

June 5, 2008

L-MT-08-042 10 CFR 50.90

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

Monticello Nuclear Generating Plant Docket 50-263 Renewed Facility Operating License License No. DPR-22

Monticello Extended Power Uprate (USNRC TAC MD8398): Acceptance Review Supplemental Information Package 5

References:

- 1) NMC Letter to USNRC, "License Amendment Request: Extended Power Uprate," dated March 31, 2008
- NMC Letter to USNRC, "Monticello Extended Power Uprate (USNRC TAC MD8398): Acceptance Review Supplement Regarding Radiological Analysis," dated May 20, 2008
- NMC Letter to USNRC, "Monticello Extended Power Uprate (USNRC TAC MD8398): Acceptance Review Supplemental Information," dated May 28, 2008
- NMC Letter to USNRC, "Monticello Extended Power Uprate (USNRC TAC MD8398): Acceptance Review Supplemental Information Package 3," dated May 30, 2008
- NMC Letter to USNRC, "Monticello Extended Power Uprate (USNRC TAC MD8398): Acceptance Review Supplemental Information Package 4," dated June 3, 2008

Pursuant to 10 CFR 50.90, Nuclear Management Company, LLC (NMC), requested in Reference 1 approval of amendments to the Monticello Nuclear Generating Plant (MNGP) Renewed Operating License (OL) and Technical Specifications (TS) to increase the maximum power level authorized from 1775 megawatts thermal (MWt) to 1870 MWt, an approximate five percent increase in the current licensed thermal power (CLTP). The proposed request for Extended Power Uprate (EPU) represents an increase of approximately 12 percent above the Original Licensed Thermal Power (OLTP). The Monticello EPU application was supplemented on May 20, 2008, May 28, 2008, May 30, 2008, and June 3, 2008 by References 2, 3, 4 and 5.

Document Control Desk Page 2

In a teleconference held May 2, 2008, the NRC staff indicated that additional information would be necessary for the Electrical Engineering Branch (EEEB) to complete the acceptance review of the Monticello EPU license amendment request (LAR). The questions were formalized and emailed to NMC on May 15, 2008. On May 28, 2008, NMC submitted responses (Reference 3) to EEEB Questions 2, 3, and 4. Enclosure 1 of this letter contains the response to EEEB Question 1.

NMC has reviewed the No Significant Hazards Consideration and the Environmental Consideration submitted with Reference 1 relative to the enclosed supplemental information. NMC has determined that there are no changes required to either of these sections of Reference 1.

Commitment Summary

This letter makes no new commitments and does not change any existing commitments.

I declare under penalty of perjury that the foregoing is true and correct.

Executed on June 5,/2008.

Timothy J./O'Connor Site Vice President, Monticello Nuclear Generating Plant Nuclear Management Company, LLC

cc: Administrator, Region III, USNRC Project Manager, Monticello, USNRC Resident Inspector, Monticello, USNRC Minnesota Department of Commerce

Enclosure

Enclosure 1 to L-MT-08-042

Electrical Engineering Branch Question 1 and Response 1

4) EEEB – ELECTRICAL ENGINEERING BRANCH

NRC Question

1) In Section 2.3 of the LAR under the section titled 'Outside Containment', the licensee stated the following:

"The total integrated doses (normal plus accident) for EPU conditions were evaluated and determined not to adversely affect qualification of most of the EQ equipment located outside of containment. Equipment not qualified to the new environmental conditions at EPU will be reanalyzed, re-qualified, or replaced prior to implementation of EPU."

In order for the Electrical Engineering Branch (EEEB) to start its review, the full EQ analysis must be completed. This includes any reanalysis, re-qualification, or replacement of equipment. The licensee must also describe how the equipment was evaluated (e.g., calculations, assessments, etc.) and show how the equipment remains bounded (i.e., provide the original design parameters and the updated values including the supporting calculations).

NMC Response:

The responses to EEEB Questions 2, 3 and 4 were submitted in Monticello letter L-MT-08-039 on May 28, 2008. The following response is regarding EEEB Question 1.

Introduction

The following information provides more detail regarding the analyses that have been completed relative to the qualification of electrical equipment outside containment. As required, the analyses have addressed the radiation, pressure, temperature and flooding effects from operation at extended power uprate (EPU) conditions. This information describes how the equipment was evaluated and notes where further action, per the applicable regulatory criteria and the Monticello Environmental Qualification (EQ) Program, is necessary prior to implementation of EPU.

Normal Temperature Evaluation

An evaluation was completed to assess the impact EPU will have on the normal design temperatures of the Reactor Building. A calculation supports the normal area temperature data for the EQ Program. This calculation uses both survey data and calculated data as inputs. For the Drywell and the Steam Chase, a calculation provides a basis for the normal ambient temperatures. The EPU evaluation indicates no change in normal Drywell temperatures for EPU and a slight increase in normal Steam Chase temperature (less than one degree). This small temperature increase is bounded by the temperature value currently used in the EQ program for the steam chase. Normal plant area ambient temperature for assessing qualified lifetimes. As such, there is no impact of EPU conditions on normal plant temperature inputs to qualified life assessments.

Normal Radiation Dose

The EPU evaluation for radiation levels generally indicates an increase of 13 percent for the Reactor Building dose and no change for most Turbine Building normal doses as the result of EPU (some areas of Turbine Building have dose rate increases). This evaluation provides survey data for most plant areas and identifies the applicable increase effect for each plant area outside the Drywell.

The current basis for normal radiation doses in the EQ program is provided by calculation. This calculation documents actual survey dose rate data for all of the Reactor Building and the Turbine Building. The tables below relate the normal radiation doses in the calculation for reactor and turbine building.

Reactor Building, Normal 60 Year Doses								
Current EQ Program Basis				Projected 60 year Normal EPU Dose				
RB Volume (Spec)	Dose Rate mR/Hr	Survey date	Current 60 year Dose (Rad)	Dose rate (survey) mR/Hr	Predicted EPU Effect (see note)	EPU 60 yr Dose (Rad) (see note)		
1 (B.1.4)	200	01/18/03	1.39E+05	160	180.8	9.51E+04		
2 (B.1.4)	200	01/18/03	1.39E+05	Not surv				
3 (B.1.4)	100	12/29/02	6.94E+04	50	56.5	2.97E+04		
4 (B.1.4)	100	12/29/02	6.94E+04	Not surv				
5 (B.1.3)	1	08/18/02	6.94E+02	Not surv				
6 (B.1.2)	1000	12/21/02	6.94E+05	100	113	5.94E+04		
7 (B.1.10)	1	06/26/00	6.94E+02	Not surv				
8 (B.1.2)	46	12/21/03	3.19E+04	3	3.39	1.78E+03		
9 (B.1.6)	120	12/15/02	8.33E+04	50	56.5	2.97E+04		
10 (B.1.6)	90	12/15/02	6.25E+04	30	33.9	1.78E+04		
11 (B.1.6)	140	01/19/03	9.72E+04	60	67.8	3.57E+04		
12 (B.1.6)	150	01/19/03	1.04E+05	30	33.9	1.78E+04		
13 (B.1.8)	80	01/12/03	5.55E+04	20	22.6	1.19E+04		
14 (B.1.9/11)	160	08/03/02	1.11E+05	60	67.8	3.57E+04		
15 (B.1.9)	350	03/10/02	2.43E+05	50	56.5	2.97E+04		
16 (B.1.7)	4000	07/01/98	2.78E+06	2000	2260	1.19E+06		
17 (B.1.9)	4	12/29/02	2.78E+03	4	4.52	2.38E+03		
18 (B.1.10)	400	01/21/03	2.78E+05	55	62.15	3.27E+04		
(B.1.10/12)	42	12/29/02	2.92E+04	4	4.52	2.38E+03		
20 (B.1.8)	80	01/18/03	5.55E+04	30	33.9	1.78E+04		
21 (B.1.14)	100	02/08/03	6.94E+04	30	33.9	1.78E+04		
22 (B.1.14)	80	12/15/02	5.55E+04	1	1.13	5.94E+02		

Reactor Building, Normal 60 Year Doses								
Current EQ Program Basis				Projected 60 year Normal EPU Dose				
RB Volume (Spec)	Dose Rate mR/Hr	Survey date	Current 60 year Dose (Rad)	Dose rate (survey) mR/Hr	Predicted EPU Effect (see note)	EPU 60 yr Dose (Rad) (see note)		
23 (B.1.14)	80	02/10/02	5.55E+04	1	1.13	5.94E+02		
24	1	01/18/03	6.94E+02	Not surv				
25	1	12/15/02	6.94E+02	1	1.13	5.94E+02		
26	18	01/18/03	1.25E+04	4	4.52	2.38E+03		
27 (B.1.13/15)	260	08/12/02	1.81E+05	30	33.9	1.78E+04		
28 (B.1.5)	40	01/04/02	2.78E+04	40	45.2	2.38E+04		
29 (B.1.5)	20	01/04/02	1.39E+04	20	22.6	1.19E+04		
30 (B.1.5)	800	01/04/02	5.55E+05	80 90.4		4.75E+04		
31 (B.1.5)	2200	01/04/02	1.53E+06	2200	2486	1.31E+06		
32 (B.1.5)	1600	01/04/02	1.11E+06	1600	1808	9.51E+05		
33 (B.1.13)	680	08/12/02	4.72E+05	3	3.39	1.78E+03		
34 (B.1.18)	40	12/15/02	2.78E+04	6	6.78	3.57E+03		
35 (B.1.17)	5	12/15/02	3.47E+03	4	4.52	2.38E+03		
36 (B.1.21)	1	08/26/02	6.94E+02	1	1.13	5.94E+02		
37 (B.1.21)	1	08/26/02	6.94E+02	1	1.13	5.94E+02		
38 (B.1.21)	1	08/26/02	6.94E+02	1	1.13	5.94E+02		
39 (B.1.21)	1	08/26/02	6.94E+02	1	1.13	5.94E+02		
40 (B.1.16)	2	08/26/02	1.39E+03	1	1.13	5.94E+02		
41 (B.1.16)	2	01/18/03	1.39E+03	1	1.13	5.94E+02		
42 (B.1.16)	20	12/15/02	1.39E+04	1	1.13	5.94E+02		
43 (B.1.19)	700	12/27/02	4.86E+05	500	565	2.97E+05		
44 (B.1.20)	200	12/27/02	1.39E+05	5	5.65	2.97E+03		
45 (B.1.19)	2	12/27/02	1.39E+03	2	2.26	1.19E+03		
46 (B.1.19)	200	12/27/02	1.39E+05	6	6.78	3.57E+03		
47 (B.1.19)	1	12/27/02	6.94E+02	Not surv				
48	36	02/06/03	2.50E+04	7	7.91	4.16E+03		

Note: EPU 60-year basis dose was determined by increasing the shown dose rate by 13 percent taken over the number of hours over 60 years (365.25 days/year used to account for leap years). No equivalent 60 year dose was determined for areas where the EPU evaluation did not provide dose rate values. As illustrated above, the projected 60-year normal dose due to EPU is bounded by the specified doses used in the current EQ Program for the Reactor Building.

Turbine Building, Normal 60 Year Doses								
Current	EQ Progra	am Basis Nor	mal Dose	Projected 60) year Norm	al EPU Dose		
TB Volume	mR/Hr	Survey Date	Current 60 year Dose (Rad)	Dose Rate survey (mRem/hr)	EPU Effect	EPU 60 yr Dose (Rad)		
1 (B.1.24)	1	12/18/02	6.94E+02	1	No change	5.26E+02		
2 (B.1.24)	1	12/18/02	6.94E+02	1	1130% Increase	5.94E+03		
3 (B.1.24)	1	12/18/02	6.94E+02	1	1130% Increase	5.94E+03		
4 (B.1.24)	1	12/18/02	6.94E+02	1	No	5.26E+02		
5 (B.1.24)	8	12/18/02	5.55E+03	1 - 2	No change	1.05E+03		
6 (B.1.24)	1	12/18/02	6.94E+02	1	No	5.26E+02		
7 (B.1.24)	1	12/18/02	6.94E+02	1	No change	5.26E+02		
8 (B.1.24)	1	12/18/02	6.94E+02	1	No change	5.26E+02		
9 (B.1.24)	1	12/18/02	6.94E+02	1	No change	5.26E+02		
10 (B.1.24)	2	12/18/02	1.39E+03	1 1 - 5	No change	2.63E+03		
11 (B.1.24)	200	01/29/03	1.39E+05	1 - 10 30	No change	1.58E+04		
12 (B.1.24)	120	05/01/02	8.33E+04	5 - 30	No change	1.58E+04		
13 (B.1.24)	2400	02/07/02	1.67E+06	2 - 1500	25 – 33% Increase	1.05E+06		
14 (B.1.24)	4000	07/01/98	2.78E+06	5 - 1800	Up to 1130% Increase	1.07E+07		
15 (B.1.24)	8	12/18/02	5.55E+03	1	No	5.26E+02		
16 (B.1.24)	8	12/18/02	5.55E+03	1	No	5.26E+02		
17 (B.1.24)	8	12/18/02	5.55E+03	1	No	5.26E+02		
18 (B.1.24)	8	12/18/02	5.55E+03	1	No	5.26E+02		
19 (B.1.23)	1	12/18/02	6.94E+02	1	No change	5.26E+02		
20 (B.1.23)	46	11/13/02	3.19E+04	Not surveyed	No change			
21 (B.1.23)	1	12/18/02	6.94E+02	1	No change	5.26E+02		

Turbine Building, Normal 60 Year Doses								
Current	EQ Progra	am Basis Nor	Projected 60) year Norm	al EPU Dose			
			Current	Dose Rate				
		Survey	60 year	survey	EPU	EPU 60 vr		
TB Volume	mR/Hr	Date	Dose (Rad)	(mRem/hr)	Effect	Dose (Rad)		
22 (B.1.23)	12	11/13/02	8.33E+03	1	No	5.26E+02		
· · · · · ·					change			
23 (B.1.23)	1	12/18/02	6.94E+02	1-2	No	1.05E+03		
. ,					change			
24 (B.1.23)	1	12/18/02	6.94E+02	1	No	5.26E+02		
					change			
25 (B.1.23)	2	12/04/02	1.39E+03	1	1130%	5.94E+03		
					Increase			
26 (B.1.23)	1	12/18/02	6.94E+02	1	No	5.26E+02		
					change			
27 (B.1.23)	1	12/18/02	6.94E+02	1	No	5.26E+02		
					change			
28 (B.1.23)	1	12/18/02	6.94E+02	1	No	5.26E+02		
					change			
29 (B.1.23)	1	12/18/02	6.94E+02	1	No	5.26E+02		
					change			
30 (B.1.23)	8	02/06/02	5.55E+03	1	NO	5.26E+02		
	4	00/00/00	0.045.00	4	change	E 00E . 00		
31 (B.1.23)	1	02/06/02	6.94E+02	1	NO	5.26E+02		
20 (D 1 02)	1	10/10/00		1	change	E 26E 102		
32 (D.1.23)	I	12/10/02	0.940+02	1	INU ohongo	0.20E+02		
22 (P 1 22)	1	12/19/02	6.045+02	1	No	5 265+02		
55 (D.1.25)	I	12/10/02	0.946+02	•	change	5.202+02		
34 (B 1 23)	1	03/28/02	6 94E+02	1	No	5 26E+02		
0+ (D.1.20)	1	03/20/02	0.042102		change	5.202 .02		
35 (B 1 23)	1	03/28/02	6 94E+02	1	No	5 26E+02		
00 (0.1.20)		00,20,02	0.012.02		change	0.202 02		
36 (B 1 23)	1	03/28/02	6 94E+02	1	No	5 26E+02		
00 (220)		00,20,02	0.012 02	·	change	0.202 02		
37 (B.1.23)	1	12/18/02	6.94E+02	1	No	5.26E+02		
· · · · · · · · · · · · · · · · · · ·					change			
38 (B.1.23)	1	12/18/02	6.94E+02	1	No	5.26E+02		
					change			
39 (B.1.23)	1	12/18/02	6.94E+02	1	No	5.26E+02		
. ,					change			
40 (B.1.23)	60	12/18/02	4.17E+04	1 – 2	No	1.05E+03		
					change			
41 (B.1.22)	80	05/08/00	5.55E+04	1 – 3	No	1.58E+03		
					change			
42 (B.1.22)	3000	05/08/00	2.08E+06	1 – 1000	2 – 9%	1.72E+06		
				10 - 3000	Increase			

Turbine Building, Normal 60 Year Doses									
Current EQ Program Basis Normal Dose Projected 60 year Normal El									
Current Dose Rate Survey 60 year survey TB Volume mR/Hr Date Dose (Rad)									
43 (B.1.23)	1	12/18/02	6.94E+02	Not surveyed	No change				
44 (B.1.22)	3000	05/08/00	2.08E+06	1 – 1000 10 - 3000	2 – 9% Increase	1.72E+06			

Note: EPU 60-year basis dose was determined by increasing the highest shown dose rate by the EPU Effect value and then multiplying by the number of hours over 60 years (365.25 days/year used to account for leap years). No equivalent 60 year dose was determined for areas where the EPU evaluation did not provide dose rate values.

Based on the above, it is observed that the projected 60 year normal doses in Turbine Building Volumes 2, 3, 10, 14, 23, and 25 will increase from the current specified EQ Program data. These volumes, with the exception of 14, remain below the radiation harsh classification threshold as defined by the EQ program.

Accident Radiation Doses

The EPU evaluation of the impacts of radiation on equipment qualification and the supporting vendor calculation performed by Alion provides the bases for EPU impacts on the EQ program from post-LOCA accident doses. The resulting EPU doses and the indicated increases by location are shown below.

	% EPU Dose	EPU 180-day TID,
LOCATION	Increase	(Rads)
Drywell	2.5	5.44E+07
HPCI Room - Elevation 896'	7.3	2.73E+06
RCIC Room - Elevation 896'	7.5	1.82E+06
RHR Rooms - Elevation 896'	4.3	2.72E+07
RWCU Pump Room - Elevation 962'	7.8	2.52E+06
Torus Compartment - Elevation 896'	3.5	1.19E+07
Main Steam Chase - Elevation 935'	7.3	2.73E+06
LPCI Valve Injection Room - Elevation 935'	7.8	2.52E+06
Reactor Building - Elevation 935' E	7.8	2.52E+06
Reactor Building - Elevation 935' W	7.8	2.52E+06
Reactor Building - Elevation 935' SE	7.8	2.52E+06
Reactor Building - Elevation 935' SW	7.8	2.52E+06
Reactor Building - Elevation 962' S	7.8	2.52E+06
Reactor Building - Elevation 962' E	7.8	2.52E+06
Reactor Building - Elevation 962' NW	7.8	2.52E+06

Reactor Building - Elevation 985' N	7.9	1.29E+04
Reactor Building - Elevation 985' SW	7.9	1.29E+04
Reactor Building - Elevation 985' SE	7.9	1.29E+04
Reactor Building - Elevation 1001' N	7.9	1.29E+04
Reactor Building - Elevation 1001' S	7.9	1.29E+04
Standby Gas Treatment Room - Elevation 985'	8.3	2.03E+08
Turbine Building Operating Deck - Elevation 951'	0.0	<1.00E+04
Turbine Building Condenser Room - Elevations 907', 911' & 931'	0.0	<1.00E+04
Cond Phase Separator Room	3.7	1.19E+07
Waste Collector Tank Room	7.7	3.87E+06

The accident doses developed in the subject EPU evaluation are supported by vendor calculation (ALION). The vendor calculation develops scaling factors on the original plant dose calculations developed in response to the Three Mile Island action plan. For the Reactor Building and Drywell, the EPU effective accident dose increase was shown to range from 2.5 to 8.3 percent with the 180-day integrated accident dose shown above.

For the Turbine Building, the calculation indicates that there were no original plant dose calculations developed for general areas of the Turbine Building. For comparison, the calculation indicates 1-hour dose rates of less than 500 mRem/hour for vital access areas of the Administrative Building that experience shine from the Reactor Building. For conservatism, the accident dose was always listed as being <1.0E+04 Rad.

Accordingly, the revised combined 60-year normal doses and the 180-day accident doses under EPU have the potential to impact the qualification of EQ components in the Reactor Building. Using the methods prescribed in the individual EQ calculation files for operating time and distance factors, the revised normal and accident doses were evaluated and compared to the qualified dose as indicated below (for conservatism, the normal dose was increased by +13 percent). For the equipment located in the Drywell, Beta dose was also considered. The Beta dose specified in the Monticello EQ Program is taken from the DOR Guidelines (Division of Operating Reactors – "Guidelines for Evaluating Environmental Qualification of Class 1E Electrical Equipment in Operating Reactors") as an unshielded 200 Mrad dose, which was developed from a 4,100 MWth reactor. Therefore, considerable margin is included in the Beta dose as it applies to Monticello.

	EPU Normal	EPU Accident	Beta			
Equipment Title	Dose (rad)	Gamma TID (rad)	Dose (rad)	Total EPU TID (rad)	Qual. Dose (rad)	Note
Allen Bradley	7.84E+02	4.33E+06	(iuu)	4.33E+06	2.51E+08	
Terminal Boards						
ASCO Solenoid	1.57E+05	2.83E+07		2.84E+07	2.00E+08	
Valves (Normally						
Energized) Group 1						
ASCO Solenoid	9.41E+04	1.25E+07		1.25E+07	2.00E+08	
Valves (Normally						
Energized) Group 2						
ASCO Solenoid	1.79E+07	5.44E+07	2.00E+07	9.23E+07	2.00E+08	
Valves (Normally						
Energized) Group 3						
ASCO Solenoid	3.14E+05	2.53E+06		2.85E+06	2.00E+08	
Valves (Normally						
Energized) Group 4	1				0.005.00	
ASCO Solenoid	1.79E+07	5.44E+07	Shielded	7.23E+07	2.00E+08	
Valves (Normally De-						
energized) Group 1		1 055 107		1.005+07	2.005.00	
ASCO Solenoid	1.18E+05	1.25E+07		1.20E+07	2.00E+08	
valves (Normally De-						
ASCO Propouro	1 185+05	1 255+07		1 265+07	1.03E±07	
Switches	1.100103	1.230.107		1.200107	1.950 107	
	7 84F+02	1 08E+07		1 08E+07	1 50E+07	
Switches	7.042.02	1.002.07		1.002.07	1.002.07	
Automatic Valve	2.79E+06	5.00E+06	Shielded	7.79E+06	7.79E+06	Note
Solenoid Valves						
Barksdale Pressure	1.57E+05	6.50E+06		6.66E+06	1.00E+07	
Switch						
Barton Pressure	1.57E+05	5.42E+05		6.99E+05	3.00E+06	
Switches RHR						
Barton Pressure	1.30E+05	2.53E+06		2.66E+06	3.00E+06	
Switches, Non-RHR						
Barton Pressure	3.14E+05	2.53E+06		2.85E+06	1.00E+07	
Switches 580A-0,						
580A-1						
E.F. Johnson Banana	3.14E+06	HELB only		3.14E+06	4.70E+06	
Plug						
G.E. Cable (Butyl	1.57E+05	2.83E+07		2.84E+07	4.00E+07	
type)	4 705 - 07	E 44E : 07	0.005.07	0.005.07		Nuta
G.E. Cable SIS & SI-	1.79E+07	5.44ヒ+07	2.00E+07	9.23E+07	2.00E+08	inote
		0 175 107				
G.E. Cable SI-58081	7.84E+03	2.17E+07		2.17 E+07	2.44⊏+07	
Conoral Electric	1 575±05	2 72E±07		2 74 E±07	3 00E±07	Note
	1.57 = +03	2.120701		2.140701	3.002+07	INULE
IVIOLOIS						

	EPU Normal	EPU Accident	Beta			
Equipment Title	Dose (rad)	Gamma TID (rad)	Dose (rad)	Total EPU TID (rad)	Qual. Dose (rad)	Note
General Electric	1.79E+07	5.44E+07	Shielded	7.23E+07	1.00E+08	
Containment						
Penetrations						
General Electric	7.84E+02	2.03E+08		2.03E+08	2.20E+08	Note
Terminal Blocks						
General Electric	3.60E+05			3.60E+05	1.00E+06	
Hevi-Duty Electric	7.84E+02	4.71E+06		2.00E+06	2.00E+06	Note
Transformer						
General Electric Fan	7.84E+02	1.08E+06		1.08E+06	1.00E+06	Note
Motors						
Limitorque Motor	1.79E+07	5.44E+07	2.00E+06	7.43E+07	2.00E+08	
Operators (DOR)						
(MO-2397)						
Limitorque Motor	3.14E+06	2.75E+06		5.89E+06	2.00E+07	
Operators (DOR)						
(MO-2107)						
Limitorque Motor	1.79E+07	5.44E+07	2.00E+07	9.23E+07	2.00E+08	
Operators (50.49)						
Limitorque Motor	3.14E+06	2.75E+06		5.89E+06	1.00E+07	
Operators (50.49)	4.405.05	4.055.05		4 0 0 5 0 5	0.005.05	
Limitorque Motor	1.18E+05	1.25E+07		1.26E+07	2.00E+07	
Operators (50.49)	4 705 - 07	E 44E 107	0.005.07	0.005.07	0.075.00	
Limitorque Motor	1.79E+07	5.44E+07	2.00E+07	9.23E+07	2.27E+08	
Operators (50.49)		1.255.07				
Limitorque Motor	1.10E+05	1.25E+07		1.200+07	2.00E+07	
(50.49)(IVIO-4229 &						
Magnetrol Level	1 18E+05	1 25E+07		1 26E+07	2 20E+08	
Switches	1.102.00	1.202.07		1.202.07	2.202.00	
McDonnell & Miller	7 84F+02	5 40E+06		5 40E+06	5.00E+06	Note
Flow Switches	1.042.02	0.402.00		0.402.00	0.002.00	1010
MicroSwitch Limit	7 84F+02	1 07E+07		1 07E+07	1 00E+07	Note
Switches	1.012.02					11010
Namco Limit	1.79E+07	5.44E+07	Shielded	7.23E+07	2.04E+08	
Switches (50,49)		••••				
Namco Quick	1.79E+07	5.44E+07	1.00E+08	1.72E+08	2.04E+08	
Disconnects EC210	•			••		
Raychem NEIS Seals	1.18E+05	1.25E+07		1.26E+07	5.00E+07	
Raychem Low	1.79E+07	5.44E+07	1.00E+08	1.72E+08	2.25E+08	
Voltage Splices		_				
Robertshaw Level	3.14E+05	3.25E+05	1	6.39E+05	2.00E+06	
Switch						
Rockbestos Coax	1.79E+07	5.44E+07	1.00E+08	1.72E+08	2.00E+08	
Cable						

	EPU Normal	EPU Accident	Beta			
Equipment Title	Dose (rad)	Gamma TID (rad)	Dose (rad)	Total EPU TID (rad)	Qual. Dose (rad)	Note
Rosemount Pressure	1.18E+05	1.25E+07	(iuu)	1.26E+07	4.40E+07	
Transmitter						
Rosemount 1153	1.57E+05	2.83E+07		2.84E+07	2.62E+07	Note
Series B						
Rosemount Conduit	1.18E+05	1.25E+07		1.26E+07	1.11E+08	
Seals						
Rotork "A" Range	1.57E+05	1.62E+06		1.78E+06	4.00E+06	
Actuators (DOR)	4 575 . 05	0.005.07		0.045.07	4.045.00	
Rotork Valve	1.57E+05	2.83E+07		2.84E+07	1.84E+08	
Operators (50.49)	5 22E+05	5 745+06		6.275+06	9 00E+06	
Static O-ring	0.00E+00	3.74E+00		0.27E+00	0.00E+00	
Samuel Meere	3.14E+03	3.40E+05		0.04E+00	1.00E+00	
Instrument Cable	7.04⊑±02	1.002700		1.002700	2.002700	
Valcor Solenoid	1 10E+05	1 25E+07		1 26E+07	5 90E+07	
Valves	1.102.00	1.202.07		1.202.07	0.002.07	
DG O'Brien Electrical	1.79E+07	5.44E+07	Shielded	7.23E+07	2.20E+08	
Penetrations		••••				
DG O'Brien Electrical	1.79E+07	5.44E+07	1.25E+07	8.48E+07	1.25E+08	
Penetrations (Plugs)						
Reliance Motors	1.57E+05	2.83E+07		2.84E+07	2.00E+08	
Tavis Flow	7.84E+02	1.08E+06		1.08E+06	1.40E+06	
Transmitter						
ITT Grinnel/Conoflow	7.84E+02	5.42E+06		5.42E+06	1.00E+07	
Transducer						
Consolidated Control	3.14E+05	7.58E+04		3.90E+05	5.00E+05	
Relays	1 705 . 07	5 4 4 5 : 0 7		0 705 . 00		
General Atomic	1.79E+07	5.44E+07	2.00E+08	2.72E+08	NOT Rad	
Kadialion Delector	1 575+05	2 925+07		2 94 5+07		
Cable/Termination	1.57 E+05	2.032+07		2.040+07	2.200+00	
Westinghouse Starter	1 25E+05	2.53E+06		2 66E+06	5.00E+06	
and Transformer	1.202.00	2.002.00		2.002.00	0.002.00	
GOULD	7.84E+02	4.33E+06		4.33E+06	1.00E+07	
CONTACTOR/						
DISCONNECT						
Eaton Thermocouple	1.79E+07	5.44E+07	1.00E+08	1.72E+08	2.00E+08	
Extension Cable						
Brand Rex 600V	1.79E+07	5.44E+07	1.00E+08	1.72E+08	2.00E+08	
Instrument Cable						
(Dywell)						
Brand Rex 600V	7.84E+03	1.08E+08		1.08E+08	2.00E+08	
Instrument Cable						
(KB)	7.045.00	4.005.00		4.005.00		
Boston Control Cable	7.84E+03	1.08E+08		1.08E+08	2.00E+08	

	EPU Normal Dose	EPU Accident Gamma	Beta Dose	Total EPU	Qual.	Note
Equipment Title	(rad)	TID (rad)	(rad)	TID (rad)	Dose (rad)	
CONAX Electrical	1.79E+07	5.44E+07	2.25E+07	9.48E+07	2.25E+08	
Connector Seal						
CONAX RTDs	1.18E+05	1.25E+07		1.26E+07	2.27E+08	
Patel Conduit Seals	1.79E+07	5.44E+07	2.00E+07	9.23E+07	2.00E+08	
(Drywell)						
Patel Conduit Seals	7.84E+03	1.08E+08		1.08E+08	2.00E+08	
(Contact SBGT						
Filters)						
Patel Conformal	1.18E+05	1.25E+07		1.26E+07	2.00E+07	
Coating (outside						
Drywell)						
Patel Conformal	1.79E+07	5.44E+07	2.00E+08	2.72E+08	3.06E+08	
Coating (Drywell)						
EGS Grayboot	1.79E+07	5.44E+07	2.00E+07	9.23E+07	2.08E+08	
Electrical Connectors						
EGS Quick	1.79E+07	5.44E+07	1.00E+08	1.72E+08	2.00E+08	
Disconnect						
Raychem/Swagelok	1.57E+05	2.83E+07		2.84E+07	5.00E+07	
Conduit Seals	1			0 707 00		
Weed	1.79E+07	5.44E+07	2.00E+08	2.72E+08	3.06E+08	
Thermocouples	0.005.04			0.045.05		
Rome Cable Type	3.60E+04	3.25E+05		3.61E+05	5.00E+08	
	5.005.05	5 005 . 05		4.005.00		
Eaton Cutler-	5.33E+05	5.29E+05		1.06E+06	1.43E+06	
	4 4 9 5 1 9 5	1 055 107		4.005.07		
PEI/FEINVVAL	1.18E+05	1.25E+07		1.20E+07	5.00E+07	
Temperature Switch	E 22E 10E	2 525 106		2.075+06		
Okapita Cantral	3.33E+05	2.532+00		3.07E+00	1.00E+07	
	3.14E+05	2.332+00		2.03E+00	1.00E+07	
Cable Triangle Trialane	2 145+05			2 005+05	2 005+05	
	3.14E+05	7.300-104		3.902+05	3.90E+05	
	1 57E+05	2 83E+07		2 84E+07	5 00E+07	
MNGP R Cable	1.57E+05	2.03E+07		2.04E+07	1.00E+07	
	5.33E±05	2.03L+07		2.04L+07	4.10L+07	
Connectors	5.55L105	5.79L100		4.522100	0.002.00	
Duco Temperature	3 14F+04	2 53E+06		2 57E+06	2 20E+08	
Flements		2.002.00		2.07 2.00	2.202.00	
SOR Pressure	5 33E+05	2.53E+06		3.07E+06	3 30E+07	
Switches	0.002.00			0.07 - 000		
General Electric	5.33E+05	2.17E+06		2.70E+06	2.20E+08	
Terminal Blocks	5.002.00					
Patel P-1 Thread	1.79E+07	5.44E+07	2.00E+08	2.72E+08	1.50E+09	
Sealant						
Rockbestos Firewall	1.79E+07	5.44E+07	1.00E+08	1.72E+08	2.00E+08	
SR Cable						

	EPU Normal Dose	EPU Accident Gamma	Beta Dose	Total EPU	Qual.	Note
Equipment litle	(rad)	TID (rad)	(rad)	TID (rad)	Dose (rad)	
Rockbestos Firewall	1.79E+07	5.44E+07	1.00E+08	1.72E+08	2.00E+08	
Rockbestos Firewall EP Cable	1.57E+05	2.83E+07		2.84E+07	1.30E+08	
Valcor MSIV	3.14E+04	8.66E+04		1.18E+05	5.00E+07	
Solenoid Valves						
Core Spray & RHR	1.57E+05	2.83E+07		2.84E+07	5.77E+07	
High Voltage						
Termination						
Dow Corning 3-6548	3.60E+04	HELB only		3.60E+04	1.36E+06	
Silicone RTV Foam						
Loctite PST 580	1.79E+07	5.44E+07	Shielded	7.23E+07	7.37E+07	Note
Thread Sealant						
Scotch 130C and 69	7.84E+03	1.08E+08		1.08E+08	1.83E+08	
Electrical Tape						
Fisher E/P	1.57E+05	4.33E+06		4.49E+06	6.00E+06	
Transducer						
Cutler-Hammer	1.24E+05	2.52E+06		2.65E+06	2.80E+06	Note
Motor Starter/Control						
Transformer						
ASCO Scram	7.85E+04	HELB only		7.85E+04	8.55E+04	
Solenoid Pilot Valves						

Note: Additional supporting qualification analysis to be performed and documented in EQ qualification file and/or equipment to be replaced/modified prior to EPU implementation.

EPU HELB Evaluation

HELB is discussed in PUSAR Section 2.2.1. Under the EPU evaluation for HELB, several high energy break or critical crack scenarios were considered for the Reactor Building. These included feedwater, reactor water cleanup, and control rod drive breaks and cracks in various areas. The EPU evaluation for HELBs, in combination with supporting calculations, provides the bases for temperatures, pressures and flood levels used for evaluation of HELBs in the Reactor and Turbine Buildings. The safe-shutdown equipment located in any Turbine Building locations made harsh (i.e. the peak HELB temperature greater than 140°F) as a result of EPU are being determined and evaluated.

From the evaluation for Reactor Building EPU event cases, the following peak conditions are obtained as compared to the current EQ Program Basis values for the respective Reactor Building Volume:

Current EQ Program Basis Data			EPU Data				
RB Volume	Temp (°F)	Press (psia)	Liquid (ft)	Temp (°F)	Press (psia)	Liquid (ft)	Comment
1	142.97	14.86	0.05	114.2	14.81	0.4	Note
2	142.97	14.85	0.01	115.2	14.8	0	
3	143.8	14.98	0.05	115.7	14.83	0.4	Note
4	144.4	14.97	0	135.6	14.82	0	
5	256	15.15	0.05	121.3	14.81	0.5	Note
6	263.6	15.63	3.95	157.2	14.8	0.6	
7	240.4	15.19	4.38	184.5	14.84	0.8	
8	<140	14.99	0	140.7	14.8	0.6	Note
9	187.6	15.59	0.01	127.4	14.79	0.5	Note
10	159.9	15.59	0	127.2	14.79	0.5	Note
11	158.7	15.59	0	127.3	14.79	0.5	Note
12	193	15.59	0.01	127.6	14.79	0.5	Note
13	127.3	14.88	0.24	166.2	14.8	0	Note
14	153.3	14.83	0.27	174.7	14.8	0	Note
15	209.6	15.3	0.05	180.2	14.8	0	
16	311.3	21.16	6.68	213.1	15.22	8.8	Note
17	222.4	15.14	0	130.6	14.79	0	
18	208.1	15.11	0.68	209.7	14.83	0	Note
19	175.9	15.13	0.53	209.3	14.83	0.1	Note
20	112.5	15.14	0	179.4	14.8	0.1	Note
21	112.2	14.87	0	108	14.79	0	
22	170.4	14.84	0	184	14.79	0	Note
23	143.7	14.87	0	164	14.79	0	Note
24	104	14.7	0	104.4	14.7	0	
25	145.8	14.85	0	183.5	14.79	0	Note
26	109.1	14.89	0	104.4	14.7	0	
27	203.6	14.99	0.01	211.7	14.83	0	Note
28	216.7	15.85	0.38	213.3	15.03	1.6	Note
29	214.6	15.85	0.3	213.5	15.4	1.7	Note
30	220.5	17.2	0.27	218.2	16.52	1.4	Note
31	188.3	17.19	0.27	213	16.52	1.4	Note
32	164.1	15.85	0.19	219.8	17.09	1.7	Note
33	128.3	14.99	0	211.7	14.83	0	Note
34	168.3	14.83	0.005	191.4	14.79	0	Note
35	207.8	14.84	0.02	199.2	14.79	0	
36	142.4	14.88	0	141.6	14.79	0	
37	112.8	14.88	0	143.9	14.8	0	Note

Enclosure	1
LIIOIOOUIO	

Current EQ Program Basis Data				EP	U Data		
RB Volume	Temp (°F)	Press (psia)	Liquid (ft)	Temp (°F)	Press (psia)	Liquid (ft)	Comment
38	100	14.7	0	100.3	14.7	0	
39	215.3	14.87	0.01	112.2	14.8	0	
40	126.2	14.84	0	127.7	14.8	0	
41	106.9	14.88	0	104.4	14.7	0	
42	204.7	14.85	0.01	198.8	14.79	0	
43	128.3	14.83	0.01	122.2	14.78	0	
44	160.8	14.82	0.01	138.1	14.78	0	
45	169.7	14.85	0.01	198.6	14.78	0	Note
46	219.2	14.86	0.02	106.2	14.77	0	
47	101.5	14.84	0	187.8	14.78	0	Note
48	131.1	14.8	0.01	137.3	14.76	0	

Note: Additional supporting qualification analysis to be performed and documented in EQ qualification file and/or equipment to be replaced/modified prior to EPU implementation.

EPU HELB Temperature Review

From the table above, it is observed that the peak EPU liquid break HELB temperatures for Reactor Building Volumes 13, 14, 18, 19, 20, 22, 23, 24, 25, 27, 31, 32, 33, 34, 37, 38, 40, 45, 47, and 48 exceed the currently specified peak HELB temperature provided by the current EQ Program basis data. The peak EPU (or pre-EPU) HELB temperature in Reactor Building Volumes 24, 38, 40, and 48 are less than the harsh/mild threshold temperature of 140°F, so these areas remain "mild". Based on EQ end device location and required performance, the impact of EPU HELB conditions focuses on Reactor Building Volumes 13, 14, 18, 19, 20, 22, 27, 31, 32, 33, and 34.

	RB	Qualified Temp.	EPU Peak	
Equipment Title	Volumes	(°F)	Temp (°F)	Note
ASCO Solenoid Valves	18, 19	346	209.7	
(Normally Energized)				
ASCO Solenoid Valves	31	346	213	
(Normally De-energized)				
ASCO Pressure Switches	14, 19, 31	210	213	Note
Barksdale Pressure Switch	14, 18,	212	211.7	
	22, 33			
Barton Pressure Switches	14, 19	212	209.3	
Barton Pressure Switches	14, 18	200	209.7	Note
580A-0, 580A-1				
G.E. Cable (butyl rubber SI-	13, 14, 18,	340	211.7	
58007/58136)	19, 20, 22,			
	27, 33, 34			

		Qualified		
	RB	Temp.	EPU Peak	
Equipment Title	Volumes	(°F)	Temp (°F)	Note
GE Cable (PE type SI-58081)	13, 14, 18,	236	211.7	
	19, 20, 22,			
	27, 33, 34	240	210.0	
	13, 14, 18,	340	219.8	
57275/56109)	19, 20, 22,			
	33 34			
General Electric Containment	14 18	340	209.7	
Penetrations	11, 10	010	200.1	
General Electric Terminal	13, 14, 18,	340	219.8	
Blocks	19, 20, 22,			
	27, 31, 32,			
	33, 34			
Limitorque MOVs (50.49, class	13, 19, 20,	340	213	
RH, AC motor)	22, 31			
Limitorque MOVs (50.49, class	13, 32	340	219.8	
RH, DC motor)	40.40.00	400	010.0	
Limitorque Fibrite Switches	13, 19, 20,	420	219.8	
Names Limit Switches (EA740	22, 31, 32	252	010	
Nameo Limit Switches (EA740 w/o EC210)	31	352	213	
Namco Limit Switches (EA180	18 19 31	361	213	
w/o EC210)	10, 10, 01	001	210	
Ravchem NEIS Seals	18, 19, 31	366	213	
Raychem WCSF-N Splices	13, 14, 18,	350	219.8	
	19, 20, 22,			
	27, 31, 32,			
	33, 34			
Robertshaw Level Switch	18	220	209.7	
(DOR)				
Rockbestos Coax Cable	13, 14, 18,	346	219.8	
	19, 20, 22,			
	27, 31, 32,			
Becomount 1152 Series A	33, 34	240	211 7	
Transmitter (DOR)	33, 34	340	211.7	
Rosemount 1153 Series B	14 18 19	318	211 7	
	22, 27, 33,	010	2	
	34			
Rosemount Conduit Seals	14, 18, 22,	420	211.7	
	27, 33			
Rotork Valve Operators (50.49)	14, 31, 33	385	213	
Static O-ring (DOR)	22, 33	212	211.7	
Yarway Level (DOR)	14, 18	250	209.7	

		Qualified		
	RB	Temp.	EPU Peak	
Equipment Title	Volumes	(°F)	Temp (°F)	Note
Samuel Moore Instrument	13, 14, 18,	340	219.8	
Cable	19, 20, 22,			
	27, 31, 32,			
	33, 34	005	000 7	
Valcor Solenoid Valves	18, 19	365	209.7	
DG O'Brien Electrical	14, 19	320	209.3	
	14 10	245	200.2	
DG O Brieff Electrical Penetrations (Plugs)	14, 19	545	209.5	
Reliance Motors	1/ 10	464	200.3	
Consolidated Control Pelays	14, 19	404 223.1	209.3	
Westinghouse Starter and	14 10	223.1	209.7	
Transformer	14, 19	200	209.5	
Eaton Thermocouple Extension	14	375	174.7	
Cable				
Brand Rex 600V Instrument	13, 14, 18,	385	219.8	
Cable	19, 20, 22,			
	27, 31, 32,			
	33, 34		- /	
Boston Control Cable	13, 14, 18,	340	219.8	
	19, 20, 22,			
	27, 31, 32,			
Patel Conduit Seals	33, 34 18	354	200.7	
FGS Grayboot Electrical	31	450	209.7	
Connectors	51	450	215	
EGS Quick Disconnect	13 14 18	435	219.8	
	19 20 22	100	210.0	
	27. 31. 32.			
	33, 34			
Raychem/Swagelok Conduit	14, 18, 19,	340	211.7	
Seals	22, 33, 34			
Eaton Cutler-Hammer Relays	22, 33, 34	232	211.7	
ITT-Royal PVC Cable (DOR)	14, 18, 19,	211	211.7	Note
	22, 33			
Okonite Control Cable	14, 18, 19,	211	209.7	
	22			
Triangle Triolene Control Cable	18, 19	211	209.7	
(DOR)			0 4 1 -	
MNGP-A Cable (DOR)	13, 14, 18,	230	211.7	
	19, 20, 22,			
	21, 33, 34	044	200.0	
IVINGP-B Cable (DOR)	14, 19	211	209.3	
	1	1	1	

	DB	Qualified	EDI Doak	
Equipment Title	Volumes	(°F)	Temp (°F)	Note
Amphenol Connectors (DOR)	14, 18, 19, 22, 33	266	211.7	
SOR Pressure Switches (50.49)	14, 22, 33	350	211.7	
General Electric Terminal Blocks (50.49)	22, 33, 34	340	211.7	
Patel P-1 Thread Sealant	13, 14, 18, 19, 20, 22, 27, 31, 32, 33, 34	400	219.8	
Rockbestos Firewall SR Cable	13, 14, 18, 19, 20, 22, 27, 31, 32, 33, 34	351	219.8	
Rockbestos Firewall III/SIS Cable	13, 14, 18, 19, 20, 22, 27, 31, 32, 33, 34	342	219.8	
Rockbestos Firewall EP Cable	13, 14, 18, 19, 20, 22, 27, 31, 32, 33, 34	320	219.8	
Loctite PST 580 Thread Sealant	14, 18, 19, 20, 22, 27, 31, 32, 33, 34	364	219.8	
Scotch 130C and 69 Electrical Tape	13, 14, 18, 19, 20, 22, 27, 31, 32, 33, 34	372	219.8	
Cutler-Hammer Motor Starter/Control Transformer	14, 19	253	209.3	
ASCO Scram Solenoid Pilot Valves	14, 18	277	209.7	

Note: Additional supporting qualification analysis to be performed and documented in EQ qualification file and/or equipment to be replaced/modified prior to EPU implementation.

Post-LOCA Heat-up in the Reactor Building

The Reactor Building post-LOCA heat-up temperatures are provided in the associated EPU evaluation. The EPU data as compared to the current post-LOCA heat-up (PLHU) data is presented below. It is observed that most post-LOCA area temperatures are relatively benign and will not present particular challenges to the EQ components that are generally tested or analyzed to much higher accident temperatures at their location. However, additional supporting qualification analysis to be performed and documented

in EQ qualification file and/or equipment to be replaced/modified prior to EPU implementation.

PP Volumo	Current PL HIL Tomp (°E)	EDIL DI HIL Tomp (°E)
2	110.0	104.3
2	110.0	100.2
3	129.1	129.7
4	129.1	129.5
5	109.9	107.4
6	140.4	140.6
1	116.3	123.6
8	106.2	111.9
9	160.4	177.5
10	159.9	177.5
11	158.7	177.5
12	157.3	177.5
13	112.6	112.7
14	107.6	112.3
15	106.3	108.7
16	135.2	141.5
17	106.1	108.9
18	109.3	114.9
19	106.3	114.9
20	112.6	113.1
21	112.2	107.8
22	106.7	114.1
23	106.4	113.8
24	104	104
25	113.9	114.1
26	109.1	109.7
27	109.1	115.4
28	120	121.3
29	120.1	121.1
30	120.2	128
31	120.2	129 7
32	120.2	120 7
33	115.6	115.4
34	107.9	114.2
35	107.8	114.2
36	134.4	120.5
37	112.8	120.5

Enclosure 1

RB Volume	Current PLHU Temp. (°F)	EPU PLHU Temp. (°F)
38	100	100
39	126.3	134.5
40	105.6	113.2
41	106.9	109.8
42	104.6	114.2
43	109.7	110.9
44	108.1	112.1
45	104	114
46	107.2	110.3
47	100	113.7
48	103.9	113.2

SUMMARY

Calculations were prepared to evaluate the impact of EPU conditions on equipment for radiation, temperature, pressure and flood level for safety related equipment. These calculations and related results are described above. The majority of issues will be addressed by revisions to the EQ files that support continued qualification of existing equipment with the new EPU conditions. EQ file updates will be completed as required by 10 CFR 50.49 prior to EPU implementation. Any required modifications or replacement of equipment will also be completed prior to EPU implementation.