				ı	J.S. NUCLI	EAR REGULATO	RY COMMISSION
	RC FORM 618 2000) CFR 71	CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES					
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
	9225	47	71-9225	USA/9225/B(U)F-96	1	OF	26

- 2. PREAMBLE
- a. This certificate is issued to certify that the package (packaging and contents) described in Item 5 below meets the applicable safety standards set forth in Title 10, Code of Federal Regulations, Part 71, "Packaging and Transportation of Radioactive Material."
- b. This certificate does not relieve the consignor from compliance with any requirement of the regulations of the U.S. Department of Transportation or other applicable regulatory agencies, including the government of any country through or into which the package will be transported.
- 3. THIS CERTIFICATE IS ISSUED ON THE BASIS OF A SAFETY ANALYSIS REPORT OF THE PACKAGE DESIGN OR APPLICATION
- a. ISSUED TO (Name and Address)

b. TITLE AND IDENTIFICATION OF REPORT OR APPLICATION

NAC International, Inc. 3930 East Jones Bridge Road Norcross, GA 30092 NAC International, Inc., application dated January 15, 2008, as supplemented.

ULATOS

4. CONDITIONS

This certificate is conditional upon fulfilling the requirements of 10 CFR Part 71, as applicable, and the conditions specified below.

- 5.
 - (a) Packaging
 - (1) Model No.: NAC-LWT
 - (2) Description

The LWT is a steel-encased, lead-shielded shipping cask. The cask is designed to transport various radioactive contents as listed in 5.(b)(1). The overall dimensions of the package, with impact limiters, are 232 inches long by 65 inches in diameter. The cask body is approximately 200 inches in length and 44 inches in diameter. The cask cavity is 178 inches long and 13.4 inches in diameter. The volume of the cavity is approximately 14.5 cubic feet.

The cask body consists of a 0.75-inch-thick stainless steel inner shell, a 5.75-inch-thick lead gamma shield, a 1.2-inch-thick stainless steel outer shell, and a neutron shield tank. The inner and outer shells are welded to a 4-inch-thick stainless steel bottom end forging. The cask bottom consists of a 3-inch-thick, 20.75-inch-diameter lead disk enclosed by a 3.5-inch-thick stainless steel plate and bottom end forging. The cask lid is 11.3-inch-thick stainless steel stepped design, secured to a 14.25-inch-thick ring forging with twelve 1-inch diameter bolts. The cask seal is a metallic O-ring. A second teflon O-ring and a test port are provided to leak test the seal. Other penetrations in the cask cavity include the fill and drain ports, which are sealed with port covers and O-rings.

The neutron shield tank consists of a 0.24-inch-thick stainless steel shell with 0.50-inch-thick end plates. The neutron shield region is 164 inches long and 5 inches thick. The neutron shield tank contains an ethylene glycol/water solution that is 1% boron by weight.

The cask is equipped with aluminum honeycomb impact limiters. The top impact limiter has an outside diameter of 65.25 inches and a maximum thickness of 27.8 inches. The bottom impact limiter has an outside diameter of 60.25 inches and maximum thickness of 28.3 inches. Both impact limiters extend 12 inches along the side of the cask body.

				I	U.S. NUCLE	AR REGULATO	ORY COMMISSION	
(8-	RC FORM 618 2000) CFR 71	CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES						
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES	
	9225	47	71-9225	USA/9225/B(U)F-96	2	OF	26	

5.(a)(2) Description (continued)

The maximum weight of the package is 52,000 pounds and the maximum weight of the contents and basket is 4,000 pounds.

- (3) Drawings
 - (i) The packaging is constructed in accordance with the following Nuclear Assurance Corporation Drawings:

LWT 315-40-01, Rev. 6 LWT 315-40-02, Rev. 22 (Sheets 1-2) LWT 315-40-03, Rev. 22 (Sheets 1-7)* LWT 315-40-04, Rev. 10 LWT 315-40-05, Rev. 9 LWT 315-40-06, Rev. 9 LWT 315-40-08, Rev. 17 (Sheets 1-5) Cask Assembly Body Assembly Transport Cask Body Cask Lid Assembly Upper Impact Limiter Lower Impact Limiter Cask Parts Detail

* Packaging Unit Nos. 1, 2, 3, 4, and 5 are constructed in accordance with Drawing No. LWT 315-40-03, Rev. 6 (Sheets 1-6).

(ii) The fuel assembly baskets are constructed in accordance with the following Nuclear Assurance Corporation and NAC International Drawings:

LWT 315-40-09, Rev. 2 LWT 315-40-10, Rev. 7 (Sheets 1-2) LWT 315-40-11, Rev. 2 LWT 315-40-12, Rev. 3 LWT 315-40-045, Rev. 4 LWT 315-40-046, Rev. 4 LWT 315-40-047, Rev. 4 LWT 315-40-048, Rev. 3 LWT 315-40-049, Rev. 4 LWT 315-40-050, Rev. 4 LWT 315-40-051, Rev. 4 LWT 315-40-052, Rev. 3 LWT 315-40-070, Rev. 3 LWT 315-40-071, Rev. 3 LWT 315-40-072, Rev. 3 LWT 315-40-079, Rev. 5 LWT 315-40-080, Rev. 2 LWT 315-40-081, Rev. 2 LWT 315-40-082, Rev. 2 LWT 315-40-083, Rev. 0 LWT 315-40-084, Rev. 4

PWR Basket Spacer PWR Basket BWR Basket Assembly Metal Fuel Basket Assembly 42 MTR Element Base Module 42 MTR Element Intermediate Module 42 MTR Element Top Module 42 MTR Element Cask Assembly 28 MTR Element Base Module 28 MTR Element Intermediate Module 28 MTR Element Top Module 28 MTR Element Cask Assembly 7 Cell Basket TRIGA Base Module 7 Cell Basket TRIGA Intermediate Module 7 Cell Basket TRIGA Top Module Transport Cask Assembly, 120 TRIGA Fuel Elements or 480 Cluster Rods 7 Cell Poison Basket TRIGA Base Module 7 Cell Poison Basket TRIGA Intermediate Module 7 Cell Poison Basket TRIGA Top Module Spacer, LWT Cask Assembly TRIGA Fuel LWT Transport Cask Assy, 140 TRIGA Elements

NRC FORM 618 (8-2000)

10 CFR 71

U.S. NUCLEAR REGULATORY COMMISSION CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES

1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
	9225	47	71-9225	USA/9225/B(U)F-96	3	OF	26

5.(a)(3)(ii) Drawings (continued)

LWT 315-40-085, Rev. 0 Axial Fuel and Cell Block Spacers, MTR, and TRIGA Fuel Baskets 35 MTR Element Base Module LWT 315-40-090, Rev. 2 35 MTR Element Intermediate Module LWT 315-40-091, Rev. 2 LWT 315-40-092, Rev. 2 35 MTR Element Top Module LWT 315-40-094, Rev. 4 35 MTR Element Cask Assembly LWT 315-40-096. Rev. 3 Fuel Cluster Rod Insert, TRIGA Fuel LWT 315-40-098, Rev. 3 (Sheets 1-2) Can Assembly, LWT Pin Shipment LWT 315-40-099, Rev. 3 (Sheets 1-3) Can Weldment, PWR/BWR Transport Canister LWT 315-40-100, Rev. 3 (Sheets 1-3) Lids, PWR/BWR Transport Canister LWT 315-40-101, Rev. 0 4 x 4 Insert, PWR/BWR Transport Canister LWT 315-40-102, Rev. 1 5 x 5 Insert, PWR/BWR Transport Canister LWT 315-40-103, Rev. 0 🔊 Pin Spacer, PWR Transport Canister LWT 315-40-104, Rev. 2 (Sheets 1-2) LWT Cask Assembly, PWR Transport Canister LWT 315-40-105, Rev. 3 (Sheets 1-2) PWR Insert, PWR/BWR Transport Canister LWT 315-40-106, Rev. 1 (Sheets 1-3) MTR Plate Canister, LWT Cask LWT 315-40-108, Rev. 1 (Sheets 1-3) 7 Cell Basket, Top Module, DIDO Fuel LWT 315-40-109, Rev. 1 (Sheets 1-3) 7 Cell Basket, Intermediate Module, DIDO Fuel LWT 315-40-110, Rev.1 (Sheets 1-3) 7 Cell Basket, Bottom Module, DIDO Fuel LWT 315-40-111, Rev. 1 LWT Transport Cask Assy DIDO Fuel LWT 315-40-113, Rev. 0 Spacer, Top Module DIDO Fuel LWT 315-40-120, Rev. 2 (Sheets 1-3) Top Module, General Atomics IFM, LWT Cask LWT 315-40-123, Rev. 1 (Sheets 1-2) Spacer, General Atomics IFM, LWT Cask LWT 315-40-124, Rev. 1 Transport Cask Assembly, General Atomics IFM, LWT Cask LWT 315-40-125, Rev. 3 (Sheets 1-3) Transport Cask Assembly, Framatome/EPRI, LWT Cask LWT 315-40-126, Rev. 2 (Sheets 1-2) Weldment, Framatome/EPRI, LWT Cask LWT 315-40-127, Rev. 2 (Sheets 1-2) Spacer Assembly, TPBAR Shipment LWT 315-40-129, Rev. 1 Canister Body Assembly, Failed Fuel Can, PULSTAR LWT 315-40-130, Rev. 1 Assembly, Failed Fuel Can, PULSTAR LWT 315-40-133, Rev. 1 (Sheets 1-2) Transport Cask Assembly, PULSTAR Shipment, LWT Cask Body Weldment, Screened Fuel Can, LWT 315-40-134, Rev. 1 PULSTAR Fuel Assembly, Screened Fuel Can, PULSTAR LWT 315-40-135, Rev. 1 Fuel LWT 315-40-139, Rev. 0 Transport Cask Assembly, ANSTO Fuel LWT 315-40-140, Rev. 0 (Sheets 1-2) Weldment, 7 Cell Basket, Top Module, ANSTO Fuel

NRC FORM 618 (8-2000) 10 CFR 71

1. a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
9225	47	71-9225	USA/9225/B(U)F-96	4	OF	26

5.(a)(3)(ii) Drawings (continued)

LWT 315-40-141, Rev. 0 (Sheets 1-2)	Weldment, 7 Cell Basket, Intermediate Module, ANSTO Fuel
LWT 315-40-142, Rev. 0 (Sheets 1-2)	Weldment, 7 Cell Basket, Base Module, ANSTO Fuel
LWT 315-40-145, Rev. 0 (Sheets 1-2)	Irradiated Hardware, Lid Spacer, LWT Cask

5.(b) Contents

(1) Type and form of material

All contents listed include both unirradiated and irradiated conditions.

(i) PWR fuel assemblies. The maximum fuel assembly weight is 1650 pounds, the maximum average burnup is 35,000 MWd/MTU, the minimum cool time is 2 years, and the maximum initial fuel pin pressure at 70°F is 565 psig. The fuel assemblies consist of uranium dioxide pellets within zirconium alloy type cladding, with the specifications listed below, and with fuel rod pitch, rod diameter, clad thickness, and pellet diameter as described in Table 1.2-5, of the application.

Fuel Type	No. Fuel Rods	Max. Initial Uranium Enrichment (w/o U-235)	Max. Initial Uranium Mass (MTU)	Max. Active Fuel Length (in.)
B&W 15x15	208	3.5	0.4750	144.0
B&W 17x17	264	3.5	0.4658	143.0
CE 14x14	176	3.7	0.4037	137.0
CE 16x16	236	3.7	0.4417	150.0
WE 14x14 Std	179	3.7	0.4144	145.2
WE 14x14 OFA	179	3.7	0.3612	144.0
WE 15x15	204	3.5	0.4646	144.0
WE 17x17 Std	264	3.5	0.4671	144.0

NRC FORM 618

CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES

1	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
	9225	47	71-9225	USA/9225/B(U)F-96	5	OF	26

5.(b)(1)(i)

PWR fuel assemblies. (continued)

WE 17x17 OFA	264	3.5	0.4282	144.0
Ex/ANF 14x14 WE	179	3.7	0.3741	144.0
Ex/ANF 14x14 CE	176	3.7	0.3814	134.0
Ex/ANF 15x15 WE	204	3.7	0.4410	144.0
Ex/ANF 17x17 WE	264	3.5	0.4123	144.0

(ii) BWR fuel assemblies. The maximum fuel assembly weight is 750 pounds, the maximum average burnup is 30,000 MWd/MTU, the minimum cool time is 2 years, and the maximum initial fuel pin pressure at 70°F is 565 psig. The fuel assemblies consist of uranium dioxide pellets within zirconium alloy type cladding, with the specifications listed below, and with fuel rod pitch, rod diameter, clad thickness, and pellet diameter as described in Table 1.2-6, of the application.

5

Fuel Type	No. Fuel Rods	No. Water Rods	Max. Initial Uranium Enrichment (w/o U-235)	Max. Initial Uranium Mass (MTU)	Max. Active Fuel Length (in.)
GE 7x7	49	0 %	4.0	0.1923	146
GE 8x8-1	63	Maug P	4.0	0.1880	146
GE 8x8-2	62	2	4.0	0.1847	150 ⁽¹⁾
GE 8x8-4	60	4	4.0	0.1787	150 ^(1,2)
GE 9x9	74	2	4.0	0.1854	150 ^(1,3,4)
GE 9X9	79 🗡	2	4.0	0.1979	150 ^(1,4)
Ex/ANF 7x7	49	0	4.0	0.1960	144
Ex/ANF 8x8-1	63	1	4.0	0.1764	145.2
Ex/ANF 8x8-2	62	2	4.0	0.1793	150
Ex/ANF 9x9	79	2	4.0	0.1779	150
	74	2	4.0	0.1666	150 ⁽³⁾

(1) Six-inch natural uranium blankets on top and bottom.

(2) One large water hole - 3.2 cm ID, 0.1 cm thickness.

(3) Two large water holes occupying seven fuel rod locations - 2.5 cm ID, 0.07 cm thickness.

(4) Shortened active fuel length in some rods.

				U	J.S. NUCLE	EAR REGULATO	DRY COMMISSION	
(8-2	RC FORM 618 2000) CFR 71	CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES						
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES	
	9225	47	71-9225	USA/9225/B(U)F-96	6	OF	26	

- 5.(b)(1) Type and form of material (continued)
 - (iii) Deleted.
 - (iv) MTR fuel elements composed of U-AI, U₃O₈-AI, or U₃Si_x-AI positioned within the MTR fuel basket specified in 5.(a)(3)(ii). Loose fuel plates must meet the requirements of the MTR fuel element content tables and must be loaded into an MTR plate canister prior to shipment. The fuel elements are composed of aluminum clad plates, with initial uranium enrichment up to 94.0 weight percent U-235. The maximum burnup and the minimum cool time shall be consistent with the decay heat limits in Item 5.(b)(2)(iv) and shall be determined using the operating procedures in Section 7.1.5 of the application.

NISTR MTR fuel elements specifications are listed in Item 5.(b)(1)(iv)(a), generic MTR fuel elements are listed in Item 5.(b)(1)(iv)(b), and expanded fuel specifications applicable to LEU MTR fuel (up to 25.0 wt $\%^{235}$ U) are listed in Items 5.(b)(1)(iv)(c) and (a) NISTR MTR Fuel Content Description

Parameter	Plate	Plate (cut in half)			
Enrichment, wt % ²³⁵ U	≤94				
Number of fuel plates	≤17	≤34			
²³⁵ U content per plate	≤22	≤11			
Plate thickness (cm)	≥0.115				
Clad Thickness (cm)	≥0.02				
Active fuel width (cm)	2	6.6			
Active fuel height (cm)	≥54 cm 27 to 30				
Maximum ²³⁵ U content per element (g)		380			

				I	U.S. NUCLE	AR REGULATO	ORY COMMISSION
	RC FORM 618 2000) CFR 71	CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES					
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
	9225	47	71-9225	USA/9225/B(U)F-96	7	OF	26

(iv) (b) Generic MTR Fuel Content Description

2

Parameter		Limiting Values ²					
Enrichment, wt. % ²³⁵ U			\leq	94			
Number of fuel plates	≤23	≤19	\leq 23 ¹	≤17	≤19	≤23	
²³⁵ U content per plate	≤18	≤ 20	$\leq 20^{1}$	≤21	≤21	≤16.5	
Plate thickness (cm)	≥0.115	≥0.115	≥0.123 ¹	≥0.115	≥.200	≥0.115	
Clad Thickness (cm)			≥0	.02			
Active fuel width (cm)	≤6.6	≤6.6	G <u>≤</u> 6.6	≤6.6	≤6.6	≤7.3	
Active fuel height (cm)	≥56						
²³⁵ U content per element (g)		≤380 ²					
Notes:	200		1350				

1. HEU (>90 wt% 235 U enriched) MTR fuel having 23 plates with up to 20 g of 235 U per plate, with a minimum plate thickness of 0.123 cm, must have at least 2.0 cm of non-fuel material at the ends of each element. This fuel may also be loaded up to 460 g 235 U per element.

2. At enrichments $\leq 25 \text{ wt}\%^{235}$ U, MTR fuel elements with extended fuel characteristics may be loaded with the specifications defined in 5.(b)(1)(iv)(c).

				ι	J.S. NUCLE	AR REGULATO	ORY COMMISSION
	NRC FORM 618 8-2000) 0 CFR 71	CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES					
1	. a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
	9225	47	71-9225	USA/9225/B(U)F-96	8	OF	26

(iv) (c) Expanded LEU MTR Fuel Content Description

Parameter	Base	≤7.0 cm Active Fuel Width		≤7.1 cm Active Fuel Width		≤7.15 cm Active Fuel Width			
Enrichment, wt. % ²³⁵ U	≤25		≤25		≤25		≤25		
Number of fuel plates	≤23		≤23		≤17	≤23	≤22	≤23	≤23
²³⁵ U content per plate	≤22	≤22	≤22	≤21.5	≤2	22	≤22	≤21.5	≤22
Plate thickness (cm)	≥0.115	≥0.119	≥0.115	≥0.115	≥0.115	≥0.200		≥0.119	
Clad Thickness (cm)	0	3	≥0.02						
Active fuel width (cm)	≤6.6	P	≤7.0	5	≤7	.1 <u></u>		≤7.15	
Active fuel height (cm)	≥56	≥56	≥63	≥56	≥{	56	≥56	≥56	≥61
²³⁵ U content per element (g)	≤ 420		≤470	eee.	≤4	70		≤ 470	
		N		13	1 20	S			
			**	**1	K				

	U.S. NUCLEAR REGULATORY COMMISSIO								
	RC FORM 618 2000) CFR 71			IFICATE OF COMPLIAN					
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES		
	9225	47	71-9225	USA/9225/B(U)F-96	9	OF	26		

(iv) (d) Expanded LEU MTR Fuel Content Description for High Fissile Material Mass

Parameter	Limiting Value
Enrichment, wt.% ²³⁵ U	≤25
Number of fuel plates	≤23
²³⁵ U content per plate (g)	≤32
Plate thickness (cm)	≥0.115
Clad thickness (cm)	REG/ ≥0.02
Active fuel width (cm)	≤7.3
Active fuel height (cm)	≥56
²³⁵ U content per element (g)	≤640

- (v) Metallic fuel rods containing natural enrichment uranium pellets with aluminum cladding 0.080inches thick. The fuel pellet diameter is 1.36 inches and the maximum fuel rod length is 120.5 inches. The maximum weight of uranium per rod is 54.5 kg with a maximum average burnup of 1,600 MWd/MTU and a minimum cooling time of one year.
- (vi) TRIGA damaged and undamaged fuel elements. TRIGA fuel elements that have a cladding breach that allows the escape of gas or intrusion of water are considered damaged and will be loaded and transported in a sealed damaged fuel can.

					U.S. NUCLI	EAR REGULATO	DRY COMMISSION
(8-2	RC FORM 618 2000) CFR 71			IFICATE OF COMPLIA			
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
	9225	47	71-9225	USA/9225/B(U)F-96	10	OF	26

(vi) (a) TRIGA fuel elements acceptable for loading in the poisoned TRIGA basket and meeting the following specifications:

		-	
	TRIGA HEU (Notes 1, 2, 6, & 7)	TRIGA LEU (Notes 1, 2, 6, & 7)	TRIGA LEU (Notes 1, 2, 6, & 7)
Fuel Form	Clad U-ZrH rod	Clad U-ZrH rod	Clad U-ZrH rod
Maximum Element Weight, Ibs	13.2	13.2	13.2
Maximum Element Length, in	47.74	47.74	47.74
Element Cladding	Stainless Steel	Stainless Steel	Aluminum
Clad Thickness, in	0.02 R REG	0.02	0.03
Active Fuel Length, in	15	15	14-15 (Note 4)
Element Diameter, in	1.478 max.	1.478 max.	1.47 max.
Fuel Diameter, in	1.435 max.	1.435 max.	1.41 max.
Maximum Initial U Content/Element, kilograms	0.196	0.845	0.205
Maximum Initial ²³⁵ U Mass, grams	137	169	41
Maximum Initial ²³⁵ U Enrichment, weight percent	70	20	20
Zirconium Mass, grams (Note 5)	2060	1886 – 2300	2300
Hydrogen to Zirconium Ratio, max. (Note 5)	1.6	1.7	1.0
Maximum Average Burnup, MWd/MTU	460,000 (80% ²³⁵ U)	151,100 (80% ²³⁵ U)	151,100 (80% ²³⁵ U)
Minimum Cooling Time	90 days (Note 3)	90 days (Note 3)	90 days (Note 3)

Notes:

- 2. TRIGA Standard, instrumented and fuel follower control rod type elements authorized.
- 3. Maximum decay heat of any element is 7.5 watts.
- 4. Aluminum clad fuel with 14 inch active fuel is solid and has no central hole with a zirconium rod.
- 5. Zirconium mass and H/Zr ratio apply to the fuel material (U-Zr- H_x) and do not include the center zirconium rod.
- 6. Listed TRIGA fuel elements have a 0.225-inch diameter zirconium rod in the center.
- 7. Dimensions listed are as-fabricated (unirradiated) nominal values.

^{1.} Mixed TRIGA LEU and HEU contents authorized.

					U.S. NUCLI	EAR REGULATO	ORY COMMISSION
(8-2	RC FORM 618 2000) CFR 71			IFICATE OF COMPLIAI			
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
	9225	47	71-9225	USA/9225/B(U)F-96	11	OF	26

(vi) (b) TRIGA fuel elements acceptable for loading in the nonpoisoned TRIGA basket and meeting the following specifications:

		-	
	TRIGA HEU (Notes 1, 2, & 6)	TRIGA LEU (Notes 1, 2, & 6)	TRIGA LEU (Notes 1, 2, & 6)
Fuel Form	Clad U-ZrH rod (Note 4)	Clad U-ZrH rod (Note 4)	Clad U-ZrH rod (Note 4)
Maximum Element Weight, Ibs	13.2	13.2	13.2
Maximum Element Length, in	47.74	47.74	47.74
Element Cladding	Stainless Steel	Stainless Steel	Aluminum
Minimum Clad Thickness, in	0.01	0.01	0.01
Maximum Element Diameter, in	1.5 max.	1.5 max.	1.5 max.
Active Fuel Length, in	15	15	15
Maximum Initial U Content/Element, kilograms	0.196	0.845	0.205
Maximum Initial ²³⁵ U Mass, grams	137	169	41
Maximum Initial ²³⁵ U Enrichment, weight percent	70	20	20
Hydrogen to Zirconium Ratio, max. (Note 5)	2.0	2.0	2.0
Maximum Average Burnup, MWd/MTU	460,000 (80% ²³⁵ U)	151,100 (80% ²³⁵ U)	151,100 (80% ²³⁵ U)
Minimum Cooling Time	90 days (Note 3)	90 days (Note 3)	90 days (Note 3)

Notes:

1. Mixed TRIGA LEU and HEU contents authorized.

2. TRIGA Standard, instrumented and fuel follower control rod type elements authorized.

3. Maximum decay heat of any element is 7.5 watts.

4. Element may contain a zirconium rod in the center.

5. H/Zr ratio applies to the fuel material (U-Zr- H_x) and does not include the center zirconium rod.

6. Dimensions listed are as-fabricated (unirradiated) nominal values.

(8-2	RC FORM 618 2000) CFR 71			U.S. NUCLEAR REGULATORY COMMISSION CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES			
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
	9225	47	71-9225	USA/9225/B(U)F-96	12	OF	26

(vii) TRIGA fuel cluster rods. TRIGA HEU fuel cluster rods have a maximum average burnup of 600,000 MWd/MTU (80% ²³⁵U depletion) and a minimum cooling time of 90 days. TRIGA LEU fuel cluster rods have a maximum average burnup of 140,000 MWd/MTU (80% ²³⁵U depletion) and a minimum cooling time of 90 days. TRIGA fuel cluster rods must meet the following specifications prior to irradiation:

	TRIGA Fuel	Cluster Rods
	HEU	LEU
Fuel Form	Clad U-	ZrH rod
Maximum Rod Weight, Ibs	1	.5
Maximum Rod Length, in R REG	3	1
Rod Cladding	Incold	oy 800
Minimum Clad Thickness, in	0.015	
Maximum Active Fuel Length, in	22	2.5
Maximum Fuel Pellet Diameter, in	0.	53
Maximum U Content/Rod, grams	48.6 🎴	289.5
Maximum ²³⁵ U Mas <mark>s, grams</mark>	45.4 🥃	55
Maximum ²³⁵ U Enrichment, weight percent	93.3	20
Maximum Zirconium Mass, grams	421	357
Hydrogen to Zirconium Ratio, max.	1	.7

NOTE: TRIGA fuel cluster rods that have a cladding breach that allows the escape of gas or intrusion of water are considered damaged and will be loaded and transported in a sealed damaged fuel can.

(viii) High burnup PWR rods, consisting of uranium dioxide pellets within zirconium alloy type cladding. The maximum uranium enrichment is 5 weight percent U-235, the maximum active fuel length is 150 inches, and the maximum pellet diameter is 0.3765 inches. The maximum burnup is 80,000 MWd/MTU, and the minimum cool time is 150 days.

	0 50 0 M 040				U.S. NUCLI	EAR REGULATO	DRY COMMISSION
NRC FORM 618 CERTIFICATE OF COMPLIANCE (8-2000) 10 CFR 71 TO FR 71 FOR RADIOACTIVE MATERIAL PACKAGES							
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
	9225	47	71-9225	USA/9225/B(U)F-96	13	OF	26

(ix) High burnup BWR rods, consisting of uranium dioxide pellets within zirconium alloy type cladding. The maximum uranium enrichment is 5 weight percent U-235, the maximum active fuel length is 150 inches, and the maximum pellet diameter is 0.490 inch. The maximum burnup is 80,000 MWd/MTU and the minimum cool time is between 150 - 270 days, as specified in the table below:

BWR Fuel Type Array Size	Burnup, b (GWd/MTU)	Minimum Cool Time (days)
7 x 7	$\begin{array}{c} b \le 60 \\ 60 < b \le 70 \\ 70 < b \le 80 \end{array}$	210 240 270
8 x 8 ¹	NR R b ≤ 80	150

Note 1: Includes rods from all larger BWR assembly arrays (e.g., 9 x 9, 10 x 10)

(x) DIDO fuel elements composed of U-AI, U_3O_8 -AI, or U_3Si_x -AI positioned within the DIDO fuel basket specified in 5.(a)(3)(ii). The fuel elements are composed of four concentric tubes of varying diameters. The fuel elements have an initial enrichment up to 94.0 weight percent U-235. The fuel elements shall have the specifications listed below:

	631103	In the c	
Parameter	LEU ⁽¹⁾	MEU ⁽¹⁾	HEU ⁽¹⁾
Maximum ²³⁵ U content per Element	≤ 190 g	≤ 190 g _	≤ 190 g
Maximum Uranium content per	≤ 1000 g	≤ 475.0 g	≤ 211.1g
Minimum Fuel Tube Thickness	0.130 cm	0.130 cm	0.130 cm
Minimum Clad Thickness	0.025 cm	0.025 cm	0.025 cm
Maximum Outer Diameter	9.535 cm	🧚 9.535 cm	9.535 cm
Minimum Inner Diameter	5.88 cm	5.88 cm	5.88 cm
Minimum Initial Enrichment	19 wt% ²³⁵ U	40 wt% ²³⁵ U	90 wt% ²³⁵ U

¹ The maximum burnup and minimum cool time shall be consistent with the decay heat limits in Item 5.(b)(2)(ix) and shall be determined using the operating procedures in Section 7.1.4 of the application.

				ι	J.S. NUCLI	EAR REGULATO	DRY COMMISSION
NRC FORM 618 CERTIFICATE OF COMPLIANCE (6-2000) 10 CFR 71 10 CFR 71 FOR RADIOACTIVE MATERIAL PACKAGES							
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
	9225	47	71-9225	USA/9225/B(U)F-96	14	OF	26

- 5.(b)(1) Type and form of material (continued)
 - (xi) General Atomics (GA) Irradiated Fuel Material (IFM) consisting of two separate types of fuel materials: (a) High Temperature Gas Cooled Reactor (HTGR); and (b) Reduced-Enrichment Research and Test Reactor (RERTR) type TRIGA fuel entities.
 - (a) GA HTGR IFM comprised of four forms: fuel particles (kernels), fuel particles (coatings), fuel compacts (rods), and fuel pebbles. Fuel particles (kernels) are solid, spheridized, high-temperature sintered fully-densified, ceramic kernel substrate, composed of UO₂, UCO₂, (Th,U)C₂, or (Th,U)O₂. Fuel particles (coatings) are solid , spheridized, isotropic, discrete multi-layered fuel particle coatings with chemical composition including pyrolitic-carbon (PyC) and silicon carbide (SiC). Fuel compacts (rods) are multi-coated ceramic fuel particles, bound in solid, cylindrical, injection molded, high-temperature heat-treated compacts which are composed of carbonized graphite shim, coke, and graphite powder. Fuel pebbles are multi-coated fuel particles, bound in solid, spherical injection-molded, high-temperature heat-treated pebbles composed of carbonized graphite shim, coke and graphite powder. Initial enrichment of the HTGR IFM varies from 10.0 to 93.15 wt% ²³⁵U.
 - (b) GA RERTR IFM comprised of irradiated TRIGA fuel elements which contain three distinct mass loadings of uranium of 20, 30, and 45 wt% U. The average mass of the fuel portion of the elements is 551 g with a maximum initial enrichment of 19.7 wt% U-235.

0 54.44	GA HTGR IFM	GA RERTR IFM
Fuel material	UC ₂ , UCO, UO ₂ (Th,U)C ₂ , (Th,U)O ₂	U-ZrH metal alloy
Maximum fuel weight, lbs	23.52	23.73
Maximum overall length, in	n/a	29.92
Maximum active fuel length, in	n/a	22.05
Fuel rod cladding	n/a	Incoloy 800
Maximum Uranium, kg U	0.21	3.86
Maximum initial ²³⁵ U, wt%	93.15	19.7
Maximum Activity, Ci	483	2920

GA IFM content description:

				ι	J.S. NUCLEA	AR REGULAT	ORY COMMISSION	
	CFORM 618 0000) CFR 71		CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES					
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES	
	9225	47	71-9225	USA/9225/B(U)F-96	15	OF	26	

- 5.(b)(1) Type and form of material (continued)
 - (xii) Tritium-producing burnable absorber rods (TPBARs), as described in Section 1.2.3.6 of the application. Each TPBAR is approximately 153 inches in length and 0.381 inches in diameter and is stainless steel clad. The TPBARs contain lithium aluminate annular pellets, with an inner zircaloy liner and an outer nickel-plated zircaloy tube. Each TPBAR contains a maximum of 1.2 grams tritium. The minimum cool time is 30 days.
 - (xiii) Intact or damaged PULSTAR fuel elements, including fuel debris, pieces and nonfuel components of PULSTAR fuel assemblies as specified below.

Description	Value
Maximum Pellet Diameter (inch)	0.423
Minimum Element (Rod) Cladding Thickness (inch)	0.0185
Minimum Element (Rod) Diameter (inch)	0.470
Maximum Active Fuel Height (inch)	24.1
Nominal Element (Rod) Length (inch)	26.2
Nominal Assembly Length (inch)	38
Maximum Assembly or Loaded Can Weight (Ib)	80
Maximum PULSTAR Can Content Weight (Ib)	39.6
Maximum Enrichment (wt % ²³⁵ U)	6.5
Maximum ²³⁵ U Content per Element (g)	33
No. of Elements (Rods) per Assembly	25
No. of Elements (Rods) per Can ¹	≤25
Maximum Depletion (% ²³⁵ U)	45
Minimum Cooling Time (yrs)	1.5
Maximum Heat Load per Assembly (W)	30
Maximum Heat Load per Element (W)	1.2

¹ Damaged PULSTAR fuel elements, including fuel debris, pieces and nonfuel components of PULSTAR fuel assemblies must be loaded into a PULSTAR can. The contents of a PULSTAR can are restricted to the equivalent of the fuel material in 25 intact PULSTAR fuel elements and of the displaced volume of 25 intact PULSTAR fuel elements.

					U.S. NUCLI	EAR REGULAT	ORY COMMISSION
	RC FORM 618 2000) CFR 71	CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES					
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
	9225	47	71-9225	USA/9225/B(U)F-96	16	OF	26

(xiv) Intact, ANSTO fuel consisting of spiral fuel assemblies and MOATA plate bundles.

Spiral fuel assemblies consist of 10 curved uranium-aluminum alloy fuel plates between an inner and an outer aluminum shell, with the following fuel parameters:

Parameter	Limiting Values
Number of fuel plates per assembly	10
Maximum ²³⁵ U content per assembly (g)	160
Maximum enrichment (wt % ²³⁵ U)	85
Maximum assembly weight (lb)	18
Maximum assembly weight (lb) Minimum plate thickness (cm)	0.124
Minimum active fuel height (cm)	59.075
2	

MOATA plate bundles consist of uranium-aluminum alloy fuel plates with aluminum cladding, with the following specifications:

Parameter	Limiting Values
Maximum number of fuel plates per assembly	14
Maximum ²³⁵ U content per plate (g)	22.3
Maximum enrichment (wt % ²³⁵ U)	92
Maximum plate spacer thickness (cm)	0.18
Maximum active fuel width (cm)	7.32
Maximum bundle weight (lb)	18

- (xv) Segmented TPBARs and associated segmentation debris resulting from post-irradiation examination, as described in Section 1.2.3.6 of the application. Each equivalent TPBAR contains a maximum of 1.2 grams of tritium. The minimum cool time is 90 days.
- (xvi) Solid, irradiated and contaminated fuel assembly structural or reactor internal component hardware, which may include fissile material, provided the quantity of fissile material does not exceed a Type A quantity and qualifies as an exempt quantity under 10 CFR 71.15.

U.S. NUCLEAR REGULATORY CON								
(8-	RC FORM 618 2000) CFR 71	CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES						
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES	
	9225	47	71-9225	USA/9225/B(U)F-96	17	OF	26	

5.(b)(2) Maximum quantity of material per package

Not to exceed 4,000 pounds, including contents and fuel assembly basket or other internal support structure.

- (i) For the contents described in Item 5.(b)(1)(i): one PWR assembly positioned within the PWR fuel assembly basket. Maximum decay heat not to exceed 2.5 kilowatts per PWR assembly.
- (ii) For the contents described in Item 5.(b)(1)(ii): two BWR assemblies positioned within the BWR fuel assembly basket. Maximum decay heat not to exceed 1.1 kilowatts per BWR assembly.
- (iii) Deleted.
- (iv) For MTR fuel elements as described in Item 5.(b)(1)(iv):

Up to 42 fuel elements positioned within the MTR fuel assembly basket (7 fuel elements per basket module). Each of the MTR basket cell openings may contain a loose plate canister. The contents of each loose plate canister are limited to the number of fuel plates, dimensions, and masses that are equivalent to an intact MTR fuel element, as specified in Item 5.(b)(1)(iv).

- (a) The maximum decay heat is not to exceed 1.26 kilowatts per package, with each MTR fuel assembly basket module not to exceed 210 watts.
- (b) HEU, MEU, and LEU MTR fuel elements with decay heat not exceeding 30 watts per element may be loaded in any basket position.
- (c) Mixed HEU, MEU, and LEU MTR contents, with decay heat limits as specified above, are authorized.
- (d) MTR fuel elements with corrosion and/or mechanically damaged cladding are authorized, provided the total surface area of through-clad corrosion and/or mechanical damage does not exceed 2,775 cm² per package.
- (e) For HEU-MTR fuel elements only, the center fuel element in any basket module is not to exceed 120 watts. The two exterior fuel elements vertically in-line with the center assembly for transport are not to exceed 70 watts.
- (f) MTR fuel elements containing more than 470 g²³⁵U (more than 22 g²³⁵U per plate) are limited to up to four elements loaded in basket positions 4, 5, 6, and 7 of a seven-element basket per Figure 7.1-1 of the application. Basket positions 1, 2, and 3 are to be blocked by spacer hardware.

				L	J.S. NUCL	EAR REGULATO	ORY COMMISSION
	RC FORM 618 2000) CFR 71	CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES					
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
	9225	47	71-9225	USA/9225/B(U)F-96	18	OF	26

5.(b)(2) Maximum quantity of material per package (continued)

ഗ

- (v) For the contents described in Item 5.(b)(1)(v): up to 15 intact metallic fuel rods positioned within the appropriate basket. Maximum decay heat not to exceed 0.036 kilowatts per rod. Total weight of all rods not to exceed 1,805 pounds.
- (vi) For failed metallic fuel rods of the type described in Item 5.(b)(1)(v):
 - (a) Up to six canisters containing one defective metallic fuel rod per canister. The canisters are 2.75-inch I.D. failed fuel rod canisters as shown on Nuclear Assurance Corporation Drawing No. 340-108-D2, Rev. 10, and are placed in a six-hole liner as shown on Nuclear Assurance Corporation Drawing No. 315-040-43, Rev. 1. The maximum decay heat load for a defective metallic fuel rod is limited to 5 watts; or
 - (b) Up to three canisters containing either up to three defective metallic fuel rods per canister or up to 10 failed fuel filters per canister. The canisters are 4.00-inch I.D. failed fuel rod canisters as shown on Nuclear Assurance Corporation Drawing No. 340-108-D1, Rev. 10, and are placed in a threehole basket as shown on Nuclear Assurance Corporation Drawing No. 315-40-12, Rev. 3. The weight of the filters is limited to 125 pounds per canister. For canisters containing fuel rods, the maximum decay heat load is 15 watts per canister; and for canisters containing filters, the maximum decay heat load is 5 watts per canister.

				l	J.S. NUCL	EAR REGULATO	ORY COMMISSION
	RC FORM 618 2000) CFR 71						
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
	9225	47	71-9225	USA/9225/B(U)F-96	19	OF	26

- 5.(b)(2) Maximum quantity of material per package (continued)
 - (vii)(a) For TRIGA fuel elements as described in Item 5.(b)(1)(vi)(a):

Up to 140 intact fuel elements in the TRIGA fuel package with poisoned baskets. Up to four fuel elements per basket cell and up to seven cells per basket may be loaded. Damaged TRIGA fuel elements or fuel element debris (up to a total of two equivalent elements) shall be transported in a sealed damaged fuel can (one damaged fuel can per cell). The sealed cans are to be in accordance with NAC International Drawing Nos. 315-40-086, Rev. 1; 315-40-087, Rev. 5; and 315-40-088, Rev. 2.

Mixed intact and damaged fuel contents and fuel debris are authorized. Base and top fuel basket modules may contain intact fuel elements or sealed damaged fuel cans containing damaged fuel and fuel debris. A maximum of seven damaged fuel cans is authorized per top and base basket modules with a maximum of 14 per package. Intermediate fuel basket modules may contain only intact TRIGA fuel elements.

The maximum decay heat shall not exceed 7.5 watts per TRIGA fuel element (or equivalent for damaged fuel) and 1050 watts per package. The basket must be configured as shown in NAC International Drawing Nos. 315-40-080, Rev. 2, 315-40-081, Rev. 2 and 315-40-082, Rev. 2.

(vii)(b) For TRIGA fuel elements as described in Item 5.(b)(1)(vi)(b):

Up to 120 intact fuel elements in the TRIGA fuel package with non-poisoned basket. Up to four fuel elements per basket cell only loaded in the six periphery cells. TRIGA fuel elements or sealed cans may not be loaded in the center cell of the non-poisoned basket. Damaged TRIGA fuel elements or fuel debris (up to two equivalent elements) shall be transported in a sealed damaged fuel can (one damaged fuel can per cell). The sealed cans are to be in accordance with NAC International Drawing Nos. 315-40-086, Rev. 1; 315-40-087, Rev. 5; and 315-40-088, Rev. 2.

Mixed intact and damaged fuel contents and fuel debris are authorized. Base and top fuel basket modules may contain intact fuel elements or sealed damaged fuel cans containing damaged fuel or fuel debris. A maximum of six damaged fuel cans is authorized only in the periphery cells per top and base basket modules with a maximum of 12 per package. Intermediate fuel basket modules may contain only intact TRIGA fuel elements.

Maximum decay heat not to exceed 7.5 watts per TRIGA fuel element (or equivalent for damaged fuel) and 900 watts per package. Fuel may not be loaded in the center cell of the non-poisoned TRIGA fuel basket. The basket must be configured as shown in NAC International Drawing Nos. 315-070, Rev. 3, 315-40-071, Rev. 3, and 315-40-072, Rev. 3.

				l	J.S. NUCL	EAR REGULATO	ORY COMMISSION		
NRC FORM 618 (8-2000) 10 CFR 71		CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES							
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES		
	9225	47	71-9225	USA/9225/B(U)F-96	20	OF	26		

- 5.(b)(2) Maximum quantity of material per package (continued)
 - (viii) For TRIGA fuel cluster rods as described in Item 5.(b)(1)(vii):

Maximum decay heat not to exceed 1.875 watts per TRIGA fuel cluster rod (or equivalent for failed fuel) and 1050 watts per package. TRIGA fuel cluster rods must be positioned in either the non-poisoned TRIGA fuel basket or in the poisoned TRIGA fuel basket. Fuel may not be loaded in the center cell of the non-poisoned TRIGA fuel basket. The non-poisoned basket must be configured as shown in NAC International Drawing Nos. 315-40-070, Rev. 3; 315-40-071, Rev. 3; and 315-40-072, Rev. 3; and the poisoned basket must be configured as shown in NAC International Drawing Nos. 315-40-080, Rev. 2; 315-40-081, Rev. 2; 315-40-082, Rev. 2.

Up to 480 intact cluster rods per package in the non-poisoned TRIGA fuel baskets (up to six periphery cells loaded with 16 cluster rods each), and up to 560 intact cluster rods per package in the poisoned TRIGA fuel baskets (up to 7 total cells loaded with 16 cluster rods each). TRIGA fuel cluster rods must be positioned within the fuel rod inserts as shown on NAC International Drawing No. 315-40-096, Rev. 3.

Damaged TRIGA fuel cluster rods or cluster rod debris (up to six equivalent rods) shall be transported in a sealed damaged fuel can. The sealed cans are to be in accordance with NAC International Drawing Nos. 315-40-086, Rev. 1; 315-40-087, Rev. 5; and 315-40-088, Rev. 2.

Mixed intact and damaged fuel contents and fuel debris are authorized. Base and top fuel basket modules may contain intact fuel cluster rods or sealed DFCs. Intermediate fuel basket modules may contain only intact fuel cluster rods.

(ix) For high burnup PWR fuel rods, as described in Item 5.(b)(1)(viii): up to 25 fuel rods. Maximum decay heat not to exceed 2.3 kilowatts per package.

Intact individual rods may be placed either in an irradiated or unirradiated fuel assembly lattice (skeleton) or in a fuel rod insert. The PWR fuel assembly lattice must be transported in the PWR basket.

Up to 14 of the 25 fuel rods may be classified as damaged. Damaged fuel rods may include fuel debris, particles, loose pellets, and fragmented rods. Damaged fuel rods must be placed in a fuel rod insert. Damaged fuel rods may also be placed in individual failed fuel rod capsules, as shown in Figure 1.2.3-11 of the application, prior to placement in the fuel rod insert. Irradiated guide tubes and guide tube segments may be placed in the fuel rod insert. The fuel rod insert must be transported in a PWR/BWR transport canister, which is positioned in the PWR insert in the PWR basket.

(x) For high burnup BWR fuel rods, as described in Item 5.(b)(1)(ix): up to 25 fuel rods. Maximum decay heat not to exceed 2.1 kilowatts per package.

Intact individual rods may be placed either in a fuel assembly lattice or in a fuel rod insert. The BWR fuel assembly lattice must be transported in the PWR insert in the PWR basket.

				l	J.S. NUCLEA	R REGULAT	ORY COMMISSION	
NRC FORM 618 (8-2000) 10 CFR 71		CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES						
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES	
	9225	47	71-9225	USA/9225/B(U)F-96	21	OF	26	

5.(b)(2) Maximum quantity of material per package (continued)

Up to 14 of the 25 fuel rods may be classified as damaged. Damaged fuel rods may include fuel debris, particles, loose pellets, and fragmented rods. Damaged fuel rods must be placed in a fuel rod insert. Damaged fuel rods may also be placed in individual failed fuel rod capsules, as shown in Figure 1.2.3-11 of the application, prior to placement in the fuel rod insert. The fuel rod insert must be transported in a PWR/BWR transport canister, which is positioned in the PWR insert in the PWR basket.

(xi) For DIDO fuel as described in Item 5.(b)(1)(x):

Up to 42 DIDO fuel elements with a maximum decay heat not to exceed 25 watts per DIDO fuel element, provided the top basket fuel element active fuel region is spaced a minimum 3.7 inches from the bottom of the cask lid. Spacing of the active fuel may be accomplished by fuel element hardware, lid spacer, or a combination thereof. Maximum decay heat is 1.05 kilowatts per package. At a top basket active fuel region to cask lid spacing of less than 3.7 inches, the maximum decay heat not to exceed 18 watts per DIDO fuel element and a total of 756 watts per package.

(xii) For GA IFM as described in Item 5.(b)(1)(xi):

(a)Mixture of fuel particles (kernels and coatings), fuel compacts (rods), and fuel pebbles, packaged in its own Fuel Handling Unit (FHU).

GA HTGR FHU consists of two redundant canisters. GA HTGR IFM is packaged inside a primary canister with welded closure, as shown in General Atomics Drawing No. 032237, Rev. B, "HTGR Primary Enclosure." The primary canister is packaged inside a secondary canister with welded closure, as shown in General Atomics Drawing No. 032231, Rev. A, "HTGR Secondary Enclosure."

GA HTGR FHU total maximum decay heat not to exceed 2.05 watts, and maximum loaded weight not to exceed 71.5 lbs.

(b) Twenty irradiated TRIGA fuel elements; 13 of the elements are intact, and the remaining 7 are sectioned. GA RERTR IFM is packaged in its own FHU.

GA RERTR FHU consists of two redundant canisters. GA RERTR IFM is packaged inside a primary canister with welded closure, as shown in General Atomics Drawing No. 032236, Rev. B, "RERTR Primary Enclosure." The GA RERTR IFM primary canister is packaged inside a secondary canister with welded closure, as shown in General Atomics Drawing No. 032230, Rev. A, "RERTR Secondary Enclosure."

GA RERTR FHU total maximum decay heat not to exceed 11 watts, and maximum loaded weight not to exceed 76.0 lbs.

				L	J.S. NUCL	EAR REGULATO	ORY COMMISSION		
NRC FORM 618 (8-2000) 10 CFR 71		CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES							
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES		
	9225	47	71-9225	USA/9225/B(U)F-96	22	OF	26		

- 5.(b)(2) Maximum quantity of material per package (continued)
 - (xiii) For TPBARs as described in Item 5.(b)(1)(xii):

Up to 300 TPBARs, including a maximum of 2 damaged rods, positioned within a consolidation canister, as shown in Figure 1.2.3-10 of the application. The maximum decay heat is 2.31 watts per rod and 693 watts per package. The maximum weight of the TPBARs and the consolidation canister is 1,000 pounds. Consolidation canisters with fewer than 300 TPBARs may also contain stainless steel spacers of various geometries. The total weight and volume of the reduced TPBAR contents plus the spacers must be less than or equal to the weight and volume of 300 TPBARs.

(xiv) For PULSTAR fuel as described in Item 5.(b)(1)(xiii):

Up to 700 intact or damaged PULSTAR fuel elements in either assembly or element form, including fuel debris, pellets, pieces and nonfuel components of PULSTAR fuel assemblies. The contents of a PULSTAR can are restricted to the equivalent of the fuel material in 25 intact PULSTAR fuel elements and of the displaced volume of 25 intact PULSTAR fuel elements.

(xv) For ANSTO fuel as described in Item 5.(b)(1)(xiv):

Up to 42 spiral fuel assemblies, MOATA plate bundles, or any combination of spiral fuel assemblies and MOATA plate bundles. ANSTO fuel must be loaded within ANSTO basket modules. Spiral fuel assemblies may be cropped by removing nonfuel-bearing hardware to fit the ANSTO basket modules. Fuel assemblies that are cropped, but are otherwise intact, may be considered intact. For spiral fuel assemblies, the maximum decay heat per assembly is 15.7 watts. The minimum cool time as a function of burnup shall be consistent with the maximum decay heat limit and shall be determined using the procedures for medium enriched DIDO fuel in Section 7.1.4 of the application; the minimum cool time may not be less than 270 days. For MOATA plate bundles, the maximum heat load per bundle is 3 watts, and the minimum cool time is 10 years.

(xvi) For segmented TPBARs as described in Item 5.(b)(1)(xv):

Up to 55 equivalent TPBARs as segments and segmentation debris, placed within a welded waste container, as shown in Figure 1.2.3-16 of the application. The maximum decay heat is 2.31 watts per equivalent TPBAR and 127 watts per package. The maximum weight of the segmented TPBARs and the TPBAR waste container is 700 pounds.

(xvii) For solid irradiated hardware as described in Item 5.(b)(1)(xvi):

Up to 4,000 pounds, including spacers, dunnage and containers, and meeting the gamma source defined in Table 1.2-13 of the application. An irradiated hardware spacer source, per NAC Drawing No. 315-40-145, shall be installed.

NRC FORM 618 (8-2000) 10 CFR 71

CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES

1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES
	9225	47	71-9225	USA/9225/B(U)F-96	23	OF	26

5(c)	Criticality Safety Index (CSI)	
	For PWR fuel assemblies described in 5(b)(1)(i) and limited in 5(b)(2)(i)	100
	For BWR fuel assemblies described in 5(b)(1)(ii) and limited in 5(b)(2)(ii)	5.0
	For MTR fuel elements described in 5(b)(1)(iv) and limited in 5(b)(2)(iv)	0.0
	For metallic fuel rods described in 5(b)(1)(v) and limited in 5(b)(2)(v) and (vi)	0.0
	For TRIGA fuel elements (in poisoned TRIGA fuel baskets) described in 5(b)(1)(vi)(a) and limited in 5(b)(2)(vii)(a) For TRIGA fuel elements (in nonpoisoned TRIGA fuel baskets) described in	0.0
	For TRIGA fuel elements (in nonpoisoned TRIGA fuel baskets) described in 5(b)(1)(vi)(b) and limited in 5(b)(2)(vii)(b)	12.5
	For TRIGA fuel cluster rods described in 5(b)(1)(vii) and limited in 5(b)(2)(viii)	0.0
	For high burnup PWR rods described in 5(b)(1)(viii) and limited in 5(b)(2)(ix)	0.0
	For high burnup BWR rods described in 5(b)(1)(ix) and limited in 5(b)(2)(x)	0.0
	For DIDO fuel elements described in 5(b)(1)(x) and limited in 5(b)(2)(xi)	12.5
	For General Atomic Irradiated Fuel Material (GA IFM) described in 5(b)(1)(xi) and limited in 5(b)(2)(xii)	0.0
	For TPBARS and segmented TPBARS described in 5(b)(1)(xii) and 5(b)(1)(xv) and limited in 5(b)(2)(xiii) and 5(b)(2)(xvi)	0.0
	For intact (uncanned) PULSTAR fuel described in 5(b)(1)(xiii) and limited in 5(b)(2)(xiv)	0.0

U.S. NUCLEAR REGULATORY COMMISSION

 NRC FORM 618
 CERTIFICATE OF COMPLIANCE

 (8-2000)
 10 CFR 71

 Display="2">1 a. CERTIFICATE NUMBER
 b. REVISION NUMBER
 c. DOCKET NUMBER
 d. PACKAGE IDENTIFICATION NUMBER
 PAGE
 PAGES

USA/9225/B(U)F-96

24

OF

26

5(c) Criticality Safety Index (CSI)

47

5(b)(1)(xvi) and limited in 5(b)(2)(xvii)

9225

For (canned) PULSTAR fuel described in 5(b)(1)(xiii) and limited in 5(b)(2)(xiv) – for a package with any number of PULSTAR cans	33.4
For ANSTO fuel described in 5(b)(1)(xiv) and limited in 5(b)(2)(xv)	0.0
For solid irradiated hardware described in	0.0

71-9225

6. Known or suspected damaged fuel assemblies (rods) or elements, and fuel with cladding defects greater than pin holes and hairline cracks are not authorized, except as described in Items 5.(b)(2)(iv)(d); 5.(b)(2)(vi); 5.(b)(2)(vii)(a); 5.(b)(2)(vii)(b); 5.(b)(2)(viii)(b); 5.(b)(2)(ix); 5.(b)(2)(x); and 5.(b)(2)(xiv).

- 7. The cask must be dry (no free water) when delivered to a carrier for transport.
- 8. Bolt torque: The cask lids bolts must be torqued to 260 +/- 20 ft-lbs. The bolts used to secure the vent and drain port covers must be torqued to 100 +/- 10 inch-lbs. The bolts used to secure the Alternate B port covers must be torqued to 285 +/- 15 inch-lbs.
- 9. Prior to each shipment, the package must be leak tested to 1×10^{-3} std cm³/sec, except that replaced seals must be leak tested to 5.5×10^{-7} std cm³/sec (He). Prior to first use, and at least once within the 12-month period prior to each subsequent use, the package must be leak tested to 5.5×10^{-7} std cm³/sec (He).
- 10. In addition to the requirements of Subpart G of 10 CFR Part 71:
 - (a) The metallic O-ring seal must be replaced prior to each shipment; and
 - (b) Each package must meet the Acceptance Tests and Maintenance Program of Chapter 8 of the application; and
 - (c) The package shall be prepared for shipment and operated in accordance with the Package Operations of Chapter 7 of the application. If the cask is loaded under water or water is introduced into the cask cavity, the cask must be vacuum dried as described in Chapter 7 of the application. The cask cavity must be backfilled with 1.0 atm of helium when shipping PWR or BWR assemblies, individual PWR and BWR rods, or TPBAR contents.
- 11. When shipping PWR, BWR, MTR, DIDO assemblies, TRIGA fuel elements, TRIGA fuel cluster rods, high burnup PWR or BWR rods, GA IFM, PULSTAR fuel elements, spiral fuel assemblies, and MOATA plate bundles, the neutron shield tank must be filled with a mixture of water and ethylene glycol which will not freeze or precipitate in a temperature range from -40 °F to 250 °F. The water and ethylene glycol mixture must contain at least 1% boron by weight.

					U.S. NUCLE	AR REGULATO	ORY COMMISSION		
NRC FORM 618 (8-2000) 10 CFR 71		CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES							
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES		
	9225	47	71-9225	USA/9225/B(U)E-96	25	OF	26		

- 12. A personnel barrier must be used when shipping PWR or BWR assemblies. Shipments of MTR, DIDO fuel assemblies, TRIGA fuel elements, TRIGA fuel cluster rods, high burnup PWR or BWR rods, TPBAR contents, PULSTAR fuel elements, spiral fuel assemblies, MOATA plate bundles, or irradiated hardware must use the ISO container or a personnel barrier.
- 13. Packages used to ship metallic fuel rods may be shipped in a closed shipping container provided that the closed container, the cask tie-down and support system and transport vehicle (trailer) meet the applicable requirements of the Department of Transportation. When the cask is shipped in a closed shipping container, the center of gravity of the combined cask, closed shipping container and trailer must not exceed 75 inches.
- 14. For shipment of TPBAR contents:
 - (a) Prior to first use for shipment of TPBAR contents, each packaging must be hydrostatic pressure tested to 450 +15/-0 psig, as described in Section 8.1.2 of the application;
 - (b) The package must be marked with Package Identification Number USA/9225/B(M)-96;
 - (c) The package must be configured as shown in NAC International Drawing No. 315-40-128, Rev. 2, for the applicable TPBAR contents; and
 - (d) Prior to each shipment, after loading, each cask containment seal must be tested to show no leakage greater than 2×10^{-7} std-cm³/s (helium).
- 15. For shipment of PULSTAR fuel:
 - (a) Intact fuel elements may be configured as PULSTAR fuel assemblies, may be placed into a TRIGA fuel rod insert (a 4 x 4 rod holder), or may be loaded into PULSTAR fuel cans. Intact PULSTAR fuel assemblies and PULSTAR fuel elements in a TRIGA fuel rod insert may be loaded in any module of the 28 MTR basket assembly. PULSTAR fuel cans may only be loaded into the top or base module of the 28 MTR basket assembly.
 - (b) Damaged PULSTAR fuel elements and nonfuel components of PULSTAR fuel assemblies must be loaded into PULSTAR cans. Damaged PULSTAR fuel, including fuel debris, pellets or pieces, may be placed in an encapsulating rod prior to loading into a PULSTAR fuel can. PULSTAR fuel cans may only be loaded into the top or base module of the 28 MTR basket assembly.
 - (c) Loading of modules with mixed PULSTAR payload configuration is allowed.
- 16. For the shipment of damaged TRIGA fuel elements, cluster rods and/or fuel debris loaded in sealed damaged fuel cans:
 - (a) The package must be configured as shown in NAC International Drawing Nos. 315-40-079, Rev. 5 or 315-40-084, Rev. 4, for the applicable TRIGA contents; and
 - (b) Prior to each shipment, after loading, each cask containment seal must be tested to show no leakage greater than 2×10^{-7} std-cm³/s (helium).

					U.S. NUCL	EAR REGULATO	DRY COMMISSION		
NRC FORM 618 (8-2000) 10 CFR 71		CERTIFICATE OF COMPLIANCE FOR RADIOACTIVE MATERIAL PACKAGES							
1.	a. CERTIFICATE NUMBER	b. REVISION NUMBER	c. DOCKET NUMBER	d. PACKAGE IDENTIFICATION NUMBER	PAGE		PAGES		
	9225	47	71-9225	USA/9225/B(U)F-96	26	OF	26		

- 17. Transport by air is not authorized.
- 18. The package authorized by this certificate is hereby approved for use under the general license provisions of 10 CFR 71.17.
- 19. Revision 46 of this certificate may be used until May 31, 2009.
- 20. Expiration Date: February 28, 2010.

REFERENCES

NAC International, Inc., application dated January 15, 2008.

4

_

S

NAC International, Inc., supplements dated January 17, February 27, and April 8 and 11, 2008.

FOR THE U. S. NUCLEAR REGULATORY COMMISSION **/RA/** Meraj Rahimi, Acting Chief Licensing Branch Division of Spent Fuel Storage and Transportation Office of Nuclear Material Safety and Safeguards

Date: May 29, 2008