Point 10,",128,25, "T11,", 0,0
"tsP11,","'Point 11,",126,20,"T12,",0,0
"tsrk1,"',"Time series output number of K values and K layer values for point
$1, ', 30,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,2$
6,27,28,29,30
"tsrk2,","Time series output number of K values and K layer values for point $2, ", 0$
"tsrk3,","Time series output number of K values and K layer values for point 3,", 0
'tsrk4,","Time series output number of K values and K layer values for point 4,", "0
"tsrk5,","Time series output number of K values and K layer values for point 5,",0
"tsrk6,","Time series output number of K values and K layer values for point 6,",0
"tşrk7,","Time series output number of K values and K layer values for point 7,",0
"tsrk8,","Time series output number of K values and K layer values for point 8,",0
"tsrk9,","Time series output number of K values and K layer values for point 9,",0
"tsrk10,","Time series output number of K values and K layer values for point 10,",0
"tsrk11,", "Time series output number of K values and K layer values for point 11, ", 0
"tsrv1,","'Time series output number of output variables and variable IDs for point 1,",0
"tsrv2,","Time series output number of output variables and variable IDs for point $2, ", 0$
"tsrv3,","Time series output number of output variables and variable IDs
for point 3,",0
"tsrv4,","Time series output number of output variables and variable IDs for point 4,",0
"tsrv5,","Time series output number of output variables and variable IDs for point 5,",0
"tsrv6,","Tíme series output number of output variables and variable IDs
for point 6,",0
"tsrv7,","Time series output number of output variables and variable IDs for point 7,",0
"tsrv8,","Tíme series output number of output variables and variable IDs for point 8,",0
"tsrv9,","Time series output number of output variables and variable IDs for point 9,",0
"tsrv10,", "Time series output number of output variables and variable IDs for point 10,",0
"tsrv11,","Time series output number of output variables and variable IDs for point' 11, ",0
"Stat3DTimeSeries,","Do stat analysis for 3D time series,",0
"DV3DTimeSeries,","Derived Variables for 3D time series,",0
"ProbplumeTimeSéríesStatus,","Status to write probability"plume data to the time series output,",0
"WriteMetTimeSeries,","Switch to write meteorology variable output to time series,",0
"TSOutputMetVars,","Numberof meteorology variables;Output meteorology variable ID to time series,",0
"WriteICETimeSeries,","Write ice growth mode1 output Variables,",0
"WriteWaveTimeSeries,", "Write wave model output Variables,",0
"WriteTransportTimeseries,", "Write TRM model internal variables to time series output,",0
"WriteWQMTimeSeries,","Write WQM mode1 internal variables to time series output,",0
"WriteSFMTimeSeries,","Write SFM model internal variables to time series output,",0
"WriteWQADDTimeSeries,","Write WQADD model internal variables to time series output,",0
"WriteGAMTimeSeries,","Write GAM model internal variables to time series output,",0
"WriteEnMTimeseries,","Write ENM model internal variables to time series output,",0
"WriteUDCTimeSeries,","Write UDM model internal variables to time series output,", 0
"WriteCFMTimeSeries,","write CFM mode1 internal variables to time series output,",0
"WriteSTMTimeSeries,","Write STM model internal variables to time series output,",0
"WriteMGMTimeSeries,","Write MGM mode1 internal variables to time series output,",0
"WriteCKMTimeSeries,","Write CKM model internal variables to time series output,", 0
"WritePTMTimeSeries,","Write PTM model internal variables to time series output,",0
"itrn,","Time series transport output selector,",0
\# \# 14: Vertical profile output variables,
\#
"ivpf,","Vertical profile output selector,",0,4
\#
\# 15: GPP contour output variables,
\#
"igpp,","GPP output selector,",1,2.2
"igppss,","Ouput status,",1
"gppctmfile,","Contour output contour file path and
name,","C:\GEMSS \APPS\Susquehanna 3\Output\Scenario 04_01 NC_CTM.txt," "gpphdmfile,","Contour output header file path and
 "gppgrdfile,","Contour output element file path and
name,","C:\GEMSS\APPS\Susquehanna $3 \backslash 0 u t p u t \backslash S c e n a r i o ~ 04 _01 ~ N C _G R D . t x t, " ~$ "writegppAtA11Surfaces,", Option to write output at all surface and ce11s,", 1
"ngppkpk; gppkpk,", "Number of GPP contour output K planes; output K plane values,",0
"ngppjpj; ;gppjpj,","Number of GPP contour output J planes; output J plane
values, ", 0
"ngppipi; gppipi,","Number of GPP contour output I planes; output I plane
values,", 0
"ngpp,", "Number of GPP contour output times,",1
"gppyear,","GPP contour output year,",2008
"gppmonth,",","GPP contour output month,'",4
"gppday,","'GPP contour output day,", 1
"gpphour,","GPP contour output hour,", 0
"gppmin,", "GPP contour output minutes,'", 0
"gppfrequ,",""GPP contour output frequency unit,", 1
"gppfreq,", "GPP contour output frequency value,'", 6
"ngppv; gppv,","GPP contour output number of output variables for all
selected IJ cells; GPP contour output variable IDs for selected
location, ", $8,1,2,3,4,19,21,22,23$
"Stat3DContour,",","Do stat analysis for 3D contour,",0
"DV3DContour,","Derived Variables for 3D contour,",0
"Probplumecontourstatus,","Status to write probability plume data to the contour output,",0
"WriteMetContour,","Switch to write meteorology variable output to GPP contour,",0
"gppoutputMetVars,","Numberof meteorology variables;Output meteorology variable ID to GPP contour,",0
"WriteICEContour,","Write ice growth mode1 output Variables,",0
"WritewaveContour,", "Write wave model output variables,",0
"WriteTransportContour,","Write TRM mode1 internal varíables to contour output, ", 0
"WriteWQMContour,","Write WQM mode1 internal variables to contour output,",0
"WriteSFMContour,", "Write SFM mode1 internal variables to contour output,",0
"WriteWQADDContour,","Write WQADD model internal variables to contour output, ", 0
"WriteGAMContour,","Write GAM mode1 internal variables to contour output,",0
"WriteENMContour,", "Write ENM mode1 internal variables to contour output,",0
"WriteUDCContour,","Write UDM mode1 internal variables to contour output,", 0
"WriteCFMContour,","Write CFM mode1 internal variables to contour output,",0
"WriteSTMContour,","Write STM mode1 internal variables to contour output,",0
"WriteMGMContour,", "Write MGM mode1 internal variables to contour output,",0
"WriteCKMContour,","Write CKM mode1 internal variables to contour output,",0
"WritePTMContour,","Write PTM mode1 internal variables to contour output,",0
\#
\# 16: Qualview velocity field output variables,
\#
"icvf,","Velocity field output for Qual view selector,", 0
\#
\# 17: Qualview contour output variables,
\#
"icnt,","Qual view contour output selector,",0
\#
\# 18: Current meter type output variables,
\#
"idcm,","Current meter type output selector,",0
\# \# 19: TMDL Output variables,
\#
"iTML,","TML output selector,",0,1.1
\#
\# 20: 0i1 spil output variables,
\#
"iSVF,","oi " Spil1 output selector,",0
\#
\#21: User defined output variables 1,
\#
"iudol,","User defined variable output selector1,",0
\#
\#22: User defined output variables 2,
\#
"iudo2,","User defined variable output selector2,",0
\#
\#23: User defined output variables 3,
\# "iudo3,","User defined variable output selector3,",0

```
######################################################################
#24:
User defined output variables 4,
######################################################################
"iudo4,","User defined variable output selector4,",0
######################################################################
#25: User defined output variables 5,
######################################################################
"iudo5,","User defined variab7e output selector5,",0
######################################################################
# 26: NCF NETCDF output variables,
######################################################################
"iNCF,","NETCDF output selector,",0
######################################################################
# 27: CFD output variables,
######################################################################
"WriteCFDOutput;WriteCFDOutputS,","Switch to Turn on CFD output; Ouput
status,",0,0
######################################################################
# 28: Initial conditions; constant and spatial data,
######################################################################
"iicff,","Initial condition far field file use,",0,2.5,27
"icffile,","Initial condition far field file,","No_Data_File,"
"icDoSTInterpolate,","Do Spatial and Temporal Interpolation,",0
"RestartToleranceTime,","Time toloerance for using restart file,",0
"AdjustICData,","Adjust'initial conditoin data using data before the model
simulation time,",1
"NumInterpSerarchCycles,","Number of smoothening cycles,",1
"DoFourByFourSearch,","'Switch to activate 4 nearby cel1s approach,",1
"DoEightByEightSearch,","Switch to activate 8 nearby cells approach,",1
"SmoothCoefficient,","Factor to control parent cel1 dependency,",0
"IPIStart,","Interpolation starting I cel1 index,",1
"IPIEnd,","'Interpolation ending I cel1 index,", 250"
"IPJStart,","Interpolation starting J ce11 index,",1
"IPJEnd,","Interpolation ending J ce11 index,",50
"DoRecursiveSmoothening,","Do recursive smoothening on al1 cel1s,",0
"ICInterpolationScheme,","Initial condition interpolation scheme,",0
"IDWPOW,","Power for interpolation,",2
"ICGeoFileStatus,","Initial Condition Geo File Status,",0
"ICGeoFileName,","Initial Condition Geo File Name,","No_Data_File,"
"WFNorth,","Weighting factor in the north direction",",1
"WFSouh,","Weighting factor in the south direction ,",1
"WFWest,",'"Weighting factor in the west direction ,",,1
"WFEast,",'"Weighting factor in the east direction ,",1
"WFNorthwest,","Weighting factor in the north west'direction ,",1
"WFNorthEast,","Weighting factor in the north east direction ,",1
"WFSouthWest,","Weighting factor in the sout westh direction ,'",1
"WFSouthEast,","Weighting factor in the south east direction ',",1
"ICGeoStnFileStatus,","Use field data stations look up file,",0
"ICGeoStnFileName,","Field data station look up file
name,","No_Data_File,"
"UseRT,'","Use response temperature for background temperature,",1
"UseStnBGTemp,","Use field data station for setting up background
temperature,",0
"QuadInterpolationType,","Interpolation method for quadrilateral shape,",1
"DoPointInterpolation,","Use field station location for point
interpolation method,",,1
"UseConstituentData,","Use constituent data on7y from restart file,",0
"UseOnlyvelocities,","Use only velocities and elevation,",0
"ConstituentStartTime,","Constituent start time from restart file,",39554
"FielDataDepthType,","Field data depth measurement type,",1
"F1elDataDepthType,","F1eld data depth measurement tyr,","Number of constituents,",0
"UseTVICData,","Use time varying initial condition data,",0
"nicp,","Number of initial conditon points,", 2
"icpnm,","Constituent name; User does not change the name or the
order,",I_Temp,I_Saln
"icpid,","Initia` condition id,",1,2
"ict,","Initia1 condition data type,",4,4
"icdsg'","SSFlow station number to be'used for the specific
constituent,",1,1
"icifn,","File name for using it when ict value is set to 2,",
"icifn_1,","File name for using it for initial condition
"icifn_1,","File nam
"iciffn_2,","File name for using it for initial condition
2,","No_Data_File,"
"ícv,",""Initial condition constituent value,",-99,-99
"icu,",'"Initial condition constituent unit when ict is set to 1,",-99,-99
"icstd,","Initial condition start date,","04/01/2008,","04/01/2008,"
"icstt,"',"Initial condition start time,"',"00:00,","00:000,"',"Initial condition x starting location specified as I index,",1,1
", Initial condition x starting location specified as I index,",1,1
"icxend,","Initial condition x ending location specified as I
index,",2550,250
```

"icjest,","Initial condition y starting location specified as j index,", 1,1 "icjend,","Initial condition y ending location specified as j index,",50,50
"ickst,","Initial condition z starting location specified as k
index,",999,999
"ickend,","Initial condition z ending location specified as k index,",-999,-999
"icswtype,","Initial condition type,", 0,0
"ictvtype,"," Initial condition time varying type,", 0,0
\#
\# 28: Initial conditions, Profile data,
\#
"kmax,","number of k layers,", 50
" 504.066 ,",","Profile value at $k=1, ",-99,-99$
"503.066,"',"Profile value at k = 2,",,-99,-99
"502.066,",","Profile value at $k=3, ",-99,-99$
"501.066,","Profile value at $k=4, ",-99,-99$
"500.066,","'Profile value at $k=5, ",-99,-99$
"499.066,",","Profile value at $k=6, ", \cdot-99,-99$
"498.066,",","Profile value at $k=7, ",-99,-99$
"497.066,","'Profile value at $k=8, ",-99,-99$
"496.066,","'Profile value at $k=9, ",-99,-99$
"495.066,'",","Profile value at $k=10, ",-99,-99$
"494.066,","Profile value at k = 11,",-99,-99
"493.066,",","Profile value at $k=12, ",-99,-99$
"492.066,",',"Profile value at $k=13, ",,-99,-99$
"491.066,","Profile value at $k=14, ",-99,-99$
"490.066,",","Profile value at $k=15, ",-99,-99$
"489.066,","Profile value at $k=16, ",-99,-99$
"488.066,",',"Profile value at $k=17, "$, ', $99,-99$
"487.066,","Profile value at $k=18, ",-99,-99$
"486.066,",", Profile value at $k=19, ",-99,-99$
"485.066,",',"Profile value at $k=20, ",,-99,-99$
"484.066,","Profile value at $k=21, ",-99,-99$
"483.066,","'Profile value at k = 22,",-99,-99
"482.066,","Profile value at $k=23, ",-99,-99$
"481.066,'",","Profile value at $k=24$, ",',-99,'-99
"480.066,","Profile value at $k=25, ",-99,-99$
"479.066,","Profile value at $k=26, ",-99,-99$
"478.066,",", Profile value at $k=27, ",,-99,-99$
"477.066,"," "Profile value at $k=28, ",-99,-99$
"476.066,","Profile value at k = 29,",-99,-99
"475.066,",","Profile value at k = 30,",',-99,-99
"474.066, "',"Profile value at $k=31$, ",',-99,--99
"473.066,","Profile value at $k=32, ",-99,-99$
"472.066,"',"Profile value at $k=33, "$, ,-99,,-99
"471.066,","Profile value at $k=34, ",-99,-99$
"470.066,",","Profile value at $k=35, ",-99,-99$
"469.066,","'Profile value at $k=36, ",-99,-99$
"468.066,","Profile value at k = 37,",-99,-99
"467.066,",","Profile value at $k=38$, ,",-99,- 99
"466.066,","Profile value at k = 39,",-99,-99
"465.066,","Profile value at $k=40, ",-99,-99$
"464.066,",", Profile value at $k=41, ",-99,-99$
"463.066,'"," ${ }^{\text {Profile value at } k=42, ", '-99,-99 ~}$
"462.066,","Profile value at k = 43,",-99,-99
"461.066,","'Profile value at $k=44, ",-99,-99$
"460.066,",","Profile value at $k=45, ",-99,-99$
"459.066,","Profile value at $k=46, ",-99,-99$
"458.066,","Profile value at k = 47,",-99,-99
"457.066,","'Profile value at $k=48, ",-99,-99$
"456.066,',","Profile value at $k=49$, ,",,-99, ,-99
"455.066,","Profile value at $k=50, ",-99,-99$

$\$$ Boundary conditions,
\$
"ndsg,","Number of ssflows,", 6
"ndsgdtr,",""Number of Distributed Networks,",0
"vbuse1,", "Number of Boundary Conditions; Number of Fixed Variables and
Total Number of Variables,",6,52,67,1.9,37
"vbuse2,",","Number of ssFlows for Current Boundary; BC Index,",1, 1
"vbuse3,",","boundary condition mode,","Discharge,", Discharge
"dsgm,","Boundary Condition Mode,",0,0 : Discharge
"dsgss,",","Boundary Condition Status,",",1,1
"dsgnm,","Boundary Condition Name,","Upstream,", Upstream
"dsgdt (1), ", "Input Data Type for Hydrodynamics,", 1,1 : Constant
"dsgdt(2),","Input Data Type for Transport and water Quality,",1,1 :
Constant
"dsgifn(1),","TVD Input File Name for
Hydrodynamics,","No_Data_File,",No_Data_File


```
'dsgdt(2),","Input Data Type for Transport and water Quality,",1,1 :
Constant
"dsgifn(1),","TVD Input File Name for
Hydrodynamícs,","No_Data_File,",No_Data_File
"dsgifn(2),","TVD Input File Name for Transport and water
Qualit,","No_Data_File,",No_Data_File
"dsgqfnst,","Use Qualifier File for Transport and Water Quality,",0,0
"dsgqfn,"','Qualifier File Name for Transport and water
Qualit,","No_Data_File,",No_Data_File
"dsgip(1),","Time Varying Input Data Interpolation Scheme for H,",0,0 : No
Interpolation
"dsgip(2),","Time Varying Input Data Interpolation Scheme for w,",0,0 : No
Interpolation
"dsgdc,","Grid Domain Type,",3,3 : 3D Mode1
"dsgwd,"',"Write Boundary Condition Data to Snapshot Output F,",1,1
"dsgstd,","Boundary Condition Start Date,","04/01/2008,",04/01/2008
"dsgstt,","Boundary Condition Start Time,","00:00,",00:00
"dsgendd,",","Boundary Condition End Date,","04/21/2008,",04/21/2008
"dsgendt,"',"Boundary Condition End Time,"',"00:00,",00:00
"idsgst,","Starting Grid Ce11 Index in x-Direction,",182,182
"idsgend,","Ending Grid Ce11 Index in x-Direction,",182,182
"\mp@code{jsgst,","Starting Grid Cel1 Index in y-Direction,",35,35}
"jdsgend,","Ending Grid Ce11 Index in y-Direction,",35,35
"kdsgst,","Starting Vertical Layer Number in z-Direction,",-999,-999 : КВ
"kdsgend,","Ending Vertical Layer Number in z-Direction,",,-999,-999: КВ
"dsgcolor,","Selected Region Color,",7993779,7993779
"dsgrangess,","Selected Region Display Status,",1,1
"dsgdr,","Hydrodynamic Mode value Adjustment Factor,",1,1
"dsgvf,"',"Specific Momentum Amplification Factor,",i,i
"hdsgm,"',"Method of Flow withdrawal from Layers,",i,i: Area Based Flow
withdrawal
"fdsgd,","Hydrodynamic Flow Direction,",0,0 : Along x-Direction
"fdsgm,",'"Hydrodynamic Mode,",2,2 : Flow Rate
"fdsgu,","Hydrodynamic Mode Unit,",3,3 : gpm
"fdsgv,","Hydrodynamic Mode Value,",42300,42300
"sdsg,","Intake Conduit Shape,",-99,,-99: Not Used
"pdsg,","Intake Conduit Angle from Positive z-Axis,",-99,Not Applicable
"tdsg,","Intake Conduit Angle from Positive x-Axis,",-99,Not Applicable
"1dsg,","Intake Conduit Length in Meters,",-99,Not Applicable
"wdsg,"',"Intake Conduit width,",-99,Not Applicable
"dsgnp,","Number of Ports in the Discharge Conduit,",-99,Not Applicable
"qdsg,","Value to be Used for Flow Rate,",0,0 : Use Existing Flow Rate
"dsgstructurew,","'Structure width,",-99,Not Applicable
"dsgstructureu,"',"Structure width Units,",-99,Not Applicable
"dsgFlowExp,","Flow Exponent,",-99,Not Applicable
"dsgFlowCoeff,","Flow Coefficient,",-99,Not Applicable
"dsgFlowDir,","'Hydrodynamic Flow Direction,",-99,Not Applicable
"dsgFlowMode,","Hydrodynamic Mode,",-99,Not Applicable
"dsgFlowUnit,","Hydrodynamic Mode Unit,",-99,Not Applicable
"dsgFlowValue,","Hydrodynamic Mode Value,",-99,Not Applicable
"dsgFlowHeadDifffw,","Head Difference for Flow Withdrawal Using the
Stru,",-99,Not Applicab7e
"dsgFlowHeadDiffFWUnits,","Heade Difference Units for Flow Withdrawal,",-
99,Not Applicable
"dsgFlowHeadDiffFD,","Head Difference for Flow Discharge Using the
Struc,",-99,Not Applicable
"dsgFlowHeadDiffFDUnits,","Head Difference Units for Flow Discharge,",-
99,Not Applicable
"dsgrt,","Hydrodynamic Mode value Adjustment Factor,",-99,Not Applicable
"dsgrc(I_Temp),","Temperature Data Type,",0,0 : (I_Temp) Concentration
"dsgvu(I_Temp),"',"Temperature Unit / Status,",-99,Not Applicable
"dsgv(I_Temp),","Temperature value,",-99,Not Appiicable
"dsgrc(I_Saln),","Salinity Data Type,",0,0 : (I_Saln) Concentration
"dsgvu(I_Saln),"'"Salinity Unit/Status,",-99,Not Applicable
"dsgv(I_Saln),","Salinity value,",-99,Not Applicable
"dsgrc(I_IDye),","Instantaneous Dye Data Type,",0,0 : (I_IDye)
Concentration
"dsgvu(I_IDye),","Instantaneous Dye Unit / Status,",-99,Not Applicable
"dsgv(I_IDye),","Instantaneous Dye value,",-99,Not Applicable
"dsgrc(I_CDye),","Continuous Dye Data Type,",0,0 : (I_Cdye) Concentration
"dsgvu(I_CDye),","Continuous Dye Unit / Status,",-99,Not Applicable
"dsgv(I_CDye),","Continuous Dye value,",-99,Not Applicable
"dsgrc(I_Exst),","Excess Temperature Data Type,",0,0 : (I_Exst)
Concentration
"dsgvu(I_Exst),","Excess Temperature Unit/ Status,",-99,Not Applicable
"dsgv(I_Exst),","Excess Temperature value,",-99,Not Applicable
"vbuse2,","Number of ssFlows for Current Boundary; BC Index,",1, 4
"vbuse3,",'"boundary condition mode,","Discharge,",Discharge
"dsgm,","Boundary Condition Mode,",0,0 : Discharge
"dsgss,","Boundary Condition Status,",1,1
"dsgnm,"',"Boundary Condition Name,","'SSES_Ou,",SSES_Ou
```

```
"dsgdt(1),","Input Data Type for Hydrodynamics,",1,1 : Constant
"dsgdt(2),","Input Data Type for Transport and Water Quality,",1,1 :
Constant
"dsgifn(1),","TVD Input File Name for
Hydrodynamics,","No_Data_File,",No_Data_File
"dsgifn(2),","TVD Input File Name for Transport and Water
Qualit,","No_Data_File,",No_Data_File
"dsgqfnst,","Use Qualifier File for Transport and Water Quality,",0,0
"dsgqfn,","Qualifier File Name for Transport and water
Qualit,","No_Data_File,",No_Data_File
"dsgip(1),","Time Varying Input Data Interpolation Scheme for н,",0,0 : No
Interpolation
"dsgip(2),","Time varying Input Data Interpolation Scheme for w,",0,0 : No
Interpolation
"dsgdc,",","Grid Domain Type,",3,3 : 3D Mode1
"dsgwd,","Write Boundary Condition Data to Snapshot Output F,",1,1
"dsgstd,",","Boundary Condition Start Date,","04/01/2008,",04/01/2008
"dsgstt,",""Boundary Condition Start Time,","00:00,",00;00
"dsgendd,",""Boundary Condition End Date,","04/21/2000,",04/21/2008
"dsgendt,","Boundary Condition End Time,","00:00,",00:00
"idsgst,","Starting Grid Cell Index in x-Direction,",170,170
"idsgend,","Ending Grid Cel1 Index in x-Direction,",170,170
"jdsgst,","Starting Grid Cel1 Index in y-Direction,",25,25
".jdsgend,","Ending Grid Cell Index in y-Direction,",27,27,"
"kdsgst,","Starting Vertical Layer Number in z-Direction,",-999,-999 : KB
"kdsgend,","Ending vertica1 Layer Number in z-Direction,",'-999,-999 : KB
"dsgcolor,",""Selected Region Color,",12829149,12829149
"dsgrangess,","Selected Region Display Status,",1,1
"dsgdr,',"Hydrodynamic Mode value Adjustment Factor,",3,3 : SSES_In
"dsgvf,",","specific Momentum Amplification Factor,",i,i
"hdsgm,","Method of Flow withdrawal from Layers,",0,0
"fdsgd,",',"Hydrodynamic Flow Direction,",0,0 : Along x-Direction
"fdsgm,",","Hydrodynamic Mode,",2,2 : Flow Rate
"fdsgu,",","Hydrodynamic Mode Unit,",3,3: gpm
"fdsgv,","Hydrodynamic Mode value,",11200,11200
"sdsg,",'"Intake Conduit Shape,",1,1: Circular
"pdsg,"',"Intake Conduit Angle'from Positive z-Axis,",135,135
"tdsg,","Intake Conduit Angle from Positive x-Axis,",270,270
"1dsg,","Intake Conduit Length in Meters,",0.1016,0.1016
"wdsg,"'"Intake Conduit width,",0.1016,0.1016
"dsgnp,","Number of Ports in the Discharge Conduit,",72,72
"qdsg,","Value to be Used for Flow Rate,",0,0 : Use Existing Flow Rate
"dsgstructurew,",","Structure width,",-99,Not Applicable
"dsgstructureu,"',"Structure width'Units,",-99,Not Applicable
"dsgFlowExp,","Flow Exponent,",-99,Not Applicable
"dsgFlowCoeff,","Flow Coefficient,",-99,Not Applicable
"dsgFlowDir,","'Hydrodynamic Flow Direction,",-99,Not Applicable
"dsgFlowMode,",""Hydrodynamic Mode,",-99,Not Applicable
"dsgFlowUnit,","Hydrodynamic Mode Unit,",-99,Not Applicable
"dsgFlowValue,","Hydrodynamic Mode Value,",-99,Not Applicable
"dsgFlowHeadDifffF,","Head Difference for Flow Withdrawal Using the
Stru,",-99,Not Applicable
"dsgFlowHeadDiffFWUnits,","Heade Difference Units for Flow Withdrawal,",-
99,Not Applicable
"dsgFlowHeadDiffFD,","Head Difference for Flow Discharge Using the
Struc,",-99,Not Applicable
"dsgFlowHeadDiffFDUnits,","Head Difference Units for Flow Discharge,",-
99,Not Applicable
"dsgrt,","Hydrodynamic Mode value Adjustment Factor,",1,1
"dsgrc(I_Temp),","Temperature Data Type,",1,1 : (I_Exst) Concentration
"dsgvu(I_Temp),"',"Temperature unit / Status,",1,1 : deg F
"dsgv(I_Temp),","Temperature value,",31,31
"dsgrc(I_Saln),","Salinnity Data Type,",0,0 : (I_Saln) Concentration
"dsgvu(I_Saln),","Salinity Unit "/ Status,",0,0 : ppt
"dsgv(I_Saln),","salinity value,",0.4,0.4
"dsgrc(I__IDye),","Instantaneous Dye Data Type,",0,0 : (I_IDye)
Concentration
"dsgvu(I_IDye),","Instantaneous Dye Unit / Status,",0,0 : mg/1
"dsgv(I_IDye),","Instantaneous Dye Value,",100,100
"dsgrc(I_CDye),","Continuous Dye Data Type,",0,0 : (I_CDye) Concentration
"dsgvu(I_CDye),"'"Continuous Dye unit / Status,",0,0 : mg/1
"dsgv(I_CDye),","Continuous Dye value,",0,0
"dsgrc(I_Exst),","Excess Temperature Data Type,",0,0 : (I_Exst)
Concentration
"dsgvu(I_Exst),","Excess Temperature Unit / Status,",1,1 : deg F
"dsgv(I_Exst),","Excess Temperature value,",31,31
"vbuse2,","Number of ssF1ows for Current Boundary; BC Index,",1, 5
"vbuse3,",",boundary condition mode,","Intake and Withdrawal,",'Intake and
withdrawai
"dsgm,","Boundary Condition Mode,",1,1 : Intake and Withdrawal
"dsgss,","Boundary Condition Status,",1,1
```



```
'dsgss,"","Boundary Condition Status,",1,1
"dsgnm,","Boundary Condition Name,","BBnPP_Ou,",BBnPP_Ou
"dsgdt(1),","Input Data Type for Hydrodynamics,",1,1 : Constant
"dsgdt(2),","Input Data Type for Transport and water quality,",1,1 :
Constant
"dsgifn(1),","TVD Input File Name for
Hydrodynamics,","No_Data_File,",No_Data_File
"dsgifn(2),","TVD Input File Name for Transport and water
Qualit,","No_Data_File,",No_Data_File
"dsgqfnst,","Use Qualifier File for Transport and Water Quality,",0,0
"dsgqfo,"',"Qualifier File Name for Transport and water
Qualit,","No_Data_File,",No_Data_File
"dsgip(1),","Time Varying Input Data Interpolation Scheme for H,",0,0 : No
Interpolation
"dsgip(2),","Time Varying Input Data Interpolation Scheme for w,",0,0 : No
Interpolation
"dsgdc,","Grid Domain Type,",3,3 : 3D Mode1
"dsgwd,","'Write Boundary Condition Data to Snapshot Output F,'",1,1
"dsgstd,","Boundary Condition Start Date,","04/01/2008,",04/01/2008
"dsgstt,","Boundary Condition Start Time,","00:00,",00:00
"dsgendd,",","Boundary Condition End Date,","04/21/2008,",04/21/2008
""dsgendt,"',"Boundary Condition End Time,","00:00,",00:00
"idsgst,","Starting Grid Ce11 Index in x-Direction,",166,166
"idsgend,"","Ending Grid Ce11 Index in x-Direction,",166,166
"jdsgst,",""Starting Grid Ce11 Index in y-Direction,",25,25
"jdsgend,","Ending Grid Ce11 Index in y-Direction,",27,27
"kdsgst,","Starting Vertical Layer Number in z-Direction,",-999,-999 : КВ
"kdsgend,","Ending Vertical Layer Number in z-Direction,",-999,-999: КВ
"dsgcolor,","Selected Region Color,",12829149,12829149
"dsgrangess,'","Selected Region Display Status,",1,1
"dsgdr,","Hydrodynamic Mode Value Adjustment Factor,",5,5 : BBNPP_In
"dsgvf,",","Specific Momentum Amplification Factor,",i,i
"hdsgm,"',"Method of Flow withdrawal from Layers,",0,0
"fdsgd,"',"Hydrodynamic Flow Direction,",0,0 : Along x-Direction
"fdsgm,","Hydrodynamic Mode,",2,2 : Flow Rate
"fdsgu,'"',"Hydrodynamic Mode'Unit,",3,3 : gpm
"fdsgv,",""Hydrodynamic Mode value,",i1172,11172
"sdsg,","Intake Conduit Shape,",1,1 : Circular
"pdsg,",'"Intake Conduit Angle from Positive z-Axis,'",135,135
"tdsg,",'"Intake Conduit Angle from Positive x-Axis,",,270,270
"1dsg,","Intake Conduit Length in Meters,",0.1016,0.1016
"wdsg,","'Intake Conduit width,",0.1016,0.1016
"dsgnp,","Number of Ports in the Discharge Conduit,", 72,72
"qdsg,","Value to be Used for Flow Rate,",0,0 : Use Existing Flow Rate
"dsgstructurew,","Structure Width,",-99,Not Applicable
"dsgstructureu,","Structure width Units,",-99,Not Applicable
"dsgFlowExp,","F1ow Exponent,",-99,Not Applicable
"dsgFlowCoeff,","Flow Coefficient,",-99,Not Applicable
"dsgFlowDir,","Hydrodynamic Flow Direction,",-99,Not Applicable
"dsgFlowMode,"","Hydrodynamic Mode,",-99,Not Applícable
"dsgFlowUnit,",'"Hydrodynamic Mode'Unit,",-99,Not Applicable
"dsgFlowValue,","Hydrodynamic Mode Value,",-99,Not Applicable
"dsgFlowHeadDiffFW,","Head Difference for Flow withdrawal Using the
Stru,",-99,Not App1icable
"dsgFlowHeadDiffFWUnits,","Heade Difference Units for Flow Withdrawal,",-
99,Not Applicable
"dsgFlowHeadDiffFD,","Head Difference for Flow Discharge Using the
Struc,",-99,Not Applícable
"dsgFlowHeadDiffFDUnits,","Head Difference Units for Flow Discharge,",-
99,Not Applicab7e
"dsgrt,","Hydrodynamic Mode value Adjustment Factor,",1,1
"dsgrc(I_Temp),","Temperature Data Type,",1,1 : (I_Exst) Concentration
"dsgvu(I_Temp),","Temperature Unit / Status,",1,1 : deg F
"dsgv(I_Temp),","Temperature value,",33.81,33.81
"dsgrc(I_Saln),","Salinity Data Type,",0,0,: (I_Saln) Concentration
"dsgvu(I_Saln),","Salinity Unit / Status,",0,0 : ppt
"dsgv(I_Saln),","Salinity value,",0.4,0.4
"dsgrc(\overline{I_IDye),","Instantaneous'Dye Data Type,",0,0 : (I_IDye)}
Concentration
"dsgvu(I_IDye),","Instantaneous Dye Unit / Status,",0,0 : mg/1
"dsgv(I_IDye),","Instantaneous Dye value,",0,0
"dsgrc(I_CDye),","'Continuous Dye Data Type,",0,0 : (I_CDye) Concentration
"dsgvu(I_CDye),"'"Continuous Dye Unit / Status,",0,0 : mg/1
"dsgv(I_CDye),","Continuous Dye value,",100,100
"dsgrc(I_Exst),","Excess Temperature Data Type,",0,0 : (I_Exst)
Concentration
"dsgvu(I_Exst),","Excess Temperature Unit / Status,",1,1 : deg F
"dsgv(I_Exst),","Excess Temperature value,",33.81,33.81
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ Rates and Constants for GEMSS-WQM,
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
```

"iwqc,","Water Quality Mode1 Type ID; Name; Number of parameters; number of regions; number of variables,",0,"Not Used",0,0,0
\$ $\$$ Rates and constants for GEMSS-SFM,
\$ "isnec,","Sediment Mode1 Type ID; Name; Number of parameters; Number of regions; number of variables,",0, "Not Used",0,0,0
\$ \$ Rates and Constants for GEMSS-WQADD
\$
"iwqaddc, ", "Water Quality ADD switch; number of variables; Number of
parameters; Number of regions, ", $0,0,0,0$
\$
\$ Rates and Constants for GEMSS-GAM
\$
"iGAM,","Algae Mode1: Switch; Number of Algae; Number of Variables for Each Algae; number of regions,", $0,0,0,0$
\$
$\$$ Rates and constants for GEMSS-CFM
\$
"iCFM,","Bacteria Mode1: Switch; Number of Bacterias; Number of parameters
for Each Bacteria; Number of regions, ", 0,0,0,0
\$ \$ Rates and Constants for GEMSS-UDF
\$
"iUDC, ", "User Defined Model: Switch; Number of variables; Number of parameters for Each Coliform; Number of regions, ", 0, 0,0,0
\$
$\$$ Rates and constants for GEMSS-ENT
\$
"iENT,","Entrainment Mode1: Switch; Number of Entrainments; Number of Paraments for Each Variables; Number of regions, ", 0, 0,0,0

\$ Rates and Constants for GEMSS-STM
\$
"istc,","Sediment Transport Mode1 Computations: Switch; Number of
Entrainments; Number of Paraments for Each Variables; Number of
regions,",0,0,0,0
\$
$\$$ Rates and constants for GEMSS-MGM
\$
"iMGM,","Macrophytes Mode1: Switch; Number of Macrophytes; Number of Variables for Each Macrophytes; number of regions, ", 0, 0,0,0
 $\$$ Rates and constants for chlorine Kinetics module-CKM
\$
"iCKM, ", "Chlorine Kinetics Module: Module tpe; Number of variables; Number of parameters for each variable; Number of regions,", $0,0,0,0$
\$
$\$$ Particle Transport variables for GEMSS-PTM,

"iPTM,","particle transport mode1 computations,",0,0
\$
\$ Miscellaneous data,
\$
"vbuse1,","Number of columns and rows,",4,0

Scenario 05

\$GEMSSModelResults, 32
\$GEMSS-SHWETControlFile,4.24
\$Creation Date: 4/16/2008
\$waterbody Name: Susquehanna 3
\$Modeler Name: SP
\#
\# 1: Scenario variables,
\#
"IntGDS,","Option to use GEMSS data structure,", 1
"Scenario,",", Scenario file path and name, ", "C:\GEMSS\APPS\Susquehanna
3\output\Scenario 05_01 NC,
"DoText2MDBConversion,","Use Scenario Output Direct Database " converion,",1,1
"ZipoutputFile,","Zip text output files after creating the database,",0,0
"DocompUsingGEMSSOutput,","Run Mode1 Using Existing GEMSS Contour Output
Text Files,", 0
"GEMSSHDMInputFile,","Existing GEMSS Contour output Header Text Files, ",","
\#
\# 2:
Grid variables,
\#
"igrid,","Switch to read grid data from a file,",1,1

```
"GridFile,","Grid file name,","C:\GEMSS\APPS\Susquehanna
3\Grid\Susquehanna River 05 474Min.g3g,","4/23/2008 12:36:08
PM,","4/28/2008 12:20:10 PM,"
"InputHDatumUnit,","Input grid data is in geographic coordinate system
switch,",0
"UseLinearConversionIn,","Use linear conversion for input grid data,",1
"cstypeIn,",",Input coordinate conversion mode,",0
"cscodeIn,","Input coordinate conversion zone number,",0,None
"csdatumIn,","Input UTM datum,",0
"InputVDatumUnit,","Input grid data is in geographic coordinate system
switch,",0
"OutputhDatumUnit,","Output grid data is in geographic coordinate system
switch,",0
"UseLinearConversionOut,","Use linear conversion for output grid data,",1
"cstypeOut,","Output coordinate conversion mode,",0
"cscodeOut,","Output coordinate conversion zone number,",0,None
"csdatumOut,","Output UTM datum,",0
"OutputVDatumUnit,","Output grid data is in geographic coordinate system
switch,",0
"iupmgrid,","Switch to set up different k layers,",0
"km_p,","Vertical array size,",-99
"nzds,",",Number of vertical \ayer domains,",-99
"nzdstr,","Starting vertical layer number'for each domain,",-99
"nzend,","Ending vertical layer number for each domain,",-99
"dzd,","Layer thickness in each domain,",-99
"igpsfmt,","Switch to write grid file gps format for use in ArcView,",0
"elioption,","switch to Use TVD From Boundary Condition File or Initial
elevation,",'0
"eli,","Initial elevation,",489.8
"iwbs,","Waterbody switches,", i
"eldatum,","Reference elevation of 3rd layer in meters,",0
"UseSigmastretching,","Switch to use Sigma stretching,",0
"NSLeve1,","Number of'sigma Levels,",0
"SigDistType,","Sigma Layer Distribution type,",0
"sleve1,","User Defined Sigma Distribution,",0.0
"ZtoSigmaBCDepthTransform,","Use BC Depth Transformation from vertical to
Sigma Leve1,",0
"SmoothBathy,","Switch to Perform Bathymetry Smoothening,",0
"SlpMax,","Maximum Allowable Slope for bathymetry smoothening,",0
"NSmoothcycle,","Number of Smoothening cycles,",0
######################################################################
#3: Meteorological variables,
######################################################################
"MetDataType,","Switch to use Meteorological time varying data; VB Use
verion; Number of Meteorology variables,",0,2.2,14
"metss,","Use Meteorological data in current simulation status,",1
"Metfilei,","Meteorological time varying data input file
name,","No_Data_File,"
"metinterp,","Switch to perform interpolation on met data,",0
"ievap;EvapScaleFactor,","Switch for evaporation;Evaporation scale
facotr,",1,1
"iwndhyd,",'"Use wind in hydrodynamics computations,",0
"ta,","temperature of air C,",21,0
"td,"'"Dew point temperature c,",13,0
"twb,",""wet bulb temperature c,",'13,0
"rt,","response temperature C,",20,0
"phi,",""Wind direction degrees,",90
"wad'"'""Wind speed m/sec,",5,00
"solrad,","Solar radiation W/m^2,",120,0
"ps,","Atmoshpheric pressure mm of' Hg,",760
"ps,",'","surace heat exchange method,",i
"KEMethod,","Method to Compute K and E,",0
"cshe,","Coefficient of surface heat exchange w/m2/c,",13.71
"te,","Equlibrium temperature C,",34,1
"secchi,","Secchi depth; light transmission depth m,",-99
"rsts,","Vegetative and Topographic Shading Factor; 0 to 1.0,",-99
"rsts,",",",wtative and Topographic Shading Factor;;-99
"wscoef,",",Wind sheltering coeffi
"MetInterpolationMethod,","Met Interpolation Method,",0
"IDWPOW,","Exponent value'for inverse weighting scheme,",0
"MetVarInterpSwitch;MetVarInterp,","Met Individual1 interpolatey switch
and interpolation methods,",0
**************************************************************************
* Meteorological Scale Factor Variables,
************************************************************************
"UseMetRegionSF;MetRegionSFSS,","Met factor switch,",0,0
*************************************************************************
* Meteorological Dynamic Shading Variables,
*************************************************************************
"UseDSHDRegionSF;DSHDRegionSFSS,","Met dynamic shading switch,",0,0
```

```
**********************************************************************
* Icel Growth Model Variables,
**********************************************************************
"UseIGMode1;UseIGModelStatus,","Switch to control the use of ice growth
mode1 and status,",0,0
**********************************************************************
* Wave Mode1 Variables,
*****************************************************************
"iwvc;iwvcss,","wave mode1 activation switch and status,",0,0
######################################################################
# 4: Constituents,
######################################################################
"itrc,","Transport switch; computation status; number of variables,",1,1,5
"iwqc,","Water quality model type; computation status; number of
variables,",0,0,0
"iwqaddc,","Water quality ADD mode1 switch; computations status; number of
variables,",0,0,0
"iGAMc,","'A1gae mode1 computations; status,",0,0
"nGAMs,",'"Number of algae,",0,1
"UseGAMInsideWQM,","Use Generalized Algae Mode1 inside Water Quality
Mode1,",0
"isnec,","Sediment nutrient exchange computations,",0,0
"iPTM,","Particle transport mode1 computations,",0,0
"istc,","Sediment transport mode1 computations,",0,0
"nstcs,","Number of sediment transport type,",0,1
"ientc,","'Entrainment computations,",0,0
"nezones,","Number of entrainment zones,",0,1
"iatc,","Optional to add more constituents,",0,0
"natc,","Number of additional constituents,",0,1
"icfmc,","Coliform Bacteria Mode1 computations,",0,0
"ncfmcs,","Number of coliform bacteria type,",0
"iCKMC;iCKMCss,","Ch1orine kinetics Mode1 computations and status,",0,0
"nCKMC,","Number'of chlorine kinetics type,",0
"iMGM;iMGMss,","Macrophyte grouth mode1 computations and status,",0,0
"nMGMs,","Number of macrophyte type,",0,1
"UseMGMInsideWQM,","Use Macrophyte Grouth Model inside Water Quality
Mode7,",0
"WriteTransportOutput,","Write TRM model internal variables to GEMSS
output output,",0
"WriteWQMOutput,","Write WQM mode1 internal variables to GEMSS output
output,",0
"WriteSFMOutput,","Write SFM mode1 internal variables to GEMSS output
output,",0
"WriteWQADDOutput,","Write WQADD mode1 internal variables to GEMSS output
output,",0
"WriteGAMOutput,","Write GAM mode1 internal variables to GEMSS output
output,",0
"WriteENMOutput,","Write ENM mode1 internal variables to GEMSS output
output,",0
"WriteUDCOutput,","Write UDM mode1 internal variables to GEMSS output
output,",0
"WriteCFMOutput,","Write CFM model internal variables to GEMSS output
output,",0
"WriteSTMOutput,","write STM mode1 internal variables to GEMSS output
output,",0
"WriteMGMOutput,","Write MGM mode1 internal variables to GEMSS output
output,",0
"WriteCKMOutput,","write CKM mode1 internal variables to GEMSS output
output,",0
"WritePTMOutput,","Write PTM model internal variables to GEMSS output
output,",0
"cnum,","Number of Constituents,",5
"Index,","Mode1 Name,","Identifier; Cannot be Modified,","User Given
Name,'","Activity of Constituent,","Output Time,","Units,","Transport
Switch,"
"C0,","Transport,", I_Temp,"I_Temp,",1,1,1,1
"C1,"',"Transport,",I_Saln,"I_Saln,",1,1,0,1
"C2,'",'Transport,'",I_1Dye,"I_1Dye,'",1,1,0,1
"C3,"',"Transport,",I_CDye,"I_CDye,",1,1,0,1
"C4,","Transport,",I_Exst,"I_Exst,",1,1,1,1
######################################################################
# 5: Mode1 switches,
######################################################################
"Use3DMode1,","Switch to control 3D mode1 simulations,",1,3.7
"issflw,","switch on/off ssflow input data that is available in the
sscontrol.csv,",1
"itrcs,","transport computation algorithm switch,",1
"udwtf,"',"advection theta in z-direction,",0
"vdwft,",""diffusion theta in z-direction,",0
"HOTSIniTime,","HOTS initization time period,",-99
"itrbs,","Turbulence scheme,",1
```

```
"itrbsm,","Turbu7ence sub mode1,",1
"itrbparam,","Turbu7ence parameters,",0,1,1,2.44,2.44,0.9,0.5,1,2.53
"imx1s,","Mixing length scheme,",1
"ihmdcx,","momentum diffusion coefficient scheme selector in x-
direction,'",2
"ihmdcy,","momentum diffusion coefficient scheme selector in y-
direction,",2
"hmdcx,","momentum diffusion coefficient in x-direction
m2/sec,"',0.00584,1.1
"hmdcy,","momentum diffusion coefficient in y-direction
m2/sec,"',0.00584,1.1
"prnm,","Prandt1 number,", 10
"ihtdcx,","transport diffusion coefficient scheme in x-direction,",3
```



```
"htdcx,","transport diffusion coefficient in x-direction \(\mathrm{m} 2 / \mathrm{sec}, "\),
"htdcy,","transport diffusion coefficient in y-direction m2/sec,",',
"idnf,","Density function selector,",2
"ideep,", "Compressibility usage,", 1
"ichezy,", "Chezy coefficient selector,",0
"ilchezy,","Limiting Chezy selector,",0
"chezy,","'Chezy coefficient; Czo;do;n,",40,
"WSCoeff'ype,", "Wind stress coefficient' type,", 0
"WSConstA,"," \(w\) ind stress constant A,",0.8
"WSConstB,",'"Wind stress constant B,",0.065
"icors,","Coriolis force selector,",0
"RefLatoption;RefLat,","Referene Latitude option; Reference Latitude
Value,",0,40
"ivaterms,",'"Vertical acceleration terms,",0
"idbg,","Debug switch,",0
"tvdschék,","time varyíng data consistency check,",0
"iWDLayers,","Use wetting and drying of layers,",1
"1raddthk,","Layer addition thickness m,",0.8
"1rsubthk,'","Layer subtraction thickness m,",0.8
"StabilizeInversionFlag,","StabilizeInversionFlag,",0
"InvCoeff,", "InvCoeff,",-99
"iUsed1DMode’1,","Switch' to use 1D mode1; Switch grid has 1D mode1,", \(0,0,1\)
"Computestat,","statisdtical method to output variables,", 0
"StatFreq;StatUnit,","Statisdtical frequency and unit to write output
variables,",0,0
"StatStarttíme,",","Start time for statistical computations,", 39539
"StatEndTime,","End time for statistical computations,",39543
"ReturnTime1DDn,","Return time,",0
"UseZCheck,","Control z calculations,",0
"ZStabilityFactor,","Stability factor for \(z, ", 0\)
"CheckTimeStepUsingNewValues,","Redo computations using new time step
values,",0
"UseWindRamp,","Use time ramp function for larger wind speeds,",0
"NumWindRampLevels,","Number of time step intervale for the wind ramp
function,",1
"RampLimitwindSpeed,", "Limiting wind speed for the usege of time ramp
function, ", 0
"WriteBCTVD,","write boundary condition time varying data files in time
Series output files,",0
"WriteBCLoads,","Wríte boundary condition data as loads in time series
output files,",0
"WriteSDTVD,","Write sediment data time varying data files in time series
outoput files,", 0
"SSDataType,","Source and sinks data type for use in boundary conditon
data writing procedure,",1
"iDo1DHDM,","Do 1D hydrodynamics,",1
"isetdt1DAsdt,","Set 1D mode1 time, step same as 3D mode1,",0
"ZAmpliticationFactor,","Z amplification factor for stability checks,",4
"CGCLimit1,","Conjugate Gradient Computation Error Limit 1,",1,-7
"CGCLimit2,"',"Conjugate Gradient Computation Error Limit 2,",1,-9
"UseRampFlowFunction,","Use ramp flow function to stabilize the model
simulation,",1
"NumRampFlowBCs,","Number of ramp flow boundary conditions,",6,
"BCNum1,","Ramp fiow values for boundary condition
number1,'"', 1, "Upstream",1,12800,1,6,1
"BCNum2,","Ramp flow values for boundary condition
number2,", 2 , "Downstream",1,12679,1,6,1
"BCNum3,","'Ramp flow values for boundary condition
number3,", 3,"SSES_In", 0, 0, 0, 0, 1
"BCNum4,","Ramp flow values for boundary condition
number4,'"', 4, "SSES_Ou", 0,0,0,0,1
"BCNum5,",'"Ramp flow values for boundary condition
number5,", 5, "BBNPP_In", 0,0,0,0,1
"BCNum6,","Ramp flow values for boundary condition
number6,"', 6,"BBnPP_Ou",0,0,0,0,1
"SaveCSDataInArray,","Convert cross-section data to depth vs width
array,",0
```

"DelHforcs,","Depth interval for depth vs width array computations,",0.1
"HDMVersionnumber,","Use far-field/near-field modeling approach,",0
"CapitolLakevarsSwi,","Switch for Capitol lake variables,",0,0
\#
\# 6 : Simulation time variables,
\#
"stryear,","Mode1 start time year,", 2008
"strmonth, ", "Mode1 srart time month,", 4
"strday,","Mode1 start time day,",1
"strhour,","Mode1 start hour,",0
"strmin,","Mode1 start minutes,", 0
"endyear, ", "Mode1 end time year, ", 2008
"endmonth,",","Mode1 end month year,",4
"endday,","'Mode1 end day,", 21
"endhour,","Mode1 end hour,",0
"endmin,","Mode1 end minutes,",0
"MaxTimesiots,","Maximun number of output time slots used in outputs,",2
"id7tt,","Time step control switch,",0,1
"dltminm,","Minimum time step,", 10
"d7tlimit,","Start up time step,",60
"omega,","Tíme step under relaxation factor,", 0.75
\#
\# 7: Derived variables,
\#
"idv,","Option to use derived variables computations,",0
\#
\# 8: Probability Plume variables,
\#
"ComputeProPlume,", "Computation of Probability Plume, ", 0
\#
\# 9: Snapshot output variables,
\#
"isnp,","Snapshot output selector,",1,2.2
"isnpss,","Ouput status,",1
"snpfile,","Snapshot output file path and
name,","C:\GEMSS\APPS\Susquehanna $3 \backslash$ output \Scenario $05 _01 \mathrm{NC}$. snp,"
"imetInfo,","Switch to write meteorology to snapshot output,",0
"ivolumeBalance,","Volume Balance switch,",1
"imassBalance,","Mass Balance switch,",0
"nsnp,","Number of snapshot output times,",2
"snpyear,","Snapshot output year,",2008,2008
"snpmonth,",","Snapshot output month,",4,4
""snpday,"," "Snapshot output day,", 1,3
"snphour,"," "Snapshot output hour,",0,0
"snpmin,","'Snapshot output minutes,",0,0
"snpfrequ,"," "Snapshot output frequency unit,", 1,2
"snpfreq,","Snapshot output frequency value,",'1,1
"nsnpkpk;kpk,","Number of snapshot output K planes; output k plane
values,",1,51
"nsnpkpkv;kpv,","Number of snapshot output variables for selected k
planes; output variable ID values," $, 6,1,19,20,21,22,23$
"nsnpjpj; ;jpj,","Number of snapshot output J planes; output J plane
values,".,0
"nsnpjpjv;jpv,","Number of snapshot outputvariables for selected J planes
output variable ID values,",0
"nsnpipi;ipi,","Number of snapshot output I planes; output I plane
values,",0
"nsnpipiv;ipv,","Number of snapshot output variables for selected I
planes; output variable ID values,",0
"nsnpijpij,","Number of snapshot output I J points,",0
"snpijpi;snpijpj;snpijpnm,","Snapshot output
information, ", ICe11,JCe11, Location names
"nsnpijpv;ijpv,","Snapshot output number of output variables for all
selected IJ cells; output variable IDs for all selected IJ cells,",0
"Hydvar,","Hydrodynamic constituent name,", Surface Elevation, U-
velocity, V - Velocity, W - Velocity, Density, Momentum Diffusivity, Chezy, Flow
Rate
"hdunits,"," "Constituent unit type, ", 0, 0, 0, 0, 0, 0, 0, 0
"hdamp,","'scaling factor,",100,1,1,1,1,10000,1,1
"hddigits,","Number of digits to print in the snapshot,",2,2,2,2,2,2,2,2
Scaling factor, No. of digits, ConstituentID, Constituent name, Output
Type, Units
1,2,I_Temp,I_Temp,1 : Concentration,0 : C
1,2,I_Saln,I_Saln,1 : Concentration,0 : ppt
1,2,I_1Dye,I-1Dye,1 : Concentration,0 : mg/1
1,2,I_CDye,I_CDye,1 : Concentration,0 : mg/1
1,2,I_Exst,I_Exst,1 : Concentration,0 : deg C
"Stat3DSnapShot,","Do stat analysis for 3D SnapShot,",0
"DV3DSnapshot,","'Derived Variables for 3D shapshot,",0
"ProbPlumeSnapshotStatus,","Status to write probability plume data to the
snapshot output,",0
"WriteMetSnapshot,","Switch to write meteorology variable output to snapshot, ", 0
"SnpOutputMetVars,","Numberof meteorology variables;Output meteorology variable ID to snapshot,",0
"WriteICESnapshot,","Write ice growth mode1 output Variables,",0
"WriteWaveSnapshot,","Write wave mode1 output variables,",0
"WriteTransportSnapshot,","Write TRM mode1 internal variables to snapshot output,",0
"WriteWQMSnapshot,","Write WQM mode1 internal variables to snapshot output,",0
"WriteSFMSnapshot,","Write SFM mode1 internal variables to snapshot
output,",0
"WriteWQADDSnapshot,","Write WQADD mode1 internal variables to snapshot output,",0
"WriteGAMSnapshot,","Write GAM mode1 internal variables to snapshot output,",0
"WriteENMSnapshot,","Write ENM mode1 internal variables to snapshot output,",0
"WriteUDĆSnapshot,","write UDM mode1 internal variables to snapshot output,",0
"WriteCFMSnapshot,","Write CFM mode1 internal variables to snapshot output,",0
"WriteSTMSnapshot,","Write STM mode1 internal variables to snapshot
output,",0
"WriteMGMSnapshot,","write MGM mode1 internal variables to snapshot output,", 0
"WriteckMSnapshot,","write CKM mode1 internal variables to snapshot output,",0
"WritePTMSnapshot,","Write PTM mode1 internal variables to snapshot
output,", 0
\# \# 10: Console output variables,
\#
"icle,","Console output selector,",1,1.1
"icless,","Ouput status,",1
"ncle,","Number of console ouput times,", 2
"cleyear,","Console output year,", 2008, 2000
"clemonth,",","Console output month,",4,4
"cleday,","'console output day,",1,1
"clehour,","Console output hour,", 0,2
"clemin,", "Console output minutes,",'0,0
"clefrequ,",""Console output frequency unit,", 0,0
"clefreq, ",","Console output frequency value, ", 1,10
"nclep,","'Number of Console output I J points,", 1
"clei;clej;clenm;clenijpk;clenijpv,","Console output
information,", ICe11, JCe11,Location names, Number of K, Number of Variables
"clep1,","'Point 1,",119,17,"c1,",1,1
"clek1,"," "Console output number of'k values and k layer values for point
1,",1,30
"c’eví,","Console output number of output variables and variable IDs for point $1, ", 1,1$
"Stat3DConsole,","Do stat analysis for 3D Console,",0
"DV3DConsole,","'Derived variables for 3D Console,", 0
"WrịteICEConsole,","Write ice growth mode1 output Variables,", 0
"Writewaveconsole,", "Write wave model output variables,", 0
"WriteTransportConsole,","Write TRM model internal varíables to console output,",0
"WriteWQMConsole,","Write WQM mode1 internal variables to console output,", 0
"WriteSFMConsole,","Write SFM model internal variables to console output,",0
"WritewQad console,","Write WQADD mode1 internal variables to console
output,", 0
"WriteGAMConsole,","Write GAM mode1 internal variables to console output,",0
"WriteENMConsole,","Write ENM model internal variables to console output,",0
"WriteÚDĆConsole,", "Write UDM mode1 internal variables to console output,",0
"WriteCFMConsole,","Write CFM mode1 internal variables to console output,", 0
"WritestMconsole,", "Write STM mode1 internal variables to console output,",0
"WriteMGMConsole,","Write MGM mode1 internal variables to console output,", 0
"WritećKMConsole,","Write CKM mode1 internal variables to console output,",0
"WritePTMConsole,","Write PTM model internal variables to console output,",0
\#
\# 11: Diagnostic output variables,
"tsrfile,","Time series output file path and
name,","C:\GEMSS \APPS\Susquehanna 3\Output\Scenario 05_01 NC_TSM.txt,"
"ntsr,","Number of time steries output times,",1
"tsryear,","'Time series output year,", 2008
"tsrmonth,","Time series output month,",4
"tsrday,","'Time series output day,",1
"tsrhour," ""Time series output hour,",0
"tsrmin,", "Time series output minutes,", 0
"tsrfrequ,","Time series output frequency unit,",1
"tsrfreq,","Time series output frequency value,", 1
"ntsrp,","Number of time series output points,", 11
"tsri;ts'j;tsrnm;tsrnijpk;tsrnijpv,","Time series output
information,", ICe11, JCe11, Location names, Number of K, Number of Variables
"tsP1,","'Point 1,",172,27,"T1,", 30,0
"tsP2,'","Point 2,",166,26,"т2,",0,0
"tsP3,"',"Point 3,"',159,25,"T3,",0,0
"tsP4,"',"Point 4,",'155,25,"T4,'",0,0
"tsP5,","'Point 5,",151,25,"T5,",0,0
"tsP6,'","'Point 6,'",148,25,"T6,",0,0
"tsP7,",'"Point 7,",144,23,"T7,",0,0
"tsP8,'",'"Point 8,'",140,23,"T8,",',0,0
"tsP9,'","Point 9,"',136,21,"T9, ",0,0
"tsP10," ", "Point 10,",128,25, "T11,", 0,0
"tsP11,'","'Point 11,",126,20,"т12,",0,0
"tsrk1,"',"Time series output number of K values and K layer values for point
$1, ", 30,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,2$
6,27,28,29,30
"tșrk2,","Time series output number of K values and K layer values for point 2,",0
"tsrk3,","Time series output number of K values and K layer values for point 3,",0
"tṣrk4,","Time series output number of K values and K layer values for point 4,", 0
"tsrk5,","Time series output number of K values and K layer values for point 5,",0
"tsrk6,","Time series output number of K values and K layer values for
point 6,""0
"tsrk7,","'Ti
"tsrk8,","Time series output number of K values and K layer values for point 8 ,", 0
"tsrk9,","Time series output number of K values and K layer values for point 9,",0
"tsrk10,","Time series output number of K values and K layer values for point 10,", 0
"tsrk11,","Time series output number of K values and K layer values for point $11, ", 0$
"tsrv1,","Time series output number of output variables and variable IDs for point 1,",0
"tsrv2,","Time series output number of output variables and variable IDs for point 2,",0
"tsrv3,","Time series output number of output variables and variable IDs for point 3,",0
"tsrv4,","Time series output number of output variables and variable IDs
for point 4,",0
"tsrv5,","Time series output number of output variables and variable IDs for point 5,",0
"tsrv6,","Time series output number of output variables and variable IDs for point 6,",0
"tsrv7,","Tíme series output number of output variables and variable IDs
for point 7,",0
"tsrv8,","Time series output number of output variables and variable IDs for point 8,",0
"tsrv9,","Tíme series output number of output variables and variable IDs for point 9,",0
"tsrv10,", "Time series output number of output variables and variable IDs for point 10,",0
"tsrv11,", "Time series output number of output variables and variable IDs
for point 11,",0
"Stat3DTimeSeries,","Do stat analysis for 3D time series,",0
"DV3DTimeseries,","Derived variables for 3D time series,", 0
"ProbPlumeTimeSeriesStatus,","Status to write probability plume data to the time series output,",0
"WriteMetTimeSeries,","Switch to write meteorology variable output to time series,",0
"TSOutputMetVars,","Numberof meteorology variables;Output meteorology variable ID to time series,",0
"WriteICETimeSeries,","Write ice growth mode1 output Variables,",0
"WriteWaveTimeSeries,","Write wave model output variables,",0
"WrịteTransportTimeseries,","write TRM mode1 internal varíables to time series output,",0
"WriteWQMTimeSeries,","Write WQM mode1 internal variables to time series output,",0
"WriteSFMTimeSeries,","Write SFM model internal variables to time series output,",0
"WriteWQADDTimeSeries,","Write WQADD mode1 internal variables to time series output,",0
"WriteGAMTimeSeries,","Write GAM mode1 internal variables to time series output,", 0
"WriteENMTimeSeries,","Write ENM mode1 internal variables to time series output,",0
"WriteÚDĆTimeSeries,","Write UDM model internal variables to time series
output,",0
"WriteCFMTimeSeries,","Write CFM model internal variables to time series output,",0
"WriteSTMTimeSeries,","write STM model internal variables to time series output,",0
"WriteMGMTimeSeries,","Write MGM model internal variables to time series
output, ", 0
"WriteCKMTimeSeries,","Write CKM mode1 internal variables to time series
output,",0
"WritePTMTimeSeries,", "Write PTM model internal variables to time series output,", 0
"itrn,","Time series transport output selector,",0
\#
\# 14: Vertical profile output variables,
\#
"ivpf,","Vertical profile output selector,",0,4
\#
\# 15: GPP contour output variables,
\#
"igpp,",""GPP output selector,",1,2.2
"igppss,",", "Ouput status,",1
"gppctmfile,","Contour output contour file path and
name,","C:\GEMSS\APPS\Susquehanna $3 \backslash$ output \backslash Scenario 05 _01 NC_CTM.txt,"
"gpphdmfile,","Contour output header file path and
name,","C:\GEMSS\APPS\Susquehanna 3\output\Scenario 05_01 NC_HDM.txt,"
"gppgrdfile,","Contour output element file path and
name,","C: \GEMSS \backslash APPS \backslash Susquehanna $3 \backslash 0 u t p u t \backslash$ Scenario $05 _01$ NC_GRD.txt,"
"writegppatallsurfaces,","Option to write output at al1 surface and
cells,", 1
"ngppkpk; gppkpk, ", "Number of GPP contour output K planes; output K plane
values,",'0
"ngppjpj; ;'gppjpj,","Number of GPP contour output J planes; output J plane
values,".,0

va1ues,",0
"ngpp,","Number of GPP contour output times,",1
", gppyear,"," GPP contour output year,", 2008
".gppmonth,",","GPP contour output month,",4
","gppday,","'GPP contour output day,", 1
"gpphour,","GPP contour output hour,",0
".gppmin,", "'GPP contour output minutes,', 0
"gppfrequ,'" "GPP contour output frequency unit,", 1
"gppfreq,", "GPP contour output frequency value,",', 6
"ngppv; gppv,","GPP contour output number of output variables for all
selected IJ cells; GPP contour output variable IDs for selected
location, ", $8,1,2,3,4,19,21,22,23$
"Stat3DContour,","Do stat ana1ysis for 3D contour,", 0
"DV3DContour,","Derived Variables for 3D contour,","0
"ProbPlumeContourstatus,","Status to write probability plume data to the contour output,",0
"WriteMetContour,","Switch to write meteorology variable output to GPP contour,",0
"gppoutputMetvars,","Numberof meteorology variables;Output meteorology variable ID to GPP contour,",0
"writeICEContour,","Write ice growth mode1 output Variables,",0
"Writewavecontour,","Write wave mode1 output variables,",0
"writeTransportContour,","Write TRM mode1 internal variables to contour output,",0
"WriteWQMContour,","Write WQM mode1 internal variables to contour output,", 0
"WriteSFMContour,","Write SFM mode1 internal variables to contour output,",0
"WriteWQADDContour,","Write WQADD mode1 internal variables to contour output,", 0
"WriteGAMContour,","Write GAM mode1 internal variables to contour output,",0
"WriteENMContour,","Write ENM mode1 internal variables to contour output,",0
"WriteUDCContour,","Write UDM mode1 internal variables to contour output,",0
"WriteCFMContour,","Write CFM mode1 internal variables to contour output,", 0
"WritestMcontour,", "Write STM mode1 internal variables to contour output,",0
"WriteMGMContour,","Write MGM mode1 internal variables to contour "utput,",0
"WriteckMContour,","Write CKM mode1 internal variables to contour output,",0
"WritePTMContour,","Write PTM mode1 internal variables to contour output,", 0
\#
\# 16: Qualview velocity field output variables,
\#
"icvf,", "Velocity field output for Qual view selector,", 0
\# \# 17: QualView contour output variables,
\#
"icnt,", "Qual View contour output selector,",0
\#
\# 18: Current meter type output variables,
\#
"idcm,","Current meter type output selector,", 0
\#
\# 19: TMDL output variables,
\#
"iTML,","TML output selector,",0,1.1
\#
\# 20: oil spil output variables,
\#
"iSVF,","Oi1 Spil1 output selector,",0
\#
\#21: User defined output variables 1,
\#
"iudo1,","User defined variable output selector1,",0
\# \#22: User defined output variables 2,
\#
"iudo2,","User defined variable output selector2, ", 0
\# \#23: User defined output variables 3,
\#
"iudo3,","User defined variable output selector3,",0
\# \#24: User defined output variables 4,
\#
"iudo4,","User defined variable output selector4,",0
\# \#25: User defined output variables 5,
\#
"iudo5,","User defined variable output selector5,",0
\# \# 26: NCF NETCDF output variables,
\#
"iNCF,","NETCDF output selector,", 0
\#
\# 27: CFD output variables,
\#
"WriteCFDOutput;writeCFDOutputs,","Switch to Turn on CFD output; Ouput status, ", 0,0
\#
\# 28: Initial conditions; constant and spatial data,
\#
"iicff,","Initial condition far field file use,",0,2.5,27
"icffile,",", Initial condition far field file,","No_Data_File,"
"icDosTInterpolate,","Do Spatial and Temporal Interpolation,", 0
"RestartToleranceTime,","Time toloerance for using restart file,", 0
"AdjustIcData,","Adjust'initial conditoin data using data before the mode1
simulation time,",1
"NumInterpSerarchCycles,","Number of smoothening cycles,",1


```
'kdsgend,","Ending Vertical Layer Number in z-Direction,",-999,-999 : КВ
"dsgcolor,","Selected Region Color,",12829149,12829149
"dsgrangess,","Selected Region Display Status,",1,1
"dsgdr,","Hydrodynamic Mode Value Adjustment Factor,",5,5 : BBNPP_In
"dsgvf',"',"specific Momentum Amplification Factor,",i,i
"hdsgm,","Method of Flow withdrawa1 from Layers,",0,0
"fdsgd,",","Hydrodynamic Flow Direction,",0,0 : Along x-Direction
"fdsgm,"',"Hydrodynamic Mode,",2,2 : Flow Rate
"fdsgu,","Hydrodynamic Mode Unit,",3,3: gpm
"fdsgv,","Hydrodynamic Mode value,",11172,11172
"sdsg,","Intake Conduit Shape,",1,1': Circular
"pdsg,"',"Intake Conduit Angle from Positive z-Axis,",135,135
"tdsg,","Intake Conduit Angle from Positive x-Axis,",270,270
"1dsg,","Intake Conduit Length in Meters,",0.1016,0.1016
"wdsg,"',"Intake Conduit width,",0.1016,0.1016
"dsgnp,","Number of Ports in the Discharge Conduit,",72,72
"qdsg,","Value to be Used for Flow Rate,",0,0 : Use Existing Flow Rate
"dsgstructurew,","Structure Width,",-99,Not Applicable
"dsgstructureu,"',"Structure width'units,",-99,Not Applicable
"dsgFlowExp,","F1ow Exponent,",-99,Not Applicable
"dsgFlowCoeff,","Flow Coefficient,",-99,Not Applicable
"dsgFlowDir,"'"'Hydrodynamic Flow Di'rection,",-99,Not Applicable
"dsgFlowMode,", "Hydrodynamic Mode,",-99,Not Applicable
"dsgFlowUnit,","Hydrodynamic Mode Unit,",-99,Not Applicable
"dsgFlowValue,","Hydrodynamic Mode Value,",-99,Not Applicable
"dsgFlowHeadDif'fFW,","Head Difference for 'Flow withdrawal Using the
Stru,",-99,Not App1icab7e
"dsgFlowHeadDiffFWUnits,","Heade Difference Units for Flow Withdrawa1,",-
99,Not Applicab7e
"dsgFlowHeadDiffFD,","Head Difference for Flow Discharge Using the
Struc,",-99,Not Applicable
"dsgFlowHeadDiffFDUnits,","Head Difference Units for Flow Discharge,",-
99,Not Applicab7e
"dsgrt,","Hydrodynamic Mode Value Adjustment Factor,",1,1
"dsgrc(I_Temp),",'Temperature Data Type,",1,1 : (I_Exst) Concentration
"dsgvu(I_Temp),"'"Temperature Unit / Status,",1,1 : deg F
"dsgv(I_Temp),","Temperature value,",33.81,33.81
"dsgrc(I_Saln),","Salinity Data Type,",0,0: (I_Saln) Concentration
"dsgvu(I_Saln),","Salinity Unit/ Status,",0,0 : ppt
"dsgv(I_Saln),","Salinity value,",0.4,0.4
"dsgrc(I__IDye),","Instantaneous Dye Data Type,",0,0 : (I_IDye)
Concentration
"dsgvu(I_IDye),","Instantaneous Dye Unit / Status,",0,0 : mg/1
"dsgv(I_IDye),","Instantaneous Dye value,",0,0
"dsgrc(I_CDye),","Continuous Dye Data Type,",0,0 : (I_CDye) Concentration
"dsgvu(I_CDye),'","Continuous Dye Unit / Status,",0,0 : mg/1
"dsgv(I_CDye),","Continuous Dye value,",100,100
"dsgrc(I_Exst),","Excess Temperature Data Type,",0,0 : (I_Exst)
Concentration
"dsgvu(I_Exst),","Excess Temperature Unit// Status,",1,1 : deg F
"dsgv(I_Exst),","Excess Temperature value,",33.81,33.81'
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ Rates and Constants for GEMSS-WQM,
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
"iwqC,","Water Quality Mode1 Type ID; Name; Number of parameters; number
of regions; number of variables,",0,"Not Used",0,0,0
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ Rates and Constants for GEMSS-SFM,
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
"isnec,","Sediment Mode1 Type ID; Name; Number of parameters; Number of
regions;'number of variables,",0,"Not Used",0,0,0
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ Rates and Constants for GEMSS-WQADD
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
"iwqaddc,","Water Quality ADD switch; number of variables; Number of
parameters; Number of regions,",0,0,0,0
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
"iGAM,","Algae Mode1: Switch; Number of Algae; Number of Variables for
Each Algae; number of regions,",0,0,0,0
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ Rates and Constants for GEMSS-CFM
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
"iCFM,","Bacteria Mode1: Switch; Number of Bacterias; Number of parameters
for Each Bacteria; Number of regions,",0,0,0,0
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$ Rates and Constants for GEMSS-UDF
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
"iUDC,","User Defined Mode1: Switch; Number of variables; Number of
parameters for Each Coliform; Number of regions,",0,0,0,0
```

\$
\$ Rates and Constants for GEMSS-ENT

"iENT,","Entrainment Mode1: Switch; Number of Entrainments; Number of Paraments for Each Variables; Number of regions, ", 0, 0, 0,0
\$
\$ Rates and Constants for GEMSS-STM
\$1010|
"istc,","Sediment Transport Mode1 Computations: Switch; Number of
Entrainments; Number of Paraments for Each Variables; Number of
regions,",0,0,0,0
\$1.3
\$ Rates and Constants for GEMSS-MGM
\$
"iMGM,", "Macrophytes Mode1: Switch; Number of Macrophytes; Number of
Variables for Each Macrophytes; number of regions,",0,0,0,0
\$
$\$$ Rates and Constants for Chlorine Kinetics module-CKM

"iCKM,","Chlorine Kinetics Module: Module tpe; Number of variables; Number
of parameters for each variable; Number of regions,",0,0,0,0

\$ Particle Transport Variables for GEMSS-PTM,
\$
"iPTM,","particle transport mode1 computations,",0,0

\$ Miscellaneous data,
\$
"vbuse1,", "Number of columns and rows,",4,0

[^0]: Figure 19 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 2
 Scenario 2 is summer low flow.

[^1]: Figure 21 Excess temperature at the bottom for incremental BBNPP impact for Scenario 2

[^2]: Figure 23 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 3
 Scenario 3 is winter mean flow.

[^3]: Figure 25 Excess temperature at the bottom for incremental BBNPP impact for Scenario 3

[^4]: Figure 33 Excess temperature at the bottom for incremental BBNPP impact for Scenario 5

[^5]: 'dsgstructureu,","Structure width Units,", -99, Not Applicable
 "dsgFlowExp,","F1ow Exponent,",-99, Not Applicable
 "dsgFlowCoeff,","'Flow Coefficient,",-99, Not Applicable
 "dsgFlowDir,","'Hydrodynamic Flow Dírection,",-99, Not Applicable
 "dsgFlowMode," ","Hydrodynamic Mode,", -99, Not Applicable
 "dsgFlowUnit,","Hydrodynamic Mode Unit,",-99, Not Applicable
 "dsgFlowValue,", "Hydrodynamic Mode Value,",-99, Not Applicable
 "dsgFlowHeadDifffFW,","Head Difference for Flow Withdrawal Using the
 Stru,",-99, Not App1icable
 "dsgFlowHeadDiffFWUnits,","Heade Difference Units for Flow withdrawal,",
 99, Not Applicable
 "dsgFlowHeadDiffFD,","Head Difference for Flow Discharge Using the
 Struc,",-99, Not Applicable
 "dsgFlowHeadDiffFDUnits,","Head Difference Units for Flow Discharge,",99, Not Applicable
 "dsgrt,","Hydrodynamic Mode Value Adjustment Factor,",1,1
 "dsgrc(I_Temp),","Temperature Data Type,",1,1 : (I_Exst) Concentration
 "dsgvu(I_Temp)," "Temperature Unit /" Status,",1,1 : deg F
 "dsgv(I_Temp),", "Temperature value,", 33.81, 33.'81
 "dsgrc(İ_Saln),","Salinity Data Type,",0,0: (I_Saln) Concentration
 "dsgvu(I_Saln),"'"Salinity Unit / Status,",0,0 : ppt
 ""dsgv(I_Saln),","Salinity value,",0.4,0.4
 "dsgrc(I_IDye),","Instantaneous Dye Data Type,",0,0 : (I_IDye)
 Concentration
 "dsgvu(I_IDye),","Instantaneous Dye Unit / Status,",0,0 : mg/1
 "dsgv(I_IDye),","Instantaneous Dye Value,",0,0
 "dsgrc(I_CDye),","Continuous Dye Data Type,",0,0 : (I_CDye) Concentration
 "dsgvu(I_CDye),","Continuous Dye Unit / Status,",0,0 : mg/1
 "dsgv(I_CDye),","Continuous Dye Value,",100,100
 "dsgrc(I_Exst),","Excess Temperature Data Type,",0,0 : (I_Exst)
 Concentration
 "dsgvu(I_Exst),","Excess Temperature Unit// Status,",1,1 : deg F
 "dsgv(I_Exst),", "Excess Temperature value,", 33.81,33.81,
 \$
 \$ Rates and Constants for GEMSS-WQM,
 \$
 "iwqc,", "Water Quality Mode1 Type ID; Name; Number of parameters; number of regions; number of variables,",0, Not Used",0,0,0
 \$1.3
 $\$$ Rates and Constants for GEMSS-SFM,
 \$
 "isnec,","Sediment Model Type ID; Name; Number of parameters; Number of regions; number of variables, ", 0, "Not Used", 0, 0, 0
 \$ \$ Rates and Constants for GEMSS-WQADD

 "iwqaddc,", "Water Quality ADD switch; number of variables; Number of parameters; Number of regions,",0,0,0,0
 \$
 $\$$ Rates and Constants for GEMSS-GAM

 "iGAM,","Algae Mode1: Switch; Number of Algae; Number of Variables for
 Each Algae; number of regions, ", 0,0,0,0

 $\$$ Rates and Constants for GEMSS-CFM
 \$
 "iCFM,","Bacteria Mode1: Switch; Number of Bacterias; Number of parameters
 for Each Bacteria; Number of regions, ", 0, 0, 0,0
 \$
 $\$$ Rates and Constants for GEMSS-UDF

 "iUDC,", "User Defined Mode1: Switch; Number of variables; Number of parameters for Each Coliform; Number of regions,",0,0,0,0
 \$
 $\$$ Rates and Constants for GEMSS-ENT
 \$
 "iENT,","Entrainment Mode1: Switch; Number of Entrainments; Number of Paraments for Each Variables; Number of regions, ", 0, 0, 0,0
 \$
 \$ Rates and Constants for GEMSS-STM
 \$
 "istc,","Sediment Transport Mode1 Computations: Switch; Number of Entrainments; Number of Paraments for Each Variables; Number of regions,",0,0,0,0
 \$10.3
 $\$$ Rates and Constants for GEMSS-MGM
 \$
 "iMGM,","Macrophytes Mode1: Switch; Number of Macrophytes; Number of Variables for Each Macrophytes; number of regions, ", 0,0,0,0
 \$
 \$ Rates and Constants for Chlorine Kinetics module-CKM

