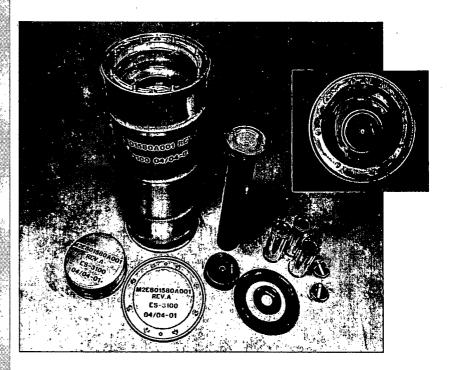


Protecting America's Future

Y-12


NATIONAL SECURITY COMPLEX Y/LF-717, Rev 2 Docket No. 71-9315

Safety Analysis Report, Y-12 National Security Complex, Model ES-3100 Package with Bulk HEU Contents

Volume 1 Sections 1-2

Babcock & Wilcox Technical Services Y-12, LLC Y-12 National Security Complex P.O. Box 2009 Oak Ridge, Tennessee 37831

March 6, 2008

MANAGED BY BWXT Y-12, LLC FOR THE UNITED STATES DEPARTMENT OF ENERGY

UCN-13672 (11-03)

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, tratlemark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Y/LF-717, Rev. 2, Volume 1

SAFETY ANALYSIS REPORT, Y-12 NATIONAL SECURITY COMPLEX, MODEL ES-3100 PACKAGE WITH BULK HEU CONTENTS

Prepared by Babcock & Wilcox Technical Services Y-12, LLC Y-12 National Security Complex P.O. Box 2009 Oak Ridge, Tennessee 37831 Managed by Babcock & Wilcox Technical Services Y-12, LLC for the U. S. Department of Energy under contract DE-AC05-00OR22800

March 6, 2008

i

Y/LF-717/Rev 2/ES-3100 HEU SAR/Intro/rlw/3-06-08

APPROVALS

Y/LF-717, Rev. 2

SAFETY ANALYSIS REPORT, Y-12 NATIONAL SECURITY COMPLEX, MODEL ES-3100 PACKAGE WITH BULK HEU CONTENTS

Approved by:

Walter I. North Packaging Engineering Manager

Jankes C. Anderson Safety Analysis Report for Packaging Manager

Steven R. Sanders HEU Disposition and Uranium Supply Program Manager

9/08

Date

3/4/08

Date

Date

Y/LF-717/Rev 2/ES-3100 HEU SAR/Intro/rlw/3-06-08

Y/LF-717/Rev 2/ES-3100 HEU SAR/Intro/rlw/3-06-08

iv

1

Page

	APPROVALS	iii
1	FIGURES	xi
	TABLES	xiii
	ABBREVIATIO	DNS xvii
	REVISION LOC	3 xix
	1. GENERAL I	NFORMATION
		DUCTION
		AGE DESCRIPTION
	1.2.1	Packaging
	1.2.2	Containment System
	1.2.3	Contents
	1.2.4	Operational Features
		RAL REQUIREMENTS FOR ALL PACKAGES
	1.5 01111	Minimum package size
	1.3.2	Tamper-indicating feature 1-23
		DICES
	1.4.1	PACKAGE CERTIFICATION DRAWING
	1.4.2	EQUIPMENT SPECIFICATION JS-YMN3-801580-A002,
	1.1.2	<i>ES-3100 DRUM ASSEMBLY</i>
	1.4.3	EQUIPMENT SPECIFICATION JS-YMN3-801580-A001,
	1.1.5	ES-3100 CONTAINMENT VESSEL
	1.4.4	EQUIPMENT SPECIFICATION, JS-YMN3-801580-A003,
	1	MANUFACTURING PROCESS SPECIFICATION FOR CASTING KAOLITE
		1600^{TM} INTO THE ES-3100 SHIPPING PACKAGE
	1.4.5	EQUIPMENT SPECIFICATION, JS-YMN3-801580-A005, <i>CASTING</i>
	1.1.5	CATALOG NO. 277-4 NEUTRON ABSORBER FOR THE ES-3100
		SHIPPING PACKAGE
	1.4.6	PACKAGE CATEGORY DETERMINATION
	1.4.7	HEU OXIDE MATERIAL SPECIFICATION AS PROVIDED BY Y-12
		HIGHLY ENRICHED URANIUM DISPOSITION PROGRAM OFFICE 1-131
	1.4.8	DETAILED ENGINEERING DRAWINGS
	1.4.9	DESIGN ANALYSES AND CALCULATIONS, DAC-PKG-801624-A001,
		MIXING WEIGHTS AND ELEMENTAL COMPOSITION OF 277-4
		NEUTRON POISON USED IN THE ES-3100
	1.4.10	PYROPHORICITY OF URANIUM METAL
		REFERENCES
	2. STRUCTUR	AL EVALUATION
		RIPTION OF STRUCTURAL DESIGN
	2.1.1	Discussion
	2.1.2	Design Criteria
		-

Page

	2.1.3	Weights and Centers of Gravity
	2.1.4	Identification of Codes and Standards for Package Design
2.2	MATEF	RIALS
	2.2.1	Material Properties and Specifications
	2.2.2	Chemical, Galvanic, or Other Reactions
	2.2.3	Effects of Radiation on Materials
2.3	FABRIC	CATION AND EXAMINATION
	2.3.1	Fabrication
	2.3.2	Examination
2.4	LIFTIN	G AND TIE-DOWN STANDARDS FOR ALL PACKAGES
	2.4.1	Lifting Devices
	2.4.2	Tie-Down Devices
2.5	GENER	AL CONSIDERATIONS
	2.5.1	Evaluation by Test
	2.5.2	Evaluation by Analysis
2.6		AL CONDITIONS OF TRANSPORT
	2.6.1	Heat
	2.6.2	Cold
	2.6.3	Reduced External Pressure
	2.6.4	Increased External Pressure
	2.6.5	Vibration
	2.6.6	Water Spray
	2.6.7	Free Drop
	2.6.8	Corner Drop
	2.6.9	Compression
	2.6.10	Penetration
2.7		'HETICAL ACCIDENT CONDITIONS 2-51
2.1	2.7.1	Free Drop
	2.7.2	Crush
	2.7.3	Puncture
	2.7.4	Thermal
	2.7.5	Immersion—Fissile Material
	2.7.6	Immersion—All Packages
	2.7.7	Deep Water Immersion Test
	2.7.8	Summary of Damage
2.8		ENT CONDITIONS FOR AIR TRANSPORT OF PLUTONIUM
		ENT CONDITIONS FOR FISSILE MATERIAL PACKAGES FOR AIR
4.9		PORT
2 02		2-96 2-96
		RODS
		IDICES
2.10	2.10.1	ES-3100 CONTAINMENT VESSEL ASME CODE EVALUATION
	2.10.1	IMPACT ANALYSES OF ES-3100 DESIGN CONCEPTS USING
	2.10.2	BOROBOND AND CAT 277-4 NEUTRON ABSORBERS
	2.10.3	KAOLITE PROPERTIES
	2.10.3	CATALOG 277-4 PROPERTIES
	∠.1U.4	VATALUU 2/1-4 INUFENTIES

1

		2.10.5 2.10.6	BOROBOND4 PROPERTIES
			SGT TRAILERS
		2.10.7	TEST REPORT OF THE ES-3100 PACKAGE, VOLUME 1 - MAIN
			REPORT, ORNL/NTRC-013/V1, REV. 0, SEPTEMBER 10, 2004 2-677
		2.10.8	THE ES-3100 TEST REPORT; VOL. 3, APPENDIX K - TU-4 DATA
			SHEETS
		2.10.9	PACKAGING MATERIALS OUTGASSING STUDY FINAL REPORT 2-853
	SEC	CTION 2	REFERENCES
_			
3. '			VALUATION
	3.1		SSION
		3.1.1	Design Features
		3.1.2	Content's Decay Heat
		3.1.3	Summary Tables of Temperatures
		3.1.4	Summary Tables of Maximum Pressures
	3.2		ARY OF THERMAL PROPERTIES OF MATERIALS
		3.2.1	Material properties
		3.2.2	Component Specifications
	3.3	GENER	AL CONSIDERATIONS
		3.3.1	Evaluation by Analysis
		3.3.2	Evaluation by Test
		3.3.3	Margins of Safety
	3.4	THERM	AL EVALUATION UNDER NORMAL CONDITIONS OF TRANSPORT 3-28
		3.4.1	Heat and Cold
		3.4.2	Maximum Normal Operating Pressure
		3.4.3	Maximum Thermal Stresses
	3.5	НҮРОТ	'HETICAL ACCIDENT THERMAL EVALUATION 3-32
		3.5.1	Initial Conditions
		3.5.2	Fire Test Conditions
		3.5.3	Maximum Temperatures and Pressure
		3.5.4	Accident Conditions for Fissile Material Packages for Air Transport
	3.6		DICES
		3.6.1	THERMAL EVALUATION OF THE ES-3100 SHIPPING CONTAINER
			FOR NCT AND HAC (CONCEPTUAL DESIGN WITH BOROBOND4
			NEUTRON ABSORBER)
		3.6.2	THERMAL EVALUATION OF THE ES-3100 SHIPPING CONTAINER
			FOR NCT AND HAC (FINAL DESIGN WITH CATALOG 277-4
			NEUTRON ABSORBER)
		3.6.3	THERMAL STRESS EVALUATION OF THE ES-3100 SHIPPING
		0.0.0	CONTAINER DRUM BODY ASSEMBLY FOR NCT (FINAL DESIGN
			WITH CATALOG 277-4 NEUTRON ABSORBER)
		3.6.4	CONTAINMENT VESSEL PRESSURE DUE TO
		5.0.1	NORMAL CONDITIONS OF TRANSPORT FOR THE PROPOSED
			CONTENTS
			CONTENTO

		3.6.5	CONTAINMENT VESSEL PRESSURE DUE TO
			HYPOTHETICAL ACCIDENT CONDITIONS FOR THE PROPOSED
			CONTENTS
		3.6.6	SILICONE RUBBER THERMAL PROPERTIES FROM
			THERM 1.2 DATABASE 3-163
	SEC	CTION 3	REFERENCES
4.	CON	ITAINM	ENT
			IPTION OF THE CONTAINMENT BOUNDARY
		4.1.1	Containment Boundary
		4.1.2	Special Requirements for Plutonium
	4.2	GENER	RAL CONSIDERATIONS
		4.2.1	Type A Fissile Packages
		4.2.2	Type B Packages
	4.3	CONTA	AINMENT UNDER NORMAL CONDITIONS OF TRANSPORT
			B PACKAGES)
	4.4		AINMENT UNDER HYPOTHETICAL ACCIDENT CONDITIONS
			B PACKAGES)
	4.5		AGE RATE TESTS FOR TYPE B PACKAGES
			DICES
		4.6.1	DETERMINATION OF A ₂ FOR THE ES-3100 PACKAGE
			WITH HEU CONTENTS
		4.6.2	CALCULATION OF THE ES-3100 CONTAINMENT VESSEL'S
			REGULATORY REFERENCE AIR LEAKAGE RATES
	SEC	CTION 4	REFERENCES
	~		· · · · · · · · · · · · · · · · · · ·
5.	SHI	ELDING	EVALUATION
			IPTION OF SHIELDING DESIGN
		5.1.1	Design Features
		5.1.2	Summary Table of Maximum Radiation Levels
	5.2		E SPECIFICATION
			RATE ANALYSIS MODELS
		5.3.1	Packaging Model Conservative Features
		5.3.2	Photon model for 36-kg HEU metal content
		5.3.3	Neutron model for 36-kg HEU metal content
		5.3.4	Photon model for 24-kg HEU oxide content
		5.3.5	Neutron model for 24-kg HEU oxide content
	5.4		DING EVALUATION
			DICES
		5.5.1	ORIGEN INPUT DATA FROM TABLE 5.3
		5.5.2	CSASN AND ICE INPUT FROM TABLE 5.8
		5.5.2	MORSE ROUTINES AND INPUT DATA
	SEC		REFERENCES
	~		

Page

6 0	רז מי		Y EVALUATION	6 1
	лл 1 6.1		IPTION OF THE CRITICALITY DESIGN	
	0.1	6.1.1		
		6.1.2	Design Features	
		6.1.2 6.1.3	Summary of the Criticality Evaluation	
	<u> </u>		Criticality Safety Index	
i	6.2		GE CONTENTS	
		6.2.1	Fissile Material Contents	6-5
		6.2.2	Convenience Cans, Teflon and Polyethylene Bottles, and 277-4 Canned	6 22
		672	Spacers	
		6.2.3	Packing Materials	
	<i>(</i>)	6.2.4	Package Content Loading Restrictions	
4	6.3		AL CONSIDERATIONS	
		6.3.1	Model Configuration	
		6.3.2	Material Properties	
		6.3.3	Computer Codes and Cross-Section Libraries	
	~ •	6.3.4	Demonstration of Maximum Reactivity	
	6.4		E PACKAGE EVALUATION	
		6.4.1	Solid HEU Metal of Specified Geometric Shapes	
		6.4.2	HEU Solid Metal of Unspecified Geometric Shapes or HEU Broken Metal	
		6.4.3	HEU Oxide	
		6.4.4	UNH Crystals	6-77
	6.5		JATION OF PACKAGE ARRAYS UNDER NORMAL CONDITIONS OF	
			PORT	
		6.5.1	Solid HEU Metal of Specified Geometric Shapes	
		6.5.2	HEU Solid Metal of Unspecified Geometric Shapes or HEU Broken Metal	
		6.5.3	HEU Oxide	
		6.5.4	UNH Crystals	6-82
4	6.6		JATION OF PACKAGE ARRAYS UNDER HYPOTHETICAL ACCIDENT	
			TIONS	
		6.6.1	Solid HEU Metal of Specified Geometric Shapes	
		6.6.2	HEU Solid Metal of Unspecified Geometric Shapes or HEU Broken Metal	
		6.6.3	HEU Oxide	
		6.6.4	UNH Crystals	
	6.7		E MATERIAL PACKAGES FOR AIR TRANSPORT	
		6.7.1	Results for Solid HEU, One Piece per Convenience Can	
		6.7.2	Results for TRIGA Fuel Elements, Three Pieces per Convenience Can	
		6.7.3	Results for HEU Broken Metal, More Than One Piece per Convenience Can	
		6.7.4	Conclusions	
	6.8		IMARK EXPERIMENTS	
		6.8.1	Applicability of Benchmark Experiments	
		6.8.2	Details of Benchmark Calculations	
		6.8.3	Bias Determination	
	6.9	APPENI		
		6.9.1	FISSILE CONTENT MODELS	
		6.9.2	HAC PACKAGE MODEL	
		6.9.3	PACKAGE MATERIAL COMPOSITIONS	. 6- 117

Page

		6.9.4	QUALIFICATION OF A NEUTRON ABSORBER MATERIAL FOR THE	
			ES-3100	49
		6.9.5	MISCELLANEOUS INFORMATION AND DATA	51
		6.9.6	ABRIDGED SUMMARY TABLES OF CRITICALITY CALCULATION	
			RESULTS	55
		6.9.7	INPUT LISTINGS OF ES-3100 CALCULATION MODELS FOR SELECT	
			CASES	01
S	EC	TION 6	REFERENCES)3
7. PA	C K	CAGE O	PERATIONS7	-1
7.	1	PACKA	GE LOADING	-1
		7.1.1	Preparation for Loading	-1
		7.1.2	Loading of Contents	
		7.1.3	Preparation for Transport	-7
7.	.2	PACKA	GE UNLOADING	10
		7.2.1	Receipt of Package from Carrier	10
		7.2.2	Removal of Contents	11
7.	3	PREPA	RATION OF EMPTY PACKAGE FOR TRANSPORT	12
7.	.4	OTHER	OPERATIONS	12
S	EC	TION 7	REFERENCES	13
			·	
8. AC	CCE	EPTANC	E TESTS AND MAINTENANCE PROGRAM8	-1
8.	1	ACCEP	TANCE TESTS 8	-1
		8.1.1	Visual Inspections and Measurements 8	
		8.1.2	Weld Examinations	-4
		8.1.3	Structural and Pressure Tests	
		8.1.4	Leakage Tests	-5
		8.1.5	Component and Material Tests	-6
		8.1.6	Shielding Tests	
		8.1.7	Thermal Tests	-6
		8.1.8	Miscellaneous Tests	
8.	2	MAINT	ENANCE PROGRAM	
		8.2.1	Structural and Pressure Tests	-7
		8.2.2	Leakage Tests	-7
		8.2.3	Component and Material Tests	
		8.2.4	Thermal Tests	
		8.2.5	Miscellaneous Tests	-9
S	EC	TION 8	REFERENCES	11

FIGURES

.

.

.

1.1.	Schematic of the ES-3100 shipping package 1-2
1.2.	Exploded view of the ES-3100 package with bulk HEU contents
1.3.	Containment boundary of the ES-3100 shipping package
1.4.	Typical shipping configurations inside the ES-3100 containment vessel
1.5.	TRIGA fuel element
2.1.	Containment vessel calculated stress locations
2.2.	ES-3100 shipping package center of gravity locations
2.3.	ES-3100 vibration testing arrangement
2.4.	Water spray test arrangement for Test Unit -4 2-46
2.5.	NCT free drop test on Test Unit-4
2.6.	Compression test on Test Unit-4
2.7.	Penetration test damage on Test Unit-4
2.8.	9-m drop test arrangement for all test units
2.9.	9-m drop test damage on Test Unit-4
2.10.	Cumulative damage from 9-m drop and crush testing on Test Unit-2
2.11.	Test Unit-3 damage from 1.2 and 9-m drop tests
2.12.	1.2 and 9-m drop test damage on Test Unit-1
2.13.	1.2 and 9-m drop test damage to Test Unit-5
2.14.	Cumulative damage following 9-m crush on Test Unit-1
2.15.	Cumulative damage following 9-m crush test on Test Unit-3
2.16.	Cumulative damage from 9-m drop and crush testing on Test Unit-4
2.17.	Cumulative damage from 9-m drop and crush testing on Test Unit-5
2.18.	28° oblique and horizontal puncture tests on Test Unit-1
2.19.	40° oblique puncture test on Test Unit-1
2.20.	Horizontal puncture test over Test Unit-1's containment vessel flange
2.21.	Horizontal CG puncture test on Test Unit-2
2.22.	24.6° oblique puncture test on Test Unit-3
2.23.	Vertical puncture test on Test Unit-4
2.24.	Horizontal puncture test over Test Unit-5's containment vessel flange
2.25.	Visual comparison of the cumulative damage on the crush side surface after the three drop
2.20.	tests (from top to bottom: Test Unit-1, analytical results with BoroBond, analytical results
	with Cat 277-4)
2.26.	Visual comparison of the cumulative damage on the rigid surface side after the four drop
2.20.	tests (from left to right: Test Unit-2, analytical results with BoroBond, analytical results
	with Cat 277-4)
2.27.	Visual comparison of the cumulative damage on the crush plate side after the three drop
4.21.	tests (from left to right: Test Unit-2, analytical results with BoroBond, analytical results
	with Cat 277-4)
2.28.	Visual comparison of the cumulative bottom damage after the three drop tests (from top to
2.20.	bottom: Test Unit-3, analytical results with BoroBond, analytical results with Cat 277-4) 2-89
2.29.	
2.29.	Visual comparison of the cumulative lid damage after the three drop tests (from top to
2 20	bottom: Test Unit-3, analytical results with BoroBond, analytical results with Cat 277-4) 2-90
2.30.	Visual comparison of the cumulative damage after the three drop tests (from left to right:
0.21	Test Unit-4, analytical results with BoroBond, analytical results with Cat 277-4)
2.31.	Containment vessel markings at assembly (swivel hoist ring removed prior to testing) 2-95
2.32.	Containment vessel marking after compliance testing
3.1.	MSC.Patran axisymmetric finite element model of the ES-3100 shipping container with
2.2	BoroBond 4—nodal locations of interest (elements representing air not shown for clarity) 3-6
3.2.	Test units preheat arrangement
3.3.	Test unit insertion into furnace

FIGURES

3.4.	Test unit removal from furnace
3.5.	Test unit cool down and monitoring arrangement
5.1.	Cylindrical calculational model of the ES-3100 shipping package for NCT
5.2.	ES-3100 HEU metal content radial (top view) geometric models
6.1.	R/Z section view of ES-3100 single-unit packaging model
6.2.	R/Z section view at bottom of ES-3100 single-unit packaging showing
	KENO V.a geometry units 1001–1003, and 1006 (partial)
6.3.	R/Z section view at center of the ES-3100 single-unit packaging showing
	KENO V.a geometry units 1006 (partial), 1007, and 1008 (partial)
6.4.	R/Z section view of near top of the ES-3100 single-unit packaging showing
	KENO V.a geometry units 1008 (partial) and 1010–1016
6.5.	R/Z section view at the top of the ES-3100 single-unit packaging showing
	KENO V.a geometry units 1016–1019
6.6.	R/Z section view of ES-3100 array packaging model
6.7.	R/Z section view at the bottom of the ES-3100 array packaging showing
	KENO V.a geometry units 1001–1003, and 1006 (partial)
6.8.	R/Z section view at the center of the ES-3100 array packaging showing
0.0.	KENO V.a geometry units 1006 (partial), 1007, and 1008 (partial)
6.9.	R/Z section view of near top of the ES-3100 array packaging showing KENO V.a geometry
0.7.	units 1008 (partial) and 1010–1016
6.10.	R/Z section view at the top of the ES-3100 array packaging showing KENO V.a geometry
0.10.	units 1016–1019
6.11.	Model 1
6.12.	Model 2
6.13.	Model 3
6.14.	Model 4
6.15.	Model 5
6.16.	Model 6
	k_{eff} + 2 σ versus pitch for triangular arrangement of content in CV
	$k_{eff} + 2\sigma$ versus triangular pitch over range of CV moderation
	$k_{eff} + 2\sigma$ as a function of uranium weight fraction and moderation
6.17.	K_{eff} vs. enrichment (wt % ²³⁵ U) for HEU ranging from 7 to 10 kg
6.18.	K_{eff} vs. stainless steel shell radius (cm) for 7 kg HEU with enrichments ranging from 19 to
	100 wt % ²³⁵ U
6.19.	K_{eff} vs. Kaolite shell radius (cm) for 7 kg HEU with enrichments ranging from 19 to
	100 wt % ²³⁵ U
6.20.	K_{eff} vs. shell radius (cm) for dry and water-saturated Kaolite for 7 kg HEU at
	100% enrichment
6.21.	K_{eff} vs shell radius (cm) for 10.4 kg core of UZrH _x with stainless steel or Kaolite shell 6-90
6.22.	K_{eff} vs. core radius (cm) for homogenized core of UZrH _x , 500 g polyethylene, and Kaolite
•••	where the Kaolite water content ranges from the dry to the water-saturated condition
6.23.	k_{eff} vs. excess water from Kaolite for fissile core blanketed with a variable thickness
0.20.	Kaolite shell
6 23h	k_{eff} vs. excess water from Kaolite for UZrH _x and U ₃ O ₈ -Al contents
	k_{eff} vs. Excess water from Kaolite for UZrH _x and $U_3 U_2$ -Mg, and UO_2 contents
	K_{eff} vs. excess water from Kaolite for core of 1–7 kg enriched HEU broken metal at
0.47.	100% enrichment, core blanketed with a variable thickness Kaolite shell
6 75	
6.25.	K_{eff} vs. excess water from Kaolite for core 20% enriched HEU broken metal
	(0.6-7 kg ²³⁵ U), core blanketed with a variable thickness Kaolite shell

TABLES

Page

1.1.	Uranium concentration limits	
1.2.	Bounding uranium isotopic concentrations in oxide	
1.3.	Authorized content ^a and fissile mass loading limits ^{b, c} for ground transport	
1.3 a .	Authorized content and fissile mass loading limits ^{a, b} for air transport	
1.4.	TRIGA fuel specifications	
2.1.	Proposed HEU contents for shipment in the ES-3100	
2.2.	Category designations for Type B packages	2-7
2.3.	Summary of load combinations for normal and hypothetical accident conditions of	2 10
2.4	transport	
2.4.		. 2-11
2.5.	Allowable stress intensity (S_m) for the containment boundary construction materials of	0.11
20	construction	
2.6. 2.7.	ES-3100 containment boundary design evaluation allowable stress comparisons	
	ES-3100 packaging material specifications	
2.8.	Packaging weights for various ES-3100 shipping package arrangements	
2.9.	Compliance test unit weights	
2.10.	Calculated center of gravity for the various ES-3100 shipping arrangements	
2.11.	Applicable codes and standards for Category I packaging	
2.12.	Mechanical properties of the metallic components of the drum assembly	
2.13.	Mechanical properties of the lid fastening components for the drum assembly	
2.14.	Mechanical properties of the cast refractory insulation	
2.15.	Mechanical properties of containment vessel O-rings	
2.16.	Mechanical properties of the metallic components of the containment boundary	
2.17.	Mechanical properties of the cast neutron absorber	
2.18.	Summary of NCT – 10CFR71.71 tests for ES-3100 package	
2.19. 2.20.	Summary of HAC – 10CFR71.73 tests for ES-3100 package	
	Summary of temperatures and pressures for NCT	
2.21.	ES-3100 containment boundary evaluation for both hot and cold conditions	. 2-42
2.22.	NCT ES-3100 containment boundary stress compared to the allowable stress at reduced	2 42
2.23.	and increased external pressures	
2.23.		
2.24.	Recorded height damage to Test Unit-4 from 1.2-m and 9-m drop testing	
2.23.	Recorded diametrical damage to Test Unit-2 from NCT and HAC drop testing	
2.20.	Recorded diametrical damage to Test Unit-2 from NCT and HAC drop testing	
2.27.	Recorded height damage to Test Unit-2 from NCT and HAC drop testing	
2.28.	Recorded height damage to Test Unit-2 from NCT and HAC drop testing	
2.29.	Recorded diametrical damage to Test Unit-3 from 1.2-m and 9-m drop testing	
2.30.	Recorded trained to Test Unit-1 from 1.2-m and 9-m drop testing	
2.31. 2.32.		
	Recorded diametrical damage to Test Unit-1 from 1.2-m and 9-m HAC drop testing	
2.33. 2.34.	Recorded flat contour damage to Test Unit-1 from 1.2-m and 9-m drop testing	
2.34.	Recorded height damage to Test Unit-5 from 1.2-m and 9-m drop testing Recorded diametrical damage to Test Unit-5 from 1.2-m and 9-m HAC drop testing	
2.35.		
2.30.	Recorded flat contour damage to Test Unit-5 from 1.2-m and 9-m drop testing Recorded height damage to Test Unit-1 from the 9-m crush test	
2.38.	Recorded diametrical damage to Test Unit-1 from the 9-m crush test	. 4-04

.

TABLES

:

Page

2.39.	Recorded flat contour damage to Test Unit-1 from the 9-m crush test	. 2-65
2.40.	Recorded height damage to Test Unit-3 from the 9-m crush test	. 2-66
2.41.	Recorded flat contour damage to Test Unit-3 from the 9-m crush test	. 2-66
2.42.	Recorded diametrical damage to Test Unit-3 from the 9-m crush test	. 2-66
2.43.	Recorded height damage to Test Unit-4 from the 9-m crush test	. 2-67
2.44.	Recorded diametrical damage to Test Unit-4 from the 9-m crush test	. 2-68
2.45.	Recorded height damage to Test Unit-5 from the 9-m crush test	. 2-69
2.46.	Recorded diametrical damage to Test Unit-5 from the 9-m crush tests	. 2-69
2.47.	Recorded flat contour damage to Test Unit-5 from the 9-m crush test	. 2-69
2.48.	1-m (40-in.) puncture drop test description and results	. 2-71
2.49.	Thermax temperature indicating patches for test units	. 2-75
2.50.	Maximum HAC temperatures recorded on the test packages' interior surfaces	
2.51.	HAC ES-3100 containment boundary stress compared to the allowable stress	
2.52.	Diametrical damage comparison of Test Unit-1 with analytical predictions	. 2-83
2.53.	Flat contour damage comparison of Test Unit-1 with analytical results	
2.54.	Cumulative analytical 12° slapdown drop tests maximum effective plastic strain results	. 2-85
2.55.	Diametrical damage comparison of Test Unit-2 with analytical predictions	. 2-86
2.56.	Flat contour damage comparison of Test Unit-2 with analytical predictions	
2.57.	Cumulative analytical side drop test maximum effective plastic strain results	. 2-88
2.58.	Diametrical damage comparison of Test Unit-3 with analytical predictions	. 2-88
2.59.	Cumulative analytical corner drop test maximum effective plastic strain results	. 2-91
2.60.	Diametrical damage comparison of Test Unit-4 with analytical predictions	. 2-92
2.61.	Cumulative analytical top drop test maximum effective plastic strain results	. 2-93
2.62.	ES-3100 test package weights before and after 10 CFR 71.73(c)(4) HAC thermal testing	. 2-93
3.1.	Isotopic mass and weight percent for the HEU contents	3-4
3.2.	Decay heat for 35.2 kg of HEU content (watts)	3-5
3.3.	Maximum "quasi steady-state" temperatures during NCT for the ES-3100 shipping	
	container with various content heat loads-Kaolite density of 19.4 lb/ft ³ and BoroBond4	3-7
3.4.	Maximum "quasi steady-state" temperatures during NCT for the ES-3100 shipping	
	container with various content heat loads-Kaolite density of 30 lb/ft ³ and BoroBond4	3-8
3.5.	ES-3100 shipping container maximum steady-state temperatures with Cat 277-4	3-9
3.6.	ES-3100 shipping container maximum "quasi steady-state" temperatures during NCT with	
	various content heat loads and Cat 277-4	. 3-10
3.7.	ES-3100 shipping container HAC maximum temperatures	
3.8.	ES-3100 shipping container HAC maximum temperatures	. 3-13
3.9.	Maximum HAC temperatures recorded on the test packages' interior surfaces	. 3-14
3.10.	Total pressure inside the containment vessel at 87.81°C (190.06°F)	. 3-15
3.11.	Total pressure inside the containment vessel at 123.85°C (254.93°F)	. 3-17
3.12.	Thermal properties of the materials used in the thermal analysis	. 3-19
3.13.	Mechanical properties of the materials used in the static stress analyses	. 3-20
3.14.	Packaging material technical specifications	. 3-21
3.15.	Component allowable service temperature and pressure	
3 <i>.</i> 16.	Summary of results of evaluation for the ES-3100 under NCT	. 3-27
3.17.	Summary of results of evaluation under HAC for the ES-3100 shipping arrangement using	
	bounding case parameters	. 3-27
3.18.	ES-3100 test package weights before and after 10 CFR 71.73(c)(4) HAC thermal testing	. 3-35

TABLES

3.19.	Thermax temperature indicating patches for test units
3.20.	Predicted temperature adjustments (°F) for containment vessel due to HAC
3.21.	Predicted temperatures of the containment vessel due to HAC
4.1.	Containment requirements of transport for Type B packages
4.2.	Summary of the containment vessel design and fabrication acceptance basis
4.3.	Isotopic mass and weight percent for the HEU contents
4.4.	Activity, A_2 value, and number of A_2 proposed for transport
4.5.	Regulatory leakage criteria for NCT
4.6.	Containment vessel verification tests criteria for NCT
4.7.	Regulatory leakage criteria for HAC 4-9
4.8.	Containment vessel design verification tests for HAC
5.1.	Calculated external dose rates for the ES-3100 package with 36 kg of HEU metal contents 5-2
5.2.	Calculated external dose rates for the ES-3100 package with 24 kg of HEU oxide contents 5-2
5.3.	Radioisotope specification for all ES-3100 package analysis source calculations with
	HEU content and other nuclides per HEU unit weight
5.4.	Photon source for one gram of HEU for all contents
5.5.	Neutron source for one gram of HEU for all contents
5.6.	Geometric data for the shielding analysis models of the ES-3100 shipping package as
	shown in Fig. 5.1 for NCT
5.7.	Detector locations relative to the drum for NCT and to the containment vessel for HAC 5-7
5.8.	Shielding model material specifications for the ES-3100 package with HEU content 5-8
5.9.	ANSI standard photon flux-to-dose-rate conversion factors
5.10.	ANSI standard neutron flux-to-dose-rate conversion factors
6.1a.	Summary of criticality evaluation for solid HEU metal cylinders and bars
6.1b.	Summary of criticality evaluation for solid HEU metal slugs
6.1c.	Summary of criticality evaluation for solid HEU metal of unspecified geometric shapes
	characterized as broken metal
6.1d.	Summary of criticality evaluation for HEU product and skull oxide
6.1e.	Summary of criticality evaluation for UNX crystals and unirradiated TRIGA reactor fuel
	elements ⁻
6.2a.	HEU fissile material mass loading limits for surface-only modes of transportation 6-29
6.2b.	HEU fissile material mass loading limits for air transport mode of transportation
6.3.	Deformation of 18.37-indiam ES-3100 drum projected by finite element analysis
	Case "3100 RUN1HL Lower Bound Kaolite May 2004"
6.4.	Material compositions used in the ES-3100 calculation models
7.1.	Replacement parts for the ES-3100 packaging
8.1.	Acceptance tests for the drum assembly
8.2.	Acceptance tests for the containment vessel assembly

ABBREVIATIONS

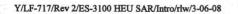
ALARA	as low as reasonably achievable
AM	as-manufactured
ANC	Average Net Count
ANSI	American National Standards Institute
AS	allowable stress
ASME	American Society of Mechanical Engineers
ASTM	
Cat 277-4	American Society for Testing and Materials
Cat 277-4	Thermo Electron Corporation (corporate name changed to Shieldwerx)
CD	Catalog No. 277-4 TM (or Cat. No. 277-4)
	capacity discharge
CERCA	Compagnie pour l'Étude et la Realisation de Combustibles Atomiques
CFR	Code of Federal Regulations
CMTR	certified material test report
CoC	Certificate of Compliance
CSI	criticality safety index
CV	containment vessel
CVA	containment vessel arrangement
DOE	o lot Department of Energy
DOT	U.S. Department of Transportation
EPDM	ethylene-propylene-diene monomer
ETP	explicit triangular pack
FEA	finite element analysis
H/X ratio	hydrogen-to-fissile isotope ratio
HAC	Hypothetical Accident Conditions
HEU	highly enriched uranium
IAEA	International Atomic Energy Agency
k _{eff}	calculated neutron multiplication factor
LOD	loss on drying
LTL	lower tolerance limit
M.S.	margin of safety
MNOP	maximum normal operating pressure
MOCFR	moisture fraction inside the containment vessel
MOIFR	moisture fraction of the package external to the containment vessel
NCT	Normal Conditions of Transport
NLF	neutron leakage fraction
NRC	U.S. Nuclear Regulatory Commission
NTRC	National Transportation Research Center
OECD	Organization for Economic Cooperation and Development
ORNL	Oak Ridge National Laboratory
PGNAA	Prompt Gamma-ray Neutron Activation Analysis
ppb	parts per billion
ppm	parts per million
QA QA	quality assurance
QCPI	Quality Certification and Procurement
RCSB	Rackable Can Storage Box
SAR	safety analysis report
SCALE	Standardized Computer Analysis for Licensing Evaluation
SCHEE	Summarized Computer A marysis for Decensing Evaluation

N

ABBREVIATIONS

s _i	standard error
SRS	Savannah River Site
SS304	type 304 stainless steel
SST/SGT	Safe-Secure Trailer/Safeguards Transporter
TGA	thermogravimetric analysis
TI	transport index
TID	tamper-indicating device
TS	test sample
UNH	uranyl nitrate hexahydrate
UNX	uranyl nitrate crystals
USL	upper subcritical limit
VF	Volume Fraction
Y-12	Y-12 National Security Complex

Date	SAR Revision No.	Description	Affected Pages
2/25/05	0	Original issue	All
8/15/05	0, Page Change 1	Page changes resulting from Responses to Request for Additional Information #1, Y/LF-747.	title page, iv, xxiii, 1-4, 1-145, 2-2, 2-3, 2-6, 2-31, 2-32, 2-33, 2-34, 2-57, 2-59, 2-61, 2-107, 2-125, 2-131, 2-171, 2-173, 2-181, 2-183, 2-185, 2-186, 2-189, 2-367, 2-458, 2-675, 8-8, 8-9, 8-31
2/6/06	0, Page Change 2	Page changes resulting from Responses to Request for Additional Information #2, Y/LF-761.	All Sections
3/20/06	0, Page Change 3	Page changes resulting from Responses to Request for Additional Information #3, Y/LF-764.	1.38, 1.48, Appendix 1.4.1, 2-120, Table 6.4
5/8/06	0, Page Change 4	Added polyethylene bottles and nickel alloy cans as convenience containers for authorized HEU contents. (CoC Revision 1)	Various pages in chapters 1, 2, 3 and 4.
8/21/06	0, Page Change 5	Revised equipment specifications for Kaolite and 277-4 neutron absorber. (CoC Revision 3)	Appendices 1.4.4 and 1.4.5.


Date	SAR Revision No.	Description	Affected Pages
11/15/06	1	Updated definition of pyrophoric uranium. Evaluated air transport. Revised criticality safety calculations to remove bias correct factors. Added a CSI option of 3.2. Increased mass of off-gassing material allowed in containment vessel. Increased carbon concentration in HEU contents. Increased Np-237 concentration is HEU contents. Added uranium zirconium hydride and uranium carbide as contents (TRIGA fuel). Revised equipment specifications for 277-4 neutron absorber. (CoC Revision 3)	All Sections
3/29/07	1, Page Change 1	Updated definition of TRIGA fuel for air transport and added TRIGA- related criticality safety cases.	title pages, viii, xi, xx, 1-12, 1-13, 1-20, 6-30, 6-54, 6-64, 6-66, 6-87, 6-119, 6-240 to 6-286, 6-385 to end
5/31/07	1, Page Change 2	Revised SAR in response to RAIs dated May 9, 2007 in reference to CoC Revision 4	title pages, xiii, xx, Section 1 and Section 6
6/30/07	1, Page Change 3	Revised SAR in response to RAIs dated May 9, 2007 in reference to CoC Revision 5	title pages, table of contents, Section 1, and Section 7
7/31/07	1, Page Change 4	Removed oxidation as an option for treating pyrphoric uranium metal	title pages, xx, 1-12, 1-201, 1-203, 1-212, 2-26, 7-4
8/28/07	1, Page Change 5	Modified TRIGA fuel definition to include fuel pellets with cladding	title page, xx, 1-13, 1-17, 2-4, 6-29, 6-30a, 6-66c, 6-66d, 6-73, 6-87, 6-119a

Date	SAR Revision No.	Description	Affected Pages
10/10/07	1, Page Change 6	-Revised criticality safety calculations to remove bias correction factors.	Table 6.2a and supporting calculations.
		-Added a CSI option of 3.2.	Table 6.2a and supporting calculations.
		-Increased mass of off-gassing material in containment vessel to allow Teflon bottles.	Figure 1.4, page 1-15, and Appendices 3.6.4 and 3.6.5.
		-Increased carbon and moisture concentration in HEU contents.	Pages 1-10 and 1-11, Table 6.2a and pages 6-31 and 6-52.
		-Increased Np-237 concentration is HEU contents.	Pages 5-1 to 5-4, and supporting calculations.
		-Revised equipment specifications for 277-4 neutron absorber.	Pages 1-83 and 1-97.
		-Details of alloys of uranium in contents definition.	Page 1-12.
		-More precise specification of maximum fissile mass in calculations (changed from 36 kg to 35.2 kg).	Administrative change affecting many pages. Removed round-off. No new calculations.

-

Date	e SAR Revision Description No.		Affected Pages	
3/6/08	2	-Add the following contents for ground transport:	1-10 through 1-17, 1-20, 1-22, 2-1, 2-2, 2-4, 2-5, 2-15, 2-17, 2-18, 2-25, 2-26, 3-15 through 3-17,	
		 HEU oxides (U₃O₈-Al and UO₂-Mg) 	3-22, 3-147, 3-149, 3-151 through 3-155, 3-157 through 3-161, 4-2,	
		 Research reactor fuel elements or components (clad U-Al, U₃O₈-Al, UO₂, or UO₂-Mg) 	6-1, 6-2, 6-4, 6-5, 6-30 through 6-34, 6-51, 6-56, 6-69, 6-78, 6-83, 6-87, 6-92, 6-93, 6-95, 6-119, 6-128 through 6-130,	
		-Add the following contents for air transport:	6-303 through 6-305, and 6-488 through 6-501.	
		 HEU oxides (UO₂, UO₂-Mg, U₃O₈, and U₃O₈-Al) 		
		Broken HEU bulk metal and uranium-aluminum alloy of unspecified geometric form		
		 Research reactor fuel elements or components (clad U-Al, U₃O₈-Al, UO₂, or UO₂-Mg) 		

1. GENERAL INFORMATION

1.1 INTRODUCTION

This safety analysis report (SAR) presents the results of the safety analysis prepared in support of B&W Y-12's request for licensing of the ES-3100 package with bulk highly enriched uranium (HEU) contents and issuance of a Type B Fissile Material Certificate of Compliance. This SAR, published in the format specified in the Nuclear Regulatory Commission (NRC) draft guidance DG-7003 and using information provided in NRC Regulatory Guide 7.10, demonstrates that the Y-12 National Security Complex (Y-12) ES-3100 package with bulk HEU contents meets the applicable requirements of 10 CFR 71 and 49 CFR Pts. 100–178.

To protect the health and safety of the public, shipments of radioactive materials are made in packaging that is designed, fabricated, assembled, tested, procured, used, maintained, and repaired in accordance with the provisions cited above. Safety requirements addressed by the regulations that must be met when transporting radioactive materials are containment of radioactive materials, radiation shielding, and assurance of nuclear subcriticality.

A general description and a summary of the evaluation of the packaging are presented in this section. Subsequent sections address structural (Sect. 2) and thermal (Sect. 3) responses to Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) and the packaging's ability to contain the radioactive materials when subjected to the requirements of 10 CFR 71.71 and 71.73, respectively. A shielding evaluation was prepared to ensure adequate nuclear radiation shielding (Sect. 5). Criticality evaluations that are unique to the contents were prepared to ensure nuclear subcriticality (Sect. 6). Sections 7 and 8 discuss the operating procedures, the new packaging acceptance tests, and the maintenance program for the planned use and refurbishment of the packaging.

The ES-3100 package was subjected to verification (analysis, similarity comparisons, tests, or a combination of these) for NCT and HAC. Full-scale packages were used for design verification testing (see Sects. 2 and 3). The ES-3100 package with bulk HEU content was verified solely on the ability of the package to meet the requirements of 10 CFR 71. Transport vehicle influence on the package is not required to meet 10 CFR 71 requirements.

The packaging verification activities (Sects. 2, 3, and 4), using content test masses of between 3.6 and 50.3 kg (8 and 111 lb), show that the packaging meets the containment requirements of 10 CFR 71. The shielding evaluations (Sect. 5) show that the packaging meets the NCT requirements of 10 CFR 71.47, *External Radiation Standards for all Packages*, and the HAC requirements of 10 CFR 71.51, *Additional Requirements for Type B Packages*. Based on the results of the thermal and shielding evaluations, the ES-3100 package with bulk HEU content may be shipped as a nonexclusive use package. The criticality evaluation (Sect. 6) shows that the packaging meets the requirements of 10 CFR 71.55, *General Requirements for Fissile Material Packages*, and 10 CFR 71.59, *Standards for Arrays of Fissile Material Packages*.

1.2 PACKAGE DESCRIPTION

A schematic of the ES-3100 shipping package is shown in Fig. 1.1, and an exploded view of the packaging components is presented in Fig. 1.2. The packaging design drawings (Appendix 1.4.8) provide material lists, dimensions, safety components, welding requirements, and gasket requirements. The

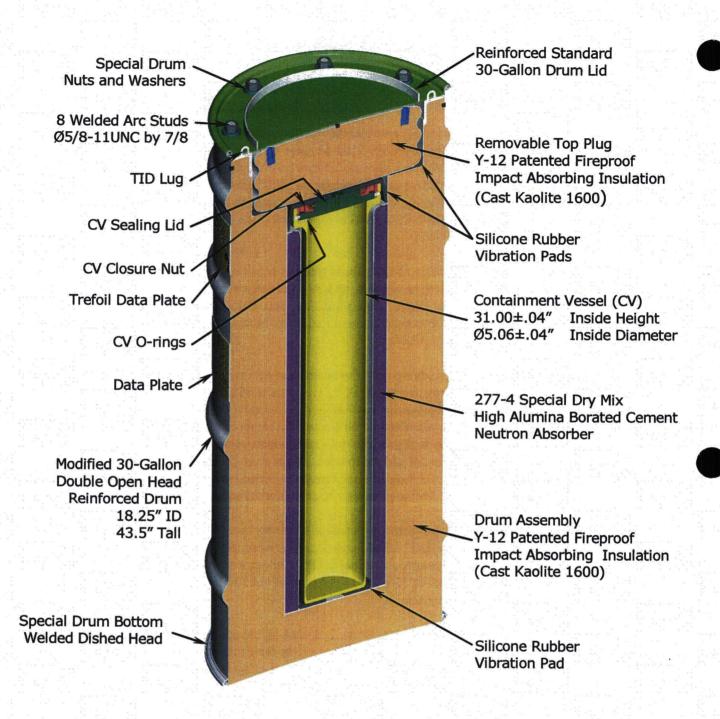
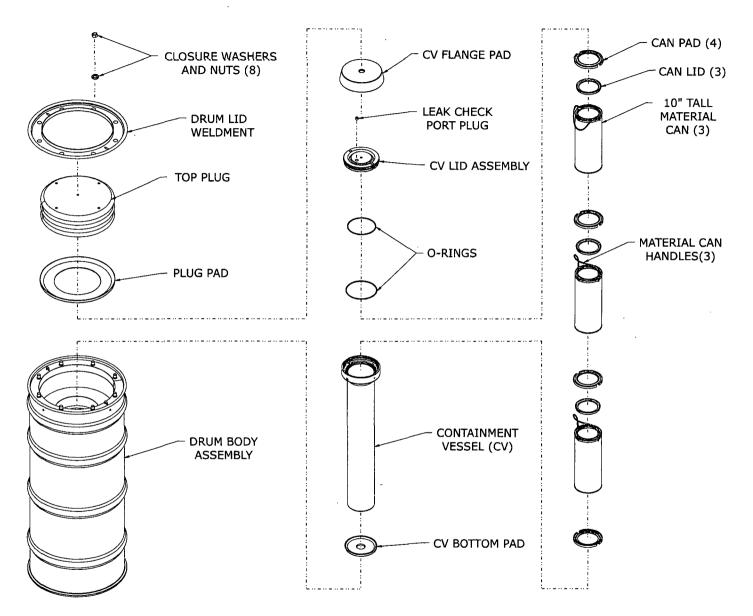
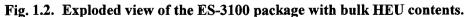




Fig. 1.1. Schematic of the ES-3100 shipping package.

1-3

proposed maximum gross shipping weight of the ES-3100 package with bulk HEU content is 187.81 kg (414.05 lb). The certification drawing of the ES-3100 can be found in Appendix 1.4.1. The authorized maximum gross weight of the ES-3100 package is 190.5 kg (420 lb). The ES-3100 packaging as specified in this SAR is classified as a Category II package (see Appendix 1.4.6). However, since the ES-3100 shipping package may be used for future contents having higher A_2 values, the package has been designed and analyzed to meet the requirements of a Category I package.

1.2.1 Packaging

The main functions of the packaging are containment, shielding, and nuclear criticality safety. The bulk HEU contents create a maximum decay heat of approximately 0.4 W (Sect. 1.2.3.7 and Sect. 3.1.2); therefore, the packaging does not require any special design features such as coolant valves or continuous venting to meet the thermal requirements of 10 CFR 71.

1.2.1.1 Drum Assembly

The drum assembly consists of a double open-head reinforced stainless-steel 30-gal drum, arched cover that forms the bottom, arched lid, inner liner, and top plug with cast refractory insulation (Kaolite) [see Drawing M2E801580A001, Appendix 1.4.8]. The inside diameter of the drum is 46.36 cm (18.25 in.) with an overall height of 110.49 cm (43.5 in.) including the cover and lid (Drawings M2E801580A004 and M2E801580A001, Appendix 1.4.8). The outside diameter of the drum (including the chimes) is 49.2 cm (19.37 in.). The drum and lid are made from 16-gauge [~0.152-cm (0.0598-in.)-thick] type 304 or 304L stainless steel. A 12-gauge [~0.267-cm (0.105-in.)-thick] stainless-steel arched cover (Drawing M2E801580A005, Appendix 1.4.8) is welded to the double open-head drum to create the bottom of the drum assembly. An inner liner (Drawing M2E801580A003, Appendix 1.4.8) is attached to the drum by an internal flange (angle) that is welded to both the drum and liner. The cavity created by the inner liner for placement of a containment vessel is a three-tier volume. The uppermost tier accommodates the top plug and has an inside diameter of 37.52 cm (14.77 in.) and is 13.26 cm (5.22 in.) deep (Drawing M2E801580A003, Appendix 1.4.8). The second tier, which accommodates the containment vessel flange, has a 21.84-cm (8.60-in.) inside diameter that is 5.59 cm (2.20 in.) deep (Drawing M2E801580A003, Appendix 1.4.8). The third tier, which accommodates the containment vessel body, has a 15.85-cm (6.24-in.) inside diameter that is 78.31 cm (30.83 in.) deep (Drawing M2E801580A003, Appendix 1.4.8). An additional cavity is created between the second and third tier liners. This cavity runs the full length of the third tier height [78.31 cm (30.83 in.)] and is approximately 5.99 cm (2.36 in.) thick (Drawing M2E801580A003, Appendix 1.4.8). This cavity is filled with a castable refractory (277-4 special dry mix) for neutron attenuation purposes. The additional cavities between the liner and the drum are filled with an inorganic castable refractory material (Kaolite 1600), which acts as both an impact-absorbing and thermal-insulating material.

In accordance with NUREG/CR-3854, Part 4.3 for a Category I shipping package, an acceptable specification for drums used in any of the component safety groups is U.S. Department of Transportation (DOT) Specification 17C or better. The drum used in the ES-3100 is fabricated in accordance with the dimensional requirements of MIL-D-6054F and modified as shown on Drawing M2E801580A004 (Appendix 1.4.8). Material, fabrication, and quality control criteria are generally equivalent to those imposed for a DOT Specification 17C drum. Furthermore, the drum of the ES-3100 is part of a performance-based package that has been tested and analyzed to demonstrate its ability to maintain confinement and containment of its contents under both NCT and HAC. By certifying that the outer shell of the Drum Assembly used in production meets the same specifications as those tested and analyzed, as described in subsequent sections of this SAR, the outer drum shell used for the ES-3100 is acceptable for a Category 1 shipping package.

As previously discussed, the drum has been modified by the attachment of an inner liner connected to the drum by an internal flange welded to both the drum and the liner. Weld studs are attached to the upper face of the internal flange. The body seams are welded. The following items are conducted in accordance with Sect. IX of the *American Society of Mechanical Engineers (ASME) Boiler* and Pressure Vessel Code (B&PVC, Sect. IX): welding procedures qualification and welders certification to these qualified procedures.

The drum has four circumferential hoops (chimes) formed into the body. The drum has four 0.795-cm (0.313-in.)-diam holes equally spaced around the circumference about 3.81 cm (1.50 in.) from the top rim to relieve pressure in the drum in the event of a thermal accident (Drawing M2E801580A002, Appendix 1.4.8). Plastic plugs (Nylon 6/6, Micro Plastic, Inc., Item Number 62MP0312) are placed into these holes from the outside to prevent leakage of water into the drum during NCT and storage. The drum is fabricated with a data plate, trefoil data plate, paint, and two lid TID lugs for use with tamper-indicating devices (TIDs). The two electrochemically etched data plates are affixed to the exterior of the drum body in the locations, and with the methods, indicated on Drawing M2E801580A031 (Appendix 1.4.8). The trefoil data plate (M2E8015803A010-1) provides the owner's return address, container model, container serial number, and the trefoil symbol. The other data plate (M2E801580A010-2) provides the required DOT markings—certificate number, maximum gross weight, and "Type B" designation.

The removable lid is attached to the drum body by a flange with eight silicon bronze, 5/8-11-UNC-2B hex-head nuts [C65100, American Society for Testing and Materials (ASTM) F-467] with stainless-steel washers. These nuts are tightened onto the weld studs (304 or 304L stainless steel, 5/8-11-UNC-2A, ASTM A-493 or F-593) to 40.67 ± 6.78 N·m (30 ± 5 ft-lb) of torque with no sequence specified.

The top plug is 36.5 cm (14.37 in.) in diameter and 13.41 cm (5.28 in.) in height at the center. The skin is made from 16 gauge [~0.152-cm (0.0598-in.)-thick] type 304 or 304L stainless steel and is filled with Kaolite 1600.

The drum assembly also contains three silicone rubber pads. The first pad (CV bottom pad) is placed on the bottom of the innermost liner to support the containment vessel bottom during transport. The second pad (CV flange pad) is placed on top of the containment vessel lid during transport. The third pad (plug pad) is placed on the top shelf of the mid-liner to cushion the top plug during transport. The locations of these three pads are shown on Drawing M2E801580A001 (Appendix 1.4.8), and the dimensions of the pads are shown on Drawing M2E801580A009 (Appendix 1.4.8).

The drum is designed so that lifting can be accomplished with a forklift. It can either be placed on the tines of the forklift from below, or a pincher assembly can be placed on the forklift and used to grasp the exterior of the drum assembly. Based on analytical results for a similar package (the Model ES-2100), forklift gripping forces of up to 5400 lb can be used with no detrimental effects on the package.

No tie-down devices are integral to the package, nor can any features be used for these purposes. The ES-3100 package is designed to be shipped in accordance with the safe-secure trailer/safeguards transporter (SST/SGT) requirements.

1-5

1.2.1.2 Insulation

The void area formed by the drum and the attached inner liner is filled with an inorganic castable refractory material (Kaolite 1600) made by Thermal Ceramics, Inc., which acts as both a thermal insulating and an impact limiting material. The top plug assembly, which is placed between the containment vessel and the drum lid, is also filled with Kaolite 1600. This material is a mixture of cement and vermiculite and has a nominal cured density of ~358.8 kg/m³ (22.4 lb/ft³). Additional information regarding the characteristics and properties of this material is presented in Appendix 2.10.3. Casting takes place while the drum is being vibrated in an inverted orientation to ensure that the castable material penetrates into all areas in the void space formed by the drum and the inner liner and that no considerable voids are formed during this process. The Kaolite material is then baked in a furnace at elevated temperatures [~260°C (500°F)] as prescribed in Manufacturing Process Specification, JS-YMN3-801580-A003, Manufacturing Process Specification for Casting Kaolite 1600 into the ES-3100 Shipping Package, the specification which controls manufacture of Kaolite 1600 for the ES-3100 (Appendix 1.4.4). The use of a thermal ceramic material, such as Kaolite 1600, as an impact limiting/thermal insulating material in a Type B fissile material shipping package has been previously used in other Y-12 owned and licensed packages (i.e., ES-2100 and DPP-2). The original decision to use this material was the result of considerable research. This manufacturing process is protected under U.S. Patent 6,299,950 B1 (Byington et al. 2001). The United States Government has rights in this invention pursuant to Contract No. DE-AC05-84OR21400 between DOE and B&W Y-12.

One of the design goals of Y-12's packaging development program was to build a shipping package entirely of materials that do not char, burn, or thermally decompose when exposed to the temperatures and conditions associated with HAC [800°C (1475°F)]. Cellulosic fiber board and polyurethane foams, typically used for packaging applications, undergo decomposition when exposed to these HAC thermal conditions. During thermal decomposition, these materials off-gas, producing conditions that are potentially detrimental to the performance of the package. The hot gases generated within the packaging can transfer heat to inner regions adjacent to the containment closure seals. Under severe circumstances, this process could lead to loss of containment due to overheating of containment seals. The Kaolite material is nonflammable and will not undergo chemical decomposition at temperatures below 1260°C (2300°F). When Kaolite is heated above 100°C (212°F), water vapor from free water contained within the casting will form. Pressurization of the drum and top plug is prevented by pressure relief holes (vent holes) located near the top of the drum and on the top center of the top plug (see Sect. 1.2.1.1 and Drawings M2E801580A002 and M2E801580A008, Appendix 1.4.8). The cured Kaolite 1600 material does not decompose, and thus there are no exothermic chemical reactions that could produce superheated off-gasses.

Extensive testing of Kaolite 1600 was performed by the Y-12 Development Division to determine the performance of the material for this type of application (Oakes, Appendix 2.10.3). Testing showed that Kaolite 1600 has a tremendous ability to absorb shock over a wide range of material densities, curing temperatures and times, and material temperatures. The 10 CFR 71.73 HAC testing documented in Sect. 2.7 demonstrates that Kaolite 1600 is a robust impact limiter and good thermal insulating material for Type B shipping containers. Post HAC drop testing radiographs of a similar package, the ES-2100, showed some minor cracking of the Kaolite structure in some cases. However, subsequent thermal testing of these ES-2100 packages demonstrated that these cracks were inconsequential to the package's ability to meet regulatory requirements.

Insulation thicknesses within the liner/drum volume adjacent to the side walls of the ES-3100 containment vessel are at least 4.27 cm (1.68 in.), with typical thicknesses of approximately 12.10 cm (4.77 in.). Below the containment vessel, the minimum thickness of insulation is 10.05 cm (3.96 in.),

and the top plug, which is above the containment vessel, includes a 12.55-cm (4.94-in.) thickness of insulation.

1.2.1.3 Shielding

The ES-3100 packaging does not require dedicated shielding materials of specific design to control external radiation levels for the bulk HEU contents. However, the intervening packaging materials of construction (stainless steel of the drum and containment vessel, the Kaolite material, and the 277-4 material) provide some attenuation of the relatively low levels of penetrating radiation emitted by the contents. The amount of shielding modeled for the NCT analysis is represented by the thickness and density of the materials reported in Sects. 1.2.1.1, 1.2.1.2, and 1.2.2 and the packaging dimensions (Appendix 1.4.8). HAC physical testing showed that the containment vessel and insulation remain confined within the drum assembly. However, the HAC shielding evaluation conservatively assumes that only the containment vessel remains for shielding purposes (i.e., no shielding credit is taken for the drum and insulation in the HAC analysis).

1.2.1.4 Nuclear criticality safety

The packaging materials of construction in the ES-3100 provide neutron absorption (stainless steel and 277-4) and reflection (stainless steel and insulation). The 277-4 (or Cat 277-4 as it is sometimes referred) material is a noncombustible cast neutron-absorbing material. This material is cast into the innermost liner of the package adjacent to the containment vessel as shown in Fig. 1.1. The material is a high alumina borated concrete composed of aluminum, magnesium, calcium, boron, carbon, silicone, sulfur, sodium, iron, and water. The 277-4 material was manufactured specifically for the ES-3100 package by adding boron carbide to a standard material (Cat No. 277-0) and increasing the boron content from 1.56 wt % to 4.23 wt%. Additional information on the neutron-absorbing characteristics of this material is presented in Appendix 6.9.3. Properties of the 277-4 material are presented in Table 2.17 and Appendix 2.10.4. The cast material has a nominal density of 1681.9 kg/m³ (105 lb/ft³). The procedure for mixing this material and casting it into the ES-3100 shipping package is documented in JS-YMN3-801580-A005, *Casting Catalog No. 277-4 Neutron Absorber for the ES-3100 Shipping Package* (Appendix 1.4.5).

Although shown by tests up to HAC as not being credible, the criticality analysis considers water leakage into the containment vessel in accordance with 10 CFR 71.55(b). Depending on the content being shipped and the shipping configuration being used, criticality safety index (CSI) values for the ES-3100 package may range from 0 to 3.2 (see Table 1.3).

1.2.2 Containment System

A single containment vessel is used in the ES-3100 shipping package for the transport of bulk HEU contents. The ES-3100 containment boundary (consisting of the containment vessel body, lid assembly, and inner O-ring) is shown in Fig. 1.3.

During fabrication, all ES-3100 containment vessels will be inspected and tested to the requirements specified on the design drawings (Appendix 1.4.8) and equipment specification (Appendix 1.4.3). Certification documents received from the vendor with each component acknowledge the use of these drawings and specifications. These certifications are on file with the Y-12 Quality Organization.

Fig. 1.3. Containment boundary of the ES-3100 shipping package.

The containment boundary of the ES-3100 package is a pressure vessel that is designed, fabricated, examined, and tested in accordance with the *ASME Boiler and Pressure Vessel Code*, Sect. III, Division I, Subsection NB (B&PVC, Sect. III, Div. I). The ES-3100 containment vessel body is constructed of 304L stainless steel and may be fabricated by one of two methods. The first method uses a standard 5-in., schedule 40 stainless-steel pipe (ASME SA-312 Type TP304L), a machined flat-head bottom forging (ASME SA-182 Type F304L), and a machined top flange forging (ASME SA-182 Type F304L). Each of these pieces is joined with circumferential welds as shown on Drawing M2E801580A012 (Appendix 1.4.8). The top flange is machined to provide two concentric half-dove-tailed O-ring grooves in the flat face, to provide locations for two 18-8 stainless steel dowel pins, and to provide the threaded portion for closure using the lid assembly. The second fabrication method for the ES-3100 containment vessel uses forging, flow forming, or metal spinning to create the complete body (flat bottom, cylindrical body, and flange) from a single forged billet or bar with final material properties in accordance with ASME SA-182 Type F304L. The top flange area using this fabrication technique is machined identically to that of the welded forging method.

The lid assembly, which completes the containment boundary structure, consists of a sealing lid, closure nut, and external retaining ring (Drawing M2E801580A014, Appendix 1.4.8). The containment vessel sealing lid (Drawing M2E801580A015, Appendix 1.4.8) is machined from Type 304 stainless-steel bar with final material properties in accordance with ASME SA-479. The containment vessel closure nut is machined from a Nitronic 60 stainless-steel bar with material properties in accordance with ASME SA-479. The containment vessel closure nut is machined from a Nitronic 60 stainless-steel bar with material properties in accordance with ASME SA-479. These two components are held together using a WSM-400-S02 external retaining ring made from Type 302 stainless steel. The sealing lid is further machined to accept a 36-16 swivel hoist ring bolt, to provide a leak-check port between the elastomeric O-rings, and notched along the perimeter to engage two dowel pins. The swivel hoist ring will be removed for shipment. The lid assembly, with the O-rings in place on the containment vessel body, are joined together by torquing the closure nut and sealing lid assembly to 162.70 ± 6.78 N m (120 ± 5 ft-lb). The sealing lid portion of the assembly is restrained from rotating during this torquing operation by the two dowel pins installed in the body flange.

The use of a design that includes two O-ring seals permits assembly verification leak testing of the containment vessel by measuring the leak rate from the volume between the inner and outer O-rings. An evacuation port is located between the O-rings in the containment vessel to facilitate a pressure rise or drop leakage test following assembly or 10 CFR 71 compliance testing. This port is sealed during transport using a modified VCO threaded plug. Only the inner O-ring is considered a part of the containment boundary. All O-rings on this containment vessel are fabricated to ASTM D2000, M3BA712A14B13F17.

The inner diameter of the containment vessel is 12.852 cm (5.06 in.) and the usable height inside the containment vessel is 78.74 cm (31.0 in.). The wall thickness of the body excluding the flange is 0.254 cm (0.10 in.). The maximum nominal diameter of the containment vessel body is 19.05 cm (7.50 in.). The nominal thicknesses of the containment vessel's flat bottom is 0.635 cm (0.25 in.). The overall height of the containment vessel without the swivel hoist ring is 82.296 cm (32.40 in.). The containment vessel drawing number, drawing revision, and serial number are electroetched onto the side of the containment vessel body, as well as onto the top of the sealing lid and the closure nut (Drawing M2E801580A011, Appendix 1.4.8). All outer surfaces, unless otherwise specified, are either sand- or bead-blasted, buffed, or sanded to a matte finish. No penetrations, connections, or fittings into this sealed container exist.

1.2.3 Contents

The ES-3100 shipping package will be used to ship bulk HEU in the form of oxide (UO₂, UO₃, or U₃O₈, U₃O₈-Al, or UO₂-Mg), uranium metal and alloy in the form of solid geometric shapes or broken pieces, uranyl nitrate crystals (UNX), and fuel elements from Training, Research, Isotopes, and General Atomics (TRIGA) reactors, and research reactor fuel elements or fuel components. The ES-3100 package has been designed to accommodate a maximum of 24 kg of oxide or UNH crystals and a maximum of 35.2 kg of metal and alloy. The maximum weight of all contents (including convenience cans or bottles, can spacers, polyethylene bagging and other packing materials) shall not exceed 40.82 kg (90 lb). The maximum concentration of uranium isotopes permitted in the ES-3100 content are listed in Table 1.1. In addition to the uranium isotopes shown in Table 1.1, transuranic isotopes (with the exception of 237 Np) may be present in the contents at a maximum concentration of 40.0 µg/gU. The concentration of 237 Np is limited to 0.0250 g/gU. Unless otherwise specified, the contents described in this section pertain to ground transport only. A discussion of contents of air-transport is included in Sect. 1.2.3.1.

Uranium isotope	Limit	
²³² U	0.040 μg/gU	
²³³ U	0.006 g/gU	
²³⁴ Ú	0.02 g/gU	
²³⁵ U	1.00 g/gU	
²³⁶ U	0.40 g/gU	
²³⁸ U	1.00 g/gU	

Table	1.1.	Uranium	concentr	ation	limits

HEU Oxide

The HEU oxide content in the ES-3100 package includes UO_2 , UO_3 , and U_3O_8 , U_3O_8 -Al, and UO_2 -Mg. Eight different oxide categories have been identified (Appendix 1.4.7). Maximum overall uranium isotopic weight percents representative of all eight oxide categories are presented in Table 1.2. The physical form of all contents is dense, loose powder which may contain clumps. Moisture content in oxide is limited to 6 wt % water (Note: loading restriction #8 in Sect. 1.2.3.8 also applies). Theoretical densities of UO_2 , U_3O_8 , and UO_3 are 10.96 g/cm³, 8.30 g/cm³, and 7.29 g/cm³, respectively. Actual working densities are expected to be significantly less. Oxide may be shipped in tin-plated carbon steel, stainless steel, or nickel-alloy convenience cans, or Teflon or polyethylene convenience bottles, or glass bottles (UO_2 -Mg oxide only).

Table 1.2.	Bounding	uranium	isotopic	concentrati	ons in oxide

Isotope	Bounding limit
²³² U	40 ppb
²³³ U	200 ppm
²³⁴ U	2.0 wt %
²³⁵ U	97.7 wt % ^a
²³⁶ U	40.0 wt %
²³⁸ U	80.0 wt %

^a 235 U must be ≥ 20 wt %.

For convenience, the eight oxide categories are referred to as Groups 1-8. Groups 1 to 6 are product oxides and Group 7 is skull oxide. Group 8 is research reactor-related oxides. These groups are briefly described below.

Group 1 oxides are in the form of UO_x. Material from this group contains at least 83.0% uranium by weight and displays typical isotopic content ($\leq 0.977 \text{ g}^{235}\text{U/gU}$, $\leq 0.014 \text{ g}^{234}\text{U/gU}$, $\leq 0.010 \text{ g}^{236}\text{U/gU}$, $\leq 0.040 \mu \text{g}^{232}\text{U/gU}$, $\leq 50.0 \mu \text{g}^{233}\text{U/gU}$ with the balance of the uranium being ²³⁸U).

Group 2 oxides are in the form of UO_x. Material from this group contains at least 20.0% uranium by weight and displays typical isotopic content (≤ 0.977 g²³⁵U/g U, ≤ 0.014 g²³⁴U/g U, ≤ 0.010 g²³⁶U/g U, ≤ 0.040 µg²³²U/g U, ≤ 50.0 µg²³³U/g U with the balance of the uranium being²³⁸U).

Group 3 oxides are contaminated with up to 40 μ g Pu/g U and are in the form of UO_x. Material from this group contains at least 83.0% uranium by weight and displays typical isotopic content for uranium (≤ 0.977 g ²³⁵U/g U, ≤ 0.014 g ²³⁴U/g U, ≤ 0.010 g ²³⁶U/g U, ≤ 0.040 μ g ²³²U/g U, ≤ 50.0 μ g ²³³U/g U with the balance of the uranium being ²³⁸U).

Group 4 oxides are in the form of U_3O_8 . Material from this group contains at least 83.0% uranium by weight and displays typical isotopic content (≤ 0.977 g ²³⁵U/g U, ≤ 0.014 g ²³⁴U/g U, ≤ 0.010 g ²³⁶U/g U, ≤ 0.040 µg ²³²U/g U, ≤ 50.0 µg ²³³U/g U with the balance of the uranium being ²³⁸U).

Group 5 oxides are in the form of UO_x. Material from this group contains at least 20.0% uranium by weight and displays typical isotopic content (≤ 0.977 g²³⁵U/g U, ≤ 0.014 g²³⁴U/g U, ≤ 0.010 g²³⁶U/g U, ≤ 0.040 µg²³²U/g U, ≤ 50.0 µg²³³U/g U with the balance of the uranium being²³⁸U). This material may contain considerable activity in the form of unspecified beta emitters.

Group 6 oxides are in the form of UO_x. Material from this group contains at least 20.0% uranium by weight and may display unusually high isotopic concentrations of ²³³U, ²³⁴U, and ²³⁶U (≤ 0.977 g ²³⁵U/g U, ≤ 0.020 g ²³⁴U/g U, ≤ 0.40 g ²³⁶U/g U, ≤ 0.040 µg ²³²U/g U, ≤ 200.0 µg ²³³U/g U with the balance of the uranium being ²³⁸U).

Group 7 oxides are in the form of U_3O_8 . Material from this group is a mixture of graphite and U_3O_8 , also referred to as skull oxides. The uranium concentration is up to 84.5% by weight and enrichment is up to 93.2% by weight. Concentrations of other uranium isotopes are ≤ 0.014 g²³⁴U/g U, ≤ 0.010 g²³⁶U/g U, ≤ 0.040 µg²³²U/g U, ≤ 50.0 µg²³³U/g U with the balance of the uranium being²³⁸U. The carbon content in these oxides is limited to 921 g per ES-3100 package.

Group 8 oxides are in the form of U_3O_8 -Al or UO_2 -Mg. The U_3O_8 -Al mixture (U_3O_8 dispersed in powdered aluminum) contains ~8 to 40 wt % U_3O_8 . The uranium enrichment in U_3O_8 -Al may be up to 93.5 wt % ²³⁵U. The UO_2 -Mg mixture (UO_2 dispersed in powdered magnesium) contains ~85 to 90 wt % UO_2 . The uranium enrichment in UO_2 -Mg is ~10 wt % ²³⁵U.

The oxides in Groups 1, 3, 4 and 7 are high purity uranium oxide purity (the remainder is only trace impurities). Oxide Groups 2, 5, and 6 are listed to contain at least 20% uranium by weight, which allows up to 80% non-uranium material. As oxides, depending on the purity and chemical form, 3% to 17% of the total material composition will be oxygen, leaving up to 77% impurity or "filler". These three oxide groups include a range of scrap and recovered materials. For the least pure uranium oxides, the majority of the filler material is aluminum oxide (from recovered alumina traps or from oxidized uranium-aluminum alloys). Other materials that occur in appreciable quantities in some scrap materials are oxides and compounds of boron, calcium, iron, sodium, lead, zinc, magnesium, copper,

molybdenum, and tungsten. These materials are essentially inert from the standpoint of criticality safety and chemical interaction with the ES-3100 convenience cans and bottles identified in this section for the shipment of oxides.

HEU Metal and Alloy

HEU metal and alloy (alloys of uranium with aluminum or molybdenum) may be in the form of solid geometric shapes. Solid shapes may include the following:

1. spheres are not included as a content shape;

- 1. cylinders having a diameter no larger than 4.25 in. (maximum of one cylinder per convenience can);
- 2. square bars having a cross section no larger than 2.29 in. × 2.29 in. (maximum of one bar per convenience can); and
- 3. slugs having dimensions of 1.5 in. diameter \times 2 in. tall (maximum of 10 per convenience can).

With the exception of slug content, solid HEU metal and alloy content of specified geometric shapes shall be limited to one item per convenience container. HEU bulk metal and alloy contents not covered by the geometric shapes category specified above will be in the broken metal category, and will be so limited.

Alloys of uranium may include aluminum or molybdenum. Uranium-aluminum alloys are typically 70 to 95% aluminum. Uranium-molybdenum alloys are typically 1 to 12% molybdenum. Uranium/molybdenum alloys may be plated with, clad with, or contain traces of aluminum, gold, stainless steel, nickel and/or chromium.

HEU bulk metal and alloy contents in the broken metal category may be of unspecified geometric form. HEU bulk metal and alloy in this category may also be of a specific shape where one or more of the characteristic dimensions vary from piece to piece (i.e., the height, width, length, radius, etc.).

For pyrophoric considerations, HEU metal and alloy must meet the following restrictions:

- 1. Uranium metal and alloy (broken) pieces must have a surface-area-to-mass ratio of not greater than 1 cm²/g or must not pass through a 3/8-in. mesh sieve.
- 2. Particles and small shapes which do not pass the size restriction tests in #1, and powders, foils, turnings, and wires, are not permitted unless they are in a sealed, inerted container.

Metal and alloy may be shipped in tinned-carbon steel, stainless steel, or nickel-alloy convenience cans.

Uranyl Nitrate Crystals

Uranyl nitrate crystals (UNX) are formed by dissolving uranium metal or any of the uranium oxides in nitric acid. Uranyl nitrate hexahydrate (UNH) has a chemical formula of $UO_2(NO_3)_2 + 6 H_2 O$. This most reactive form is used as the bounding composition for uranyl nitrate crystals in the criticality evaluation. Therefore, for UNX contents, X must be less than or equal to 6. The theoretical density of UNH crystals is 2.79 g/cm³; however, the working densities will be less.

The user of the ES-3100 for UNX shipments will be required to use non-metallic containers only (such as Teflon or polyethylene bottles) as the convenience container.

TRIGA Fuel Elements

Fuel pellets from Training, Research, Isotopes, and General Atomics (TRIGA) reactor elements are authorized to be shipped in the ES-3100. The fuel shall be unirradiated. The TRIGA fuel shall be in the form of uranium zirconium hydride (UZrHx), where $x \le 2$. Fuel from three types of TRIGA fuel elements are allowed; TRIGA Standard Fuel Elements (SFE), Instrumented TRIGA Standard Fuel Elements (FTC), and TRIGA Fuel Follower Control Rods (FFCR). These fuel elements have three fuel pellets (or sections) per element. The fuel pellets from the SFEs and FTCs to be shipped are 8.5 wt% uranium and 70% enriched. Fissile loading is 45.33 g²³⁵U per pellet (136 g²³⁵U per element) and the dimensions are 5 in. in length and 1.44 in. in diameter. The fuel pellets from the FFCRs to be shipped are 8.5 wt% uranium and 70% enriched. Fissile loading is 37.33 g²³⁵U per pellet (113 g²³⁵U per element) and the dimensions are 5 in. in length and 1.31 in. in diameter. Specific TRIGA fuel element data is given in Table 1.4.

TRIGA fuel may be shipped as crimped fuel elements or as UZrHx fuel pellets (if disassembled), both of which shall be packed into convenience cans prior to shipment. Convenience cans of 4.25-in. diameter by various lengths shall be used. Fuel pellets loaded into convenience cans shall be up to 5 in. in length (full-length) and no more than three full-length pellets shall be loaded into a convenience can. Crimped fuel rods are clad fuel pellets and can be up to 15 in. in length (full-length of the fuel section from one fuel element). Cladding material is stainless steel or aluminum. Only the fuel section of the TRIGA fuel element is allowed to be shipped (Fig. 1.5); however, there may be residual cladding up to $\frac{1}{2}$ in. in length at either end of the crimped fuel rod. Up to three 15-in. long crimped fuel elements shall be loaded into a single 17.5-in. long convenience can for shipping (Fig 1.4). Maximum loading of bare fuel pellets and crimped fuel elements shall be 3 fuel element equivalence per ES-3100 containment vessel. Only 70% enriched TRIGA fuel will be shipped. For SFEs and FTCs, the maximum allowable loading is 339 g²³⁵U per package, and for FFCRs, the maximum allowable loading is 339 g²³⁵U per package. No spacer cans are required.

Research Reactor Fuel Elements and Components

Research reactor fuel elements or fuel components composed of clad U-Al, U_3O_8 -Al, UO_2 , or UO_2 -Mg will be shipped in the ES-3100 package. The fuel elements consist of multiple fuel components in the form of plates, rods, and tubes clad in aluminum, stainless steel, or zircalloy and held together as a single unit by other inert structural components. All cladding will be intact with no fuel exposed. The fuel components are individual plates, rods, or tubes removed from fuel elements. The uranium in these fuel elements and components is enriched to 10 to 93.5 wt % ²³⁵U.

The U-Al fuel in the research reactor fuel elements and components is an alloy of uranium and aluminum (U-Al) or in the form of $UA1_x$ -Al (alloy in an aluminum matrix). The U-Al fuel contains ~8 to 30 wt % uranium. The U₃O₈-Al fuel is in the form of a U₃O₈ compound contained in an aluminum metal matrix. The U₃O₈-Al contains ~8 to 40 wt % U₃O₈. The UO₂ fuel is a ceramic compound. The UO₂-Mg fuel is a ceramic UO₂ compound contained in a magnesium metal matrix. The UO₂-Mg fuel contains ~88 wt % UO₂.

The research reactor fuel elements and components will be bundled together and placed inside a modified convenience can [a 17.5-in.-tall can (two 8.75-in.-tall cans brazed together) or a 30-in.-tall can

(three 10-in.-tall cans brazed together)] or protected on each end with an open-ended convenience can constructed of stainless steel, tinned-carbon steel, or nickel alloy (see Fig. 1.4).

Air Transport

1.2.3.1 Radioactive/fissile constituents

Fissile material mass loading limits for the contents of the ES-3100, as determined by criticality analyses, are presented in Table 1.3 (for ground transport only). For the ES-3100 package with bulk HEU content, the maximum number of A_2s is 294.00 (at 70 years) and the maximum activity is 0.3243 TBq (at 10 years) [Table 4.4].

Ground Transport

Fissile material mass loading limits for the contents of the ES-3100, as determined by criticality analyses, are presented in Table 1.3.

Air Transport

Contents for air transport of the ES-3100 include HEU in the form of unirradiated TRIGA fuel pellets or crimped fuel elements, HEU oxides, broken HEU metal and alloy, and research reactor fuel elements and components. Fissile material mass loading limits for these contents, as determined by the criticality analyses, are presented in Table 1.3a for air transport. The characteristics of the air transport contents shall be similar to the ground transport contents. Fissile loading per package will be as follows:

TRIGA fuel elements and pellets - 3 fuel element equivalence per package. Fuel shall be 70% enriched and in the form of SFEs, FTCs, and FFCRs. Maximum fissile loading for SFEs and FTCs shall be 408 g 235 U per package, and for FFCRs, the maximum allowable load shall be 339 g 235 U per package.

HEU oxides - Oxides shall be in the form of UO₂, UO₂-Mg, U₃O₈, and U₃O₈-Al with a maximum enrichment of 93.5 wt % ²³⁵U.

HEU metal and alloy - These contents include broken HEU bulk metal and uranium-aluminum alloy of unspecified geometric form with a maximum enrichment of 93.5 wt % ²³⁵U.

Research reactor fuel elements and components - The fuel elements and components in the form of plates, rods, and tubes composed of U-Al, U_3O_8 -Al, UO_2 , or UO_2 -Mg with a maximum enrichment of 93.5 wt % ²³⁵U.

1.2.3.2 Chemical and physical form

The fissile material contents are in solid (HEU metal, alloy, or TRIGA fuel, or research reactor fuel elements and fuel components), crystalline (UNX) or powder (HEU oxide) form. Some moisture (up to 6 wt.%) may be present in the HEU oxide material, thereby making the oxide content clump together.

Content description		Enrichment	CSI	No spacers, ²³⁵ U (kg)	277-4 can spacers, ^d ²³⁵ U (kg)
	Cylinder A	≤ 100%	0.0	15	25.000
Solid HEU	Cylinder B	≤ 100%	0.0	18	30.000
metal or alloy (specified	Square bars	≤ 100%	0.0	18	30.000
geometric	Slugs	> 80%	0.0	18.286	25.601
shapes)°	Slugs	≤ 80%	0.0	18.286	29.333
	Slugs	≤ 95%	0.4	Can spacers req'd ^d	34.766
		> 95%, ≤ 100%	0.0	Can spacers req'd	2.774
			0.4	Can spacers req'd	5.549
			0.8	Can spacers req'd	9.248
			2.0	Can spacers req'd	13.872
			3.2	Can spacers req'd	24.969
		> 90%, ≤ 95%	0.0	Can spacers req'd	3.516
			0.4	Can spacers req'd	6.154
			0.8	Can spacers req'd	10.549
	• •		2.0	Can spacers req'd	18.461
			3.2	Can spacers req'd	26.373
		> 80%, ≤ 90%	0.0	Can spacers req'd	3.333
			0.4	Can spacers req'd	7.500
			0.8	Can spacers req'd	12.500
			2.0	Can spacers req'd	20.000
Prokon UELI mot	Broken HEU metal or alloy		3.2	Can spacers req'd	28.334
DIOKEII MEU MEI			0.0	2.967	4.450
			0.4	5.192	8.900
			0.8	8.900	16.317
			2.0	17.059	25.218
			3.2	27.692	28.184
		> 60%, ≤ 70%	0.0	3.249	5.198
			0.4	5.848	12.996
			0.8	13.646	20.793
			2.0	21.444	24.692
			3.2	24.692	24.692
		≤ 60%	0.0	5.576 kgU	11.154 kgU
			.0.4	14.872 kgU	28.813 kgU
			0.8	2 8.8 14 kgU	35.320 kgU ^h
			2.0	35.320 kgU ^h	35.320 kgU ^h
			3.2	35.320 kgU ^h	35.320 kgU ^h
HEU oxide ⁱ	· · · · · · · · · · · · · · · · · · ·	> 20%, ≤ 100%	0.0	21.124 ^f	Spacer not req'd
HEU skull oxide		> 20%, ≤ 100%	0.0	15.675	Spacer not req'd
UNX crystals ^{a, g}		> 20%, ≤ 100%	0.0	3.768	Spacer not req'd
UNX crystals a, g		> 20%, ≤ 100%	0.4	11.303 ^f	Spacer not req'd

Table 1.3. Authorized content ^a and fissile mass loading limits ^{b, c} for ground transport

Content description		Enrichment	CSI	No spacers, ²³⁵ U (kg)	277-4 can spacers, ^d ²³⁵ U (kg)		
TRIGA fuel		20 %	0.0	0.921	Spacer not req'd		
		70 %	0.0	0.408	Spacer not req'd		
Research reactor fuel	U-Al	See "Broken HE	U metal or a	lloy" loading limits in	n the rows above		
elements and components	U ₃ O ₈ -Al, UO ₂ , or UO ₂ -Mg	See "HEU oxide" loading limit in the row above					

Table 1.3. Authorized content ^a and fissile mass loading limits ^{b, c} for ground transport

^a HEU in solution form is not permitted for shipment in the ES-3100.
 ^b All limits are expressed in kg ²³⁵U unless otherwise indicated.

- c Mass loadings cannot be rounded up.
- d 277-4 can spacers as described on Drawing No. M2E801580A026 (Appendix 1.4.8).
- * Geometries of solid shapes are as follows:
 - Cylinder A is larger than 3.24 in. diameter but no larger than 4.25 in. diameter: maximum of 1 cylinder per can.
 - Cylinder B is no larger than 3.24 in. diameter: maximum of 1 cylinder per can.
- Square bars are no larger than 2.29 in. × 2.29 in. (cross section): maximum of 1 bar per can.
- Slugs are a maximum of 1.5 in. diameter × 2.0 in. tall; a maximum of 10 per convenience can where the actual number permitted is restricted by the stated loading limit.
- ^f This ²³⁵U fissile mass limit corresponds to 24 kg of material.
- ^g UNX (where $X \le 6$). Must be shipped in a non-metallic convenience container (such as Teflon or polyethylene).
- Maximum planned content weight is 35.20 kg. Maximum analyzed for criticality safety is 35.32 kg.
- ⁱ UO₂-Mg enriched to ~10 wt %²³⁵U is also permitted up to the mass limits specified in this table.

	Content Description	Enrichment	CSI	²³⁵ U (kg)
Broken HEU metal or alloy		≤ 20 %	0.0	0.700
		> 20%	0.0	0.500
HEU oxide		≤ 20 %	0.0	0.716
		> 20%	0.0	0.408
TRIGA fuel		20%	0.0	0.716
		70%	0.0	0.408
		≤ 20%	0.0	0.700
Research reactor fuel elements and components U_3O_8 -Al, UO_2 , or UO_2 -Mg	U-AI	> 20%	0.0	0.500
		≤ 20%	0.0	0.716
	$U_3 O_8$ -AI, UO_2 , or UO_2 -Mg	> 20%	0.0	0.408

Table 1.3a. Authorized content and fissile mass loading limits^{a, b} for air transport

^a All limits are expressed in kg ²³⁵U unless otherwise indicated.

^b Mass loadings cannot be rounded up.

1.2.3.3 Reflectors, absorbers, and moderators

The reflectors, absorbers, and moderators present in the ES-3100 package are those associated with the materials of construction. For example, the thermal insulation acts as a neutron reflector to the contents of a single package and as a neutron moderator in an array of packages. The degree of neutron moderation is a function of the hydrogen content in the Kaolite 1600 and 277-4 materials. The stainless-steel materials of the containment vessel and the drum also act as neutron reflectors to the contents of a single package but act as neutron absorbers in an array of packages. The nuclear properties of the materials of construction and of the contents are important and have been taken into account in the criticality safety evaluation (Sect. 6). In addition to the materials of construction in the ES-3100 shipping package mentioned above, the 277-4 material has been specifically added to the ES-3100 package for the purpose of enhancing the neutron absorption characteristics for safety purposes (see Sect. 6 for additional discussion of the neutron-absorbing characteristics of this material).

1.2.3.4 Shipping configurations

Authorized content convenience containers for the ES-3100 are cans constructed of stainless steel, tin-plated carbon steel, or nickel-alloy (series 200, passivated), and polyethylene and Teflon convenience bottles. Modified convenience cans are constructed by brazing two 8.75-in.-tall cans together to create a 17.5-in.-tall can or by brazing three 10-in.-tall cans together to create a 30-in-tall can. Research reactor fuel elements and fuel components may also be bundled together and protected on each end with open-ended convenience cans having an outer diameter ≤5 in. Enriched uranium oxide in the form of UO2-Mg will be packed inside glass bottles, which are placed inside sealed, inerted metal convenience cans. These convenience containers are used to hold the HEU contents for shipment in the ES-3100 package and to assure that the inside of the containment vessel does not become contaminated with HEU under NCT. Convenience containers used in the ES-3100 package must have an outer diameter less than or equal to 12.7 cm (5 in.). The height can vary up to the full internal height of the containment vessel or 78.74 cm (31 in.). Some contents require the use of can spacers (see Table 1.3). These can spacers are thin-walled stainless-steel cans filled with 277-4 material (Drawing M2E801580A026, Appendix 1.4.8). Each convenience can and spacer may be equipped with a stainless-steel band and nylon-coated wire to facilitate loading and unloading operations. Silicone rubber pads may also be used between convenience cans to dampen vibration and minimize contact between metal components. Any combination of convenience containers will be allowed in a single package, as long as the total height of the stack-up (including spacers, if required) does not exceed the inside working height of the containment vessel [78.74 cm (31 in.)]. If can spacers are required, no more than one-third of the total HEU content mass limit shown in Table 1.3 may be placed between any two spacers.

Typical configurations of authorized ES-3100 convenience containers are shown in Fig. 1.4. The shipping configurations shown in Fig. 1.4 utilize 3.00 and 4.25-in.-diameter convenience cans of various heights [such as 4.75, 4.88, 8.75, and 10 in., 17.5 in. (two 8.75-in. cans brazed together), and 30 in. (three 10-in. cans brazed together)], 4.94 in. diameter by 8.7 in. tall polyethylene bottles, and 4.69 in. diameter by 9.4 in. tall Teflon bottles. Although any combination of the convenience cans that will fit inside the internal volume of the containment vessel may be used, content forms shall not be mixed in a single package (i.e., HEU oxides may not be packed with HEU metal). Empty cans and/or

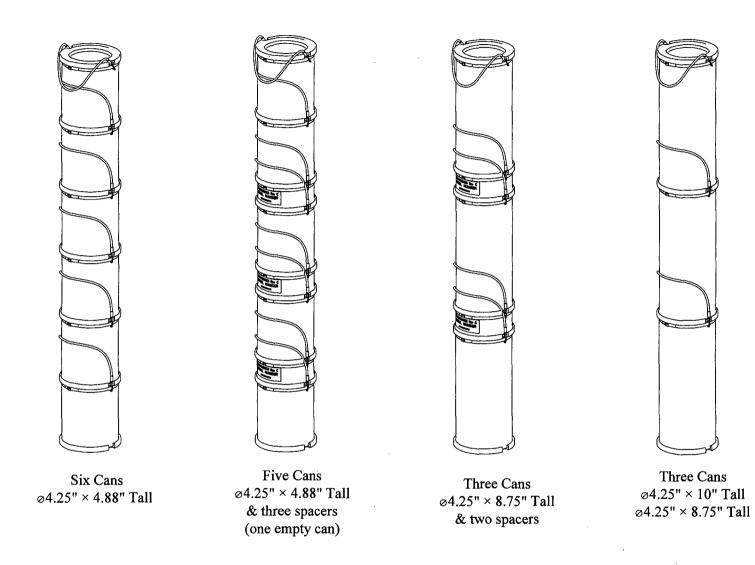


Fig. 1.4. Typical shipping configurations inside the ES-3100 containment vessel.

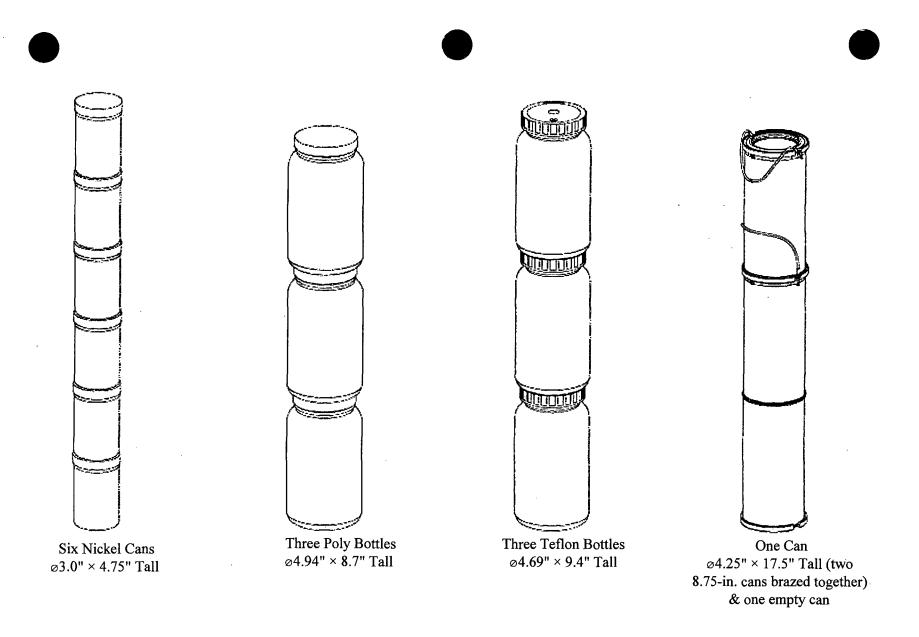


Fig. 1.4. Typical shipping configurations inside the ES-3100 containment vessel (cont.).

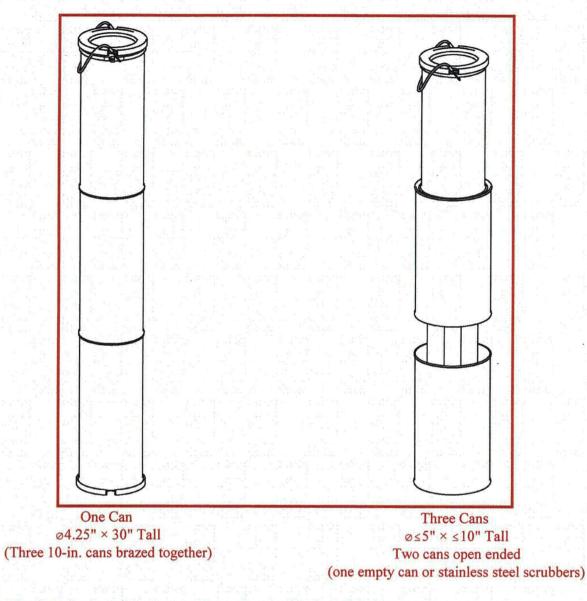


Fig. 1.4. Typical shipping configurations inside the ES-3100 containment vessel (cont.).

stainless-steel scrubbers may be used to fill the void space at the top of the containment vessel. If empty cans are shipped, a minimum 0.32-cm (0.125-in.)-diam hole must be placed through the lid to prevent over-pressurization of the can in the event of a thermal accident. In addition, these empty cans must be placed on top of the loaded cans. In configurations not requiring can spacers for criticality control, can spacers may be shipped for convenience if placed on top of loaded cans in the containment vessel. The HEU contents may be bagged or wrapped in polyethylene, and the convenience containers may also be wrapped in polyethylene to further reduce the possibility of contamination. If metal cans are used as convenience containers, the amount of polyethylene bagging and lifting slings is limited to 500 g per package. If Teflon bottles are used as convenience containers, the total amount of off-gassing material (including Teflon bottles, polyethylene bagging, and lifting slings) is limited to 1490 g per package. If polyethylene bottles, polyethylene bagging, and lifting slings) is limited to 845 g per package. If closed convenience cans with an outer diameter greater than 4.25 in. are used, the containment vessel cannot contain any materials that off-gas. In some shipping configurations, silicone rubber pads will be placed between the convenience cans to reduce vibration.

1.2.3.5 Maximum normal operating pressure

As defined in 10 CFR 71.4, the maximum normal operating pressure is the maximum gauge pressure that would develop in the containment system in one year under an ambient temperature of $38 \,^{\circ}$ C (100 $^{\circ}$ F) in still air, with appropriate insolation in the absence of venting, external cooling by an ancillary system, or operational controls during transport. Under these conditions, the maximum normal operating pressure in the ES-3100 containment vessel would be 137.92 kPa (20.004 psia). In comparison, the design internal pressure of the containment vessel is 801.17 kPa (116.2 psia). The design internal pressure is a conservatively assumed value that was assigned for the purpose of the ASME code calculations in Appendix 2.10.1.

1.2.3.6 Maximum and minimum weight

The maximum gross shipping weight for the ES-3100 package is 190.5 kg (420 lb). The proposed maximum gross shipping weight of the ES-3100 package with any proposed content is 187.81 kg (414.05 lb) [Table 2.8]. The total weight of the tested ES-3100 units ranged from 157.4 to 203.7 kg (347 to 449 lb) [Table 2.9].

The weight of HEU contents in the ES-3100 shipping package is limited to 35.2 kg (77.60 lb). This limit has been established as a bounding case for the maximum structural, thermal, and containment limit for the package. A minimum payload weight of 3.6 kg (8 lb) [including convenience cans, silicone rubber pads, can spacers, and the uranium content] has been established as the lower bounding case for the maximum structural, thermal, and containment limit for the package. This minimum content weight corresponds to the lowest simulated payload weight used during the prototype testing of the ES-3100 package. Actual mass restrictions for the various contents based on the criticality analyses are listed in Table 1.3. The maximum allowable payload weight of any configuration, including packing components (convenience cans and bottles, polyethylene bags, silicone pads, can spacers, etc.), is 40.82 kg (90 lb). ES-3100 shipping package weights are discussed in greater detail in Sect. 2 and are broken down into individual component weights in Tables 2.8 and 2.9.

The payload weight (including convenience cans, silicone rubber pads, can spacers, and the HEU mockup) used in the ES-3100 package tests ranged from a minimum of 3.6 kg (8 lb) to a maximum of 50.3 kg (111 lb).

1.2.3.7 Maximum decay heat

As shown in Sect. 3.1.2, the conservatively calculated maximum heat generation rate of the contents is approximately 0.4 W. The ES-3100 package was designed for a maximum heat load of 20 W. Thermal analyses have been performed assuming heat sources of 0.4, 20, and 30 W in the ES-3100 containment vessel (Appendix 3.6.2).

1.2.3.8 Loading restrictions

Loading restrictions based upon the results of the criticality safety calculations presented in Sect. 6.2.4 and additional limitations on packing materials outlined in Sect. 3 are as follows:

- (1) HEU fissile material to be shipped in the ES-3100 package must be placed in stainless-steel, tin-plated carbon steel or nickel alloy convenience cans, polyethylene bottles, or Teflon bottles. Enriched uranium oxide in the form of UO₂-Mg will be shipped in glass bottles inside a metal convenience can. Convenience containers used in the ES-3100 package must have an outer diameter less than or equal to 12.7 cm (5 in.). The height can vary up to the full internal height of the containment vessel or 78.74 cm (31 in.). Any closure on the convenience can is allowed.
- (2) Any combination of convenience cans is allowed in a single package, as long as the total height (including silicone rubber pads and can spacers, if required) does not exceed the inside working height of the containment vessel (approximately 31 in.).
- (3) In situations where empty convenience cans are shipped in the package, they must be placed on top of the loaded cans, and a minimum 0.32-cm (0.125-in.)-diam hole must be placed through the lid to prevent over pressurization of the can.
- (4) The concentration of uranium isotopes in the content is limited as shown in Table 1.1.
- (5) For pyrophoric considerations, HEU metal or alloy pieces must have a specific area not greater than 1 cm²/g or must not pass through a 3/8-in. mesh sieve (or 0.95 cm). Incidental small pieces that do not pass the size restriction tests, and powders, foils, turnings, and wires, may only be shipped if they are in a sealed, inerted container. Glass bottles containing enriched uranium oxide in the form of UO₂-Mg must be placed in a sealed, inerted container.
- (6) The content shall not exceed "per package" fissile material mass loading limits specified in Table 1.3 based on the CSI. Where can spacers are required for a "per package" mass loading, the quantity of fissile material located in any vacancy between or adjacent to can spacers shall not exceed one-third of the mass loading limit in Table 1.3.
- (7) The package content is defined as the HEU fissile material, the convenience cans and can spacers, and the associated packing materials (plastic bags, pads, tape, etc.) inside the ES-3100 containment vessel.
- (8) If metal cans are used as convenience containers, the amount of polyethylene bagging and lifting slings is limited to 500 g per package. If Teflon bottles are used as convenience containers, the total amount of off-gassing material (including Teflon bottles, polyethylene bagging, and lifting slings) is limited to 1490 g per package. If polyethylene bottles are used as convenience containers, the total amount of off-gassing material (including polyethylene bottles, polyethylene bagging, and lifting slings) is limited to 845 g per package. If closed convenience cans with an outer diameter greater than 4.25 in. are used, the containment vessel cannot contain any materials that off-gas. These mass

limits do not include moisture in oxide. Moisture is accounted for in criticality safety calculations (Sect. 6.1.2).

1.2.4 Operational Features

The ES-3100 package is a Type B fissile material package designed in accordance with DOT and NRC regulations. These regulations require that the package be operated without undue risk to the public, even in the event of a severe accident, and that the dose rate and nonfixed radioactive contamination on the external surface of the package conform with 49 CFR 173.441 and 173.443, respectively. These requirements are translated into the designs for the containment, shielding, and nuclear criticality safety of the contents when subjected to NCT and HAC. Designs for containment, shielding, and nuclear subcriticality safety are supported by operational procedures for loading, unloading, and refurbishing to ensure that those design features are used and maintained in a manner commensurate with their intended function. Drop tests, crush tests, puncture tests, thermal tests, and water immersion tests (Sects. 2.6 and 2.7) show that the drum assembly maintains the insulation and the containment vessel in their intended configurations when subjected to NCT and HAC.

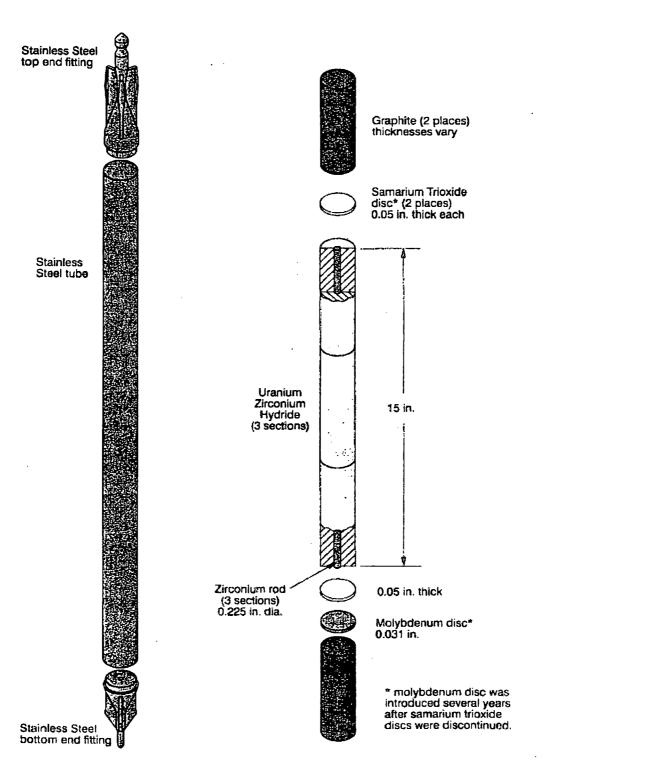
The decay heat generated by the contents (maximum of approximately 0.4 W) is negligible for a package of this size (Sect. 1.2.3.7 and Sect. 3.1.2).

Design features that provide shielding, containment, and nuclear criticality control perform these functions in a passive manner. No valves, connections, gauges, active coolants, or operationally pressurized parts are integral to the ES-3100 package.

1.3 GENERAL REQUIREMENTS FOR ALL PACKAGES

This section demonstrates compliance with 10 CFR 71.43(a) and (b), "General Standards for All Packages."

1.3.1 Minimum package size


Requirement. The smallest overall dimension of a package may not be less than 10 cm (4 in.).

Analysis. The drum's outside diameter (including the chimes or rolling rings) is 49.2 cm (19.37 in.), and the outside height including the lid is 110.49 cm (43.5 in.). The minimum outside diameter of the ES-3100 containment vessel is 13.36 cm (5.26 in.), and the overall height is 82.30 cm (32.4 in.). Therefore, the packaging meets this requirement.

1.3.2 Tamper-indicating feature

Requirement. The outside of a package must incorporate a feature, such as a seal, that is not readily breakable and that, while intact, provides evidence that the package has not been opened by unauthorized persons.

Analysis. The removable drum head is attached to the body by eight 5/8-11-UNC-2B silicon bronze nuts and 5/8-in. nominal washers. Two 0.51-cm (0.20-in.)-thick lugs with 0.953-cm (0.375-in.)-diam holes project through slots in the drum lid and provide attachment for wire-type TIDs. These TIDs consist of a stainless-steel cable with an aluminum crimp closure or equivalent. The requirement is satisfied by the TIDs, which are installed as specified in Sect. 7.1.2.2. The seal is only required when HEU is in the package. It is not required for empty shipments.

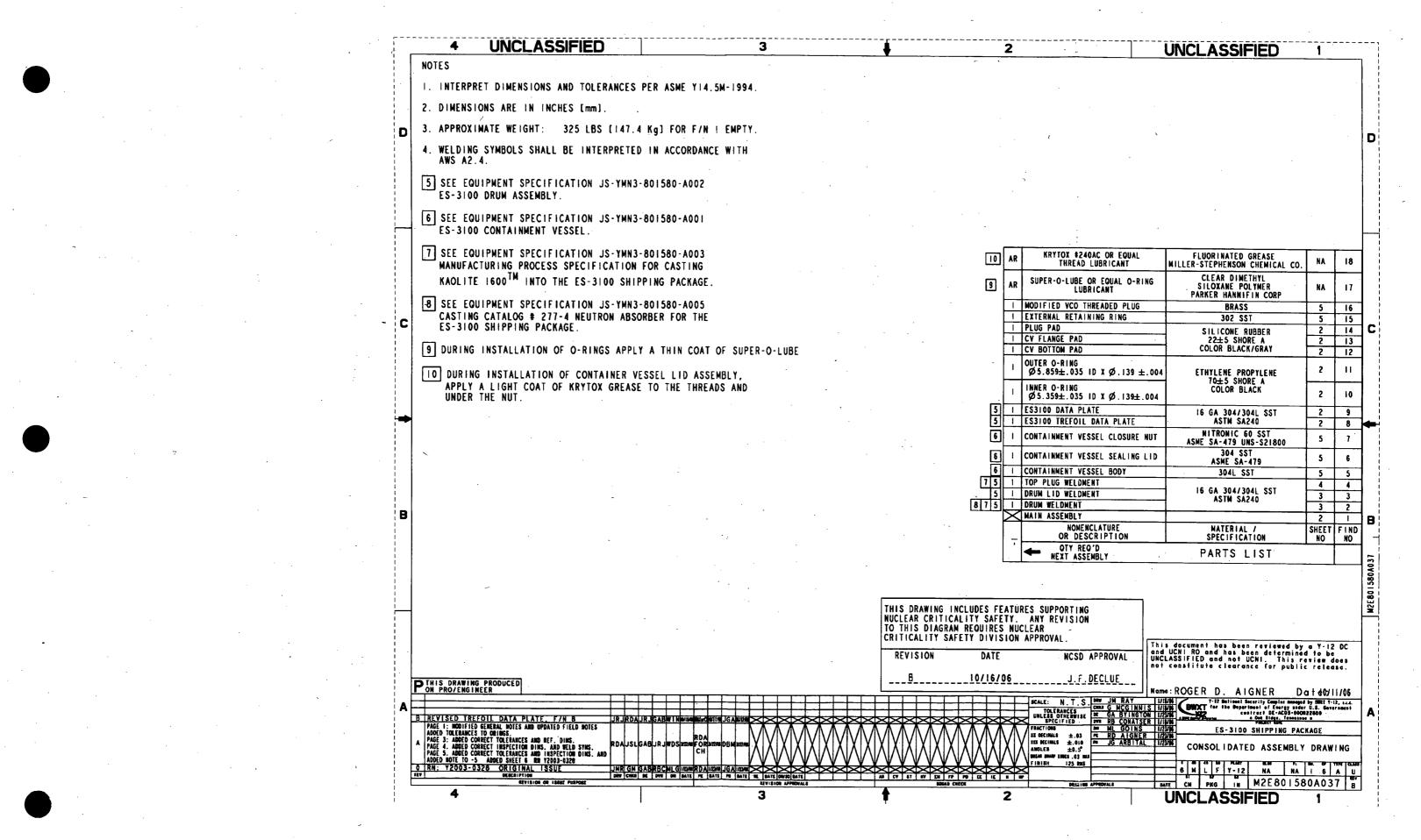
				uel Propert		1	
Uranium Content/Cladding/Type	U (wt% of fuel)	U235 (wt% of U)	Active Fuel Length (in.)	(in.)	U (grams)	U235 (grams)	Hydrogen to Zirc Ratio
STANDARD ELEMENTS					-	•	
8.5 wt% aluminum clad element, 15 inch	8.5	20	15.00	1.41	189	37	1.0
8.5 wt% stainless steel clad element	8.5	20	15.00	1.44	197	39	1.6
12 wt% stainless steel, smooth clad element .	12	20	15.00	1.44	285	56	1.6
12 wt% stainless steet, dimpled clad element	12	20	15.00	1.40	271	53	1.6
8.5 wt% stainless steel clad, High Enriched Uranium	8.5	70	15.00	1.44	194	136	1.6
20 wt% stainless steel clad element	20	20	15.00	1.44	503	99	1.6
30 wt% stainless steel clad element	30	20	15.00	1.44	825	163	1.6
45 wt% stainless steel clad element	45	20	15.00	1.44	1560	307	1.6
INSTRUMENTED ELEMENTS		J	· ·	· ·	•		- I
8.5 wt% aluminum clad element, 15 inch	8.5	20 ·	15.00	1.41	189	37	1.6
8.5 wt% instrumented, stainless steel clad element	8.5	20	15.00	1.44	197	39	1.6
12 wt% instrumented, stainless steel, smooth clad element	12	20	15.00	1.44	285		1.6
12 wt% instrumented, stainless steel, dimpled clad element	12	20	15.00	1.40	271	53	1.6
8.5 wt% instrumented stainless steel clad, High Enriched Uranium	8.5	70	15.00	1.44	194	136	1.6
20 wt% instrumented, stainless steel clad element	20	20	15.00	1.44	503	99	1.6
30 wt% instrumented, stainless steel clad element	30	20	15.00	1.44	825	163	1.6
45 wt% instrumented stainless steel clad element	45	20	15.00	1.44	1560	307	1.6
FUELED FOLLOWER CONTROL RODS	L	·	1	.			_l
8.5 wt% stainless steel clad fueled follower control rod	8.5	20	15.00	1.31	163	32	1.6
12 wt% stainless steel, smooth clad fueled follower control rod	12	20	15.00	1.31	237	47	1.6
12 wt% stainless steel, dimpled clad fueled follower control rod	12	20	15.00	1.40	257	50	1.6
12 wt% stainless steel, dimpled clad fueled follower control rod	12	20	15.00	1.40	271	53	1.6
8.5 wt% stainless steel high enriched fueled follower control rod for a cluster rod assy	8.5	70	15.00	1.31	162	113	1.6
20 wt% stainless steel clad fueled follower control rod	20	20	15.00	1.31	418	82	1.6
30 wt% stainless steet clad fueled follower control rod	30	20	15.00	1.31	685	135	1.6
45 wt% stainless steel clad fueled follower control rod	45	20	15.00	1.31	1560	307	1.6
STANDARD RODS FOR CLUSTER ASSEMBLY	· ·	· · ·	·	· · · ·	1	· · ·	· - ·
8.5 wt% stainless steel clad cluster rod	8.5	20	15.00	1.37	166	33	1.6
12 wt% stainless steel, smooth clad cluster rod	12	20	15.00	1.37	243	58	1.6
8.5 wt% stainless steel clad, High Enriched Uranium, cluster rod	8.5	70	15.00	1.37	175	122	1.6
20 wt% stainless steel clad cluster rod	20	20	15.00	1.37	427	85	1.6
30 wt% stainless steel clad cluster rod	30	20	15.00	1.37	710	141	1.6
8.5 wt% stainless steel clad, HEU, fueled follower control rod	8.5	70	15.00	1.31	160	112	1.6
45 wt% stainless steel clad fueled follower control rod	45	20	15.00	1.37	1348	267	1.6

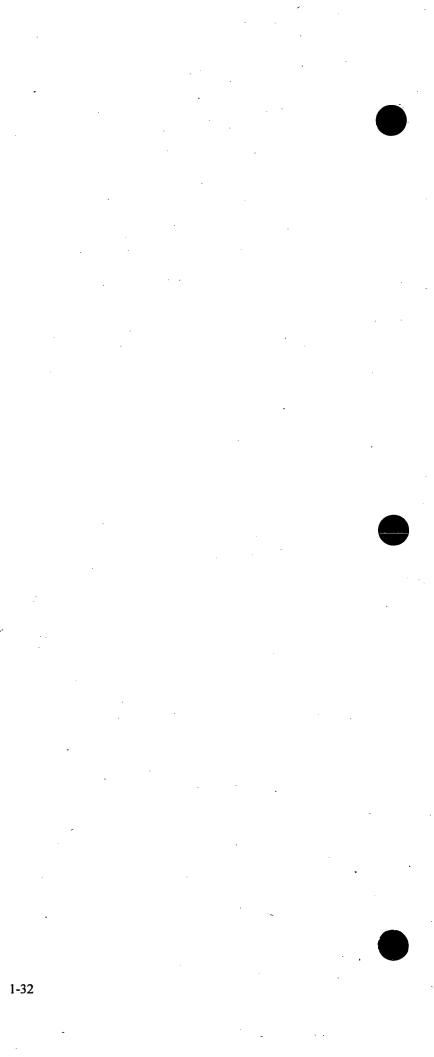
Table 1.4. TRIGA fuel specifications

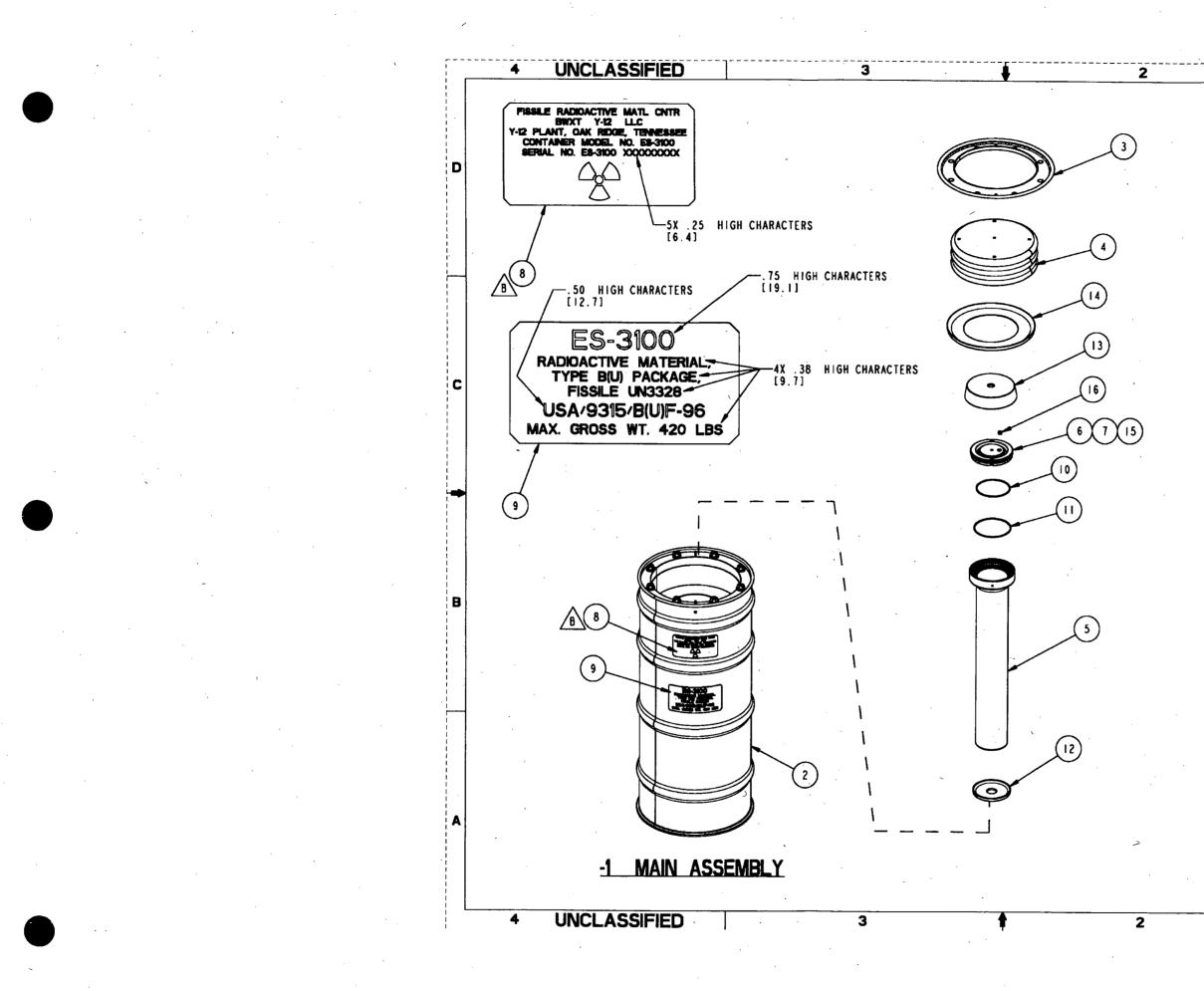
1.4 APPENDICES

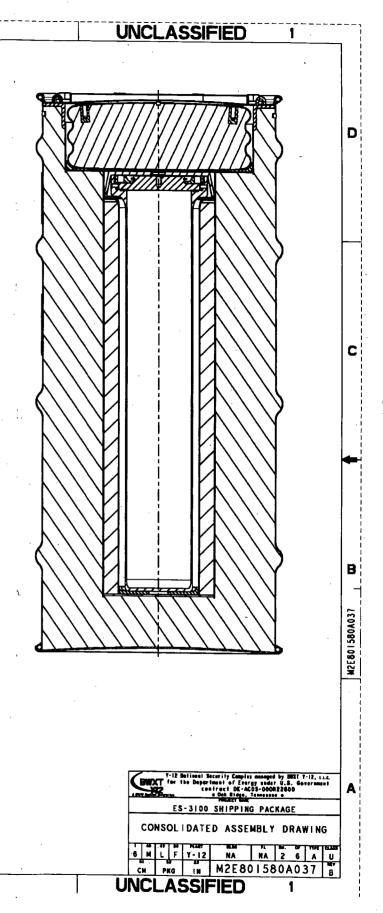
Appendix	Description
1.4.1	PACKAGE CERTIFICATION DRAWING
1.4.2	EQUIPMENT SPECIFICATION JS-YMN3-801580-A002, <i>Rev D, ES-3100 DRUM</i> ASSEMBLY
1.4.3	EQUIPMENT SPECIFICATION JS-YMN3-801580-A001, <i>Rev E, ES-3100</i> CONTAINMENT VESSEL
1.4.4	EQUIPMENT SPECIFICATION, JS-YMN3-801580-A003, <i>Rev C, MANUFACTURING</i> PROCESS SPECIFICATION FOR CASTING KAOLITE 1600™ INTO THE ES-3100 SHIPPING PACKAGE
1.4.5	EQUIPMENT SPECIFICATION, JS-YMN3-801580-A005, <i>Rev F, CASTING CATALOG NO. 277-4 NEUTRON ABSORBER FOR THE ES-3100 SHIPPING PACKAGE</i>
1.4.6	PACKAGE CATEGORY DETERMINATION
1.4.7	HEU OXIDE MATERIAL SPECIFICATION AS PROVIDED BY Y-12 HIGHLY ENRICHED URANIUM DISPOSITION PROGRAM OFFICE
1.4.8	PACKAGE ENGINEERING DRAWINGS
1.4.9	DESIGN ANALYSES AND CALCULATIONS, MIXING WEIGHTS AND ELEMENTAL COMPOSITION OF 277-4 NEUTRON POISON USED IN THE ES-3100

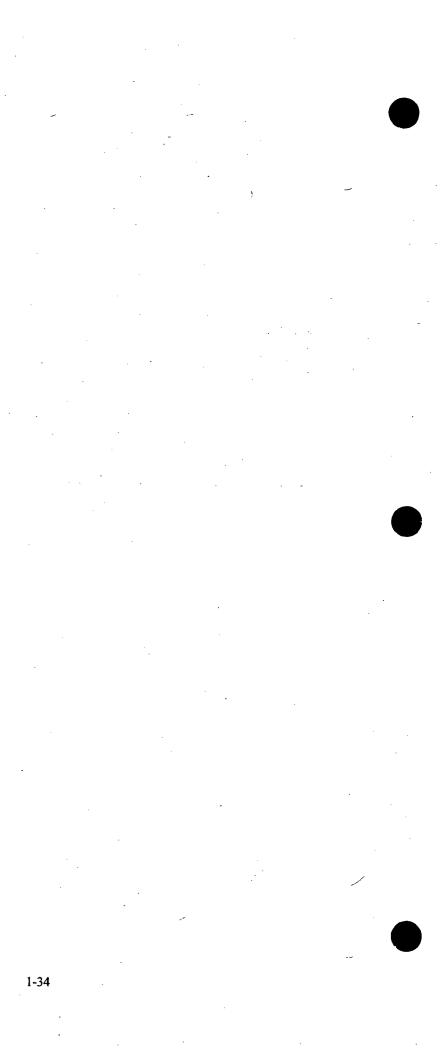
1.4.10 PYROPHORICITY OF URANIUM METAL

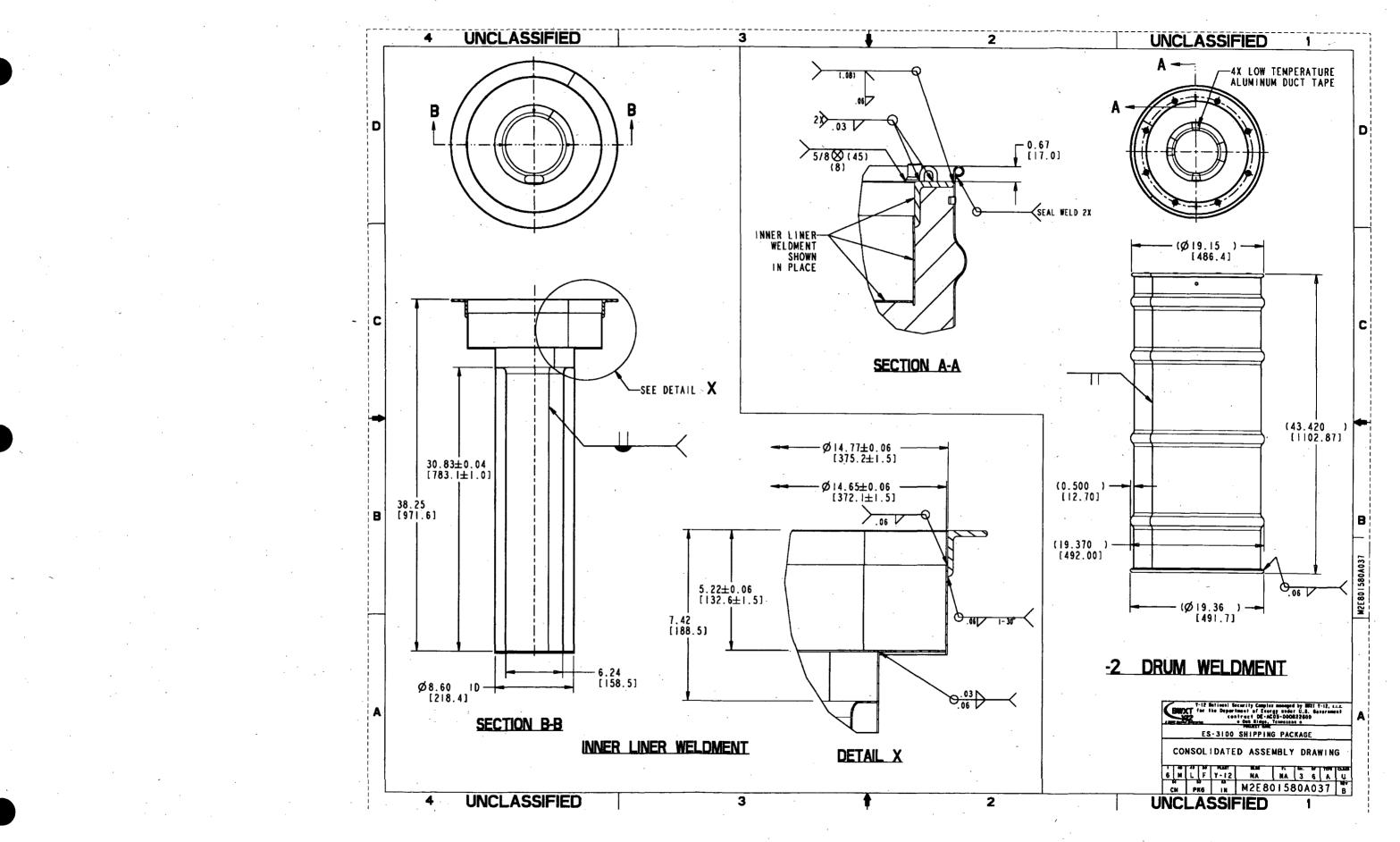

1-27

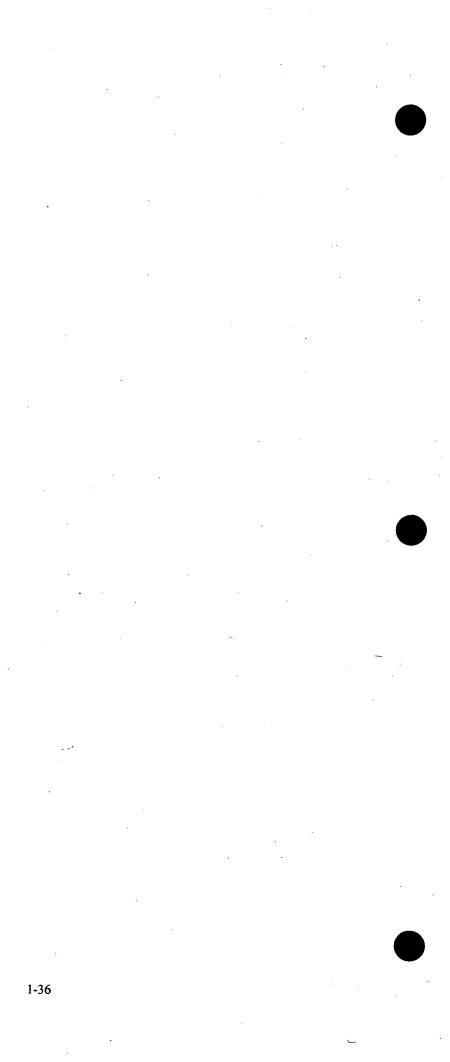

1

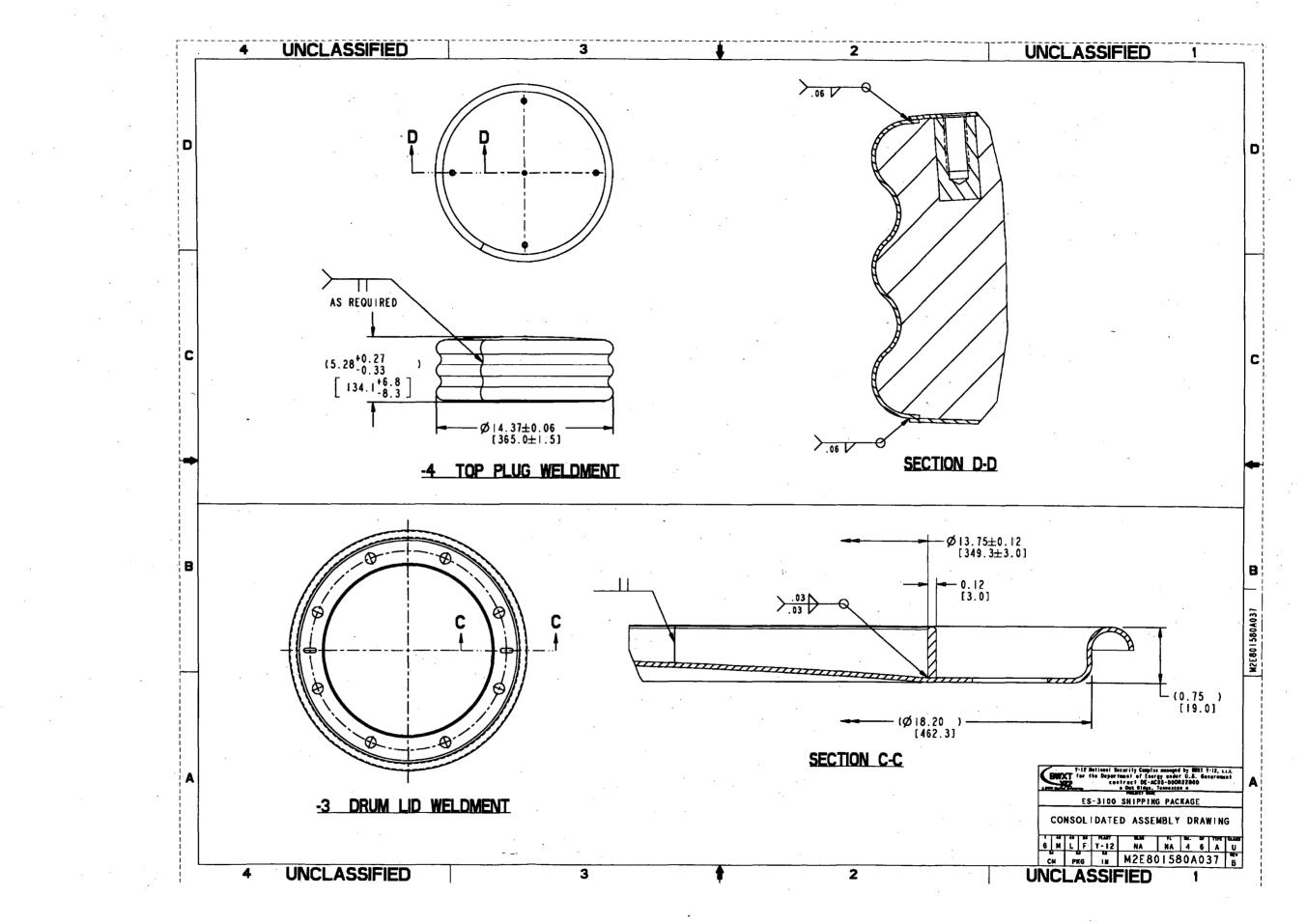

Appendix 1.4.1

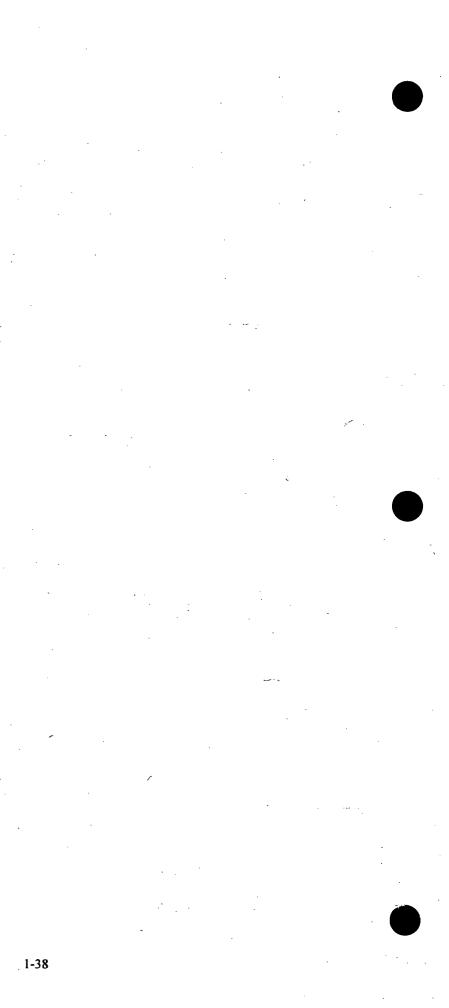

PACKAGE CERTIFICATION DRAWING

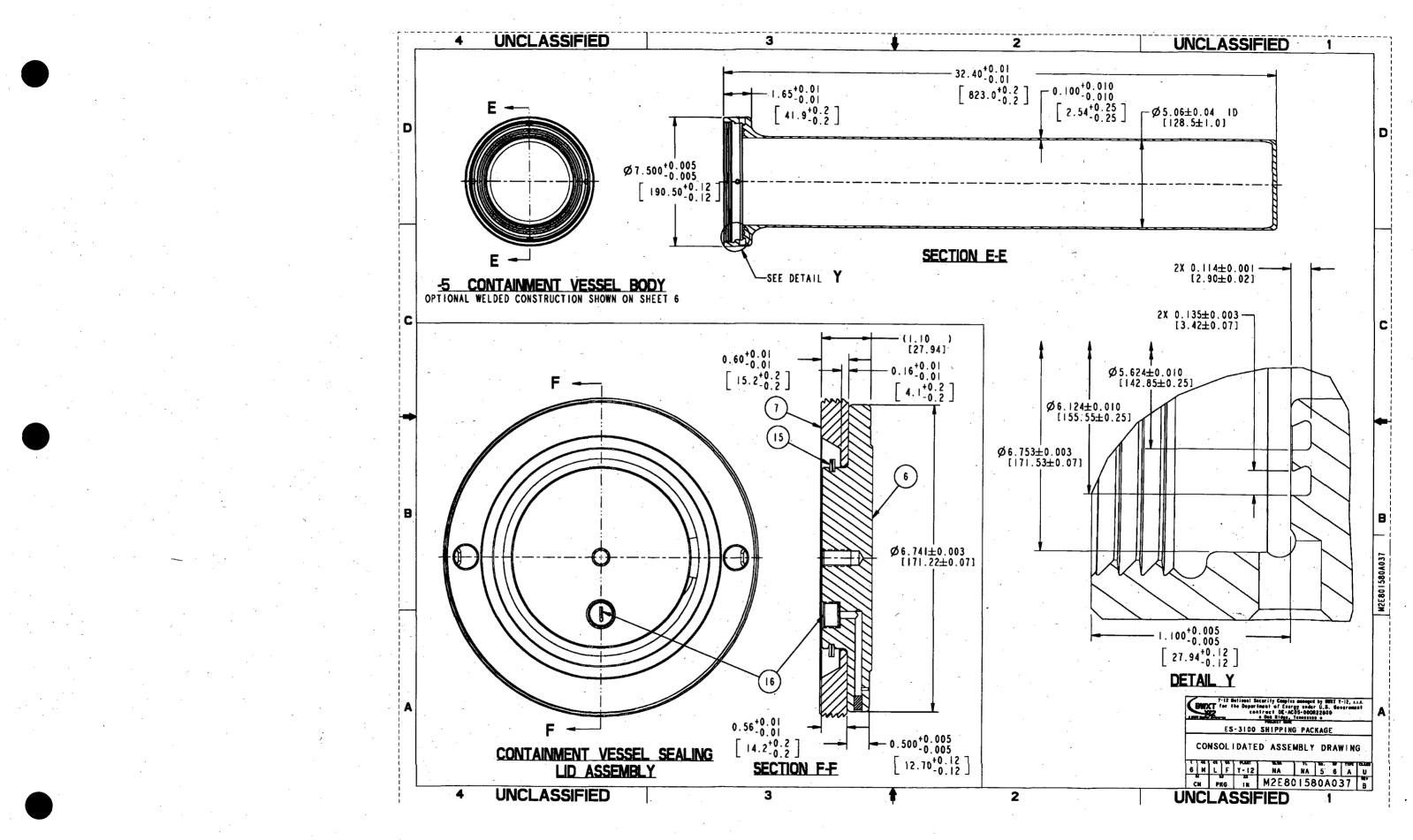

Drawing No.	Rev.	Title
M2E801580A037	В	ES-3100 Shipping Container, Consolidated Assembly Drawing
		·

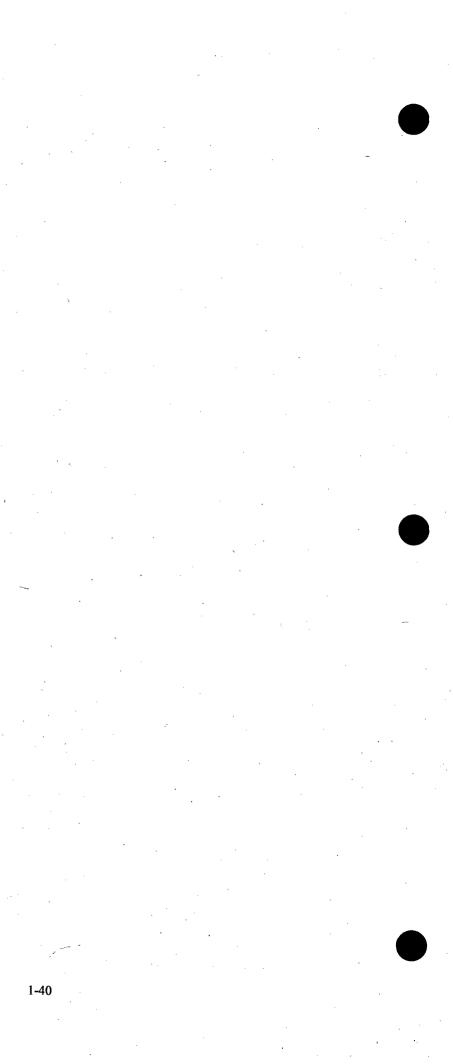


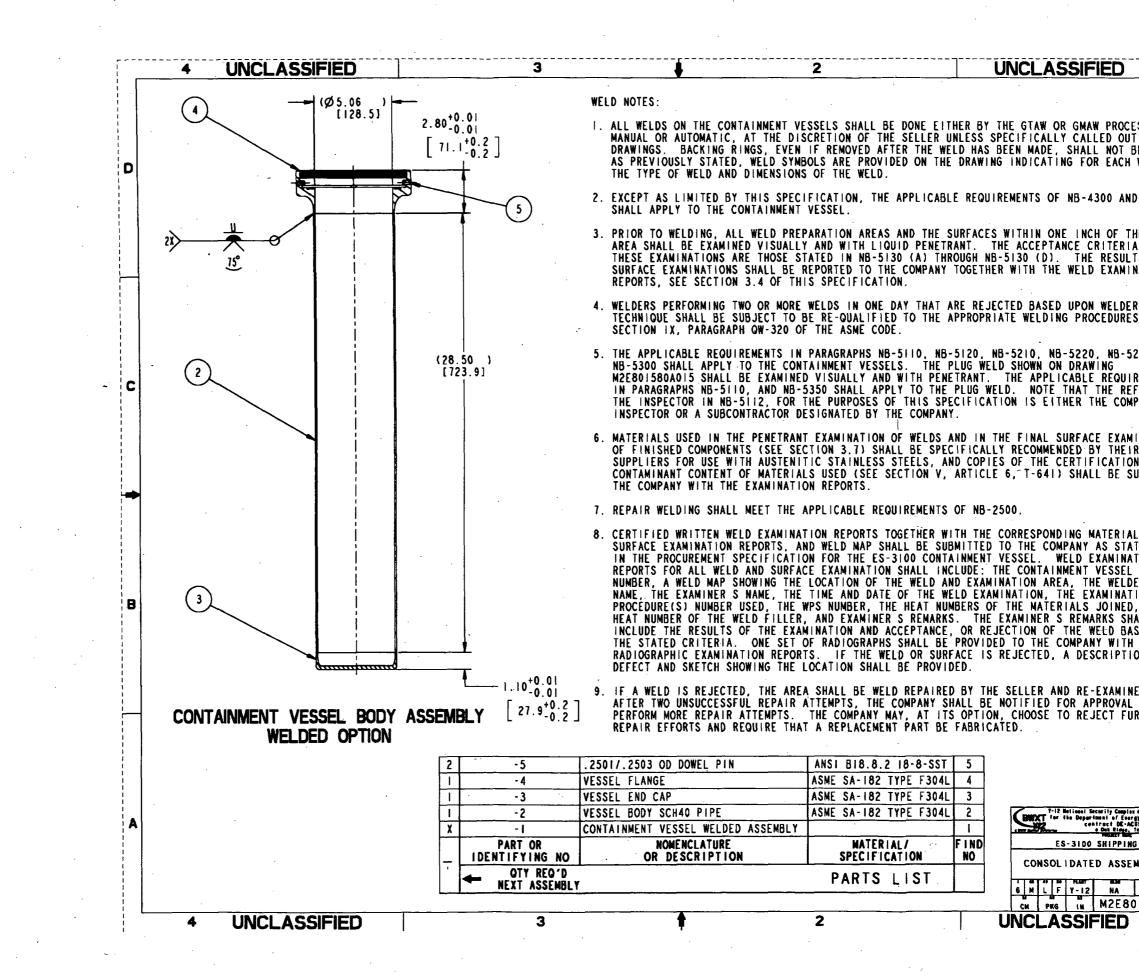


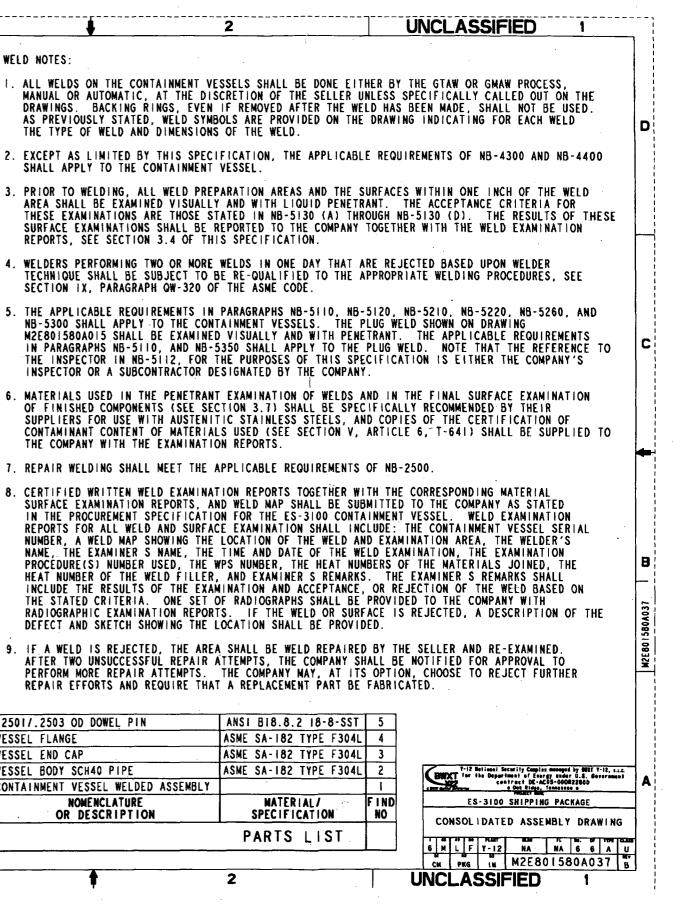


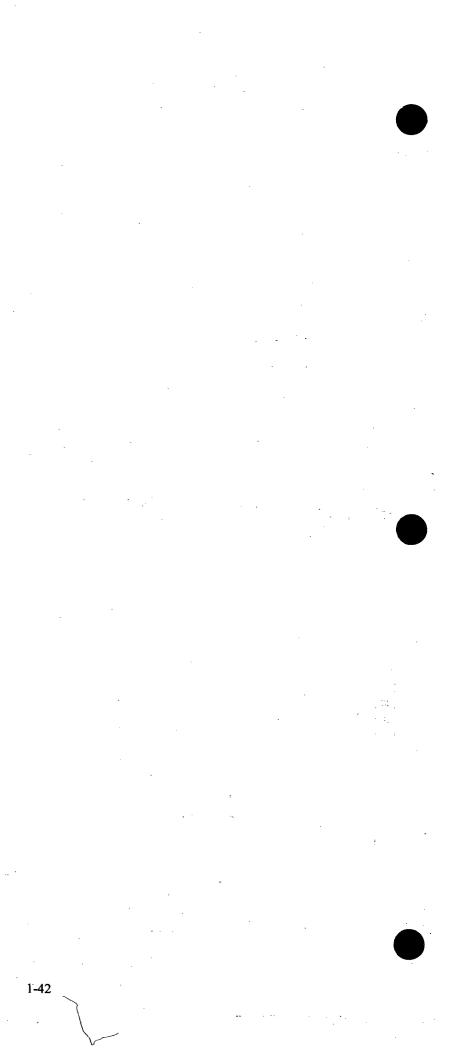



7


· · · · · ·







Appendix 1.4.2

EQUIPMENT SPECIFICATION JS-YMN3-801580-A002, ES-3100 DRUM ASSEMBLY

. .

.

. .

.

.

.

.

- 1

		1		1		
					ISSUE DATE	
			JS-YMN3-801580-A002 PAGE	D REVISION DATE	10-15-03	
EQUIPMENT SPECIFICATION		i OF ii	3/15/06			
•			PROCURED BY	INSTALLED BY	5/10/00	
API	PROVAL/REVISION P	AGE	BWXT L.L.C.	BW	XT L.L.C.	
PROJECT T	ΠĔ	- <i>.</i>	PLANT	BUILDING		
	ES-3100 Shipping Package	9	Y-12		AREA	
JOBITTLE			W.O. OR E.S.O.,	RECORD NUMBER		
	Design Definition		7RCPCA5A		03-0328	
SPECIFICAT	ES-3100 DR	UM ASSEN	IBLY	SSC IDENTIFICATION	NUMBER	
	EN	GINEERING A	ND PLANT APPROVALS	1	· · · · ·	
	SIGNATURE	DATE	SIGNATURE		DATE	
PREPARED			PROJECT ENGINEER:			
J.L. H		10-21-03	OPERATIONS MANAGER/SYSTEM OWNER:		10-29-03	
J.C. V		10-29-03				
DESIGN VER		10 20 00	······			
Roger	Aigner	10-21-03	<u> </u>			
	REVISIO	NS/ENGINEER	ING AND PLANT APPROVALS			
REV. NO.		D	ESCRIPTION OF REVISION			
Α	Issue Approved					
в	Change the title of drawing M2E-801580-A001 from Confinement Boundary Assembly to Drum Assembly. Change the title this specification from ES-3100 Confinement Boundary Drums to ES-3100 Drum Assembly. Deleted reference to drawing M2E-801580-A009, Pad Details. Added the reference to drawings M2E-801580-A010, Data Plates and M2E-801580-A031, Main Assembly. Changed the wording in the first paragraph of Section 3.3					
С	Revised the third paragraph of Section	on 3.0 in acco	rdance with REDC PE-06-058.			
D	Section 3.0, paragraph 3, the phrase "certifying authority's written approval" has been revised to "regulatory authority's written approval."					
		1				
	SIGNATURE	DATE	SIGNATURE		DATE	

SIGNATURE	DATE	SIGNATURE	DAIE
PREPARED BY		PROJECT ENGINEER	
G. A Byington /s/	3/14/06	J. Arbital /s/	3/14/06
DISCIPLINE MANAGER		OPERATIONS MANAGER/SYSTEM OWNER:	
C. M. Amonett /s/	3/14/06		
DESIGN VERIFICATION			
Roger D. Aigner /s/	3/14/06		

This document has been has been reviewed by a Y-12 ADC and UCNI RO and has been determined to be UNCLASSIFIED and not UCNI. This review does not constitute clearance for public release.

Name: Roger D. Aigner /s/ Date: 3/14/06

EQUIPMENT SPECIFICATION

ES-3100 DRUM ASSEMBLY

SPECIFICATION NO.	REV.
JS-YMN3-801580-A002	D
ISSUE DATE	REVISION DATE
10-15-03	3/15/06
RANT	PAGE
Y-12	ii OF ii

TABLE OF CONTENTS	PAGE
1.0 SCOPE	1
2.0 APPLICABLE CODES AND STANDARDS	1
3.0 DETAILED REQUIREMENTS	2
3.1 Materials	3
3.2 Welding	3
3.3 Weld Examination	4
3.4 Cleaning and Passivation	5
3.5 Dimensional Inspection Reports	. 5

LIST OF COMPANY DRAWINGS

Drawing Number	Title
M2E-801580-A001	Drum Assembly
M2E-801580-A002	Body Weldment
M2E-801580-A003	Inner Liner Weldment
M2E-801580-A004	Double Open Head Reinforced Drum
M2E-801580-A005	Misc. Details
M2E-801580-A006	Drum Lid Weldment
M2E-801580-A007	Drum Lid
M2E-801580-A008	Top Plug Weldment
M2E-801580-A010	Data Plates
M2E-801580-A031	Main Assembly

EQUIPMENT SPECIFICATION

ES-3100 DRUM ASSEMBLY

SPECIFICATION NO.	REV.
JS-YMN3-801580-A002	D
ISSUE DATE	REVISION DATE
10-15-03	3/15/06
PLANT	PAGE
Y-12	1 OF 5

1.0 SCOPE

This specification, the Procurement Specification for the ES-3100 Drum Assembly, specifications JS-YMN3-801580-A003 and JS-YMN3-801580-A005, the Company's drawings, and the referenced codes and standards in section 2.0 of this specification state the requirements for the procurement of materials and components, fabrication, inspection, examination, assembly, and testing of the Drum Assembly for the ES-3100 shipping package. If conflicting requirements appear between the Company's documents, and the standards listed in section 2.0 of this document, the Seller shall immediately notify the Company, so that these can be resolved. The Seller shall provide the number of completed assemblies specified in the purchase order.

This specification describes the applicable procedures to be followed in the fabrication, welding, examination, inspection, quality assurance, and documentation requirements for a Drum Assembly used in a Type B nuclear shipping package.

The Drum Assembly shall be manufactured in accordance with those paragraphs of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section VIII, Division 1 that are specified in this document. The Drum Assemblies are not pressure vessels and are not to be hydrostatically tested, nor are they to be stamped. If the Seller does not have certificate of authorization from the ASME to apply the U stamp, the Seller shall be familiar with, and capable of meeting those requirements in Section VIII, Division 1 of the ASME Boiler and Pressure Vessel Code that are referenced in this specification.

Company specification JS-YMN3-801580-A003 gives requirements for casting Kaolite, and JS-YMN3-801580-A005 gives requirements for casting Catalog No. 277-4 in the drum as shown on the Company's drawings.

2.0 APPLICABLE CODES AND STANDARDS

The Drum Assembly shall be fabricated, inspected, and tested according to the design drawings, and the portions of the codes, standards, and regulations to the extent described herein.

- American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section VIII, Division 1, 2001 Edition with 2002 and 2003 addenda
- American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section II, Parts A and C, 2001 Edition and 2002 and 2003 addenda

EQUIPMENT SPECIFICATION (CONT.)

- American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section V, 2001 Edition and 2002 and 2003 addenda
- American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section IX, 2001 Edition and 2002 and 2003 addenda
- American Society For Nondestructive Testing, No. SNT-TC-1A-1992, Recommended Practice for Nondestructive Testing Personnel Qualification and Certification, Dec 1992
- Military Standard, MS27683, Drum, Metal-Shipping and Storage 16 to 80 Gallons
- American Society For Testing Materials, ASTM A 380-99^{e1}, Standard Practice for Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment and Systems.

All references to the ASME Code in this document are to the ASME Boiler and Pressure Vessel Code, the 2001 Edition with the 2002 and the 2003 addenda.

3.0 DETAILED REQUIREMENTS

Detailed dimensional requirements and the materials of construction are called out on the Company's drawings. Additional requirements for materials are given in section 3.1 of this specification. The Seller shall be responsible for determining stock sizes so that the finished machined components meet the dimensions, tolerances and surface features called out on the attached drawings.

Weld symbols are provided on the Company's drawings indicating for each weld the type of weld and dimensions of weld. Additional welding requirements are stated in section 3.2 of this specification

Any material substitution or any other deviation from the requirements shown on the Company's drawings, or stated in the Company's document is not permitted without the Seller submitting a written request for waiver or deviation, Company's written approval, and regulatory authority's written approval (see the Procurement Specification for the ES-3100 Drum Assembly).

The assembled Drum Assembly shall be marked according to the Company's drawings. The Company will assign permanent serial numbers for each Drum Assembly. Drum Assembly's records may be maintained based upon a temporary serial number assigned by the Seller. The temporary serial number for the Drum Assembly shall be cross-referenced to the Drum Assembly's permanent serial number.

The following additional requirements apply as follows:

3.1 Materials

Except for the weld studs, documented Certified Material Test Reports (CMTR's) shall be provided to the Company for all materials used in weldments for the fabrication of the Drum Assembly, including weld filler metal. The CMTR's shall be traceable to heat numbers and shall demonstrate compliance with the SA or SFA material specifications called out. For all other the materials documented Certificates of Compliance shall be provided to the Company certifying that the materials provided comply the requirements stated on the Company's drawings and specifications. See the Procurement Specification for the ES-3100 Drum Assembly for specific documentation requirements.

The markings on the weldment materials shall not be removed until after all weld examination is complete. Note that the heat numbers of base metals and weld filler are required on all weld examination reports (see section 3.3 of this specification).

The weld filler metal used in the fabrication of the Drum Assemblies shall be procured to comply with the SFA specifications of Section II, Part C of the ASME Code that are stated in the Seller's welding procedure specifications. Weld filler metal shall be procured traceable to heat numbers, and Certified Material Test Reports shall be furnished to the Company for each heat of weld wire filler. The control of weld filler by the Seller shall permit a weld examiner to be able to determine the heat number of the weld filler used in any weld on the Drum Assembly.

Prior written approval of the Company shall be obtained for any weld repair on materials, and the weld repair areas shall be noted in a sketch supplied with the CMTR for the material that was weld repaired. Note that depending on the specific defect in a specific material, the Company may or may not approve the weld repair, even if it is permitted by the material specification.

3.2 Welding

All welding shall be done in accordance with welding procedure specifications that are written and performance qualified in accordance with the ASME Code, Section IX. All welders shall be performance qualified to weld using these procedures, and their qualifications documented in accordance with the ASME Code, Section IX. The welding fabrication requirements stated in the ASME Code, Section VIII, Division 1, paragraphs UW-26 through UW-48 shall be met. The Inspector referenced in these paragraphs shall be an individual or individuals that are employed by the Company or subcontractors to the Company.

All butt welds in rolled sheet, pipe and angle joints shall be full penetration butt welds. With the exception of the seam welds in the drum body, all welds shall be done by the GTAW, GMAW, PAW or a Capacitive Discharge (CD) stud welding process.

Welders performing two or more welds in one day that are rejected shall be subject to be requalified to the appropriate welding procedures, see Section IX, and paragraph QW-320 of the ASME Code.

3.3 Weld Examination

A qualified weld examiner using a written weld examination procedure shall visually examine all designated welds. Weld examiners shall be qualified to perform visual weld inspection in accordance with their employer's written practice, which must be in accordance with either SNT-TC-1A (2001 Edition), "Personnel Qualification and Certification in Nondestructive Testing;" or ANSI/ASNT CP-189 (2001 Edition), "ASNT Standard for Qualification and Certification of Nondestructive Testing Personnel;" published by the American Society for Nondestructive Testing. The weld examination procedure shall meet the requirements of the ASME Code, Section V. The weld examination procedures, the weld examiners qualifications, and the weld examination reports shall be submitted to the Company.

Written weld examination reports for all weld examination shall include: the Drum Assembly serial number, a weld map showing the location of the weld, the welder's name, the examiner's name, the time and date of the weld examination, the examination procedure number used, the WPS number, the heat numbers of the materials joined, the heat number of the weld filler, and the examiner's remarks. The examiner's remarks shall include the results of the examination, and acceptance or rejection of the weld based on the stated criteria and include a description and sketch showing the location of any defects found. Weld examination reports shall be submitted to the Company as stated in the Procurement Specification for the ES-3100 Drum Assembly.

The acceptance criteria for joint fit-up and alignment, and for visual examination of welds are given in the ASME Code, Section VIII, Division 1, paragraphs UW-31 through UW-36. In addition, any visible defects such as lack of fusion, lack of penetration, linear or crack like defects, and visible porosity, shall be cause for rejection.

If a weld is rejected, the area may be weld repaired by the Seller and re-examined. After two unsuccessful repair attempts, the Company shall be notified for approval to perform more repair attempts. The Company may, at its option, choose to reject further repair efforts and require that a replacement part be fabricated.

If penetrant examination of welds or materials is performed the materials used in the examination shall be specifically recommended by their suppliers for use with austenitic stainless steels, and copies of the certification of contaminant content of materials used (see Section V, Article 6, T-641) shall be supplied to the Company with the examination reports.

3.4 Cleaning and Passivation

Cleaning procedures for the stainless steel, including weld areas, shall be submitted to the Company for approval prior to the start of fabrication, see the Procurement Specification for the ES-3100 Drum Assembly. Only non-chloride bearing chemicals shall be used for cleaning (such as trisodium phosphate detergent or acetone). Water used in cleaning shall have a maximum chlorine content of 0.5 parts per million.

Finished components awaiting assembly and assemblies shall be free of dirt, debris, foreign objects, cutting fluids, metal chips, grinding residue, and other foreign substances. The Seller shall clean, cover, and protect parts and subassemblies from becoming dirty while in storage, and to the extent practical, in the shop environment while in work.

After final machining and examination of all welds except the attachment welds for the drum bottom and the closure weld on the top plug, and prior to filling with Kaolite and Catalog No. 277-4 (see JS-YMN3-801580-A003 and JS-YMN3-801580-A005), clean and passivate all stainless steel surfaces of the Drum Assembly in accordance with ASTM A 380. After the closure weld on the top plug weldment and the attachment weld on the drum bottom are examined, clean and locally passivate the weld areas and heat affected zone areas.

3.5 Dimensional Inspection Reports

Straightening, flattening, and forming by mechanical or thermal means of some features and components after welding may be required to ensure proper assembly. The surfaces of areas of the weldment that have been worked shall be visually examined to ensure that no cracks are present or that the weldment has been degraded. Adjacent welds to these areas shall also be visually examined. The acceptance criteria are that no cracks are found. The areas worked and the visual inspections shall be noted on the dimensional inspection report. This work and examination shall be performed prior to the installation of Kaolite or Catalog No. 277-4.

After all testing, inspection and final machining, the Drum Assemblies shall be dimensionally inspected. The dimensions, and features such as flatness, runout, etc, to be inspected are indicated on the Company's drawings. A written inspection report shall be prepared, and submitted to the Company as stated in the Procurement Specification for the ES-3100 Drum Assembly.

.

.

1-52

Appendix 1.4.3

EQUIPMENT SPECIFICATION JS-YMN3-801580-A001, ES-3100 CONTAINMENT VESSEL

			SPECIFICATION NO.	REV. 15	SUEDATE
EQUIPMENT SPECIFICATION			JS-YMN3-801580-A001	E	10-15-03
			PAGE	REVISION DATE	
AF	PROVAL/REVISION	PAGE		INSTALLED BY	15-06
					TLLC
PROJECT TIT	Le contraction de la contracti		BWXT L.L.C.		T L.L.C.
	ES-3100 Shipping Package	9	Y-12		REA
JOB TITLE	Production Design Definitio	n	W.O. OR E&O. RECORD NUMBER 7RCPCA5A Y2003-03		3-0328
SPECIFICATIO	ON FOR			SSC IDENTIFICATION N	JMBER
	ES-3100 CONTA		ESSELS	`	······································
	SIGNATURE	DATE	SIGNATURE		DATE
PREPARED B			PROJECT ENGINEER:		
_ <u>J.L. H</u>		10-21-03	M.R. Feldman		10-29-03
DISCIPLINE N			OPERATIONS MANAGER/SYSTEM OWNER:		
J.C. V		10-29-03		ر 	
Roger	Aigner	10-21-03			
_	REVISION	S/ENGINEERI	NG AND PLANT APPROVALS		
REV. NO.		D	ESCRIPTION OF REVISION		
Α	Issued Approved				
В	Included the requirements for a Co top flange and a cylindrical shell as	ntainment Ve shown on the	ssel that was fabricated by welding revised drawing, M2E801580A012	a forged botto 2, Rev B.	om, a forged
С	In all locations removed the referen- Modified the Weld Repair reject and Section 3.9, first, third, and fourth p added new Section 3.6 Welding Do	re-qualification in the second s	on requirements in Section 3.3 in that anged the units from ref-cm ³ /sec to	ne fourth parag	graph. In
D	Added two paragraphs to the end o 05-046-A. Added a sentence to the 06-059.				
E	Section 3.0, paragraph 3, the phras written approval, and regulatory aut			vised to "the C	ompany's
PREPARED 6	SIGNATURE	DATE	SIGNATURE PROJECT ENGINEER		DATE
	Byington /s/	03/15/06			03/15/06
DISCIPLINE N		001000	OPERATIONS MANAGER/SYSTEM OWNER:		001000
C. M. A	Amonett /s/	03/15/06			
Roger	D. Aigner <i>Isl</i>	03/15/06			

This document has been has been reviewed by a Y-12 ADC and UCNI RO and has been determined to be UNCLASSIFIED and not UCNI. This review does not constitute clearance for public release.

Name: Roger D. Aigner /s/ Date: 03/15/06

EQUIPMENT SPECIFICATION

ES-3100 Containment Vessel

EPECIFICATION NO.	REV.
JS-YMN3-801580-A001	E
ISBUE DATE	REVISION DATE
10-15-03	03-15-06
PLANT	PAGE
Y-12	ii OF ii

TABLE OF C	CONTENTS	PAGE
1.0 SCOPE		1
2.0 APPLICA	BLE CODES AND STANDARDS	1
3.0 DETAILE	ED REQUIREMENTS	2
3.1	Materials and Material Examinations	3
3.2	Forming, Fitting and Alignment	5
3.3	Welding and Weld Repair	5
3.4	Weld Examination	6
3.5	NDE Examiner Qualifications	7
3.6	Welding Documentation Submittals	7
3.7	Hydrostatic Testing	8
3.8	Final Examination of Finished Surfaces	8
3.9	Leak Testing	9
3.10	Cleaning, Passivation, and Bead Blasting	10
3.11	Dimensional Inspection Reports	10

LIST OF COMPANY DRAWINGS

_Drawing Number	Title
M2E-801580-A011	Containment Vessel Assembly
M2E-801580-A012	Containment Vessel Body Assembly
M2E-801580-A013	Containment Vessel O-ring Details
M2E-801580-A014	Containment Vessel Lid Assembly
M2E-801580-A015	Containment Vessel Sealing Lid
M2E-801580-A016	Containment Vessel Closure Nut
M2E-801580-A021	Containment Vessel Body Test Flange Assembly
M2E-801580-A022	Containment Vessel Lid Test Flange Assembly
M2E-801580-A023	Containment Vessel Leak Test Assemblies

EQUIPMENT SPECIFICATION

ES-3100 Containment Vessel

SPECIFICATION NO.	REV.
JS-YMN3-801580-A001	E
ISSUE DATE	REVISION DATE
10-15-04	03-15-06
PLANT	PAGE
Y-12	1 OF 10

1.0 SCOPE

This specification, the Procurement Specification for the ES-3100 Containment Vessel, OO-PP-986, Procurement Specification For 70A Durometer Preformed Packing (O-rings), the Company's drawings, and the referenced codes and standards in section 2.0 of this specification state the requirements for the procurement of materials and components, fabrication, inspection, examination, assembly, and testing of the Containment Vessels for the ES-3100 shipping package. If conflicting requirements appear between the Company's drawings and specifications, the Seller shall immediately notify the Company, so that these can be resolved. The Seller shall provide the number of completed assemblies specified in the purchase order.

The Containment Vessel will be manufactured in accordance with the applicable requirements stated in the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NB for Class 1 Components as described on the Company's drawings and in this specification. If the Seller does not have certificate of authorization from the ASME to apply the N stamp, the Seller shall be familiar with, and capable of meeting those requirements in Section III, Division 1, Subsections NB and NCA of the ASME Boiler and Pressure Vessel Code that are referenced in this specification. The reference to the Inspector in any of the ASME Codes shall in this particular case be that person designated by the Company.

2.0 APPLICABLE CODES AND STANDARDS

The Containment Vessel shall be fabricated, inspected, and tested according to the design drawings and the following codes, standards, and regulations as described in this document.

- American National Standards Institute, ANSI N14.5-1997, American National Standard for Radioactive Materials – Leakage Tests on Packages for Shipment
- American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section III, Division 1 - Subsections NB and NCA, Class 1 Components, 2001 Edition and 2002 and 2003 addenda.
- American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section II, Parts A and C, 2001 Edition and 2002 and 2003 addenda.
- American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section V, 2001 Edition and 2002 and 2003 addenda.

- American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section IX, 2001 Edition and 2002 and 2003 addenda.
- American Society For Nondestructive Testing, No. SNT-TC-1A-1992, Recommended Practice for Nondestructive Testing Personnel Qualification and Certification, Dec 1992.
- American Society For Testing Materials, ASTM A 380-99^{c1}, Standard Practice for Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment and Systems.
- Society for Protective Coatings, SSPC SP 5/NACE No. 1, White Metal Blast Cleaning

3.0 DETAILED REQUIREMENTS

Detailed dimensional requirements and the materials of construction are called out on the Company's drawings. Additional requirements for materials are given in section 3.1 of this specification. The Seller shall be responsible for determining stock sizes so that the finished machined components meet the dimensions, tolerances and surface features called out on the attached drawings.

Weld symbols are provided on the Company's drawings indicating the type of weld and dimensions for each weld. Additional welding and repair welding requirements are stated in sections 3.1 and 3.3 of this specification.

Any material substitution or other deviation from the requirements shown on the Company's drawings or stated in the Company's specifications is not permitted without the Seller submitting a written request for waiver or deviation, and Company's written approval, and regulatory authority's written approval (see the Procurement Specification for the ES-3100 Containment Vessel).

The term ASME Code in this specification refers to the ASME Boiler and Pressure Vessel Code. A paragraph referenced as NB-XXXX or NCA-XXXX, where XXXX is a specific paragraph number, is that paragraph in Section III, Subsection NB or Subsection NCA, respectively, of the ASME Code. If a given paragraph is referenced as a requirement, all the paragraphs under the stated paragraph are also to be considered as requirements. For example, if NB-2430 is referenced as a requirement, not only do the applicable requirements of NB-2430 apply, but also those of NB-2431, NB-2431.1, NB-2431.1(a), NB-2432, etc. apply. Note that the Company shall act as the Authorized Inspector, and that the Inspector referenced in the Code shall be a representative of the Company.

The assembled Containment Vessels shall be marked according to the Company's drawings. Permanent serial numbers for each Containment Vessel shall be assigned by the Company. Containment Vessel records may be maintained based upon a temporary serial number assigned by the Seller. The temporary serial number for the Containment Vessel shall be cross referenced to the Containment Vessel's permanent serial number.

The following additional requirements apply as follows:

3.1 Materials and Material Examinations

The containment vessel body (drawing M2E-801580-A012), the sealing lid, (drawing M2E-801580-A015), and the closure nut (drawing M2E-801580-A016), shall be considered pressure retaining materials as defined in paragraph NB-2110, and meet the applicable requirements of NB-2120. Documented Certified Material Test Reports (CMTR's) shall be provided to the Company for the materials used to fabricate these components in accordance with NCA-3860. The suppliers of these materials shall meet the requirements of NCA-3800. Such parts shall be traceable to each containment vessel by means of a serial number assigned by the Company. The Seller shall maintain control of materials to ensure this traceability. Other metallic materials, and the O-ring seals shall be supplied with Certificate of Compliances in accordance with NCA-3862(g) and (h).

Procured materials shall be examined in accordance with the applicable paragraphs of NB-2500, and shall meet the stated acceptance criteria. The results of these examinations shall be included with the CMTR's provided to the Company. Prior written approval of the Company shall be obtained for any weld repair on materials, and the weld repair areas shall be both surface and volumetrically examined. The repair area shall be noted in a sketch supplied with the CMTR for the material that was weld repaired and the documented results of the weld examination shall be provided to the Company. Note that depending on the specific defect in a specific material, the Company may or may not approve the weld repair, even if it is permitted by the material specification or by paragraph NB-2500.

The weld filler metal used in the fabrication and repair welding as permitted, of the Containment Vessels shall meet the applicable requirements of NB-2400. It shall be procured to comply with the SFA specifications of Section II, Part C of the ASME Code that is stated in the Seller's welding procedure specifications. Weld metal filler shall be procured traceable to heat numbers, and Certified Material Test Reports shall be furnished to the Company for each heat of weld wire filler used. The results of the delta ferrite determination shall be included in the CMTR for the weld filler metal (see NB-2433). The control of weld filler by the Seller shall permit a weld examiner to be able to determine the heat number of the weld filler used in any weld on the Containment Vessel.

The Seller shall provide the Company with certified material test reports, certified material examination reports and certificates of compliance for the materials stated above as required by the Procurement Specification for the ES-3100 Containment Vessel.

There are two containment vessel assemblies shown on drawing M2E801580A012, part number M2E801580A012-1, and M2E801580A012-4. The containment vessel assembly(s) to be fabricated will be specified in the Company's purchase order. Note that part M2E801580A012-4 is fabricated by welding a forged bottom, and forged top flange to a cylindrical shell machined from seamless pipe as shown on the drawing.

EXEMPT FROM 10-155

The formed containment vessel body, part number M2E801580A012-1, shall be formed from a single forged billet or bar by any process that meets the requirements stated in this specification, and shown on the Company's drawings. Such processes may include forging, flow forming, metal spinning. Special requirements for this part are given as follows.

Repair welds may be permitted depending on the nature of the defect to be weld repaired, and after receiving the written approval of the Company for such repair welds.

The formed, heat treated, and finished machined containment vessel body part number M2E801580A012-1, shall meet the applicable requirements of ASME SA 182 for Grade F304L for a forged component. After final forming, parts shall be solution annealed and quenched per the requirements of ASME SA 182 for Grade F304L. In addition, the requirements of NB-2180 shall also apply. A certified heat treatment report shall be provided stating for each furnace charge the following information: the serial numbers of the containment vessel bodies heat treated in the furnace charge, the time and date of the heat treating, the person responsible for the heat treating, the time-temperature profile of the furnace and representative parts of the furnace charge, the quench medium, and all other pertinent details of the heat treating. Such a heat treating report is required for all heat treating, both in process annealing and final heat treatment.

It shall be demonstrated that the formed, heat-treated containment vessel bodies part number M2E801580A012-1 meet the mechanical property requirements of ASME SA 182 for Grade F304L by mechanical testing of coupons. The test coupons are to be machined from the same heats of materials used to form the containment vessel bodies, and shall have the same or greater amount of cold word (plastic strain) as the containment vessels will have as a result of the forming process. The mechanical tensile testing of coupons shall be done in accordance with ASME SA 370. A minimum of six test coupons shall be tested for each final heat treatment furnace charge. The first set of three test coupons, chosen at random, shall be tested together with the containment vessel bodies, and then tested. The heating rates and maximum temperatures of the test coupons shall be representative of the entire furnace charge. Test coupons are not required to be heat treated with intermediate processing annealing steps, but are required in the final heat treatment furnace charge.

The results of all the testing of the sample coupons shall be documented, certified and reported to the Company. The mechanical properties test report shall contain the following information: a descriptor of the furnace charge in which the test coupons are to represent; the times and dates of the heat treating and the testing; the person responsible for the testing; a statement that these coupons are prior to or after heat treatment; a description of the testing including a sketch of the tensile test specimen; the make, model, serial number, and current calibration data of the testing machine(s) used in the testing; reference to the written testing procedure used; the resulting measure yield strength, ultimate strength, % elongation and % reduction in area; and any pertinent remarks.

EQUIPMENT SPECIFICATION (CONT.)

JS-YMN3-801580-A001, Rev. E

It is permissible to deviate from the liquid quench requirements stated in SA 182 provided that the cooling rates of the alternate quench are such that the heat treated material is not susceptible to intergranular corrosion due to chromium carbide precipitation. This is to be demonstrated by testing according to Practice E of ASTM A 262, and meeting the stated acceptance criteria. This shall be accomplished by obtaining test coupons from each furnace batch that represent the slowest cooling rates of the batch, or by following a heat treating procedure that has been qualified to ensure that the heat treated batch will not be sensitive to intergranular corrosion. In any case, the requirements of NB-2180 shall apply.

The heat treating procedure must be qualified by measuring the annealing temperatures, soak times and cooling rates of the furnace batch, and then testing heat treated specimens that represent the lowest annealing temperatures, soak times and cooling rates for that furnace batch for sensitivity to intergranular corrosion using Practice E of ASTM A 262. For subsequent annealing operations, the temperatures, soak times and cooling rates of subsequent furnace batches must be measured and compared to the qualified procedure. Other factors, such as variations of the size and arrangement of the furnace batch that can affect part temperatures and part cooling rates, and the calibration of the furnace temperatures and cooling rates of production heat treating batches can be properly compared to those of the qualified procedure. Such a procedure should be requalified for each individual furnace used, and for significantly different furnace batch sizes. The procedure shall be requalified annually, or if it has not been used for a period of at least three months.

3.2 Forming, Fitting and Alignment

The forming, fitting and alignment requirements stated in paragraph NB-4200 shall be met in the fabrication of the Containment Vessels unless more stringent requirements are called out on the Company's drawings.

The roundness of cylinders, profile of formed head surfaces, and misalignment or offsets in weld joints shall be included in the dimensional inspection reports for the each Containment Vessel, see section 3.11 of this specification.

3.3 Welding and Weld Repair

All welds on the Containment Vessels shall be done either by the GTAW or GMAW process, manual or automatic, at the discretion of the Seller unless specifically called out on the drawings. Backing rings, even if removed after the weld has been made, shall not be used. As previously stated, weld symbols are provided on the drawing indicating for each weld the type of weld and dimensions of the weld.

Except as limited by this specification, the applicable requirements of NB-4300 and NB-4400 shall apply to the Containment Vessel.

Prior to welding, all weld preparation areas and the surfaces within one inch of the weld area shall be examined visually and with liquid penetrant. The acceptance criteria for these examinations are those stated in NB-5130 (a) through NB-5130 (d). The results of these surface examinations shall be reported to the Company together with the weld examination reports, see section 3.4 of this specification.

Welders performing two or more welds in one day that are rejected based upon welder technique shall be subject to be re-qualified to the appropriate welding procedures, see Section IX, paragraph QW-320 of the ASME Code.

3.4 Weld Examination

The applicable requirements in paragraphs NB-5110, NB-5120, NB-5210, NB-5220, NB-5260, and NB-5300 shall apply to the Containment Vessels. The plug weld shown on drawing M2E801580A015 shall be examined visually and with penetrant. The applicable requirements in paragraphs NB-5110, and NB-5350 shall apply to the plug weld. Note that the reference to the Inspector in NB-5112, for the purposes of this specification is either the Company's inspector or a subcontractor designated by the Company.

Materials used in the penetrant examination of welds and in the final surface examination of finished components (see section 3.7) shall be specifically recommended by their suppliers for use with austenitic stainless steels, and copies of the certification of contaminant content of materials used (see Section V, Article 6, T-641) shall be supplied to the Company with the examination reports.

Repair welding shall meet the applicable requirements of NB-2500.

Certified written weld examination reports together with the corresponding material surface examination reports, and weld map shall be submitted to the Company as stated in the Procurement Specification for the ES-3100 Containment Vessel. Weld examination reports for all weld and surface examination shall include: the Containment Vessel serial number, a weld map showing the location of the weld and examination area, the welder's name, the examiner's name, the time and date of the weld examination, the examination procedure(s) number used, the WPS number, the heat numbers of the materials joined, the heat number of the weld filler, and examiner's remarks. The examiner's remarks shall include the results of the examination and acceptance, or rejection of the weld based on the stated criteria. One set of radiographs shall be provided to the Company with radiographic examination reports. If the weld or surface is rejected, a description of the defect and sketch showing the location shall be provided.

If a weld is rejected, the area shall be weld repaired by the Seller and re-examined. After two unsuccessful repair attempts, the Company shall be notified for approval to perform more repair attempts. The Company may, at its option, choose to reject further repair efforts and require that a replacement part be fabricated.

3.5 NDE Examiner Qualifications

The qualifications of the personnel performing material or weld examination shall be those stated in paragraph NB-5500.

3.6 Welding Documentation Submittals

- A. Submittal of the following are required with the bid unless the current revisions of these submittals have been previously approved by the Company. Submittals that do not demonstrate compliance with this specification will be cause for rejection of the proposal.
 - 1. Typical welding procedure specifications (WPS) for the applicable code.
 - 2. Procedure qualification records (PQR).
 - 3. Typical welder performance qualification (WPQ) records for the appropriate code.
- B. Submittal of the following documents are required prior to welding unless the current revisions of these submittals have been previously approved by the Company.
 - 1. Welding Procedure Specifications (WPS).
 - 2. Procedure Qualification Records (PQR).
 - 3. Welder Performance Qualification (WPQ) records, including evidence of process usage updates.
 - 4. Visual examination and nondestructive examination procedures.
 - 5. Certification records of examination personnel.
 - 6. Certified Material Test Reports.
- C. To facilitate prompt review by the Company of the Seller's weld program, the welding documentation required above shall be submitted electronically in Adobe pdf format either on compact disk (CD) or by email. All information submitted shall reflect the Seller's most current documentation. Upon review and approval of the documentation, the Seller will be notified.
- D. If the latest revision of the Seller's welding documentation required above has been previously submitted electronically and reviewed and approved by the Company, this shall be so stated with the offer. The Seller shall submit a detailed list of the welding documentation to be used for this contract including title, revisions/dates, type components to be used on (i.e., piping, structural, sheet metal, etc.) and indicate the previous contract and approval date. The Company will then review the documentation for applicability on the new contract and approve or comment.
- E. If changes have occurred since the last approval of the welding documentation, in addition to the list of welding documentation that they propose to use the Seller shall submit those documents that have changed. The Company will then review, comment and/or approve the Seller's documentation.

3.7 Hydrostatic Testing

After all machining is complete, the assembled Containment Vessel shall be hydrostatic tested by the Seller in accordance with the applicable sections of NB-6000 at a test pressure of 150 psig +/-5 psig at ambient temperature (60°F to 90°F). Water with a maximum chlorine content of 0.5 parts per million shall be used as a test medium.

It will be necessary to hydrostatically test the Container Body Assembly separately from the Lid Assembly. It is recommended that the tooling shown on the Company's drawings M2E801580A021, M2E801580A022, and M2E801580A023 be used to pressurize the components to be tested. The use of this tooling is not mandatory, but the Seller shall provide suitable fittings to perform the hydrostatic testing.

A written hydrostatic test procedure shall be prepared by the Seller and submitted to the Company for approval prior to testing. Certified written hydrostatic test reports for each Containment Vessel shall contain the following data: serial number of the Containment Vessel; time and date of the test; name of person responsible for the hydrostatic testing; the hydrostatic test procedure number; the name, serial number and calibration date of all gages and transducers; and a sketch showing any areas of leakage or any areas where surface defects were observed after hydrostatic testing. Hydrostatic test reports shall be submitted to the Company as stated in the Procurement Specification for the ES-3100 Containment Vessel.

3.8 Final Examination of Finished Surfaces

After all finish machining, load testing and hydrostatic testing, all surfaces of the containment vessel body, drawing M2E801580A012; the containment vessel sealing lid, drawing M2E801580A015; and the containment vessel closure nut, drawing M2E801580A016, shall be examined with penetrant in accordance with NB-2546. See section 3.4 for additional requirements for the materials used in the penetrant examination. The results of the final surface examinations shall be documented in a certified examination report and provided to the Company as stated in the Procurement Specification for the ES-3100 Containment Vessel.

If a defect is found, the Company shall be notified in writing. The area may be weld repaired by the Seller only if specifically permitted by the Company in writing, and the area reexamined. After two unsuccessful repair attempts, the Company may, at its option, choose to reject further repair efforts and require that a replacement part be fabricated.

3.9 Leak Testing

There are three leak tests to be performed on the ES-3100 Containment Vessel. The leak testing is to be performed after Hydrostatic Testing. Following the hydrostatic pressure test and prior to conducting any leak test, the containment vessel and O-ring cavities must be thoroughly dried. The leak testing is to be performed in accordance with the applicable sections of ANSI N14.5-1-1997. A written leak test procedure(s) shall be prepared to perform this testing and submitted to the Company for approval, see the Procurement Specification for the ES-3100 Containment Vessel. The written test procedure(s) and leak testing report shall comply with the applicable requirements of Section V of the ASME Boiler and Pressure Vessel Code. The leak testing for the first two leak tests shall have the sensitivity to detect a leak less than or equal to 5×10^{-8} ref-cm³/sec of air, or 9×10^{-8} cm³/sec helium and shall use the leak test fixtures shown on the Company's drawings M2E801580A021, M2E801580A022, and M2E801580A023.

If a leak is found the Company shall be notified in writing. The leak may be weld repaired by the Seller only if specifically permitted by the Company in writing, and the leak test repeated. After two unsuccessful repair attempts, the Company may, at its option, choose to reject further repair efforts, and require that a replacement part be fabricated.

The first leak test shall be performed with the containment vessel body assembled as shown on drawing M2E801580A023-1. Note that the outer O-ring in the containment vessel body is not to be installed for this test. The leak testing acceptance criteria is that the assembly shall not have an integrated leak rate greater than 1×10^{-7} ref-cm³/sec of air, or 1.9×10^{-7} cm³/sec helium.

The second leak test shall be performed with the containment vessel lid assembly as shown on drawing M2E801580A023-2. The leak testing acceptance criteria is that the assembly shall not have an integrated leak rate greater than 1×10^{-7} ref-cm³/sec of air, or 1.9×10^{-7} cm³/sec helium.

The third leak test is to be performed with the Containment Vessel assembled as shown on drawing M2E801580A011. The sensitivity of the leak testing procedure for the third leak test shall be capable of detecting a leak rate of 1×10^{-4} ref-cm³/sec of air, and that the acceptance criteria shall be that no leaks are detected. The third leak test shall verify that there is no detectable leakage between the two O-rings that seal the lid to the body at the detectable rate specified.

Certified written leak test reports shall be supplied to the Company that describes the leak testing and results. The test report shall identify the Containment Vessel serial number, identify all standard leaks, gauges, transducers and electronic readouts, give the date on which these instruments were certified, identify the leak detector, give the date on which the leak detector was last certified, the date of the test, time of the start and end of the test, the recorded pressures and leak rates at the start and end of the test, the name of the person conducting the test, the qualifications of the person conducting the test, identify areas of the Containment Vessel where repairs were made and any pertinent remarks. Leak testing reports shall be submitted to the Company as stated in the Procurement Specification for the ES-3100 Containment Vessel.

3.10 Cleaning, Passivation, and Bead Blasting

Cleaning procedures for the stainless steel, including weld areas, shall be submitted to the Company for approval prior to the start of fabrication. Only non-chloride bearing chemicals shall be used for cleaning (such as trisodium phosphate detergent or acetone). Water used in cleaning shall have a maximum chlorine content of 0.5 parts per million.

Finished components awaiting assembly and assemblies shall be free of dirt, debris, foreign objects, cutting fluids, metal chips, grinding residue, dye penetrant and developer, and other foreign substances. The Seller shall clean, cover, and protect parts and subassemblies from becoming dirty while in storage, and to the extent practical, in the shop environment while in work.

After final machining, and all examination of welds and surfaces, clean and passivate all stainless steel surfaces of the containment vessel in accordance with ASTM A 380. After passivating is complete, bead blast all exterior surfaces in accordance with SSPC-SP 5/NACE No. 1, White Metal Blast Cleaning with the exception of all sealing surfaces and threaded surfaces.

3.11 Dimensional Inspection Reports

After all testing, inspection and final machining, the Containment Vessels shall be dimensionally inspected. The dimensions and features to be inspected are indicated on the Company's drawings by a diamond symbol containing an "I". This dimensional inspection includes surface features such as flatness, runout, etc, as called out on the drawings. The dimensional inspection report shall also include the recorded diameter dimensions that show compliance with the requirements of paragraph NB-4200. A certified written inspection report shall prepared and submitted to the Company as stated in the Procurement Specification for the ES-3100 Containment Vessel.

Appendix 1.4.4

EQUIPMENT SPECIFICATION, JS-YMN3-801580-A003, MANUFACTURING PROCESS SPECIFICATION FOR CASTING KAOLITE 1600TM INTO THE ES-3100 SHIPPING PACKAGE

Y/LF-717/Rev 2/ES-3100 HEU SAR/Ch-1/rlw/3-06-08

1-67

Y/LF-717/Rev 2/ES-3100 HEU SAR/Ch-1/rlw/3-06-08

1-68

EQUIPMENT **APPROVAL**

PROJECT TITLE

SPECIFICATION FOR

REV. NO. А

JOB TITLE

			SPECIFICATION NO.	REV	ISSUE DATE	
			JS-YMN3-801580-A003	С	11/24/03	
COL		ተገደ	PAGE	REVISION DATE		
EQU	JIPMENT SPECIFICA	IUN			6/1/06	
	ROVAL/REVISION P	AGE	FROCURED BY INSTALLED BY			
	IVANDI/FADIONAL	AUL	BWXT L.L.C.		NXT L.L.C.	
PROJECT TITL			PLANT	BUILDING		
ES-3100 SHIPPING PACKAGE		Y-12	<u> </u>	AREA-00	·	
JOB 1111E			WO ORESO.	RECORD NUMBER		
	Production Design Definition		7RCPCA08	SSC IDENTIFICATIO	003-0328	
SPECIFICATION				SSCIDENTIFICATIO	N ALMBER	
	FACTURING PROCESS SPECIF		R CASTING KAOLITE			
** 00dF	INTO THE ES-3100 SHIPPING	ويزير وجداد التقرير ويبيرني التقريب بيري		<u> </u>		
	E		ND PLANT APPROVALS			
PREPARED FY	SIGNATURE	DATE	SIGNATURE		DATE	
R. D. Aigner		11-25-03			11-25-03	2
DISCIPLINE MA		11-20-00	G. A. Byington OPERATIONS MANAGERISYSTEM OWNER		11-20-00	2
J. C. W	alls	11-25-03				
DESIGNVERR		1.20.00		· · · · ·		
R. D. A	Nigner	11-25-03			2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
	REVISIO	NS/ENGINEEF	RING AND PLANT APPROVALS			
REV. NO.			DESCRIPTION OF REVISION			man market ye
A	A Issue for procurement					
B Removed the reference to the Prototype Procurement Specification document number OO-PP-1210. Change the equipment reference in Section 3.1.3(c) from a "large mortar mixer or plaster mixer with moving vanes or a smooth wall cement mixer with the fixed vanes removed" to "Whiteman Multiquip's WM700S-H8 plaster/mortar mixer, refereed to as WM700". In Section 3.2 changed the method and time that the water and dry mix were added into the mixer based upon the mixer qualification in Section 3.5. Added Section 3.5, added attachments E and F to determine the proper mixing time and the Mixer Qualification Castings. In section 3.3.1 and 3.3.3 added mixing procedure. Section 3.3.2(b) added a circular concave of .32±.10 to the Kaolite before it is baked to match drawing M2E801580A002. Section 3.3.4(b) add a circular convex scrape of .09±.06 to the Kaolite before it is baked to match drawing M2E801580A008. Updated the attachments with general revisions. Section 3.4 has been subdivided into 3.4.1 Baking Instruction and 3.4.2 Baking Documentation and added attachment F to this section.					oth o ng n.	
С	Revised patent information in scope Top Plug Weldment based upon a r to the lower side and a smaller rang code requires using 1.65 times the wet mix density of 56.2+/- 5.8 lb/ft ³ .	nore refined k ie of the manu dry weight for	Caolite 1600 [™] product code GI80A ufactures normal tolerance band. T the water weight (instead of 1.5) ar	CCUMD002 his Kaolite	27 that is produce 1600 TM product s an acceptable	ed

SIGNATURE	DATE	SIGNATURE	DATE
Da Bosintos	6/1/06	Surge singleton	6/1/06
C. M. Anonell for W.I. North	6/166	CRAICALITY SWETY:	6/1/06
Monty Lyoins	6/1/06	P.N. Erkent	6/1/06
This document has been has been revie UNCLASSIFIED and not NCI. This	wed by a Y-12 ge9iew does no	ADC and UNCI RO and has been determined to be ot constitute clearance for public release.	
Name: K.A.	1-	Date: 06/61/06	
	, 		

EXEMPT FROM IO-155

.

EQUIPMENT SPECIFICATION

SPECIFICATION NO.	REV.
JS-YMN3-801580-A003	C
ISSUE DATE	REVISION DATE
11/24/03	6/1/06
PLANT	PAGE
Y-12	ii

Page

MANUFACTURING PROCESS SPECIFICATON FOR CASTING KAOLITE 1600™ INTO THE ES-3100 SHIPPING PACKAGE

TABLE OF CONTENTS

1	Sc	ope		3
2	Ap	plicabl	le Documents	3
3	Ka	olite 10	600 ^{тм} Processing Requirements	3 3
	3.1	Gener	ral	3
		3.1.1	Kaolite 1600 [™] Receiving and Storage Instructions	3
		3.1.2	Cleaning Instructions	4
		3.1.3	Mixing Water and Mixing Equipment Requirements	4
	3.2	Mixin	g of Kaolite 1600 TM	4
	3.3	Vibra	tion Casting and Curing of Kaolite 1600™ Into Assemblies	5
		3.3.1	Body Weldment Casting Instructions	5
		3.3.2	Body Weldment Curing Instructions	6
		3.3.3	Top Plug Assembly Casting Instructions	6
		3.3.4	Top Plug Assembly Curing Instructions	7
	3.4	Bakin	g of Assemblies Cast and Cured with Kaolite 1600 [™] mixture	7
		3.4.1	Baking Instructions	7
		3.4.2	Baking Documentation	8
	3.5	Mixer	Qualification for Kaolite 1600 TM Casting Placement	9
		3.5.1	Wet Density Mixing Test	9
		3.5.2	Mixer Baked Density Qualification Castings	10
4	Qu	iality A	ssurance Requirements	10
	4.1	Gener	ral	10
	4.2	Mater	ial and Equipment Certification	11
	4.3	Nonco	onformance Control	11
	4.4	Opera	tor and Witness Qualifications	11
			Kaolite 1600 [™] Mixing Process Qualifications	12
		4.4.2	Kaolite 1600 [™] Vibration Casting Process Qualifications	12
		4.4.3	Kaolite 1600 TM Baking Process Qualifications	12

ATTACHMENTS

Α	Kaolite Mixing Control
B	Body Weldment
С	Top Plug Assembly Vibration Casting Control
D	Furnace and Baking Control
10	

- E Wet Density Mixer Time Vibration Casting
- F Baked Qualification Density Sample Vibration Casting

1 Scope

This manufacturing process specification describes the quality assurance and technical requirements that shall be met when weighing, mixing, pouring, vibrating, curing, and baking the Kaolite 1600^{TM} for the ES-3100 shipping container Body Weldment and Top Plug Assemblies. The product produced by following this manufacturing process is protected under U.S. Patent 6,299,950. The United States Government has rights in this invention pursuant to Contract No. DE-AC05-84OR21400, between the U.S. Department of Energy and BWXT Y-12 L.L.C.

This specification describes the instructions that shall be followed for these activities. The components (Body Weldment and Top Plug Assembly) will be fabricated to the design requirements specified on the engineering drawings for the components.

Reference to the Company in this specification shall mean the package certificate holder and reference to the Seller shall mean the supplier of the fabricated Body Weldment and Top Plug Assemblies.

2 Applicable Documents

The following documents apply when Casting Kaolite 1600[™] Into ES-3100 Shipping Containers.

ES-3100 Drawing Numbers M2E801580A002, Body Weldment M2E801580A008, Top Plug Weldment,

Procurement Specification for ES-3100 Confinement Boundary Assembly JS-YMN3-801580-A002 Equipment Specification for the ES-3100 Drum Assembly

3 Kaolite 1600[™] Processing Requirements

3.1 General

The Kaolite 1600TM material referenced with in this specification shall be provided by Thermal Ceramics, Incorporated or an authorized distributor. The material certification documentation (Certificate of Conformance) for the Kaolite 1600TM must be provided by the supplier for each manufacturer's lot of material to a product code of GI80ACCUMD0027.

- 3.1.1 Kaolite 1600[™] Receiving and Storage Instructions
 - a. Damaged packages of Kaolite 1600[™] shall be rejected by the Seller upon receipt. Damaged packages are those that are wet, those that are visually determined to have been wet, and packages that have been torn.
 - b. Packages of Kaolite 1600TM must be stored unopened in a dry location and protected from damage. Opened unused and partial used Kaolite 1600TM packages are to be discarded at the end of the work shift. The term work shift shall be defined by the Seller and approved by the Company before commencing operations.

EXEMPT FROM IO-155

1-71

3.1.2 Cleaning Instructions

- a. Use <u>NO CHLORINE BLEACH</u> for cleaning. Potable water shall be used and if required some mild soap (tri-sodium phosphate) may be added to the water to clean all processing equipment and manufactured components before casting. Before the start of any mixing/blending operation, the mixer shall be clean from all foreign materials or previous mixing residues from the inner surface of the mixer. The mixer shall be flushed thoroughly with potable water at the completion of the final mixing operation of the work shift to remove residues. Mixing, and casting shall be performed within a temperature range of 70 (\pm 25) °F.
- b. Fabricated assemblies must be cleaned and protected prior to the casting operation to prevent the introduction of foreign materials into the assemblies. The assemblies shall be inspected and wiped clean prior to casting to ensure no visible contaminants are present inside the casting cavity. This inspection shall be documented in the checklist.

3.1.3 Mixing Water and Mixing Equipment Requirements

- a. Potable water, that has been filtered through a 20-micron filter and has a chlorine content less than 4 mg/L (4 ppm, 0.0004 percent by mass) for chlorine shall be used for the mixing of Kaolite 1600TM. If the potable water is higher then 4 ppm, then use an activated charcoal filter or some other means to reduce the amount of chlorine to at or below 4 ppm. Test the water quality for chlorine weekly during casting operations. Unfiltered potable water may be used for the cleaning of equipment used to process Kaolite 1600TM.
- b. All weighing operations of assemblies and materials shall be conducted on certified scales with a minimum accuracy of $\frac{1}{2}$ lb.
- c. This specification has been developed around the Whiteman Multiquip's WM700S-H8 plaster/mortar mixer, refereed to as WM700. This steel-drum machine mixes 7-cubic feet (193 liters) of material with an 8-horsepower Honda engine running at a slow speed. Other models of plaster/mortar mixers may be used if the speeds and mix times are qualified per section 3.5 and approved by the company.
- d. A Heavy Duty Drum Vibrator/Packer(like McMaster-Carr, No. 5809K11, or Company approved equal) shall be used to clamp the Body Weldment, M2E-801580-A002 or Top Plug Weldment, M2E-801580-A008 upside down for vibration casting the Kaolite 1600TM into the welded stainless steel forms.

3.2 Mixing of Kaolite 1600TM

Mixing shall be performed by operators qualified in accordance with requirements in Section 4.4.

The term batch is defined as a mixture of one bag of Kaolite 1600TM with the appropriate amount of water. The required mix ratio is 1.65 pounds of filtered water per pound of Kaolite 1600TM.

The mixing activity shall be recorded on Attachment A, *Kaolite Mixing Control*. Each batch shall be given a mixture control number (MCN) and recorded upon its data Attachment. (A 10-digit control number is recommended consisting of the date and the time format using a 24-hour clock. Example: 1021041515 for October 21, 2004 at 3:15 pm.)

The Kaolite 1600[™] mixing shall be performed as follows:

- a. Record the weight of the bag of Kaolite 1600TM on the mixing Attachment.
- b. The required mix ratio is 1.65 pounds of filtered water per pound of Kaolite 1600TM. For a 50 pound bag of Kaolite 1600TM, weigh and record 82.5 (± ½) lbs. of filtered water generating an acceptable wet mix density of 56.2±5.8 lb/ft³.
- c. Start the mortar mixer motor and when ready to engage the moving vanes, pour the weighed filtered water, pour all of the 50-pound bag of Kaolite 1600[™] over the water. Immediately start the WM700 moving vanes for 3.0 (±0.2) minutes.
- 3.3 Vibration Casting and Curing of Kaolite 1600TM into Assemblies
 - 3.3.1 Body Weldment Casting Instructions

Casting operations shall be performed by operators and witnesses qualified in accordance with requirements listed in Section 4.4.

Use Attachment B, Body Weldment Vibration Casting Control, to record information gathered during this operation.

Complete the casting of the mixture in less than 70 minutes. This timed procedure starts when the first batch is poured into the vibrating component. The casting and vibrating procedure must be completed within 77 minutes from initial pour for each assembly.

Casting operations shall be performed as follows:

- a. Weigh the Body Weldment clean and empty. Record the weight.
- b. Fill the Body Weldment with potable water that has been filtered through a 20 micron filter and has a chlorine content of ≤ 4 ppm and weigh it. Record the weight.
- c. Remove the water from the assembly as much as is practical.
- d. Secure the assembly on the vibration table. Set the vibration table dial indicators to approximately 800 lb-force at 450 vibrations per minute (VPM). Assure that the Body Weldment is properly secured to the table and start the vibration table. The Body Weldment must be vibrated continuously throughout the casting operation.
- e. The mixture shall then be poured directly into the assembly after mixing through the fill hole provided.
- f. Repeat the mixing operation in Section 3.2 and continue pouring until the mixture overflows the fill hole by ¹/₂ to ³/₄ inch.
- EXEMPT FROM IO-155

- g. Mist the top surface of the mixture with a bottle water sprayer if necessary to get the mixture into a solution after the pouring is completed. Do not add more than 8 ounces of water.
- h. Vibrate the filled assembly for 5 to 7 minutes after the casting is completed.

3.3.2 Body Weldment Curing Instructions

A designated area shall be set aside for curing the assemblies. The temperature of the curing area shall be controlled to $70^{\circ}F(\pm 25^{\circ}F)$ and shall prevent the introduction of foreign materials into the mixture.

Curing operations shall be performed as follows:

- a. Remove the Body Weldment from the vibration table and place it in the curing area. Let it rest uncovered for 2¹/₂ (±¹/₂) hours.
- b. Weigh and record the Before Baking weight of the cast assembly. If the weight is outside of 330 to 386 lbs range it is recommended not to cure the casting but to clean out and recast the Kaolite. This Before Baking weight is a recommended process control for the finished baked density. The manufacture may continue with a part outside of this weight range but it has a high chance being rejected for not meeting the finished baked density.
- c. After resting, scrape the excess mixture from the fill opening until the Kaolite surface has a circular concave of .32±.10 to match drawing M2E801580A002.
- d. Weigh the cast assembly, and photograph the fill opening. Record the weight.
- e. Cover the fill opening with plastic sheeting and let the assembly set undisturbed in the curing area for at least 24 hours.

3.3.3 Top Plug Assembly Casting Instructions

Use Attachment C, Top Plug Assembly Vibration Casting Control, to record information gathered during this operation.

Complete the casting of the mixture in less than 70 minutes. This timed procedure starts when the first batch is poured into the vibrating component. The casting and vibrating procedure must be completed within 77 minutes from initial pour for each assembly.

Casting operations shall be performed as follows:

- a. Weigh the top plug assembly clean and empty. Record the weight.
- b. Fill the top plug assembly with potable water that has been filtered through a 20-micron filter and has a chlorine content of ≤ 4 ppm and weigh it. Record the weight.
- c. Remove the water from the assembly as much as practical.

- d. Place the assembly on the vibration table. Assure that the assembly is properly secured to the table. Set the vibration table dial indicator to approximately 120 lb-force at 450 vibrations per minute and start the vibration table. The top plug assembly must be vibrated continuously throughout the casting operation.
- e. The mixture shall then be poured directly into the assembly after mixing through the fill hole provided.
- f. Repeat the mixing operation in Section 3.2 and continue pouring until the mixture overflows the fill hole by ½ to ¾ inch.
- g. Mist the top surface of the mixture with a bottle water sprayer if necessary to get the mixture into a solution after the pouring is completed. Do not add more than 4 ounces of water.
- h. Vibrate the filled assembly for 5 to 10 minutes after the casting is completed.

3.3.4 Top Plug Assembly Curing Instructions

Curing operations shall be performed as follows:

- a. Remove the top plug assembly from the vibration table and place it in the curing area. Let it rest uncovered for 2¹/₂ (±¹/₂) hours.
- b. Weigh and record the Before Baking weight of the cast assembly. If the weight is outside of 29.2 to 34.2 lbs range it is recommended not to cure the casting but to clean out and recast the Kaolite. This Before Baking weight is a recommended process control for the finished baked density. The manufacture may continue with a part outside of this weight range but it has a high chance being rejected for not meeting the finished baked density.
- c. After resting, scrape the excess Kaolite mixture from the fill opening until surfaces are a circular convex shape of .09±.06 before it is baked to match drawing M2E801580A008.
- d. Weigh the cast assembly, and photograph the fill opening. Record the weight.
- e. Cover the fill opening with plastic sheeting and let the assembly set undisturbed in the curing area for at least 24 hours.

3.4 Baking of Assemblies Cast and Cured with Kaolite 1600TM mixture

3.4.1 Baking Instructions

Several assemblies may be baked together during each furnace heating cycle. Once the furnace heating cycle has started, no additional assemblies may be inserted into the furnace. The furnace and temperature control requirements to perform the baking operation are as follows:

a. The furnace shall be a gas-fired or a forced convection fresh air circulating electric furnace.

- b. The furnace heat zone shall be certified to $\pm 25^{\circ}$ F from the furnace set point temperature at each baking temperature process point.
- c. Furnace time and temperature strip charts for each furnace heating cycle shall be provided with each completed Attachment D. Alternatively, an ASCII furnace time and temperature data file may be provided for each completed Attachment D.

3.4.2 Baking Documentation

Use Attachment D, *Furnace and Baking Control*, to record information gathered during this operation. An Attachment D identified by the Baking Control Number (BCN) shall be generated for each set of assemblies subjected to the furnace baking operations. Record the BCN from Attachment D for each assembly baked during this furnace heating cycle utilizing the proper assembly Casting Attachments B, C, and F. Qualified operators as indicated in Section 4.4 shall perform the baking of the cured assemblies. Movement of the cured assemblies before baking shall be minimized. The time and actual furnace exhaust air temperature shall be recorded at least every 15 minutes for baking control during a furnace heating cycle.

The baking furnace heating cycle shall be completed as follows:

- a. Place the assemblies into the furnace.
- b. Set the initial set point temperature to $200 (\pm 10)$ °F.
- c. Hold the temperature for 4 hours at a $200 (\pm 10)$ °F steady state.
- d. Increase the furnace set point temperature to $275 (\pm 10)$ °F.
- e. Hold the temperature for 1 hour at a 275 (± 10) °F steady state.
- f. Increase the furnace set point temperature to $350 (\pm 10)$ °F.
- g. Hold the temperature for 1 hour at a 350 (± 10) °F steady state.
- h. Increase the furnace set point temperature to $425 (\pm 10)$ °F.
- i. Hold the temperature for 1 hour at a 425 (± 10) °F steady state.
- j. Increase the furnace set point temperature to $500 (\pm 10)$ °F.
- k. Hold the temperature for 41 (± 5) hours at a 500 (± 10) °F steady state.
- 1. Remove assemblies and allow cooling in still air until they reach ambient temperature.
- m. Weigh the assemblies after the baking process and record the weights upon the appropriate Attachment (Attachment B or C). Calculate the baked density of the cured mixture using the equation at the bottom of Attachment B or C and record.

Acceptance criteria:

An acceptable baking process is defined as the process in which the density of the baked mixture in an assembly is within the acceptance range of 22.4 ± 3 lb/ft³ as defined on Attachments B or C. If the density is less than the allowable value, contact the Company for disposition. If the density is greater than the allowable level, then rebake the assembly using Section 3.4.5.a through k, with the exception of the final hold time which shall be 5 (± 0.5) hours. Remove assemblies and allow cooling in still air until they reach ambient temperature. Recalculate and record the density on the appropriate Attachment. If the density still is greater than the allowable level, contact the Company for disposition.

- n. Photograph the surface of the baked mixture (digital images are preferred).
- o. Following the acceptable baking process, weld the cover plate onto the assemblies in accordance with the appropriate engineering drawing within 24 hours.
- p. Weigh the final assembly and record on the appropriate Attachment (Attachment B or C).

3.5 Mixer Qualification for Kaolite 1600TM Casting Placement

The mixer qualification process shall verify that the mixer speed and mix time are properly set to mix the Kaolite 1600^{TM} . The end result of the mixer qualification is the as-baked density of 22.4 ± 1 lb/ft³ in the Baked Mixer Qualification Samples. This baked density can be estimated by monitoring the wet density. The baked density is approximately 41% of the wet density; therefore, the Target Wet Density is 56.2 lb/ft³ for an average baked density of 22.4 ± 1 lb/ft³. The longer the Kaolite 1600^{TM} is mixed the denser it becomes. The mixer qualification process shall verify the mix time required at a fixed and repeatable speed. The operators shall use the mixer to determine a repeatable speed to operate the mixer for all of the tests. Record the speed setting and assure that the speed setting is repeatable. The mixer qualification tests are a two step process: first is a Wet Density Mixer Time Vibration Casting test used to determine the range of mix time versus wet density; second is the mixer Baked Density Qualification Sample Vibration Casting. It is recommended that a 4-gallon or larger metal pail be used for the testing like the 4-1/2 gallon Tin-Plated Steel Pail (McMaster-Carr 4243T16 or equivalent), 9" Top Dia, 19-3/8" Height.

3.5.1 Wet Density Mixing Test

Use Attachment E, Wet Density Mixer Time Vibration Casting, to record information gathered during this operation.

Prepare the Kaolite 1600^{TM} and water for mixing per section 3.2 except for the mix time. A digital stop watch shall be used to monitor the running mix time. The mix time shall vary per Form F from 1 to 15 minutes in 1 minute intervals. Use a quick release attachment to affix the two metal pails (at least 4 gallon) to the vibration table. Start the mixer and run it for one minute, start the vibration table and pour the Kaolite 1600^{TM} into the two pails after filling let them vibrate for 2 minutes, stop the vibration table, scrape them flush, and remove the pails and weigh them. Record the weight, dump the Kaolite 1600^{TM} back into the mixer and start the mixer for another minute and repeat the process.

Plot the wet mix density of the two pails versus the mix time in an Excel file. An Excel file generated by the Company can be provided for this task upon request. Curve fit the data

using a third order polynomial curve and show the equation. Plot the target density of 56.2 lb/ft^3 on a chart in Excel along with the wet mix density. Where the curves intersect the target density line is the mixer's target mix time. Consult the Company for verification of this data. Use the Company verified mix time for the Mixer Baked Density Qualification Castings in Section 3.5.2.

3.5.2 Mixer Baked Density Qualification Castings

Use Attachment F, Baked Qualification Density Sample Vibration Casting, to record information gathered during this operation.

Prepare the Kaolite 1600[™] and water for mixing per section 3.2.1 except for the mix time. A digital stop watch shall be used to obtain the Company verified mix time. Start mixer and run it for the Company verified mix time. Start the vibration table and pour the Kaolite 1600[™] into the two pails. After filling, let them vibrate for 5 to 7 minutes then stop the vibration table.

Remove the two pails from the vibration table. Place the filled two pails in the curing area, and let them sit uncovered for $2\frac{1}{2} (\pm\frac{1}{2})$ hours. After sitting $2\frac{1}{2} (\pm\frac{1}{2})$ hours, scrape the excess mixture from the fill opening until surfaces are flush. Cover the fill opening with plastic sheeting or a metal lid and let the assembly sit undisturbed in the curing area for at least 24 hours before weighing. Remove the two pails and weigh the cured qualification samples to an accuracy ± 1 pounds. Record the as-cured and after-baking weights and follow the baking instructions in section 3.4.

4. Quality Assurance Requirements

4.1 General

- 4.1.1 The Seller shall have a quality assurance program that meets the applicable requirements of Title 10 CFR Part 71, Subpart H for packaging and transportation of radioactive material. The quality assurance plan shall be in accordance with the requirements identified in the ES-3100 procurement specification. The Seller shall submit an approved quality assurance program plan that describes the quality assurance policies and practices to be implemented in identifying, controlling and verifying quality of the Kaolite 1600[™] processes (weighing, mixing, pouring, vibrating, curing, and baking).
- 4.1.2 The Seller shall submit a Manufacturing Plan as defined in procurement specification, and shall describe how the Seller will comply with the instructions in this specification. If subcontractors are utilized for any of the processing of the Kaolite 1600[™], the Seller shall ensure that the requirements of this specification (including quality assurance requirements) are met by all suppliers and subcontractors. The subcontractor's procedures, approved by the Seller, shall be included in the procedures submitted to the Company for review and approval.
- 4.1.3 The Seller's quality assurance program plan shall include the requirements for the process controls for the operations, operator and witness' qualifications, and verification records. Operator qualification requirements are identified in Section 4.4.
- 4.1.4 The Seller shall generate the documentation necessary to show compliance with the approved quality assurance program plan. All records shall be identified based on the assembly serial numbers. The Seller shall maintain quality-related documentation in accordance with requirements in the procurement specification. The Company reserves the right to request any

such documentation and to witness all aspects of the fabrication process in accordance with this specification. The Seller shall ensure that the specified manufacturing and inspection records are generated and supplied to the Company as part of the certification package.

4.1.5 The Seller must ensure all operators are aware of and comply with the quality assurance requirements identified in this specification. The Seller must ensure all operators use and follow written procedures for the respective processes. The Seller shall ensure operators and witnesses are aware of the operational requirements for the common industrial equipment (material handling equipment, mixers, vibration tables, ovens/furnace) used for the processes.

4.2 Material and Equipment Certification

- 4.2.1 Material certification for the Kaolite 1600[™] must be provided by the supplier as defined in Section 8.0 of the procurement specification. Bags of Kaolite 1600[™] must be identified with the product name and unique lot number. The material certification will be incorporated into the quality assurance records of the certification package.
- 4.2.3 All weighting, mixing, casting, curing, and baking processes shall be controlled and performed by qualified personnel (see Section 4.4). Written procedures shall be utilized by the operator at each operation and shall identify process hold points where required by the Company.
- 4.2.4 All process equipment used for mixing, casting, and baking of the Kaolite 1600[™] and water mixture must be the model type identified in this specification, and must be in good working condition. Equipment used for measurements must be certified to traceable NIST standards or similar agency. Variation from specified equipment (vibration table, mixer, and furnace) is not allowed without the written approval of the Company before implementation.

4.3 Nonconformance Control

- 4.3.1 The Seller shall have an approved procedure for the control of nonconformances, waivers, and deviation requests during the execution of this manufacturing specification.
- 4.3.2 Nonconforming components shall not be used unless it has been determined by analysis or assessment by the Company that the nonconformance does not impact the physical properties of the material.
- 4.2.3 The disposition of nonconforming components shall be documented. Any nonconforming component shall be clearly identified and all nonconformance reports shall be traceable to the actual component affected. Copies of all approved nonconformance reports, except for scrapped components shall be supplied by the Seller to the Company as part of the certification package.

4.4 **Operator and Witness Qualifications**

The Kaolite[™] 1600 mixing and vibration casting qualification evaluations shall be sequential. Each operator must mix and cast at least one simulated drum. Mixing and casting operations shall be repeated as necessary to achieve fully cast mock drums. The simulated ES-3100 drums cast during qualification activities shall be baked according to procedure.

4.4.1 Kaolite 1600[™] Mixing Process Qualifications

Each operator and witness performing Kaolite 1600^{TM} mixing activities must be qualified to perform this activity. This qualification shall be documented. This qualification shall consist of the following:

- a. Location and time.
- b. Properly identifying a bag of Kaolite 1600TM the bag of material and associated certification data (such as lot numbers)
- c. Inspection of the bag for observable damage (such as water damage)
- d. Successfully weighing the bag of Kaolite 1600TM on an industrial scale
- e. Successfully calculating the required amount of water to be mixed with the Kaolite 1600TM (1.65 pounds of water per pound of Kaolite 1600TM)
- f. Properly inspecting the mixing equipment for foreign materials (such as oil, grease, free liquids, trash, or evidence of non-Kaolite 1600TM material affixed to the inner surfaces.)
- g. Successfully operating the mixing equipment while mixing a complete bag of Kaolite 1600TM.
- h. Successfully preparing a uniformly mixed batch of Kaolite 1600TM. (Uniformly shall be defined as a thoroughly mixed material with no dry material and no free liquids remaining in the mixer.)

4.4.2 Kaolite 1600TM Vibration Casting Process Qualifications

Each operator and witness performing Kaolite 1600TM casting activities must be qualified by successfully performing a casting activity. This qualification shall consist of the following.

- a. Properly inspecting the inner surfaces of an empty simulated ES-3100 drum body for residues (oil, grease, free liquids) and waste material. (A simulated ES-3100 drum body shall consist of a 55-gallon carbon steel open-head drum which has a 16-gallon carbon steel drum secured to the bottom center. The 16-gallon drum may be secured by tack welding or suitable fasteners. The lid of the 55-gallon drum must have an opening 15" in diameter through which the Kaolite 1600[™] can be poured into the drum.)
- b. Properly securing an empty simulated ES-3100 drum body to the vibration table.
- c. Properly adjusting the vibration table controls to the specified values for drum assemblies.
- d. Successfully transferring the Kaolite 1600[™] from the mixer into the drum while the drum is vibrating.

4.4.3 Kaolite 1600[™] Baking Process Qualifications

Each operator and witness performing Kaolite 1600^{TM} baking operations shall review the procedure steps for calculating the as-baked density of the Kaolite 1600^{TM} in the assemblies and perform a sample calculation.

Attachment A	Specification Number		Revision
	JS-YMN3-801580-A003-1		C
EQUIPMENT SPECIFICATION	Issue Date	Revision Da	te
ES-3100 Shipping Package	11/24/03	6/	1/06
Kaolite Mixing Control	Plant	Page	of
0	Y-12	1	1

Caster's Company Nan	ne		Supplier's Company Na	ame	
Mixing Start Date Time Air Temp. °F			Thermal Ceramics Kaolite 1600 TM Certificate of Conformance		
Kaolite 1600™ Mixin	ng and Vibration	Casting Information	Comments	Operator	Witness
50 lb. Bag ID	Number				
Bag Wi	L.				
1.65 × Bag Wt.					
Mixing Control Number (MCN) ^ª					
Water Wt. ±0.5 lbs. (1.65 times Kaolite Bag Wt.)					
Mix Finish	Time				

A 10-digit control number is recommended for the Mixing Control Number (MCN) consisting of the date and the time format using a 24-hour clock (i.e. 1021041515 is used for October 21, 2004 at 3:15 pm.)

EXEMPT FROM IO-155

1-81

Attachment B	Specification Number JS-YMN3-801580-4	Revision _C	
EQUIPMENT SPECIFICATION	Issue Date	Revision Date .	
ES-3100 Shipping Package	11/24/03	6/1/06	
Body Weldment	Plant	Page	of
	Y-12	1	1

Caster's Company Name				Seller's Company Name			
Part Serial Number				Body Weldment Drawing Number M2E801580A002			
Measured Weights	Casting Information			Comments		Operator	Witness
±0.5 lb	Weight		Date	Comments		- prices	
Clean and Empty							
Filled with Water ^a							
Before Baking ^f							
After Baking Cycle 5							
After Baking Cycle 5A ^d							
After Welding							
Water Information	Water Weight ±0.5 lb		Water Temp.	Comments		Operator	Witness
Water Conditions ^a	lb		°F				
Casting Start Date	Air Temp. Vibration Se		n Settings ^b				
	°F	lbf	VPM				
Operation	MC	N°	Time	Comments		Operator	Witness
Pour Start							
Pour Start							
Pour Start							
Vibration Start							
Vibration Stop							
Baking Cycle 5	Baking Control Num. °		Date	Time	Density ^d	Operator	Witness
Baking Cycle 5A ^d	Baking Control Num.°		Date	Time	Density ^d	Operator	Witness

^a Record the water weight and water temperature within 10 minutes from completion of the weighing process.

^b Recommended Vibration settings are at 450 VPM and twice the total vibrated weight. The total vibrated weight is the finish cast part and fixtures weight, for a setting of approximately 800 pound-force.

• A 10-digit Baking Control Number shall be used to define the date and the time of baking using the format with a 24-hour clock (i.e. 1021041515 is used for October 21, 2004 at 3:15 pm.)

^d Use the above weights to calculate the Density as shown below. If the density is greater, then 25.4 lb/ft³ then proceed with the next Baking Cycle. If the density is less then 19.4 lb/ft³ then contact the Company for disposition. Density = $\frac{(AfterBaking - CleanAndEmpty)}{2} \times 62.3 \text{ lb/ft}^3$ @ 70°F

(WithWater - CleanAndEmpty)

^f Recommend Before Baking weight is to be 330 to 386 lb range.

Attachment C	Specification Number JS-YMN3-801580	Revision C	
EQUIPMENT SPECIFICATION	Issue Date	Revision Date	
ES-3100 Shipping Package	11/24/03	6/1/06	
Top Plug Assembly Vibration Casting Control	Plant	Page	of
	Y-12	1	1

Caster's Company Name				Seller's Company Name			
Part Serial Number				Top Plug Assembly Drawing Number M2E801580A008			
Measured Weights	Casting Information			Comr	ments	Operator	Witness
±0.5 lb	Weight		Date				VV101055
Clean and Empty							
Filled with Water*							
Before Baking ^f							
After Baking Cycle 5							
After Baking Cycle 5A ^d							
After Welding							1
Water Information	Water Weight ±0.5 lb		Water Temp.	Comments		Operator	Witness
Water Conditions ^a		lb	°F			·····	
Casting Start Date	Air Temp. °F	Vibrati lbf	on Settings ^b VPM				
Operation	MCN		Time	Comments		Operator	Witness
Pour Start							
Pour Start							
Vibration Start					, , ,, <u></u> ,		
Vibration Stop							
Baking Cycle 5	Baking Cont		Date	Time	Density ^d	Operator	Witness
Baking Cycle 5A ^d	Baking Cont	rol Num. °	Date	Time	Density ^d	Operator	Witness

^a Record the water weight and water temperature within 10 minutes from completion of the weighing process.

^b Recommended Vibration settings are at 450 VPM and twice the total vibrated weight. The total vibrated weight is the finish cast part and fixtures weight, for a setting of approximately 120 pound-force.

- A 10-digit Baking Control Number shall be used to define the date and the time of baking using the format with a 24-hour clock (i.e. 1021041515 is used for October 21, 2004 at 3:15 pm.)
- ^d Use the above weights to calculate the Density as shown below. If the density is greater than 25.4 lb/ft³ then proceed with Baking Cycle 1A. If the density is, less then 19.4 lb/ft³ then contact the Company for disposition. $Density = \frac{(AfterBaking - CleanAndEmpty)}{(AfterBaking - CleanAndEmpty)} \times 62.3 \text{ lb/ft}^3 @ 70^{\circ}\text{F}$

$$\frac{(A)(c)}{(WithWater - CleanAndEmpty)} \times 62.3 \text{ lb/ft}^3 @ 70^{\circ}\text{F}$$

f Recommend Before Baking weight is to be 29.2 to 34.2 lb range.

EXEMPT FROM 10-155

Attachment D	Specification Number	Specification Number JS-YMN3-801580-A003-4			
	JS-YMN3-8015				
EQUIPMENT SPECIFICATION	Issue Date	Issue Date Revision Date 11/24/03 6/1/06			
ES-3100 Shipping Package	11/24/03				
Furnace and Baking Control	Plant	Page	of		
_	Y-12	1 Î	1		

Baking Company Name			Seller's Company Name				
Baking Control Number *			Furnace Serial Number				
Bake Start Date	Air Temp. F		Computer Data File Name ^b				
Baking Process Control	Furnace Check or NA	Start Time	Start Date	Stop Time	Stop Date	Operator	Witness
Baking Cycle (1) 200°F for 4 hrs.							
Baking Cycle (2) 275°F for 1 hrs.							
Baking Cycle (3) 350°F for 1 hrs.							
Baking Cycle (4) 425°F for 1 hrs.							
Baking Cycle (5) 500°F for 36 to 46 hrs. °							
Baking Cycle (1A) 200°F for 4 hrs.							
Baking Cycle (2A) 275°F for 1 hrs.							
Baking Cycle (3A) 350°F for 1 hrs.							
Baking Cycle (4A) 425°F for 1 hrs.							
Baking Cycle (5A) 500°F for 4.5 to 5.5 hrs. ^c							

^a Record the Baking Control Number in MMDDYYTIME (with time the 24 hour format i.e. 1021041515 is used for October 21, 2004 at 3:15 pm.) on Casting Forms B, C, and F for each part baked under this furnace heating cycle.

^b The sample baking cycle time and temperature data could be presented both in a digital and graphical form. For example, an Excel file showing the original data and time verses temperature plots shall be acceptable.

⁶ Calculate the density as shown on Forms B or C following this furnace heating cycle phase. If the part density is greater than 25.4 lb/ft³, then proceed with the remaining furnace phases.

Attachment E	Specification Number JS-YMN3-801580	Revision	
EQUIPMENT SPECIFICATION	Issue Date	Revision Date	
ES-3100 Shipping Package	11/24/03	6/1/06	
Wet Density Mixer Time Vibration Casting	Plant	Page	of
	Y-12	1	1

Caster's Company Name			Seller's Company Name			
Mixer Make and Model				I	· · ·	· · · · ·
Wet Mix Density Qualif	ication Numbe	rª		Mix Control Number ^a		<u></u>
Measured Weights ±0.5 lb	Cast	Casting Information		Comments	Operator	Witness
	Weight ^{c,}	^b (lb)	Date			
Clean and Empty						
Filled with Water ^b						
Water Information	Water We ±0.5		Water Temp.	Comments	Operator	Witness
Water Conditions			°F			
Casting Start Date	Air Temp. °F	Vibrati 1bf	on Settings ^c VPM	Mixer Speed Setting		
Operation	Weight°	^{, b} (lb)	Time (min)	Wet Density ^d (lb/ft ³)	Operator	Witness
Wet Cast ^c			1.0			
Wet Cast ^c			2.0			
Wet Cast ^c			3.0			
Wet Cast ^c			4.0			
Wet Cast ^c			5.0			
Wet Cast ^c			6.0			
Wet Cast ^c			7.0			
Wet Cast ^c			8.0			
Wet Cast ^c			9.0			
Wet Cast ^c			10.0			
Wet Cast ^c			11.0			
Wet Cast ^c			12.0		T	
Wet Cast ^c			13.0			
Wet Cast ^c			14.0			
Wet Cast ^c			15.0			
Curve fit the Time requi density and contact the C				Target Density 56.2 lb/ft ³		

a Record the Wet Mix Density Qualification Number and the Mix Control Number in MMDDYYTIME (with time the 24 hour format i.e. 1021041515 is used for October 21, 2004 at 3:15 pm.). Record water weight and water temperature within 10 minutes from completion of the weighing process.

ь

c Use both steel pails to calculate the weights and density.

d Recommended Vibration settings are at 450 VPM and twice the total vibrated weight. The total vibrated weight is the finish cast part and fixtures weight, for a setting of approximately 120 pound-force. ¢

Use the above weights to calculate the Wet Density as shown below.

Wet Density =
$$\frac{(WetCast - CleanAndEmpty)}{(WithWater - CleanAndEmpty)} \times 62.3 \text{ lb/ft}^3 @ 70\text{F}$$

EXEMPT FROM IO-155

.

Attachment F				Specification Number JS-YMN3-801580-A003-6			Revision	
	EQUIPMENT SPECIFICATION ES-3100 Shipping Package					Issue Date 11/24/03		e /06
Baked Qualification Density Sample Vibration Casting				Pla			Page 1	of 1
Caster's Company Name					Seller's Con	npany Name		
Mixer Make and Model		i	- 		L	<u></u>		
Baked Qualification Densit	ty Number ^a	·			Mix Control	Number ^a		
Measured Weights Casting Information ±0.5 lb Weight ±0.5 lb				Com	ments	Operator	Witness	
	Weight	±0.5 lb	Date	;				
Clean and Empty							· · · · ·	
Filled with Water [°]								
Before Baking								
After Baking Cycle 5								
Water Information	Water V ±0.5		Wate Temp	_	Comments		Operator	Witness
Water Conditions ^c				°F				
Casting Start Date	Air Temp. °F		n Settings	s ^ь /PM				
Operation	MC	N	Time	•	Comments		Operator	Witness
Pour Start					·			
Vibration Start								
Vibration Stop	* ₁₀	· · · · · · ·						
Baking Cycle 5	Baking Cor	ntrol Num.	Date	;	Time	Density ^d	Operator	Witness

^a Record the Baked Qualification Density Number and the Mix Control Number in MMDDYYTIME (with time the 24 hour format i.e. 1021041515 is used for October 21, 2004 at 3:15 pm.).

^b Recommended Vibration settings are at 450 VPM and twice the total vibrated weight. The total vibrated weight is the finish cast part and fixtures weight, for a setting of approximately 120 pound-force.

e Record water weight and water temperature within 10 minutes from completion of the weighing process

^d Use the above weights to calculate the Qualification Sample Density as shown below. If the density is greater then 23.4 lb/ft³ or less then 21.4 lb/ft³ contact the Company for disposition.

 $Qualification Density = \frac{(After Baking - Clean And Empty)}{(With Water - Clean And Empty)} \times 62.3 \text{ lb/ft}^3 @ 70^{\circ}\text{F}$

EXEMPT FROM IO-155

Appendix 1.4.5

EQUIPMENT SPECIFICATION, JS-YMN3-801580-A005, CASTING CATALOG NO. 277-4 NEUTRON ABSORBER FOR THE ES-3100 SHIPPING PACKAGE

Y/LF-717/Rev 2/ES-3100 HEU SAR/Ch-1/rlw/3-06-08

1-87

-

, 1-88

			SPECIFICATION NO		REV.	ISSUE DATE
				01580-A005	F	02-18-05
EQUIPMENT SPECIFICATION		PAGE PROCURED BY	iofii	REVISION DATE	/2006	
	ROVAL/REVISION F	PAGE		Y-12 L.L.C.		12 L.L.C.
PROJECT INTLE	ES-3100 Shipping Package)		Y-12	AR	EA
OB TITLE	Production Design Definitio	n	WO. ORESO. 7R	CPCA08	RECORD NUMBER	8-0328
Casting	Catalog No. 277-4 Neutron Ab	sorber For Th	e ES-3100 S	hipping Package	N	A
			PROVALS			
	SIGNATURE	DATE		SIGNATURE		DATE
REPARED BY	G. A. Byington /s/	2/18/05	PROJECT ENGINEER	G. A. Byington /s	:/	2/18/05
ISCIPLINE MAN	M. L. Goins /s/	2/18/05	D. A. T.	J. F. DeClue /	s/	2/18/05
	D. P. Sooter /s/	11 Feb 05				
		REVISION	IS/APPROVALS	· · · · · · · · · · · · · · · · · · ·		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ev. NO.			DESCRIPTION OF	REVISION		
4	Issued for Procurement.				,	
3	Changed the minimum L location on page 23 Form		5 to 30.1% at th	ree locations on pag	e 13 section 4.	7.3 and one
C	General changes. Went alumina cement.	from an off the	shelf item to a	two part system of b	oron carbide p	lus high
C	General revision. Reform	natted sections	and attachme	nts. Deleted referenc	es to drawing r	numbers.
E	The mass limits were changed to account for volume tolerances in the 277-4 annulus. Section 3.3.8, Item I, "inner liner" was replaced with "can". A.3.1 was separated into two sections; the second part of A.3.1 became A.3.1.a with the title "Net Count Rate Time Determination". Section A.6.3 was modified by adding "Define the repeatable accuracy for" before the first sentence. JS-YMN3-801580-A005-5 was expanded to include more approval data requirements. A typo was fixed on JS-YMN3-801580-A005-6. Added Rev level to Forms and headers.					
F	In Section 3.3.9.3, added reference to table on For		I minimum LOI	0% table based upon	cured density	and made
DOCTACED BY	SIGNATURE	DATE		SIGNATURE		DATE
	2 Buinter	10/11/06	PROGRAM MANAGER	e Inglito	m	11/21/06
	ty J. Soins	11/07/06	CRITICALLY SAFET	7De Clue		11/16/06
	Rott	11/2/61	SCALITY ASSURANCE	-DCe	2 3	11-20-2006
	This document has been review UNCLASSIFIED and not UCN	ed by a Y-12 D . This review o	C and UCNI R	O and has been dete tute clearance for pu	ermined to be blic release.	
	Name: K. K.	<u></u>		Date: _///b	\$/06	_

Date: 11/8/06

EQUIPMENT SPECIFICATION

SPECIFICATION NO.	REV.
JS-YMN3-801580-A005	F
ISSUE DATE	REVISION DATE
2/18/2005	10/12/2006
	PAGE
	ii of ii

CONTENTS

1.0	Scope :	1
2.0	Applicable Documents	6
	Requirements	
4.0	Quality Assurance	14
5.0	Preparation For Delivery	15
6.0	Manufacturer's Data	16
	<i>.</i>	

ATTACHMENTS

Appendix A	Prompt Gamma-ray Neutron A	ctivation Analysis Testing Setup & Tooling17				
FORM A	277-4 Dry Blend Batch Control	277-4 Dry Blend Batch Control				
FORM B	277-4 Wet Mix Control (Overc	ast or Special Batch)				
FORM C	ES-3100 Body Weldment Cast	ing Control				
FORM D	ES-3100 Neutron Absorber For	rm Casting Control				
FORM E	ES-3100 Heavy Can Spacer As	sembly Casting Control				
FORM F	ES-3100 Campanion Sample C	asting Control and Tests				
FORM AA	PGNAA Tooling Setup Control	1				
FORM AB	PGNAA Standard Setup					
FORM AC	PGNAA Daily Standard Setup	Control				
FORM AD	PGNAA Measurements					
Offer Apprasia	al Data - Subcontractor,	JS-YMN3-801580-A005-1				
Approval Data	a - Subcontractor,	JS-YMN3-801580-A005-2				
Certified Data	- Subcontractor,	JS-YMN3-801580-A005-3				
Offer Apprasia	al Data - PGNAA Subcontractor,	JS-YMN3-801580-A005-4				
Approval Data	a - PGNAA Subcontractor,	JS-YMN3-801580-A005-5				
Certified Data	- PGNAA Subcontractor,	JS-YMN3-801580-A005-6				

<u>1.0 Scope</u>

- 1.1 This specification describes the requirements for the procurement, preparation, casting, and verification of a neutron absorber material into the ES-3100 shipping package. The neutron absorber material shall be cast into ES-3100 Body Weldment (Figure 1), Neutron Absorber Form (Figures 4 and 5), Heavy Can Spacer Assembly (Figure 6), and 10 oz. double frication can(Figures 7 and 8) with tooling, i.e., Neutron Absorber Casting Funnel Assembly (Figure 2), and Body Weldment and Casting Funnel Assembly (Figure 3).
- 1.2 Definitions

277-0 - Thermo Electron's Catalog No. 277-0, Heat Resistant Shielding "Non-Borated" high alumina cement.

277-4 - A mixture of 277-0 and boron carbide (B₄C) powder to form a neutron absorber material.

Companion Sample Cans - The 10 oz. double friction cans in Figures 7 and 8 used for sampling.

Company - BWXT Y-12 L.L.C.

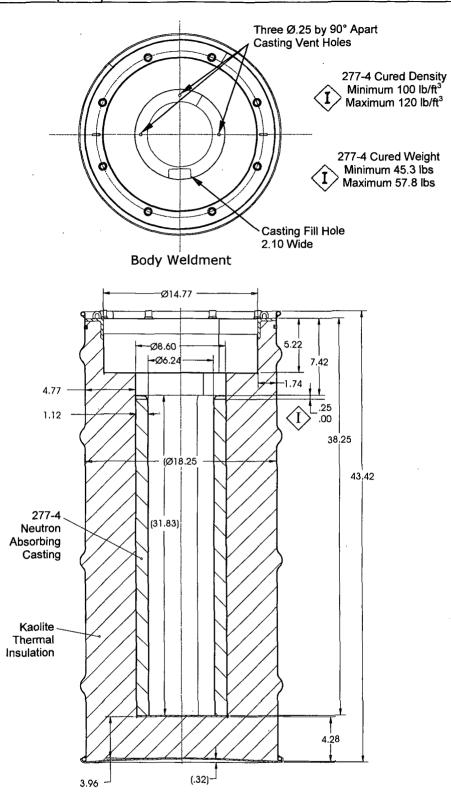
Dry Batch - A dry mix of batch size of 277-4.

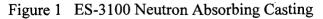
Dry Blend Batch - A thoroughly mixed Dry Batch.

Heavy Can Spacer Assembly - The 10 oz. double friction can in Figure 6.

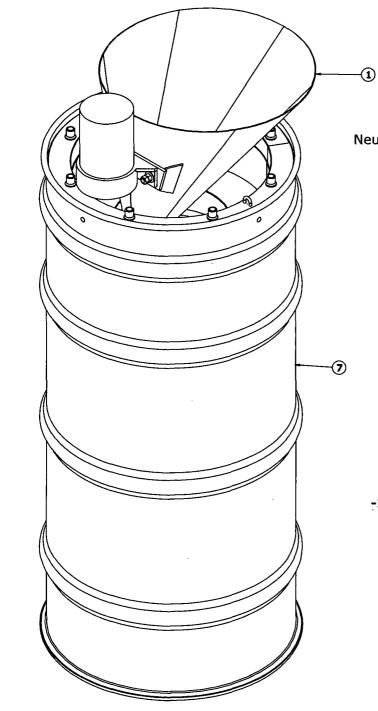
Overcast – Additional cast material required to achieve the fill requirements.

PGNAA Subcontractor – Independent testing firm that performs the Prompt Gamma-ray Neutron Analysis on the companion sample cans for the Company.

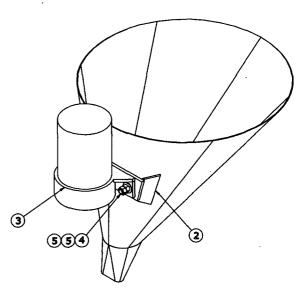

Process Procedures - Dry mixing, wet mixing, casting, sampling, and inspection procedures.


Subcontractor - The manufacturer of the ES-3100 Drum Assembly per JS-YMN3-801580-A001.

Vibration Casting – Vibration during casting to remove the air bubbles.

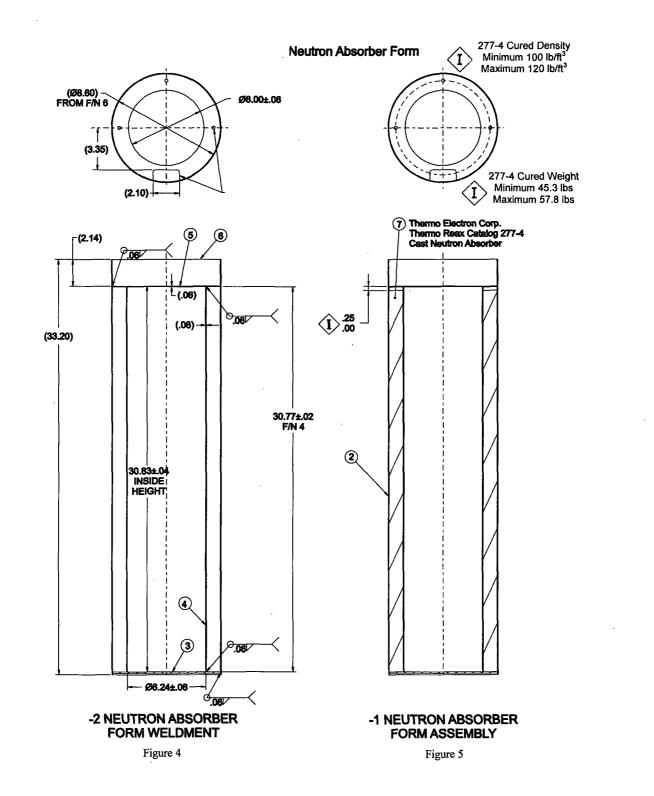

Wet Mix Batch - A wet mix of Dry Blend Batch and water.

PAGE 2 OF 20




```
EXEMPT FROM IO-155 (8-02)
```


Neutron Absorber Casting Funnel Assembly


-1 NEUTRON ABSORBER CASTING FUNNEL ASSEMBLY

VIBRATOR POWERED CASTING FUNNEL

Figure 2

-6 BODY WELDMENT AND CASTING FUNNEL ASSEMBLY

Figure 3

Y/LF-717/Rev 2/ES-3100 HEU SAR/Ch-1/rlw/3-06-08

1-94

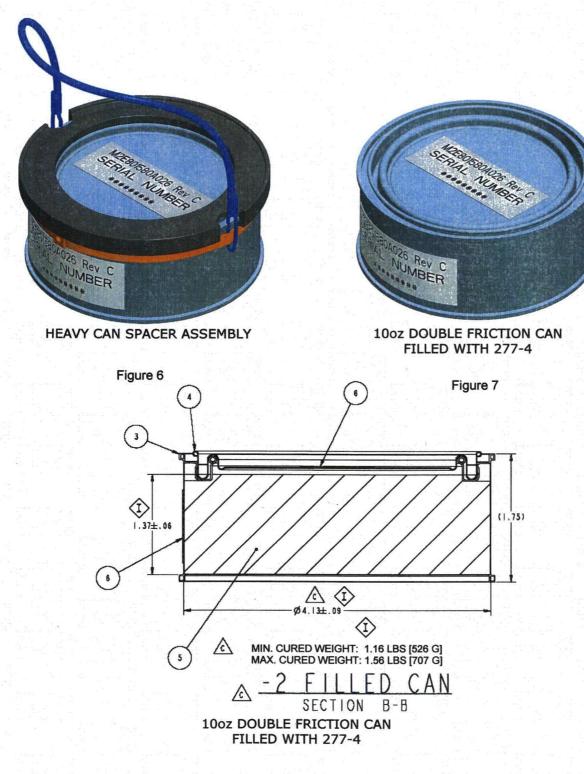


Figure 8

2.0 Applicable Documents

- 2.1 The following documents are a part of this specification. When there is a conflict between the specification and the applicable documents, the Subcontractor shall bring it to the attention of the Company for resolution.
- 2.2 Standards

2.3

2.4

ASTM A 380-99	Standard Practice for Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment and Systems			
ASTM C 750-03	Specification for Nuclear-Grade Boron Carbide Powder			
ASTM C 791-04	Test Methods for Chemical, Mass Spectrometric, and Spectrochemical Analysis of Nuclear-Grade Boron Carbide			
ASTM E 11-04	Standard Specification for Wire Cloth and Sieves for Testing Purposes			
10 CFR 71 Subpart H	Code of Federal Regulations - Energy - Packaging and Transportation of Radioactive Material - Quality Assurance			
Company Documents				
JS-YMN3-801580-A002	ES-3100 Drum Assembly			
JS-YMN3-801580-A003	Manufacturing Process Specification for Casting Kaolite TM Into the ES-3100 Shipping Package			
M2E801580A026	Heavy Can Spacer Assembly			
Referenced Documents (Not Pro	vided with Request for Proposal)			
DAC-PKG-801624-A001	Mixing Weights And Elemental Composition of 277-4 Neutron Poison used in the ES-3100			
Ltr. No. COR-NDA-04-93	Canberra Oak Ridge, LLC, January 5, 2005, Results of Prompt Gamma-ray Neutron Activation Analysis and Neutron Transmission Measurements on Prototype Confinement Vessel Inner Liners and Spacers.			
Ltr. No.: COR-NDA-05-015	Canberra Oak Ridge, LLC November 3, 2005, Results of Prompt Gamma-ray Neutron Activation Analysis On 20 Slip Fit Spacer Cans.			

Y/LF-717/Rev 2/ES-3100 HEU SAR/Ch-1/rlw/3-06-08

3.0 Requirements

3.1 General Requirements

The Subcontractor shall be responsible for supplying all materials, services, facilities, and equipment to meet the requirements of this specification unless otherwise noted. Items needed to meet the requirements of this specification that are not identified in this specification shall be specified by the Subcontractor and submitted as Approval Data.

- 3.2 Equipment Requirements
- 3.2.1 Certified Scales

All weighing operations of assemblies and materials shall be conducted on certified scales with a minimum accuracy of $\pm 1\%$ of the required measurement or as specified by the measurement tolerance. Scale certification shall be submitted as Approval Data.

3.2.2 Dry Blending the 277-0 and B_4C

A small parts tumbler shall be used to dry blend the ingredients. The small parts tumbler shall be a Multi-Barrel Small Parts Tumbler Benchtop Base (McMaster-Carr No. 44235A11) with Multi-Barrel Small Parts Tumbler 8 Gallon Barrel, 15-3/4" Dia X 14-3/4" W (McMaster-Carr No. 44235A24) or Company approved equal.

3.2.3 Mortar or Plaster Mixer

A mortar or plaster type mixer with moving vanes to shear the wet mix shall be used. The batch volume is approximately 0.5 ft^3 (15 quarts or 3.8 gallons). Therefore, it is recommended that the mixer volume should be 1.5 to 2 times the mix volume or around 0.75 to 1.0 ft³ (22.5 to 30 quarts, ~6 to 8 gallons). The 277-4 wet mix is thixotropic when mixed and it is recommended that a heavy duty adjustable vibrator mounted to the mixer for both mixing and pouring is used.

3.2.4 Small Plaster Mixer

A drill-powered mortar or plaster mixer and a 5-gallon plastic bucket may be used on small batches of 277-4 instead of the mortar or plaster type mixer. The 5-gallon plastic bucket shall be placed upon the Heavy Duty Drum Vibrator (see Section 3.2.6).

3.2.5 Vibration Powered Funnel Assembly

The Neutron Absorber Casting Funnel Assembly with a vibration- powered funnel (Figures 2 and 3) shall fill both the Body Weldment (Figure 1) and the Neutron Absorber Form (Figure 4). The Casting Funnel Assembly may be modified as required by the Subcontractor to get the wet mix to flow.

3.2.6 Heavy Duty Drum Vibrator

A Heavy Duty Drum Vibrator/Packer shall be used to hold the Body Weldment (Figure 1) or Neutron Absorber Form (Figure 4) for vibration casting the 277-4 into the stainless steel forms. The Heavy Duty Drum Vibrator/Packer shall be McMaster-Carr No. 5809K11, or Company approved equal.

3.2.7 Bench Vibrator

A bench vibrator shall be used during the mixing of the companion sample cans and Heavy Spacer Can Assemblies. The bench vibrator shall be Tabletop Vibration/Mixing Table 10-in. by 7-in. Platform, 10-lb Capacity Continuous Use (McMaster-Carr No. 5714K61) or Company approved equal.

- 3.3 277-4 Neutron Absorber
- 3.3.1 Raw Casting Material Requirements and Inspection

3.3.1.1 277-0

Thermo Electron Corporation Catalog No. 277-0 Heat Resistant Shielding "Non-Borated" shall be procured. The manufacturer model or catalog number and expiration date shall be clearly indicated on the container. A Certificate of Conformance shall be provided with each lot or batch. The Certificate of Conformance shall include the lot or batch number and the expiration date. The 277-0 shall be sealed and stored in a dry place.

3.3.1.2 Type 1 Nuclear-Grade Boron Carbide Powder

 B_4C powder shall be procured as Type 1 Nuclear-Grade Boron Carbide Powder per ASTM C 750. 100% of the powder shall pass through a No. 140 Sieve per ASTM E 11. A Certificate of Conformance and a copy of the chemical and elemental analysis purity in accordance with ASTM C 791 shall be provided.

3.3.1.3 Water

The water shall be potable, filtered through a 20-micron filter and an activated charcoal filter, have a chlorine content of less than 4 ppm, and have a temperature of $65\pm15^{\circ}$ F. Unfiltered potable water may be used for the cleaning of equipment used to cast the neutron absorber system.

3.3.2 Dry Blending Process

3.3.2.1 Dry Batch

A dry batch of 277-4 shall be a mixture of 93.6 wt% 277-0 and 6.4 wt% B_4C . It shall be of sufficient quantity to fill one ES-3100 Body Weldment or Neutron Absorber Form, i.e., approximately 0.55 ft³ poured volume and 50 lbs. of dry 277-4 weight. The batch size may be adjusted as necessary based on experience for the ES-3100 Body Weldment or Neutron Absorber Form. The tolerance for 277-0 and B_4C weighting shall be the following:

277-4 Dry Batch Size	277-0	B ₄ C
Equal to or greater than 30 lbs.	±.2 lbs.	±.01 lbs.
Less than 30 lbs	±.01 lbs.	±.01 lbs.

The data shall be recorded on Form A.

Y/LF-717/Rev 2/ES-3100 HEU SAR/Ch-1/rlw/3-06-08

3.3.2.2 Blended Dry Batch

The dry batch of 277-4 shall be thoroughly blended. The data shall be recorded on Form A.

If the blended dry batch is not used immediately, the blended dry batch shall be sealed and stored in a dry place with a Blended Dry Batch control number attached to the container.

The Blended Dry Batch shall not be used if the 277-0 expiration date has expired.

3.3.3 Wet Mixing

The weight of the dry mix and water shall be to the following weight proportions of 100% dry mix and $27\pm1\%$ water. The 277-4 is thixotropic when mixed. It is recommended to have a heavy duty adjustable vibrator mounted to the mixer for both mixing and pouring. Place the water in the mixer and add the dry mix into the water. Before casting, mix the dry powder and water for at least 3 minutes and less than 60 minutes. Any material in the mixer after 60 minutes shall be discarded. Mix only in a room with a temperature range of $70\pm25^{\circ}F$.

The data shall be recorded on the appropriate form, i.e., Form B for overcast, Form C for Body Weldment, Form D for Neutron Absorber Form, and Form E for Heavy Can Spacer Assembly/PGNAA Acceptance Standards.

- 3.3.4 Body Weldment and Neutron Absorber Form Vibration Casting
- 3.3.4.1 Vibration Casting Requirements for Body Weldment and Neutron Absorber Form

During the vibration casting of the 277-4, record the Body Weldment (Figure 1) casting data on Form C and the Neutron Absorber Form (Figure 5) casting data on Form D. A stainless steel vibration powered funnel (i.e., Neutron Absorber Funnel Assembly shown in Figure 3) fits inside the 2.10-in. wide slotted fill hole shown in Body Weldment and in Neutron Absorber Form.

- a. Weigh and record the data on Form C or on Form D.
- b. Weigh and record the water weight and temperature data when filled with water to within .25 in. of the top metal surface.
- c. Remove the water.
- d. Secure the part on the drum vibrator.
- e. Plug the 6.24 in. diameter cavity to keep the wet mix from falling into the liner bottom.
- f. Place the Neutron Absorber Funnel Assembly in the slot and secure in place. If required, additional vibrators may be added.
- g. Prepare the Wet Mix per Section 3.3.3.
- h. Start the drum vibrator.
- i. Scoop the wet mix into the Neutron Absorber Funnel Assembly.
- j. Turn on the vibrating funnel and adjust the vibration force until the wet mix flows.
- k. About half way through filling the wet mix in either the Body Weldment or Neutron Absorber Form, cast two companion samples for Section 3.3.7. Record the companion sample data on Form F and either Form C or Form D.
- 1. Continue filling the wet mix until the part will take no more.
- m. After filling is complete, vibrate the container for 45±15 seconds to remove air bubbles.

EXEMPT FROM IO-155 (8-02)

3.3.4.2 Overcast Requirements for Body Weldment and Neutron Absorber Form

A few hours after casting, the 277-4 will settle in the vertical direction and leave a layer of watery fluid on the top of the casting. Remove this fluid and overcast the top between 4 and 24 hours from the first casting. After the overcast has cured for between 4 and 24 hours inspect the depth of casting to the top metal surface and verify that it is within 0.25 in. If not within the 0.25 in., cast additional 277-4 material and perform the following:

- a. Remove the water.
- b. Secure the Body Weldment or Neutron Absorber Form on the drum vibrator.
- c. Plug the 6.24 in. diameter cavity to keep the wet mix from falling into the liner bottom.
- d. Record the Overcast Wet Mix Control Number (WMCN) on the appropriate casting data form.
- e. Prepare the Wet Mix per Section 3.3.3.
- f. Start the drum vibrator.
- g. Scoop the wet mix into the Body Weldment or Neutron Absorber Form Assembly until the vent hole is filled.

The final shrinkage of the 277-4 shall be within 0.25 in. of the metal surface as shown in Figures 1 and 5.

3.3.4.3 Curing Requirements Body Weldment and Neutron Absorber Form

Cover the newly cast wet component with plastic or metal for 7 days. Do not store the cast 277-4 castings in temperatures below 35°F for the first 30 days after casting.

After 7 days, remove the plastic or metal cover and dehydrated using either or both vacuum and heat to create an acceptable density and weight. If heat is used, the maximum temperature of the inner liner shall not exceed 250°F.

Record the diamond I measurements shown on Figures 1 and 5 on the appropriate casting data forms. The acceptable cured height measurement shall be less than 0.25 inches. The acceptable cured casting weight shall be between 45.3 and 57.8 lbs. Cured casting weights shall be used to calculate the cured density. If the cured casting density is greater than 120 lb/ft³, continue the dehydration process. If the cured casting density is less than 100 lb/ft³, the casting shall be unacceptable, the appropriate form shall be completed, and a copy of the form shall be sent to the Company.

3.3.5 Heavy Can Spacer Assembly

The Heavy Can Spacer Assembly shown in Figure 6 shall be the 10-oz. double friction metal can as shown in Figures 7 and 8. The cured casting weight for each can shall be measured and the cured casting density recorded on Form E. A cured cast density of 100 to 120 lb/ft³ and a cured weight range of 1.16 to 1.56 lbs shall be acceptable. If the cured casting density is outside the acceptable range, a copy of the form shall be sent to the Company.

Two cans from the middle of the lot on Form E, i.e., a maximum lot of 22 cans, shall be selected and identified as companion sample cans. Cans that are not from the middle of the lot on Form may be selected with Company approval.

3.3.6 PGNAA Acceptance Standards

The PGNAA Acceptance Standards shall be made with a Company representative witnessing the manufacturing processes of weighing, blending, wet mixing, and casting. The PGNAA Acceptance Standards shall be the 10-oz. double friction metal can as shown in Figures 7 and 8. The cured casting weight for each can shall be measured and the cured casting density recorded on Form E. A cured casting density of 100 to 120 lb/ft³ and a cured casting weight of 1.16 to 1.56 lbs shall be acceptable. If the cured casting density is outside the acceptable range, a copy of the form shall be sent to the Company.

One can from the middle of the lot on Form E, i.e., a maximum lot of 22 cans, shall be selected and identified as a companion sample can for Loss On Drying (LOD) testing. The remainder of the lot shall be sent to the PGNAA Subcontractor.

3.3.7 Companion Sample Cans

In addition to the companion sample cans selected in Sections 3.3.5 and 3.3.6, two companion sample cans shall be made half way through the casting process for the Body Weldment and the Neutron Absorber Form per Section 3.3.4.1. Companion sample can data shall be recorded on Test Form F.

- a. The cured casting density of all companion sample cans shall be calculated per Section 3.3.9.2 and recorded on Form F. If the cured casting density is outside the acceptable range, a copy of the form shall be sent to the Company. A low cured casting density of a companion sample can shall not be a reason to reject the Body Weldment, Neutron Absorber Form, Heavy Can Spacer Assembly casting lot, or PGNAA Acceptance Standards casting lot.
- b. The odd serial number companion sample cans for the Body Weldment, Neutron Absorber Form, Heavy Can Spacer Assembly casting lot, or PGNAA Acceptance Standards casting lot shall be LOD tested to verify the hydrogen content per Section 3.3.9.3.
- c. The even serial number companion sample cans for the Body Weldment, Neutron Absorber Form, or Heavy Can Spacer Assembly casting lot shall be PGNAA tested to verify the ¹⁰B content per Section 3.3.9.4.
- 3.3.8 Casting the 10 oz. Double Friction Metal Cans
 - a. Select a labeled can which has a drawing and serial number per drawing M2E801580A026.
 - b. Weigh the empty labeled can and lid and record the casting can data on Forms C, D, or E. It is acceptable to weigh ten cans with ten lids for each purchase order of cans and to use the average can and lid weight on each form.
 - c. Weigh the water and measure the water temperature. Record this data on Form C, D, or E. Fill with water only up to the bottom of the inside rim. The can lid shall be on the scale. It is acceptable to weigh the water weight of the first ten cans with ten lids of the same lot of cans and to use the average water weight for each of the following cans if the measurements are consistent.
 - d. Remove the water from the cans.
 - e. Prepare the Wet Mix Batch following Section 3.3.3.
 - f. Hold the can on the bench vibrator during filling with the 277-4 wet mix. Quickly vibrate and continue to add wet mix to the can lip.
 - g. Once all of the cans are full of wet mix, return the first can back to the vibrator for at least 3 minute at a high frequency setting. During the 3 minutes of vibration, continue to add 277-4 wet mix until the can stays full. Repeat this process for all the cans in the casting lot.
 - h. Between 1 to 24 hours after casting, scrape the top of the casting to within 0.19±0.03 from the can rim.
 - i. Clean the can rim around the edge per Section 3.4.2.

EXEMPT FROM IO-155 (8-02)

Y/LF-717/Rev 2/ES-3100 HEU SAR/Ch-1/rlw/3-06-08

- j. Perform an in-process measurement of the scraped casting height to ensure that the casting height parameters are met shown in Figure 8.
- k. Cover the casting by placing the properly labeled can lid on the can for 7 days.
- 1. Remove the can lid and let the can air dry or use either or both vacuum and heat to create an acceptable density and weight. If heat is used, the maximum temperature of the can shall not exceed 250°F.
- m. Measure casting height and weigh the can with lid. Record this data on Forms C, D, or E.
- n. Record the final Companion Sample Can casting density, weight, or casting height measurements data on Form F.
- 3.3.9 Verification

All verification shall be completed after the casting is cured.

3.3.9.1 Cured Casting Density Verification

The density of cured casting in the Body Weldment, Neutron Absorber Form, Heavy Can Spacer Assembly, and PGNAA Acceptance Standards shall be determined by weighing the casting container before casting, while filled with water, after casting, and when cured.

Since the density of water is known, a simple relationship between the weight differences shall determine the cured casting density.

$$Density = \left(\frac{Cured - Empty}{WithWater - Empty}\right) \times 62.3 \text{ lb/ft}^3$$

3.3.9.2 Companion Sample Can Cured Casting Density Verification

The density of cured casting in each companion sample can shall be determined by weighing the can before casting, while filled with water, after casting, and when cured.

Since the density of water is known, a simple relationship between the weight differences shall determine the cured casting density.

$$Density = \left(\frac{Cured - Empty}{WithWater - Empty}\right) \times 62.3 \text{ lb/ft}^3$$

3.3.9.3 Companion Sample LOD Verification

The companion sample cans identified in Section 3.3.7.b shall be LOD tested. The acceptable LOD percent range shall be based upon the companion sample can cured casting density in Section 3.3.9.2. The Acceptable Maximum and Minimum LOD% at Density is in this table developed from data in DAC-PKG-801624-A001, Table 7, 277 Composition @ Extreme Densities and LOD% and compared to the average values as manufactured.

Acceptable Maximum and Minimum							
LOD% at Density							
Density	Maximum	Minimum					
(lb/ft ³)	LOD%	LOD%					
100	31.80%	28.61%					
101	32.47%	28.33%					
102	33.12%	28.06%					
103	33.77%	27.79%					
104	34.40%	27.52%					
105	35.03%	27.26%					
106	35.64%	27.00%					
107	36.25%	26.75%					
108	36.84%	26.50%					
109	37.42%	26.25%					
110	37.99%	26.01%					
111	38.56%	25.78%					
112	39.11%	25.55%					
113	39.65%	25.32%					
114	40.18%	25.10%					
115	40.70%	24.88%					
116	41.21%	24.66%					
117	41.71%	24.45%					
118	42.20%	24.25%					
119	42.68%	24.05%					
120	43.15%	23.85%					

- a. The lid shall have the serial number permanently transferred by vibro etch or other method.
- b. The lid shall have a small vent hole in it. It is recommended that a nail be used to punch a hole 0.12±0.06 in. diameter in the metal lid from the inside surface of the lid.
- c. Match the can serial numbers and place the lid on the can.
- d. The weight of the can shall be recorded on Form F.
- e. The cans shall be placed in an oven at 1500±150°F (800°C) for 4 hours.
- f. The weight of the can shall be recorded on Form F with the can temperature not below 100°F.
- g. Calculate the LOD% using the equation below and record it on Form F. Due to can oxidizing and gaining weight during the heating cycle, a 0.024 lb correction factor is included in the following LOD% calculation.

$$LOD\% = \left[1 - \frac{(LODWeight - Empty - 0.024lb)}{(Cured \& Clean - Empty)}\right] \times 100\%$$

h. Verify that the LOD% is within the acceptable range. If water content is outside the acceptable range, a copy of the form shall be sent to the Company.

EXEMPT FROM IO-155 (8-02)

3.3.9.4 PGNAA Verification

The companion sample cans identified testing in Section 3.3.7.c shall be sent to the PGNAA Subcontractor. The PGNAA Subcontractor will test to the requirements in Appendix A and record the data on Forms AA to AD. The PGNAA Subcontractor will send copies of the completed Forms AC and AD to the Subcontractor and Company.

The PGNAA testing acceptance results on From AD shall be transferred to Form F.

- 3.4 Cleaning Requirements
- 3.4.1 Contact with Chlorides or Fluorides

The stainless steel material shall be protected from contact with chlorides in accordance with ASTM A380, paragraph 8.5, during all operations including packaging. The Material Safety Data Sheet (MSDS) for all cleaning solutions or products used on the ES-3100 shall be submitted as Approval Data to verify that no chlorides are present.

3.4.2 Satisfactory Cleanliness

Cleaning procedures for the stainless steel per Section 3.4 of equipment specification JS-YMN3-801580-A002 shall be submitted as Approval Data. Only non-chloride-bearing chemicals shall be used for cleaning (e.g., trisodium phosphate detergent or acetone). Water used in cleaning shall have a maximum chlorine content of 4 parts per million.

After casting but prior to packaging, stainless steel components of the forms and cans shall be cleaned per the approved cleaning procedures. Satisfactory cleanliness shall be determined by visual inspection as can be observed by a person with normal visual acuity (natural or corrected) and without magnification. Light intensity of at least 100 ft-candles shall be provided on the surface to be inspected.

4.0 Quality Assurance

4.1 Quality Assurance Program

The subcontractors shall have in place and maintain a Quality Assurance (QA) Program and inspection system that meets the requirements of 10 CFR 71 Subpart H. If not previously submitted, an uncontrolled copy of the subcontractor's QA Program shall be submitted as Offer Appraisal Data.

- 4.2 ES-3100 Casting Quality Assurance Requirements
- 4.2.1 ES-3100 Documentation Package

All records shall be identified based on the ES-3100 serial numbers. The ES-3100 Documentation Package shall be provided as Certified Data with each ES-3100 casting. The ES-3100 Documentation Package shall be complete, legible, indexed, and traceable to the material supplied and include the following:

- a. Material measuring, dry blending, wet mixing, casting, sampling, and inspection forms, i.e, Forms A through F.
- b. A Certificate of Compliance for each lot of the 277-0 Heat Resistant Shielding "Non-Borated" dry mix documentation with the expiration date identified on each container.

EXEMPT FROM IO-155 (8-02)

Y/LF-717/Rev 2/ES-3100 HEU SAR/Ch-1/rlw/3-06-08

- c. A Certificate of Compliances for B₄C powder to Type 1 Nuclear-Grade Boron Carbide Powder per ASTM C 750, chemical and elemental analysis per ASTM C 791, and 100% of the powder passes through a No. 140 Sieve per ASTM E 11.
- d. A Certificate of Compliance signed by an officer of the Subcontractor confirming that the cast neutron absorber in ES-3100 shipping package meets the subcontract requirements.

4.2.2 Batch Processes

Batch processes such as mixing, pouring, curing, sampling, inspection, etc., shall be performed in accordance with detailed written procedures. These procedures shall specifically describe the exact manner in which these processes are to be performed. All records shall be traceable to the ES-3100 Shipping Package, Neutron Absorber Form, Heavy Spacer Can Assembly, PGNAA Acceptance Stands or Companion can serial numbers.

4.2.3 Materials Traceability

A manufacturing lot or batch number shall identify material furnished to make up the neutron absorber system. Materials shall be identified by material type; applicable specification and revision number, and be traceable to their lot numbers. Traceability records shall be available for review by the Company's representative.

4.2.4 Procedures

Preparation, installation, sample collection, and inspection processes shall be controlled and performed by qualified personnel. The procedures must incorporate a mechanism to identify process step completion. Procedures shall be submitted as Approval Data. The approved procedures shall be provided as Certified Data prior to the start of casting.

4.2.5 Training and Qualification of Personnel

The Subcontractor shall provide for the training and qualification of personnel to ensure their competence in the use of process procedures and specifications. Records of personnel qualifications shall be made available to the Company upon request. Only those personnel who have been qualified to perform a specific batch process used in the casting of Kaolite per equipment specification JS-YMN3-801580-A003 shall be used to perform work in this process.

4.2.6 The Company reserves the right to request any documentation and to witness any of the processes performed in accordance with this specification.

5.0 Preparation for Delivery

After cleaning of stainless steel surfaces per Section 3.4, aluminum foil duct tape shall be applied over the fill and vent holes in the Body Weldment (Figure 1) and the Neutron Absorber Form (Figure 5).

6.0 Manufacturer's Data

- 6.1 Offer Appraisal Data shall be submitted with the offer. This data shall become part of the subcontract requirements.
- 6.2 Approval Data will be reviewed and approved by the Company. Subcontractor shall not proceed with the casting activity until Company approval is given for all the Approval Data. The Approval Data shall be transmitted to the Company by the dates agreed to by the Subcontractor and the Company Subcontractor Administrator.
- 6.3 Certified Data will be used by the Company as the record for the ES-3100 shipping packages. The Certified Data shall be transmitted as noted.
- 6.4 A request for Company approved equal shall be submitted as Approval Data. Adequate information shall be provided with the request for Company approved equal so that the Company can determine if the item is equivalent.

ATTACHMENT A -

Prompt Gamma-ray Neutron Activation Analysis Testing Setup & Tooling

(Page 1 of 4)

A.1 Prompt Gamma-ray Neutron Activation Analysis Can Testing

Prompt Gamma-ray Neutron Activation Analysis (PGNAA) of boron performs one of the acceptances of the ES-3100 277-4 casting. Specifically, ¹⁰B gives rise to a 478-keV gamma-ray produced by the recoil of the lithium nucleus from the neutrons captured in ¹⁰B. The gamma-ray is Doppler broadened by 10–15 keV. The PGNAA shall be performed upon a companion sample can cast made during the drum casting in accordance with JS-YMN3-801580-A005 and Body Weldment (Figure 1), Neutron Absorber Form (Figure 5), Heavy Can Spacer Assembly (Figure 6), and the cast companion samples in the same 10-oz. double friction metal can on (Figures 7 and 8). PGNAA is a relative measurement therefore daily baselines are required to define the acceptance values.

Canberra Industries to perform the PGNAA testing.

Canberra Industries, Inc. Linda C. Ostrowski 1133-C Oak Ridge Turnpike Suite 260 Oak Ridge, TN 37830-6442 865-241-3963 fax 865-241-3965

A.2 PGNAA Quality Assurances

The equipment and software used in the PGNAA shall be certified to a national standard.

A.3 PGNAA Measurements Setup

A PGNAA measurement setup number shall be required for each unique setup recording the pertinent data of the setup on Form AA. A new setup is required from previous prototypical work. Several setups may be tried to determine the most efficient testing setup. These changes shall be documented using Form AA. Once the setup is defined on Form AA reference the setup number each time it is used. Measure the PGNAA acceptance standards using the defined setup to verify the setup distances are repeatable within ± 0.13 -in.

A.3.1 Net Count Rate Measurements

Time shall be consistently applied throughout all of the PGNAA testing. For the prototype system setup, a time of at least 15 minutes (900 seconds) for each spectrum measurement was found to be satisfactory. A net count rate (NCR) in counts per second shall be used throughout with a set target standard time limit of around 900 seconds. Record both the count and time in seconds for that count on Form AA and calculate the count rate to three decimal places (i.e., 34.245 counts/sec).

A.3.1.a Net Count Rate Time Determination

The time of the measurement shall be determined by performing the Tooling Setup on Form AA at different times like 300, 600, 900, 1800, and 72000 seconds. Determine the accuracy effect of the total counting time on the counting statistics, based upon at least a 72000 seconds (20 hour) count. The testing time shall be re-evaluated when a significant change in the source system occurs.

A.3.2 Neutron Source

A spontaneous fission neutron source similar to the $1.8 - \mu g^{252}$ Cf prototype shall be used to perform the tests. This source was rated at 4.4×10^6 neutrons/sec on November 15, 2004. The neutron source is sealed in a 32.5-mm-long, 9.4-mm-diameter stainless steel cylinder and placed in a collimator.

Y/LF-717/Rev 2/ES-3100 HEU SAR/Ch-1/rlw/3-06-08

ATTACHMENT A (Page 2 of 4)

A.3.3 Collimator and Neutron Source Setup

A collimator similar to the prototype collimator shall be used to hold the source. The prototype collimator was a 3-in. cube of high-density polyethylene covered on five sides with 2 mm of cadmium as a neutron shield with at least 0.5-in. of lead on six sides as a gamma shield. The center of the sixth side of the polyethylene cube has a 9.5-mm hole into which the source was pressed. The sixth side is covered with cadmium except for a 1-in. square in the center. A 1-in. diameter hole in the cadmium at the source location shall be provided in the collimator to generate a better shaped neutron source for the sample can tests. The location of the collimator and source shall be defined in a fixture and shall be inspected to be repeatable to within ± 0.13 -in. to locate the collimator, can, detector, and other materials, e.g., polyethylene.

Record the setup and the results in the net detector count rate on Form AA. Record the setup source distance $(SD) \pm 0.13$ -in. from the sample can lid. Move the filled sample can further away from the source, and repeat the process, increasing the distance in increments to identify the setup distance that maximizes the NCR for that source arrangement. Record the setup information on Form AA.

A.3.4 Detector

A detector system similar to the prototype shall be used. The prototype was a Canberra Model BE3825 Broad Energy Germanium (BEGe) detector, which was a gamma-ray detector, in a 2-in. thick lead shield with a Canberra Model 7935SL-7 cryostat and Canberra Model 2002CSL preamplifier to capture the gamma spectrum for the PGNAA measurements. This detector has a side lead shield but no shielding in the front to collimate the field-of-view. An Inspector 2000 along with the Genie2K gamma-ray analysis software package from Canberra was used for distinguishing the ¹⁰B peak from the rest of the gamma-ray spectrum. It is recommended that a fixture be made to locate the collimator, can, and detector. Document the method used to determine the Compton boundary end points.

A.3.5 Detector Net Count Rate Determination

Use software equivalent to the Genie2K gamma-ray analysis software package from Canberra for performing the gamma-ray spectrum collection and analysis. The peak fitting routine in Genie2K does not expect a peak as broad as 10–15 keV; therefore, a region-of-interest (ROI) was set around the broad boron neutron activation peak of 478 keV. The data gathered has three components. The gross count is the total count of the gamma-rays detected with an energy that falls within the ROI. The Compton background is the portion of the gross count that is caused by scattered gamma-rays. The NCR is the portion of the total count that is from the boron in a period of time. The NCR is the difference between the gross and the Compton counts.

A.3.6 Detector Location Setup

Y/LF-717/Rev 2/ES-3100 HEU SAR/Ch-1/rlw/3-06-08

The setup distance of the prototype detector setup was as close as possible using about 1-in. thick lead as a gamma shield to keep the detector noise signal low. This thickness was applied during the PGNAA documented in Ltr. No.: COR-NDA-05-015; Canberra Oak Ridge, LLC November 3, 2005, *Results of Prompt Gamma-ray Neutron Activation Analysis On 20 Slip Fit Spacer Cans.* Figure A.1 shows the direction this development work was heading. Document and verify that the detector setup distance (DD) from the sample can generates a maximum NCR by adjusting the detector setup distance and repeating this test. It is recommended that a fixture be made to locate the collimator, can, and detector.

ATTACHMENT A (Page 3 of 4)

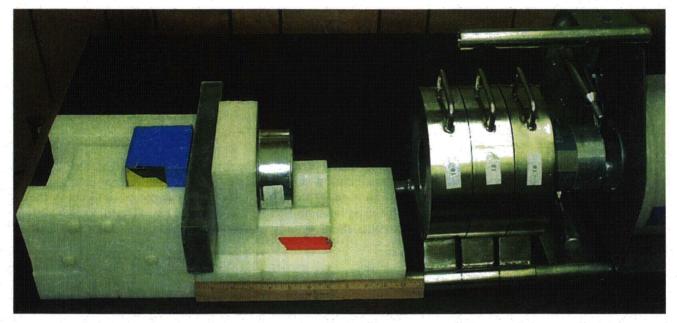


Figure A.1 Preliminary Tooling Generated for PGNAA

A.3.7 Detector Operation Setup

Set the detector setup distance (DD) ± 0.13 -in. and the setup source distance (SD) ± 0.13 -in. from the filled sample can. Record the set detector setup distance, setup source distance, 277-4 sample serial number, NCR value, and the day and time of the measurement in the setup form. Repeat this final test measurement in 30 minutes to verify the stability of the detector and this shall become the setup standard test measurement on Form AA. The repeatable measurement tolerances shall be part of the testing fixture certification inspection.

A.3.8 Net Count Rate Baseline Measurements

Once the setup is completed and the fixture dimensions are certified, Form AB shall be used to record the NCR for the twenty acceptance standards using the 10-oz. double friction metal cans. The baseline acceptance 277-4 NCR shall be set daily using five of the twenty acceptance standards using the 10-oz. double friction metal cans and recorded on Form AC. The twenty acceptance standards cans shall be inspected with a Company representative as a witness.

Select five PGNAA acceptance standards from Form AB as the Daily Standard Setup that generate approximately the same average and standard deviation as on Form AB. The baseline acceptance 277-4 NCR shall be set daily using five of the twenty acceptance standards using the 10-oz. double friction metal cans and recorded on Form AC. Verify the Daily Standard cans selection with the Company. The Body Weldment (Drum), Neutron Absorber Form (From), and Heavy Can Spacer Assembly (Lot) acceptance criteria for the ¹⁰B interaction is based upon this test. The Minimum acceptable standard NCR shall be set daily using the following formula.

Minimum Acceptable NCR = Can Five NCR Average - 3 × Standard Deviation Can Five NCR

ATTACHMENT A (Page 4 of 4)

A.4 Net Count Rate Acceptance Measurements

The NCR acceptance measurement shall be made following the Daily Standard Setup using Form AC and calculating a Pass Rate. Record the PGNAA setup number, day and start time of the measurement, the associated Body Weldment, Neutron Absorber Form, Heavy Can Spacer Assembly Lot's serial number, companion sample can serial number, actual net count, acceptable net count, and testing results on the inspection form. For the testing results, if the actual NCR is equal or above the Pass Rate, then record a PASS; if less than, enter FAIL in the test Form AD. It is acceptable to group the test results for several sample cans on one form following one testing setup.

Once a 277-4 sample can NCR failure has occurred verify that the setup has not shifted by rerunning the Daily Standard Setup using Form AC and calculate a new Pass Rate. If the Pass Rate has changed more then 1% than perform a new detector operation setup and NCR baseline measurements and verify the test failure rate by retesting the failed can. If the companion sample can receives two failures in a row, the associated parts shall be rejected from service, the Company Subcontract Administrator notified, and the testing continued.

A.5 Documentation of the Acceptance or Rejection Measurements

Documentation of the acceptance or rejection NCR measurements shall be made with the Forms AA through AD plus a detailed description of the active NCR measurement hardware and software that was used.

A.6 Results

A.6.1 Equipment and Software Quality Assurances

The national standard used in the PGNAA (see Section A.2) shall be provided as Certified Data.

A.6.2 Certified Tooling Setup and Repeatable Dimensions

The final tooling setup shall be manufactured and certified that the placement of the source, detector, sample can, and tooling materials are dimensional stable and repeatable to ± 0.13 -in.

A.6.3 Measurement Time and Repeatable Accuracy

Define the repeatable accuracy for the Nate Rate Count time selection for the production certification inspections. The Nate Rate Count time justification (see Section A.3.1.a) shall be submitted as Approval Data.

A.6.4 Measurement Software and Methodology

For the final setup the measurement software and methodology method used to generate the net counts (see Section A.3.4) shall be documented and provided as Certified Data.

A.6.5 Forms AA through AD

Y/LF-717/Rev 2/ES-3100 HEU SAR/Ch-1/rlw/3-06-08

Forms AA, AB, and AC shall be submitted as Approval Data.

After the process is approved, filled-in Forms AC and AD shall be provided as Certified Data to the Company and the casting company.

A.6.6 Can Disposition

After PGNAA testing is completed on a lot of companion sample can lot, the cans shall be returned to the Company. The PGNAA Acceptance Standards cans shall be stored for the life of the subcontract.

FORM A 277-4 Dry Blend Batch Control

Casting Company Name	Certificate of Conformance of the 277-0 dry mix				
Blended Dry Batch Control Number ^a	Record the expiration date of the 277-0 dry mix ^b				
Certificate of Conformance of the B ₄ C dry mix	277-0 Heat Resistant Shielding Drum ID Number				
Planning	277-4 Weight	Units	Operator		
Batch Size		lb			
Operation	Measurement	Units	Operator		
277-0 Weight (Target = 277-4 Weight x 93.6 wt%)		lb			
B ₄ C Weight (Target = 277-4 Weight x 6.4 wt%)		lb			
Dry Blending Time		min.			
Comments	1	!			
		· .			

A 10-digit Blended Dry Batch Control Number shall be used to define the date and the time of mixing the casting batch using the format with a 24-hour clock (i.e. 1021041515 is used for October 21, 2004 at 3:15 pm.)
 Becord the expiration date of the Blended Dry Batch and confirm that it is still acceptable to be cast following this specification.

FORM B 277-4 Wet Mix Control (Overcast or Special Batch)

Casting Company Name		Blended Dry Batch Control Number				
Wet Mix Control Number (W	/MCN) ^a	Record the expiration of	Record the expiration date of the Dry Blend Batch			
Water Temperature °F	Measurement	Units	Operator			
277-4 W		lb				
Water W (Target = 277-4 We		lb				
Mix T		min.				
Mix Finis	Mix Finish Time					
Comments		I	L	<u> </u>		

A 10-digit Wet Mix Control Number (WMCN) shall be used to define the date and the time of mixing the casting batch using the format with a 24-hour clock (i.e. 1021041515 is used for October 21, 2004 at 3:15 pm.)

\

a

FORM C ES-3100 Body Weldment Casting Control

Rev F Page 1 of 1

Casting Company Name				Body V	Veldm	ent Casting	Control # ^a	
Part Serial Number	M2E801580A002							
Measured Weights		Casting Info	rmation	<u> </u>	[Operator		
±0.5 lb	Weight		Date		Comments			Operator
Clean and Empty								
Filled with Water ^b								
Water Information		Water Weight ±0.5 lb		Water Temp. ^b		Com	Operator	
Water Conditions ^b		lb		°F				
Vibration Settings [°]		lbf		VPM				
Wet Mix Control	Blended Dr Control No				Dry Blend Batch Expiration Date			
(Target Water = 277-4 Weight × 27±1 wt%)	277-4 Weig	<u>g</u> ht	lb		Water Weight		lb	
	Air Temperature			°F Water Temperature			°F	
	Mix Time				Mix I Time	Finish		
Companion Samples ^d					-1		·····	-2
	. Ti	me	Date	e		Com	ments	Operator
Vibration Start				•			•	
Vibration Stop								
Overcast WMCN								
After Casting		lb	Date					
After Cured and Clean		lb	Date					
Measurements (I)	Height ^e (in)	Pass or Fail Height	Cured Weight (lb)		Pass or Fail Cured Weight [°]		Cured Density ^f (lb/ft ³)	Pass or Fail 100–120 (lb/ft³)
Body Weldment								

casting batch using the format with a 24-hour clock (i.e., 1021041515 is used for October 21, 2004 at 3:15 pm).

^b Record the water weight and water temperature within 10 minutes from completion of the weighing process.
 ^c Recommended vibration settings are at 450 VPM and three times the total vibrated weight. The total vibrated

weight is the finish cast part and fixtures weight, for a setting of approximately 800 pound-force.

^d Use Form F, for ES-3100 Companion Sample Casting Control and Tests to control the companion sample castings.
 ^e The acceptable cured height measurement is less than 0.25 inches. The Body Weldment cured casting weight shall be between 45.3 and 57.8 lbs.

Use the above weights to calculate the density as shown below. $Density = \left(\frac{Cured - Empty}{WithWater - Empty}\right) \times 62.3 \text{ lb/ft}^3$

EXEMPT FROM IO-155 (8-02)

f

FORM D ES-3100 Neutron Absorber Form Casting Control

Rev F Page 1 of 1

Casting Company Name				Body V	Veldm	ent Casting	Control # ^a				
Part Serial Number				Drawin	g Nur						
		0		<u>M2E801580A034</u>							
Measured Weights ±0.5 lb		Casting Info			1	Com	ments	Operator			
Clean and Empty	We	ight	Date								
Filled with Water ^b											
Water Information	Water ±0.:		Water Te	emp. ^b		Com	ments	Operator			
Water Conditions ^b		lb		°F	1						
Vibration Settings ^c		lbf		VPM							
Wet Mix Control	Blended Dr Control No					Blend Batch ation Date					
(Target Water = 277-4 Weight × 27±1 wt%)	277-4 Weig	;ht		lb		r Weight	lb				
	Air Temper	ature		°F	Wate Temp	r berature	°F				
	Mix Time				Mix I Time	Finish					
Companion Samples ^d					-1			-2			
	Tiı	ne	Date	e		Com	ments	Operator			
Vibration Start											
Vibration Stop											
Overcast WMCN											
After Casting		lb	Date	<u></u>		<u>,</u>					
After Cured and Clean		lb	Date		•						
Measurements (I)	Height ^e (in)	Pass or Fail Height	Cured W (lb)			ss or Fail d Weight ^e	Cured Density ^f (lb/ft ³)	Pass or Fail 100–120 (lb/ft ³)			
Neutron Absorber Form											

^a A 10-digit Body Weldment Casting Control Number shall be used to define the date and the time of mixing the casting batch using the format with a 24-hour clock (i.e., 1021041515 is used for October 21, 2004 at 3:15 pm).

^b Record the water weight and water temperature within 10 minutes from completion of the weighing process.
 ^c Recommended vibration settings are at 450 VPM and three times the total vibrated weight. The total vibrated weight is the finite content and finite process.

weight is the finish cast part and fixtures weight, for a setting of approximately 800 pound-force.
 ^d Use Form F, for ES-3100 Companion Sample Casting Control and Tests to control the companion sample castings.

^e The acceptable cured height measurement is less than 0.25 inches. The Neutron Absorber Form cured casting weight shall be between 45.3 and 57.8 lbs.

Use the above weights to calculate the density as shown below. $Density = \left(\frac{Cured - Empty}{WithWater - Empty}\right) \times 62.3 \text{ lb/ft}^3$ f

EXEMPT FROM IO-155 (8-02)

Casting Comp	any Name		Can Lot Ser	ial Numl	ber *		Drawing 1	Number M2E8(01580	A026	
Average 10 Ca	an and Lid Emp	ty Weight	Temperature	e of Wat	er Weight (°F)		Average 10 Can and Lid Water Weight				
Wet Mix Control Blended Dry E Control No.						Dry Blend Batch Expiration Date					
(Target Water = 277_{-4}			77-4 Weight lb W								
	2/11 W(/0)	Air Temp	erature		°F	Water Tempe		erature			
		Mix Time					Finish Tin				
Wet Mix Cont	rol Number (Ov	ercast), if r	equired								
Can Serial #	After Casting Weight (lb)	Cured Weigh (lb)		red	Cured Height (in)		ss or Fail Cured Height ^b	Cure Dens (lb/f	sity	Pass or Fail Cured Density °	
	 	-			,						
_											
		· ·									
Companio	n Samples ^d				-1						
Operator			Comm	ents							
hour	-digit Can Lot S clock (i.e., 1021 y Can Spacer A	041515 is	used for Octo	ber 21, 2	2004 at 3:15 pm	ı).		-	-		
	his equation for										

FORM E ES-3100 Heavy Can Spacer Assembly Lot Casting Control Rev F Page 1 of 1

EXEMPT FROM IO-155 (8-02)

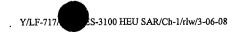
companion samples.

FORM F ES-3100 Companion Sample Casting Control and Tests

Rev F Page 1 of 1

Casting Comp	bany Name	Ave. 10 Can and	I Lid Empty Weight ^a	Ave. 10 C	an and Lid Water \	Vgt. ^{a ·} Temp. o (°F)	f Water Weight	Drawing Number M2E801580A026		
Serial	Numbers	Can Meas	urement Weights ±0	.01 (lb)	For Record Only	Loss C (Odd Serial N	Loss On Drying (Odd Serial Numbered Cans)		A hbered Cans)	
Part # or Can Lot#	Companion Sample Can ^a	After Casting Weight	Cured Weight	LOD Weight	Cured Density (lb/ft ³)	Calculated LOD%	Pass Or Fail per Sec. 3.3.9.3	PGNAA (PMN) °	Pass Or Fail	
						<u>v</u>				
··· ···				······································						
						····				
<u> </u>				<u>,</u>						
	· ·			····		<u></u>			<u></u>	
Complied by					Comments					
						<u> </u>				

a For the same lot of sample cans, it is acceptable to use an average weight of ten can bodies and ten can lids.


b Recommended vibration settings are at 450 VPM and three times the total vibrated weight. The total vibrated weight is the finish cast part and fixtures weight, for a setting of approximately 5 pound-force.

c Record the PGNAA Measurement Number (PMN) from Form AD for each Companion Sample Can tested.

$$Density = \left(\frac{Cured - Empty}{WithWater - Empty}\right) \times 62.3 \text{ lb/ft}^3$$

$$LOD\% = \left[1 - \frac{(LODWeight - Empty - 0.024)}{(Cured \& Clean - Empty)}\right] \times 100\%$$

EXEMPT FROM IO-155 (8-02)

FORM AA PGNAA Tooling Setup Control

Inspecting Company Name

	Rev F	Page 1 of 1
Casting Company Name		

GNA	GNAA Tooling Setup Number ^a					277-4 Baseline Can Serial Number						
Setup Distance ^b Cou					ints	Net Count Rate						
#	Collimator	Detector	Gross	Com	pton	Net	(sec)	(Net Counts/Sec				
				1								
				<u> </u>				· · · · ·				
				<u>+</u>								
				+				· · · ·				
				+			· · ·					

Describe the Software used and method to generate the net counts.

Operator

A 10-digit PGNAA Tooling Setup Number shall be used to define the date and the time of setup using the format with a 24-hour clock (i.e., 1021041515 is used for October 21, 2004 at 3:15 pm). A -# will define the setup used for testing.

^b The 10-oz. double friction metal can lid shall face the source. The setup distances shall be measured from the can lid to the collimator face and from the can lid to the detector front face and must be documented to be repeatable to ± 0.13 ". Also define all thickness of lead and polyethylene surrounding the source measurement to ± 0.13 ".

^c Use one 277-4 cast 10-oz. double friction metal can per drawing M2E801580A026 as the PGNAA reference to verify the Tooling Setup.

EXEMPT FROM IO-155 (8-02)

Y/LF-717/Rev 2/ES-3100 HEU SAR/Ch-1/rlw/3-06-08

FORM AB PGNAA Standard Setup

WAA Tooling Setup Numb ounts ompton Net	er (with -#) Count Time (sec)	Net Count Rate (Net Counts/Sec)
ompton Net	(sec)	(Net Counts/Sec)
·		
	1	†
· · · · · · · · · · · · · · · · · · ·		
		+ · · · · · · · · · · · · · · · · · · ·
	+	
		L

a A 10-digit PGNAA Standard Setup Number shall be used to define the date and the time of setup using the format with a 24-hour clock (i.e., 1021041515 is used for October 21, 2004 at 3:15 pm).

b The 10-oz. double friction metal can lid shall face the source following the PGNAA Standard Setup.

FORM AC PGNAA Daily Standard Setup Control

Rev F Pa	ge 1	of 1
----------	------	------

GNAA Daily Standard Setup ^a			ny Name		
•		PGNAA Toolir	g Setup Num	ber (with -#)	
277-4 Standard		Counts		Count Time	Net Count Rate
Can Serial Numbers ^b	Gross	Compton	Net	(sec)	(Net Counts/Sec)
1					
2					
3					
4					
5					
Average Values					
Standard Deviation					
3 × Standard Deviation					
· · · · · · · · · · · · · · · · · · ·					

^b Select five PGNAA acceptance standards from Form AB as the Daily Standard Setup that generate approximately the same average and standard deviation as on Form AB.

FORM AD PGNAA Measurements

Inspecting Company N	Casting Company Name									
PGNAA Measurement Number (PMN) ^a PGNAA				Daily Star	ndard Setup Nu	ım.	PGNAA Pass Rate (Net Cnt/Sec)			
Even Serial Nun	nbers ^b		Co	ounts (Cnt)	·····		<u> </u>		Pass	
Drum/Neutron Absorber Form/Lot#	Sample #	Gro	ss (Compton	Net		Count Time (sec)	Net Cnt Rate (NetCnt/Sec)	or Fail	
						†				
				<u></u>		-	. <u></u>			
						+-				
						┼─				
									<u></u>	
							<u> </u>			
						+-	· · · · · · · · · · · · · · · · · · ·			
						<u> </u>				
						-				
·										
				·,						
Comments					I	_			<u> </u>	
Operator		·····		<u> </u>	<u> </u>				, , , , , , , , , , , , , , , , ,	

^a A 10-digit PGNAA Measurement Number (PMN) shall be used to define the date and the time of setup using the format with a 24-hour clock (i.e., 1021041515 is used for October 21, 2004 at 3:15 pm).

^b Record the Body Weldment, Neutron Absorber Form, or Heavy Can Spacer Assembly can lot with the Companion Sample Number.

EXEMPT FROM IO-155 (8-02)

 Specification Number
 Revision

 JS-YMN3-801580-A005-1
 F

 Issue Date
 Revision Date

 2/17/2005
 10/12/2006

 Page
 1
 of

MANUFACTURER'S DATA REQUIREMENTS

		~			
Item No.	Data Submittal—Purpose and Description	Specification or Reference	Number of Copies	Form ^a	
	OFFER APPRAISAL DATA - Subcontractor				
	The Offerer shall submit the following data with t offer.	he			
1	Subcontractor's quality assurance program manua	1 4.1	1	E	
			· ·		
	······································				
	· ·				
	· · · · · · · · · · · · · · · · · · ·			<u> </u>	
	· ·				
		······			
····					
_ <u>.</u>					
		· · ·			
	^a Indicate the following:				
	A—Full-size prints	D-Manual (booklet, bro			
	B—Full-size reproducibles	E—Other (Specify) Subc		tandard for	<u>rm</u>
	C—Microfilm aperture card	F-Other (Specify) Spec	imen		

 Specification Number
 Revision

 JS-YMN3-801580-A005-2
 F

 Issue Date
 Revision
 Date

 2/17/2005
 10/12/2006

 Page 1
 of 1

tem No.	Data SubmittalPurpose and Description	Specification or Reference	Number of Copies	Form ^a
	APPROVAL DATA - Subcontractor	-		
	The Subcontractor shall provide the following data p to the start of production casting.	prior		
1	Process equipment approval	3.1	1	E
2	Scale Certifications	3.2.1	1	E
3	Request for Company approved equal	3.2.2, 3.2.6, 3.2.7, 6.4	1	E
4	MSDS for cleaning products	3.4.1	1	E
5	Procedures	4.2.4	1	E
	^a Indicate the following:		L	L
	AFull-size printsDBFull-size reproduciblesECMicrofilm aperture cardF	–Manual (booklet, broc –Other (Specify <u>) Subco</u> –Other (Specify) –Sample of Workmansł	ntractor's sta	

7

 Specification Number
 Revision

 JS-YMN3-801580-A005-3
 F

 Issue Date
 Revision Date

 2/17/2005
 10/12/2006

 Page 1
 of 1

	MANUFACTURER'S DATA REQUIREMENTS							
Item No.	Data Submittal—Purpose and Description	Specification or Reference	Number of Copies	Form ^a				
	CERTIFIED DATA - Subcontractor							
	Item 1 shall be provided prior to the start of production casting.							
1	Approved procedures	4.2.4	1	E				
	Item 2 shall be provided with each ES-3100 unit.							
2	ES-3100 Documentation Package	4.2.1	1	E				
			<u>+</u>					
_								
	· · · · · · · · · · · · · · · · · · ·							
					_			
	^a Indicate the following:]	<u> </u>	-l				
		Manual (booklet, b	rochure, repo	ort, etc.)				
		Other (Specify) Sul			orm			
	-	Other (Specify)						

- -Microfilm aperture card
- F—Other (Specify) S—Sample of Workmanship

 Specification Number
 Revision

 JS-YMN3-801580-A005-4
 F

 Issue Date
 Revision Date

 2/17/2005
 10/12/2006

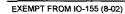
 Page
 1
 of

MANUFACTURER'S DATA REQUIREMENTS

Item No.	Data Submittal—Purpose and Description	Specification or Reference	Number of Copies	Form ^a
	OFFER APPRAISAL DATA – PGNAA Subcontractor			
	The Offerer shall submit the following data with the offer.			
1	Subcontractor's quality assurance program manual	4.1	1	E
		· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·			
	^a Indicate the following: A—Full-size prints B—Full-size reproducibles C—Microfilm aperture card	DManual (bookle EOther (Specify) FOther (Specify)_	Subcontractor	

 Specification Number
 Revision

 JS-YMN3-801580-A005-5
 F


 Issue Date
 Revision
 Date

 2/17/2005
 10/12/2006

 Page 1
 of 1

MANUFACTURER'S DATA REQUIREMENTS

	······································				
Item No.	Data Submittal—Purpose and Description	Specification or Reference	Number of Copies	Form ^a	
	· ·				
	APPROVAL DATA – PGNAA Subcontractor				
				┨─────┤	
	The Subcontractor shall provide the following data prior to the start of production inspection.				
•		· · ·			
1	Source, detector, and software must be certified to a national standard.	A.6.1	1	E	
2	 Final tooling setup shall be manufactured Results of final tooling setup dimensional inspection shall be provided showing repeatability to +/- 0.13" As built drawing of final tooling setup that was manufactured shall be provided showing setup distances and materials of construction 	A.6.2	1	Е	
3	Results of Net Count Rate Measurements performed on manufactured final tooling setup per section A.3.1.a of specification, based upon at least a 20 hour PGNAA measurement count and time justification.	A.6.3	1	E	
4	Software used to determine net count rate and methodology used to determine net count rate shall be identified and documented	A.6.4	1	E	
5	Completed Forms AA	A.6.5	1	E	
6	Completed Forms AB, and AC	A.6.5	1	E	
	· · ·				
		+			
	B—Full-size reproducibles E—O C—Microfilm aperture card F—O	Ianual (booklet, b ther (Specify <u>) Sut</u> ther (Specify) ample of Workma	ocontractor's s		<u>orm</u>

Specification Number Revision JS-YMN3-801580-A005-6 F **Issue Date Revision Date** 2/17/2005 10/12/2006 Page 1 of 1

ltem No.	Data Submittal—Purpose and Description	Number of Copies	Form ^a	
	CERTIFIED DATA - PGNAA Subcontractor			
	Item 1 and 2 shall be provided prior to the start of production PGNAA inspection.			
	PGNAA national standard	A.6.1	1	E
	PGNAA measurement software and methodology	A.6.4	1	E
	Item 3 shall be provided after each companion can lot is inspected.	5		
3	Forms AC and AD	A.6.5	2 (1 copy going to Casting Company)	Е
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
•				
	B—Full-size reproducibles E— C—Microfilm aperture card F—	-Manual (booklet, -Other (Specify) <u>S</u> -Other (Specify) -Sample of Workn	ubcontractor'	

EXEMPT FROM IO-155 (8-02)

PACKAGE CATEGORY DETERMINATION

PACKAGE CATEGORY DETERMINATION

The ES-3100 with HEU content package has a maximum activity of 0.3243 TBq (8.76 Ci) at 10 y after initial fabrication; the maximum number of A_{2} s carried is 294.00 at 70 y after initial fabrication (Table 4.4). Based on the guidance from Regulatory Guide 7.11, Fracture Toughness Criteria of Base Material for Ferritic Steel Shipping Cask Containment Vessels with a Maximum Wall Thickness of 4 Inches (0.1 m), this package is classified in Table 1.1 of NUREG-1609 as a Category II package.

HEU OXIDE MATERIAL SPECIFICATION AS PROVIDED BY Y-12 HIGHLY ENRICHED URANIUM DISPOSITION PROGRAM OFFICE

.

7

.

·

Specified item	Units	Limit	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Chemical form ^a			UO _x	UO _x	UO _x	U ₃ O ₈	UO _x	UO _x	U ₃ O ₈
Physical form				Dense,	loose powder	r, may contai	n lumps		
Uranium content									
Uranium purity	gU/gSmpl	≥	0.830	0.200	0.830	0.830	0.200	0.200	0.845
U-235	g/gU	≤	97.7%	97.7%	97.7%	97.7%	97.7%	97.7%	93.2%
U-238	g/gU	۲	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%	80.0%
U-232	μg/gU	٤	0.040	0.040	0.040	0.040	0.040	0.040	0.040
U-233	µg/gU	5	50	50	50	50	50	200	50
U-234	g/gU	۲	1.4%	1.4%	1.4%	1.4%	1.4%	2.0%	1.4%
U-236	g/gU	٤	1.0%	1.0%	1.0%	1.0%	1.0%	40.0%	1.0%
Transuranics (Np, Pu, Am, etc.)									
Concentration limit	μg/gU	5	0.2	0.2	40.0	0.2	0.5	0.5	0.2
Activity limit	Bq/gU	5	50	50	600,000	3,000	5,000	1,000	3,000
Unspecified beta emitters									
Activity limit	Bq/gU	≤	200	200	200	200	1,000,000	10,000	200
Moisture	g/gSmpl	5	6%	6%	6%	6%	6%	6%	6%
Carbon	µg/gU	≤	600	1,000	600	600	1,000	1,000	d
EBC ^b	µgEBC/gU	٤	4	10,000	4	4	10,000	10,000	4

Uranium oxide material limits

^a UO₂ may be UO₂ or UO₃.

^b EBC = equivalent boron content, as defined in ASTM standard C1233-98.

^c The oxide contents of the ES-3100 were characterized with the beta emitters as an "unspecified" feature in order to establish one group limit for these nuclides rather than limits on each (of many) individual nuclides. The beta emitters are either daughter products from the decay of uranium isotopes, or activation and fission products from reprocessed material. The beta nuclides most often seen in this material are Tc-99, Sr-90, and Cs-137. Table 1.4.7-1 gives a complete list of the beta-emitting nuclides that have been observed in various oxides intended for shipment in the ES-3100. The maximum mass concentration allowable by the 1,000,000 Bq/gU activity limit is for Group 5 oxides.

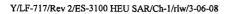
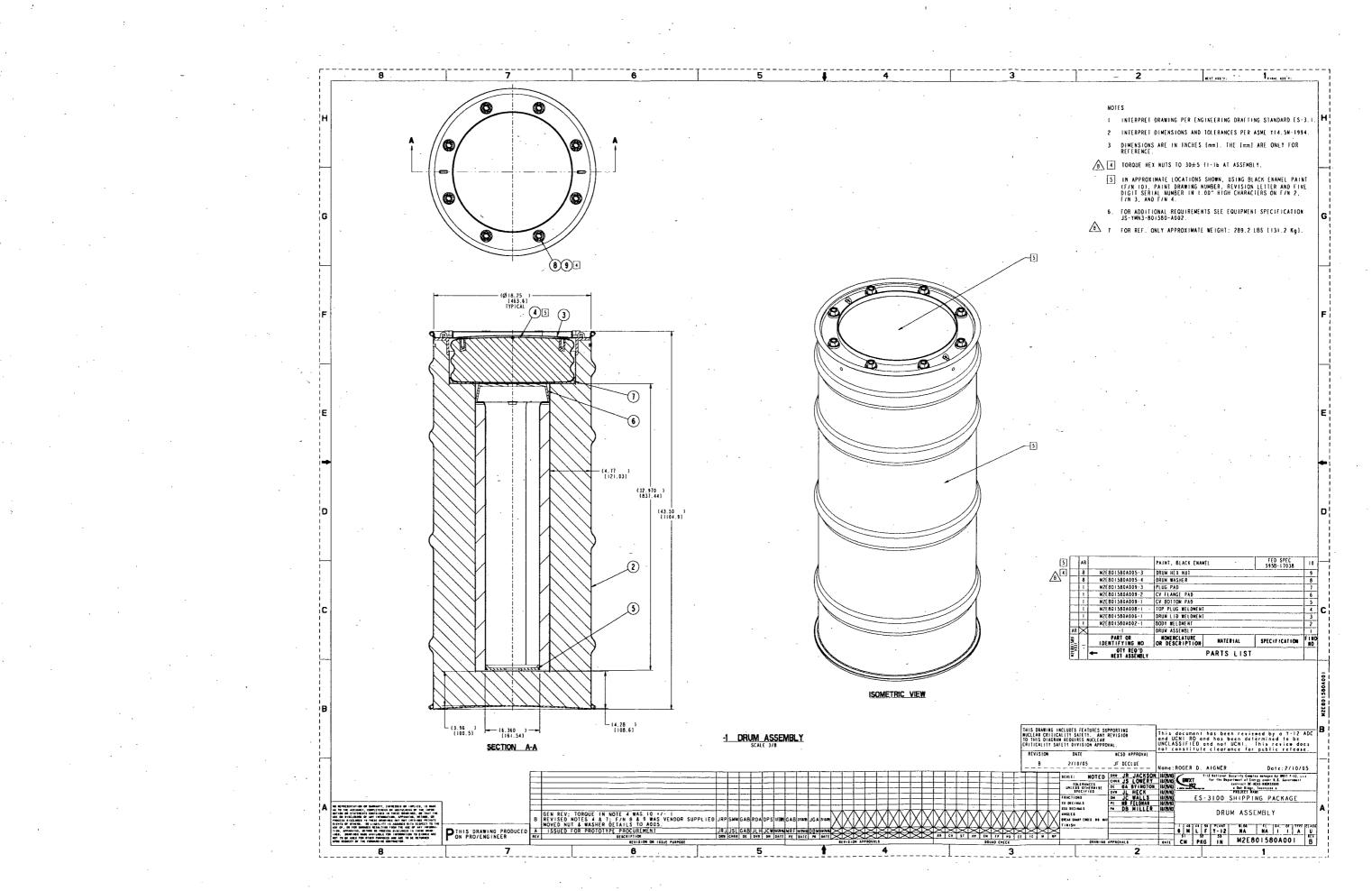
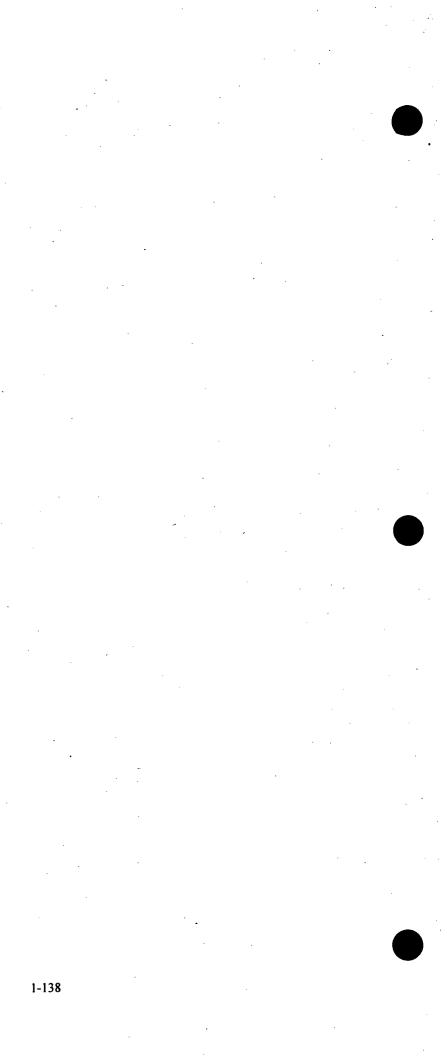

^d In this case, the total carbon allowed per ES-3100 container is 921 g.

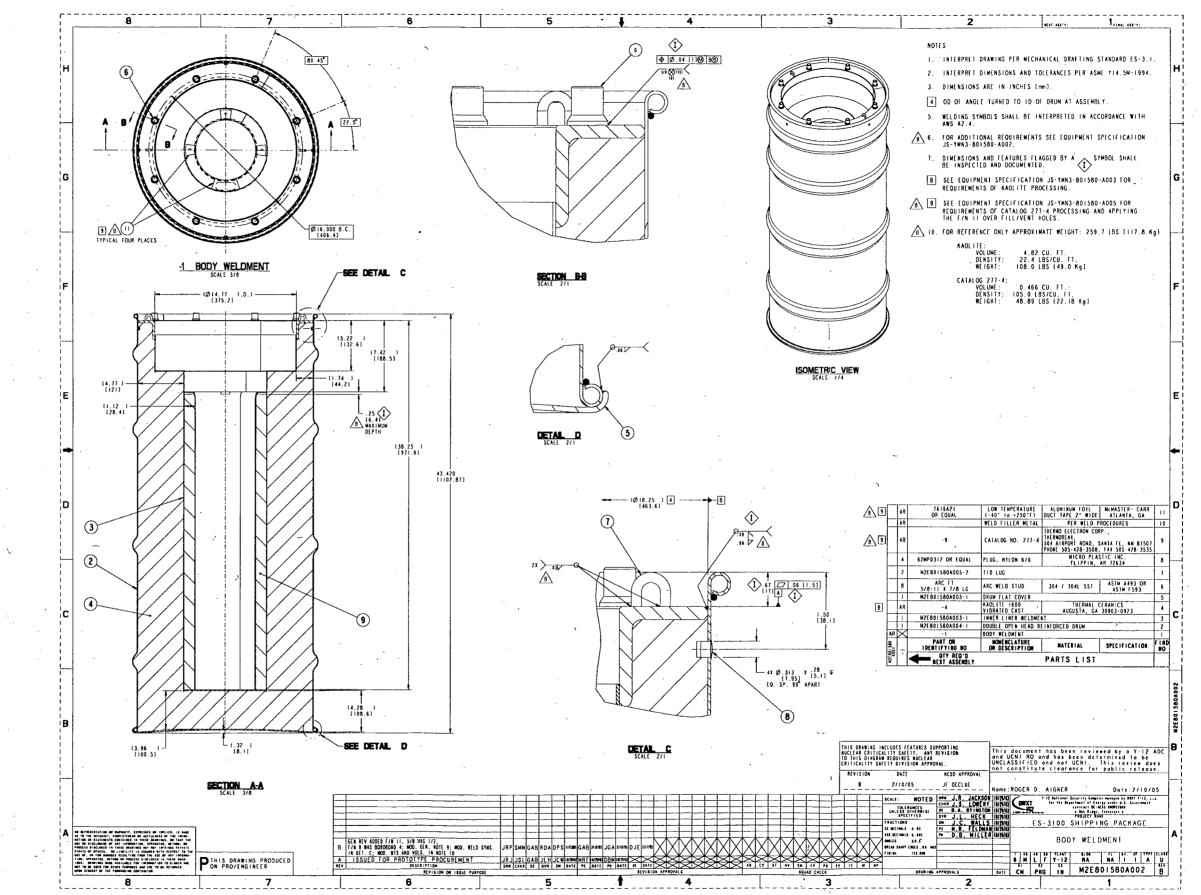
Table 1	.4.7-1
---------	--------

Isotope Specific Activity Calculation Rad							at 10^6 Bq/gU	
Element	Sym	At #	lso	Mass	T½, Yr	SA, Bq/g	Туре	µg/gU
Cobalt	Co	27	58	57.935755	0.194	1.177E+15	ß+	8.500E-04
Cobalt	Co	27	60	59.933819	5.271	4.187E+13	ß-	0.024
Strontium	Sr	38	90	89.907738	29.100	5.056E+12	ß-	0.198
Zirconium	Zr	40	95	94.908042	0.175	7.951E+14	ß-	0.001
Niobium	Nb	41	95	94.906835	0.096	1.456E+15	ß-	6.870E-04
Technetium	Tc	43	99	98.906254	2.130E+05	6.279E+08	ß-	1,592.656
Ruthenium	Ru	44	103	102.906323	0.108	1.196E+15	ß-	8.365E-04
Ruthenium	Ru	44	106	105.907321	1.020	1.224E+14	ß-	0.008
Antimony	Sb	51	125	124.905252	2.758	3.840E+13	ß-	0.026
Cesium	Cs	55	134	133.906696	2.065	4.784E+13	ß-	0.021
Cesium	Cs	55	137	136.907073	30.300	3.189E+12	ß-	0.314
Cerium	Ce	58	141	140.908271	0.089	1.055E+15	ß-	9.479E-04
Cerium	Ce	58	144	143.913643	0.779	1.180E+14	ß-	0.008
Europium	Eu	63	155	154.922889	4.710	1.813E+13	ß-	0.055
Thallium	TI	81	208	207.981988	5.805E-06	1.096E+19	ß-	9.127E-08
Thallium	TI	81	209	208.985334	4.183E-06	1.513E+19	ß-	6.609E-08
Lead	Pb	82	209	208.981065	3.708E-04	1.707E+17	ß-	5.858E-06
Lead	Pb	82	210	209.984163	22.600	2.787E+12	ß-	0.359
Lead	Pb	82	211	210.988735	6.864E-05	9.134E+17	ß-	1.095E-06
Lead	Pb	82	212	211.991871	0.001	5.141E+16	ß-	1.945E-05
Lead	Pb	82	214	213.999798	5.134E-05	1.204E+18	ß-	8.305E-07
Bismuth	Bi	83	210	209.984095	0.014	4.592E+15	ß-	2.178E-04
Bismuth	Bi	83	211	210.987255	4.069E-06	1.541E+19	ß-,a	6.490E-08
Bismuth	Bi	83	212	211.991255	1.151E-04	5.421E+17	ß-,a	1.845E-06
Bismuth	Bi	83	213	212.994359	8.670E-05	7.163E+17	ß-,a	1.396E-06
Bismuth	Bi	83	214	213.998691	3.784E-05	1.634E+18	ß-	6.121E-07
Thorium	Th	90	231	231.036298	0.003	1.967E+16	ß-	5.083E-05
Thorium	Th	90	234	234.043593	0.066	8.565E+14	ß-	0.001
Protactinium	Ра	91	234m	234.043303	2.225E-06	2.541E+19	ß-	3.936E-08

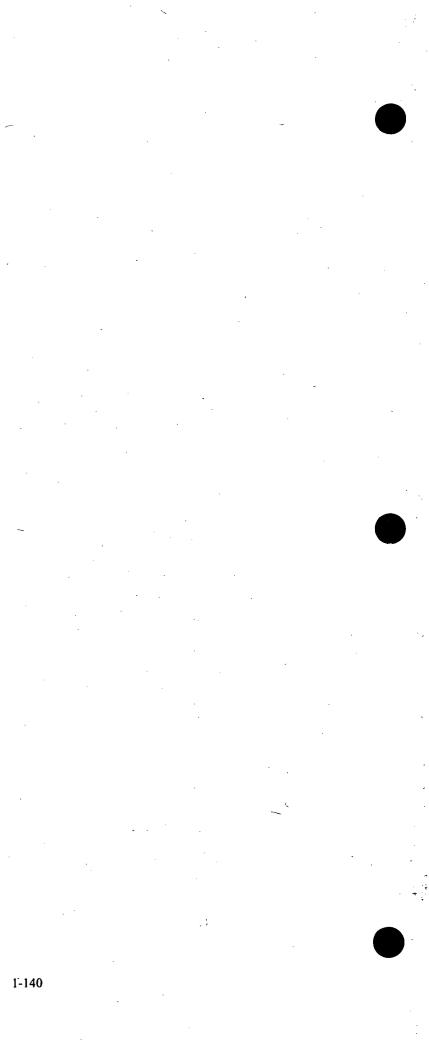

DETAILED ENGINEERING DRAWINGS

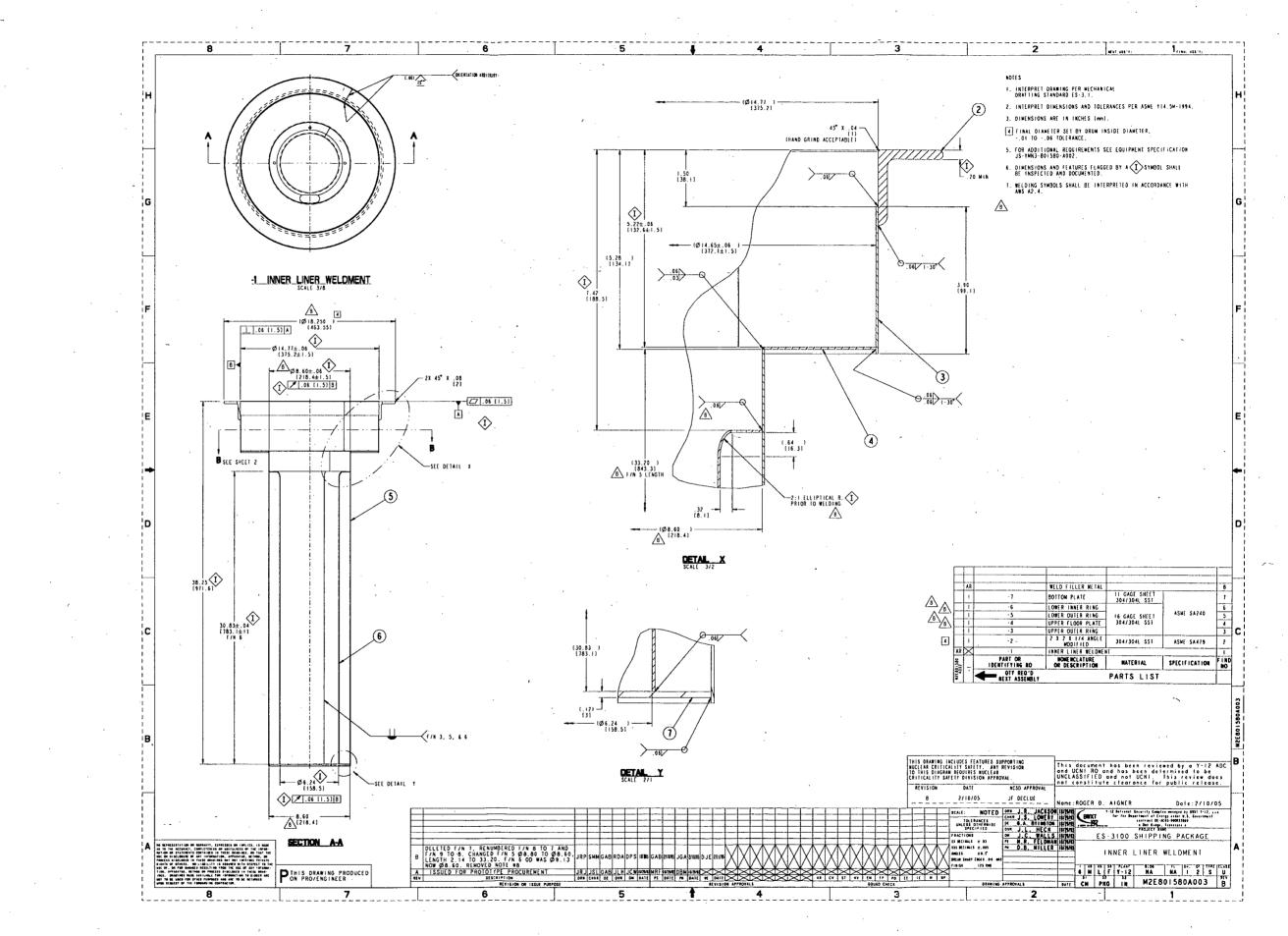
M2E801580A001BDrum AssemblyM2E801580A002BBody WeldmentM2E801580A003BInner Liner Weldment (2 sheets)M2E801580A004BDouble Open Head Reinforced DrumM2E801580A005BMisc. DetailsM2E801580A006BDrum Lid WeldmentM2E801580A007B18.25" Diameter Drum LidM2E801580A008BTop Plug WeldmentM2E801580A009CPad DetailsM2E801580A010CData Plate DetailsM2E801580A011CContainment Vessel AssemblyM2E801580A012CContainment Vessel Body Assembly (2 sheets)M2E801580A013BContainment Vessel Id AssemblyM2E801580A014BContainment Vessel Sealing LidM2E801580A015CContainment Vessel Sealing LidM2E801580A014BContainment Vessel Sealing LidM2E801580A015CContainment Vessel Sealing LidM2E801580A016BContainment Vessel Sealing LidM2E801580A016CContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A024BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer AssemblyM2E801580A031CMain Assembly	Drawing No.	Rev.	Title
M2E801580A002BBody WeldmentM2E801580A003BInner Liner Weldment (2 sheets)M2E801580A004BDouble Open Head Reinforced DrumM2E801580A005BMisc. DetailsM2E801580A006BDrum Lid WeldmentM2E801580A007B18.25" Diameter Drum LidM2E801580A008BTop Plug WeldmentM2E801580A009CPad DetailsM2E801580A010CData Plate DetailsM2E801580A011CContainment Vessel AssemblyM2E801580A013BContainment Vessel Dody Assembly (2 sheets)M2E801580A014BContainment Vessel Lid AssemblyM2E801580A015CContainment Vessel Sealing LidM2E801580A016BContainment Vessel Sealing LidM2E801580A016BContainment Vessel Sealing LidM2E801580A016BContainment Vessel Closure NutM2E801580A024BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly			
M2E801580A003BInner Liner Weldment (2 sheets)M2E801580A004BDouble Open Head Reinforced DrumM2E801580A005BMisc. DetailsM2E801580A006BDrum Lid WeldmentM2E801580A007B18.25" Diameter Drum LidM2E801580A008BTop Plug WeldmentM2E801580A009CPad DetailsM2E801580A010CData Plate DetailsM2E801580A011CContainment Vessel AssemblyM2E801580A012CContainment Vessel Body Assembly (2 sheets)M2E801580A013BContainment Vessel Lid AssemblyM2E801580A014BContainment Vessel Sealing LidM2E801580A015CContainment Vessel Sealing LidM2E801580A016BContainment Vessel Sealing LidM2E801580A016BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly	M2E801580A001	В	Drum Assembly
M2E801580A004BDouble Open Head Reinforced DrumM2E801580A005BMisc. DetailsM2E801580A006BDrum Lid WeldmentM2E801580A007B18.25" Diameter Drum LidM2E801580A008BTop Plug WeldmentM2E801580A009CPad DetailsM2E801580A010CData Plate DetailsM2E801580A011CContainment Vessel AssemblyM2E801580A012CContainment Vessel Body Assembly (2 sheets)M2E801580A013BContainment Vessel O-ring DetailsM2E801580A014BContainment Vessel Lid AssemblyM2E801580A015CContainment Vessel Sealing LidM2E801580A016BContainment Vessel Closure NutM2E801580A024BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly	M2E801580A002	В	Body Weldment
M2E801580A005BMisc. DetailsM2E801580A006BDrum Lid WeldmentM2E801580A007B18.25" Diameter Drum LidM2E801580A008BTop Plug WeldmentM2E801580A009CPad DetailsM2E801580A010CData Plate DetailsM2E801580A011CContainment Vessel AssemblyM2E801580A012CContainment Vessel Body Assembly (2 sheets)M2E801580A013BContainment Vessel O-ring DetailsM2E801580A014BContainment Vessel Lid AssemblyM2E801580A015CContainment Vessel Sealing LidM2E801580A016BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly	M2E801580A003	В	Inner Liner Weldment (2 sheets)
M2E801580A006BDrum Lid WeldmentM2E801580A007B18.25" Diameter Drum LidM2E801580A008BTop Plug WeldmentM2E801580A009CPad DetailsM2E801580A010CData Plate DetailsM2E801580A011CContainment Vessel AssemblyM2E801580A012CContainment Vessel Body Assembly (2 sheets)M2E801580A013BContainment Vessel O-ring DetailsM2E801580A014BContainment Vessel Lid AssemblyM2E801580A015CContainment Vessel Sealing LidM2E801580A016BContainment Vessel Closure NutM2E801580A024BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly	M2E801580A004	В	Double Open Head Reinforced Drum
M2E801580A007B18.25" Diameter Drum LidM2E801580A008BTop Plug WeldmentM2E801580A009CPad DetailsM2E801580A010CData Plate DetailsM2E801580A011CContainment Vessel AssemblyM2E801580A012CContainment Vessel Body Assembly (2 sheets)M2E801580A013BContainment Vessel O-ring DetailsM2E801580A014BContainment Vessel Lid AssemblyM2E801580A015CContainment Vessel Sealing LidM2E801580A016BContainment Vessel Closure NutM2E801580A024BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly	M2E801580A005	В	Misc. Details
M2E801580A008BTop Plug WeldmentM2E801580A009CPad DetailsM2E801580A010CData Plate DetailsM2E801580A011CContainment Vessel AssemblyM2E801580A012CContainment Vessel Body Assembly (2 sheets)M2E801580A013BContainment Vessel O-ring DetailsM2E801580A014BContainment Vessel Lid AssemblyM2E801580A015CContainment Vessel Sealing LidM2E801580A016BContainment Vessel Closure NutM2E801580A024BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly	M2E801580A006	В	Drum Lid Weldment
M2E801580A009CPad DetailsM2E801580A010CData Plate DetailsM2E801580A011CContainment Vessel AssemblyM2E801580A012CContainment Vessel Body Assembly (2 sheets)M2E801580A013BContainment Vessel O-ring DetailsM2E801580A014BContainment Vessel Lid AssemblyM2E801580A015CContainment Vessel Sealing LidM2E801580A016BContainment Vessel Closure NutM2E801580A024BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly	M2E801580A007	В	18.25" Diameter Drum Lid
M2E801580A010CData Plate DetailsM2E801580A011CContainment Vessel AssemblyM2E801580A012CContainment Vessel Body Assembly (2 sheets)M2E801580A013BContainment Vessel O-ring DetailsM2E801580A014BContainment Vessel Lid AssemblyM2E801580A015CContainment Vessel Sealing LidM2E801580A016BContainment Vessel Closure NutM2E801580A024BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly	M2E801580A008	В	Top Plug Weldment
M2E801580A011CContainment Vessel AssemblyM2E801580A012CContainment Vessel Body Assembly (2 sheets)M2E801580A013BContainment Vessel O-ring DetailsM2E801580A014BContainment Vessel Lid AssemblyM2E801580A015CContainment Vessel Sealing LidM2E801580A016BContainment Vessel Closure NutM2E801580A024BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly	M2E801580A009	С	Pad Details
M2E801580A012CContainment Vessel Body Assembly (2 sheets)M2E801580A013BContainment Vessel O-ring DetailsM2E801580A014BContainment Vessel Lid AssemblyM2E801580A015CContainment Vessel Sealing LidM2E801580A016BContainment Vessel Closure NutM2E801580A024BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly	M2E801580A010	С	Data Plate Details
M2E801580A013BContainment Vessel O-ring DetailsM2E801580A014BContainment Vessel Lid AssemblyM2E801580A015CContainment Vessel Sealing LidM2E801580A016BContainment Vessel Closure NutM2E801580A024BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly	M2E801580A011	С	Containment Vessel Assembly
M2E801580A014BContainment Vessel Lid AssemblyM2E801580A015CContainment Vessel Sealing LidM2E801580A016BContainment Vessel Closure NutM2E801580A024BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly	M2E801580A012	С	Containment Vessel Body Assembly (2 sheets)
M2E801580A015CContainment Vessel Sealing LidM2E801580A016BContainment Vessel Closure NutM2E801580A024BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly	M2E801580A013	В	Containment Vessel O-ring Details
M2E801580A016BContainment Vessel Closure NutM2E801580A024BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly	M2E801580A014	В	Containment Vessel Lid Assembly
M2E801580A024BContainment Vessel Vibration Absorbing Silicone 4.25" Can PadM2E801580A026CHeavy Can Spacer Assembly	M2E801580A015	С	Containment Vessel Sealing Lid
M2E801580A026 C Heavy Can Spacer Assembly	M2E801580A016	В	Containment Vessel Closure Nut
	M2E801580A024	В	Containment Vessel Vibration Absorbing Silicone 4.25" Can Pad
M2E801580A031 C Main Assembly	M2E801580A026	С	Heavy Can Spacer Assembly
	M2E801580A031	С	Main Assembly

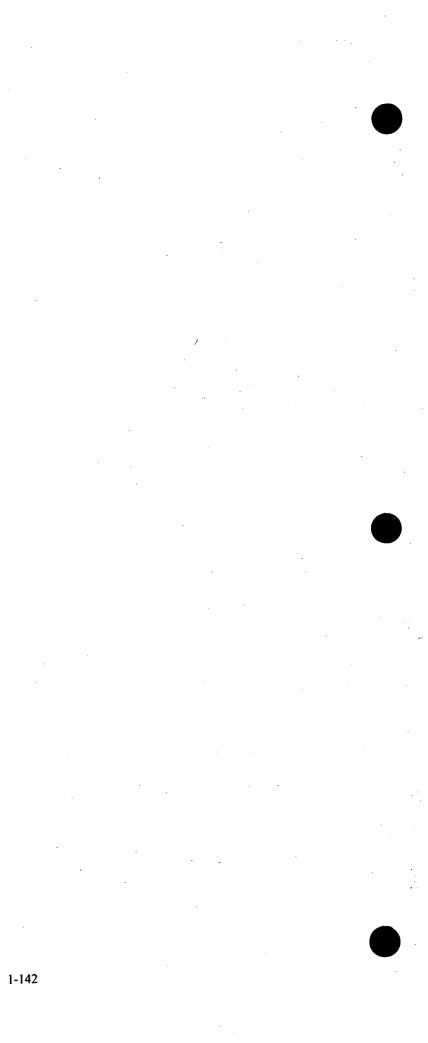


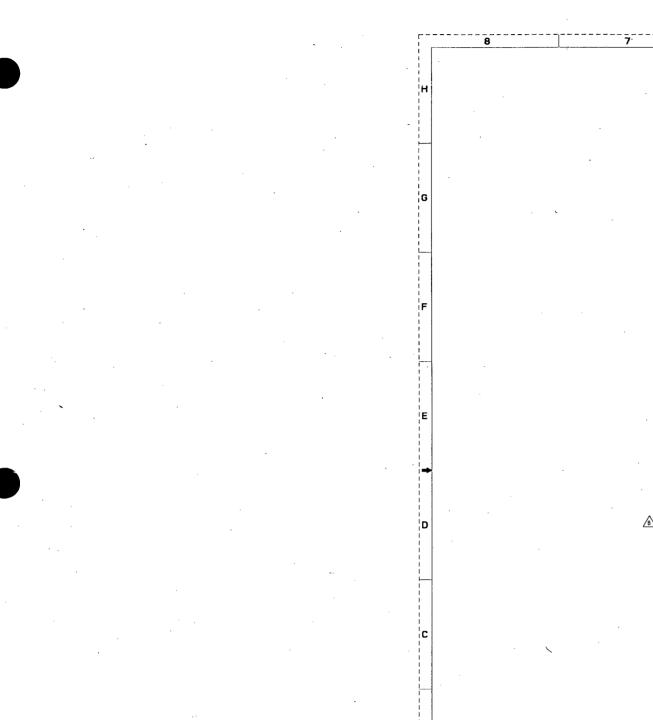

1-135

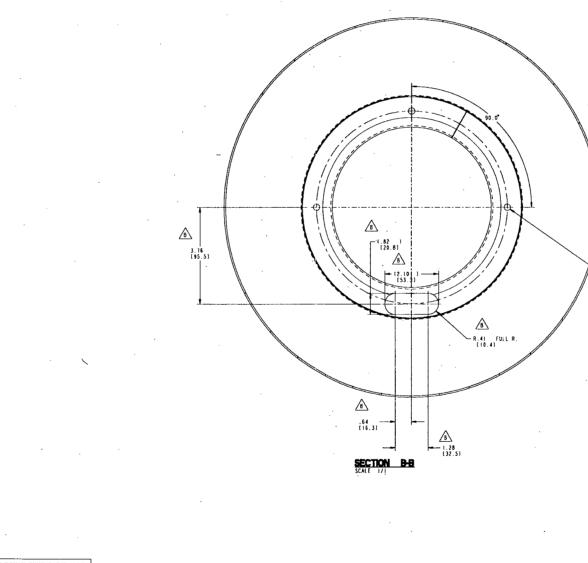
1-136



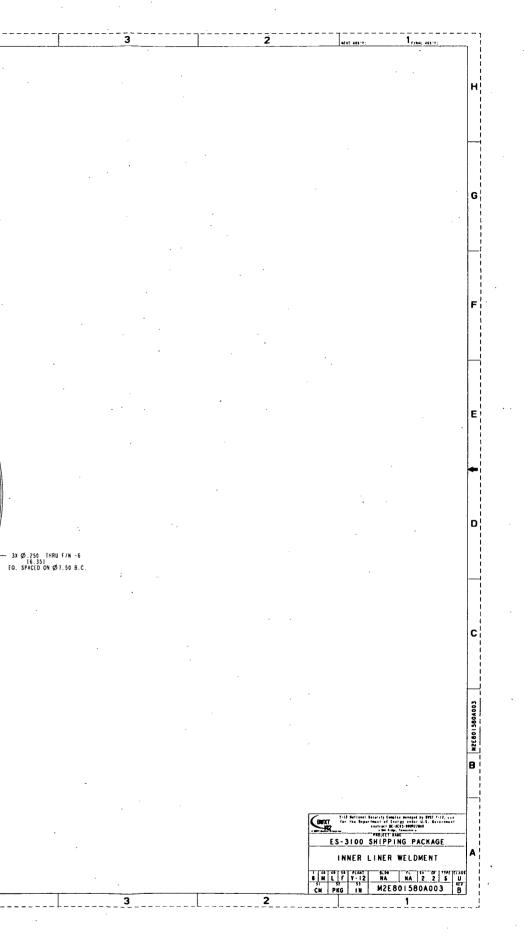

1-137




1-139

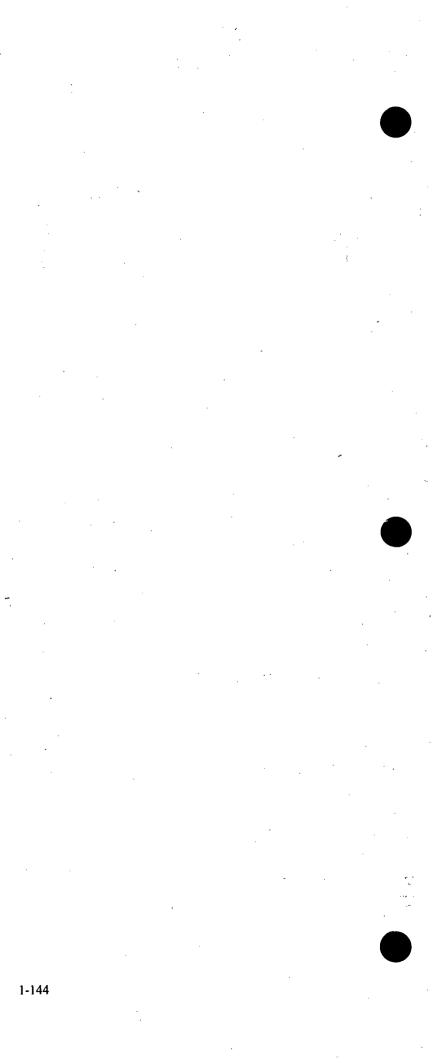


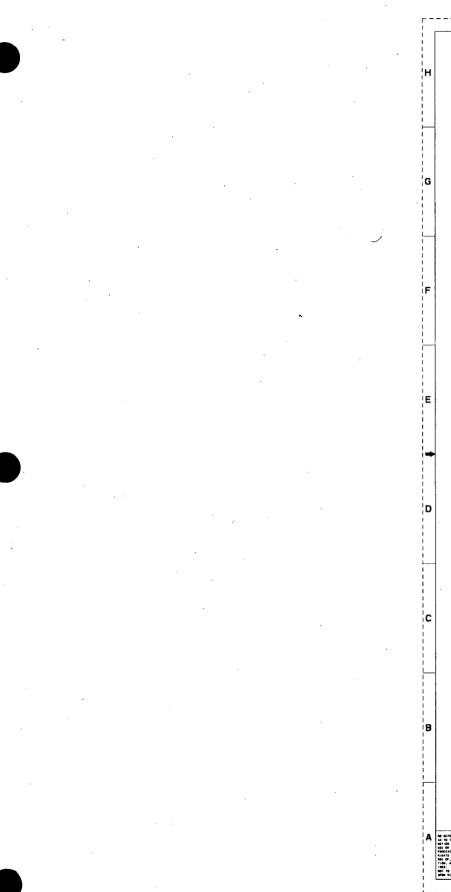
) 1-141

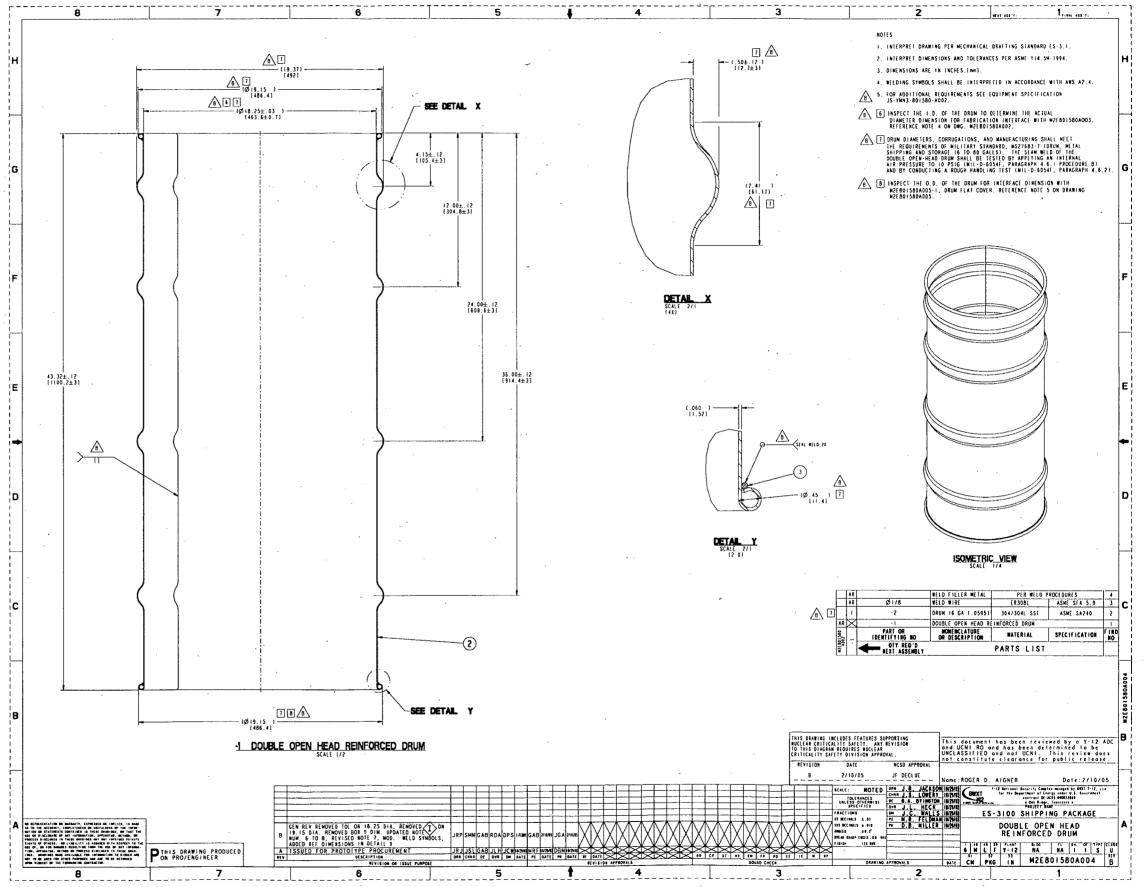

6

5

4

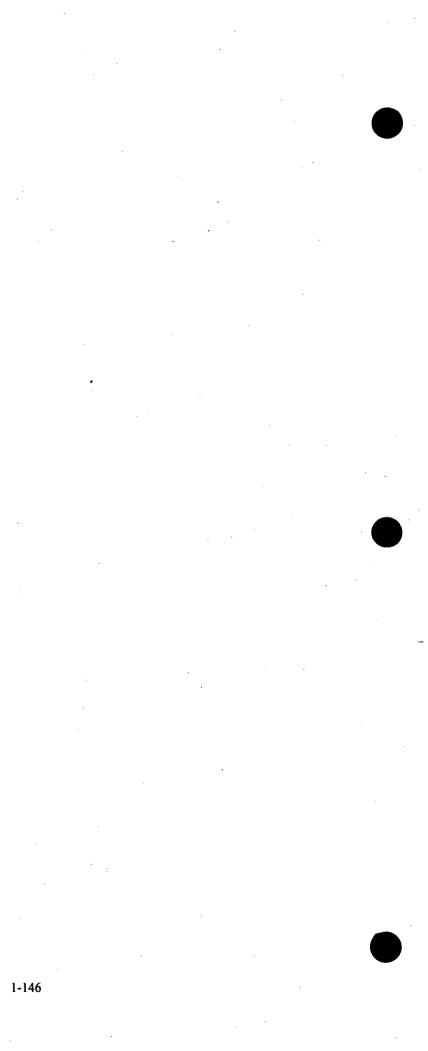

PTHIS DRAWING PRODUCED

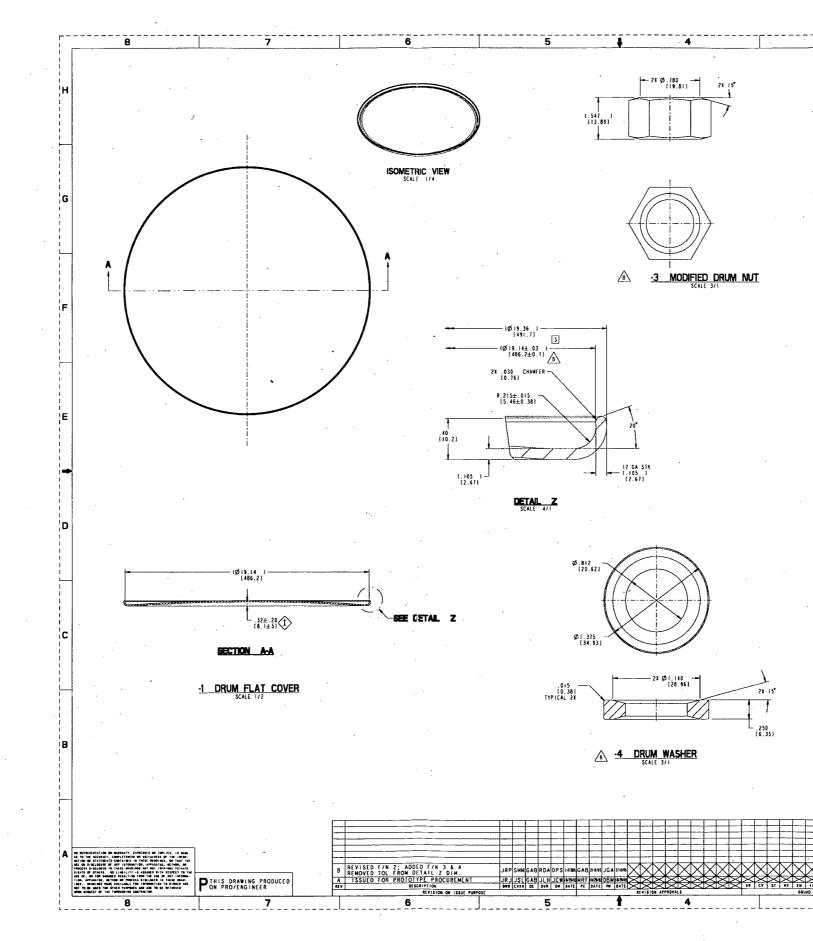

7

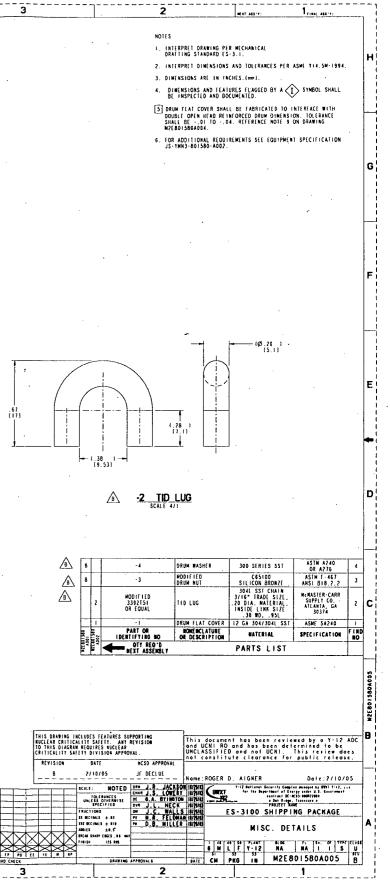


1-143

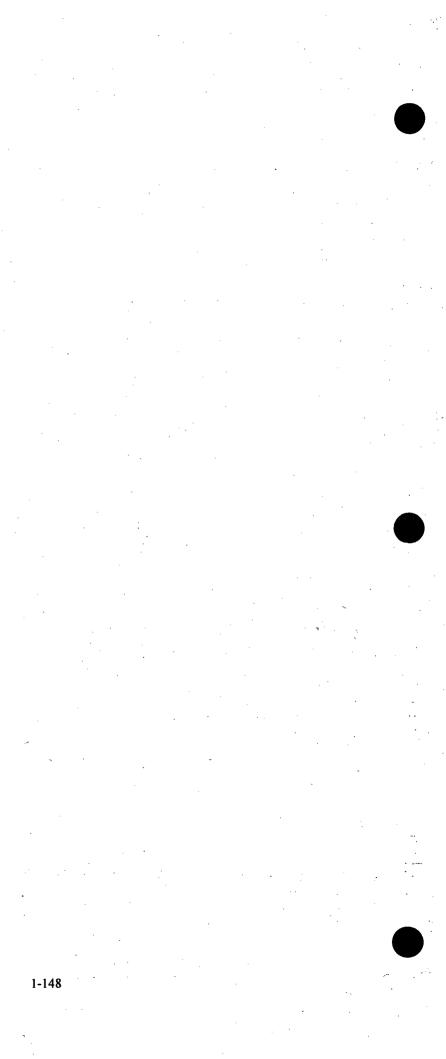
Y/LF-717/Rev 2/E

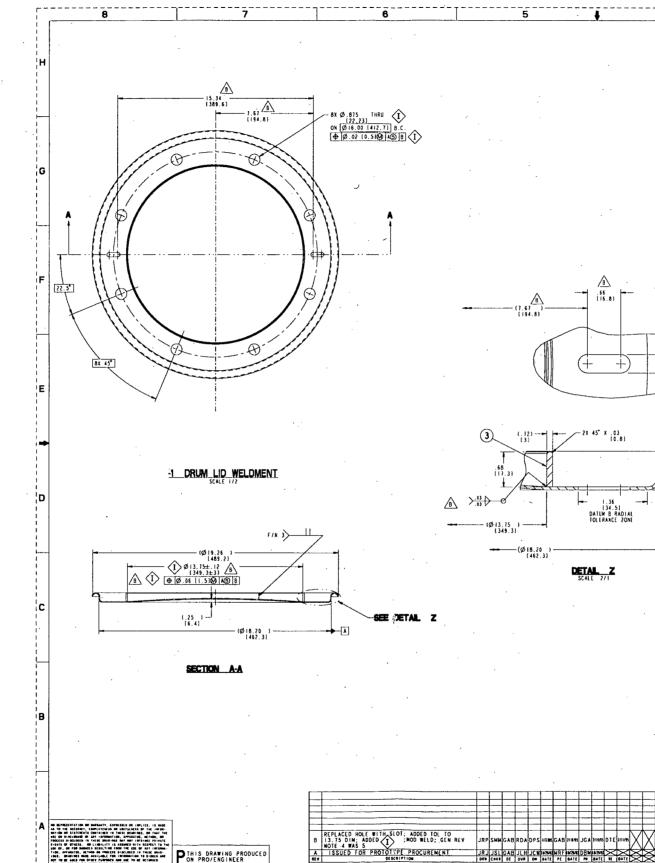


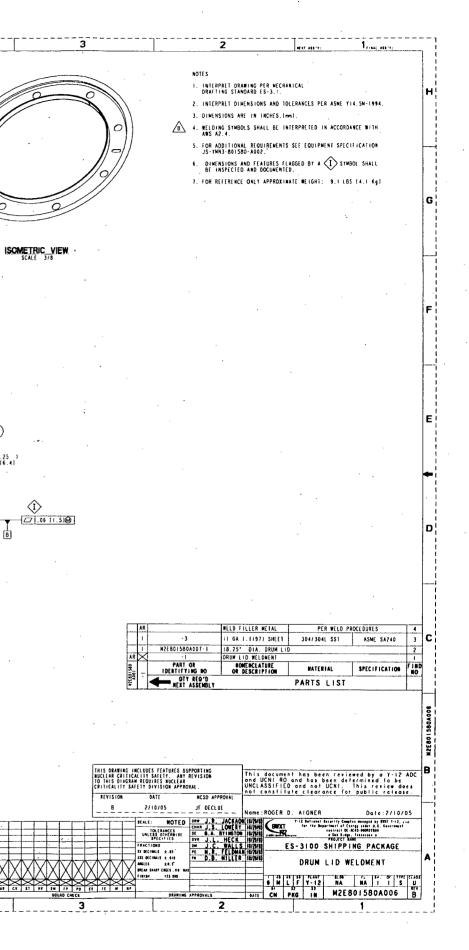

.


Y/LF-717/Rev 2/ES-3100 HEU SAR/Ch-1/rlw/3-06-08

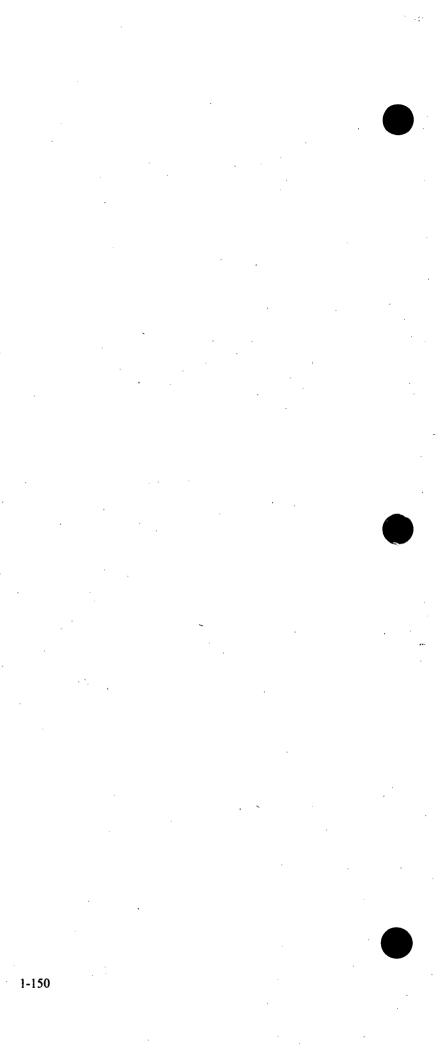
· · · ·

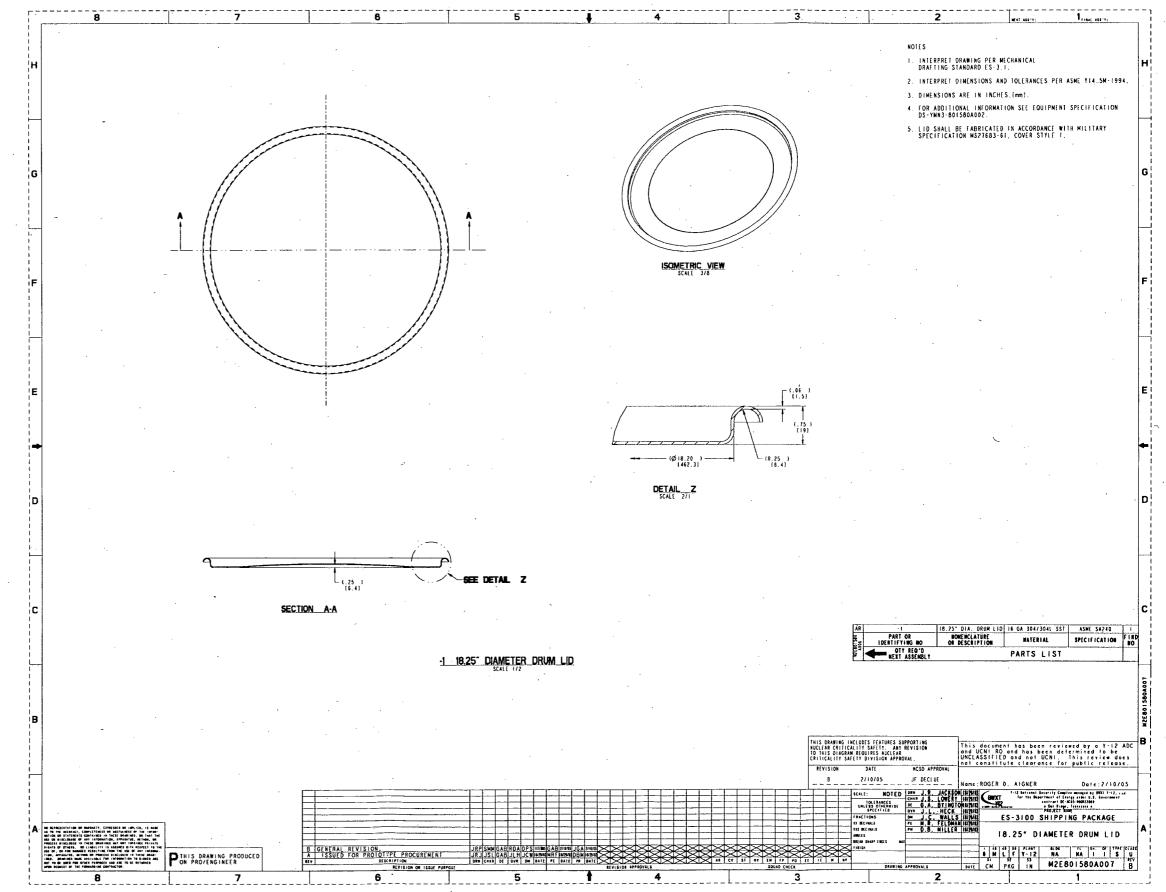



.

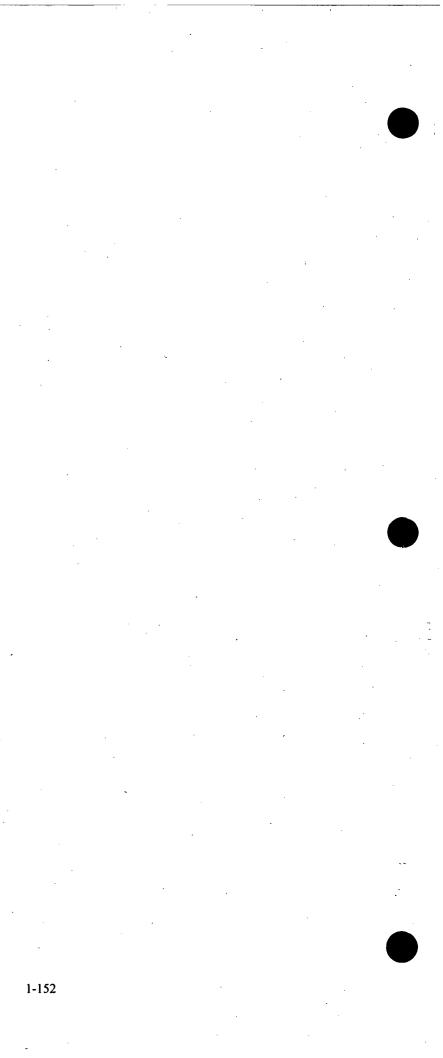


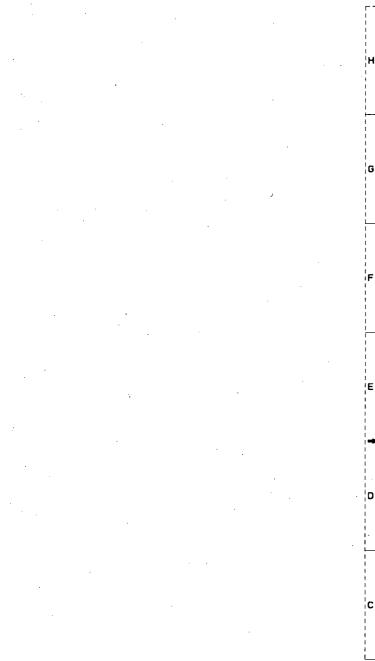
1-147

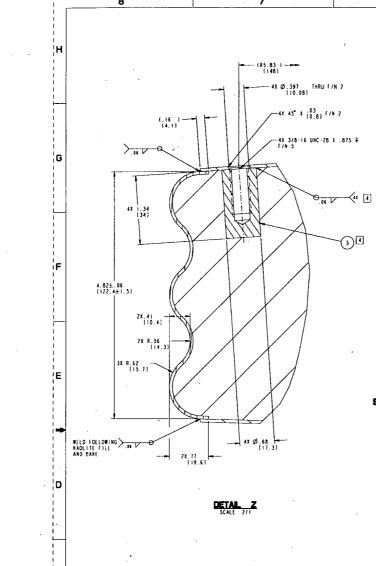

4

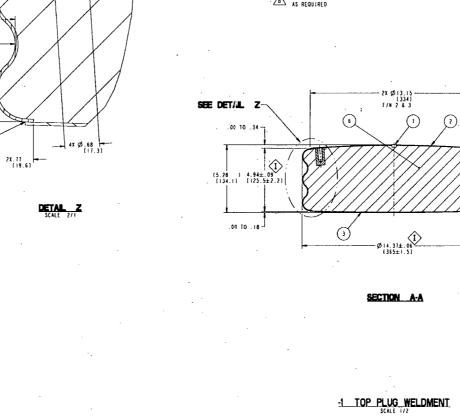

.36 [9.1]

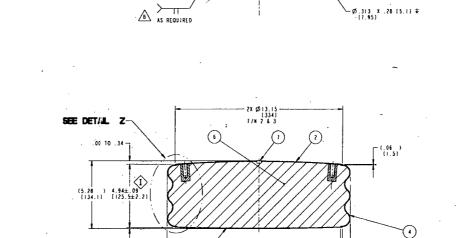
- (R.25) [5.4]

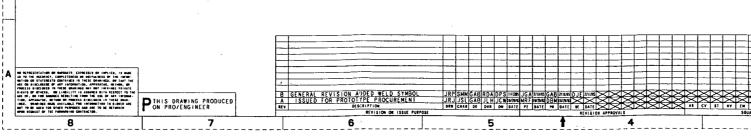

B



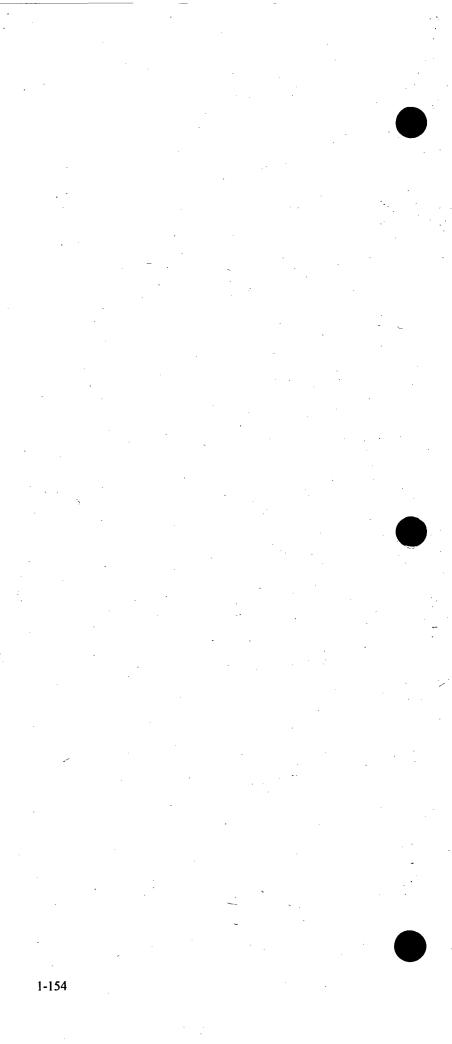

1-151

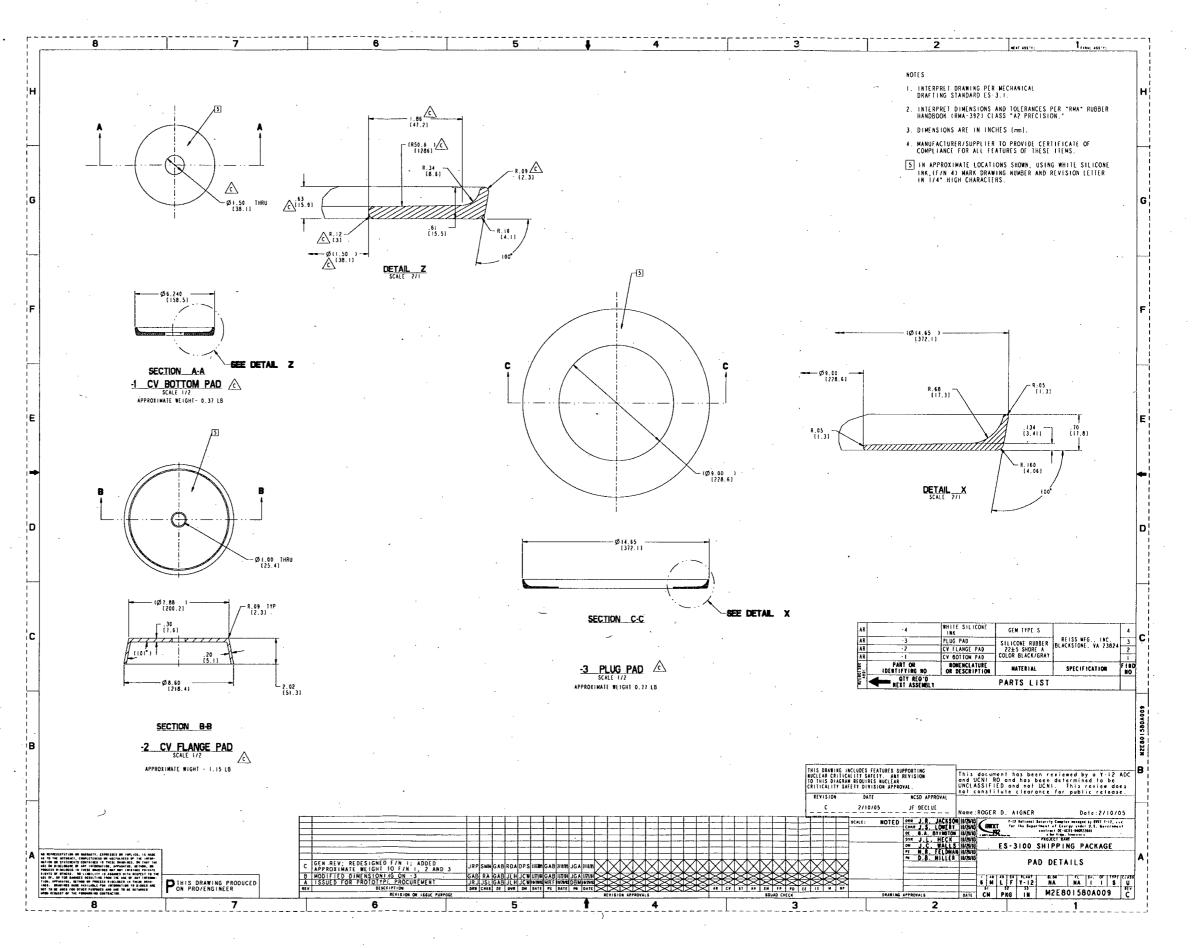


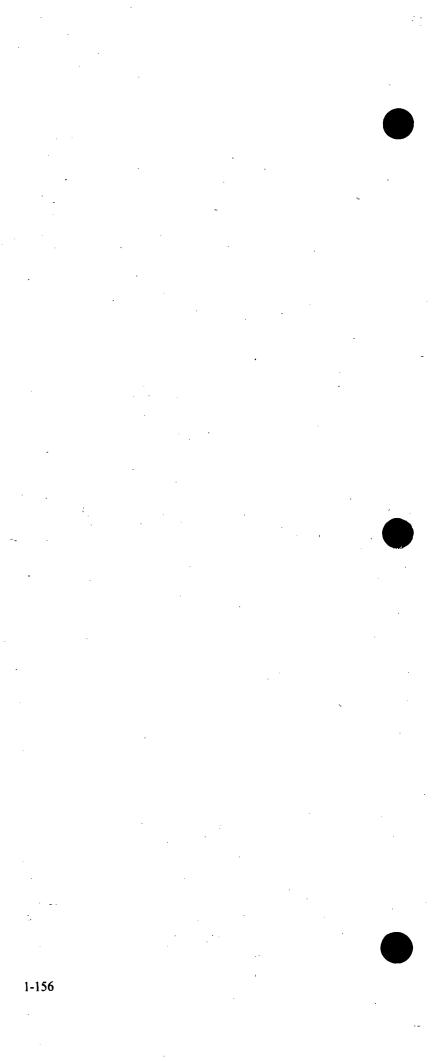


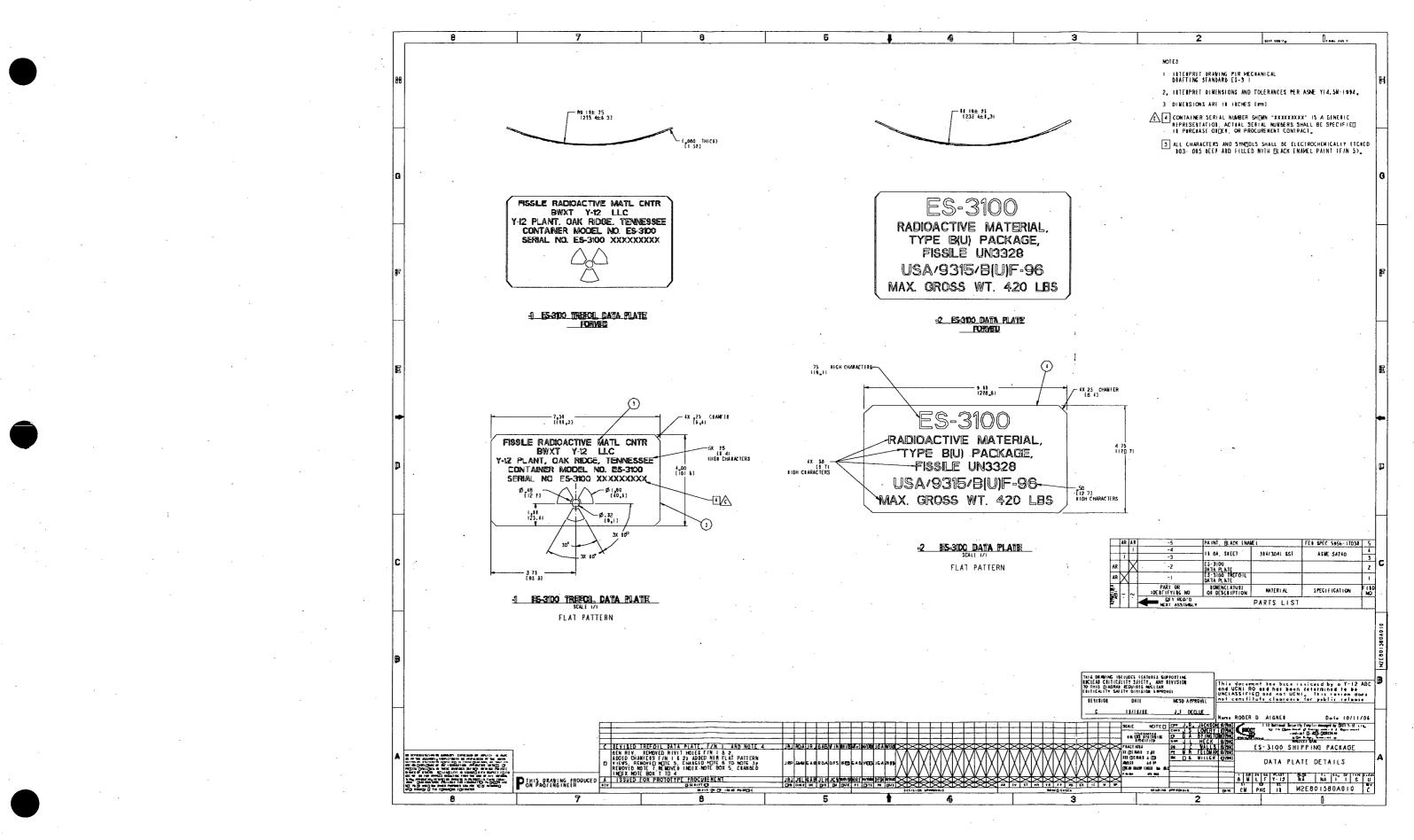

85.83 [148.1]

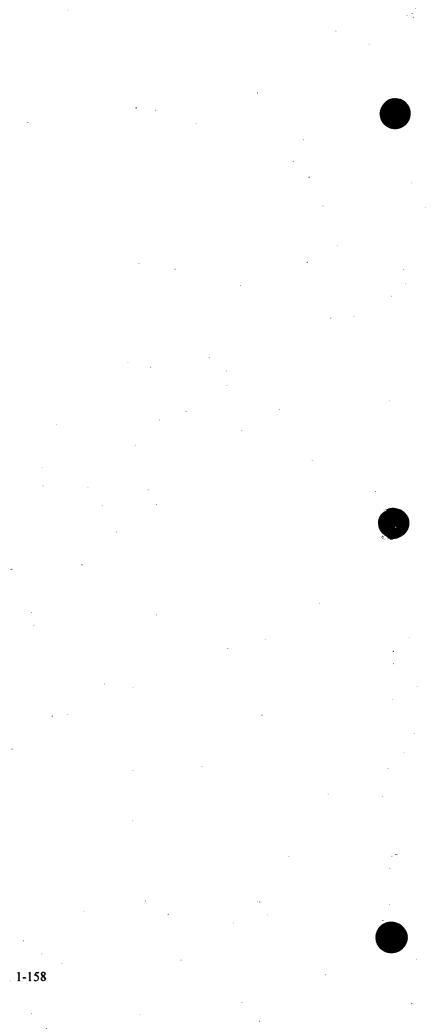
(j)[

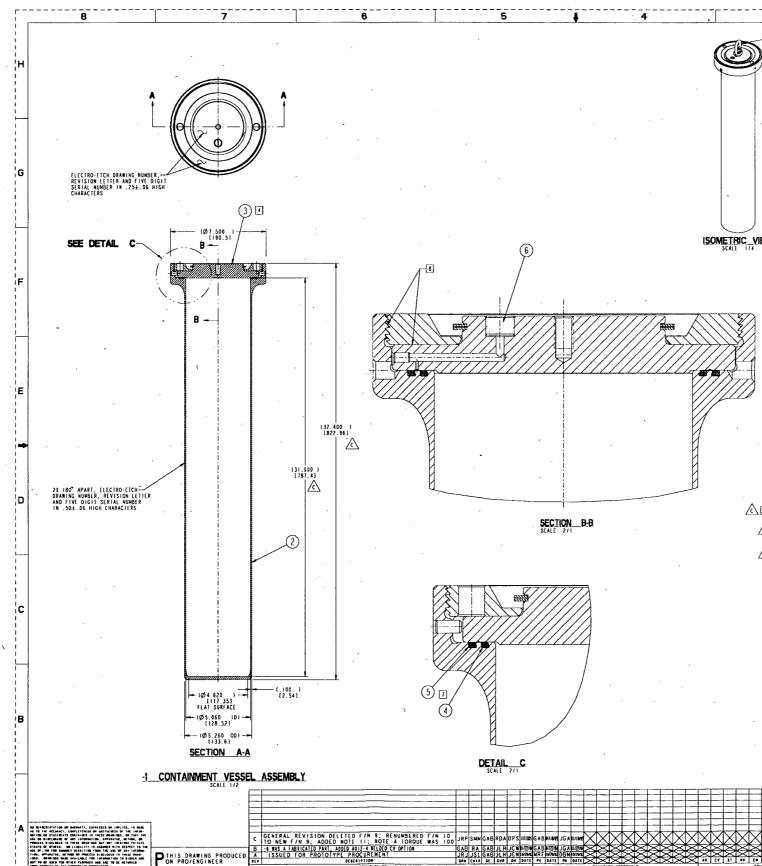



2X (,16 } {4,1}

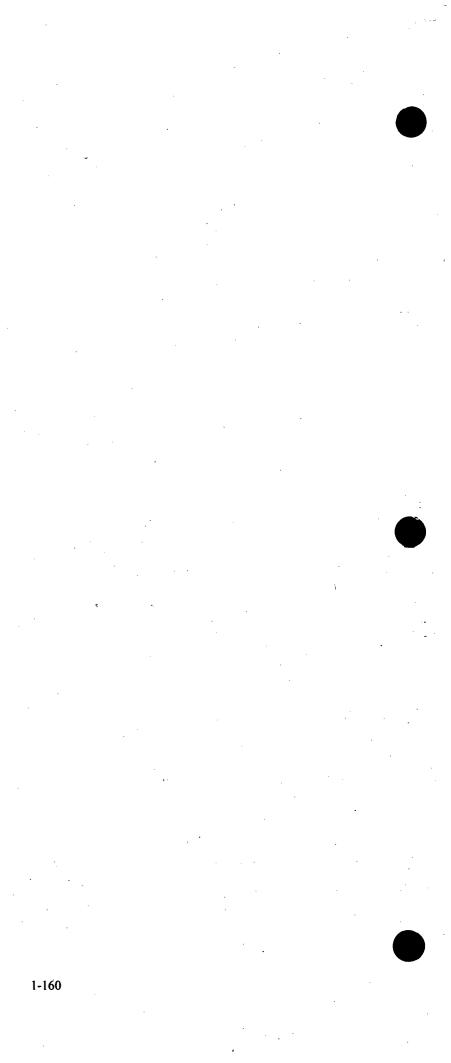

3 ------2 _____ TTINAL ASS. NOTES F. INTERPRET DRAWING PER MECHANICAL DRAFTING STANDARD ES-3.1. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME 14.5N-1994. 3. DIMENSIONS ARE IN INCHES.[mm]. WELD LIFTING INSERTS (F/N 5) IN PLACE BEFORE FILLING WITH KAOLIJE (F/N 6). 5. WELDING SYMBOLS SHALL BE INTERPRETED IN ACCORDANCE WITH AWS A2.4. 6. FOR ADDITIONAL REQUIREMENTS SEE EQUIPMENT SPECIFICATIONS JS-YMN3-801580-A002 AND A003. 7. DIMENSIONS AND FEATURES FLAGGED BY A () SYMBOL SHALL BE INSPECTED AND DOCUMENTED. 8. FOR REFERENCE ONLY: APPROXIMATE WEIGHT 19.6 LBS (8.8 Kg) WITH KAOLITE VOLUME 0.43 CU.FT. KAOLITE DENSITY 22.4 LBS/CU. FT. KAOLITE WEIGHT: 9.6 LBS [4.7 Kg] SCALE 1/4 PER WELD PROCEDURES WICBO PLASTIC INC. FLIPPIN, AR 17634 THERNAL CERANICS AUGUSTA, GA 30903-0823 IT/16 ROUND 304/304L SST ASNE SA47 WELD FILLER METAL 62MP0312 OR EQUAL PLUG, NYLON 6/6 KAOLITE 1600 TH VIBRATED CAST - 6 - 5 LIFTING INSERT ASNE SA479 PLUG RIM BOTTOM SHEET TOP SHEET TOP PLUG WELDMENT AR X 16 GA SHT 304/304L SST ASHE SA240 PART OR IDENTIFTING NO NONENCLATURE OR DESCRIPTION NATERIAL SPECIFICATION AZEBU HENT ASSEMA PARTS LIST THIS DRAWING INCLUDES FEATURES SUPPORTING NUCLEAR CRITICALITY SAFETT. ANY REVISION TO THIS DIAGRAM REQUIRES NUCLEAR CRITICALITY SAFETT DIVISION APPROVAL. This document has been reviewed by a Y-12 ADC and UCNI RQ and has been determined to be UNCLASSIFIED and not UCNI. This review does not constitute clearance for public release. REVISION DATE NCSD APPROV 2/10/05 JE DECLUE Name:ROGER D. AIGNER Date:2/10/05 NOTED IN LA LA LACENT HITSE CONT CARACES CAN J.S. LOTET HITSE CONT CARACES CAN J.S. LOTET HITSE CONT CARACES CONTACT HITSE CONTACT CARACES CONTACT AND CONTACT AND CONTACT CONTACT AND CONTACT AND CONTACT AND CONTACT CONTACT AND CONTACT AND CONTACT AND CONTACT AND CONTACT CONTACT AND CONTACT AND CONTACT AND CONTACT AND CONTACT CONTACT AND CONTACT AND CONTACT AND CONTACT AND CONTACT CONTACT AND CON - TTO VICET TEL Betrand Security Complex Puters & 9 PDI 1-12, au far the Department of Secury salar U.S. Concernent central OC-ASS-MOUZAB - Bob 6 depr. Fearming o PDI 102 Table FARCE MOTED IDEFRANCES UNLESS OTHERWISE SPECIFICO FRACTIONS IDEFCHALS ±.05 IDEFCHALS ±.0 ES-3100 SHIPPING PACKAGE TOP PLUG WELDMENT 6 H L F Y-12 NA NA I I S U M2E801580A008 B 2

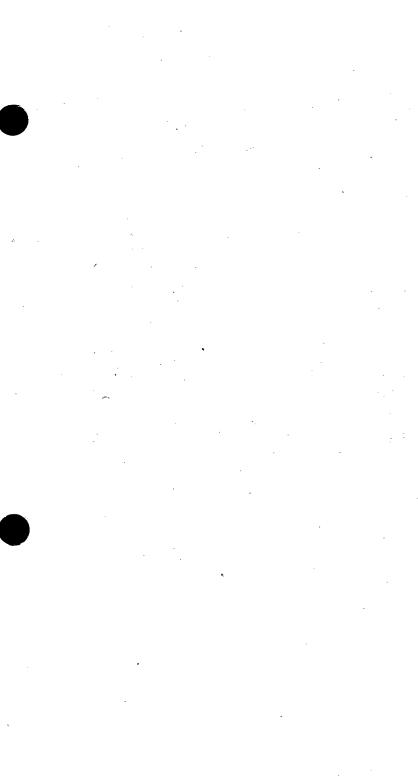

1-153

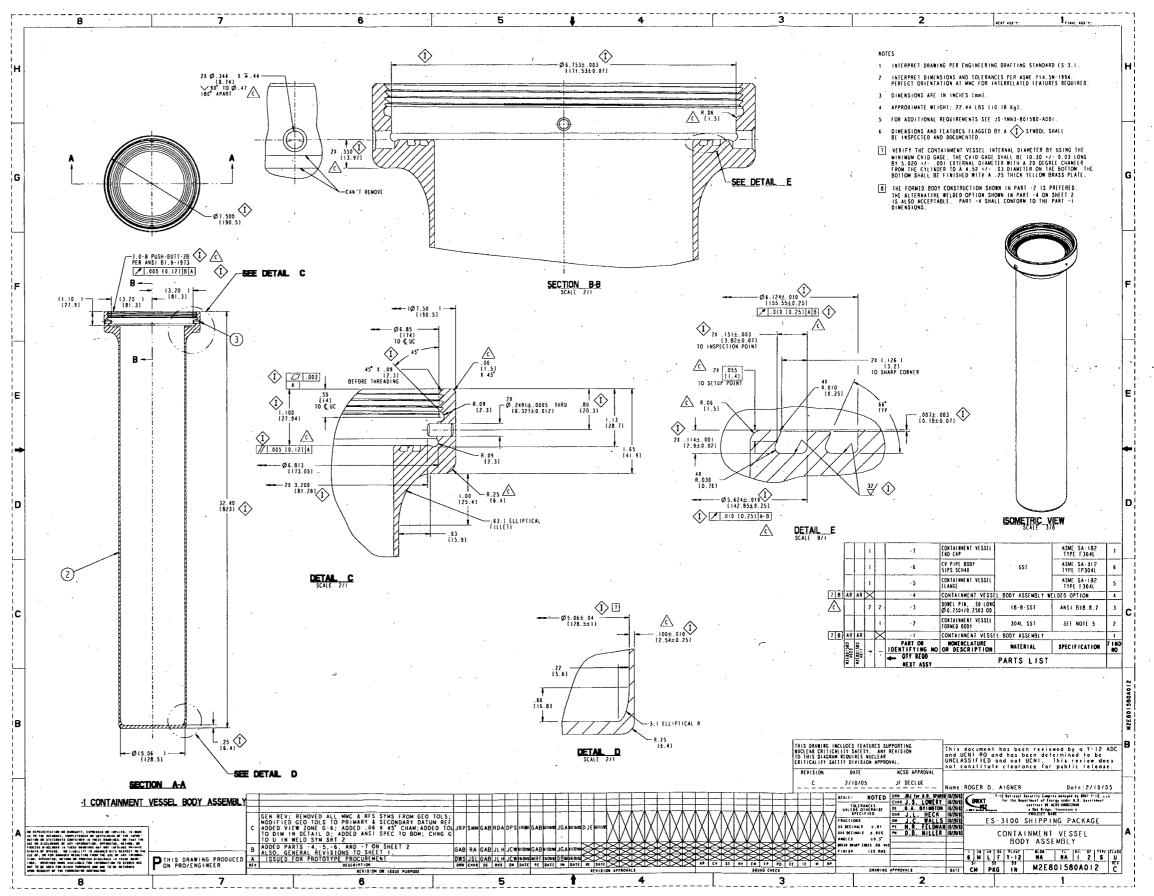


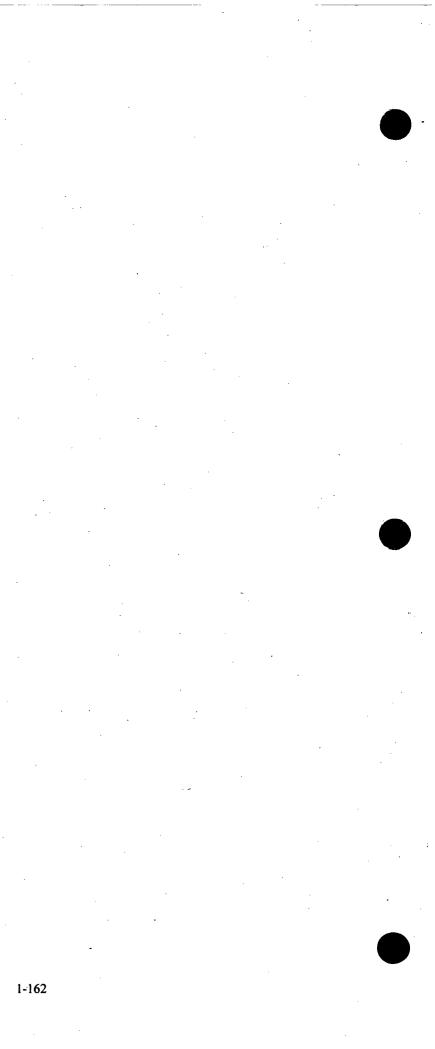


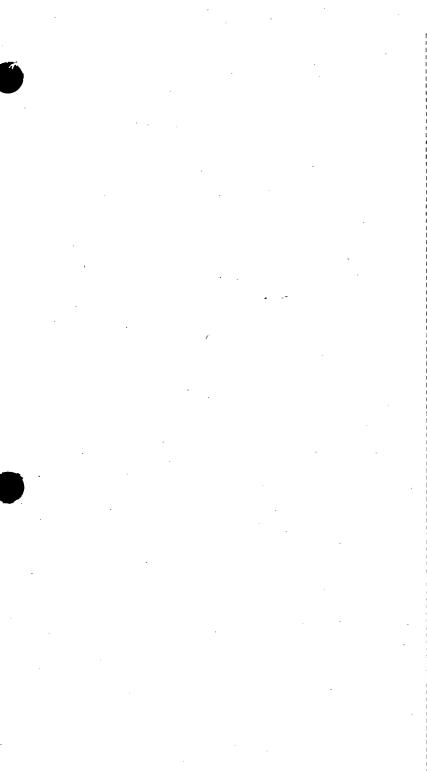
Y/LF-717/Re

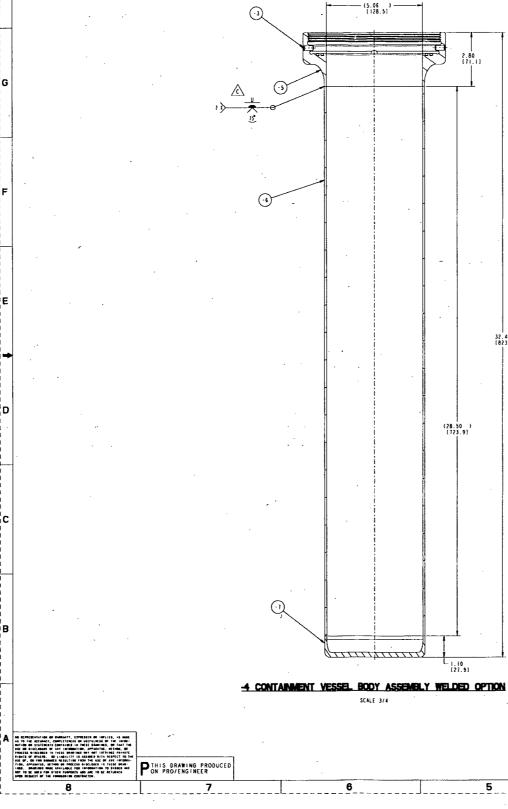

6

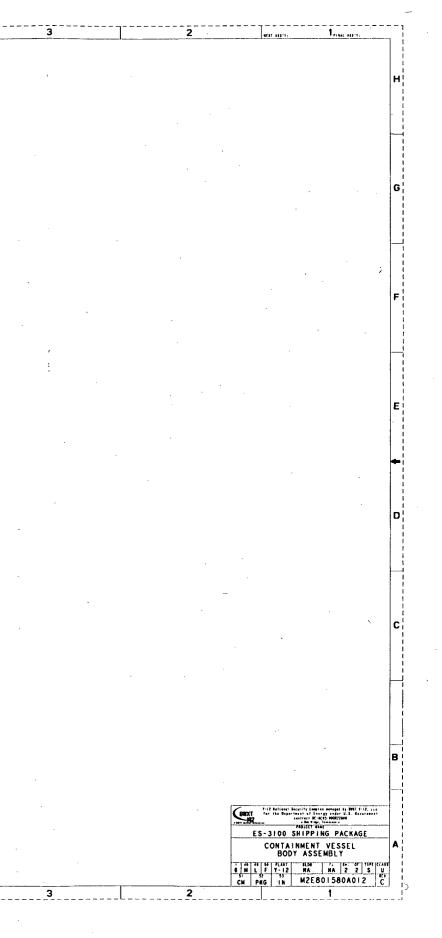

7

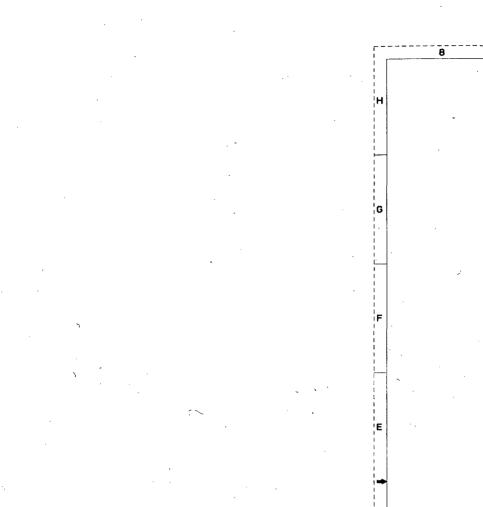

5

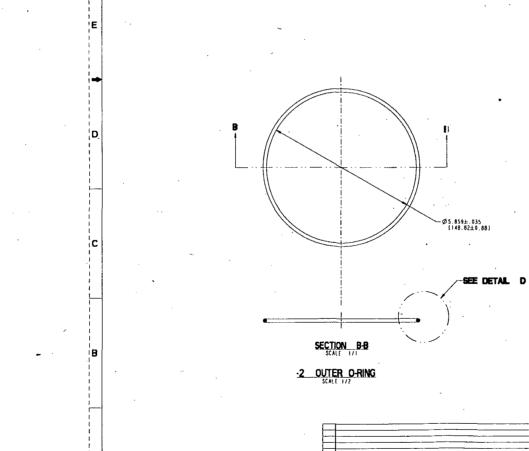

		1 FING ASS/10		2		٦		3
]					FS			-(9)
		ANDARD	NEERING DRAFTING ST	DRAWING PER ENGI	INTERPRET	Ι.	11	 []]
н		Y14 5N-1994	OLERANCES PER ASME	DINENSIONS AND T	ES-3.1.	2.		
	ED.		FOR INTERRELATED F	RIENTATION AT RMC	PERFECT O			
				S ARE IN INCHES E		3.		
		LBS AS	DRQUE TO 120 ±5 FT-L ND A020-4.	HE LID NUT AND TO M2E801580A020-3 A		1		
			8 LBS. [14.96 KG],	TE WEIGHT: 32.98	APPROXIMA	. 5.		
•	580-A00I	.C. DS-YMN3-801580-	IS SEE EQUIPMENT SPE	IONAL REQUIREMENT	FOR ADDIT	6.		
G	-LUBE.	COAT OF SUPER-O-LUE	RINGS APPLY A THIN C	ISTALLATION OF O-R	DURING IN	7		
ľ			NTAINER VESSEL LID A SE TO THE THREADS AN			8		
	NMENT	NLOADING CONTAINMEN	WHEN LOADING AND UN			9		
				LY. NOT FOR SHIPM	•			
			TO 12 ±1 FT.LBS. PER					N
	15		READ LUBRICANT AND O ING AND MAINTENANCE					
					-			
F					-			
-								:
	-	-						
								•
E								
•								
•						-		
•								
+ D	A 9	NCHASIER: CARR	ALLOY STIFFL	SWIYEL HOIST	52155	30	AR	
+ D	,	ATLANTA, GA		THREAD	EQUAL	OR K		
+ D	ON B	ATLANTA, GA NIELER-STEPHENSON CHENICAL CO DANBURY, CT 06810	ALLOY STEEL FLUORINATED GREASE	RING	EQUAL	OR Ki	AR	
• D	ON 8 BIO CORP, 11751 7	ATLANTA, GA		THREAD	EQUAL RYTOX 240AC	OR KE BZ OR SUPEE		
+ D	ON 8 BIO CORP, 11751 7 OS12 RIAL 71	ATLANIA, GA MILIER-STEPHENSON CHEMICAL CO. DANBURY, CI 06810 PARMER HAMMIFIN CORP. O-RIMG DU', PO BOX 1175 LEXINGION, NY 40512 VOLUNTEER INDUSTRIAL P. O. BOX 30371	FLUORIMATED GREASE CLEAR DIMETHYL SILOXAKE POLYMER	RING THREAD LUBRICANT O-RING LUBRICANT MODIFIED VCO	EQUAL RYTOX 240AC EQUAL R-O-LUBE EQUAL	OR #2 OR SUPEF OR	AR	
• D	ON 8 BIO 6 CORP. 11751 7 0512 7 RIAL 71 6 2617 6	ATLANIA, GA MILLIR-STEPHENSON CHEMICAL CO. DANBURT, CT 06810 PARKER HANNIFIN CORP. O-RING DIV.PO BOX 1175 IEXINGTON, NY 40512 VOLUNTEFR INDUSTRIAL	FLUORINATED GREASE	RING IHREAD LUBRICANT O-RING LUBRICANT MODIFIED VCO IHREADED PLUG	EQUAL RYTOX 240AC EQUAL R-O-LUBE EQUAL	OR KE SZ OR SUPEF OR PART E	AR AR	100
+ D	ON 6 BIO II751 7 0512 RIAL 71 7930 2617 . 5 4	ATLANIA, GA MILIER-STEPHENSON CHEMICAL CO. DANBURY, CI 06810 PARMER HAMMIFIN CORP. O-RIMG DU', PO BOX 1175 LEXINGION, NY 40512 VOLUNTEER INDUSTRIAL P. O. BOX 30371	ILUORINATED GREASE CLEAR DIMETHYL SILOXAME POLYMER BRASS	RING IHREAD UBRICANT O-RING LUBRICANT WODIFIED VCO IHREADED PLUG O-RING, OUTER O-RING, INKER	EQUAL RYTOX 240AC EQUAL R-O-LUBE EQUAL 04-2126 580A013-2 580A013-1	0R 81 92 0R SUPEF 0R PART 8 M2E801 M2E801	AR AR J	
	ON 8 BIO 0 ORP, 11751 7 OS12 7 RIAL 7 7930 6 2617 . 4 3 2 2 2 3 2 3 2 3 2 3 3 3 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	ATLANIA, GA MILIER-STEPHENSON CHEMICAL CO. DANBURY, CI 06810 PARMER HAMMIFIN CORP. O-RIMG DU', PO BOX 1175 LEXINGION, NY 40512 VOLUNTEER INDUSTRIAL P. O. BOX 30371	L LID ASSEMBLY	RING IHRIAD LUBRICANT O-RING LUBRICANT WODIFIED VCO IHRIADED PLUG O-RING, OUTER O-RING, INKER CONTAINMENT VESSE CONTAINMENT VESSE	EQUAL RYTOX 240AC EQUAL R-O-LUBE EQUAL 04-2126 580A013-2 580A013-1 580A013-1 12-1 OR A012-	0R 81 92 0R SUPEF 0R PART 8 M2E801 M2E801 M2E801	AR AR I I I I	
C	ON 8 810 0 0RP, 11751 7 0512 7 7930 6 2617 . 5 4 3 2 7 1 7	ATLANIA, GA MILIER-STEPHENSON CHEMICAL CO. DANBURY, CI 06810 PARMER HAMMIFIN CORP. O-RIMG DU', PO BOX 1175 LEXINGION, NY 40512 VOLUNTEER INDUSTRIAL P. O. BOX 30371	L LID ASSEMBLY	RING IHRIAD UUBRICANT UURICANT UURICANT UURICANT UURICANT UORICANT UORICANT O-RING UURICANT CONTAINACTIVESE CONTAINACTIVESE CONTAINACTIVESE UURELANDEN	EQUAL RYIOX 240AC EQUAL R-O-LUBE EQUAL 04-2126 580A013-2 580A013-1 580A013-1 12-1 OR A012- -1 RT OR	OR 8 4 9 0 0 0 9 0 0 0 0	AR AR I I I AR	
D	ON 8 BIO 6 CORP. 11751 7 OS12 7 RIAL 7 7930 6 2617 . 5 4 4 3 2 2 1	ATLANIA, GA MILIR, STEPPENSON CHENICAI CO. DANBURY, CI OSBIO PARKER HANNIFIN CORP. C.RING DIY, PO BOX 1115 LEINGON, KY 40312 VOLUNTEFR INDUSTRIAL P. O. BOX 30311 KNOZVILLE, TR. 31930 PHONE 865-660-2617	ILUORINATED GREASE CLEAR DIMETHYL SILOZANE POLYMER BRASS L LID ASSENBLY L ASSENBLY L ASSENBLY	RING 1HRIAD UBRICANI 0-RING UBRICANI 0-RING UBRICANI 0-RING 0-RING, UITER 0-RING, INKER COMTAINKENT VESSE COMAINMENT VESSE COMAINMENT VESSE	EQUAL RYTOX 240AC EQUAL R-O-LUBE EQUAL 04-2126 580A013-2 580A013-1 580A013-1 12-1 OR A012- -1	OR KIS SUPER OR PART 8 W2E801 W2E801 W2E801 W2E801 SSA0 PAR IDENT	AR AR I I I I	
C	ON 8 810 0 0RP, 11751 7 0512 7 7930 6 2617 . 5 4 3 2 7 1 7	ATLANIA, GA MILIF, STEPPENSON CHEMICAL CO. DANBUR, CI OSBIO PARKEP HANNIFIN CORP. C-RING DIV.PO BOX 1175 LEINGON, KY 40372 VOLUNIEFR INDUSTRIAL P. O. BOX 30371 KNOXVILLE, IN 3730 PHONE 855-660-2617 SPECIFICATION	ILUORINATED GREASE CLEAR DIMETHYL SILOXANE POLYMER BRASS L LID ASSENBLY L BODY ASSENBLY L ASSENBLY MATERIAL	RING IHRIAD UUBRICANT UURICANT UURICANT UURICANT UURICANT UORICANT UORICANT O-RING UURICANT CONTAINACTIVESE CONTAINACTIVESE CONTAINACTIVESE UURELANDEN	EQUAL RTOX 240AC EQUAL EQUAL 04-2126 580A013-2 580A013-2 580A013-1 580A013-1 12 1 OR A012- -1 RT OR RT OR 07 RE0'D	OR KIS SUPER OR PART 8 W2E801 W2E801 W2E801 W2E801 SSA0 PAR IDENT	AR AR I I I AR	
C	ON 8 810 0 0RP, 11751 7 0512 7 7930 6 2617 . 5 4 3 2 7 1 7	ATLANIA, GA MILIF, STEPPENSON CHEMICAL CO. DANBUR, CI OBBIO PARKEP HANNIFIN CORP. C-RIME DIV.PO BOX 1175 LEINGON, KY 40372 VOLUNIEFR INDUSTRIAL P. O. BOX 30371 KNOXVILLE, IN 3730 PHONE 855-660-2617 SPECIFICATION	ILUORINATED GREASE CLEAR DIMETHYL SILOXANE POLYMER BRASS L LID ASSENBLY L BODY ASSENBLY L ASSENBLY MATERIAL	RING IHRIAD UUBRICANT UURICANT UURICANT UURICANT UURICANT UORICANT UORICANT O-RING UURICANT CONTAINACTIVESE CONTAINACTIVESE CONTAINACTIVESE UURELANDEN	EQUAL RTOT RTOT EQUAL EQUAL EQUAL EQUAL 04-2126 580A013-2 580A013-2 580A013-1 12-1 OR A012- -1 AT OR IFYIKE KD OFT REO'D IT ASSEMBLY	OR KIS SUPER OR PART 8 W2E801 W2E801 W2E801 W2E801 SSA0 PAR IDENT	AR AR I I I AR	
C	ON 8 810 0 0RP, 11751 7 0512 7 7930 6 2617 . 5 4 3 2 7 1 7	ATLANIA, GA MILIF, STEPPENSON CHEMICAL CO. DANBUR, CI OBBIO PARKEP HANNIFIN CORP. C-RIME DIV.PO BOX 1175 LEINGON, KY 40372 VOLUNIEFR INDUSTRIAL P. O. BOX 30371 KNOXVILLE, IN 3730 PHONE 855-660-2617 SPECIFICATION	ILUORINATED GREASE CLEAR DIMETHYL SILOXANE POLYMER BRASS L LID ASSENBLY L BODY ASSENBLY L ASSENBLY MATERIAL	RING IHRIAD UUBRICANT UURICANT UURICANT UURICANT UURICANT UORICANT UORICANT O-RING UURICANT CONTAINACTIVESE CONTAINACTIVESE CONTAINACTIVESE UURELANDEN	EQUAL RTOT RTOT EQUAL EQUAL EQUAL EQUAL 04-2126 580A013-2 580A013-2 580A013-1 12-1 OR A012- -1 AT OR IFYIKE KD OFT REO'D IT ASSEMBLY	OR KIS SUPER OR PART 8 W2E801 W2E801 W2E801 W2E801 SSA0 PAR IDENT	AR AR I I I AR	
C	ON 8 810 0 0RP, 11751 7 0512 7 7930 6 2617 . 5 4 3 2 7 1 7	ATLANIA, GA MILIF, STEPPENSON CHEMICAL CO. DANBUR, CI OBBIO PARKEP HANNIFIN CORP. C-RIME DIV.PO BOX 1175 LEINGON, KY 40372 VOLUNIEFR INDUSTRIAL P. O. BOX 30371 KNOXVILLE, IN 3730 PHONE 855-660-2617 SPECIFICATION	ILUORINATED GREASE CLEAR DIMETHYL SILOXANE POLYMER BRASS L LID ASSENBLY L BODY ASSENBLY L ASSENBLY MATERIAL	RING IHRIAD UUBRICANT UURICANT UURICANT UURICANT UURICANT UORICANT UORICANT O-RING UURICANT CONTAINACTIVESE CONTAINACTIVESE CONTAINACTIVESE UURELANDEN	EQUAL RTOT RTOT EQUAL EQUAL EQUAL EQUAL 04-2126 580A013-2 580A013-2 580A013-1 12-1 OR A012- -1 AT OR IFYIKE KD OFT REO'D IT ASSEMBLY	OR KIS SUPER OR PART 8 W2E801 W2E801 W2E801 W2E801 SSA0 PAR IDENT	AR AR I I I AR	
M2E8015804011 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ATLANIA, GA NILIF, SIEPPENSON CHENICAL CO. DANBURT, CI OBBIO PARKER HANNIFIN CORP. D-RING DIV.PO BOX 1175 LEXINGON, NY 40512 VOLUNIEFR INDUSTRIAL P. O. BOX 30371 KNOXVILLE, TN 37930 PHONE 865-660-2617 SPECIFICATION	FLUORINATED GREASE CLEAR DIMETHYL SILOXAME POLYMER BRASS L LID ASSEMBLY L BODY ASSIMELY L ASSEMELY MATERIAL PARTS LIST	RING THREAD UBRICANT O-RING UBRICANT MODIFIED VCO THREADED PLUG O-RING, UTER O-RING, UTER O-RING, INFRE CONTAINENT VESSE NOMERCLATURE OR DESCRIPTION	EQUAL RYTOX 240AC EQUAL 04-2126 580A013-2 580A013-7 580A013-7 580A013-1 580A014-1 12-1 OR A012- -1 RYTOR IT2 I OR A012- 1 FYNR RD OT7 FEO'D XT ASSEMBLY	08 64 08 08 08 09 09 09 09 09 09 09 09 09 09 09 09 09		
C	- 12 ADC	ATLANIA, GA MILIF, SIEPPENSON CHEMICAL CO. DANBURT, CI OBBIO PARKEP HANNIFIN CORP. D-RING DIV.PO BOX 1175 LEINGON, KY 40512 VOLUNIEER INDUSTRIAL P. O. BOX 30371 KNOXVILLE, IN 37930 PHONE 865-660-2617 SPECIFICATION SPECIFICATION	ILUORINATED GREASE CLEAR DIMETHYL SILOXAME POLYMER BRASS L LID ASSEMBLY L BODY ASSEMBLY L BODY ASSEMBLT L ASSEMBLT MATERIAL PARTS L IST UGNUMENT has been r UGNUMENT has been	RING THREAD LUBRICANT O-RING LUBRICANT WODIFIED VCO INKEADED PLUG INKEADED PLUG INKER CONTAINGENT VESSE CONTAINMENT VESSE CONTAINMENT CONTAINMENT VESSE CONTAINMENT CONTAINT	EQUAL EQUAL ETTOX 240AC EQUAL 04-2126 580A013-2 580A013-1 580A013-1 580A013-1 580A013-1 12-1 0R A012- -1 RT OR OTY REG'D TXT ASSEMBLY FEATURES SUPPORT	08 81 82 08 08 08 08 08 08 08 08 08 08	AR AR J I I I I I I I I I I I I I I I I I I	
M2E8015804011 0	- 12 ADC	ATLANIA, GA MILIF, SIEPPENSON CHEMICAL CO. DANBURT, CI OBBIO PARKEP HANNIFIN CORP. D-RING DIV.PO BOX 1175 LEINGON, KY 40512 VOLUNIEER INDUSTRIAL P. O. BOX 30371 KNOXVILLE, IN 37930 PHONE 865-660-2617 SPECIFICATION SPECIFICATION	ILUORINATED GREASE CLEAR DIMETHYL SILOXANE POLYMER BRASS L LID ASSENBLY L BODY ASSENBLY L ASSENBLY MATERIAL	RING THREAD LUBRICANT O-RING LUBRICANT WODIFIED VCO INKEADED PLUG INKEADED PLUG INKER CONTAINGENT VESSE CONTAINMENT VESSE CONTAINMENT CONTAINMENT VESSE CONTAINMENT CONTAINT	EQUAL EQUAL ETIOX EQUAL 04-2126 580A013-2 580A013-1 580A013-1 580A013-1 12-1 OR A0121 AT OR T REO'D AT ASSEMBLY EFFATURES SUPPO	08 08 08 08 08 08 08 08 08 08	AR AR J I I I I I I I I I I I I I I I I I I	
M2E801580A011 O	- 12 ADC - 12	ATLANIA, GA NILLE, STEPERSON CHIMICAL CO. DANBUR, CI OBBIO PARKEP HANNIFIN CORP. C-RING DIY, PO BOX 1175 LEINGON, KY 40312 VOLUNIEER INDUSTRIAL P. O. BOX 30371 KNOXVILLE, IN 3730 PHONE 855-560-2617 SPECIFICATION SPECIFICATION FOR THE STATE OF THE STATE SPECIFICATION SPECIFICATION SPECIFICATION SPECIFICATION	CLEAR DIMETHYL SILOZAME POLYMER BRASS L LID ASSEMBLY L BODY ASSEMBLY L ASSEMBLY L ASSEMBLY MATERIAL PARTS L IST document hos been r UCNI RO and has been SSIFIED and not UC constitute clearance :ROGER D. AIGNER	RING THREAD UBRICANI O-RING LUBRICANI MODIFIED VCO THREADED PLUG O-RING, OUTER O-RING, INKR CONTAINNENT VESSE CONTAINNENT VESSE BORESCHTTION	EQUAL EQUAL RTIOX 240AC EQUAL 04-2126 580A013-2 580A013-1 580A013-1 580A013-1 580A013-1 580A013-1 580A013-1 780A014-1 1 580A013-1 580A013-1 780A014-1 1 580A013-1 580A014-1 1 580A013-1 580A014-1 580A014-1 580	08 61 62 08 08 08 08 08 08 08 08 08 08	AR AR 1 1 1 1 1 1 1 1 1 1 1 1 1	
M2E801580A011 O	- 12 ADC - 12	ATLANIA, GA NILLE, STEPERSON CHIMICAL CO. DANBUR, CI OBBIO PARKEP HANNIFIN CORP. C-RING DIY, PO BOX 1175 LEINGON, KY 40312 VOLUNIEER INDUSTRIAL P. O. BOX 30371 KNOXVILLE, IN 3730 PHONE 855-560-2617 SPECIFICATION SPECIFICATION FOR THE STATE OF THE STATE SPECIFICATION SPECIFICATION SPECIFICATION SPECIFICATION	CLEAR DIMETHYL SILOZANE POLYMER CLEAR DIMETHYL SILOZANE POLYMER BRASS L LID ASSEMBLY L BODY ASSEMBLY L ASSEMBLY MATERIAL PARTS L IST ASSIFIED and the bECK CONSTITUTE CLEOPACE ROGER D. AIGNER CMART THE AND	RING THREAD UBRICANT O-RING LUBRICANT WODIFIED VCO THREADID PLUG O-RING, UTER O-RING, UTER O-RING, INKER CONTAINENT VESSE OR DESCRIPTION DESCRIPTION CSD APPROVAL T DECLUD NOME CAS DAPROVAL T DECLUD CA, DET MONE	EQUAL EQUAL ETIOX EQUAL EQUAL 04-2126 580A013-2 580A013-1 580A013-1 580A013-1 580A013-1 580A013-1 580A013-1 12-1 OR A012 	08 61 62 08 08 08 08 08 08 08 08 08 08		
M2E801580A011 O	- 12 ADC - 14 - 1	ATLANIA, GA NILIP, SIPPENSON CHENICAL CO. DANBURT, CI OSBIO PARHER HANNIFIN CORP. D-RING DIV.PO BOX 1175 LEXINGON, NY 40512 VOLUNTEER INDUSTRIAL P. O. BOX 30371 KNOXVILLE, TN 37930 PHONE 865-660-2617 SPECIFICATION SPECIFICATION reviewed by a Y-12 n determined to be NI. This review de for public relea	CLEAR DIMETHYL SILOZANE POLYMER CLEAR DIMETHYL SILOZANE POLYMER BRASS L LID ASSEMBLY L BODY ASSEMBLY L ASSEMBLY MATERIAL PARTS L IST ASSIFIED and the bECK CONSTITUTE CLEOPACE ROGER D. AIGNER CMART THE AND	RING THREAD UBRICANT O-RING LUBRICANT WODIFIED VCO THREADID PLUG O-RING, UTER O-RING, UTER O-RING, INKER CONTAINENT VESSE OR DESCRIPTION DESCRIPTION CSD APPROVAL T DECLUD NOME CAS DAPROVAL T DECLUD CA, DET MONE	EQUAL EQUAL ETTOX 240AC EQUAL 04-2126 580A013-2 580A013-2 580A013-1 580A013-1 580A013-1 580A013-1 580A013-1 580A014-1 12-1 OR A012	08 08 08 08 08 08 08 08 08 08		
M2E8015804011 0	- 12 ADC - 14 - 1	ATLANIA, GA ATLANIA, GA NILLE, STEPPENSON OAKBURT, CI OSBIO DAKBURT, CI OSBIO PARKER HANNIFIN CORP. D-RING OUV.PO BOX 1175 IEXINGON, NY 40512 VOLUNTEER INDUSTRIAL P. O. BOX 30371 KNOXVILLE, TN 37930 PHONE 865-660-2617 SPECIFICATION SPECIFICATION SPECIFICATION Dete:2/10/ To Compute Automation of the be NI. This review de for public reiz/10/ The Computer Statement Date:2/10/ The Computer Statement The Computer Stat	ILUORINATED GREASE CLEAR DIMETHYL SILOZANE POLYMER BRASS L LID ASSEMBLY L BODY ASSEMBLY L BODY ASSEMBLY ASSEMBLY MATERIAL PARTS LIST MATERIAL PARTS LIST CONSTITUTE CLEOPICE ROGER D. AIGMER ES-3100 SH CONTAINS	RING THRLAD THRLAD UBRICANT O-RING LUBRICANT WODIFFED VCO INREADLD PLUG O-RING, UTER O-RING, INKER CONTAINENT VESSE CONTAINENT VESSE COMAINENT VESSE COMAINENT VESSE COMAINENT VESSE COMESCATURENT VESSE VOREECLATURE OR DESCATTON VISION	EQUAL EQUAL ETTOX EQUAL EQUAL 04-2126 580A013-2 580A013-1 580A01-1 580A013-1 580A013-1 580A013-1 580A013-1 5	08 6 6 6 7 8 9 9 9 9 9 9 9 9 9		
A #2E6015604011		ATLANIA, GA NILLE, STEPERSON CHINICAL CO. DANBURY, CI OBSID PARKEP HANNIFIN CORP. C-RING DIY, PO BOX 1115 LEINGION, KY 40312 VOLUNTEER INDUSTRIAL P. O. BOX 3031 HNOYVILLE, IN 3750 PHONE 865-660-2617 SPECIFICATION SPECIFICATION SPECIFICATION CONTRACTOR CONTRACTOR Date:2/10/ 10 CONTRACTOR CONTRACTOR Date:2/10/ CONTRACTOR CONTRACTON CONTRACTOR CONTRACTON CONTRACTOR	CLEAR DIMETHYL SILOZANE POLYMER BRASS L LID ASSEMBLY L BODY ASSEMBLY L ASSEMBLY L ASSEMBLY MATERIAL PARTS LIST MATERIAL PARTS LIST	RING THREAD UBRICANT O-RING LUBRICANT WODIFIED VCO INREADED PLUG INREADED PLUG INREADED PLUG INREADED PLUG O-RING, UTER O-RING, INRER CONTAINMENT VESSE CONTAINMENT VESSE CONTAINT CONTAINT CONTAINT CONTAINT	EQUAL EQUAL RTIOX 240AC EQUAL 04-2126 580A013-2 580A013-2 580A013-1 580A014-1 11 580A014-1 5	08 6 6 6 7 8 9 9 9 9 9 9 9 9 9		

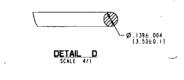




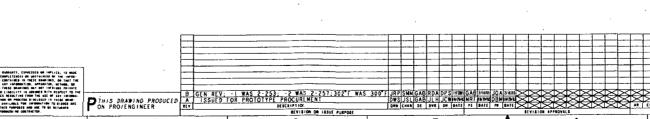




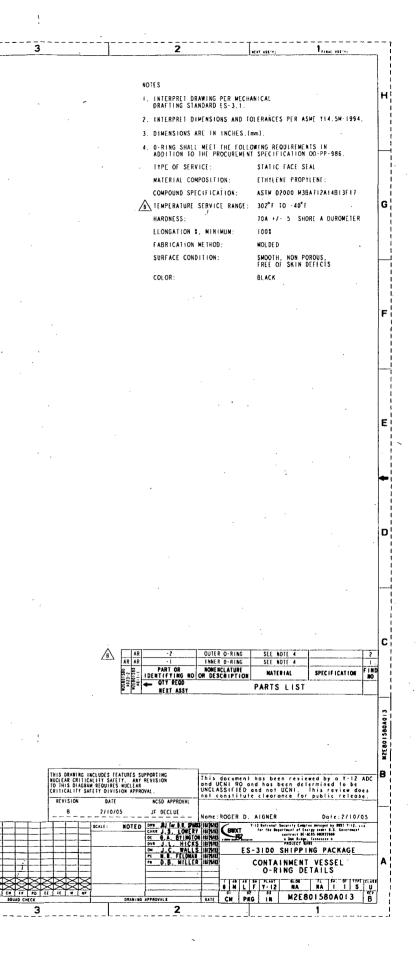




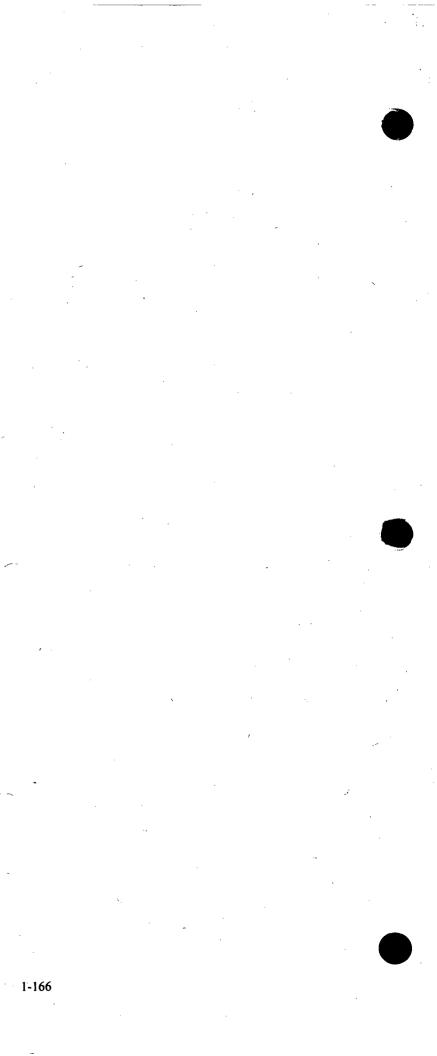
32.4

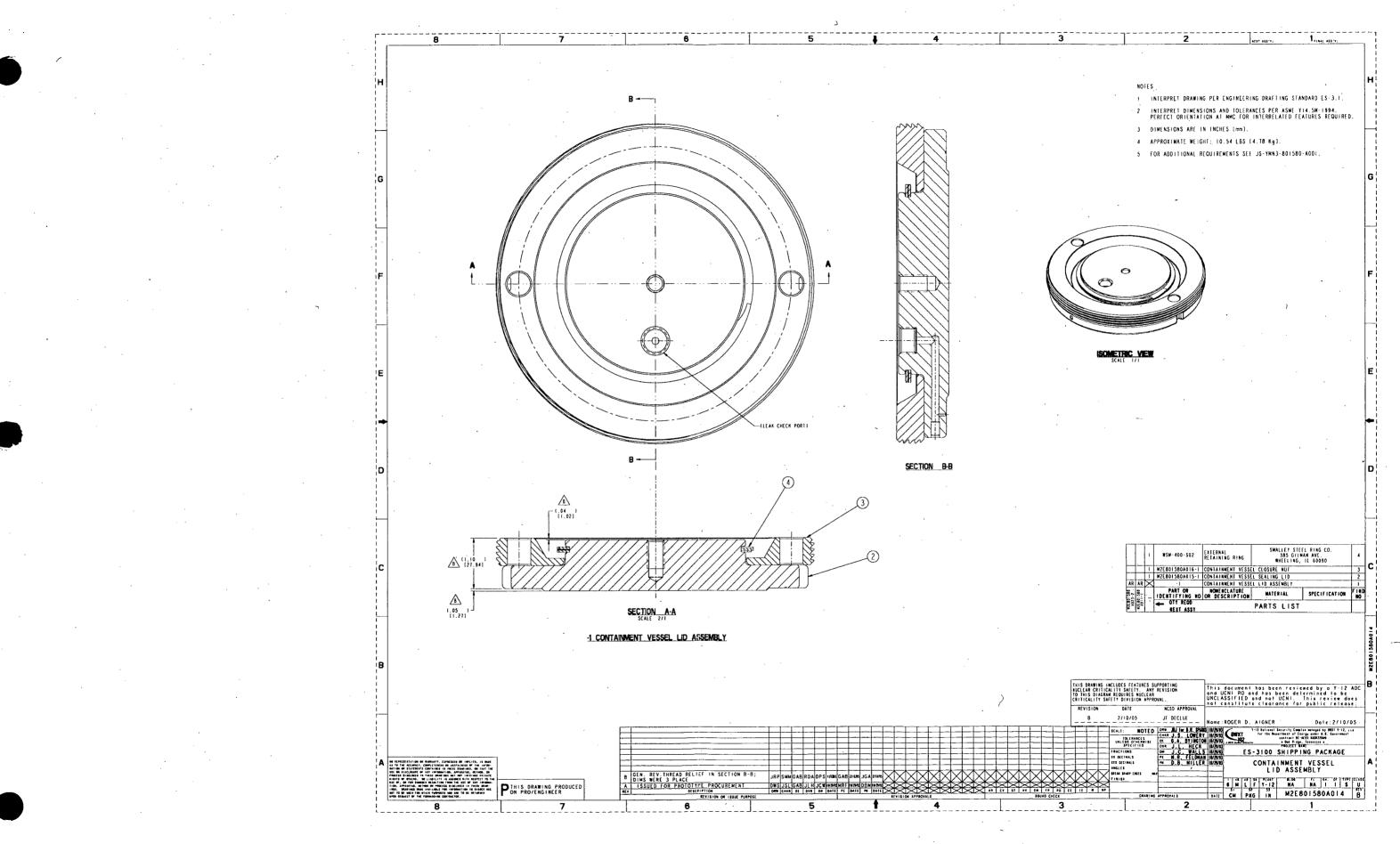


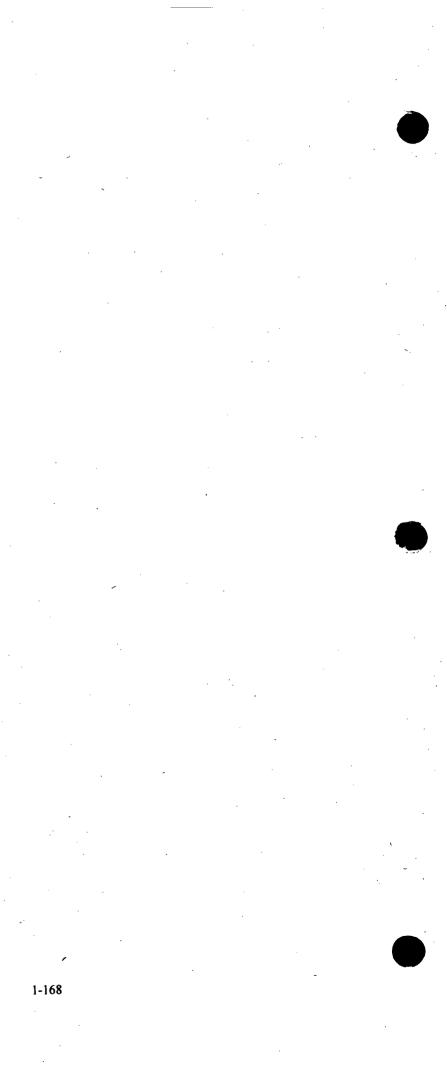
Ø

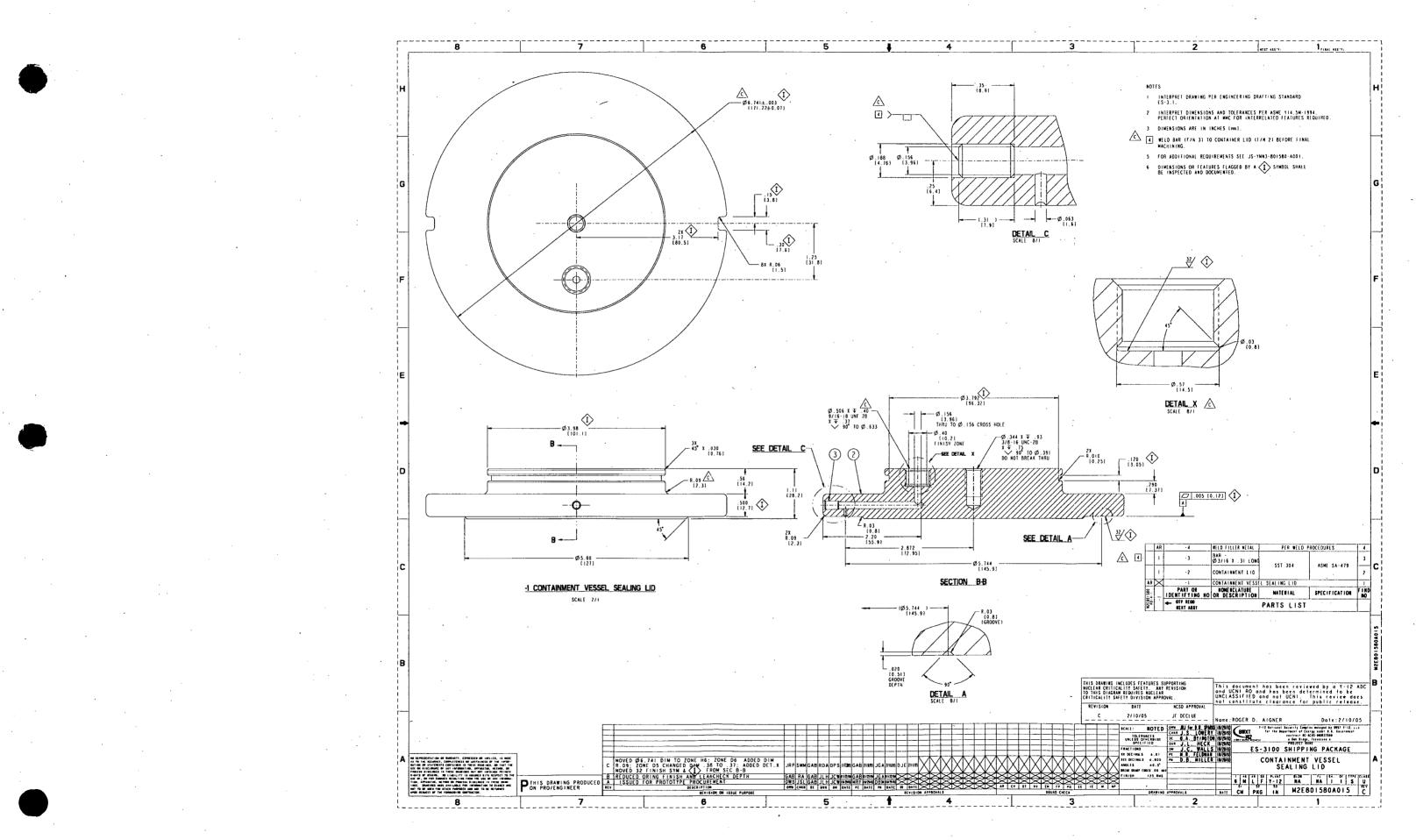

DETAIL C

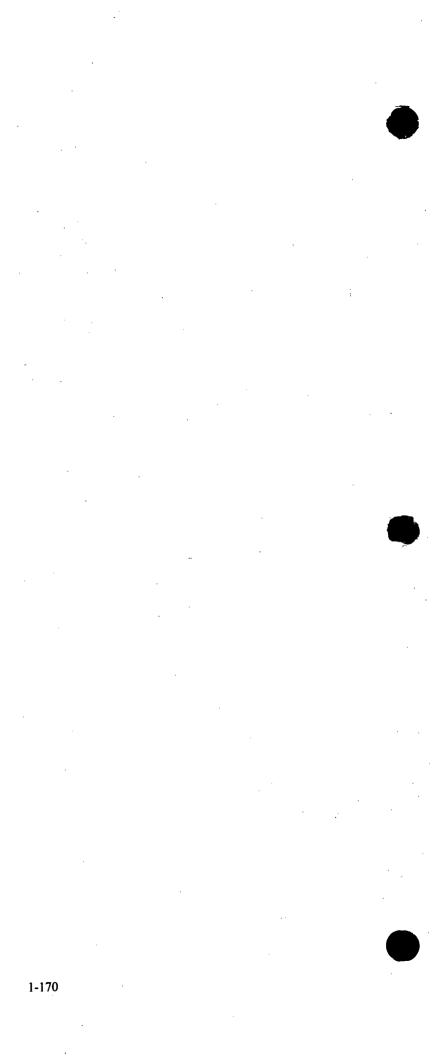
-Ø.139±.004 [3.53±0.1]

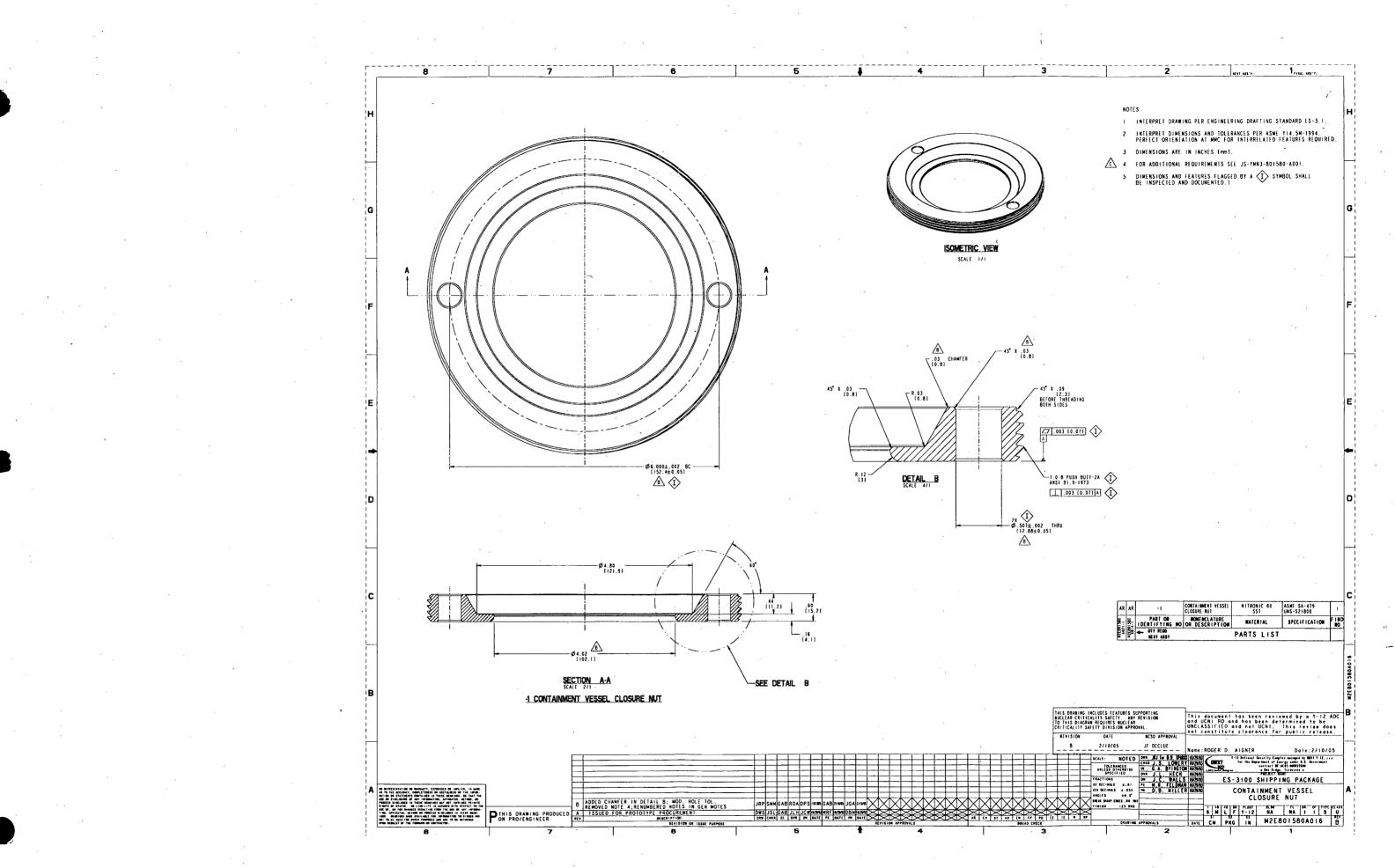

-Ø5,359±.035 [136.12±0.88]

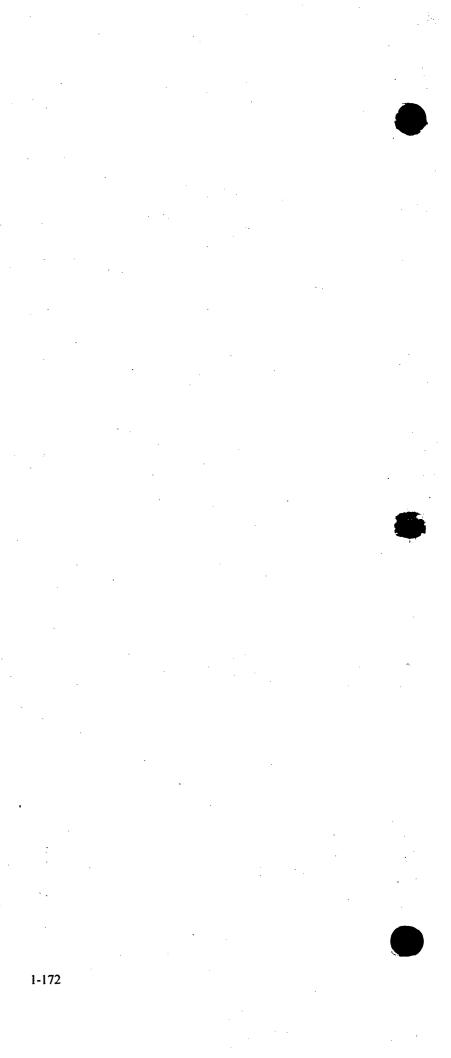

SECTION A-A 1_INNER_O-RING -SEE DETAIL C

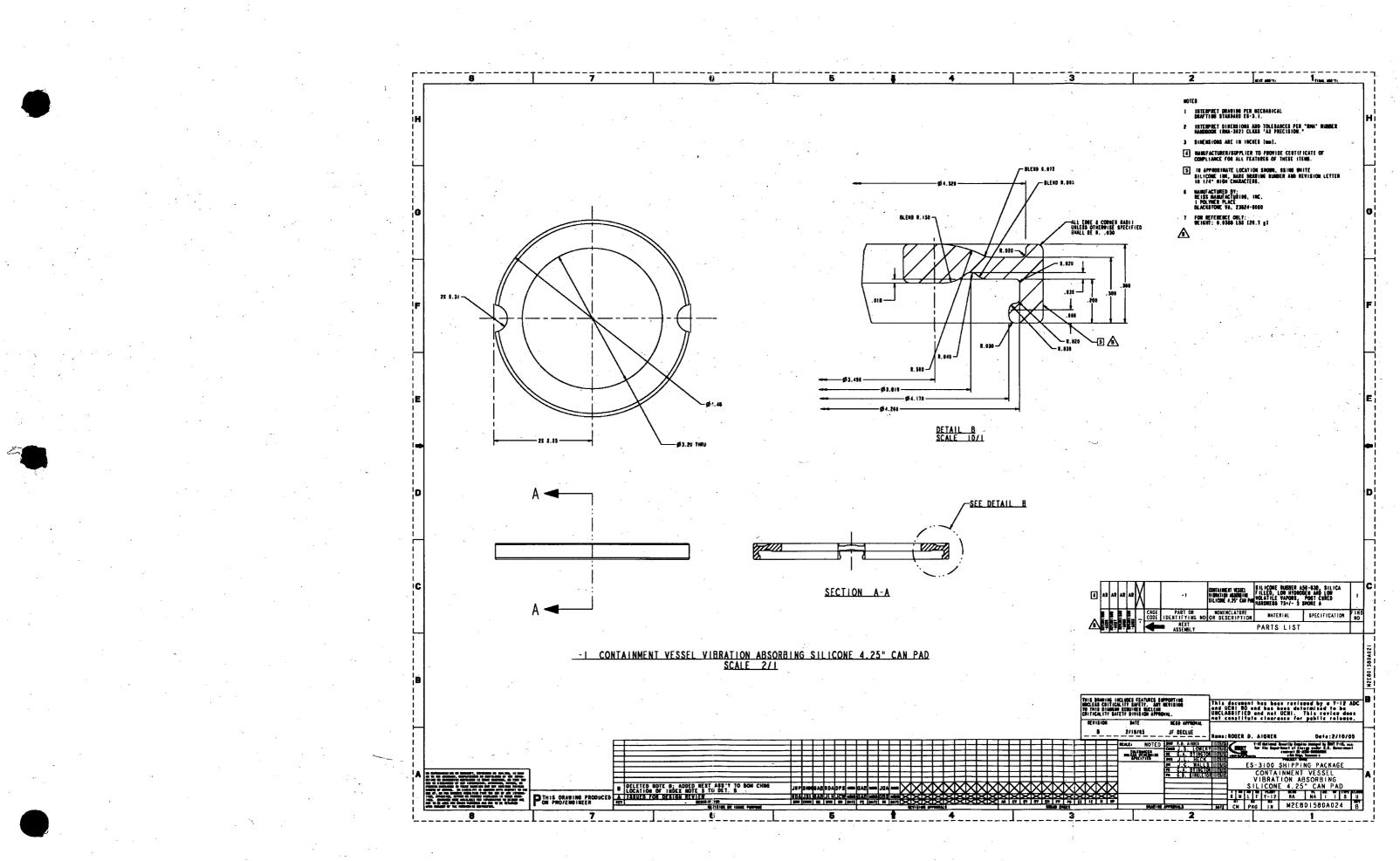

Y/LF-717/Rev 2/ES-3100 HEU SAR/Ch-1/rlw/3-06-08

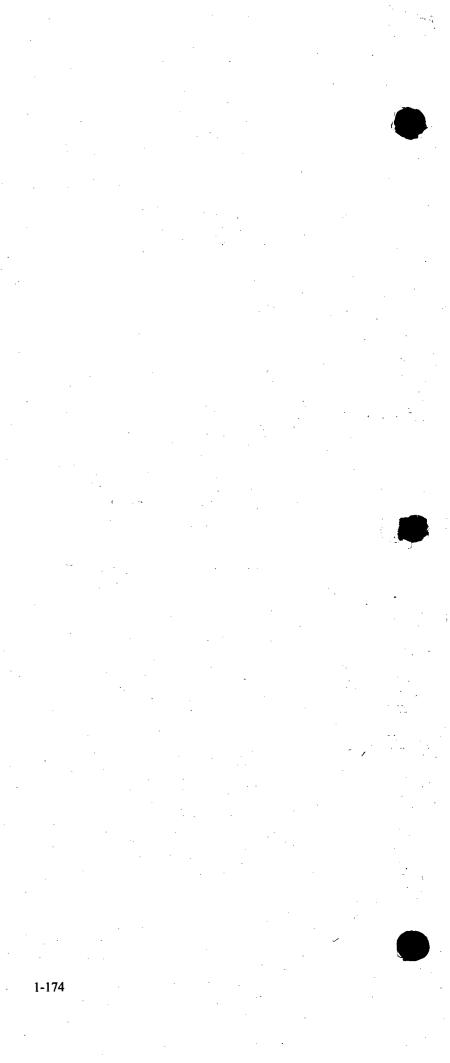

- · · ·

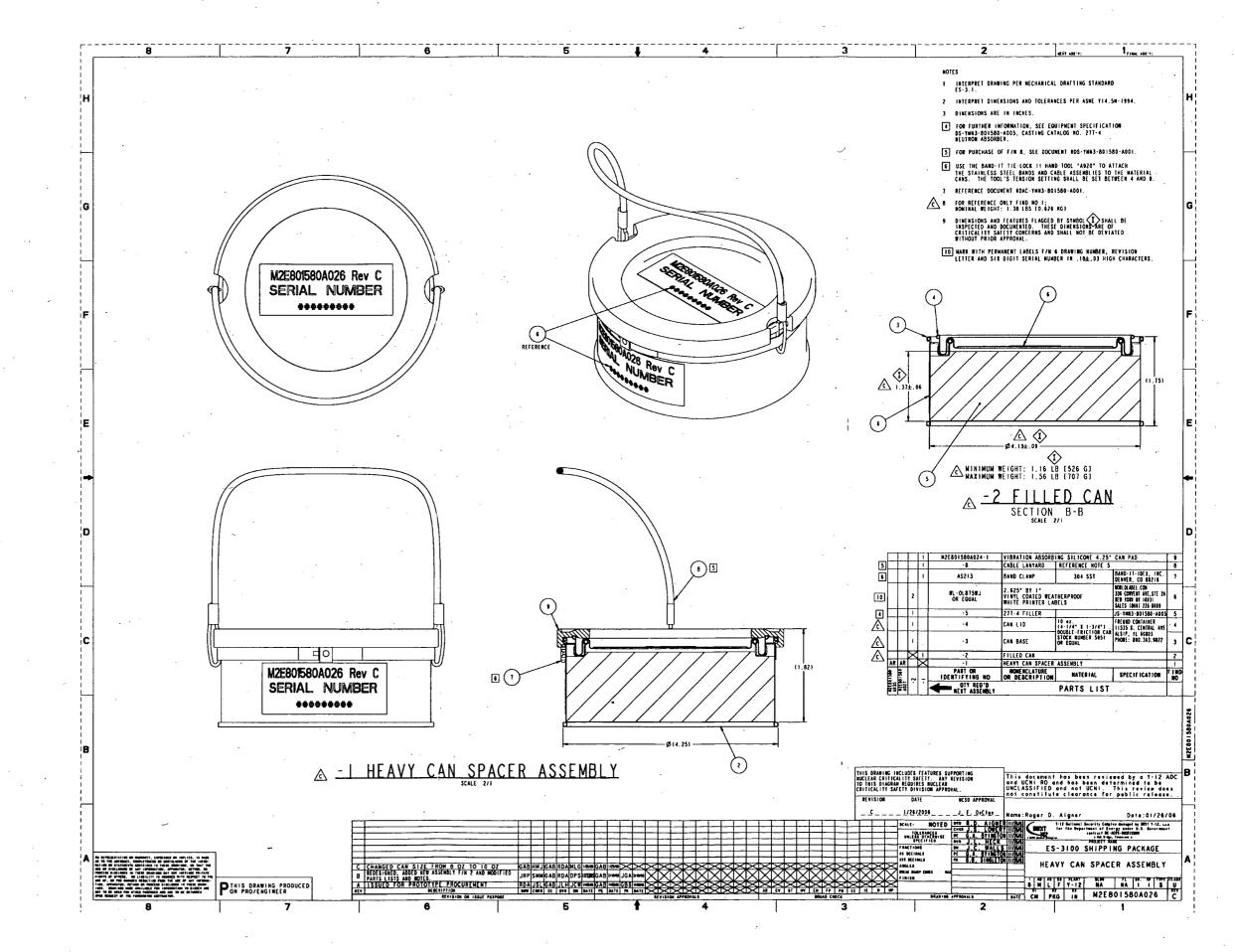


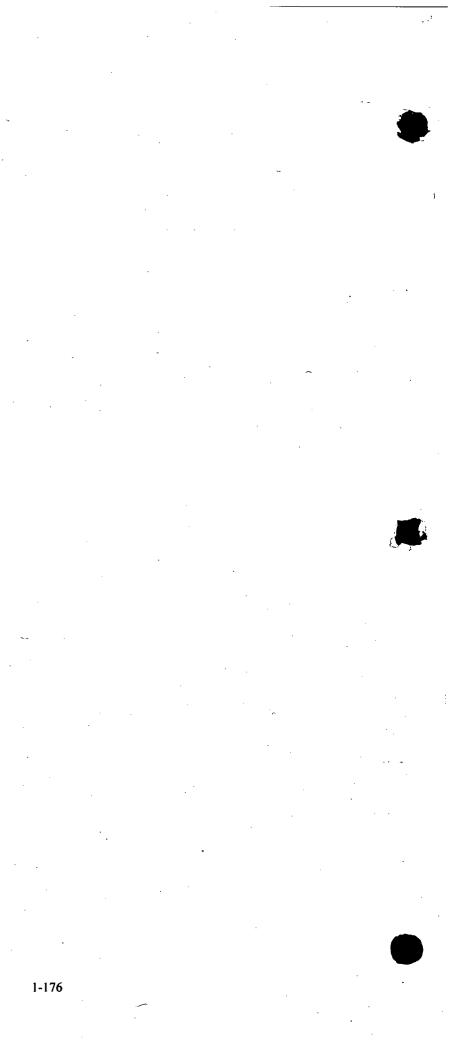


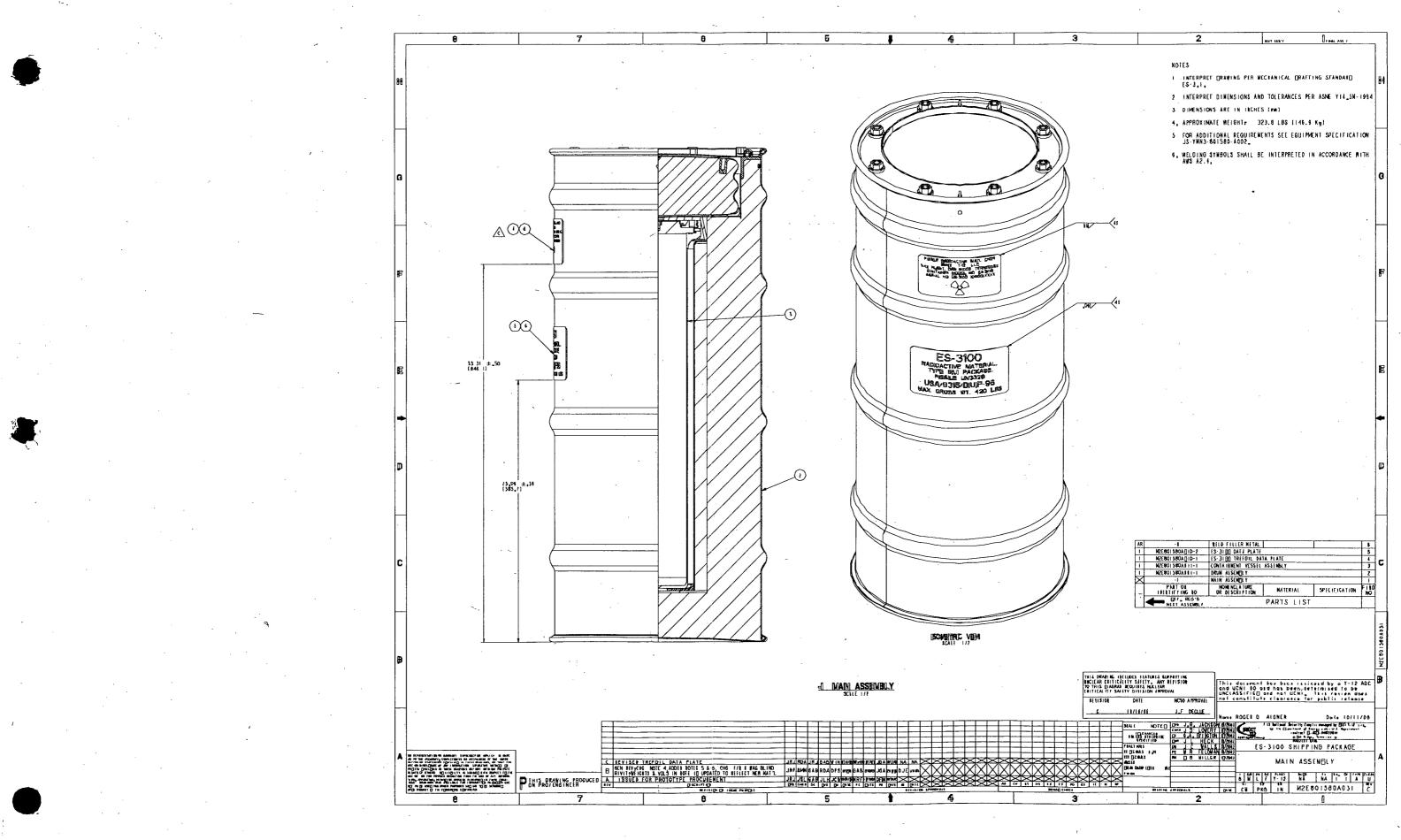

.











Appendix 1.4.9

DESIGN ANALYSES AND CALCULATIONS, DAC-PKG-801624-A001, MIXING WEIGHTS AND ELEMENTAL COMPOSITION OF 277-4 NEUTRON POISON USED IN THE ES-3100

Design Analyses and Calculations

Title Page					
Calculation No.:	DAC-PKG-801624-A001				
Calculation Title:	Calculation Title: Mixing Weights And Elemental Composition Of 277-4 Neutron Poison used in the ES-3100				
Preparer's Organization:	Packaging Engineering				
Project/Task Name:	ES-3100 Shipping Package				
Record Number:		<u> </u>			
Rev.:		<u>.</u>			
Comments/Purpose: The purpose of this DAC is to enable a tight quality control on the amount of neutron poison materials used in each shipping package.					
	·				
	Printed Name and Signature				
Prepared By:	G. A. Byington /s/ Date: 10/11/06				
Checked/Verified By:	John F DeClue /s/ Date: 10/17/06				
Checked/Verified By:	JamesH. Clínton /s/	Date:	10/23/2006		
Discipline Manager Approval:	W. I. North /s/	Date:	10/23/06		

This document has been reviewed by a Y-12 DC / UCNI RO and has been determined to be UNCLASSIFIED and contains no UCNI. This review does not constitute clearance for Public Release.

Name: Roger D. Aigner /s/ Date: 11/8/06

Revision Log

Rev	Date	Description	Total Pages	Affected Pages
0	January 18, 2006	Initial issue	Front matter, 1-3 Body 4-21 Appendix 1, 22-24 Appendix 2, 24	All
A	January 20, 2006	Removed Report references and Updated Tables 10, 11, 12, and 13.	Front matter, 1-3 Body 4-21 Appendix 1, 22-24 Appendix 2, 24	4, 10, 18, 19, 20
В	October 12, 2006	Updated Table 7, 277-4 Composition @ Extreme Densities and LOD%. Updated DAC format to new log. New DAC format applied.	Front matter, 1-3 Body 4-22 Appendix 1, 23-24 Appendix 2, 25	1, 2, 14

Table of Contents

1.	Objective	4 of 25
2.	Purpose	4 of 25
3.	References	
4.	Materials to Mix	
5.	Scope of Calculations	5 of 25
6.	Base Material Elemental Volumetric Concentrations	6 of 25
7.	Calculations	
	Conclusion	

DAC-PKG-801624-A001 Rev. B October 11, 2006 Prepared by: <u>G. A. Byington</u> Checked/Verified by: J. Clinton & J. DeClue

1. Objective

The purpose of this DAC is to define the amounts of materials to mix and manufacture the borated cement neutron poison used in the ES-3100 Shipping Container as one batch per shipping container. The exact amount of B_4C added to be the mixture shall be calculated in this design analysis to be greater than 7.61×10^{20} atoms/cc of ^{10}B at the minimum density and maximum hydration. This elemental analysis of the minimum value of ^{10}B was used in the ES-3100 SAR Criticality Safety calculations.

2. Purpose

By adding the proper amount of boron carbide in each ES-3100 Shipping Container mass balanced, assuming thorough mixing, macro homogeneity is obtained. This will enable a tight quality control on the amount of neutron poison materials used in each shipping package.

3. References

The ES-3100 Shipping Container is placed in BWXT Y-12 National Security Complex drawing M2E801580A002 following Equipment Specification JS-YMN3-8015580-A005. Two sample cans are taken during each shipping package pouring of the casting into drawing M2E801580A026-2.

4. Materials to Mix

4.1. B₄C

Boron carbide (B_4C) powder shall be procured as Type 1 Nuclear-Grade Boron Carbide Powder per ASTM C 750-03 shipped in sealed steel containers. An approximate partial size of 106 micrometers (0.0041 inches) is generated by having 100% of the grit pass through a No. 140 Sieve per ASTM E 11. A copy of the chemical and elemental analysis purity shall be in accordance with ASTM C 791.

4.2. 277-0

Thermo Electron's proprietary Catalog No. 277 – Heat Resistant Shielding (with no Boron), is a type of high alumina cement and will be referred to as 277-0. The manufactures information can be found in Appendix 1 & 2. This dry powder shall be shipped in sealed open head steel drums and has no shelf life limitations if keep dry and free flowing. Once the container is opened it shall be discarded if clumps or lumps are observed in the material greater than 0.5 inches.

4.3. Water

The water shall be potable, filtered through a 20-micron filter, and have a chlorine content of less than 4 ppm. If the potable water's chlorine content is higher then 4 ppm, use an activated charcoal filter or some other means to reduce the amount of chlorine below 4 ppm.

5. Scope of Calculations

The bounding elemental calculations shall be completed at the minimum ¹⁰B level for the compositional purity, isotopic atomic percentage, and scale measurements.

5.1. Amount of B₄C in 277-4 Borated High Alumina Cement

Define the method for mixing 277-4 as a two part method of 277-0 and B_4C and calculate the volumetric atomic concentrations.

5.2. 277-4 Borated High Alumina Cement at Extreme Conditions

Calculate the minimum amount of B₄C to add to the 277-4 mixture to generate a volumetric atomic concentration greater than 7.61×10^{20} atoms/cc of ¹⁰B at the minimum density and maximum hydration.

5.3. ¹⁰B Areal Density at Minimum ¹⁰B Content and Density

Calculate the ¹⁰B Areal Density between the fissile mass loads in two adjacent shipping packages.

5.4. Volumetric Atomic Concentrations at Average Density and LOD%

Calculate the average density and hydration volumetric atomic concentrations.

5.5. Extreme Densities and LOD% Volumetric Atomic Concentrations

Calculate the extreme density and hydration volumetric atomic concentrations.

5.6. Define the Masses Needed To Mix a Batch of 277-4 For a ES-3100

Calculate the mass weights used to mix a batch used in one ES-3100.

5.7. Define the Volumetric Atomic Concentrations at NCT and HAC

At higher temperatures especially above 212°F the chemically unbound or free water will leave the cast cement. Using the minimum boron mixer weights calculated in Section 7.2 define the NCT and HAC volumetric atomic concentrations at a minimum manufactured density, hydration for the calculated temperatures.

5.8. Define the Nominal Volumetric Atomic Concentrations

Using nominal mixer weights from Section 7.6 calculate the nominal ¹⁰B content.

6. Base Material Elemental Volumetric Concentrations

6.1. Boron Carbide Powder B₄C

The elemental composition weight percents of B_4C must be defined per ASTM C 750-03, using Type 1 Nuclear-Grade Boron Carbide Powder as noted in Table 1 from ASTM C 750-03.

Oppositivent	Composition, Weight % ^A			
Constituent	Type 1	Type 2	Type 3	
Total boron ^B	81.0 max	81.0 max	81.0 max	
	76.5 min	73.0 min	70.0 min	
HNO _a -soluble boron	0.5 max	10.6 max	not determined	
Water soluble boron	0.2 max	0.2 max	1.0 max	
Fluoride	25 µg/g max	25 µg/g max	not determined	
Chloride	75 µg/g max	75 µg/g max	not determined	
Calcium	0.3 max	0.3 max	not determined	
Iron	1.0 max	1.0 max	2.0 max	
Total boron plus total carbon	98. 0 min	97.0 min	94 .0 min	

TABLE 1 Chemical Requirements

^AUnless otherwise indicated (percentages based on a dry weight of boron carbide).

^BUnless otherwise specified, the ¹⁰B isotopic content in the boron shall be 19.90

 \pm 0.3 atom % for Types 1 and 2 and 19.90 \pm 0.5 atom % for Type 3.

Find the minimum ¹⁰B weight percents using ASTM C 750-03 Type 1 at ¹⁰B equal to 19.9±0.3 atom % of natural boron (NatB).

At the minimum 19.6 atom % of 10 B the 11 B would be 100-19.6 = 80.4 atom %.

Using the molecular weights of ¹⁰B the ¹¹B: B10 = $10.0129370 \times 19.6\% = 1.962535652$ (g/mol) B11 = $11.0093055 \times 80.4\% = 8.851481622$ (g/mol) NatB = B10 + B11 = 1.962535652 + 8.851481622 (g/mol) NatB = 10.81401727% (g/mol) Min per ASTM C 750-03 Type 1

B10 wt% = B10 / NatB = 1.962535652 / 10.81401727 B10 wt% = 18.14807211 wt% Min per ASTM C 750-03 Type 1

Using the minimum total natural boron of 76.5 wt% the following weight percentages are calculated.

B10 wt% = 76.5% × 18.148 wt% B10 wt% = 13.883 wt%

B11 wt% = 76.5 - 13.883 wt% B11 wt% = 62.617 wt% DAC-PKG-801624-A001 Rev. B October 11, 2006 Prepared by: <u>G. A. Byington</u> Checked/Verified by: J. Clinton & J. DeClue

One of the largest B_4C impurities in Table 1 is the nitric acid (HNO₃). As shown in Table 4 the 277-4 neutron poison solid requires hydrogen and contains a large amount of oxygen. Therefore, a conservative approximation shall be to change the balance of the weight percents from 0.5 to 0.7 wt% and make up the difference with nitrous trioxide (NO₃) removing the hydrogen from this impurity.

Determine the weight percents of nitrous trioxide (NO₃) $NO_3 = MW(N) + 3 \times MW(O)$ (g/mol) $NO_3 = 14.0067 + 3 \times 15.9949$ (g/mol) $NO_3 = 61.9914$ (g/mol)

N wt% = 14.0067 / 61.9914 N wt% = 0.225946 wt%

For 0.7 wt% NO₃ N wt% = 0.225946 % ×0.7 wt% N wt% = 0.158 wt%

O wt% = NO₃ wt% - N wt% O wt% = 0.7 - 0.158 wt% O wt% = 0.542 wt%

Element	At.wt	B₄C
	(g/mol)	(wt%)
Hydrogen	1.0078	
B Nat	10.8140	
¹⁰ B	10.0129	13.883%
¹¹ B	11.0093	62.617%
Carbon	12.0000	21.500%
Nitrogen	14.0067	0.158%
Oxygen	15.9949	0.542%
Sodium	22.9895	
Magnesium	24.3051	
Aluminum	26.9818	
Silicon	28.0853	
Sulfur	32.0636	
Calcium	40.0803	0.300%
Iron	55.8447	1.000%
Sum		100.000%

Table 2, Nuclear-Grade Boron Carbide Powder Elemental Composition Weight Percents

6.2. Catalog No. 277 – Heat Resistant Shielding With no Boron (277-0)

Verify the hydrogen elemental composition weight percent of Thermo Electron's proprietary Catalog No. 277 – Heat Resistant Shielding using the density of 1.61 g/cc (100.509 lb/ft³), also called 277-0. Used the published weight percents for No. 277 – Heat Resistant Shielding with no boron and calculate the hydrogen atoms per cc. According to Appendix 2; Thermo Electron Corp. Heat Resistant Shielding Catalog No. 277 Typical Elemental Analysis Without Boron, EA-277, May 1988.

Element	At.wt (g/mol)	(wt%)	(lb/ft ³)	N _e (Atoms/cc)
Hydrogen	1.0078	3.730%	3.749	3.588E+22
B Nat	10.8140			
¹⁰ B	10.0129			
¹¹ B	11.0093			
Carbon	12.0000			
Nitrogen	14.0067			
Oxygen	15.9949	59.140%	59.441	3.585E+22
Sodium	22.9895	0.080%	0.080	3.374E+19
Magnesium	24.3051	0.230%	0.231	9.175E+19
Aluminum	26.9818	26.590%	26.725	9.555E+21
Silicon	28.0853	1.680%	1.689	5.800E+20
Sulfur	32.0636	0.210%	0.211	6.350E+19
Calcium	40.0803	8.040%	8.081	1.945E+21
Iron	55.8447	0.300%	0.302	5.209E+19
Sum		100.00%	100.509	

Table 3, Catalog No. 277 – Heat Resistant Shielding Elemental Composition for one ft³

The calculated value of hydrogen atoms per cc matched the recorded value in the typical elemental analysis of Catalog No. 277 – Heat Resistant Shielding. The following calculations use the molecular weights; Hydrogen 1.0078 g/mol, Oxygen 15.9994 g/mol, and water 18.0153 g/mol.

One must now determine how much water is in this solid casting. Water within the cast solid is defined in a water weight "Loss On Drying" (LOD) test in a weight percent of the initial density. The LOD% is calculated based upon the amount of hydrogen.

The volumetric atomic concentrations are calculated below.

 $H \text{ atoms/cc} = \frac{((H \text{ density(lb/ft}^3)) \times (N_A \text{ atoms/mol}))}{(H \text{ Mw (g/mol)} \times (62.42796 (lb/ft^3)/(g/cc))}$ $H \text{ atoms/cc} = \frac{((H \text{ density(lb/ft}^3)) \times (6.0221415 \times 10^{23} \text{ atoms/mol}))}{(1.0078 (g/mol) \times (62.42796 (lb/ft^3)/(g/cc)))}$

H atoms/cc = $((H \text{ density}(Ib/ft^3)) \times 9.571884693 \times 10^{21}(H \text{ atoms/cc})/(Ib/ft^3))$

H atoms/cc = (277 cast den (lb/ft³) × LOD wt%×0.1118826775) × 9.571884693×10²¹(H atoms/cc)/(lb/ft³)

H atoms/cc = $(277 \text{ cast density (lb/ft}^3) \times \text{LOD wt}\%) \times 1.070928088 \times 10^{21} (\text{H atoms/cc})/(\text{lb/ft}^3)$

H atoms/cc = $(100.509 (lb/ft^3) \times 33.338 wt\%) \times 1.070928088 \times 10^{21}$ (H atoms/cc)/(lb/ft³) H atoms/cc = $3.588432683 \times 10^{22}$ atoms/cc

This calculated hydrogen elemental composition compares well to the documented value found in Appendix 2.

Using the hydrogen density the volume of water in the casting may be calculated as a fraction of Specific Gravity. @ H = 3.749 (lb/ft³)

$$\begin{split} & \mathsf{SGF} = \mathsf{H} \; (\mathsf{lb}/\mathsf{ft}^3) \times \mathsf{Water} \; \mathsf{Mw} \; (\mathsf{g}/\mathsf{mol}) \; / \; ((2 \times \mathsf{H} \; \mathsf{Mw} \; (\mathsf{g}/\mathsf{mol}) \times \mathsf{Water} \; \mathsf{density} \; (\mathsf{lb}/\mathsf{ft}^3)) \\ & \mathsf{SGF} = \mathsf{H} \; (\mathsf{lb}/\mathsf{ft}^3) \times 18.0153 \; (\mathsf{g}/\mathsf{mol}) \; / \; ((2 \times 1.0078 \; (\mathsf{g}/\mathsf{mol})) \times 62.42796 \; (\mathsf{lb}/\mathsf{ft}^3)) \\ & \mathsf{SGF} = \mathsf{H} \; (\mathsf{lb}/\mathsf{ft}^3) \times 0.143172 \\ & \mathsf{SGF} = 3.749 \; (\mathsf{lb}/\mathsf{ft}^3) \times 0.143172 \; (1/(\mathsf{lb}/\mathsf{ft}^3)) \\ & \mathsf{SGF} = 0.53675 \end{split}$$

Or the casting is 53.67% water by volume

7. Calculations

7.1. Amount of B₄C in 277-4 Borated High Alumina Cement

The boron carbide powder and Catalog No. 277 – Heat Resistant Shielding materials must now be combined to generate our neutron poison called 277-4 borated high alumina cement. An iterative solution was used to calculate the density of the 277-4 using the single component weight percents. First the mass amount of boron carbide powder must be selected and volume calculated. The B_4C volume is subtracted from one cubic foot to determine the volume of 277-0 cement. From the 277-0 cement volume the mass is calculated and all of the components' masses. As more boron carbide powder is added to the mixture it gets heavier and reduces the amount of relative hydrogen available to the neutron poison system in the cement.

Select or guess a mass of 5.88 lbs of B_4C for one cubic foot of casting with a theoretical density of 2.52 g/cc (157.318 lb/ft³), found in the CRC Handbook of Chemistry and Physics, 55th Ed., page B-74. Verify this amount of B_4C needed in Section 7.2.

DAC-PKG-801624-A001 Rev. B October 11, 2006 Prepared by: <u>G. A. Byington</u> Checked/Verified by: J. Clinton & J. DeClue

Calculate the volume of B_4C ; B4C vol = Mass (lb) / Den (lb/ft³) B4C vol = 5.88 lb / 157.318 lb/ft³ B4C vol = 0.03738 ft³

Calculate the volume and mass of the 277-0 material using the density of 1.61 g/cc $(100.509 \text{ lb/ft}^3)$.

277-0 vol = 1 - 0.03738 ft³ 277-0 vol = 0.96262 ft³

277-0 mass = 0.96262 ft³×100.509 lb/ft³ 277-0 mass = 96.7523 lb

Element	At.wt (g/mol)	277-0 (lb/ft ³)	B₄C (Ib/ft ³)	277-4 (lb/ft ³)
Hydrogen	1.0078	3.6089	0.0000	3.6089
B Nat	10.8140			
¹⁰ B	10.0129	0.0000	0.8163	0.8163
¹¹ B	11.0093	0.0000	3.6819	3.6819
Carbon	12.0000	0.0000	1.2642	1.2642
Nitrogen	14.0067	0.0000	0.0093	0.0093
Oxygen	15.9949	57.2193	0.0319	57.2512
Sodium	22.9895	0.0774	0.0000	0.0774
Magnesium	24.3051	0.2225	0.0000	0.2225
Aluminum	26.9818	25.7264	0.0000	25.7264
Silicon	28.0853	1.6254	0.0000	1.6254
Sulfur	32.0636	0.2032	0.0000	0.2032
Calcium	40.0803	7.7789	0.0176	7.7965
Iron	55.8447	0.2903	0.0588	0.3491
Sum		96.7523	5.8800	102.6323

Table 4, 277-4 Borated High Alumina Cement Elemental Composition for one ft³

Calculate the as-defined by the manufacture and mixed to this ratio LOD%.

 $H wt\% = H lb/ft^3 / Total Mass lb/ft^3$

H wt% = 3.6089 / 102.6323

H wt% = 3.5163 wt%

LOD% = H wt% × (MW H₂O) / (MW H₂) LOD% = $3.5163 \text{ wt\%} \times (18.0150 / (2 \times 1.0078))$ LOD% = 31.4279 wt%

7.2. 277-4 Borated High Alumina Cement at Extreme Conditions

The casting process overloads the mixture with water to allow the wet mix to flow. Dependent upon the amount of surface area and curing conditions of the casting the water content varies. As the water content varies both oxygen and hydrogen elemental masses change while the other solid masses stay fixed from in the matrix shown in Table 4. The left most density column in Table 5 shows the adjusted hydrogen and oxygen masses to a LOD% of 31.8%, while keeping all the other elemental concentrations the same. At this calculated LOD% the weight percent is calculated. Due to the possibility of small air bubbles the density could also vary. Therefore the calculated LOD% weight percents can now be multiplied by a density to generate the elemental volumetric concentrations at any LOD%. From the elemental volumetric concentration the atomic concentrations are calculated at the selected LOD% and density. Testing has shown that 99.7% of the 277-4 companion sample can castings will have an LOD% of 30.2%±1.6% and density of 105 ± 5 lb/ft³. Although, the ES-3100 drum has a larger casting with small percentage of the surface open to the air. The small open surface to volume ratio keep the 277-4 casting hydrated. Three castings that have been stored in an office environment for over a year had a density of 123 lb/ft³. The difference being water content measured by the LOD% testing. This extra water make the 277-4 work better. Therefore, we would not want to overly reduce the extra moisture. An acceptable density range for this material shall be 105 - 5 + 15 lb/ft³ has been selected.

To calculate the elemental weight percents at a different LOD% like 31.8% another iterative calculation is required to adjust the volumetric concentrations of water. Assume a LOD% for Table 4 was 31.9735%

Delta LOD% = 31.9735% - 31.4279% Delta LOD% = 0.5456%

Therefore for one cubic foot the water loss or gain from the definition in Table 4 is; Del WW = Delta LOD% × Tab4Den × Volume Del WW = $0.5456\% \times 102.6323$ (lb/ft³) × 1 (ft³) Del WW = 0.5599 lb

The amount of hydrogen weight change in a cubic foot is; Del H = Del WW × (MW H₂) / MW H₂O Del H = $0.5599 \times (2 \times 1.0078)$ / 18.0150 Del H = 0.0626 lb

Del O = Del WW – Del H Del O = 0.5599 – 0.0626 Del O = 0.4973 lb

All values in the left column of Table 5 are same as the 277-4 masses in Table 4 except that the Hydrogen has gained 0.0626 lb and the Oxygen has gain 0.4973 lb. Using the new Table 5 elemental volumetric concentrations the weight percents are calculated. The elemental weight percents are multiplied by a desired density. The minimum acceptable density based upon testing is 100 lb/ft³.

DAC-PKG-801624-A001 Rev. B October 11, 2006 Prepared by: <u>G. A. Byington</u> Checked/Verified by: J. Clinton & J. DeClue

Tuble 5, 277 TElemental composition @ 100 lb/le & 51.070 EOD as mana				
	@LOD%	@LOD%	@Den & LOD%	Ne
Element	(lb/ft ³)	(wt%)	(lb/ft ³)	(Atoms/cc)
Hydrogen	3.6715	3.5579%	3.5579	3.406E+22
B Nat				
¹⁰ B	0.8163	0.7911%	0.7911	7.621E+20
¹¹ B	3.6819	3.5680%	3.5680	3.126E+21
Carbon	1.2642	1.2251%	1.2251	9.848E+20
Nitrogen	0.0093	0.0090%	0.0090	6.207E+18
Oxygen	57.7485	55.9620%	55.9620	3.375E+22
Sodium	0.0774	0.0750%	0.0750	3.147E+19
Magnesium	0.2225	0.2156%	0.2156	8.559E+19
Aluminum	25.7264	24.9306%	24.9306	8.913E+21
Silicon	1.6254	1.5752%	1.5752	5.410E+20
Sulfur	0.2032	0.1969%	0.1969	5.924E+19
Calcium	7.7965	7.5553%	7.5553	1.818E+21
Iron	0.3491	0.3383%	0.3383	5.843E+19
Sum	103.1923	100.0000%	100.0000	8.419E+22
	•			L
B Nat	4.4982	4.3590%	4.3590	3.888E+21

Table 5, 277-4 Elemental Composition	@ 100 IL/# 0. 21 00/ I	OD as manufactured
Table 5. Z//-4 cientental Cumuosition		

The minimum amount of B₄C added to be the mixture shall be calculated to be greater than 7.61×10^{20} atoms/cc of ¹⁰B at the minimum density and maximum hydration as defined in Section 5.1.

7.3. Calculate the ¹⁰B Areal Density at Minimum ¹⁰B Content and Density

The ¹⁰B Areal Density for one cylinder casting thickness of 1.12 inches (2.8448 cm) B10 Areal Density = (B10 atoms/cc × Thickness cm) × (B10 Mw g/mol / N_A atoms/mol)

B10 Areal Den = 7.621×10^{20} (B10 atoms/cc) × (2.8448 cm) × (10.0129370 g/mol) 6.0221415 × 10²³ atoms/mol

B10 Areal Den = 0.0360474235 g/cm² for one thickness

Between two packages next to each other in the most reactive arrangement the fissile mass loads are separated by two cast neutron poison cylinders.

B10 Areal Den = 0.0360474235 × 2

B10 Areal Den = $0.072094847 \text{ g/cm}^2$

B10 Areal Den = 72.09 mg/cm^2

7.4. Volumetric Atomic Concentrations at Average Density and LOD%

Using the same methodology shown in Section 7.1 the volumetric atomic concentrations shall be calculated at the average density and LOD%. The average LOD% of 30.2% and density should be 105 - 5 + 15 lb/ft³ shall be used and shown in Table 6.

	@LOD%	@LOD%	@Den & LOD%	N _e
Element	(lb/ft ³)	(wt%)	(lb/ft ³)	(Atoms/cc)
Hydrogen	3.4068	3.3789%	3.5479	3.396E+22
B Nat				
¹⁰ B	0.8163	0.8096%	0.8501	8.190E+20
¹¹ B	3.6819	3.6517%	3.8343	3.360E+21
Carbon	1.2642	1.2538%	1.3165	1.058E+21
Nitrogen	0.0093	0.0092%	0.0097	6.670E+18
Oxygen	55.6477	55.1913%	57.9509	3.495E+22
Sodium	0.0774	0.0768%	0.0806	3.382E+19
Magnesium	0.2225	0.2207%	0.2317	9.198E+19
Aluminum	25.7264	25.5155%	26.7913	9.578E+21
Silicon	1.6254	1.6121%	1.6927	5.814E+20
Sulfur	0.2032	0.2015%	0.2116	6.366E+19
Calcium	7.7965	7.7326%	8.1192	1.954E+21
Iron	0.3491	0.3462%	0.3635	6.279E+19
Sum	100.8268	100.0000%	105.0000	8.652E+22
		•		
B Nat	4.4982	4.4613%	4.6844	4.179E+21

Table 6, 277-	4 Elemental Composition @ 1	.05 lb/ft ³ & 30.2	% LOD as manufactured

7.5. Extreme Densities and LOD% Volumetric Atomic Concentrations

The high density is base upon both the hydration and compaction or the amount of entrapped air, if any. The ES-3100 shipping package 277-4 neutron poison cylinder castings hold the moisture well. This moisture is a key part of how the 277-4 neutron poison works. Therefore, it has been decided to accept the 277-4 neutron poison casting up to 120 lb/ft³ making the density range 100 to 120 lb/ft³. Most of the companion sample cans will have a density close to 105 lb/ft³ while the cylinders are expected to be dried to just below the 120 lb/ft³ limit, therefore density should be 105 - 5 + 15 lb/ft³. Using the calculation method in Section 7.1 the extreme densities and hydration levels atomic concentrations were calculated (Table 7).

Den	¹⁰ B	¹⁰ B	B Nat	B Nat	LOD	Н	Н
(lb/ft^3)	(wt%)	(atoms/cc)	(wt%)	(atoms/cc)	<u>(wt%)</u>	(wt%)	(atoms/cc)
100.0	0.7911%	7.621E+20	4.359%	3.888E+21	31.80%	3.5579%	3.406E+22
105.0	0.7534%	7.621E+20	4.152%	3.888E+21	35.05%	3.9212%	3.941E+22
110.0	0.7192%	7.621E+20	3.963%	3.888E+21	38.00%	4.2516%	4.477E+22
115.0	0.6879%	7.621E+20	3.791%	3.888E+21	40.69%	4.5531%	5.012E+22
120.0	0.6592%	7.621E+20	3.633%	3.888E+21	43.17%	4.8296%	5.547E+22
105.0	0.8096%	8.190E+20	4.461%	4.179E+21	30.20%	3.3789%	3.396E+22
100.0	0.8282%	7.979E+20	4.564%	4.071E+21	28.60%	3.1999%	3.063E+22
105.0	0.8440%	8.538E+20	4.651%	4.356E+21	27.24%	3.0475%	3.063E+22
110.0	0.8584%	9.096E+20	4.730%	4.641E+21	26.00%	2.9090%	3.063E+22
115.0	0.8715%	9.655E+20	4.802%	4.926E+21	24.87%	2.7825%	3.063E+22
120.0	0.8835%	1.021E+21	4.868%	5.211E+21	23.83%	2.6666%	3.063E+22

Table 7, 277-4 Composition @ Extreme Densities and LOD% and compared to the average values as manufactured

7.6. Mass of Materials Needed To Mix a Batch of 277-4 For One ES-3100

The as define 277-4 mixture shown in Table 4 shall be the bases for the two part dry mixing recipe. The amount of B_4C added to be the mixture shall be calculated to be greater than 7.61×10^{20} atoms/cc of ¹⁰B at the minimum density and maximum hydration as shown in Section 7.2. Now the amount of water, B_4C and Thermo Electron's proprietary Catalog No. 277 – Heat Resistant Shielding (277-0) dry powder must be calculated per shipping container.

According to Appendix 1; Thermo Electron Corp. Heat Resistant Shielding Catalog No. 277 product information sheet 277-103:

96 lbs of dry mix is required to obtain one cubic foot. Required water is $27\pm1\%$ of the total dry powder weight.

From Section 7.1 for one cubic foot the volume and mass of B_4C is 0.03738 ft³, 5.88 lb at a density of 157.318 lb/ft³. The 277-0 materials volume and mass is 0.96262 ft³, 96.7523 lb a density of 100.509 lb/ft³. Together this mixture generated a total density of 102.6323 lb/ft³.

For one cubic foot Cast Volume 277-4 Vol = Vol B_4C + Vol 277-0 277-4 Vol = 0.03738 + 0.96262 ft³ 277-4 Vol = 1.00000 ft³

For one cubic foot Cast Mass for one cubic foot 277-4 Mass = Mass B_4C + Mass 277-0 277-4 Mass = 5.88 + 96.7523 lb 277-4 Mass = 102.6323 lb for one cubic foot DAC-PKG-801624-A001 Rev. B October 11, 2006 Prepared by: <u>G. A. Byington</u> Checked/Verified by: J. Clinton & J. DeClue

Using the 96 lbs of dry mix required to obtain 1 ft³ calculate the mass of 277-0 dry mix required for this casting. 277-0 Dry Mix Mass = Vol 277-0 \times Dry Mix Density

277-0 Dry Mix Mass = $0.96262 \text{ ft}^3 \times (96 \text{ lb/ft}^3)$ 277-0 Dry Mix Mass = $0.96262 \text{ ft}^3 \times (96 \text{ lb/ft}^3)$ 277-0 Dry Mix Mass = 92.4115 lb

The 277-0 dry mix plus the B₄C mass required for one cubic foot casting is; 277-4 Dry Mix Mass = 277-0 Dry Mix Mass \times Mass B₄C 277-4 Dry Mix Mass = 92.4115 + 5.88 lb

277-4 Dry Mix Mass = 98.2915 lb

Defining the calculated mass as percent weight one gets; Dry Mix B_4C wt% = Mass B_4C / 277-4 Dry Mix Mass Dry Mix B_4C wt% = 5.88 / 98.2915 × 100% Dry Mix B_4C wt% = 5.9822%

277-0 Dry Mix wt% = 100% - Dry Mix B₄C wt% 277-0 Dry Mix wt% = 100% - 5.9822% 277-0 Dry Mix wt% = 94.0178%

For a 50 lb 277-4 Dry Mix Mass calculate the weights of 277-0 Dry Mix, B₄C, and water; Dry Mix B₄C = $5.9822\% \times 50$ lb Dry Mix B₄C = 2.9911 lb

277-0 Dry Mix = 94.0178%× 50 lb 277-0 Dry Mix = 47.0089 lb

The divisions on the scale used to weigh the 277-0 Dry Mix are every 0.2 lbs. I will assume that the tolerance on the measurement is 0.1%. Therefore, the maximum scale error could be; Max Scale Error = Mass \times 0.001 + 0.1 Max Scale Error = 47.0089 \times 0.001 + 0.1 Max Scale Error = 0.147 lb

To assure the minimum amount of ¹⁰B the maximum amount of cement must be controlled. Therefore the Maximum 277-0 Dry Mix mass should be; Max 277-0 Dry Mix = 277-0 Dry Mix – Max Scale Error Max 277-0 Dry Mix = 47.0089 – 0.147 lb Max 277-0 Dry Mix = 46.8619 lb

Since the scales divisions are every 0.2 lbs the maximum 277-0 mass is; Max 277-0 Dry Mix = 46.80 lb (for the scales) Should be weigh on a small scale with divisions of at least 0.20 lb

The Dry Mix B₄C for a 50 lb 277-4 Dry Mix Mass would be; Dry Mix B₄C = 50.00 - 46.80 lb Dry Mix B₄C = 3.20 lb Should be weigh on a small scale with divisions of at least 0.01 lb DAC-PKG-801624-A001 Rev. B October 11, 2006 Prepared by: <u>G. A. Byington</u> Checked/Verified by: J. Clinton & J. DeClue

Defining the scale mass as percent weight one gets; Dry Mix B₄C wt% = Mass B₄C / 277-4 (Dry Mix Mass) Dry Mix B₄C wt% = $3.20 / 50 \times 100\%$ Dry Mix B₄C wt% = 6.40%

277-0 Dry Mix wt% = 100% - 6.40% 277-0 Dry Mix wt% = 93.60%

Mixing water required for the 50 lb dry mix bag at $27\pm1\%$ dry mix weight. Water Mix Weight = 277-4 Dry Mix Mass \times 27% Water Mix Weight = 50.0 \times 27% Water Mix Weight = 13.50 lb

	.// + Diy M	king weight	S TOT ONE LC	<u>-2100</u>			
277-0 D	ry Mix wt	Dry №	lix B₄C	277-4 Dry	Mix Mass	Water M	ix Weight
Mass	Scale Div	Mass	Scale Div	Mass	Scale Div	Mass	Scale Div
46.80	0.20	3.20	0.01	50.00	NA	13.50	0.2

Table 8, 277-4 Dry Mixing weights for one ES-3100

Using the maximum total natural boron of 76.5 wt% calculate the weight percentage of natural boron in the dry powder mix.

NatB = B_4C wt% × 76.5 wt% NatB = 6.4% × 76.5 wt% NatB = 4.896 wt%

7.7. Define the Volumetric Atomic Concentrations at NCT and HAC

Testing of cast 277-4 shows that our sample cans will be dehydrated at elevated temperatures. Twenty five sample cans were tested at 250°F for 168 hours for the Normal Conditions of Transport (NCT). Then after weighing them they were heated to 320°F for 4 hours for the Hypothetical Accidental Conditions (HAC). Then after weighing them they were heated to 1475°F for 4 hours to totally dehydrate them. This test information has defined the change in hydration from the "as manufactured" to a worst case NCT and the worst case HAC. As the water was removed the cast solids density was also reduced.

Specific Gravity Fraction of water SGF = H (lb/ft³) × 0.143172 (1/(lb/ft³)) SGF = 3.531 (lb/ft³) × 0.143172 (1/(lb/ft³)) SGF = 0.5055 On the average the castings are 50.55% water by volume.

Inversely the hydrogen weight concentration is calculated by; H (Ib/ft^3) = SGF / 0.143172 The as manufactured 277-4 casting has an amount of water that was measured with "Lost On Drying" (LOD) tests. Sample cans were placed in an oven at 250°F for 168 hours the weights were measured and after an additional heating to 320°F for 4 hours the weights were measured again. From those weights the amount of water was calculated and presented in Table 9 as a fractional specific gravity of hydration levels generated at different conditions were calculated to be;

	As Manufactured	NCT (250°F @ 168 hours)	HAC (NCT+320°F @ 4 hours)
SG	0.5055	0.4445	0.4435
H (lb/ft ³)	3.531	3.105	3.098
H (wt%)	3.378%	3.083%	3.078%
Percent H (%)	100%	87.93%	87.73%
Ave Density (lb/ft ³)	104.51	100.70	100.64

Table 9, 277-4 Average Affects Of Temperature Conditions on 25 Tested Cans

Therefore, the 277-4 cast solid material at NCT values has 87.93% the hydrogen of the as manufactured material and at HAC values has 87.73% the hydrogen of the as manufactured material. The reduction in hydrogen of water weight affect both the hydrogen and oxygen content in the 277-4 cast solid material. The as manufactured data in Table 6 277-4 Elemental Composition @ 105 lb/ft³ & 30.2% LOD matches the average hydrogen weight percent in Table 9. In order to generate the minimum density and minimum hydrogen calculation the calculation method in section 7.4 must be modified.

The minimum as manufactured density is 100 lb/ft³. Only the water weight in the form of hydrogen and oxygen is reduced by leaving the casting matrix. The hydrogen weight percent should also be reduced from the minimum manufactured value of 100% to 87.93% for NCT and 87.73% for HAC. This water mass reduction must be applied at the minimum density and hydrogen content. Table 7 has two different extreme values for ¹⁰B and hydrogen. The affects of extended temperature extremes must be evaluated for both conditions. The conservation of mass shall be used for these calculations keeping the lb/ft³ of the minerals the same while the weight percents change as the hydration level does.

The minimum hydrogen of 3.1999% occurs at a 28.60% LOD and 100 lb/ft³ density shown in Tables 7 and 10. Therefore, using the data from Table 9 the hydrogen concentration would be reduced by the percentage; Minimum Manufactured H wt%= 3.1999% Table 10

NCT Hydrogen wt% = $3.1999\% \times 87.93\%$ NCT Hydrogen wt% = 2.8137%	Table 11
HAC Hydrogen wt% = 3.1999% × 87.73% HAC Hydrogen wt% = 2.8073%	Table 12

DAC-PKG-801624-A001 Rev. B October 11, 2006 Prepared by: <u>G. A. Byington</u> Checked/Verified by: J. Clinton & J. DeClue

The minimum ¹⁰B mixture has hydrogen at 3.5579%, and it occurs at a 31.80% LOD and 100 lb/ft³ density. Therefore, using the data from Table 9 the hydrogen concentration would be reduced by the percentage; Minimum Manufactured H wt% = 3.5579% Table 5

Minimum Manufactured H wt%= 3.5579%	Table 5
NCT Hydrogen wt% = 3.5579% × 87.93% NCT Hydrogen wt% = 3.1284%	Table 13
HAC Hydrogen wt% = 3.5579% × 87.73% HAC Hydrogen wt% = 3.1213%	Table 14

Table 10, 277-4 Manufactured Minimum Density @ Minimum Hydrogen 277-4 Elemental Composition @ 100 lb/ft³ & 28.6% LOD

277-4 Elemental Composition @ 100 lb/lt* & 28.6% LOD					
@LOD%	@LOD%	@Den & LOD%	Ne		
(lb/ft ³)	(wt%)	(lb/ft ³)	(Atoms/cc)		
3.1541	3.1999%	3.1999	3.063E+22		
			_		
0.8163	0.8282%	0.8282	7.979E+20		
3.6819	3.7354%	3.7354	3.273E+21		
1.2642	1.2826%	1.2826	1.031E+21		
0.0093	0.0094%	0.0094	6.498E+18		
53.6410	54.4207%	54.4207	3.282E+22		
0.0774	0.0785%	0.0785	3.295E+19		
0.2225	0.2258%	0.2258	8.960E+19		
25.7264	26.1004%	26.1004	9.331E+21		
1.6254	1.6491%	1.6491	5.664E+20		
0.2032	0.2061%	0.2061	6.202E+19		
7.7965	7.9098%	7.9098	1.904E+21		
0.3491	0.3541%	0.3541	6.117E+19		
98.5673	100.0000%	100.0000	8.061E+22		
	<u></u>	••• ,			
4.4982	4.5636%	4.5636	4.071E+21		
	@LOD% (lb/ft ³) 3.1541 0.8163 3.6819 1.2642 0.0093 53.6410 0.0774 0.2225 25.7264 1.6254 0.2032 7.7965 0.3491 98.5673	@LOD% @LOD% (lb/ft ³) (wt%) 3.1541 3.1999% 0.8163 0.8282% 3.6819 3.7354% 1.2642 1.2826% 0.0093 0.0094% 53.6410 54.4207% 0.2225 0.2258% 25.7264 26.1004% 1.6254 1.6491% 0.2032 0.2061% 7.7965 7.9098% 0.3491 0.3541%	@LOD% @LOD% @Den & LOD% (lb/ft ³) (wt%) (lb/ft ³) 3.1541 3.1999% 3.1999 0.8163 0.8282% 0.8282 3.6819 3.7354% 3.7354 1.2642 1.2826% 1.2826 0.0093 0.0094% 0.0094 53.6410 54.4207% 54.4207 0.0774 0.0785% 0.0785 0.2225 0.2258% 0.2258 25.7264 26.1004% 26.1004 1.6254 1.6491% 1.6491 0.2032 0.2061% 0.2061 7.7965 7.9098% 7.9098 0.3491 0.3541% 0.3541 98.5673 100.0000% 100.0000		

1-198

Liemental Composition @ 55.55 lb/it & 25.15% LOD alter 250					
	@LOD%	@Den & LOD%	N _e		
Element	(wt%)	(lb/ft ³)	(Atoms/cc)		
Hydrogen	2.8137%	2.6840	2.569E+22		
B Nat					
¹⁰ B	0.8682%	0.8282	7.979E+20		
¹¹ B	3.9160%	3.7354	3.273E+21		
Carbon	1.3446%	1.2826	1.031E+21		
Nitrogen	0.0099%	0.0094	6.498E+18		
Oxygen	52.7581%	50.3252	3.035E+22		
Sodium	0.0823%	0.0785	3.295E+19		
Magnesium	0.2367%	0.2258	8.960E+19		
Aluminum	27.3622%	26.1004	9.331E+21		
Silicon	1.7288%	1.6491	5.664E+20		
Sulfur	0.2161%	0.2061	6.202E+19		
Calcium	8.2922%	7.9098	1.904E+21		
Iron	0.3713%	0.3541	6.117E+19		
Sum	100.0000%	95.3886	7.320E+22		
B Nat	4.7842%	4.5636	4.071E+21		

Table 11, 277-4 Reduce for NCT Minimum Density @ Minimum Hydrogen 277-	
Elemental Composition @ 95.39 lb/ft ³ & 25.15% LOD after 250°F for 168 hour	S

Table 12, 277-4 Reduce for HAC Minimum Density @ Minimum Hydrogen 277-4
Elemental Composition @ 95.32 lb/ft ³ & 25.09% LOD after NCT & 320°F for 4 hours

	@LOD%	@Den & LOD%	Ne		
Element	(wt%)	(lb/ft ³)	(Atoms/cc)		
Hydrogen	2.8073%	2.6758	2.561E+22		
B Nat					
¹⁰ B	0.8689%	0.8282	7.979E+20		
¹¹ B	3.9190%	3.7354	3.273E+21		
Carbon	1.3456%	1.2826	1.031E+21		
Nitrogen	0.0099%	0.0094	6.498E+18		
Oxygen	52.7305%	50.2605	3.031E+22		
Sodium	0.0824%	0.0785	3.295E+19		
Magnesium	0.2369%	0.2258	8.960E+19		
Aluminum	27.3831%	26.1004	9.331E+21		
Silicon	1.7301%	1.6491	5.664E+20		
Sulfur	0.2163%	0.2061	6.202E+19		
Calcium	8.2986%	7.9098	1.904E+21		
Iron	0.3715%	0.3541	6.117E+19		
Sum	100.0000%	95.3158	7.308E+22		
B Nat	4.7879%	4.5636	4.071E+21		

Elemental composition @ 94.07 lb/le @ 27.50 % EOD after 2						
	@LOD%	@Den & LOD%	N _e			
Element	(wt%)	(lb/ft ³)	(Atoms/cc)			
Hydrogen	3.1284%	2.9617	2.835E+22			
B Nat						
¹⁰ B	0.8356%	0.7911	7.621E+20			
¹¹ B	3.7688%	3.5680	3.126E+21			
Carbon	1.2941%	1.2251	9.848E+20			
Nitrogen	0.0095%	0.0090	6.207E+18			
Oxygen	54.1129%	51.2291	3.090E+22			
Sodium	0.0792%	0.0750	3.147E+19			
Magnesium	0.2278%	0.2156	8.559E+19			
Aluminum	26.3340%	24.9306	8.913E+21			
Silicon	1.6638%	1.5752	5.410E+20			
Sulfur	0.2080%	0.1969	5.924E+19			
Calcium	7.9806%	7.5553	1.818E+21			
Iron	0.3573%	0.3383	5.843E+19			
Sum	100.0000%	94.6709	7.563E+22			
B Nat	4.6044%	4.3590	3.888E+21			

Table 13, 277-4 Reduce for NCT Minimum Density @ Minimum Boron 277-4	
Elemental Composition @ 94.67 lb/ft ³ & 27.96% LOD after 250°F for 168 hours	

Table 14, 277-4 Reduce for HAC Minimum Density @ Minimum Boron 277-4
Elemental Composition @ 94.59 lb/ft ³ & 27.90% LOD after NCT & 320°F for 4 hours

	@LOD%	@Den & LOD%	Ne
Element	(wt%)	(lb/ft^3)	(Atoms/cc)
Hydrogen	3.1213%	2.9524	2.826E+22
B Nat			
^{.10} B	0.8363%	0.7911	7.621E+20
¹¹ B	3.7721%	3.5680	3.126E+21
Carbon	1.2952%	1.2251	9.848E+20
Nitrogen	0.0095%	0.0090	6.207E+18
Oxygen	54.0823%	51.1551	3.085E+22
Sodium	0.0793%	0.0750	3.147E+19
Magnesium	0.2280%	0.2156	8.559E+19
Aluminum	26.3572%	24.9306	8.913E+21
Silicon	1.6653%	1.5752	5.410E+20
Sulfur	0.2082%	0.1969	5.924E+19
Calcium	7.9877%	7.5553	1.818E+21
Iron	0.3576%	0.3383	5.843E+19
Sum	100.0000%	94.5876	7.550E+22
· · · · · · · · · · · · · · · · · · ·			
B Nat	4.6085%	4.3590	3.888E+21

7.8. Define the Nominal Volumetric Atomic Concentrations

Using nominal mixer weights from Table 8 in Section 7.6 calculate the nominal 10 B content at the nominal density and hydration. The following tolerances were taken at the minimum 10 B values in ASTM C 750-03 Type 1 at 10 B is 19.9±.3 atom% of NatB, Total Boron 81.0 to 76.5, and the mixing weights of 5.88 lb of B₄C to a 102.6323 lb/ft³ total as shown in Table 4. When these minimum tolerances values are brought to the nominal values one the following differences are found.

NomF \approx Change Atom% × Boron Percentage × Mixer weight changes NomF \approx (19.9/19.6) × (78.75/76.5) × (6.4/5.88) NomF \approx 1.138

Approximately 13.8% more ¹⁰B on the average comparing the values to an exact calculated value is confirmed by comparing the nominal ¹⁰B data shown in Table 15 to the data in Table 6.

NomF = Table 15 ¹⁰B / Table 6 ¹⁰B NomF = 9.388E+20 / 8.190E+20 NomF = 1.146

On the average 14.6% more ¹⁰B is found in the nominal elemental composition.

Elemental Co	mposition @ .		J.2% LOD	
	@LOD%	@LOD%	@Den & LOD%	N _e
Element	(lb/ft ³)	(wt%)	(lb/ft ³)	(Atoms/cc)
Hydrogen	3.4264	3.3789%	3.5479	3.396E+22
B Nat				
¹⁰ B	0.9411	0.9280%	0.9744	9.388E+20
¹¹ B	4.2445	4.1856%	4.3949	3.851E+21
Carbon	1.2802	1.2624%	1.3255	1.066E+21
Nitrogen	0.0094	0.0093%	0.0098	6.716E+18
Oxygen	55.6706	54.8984%	57.6434	3.476E+22
Sodium	0.0770	0.0760%	0.0798	3.347E+19
Magnesium	0.2215	0.2184%	0.2293	9.103E+19
Aluminum	25.6067	25.2515%	26.5141	9.479E+21
Silicon	1.6179	1.5954%	1.6752	5.754E+20
Sulfur	0.2022	0.1994%	0.2094	6.300E+19
Calcium	7.7605	7.6529%	8.0356	1.934E+21
Iron	0.3484	0.3436%	0.3608	6.232E+19
Sum	101.4065	100.0000%	105.0000	8.682E+22
B Nat	5.1855	5.1136%	5.3693	4.790E+21

Table 15, 277-4 At Nominal Density, Boron%, and Mixer Weights Elemental Composition @ 105 lb/ft³ & 30.2% LOD

8. Conclusion

The dry mix ratios are shown in Table 8 and for 100% dry mix weight and are the following $93.6\pm0.43\%$ 277-0 Heat Resistant Shielding and $6.4\pm0.32\%$ Boron Carbide Powder. Once thoroughly dry blended, $27\pm1\%$ water shall be added to the dry mix weight. Follow the casting specification for final instructions.

The elemental compositional calculations are performed at the minimum ¹⁰B level for the compositional purity, isotopic atomic percentage, and scale measurements. The probability of each of these ¹⁰B levels being at the minimum limits at the same time is quite remote. As shown in Section 7.8 the minimum limits are over 13 to 14% conservative from the nominal values.

The minimum acceptable casting density at the minimum hydration and ¹⁰B levels were subsequently taken at and dehydrated to a worst Normal Conditions of Transport (NCT) and the Hypothetical Accidental Conditions (HAC) temperatures. The thermal stability of the cast 277-4 neutron poison shows little differences between the NCT and the HAC elemental compositions. Therefore, I recommend using the worst case HAC elemental composition for the final Nuclear Criticality Safety Calculations. The largest difference seen is dependent upon the input data. In order to determine the most criticality reactive HAC elemental composition Tables 12 and 14 should both be used to run an infinite array nuclear criticality safety calculation. Upon completion of these calculations the most reactive HAC elemental compositions shall be used for both NCT and HAC calculations.

Appendix 1; Thermo Electron Corp. Heat Resistant Shielding Catalog No. 277 product information sheet 277-103, page 1 of 2

Radiation Measurement & Protection

Well suited to attenuate the neutron flux from power reactors by the inclusion of hydrogen and boron in the form of temperature-resistant additives. It incorporates approximately three times as much hydrogen as ordinary concrete, making the material far superior for neutron shielding applications.

 Low cost material is completely non-combustible

• Rugged and easily cast in the field

General

High temperature resistance is a frequent requirement for power reactor shielding. Type 277 Heat Resistant Shielding is a refractory material designed to retain a significant portion of its shielding properties at temperatures up to 450° F (230° C). This material will maintain its physical integrity at temperatures up to 1900° F (1038° C). In addition, this tow-cost rugged material is completely non-combustible and can be easily cast in the field. Its compressive strength is 1000 psi (oo BAR).

Type 277 is well suited to attenuate the neutron flux from power reactors by the inclusion of hydrogen and boron in the form of temperature-resistant additives. It incorporates approximately three times as much hydrogen as ordinary concrete, making the material far superior for neutron shielding applications. The refractory matrix also provides good resistance to heat.

Type 277 Heat Resistant material has a boron content of 1.56 %. The hydrogen concentration (which moderates fast neutrons) is approximately one-half that of water. For additional technical information on Type 277, including temperature resistance, refer to TD-277-1002.

Type 277 is offered in the form of a dry mix for casting in place, but can also be supplied in

pre-cast shapes.It is readily shaped with ordinary tools (e.g., band-saws or drills). Type 277 Dry Mix is available in 100-lb (45.5kg) or larger containers. Approximately 96-lbs. of dry mix are required to obtain one-cubic ft. of cast material. (1.54 kg of dry mix will give one liter). Detailed mixing instructions are provided with each order. Recommended shelf-life under dry storage conditions is six months.

Catalog No. 277 Heat Resistant Shielding is a refractory material designed to retain a significant portion of its shielding properties at temperatures up to 450° F (230° C). This material will maintain its physical integrity at temperatures of up to 1900° F (1038° C).

In addition Catalog No. 277 is a low cost rugged material which is completely non-combustible and can easily be cast in the field. Its compressive strength is 1000 psi (go BAR).

Catalog No. 277 is well suited to attenuate neutron flux from power reactors by the inclusion of hydrogen and boron (natural isotope distribution) in the form of temperature resistant additives. It incorporates approximately three times as much hydrogen as ordinary concrete, making the material far superior for neutron shielding applications. The refractory matrix also provides good resistance to heat.

For Contact Information visit www.thermo.com/rmp

DAC-PKG-801624-A001 Rev. B October 11, 2006 Prepared by:__ G. A. Byington Checked/Verified by: J. Clinton & J. DeClue

Appendix 1; Thermo Electron Corp. Heat Resistant Shielding Catalog No. 277 product information sheet 277-103, page 2 of 2

SPECIFICATIONS

Products Available

Catalog No. 277 is offered in the form of dry mix for casting in place, but can also be supplied in pre-cast shapes and blocks.it is readily shaped with ordinary power tools (e.g. band-saws or drills).

Catalog No. 277 Dry Mix is available in 300-lb (136 kg) containers. Approximately 96-lbs of dry mix are required to obtain one-cubic foot of cast material (1.54 kg of dry mix will give one liter). Water 27 PPH, parts of dry mix (by weight).

Recommended shelf life for Catalog No. 277 under dry-storage conditions is 6 months.

Composition Data

Active Components: Hydrogen atom density / cm3: 3.4 x 1022/cc Natural isotope distribution: Boron atom density / cm3: Natural isotope distribution: Weight percent of all isotopes of boron: **Total Density:**

99.98% ₁H 1.43 X 10²¹ 19.6% 10B and 80.4% 11B

1.56% 1.68 g / cc

1.1 cm-1

1 x 1011 rads

5 x 1029 n / cm2

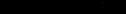
Radiation Properties

Macroscopic thermal neutron cross section: Gamma resistance: Neutron resistance:

Physical Properties

Appearance and Odor: State Powder Color Light Gray Odor no odor

Mechanical Properties Machining of 277:


Hardness: Tensile Strength (ASTM D368): 100 psi (kg/m2) Compressive Strength:

Fair, can be saw cut and drilled N/A 1000 psi (kg/m²)

Thormal Proportion		
Thermal Properties	sturn timi	t.ar.a0E
Recommended Tempera Melting Point:	iture timi	N/A
Boiling Point:		N/A
Coefficient of Thermal		N/A .
Conductivity:		1.24 x 10 ⁻³ cal-cm/sec
conductivity.		$cm^{2} \circ C = 0.3 BTU$
		- ft/hr ft2 ° F
Heat Capacity:		0.22 cal/g ° C
Cubical Coefficient of E	xpansion:	
	· · · · · · · · · · · · · · · · · · ·	= 1.4 x 10 ⁻⁵ in3/in3 ° F
Linear Coefficient of Ex	pansion	N/A
Vapor Pressure (mm Hg		N/A
Vapor Density (Air = 1)		N/A
Evaporation Rate (ether	r=-1):	N/A
Percent Volatile by Voli	ume:	N/A
Specific Gravity (H2O =	1):	1.68 g/cm ³
Chemical Properties		
Chemical Name & Syno	nyms:	Borated Hydrogenated
		Casting Mix
Trade Name & Synonyn	ns:	Catalog No. 277
Chemical Family:		Calcium salts, boron,
		and hydrogen containing
		compounds
Formula:		Proprietary
Solubility in Water:		Negligible
Reactivity Data		
Reactive Materials		
Reactive Acids:		N/A .
Reactive Bases:		N/A
Reactive Metals and		
Metal Compounds:		N/A
Reactive Oxidizing Ager	nts:	N/A
Reactive Reducing Ager	nts:	N/A
Material Incompatibil	itv	
Materials to Avoid:	:	N/A
Hazardous Decompositi	ion Produ	•
Solid	None	
Liquid	None	
Gas	None	
Hazardous Polymerizati	on:	Will Not Occur

For more information see: TD-277-001

Radiation Measurement & Protection

Appendix 2; Thermo Electron Corp. Heat Resistant Shielding Catalog No. 277 Typical Elemental Analysis Without Boron, EA-277, May 1988.

EA-277 Without Boron May, 1988

TYPICAL ELEMENTAL ANALYSIS

CATALOG NO. 277 -	HEAT	RESISTANT	SHIELDING
-------------------	------	-----------	-----------

Element	Weight Percent
O	59.14%
AI	26,59
Ca	6.04
Н	3.73
Si	1.68
Fe	0.30
Mg	0.23
ຣື	0.21
Na	0.08
Total	100.00%

PROPERTIES

Density = 1.61 g/cc [101 lbs/cu ft]

Hydrogen Atoms per cc = 3.59×10^{22}

Macroscopic Thermal Neutron Cross Section: E = 0.01cm⁻¹

Recommended Temperature Limit = 350°F (177°C)

Machinability: Fair: can be saw-cut and drilled

Thermal Conductivity. $K = 1.24 \times 10^{-3} \text{ cal-cm/(sec)(cm)}^2 (^{\circ}\text{C})$

Specific Heat = 0.22 cal/gpC

Coefficient of Theraml Expansion - 1.4 x 10⁻⁵ cm per cm per °C

Compressive Strength = 1400 psi

Tensile Strength = 95 psi-

Radiation Resistance, gammas: 1 x 10¹¹ Rads

Radiation Resistance, neutrons: 1×10^{21} n/cm²

THERMAL TESTS AND CHARACTERISTICS

These tests have not been performed on this Type 277 without boron. We have examined each test separately, and we feel confident that the results of all these tests and that the characteristics of the material would be essentially the same as for Type 277 with boron.

.

·

Appendix 1.4.10

PYROPHORICITY OF URANIUM METAL

Prepared by: Russell W. Schmidt BWXT Y-12, L.L.C. November 2006 Revised June 2007

Reviewed by: Sanford G. Bloom BWXT Y-12, L.L.C. November 2006 Re-reviewed June 2007

1-208

Appendix 1.4.10

PYROPHORICITY OF URANIUM METAL

I. Introduction

The ES-3100 is a new shipping container designed for safe and efficient transportation of highly enriched uranium in a wide range of material forms. The ES-3100 has been certified for use with a variety of contents, including enriched uranium metal and alloy. However, the current size limitations on uranium contents in the form of broken metal are unnecessarily restrictive. The size limits exist because under certain conditions uranium metal and some uranium alloys are pyrophoric – they have the potential to spontaneously ignite. The size restrictions are intended to eliminate the possibility of spontaneous ignition during transport.

The purpose of this analysis is to evaluate the potential for uranium metal pieces to spontaneously ignite under the conditions expected for shipment in the ES-3100 shipping container, and to identify limits on the uranium metal content that will prevent spontaneous ignition during transport, while still allowing a high degree of flexibility and utility.

It is important to remember that the content limits developed for the ES-3100 must be implemented in the field. Therefore the criteria derived from this evaluation must be simple, robust, and readily applied in all of the facilities using this package.

This evaluation does not include new laboratory tests of uranium metal ignition parameters. Such tests have been performed and well documented in the past. This evaluation draws on the extensive body of existing data and proven storage and transport practice to identify the bounds within which uranium metal and alloys can be safely transported in the ES-3100 shipping container.

II. Proposed Definition of Pyrophoricity

The Certificate of Compliance (CoC), gives the definition of broken metal in paragraph 5.(b)(1)(ii), as follows:

For metal or alloy defined as broken metal, mass limits are specified in Table 2. Uranium metal and alloy pieces must have a surface-area-to-mass ratio of not greater than $1 \text{ cm}^2/\text{g}$ or must have a mass not less than 50 g, whichever is most restrictive. Powders, foils, turnings, wires, and incidental small particles are not permitted, unless they are restricted to not more than 1 percent by weight of the content per convenience can, and they are either in a sealed, inerted container or are stabilized to an oxide prior to shipment.

It is suggested that the definition of broken metal in paragraph 5.(b)(1)(ii) be revised to the following:

For metal and alloy defined as broken metal, mass limits are specified in Table 2. Uranium metal and alloy pieces must have a surface-area-to-mass ratio of not greater than $1 \text{ cm}^2/\text{g}$ or must not pass freely through a 3/8-inch (0.0095m) mesh sieve. Particles and small shapes that do not pass this size restriction, as well as powders, foils, turnings, and wires, are not permitted, unless they are either in a sealed container under an inert cover gas.

III. Rational for Proposed Changes

The proposed text makes the following changes:

- The 50 g minimum piece size is eliminated;
- A 3/8-in. mesh limit is added;
- The phrase "whichever is most restrictive" is deleted;
- Remove oxidation as a treatment for pyrophoric uranium, in this context
- The 1% limit on inerted material is eliminated.

The 1 cm²/g maximum specific surface area limit is the most significant limit in the original text, and that limit is retained unchanged. Specific surface area is the most significant parameter in determining if a given piece of uranium is at risk of spontaneous ignition under a given set of conditions, and therefore it is appropriate that this restriction should control any other restrictions to the package contents. The discussion section below will demonstrate that the 1 cm²/g maximum allowable specific surface area is adequate to prevent spontaneous ignition in the ES-3100.

The 50 g minimum piece size is overly restrictive and is inconsistent with the 1 cm²/g upper limit on specific surface area. Smooth uranium metal pieces can have a mass of less than 0.5 g and still have a specific surface area less than 1 cm²/g (see example 1). This makes the 50 g limit two orders of magnitude too large. The 50 g limit is nearly an order of magnitude too large even considering metal pieces with the rough surface of broken metal instead of a smooth cast or polished surface.

Example 1.

Consider a smooth uranium metal sphere with a diameter of 0.32 cm (0.126 in.). The radius of the sphere is 0.16 cm. The density of uranium metal is 19 g/cm³. The volume is $V = (4/3) \cdot Pi \cdot r^3 = (4/3) \cdot Pi \cdot (0.16)^3 = 0.01716 \text{ cm}^3$ The mass is $M = \text{Density} \cdot V = 19 \text{ g/cm}^3 \cdot 0.01716 \text{ cm}^3 = 0.3260 \text{ g}$ The surface area is $A = 4 \cdot Pi \cdot r^2 = 4 \cdot Pi \cdot (0.16)^2 = 0.3217 \text{ cm}^2$ The specific surface area is $SA = A/M = 0.3217 \text{ cm}^2 / 0.3260 \text{ g} = 0.9868 \text{ cm}^2/\text{g}$ This specific surface area is just within the 1 cm²/g upper limit.

If instead of a smooth surface the sphere has a rough surface characteristic of broken uranium metal, a larger size is needed to ensure that the $1 \text{ cm}^2/\text{g}$ limit is maintained. For a roughness factor of three (meaning that the rough surface has an actual surface area that is three times the surface area calculated from the radius), the radius would need to be three times the above example to give the same specific area. In this case:

 $r = 3*0.16 \text{ cm} = 0.48 \text{ cm}; V = (4/3) \cdot \text{Pi} \cdot (0.48)^3 = 0.463 \text{ cm}^3;$

 $M = 19 \text{ g/cm}^3 \cdot 0.463 \text{ cm}^3 = 8.802 \text{ g}; A = 4 \cdot \text{Pi} \cdot (0.48)^2 \cdot 3 \text{ (roughness factor)} = 8.686 \text{ cm}^2$ And so the specific surface area is 8.686 cm²/8.802g = 0.9868 cm²/g as above.

Depending on the surface roughness, a sphere with a mass between 0.33 and 8.8 grams will meet the $1 \text{ cm}^2/\text{g}$ specific surface area limit

The 1 cm²/g specific surface area limit controls the parameter that is most important in terms of preventing spontaneous ignition, but it is not easy to measure or to use in the field. A mass limit (similar to the 50 g limit in the existing certificate, but more consistent with the 1 cm²/g specific area limit) could be used, but it is very time-consuming to weigh every piece of metal in a package. An approach that is both effective at enforcing the 1 cm²/g specific surface area limit and quick and easy to use in the field is

to separate large pieces from small ones in a sieve. The recommended text stipulates a 3/8-in. mesh sieve to quickly remove small particles (with a large specific surface area) from large particles which have a small specific surface area.

As demonstrated in example 1, rough-surfaced spheres 3/8 in. (0.95 cm) in diameter meet the 1 cm²/g specific surface area limit (a smooth-surfaced sphere of this size has a specific surface area of 0.33 cm²/g). Therefore, a sphere which does not pass freely through the 3/8-in. mesh sieve will meet the 1 cm²/g specific surface area limit. Other simple shapes such as cubes and rods are also effectively controlled by the 3/8-in. sieve. Foils, turnings, and wires are explicitly forbidden in both the current and proposed text, unless they are packed in an inert atmosphere.

The phrase "whichever is most restrictive" has been deleted from the proposed text since the sieve test has been sized to effectively enforce the $1 \text{ cm}^2/\text{g}$ specific surface area limit.

The option of converting pyrophoric uranium to an oxide is removed, since metals need to be shipped as metals for maximum usefulness at the receiver site. In addition, if oxides are produced, packing limits for oxides have been explicitly given in the certificate of compliance.

The final change in the proposed text is to eliminate the 1% of content weight limit on inerted material. This limit is unnecessary for uranium metal sealed in a container containing an inert atmosphere. If the metal has been sealed in a container containing an inert atmosphere, there is no oxygen available to the metal and therefore no chance of combustion.

Uranium metal packaged for transport in the ES-3100 is first placed inside a convenience can or other container. These cans are then placed into the ES-3100 containment vessel (CV). The convenience cans will displace most of the oxygen from the containment vessel, leaving only enough to react with a few grams of metal. If a sealed container containing an inert atmosphere somehow came open in transport (an unlikely scenario given the very limited amount of movement possible inside a properly loaded containment vessel), this small amount of oxygen is not enough to support spontaneous ignition. The containment vessel has been shown to retain its structural integrity and remain leak tight under hypothetical accident conditions, so no additional oxygen can enter.

IV. Discussion

In his 1995 review,¹ Terry Totemeier explains pyrophoricity this way: "Pyrophoricity refers to the tendency of certain metals to ignite and burn in a self-sustaining oxidation reaction. The pyrophoric nature of metals is usually defined in terms of an ignition temperature, which is the temperature at which a metal will ignite and burn in a self-sustained fashion for a given set of conditions." ASTM C-1454² defines pyrophoric as "capable of igniting spontaneously under temperature, chemical, or physical/mechanical conditions specific to the storage, handling, or transportation environment".

This evaluation will demonstrate that uranium metal with a specific surface area of $1 \text{ cm}^2/\text{g}$ will not spontaneously ignite under the conditions existing in the ES-3100 during packaging and transport.

The primary factors determining if the conditions for spontaneous ignition exist are specific surface area and temperature. Totemeier explains, "Because oxidation is a surface reaction, the amount of area available for reaction is a critical factor in the determination of the heat generated in oxidation. Specific area is the best parameter to describe the effect of area, as it also accounts for the amount of

material not reacting which can serve as a heat sink." Temperature is critical because the amount of heat generated by the reaction is a function of the reaction rate, which is in turn a function of the temperature. Higher temperatures give higher reaction rates.

An additional safety factor in the case of the ES-3100 is the small amount of oxygen available in the sealed inner containment vessel. This serves to limit the total amount of uranium that can oxidize, and therefore prevents any potential heat build-up from reaching the ignition point of uranium metal.

Ignition Temperature and Transport Conditions

In figures 4 and 5 of his review, Totemeier plots two separate tests of uranium ignition temperatures as a function of specific surface area. For a specific surface area of 1 cm²/g these two plots give values of 390°C (663 K)^a and 340°C (613 K), respectively. Using the lower value and rounding down gives a conservative value of 600 K for the ignition temperature of uranium metal in the ES-3100.

The ES-3100 thermal analysis determined that the temperature at the containment vessel wall would not exceed 190°F (361 K) for normal conditions of transport (NCT) and 255°F (397 K) for hypothetical accident conditions (HAC). These values, particularly the HAC temperature, are very conservative. The actual results from six separate package tests showed that the CV wall temperature was typically around 210 °F (372 K), with the highest recorded value of 241 °F (389 K). Note that all of these temperatures are well below the 600 K ignition temperature of the uranium metal contents.

Maximum Temperature from Oxidation – Basic Equations

Uranium metal readily reacts with oxygen to form uranium dioxide (UO_2) . This reaction is exothermic. The heat released by the reaction warms the uranium metal, increasing the reaction rate. Under normal conditions for storage and transport, the reaction rate is slow enough that the small amount of heat generated by the reaction is lost to the environment, and a stable steady-state is achieved. If the reaction rate is fast enough, and the metal is relatively well insulated, the temperature of the uranium metal can build, slowly at first but at an increasing rate, until the ignition temperature is reached and the metal ignites and burns.

The task at hand is to evaluate the balance between heat generation and heat loss in the ES-3100 under hypothetical accident conditions to verify that a stable steady state is reached, and that the steady-state condition is safely below the ignition point of uranium metal. A recent paper by Epstein, Malinovic, and Plys³ lays out a useful approach, which will be followed here without the approximations used in their paper.

For uranium metal packed in cylindrical cans, the generation of heat throughout the can and the associated transfer of heat to the can wall is mathematically identical to the generation of heat within a wire due to electrical resistance. In their text "Transport Phenomena"⁴ Bird, Stewart & Lightfoot develop the desired relation (equation 9.2-14):

^a The curve in Totemeier figure 4 is discontinuous, with a transition from a lower curve to an upper curve shown at a specific surface area of $6 \text{ cm}^2/\text{g}$. At a specific surface area of $1 \text{ cm}^2/\text{g}$ the upper curve would give an ignition temperature of 550°C, while extrapolation of the lower curve gives 390°C. The original reference from which Totemeier drew figure 4 explains that the transition from the lower curve to the upper curve is influenced by many factors, including the metallurgy of the uranium, any alloying metals or impurities, and the oxygen content of the gas involved. Therefore this analysis uses the lower curve value of 390°C.

Tcenter – Twall = $(S \cdot R^2) / (4 \cdot Kth)$

(Equation 1)

where

Tcenter is the temperature at the center of the can (K)

Twall is the temperature at the can wall (K)

S is the heat production per unit volume (W/cm³)

R is the radius of the can (cm)

Kth is the thermal conductivity of the uranium contents (W/cm K)

The heat production per unit volume is a function of the reaction rate and the heat of reaction. Since the oxidation reaction occurs at the surface of the uranium, the reaction rate is typically stated as a mass reacted per second per unit area. The specific surface area, the uranium metal density, and the packing density are applied to convert the rate per unit uranium surface area to a rate per unit can volume. The result is:

 $S = Rho \cdot Phi \cdot SArea \cdot dHrxn \cdot RxnRate$

(Equation 2)

where

Rho is the density of the uranium metal (g/cm^3) Phi is the packing density of the uranium in the can $(cm^3 U/cm^3 \text{ can volume})$ SArea is the specific surface area of the uranium (cm^2/g) dHrxn is the heat of reaction (J/g uranium) RxnRate is the reaction rate (g uranium / (s • cm²))

The reaction rate of uranium metal with oxygen has been evaluated by many researchers over the years. The general form of the rate equation used is:

RxnRate = $K0 \cdot P^n \cdot e^{(-Te/T)}$

(Equation 3)

where

K0 is the reaction rate coefficient (g uranium / (s • cm²)) P is the partial pressure of water vapor (kPa) n is the exponential coefficient on the partial pressure of water vapor Te is the activation energy (K) T is the temperature of the reactants (K)

For the case at hand, the temperature of the reactants is the highest at the can center (Tcenter) and the lowest at the can wall (Twall). The average temperature of the reactants is midway between these two values. For conservatism the reaction rate of the entire contents is evaluated at the maximum temperature, which occurs at the center of the can (Tcenter). This analysis considers heat transfer only through the can walls, and ignores heat transfer through the top and bottom of the can. This is also a conservative assumption.

Equations 1, 2, and 3 are combined to yield:

 $Tcenter - Twall = (R^2 \circ Rho \circ Phi \circ SArea \circ dHrxn \circ K0 \circ P^n \circ e^{(-Te/Tcenter)}) / (4 \circ Kth) \quad (Equation 4)$

Note that Kth is a property of the can contents (that is, for the bed of uranium metal particles with air in between), and not a property of solid uranium metal. The thermal conductivity of uranium metal is much higher than the thermal conductivity of a bed of uranium metal pieces.

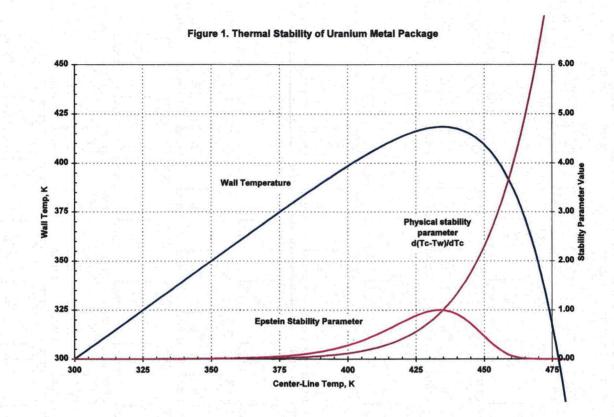
P is the partial pressure of H_2O present in the containment vessel at the center-line temperature. This value is calculated by assuming that the ES-3100 was loaded at ambient conditions of T0 and 100% relative humidity, which yields a water vapor pressure of P0. When the temperature in the containment vessel increases the partial pressure of water vapor increases according to the ideal gas law, which in this case reduces to:

$$P = P0 \cdot (Tcenter/T0)$$
 (Equation 5)

In this evaluation, the maximum possible rate of heat generation due to the oxidation of the uranium metal is also of interest since this heat must be carried away by the package, even at HAC. The maximum rate of heat generation is the heat generated by the oxidation of uranium metal at the highest temperature reached during HAC, assuming the maximum allowable load of uranium metal. This is:

 $Qmax = Mmax \cdot SArea \cdot dHrxn \cdot K0 \cdot P^n \cdot e^{(-Te/Tcenter)}$

(Equation 6)


where

Qmax = the maximum rate of heat generation (W) Mmax = the maximum uranium metal loading (g)

Evaluation of Thermal Stability

Equation 4 provides the means to evaluate the maximum temperature reached in the uranium metal. It does not by itself validate the stability of the system. This system does present a simple means to evaluate stability – both numerical stability and more importantly physical stability (meaning that the temperature cannot build to spontaneous ignition).

Solving equation 4 for Twall over a range of Tcenter values and plotting the results produces figure 1:

The wall temperature calculated from equation 4 and plotted here is the temperature needed in order to provide enough heat transfer to maintain the given center-line temperature. The wall temperature initially tracks the center-line temperature – the rate of heat generation is low, so a very small temperature difference is sufficient to remove that heat. As the center-line temperature (and therefore the amount of heat generated) increases, the temperature difference needed to keep the center-line temperature steady at the given value increases exponentially. At some point (about 435 K in figure 1) the required temperature difference gets so large that the wall temperature would have to decrease in order to maintain a stable center-line temperature. In an actual package there is no cooling mechanism to do this, and once the center-line temperature exceeds this point the amount of heat generated will exceed the ability to carry off that heat, and the center-line temperature will increase until either the reaction runs out of oxygen or the ignition point is reached. The point at which the required wall temperature stops increasing, marks the maximum stable center-line temperature for the package. The required wall temperature stops increasing at the point where the rate of increase in the needed temperature difference (d(Tcenter-Twall)) equals the rate of increase of the center-line temperature (dTcenter). Stated mathematically, when d(Tcenter-Twall)/dTcenter is less than 1 the required Twall increases along with Tcenter, and stability is maintained. When d(Tcenter-Twall)/dTcenter is greater than 1 Twall would have to drop to maintain stability as Tcenter increases. Since this is not possible in a real package, the temperature in the package would steadily increase to either ignition or consumption of all available oxygen. The value of d(Tcenter-Twall)/dTcenter = 1 marks the maximum stable point for a given package.

Equation 4 is

 $Tcenter - Twall = (R^2 \cdot Rho \cdot Phi \cdot SArea \cdot dHrxn \cdot K0 \cdot P^n \cdot e^{(-Te/Tcenter)}) / (4 \cdot Kth)$

Taking the first derivative of this equation with respect to Tcenter yields an equation for the stability parameter derived above:

d(Tcenter-Twall)/dTcenter = (Tcenter-Twall) •Te/Tcenter²

(Equation 7)

The thermal stability of the system is maintained as long as (Tcenter-Twall) • Te/Tcenter² \leq 1. This parameter is equivalent to the stability parameter "B" developed in Epstein et al, without the simplifying assumptions made in that paper. The value of d(Tcenter-Twall)/dTcenter is plotted in Figure 1, along with the Epstein "B" parameter.

Input Parameters

The key values used to evaluate equations 4, 5, 6, and 7 are shown in Table 1.

Parameter	Value	Units
R	5.27	cm
Rho	19	g/cm ³
Phi	0.26	cm ³ /cm ³
SArea	1	cm²/g
dHrxn	4559	J/g Uranium
K0	76086	$gU/(s \cdot cm^2)$
P0	3.53	kPa
T0	300	K
n	0.3	
Te	11490	K
Kth	0	W/(cm • K)

Table 1. Key input parameters

The sources of these parameters are:

R is the inside radius of a convenience can. The typical can used has an outside diameter of 4.25 in., and an inside diameter of 4.15 in. (10.54 cm).

Rho is the density of uranium metal.

Phi is the packing density of uranium metal when packed into the convenience cans. Operator experience at Y-12 is that a maximum of 5 kg U of broken metal will fit into a 4.25-in. OD by 4.875-in. high can, which has an internal volume of 1000 cm³. This yields a packing density of $0.26 \text{ cm}^3/\text{cm}^3$. The effects of variations on this value are discussed below.

SArea is the specific surface area, which is limited by the package certification to 1 cm²/g.

dHrxn is the heat of reaction, on a uranium basis. This value came from Totemeier, page 17 (1089 cal/gU = 4559 J/gU).

K0, n, and Te are parameters for the reaction rate equation. As noted above, a number of researchers have analyzed the reaction rate of uranium metal with various combinations of oxygen and water vapor. Numerous models have been developed from this data. This analysis

used the published model that best fit the conditions present. Many of the published rate models are only valid up to 100 to 130°C. This evaluation requires evaluation beyond 140°C. Many of the models are for either pure oxygen or pure water vapor. McGillivray⁵ notes that the reaction rate at a given temperature varies with both the oxygen concentration and the partial pressure of water vapor. The published model that best matches the conditions of this evaluation (reaction in air at temperatures exceeding 140°C, with a small water vapor partial pressure) is the Pearce model (Pearce, < 100% RH, in Air, T < 192°C) as reported in the Epstein paper.

P0 and T0 are used to calculate P, the partial pressure of H_2O vapor present in the containment vessel at the center-line temperature. This value is calculated by assuming that the ES-3100 was loaded at ambient conditions of T0 = 300 K (80°F) and 100% relative humidity. P0 is therefore the vapor pressure of water at 300K, which is P0 = 3.53 kPa. When the temperature in the containment vessel increases, the partial pressure of water vapor increases according to equation 5.

Kth is the thermal conductivity of the uranium particle bed. The value here was taken from Epstein et al, page 6. Because of the air-filled void spaces, the bed thermal conductivity is much lower than the uranium metal value of $0.3 \text{ W/(cm } \cdot \text{K})$.

Results

The set of equations (4, 5, 6, and 7) was evaluated using a commercial software package named Tk!Solver, which has the advantage of being able to automatically iterate to solutions as needed. This is necessary when solving equation 4 for a fixed wall temperature to determine Tcenter. Attachment 1 shows the rules, input and output for the TK!Solver model for the HAC and NCT cases.

The hypothetical accident condition evaluation gave a maximum containment vessel (CV) temperature (Twall) of 255°F (397 K). Evaluating equations 4 through 7 for these conditions yields a Tcenter of 398.4 K (257.5°F), with a maximum heat output (assuming a full load of 36 kgU) of 5.9 Watts, and a stability parameter d(Tcenter-Twall)/dTcenter of 0.102, well below the critical value of 1.0.

The 255°F HAC temperature was based on a uranium heat generation of 0.4 W. The 5.9 W maximum heat generated from the oxidation reaction under those conditions would heat the CV wall above that temperature. The thermal analysis evaluated the HAC for heat generation rates of 20 W and 30 W as well as the 0.4 W standard value. Table 3.7 in the thermal analysis shows that for an assumed 20 W heat generation in the uranium metal contents, the peak CV wall temperature is 277 °F (409.3 K). Using this value ensures that the heat transfer from the uranium contents to the CV wall and to the rest of the package is conservatively addressed.

For the revised HAC wall temperature of 277 °F (409.3 K), equations 4 through 7 yield the following results:

Tcenter = 413.3 K (284.4 °F) (well below the ignition temperature of 600 K) MaxQ = 17.0 Watts (below the 20W assumption) d(Tcenter-Twall)/dTcenter = 0.272 (well below the critical value of 1.0)

At the NCT wall temperature of 190°F (360.9 K) the results are:

Tcenter = 361.0 K (190.1 °F) (well below the ignition temperature of 600 K) MaxQ = 0.289 Watts (below the 0.4W assumption) d(Tcenter-Twall)/dTcenter = 0.006 (well below the critical value of 1.0)

These values clearly show that uranium metal with a specific surface area of no more than $1 \text{ cm}^2/\text{g}$ will not spontaneously ignite under any anticipated transport conditions.

Variation in Input Packing Density

The density with which uranium metal is packed into the convenience cans limits the surface area available to oxidize. Operator experience at Y-12 is that a maximum of 5 kg U of broken metal will fit into a 4.25-in. OD by 4.875-in. high can, which has an internal volume of 1000 cm³. This yields a packing density of 0.26 cm³/cm³.

A search of the literature on packing densities reveals a lot of work on smooth spheres, and very little on anything else. Scott and Kilgour⁶ experimented with packing smooth steel spheres in cylinders, and reported a maximum packing density of 0.6366 after extensive vibration to compact the steel spheres as much as possible. The steel balls used in this experiment had a coefficient of friction of 0.2, well below the value for smooth uranium metal of 1.0. Subsequent analysis by Kong and Lannutti⁷ considering the effects of friction between particles gives packing fractions in the range of 0.41 to 0.46, with higher friction coefficients producing lower packing fractions.

The broken metal routinely packed at Y-12 consists of large, rough, irregular pieces. The reported packing density of 0.26 for this material is consistent with the literature reviewed, particularly Kong and Lannutti. Therefore the value of 0.26 was used as the base value in the analyses reported above.

To bound the metal contents of the ES-3100 two additional cases have been analyzed under hypothetical accident conditions: rough broken metal at a packing density of 0.46 (the upper end of the range reported by Kong & Lannutti); and smooth cast spheres at a packing density of 0.64 (consistent with Scott & Kilgour).

For rough broken metal at a packing density of 0.46 the maximum center temperature at HAC was 422 K, well below the ignition temperature of 600 K. For smooth cast 3/8" spheres at a packing density of 0.64 the maximum center temperature at HAC was 412 K, well below the ignition temperature of 600 K.

Oxygen Limitation in the Containment Vessel

The analysis above placed no restriction on the amount of oxygen available to react with the uranium metal contents. In reality, the ES-3100 containment vessel has a finite volume, which restricts the amount of oxygen available for reaction.

The CV is a cylinder with inside dimensions of 31.00 in. (78.74 cm) tall and 5.06 in. (12.85 cm) in diameter. This produces a volume of 10,215 cm³, or 10.215 liters. At ambient conditions of 300 K (80.3°F) and 100% relative humidity, 10.215 liters of humid air contains 2.78 g of oxygen from the air, and another 0.23 grams of oxygen in the H₂O. These 3.01 grams of oxygen can react with 22.40 g of uranium metal. This is 0.06% of the ES-3100's capacity.

A mass of 22.4 g of U metal when reacted with 3.01 g of oxygen will produce a maximum total heat output of 102 kJ (96.8 BTU), spread out over the time required for the reaction to take place. This total amount of oxygen could sustain the NCT maximum heat output of 0.289 W for 4.1 days, or the HAC peak heat output for 1.7 hours. If somehow released all at once, the 102 kJ would only raise the temperature of 36 kg of uranium by 24.5 K. More realistically, as shown by the calculations above, any reaction will be slow, with enough time for the heat generated to flow to the CV and the rest of the package.

The ES-3100 CV is 15.1 kg of stainless steel, with a heat capacity of $0.515 \text{ J/(g} \cdot \text{K})$. The 102 kJ maximum produced by the oxidation reaction could only raise the temperature of the CV (ignoring contents) by 13.1 K. This heat sink, plus the heat sinks offered by the CV contents, ensures that the oxidation reaction will not be able to build to the 600 K ignition temperature required for spontaneous ignition.

In practice there will less than 3 g of oxygen available to react with the uranium metal inside the closed CV. A full load of uranium will, by itself, displace nearly 20% of the air in the CV. The convenience cans, spacer cans, and other packing materials will displace even more air, further reducing the amount of uranium that could possibly react. Also, the uranium metal is packed inside closed convenience cans. These cans limit the oxygen available to react with the contents to the oxygen in the convenience can itself. Finally, part of the available oxygen will react with the uranium before the peak HAC conditions are reached. Figure 22b in section 3 shows that it will take about 4 hours for the CV wall to reach the maximum temperature in the HAC fire. During this four-hour temperature ramp-up 0.9 grams of oxygen would be consumed by reaction with the uranium surface area was uncontrolled, lack of oxygen would snuff out any increase in the uranium reaction rate before it could reach the ignition point.

Specific Surface Area Implementation via Sieve

As noted above, the 1 cm^2/g specific surface area limit is not easy to measure or to use in the field. A screening method that is simple and easy to use in the field will reduce the potential for packaging mistakes. The recommended approach is to separate large pieces from small ones in a sieve. The recommended text stipulates a 3/8-in. mesh sieve to quickly remove small particles (with a large specific surface area) from large particles which have a small specific surface area.

Example 1 above showed that the minimum size of a metal sphere meeting the 1 cm^2/g specific surface area limit varies with the degree of surface roughness. In example 1 a smooth sphere 1/8 inch in diameter and a rough sphere 3/8 inch in diameter both had specific surface areas just below the 1 cm^2/g limit. The 3/8-in. mesh is stipulated in the recommended text in order to accommodate both smooth and rough metal.

The actual metal contents of the ES-3100 will include both smooth-surfaced and rough-surfaced metal. The smooth-surfaced items include a variety of cast and machined shapes. The rough-surfaced items are "broken metal" – large castings that have been fractured into smaller pieces. These broken metal pieces will typically have two or three cast surfaces with the remaining 3 or 4 surfaces of fractured metal.

The 3/8-inch mesh recommendation is based on a surface roughness factor of three, meaning that the rough surface has an actual surface area available to react with oxygen that is three times that of a smooth-surface of the same gross dimensions. This roughness factor of three was derived from an

evaluation of fracture surfaces for cast uranium metal. Roughness factors ranged from 1.1 to 2.7, with a mean value of 2.0. A roughness factor of three was selected to bound the highest value observed. The 3/8 inch mesh screening is therefore suitable for metal that is fractured on all surfaces. Since as noted above even broken metal will have several smooth faces the 3/8-inch mesh screening should be quite conservative.

As demonstrated above, a rough-surfaced sphere which does not pass freely through the 3/8-in. mesh sieve will meet the 1 cm²/g specific surface area limit. Other simple shapes such as cubes and rods are also effectively controlled by the 3/8-in. sieve. Foils, turnings, and wires are explicitly forbidden in both the current and proposed text, unless they are packaged in an inert atmosphere. Attachment 2 shows the dimensions of a variety of shapes that have a specific surface area of 1 cm²/g. All of these items will fall through a 3/8-in. sieve, demonstrating that the sieve will effectively enforce the 1 cm²/g specific surface area limit.

Most foils and wires will not fall through a sieve of any reasonable size. The current 50 g test would likewise not reliably exclude these materials, which is why foils, turnings, and wires are explicitly forbidden in both the current and proposed text, unless they are packed in an inert atmosphere. Operator training will be required under either the current or the proposed text to ensure that these items are properly packaged.

Operator Training

As part of the transition to using the new shipping container, training materials are being prepared to instruct the field operations personnel on the proper way to use the ES-3100. As noted above, the training for the operators packing uranium metal into the convenience cans for shipment in the ES-3100 will be important in ensuring that potentially pyrophoric materials are properly categorized and inerted as necessary. This training will cover the following points:

- All metal pieces must be evaluated to ensure that their smallest dimension is larger than the 3/8 inch mesh size.
 - Single solid-metal pieces that are clearly larger than the 3/8-inch mesh in every dimension do not require sieving.
 - Items which are obviously unacceptable, such as foils, wires, and turnings, may be removed before the sieving
 - Any item that is not obviously larger than the 3/8-inch mesh in every dimension and which has not been rejected must be sieved.
 - Any item that falls through the sieve must be rejected.
- Operators need to be alert to items which may not fall through the sieve but which are too small:
 - Long, thin shapes such as wires and turnings may not fall through the sieve when shaken. If the wire or turning could be picked up and poked through the mesh it must be rejected, even if it did not fall through unassisted.
 - Wires or turnings may form a tangled ball which will not fall through. The above criterion applies: if the wire or turning could be separated and poked through the mesh it must be rejected.
 - No distinction is made between wires and rods if the item could be picked up and poked through the mesh it must be rejected.
 - Foils, thin chips or shards any item less than 1/8 inch thick must be rejected.
 - Metal showing visible moisture or signs of having been stored in water must be rejected.

- Rejected items must be separated for proper handling:
 - Rejected items can be shipped if packed under an inert cover gas.
 - An acceptable cover gas must be high-purity (\geq 99.997%) and dry (\leq 5 ppm moisture).

V. Conclusion

The evaluations performed show that uranium metal conforming to the 1 cm²/g limit on specific surface area will not spontaneously ignite under any anticipated transport conditions. Spontaneous ignition is independently prevented by both the 1 cm²/g limit on the uranium metal and by the limited amount of oxygen available in the sealed ES-3100 containment vessel.

The 3/8-in. sieve specified in the revised text effectively applies the $1 \text{ cm}^2/\text{g}$ specific surface area limit to broken uranium metal in a manner that is quick and easy to use in the field.

Attachment 1 TK!Solver Model and Results

Rules

Tcenter-Twall=((R^2*rho*phi*SArea*dHrxn*K0*P^n)/(4*Kth))*exp(-Te/Tcenter) P=P0*(Tcenter/T0) Deriv=(Tcenter-Twall)*Te/Tcenter^2 HRate=SArea*dHrxn*K0*P^n*exp(-Te/Tcenter) MaxQ=HRate*MaxM RRate=SArea*MaxM*K0*P^n*exp(-Te/Tcenter) ORate=RRate*32/238 OTime=MaxO/ORate

HAC - 277 °F Wall Temperature

Input	Name	Output	Unit	Comment
	Tcenter	413.348	 К	Temperature at the center of the can
409.3	Twall		Κ	Temp at the can wall
	HRate	.000472	W/gU	Rate of heat production (w/unlimited O2)
	MaxQ	16.9945	W	Maximum heat production (from max KgU)
36000	MaxM		gU	Maximum ES-3100 contents
3.01	MaxO		gO	Maximum ES-3100 Oxygen Content
	RRate	.003728	gU/s	Reaction Rate at given Conditions
	ORate	.000501	gO/s	Oxygen Use rate at given conditions
	OTime	1.66822	hr	Oxygen time to run-out
5.27	R		cm	Can radius
1	SArea		cm^2/gU	Specific Surface Area of U particles
	Deriv	.272221	-	d(Tcenter-Twall)/dTcenter
19	rho		gU/cm^3	Density of uranium
.26	phi		-	
	-			Packing density, U cm^3 / Can cm^3
4559	dHrxn		J/gU	Heat of Reaction
76086	К0		gU/(s*cm^2)	Reaction rate coefficient - Pearce <100%
11490	Te		K	Reaction rate coefficient - Pearce <100%
.3	n			
				Reaction rate coefficient - Pearce <100%
3.53	P0		kPa	Vapor pressure of water at T0
300	Т0		K	Temperature for P0
	Р	4.86373	kPa	Vapor Pressure of Water at Tcenter
.004	Kth		W/cm*K	Thermal Conductivity of U particle bed

Input	Name	Output	Unit	Comment
	Tcenter	360.969	K	Temperature at the center of the can
360.9	Twall		Κ	Temp at the can wall
	HRate	8.03E-6	W/gU	Rate of heat production (w/unlimited O2)
	MaxQ	.288991	W	Maximum heat production (from max KgU)
36000	MaxM		gU	Maximum ES-3100 contents
3.01	MaxO		gO	Maximum ES-3100 Oxygen Content
	RRate	6.34E-5	gU/s	Reaction Rate at given Conditions
	ORate	8.52E-6	gO/s	Oxygen Use rate at given conditions
	OTime	98.1015	hr	Oxygen time to run-out
5.27	R		cm	Can radius
1	SArea		cm^2/gU	Specific Surface Area of U particles
	Deriv	.00607	Ū.	d(Tcenter-Twall)/dTcenter
19	rho		gU/cm^3	Density of uranium
.26	phi		C	Packing density, U cm ³ / Can cm ³
4559	dHrxn		J/gU	Heat of Reaction
76086	K0		$gU/(s*cm^2)$	Reaction rate coefficient - Pearce <100%
11490	Te		K	Reaction rate coefficient - Pearce <100%
.3	n			Reaction rate coefficient - Pearce <100%
3.53	P0		kPa	Vapor pressure of water at T0
300	T0		Κ	Temperature for P0
	Р	4.2474	kPa	Vapor Pressure of Water at Tcenter
.004	Kth		W/cm*K	Thermal Conductivity of U particle bed
				· · ·

NCT - 190 °F Wall Temperature

Attachment 2. Pyrophoric Size Limits on Small Uranium Metal Pieces

,. <u></u>					• =			
Specific Surfa		And a state of the	cm^2	the state of the state			1	·
Uranium Meta	·	19.0	g/cm	^3				
Surface Area	Multiplier:	3.0	:		•			
7	The surface	area multip	olier is	the	ratio of the act	ual surfac	e area	
a	livided by th	e simple g	eomet	eric	surface area.		,	
			Ì	: {	······			•
Spheres - Mi	nimum Saf	e Diamete	er	• †	····			
Limiting diame		0.9474		or	0.3730 ,in	8.459	grams	
								-
Rods - Minim	um Safe D	iameter	1				. -	-
	Length	Diameter				•	· .	-
	0.9 cm	0.9474	cm	or	0.3730 in	12.688	grams	•
	1.0 cm	0.9231	cm	or.	0.3634 in	12.715		
	1.5 cm	0.8000	cm	or	0.3150 in	+· - +· - ·	grams	
	2.0 cm	0.7500		or		16.788		• •
	2.5 cm	0.7229		or	·	19.495		
	Infinite	0.6316		or	a is anonistication of a second			. ·
······································	· · · · · · · · · · ·						!	
Cubes - Mini	mum Safe	Side Leng	sth		·	· •	 1	
Limiting side I		0.9474		or	0.3730 in	16.155	arams	
	ongin						giano	• • •
Square Cros	Section B	ode - Mini	mum	Sat	fe Side Length	· · · · · · · · · · · · · · · · · · ·		••
oquare oros	Length	Side	1	Jul	o olde Leligi		• • • • • • • •	•···
· · · · · · · · · · · · · · · · · · ·	0.9 cm	0.9474	cm	or	0.3730 in	16.155	grams	•
	1.0 cm		rcm	or	· · · · · · · · · · · · · · · · · · ·	16.189		-
	1.5 cm	0.8000	cm	or'	0.3150 in		grams	•
	2.0 cm	0.7500		or	0.2953 in	21.375	grams	••••
·	2.5 cm	0.7229		or	0.2846 in	24.822	grams	
·····	Infinite	0.6316	A 444 14 14	or	0.2487 in		giaino .	•
		0.0010	,0111	; 01	0.2407 111		· · · · ·	• ••
Chips & Shar	de Minim	um Safe T	bickn	0.00	• ••••		• • • •	
Length		Thickness	••••••		•••••	· ·		•
1.0 cm	0.5 cm		cm	or	2.3622 'in	57.000	arams	
1.5 cm	0.5 cm			or		28.500		
2.0 cm	0.5 cm		1	or		28.500		•
·	0.5 cm		• •		an an and an instrument of the			
2.5 cm				or	0.5135 in	30.978		
3.0 cm	0.5 cm		• •	or		.34.200	grams	
Infinite	0.5 cm	0.8571	cin	or.	0.3375 in			
10	0.0	5 0000			0 7074	00.000	1 	
1.0 cm	0.6 cm	·	-	or	الأراد والمستعد وا	22.800		
1.5 cm	0.6 cm			or	and and a second	20.520		
2.0 cm	0.6 cm			or		22.800	e - T	
2.5 cm	0.6 cm			' or	· · · · · · · · · · · · · · · · · · ·	25.909		
3.0 cm	0.6 cm			or	· · · · · · · · · · · · · · ·	29.314	grams	
Infinite	0.6 cm	0.6667	cm	or	0.2625 in			
		1	-		· · · ·			
Infinite	Infinite	0.3158	cm	or	0.1243 in			
	· •							

VI. <u>References</u>

- 1. Totemeier, Terry C. ANL/ED/95-2 "A Review of the Corrosion and Pyrophoricity Behavior of Uranium and Plutonium", June 1995, Argonne National Lab-West.
- 2. ASTM C-1454-00, "Standard Guide for Pyrophoricity/Combustibility Testing in Support of Pyrophoricity Analyses of Metallic Uranium Spent Nuclear Fuel", January 10, 2000, ASTM International.
- 3. M. Epstein, B. Malinovic, M. G. Plys, SNF-6192-FP, "Uranium Pyrophoricity Phenomena and Prediction", April 2000, Fluor Hanford, Richland Washington.
- 4. R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, "Transport Phenomena", 1960, John Wiley & Sons.
- G. W. McGillivray, D. A. Geeson, R. C. Greenwood, "Studies of the Kinetics and Mechanism of the Oxidation of Uranium by Dry and Moist Air – A Model for Determining the Oxidation Rate Over a Wide Range of Temperatures and Water Vapor Pressures", June 1993, Journal of Nuclear Materials # 208 (1994) pg 81-97.
- 6. G. D. Scott, D. M. Kilgour, "The Density of Random Close Packing of Spheres", February 1969, British Journal of Applied Physics, Series 2, Volume 2, pp 863 - 866.
- 7. C. M. Kong, J. J. Lannutti, "Effect of Agglomerate Size Distributions on Loose Packing Fraction", March 2000, Journal of the American Ceramic Society, Volume 83, pp 2183 – 2188.

SECTION 1 REFERENCES

10 CFR 71, Packaging and Transportation of Radioactive Material, Jan. 1, 2007.

49 CFR, Transportation, Oct. 1, 2007.

ASME Boiler and Pressure Vessel Code, An American National Standard, Rules for Construction of Nuclear Facility Components, Sect. III, Div. 1, Subsection NB, American Society of Mechanical Engineers, New York, 2001 ed. with 2002 and 2003 addenda.

ASTM D-2000, Standard Classification System for Rubber Products in Automotive Applications, American Society for Testing and Materials, Philadelphia, current revision.

Byington, G. A. et al., "Fireproof Impact Limiter Aggregate Package Inside Shipping Container," U.S. patent 6,299,950 B1, Oct. 9, 2001.

DG-7003 (Proposed Revision 2 of Regulatory Guide 7.9), Standard Format and Content of Part 71 Applications for Approval of Packaging for Radioactive Material, U.S. NRC, December 2003.

MIL-D-6054F, Drum, Metal-Shipping and Storage, June 30, 1989.

.1

NUREG/CR-3854, Fabrication Criteria for Shipping Containers, Lawrence Livermore Natl. Lab., March 1985.

Regulatory Guide 7.10, rev. 1, Establishing Quality Assurance Programs for Packaging Used in the Transport of Radioactive Material, U.S. NRC, June 1986.

Regulatory Guide 7.11, Fracture Toughness Criteria of Base Material for Ferritic Steel Shipping Cask Containment Vessels with a Maximum Wall Thickness of 4 Inches (0.1 m), U. S. NRC, June 1991.

NUREG-1609, Standard Review Plan for Transportation Packages for Radioactive Material, U. S. NRC, March 1999.

2. STRUCTURAL EVALUATION

The ES-3100 package is used to ship highly enriched uranium (HEU) in the following forms: oxide; bulk and broken metal shapes; uranyl nitrate crystals; and un-irradiated research reactor fuel elements. Content will be packed in various size convenience cans made of stainless, tin-plated carbon steel, or nickel alloy, and polyethylene, glass, or Teflon FEP bottles. The cans shall have a diameter of \leq 12.7 cm (5 in.) and heights of \leq 25.4 cm (10 in.). Containment vessel arrangements that utilize closed metal cans with a diameter greater than 10.8 cm (4.25 in.) will not contain any materials that off gas at the temperatures associated with Normal Conditions of Transport (NCT) or Hypothetical Accident Conditions (HAC). Two or more cans having a diameter of ≤ 12.7 cm (5 in.) and a maximum height of ≤ 25.4 cm (10.0 in.) may be brazed together to form a can assembly of up to 76.2 (30 in.) in height (Fig. 1.4). Any combination of these cans shall be allowed in a single package, as long as the total length of the can stack (with spacers when required) does not exceed the inside working height of the containment vessel. Any closure on the convenience can is allowed. The contents that cannot be packaged in the proposed cans due to the contents' overall dimensions, such as the unirradiated research reactor fuel elements, will be bundled together and protected on each end with an open-ended can (Fig. 1.4). When space is available inside the containment vessel, stainless-steel metal scrubbers will be placed on the top and bottom of this partially canned assembly or an empty convenience can will be placed on top of this assembly inside the containment vessel. Additionally, glass bottles with enriched uranium oxide may be packed inside metal convenience cans. These glass bottles with enriched uranium oxide containing UO₂-Mg will be treated as pyrophoric material and packaged in a sealed and inerted metal convenience can. Polyethylene bags may be used inside or outside any convenience can as long as the loading restrictions in Sect. 1.2.3.8 are met. The amount of polyethylene bagging and lifting slings used inside the ES-3100 containment vessel is limited to 500 g. The maximum payload inside the containment vessel will be as follows and as shown in Table 2.1: (1) 24 kg oxide or compounds (up to 100% enrichment in ²³⁵U); (2) HEU oxide shall be in the form of U₃O₈-Al, UO₂-Mg, UO₂, UO₃, or U₃O₈; (3) 24 kg of uranyl nitrate crystals; (4) 35.2 kg of uranium metal and alloy (up to 100% enrichment in ²³⁵U); (5) HEU metal and alloy may be in the form of broken pieces, ingots, buttons, small castings or fuel elements (rods, plates, or tubes); and (6) the maximum weight of all contents, including nuclear material, convenience containers, polyethylene bags, spacers, slings, etc., shall not exceed 40.82 kg (90 lb). Uranium and transuranic isotopic allowances are defined in Sect. 4. Mass limits and total weights for each shipping arrangement are defined and described in Sect. 2.1.3. The 40.82-kg (90-lb) maximum containment vessel content weight and 35.2-kg (77.60-lb) HEU content weight limits have been established as a bounding case for the maximum structural, thermal, and containment limit for the shipping package. The lowest possible mass of 2.77 kg (6.11 lb) HEU has been established as the lower bounding case for structural, thermal, and containment limits for the shipping package. The above content masses and forms used for the proposed content do not take into consideration limits based on shielding and subcriticality.

As described in the following sections, design analysis, similarity, drop simulations, and the full-scale testing documented herein demonstrates that the ES-3100 package is in compliance with the requirements of Title 10 Code of Federal Regulations (CFR) 71 and Title 49 CFR 100–178 when it is used to ship contents described above. The maximum bounding activity of the contents (35.2 kg of HEU) is 3.2328×10^{-1} TBq (8.737 Ci) when the maximum activity-to-A₂ value is reached at ~70 years from material fabrication. The corresponding maximum number of A₂s carried is 293.99. This information is further discussed in Sect. 4.

Form	Chemical or physical description	Total weight of HEU contents kg (lb)		
HEU oxide	U ₃ O ₈ -Al, UO ₂ -Mg, UO ₂ , UO ₃ , U ₃ O ₈	24 (52.91)		
Uranyl nitrate crystals	$UO_2(NO_3)_2 + 6H_2O$	24 (52.91)		
HEU metal and alloy	Specific geometric shapes (spheres, cylinders, square bars or slugs) or broken metal pieces, rods, plates, or tubes	35.2 (77.60)		

Table 2.1. Proposed HEU contents for shipment in the ES-3100

2.1 DESCRIPTION OF STRUCTURAL DESIGN

2.1.1 Discussion

The principal structural members of the shipping package consist of the following: the drum assembly, the containment boundary, packaging material, and the contents. Each of these will be described and discussed in the following sections.

2.1.1.1 Drum assembly

The drum assembly of the shipping package is defined as the structure that maintains the position of and provides protection to the impact and thermal barrier surrounding the containment boundary. Preserving the location of the containment boundary within the packaging prevents reduction of the shielding and subcriticality effectiveness. The drum assembly for the ES-3100 consists of an internally flanged Type 304L stainless-steel 30-gal modified drum with two type 304L stainless-steel inner liners, one filled with noncombustible cast refractory insulation and impact limiter (Kaolite) and one filled with noncombustible cast neutron absorber (Cat 277-4), a stainless-steel top plug with cast refractory insulation, silicone rubber pads, silicon bronze hex-head nuts, and a stainless-steel lid and bottom (Drawing M2E801580A031, Appendix 1.4.8). The nominal weight of these components is 131.89 kg (290.76 lb).

The drum's diameters (inner diameter of 18.25 in.) and corrugations meet the requirements of Military Standard MS27683-7. All other dimensions are controlled by Drawing M2E801580A004 (Appendix 1.4.8). Modifications to the drum from MS27683-7 include the following: (1) the overall height was increased; (2) the drum was fabricated with two false wire open ends; and (3) a 0.27-cm (12-gauge, 0.1046-in.)-thick concave cover was welded to the bottom false wire opening (Drawing M2E801580A005, Appendix 1.4.8). Four 0.795-cm (0.313-in.)-diameter equally spaced holes are drilled in the top external sidewall to prevent a pressure buildup between the drum and inner liner. The holes are sealed with a plastic plug to provide a moisture barrier for the cast refractory insulation during Normal Conditions of Transport (NCT). The cavity created by the inner liners is a three-tiered volume with a 37.52-cm (14.77-in.) inside diameter 13.26 cm (5.22 in.) deep, a 21.84-cm (8.60-in.) inside diameter 5.59 cm (2.20 in) deep, and an additional 15.85-cm (6.24-in.) inside diameter 78.31-cm (30.83 in.) deep. The volume between the mid liner and the drum and the top plug's internal volume is completely filled with the noncombustible cast refractory insulation called Kaolite 1600 from Thermal Ceramics, Inc. Kaolite properties, such as mechanical, thermal conductivity, and impact, are presented in Appendix 2.10.3. The volume between the most inward liner and the mid liner wall is completely filled with a noncombustible neutron absorber (poison) from Thermo Electronic Corp. called Cat 277-4. Cat 277-4 properties, such as thermophysical, mechanical, and neutron activation, are

presented in Appendix 2.10.4. BoroBond4, another noncombustible neutron absorber, was used only in prototype test packages instead of Cat 277-4. The drum body, inner liners, and lid are fabricated from 0.15-cm (16-gauge, 0.0598-in.) thick Type 304/304L stainless-steel sheet. A rolled stainless-steel flange with a $5.08 \times 5.08 \times 0.64$ -cm (2 \times 2 \times 0.25-in.) thick modified stainless-steel structural angle is welded around the top of the mid inner liner. The mid inner liner is then welded to the inside surface of the drum along this flange. Eight %-11-UNC-2A studs welded to the drum and silicon bronze nuts provide the structural attachment for the drum lid, and are torqued to 40.67 ± 6.78 N·m (30 ± 5 ft-lb) at assembly. The drum lid's diameter and shape meet the requirements of Military Standard MS27683-61. All other dimensions are controlled by Drawings M2E801580A006 and A007, Appendix 1.4.8. The welded angle ring (Find Number 3 on Drawing M2E801580A006, Appendix 1.4.8) provides the lid with an inner flange. The welded angle ring was incorporated in the ES-3100 package for use during handling and transport to protect the lid closure studs and nuts. During transport, the welded angle ring helps position drum tie-down adapters that are used for tie-down of a single unit configuration in Safe-Secure Trailers/Safeguards Transporters (SSTs/SGTs) in accordance with U.S. Department of Energy (DOE) Order 5610.14. The drum is marked by two stainless-steel data plates. The data plate lettering and mounting requirements on the drum are shown on Drawings M2E801580A010 and M2E801508A031 (Appendix 1.4.8), respectively. Painting and marking requirements for the drum are shown on Drawing M2E801508A001 (Appendix 1.4.8). Two lugs are welded to the mid inner liner and project through the drum lid at assembly. Each lug has a 0.953-cm (0.38-in.)-diameter hole through which a tamper-indicating device (TID) can be threaded.

The volume between the drum and mid-liner is filled with a lightweight noncombustible cast refractory material called Kaolite 1600. The top plug is also filled with this material and represents the thermal insulation and impact limiting barrier. The material is composed of portland cement, water, and vermiculite and has an average density of 358.8 kg/m³ (22.4 lb/ft³). The procedure for manufacturing and documenting the installation of this material, JS-YMN3-801580-A003 (Appendix 1.4.4), is referenced on Drawings M2E801580A002 and M2E801580A008 (Appendix 1.4.8) for the drum assembly weldment and top plug weldment, respectively. The insulation has a maximum continuous service temperature limit of 871°C (1600°F) due to the presence of the vermiculite and portland cement.

The volume between the most internal liner and the mid-liner is filled with a noncombustible cast neutron absorber (poison) material from Thermo Electronic Corp. called Cat 277-4. The material is a high alumina borated concrete composed of aluminum, magnesium, calcium, boron, carbon, silicon, sulfur, sodium, iron and water. The final mixture has an average density of 1681.9 kg/m³ (105 lb/ft³). The procedure for manufacturing and documenting the installation of this material, JS-YMN3-801580-A005 (Appendix 1.4.5), is referenced on Drawing M2E801580A002 (Appendix 1.4.8). This neutron absorber material has a maximum continuous service temperature limit of 150°C (302°F) in order to retain the bound mass of water in the final cured mixture for subcriticality control.

The top plug is fabricated in accordance with Drawing M2E801580A008 with an overall diameter of 36.50 cm (14.37 in.) and a height of 13.41 cm (5.28 in.). The plug's rim, bottom sheet, and top sheet are fabricated from 0.15-cm (16-gauge, 0.0598-in.) thick Type 304/304L stainless-steel sheet per ASME SA240. Four lifting inserts are welded into the top sheet for loading and unloading operations. The internal volume of the top plug is filled with Kaolite 1600 in accordance with JS-YMN3-801580-A003, Appendix 1.4.4.

Three silicone rubber pads complete the drum assembly. One pad is placed on the bottom of the most internal liner to support the containment vessel during transport. Another pad is placed on the top shelf of the mid-liner to support the top plug during transport. The final plug is placed over the top of the containment vessel during transport. The pads are molded to the shapes as defined on

Drawing M2E801580A009 (Appendix 1.4.8). The material is silicone rubber with a Shore A durometer reading of 22 ± 5 .

2.1.1.2 Containment boundary

The containment vessel's body, lid assembly, and inner O-ring provide the containment boundary (Fig. 1.3). Two methods of fabrication may be used to fabricate the containment vessel body of the ES-3100 package as shown on Drawing M2E801580A012 (Appendix 1.4.8). The first method uses a standard 5-in., schedule 40 stainless-steel pipe per ASME SA-312 Type TP304L, a machined flat-head bottom forging per ASME SA-182 Type F304L, and a machined top flange forging per ASME SA-182 Type F304L. The nominal outside diameter of the 5-in schedule 40 pipe is machined to match the nominal wall thickness of 0.100 in. Each of these pieces is joined with circumferential welds as shown on sheet 2 of Drawing M2E801580A012 (Appendix 1.4.8). The top flange is machined to match the schedule 5-in. pipe, to provide two concentric half-dove tailed O-ring grooves in the flat face, to provide locations for two 18-8 stainless-steel dowel pins, and to provide the threaded portion for closure using the lid assembly. The second method of fabrication uses forging, flow forming, or metal spinning to create the complete body (flat bottom, cylindrical body, and flange) from a single forged billet or bar with final material properties in accordance with ASME SA-182 Type F304L. The top flange area using this fabrication technique is machined identically to that of the welded forging method. The lid assembly, which completes the containment boundary structure, consists of a sealing lid, closure nut, and external retaining ring (Drawing M2E801580A014, Appendix 1.4.8). The containment vessel sealing lid (Drawing M2E801580A015, Appendix 1.4.8) is machined from Type 304 stainless-steel bar with final material properties in accordance with ASME SA-479. The containment vessel closure nut (Drawing M2E801580A016, Appendix 1.4.8) is machined from a Nitronic 60 stainless-steel bar with material properties in accordance with ASME SA-479. These two components are held together using a WSM-400-S02 external retaining ring made from Type 302 stainless steel. The sealing lid is further machined to accept a 3%-16 swivel hoist ring bolt to facilitate loading and unloading, to provide a leak-check port between the elastomeric O-rings, and notched along the perimeter to engage two dowel pins. The lid assembly, with the O-rings in place on the body, are joined together by torquing the closure nut and sealing lid assembly to 162.70 ± 6.78 N·m (120 ± 5 ft-lb). The sealing lid portion of the assembly is restrained from rotating during this torquing operation by the two dowel pins installed in the body flange. An evacuation port is located between the O-rings in the containment vessel to facilitate a pressure rise or drop leakage test following assembly or 10 CFR 71 compliance testing. This port is sealed during transport using a modified VCO threaded plug. Only the inner O-ring is considered a part of the containment boundary.

There are no penetrations of, connections to, or fittings for the sealed containment boundary. To meet the requirements for package certification, the containment boundary must remain intact during all conditions of transport. This integrity must be demonstrated by test or other acceptable methodology for NCT and Hypothetical Accident Conditions (HAC) as described in 10 CFR 71.

2.1.1.3 Packaging Materials

Contents will be packed in various size convenience cans made of stainless steel, tin-plated carbon steel, or nickel-alloy, and polyethylene bottles or Teflon FEP bottles. The cans shall have a diameter of ≤ 12.7 cm (5 in.) and heights of ≤ 76.2 cm (30 in.). Any combination of these cans shall be allowed in a single package, as long as the total length of the can stack (with spacers and pads as required) does not exceed the inside working height of the containment vessel (~31 in.). Any closure on the convenience can is allowed. Multiple short cans may be tack brazed together. Containment vessel arrangements that utilize closed metal cans with a diameter greater than 10.8 cm (4.25 in.) will not

contain any materials that off gas at the temperatures associated with NCT or HAC. The contents that cannot be packaged in the proposed cans due to the contents' overall dimensions, such as the unirradiated research reactor fuel elements, will be bundled together and protected on each end with an open-ended can (Fig. 1.4). When space is available inside the containment vessel, stainless-steel metal scrubbers will be placed on the top and bottom of this partially canned assembly or an empty convenience can will be placed on top of this assembly inside the containment vessel. Additionally, glass bottles with enriched uranium oxide (UO₂-Mg) will be packed inside metal convenience cans and treated as pyrophoric contents. The polyethylene bottles have a diameter of ~12.54 cm (4.94 in.) and a height of ~22.1 cm (8.7 in.). A total of three polyethylene bottles may be loaded into the containment vessel. The Teflon FEP bottles have a diameter of ~ 11.91 cm (4.69 in.) and a height of ~ 23.88 cm (9.4 in.). A total of three Teflon FEP bottles may be loaded into the containment vessel. Polyethylene bags may be used inside or outside any convenience can or bottle. In some packing arrangements, silicone rubber pads will be used between convenience cans. Also, some arrangements will require spacers between cans. These spacers are thin stainless-steel cans filled with the noncombustible cast neutron poison. Each convenience can and spacer is equipped with a stainless-steel band clamp and nylon coated wire for loading and unloading operations. The spacers are ~10.11 cm (3.98-in.) in diameter by 4.45 cm (1.75 in.) in height and a maximum weight ~0.58 kg (1.27 lb). In order to minimize displacement of convenience containers during transport, stainless-steel scrubbers or polyethylene bags may be added on top of the last can or bottle in the containment vessel. If partial loading configurations are employed and empty cans or bottles are used, these empty cans or bottles will be loaded last and will require a minimum 0.32 cm (1/8 in.) diameter hole to be placed through the lid.

2.1.2 Design Criteria

2.1.2.1 General standards for all packages

The general design standards for all packages in accordance with 10 CFR 71.43(a) through (e), (g) and (h) are addressed in the following paragraphs.

10 CFR 71.43(a)

Requirement: The smallest overall dimension of a package shall not be <10 cm (4 in.).

Compliance: The drums' outside diameter over the rolled rings is 49.20 cm (19.37 in.), and the outside height including the lid is 110.49 cm (43.50 in.). The minimum outside diameter of the ES-3100 containment vessel is 13.36 cm (5.26 in.), and the overall height is 82.30 cm (32.40 in.). Therefore, the packaging meets this requirement.

10 CFR 71.43(b)

Requirement: The outside of the package must incorporate a feature, such as a seal, that is not readily breakable and that, while intact, would be evidence that the package has not been opened by unauthorized persons.

Compliance: The removable drum head is attached to the body by eight %-11-UNC-2B silicon bronze nuts and %-in. nominal washers. Two 0.51-cm (0.20-in.)-thick lugs with 0.953-cm (0.38-in.)-diam holes (Drawing M2E801580A005, Appendix 1.4.8) project through slots in the drum lid and provide attachment for tamper-indicating devices (TIDs). These TIDs consist of a stainless-steel cable with an aluminum crimp closure or equivalent. The requirement is satisfied by the TIDs, which are

installed as specified in Sect. 7.1.2.2. The TID is only required when the containment vessel has HEU in the package. It is not required for empty shipments.

10 CFR 71.43(c)

Requirement: Each package must include a containment system securely closed by a positive fastening device that cannot be opened unintentionally or by pressure that may arise within the package.

Compliance: The fastened lid on the drum with tamper-indicating features provides assurance that the drum assembly will not be unintentionally breached. The containment boundary is sealed using the lid assembly and closure nut to ensure that this boundary will be breached only through a deliberate effort, and then only after the drum assembly is breached. The design of the containment boundary is analyzed in Appendix 2.10.1 for a differential pressure of 699.82 kPa (101.5 psi) internal and 150 kPa (21.7 psi) external. The internal design pressure exceeds the maximum differential pressure of 112.92 kPa (16.378 psi) and 406.27 kPa (58.925 psi) attained during NCT (Sect. 2.6.2) and HAC (Sect. 3.5.3), respectively. In addition, calculation results are provided in Sects. 2.6.1 and 2.7.4.3 to demonstrate that the stresses in the containment boundary and closure nut threads do not exceed the stress limits established by the ASME code for NCT and HAC. Therefore, the containment boundary will not be breached during any mode of transport due to pressurization of the containment boundary.

10 CFR 71.43(d)

Requirements: A package must be made of materials and construction that assure that there will be no significant chemical, galvanic, or other reaction among the packaging components, among package contents, or between the packaging components and the package contents including possible reaction resulting from inleakage of water, to the maximum credible extent. Account must be taken of the behavior of materials under irradiation.

Compliance: Compliance with the regulatory requirements are discussed in Sect. 2.2.2.

10 CFR 71.43(e)

Requirement: A package value or other device, the failure of which would allow radioactive contents to escape, must be protected against unauthorized operation and, except for a pressure relief device, must be provided with an enclosure to retain any leakage.

Compliance: No penetrations, connections, or fittings into the containment vessels exist; therefore, the requirements of 10 CFR 71.43(e) are not applicable.

10 CFR 71.43(g)

Requirement: A package must be designed, constructed, and prepared for transport so that in still air at $38^{\circ}C(100^{\circ}F)$ and in the shade, no accessible surface of a package would have a temperature exceeding $50^{\circ}C(122^{\circ}F)$ in a nonexclusive use shipment or $85^{\circ}C(185^{\circ}F)$ in an exclusive use shipment.

Compliance: Since the components to be shipped have a calculated maximum decay heat load of 0.4 W, thermal analyses were conducted for the ES-3100 package; results are summarized in Appendix 3.6.2. The predicted temperatures, while the package is stored at $38^{\circ}C$ ($100^{\circ}F$) in the shade, for the drum lid center, and the containment vessel flange, are approximately $38.3^{\circ}C$ ($101^{\circ}F$). The analysis shows that no accessible surface of the package would have a temperature exceeding $50^{\circ}C$

(122°F). Therefore, the requirement of 10 CFR 71.43(g) would be satisfied for either transportation mode (exclusive or nonexclusive use).

10 CFR 71.43(h)

Requirement. A package must not incorporate a feature intended to allow continuous venting during transport.

Compliance. No penetrations, connections, or fittings into the containment vessel exist that would allow venting during transport. The materials of package construction do not provide any pressure buildup during transportation. Four vent holes through the drum are covered with a plastic plug during NCT. Therefore, the requirements of 10 CFR 71.43(h) are satisfied.

2.1.2.2 Component Design Criteria

The ES-3100 packaging/content combination addressed in this safety analysis report is intended to ship contents with a maximum activity of 3.2328×10^{-1} TBq (8.737 Ci) at 70 years from initial fabrication; the maximum number of A₂s carried is 293.99 at 70 years following initial fabrication (Table 4.4). Based on the guidance from Regulatory Guide 7.11, *Fracture Toughness Criteria of Base Material for Ferritic Steel Shipping Cask Containment Vessels with a Maximum Wall Thickness of 4 Inches (0.1 m)*, this package is classified in NUREG-1609 (Table 1.1) and Table 2.2 as a Category II shipping package. However, since the ES-3100 may be used for future contents that exceed 3000 A₂ (under a different SAR and certificate), this package has been classified as a Category I shipping package. Therefore, the containment vessel is designed (using nominal dimensions for each component), fabricated, and inspected in accordance with the American Society of Mechanical Engineers (ASME) *Boiler and Pressure Vessel Code*, Sect. III, Division I, Subsection NB. The design and subsequent verification comply with the requirements of 10 CFR 71. The structural requirements for the packaging under NCT are addressed in Sect. 2.6. The structural requirements for the packaging under HAC are addressed in Sect. 2.7.

Contents Form/ Category	Category I	Category II	Category III
Special Form	Greater than 3,000 A_1 or greater than 1.11 PBq (30,000 Ci)	Between 3,000 A_1 and 30 A_1 , and not greater than 1.11 PBq (30,000 Ci)	Less than 30 A ₁ and less than 1.11 PBq (30,000 Ci)
Normal Form	Greater than 3,000 A_2 or greater than 1.11 PBq (30,000 Ci)	Between 3,000 A_2 and 30 A_2 , and not greater than 1.11 PBq (30,000 Ci)	Less than 30 A_2 and less than 1.11 PBq (30,000 Ci)

Table 2.2. Category designations for Type B packages

The drum assembly of the shipping package is defined as the structure that maintains the position of and provides protection to the impact, thermal barrier, and neutron poison surrounding the containment boundary. Because the location of the containment boundary within the packaging is stable, the shielding and subcriticality effectiveness of the package is not reduced. The drum assembly for the ES-3100 consists of an internally flanged Type 304L stainless-steel 30-gallon modified drum with two Type 304L stainless-steel inner liners, one filled with noncombustible cast refractory insulation and impact limiter and one filled with noncombustible cast neutron absorber; a stainless-steel top plug with

cast refractory insulation, silicone rubber pads, silicon bronze hex-head nuts, and a stainless-steel lid and bottom (Drawing M2E801580A001, Appendix 1.4.8). The drum assembly is maintained when there are no breaches in the drum surface, the lid remains attached, the relative position of the containment boundary is not altered significantly, and no substantial amount of insulation is exposed following testing stipulated in 10 CFR 71.71 and 73. The drum assembly's design requirements for compliance testing are as follows:

- 1. The drum lid shall remain attached to the drum under all loading conditions.
- 2. No opening in the drum shall occur large enough to pass a 10-cm cube [10 CFR 71.43(a)].
- 3. The outer drum's effective diameter shall exceed requirements to maintain subcriticality and shielding effectiveness.
- 4. The drum assembly shall provide the structural and thermal protection needed to ensure the containment vessel meets the test leakage criteria for both NCT and HAC of $\leq 1.0 \times 10^{-7}$ ref-cm³/s.
- 5. Neutron poison remains in place and retains the amount of water needed to maintain subcriticality.

In accordance with NUREG/CR-3854, Part 4.3, for a Category I shipping package, an acceptable specification for a drum used in any of the component safety groups is U.S. Department of Transportation (DOT) Specification 17C or better. The drum used in the ES-3100 is fabricated in accordance with the dimensional requirements of MS27683-7 (MIL-D-6054F) and modified as shown on Drawing M2E801508A004 (Appendix 1.4.8). Material, fabrication, and quality control criteria are generally equivalent to those imposed for a DOT Specification 17C drum. The drum weld seam is pressure tested to 68.95 kPa (10 psi) gauge and a rough handling test in accordance with MIL-D-6054F is conducted. As discussed in Sect. 1.2.1.1, the drum used for the ES-3100 is equivalent to or better than that stipulated by NUREG/CR-3854 for a Category I shipping package. In accordance with DOE, a performance-based package is an approved, quality-controlled, hazardous material container that has been tested or analyzed to demonstrate its ability to maintain confinement and/or containment of its contents under both normal use and credible accident conditions as stipulated in 10 CFR 71. The drum assembly and containment boundary have been maintained for the ES-3100 shipping package as demonstrated by test results documented in the test report (Appendix 2.10.7) and the analytical comparisons discussed in Sects. 2.6 and 2.7.

The codes and standards used for design, analysis, and fabrication of the containment vessel's components are satisfied by complying with the appropriate paragraphs in Sect. III, Div. 1, Subsection NB, and Sect. IX of the *ASME Boiler and Pressure Vessel Code*. Nominal dimensions, not minimum dimensions, were used in the design analysis of the containment vessel components. Though not explicitly expressed, the load combinations and tests stated in Regulatory Guide 7.8, *Load Combinations for the Structural Analysis of Shipping Casks* are used in the structural evaluation of the containment vessel for both NCT and HAC as depicted in Table 2.3. Acceptance criteria for the containment vessel stresses are shown in Table 2.4 and locations are depicted in Fig. 2.1.

The design internal pressure of 699.82 kPa (101.5 psi) gauge for the containment boundary was generated based on its stress capability before the *ASME Boiler and Pressure Vessel Code* evaluation shown in Appendix 2.10.1 was started. The containment vessel is tested with an internal pressure of 1034.21 kPa (150 psi) gauge or 1.48 times the design pressure, which exceeds the requirement stipulated in Sect. III, Paragraph NB-6221 (a minimum hydrostatic test pressure of 1.25 times the design pressure) and the regulatory requirement of 10 CFR 71.85(b) (1.5 times the

maximum normal operating pressure). As shown in Table 2.6, the containment vessel design stresses are well below the allowable stresses (see Fig. 2.1 for stress locations). Therefore, this ES-3100 containment vessel is capable of shipping at a higher internal pressure. The external pressure requirement from 10 CFR 71.73(c)(6) is 150 kPa (21.7 psi) gauge. These design and operating pressures were used to calculate the stresses (Appendix 2.10.1) in all components of the containment boundary, which are well below the allowable limits at all operating conditions. The maximum normal operating pressure calculated for NCT in accordance with 10 CFR 71.4 and 10 CFR 71.71(c)(1) for the bounding load case is 137.92 kPa (20.004 psia). The maximum internal gauge pressure calculated for NCT is 112.92 kPa (16.378 psi), which is the maximum normal operating pressure minus the reduced external pressure condition of 10 CFR 71.71(c)(3) [137.92 - 25.00 kPa (20.004 - 3.626 psia)] (Sect. 2.6.3). A summary of the package's design, NCT, and HAC pressures and temperatures is presented in Appendices 3.6.4 and 3.6.5. Allowable stress intensity limits and calculated stresses at the design evaluation conditions for the containment vessel are summarized in Tables 2.4 through 2.6. The stresses used in the design of all metal containment vessel components are in the elastic range of the material properties.

For conditions addressed by analysis, the margin of safety is calculated. The margin of safety (M.S.) is defined as:

Margin of Safety = Allowable Stress/ Actual Stress - 1.

In Regulatory Guide 7.11, below Table 1, the following quote is found: "Although NUREG/CR-1815 (Ref. 2) addresses the use of ferritic steels only, it does not preclude the use of austenitic stainless steels. Since austenitic stainless steels are not susceptible to brittle failure at temperatures encountered in transport, their use in containment vessels is acceptable to the staff and no tests are needed to demonstrate resistance to brittle failure." According to Regulatory Guide 7.11, because the containment vessel is manufactured from type 304L stainless steel (which is an austenitic stainless steel), "no tests are needed to demonstrate resistance to brittle failure." Therefore, brittle or fatigue failures are not anticipated under any design, transport, accident, or storage condition (Sects. 2.6 and 2.7). Material specifications for the ES-3100 packaging components are listed in Table 2.7.

				Applica	ble initia	l condi	tion			
Normal or accident condition		bient erature	Insol	ation	Decay	heat	Inter pres		Fabrication	SAR
	38°C	-29°C	Max	0	Max	0	Max	Min	stresses	reference
		Normal co	nditions	(analyz	e separat	ely)				
Hot environment (38°C ambient temperature)			x		x		x		x	Sect. 2.6.1
Cold environment (-40°C ambient temperature)				х		x		x	x	Sect. 2.6.2
Increased external pressure (20 psia)	1	X		Х		X		X	X	Sect. 2.6.4
Minimum external pressure (3.5 psia)	X		X		X		X		X	Sect. 2.6.3
Vibration and shock:	X	1	X		X		X		X	Nort 76 54
Normally incident to the mode of transport		X		X		X		X	X	
Free drop:	X		X		X		X		X	Sect. 2.6.7 ^b
1.2-m drop		X		Х		· X		X	X	Sect. 2.0.7
Compression test	X		X		Х		X		X	Sect. 2.6.9 ^a
		Х		Х		X		X	X	3001. 2.0.9
Penetration test	X		X		X		X		X	Sect. 2.6.10 ^a
		X		Х		X		X	X	Sect. 2.0.10
		Accident c	<u>conditions</u>	(apply s	equentiall	y)			-	
Free drop: 9-m drop	X		<u>X</u>		X		X		X	Sect. 2.7.1°
		X		X		X		X	X	5000. 2.7.1
Crush: 9-m drop	X		<u> </u>		X		X		X	Sect. 2.7.2°
or now we work		X		X		·X		X	Х	
Puncture: 1-m drop onto bar	X		X		X		X		X	Sect. 2.7.3°
-		X		X		X	L	X	X	
Thermal: fire accident	X		X		X		X		X	Sect. 2.7.4

Table 2.3. Summary of load combinations for normal and hypothetical accident conditions of transport

^a This condition was conducted at room temperature with atmospheric pressure inside the containment vessel.

^b This condition was conducted at ambient temperature at the time of the test except for Test Unit-2. The containment vessel was at atmospheric pressure except for Test Unit-2. Justification for compliance with the environmental requirements of Reg. Guide 7.8 is provided in Sect. 2.6.

^c This condition was conducted at ambient temperature at the time of the test except for Test Unit-2. The containment vessel was at atmospheric pressure except for Test Unit-2. Justification for compliance with the environmental requirements of Reg. Guide 7.8 is provided in Sect. 2.7.

Stress Category	Maximum allowable stress			
	Level A (NCT)	Level D (HAC)		
Primary membrane stress intensity	S _m	Lesser of 2.4 S_m and 0.7 S_u		
Primary membrane + primary bending stress intensity	1.5 S _m	Lesser of 3.6 S_m and S_u		
Range of primary + secondary stress intensity	3.0 S _m	Not applicable		
Fatigue stress range	S _a @ 10 ⁶ cycles	2 S _a @ 10 ⁶ cycles		
Buckling	No buckling	No buckling		

Table 2.4. Containment vessel allowable stress

Table 2.5. Allowable stress intensity (S m) for the containment boundary construction materials of construction ^a

Description	Specification	S _m		
Pipe body (Method 1)	ASME SA-312 welded or seamless pipe, type TP304L stainless steel	8.825 × 10 ⁴ kPa (12,800 psi) ^b		
Formed body, end cap and flange (Method 2)	ASME SA-182, F304L stainless steel	8.825 × 10 ⁴ kPa (12,800 psi) ^b		
Flange and end cap (Method 1)	ASME SA-182 Forging, F304L stainless steel	8.825 × 10 ⁴ kPa (12,800 psi) ^b		
Containment vessel sealing lid	ASME SA-479, stainless steel 304	8.825 × 10 ⁴ kPa (12,800 psi) ^b		
Containment vessel closure nut	ASME SA-479, UNS-S21800, Nitronic 60 SST	1.524 × 10 ⁵ kPa (22,100 psi)		

^a ASME Boiler and Pressure Vessel Code, Sect. II, Part D, Table 2A at 148.89°C (300°F).

^b Lower of two allowable values was chosen to limit deflection of the flange and lid attachment in accordance with note G7 in Table 2A of Part D.

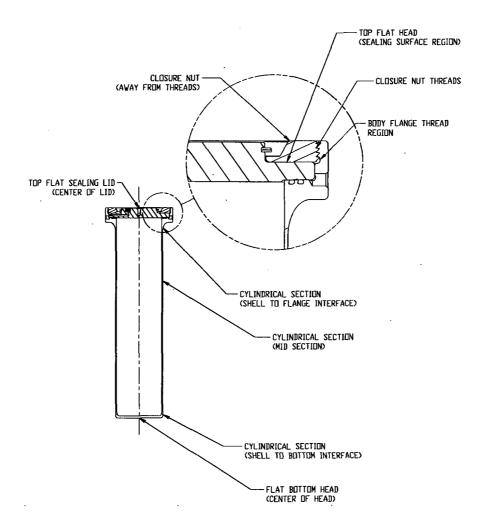


Fig. 2.1. Containment vessel calculated stress locations.

Stress locations shown in Fig. 2.1	Internal pressure design evaluation containment boundary stress @ 699.82 kPa (101.5 psi) gauge		External pressu evaluation cont boundary s @ -149.62 (-21.7 psi) g	Allowable stress or shear capacity (AS)	
	kPa (psi) or kg (lb)	M.S.	kPa (psi) or kg (lb)	M.S.	kPa (psi) or kg (lb)
Top flat portion of sealing lid (center of lid)	$6.895 \times 10^{3} \\ (1000)$	18.2	1.474×10^{3} (213.8)	88.8	1.727 × 10 ⁵ (19,200) ^b
Closure nut ring (Away from threaded portion)	8.621 × 10 ⁴ (12,504)	4.3	4.246 × 10 ^{4 f} (6158)	9.8	4.571 × 10 ⁵ (66,300) ^c
Top flat head (sealing surface region)	$\begin{array}{c} 2.717 \times 10^{4} \\ (3941) \end{array}$	8.74	1.665×10^{4} f (2415)	14.9	1.324×10^{5} (38,400)°
Cylindrical section (middle)	1.999 × 10 ⁴ (2899)	3.41	4.273×10^{3} (619.8)	19.7	8.825×10^4 (12,800) ^d
Cylindrical section (shell to flange interface)	$\begin{array}{c c} 3.016 \times 10^4 \\ (4374) \end{array}$	7.78	1.236 × 10 ⁴ (1793)	20.4	1.324 × 10 ⁵ (38,400) ^c
Cylindrical section (shell to bottom interface)	5.127 × 10 ⁴ (7436)	4.16	1.096×10^4 (1589.8)	23.2	1.324 × 10 ⁵ (38,400)°
Body flange threads load, kg (lb)	$2.051 \times 10^{3} \\ (4521)$	9.01	9.072 \times 10 ^{2 f} (2000)	21.6	2.053 ×10 ⁴ (45266) ^e
Body flange thread region (under cut region)	5.926×10^4 (8595)	3.47	2.397 × 10 ^{4 f} (3476)	10	2.648 × 10 ⁵ (38,400) ^c
Flat bottom head (center)	4.826×10^4 (7000)	1.74	1.032 × 104 (1496.6)	11 .8	1.727 × 10 ⁵ (19,200) ^b
Closure nut thread load, kg (lb)	2.051×10^{3} (4521)	16.29	$9.072 \times 10^{2} \text{ f}$ (2000)	38.1	3.545 × 10 ⁴ (78154) ^e

Table 2.6. ES-3100 containment boundary design evaluation allowable stress comparisons^a

^a Stresses are calculated using pressures, gasket and closure nut preload, and nominal dimensions for all containment boundary components in Appendix 2.10.1. Calculated stresses for external pressure were determined by multiplying the stress at the design conditions by a factor equal to the ratio of external pressure to design pressure and adding in contribution from preload. Allowable stress values are taken from Table 2.5.

^b Stress interpreted as the sum of $P_1 + P_b$; allowable stress intensity value is $1.5 \times S_m$.

[°] Stress interpreted as the sum of $P_1 + P_b + Q$; allowable stress intensity value is $3.0 \times S_m$.

^d Stress interpreted as the primary membrane stress (P_m); allowable stress intensity value is S_m .

^e Allowable shear capacity is defined as $0.6 \times S_m \times$ thread shear area. Thread shear area = 38.026 cm² (5.894 in.²).

^f Stress and shear load in these areas are dominated by the 162.7 ± 6.8 N·m (120 ± 5 ft-lb) preload.

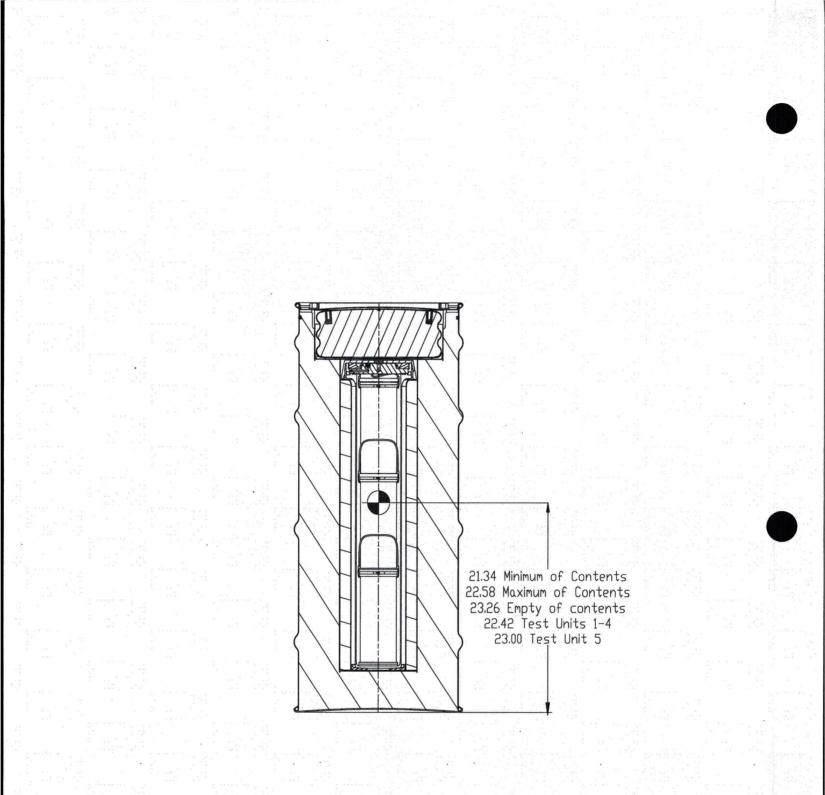
Component	Specifications
	Drum assembly
Drum washers	1.375 OD \times 0.812 ID \times 0.25 in. thick, 300 Series stainless steel
Drum threaded weld studs	5/8-11 × 7/8 Lg, ARC FT, type 304/304L stainless-steel studs
Drum hex nuts	5%-11 UNC-2B, silicon bronze C65100
Drum lid weldment	Modified 30-gal, 16-gauge (MS27683-61) lid, type 304 or 304L stainless steel; and a 11-gauge thick sheet, type 304 or 304L stainless steel, ASME SA-240
Drum weldment	Modified 30-gal, 16-gauge (MS27683-7), type 304 or 304L stainless steel, ASME SA-240, manufactured per Drawing M2E801580A004 (Appendix 1.4.8)
Drum plugs	Nylon plastic plug, Micro Plastic, Inc.
Impact limiter, i	nsulation enclosure, neutron absorber, and drum packing material
Insulation and impact limiter (not removable)	Lightweight cast refractory insulation, Kaolite 1600, 358.8 \pm 48.1 kg/m ³ (22.4 \pm 3 lb/ft ³) density, cast in stainless-steel shells in the drum and top plug
Neutron absorber	Cat 277-4, 1681.9 +240.3/-80.1 kg/m ³ (105 +15/-5 lb/ft ³) density
Top plug (removable)	Type 304 or 304L stainless steel, ASME SA-240 (body), ASME SA-479 (lifting inserts)
Inner liners	Type 304 or 304L stainless steel, ASME SA-240 (body), ASME SA-479 (modified angle)
Silicone pads	Silicone rubber, 22 ± 5 Shore A, color black/gray
Aluminum foil duct tape	McMaster Carr Part # 7616A21, temperature range -40 to 121°C (-40 to 250°F)
	Containment boundary
Containment vessel plug	Part # 04-2126, Modified VCO threaded plug, brass
Containment vessel hoist ring	3052T56, Swivel hoist ring, alloy steel (not used for shipment)
Containment vessel	Method 1: Type TP304L stainless steel ASME SA-312 (welded or seamless pipe body); type F304L, stainless steel, ASME SA-182 (flange, and end cap); type 304, stainless steel, ASME SA-479 (sealing lid), Nitronic 60 SST per ASME SA-479, UNS-S21800 (closure nut)
	Method 2: Type F304L stainless ASME SA-182 (body, flange, and end cap); type 304, stainless steel, ASME SA-479 (sealing lid), Nitronic 60 SST per ASME SA-479, UNS-S21800 (closure nut)
	All components per ASME Boiler and Pressure Vessel Code, Sect. II, Part D, Table 2A
Containment vessel O-rings	Elastomer, ethylene propylene, normal service temperature range of -40 to 150°C, Specification M 3BA712A14B13F17 in ASTM D-2000, per OO-PP-986
Containment vessel lid assembly retaining ring	Part # WSM-400-S02, type 302 stainless steel

Table 2.7. ES-3100 packaging material specifications

Component	Specifications			
Containment vessel O-ring lubricant	Clear dimethyl siloxane polymer			
Containment vessel closure nut lubricant	Krytox #240AC			
Containment vessel body dowel pins	0.2501/0.2503 OD × 0.50 long, 18-8 stainless steel			
Contai	nment vessel packing material			
Convenience cans	Stainless steel or tinned carbon steel with stainless-steel can handles and nylon-coated stainless-steel wire; nickel-alloy (200 series, passivated) in nylon mesh bag			
Convenience bottles	Polyethylene, glass, or Teflon FEP			
Silicone rubber pads	Silicone rubber, 22 ±5 Shore A, color black/gray			
Can spacers	Stainless-steel can filled with Cat 277-4			
Bagging	Polyethylene			
Metal scouring scrubbers	Stainless steel, McMaster Carr Part # 7361T13			

Table 2.7. ES-3100 packaging material specifications (cont.)

2.1.3 Weights and Centers of Gravity


The weights of the packaging components for the actual proposed contents ready for shipment and the test units are provided in Tables 2.8 and 2.9. The values listed for the test weights are the actual data recorded during compliance testing. The remaining weights listed for the shipping package are calculated weights. Nominal dimensions and densities were used in the calculations. Miscellaneous parts (nuts, and washers) are included.

The range of the centers of gravity for the ES-3100 shipping package with the various HEU arrangements and the test packages is shown in Fig. 2.2. A summary of the calculations are provided in Table 2.10.

2.1.4 Identification of Codes and Standards for Package Design

Based on the discussion in Sect. 2.1.2.2, the shipping package has been designed, analyzed, and will be fabricated, tested and maintained to the requirements of a Category I package. In accordance with the references from NUREG/CR-1815, Table 2.11 describes the appropriate codes and standards that are and will be used to comply with Category I packaging. These requirements have been extracted from NUREG/CR-3854 and NUREG/CR-3019.

Note: Dimensions are in inches.

Fig. 2.2. ES-3100 shipping package center of gravity locations.

Item	ES-3100 Three 10" tall can configuration kg (lb) ^{cd}	ES-3100 Six 4.875" tall can configuration kg (lb)	ES-3100 Five 4.875" tall can configuration kg (lb)	ES-3100 Six 4.75" tall can configuration kg (lb)	ES-3100 Three 8.75" tall can configuration kg (lb) °
		Drum assem	bly		
Drum assembly (drum body, lid, bottom, mid liner, inner liner, cast refractory insulation, cast neutron absorber, nuts, washers, and data plates) ^b	121.96 (268.87)	121.96 (268.87)	121.96 (268.87)	121.96 (268.87)	121.96 (268.87)
Top plug	8.9 (19.6)	8.9 (19.6)	8.9 (19.6)	8.9 (19.6)	8.9 (19.6)
Silicone support pads	1.04 (2.29)	1.04 (2.29)	1.04 (2.29)	1.04 (2.29)	1.04 (2.29)
Total drum assembly weight	131.89 (290.76)	131.89 (290.76)	131.89 (290.76)	131.89 (290.76)	131.89 (290.76)
		Containment Ve	essel		
Containment vessel (flange, dowel pins, cylindrical body, and end cap)	10.18 (22.44)	10.18 (22.44)	10.18 (22.44)	10.18 (22.44)	10.18 (22.44)
Lid assembly (sealing lid, VCO plug, retaining ring, closure nut and O-rings)	4.92 (10.85)	4.92 (10.85)	4.92 (10.85)	4.92 (10.85)	4.92 (10.85)
Total containment vessel weight	15.10 (33.29)	15.10 (33.29)	15.10 (33.29)	15.10 (33.29)	15.10 (33.29)
		Contents			
Convenience cans with handles	0.72 (1.59)	1.0 (2.22)	0.84 (1.85)		0.67 (1.47)
Silicone vibration pads	0.11 (0.23)	0.18 (0.41)	0.16 (0.353)		0.11 (0.23)
Nickel cans		i ¹		1.84 (4.07)	
Polyethylene bottles					
Teflon FEP bottles					
Spacers with handles			1.88 (4.14)		1.25 (2.76)
Polyethylene bagging or lifting sling	0.5 (1.10)	0.5 (1.10)	0.5 (1.10)	0.5 (1.10)	0.5 (1.10)
Metal scouring pads					0.14 (0.30)
HEU or HEU/Alloy content	35.2 (77.60)	35.2 (77.60)	35.2 (77.60)	24 (52.91)	35.2 (77.60)
Total proposed content weight	36.52 (80.52)	36.89 (81.33)	38.57 (85.04)	26.34 (58.08)	37.86 (83.46)
Total shipping package weight	183.51 (404.57)	183.88 (405.38)	185.56 (409.09)	173.33 (382.13)	184.84 (407.51)

Table 2.8. Packaging weights for various ES-3100 shipping package arrangements ^a

Item	ES-3100 Three 8.7" tall bottle configuration kg (lb)	ES-3100 Three 9.4" tall bottle configuration kg (lb)	ES-3100 Empty CV configuration kg (lb)	ES-3100 with maximum weight contents kg (lb)
	Drum ass	embly		
Drum assembly (drum body, lid, bottom, mid liner, inner liner, cast refractory insulation, cast neutron absorber, nuts, washers, and data plates)	121.96 (268.87)	121.96 (268.87)	121.84 (268.61) ^b	121.96 (268.87)
Top plug	8.9 (19.6)	8.9 (19.6)	8.9 (19.6)	8.9 (19.6)
Silicone support pads	1.04 (2.29)	1.04 (2.29)	1.04 (2.29)	1.04 (2.29)
Total drum assembly weight	131.89 (290.76)	131.89 (290.76)	131.78 (290.50)	131.89 (290.76)
	Containmen	nt Vessel		
Containment vessel (flange, dowel pins, cylindrical body, and end cap)	10.18 (22.44)	10.18 (22.44)	10.18 (22.44)	10.18 (22.44)
Lid assembly (sealing lid, VCO plug, retaining ring, closure nut and O-rings)	4.92 (10.85)	4.92 (10.85)	4.92 (10.85)	4.92 (10.85)
Total containment vessel weight	15.10 (33.29)	15.10 (33.29)	15.10 (33.29)	15.10 (33.29)
	Conter	nts		
Convenience cans with handles				
Silicone vibration pads				
Nickel can	에 가장 가장 가장 있는 것 못했다. 것 이 가장 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은			
Polyethylene bottles	0.345 (0.76)			
Teflon FEP bottles		0.99 (2.18)		
Spacers with handles				
Polyethylene bagging or lifting sling	0.50 (1.10)	0.50 (1.10)		
Metal scouring pads				
HEU content	24.0 (52.91)	24.0 (52.91)		
Total proposed content weight	24.85 (54.77)	25.49 (56.19)	0	40.82 (90)
Total shipping package weight	171.84 (378.82)	172.47 (380.24)	146.88 (323.79)	187.81 (414.05)

Table 2.8. Packaging weights for various ES-3100 shipping package arrangements *

a Calculated weight using Pro/ENGINEER software with nominal dimensions and densities (Pro/ENGINEER Version 20).

b

Weight excluding tamper indicating device. The weight of this configuration bounds the weight of the bundled fuel rods, tubes, or plates with open-ended cans on either end. The weight of this configuration bounds the weight of the three 25.4 cm (10 in.) high cans brazed together containing fuel rods, tubes, or plates.

The weight of this configuration bounds the weight of the two 22.2 cm (8.75 in.) high cans that are brazed together containing the TRIGA fuel elements.

2-18

Item	Test Unit kg (lb)					
	1	2	3	4	5	6
Drum body assembly ^b	126.6 (279)	127.9 (282)	127.9 (282)	127.9 (282)	128.8 (284)	
Top plug	9.5 (21)	9.5 (21)	9.53 (21)	8.6 (19)	9.5 (21)	
Drum silicone support pads	0.9 (2)	0.9 (2)	0.9 (2)	0.5 (1)	0.9 (2)	
Containment boundary °	15.4 (34)	15.0 (33)	15.0 (33)	14.5 (32)	15.0 (33)	15.0 (33)
Mock-up test contents ^d	49.9 (110)	49.9 (110)	50.3 (111)	49.9 (110)	3.6 (8)	
Contents *						6.3 (14)
Total test unit weight	202.3 (446)	202.8 (447)	203.7 (449)	201.8 (445)	157.4 (347)	21.3 (47)

Table 2.9. Compliance test unit weights^a

^a Total weight may be different from sum of individual component weights due to scale tolerance of ±0.45 kg (1 lb).
 ^b This weight includes the drum, mid liner, inner liner, cast refractory, cast neutron absorber, bottom, lid, washers and nuts.

^c This weight includes containment vessel cylindrical body, end cap, flanged top, and lid assembly.

^d This weight includes convenience cans, silicone rubber pads, can handles, spacers (if required), and HEU mockup.

• This weight was added to reduce buoyancy of containment vessel during 15-m (50 ft) immersion test.

2.2 MATERIALS

2.2.1 Material Properties and Specifications

The mechanical properties and specifications of the packaging materials are presented in Tables 2.12–2.17. See the drawings in Appendix 1.4.8 for details of all components. Design temperature ranges are listed where they are required to establish the allowable stresses used in the design calculations for the containment boundary (Appendix 2.10.1). Service temperature ranges for the remaining shipping container components were obtained from the references shown in Tables 2.12–2.17.

Appendix 2.10.3 contains the Kaolite 1600 property values presented in Table 2.14, as well as additional Kaolite property and source information. Appendix 2.10.4 contains the Cat 277-4 property and source information. Appendix 2.10.5 contains *Compressive Strength and Coefficient of Thermal Expansion of BoroBond4*. (BoroBond4 was used in the prototype test units, but it is not used in the package to be certified.)

2.2.2 Chemical, Galvanic, or Other Reactions

Requirement. A package must be of materials and construction that assure that there will be no significant chemical, galvanic, or other reaction among the packaging components, among package contents, or between the packaging components and the package contents, including a possible reaction resulting from inleakage of water, to the maximum credible extent. Account must be taken for the behavior of materials under irradiation.

Content description	Distance from drum's bottom (in.)
Cylinders, bars, slugs, broken metal - 35,200 g (77.60 lb) max - no ca	n spacers
3 full 4.88" cans + 3 empty 4.88" can	21.139
2 full 4.88" cans + 4 empty 4.88" cans	21.405
1 full 4.88" cans + 5 empty 4.88" cans	22.066
3 full 10" cans	22.071
2 full 10" cans + 1 empty 10" can	21.762
1 full 10"can + 2 empty 10" cans	22.075
3 full 8.75" cans	21.875
2 full 8.75" cans + 1 empty 8.75" can	21.662
1 full 8.75"can - 2 empty 8.75" cans	22.060
Cylinders, bars, slugs, broken metal - 35,200 g (77.60 lb) max - with c	an spacers
3 full 8.75" cans + 2 spacers	22.245
2 full 8.75" cans + 1 empty 8.75" can + 2 spacers	21.802
1 full 8.75" can + 2 empty 8.75" cans + 2 spacers	22.072
3 full 4.88" cans + 2 empty 4.88" cans + 3 spacers	21.471
2 full 4.88" cans + 3 empty 4.88" cans + 3 spacers	21.500
1 full 4.88" cans + 4 empty 4.88" cans + 3 spacers	22.028
UNX crystals 24,000 g (52.910 lb) max - with no spacers	
3 full 8.94" high Teflon FEP bottles + bagging	22.674
2 full 8.94" high Teflon FEP bottles + 1 empty 8.94" high Teflon FEP bottle + bagging	22.383
1 full 8.94" high Teflon FEP bottle + 2 empty 8.94" high Teflon FEP bottles + bagging	22.543
Oxide - 24,000 g (52.910 lb) max - with no spacers	
6 full 4.75" high Nickel cans + bagging	22.631
5 full 4.75" high Nickel cans + 1 empty 4.75" high Nickel can + bagging	22.434
4 full 4.75" high Nickel cans + 2 empty 4.75" high Nickel can + bagging	22.343
3 full 4.75" high Nickel cans + 3 empty 4.75" high Nickel can + bagging	22.366
2 full 4.75" high Nickel cans + 4 empty 4.75" high Nickel can + bagging	22.511
1 full 4.75" high Nickel cans + 5 empty 4.75" high Nickel can + bagging	22.787
Oxide - 24,000 g (52.910 lb) max - with no spacers	
3 full 8.7" high polyethylene bottles + bagging	22.372
2 full 8.7" high polyethylene bottles + 1 empty 8.7" high polyethylene bottle + bagging	22.210
1 full 8.7" high polyethylene bottle + 2 empty 8.7" high polyethylene bottles + bagging	22.480

Table 2.10. Calculated center of gravity for the various ES-3100 shipping arrangements

	Containment ASME Boiler and Pressure Vessel Code, Sect. III, Subsection NB	Criticality ^a
Materials		Cat 277-4 ^a
Base materials	NB-2000 (except NB-2300) and NB-4100	
Welding materials	NB-2400	
Fabrication	_	
Forming, fitting, aligning, and joint preparation	NB-4200	
Welding	NB-4400	
Qualification of procedures and personnel	NB-4300	
Examination	NB-5000	b
Acceptance testing	NB-6000	c
Quality assurance	Subpart H in Title 10, CFR, Par	t 71

Table 2.11. Applicable codes and standards for Category I packaging

^a NUREG/CR-3854 states "The designer may specify a neutron absorber material by a commercial trade name or as a mixture of elements or common compounds. When appropriate, qualification data should be included to demonstrate that the material functions as specified. When special absorber materials are used to control criticality, an acceptance test should be performed for each container to ensure that the absorber material has been properly installed."

^b NUREG/CR-3854 states "Packages designed to transport fissile material which contain neutron absorber material should be tested to demonstrate the presence of the neutron absorber material. The test description should include information similar to that requested for gamma shield testing 3.2.1. Fabrication records of the absorber material and its installation and testing should be maintained."

NUREG/CR-3854 states "Gamma scanning or probing may be used to demonstrate the soundness of the neutron absorber. Alternatively, ultrasonic testing may be used. Whatever method is used, the following information should be provided in the test procedure:

(1) Description of the measuring technique including the electronics;

(2) The source type and strength used to measure the neutron absorber effectiveness;

(3) The standards and methods use to calibrate the source, sensors, and other pertinent equipment;

(4) The grid pattern used to check the neutron absorber;

(5) The type of gamma sensor used to measure the neutron absorber effectiveness;

(6) The specific test requirements and measurements;

(7) The acceptance criteria."

Drum, bottom cover and lid	ASME SA-240 type 304 or 304L, stainless-steel plate		
Inner liners	ASME SA-240 type 304 or 304L, stainless-steel plate ASME SA-240 type 304 or 304L, stainless-steel plate		
Top plug weldment			
Materials of construction	ASME SA-240 type 304	ASME SA-240 type 304L	
Design stress intensity, MPa (ksi) at:			
-40°C (-40°F)	137.9 (20)	115.1 (16.7)	
37.78°C (100°F)	137.9 (20)	115.1 (16.7)	
93.33°C (200°F)	137.9 (20)	115.1 (16.7)	
148.89°C (300°F)	137.9 (20)	115.1 (16.7)	
Ultimate strength, MPa (ksi) at:			
-40°C (-40°F)	517.1 (75)	482.6 (70)	
37.78°C (100°F)	517.1 (75)	482.6 (70)	
93.33°C (200°F)	489.5 (71)	455.7 (66.1)	
148.89°C (300°F)	456.4 (66.2)	422.0 (61.2)	
Yield strength, MPa (ksi) at:			
-40°C (-40°F)	206.8 (30)	172.4 (25)	
37.78°C (100°F)	206.8 (30)	172.4 (25)	
93.33°C (200°F)	172.4 (25)	147.5 (21.4)	
148.89°C (300°F)	154.4 (22.4)	132.4 (19.2)	
Elongation in 5.08 cm (2 in.) (%)	40 ^b	40 ^b	
Coefficient of thermal expansion, cm/cm/°C (in./in./°F) at:			
-40°C (-40°F)°	0.00001476 (0.0000082)°	0.00001476 (0.0000082)	
37.78°C (100°F)	0.00001548 (0.0000086)	0.00001548 (0.0000086)	
93.33°C (200°F)	0.00001602 (0.0000089)	0.00001602 (0.0000089)	
148.89°C (300°F)	0.00001656 (0.0000092)	0.00001656 (0.0000092)	
Modulus of elasticity, GPa (Mpsi) at:			
-40°C (-40°F)	197.2 (28.6)	197.2 (28.6)	
37.78°C (100°F)	194.0 (28.14)	194.0 (28.14)	
93.33°C (200°F)	190.3 (27.6)	190.3 (27.6)	
148.89°C (300°F)	186.2 (27.0)	186.2 (27.0)	

Table 2.12. Mechanical properties of the metallic components of the drum assembly^a

^a ASME Boiler and Pressure Vessel Code, Sect. II, Part D, Subpart 1, Tables 2A, U, and Y-1; and Subpart 2, Tables TE-1, B column, and TM-1.

^b ASME Boiler and Pressure Vessel Code, Sect. II, Part A for ASME SA-240 material.

° MIL-HDBK-5H.

Drum weld studs	Specification
Material	ASTM A-493 Type 304/304L stainless steel
Fabrication standard	ASTM F593
Service temperature range, °C (°F)	-40 to 816 (-40 to 1500)*
Maximum allowable stress, S, MPa (ksi) at temperatures ^a	
-29°C to 38°C (-20 to 100°F)	129.6 (18.8)
93.3°C (200°F)	115.1 (16.7)
148.9°C (300°F)	103.4 (15.0)
Coefficient of thermal expansion, cm/cm/°C (in./in./°F) ^a	· · · ·
21.1°C (70°F)	1.53 × 10 ⁻⁵ (8.5 × 10 ⁻⁶)
93.3°C (200°F)	1.60×10^{-5} (8.9 × 10^{-6})
148.9°C (300°F)	1.66 × 10 ⁻⁵ (9.2 × 10 ⁻⁶)
Drum hex-head nuts	Specification
Material	silicon bronze
Fabrication standard	ASTM F-467
UNS designation	C65100 ⁶
Minimum proof stress, MPa (ksi)	485 (70) ¹
Drum washer	Specification
Drum	1.375 OD × 0.812 ID × 0.25 in. thick
	Series 300 stainless steel

Table 2.13. Mechanical properties of the lid fastening components for the drum assembly

^a ASME Boiler and Pressure Vessel Code, Sect. II, Part D, Subpart 1, Table 3; and Subpart 2, Table TE-1, group 3, B value.

^b ASTM F-467M.

Table 2.14.	Mechanical	properties o	of the cast	refractory	insulation
--------------------	------------	--------------	-------------	------------	------------

Material composition:	Cast Refractory, Kaolite 1600
Flexural tensile strength, kPa (psi)	133 (19.4) ^a
Standard deviation	32 (4.7)
Average coefficient of thermal expansion, cm/cm/°C (in./in./°F)	$9.07 \times 10^{-6} (5.04 \times 10^{-6})^{b}$
Average modulus of rupture per ASTM C133-84, kPa (psi)	258.6 (37.5)°
Normal operating temperature, °C (°F)	-40 to 871 (-40 to 1600)°
Density after curing, kg/m ³ (lb/ft ³)	35 8.8 (22.4) °
Force/deflection curves	Smith, Appendix 2.10.3

^a Mechanical Properties of a Low-Density Concrete for the New ES-2 Shipping/Storage Container Insulation, Impact Mitigation Media and Neutron Absorber (Appendix 2.10.3).
 ^b Fax from J. Street, Thermal Ceramics, Inc. (Appendix 2.10.3).
 ^c Product Information, Refractory Castables and Monolithics (Appendix 2.10.3).

Table 2.15. Mechanical properties of containment vessel O-rings

Material composition:	Ethylene propylene, Specification-M3BA712A14B13F17 ^{a,b}
Normal service temperature range, °C (°F)	-40 to 150 (-40 to 302) °
Permissible exposure time at 150°C (302°F), h	1000 °
Hardness durometer, Shore A	70 ± 5^{a}
Minimum elongation, %	100 ^a
Fabrication method	Molded ^a
	· · ·

^a ASTM D-2000.

^b Per Specification OO-PP-986.

^c Parker O-ring Handbook, Sect. 2.13.2 and Fig. 2-24, p. 2-30.

Containment vessel: body; flange; and seal lid	Specifications
Material of construction:	ASME SA-312 (pipe); ASME SA-182 (flange,
stainless steel, type 304L	formed body, or end cap); ASME SA-479 (seal lid)
Design temperature range, °C (°F)	-40 to 176.67 (-40 to 350)
Minimum ultimate strength, MPa (ksi)	482.6 (70) ^a
Yield strength, 0.2% offset, MPa (ksi) at temperatures,	
37.8°C (100°F)	172 (25)ª
149°C (300°F)	132 (19.2) ^b
176.67°C (350°F)	126.52 (18.35) ^b
Elongation in 5.08 cm (2 in.), %	57 °
Modulus of elasticity, GPa (Mpsi) at temperature ^b	
-40°C (-40°F)	197.2 (28.60)
37.78°C (100°F)	194.0 (28.14)
93.33°C (200°F)	190.3 (27.60)
121.11°C (250°F)	188.2 (27.30)
148.89°C (300°F) 176.67°C (350°F)	186.2 (27.00) 184.4 (26.75)
Allowable stresses $(S_m)^d$ at 149°C (300°F)	184.4 (26.75)
	· ·
Welded pipe, MPa (ksi) 149°C (300°F)	115 14 (16 7)
149 C (300 F) 176.67°C (350°F)	115.14 (16.7) 112.03 (16.25)
Forged flanges, lids, end caps, MPa (ksi)	112.05 (10.25)
at 149°C (300°F)	⁴ 115.14 (16.7)
176.67°C (350°F)	112.03 (16.25)
Coefficient of thermal expansion, cm/cm/°C (in./in./°F)	112.05 (10.25)
at temperatures ^e	
-40°C (-40°F)	0.00001476 (0.0000820)
37.78°C (100°F)	0.00001548 (0.00000860)
93.33°C (200°F)	0.00001602 (0.0000890)
121.11°C (250°F)	0.00001638 (0.00000910)
148.89°C (300°F)	0.00001656 (0.00000920)
<u> </u>	0.00001674 (0.0000930)
Containment vessel closure nut	Specification
Material of construction:	Nitronic 60, UNS-S21800
Elongation, %	10–12 ^f
Design temperature range, °C (°F)	-40 to 176.67 (-40 to 350)
Ultimate strength, MPa (ksi), room temperature	1655–1813 (240–263) ^f
Yield strength, 0.2% offset, MPa (ksi), room temperature	1344–1496 (195 - 217) ^f
Coefficient of thermal expansion, cm/cm/°C (in./in./°F) at temperatures ^e	
93.33°C (200°F)	0.0000158 (0.000088)
204.40°C (400°F)	0.00001660 (0.000092)

Table 2.16. Mechanical properties of the metallic components of the containment boundary

^b ASME Boiler and Pressure Vessel Code, Sect. II, Part D, Tables Y-1 and TM-1.

[°] Value presented in THERM 1.2, thermal properties database by R. A. Bailey.

^d ASME Boiler and Pressure Vessel Code, Sect. II, Part D, Table 2A.

^e ASME Boiler and Pressure Vessel Code, Sect. II, Part D, Subpart 2, Table TE-1, Column B, except that -40°C is from MIL-HDBK-5H, Table 2.7.1.0.

^f Value presented in ARMCO NITRONIC 60 Stainless Steel Product Data Bulletin, S-56b.

24	
. 68	
- 98	

Table 2.17.	Mechanical properties of the cast he	utron absorber
Material		Cat 277-4
Service temperature range, °C (°	F)	-40 to 150 (-40 to 302)
Modulus of elasticity in tension,	GPa (Mpsi) at temperatures *	
	-40°C (-40°F) 21.11°C (70°F) 37.78°C (100°F)	13.72 (1.991) 4.72 (0.684) 2.78 (0.403)
Coefficient of thermal expansion,	, cm/cm/°C (in./in./°F) at temperatures ^b	
	-40°C (-40°F) -20°C (-4°F) 0°C (32°F) 40°C (104°F) 60°C (140°F) 80°C (176°F) 100°C (212°F)	$\begin{array}{c} 12.700 \times 10^{-6} \left(7.056 \times 10^{-6}\right) \\ 13.000 \times 10^{-6} \left(7.222 \times 10^{-6}\right) \\ 13.000 \times 10^{-6} \left(7.222 \times 10^{-6}\right) \\ 12.600 \times 10^{-6} \left(7.000 \times 10^{-6}\right) \\ 11.599 \times 10^{-6} \left(6.444 \times 10^{-6}\right) \\ 10.400 \times 10^{-6} \left(5.778 \times 10^{-6}\right) \\ 9.700 \times 10^{-6} \left(5.389 \times 10^{-6}\right) \end{array}$
Poisson Ratio	120°C (248°F)	9.101 × 10 ⁻⁶ (5.056 × 10 ⁻⁶)
	−40°C (−40°F) 21.11°C (70°F)	0.33 ^a 0.28

Table 2.17. Mechanical properties of the cast neutron absorber

Density, g/cm³ (lb/in.³)

^a Mechanical Properties of 277-4 (Appendix 2.10.4).

^b Thermophysical Properties of Heat Resistant Shielding Material (Appendix 2.10.4).

Analysis. Starting with the outer components, the packaging consists of the drum (austenitic type 304 stainless steel), weld studs (austenitic stainless steel), nuts (silicon bronze), insulation (cast refractory), neutron absorber (Cat 277-4), silicone support pads, containment vessel (austenitic type 304L stainless steel), closure nut (Nitronic 60), silicone support pads, can spacers (stainless steel and Cat 277-4), stainless-steel scrubbers, convenience cans (stainless steel, tin-plated carbon steel, or nickel-alloy [series 200, passivated]), polyethylene or Teflon FEP bottles, glass bottle inside convenience can, polyethylene bags, and the HEU contents.

37.78°C (100°F)

0.25

1.682 (0.0608)

The cast refractory insulation (Kaolite) is contained between the drum and mid liner and within the top plug assembly's stainless-steel sheet metal. Due to the alkaline nature of this material, greater permanence of the surrounding structure is assured. Also, this material has been used successfully for years as an insulation heat treatment liner adjacent to metal surfaces of furnaces.

The cast neutron absorber (Cat 277-4) is contained between the inner liner and mid liner. During the casting process, the chlorine content is limited to 100 parts per million. The small quantity of chlorine will not affect the stainless-steel liners.

The nuts used to attach the drum to the lid are silicon bronze. All other metal components of the packaging are either stainless steel, Nitronic 60, or tinned steel. All stainless-steel components are passivated per ASTM A380, Paragraph 6.4, and Table A2.1, Part II. Prior to assembly, the packaging will be kept inside a building or transported between buildings in an enclosed truck. The assembled components are protected from the weather and inspected at the time of packaging; therefore, the

package will not contain any free water at the time it is loaded for transport. Under NCT, the only moisture present will be the relative humidity or moisture absorbed by the cast refractory or neutron absorber materials. When the package is subjected to a water-spray type environment, some water may leak into the cavity formed by the inner liner and occupied by the containment vessel. To minimize the possibility of any potentially corrosive situation, a visual examination of the interior surface of the inner liner and the exterior surface of the containment vessel shall be conducted prior to packing and following transport of the shipping package (see Sect. 7). Any free water present and any corrosion discovered shall be promptly removed.

During immersion under HAC, water can enter the holes at the top of the drum, be absorbed into the cast refractory material, and fill all void spaces within the drum and inner liner. The insulating value of the insulation material may be decreased, and an overall weight increase would occur. The most important consideration is that the containment boundary remain intact and leaktight. This situation has been evaluated by completely immersing the containment vessel in a tank simulating 0.9-m and 15-m (3- and 50-ft) immersion depths. The containment vessel remained intact and water tight, as demonstrated by the analysis and testing discussed in Sect. 2.7.

All physical contact between the convenience cans and the containment vessel wall, bottom, or top is minimized through the use of the silicone support pads. The polyethylene or Teflon FEP bottles may be in contact with the stainless steel of the containment vessel, but will not react. All cans and bottles will provide the necessary separation of the HEU contents from the containment vessel walls. The contents that cannot be packaged in the proposed cans due to the contents' overall dimensions, such as the unirradiated research reactor fuel elements, will be bundled together and protected on each end with an open-ended can (Fig. 1.4). When space is available inside the containment vessel, stainless-steel metal scrubbers will be placed on the top and bottom of this partially canned assembly or an empty convenience can will be placed on top of this assembly inside the containment vessel. Additionally, glass bottles with enriched uranium oxide (UO2-Mg) will be packed inside metal convenience cans and treated as a pyrophoric content. The passivated Nickel-alloy cans are galvanically similar to the stainless steel of the containment vessel and thus will not react. Additionally, polyethylene bagging may be used around the convenience container (in some cases the HEU is bagged inside the convenience container) as required by packaging personnel. Therefore, galvanic corrosion between the containment vessel wall and convenience containers is highly unlikely. In addition, the environment inside the containment vessel is free of electrolytic solutions, further assuring there will be no galvanic reactions occurring inside the containment vessel.

For pyrophoric considerations, broken metal and alloy pieces shall be of a size that: a) the specific surface area does not exceed 1 cm²/g, or b) will not pass freely through a mesh size of 3/8 in. (9.53 mm). Incidental small particles which do not pass the size restriction tests, and powders, foils, turnings, and wires may only be shipped if they are in a sealed, inerted container. Enriched uranium oxide in glass bottles (UO₂-Mg) will be shipped in a sealed, inerted container.

The containment boundary remains intact even when the drum and inner liner are filled with water; therefore, the package is acceptable to the maximum credible extent from the standpoint of chemical, galvanic, or other reactions.

2.2.3 Effects of Radiation on Materials

The HEU material is not irradiated. The neutron and photon dose rates (Sect. 5) are well below those required to damage any of the package materials by radiolytic interactions.

2.3 FABRICATION AND EXAMINATION

2.3.1 Fabrication

2.3.1.1 Drum assembly fabrication

The drum assembly is fabricated in accordance with equipment specifications JS-YMN3-801580-A002 (Appendix 1.4.2), JS-YMN3-801580-A003 (Appendix 1.4.4), and JS-YMN3-801580-A005 (Appendix 1.4.5). The later two specifications control the casting of the Kaolite 1600 and Cat 277-4 materials inside the liners, spacer cans and the top plug as appropriate.

The drum assembly and top plug are fabricated according to the design drawings (Appendix 1.4.8), and the portions of the codes, standards, and regulations to the extent described below:

1. ASME, Boiler and Pressure Vessel Code, Sect. VIII, Division 1, 2004 edition;

- 2. ASME, Boiler and Pressure Vessel Code, Sect. II, Parts A and C, 2004 edition;
- 3. ASME, Boiler and Pressure Vessel Code, Sect. IX, 2004 edition;
- 4. Military Standard, MS27683, Drum, Metal-Shipping and Storage 16 to 80 Gallons; and
- 5. ASTM A 380-99e1, Standard Practice for Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment and Systems.

Detailed dimensional requirements, and the materials of construction are called out on the drawings in Appendix 1.4.8. Except for the weld studs, documented Certified Material Test Reports (CMTRs) are provided for all materials used in weldments for the fabrication of the drum, including weld filler metal. The CMTRs are traceable to heat numbers and demonstrate compliance with the SA or SFA material specifications called out. For all other materials, documented Certificates of Compliance (CoC) are provided certifying that the materials provided comply with the requirements stated on the drawings and specifications. All welding is done in accordance with welding procedure specifications that are written and performance qualified in accordance with the ASME B&PV Code, Section IX. All welders are performance qualified to weld using these procedures, and their qualifications documented in accordance with the ASME Code, Section IX. The welding fabrication requirements stated in the ASME Code, Section VIII, Division 1, paragraphs UW-26 through UW-48 are met. All butt welds in rolled sheet, pipe and angle joints are full penetration butt welds. With the exception of the seam welds in the drum body, all welds shall be done by the GTAW, GMAW, PAW or a Capacitive Discharge (CD) stud welding process. The weld filler metal used in the fabrication of the drum assembly is procured to comply with the SFA specifications of Section II, Part C of the ASME Code that are stated in the welding procedure specifications. Weld filler metal is procured traceable to heat numbers, and CMTRs are furnished for each heat of weld wire filler. The control of weld filler permits a weld examiner to be able to determine the heat number of the weld filler used in any weld on the drum assembly. Weld symbols are provided on the drawings indicating for each weld the type of weld and dimensions of weld. These weld symbols are interpreted in accordance with the American Welding Society, Section A2.4.

2.3.1.2 Containment boundary fabrication

The containment boundary consists of the containment vessel, lid assembly and inner O-ring. The containment vessel is manufactured in accordance with the applicable requirements stated in the

ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NB for Class 1 Components as described on the drawings in Appendix 1.4.8 and equipment specification JS-YMN3-801580-A001 (Appendix 1.4.3). The containment vessel is fabricated according to the design drawings and the following codes, standards, and regulations as described in JS-YMN3-801580-A001.

- 1. ASME, Boiler and Pressure Vessel Code, Sect. III, Division 1 Subsections NB and NCA, Class 1 Components, 2004 edition;
- 2. ASME, Boiler and Pressure Vessel Code, Sect. II, Parts A and C, 2004 edition;
- 3. ASME, Boiler and Pressure Vessel Code, Sect. IX, 2004 edition; and
- 4. ASTM A 380-99e1, Standard Practice for Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment and Systems.

Detailed dimensional requirements, and the materials of construction are called out on the drawings in Appendix 1.4.8. CMTRs are provided for the materials used to fabricate these components in accordance with NCA-3860. The suppliers of these materials will meet the requirements of NCA-3800. Such parts are traceable to each containment vessel by means of a serial number. The fabricator maintains control of materials to ensure this traceability. Other metallic materials, and the O-ring seals are supplied with CoCs in accordance with NCA-3862(g) and (h). The weld filler metal used in the fabrication, and repair welding as permitted, of the containment vessels meets the applicable requirements of NB-2400. It is procured to comply with the SFA specifications of Section II, Part C of the ASME B&PV Code that is stated in the fabricator's welding procedure specifications. Weld metal is procured traceable to heat numbers, and CMTRs are furnished for each heat of weld wire filler used. The results of the delta ferrite determination is included in the CMTR for the weld filler metal (see NB-2433). There are two containment vessel assemblies shown on drawing M2E801580A012 (Appendix 1.4.8), part number M2E801580A012-1, and M2E801580A012-4. Part number M2E801580A012-4 is fabricated by welding a forged bottom and forged top flange to a cylindrical shell machined from seamless pipe as shown on the drawing. All welds on the containment vessels are accomplished by either the GTAW or GMAW process, manual or automatic, at the discretion of the fabricator unless specifically called out on the drawings. Backing rings, even if removed after the weld has been made, are not be used. As previously stated, weld symbols are provided on the drawing indicating the type of weld and dimensions of the weld. These weld symbols are interpreted in accordance with the American Welding Society, section A2.4. The forming, fitting and alignment requirements stated in paragraph NB-4200 are met in the fabrication of the containment vessels unless more stringent requirements are called out on the design drawings.

The preferred fabrication method for the containment vessel body (part number M2E801580A012-1), is from a single forged billet or bar by any process that meets the requirements stated in JS-YMN3-801580-A001 (Appendix 1.4.3), and shown on the design drawings. Such processes may include forging, flow forming, or metal spinning. The formed, heat treated, and finished machined containment vessel body shall meet the applicable requirements of ASME SA 182 for Grade F304L for a forged component. After final forming, parts are solution annealed and quenched per the requirements of ASME SA 182 for Grade F304L. A certified heat treatment report is provided stating the following information for each furnace charge: the serial numbers of the containment vessel bodies heat treated in the furnace charge, the time and date of the heat treating, the person responsible for the heat treating, the time-temperature profile of the furnace and representative parts of the furnace charge, the quench medium, and all other pertinent details of the heat treating. Such a heat treating report is required for all heat treating, both in process annealing and final heat treatment.

2.3.2 Examination

2.3.2.1 Examination of the drum assembly fabrication

The drum and top plug assemblies are examined and tested according to the design drawings, and the portions of the codes, standards, and regulations to the extent described below:

- 1. ASME, Boiler and Pressure Vessel Code, Sect. VIII, Division 1, 2004 edition;
- 2. ASME, Boiler and Pressure Vessel Code, Sect. V, 2004 edition; and
- 3. SNT-TC-1A-1992, Recommended Practice for Nondestructive Testing Personnel Qualification and Certification, American Society For Nondestructive Testing, December 1992.

All welded or weld-repair surfaces shall be visually examined by a qualified weld examiner for indications of inclusions, cracks, or porosity using a written weld examination procedure. Weld examiners are qualified to perform visual weld inspections in accordance with SNT-TC-1A (2001 Edition), "Personnel Qualification and Certification in Nondestructive Testing;" or ANSI/ASNT CP-189 (2001 Edition), "ASNT Standard for Qualification and Certification of Nondestructive Testing Personnel;" published by the American Society for Nondestructive Testing. ASME Boiler and Pressure Vessel Code, Section IX is to be employed as the applicable requirement. Section VIII of the ASME B&PVC Code is invoked for acceptance criteria for Code specified examinations which are to be performed in accordance with the provisions of ASME B&PVC Section V. Any indication of inclusions, cracks, or porosity in the welds is cause for rejection. The item may be reworked to meet the specifications. The weld examination procedures, the weld examiners qualifications, and the weld examination reports are submitted to B&W Y-12 for records. The acceptance criteria for joint fit-up and alignment, and for visual examination of welds are given in the ASME'B&PV Code, Section VIII, Division 1, paragraphs UW-31 through UW-36. In addition, any visible defects such as lack of fusion, lack of penetration, linear or crack-like defects, and visible porosity, are cause for rejection. Straightening, flattening, and forming by mechanical or thermal means of some features and components after welding may be required to ensure proper assembly. The surfaces of areas of the weldment that have been worked are visually examined to ensure that no cracks are present or that the weldment has not been degraded. Adjacent welds to these areas are also visually examined. The acceptance criteria is that no cracks are found. The areas worked and the visual inspections are noted on the dimensional inspection report. The external seam weld of the drum assembly is pressure tested by attaching removable lids on both the top and bottom false wire locations and injecting water and air inside the assembly up to the final pressure of 149.61 kPa (21.7 psia). After all testing, inspection and final machining, the drum assembly and top plug are dimensionally inspected. The dimensions, and features such as flatness, run-out, etc, to be inspected are indicated on the design drawings. A written inspection report is prepared, submitted and maintained for each ES-3100 drum assembly.

The above examination criteria address the stainless-steel components. However, the drum assembly also consists of the Kaolite 1600 material and the Cat 277-4 neutron poison. Acceptance criteria for the installation of the Kaolite 1600 material are addressed by specification JS-YMN3-801580-A003 (Appendix 1.4.4). This specification controls and documents the raw materials used for mixing, casting and vibration methodology, and the baking of the material inside the drum assembly. The final acceptance criterion is achieved by producing a cast Kaolite 1600 material density of $358.8 \pm 48 \text{ kg/m}^3$ (22.4 $\pm 3 \text{ lb/ft}^3$). Acceptance criteria for the installation of Cat 277-4 neutron poison are addressed in specification JS-YMN3-801580-A005 (Appendix 1.4.5). This specification also controls and documents the raw materials used for mixing, casting and vibration methodology, and the

final density of the casting $[1682 + 240/-80 \text{ kg/m}^3 (105 + 15/-5 \text{ lb/ft}^3)]$. Further examination criteria to verify the concentration and homogeneity of the Cat 277-4 in each drum assembly are also provided in specification JS-YMN3-801580-A005. The various parameters specified in NUREG/CR-3854 and in Table 2.11 for a neutron poison are addressed in detail in this specification.

2.3.2.2 Examination of the containment vessel fabrication

The containment vessel is examined and tested according to the design drawings and the following codes, standards, and regulations as described below:

- 1. ASME, Boiler and Pressure Vessel Code, Sect. III, Division 1 Subsections NB and NCA, Class 1 Components, 2004 edition;
- ANSI N14.5-1997, American National Standard for Radioactive Materials Leakage Tests on Packages for Shipment; ASME, Boiler and Pressure Vessel Code, Sect. V, 2001 edition and 2002 and 2003 addenda;
- 3. ASME, B & PVC, Section V, 2001 edition and 2003 addenda; and,
- 4. NT-TC-1A-1992, Recommended Practice for Nondestructive Testing Personnel Qualification and Certification, American Society For Nondestructive Testing, December 1992.

Procured materials are examined in accordance with the applicable paragraphs of NB-2500, and meet the stated acceptance criteria. The results of these examinations are be included with the CMTRs provided to B&W Y-12. All welded or weld-repair surfaces shall be visually examined by a qualified weld examiner for indications of inclusions, cracks, or porosity. ASME Boiler and Pressure Vessel Code, Section IX is to be employed as the applicable requirements. Section III of the ASME B&PVC Code is invoked for acceptance criteria for Code specified examinations which are to be performed in accordance with the provisions of ASME B&PVC Section V. Prior written approval is obtained for any weld repair on materials, and the weld repair areas are both surface and volumetrically examined. The repair area is noted in a sketch supplied with the CMTR for the material that was weld repaired and the documented results of the weld examination is complete. The heat numbers of base metals and weld filler are required on all weld examination reports. Control of weld filler by the fabricator permits a weld examiner to be able to determine the heat number of the weld filler used in any weld on the containment vessel.

As previously stated, the containment vessel body may be fabricated by two different methods shown on drawing M2E801580A012 (Appendix 1.4.8). Part number M2E801580A012-4 is fabricated by welding a forged bottom, and forged top flange to a cylindrical shell machined from seamless pipe as shown on the drawing. Prior to welding these components, all weld preparation areas and the surfaces within one inch of the weld are examined visually and with liquid penetrant. The acceptance criteria for these examination are those stated in NB-5130(a) through NB-5130(d). The applicable requirements in paragraphs NB-5110, NB-5120, NB-5210, NB-5220, NB-5260, and NB-5300 apply to the containment vessels. The plug weld shown on Drawing M2E801580A015 (Appendix 1.4.8) shall be examined visually and with penetrant. The applicable requirements in paragraphs NB-5110, and NB-5350 shall apply to the plug weld. Materials used in the penetrant examination of welds and in the final surface examination of finished components (see Section 3.7) shall be specifically recommended by their suppliers for use with austenitic stainless steels, and copies of the certification of contaminant content of materials used (see ASME, Section V, Article 6, T-641) shall be supplied with the examination reports.

Repair welding shall meet the applicable requirements of NB-2500. Certified written weld examination reports together with the corresponding material surface examination reports, and weld map shall be submitted as stated in the procurement specification for the containment vessel. Weld examination reports for all weld and surface examination shall include: the containment vessel serial number, a weld map showing the location of the weld and examination area, the welder's name, the examiner's name, the time and date of the weld examination, the examination procedure(s) number used, the WPS number, the heat numbers of the materials joined, the heat number of the weld filler, and examiner's remarks. The examiner's remarks shall include the results of the examination and acceptance, or rejection of the weld based on the stated criteria. One set of radiographs shall be provided with radiographic examination reports. If the weld or surface is rejected, a description of the defect and sketch showing the location shall be provided.

The nonwelded containment vessel body, part number M2E801580A012-1, shall be formed from a single forged billet or bar by any process that meets the requirements stated in JS-YMN3-801580-A001 (Appendix 1.4.3), and shown on the design drawings (Appendix 1.4.8). Such processes may include forging, flow forming, or metal spinning. The formed, heat treated, and finished machined containment vessel body shall meet the applicable requirements of ASME SA 182 for Grade F304L for a forged component. Mechanical properties are verified by testing of coupons. The test coupons are to be machined from the same heats of materials used to form the containment vessel bodies, and shall have the same or greater amount of cold work (plastic strain) as the containment vessels will have as a result of the forming process. The mechanical tensile testing of coupons shall be done in accordance with ASME SA 370. A minimum of six test coupons shall be tested for each final heat treatment furnace charge. The first set of three test coupons, chosen at random, shall be tested without being heat treated. The second set of three or more test coupons shall be heat treated together with the containment vessel bodies, and then tested. The heating rates and maximum temperatures of the test coupons shall be representative of the entire furnace charge. Test coupons are not required to be heat treated with intermediate processing annealing steps, but are required in the final heat treatment furnace charge. The results of all the testing of the sample coupons shall be documented, certified and reported to B&W Y-12. The mechanical properties test report shall contain the following information: a descriptor of the furnace charge in which the test coupons are to represent; the times and dates of the heat treating and the testing; the person responsible for the testing; a statement that these coupons are prior to or after heat treatment; a description of the testing including a sketch of the tensile test specimen; the make, model, serial number, and current calibration data of the testing machine(s) used in the testing; reference to the written testing procedure used; the resulting measure yield strength, ultimate strength, % elongation and % reduction in area; and any pertinent remarks.

2.4 LIFTING AND TIE-DOWN STANDARDS FOR ALL PACKAGES

This section addresses the requirements of 10 CFR 71.45, "Lifting and Tie-Down Standards for All Packages."

2.4.1 Lifting Devices

Requirement. Any lifting attachment that is a structural part of a package must be designed with a minimum safety factor of three against yielding when used to lift the package in the intended manner, and it must be designed so that failure of any lifting device under excessive load would not impair the ability of the package to meet other requirements of 10 CFR 71, Subpart E. Any other structural part of the package that could be used to lift the package must be capable of being rendered

inoperable for lifting the package during transport, or must be designed with strength equivalent to that required for lifting attachments.

Analysis. The ES-3100 packages, as delivered for transport, have no lifting devices or structural parts that can be used for lifting. Therefore, the lifting devices requirements of 10 CFR 71.45 are not applicable.

2.4.2 Tie-Down Devices

Requirement. If there is a system of tie-down devices that is a structural part of the package, the system must be capable of withstanding, without generating stress in any material of the package in excess of its yield strength, a static force applied to the center of gravity of the package having a vertical component of two times the weight of the package with its contents, a horizontal component along the direction in which the vehicle travels of ten times the weight of the package with its contents, and a horizontal component in the transverse direction of five times the weight of the package with its contents. Any other structural part of the package that could be used to tie down the package must be capable of being rendered inoperable for tying down the package during transport, or must be designed with strength equivalent to that required for tie-down devices. Each tie-down device that is a structural part of a package must be designed so that failure of the device under excessive load would not impair the ability of the package to meet other requirements of this part.

Analysis. The ES-3100 package, as delivered for transport, has no tie-down devices that are structural parts of the package. Therefore, the tie-down requirements of 10 CFR 71.45 are not applicable. Safe tie down and transport of the package is accomplished by methods explained in the Sandia National Laboratories (SNL) Tie-Down Manual [*Tie-down Procedures for Type B Containers Shipped in Safe-Secure Trailer/Safeguards Transporter (SST/SGT)*]. For single-unit tie-down, a drum tie-down adapter is positioned on top of the drum and two chains, passing through the adapter, are attached to equipment positioned on the floor of the transport vehicle. The welded ring on the drum lid helps to initially position this drum tie-down adapter as well as prevent inadvertent assembly damage to the studs and nuts. Another method of securing the ES-3100 package is by the use of the Cargo-Restraint Transporter (CRT) or Cargo Pallet Assembly (CPA). In these methods, a frame is positioned around the base and top of either five or six packages. These frames are then chained or locked to the floor as depicted in SNL Tie-Down Manual. Tension is applied to the chains to eliminate any slack. The downward load resulting from the chain tensioning is insignificant when compared to the compression loading as specified in 10 CFR 71.71(c)(9).

2.5 GENERAL CONSIDERATIONS

Package structural evaluation is performed by the combination of full scale testing, similarity, and analysis as described in the following sections.

2.5.1 Evaluation by Test

The ES-3100 package was tested in accordance with a test plan developed by the National Transportation Research Center (NTRC) at the Oak Ridge National Laboratory (ORNL) (Appendix 2.10.8). Testing of ES-3100 prototype units was performed at the NTRC facility, except as noted below. Five full-scale test units were assembled with content weights ranging from 3.6 kg (8 lb) to 50.3 kg (111 lb). One of these test units (TU-4) was subjected to the tests specified in 10 CFR 71.71(c)(5) through (c)(10) excluding (c)(8) prior to the HAC sequential tests stipulated in 10 CFR 71.73 and

shown in Table 2.18. Test Unit 2 was chilled prior to being subjected to any structural testing (i.e., 1.2-m NCT drop, 9-m HAC drop, HAC crush, and HAC puncture tests). This unit was chilled to a nominal temperature of -40° C (-40° F). This was accomplished by placing the unit in an environmental chamber in Bldg. 5800 at the Oak Ridge National Laboratory (ORNL) with initially setting of the chamber at $\sim -57^{\circ}$ C (-70° F) for 24 h. After this initial period, the control on the environmental chamber was set to $\sim -43^{\circ}$ C (-45° F) for another 48 h. Prior to the initiation of structural testing of this unit, it was removed from the environmental chamber and placed in an insulated box. Once transported to the NTRC, sequential structural testing, as shown in Table 2.19 was performed as quickly as possible. The other test units were first subjected to the free drop from 1.2 m (4 ft) test prior to the HAC testing of 10 CFR 71.73. These additional tests were conducted to show that the NCT testing would not reduce the effectiveness of the package to withstand HAC testing. Tables 2.18 and 2.19 summarize the testing procedure and the drop orientations for each ES-3100 test unit.

The essentially unyielding surface used for the 1.2-m (4 ft) drop test was the indoor drop test pad at the NTRC. All 9-m (30-ft) drop and crush tests were conducted at the outside drop pad at the NTRC. The indoor pad consists of a 5.08-cm (2-in.)-thick steel plate embedded inside a reinforced concrete pad \sim 127 cm (50 in.) thick. The outside drop pad consists of a 10.16-cm (4-in.)-thick steel plate embedded inside a reinforced concrete pad \sim 167.6 cm (66 in.) thick. An article has been prepared by the NTRC staff to describe the integrity of these test pads (Shappert 1991).

Thermal testing of the five test units was conducted at the No. 3 furnace at Timken Steel Company in Latrobe, Pennsylvania. Prior to the testing, the furnace was characterized for temperature and heat recovery times. Oxygen content in stack gases of the furnace was not monitored because it was not anticipated that any of the package's materials of construction were combustible. There was some burning of the silicone pads which are placed between the inner liners and the top plugs of the packages. However, it should be noted that this furnace employs "pulsed" fire burners. This type of burner is unique in that the natural gas flow rate is varied based on furnace controller demands, but the flow of air through the burners is constant, even when no gas is flowing, thereby ensuring a very rich furnace atmosphere capable of supporting any combustion of package materials of construction. The support stand was welded to a large steel plate which had been placed on the floor of the furnace prior to heating. This steel plate acted as the radiating surface at the bottom of the furnace as well as providing the ability to hold the test stand rigidly in place. Before heating the furnace, workers practiced loading and unloading test packages from the cold furnace to assure that the furnace door would not remain open >90 s during each loading. In fact, the maximum time the door was open during any loading was 64 s.

Damage resulting from physical testing is quantitatively described including photographs in Sect. 2.7. The full-scale test units were fabricated in accordance with drawings created for production hardware. During the procurement process for the full-scale test units, several small changes were suggested by the manufacturer to improve the efficiency and to reduce the cost of fabrication. These changes were incorporated and tested. However, following compliance testing the following changes have been made to the proposed production hardware. First, a change in the neutron poison from BoroBond4 to Cat 277-4 has been adopted; second, the mid liner design has been changed to a continuous shell by reducing the diameter of the step in the inner liner for the CV flange from 22.35 cm (8.8 in.) to 21.84 cm (8.6 in.); and third, the silicone rubber pad thickness on the drum assembly bottom liner was increased by ~0.15 cm (0.06 in.). The second change increased the amount of Kaolite 1600 around the CV flange, increased the final volume of the neutron poison, and slightly decreased the volume of the Kaolite 1600 adjacent to the neutron poison. The third change was made to stiffen the rubber pad so it would remain in place during vibration normally incurred during transport. In order to evaluate the impact of these changes, analytical drop simulations were conducted and documented in Appendix 2.10.2. The drop simulations were conducted in the same attitude and temperature regime as

Test	TU-1 (heavy) 12° Slap-down	TU-2 (heavy) Side Drop	TU-3 (heavy) CG over Top Corner	TU-4 (heavy) Top Down	TU-5 (light) 12° Slap-down
Operational Leak Test (CALT5)	1	1	1	1	1
NCT – 10CFR71.71 (c)(5) Vibration				5	
NCT – 10CFR71.71 (c)(6) Water Spray			•	2	
NCT – 10CFR71.71 (c)(7) 1.2 m (4 ft) Free Drop	2	2	2	3	2
NCT – 10CFR71.71 (c)(9) Compression		· · · · · ·		6	
NCT – 10CFR71.71 (c)(10) Penetration				4	

Table 2.18. Summary of NCT – 10CFR71.71 tests for ES-3100 package^a

^a The numbers 1 through 6 indicate the sequence of the tests.

Table 2.19. Summary of HAC – 10CFR71.73 tests for ES-3100 package^a

Test	TU-1 (heavy) 12° Slap-down	TU-2 (heavy) Side Drop	TU-3 (heavy) CG over Top Corner	TU-4 (heavy) Top Down	TU-5 (light) 12° Slap-down	TU-6 ^b 15m Immersion
10CFR71.73 (c) (1) Free Drop 9m (30 ft.)	1	1	1.	1	1	•
10CFR71.73 (c) (2) Crush 9m (30 ft.)	2	2	2	2	2	
10CFR71.73 (c) (3) Puncture 1m (40 in.)	3456	3	3	3	3	
Preheat to above 38 °C (100 °F) before Thermal test	7	4	4	4	4	
10CFR71.73 (c) (4) Thermal 800°C (1475°F)	8	5	. 5	5	5	·
Operational Leak Test of CV (CALT5)	9	6	6	6	6	1
Full Containment Boundary Leak Test (He Leak Test)	10	· 7	7	· 7	7	
10CFR71.73 (c) (5) Immersion Test Fissile materials – 0.9 m (3 ft.)	11	8	8	8	8	
10CFR71.73 (c) (6) Immersion Test –All Packages 15 m (50 ft.)						2

^a The numbers 1 through 11 indicate the sequence of the tests.
^b TU-6 is only a containment vessel with ballast to ensure non-buoyancy.

those conducted during the compliance testing phase for certification. The results of the structural deformation from compliance testing, drop simulation using BoroBond4 and drop simulations using Cat 277-4 material are presented in Sect. 2.7.8. The analytical structural deformation results shown in Tables 2.52 through 2.61 are nearly identical between the two neutron poisons. The analytical results are also well representative of the results recorded during compliance testing. Analytical strain prediction in the structural components are also compared. Although there are minor differences between simulations, the overall magnitude of the strains are very similar. The thermal aspects of these changes are addressed in Sect. 3. NCT and HAC results predicted for an undamaged package show that the change in neutron poison actually reduces the final temperature of the containment vessel components. Therefore, the substitution of Cat 277-4 material and the minor changes in the inner and mid liners for production hardware should not reduce the effectiveness of the packaging when subjected to the regulatory requirements of 10 CFR 71 and the results of compliance testing would be analogous.

The contents used as surrogate payloads for the test units are shown on drawings M2E801580A029, and M2E801580A027. In the light-weight configuration, the contents consist of three 25.4 cm (10 in.) high convenience cans with handles, and 4 silicone rubber pads. These convenience cans, handles and silicone rubber pads are identical to those proposed for transport. The bottom convenience can was filled with tungsten grit until the convenience can and grit assembly weighed ~3 kg (6.6 lb). The actual weight of the tungsten grit was 2.77 kg (6.11 lb). The total content weight for the light- weight content configuration including the convenience cans, silicone rubber pads, can handles, and tungsten grit was ~3.6 kg (8 lb). In the heavy-weight configurations, the surrogate payload consists of three steel cylindrical shaped components with handles, two can spacers filled with BoroBond4 and handles, and 6 silicone rubber pads. The can spacers, handles and silicone rubber pads are identical to those proposed for transport. These components weighed a total of approximately 50 kg (110.2 lb). These different weight assemblies bound the range of possible content configurations and structural deformation resulting from compliance testing. Since the decay heat of the proposed contents is ~ 0.4 W, little or no impact on the pressure or temperature of the package components will result during NCT. Differences in thermal capacitance of these surrogate payloads from the proposed HEU contents during HAC thermal testing are evaluated in Sect. 3.5.3.

2.5.2 Evaluation by Analysis

Although physical testing of the ES-3100 containers was performed generally at or near room temperature except for Test Unit-2, the effectiveness of the Kaolite insulating material at various temperature extremes was examined through the use of laboratory testing and structural analysis of a similar package, the ES-2LM (Handy 1997). For low-temperature service, Kaolite specimens were tested at -28.89 and $-40^{\circ}C$ (-20 and $-40^{\circ}F$). These tests showed little change in the response of the material as compared to room temperature. Furthermore, structural analyses for bounding soft and stiff material cases were run. The Kaolite 1600 data used in these bounding analyses were from laboratory experiments that used a heavily cured sample (stiff) and a sample to which borax had been added (soft) [Oaks 1997]. Following the production run for the ES-2100 and DPP-2 shipping containers, new casting specimens were available for compression testing. In order to reduce the total cost of Kaolite testing, specimens were tested to approximately $-40^{\circ}C$ ($-40^{\circ}F$) to cover both the cold conditions stipulated in 10 CFR 71.71(c)(2) and the -29°C (-20°F) temperature stipulated in 10 CFR 71.71(b)(1) and at 38°C (100°F). The results of Kaolite specimen testing are documented in Y/DW-1890 (Smith and Byington, Appendix 2.10.3) and Y/DW-1972 (Smith, Appendix 2.10.3). Upon further review of the data, the new test data was somewhat stiffer in the cold/high-density specimens than the data previously used in Y/DW-1972 (Smith, Appendix 2.10.3). Therefore, in order to encompass the extremes of all existing data, an additional drop simulation sequence using the new bounding curves has been conducted on the ES-3100 package as documented in Appendix 2.10.2. In addition to the analytical effort, the ES-3100

Test Unit-2 was pre-chilled to a nominal temperature of -40° C (-40° F). This was accomplished by placing the unit in an environmental chamber in Bldg. 5800 at ORNL and initially setting the chamber control to -56.7° C (-70° F) for 24 hours. After this initial period, the control on the environmental chamber was set to -42.8° C (-45° F) for at least 48 hours. Prior to the initiation of structural testing of this unit, it was removed from the environmental chamber and placed in an insulated box and transported to the NTRC. High-temperature [up to 38° C (100° F)] behavior was not addressed. However, in light of the fact that the insulation material is typically used as a cast refractory insulation in furnace applications, and that structural tests were performed in the range of 20.8 to 30.6° C (69.4 to 87° F) or just 7.4 to 17.2° C (13 to 30° F) below the high-temperature limit, it is not anticipated that any decline in impact absorption would be detrimental at 38° C (100° F).

2.6 NORMAL CONDITIONS OF TRANSPORT

This section demonstrates compliance with 10 CFR 71.43(f) and with 10 CFR 71.51(a)(1) and (b) following the tests and NCT conditions stipulated in 10 CFR 71.71. It is shown that the package will not experience any loss in shielding effectiveness or spacing and will not release any radioactive content or undergo leakage of water into the containment vessel during exposure to NCT. The four tests (water spray, free drop, compression, and penetration) made on Test Unit-4 were conducted in the 20.8 to 22.4°C (69.4 to 72.4°F) range, with the 1.2-m drop test conducted at 22.4°C (72.4°F). The maximum regulatory reference air leakage rate is $\leq 3.8430 \times 10^{-3}$ ref-cm³/s. Compliance with this permitted activity release limit is not dependent on filters or mechanical cooling systems. Following NCT compliance testing, the package was subjected to the sequential HAC test battery.

Title 10 CFR 71.71(b) specifies that the tests for NCT be conducted at the most unfavorable ambient temperature within the range of -28.89 to 38°C (-20 to 100°F). The drum is fabricated from type 304 stainless steel, and the containment boundary is fabricated from type 304L stainless steel, which is particularly suitable for low-temperature service. The Izod impact strength for the stainless steel used in the package components remains constant over a large range [specifically, from 21.11 to -195.5°C (70 to -320° F)] (Stainless Steel Handbook). Tensile strength increases from a minimum of 4.826×10^{5} to 1.696×10^6 kPa (70,000 to 246,000 psi), and the yield strength increases about 10% over the same temperature range. The O-rings in the containment vessel have a normal service temperature range of -40 to 150°C [-40 to 302°F (Table 2.15)]. The normal service temperature range of the drum and containment vessel is -40 to 426.7°C (-40 to 800°F) [ASME, B&PV Code, Sect. II, Part D]. At -28.89°C (-20°F), the impact limiting material has been shown by tests to be stiffer than at 22.4°C $(72.4^{\circ}F)$. This condition has been evaluated by the compliance testing conducted on Test Unit-2. The reduction in tensile strength of the stainless steel from 22.4 to 38°C (73 to 100°F) is only approximately 2%, and the impact-limiting material test trends show that the impact-limiting material may become slightly softer. However, these slight reductions in tensile strength and absorption characteristics should not affect the results significantly compared to those conducted at 38°C (100°F).

Title 10 CFR 71.71(b) also states that the initial internal pressure within the containment system during NCT drop testing shall be considered as the maximum normal operating pressure. The maximum normal operating pressure is defined in 10 CFR 71.4 as the maximum gauge pressure that would develop in the containment system in a period of 1 year under the heat conditions specified in 10 CFR 71.71(c)(1). The internal pressure developed under these conditions in the ES-3100 containment vessel is calculated in Appendix 3.6.4 and discussed in Sects. 2.6.1.1 and 3.4.2. As noted in these sections, the internal pressure is calculated to be 137.92 kPa (20.004 psia). As shown in Appendix 2.10.1, the design absolute pressure of the containment vessel is 801.17 kPa (116.2 psia), and the hydrostatic test pressure stipulated in JS-YMN3-801580-A001 is 1135.57 kPa (164.7 psia).

Thus, increasing the internal pressure of the containment vessel to a maximum of 137.92 kPa (20.004 psia) during NCT would have no detrimental effect. Table 2.20 provides a summary of the pressures and temperatures in the various shipping configurations. As discussed in Sect. 2.6.1.4, the containment vessel and the closure nut stresses for this pressure condition are well below the allowable stress values.

Title 10 CFR 71.71(c) specifies that the package service temperature must extend from -40 to 38°C (-40 to 100°F) with solar insolation. As shown in Sect. 3.4.1 and calculated in Appendix 3.6.2, the upper service temperature with solar insolation is calculated to be 87.81°C (190.06°F) for an empty ES-3100 containment vessel. Thermal cycling of the packages over the above temperature range from -40° C (-40° F) is considered an unlikely event, and the change would occur over a long period of time. In any event, the 127.81°C (230.06°F) thermal cycle would not result in brittle fracture or fatigue failure in the packaging. The acceptability of the packaging against brittle fracture is discussed in Sect. 2.6.2. The only concern for fatigue or endurance failure is related to the containment boundary cyclic pressure changes as the temperature varies from low to high. A 25°C (77°F) ambient temperature normally exists for the containment boundary during assembly. The containment boundary is sealed at an absolute pressure of ~ 101.35 kPa (14.70 psi). The internal absolute pressure at an average gas temperature of 87.81°C (190.06°F) is 137.92 kPa (20.004 psi) for the ES-3100 containment vessel (Table 2.20). The absolute internal pressure at -40°C or -40°F is 76.74 kPa (11.13 psi) for the containment vessel. Therefore, the maximum cyclic pressure differential for the containment vessel from low to high temperatures is (137.92 - 76.74) kPa or 61.18 kPa (8.874 psi). This cyclic pressure is insignificant when considering the integrity of the containment boundary as shown by the stress levels discussed in Sect. 2.6.1.3.

The ES-3100 package has been tested to determine the effectiveness of the package following a sequential NCT 1.2-m (4-ft) drop test and an HAC test battery. Testing conducted on Test Unit-4 showed that there would be no loss or dispersal of radioactive contents and no significant increase in external surface radiation levels if the actual contents had been subjected to these tests, and no substantial reduction in the effectiveness of the packaging to survive the HAC testing. Thus, the requirements of 10 CFR 71.43(f) are satisfied.

Average gas evaluation temperature °C (°F)	Containment vessel absolute internal pressure kPa (psia)
-40 (-40) ª	76.74 (11.13)
25.0 (77) ^b	101.35 (14.70)
87.81 (190.06) °	137.92 (20.004)

Table 2.20.	Summary	of temperatures	and pressures for NCT

^a Analysis conducted with no decay heat load in accordance with 10 CFR 71.71(c)(2).

^b Assembly temperature and pressure.

[°] Due to the lack of measurable off-gassing, all ES-3100 containment vessel configurations with solar insolation, and 0.4 W decay heat produce the same internal pressure (Appendix 3.6.4).

2.6.1 Heat

Requirement. Exposure to an ambient temperature of 38°C (100°F) in still air and insolation as stated in 10 CFR 71.71(c)(1).

Analysis. An increase in ambient temperature to $38^{\circ}C$ ($100^{\circ}F$) with insolation will have no effect on the ability of the containment boundary to provide containment.

The maximum normal operating pressure is defined in 10 CFR 71.4 as the maximum gauge pressure that would develop in the containment system in a period of 1 year under the heat conditions specified in 10 CFR 71.71(c)(1). The internal pressure developed under these conditions in the ES-3100 containment vessel is calculated in Appendix 3.6.4 and discussed in Sects. 2.6.1.1 and 3.4.2. As noted in these sections, the internal pressure varies with temperature. Based on the isotopic determination of the proposed contents, a decay heat of 0.4W was calculated and used for the maximum internal heat load in evaluating the package for NCT (Sect. 3.1.2). The maximum calculated internal absolute pressure in the containment vessel with solar insolation and using the bounding case parameters is 137.92 kPa (20.004 psia). The design absolute pressure of the containment vessel is 801.17 kPa (116.20 psia), and the hydrostatic test pressure is 113.55 kPa (164.7 psia). Thus, increasing the internal pressure of the containment vessel to a maximum of 137.92 kPa (20.004 psia) during NCT would have no detrimental effect. Table 2.20 provides a summary of the pressures and temperatures for the various shipping configurations. As discussed in Sect. 2.6.1.4, the containment vessel and closure nut stresses for these pressure conditions are well below the allowable stress values. If the package is exposed to solar radiation at 38°C (100°F) in still air, the conservatively calculated temperatures at the top of the drum, on the surface of the containment vessel, and on the containment vessel near the O-ring sealing surfaces are 117.72°C (243.89°F), 87.81°C (190.06°F), and 87.72°C (189.9°F), respectively (Sect. 3.4.1). Nevertheless, these temperatures are within the service limits of all packaging components, including the O-rings. The normal service temperature range of the O-rings used in the containment boundary is -40 to 150°C (-40 to 302°F) as shown in Table 2.15.

2.6.1.1 Summary of pressures and temperatures

An ambient temperature of $25 \,^{\circ}$ C (77 $^{\circ}$ F) is assumed for the packaging at assembly. Since there are four ventilation holes near the top of the drum, and holes in the liner encapsulating the neutron poison material that are not hermetically sealed, the drum assembly will not become pressurized as the temperature increases. The containment boundary is sealed; thus, the internal pressure will change with temperature. Maximum calculated pressures at various temperatures (Sect. 3.4.1) are listed in Table 2.20.

2.6.1.2 Differential thermal expansion

The drum, inner liners, and containment vessel are all constructed of type 304 or 304L stainless steel. Radial and vertical expansion among these components will not cause any interferences or thermally induced stresses due to design clearances at assembly. Due to similarities of the coefficient of thermal expansion between type 304/304L and the containment vessel closure nut material (ASME SA-479), the compression of the O-rings does not change appreciably during the temperature excursion from 25°C (77°F) to the maximum temperature of 87.81°C (190.06°F).

The Kaolite 1600 insulation and Cat 277-4 material is poured and cast in place during the fabrication of the drum weldment (Drawing M2E801508A002, Appendix 1.4.8). Although some contraction of these materials may occur during curing, it is assumed for analysis purpose that a zero gap

will exist between the Kaolite and the bounding drum and mid liner and a zero gap exists between the Cat 277-4 and the two liners. Due to differences in coefficients of thermal expansion, some radial and axial interferences are expected due to thermal growth of the inner liners. These radial and axial interferences and induced stresses are calculated in Appendix 3.6.3. A maximum von Mises stress of 6.693×10^4 kPa (9708 psi) was calculated for the inner liners. This stress value is well below the allowable yield strength of 1.324×10^5 kPa (19200 psi) at 148.9°C (300°F). A maximum von Mises stress of 1.379×10^3 kPa (200 psi) and 1.034×10^3 kPa (150 psi) occurs in the Cat 277-4 and Kaolite 1600 materials, respectively. Based on tabulated data and curves presented in Y/DW-1987 (Smith and Byington, Appendix 2.10.4) and the curves presented in Y/DW-1972 (Smith, Appendix 2.10.3) at 38°C (100° F), these compressive stresses are well below the failure limit of ~4.826 × 10³ kPa (700 psi) and 5.171 × 10³ kPa (750 psi) for the Cat 277-4 and Kaolite 1600 materials, respectively. Therefore, these thermally induced stresses will not reduce the effectiveness of the drum assembly.

The effects of differences in coefficient of thermal expansion between the HEU contents and their associated convenience cans, polyethylene or Teflon FEP bottles are not addressed. No credit is taken for the ability of the convenience can or bottle to maintain it structural integrity during transport. Section 4 of this document assumes the HEU content is in the form of an aerosol and all is available for release; therefore, no credit for the convenience can or bottle is taken. Based on assembly clearances and the flexibility of the polyethylene or Teflon FEP bottles, no radial or vertical interferences will develop during NCT. Based on assembly clearances and insignificant differences in the coefficient of thermal expansion between the stainless-steel, tin-plated carbon steel, or nickel-alloy convenience cans and the stainless-steel containment vessel, no radial or vertical interferences will develop during NCT testing.

2.6.1.3 Stress calculations

During normal conditions, stresses are only imposed by changes in internal pressure of the containment boundary as the temperature varies slowly over the operating range as shown in Table 2.20. Stress levels imposed on the package during NCT are insignificant, as shown in Tables 2.21, and 2.22. These tabulated stresses were determined by multiplying the stress at the design conditions (Appendix 2.10.1 and Table 2.6) by a factor equal to the ratio of operating pressures to design pressures and adding any contribution from the closure nut preload. This methodology is based on linear elastic material behavior. As shown in Sect. 2.6.1.4, all stresses in the containment boundary components are well below the *ASME Boiler and Pressure Vessel Code* allowable stress intensity limits.

2.6.1.4 Comparison with allowable stresses

NCT containment vessel stresses are calculated in accordance with the load combinations listed in Table 2.3 and their values are shown in Tables 2.21 and 2.22. The hot environment, cold environment, minimum external pressure, increased external pressure condition, and vibration normally incident to transport are addressed in Sects. 2.6.1, 2.6.2, 2.6.3, 2.6.4, and 2.6.5, respectively. The fatigue or endurance limits for austenitic stainless steel are normally assumed to be about one-half the ultimate tensile strength (*Design Guidelines for Selection of Stainless Steel*, pp. 17–18). For type 304 stainless steel, one-half the ultimate tensile strength is 2.4×10^5 kPa (35,000 psi). Tensile and compressive hoop stresses of the magnitude shown in Tables 2.21 and 2.22 are insignificant compared to the endurance limit of 2.4×10^5 kPa (35,000 psi). As shown in Tables 2.21 and 2.22, the containment vessel stresses during NCT are insignificant. Even at the maximum test temperature and internal pressure (Sect. 3.5.3), the stresses in the containment boundaries were insignificant when compared with the allowable stress intensities shown in Tables 2.4 and 2.5. Corresponding calculated stress regions are shown in Fig. 2.1. Thermal expansion or contraction issues are addressed in Sects. 2.6.1.2 and 2.6.2.

2.6.2 Cold

Requirement. An ambient temperature of -40° C (-40° F) in still air and shade, as required by 10 CFR 71.71(c)(2).

Analysis. The drum is fabricated from type 304 stainless-steel sheet (Table 2.7). As discussed in Sect. 2.6, stainless steel is excellent for low-temperature service, particularly regarding tensile and impact strength. The thermal insulation (Kaolite) is a lightweight noncombustible cast refractory made from portland cement and vermiculite. The only moisture available for freezing at -40°C (-40°F) would be moisture that had not been removed during the curing and cool-down phase of fabrication. Because there will be no free water present for freezing and the insulation is a bonded mass of random fibers and cement, the properties of the insulation will not change appreciably. The matrix may become less flexible when subjected to the cold temperature, but the inner liner will remain in the position in which it was placed at the time of fabrication. The Kaolite 1600 insulation and Cat 277-4 materials are poured and cast in place during the fabrication of the drum weldment (Drawing M2E801508A002, Appendix 1.4.8). Although some contraction of these material may occur during curing, it is assumed for analysis purposes that a zero gap will exist between the Kaolite and the bounding drum and mid liner and a zero gap exists between the Cat 277-4 and the two liners. Due to differences in the coefficient of thermal expansion, some radial and axial interference is expected due to contraction of the outer drum and inner liners. These radial and axial interferences and induced stresses are calculated in Appendix 3.6.3. A maximum von Mises stress of 6.115×10^4 kPa (8869 psi) was calculated for the inner liners. This stress value is well below the allowable yield strength of 1.724×10^5 kPa (25000 psi) at -40° C (-40° F). A maximum von Mises stress of 979 kPa (142 psi) and 510 kPa (74 psi) occurs in the Cat 277-4 and Kaolite 1600 materials, respectively. Based on tabulated data and curves presented in Y/DW-1987 (Smith and Byington, Appendix 2.10.4) and the curves presented Y/DW-1972 (Smith, Appendix 2.10.3) at -40°C (-40°F) , these compressive stresses are well below the failure limit of ~ 6.895 × 10³ kPa (1000 psi) and 5.308×10^3 kPa (770 psi) for the Cat 277-4 and Kaolite 1600 materials, respectively. Therefore, these thermally induced stresses will not reduce the effectiveness of the drum assembly.

The containment boundary is fabricated from type 304L stainless steel, which is suitable for low-temperature service, particularly regarding impact resistance. This material does not show a transition from ductile to brittle failure at this temperature. The *ASME Boiler and Pressure Vessel Code*, Sect. III, Subsection NB-2311, exempts impact testing of type 304L stainless steels. The Izod impact strength for type 304 stainless steel is 149.14 N m (110 ft-lb) from 21.11 to $-195.5^{\circ}C$ (70 to $-320^{\circ}F$). The tensile strength increases from $\sim 4.826 \times 10^5$ to 1.696×10^6 kPa (70,000 to 246,000 psi) between 21.11 and $-195.5^{\circ}C$ (70 and $-320^{\circ}F$), and the yield strength increases about 10% over the same range. NRC Regulatory Guide 7.6, Part B, states, "these designs were made of austenitic stainless steel which is ductile even at low temperatures. Thus, this guide does not consider brittle fracture." The drum, inner liner, top plug, and containment boundary are made from austenitic stainless steel. Similarly, the containment boundary closure nut material is a galling and wear resistant austenitic stainless steel. Therefore, brittle fracture of these structural materials at $-40^{\circ}C$ ($-40^{\circ}F$) is not possible.

The specified O-rings used in the containment boundary have a continuous service temperature range of -40 to 150 °C (-40 to 302 °F) as shown in Table 2.15. The low temperature extreme has been verified by compliance testing of Test Unit-2 (Sect. 2.7.1.2). Test Unit-2 was pre-chilled to a nominal temperature of -40 °C (-40 °F). This was accomplished by placing the unit in an environmental chamber in Bldg. 5800 at ORNL and initially setting the chamber control to -56.7 °C (-70 °F) for 24 hours. After this initial period, the control on the environmental chamber was set to -42.8 °C (-45 °F) for at least 48 hours. Prior to the initiation of structural testing of this unit, it was removed from the environmental chamber and placed in an insulated box and transported to NTRC for testing.

As previously noted, the containment vessels will be assembled for shipment in a temperature environment of ~25°C (77°F). If the package should be exposed to -40°C (-40°F) for an extended period, all components will equalize near this low temperature. The absolute internal pressure inside the containment boundary would decrease to a pressure of 76.74 kPa (11.13 psi), assuming no decay heating (Table 2.20). Therefore, the pressure differential across the containment vessel at -40°C (-40°F) is -24.61 kPa (-3.57 psia) [76.739 - 101.35 kPa] (11.13 - 14.7 psia). Due to similarities of the coefficient of thermal expansion between type 304/304L and the containment vessel closure nut material (Nitronic 60, ASME SA-479), the compression of the O-rings does not change appreciably during the temperature excursion from 25°C (77°F) to -40°C (-40°F). The calculated stresses shown in Table 2.21 were determined by multiplying the stress at the design conditions (Appendix 2.10.1 and Table 2.6) by a factor equal to the ratio of operating pressure to design pressure and adding any contribution from the closure nut preload. This methodology is based on linear elastic material behavior. As shown in Sect. 2.6.1.4, all stresses in the containment boundary components are well below the *ASME Boiler and Pressure Vessel Code* allowable stress intensity limits. As demonstrated by the information presented above, the packaging is acceptable for NCT at -40°C (-40°F).

2.6.3 Reduced External Pressure

Requirement. An absolute external pressure of 25 kPa (3.5 psi) is required by 10 CFR 71.71(c)(3).

Analysis. Reducing the absolute external pressure from ambient pressure to 25 kPa (3.626 psi) will have no effect on the drum assembly because the plastic plugs and aluminum tape covering the ventilation holes for the Cat 277-4 will allow the internal pressure of the drum assembly to equalize. This reduced pressure and a maximum internal pressure produces the maximum pressure differential across the containment boundary of 112.92 kPa (16.378 psi) [137.92 - 25 (20.004 - 3.626)]. The containment boundary is designed and fabricated in accordance with Sects. III and IX of the *ASME Boiler and Pressure Vessel Code* for an internal pressure differential of 699.82 kPa (101.5 psi) as shown in Appendix 2.10.1. A summary of the resulting stress intensities at various locations identified in Fig. 2.1 on the containment vessel in comparison with the ASME code allowable limits for this condition is shown in Table 2.22. These tabulated stresses were determined by multiplying the stress at the design conditions (Appendix 2.10.1 and Table 2.6) by a factor equal to the ratio of operating pressures to design pressures and adding any contribution from the closure nut preload. This methodology is based on linear elastic material behavior. As shown in Table 2.22, all stresses in the containment boundary components are well below the *ASME Boiler and Pressure Vessel Code* allowable stress intensity limits. Therefore, the ES-3100 packaging is acceptable for NCT at an absolute external pressure of 25 kPa (3.626 psi).

2.6.4 Increased External Pressure

Requirement. An absolute external pressure of 140 kPa (20 psi) is required by 10 CFR 71.71(c)(4).

Analysis. Increasing the absolute external pressure from ambient pressure to 140 kPa (20.31 psi) would have no effect on the drum assembly because the plastic plugs and aluminum tape covering the ventilation holes for the Cat 277-4 will allow the internal pressure of the drum assembly to equalize. At this increased external pressure, the maximum pressure differential across the containment boundary would be -63.26 kPa (-9.18 psi) [76.74 - 140 (11.13 - 20.31)], assuming the vessel's absolute pressure and temperature to be 76.74 kPa (11.13 psi) and -40°C (-40°F), respectively. Each containment boundary is designed and fabricated in accordance with Sects. III and IX of the *ASME Boiler and Pressure Vessel Code* for a minimum external pressure of 150 kPa (21.7 psi) gauge. A comparison of

Stress locations shown in Fig. 2.1	Hot cond [10 CFR 71 containment bo @ 36.57 (5.304 psi	.71(c)(1)] undary stress ' kPa	Cold cond [10 CFR 71 containment bou @ -24.61 (-3.57 psi)	(c)(2)] ndary stress kPa	Allowable stress or shear capacity (AS)
	kPa (psi) or kg (lb)	M.S.	kPa (psi) or kg (lb)	M.S.	kPa (psi) or kg (lb)
Top flat portion of sealing lid (center of lid)	3.603×10^2 (52.3)	366	2.425×10^2 (35.17)	545	1.324 × 10 ⁵ (19,200) ^b
Closure nut ring (away from threaded portion)	4.636 ×10 ⁴ (6723)	8.9	4.246 × 10 ^{4 f} (6158)	9.8	4.571 × 10 ⁵ (66,300) ^c
Top flat head (sealing surface region)	1.803 × 10 ⁴ (2615)	13.7	$1.665 \times 10^{4 \text{ f}}$ (2415)	14.9	2.648 × 10 ⁵ (38,400) ^c
Cylindrical section (middle)	1.045×10^{3} (152)	83.5	7.030×10^2 (102)	124.5	8.825×10^4 (12,800) ^d
Cylindrical section (shell to flange interface)	8.449 × 10 ³ (1225)	30.3	8.034×10^{3} (1165.2)	32	2.648 × 10 ⁵ (38,400) ^c
Cylindrical section (shell to bottom interface)	2.679×10^{3} (389)	97.8	1.803×10^{3} (261.5)	145.8	2.648 × 10 ⁵ (38,400)°
Body flange threads load, kg (lb)	9.669 × 10 ² (2132)	20.2	9.072×10^{2} f (2000)	21.6	2.053 × 10 ⁴ (45266) ^e
Body flange thread region (under cut region)	2.639 × 10 ⁴ (3828)	9	2.256 × 10 ^{4 f} (3272)	10	2.648 × 10 ⁵ (38,400)°
Flat bottom head (center)	2.522×10^{3} (366)	51.5	1.698×10^{3} (246.2)	77	1.324 × 10 ⁵ (19,200) ^b
Closure nut thread load, kg (lb)	9.669 × 10 ² (2132)	35.7	9.072 × 10 ^{2 f} (2000)	38.1	3.545 × 10 ⁴ (78154) ^e

Table 2.21. ES-3100 containment boundary evaluation for both hot and cold conditions ^a

^a Calculated stresses were determined by multiplying the stress at the design conditions (Appendix 2.10.1) by a factor equal to the ratio of operating pressures to design pressures (independent of pressure direction) plus contribution from preload. Allowable stress values are taken from Table 2.5.

^b Stress interpreted as the sum of $P_1 + P_b$; allowable stress intensity value is $1.5 \times S_m$. ^c Stress interpreted as the sum of $P_1 + P_b + Q$; allowable stress intensity value is $3.0 \times S_m$. ^d Stress interpreted as the primary membrane stress (P_m); allowable stress intensity value is S_m . ^e Allowable shear capacity is defined as $0.6 \times S_m \times$ thread shear area. Thread shear area = 38.026 cm² (5.894 in.²).

^f Stress and shear load in these areas are dominated by the 162.7 ± 6.8 N m (120 ± 5 ft-lb) preload.

Stress locations shown in Fig. 2.1	Reduced exter [10 CFR 71 containment bo @ 112.9 (16.378 ps kPa (.71(c)(3)] undary stress 2 kPa i) gauge	Increased exte [10 CFR 7 containment b @ -63. (-9.18 pa kPa	Allowable stress or shear capacity (AS)	
	kPa (psi) or kg (lb)	M.S.	kPa (psi) or kg (lb)	M.S.	kPa (psi) or kg (lb)
Top flat portion of sealing lid (center of lid)	$ 1.113 \times 10^3 \\ (161.4) $	118	6.236×10^2 (90.4)	211.3	1.324 × 10 ⁵ (19,200) ^b
Closure nut ring (away from threaded region)	5.130 × 10 ⁴ (7440.8)	7.9	4.246 × 10 ^{4 f} (6158)	9.8	4.571 × 10 ⁵ (66,300)°
Top flat head (sealing surface region)	1.923 × 10 ⁴ (2789.4)	12.8	1.665 × 10 ^{4 f} (2415)	14.9	2.648 × 10 ⁵ (38,400) ^c
Cylindrical section (middle)	3.225×10^{3} (467.8)	26.4	1.808×10^{3} (262.2)	47.8	8.825×10^4 (12,800) ^d
Cylindrical section (shell-to-flange interface)	1.109 × 10 ⁴ (1609)	22.9	9.374 × 10 ³ (1359.6)	27.2	2.648 × 10 ⁵ (38,400)°
Cylindrical section (shell-to-bottom interface)	8.273 × 10 ³ (1200)	31	4.637×10^{3} (672.5)	56.1	2.648 × 10 ⁵ (38,400) ^c
Body flange threads load, kg (lb)	1.092×10^{3} (2407)	17.8	9.072 × 10 ^{2 f} (2000)	21.6	2.053 × 10 ⁴ (45266)
Body flange thread region (under cut region)	3.033×10^4 (4399)	7.7	2.397 × 10 ^{4 f} (3476)	10	2.648 × 10 ⁵ (38,400) ^c
Flat bottom head (center)	7.788×10^{3} (1130)	16	4.365×10^{3} (633)	29.3	1.324 × 10 ⁵ (19,200) ^b
Closure nut thread load, kg (lb)	1.092×10^{3} (2407)	31.5	9.072 × 10 ^{2 f} (2000)	38.1	3.545 × 10 ⁴ (78154)

Table 2.22. NCT ES-3100 containment boundary stress compared to the allowable stress at reduced and increased external pressures^a

^a Calculated stresses were determined by multiplying the stress at the design conditions (Appendix 2.10.1) by a factor equal to the ratio of operating pressures to design pressures (independent of pressure direction) plus contribution from preload. Allowable stress values are taken from Table 2.5.

^b Stress interpreted as the sum of $P_1 + P_b$; allowable stress intensity value is $1.5 \times S_m$.

^c Stress interpreted as the sum of $P_1 + P_b + Q$; allowable stress intensity value is $3.0 \times S_m$.

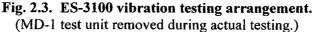
^d Stress interpreted as the primary membrane stress (P_m); allowable stress intensity value is S_m .

^e Allowable shear capacity is defined as $0.6 \times S_m \times$ thread shear area. Thread shear area = 38.026 cm² (5.894 in.²).

^f Stress and shear load in these areas are dominated by the 162.7 ± 6.8 N·m (120 ± 5 ft-lb) preload.

the resulting stress intensities at various locations on the containment vessel (Fig. 2.1) with the ASME code allowable limits for this condition is shown in Table 2.22. These tabulated stresses were determined by multiplying the stress at the design conditions (Appendix 2.10.1 and Table 2.6) by a factor equal to the ratio of operating pressures to design pressures and adding any contribution from the closure nut preload. This methodology is based on linear elastic material behavior. As shown in Table 2.22, all stresses in the containment boundary components are well below the *ASME Boiler and Pressure Vessel Code* allowable stress intensity limits. Therefore, the ES-3100 packaging is acceptable for NCT at an external absolute pressure of 140 kPa (20.31 psi).

2.6.5 Vibration


Requirement. Vibration normally incident to transportation is required by 10 CFR 71.71(c)(5).

Analysis. Vibration testing on a prototypical ES-3100 package (Test Unit-4) was conducted in accordance with the ES-3100 test plan (Appendix 2.10.8) and documented in the test report (Appendix 2.10.7). Testing was conducted with the package restrained as shown in Fig. 2.3. The containment vessel was assembled with the mock-up content weighing 49.90 kg (110 lb). The total weight of the test unit was 201.8 kg (445 lb). The unit was subjected to an endurance test with random vibrations modeled after the power spectral density plot for the Safe-Secure Trailer/Safeguards Transporter (SST/SGT) vibration envelope in the vertical axis (Cap, Appendix 2.10.6). At this level of vibration intensity, the test unit compares with MIL-STD-810F. MIL-STD-810F is a standard random vibration test for basic transportation vibrations generated by a large truck or tractor-trailer combination. MIL-STD-810F defines 60 min of testing as equal to 1609 km (1000 miles) of common carrier transportation. Assuming that the two random vibration tests are similar in intensity, Test Unit-4 had about 6436 km (4000 miles) of simulated random vibration testing. Based on a nominal shipping distance of 3218 km (2000 miles), Test Unit-4 was subjected to a test that was approximately two times more severe than that required by 10 CFR 71.71(c)(5). As shown by the following paragraphs, containment, shielding effectiveness, and subcriticality were maintained even when the package was subjected to such an arduous environment.

The test was run at $\sim 22.8 \,^{\circ}$ C (73 $^{\circ}$ F) rather than at the high or low temperatures specified for NCT. This was reasonable because the thermal coefficients of expansion of the flange and closure nut materials are very close. Therefore, the temperature extremes would not have a significant effect on the closure tightness.

Summarizing 10 CFR 71.43(f), the tests and conditions of NCT shall not substantially reduce the effectiveness of the packaging to withstand HAC sequential testing. The effectiveness of the ES-3100 to withstand HAC sequential testing is not diminished through application of the tests and conditions stipulated in 10 CFR 71.71. The justification for this statement is provided by physical testing of both the ES-2M (Byington 1997) and ES-3100 test packages. Due to the similarities in design, fabrication, and construction materials of the ES-2M and the ES-3100 packages, the physical characteristics of the Kaolite 1600 will hold true for both designs. The integrity of the Kaolite 1600 is not significantly affected by the NCT vibration and 1.2-m drop tests. Prior to testing the ES-2M design, each test unit was radiographed to determine the integrity of the Kaolite 1600 impact and insulation material. Following casting of the material inside the drum, some three-dimensional curving cracks were seen in some packages near the thinner top sections from the bottom of the liner to the bottom drum edge. After vibration testing, radiography of the ES-2M Test Unit-4 showed that the lower half of the impact limiter was broken into small pieces. In order to evaluate these findings, Test Unit-4 was reassembled and subjected to HAC sequential testing. After vibration and impact testing, many three-dimensional curving cracks were seen around the impact areas, and the inner liner was visibly deformed. Nevertheless, Test Unit-4 maintained the adequate spacing required for shielding effectiveness and subcriticality. Temperatures at the containment boundary were also similar to other packages not subjected to vibration testing prior to HAC testing. No inleakage of water was recorded following immersion. Additionally, Test Unit-4 of the ES-3100 test series was subjected to tests and conditions stipulated in 10 CFR 71.71(c)(5) through (c)(10), excluding (c)(8). Following completion of both the NCT and HAC tests, the containment vessel was removed, and a full-body helium leak test was conducted to the leaktight criterion ($\leq 2 \times 10^{-7}$ cm³/s) in accordance with ANSI N14.5-1997.

Following compliance testing of the ES-3100 shipping package, minor changes were incorporated into the proposed design as described in Sect. 2.5.1. During the vibration test, the shipping package is restrained from movement in the vertical direction with a tie-down arrangement similar to that used on a SST/SGT for a single package. Based on the acceleration spectral density presented in Appendix 2.10.6, the largest contributor to shipping package motion is in the vertical direction. Since the containment vessel and contents are not restrained within the inner liner cavity, the containment vessel is free to bounce up and down. In the vertical direction, the top plug and the bottom of the inner liner restrict the movement of this vessel. Since the inner liner contour has not changed with respect to the containment vessel, and the fact that there are clearances between the containment vessel flange and the inner liner in the vertical direction, the cast neutron poison and inner liner are not directly impacted by the movement of the containment vessel. Therefore, changes in the neutron poison and minor radial dimension changes in the mid liner will not affect the outcome from vibration testing. Based on the success of the previously tested units and the fact that these proposed changes will have little or no effect on testing, vibration normally incident to transport does not reduce the effectiveness of the packaging during HAC testing. Thus, the requirements of 10 CFR 71.43(f) are satisfied.

Procedures will be followed to ensure that the packaging is assembled as specified (Sect. 7). The drum, lid, and fasteners are refurbished as required before each use. The $\frac{5}{-10}$ -diam flange nuts on the drum are torqued to $40.67 \text{ N} \cdot \text{m}$ (30 ft-lb) nominal. The closure nut on the containment boundary is

torqued to 162.7 N·m (120 ft-lb) nominal. The package is acceptable for vibration normally incident to transport in an SST/SGT.

2.6.6 Water Spray

Requirement. A water spray that simulates exposure to rainfall of \sim 5.08 cm (2 in.) per hour for at least 1 h is required by 10 CFR 71.71(c)(6).

Analysis. A water spray of 5.08 cm (2 in.) per hour was directed from above and around the periphery of the ES-3100 Test Unit-4 for a minimum of 1 h as shown in Fig. 2.4. The drum had four plastic plug-sealed ventilation holes near the top which prevents water from entering the insulation cavity. Aluminum duct tape, covering the installation holes in the mid liner, prevents water from entering the neutron poison cavity. There was evidence of water leakage into the volume between the containment boundary and the inner liner at the conclusion of the test. Water entered this cavity through the holes provided in the lid for the TID lugs, but none penetrated the containment boundary. The criticality analysis shown in Sect. 6 was conducted with moderation by water to the most reactive credible extent and close full reflection of the containment system by water on all sides. Because the package remained subcritical under these conditions, the ES-3100 package is acceptable for use under the water spray conditions of NCT.

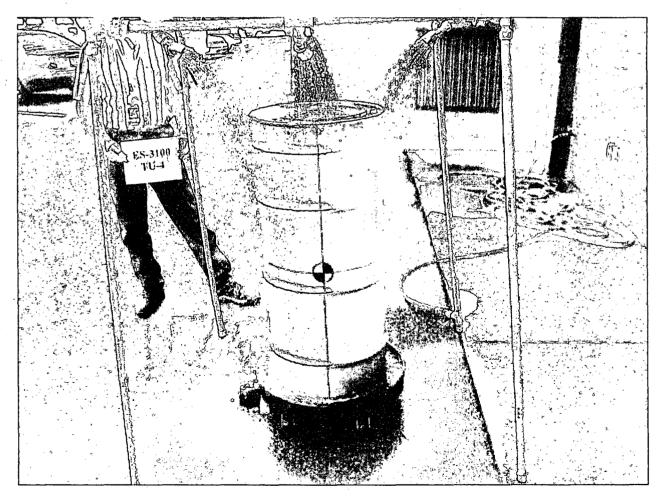


Fig. 2.4. Water spray test arrangement for Test Unit -4.

2.6.7

Free Drop

Requirement. A free drop of 1 m (4 ft) onto a flat, essentially unyielding, horizontal surface in a position for which maximum damage is expected is required by 10 CFR 71.71(c)(10). This test shall be made between $1\frac{1}{2}$ and $2\frac{1}{2}$ h after the conclusion of the water spray test (Sect. 2.6.6).

Analysis. The ES-3100 test package, Test Unit-4, previously sprayed with water (Sect. 2.6.6) with a measured gross weight of 201.85 kg (445 lb) and containing a content weight of 49.90 kg (110 lb) was tested in accordance with 10 CFR 71.71(c)(7). The temperature and pressure at the time of the drop test was $22.8 \degree C (73 \degree F)$ and ~ 101.35 kPa (14.70 psi), respectively. As discussed in Sect. 2.6, the response of the test package would not have been significantly different if it had been tested at the extremes of the temperature range dictated by 10 CFR 71.71(b) with the containment vessel at the maximum normal operating pressure.

The essentially unyielding surface used for this test was the indoor drop test pad at the NTRC. All 9-m (30-ft) drop and crush tests were conducted at the outside drop pad at the NTRC. The indoor pad consists of a 5.08-cm (2-in.) thick steel plate embedded inside a reinforced concrete pad ~127-cm (50-in.) thick. The outside drop pad consists of a 10.16-cm (4-in.) thick steel plate embedded inside a reinforced concrete pad ~167.6-cm (66-in.) thick. An article has been prepared by the NTRC staff to describe the integrity of these test pads (Shappert 1991).

Test Unit-4 was dropped from 1.2 m (4 ft) in a vertical position, with the drum's top initially striking the unyielding surface (Fig. 2.5). This attitude was assumed to be the most vulnerable orientation for producing damage to the sealing surfaces of the containment vessel and for introducing buckling into the cylindrical portion of the containment vessel body. The long axis of the drum was 0° from vertical. The test package made a free fall, with initial contact on the drum's lid. Damage consisted of shortening the drum height from 110.81 cm ($43\frac{1}{2}$ in.) to 110.49 cm ($43\frac{1}{2}$ in.) There were no breaks in the drum assembly. Additional details and sketches can be obtained from the test report (Appendix 2.10.7). Based on the HAC analytical structural deformation results shown in Sect. 2.7.8, the drop test damage would be nearly identical had this test been conducted on the proposed configuration using the Cat 277-4 neutron absorber. On this basis, the ES-3100 package meets the requirements of 10 CFR 71.71(c)(7).

In addition to the tests conducted on Test Unit-4, all test units (except Test Unit-6) were initially subjected to a free drop of 1.2-m (4 ft) onto a flat, essentially unyielding horizontal surface. As shown in Table 2.18, the orientations for these drops were two drops bottom to lid slapdown with the long axis of the drum ~ 12° from parallel to the drop pad; one drop with the long axis of the test unit parallel to the drop pad; one drop with the long axis of the test unit parallel to the drop pad; one drop with the center of gravity drop over the drum/lid interface with the long axis of the drop rotated ~24.6° from perpendicular to the drop pad; and one with the long axis of the drum perpendicular to the drop pad. Package description, damage from testing, and drop orientation concerns are discussed in Sect. 2.7.1 for each test unit. Following the 1.2-m (4-ft) drop, each of these test units was subjected to the full HAC sequential test battery. The robustness of the ES-3100 containment vessel was demonstrated through whole boundary helium leak testing to $\leq 2.0 \times 10^{-7}$ cm³/s (leaktight). This helium leak test eclipses the required criteria for both NCT and HAC based on the bounding case contents. Visual inspection of the containment boundaries showed no distortion or deformation from testing. Therefore, based on the various drop orientations, the severity of the HAC test sequence, and the testing conducted on Test Unit-4, the ES-3100 shipping package has been shown to meet the requirements of 10 CFR 71.43, 71.51(a)(1), and 71.71(c)(7).

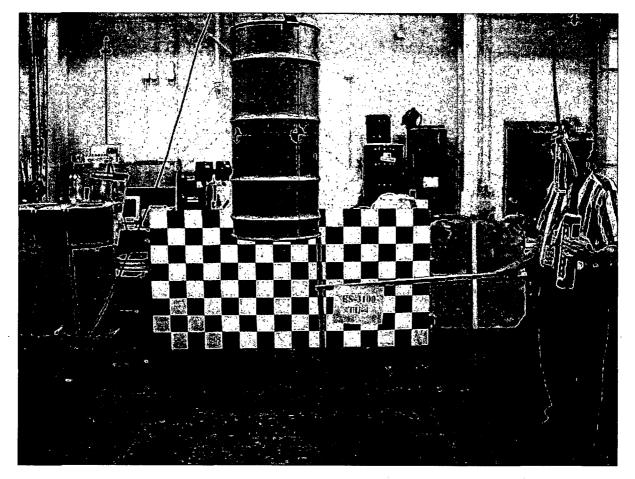


Fig. 2.5. NCT free drop test on Test Unit-4.

2.6.8 Corner Drop

Requirement. 10 CFR 71.71(c)(8) requires a free drop onto each corner of the package in succession, or in the case of a cylindrical package, onto each quarter of each rim, from a height of 0.3 m (1 ft) onto a flat, essentially unyielding, horizontal surface. This test applies only to fiberboard, wood, or fissile material rectangular packages not exceeding 50 kg (110 lb) and fiberboard, wood, or fissile material cylindrical packages not exceeding 100 kg (220 lb).

Analysis. This test is not applicable because the range of package weights for the ES-3100 [146.88 kg (323.79 lb) to 187.81 kg (414.05 lb)] exceed the above-weight restrictions for fissile material cylindrical packages.

2.6.9 Compression

Requirement. Title 10 CFR 71.71(c)(9) requires that packages weighing up to 5000 kg (11,000 lb) must be subjected for a period of 24 h to a compressive load applied uniformly to the top and bottom of the package in the position in which the package would normally be transported. The compressive load must be the greater of the following:

- 1. the equivalent of five times the weight of the package; or,
- 2. the equivalent of 13 kPa (2.0 psi) multiplied by the vertically projected area of the package.

Analysis. The proposed maximum weight of the ES-3100 shipping package is calculated to be 187.81 kg (414.05 lb) [Table 2.8]. As shown on Drawing M2E801580A010 (Appendix 1.4.8), the data plate states that the maximum gross weight of the ES-3100 shipping package is 190.51 kg (420 lb). In accordance with Item 1 above, the minimum compressive load would be 5×190.51 kg or 952.55 kg (2100 lb). The vertically projected area of the package is 1891 cm² (293.16 in.²) or the area of the lid weldment. Based on Item 2 above, the minimum compressive load would be 13 kPa × 1891 cm² or 250.72 kg (552.75 lb). Therefore, the approach stipulated in Item 1 above represents the greatest compressive load for this configuration. A conservative 1043 kg (2300 lb) compressive load was uniformly applied to the top and bottom of Test Unit-4 for at least 24 h (Fig. 2.6). The test package had been sprayed with water as noted in Sect. 2.6.6. No change in height or diameter of the test unit resulted from the test.

Fig. 2.6. Compression test on Test Unit-4.

Due to the design of the ES-3100 drum lid, the applied compressive load was distributed equally around the lid and supported primarily through the outer drum contour and Kaolite 1600 substrate. Little or no load is transferred to the neutron poison (BoroBond4 in the test units) and internal liners. Therefore, the changes in the design of the liners and neutron poison proposed for this shipping package should not impact the outcome resulting from compression testing. Based on the results of compliance testing of Test Unit-4 and the insignificant changes in the design, the ES-3100 package meets the requirements of 10 CFR 71.71(c)(9).

2.6.10 Penetration

Requirement. Impact of the hemispherical end of a vertical steel cylinder of 3.2 cm (1.25 in.) diameter and 6 kg (13 lb) mass dropped from a height of 1 m (40 in.) onto the exposed package surface that is expected to be most vulnerable to puncture is required by 10 CFR 71.71(c)(10). The long axis of the cylinder must be perpendicular to the package surface.

Analysis. A 6-kg (13-lb) steel cylinder was dropped from 1 m (40 in.) onto the surface of Test Unit-4, which was previously subjected to water spray, free drop, vibration and compression tests. The penetration bar impacted the side of the drum at the welded seam near the package's center of gravity. The bar did not penetrate the drum, but an indentation 0.64-cm (0.25-in.) deep was recorded at the drum seam weld as shown in Fig. 2.7. The magnitude of this indentation is insignificant. Based on the HAC analytical structural deformation results shown in Sect. 2.7.8, the magnitude of indentation would be nearly identical had this test been conducted on the proposed configuration using the Cat 277-4 neutron absorber. On this basis, the ES-3100 package meets the requirements of 10'CFR 71(c)(10).

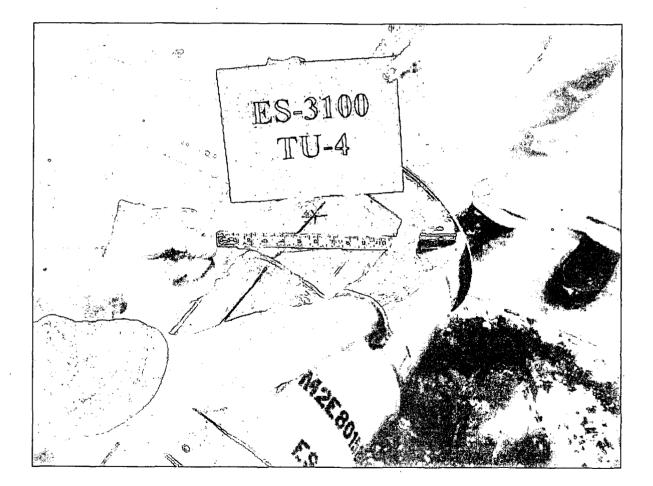


Fig. 2.7. Penetration test damage on Test Unit-4.

2.7 HYPOTHETICAL ACCIDENT CONDITIONS

This section demonstrates compliance with 10 CFR 71.73, "Hypothetical Accident Conditions." It shows that the package will experience no loss in shielding effectiveness or spacing and no release of radioactive content or leakage of water into the containment boundary during HAC. A summary of the tests and analyses conducted on the ES-3100 configuration is shown in Table 2.23.

Title 10 CFR 71.51 requires that the ES-3100 package satisfy the standards under HAC specified in 10 CFR 71.73. For the tests specified in 10 CFR 71.73, five test packages were subjected to the five sequential tests: free drop, crush, puncture, thermal, and immersion. The configuration for Test Units-1 through -4 used full-scale shipping packages with steel mock-ups similar to the maximum contents to be shipped in the ES-3100 configuration. Test Unit-5, also a full-scale shipping package, was dropped with a mock-up of the lightest component proposed for shipping. All test units were first subjected to the NCT free drop from 1.2 m (4 ft). In addition to the 1.2-m (4-ft) drop, Test Unit-4 was also subjected to the full battery of tests in accordance with applicable paragraphs of 10 CFR 71.71(c)(5) through (c)(10) except (c)(8). These preliminary tests were conducted to provide evidence that the ES-3100 package's ability to satisfy the requirements of HAC is provided in the following sections. A summary of the test results is provided in each area of Sect. 2.7; details are documented in the test report (Appendix 2.10.7).

Extensive computer impact simulation and analysis was conducted using LS-Dyna software. (LS-Dyna 2002) The results are documented in Appendix 2.10.2. Early in the design phase, the simulation was used to determine areas of large structural deformation and stress concentrations. Prior to the compliance testing in accordance with 10 CFR 71.71, the simulation was used to determine the drop orientation that would cause the most structural damage to the drum assembly and thereby propose a worst-case scenario for potential breeching of the containment boundary. Prior drop test programs have shown the slapdown orientation to cause the most structural degradation of a drum-style container. Computer software LS-DYNA-3D was used to simulate a 9-m (30-ft) drop orientation at a slapdown angle of 12° with a friction factor of $\mu = 0.0$ as calculated using the computer code Slapdown, Version 05.20.93. Slapdown calculated that no matter what friction factor was assumed, the tail-end velocity peaked at approximately 14° (Handy 1997, Appendix 6.10). The maximum tail-end velocity versus slapdown angle is presented in Fig. 6.10.4 in Handy 1997, and the logic for the development of this figure is explained in Appendix 6.10 in Handy 1997. Due to the mitigating effects of the length to diameter ratios and the relative closeness of the 12° increase in velocity to the maximums (shown in Fig. 6.10.4 in Handy 1997), the 12°slapdown is considered to be representative of the worst-case slapdown. Based on the correlation of data obtained from preliminary drop tests of the similar ES-2M configuration and computer-simulated drops, several orientations were eliminated from the drop test matrix (Table 2.23). Several other impact simulations have been conducted using a wide range of material properties for the impact limiter material (Kaolite 1600) to determine the variance in structural deformation. Results of these simulations are documented in Sect. 5.6 in Handy (1997). Although the analysis shows some variance, the magnitude of difference was not large enough to degrade the performance of the drum assembly and containment boundary. Due to the similarities in design, fabrication, and material used in construction of the shipping packages, these same results would hold true for the ES-3100 package.

	NCT water spray,	1.2-m		(30 ft) dro	p and crus	h test	1.2-m (4-ft)	Preheat over	HAC	O-ring	Full-body	0.9-m (3-ft)	15-m (50-ft)
Container	compression, penetration, vibration	(4 ft) drop	Top drop	CG over lid corner	Bottom to lid slapdown	Side drop	puncture 38°C drop (100°F) test	38°C burn (operational) helium leak test ^b			immer. test	immer. test	
TU-1		1—YES			12° 2—YES		3—YES°	4—YES		$6-YES \le 1.0 \times 10^{-4} \text{ ref. cm}^{3}/\text{s}$		8—YES	
TU-2		1—YES				2—YES	3—YES	4—YES			7—YES Pulsing between 1.0× 10 ⁻⁹ to 1.4 × 10 ⁻⁶ cm ³ /s	8—YES	
TU-3		1—YES		24.6° 2—YES			3—YES	4—YES	5—YES	$6-YES \le 1.0 \times 10^{-4} \text{ ref. cm}^{3}/\text{s}$		8—YES	
TU-4	Yes	1—YES	2—YES				3-YES	4—YES		6-YES ≤1.0 × 10 ⁻⁴ ref. cm ³ /s		8—YES	
TU-5		1—YES			12° 2—YES		3—YES	4—YES		6-YES ≤1.0 × 10 ⁻⁴ ref. cm ³ /s	1	8—YES	
TU-6					÷.,					1-YES ≤1.0 × 10 ⁻⁴ ref. cm ³ /s			2—YES
Impact Analysis		YES	YES	YES	YES	YES							
Thermal Analysis	YESd	· · · · · · · · · · · · · · · · · · ·						YES	YES ^d				

Table 2.23. Test and analysis summary for the ES-3100 package ^a

^a Numbering refers to sequence of activities.
 ^b Full-body helium leak test conducted following HAC testing. Leakage value recorded after 20 minutes of the test period.
 ^c Test Unit-1 was puncture tested in four different orientations.
 ^d Thermal analysis was conducted to determine time for cooling to -40°C and to evaluate the application of decay heating and insolation during the cool-down phase.

Title 10 CFR 71.73(b) requires that the HAC tests, except for the water immersion tests, be conducted at the most unfavorable ambient temperature within the range of -29 to 38° C (-20 to 100° F). This requirement was previously discussed in Sect. 2.6 for NCT, in which it was concluded that the tests performed at 70 to 90°F ambient temperatures should provide essentially the same results, except for thermal, as those made at any ambient temperature between -29 to 38° C (-20 to 100° F). Buckling failures are not anticipated for this package design. This assumption is based on the fact that no evidence of buckling occurred when the package was subjected to the compression test in accordance with 10 CFR 71.71(c)(9); the water immersion tests in accordance with 10 CFR 71.73(c)(5) and 71.73(c)(6); and the 1.2-m and 9-m drop test conducted on Test Unit-4. Code calculations further substantiate that buckling failures of the containment vessel are not anticipated for this package design (Appendix 2.10.1).

Title 10 CFR 71.73(b) states that the HAC initial pressure within the containment boundary vessel during testing shall be considered as the maximum internal normal operating pressure. The internal pressures in the ES-3100 containment vessel at various temperatures for NCT are discussed in Sects. 3.4.1 and 3.4.2 and tabulated in Table 2.20. The maximum normal absolute operating pressure due to insolation and the bounding case parameters is 137.92 kPa (20.004 psia) for the containment vessel. This pressure is well below the design internal gauge pressure of 699.82 kPa (101.5 psi). Increasing the internal pressure in the containment boundary to the value noted above before a free drop (Sect. 2.7.1), crush (Sect. 2.7.2), puncture (Sect. 2.7.3), or water immersion (Sect. 2.7.5) testing would have no detrimental effect on the containment boundary's structural integrity due to the low stresses shown in Table 2.21. Temperature and pressure increases in the containment boundary due to the compliance thermal tests are discussed and evaluated in Sects. 2.7.4 and 3.5.3. A summary of these pressures is presented in Appendix 3.6.5.

Summarizing 10 CFR 71.43(f) and 71.55(d)(4), the tests and conditions of NCT will not substantially reduce the effectiveness of the packaging to withstand HAC sequential testing. The effectiveness of the ES-3100 to withstand HAC sequential testing is not diminished through application of the tests and conditions stipulated in 10 CFR 71.71. The justification for this statement is provided by physical testing of both the ES-2M and ES-3100 test packages, and the analytical structural deformation predicted in Appendix 2.10.2 (summarized in Sect. 2.7.8). Due to the similarities in design, fabrication, and material used in construction of both the ES-2M and the ES-3100 package, the physical characteristics of the Kaolite 1600 will hold true for both designs. The integrity of the Kaolite 1600 is not significantly affected by the NCT vibration and 1.2-m (4-ft) drop tests. Prior to testing the ES-2M design, each test unit was radiographed to determine the integrity of the Kaolite 1600 impact and insulation material. Following casting of the material inside the drum, some three-dimensional curving cracks were seen in some packages near the thinner top sections from the bottom of the liner to the bottom drum edge. After vibration testing, radiography of the ES-2M Test Unit-4 showed that the lower half of the impact limiter was broken into small pieces. In order to evaluate these findings, Test Unit-4 was reassembled and subjected to HAC sequential testing. After vibration and impact testing, many three-dimensional curving cracks were seen around the impact areas, and the inner liner was visibly deformed. Nevertheless, the ES-2M Test Unit-4 maintained the adequate spacing required for shielding effectiveness and subcriticality. Temperatures at the containment boundary were also similar to other packages not subjected to vibration testing prior to HAC testing. No inleakage of water was recorded following immersion. Additionally, Test Unit-4 of the ES-3100 test series was subjected to tests and conditions stipulated in 10 CFR 71.71(c)(5) through (c)(10), excluding (c)(8). Following completion of these NCT tests, the test unit was subjected to the full HAC test battery. Following these tests, the containment vessel was removed and subjected to a full-body helium leak test. Criteria for a leaktight condition was achieved. Based on the success of these units, vibration normally incident to transport does not reduce the effectiveness of the packaging during HAC testing. Thus, the requirements of 10 CFR 71.43(f) and 71.55(d)(4) are satisfied.

2.7.1 Free Drop

Requirement. A free drop of 9 m (30 ft) onto a flat, unyielding, horizontal surface, striking the surface in a position for which maximum damage is expected is required by 10 CFR 71.73(c)(1).

Analysis. Five test packages were drop tested from 9 m (30 ft) in accordance with 10 CFR 71.73(c)(1) with the set up as shown in Fig. 2.8. A description of the drop pad is presented in Sect. 2.6.7. Four different drop positions were used in the testing based on the analytical results from LS-Dyna drop simulations. The ES-3100 test units were designated as Test Units-1, through -5. Test Unit-4 was subjected to the full NCT testing (water spray, 1.2-m (4-ft) drop, compression, penetration, and vibration) prior to HAC testing. The gross weight of the ES-3100 test units varied between 157.4 kg (347 lb) and 203.7 kg (449 lb). Mock-up components weighing between 3.6 kg (8 lb) [Test Unit-5] to 50.3 kg (111 lb) [Test Unit-3] were used during testing. Discussion of the damage to each test package resulting from the 9-m (30 ft) drop is given in subsequent paragraphs. Rationale for the four drop positions is included in the discussion for each test unit. Minor changes to the mid liner and the substitution of the neutron poison from BoroBond4 to Cat 277-4 are further evaluated in Sect. 2.7.8.

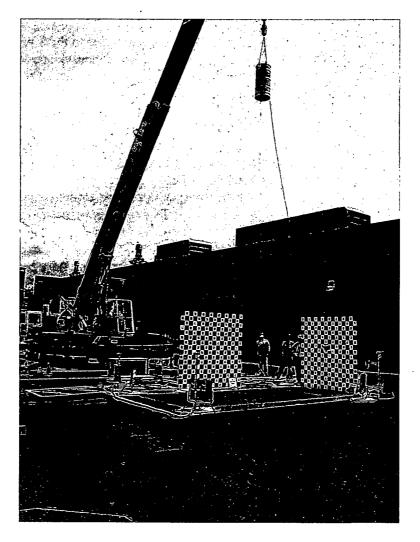


Fig. 2.8. 9-m drop test arrangement for all test units.

2-54

2.7.1.1 End Drop

Test Unit-4, weighing 201.8 kg (445 lb), was dropped from 9-m (30 ft) with the long axis of the drum perpendicular to the impact surface within 0.2° . The mock-up components are shown on Drawing M2E801580A027. The concern for this drop orientation was that the containment boundary assembly would crush, buckle or compress the insulation to a thickness that would result in excessive O-ring temperatures during the thermal testing cycle. Following initial impact, the package bounced very little before landing on its side. The damage to the drum consisted of reducing the overall height from 43.5 in. [following the 1.2 m (4 ft) drop] to a minimum 42.63 in. The diameter of the drum was measured at six locations along the long axis of the package and at two radial locations. The measurements and pictorials of the damage are recorded on Test Form 1 of procedure TTG-PRF-08 shown in the test report data sheets (Appendix 2.10.7) and are summarized in Tables 2.24 and 2.25 and Fig. 2.9.

Table 2.24. Recorded height damage to Test Unit-4 from 1.2-m and 9-m drop testing

	0°	90°	180°	270°
Pre-drop height (in.)	43.50	43.50	43.63	43.63
Post 1.2-m drop height (in.)	43.50	43.50	43.50	43.50
Post 9-m drop height (in.)	43.00	43.13	42.88	42.63

Table 2.25. Recorded diametrical damage to Test Unit-4 from 1.2-m and 9-m drop tests[Diameter (in.)]

		0 to 180°		90 to 270°			
Axial measurement location	Pre drop test	Post 1.2-m drop test	Post 9-m drop test	Pre drop test	Post 1.2-m drop test	Post 9-m drop test	
Top false wire	19.25	19.25	19.25	19.38	19.38	19.38	
Top rolling hoop	19.25	19.25	19.13	19.25	19.25	19.88	
CG & top rolling hoop	19.25	19.25	19.81	19.25	19.25	19.38	
CG rolling hoop	19.13	19.13	19.13	19.25	19.25	19.25	
Bottom rolling hoop	19.13	19.13	19.25	19.25	19.25	19.25	
Bottom false wire	19.38	19.38	19.25	19.25	19.25	19.25	

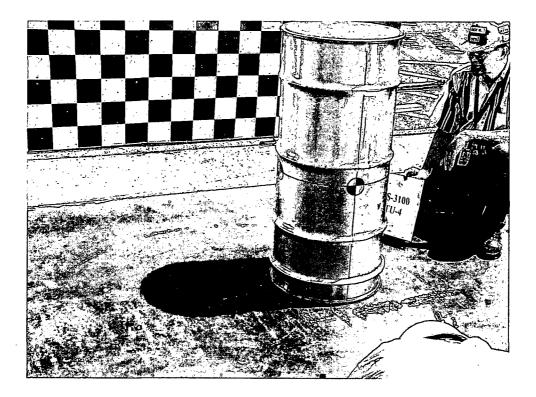


Fig. 2.9. 9-m drop test damage on Test Unit-4.

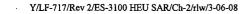
2.7.1.2 Side Drop

Test Unit-2, weighing 202.8 kg (447 lb) was chilled to -40° C (-40° F) prior to conducting the drop tests. This unit was sequentially dropped from 1.2 m (4 ft), 9 m (30 ft), crushed from 9 m (30 ft), and puncture tested with the long axis of the drum parallel to the impact surface. The mock-up component used in Test Unit-2 is shown on Drawing M2E801580A027 and weighed 49.9 kg (110 lb). There were two concerns for this drop orientation. The primary concern was that the containment boundary assembly would crush or compress the insulation to a thickness that would result in excessive O-ring temperatures during the thermal testing cycle. Another concern was that the cold temperatures might cause excessive loads and deformation in the containment vessel body during impact. This, in turn, might cause leaking above the regulatory limit to occur. The test package made a free fall with initial contact occurring between the rolling hoops of the drum and the impact surface with the ambient temperature at 24.2°C (75°F). Since it was important to evaluate the package at the regulatory minimum temperature, individual results of each test were not recorded. Time required to measure the package between drops would have allowed the package to further increase in temperature. Cumulative results of damage to Test Unit-2 from drop testing is shown in Tables 2.26, 2.27, and 2.28 and Fig. 2.10.

Axial measurement location	0 to	180°	90 to 270°		
	Pre drop test	Post drop test *	Pre drop test	Post drop test ^a	
Top false wire	19.25	17.63	19.25	19.81	
Top rolling hoop	19.25	17.38	19.25	19.75	
CG & top rolling hoop	19.25	17.00	19.25	20.00	
CG rolling hoop	19.25	16.00	19.25	20.25	
Bottom rolling hoop	19.25	15.50	19.25	20.13	
Bottom false wire	19.25	18.00	19.25	19.38	

Table 2.26. Recorded diametrical damage to Test Unit-2 from NCT and HAC drop testing[Diameter (in.)]

^a Includes cumulative damage from 1.2-m drop, 9-m drop, and crush test.


Table 2.27.	Recorded flat	contour damage	to Test Un	it-2 from	NCT an	d HAC dro	p testing

Axial measurement location	Flat width @ 0° (in.)	Flat width @ 180° (in.)
Top false wire	. 8	6.25
Top rolling hoop	9	8.88
CG & top rolling hoop	10.13	9.63
CG rolling hoop	9.88	12.00
Bottom rolling hoop	9.88	14.88
Bottom false wire	9.38	0
Crease (see Fig. 2.10 for location)		15.25

Table 2.28. Recorded height damage to Test Unit-2 from NCT and HAC drop testing

	0°	90°	180°	270°
Pre-drop height (in.)	43.50	43.50	43.50	43.50
Post-drop height (in.) ^a	44.75	43.75	42.75	43.63

^a Includes cumulative damage from 1.2-m drop, 9-m drop, and crush test.

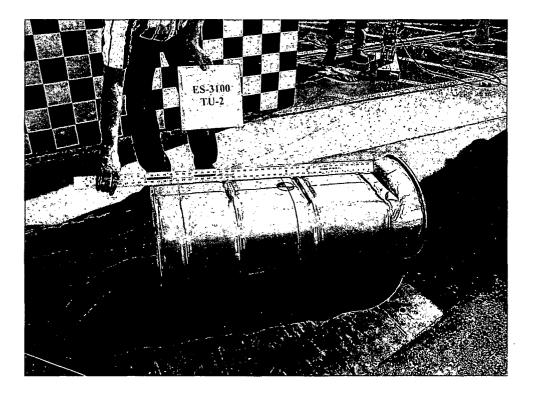


Fig. 2.10. Cumulative damage from 9-m drop and crush testing on Test Unit-2.

2.7.1.3 Corner Drop

Test Unit-3, weighing 203.7 kg (449 lb), was dropped from 9 m (30 ft), with the long axis of the drum at an oblique angle of 24.8° (desired angle was 24.6°) from the impact surface. The mock-up component used in Test Unit-3 is shown on Drawing M2E801580A027 and weighed 50.3 kg (111 lb). The primary concern for this drop orientation was that the combination of plastic deformation at impact on the corner of the drum and the crushing or compacting of the adjacent insulation by the containment vessel flange would result in excessive O-ring temperatures during thermal testing. Another concern was that the mock-up contents would be forced against the containment boundary lid at impact. This, in turn, might yield the flange or closure nut, resulting in loss of containment. The test package made a free fall, with initial contact occurring between the top rim of the drum and the impact surface with the ambient temperature at 28°C (82.4°F). A secondary contact occurred between the bottom drum rim and the impact surface. No drum studs, nuts, or washers were lost due to the impact. The lid was still firmly attached to the drum (and therefore the contents of the shipping container) was maintained. A general description of damage to Test Unit-3 is summarized in Tables 2.29 and 2.30. Pictorials of damage are shown on Fig. 2.11.

	0°	90°	180°	270°
Pre-drop height (in.)	43.50	43.50	43.50	43.50
Post 1.2-m drop height (in.)	43.00	43.50	43.63	43.50
Post 9-m drop height (in.)	40.63	43.25	43.75	43.38

Table 2.29. Recorded height damage to Test Unit-3 from 1.2-m and 9-m drop testing

Table 2.30. Recorded diametrical damage to Test Unit-3 from 1.2-m and 9-m drop testing
[Diameter (in.)]

A gial maggunament	-	0 to 180°		90 to 270°			
Axial measurement location	Pre drop test	Post 1.2-m drop test	Post 9-m drop test	Pre drop test	Post 1.2-m drop test	Post 9-m drop test	
Top false wire	19.25	19.25	19.25	19.13	19.38	19.19	
Top rolling hoop	19.13	19.13	18.63	19.13	19.25	19.88	
CG & top rolling hoop	19.13	19.13	19.13	19.13	19.25	19.38	
CG rolling hoop	19.13	19.13	19.13	19.13	19.25	19.38	
Bottom rolling hoop	19.13	19.13	19.13	19.13	19.25	19.38	
Bottom false wire	19.13	19.13	19.13	19.13	19.25	19.25	

Fig. 2.11. Test Unit-3 damage from 1.2 and 9-m drop tests.

2.7.1.4 Oblique Drops

Two oblique (slapdown) drops were conducted in the same attitude with maximum and minimum content weights to determine the structural response on the package in accordance with Regulatory Guide 7.8. Paraphrasing Regulatory Position 1.6, a local structural response might be greater during an impact test if the weight of the contents were less than the maximum. Therefore, Test Units-1 and -5 contained the maximum and minimum weight configurations, respectively.

2.7.1.4.1 Test Unit-1 slapdown

Test Unit-1, weighing 202.3 kg (446 lb) was dropped from 9-m (30 ft) with the long axis of the unit at an oblique angle of 12.2° (desired angle was 12°) to the essentially unyielding surface. The mock-up component used in Test Unit-1 is shown on Drawing M2E801580A027 and weighed 49.90 kg (110 lb). Based on Sect. 3.1 of Regulatory Guide 7.8, the structural performance of the package must be evaluated for the minimum and maximum weight of the contents. Therefore, this unit was tested above the maximum proposed content weight to see if the containment vessel would react differently from the much lighter mock-up used in Test Unit-5 in a similar drop orientation. The primary concern was that the orientation would cause greater angular acceleration of the contents near the package top. This in turn would cause the containment boundary to crush or compress the insulation to a thickness that would result in excessive O-ring temperatures during the thermal testing cycle. The test package made a free fall with initial contact occurring between the rolling hoops of the drum and the impact surface with the ambient temperature at 28°C (82.4°F). No drum studs, nuts, or washers were lost due to the impact. The lid was still firmly attached to the drum assembly, with no visible separations or rips; thus, the position of the containment vessel inside the drum (and therefore the contents of the shipping container) was maintained. A general description of damage is provided in Tables 2.31, 2.32, and 2.33 and Fig. 2.12.

	0°	90°	180°	270°
Pre-drop height (in.)	43.50	43.50	43.50	43.50
Post 1.2-m drop height (in.)	43.50	43.50	43.50	43.50
Post 9-m drop height (in.)	42.63	43.38	43.25	43.38
Buckle (in.)	44.50			

Table 2.31. Recorded height damage to Test Unit-1 from 1.2-m and 9-m drop testing

Table 2.32.	Recorded diametrical damage to Test Unit-1 from 1.2-m and 9-m HAC drop testing
	[Diameter (in.)]

		0 to 180°		90 to 270°		
Axial measurement location	Pre drop test	Post 1.2-m drop test	Post 9-m drop test	Pre drop test	Post 1.2-m drop test	Post 9-m drop test
Top false wire	19.25	19.13	18.50	19.25	19.25	19.38
Top rolling hoop	19.25	19.00	18.50	19.25	19.25	19.38
CG & top rolling hoop	19.25	19.13	18.50	19.25	19.25	19.38
CG rolling hoop	19.25	19.13	18.63	19.25	19.25	19.38
Bottom rolling hoop	19.25	19.00	18.63	19.25	19.25	19.25
Bottom false wire	19.25	19.00	17.81	19.25	19.25	19.38

Axial measurement location	Flats width maximum post 1.2-m drop (in.)	Flats width maximum post 9-m drop (in.)	
Top false wire	5.25	8.00	
Top rolling hoop	4.38	7.38	
CG & top rolling hoop	4.50	7.13	
CG rolling hoop	3.00	6.38	
Bottom rolling hoop	4.00	6.75	
Bottom false wire	4.63	10	

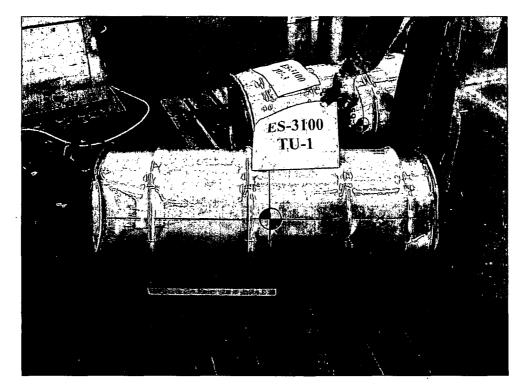


Fig. 2.12. 1.2 and 9-m drop test damage on Test Unit-1.

2.7.1.4.2 Test Unit-5 slapdown

Test Unit-5, weighing 157.4 kg (347 lb), was dropped from 9-m (30 ft), with the long axis of the drum at an oblique angle of 12.5° (desired angle was 12°) from the impact surface. The mock-up component (Drawing M2E801580A029), weighing 3.6 kg (8 lb), was the hardware with the majority of the mass located near the bottom of the containment vessel (Sect. 2.5.1). Based on Sect. 3.1 of Regulatory Guide 7.8, the structural performance of the package must be evaluated for the minimum and maximum weight of the contents. Therefore, this unit was tested at the minimum proposed weight to see if the containment vessel would react differently from the much heavier mock-up used in Test Unit-1 in a similar drop orientation. The test package made a free fall with initial contact occurring between the bottom rim of the drum and the impact surface with the ambient temperature at 30.6 °C (87°F). A secondary contact occurred between the top drum lid and the impact surface. No drum studs, nuts, or washers were lost during this impact test. The lid was still firmly attached to the drum assembly, with no visible separations or rips; thus, the position of the containment vessel inside the drum (and therefore the contents of the shipping container) was maintained. A general description of damage is provided in Tables 2.34, 2.35, and 2.36 and Fig. 2.13.

	0°	90°	180°	270°
Pre-drop height (in.)	43.50	43.50	43.50	43.50
Post 1.2-m drop height (in.)	43.88	43.50	43.50	43.50
Post 9-m drop height (in.)	44.50	43.50	43.38	43.50

Table 2.34. Recorded height damage to Test Unit-5 from 1.2-m and 9-m drop testing

Table 2.35. Recorded diametrical damage to Test Unit-5 from 1.2-m and 9-m HAC drop) testing
[Diameter (in.)]	

A		0 to 180°		90 to 270°		
Axial measurement location	Pre drop test	Post 1.2-m drop test	Post 9-m drop test	Pre drop test	Post 1.2-m drop test	Post 9-m drop test
Top false wire	19.25	18.88	18.75	19.38	19.38	19.38
Top rolling hoop	19.25	19.00	18.75	19.25	19.25	19.38
CG & top rolling hoop	19.25	19.13	18.75	19.25	19.25	19.38
CG rolling hoop	19.25	19.13	18.75	19.25	19.25	19.25
Bottom rolling hoop	19.25	19.13	18.75	19.25	19.25	19.25
Bottom false wire	19.25	19.13	18.44	19.25	19.25	19.31

Axial measurement location	Flats width maximum post 1.2-m drop (in.)	Flats width maximum post 9-m drop (in.)	
Top false wire	5.38	8.38	
Top rolling hoop	4.25	8.38	
CG & top rolling hoop	3.88	7.63	
CG rolling hoop	2.50	7.50	
Bottom rolling hoop	3.25	8.25	
Bottom false wire	5.00	9.25	

Table 2.36. Recorded flat contour damage to Test Unit-5 from 1.2-m and 9-m drop testi	Table 2.36	. Recorded flat co	ntour damage t	o Test Unit-5 from	m 1.2-m and 9-m drop testing
---	-------------------	--------------------	----------------	--------------------	------------------------------

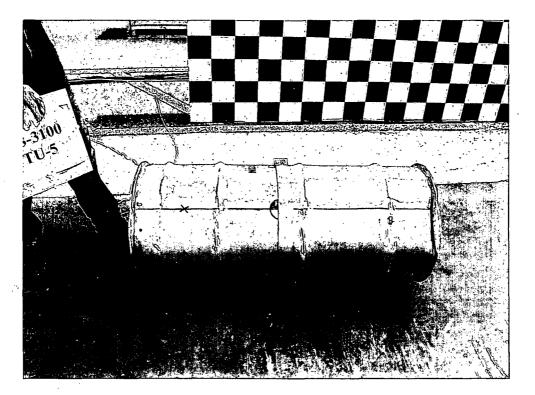


Fig. 2.13. 1.2 and 9-m drop test damage to Test Unit-5.

2.7.2 Crush

Requirement. Title 10 CFR 71.73(c)(2) requires that the specimen be subjected to a dynamic crush test in which the specimen is placed on a flat, essentially unyielding, horizontal surface so as to suffer maximum damage by the drop of a 500-kg (1100-lb) mass from 9 m (30 ft) onto the specimen. The mass must consist of a solid mild steel plate 1 m (40 in.) by 1 m (40 in.) and must fall in a horizontal attitude. The crush test is required only when the specimen has a mass \leq 500 kg (1100 lb), an overall density \leq 1000 kg/m³ (62.4 lb/ft³) based on external dimensions, and radioactive contents >1000 A₂ not as special form radioactive material. For packages containing fissile material, the radioactive contents greater than 1000 A₂ criterion does not apply.

Analysis. Five test packages were subjected to the dynamic crush test from 9 m (30 ft) in accordance with 10 CFR 71.73(c)(2). The previously drop-tested packages (described in Sect. 2.7.1) were restrained in the orientation used for drop testing. Discussion of the damage to each test package that resulted from the crush test is given in subsequent paragraphs, with details given in the test report. (Appendix 2.10.7) Rationale for the three drop positions is included in Sect. 2.7.1 for each test unit. The impact of the steel plate only increased the overall concern for each orientation.

Test Unit-1, weighing 202.3 kg (446 lb), was positioned in a horizontal attitude with the damaged portion of the test unit, resulting from prior drop tests, placed on the drop pad (0° mark facing down on test pad). The 500-kg (1100-lb) crush plate was centered over the sealing lid location on the containment vessel and dropped from 9 m (30 ft) and squarely contacted the top false wire of the drum at an ambient temperature of 29°C (84.2°F). Following initial impact, the package bounced very little before landing on its side. No drum studs, nuts, or washers were lost due to the impact. The lid was still firmly attached to the drum, with no visible separation or rips; thus, the position of the thermal barrier and neutron poison was maintained. A summary of the resulting damage is shown in Tables 2.37, 2.38, and 2.39. Since the length of the crush plate did not encompass the entire length of the test package, a crush edge indentation is recorded in Table 2.39. Additional pictorials of damage are shown on Fig. 2.14.

	0°	90°	180°	270°
Pre-crush height (in.)	44.50	43.38	43.25	43.38
Post 9-m crust test height (in.)	44.88	43.38	44.00	43.63

Table 2.38.	Recorded	diametrical	damage to	o Test l	U <mark>nit-1 fro</mark> m	the 9-m	crush test	[Diameter ([in.)]

	0 to	180°	90 to 270°		
Axial measurement location	Pre crush test	Post 9-m crush test	Pre crush test	Post 9-m crush test	
Top false wire	18.50	15.63	19.38	20.63	
Top rolling hoop	18.50	16.00	19.38	20.43	
CG & top rolling hoop	18.50	16.25	19.38	20.25	
CG rolling hoop	18.63	16.50	19.38	19.88	
Bottom rolling hoop	18.63	18.25	19.25	19.50	
Bottom false wire	17.81	17.81	19.38	19.25	

Axial measurement location	Flats width maximum @ 0° (in.)	Flats width maximum@ 180° (in.)
Top false wire	9.00	8.50
Top rolling hoop	10.00	10.00
CG & top rolling hoop	10.00	10.13
CG rolling hoop	9.00	10.63
Bottom rolling hoop	8.25	
Bottom false wire	9.75	
Dent where edge of plate struck test unit		9.13

Table 2.39. Recorded flat contour damage to Test Unit-1 from the 9-m crush test

Fig. 2.14. Cumulative damage following 9-m crush on Test Unit-1.

Test Unit-2 (chilled package), weighing 202.8 kg (447 lb), was positioned in an horizontal attitude with the long axis of the drum parallel with respect to the drop pad. The damaged portion of the test unit, resulting from prior drop tests, was placed nearest the drop pad (0° mark facing down on pad). The 500-kg (1100-lb) crush plate was centered over the test unit's center of gravity and dropped from 9 m (30 ft) squarely onto the top false wire of the drum at an ambient temperature of 26.8°C (80.4°F). Following initial impact, the package bounced very little before landing on its side. No drum studs, nuts, or washers were lost due to the impact. The lid was still firmly attached to the drum, with no visible separation or rips; thus, the position of the thermal barrier and neutron poison was maintained. A summary of the cumulative damage is shown in Tables 2.26, 2.27, and 2.28 in Sect. 2.7.1.2. Additional pictorials of damage are shown on Fig. 2.10.

Test Unit-3, weighing 203.7 kg (449 lb), was positioned in the same oblique attitude as previously drop tested from 9 m (30 ft). The long axis of the drum was at an oblique angle of 24.7° (desired angle was 24.6°) from the impact surface with the damaged portion of the lid in contact with the drop pad (0° mark in contact with pad). The 500-kg (1100-lb) crush plate was dropped from 9 m (30 ft) with the center of gravity of both the plate and test unit in line at an ambient temperature of 30.5° C (86.9° F). The initial impact of the plate was with the edge of the drum bottom. A secondary contact occurred between the bottom drum rim and the impact surface. One drum stud was sheared from the test unit; however, the lid was still firmly attached to the drum, with no visible separation or rips. Therefore, the thermal barrier and neutron poison was maintained in position. Tables 2.40, 2.41, and 2.42 describe the measured damage which is recorded on Test Form 3 (Appendix 2.10.8). A photograph of the damage to Test Unit-3 is shown in Fig. 2.15.

	0°	90°	180°	270°
Pre-crush height (in.)	40.63	43.25	43.75	43.38
Post 9-m crust test height (in.)	39.38	42.43	39.13	42.50

Axial measurement location	Flats width maximum pre crush (in.)	Flats width maximum post crush . (in.)
Top of test unit	14.00	18.38
Bottom of test unit	0.00	17.88

Table 2.42.	Recorded	diametrical	damage to	o Test	Unit-3 from	1 the 9-m	crush test	[Diameter ((in.)	

	0 to	180°	90 to 270°		
Axial measurement location	Pre crush test	Post 9-m crush test	Pre crush test	Post 9-m crush test	
Top false wire	19.25	19.25	19.19	19.06	
Top rolling hoop	18.63	18.75	19.88	20.25	
CG & top rolling hoop	19.13	19.25	19.38	19.75	
CG rolling hoop	19.13	19.13	19.38	19.25	
Bottom rolling hoop	19.13	19.13	19.38	19.75	
Bottom false wire	19.13	18.00	19.25	19.38	

Fig. 2.15. Cumulative damage following 9-m crush test on Test Unit-3.

Test Unit-4, weighing 201.8 kg (445 lb), was positioned vertically with the previously damaged drum top in contact with the drop pad. The 500-kg (1100-lb) crush plate was dropped from 9 m (30 ft) and squarely contacted the bottom of the test unit. The center of the 500-kg (1100-lb) crush plate was positioned over the radial test unit's center of gravity, in this case over the center of the drum's bottom at an ambient temperature of 29.8° C (85.6° F). Following initial impact, the package bounced very little before landing on its side. No drum studs, nuts, or washers were lost due to the impact. The lid was still firmly attached to the drum, with no visible separation or rips; thus, the position of the thermal barrier and neutron poison was maintained. A summary of the resulting damage is shown in Tables 2.43 and 2.44 and a photograph is shown in Fig. 2.16.

Table 2.43.	Recorded	height damage	to Tes	t Unit-4	from the	9-m crush test
--------------------	----------	---------------	--------	----------	----------	----------------

	0°	90°	180°	270°
Pre-crush height (in.)	43.00	43.13	42.88	42.63
Post 9-m crust test height (in.)	39.38	40.38	40.63	39.75

	0 to	180°	90 to 270°		
Axial measurement location	Pre crush test	Post 9-m crush test	Pre crush test	Post 9-m crush test	
Top false wire	19.25	19.25	19.38	19.38	
Top rolling hoop	19.13	20.00	19.88	20.13	
CG & top rolling hoop	19.81	20.00	19.38	20.06	
CG rolling hoop	-19.13	19.43	19.25	19.50	
Bottom rolling hoop	19.25	19.94	19.25	20.00	
Bottom false wire	19.25	19.25	19.25	19.25	

Table 2.44. Recorded diametrical damage to Test Unit-4 from the 9-m crush test [Diameter (in.)]

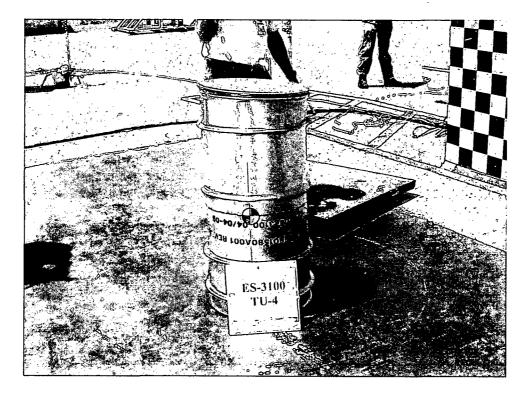


Fig. 2.16. Cumulative damage from 9-m drop and crush testing on Test Unit-4.

Test Unit-5, weighing 157.4 kg (347 lb), was positioned in a horizontal attitude with the damaged portion of the test unit, resulting from prior drop tests, placed on the drop pad (0° mark facing down on test pad). The 500-kg (1100-lb) crush plate was centered over the test unit's center of gravity and dropped from 9 m (30 ft) squarely onto the top false wire of the drum at an ambient temperature of 29.6°C (85.3°F). Following initial impact, the package bounced very little before landing on its side. No drum studs, nuts, or washers were lost due to the impact. The lid was still firmly attached to the drum, with no visible separation or rips; thus, the position of the thermal barrier and neutron poison was maintained. A summary of the resulting damage is shown in Tables 2.45, 2.46, and 2.47. Additional pictorials of damage are shown on Fig. 2.17. Since the length of the crush plate did not encompass the entire length of the test package, additional indentations are recorded on Test Form 3.

	0°	90°	180°	270°
Pre-crush height (in.)	44.50	43.50	43.38	43.50
Post 9-m crust test height (in.)	45.00	43.50	43.75	43.88

Table 2.45. Recorded height damage to Test Unit-5 from the 9-m crush test

Table 2.46. Recorded diametrical damage to Test Unit-5 from the 9-m crush tests[Diameter (in.)]

	0 to 180°		90 to 270°	
Axial measurement location	Pre crush test	Post 9-m crush test	Pre crush test	Post 9-m crush test
Top false wire	18.75	18.69	19.38	19.38
Top rolling hoop	18.75	17.13	19.38	19.63
CG & top rolling hoop	18.75	17	19.38	20
CG rolling hoop	18.75	16.75	19.25	20
Bottom rolling hoop	18.75	16.50	19.25	19.75
Bottom false wire	· 1 8.4 4	17.00	19.31	19.38

Axial measurement location	Flats width maximum @ 0° (in.)	Flats width maximum @ 180° (in.)
Top false wire	8.88	0.00
Top rolling hoop	8.50	12.50
CG & top rolling hoop	8.00	12.00
CG rolling hoop	8.75	11.38
Bottom rolling hoop	10.25	11.38
Bottom false wire	11.38	10.50

Fig. 2.17. Cumulative damage from 9-m drop and crush testing on Test Unit-5.

Conclusion. As noted in the discussion above, plastic deformation of the drum occurred in all test packages at the impacted areas. However, the position of the impact limiting material (Kaolite) and neutron poison material (BoroBond in the test packages) was maintained in all test packages. The maximum areal deformation along the side of the test packages was a flat measuring 31.75 cm (12.50 in.) wide at the drum's top rolling hoop and ending with a width of 26.67 cm (10.50 in.) at the drum bottom in Test Unit-5.

2.7.3 Puncture

Requirement. A free drop of 1 m (40 in.) from a position to obtain maximum damage onto the upper end of a solid, vertical, cylindrical, 15-cm (6-in.)-diameter mild steel bar mounted on an unyielding horizontal surface, is required by 10 CFR 71.73(c)(3). The bar must be ≥ 20 cm (8 in.) long with the top end rounded to 6-mm (0.25-in.) maximum radius. The long axis of the bar must be vertical.

Analysis. The five units previously dropped and crushed from 9-m (30 ft) [Sects. 2.7.1 and 2.7.2] were dropped from 1 m (40 in.) in accordance with 10 CFR 71.73(c)(3). The puncture bar was bolted to the steel plate of the inside drop pad surface at NTRC (see Sect. 2.6.7 regarding the indoor drop test pad). A description of the drop orientations and results are shown in Table 2.48. Figures 2.18 through 2.24 show the results of puncture testing.

Test Unit	Test unit's long axis drop orientation	Axial and radial location from drum lid ^a	Recorded damage (indentation depth - in.) ^b	Photograph
1°.	Horizontal	Test Unit's CG (0° mark)	0.63	Fig. 2.18
1 *	Horizontal	8 in. down (180° mark)	0.38	Fig. 2.20
1	28° oblique from vertical	Drum lid's edge (90° mark)	three impact locations 1. 0.63 2. 0.38 3. 0.13	Fig. 2.18
1	40° oblique from vertical	In line with test unit's CG (270° mark)	two impact locations 1. 0.75 2. 0.13	Fig. 2.19
2	Horizontal	Test Unit's CG (0° mark)	0.13	Fig. 2.21
3	24.6° oblique from vertical	In line with test unit's CG (270° mark)	 two impact locations 1. Additional flattening of lid 2. 0.88 	Fig. 2.22
4	Vertical	Center of drum's lid & CG	0.13	Fig. 2.23
5	Horizontal	8 in. down (0° mark)	0.13	Fig. 2.24

Table 2.48. 1-m (40-in.) puncture drop test description and results

^a See detailed description of test units in Sect. 5.4.3 of ORNL/NTRC-013.

^b For detailed description of damaged locations, see Test Form 4 for Test Units 1, 3, 4, and 5 and Test Form 3 for Test Unit-2.

Conclusion. Although all test units were deformed by this puncture test, no drum surfaces were breached, thereby maintaining the integrity of the thermal barrier and neutron poison.

2.7.4 Thermal

Requirement. Exposure of the specimen fully engulfed, except for a simple support system, in a hydrocarbon fuel/air fire of sufficient extent and in sufficiently quiescent ambient conditions to provide an average emissivity coefficient of at least 0.9, with an average flame temperature of at least $800^{\circ}C$ (1475°F) for a period of 30 min, or any other thermal test that provides the equivalent total heat input to the package and that provides a time-averaged environmental temperature of $800^{\circ}C$ (1475°F). The fuel source must extend horizontally at least 1 m (40 in.) but may not extend more than 3 m (10 ft) beyond any external surface of the specimen, and the specimen must be positioned 1 m (40 in.) above the surface of the fuel source. For purposes of calculation, the surface absorptivity must be either that value which the package may be expected to possess if exposed to the fire specified or 0.8, whichever is greater; and the convective coefficient must be that value which may be demonstrated to exist if the package were exposed to the fire specified. Artificial cooling may not be applied after cessation of external heat input, and any combustion of materials of construction must be allowed to proceed until it terminates naturally.

Analysis. The five test units previously subjected to both NCT and HAC drop testing were thermal tested in accordance with 10 CFR 71.73(c)(4). To determine the maximum temperatures reached during thermal testing, temperature indicating patches were placed at various locations throughout the test packages at assembly. The temperature range for each patch used is identified in Table 2.49. When the temperature of an indicator was reached, the color would change to black (i.e., blackout temperature). The range of possible blackout temperatures of the patches was from 51.67 to 260°C (125 to 500°F). For Test Units-1 through -5, Table 2.49 defines the number and location of the temperature indicating patches.

Fig. 2.18. 28° oblique and horizontal puncture tests on Test Unit-1.

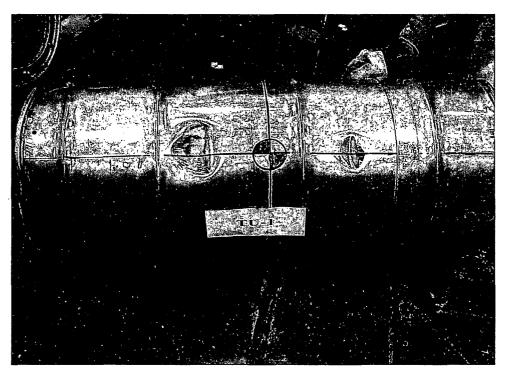


Fig. 2.19. 40° oblique puncture test on Test Unit-1.

2-72

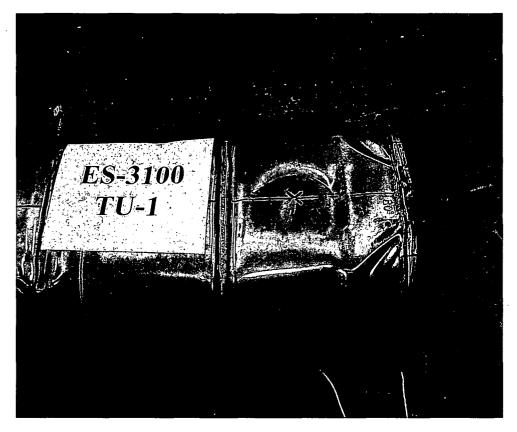


Fig. 2.20. Horizontal puncture test over Test Unit-1's containment vessel flange.

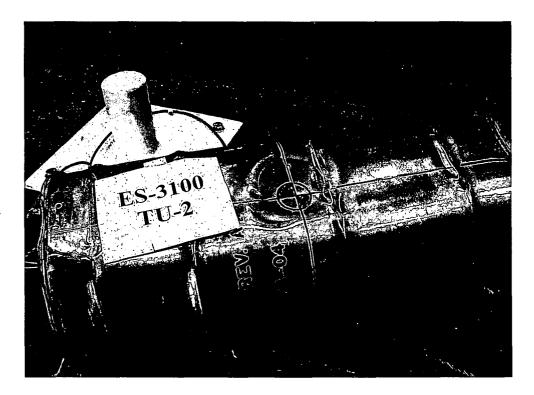


Fig. 2.21. Horizontal CG puncture test on Test Unit-2.

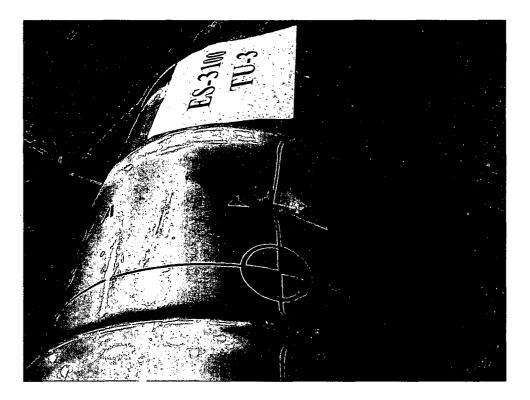


Fig. 2.22. 24.6° oblique puncture test on Test Unit-3.

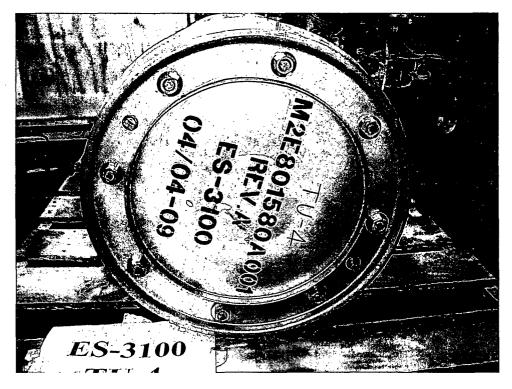


Fig. 2.23. Vertical puncture test on Test Unit-4.

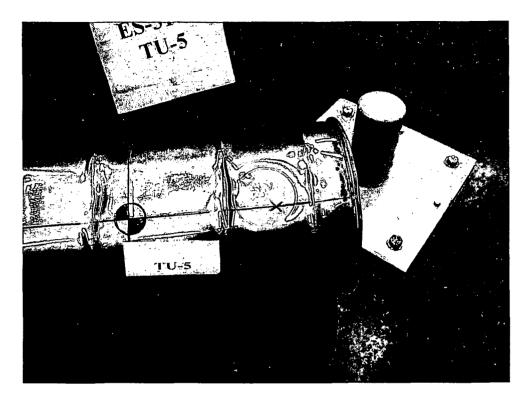


Fig. 2.24. Horizontal puncture test over Test Unit-5's containment vessel flange.

Patch Location	Internal surface	External surface	Temperature range °C (°F)	Test report figure (ORNL/NTRC-013)
Inner liner of drum assembly		8 (Full Range) 10 (5B & 5C)	52 to 260 (125 to 500) "B" 77 - 127 (171-261) "C" 132 - 182 (270-360)	5.3
Top plug weldment		4 (Full Range)	52 to 260 (125 to 500)	5.31
Containment vessel body flange	8 (4B & 4C)	8 (4B & 4C)	"B" 77 - 127 (171-261) "C" 132 - 182 (270-360)	5.28
Containment vessel body (end cap and cylinder)		5 (B)	"B" 77 - 127 (171-261)	5.28
Containment vessel sealing lid	4 (B)	· 4 (B)	"B" 77 - 127 (171-261)	5.29
Test mock-up components		6 (B)	"B" 77 - 127 (171-261)	5.26 & 5.27

Table 2.49. Thermax temperature indicating patches for test units

Prior to the beginning of the thermal test, the No. 3 furnace at Timken Steel Company in Latrobe, Pennsylvania, was characterized for temperature and heat recovery times. Oxygen content in stack gases of the furnace was not monitored because it was not anticipated that any of the package's materials of construction were combustible. There was some burning of the silicone pads which are placed between the inner liners and the top plugs of the packages. However, it should be noted that this furnace employs "pulsed" fire burners. This type of burner is unique in that the natural gas flow rate is varied based on furnace controller demands, but the flow of air through the burners is constant, even when no gas is flowing, thereby ensuring a very rich furnace atmosphere capable of supporting any combustion of package materials of construction. The support stand was welded to a large steel plate which had been placed on the floor of the furnace prior to heating. This steel plate acted as the radiating surface at the bottom of the furnace as well as providing the ability to hold the test stand rigidly in place. Before heating the furnace, workers practiced loading and unloading test packages from the cold furnace to assure that the furnace door would not remain open >90 s during each loading. In fact, the maximum time the door was open during any loading was 64 s.

A total of 18 thermocouples was installed on the furnace surfaces and on the test package support stand. (Appendix 2.10.7) All units were tested in a horizontal attitude with the end of the package facing the right and left side walls of the furnace. The test units were thermally tested with the 0° mark on the drum facing the floor of the furnace.

Each test unit was preheated to over $37.78^{\circ}C(100^{\circ}F)$ by placing the packages in an environmental chamber. The environmental chamber was heated by a torpedo-type kerosene space heater controlled by a mechanical bulb thermostat with a control range of $100^{\circ}F$ to $200^{\circ}F$. The environmental chamber is a welded steel frame with fiberglass insulation panels. It was heated from the bottom with four floor register vents located around the perimeter and an 8 in. manual dampened center venting stove pipe. The setpoint temperature of the environmental chamber was monitored and adjusted for the duration of the preheat cycle. Initially, the thermostat was set to $66^{\circ}C(150^{\circ}F)$ for ~23 h. The thermostat set point was then reduced to $\geq 43^{\circ}C(110^{\circ}F)$ for the remainder of the preheat cycle. All packages were preheated for at least 47 h.

Six thermocouples were attached to the exterior surface of each test package after preheating. Metal retainer clips were welded to the drum to hold the thermocouples in place. The thermocouple tips were inserted underneath the metal clips and the wire was wrapped around the metal clip. To eliminate any radiant heat exchange between the thermocouples and the furnace walls, the tips and metal clips were covered with a ceramic coating.

No test package was loaded into the furnace until all functioning thermocouples on the furnace walls and support stand had a reading of 800° C (1475°F) or higher. All packages were placed in the preheated furnace on the support stand positioned with the long axis horizontal, the package lid facing toward a furnace side wall and oriented as described above. These packages were exposed to the radiation environment for a minimum of 30 min after all functioning furnace thermocouples, and at least five of the six test package exterior surface thermocouples reached a temperature of 800° C (1475°F). During the testing, the thermocouple temperature data were recorded every 15 s.

A minimum of 24 h prior to the beginning of all testing, the furnace was turned on with a set-point temperature of $871 \degree C (1600\degree F)$. After each test, the furnace was allowed to reheat for a minimum of 45 min after obtaining the setpoint temperature before testing the next unit. The furnace control temperature data recorder ran continuously for the duration of the preheat. No test package was loaded into the furnace until all functioning thermocouples on the furnace walls and support stand had a reading of $800\degree C (1475\degree F)$ or higher.

Each test package was removed from the furnace and placed in an area where it was not exposed to artificial cooling. As the furnace door was opened for each test unit, smoking or flaming was visible from the TID lug hole at 0°. Flaming continued on some packages for 22 minutes and smoking continued up to one hour on others. All of the packages were allowed to cool naturally to room temperature. The post-thermal test weights of each unit were recorded on Test Form 1 of the test report.

(Appendix 2.10.8) The drums were disassembled, and the damage was photographed. The post-thermal test weight of each loaded containment vessel was also recorded. Each package was visually inspected, and the condition of the package and any observations were recorded.

After the containment vessels were removed from Test Units 1 through 5, two different leak tests were performed on each containment vessel. An operational leak test was conducted between the O-rings using a CALT5 leak tester. Following this operational leak test, a full body helium leak test was conducted. Details of these leak tests are provided in the test report (Appendix 2.10.7) and the results are summarized in Table 2.23. All five containment vessels were then removed from the drum assembly and immersed under a head of water of at least 0.9 m (3 ft) in a horizontal position for a period of ≥ 8 h. Following the immersion test of 10 CFR 71.73(c)(6), the containment boundary of Test Units-1 through -5 were opened to remove the contents, gather available data and look for signs of water in-leakage. No water in-leakage was detected in any of the units.

The blackout temperatures on the surface of all five containment boundaries, inner liners, and mock-up components used in the test packages are given in the test report (Test Form 5 for each test unit). Maximum blackout temperatures recorded on the surface of all test units are tabulated in Table 2.50. These values and temperature adjustments are discussed in Sect. 3.5.3.

Conclusion. All five test packages were intact following the 30-min exposure to the hightemperature thermal environment as required in 10 CFR 71.73(c)(4). Examination during disassembly showed that the containment boundary surfaces, flanges, fasteners, sealing surfaces, and O-rings were not damaged by the thermal testing. All five containment boundary assemblies met the subsequent 0.9-m (3-ft) water immersion test and maintained a full-body helium leak rate $\leq 2.0 \times 10^{-7}$ cm³/s. Following compliance testing, minor changes were made to the mid liner, and the neutron poison was changed from BoroBond4 to Cat 277-4. In order to evaluate the impact of these changes, extensive analytical drop simulations were utilized. A detailed description of the models, material properties, and drop orientations evaluated is shown in Appendix 2.10.2. Results comparing structural deformation and maximum strains in the various material of construction are shown in Sect. 2.7.8. Based on the HAC analytical structural deformation results shown in Sect. 2.7.8, similar compliance test results would be expected had testing been conducted on packages employing the new proposed Cat 277-4 neutron poison. Therefore, the requirements of 10 CFR 71.73(c)(4) were satisfied, and containment was maintained.

2.7.4.1 Summary of pressures and temperatures

The ES-3100 shipping packages will typically be loaded at an ambient temperature and absolute pressure of ~25 °C (77 °F) and 101.35 kPa (14.70 psi), respectively. If the temperature of the package increases during shipment due to external temperature or solar insolation, the drum will not pressurize because four ventilation holes are drilled near the top of the drum, and the drum is not sealed at the drum lid–flange interface. The containment boundary is sealed at assembly. The internal pressure will increase due to transport temperatures, solar insolation (Sect. 3.4.1), decay heating, and the temperatures during HAC (Sect. 3.5.3). Temperature and pressures are summarized in Tables 3.21 and 3.11.

		ES-3100 Test Unit						
Temperature patch location ^a	1	2	3	4	5			
·	°C (°F)	°C (°F)	°C (°F)	°C (°F)	°C (°F)			
Top plug bottom	149 (300)	163 (325)	177 (350)	177 (350)	177 (350)			
Inner liner			· · · · · · · · · · · · · · · · · · ·					
Flange step wall	135 (275)	163 (325)	135 (275)	135 (275)	135 (275)			
BoroBond4 step	107 (225)	135 (275)	107 (225)	177 (350) ^b	121 (250)			
CV body wall high	99 (210)	99 (210)	99 (210)	99 (210)	104 (219)			
CV body wall middle	99 (210)	93 (199)	116 (241) [♭]	93 (199)	99 (210)			
Bottom flat portion	104 (219)	99 (210)	99 (210)	127 (261)	110 (230)			
Containment boundary								
Lid (external top)	116 (241)	110 (230)	116 (241)	127 (261)	127 (261)			
Lid (internal)	104 (219)	104 (219)	110 (230)	110 (230)	116 (241)			
Flange (external)	116 (241)	110 (230)	110 (230)	116 (241)	. 121 (250)			
Flange (internal)	104 (219)	99 (210)	116 (241) ^b	104 (219)	116 (241)			
Body wall mid height	99 (210)	88 (190)	99 (210)	82 (180)	93 (199)			
Bottom end cap (center)	99 (210)	99 (210)	88 (190)	110 (230)	99 (210)			
Mock-up								
Side top	82 (180)	77 (171)	77 (171)	77 (171)	99 (210)			
Side middle	77 (171)	77 (171)	77 (171)	77 (171)	93 (199)			
Side bottom	77 (171)	77 (171)	77 (171)	77 (171)	88 (190)			

Table 2.50. Maximum HAC temperatures recorded on the test packages' interior surfaces

^a Refer to figures for exact locations and to Test Form 5 in the test report for recorded values. (ORNL/NTRC-013)
 ^b Temperature indicating patch may have been damaged due to impact with surrounding structure. See Test Form 5 in ORNL/NTRC-013 for additional information.

The maximum HAC internal absolute pressure in the containment boundary of the ES-3100 has been calculated to be 507.63 kPa (73.625 psia). This predicted pressure is based on a conservative maximum adjusted average gas temperature of 123.85 °C (254.93 °F) as shown in Sect. 3.5.3 and Appendix 3.6.5.

2.7.4.2 Differential thermal expansion

The drum, inner liner, and containment vessel are all constructed of type 304 or 304L stainless steel. Because of design clearances used during assembly, radial and vertical expansion among these components will not cause any interferences or thermally induced stresses. Due to similarities of the coefficient of thermal expansion between type 304/304L and the containment vessel closure nut (ASTM A-479 and ARMCO Nitronic 60), the compression of the O-rings and the closure nut and containment vessel thread load do not change appreciably during the temperature excursion from 25°C (77°F) to the maximum adjusted containment vessel temperature of 152.22°C (306.0°F) [Sect. 3.5.3].

The Kaolite 1600 insulation and Cat 277-4 neutron poison are poured and cast in place during the fabrication of the drum assembly weldment (Drawing M2E801580A002, Appendix 1.4.8). This process produces a zero gap between the insulation and the bounding drum and inner liner and zero gap between the neutron poison and the mid and inner liners. Because of differences in coefficients of thermal expansion, some radial and axial interferences are expected from thermal growth of the liners. These radial and axial interferences have been addressed by the HAC thermal test. The results show that the stresses induced are minimal and do not reduce the effectiveness of the drum assembly.

Since there are ample clearances between the various size convenience containers and HEU contents, no induced thermal stresses from differences in coefficient of thermal will exist.

2.7.4.3 Stress calculations

The temperature gradient on the containment boundary was essentially uniform from top to bottom during the thermal tests (Table 2.50). The gradient around the periphery of the six test units was also essentially uniform and similar to the vertical gradient. As noted in the ES-3100 test report, the temperatures recorded on the containment vessels of all the test units were fairly uniform, both vertically and circumferentially. The maximum temperature variation on the containment vessels was ~50°F (from the test temperatures reported in Table 2.50). No damage would be expected on the containment vessel from thermal stresses resulting from a temperature differential of this magnitude. This conclusion is based on the guidelines given in the ASME Boiler and Pressure Vessel Code, Sect. III, Div. 1. Thermal stress is defined as a self-balancing stress produced by a nonuniform distribution of temperature (ASME B&PVC, Sect. III, Paragraph NB-3213.13). This paragraph further states that there are two types of thermal stresses: general thermal stress and local thermal stress. An example of a general stress is that produced by an axial temperature distribution in a cylindrical shell (ASME B&PVC, Paragraph NB-3213.9). This general stress is further classified (Paragraph NB-3213.9) as a secondary stress (that is, a normal stress or a shear stress developed by the constraint of adjacent materials or by self-constraint of the structure) [ASME B&PVC, Paragraph NB-3213.9]. Paragraph NB-3213.9 further states that the basic characteristic of a secondary stress is that it is self-limiting. Local yielding and minor distortions can satisfy the conditions that cause the stress to occur, and failure from a single application would not be expected. An example of a local thermal stress is a small hot spot in the wall of a pressure vessel (ASME B&PVC, Paragraph NB-3213.13). Local thermal stress is associated with almost complete suppression of the differential expansion and thus produces no significant distortion. Such stresses are considered only from a fatigue standpoint. Fatigue will not result from a one-time cyclic event such as an accidental fire.

The principal effect of the elevated temperature on stress levels is caused by the increase in the internal pressure. The calculated stresses as shown in Table 2.51 were determined by multiplying the stress at the design conditions (Appendix 2.10.1) by a factor equal to the ratio of operating pressures to design pressures and adding any contribution from the closure nut preload. This methodology is based on the application of linear elastic material behavior. As shown in Sect. 2.7.4.4, all stresses in the containment boundary components (based on nominal dimensions for the components) are well below the *ASME Boiler and Pressure Vessel Code* allowable stress intensity limits.

2.7.4.4 Comparison with allowable stresses

As noted in Sect. 2.7.4.3, the differential stresses resulting from temperatures recorded during HAC are negligible. Also, as shown in Table 2.51, stresses of this low magnitude do not affect the adequacy of the packaging. Corresponding calculated stress regions are shown in Fig. 2.1.

2.7.5 Immersion—Fissile Material

Requirement. In those cases for which water leakage into the containment boundary has not been assumed for criticality analysis, the specimen must be immersed under a 0.9-m (3-ft) head of water in an attitude for which maximum leakage is expected, as required by 10 CFR 71.73(c)(5).

Stress locations shown in Fig. 2.1	Thermal c 10 CFR 71 containment bo @406.27 kPa (58 & 123.85°C kPa (.73 (c)(4) undary stress .925 psi) gauge (254.93°F)	Immersion 10 CFR 71 containment bo @-150 kPa (-2 & -2.22°C kPa (Allowable stress (AS)	
	kPa (psi)	M.S.	kPa (psi)	M.S.	kPa (psi)
Top flat portion of sealing lid (center of head)	4.003×10^{3} (580.5)	32.1	1.478 × 10 ³ (214.4)	88.6	1.324 × 10 ⁵ (19,200) ^b
Closure nut ring (away from threaded portion)	7.030 × 10 ⁴ (10,196)	5.5	4.246 × 10 ^{4 f} (6158)	9.8	4.571 × 10 ⁵ (66,300)°
Top flat head (sealing surface region)	2.385×10^4 (3460)	10.1	1.665 × 10 ^{4 f} (2415)	14.9	2.648 × 10 ⁵ (38,400)°
Cylindrical section (middle)	1.160 × 10 ⁴ (1683)	6.6	4.285×10^{3} (621.5)	19.6	8.825×10^4 (12,800) ^d
Cylindrical section (shell-to-flange interface)	2.125×10^4 (3083)	11.5	1.238 × 10 ⁴ (1795.3)	20.4	2.648 × 10 ⁵ (38,400) ^c
Cylindrical section (shell-to-bottom interface)	2.976 × 10 ⁴ (4317)	7.9	1.099 × 10⁴ (1594.2)	23.1	2.648 × 10 ⁵ (38,400) ^c
Body flange threads load, kg (lb)	1.571×10^{3} (3464)	12.1	9.072 × 10 ^{2 f} (2000)	21.6	2.053 × 10 ⁴ (45266) ^e
Body flange thread region (under cut region)	4.562 × 10 ⁴ (6594)	4.8	2.397 × 10 ^{4 f} (3476)	10	2.648 × 10 ⁵ (38,400)°
Flat bottom head (center)	2.802×10^4 (4064)	3.7	1.035 × 10 ⁴ (1500.7)	11.8	1.324 × 10 ⁵ (19,200) ^b
Closure nut thread load, kg (lb)	1.571×10^{3} (3464)	21.6	9.072 × 10 ^{2 f} (2000)	38.1	3.545 × 10 ⁴ (78154) ^e

^a Calculated stresses were determined by multiplying the stress at the design conditions (Appendix 2.10.1) by a factor equal to the ratio of operating pressures to design pressures (independent of pressure direction) plus contribution from preload. Allowable stress values are taken from Table 2.5.

^b Stress interpreted as the sum of $P_1 + P_b$; allowable stress intensity value is $1.5 \times S_m$.

^c Stress interpreted as the sum of $P_1 + P_b + Q$; allowable stress intensity value is $3.0 \times S_m$.

^d Stress interpreted as the primary membrane stress (P_m); allowable stress intensity value is S_m .

^e Allowable shear capacity is defined as $0.6 \times S_m \times$ thread shear area. Thread shear area = 38.026 cm² (5.894 in.²).

^f Stress and shear load in these areas are dominated by the 162.7 ± 6.8 N·m (120 ± 5 ft-lb) preload.

Analysis. The containment vessels for the ES-3100 test packages (Units-1 through -5) were removed from their respective drum assemblies following the thermal tests described in Sect. 2.7.4. After examination for damage (distortion, warpage, heating), the volume between the O-rings was pressurized, and the O-ring seals were leak checked in accordance with the CALT5 manufacturer's instructions manual using the CALT5 leak tester. Following the O-ring cavity check, the containment vessel lids were drilled and tapped for a full-body helium leak check. The seals remained functional on all vessels, and the integrity of the containment vessel structure was maintained (indicated by a helium leak rate $\leq 2.0 \times 10^{-7}$ cm³/s). Following these leak tests, each unit was then submerged under a 0.9-m (3-ft) head of water for at least 8 h. No water leakage into the vessel was seen in any of the test units. The results of this test for each unit are recorded on the data sheet of Procedure TTG-PRF-14 shown in the test report. (Appendix 2.10.8) It should be noted that the criticality analysis does assume water leakage into the ES-3100 containment vessel; however, the 0.9-m (3-ft) immersion tests were performed. anyway.

2.7.6 Immersion—All Packages

Requirement. A separate, undamaged specimen must be immersed under water at a pressure equivalent to a 15-m (50-ft) head of water, as required by 10 CFR 71.73(c)(6). This requirement may be satisfied by an external pressure of 150 kPa (21.7 psi) gauge.

Analysis. Immersion under a 15-m (50-ft) head of water would result in water entering the drum because the plastic plugs covering the four ventilation holes could fail, and the drum/lid flange is not gasketed. The ES-3100 containment boundary has been designed and tested for an external pressure of 150 kPa (21.7 psi) gauge and an internal gauge pressure of 699.82 kPa (101.5 psi), using nominal dimensions for all boundary components. Each containment vessel design incorporates an O-ring seal of verified integrity to provide assurance that no water will penetrate the containment boundary. The containment boundary of Test Unit-6 was subjected to this 15-m (50-ft) water immersion test. No visual signs of water leakage into the containment boundary were recorded.

2.7.7 Deep Water Immersion Test (for Type B Packages Containing More than 10⁵ A₂)

The amount of A_2 s proposed for transport is ~293.99. Therefore, the deep water immersion test is not applicable.

2.7.8 Summary of Damage

After testing five full scale ES-3100 test packages under HAC, the drum, drum lid, and top plug were damaged as expected. The containment boundary flange, O-ring grooves, and closure nut were not damaged. Plastic deformation occurred in the five drum assemblies in the impact areas from the 1.2-m and 9-m (30-ft) drop, crush and subsequent puncture tests. No breaks were noted in the drum assembly, and no insulation was exposed. The resultant damage did not reduce the effective center-to-center package spacing to a point of criticality concern (Sect. 6).

The full scale test units were fabricated in accordance with drawings created for production hardware. During the procurement process for the full scale test units, several small changes were suggested by the manufacturer to improve the efficiency and to reduce the cost of fabrication. These changes were incorporated and tested. However, following compliance testing, the following changes have been made to the proposed production hardware. First, a change in the neutron poison from BoroBond4 to Cat 277-4 has been adopted; second, the mid liner design has been changed to a continuous shell by reducing the diameter of the step in the inner liner for the containment vessel flange

from 22.35 cm (8.8 in.) to 21.84 cm (8.6 in.); and third, the silicone rubber pad thickness on the drum assembly bottom liner was increased by ~ 0.15 cm (0.06 in.). The second change increased the amount of Kaolite 1600 around the containment vessel flange, increased the final volume of the neutron poison, and slightly decreased the volume of the Kaolite 1600 adjacent to the neutron poison. The third change was made to stiffen the rubber pad so it would remain in place during vibration normally incurred during transport. In order to evaluate the impact of these changes, analytical drop simulations were conducted and documented in Appendix 2.10.2. The drop simulations were conducted in the same attitude and temperature regime as those conducted during the compliance testing phase for certification. Temperature dependent material properties were used in the analysis. The results of the structural deformation from compliance testing, drop simulation using BoroBond4 and drop simulations using Cat 277-4 material are presented in the following tables and figures. The analytical structural deformation results shown in Tables 2.52 through 2.61 are nearly identical for the two neutron poisons. The analytical results are also well representative of the results recorded during compliance testing as depicted in Figs. 2.25 through 2.30. Analytical strain prediction in the structural components are also compared for the two neutron poisons. Although there are minor differences between the compliance testing and drop simulations, the overall magnitude of the strains is very similar. The thermal aspects of these changes are addressed in Sect. 3. NCT and HAC results predicted for an undamaged package show that the change in neutron poison actually reduces the final temperature of the containment vessel components. Therefore, the substitution of Cat 277-4 material and the minor changes in the inner and mid liners for production hardware should not reduce the effectiveness of the packaging when subjected to the regulatory requirements of 10 CFR 71.71 and 71.73, and the results of compliance testing would be analogous. Some of the test units lost approximately 0.45 kg (1 lb) of their gross weight due to boiling off of the water trapped in the refractory and BoroBond4 materials (Table 2.62).

Assuming all water loss is from the neutron poison, the BoroBond4 material lost ~ 9.4% of its water content. Using the temperature data recorded during HAC testing shown in Table 2.50 and applying the temperature adjustments discussed in Sect. 3.5.3, the average temperature of the neutron poison would be ~150 °C (302 °F). Since the ES-3100 test units were not fabricated packages with Cat 277-4, thermogravimetric analysis (TGA) was used to compare the neutron poison's propensity to lose water. The results of this analysis are shown in Appendix 2.10.4 (Thompson, *Summary of TGA Testing*). Samples of both BoroBond4 and Cat 277-4 were TGA tested, and the results were compared at 150°C (302 °F). The BoroBond4 samples lost ~ 61.6% of their original water content. The dry Cat 277-4 lost a maximum of only 6.61%. The BoroBond4 TGA samples lost ~6.5 times the amount of water lost by the ES-3100 test units during HAC compliance testing. Assuming comparable results would be expected for the Cat 277-4 material due to similarity in the structural configuration, installation methodology, and LS-Dyna drop simulation structural deformation results, the Cat 277-4 water loss would be only 1.02%. Criticality safety analysis assumes a greater percent loss; therefore, additional conservatism is being applied in this SAR.

The maximum blackout temperature recorded adjacent to the O-rings during testing was 127.22°C (241°F) [Table 2.50]. Using the adjustments discussed in Sect. 3.5.3, the maximum adjusted temperature at the containment boundary O-rings during shipment under HAC was calculated to be 141.22°C (286.2°F). The normal operating temperature for these O-rings is -40 to 150°C (-40 to 302°F) as shown in Table 2.15. Therefore, containment will be maintained during HAC.

Axial measurement location		0 to 180°		90 to 270°			
	Test results	Analytical results with BoroBond	Analytical results with Cat 277-4	Test results	Analytical results with BoroBond	Analytical results with Cat 277-4	
Top false wire	15.63	15	14.9	20.63	20.7	20.7	
Top rolling hoop	16	15.3	15.1	20.44	20.8	20.8	
CG & top rolling hoop	16.25	15.9	15.7	20.25	20.6	20.7	
CG rolling hoop	16.5	16.4	16.2	19.88	20.1	20.4	
Bottom rolling hoop	18.25	18.3	18.1	19.5	19.6	19.8	
Bottom false wire	17.81	18.1	18	19.25	19.4	19.4	

Table 2.52. Diametrical damage comparison of Test Unit-1 with analytical predictions [Diameter (in.)]

Table 2.53. Flat contour damage comparison of Test Unit-1 with analytical results

Axial measurement location		Flats width @ ((in.)	D°	Flats width @ 180° (in.)		
	Test results	Analytical results with BoroBond	Analytical results with Cat 277-4	Test results	Analytical results with BoroBond	Analytical results with Cat 277-4
Top false wire	9	10.5	10.5	8.5	10.5	10.9
Top rolling hoop	10	11	11	10	11	11
CG & top rolling hoop	10	10.1	10.1	10.13	10.1	10.1
CG rolling hoop	9	8.4	8.4	10.63	10.1	10.1
Bottom rolling hoop	8.25	7.6	7.6		0	0
Bottom false wire	9.88	10.1	10.1		0	0



Fig. 2.25. Visual comparison of the cumulative damage on the crush side surface after the three drop tests (from top to bottom: Test Unit-1, analytical results with BoroBond, analytical results with Cat 277-4).

Component		Effective plastic strain (in./in.)				
	Component material	Offset	crush	Centere	ed crush	
		Model with BoroBond	Model with Cat 277-4	Model with BoroBond	Model with Cat 277-4	
CV body	Type 304L stainless steel	0.0457	0.0564	0.0741	0.0643	
CV lid	Type 304L stainless steel	0.0005	0.0013	0.0006	0.0018	
CV closure nut	A-479 nitronic 60	0.0000	0.0001	0.0003	0.0000	
Angle	Type 304 stainless steel	0.1045	0.1070	0.0917	0.0944	
Drum	Type 304 stainless steel	0.3972	0.3920	0.3537	0.3443	
Drum bottom	Type 304 stainless steel	0.2877	0.2879	0.2919	0.3000	
Liner	Type 304 stainless steel	0.2702	0.2060	0.2363	0.2846	
Lid	Type 304 stainless steel	1.0797	0.9689	1.0795	0.5828	
Lid stiffener	Type 304 stainless steel	0.0838	0.0894	0.0303	0.0288	
Drum lid studs	Type 304 stainless steel	>0.57	0.4018	0.3174	0.2390	
Lid hex nut	Silicon bronze - C65100	0.0086	0.0028	0.0000	0.0000	
Drum washer	300 series stainless steel	0.1003	0.0790	0.0597	0.0775	
Top plug weldment	Type 304 stainless steel	0.2715	0.2665	0.1636	0.1644	

Table 2.54. Cumulative analytical 12° slapdown drop tests maximum effectiveplastic strain results

		0 to 180°		90 to 270°			
Axial measurement location	Test results	Analytical results with BoroBond	Analytical results with Cat 277-4	Test results	Analytical results with BoroBond	Analytical results with Cat 277-4	
Top false wire	17.63	18.1	18	19.81	19.6	19.6	
Top rolling hoop	17.38	16.6	16.6	19.75	19.75	20.1	
CG & top rolling hoop	17	16.5	16.5	20	20	20.4	
CG rolling hoop	16	16.3	16.3	20.25	20.25	20.5	
Bottom rolling hoop	15.5	16.1	16.1	20.13	20.13	20	
Bottom false wire	18	17.6	17.6	19.25	19.38	19.4	

Table 2.55. Diametrical damage comparison of Test Unit-2 with analytical predictions[Diameter (in.)]

Table 2.56. Flat contour damage comparison of Test Unit-2 with analytical predictions

Axial measurement location	Flats width @ 0° (in.)			Flats width @ 180° (in.)			
	Test results	Analytical results with BoroBond	Analytical results with Cat 277-4	Test results	Analytical results with BoroBond	Analytical results with Cat 277-4	
Top false wire	8	9.2	9.2	6.25	0	0	
Top rolling hoop	9	8.4	9.3	8.88	10.1	10.1	
CG & top rolling hoop	10.13	8.4	8.4	9.63	8.4	9.3	
CG rolling hoop	9.88	9.3	9.3	12	9.3	9.3	
Bottom rolling hoop	9.88	9.3	9.3	14.88	10.1	10.1	
Bottom false wire	9.38	10.1	10.1	0	0	0	

Fig. 2.26. Visual comparison of the cumulative damage on the rigid surface side after the four drop tests (from left to right: Test Unit-2, analytical results with BoroBond, analytical results with Cat 277-4).

Fig. 2.27. Visual comparison of the cumulative damage on the crush plate side after the three drop tests (from left to right: Test Unit-2, analytical results with BoroBond, analytical results with Cat 277-4).

Comment		Effective plastic strain (in./in.)			
Component	Component material	Model with BoroBond	Model with Cat 277-4		
CV body	Type 304L stainless steel	0.0462	0.0525		
CV lid	Type 304L stainless steel	0.0004	0.0004		
CV closure nut	A-479 nitronic 60	0.0000	0.0005		
Angle	Type 304 stainless steel	0.0816	0.0845		
Drum	Type 304 stainless steel	0.2623	0.2814		
Drum bottom	Type 304 stainless steel	0.2807	0.2827		
Liner	Type 304 stainless steel	0.2005	0.2022		
Lid	Type 304 stainless steel	0.6411	0.6413		
Lid stiffener	Type 304 stainless steel	0.0217	0.0171		
Drum studs	Type 304 stainless steel	0.1753	0.2364		
Drum hex nut	Silicon bronze - C65100	0.0000	0.0018		
Drum washer	300 series stainless steel	0.1034	0.0439		
Top plug weldment	Type 304 stainless steel	0.1258	0.1286		

Table 2.58. Diametrical damage comparison of Test Unit-3 with analytical predictions[Diameter (in.)]

		0 to 180°		90 to 270°			
Axial measurement location	Test results	Analytical results with BoroBond	Analytical results with Cat 277-4	Test results	Analytical results with BoroBond	Analytical results with Cat 277-4	
Top false wire	19.25	19	19	19.06	19	19	
Top rolling hoop	18.75	18.9	18.9	20.25	20.6	20.6	
CG & top rolling hoop	19.25	19.4	19.4	19.75	19.9	19.8	
CG rolling hoop	19.13	19.3	19.3	19.25	19.4	19.4	
Bottom rolling hoop	19.13	19.3	19.3	19.75	20.4	20.4	
Bottom false wire	18	18.6	18.6	19.38	19.4	19.4	

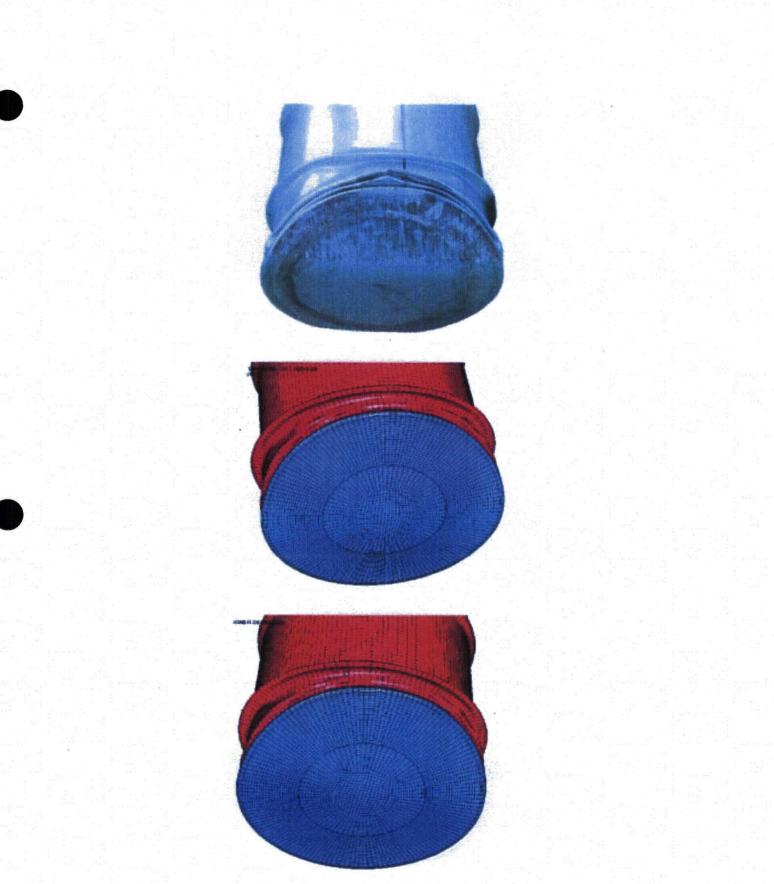


Fig. 2.28. Visual comparison of the cumulative bottom damage after the three drop tests (from top to bottom: Test Unit-3, analytical results with BoroBond, analytical results with Cat 277-4).

Fig. 2.29. Visual comparison of the cumulative lid damage after the three drop tests (from top to bottom: Test Unit-3, analytical results with BoroBond, analytical results with Cat 277-4).

		Effective plastic strain (in./in.)		
Component	Component material	Model with BoroBond	Model with Cat 277-4	
CV body	Type 304L stainless steel	0.0364	0.0371	
CV lid	Type 304L stainless steel	0.0024	0.0051	
CV closure nut	A-479 nitronic 60	0.0000	0.0002	
Angle	Type 304 stainless steel	0.0464	0.0462	
Drum	Type 304 stainless steel	0.3787	0.3830	
Drum bottom	Type 304 stainless steel	0.0731	0.0761	
Liner	Type 304 stainless steel	0.5507	0.5254	
Lid	Type 304 stainless steel	0.3579	0.3622	
Lid stiffener	Type 304 stainless steel	0.0272	0.0272	
Drum studs	Type 304 stainless steel	0.5578	0.5598	
Drum hex nut	Silicon bronze - C65100	0.2258	0.2266	
Drum washer	300 series stainless steel	0.1111 0.1		
Top plug weldment	Type 304 stainless steel	0.1170	0.1166	

Table 2.59. Cumulative analytical corner drop test maximum effective plastic strain results

Axial measurement location	0 to 180°			90 to 270°		
	Test results	Analytical results with BoroBond	Analytical results with Cat 277-4	Test results	Analytical results with BoroBond	Analytical results with Cat 277-4
Top false wire	19.25	19.3	19.3	19.38	19.3	19.3
Top rolling hoop	20.00	20.2	20.1	20.13	20.2	20.1
CG & top rolling hoop	20.00	20.2	20.2	20.06	20.2	20.2
CG rolling hoop	19.44	20.1	20.1	19.5	20.1	20.1
Bottom rolling hoop	19.94	20.5	20.5	20	20.5	20.5
Bottom false wire	19.25	19.4	19.4	19.25	19.4	19.4

 Table 2.60. Diametrical damage comparison of Test Unit-4 with analytical predictions

 [Diameter (in.)]

Fig. 2.30. Visual comparison of the cumulative damage after the three drop tests (from left to right: Test Unit-4, analytical results with BoroBond, analytical results with Cat 277-4).

		Effective plastic strain (in./in.)			
Component	Component material	Model with BoroBond	Model with Cat 277-4		
CV body	Type 304L stainless steel	0.0053	0.0083		
CV lid	Type 304L stainless steel	0.0034	0.0072		
CV closure nut	A-479 nitronic 60	0.0000	0.0011		
Angle	Type 304 stainless steel	0.0304	0.0308		
Drum	Type 304 stainless steel	0.1258	0.1237		
Drum bottom	Type 304 stainless steel	0.0312	0.0267		
Liner	Type 304 stainless steel	0.3585	0.3812		
Lid	Type 304 stainless steel	0.1415	0.1389		
Lid stiffener Type 304 stainless steel		0.0098	0.0100		
Drum studs Type 304 stainless steel		0.1541	0.1535		
Drum hex nuts	Silicon bronze - C65100	0.0170	0.0173		
Drum washer	300 series stainless steel	0.0510	0.0506		
Top plug weldment	Type 304 stainless steel	0.0944	0.0960		

Table 2.61. Cumulative analytical top drop test maximum effective plastic strain results

Table 2.62. ES-3100 test package weights before and after 10 CFR 71.73(c)(4) **HAC** thermal testing

Test Unit	Pre-test ^a weight kg (lb)	Post-test ^a weight kg (lb)	Thermal test weight loss kg (lb)	BoroBond4 original weight ^b kg (lb)	Water weight in BoroBond4 ^c kg (lb)	Water loss percent ^d (%)
1	202.3 (446)	202.3 (446)	0.0 (0)	20.7 (45.64)	4.91 (10.82)	0.00
2	202.8 (447)	202.8 (447)	0.0 (0)	20.5 (45.19)	4.86 (10.72)	0
3	203.7 (449)	203.2 (448)	0.45 (1)	20.5 (45.19)	4.87 (10.74)	9.31
4	201.8 (445)	201.4 (444)	0.45 (1)	20.4 (44.97)	4.84 (10.66)	9.38
5	157.4 (347)	156.9 (346)	0.45 (1)	20.6 (45.42)	4.89 (10.77)	9.29

^a Data from the test report. (Appendix 2.10.7)
 ^b Weight of BoroBond4 and water obtained from casting data. (ES-3100 Weldments)

^c This weight is based on TGA measurements and calculation showing that the minimum water percent is 23.71%.

^d All weight loss attributed to loss of water in BoroBond4.

Following the thermal test, all five containment boundaries were subjected to leak testing of the O-ring cavity as well as the full-body helium leak check. To verify the entire containment boundary, all test units were drilled and tapped for a helium leak check using the procedure documented in the test report. (Appendix 2.10.7) The procedure consisted of creating a near vacuum inside the containment vessel and supplying a helium environment around the exterior of the assembly. The maximum recorded helium leak rate for any of these containment vessels was 2.0×10^{-7} cm³/s as documented after 20 min of leak checking. This procedure measures leakage in the opposite direction to leakage from the vessel. It could be postulated that the additional pressure differential (ambient on the exterior and a near vacuum inside) would help to further compress the O-rings during this test. However, since the containment vessel closure nut is screwed down, the additional pressure does not compress the O-ring more than a few ten thousands of an inch based on mismatch between the internal and external threaded joint. Only rotation of the closure nut will alter O-ring compression significantly. Pictures taken of all containment vessel tops following testing showed that the closure nut had rotated a maximum of 0.15 cm (0.060 in.) [Fig. 2.31] from its original radial position obtained during assembly (Fig. 2.32) except for Test Unit-4, which showed no rotation. Based on the pitch of the closure nut, this rotation translates into only 0.0009 cm (0.00035 in.) decompression of the O-rings. This compares to the original nominal compression of 0.064 cm (0.025 in.). According to the Parker O-Ring Handbook, the minimum squeeze for all seals, regardless of cross section should be about 0.018 cm (0.007 in.). Using the nominal compression of 0.064 cm (0.025 in.) and subtracting the decompression from rotation and the minimal pressure differential compression, there is ample O-ring compression. Therefore, the leak test in either direction for this containment vessel arrangement is valid. As required in 10 CFR 71.73(c)(5), the containment vessels were submerged under a 0.9-m (3-ft) head of water following the leakage tests, with no water in-leakage permitted. Following this immersion test, the containment vessels were opened. The lid assembly, with the O-rings in place on the body, are joined together by torquing the closure nut and sealing lid assembly to 162.7 ± 6.8 N·m (120 ± 5 ft-lb). The lowest break-loose torque value of 40.7 N·m (30 ft-lb) was recorded for Test Unit-4. Visual inspection following the testing indicated that neither the vessel bodies, the O-rings, the seal areas, nor the vessel lid assemblies were damaged during the tests. In Test Unit-5, the convenience cans had buckled from the pressure differential caused during the leak testing operation. However, the containment vessel wall showed little or no signs of impact. Therefore, based on the success of these six test units (including the containment vessel of Test Unit-6) and the analytical drop simulation effort, the structural integrity of the ES-3100 package, with the previously mentioned modifications, meets all the applicable requirements of 10 CFR 71.73 for transport of the proposed contents.

ſ

Fig. 2.31. Containment vessel markings at assembly (swivel hoist ring removed prior to testing).

Fig. 2.32. Containment vessel marking after compliance testing.

2.8 ACCIDENT CONDITIONS FOR AIR TRANSPORT OF PLUTONIUM

The proposed contents are not shipped by air; therefore, this section is not applicable.

2.9 ACCIDENT CONDITIONS FOR FISSILE MATERIAL PACKAGES FOR AIR TRANSPORT

The expanded tests specified in 10 CFR 71.55(f)(1), (2), or (3) for fissile material package designs for air transportation were not conducted. The issue of subcriticality is addressed in Section 6 with content mass limits as addressed in Section 1.2.3 for air transport.

2.9a SPECIAL FORM

The package does not include any special form of radioactive material. Hence, the requirements of 10 CFR 71.75 and 71.77 are not applicable.

2.9b FUEL RODS

The contents do not utilize cladding for the containment of radioactive materials. Therefore, this requirement is not applicable.

2.10 APPENDICES

Appendix	Description
2.10.1	ES-3100 CONTAINMENT VESSEL ASME CODE EVALUATION (DAC-EA-900000-A006 and DAC-EA-900000-A007)
2.10.2	IMPACT ANALYSES OF ES-3100 DESIGN CONCEPTS USING BOROBOND AND CAT 277-4 NEUTRON ABSORBERS
2.10.3	KAOLITE PROPERTIES
2.10.4	CATALOG 277-4 PROPERTIES
2.10.5	BOROBOND4 PROPERTIES
2.10.6	RECOMMENDED RANDOM VIBRATION AND SHOCK TEST SPECIFICATIONS FOR CARGO TRANSPORTED ON SST AND SGT TRAILERS
2.10.7	TEST REPORT OF THE ES-3100 PACKAGE; VOL 1 - MAIN REPORT, ORNL/NTRC-013/V1; SEPT. 10, 2004
2.10.8	THE ES-3100 TEST REPORT; VOL. 3, APPENDIX K - TU-4 DATA SHEETS
2.10.9	PACKAGING MATERIALS OUTGASSING STUDY FINAL REPORT

.

5

2-98 Y/LF-717/Rev 2/ES-3100 HEU SAR/Ch-2/rlw/3-06-08