NOTEBOOK NO. 83	
ISSUED TO Watso	۹
ON October 13	20 06
DEPARTMENT Du 20	
RETURNED	20

20.06002.01.212

SCIENTIFIC NOTEBOOK COMPANY 2831 LAWRENCE AVENUE STEVENSVILLE, MICHIGAN 49127 (800) 537-3028 - http://www.snco.com

Abbreviation Table

Abbreviation	Definition			
		ATURE INITIALS	-	
	SANDRA WATSON	id-Mbfin Sw		
	SANDRA WATSON Chu Nancy Hawkins Naucy	Allolin NH		
	· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·				
	3/26/07 - Notebook copied	For QA (Pp 1-14)		

		Project No.
TITLE		Book No.
10/13/06	× · · ·	
This notebook is	a continuation e	F SN 716E BUSH
this notebook is	a continuation o	OF SN 817E.
1 18 07		
	IN OF IN-DRIFT WA	
STRESS	CORROSION CRACI	25
1/19/07	1))
The overall obj	ective of the proje	ect is to document
	studies on Plow c Corrosion cracks	
	procedure, set-up	
and results	[· · · ·	
<u> </u>		
	\sum	
	The	
	N.	
	*207	
	N ₁	
	X	
Recorded by;	Date Verified by:	Date
Mande Wat-	1/19/07	

Book No.		alata esta como mante da están ende
	Planned Work	
Expe	erimental Work	
•		•
	ffect of thermal aging on contact angle between in tift water and Alloy 22	-
	rift water and Alloy 22	
	rop experiments for different crack width: 25, 50,	100
	nd 200 µm	
- Tv	wo temperature: 25 and 95 °C	
́,Dr	rop experiments with calcium chloride brines, alka	aline
∨bri	ine, and neutral brine	
– Sla	anted surface with solution for which in-drift wate	r
	nters the crack	
	·	<u></u>
• • • • • • • • • • • • • • • • • • •		
ecorded by:	Date Verified by: Da Wath 1/21/07	te

			Project No.	
			Book No.	
2/1/07		· · · · · · · · · · · · · · · · · · ·		
	erature: 25C	and 95c		
This exper	ment will d			
flow on s	bress crack a	s the time (a)	pse difference of atures.	`
			by three brine =	ielns.
EQUIPTMENT -				
Alloy	22 BLOCK WIT	H CRACK LIN	ES DRILLED FOR PR	
		ELENIEAN	ED DRILLED FOR PF	ROCCEDU
UMEGA	I THERMO COUPL	e		
WATLO	N 93 CONTROLL	EP Bay		
OAKTON	J INFRAPRO IN	FRARED THER	NO METER - AN" 010	
			- 50* 132 2	864
REAGENTS -	SONIC CLEANER	a a familia da cara any any any any any any any any any an	- 54 2332	22030(
	D.D.			
NEUTDE	DI WATER		· · · · · · · · · · · · · · · · · · ·	
ALKAL	L BRINE (SN	768/14)	· · · · · · · · · · · · · · · · · · ·	
CaCI E	INE BRINE (SN	768 (14)		
ACETON		768/14)		
SUPPLIES -			an a	
DISPOSI	ABLE TRANSFER	Distance -	and the second	
KIMWIPE	S	FIFEIJEZ		
STOPWA			and the second	en esta de la compañía
HARD R	RUBBER STOPPE	RS		
ELECTRI	CAL TAPE	and a second	ADDED 2/7/07	50
anner start startan anna - ann ann anna ann ann ann ann a	· · · · · · · · · · · · · · · · · · ·	and the second	ADDED 218/07	دىرى
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	and a second	
	and a second	· · · · · · · · · · · · · · · · · · ·		
	n an	······································	and a constant of a second	
and the second	····		and the second	
and a second	and the second		and the second	
ardod hu	and the second	·····	and the second	
orded by:	Date	Verified by:	Date	
Sarde Wa	the 2/1/07		· · · · · · · · · · · · · · · · · · ·	

Project No.				
Book No.	TITLE			•
SET UP OF	EQUIPTMENT -	INITIAL		
	Diacht i sa a f			
4004 23	BLOCK WAS F	LACED ON CLE	AN SURPACE	
HEATING	ELEMENTS AN	D THERMOCOUP	LE CONNECTED	
To Con	TROLLER BOX			
HEATIN	OG ELEMENT 5	AND THEMOCO	DIE WEDE	
	ED INTO ALLOY		·	
:	-			
	LLER BOX WF	is turned on	AND CONNEC	TIONS
CHECKE	.D			
CONTR	CLLER TEMPER	ATURE ARBITRA	HIRLY SET TO	.
50 C	SO HEATING ELE	ements can b	e checked	
ALL CO	DNHECTIONS WOF	KING		
215/07				
Before beginnir	ia this experime	at it is proc	ssary to det	5W 2/5/07
determine th	ly this experime le internal block desired surface	stemperature re	guired in orde	<u> </u>
to maintain	desired surface	= temperature	0	
This will be	- accomplished	by introlling	11	1
box setting	e accomplished to the desire s necessary s stabilization	id surface ter	werature and	U Such
adjusting a	s necessary s	ufficient time	will be allowed	for
temperature	stabilization			
Allou 22	block is ultra	sourcally dear	red in acto	\.
For 10 mi	nutes and rins	ed well using	Di water. Blo	ek
15 then i	nutes and rins sitrasonically o tried with co	leaned again	Using only	Di water
Block is a	tried with co	mprossed air		
	· · · · · · · · · · · · · · · · · · ·	·····		· · · · · · · · · · · · · · · · · · ·
Recorded by:	Date	19		Date
Auche Water	2/5/07	L		

1		Project No.	
TITLE		Book No.	
· · · · · · · · · · · · · · · · · · ·			
Allow 22 blo	at is alread to	abou surface	
Heating clean	-ots and the encien	ale are inserted	n te
black		clean, dry surface uple are inserted in	<u>х Съ</u>
		a and a second and a second and a second second second and a second second second second second second second s	
the initial te	merature of the	controller box 15 50	t ta
95C. The blo	ock temperature a	sill be allowed to	
stabilize over	a period of one	hour	
After 1 hour	- the surface to	imperature was tak	ές Ο
USING IDERAR	d Hermometer Th	ermaneter reading i	N92
31C yet bloc	k very hot to ta	ermaneter reading i	
•			
Restart con	troller and reset	temperature to 95	د.
31C AFter	1 hour thermomet	Er is reading 33	Į.
Block 15 h	ot to touch	ernoter is reading 33	
shut down			
216107			
<u> </u>	} , ,		······································
Controller box	turned on and 3e	t to 95C Power la	st.
yen controlle	er dax and replace	fuse. Close box an	<i>י</i> ط
tescare.			······
Sack - chem	ne francis	alias la ana haak	
el mant	veg trent whes a	rading to one heat	
Cement. ti	JE DENS JERS	the colo ne since	-1
ilisible dan	ace to besting ele	ment lines	
	age to heating de		····· - ·· · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	
Recorded, by:	Date Verified	l by.	Date
Sad Wat	2/6/97		
Mac Wat	- / - / / /		

,

Project No. 6

Book No.

TITLE

217/07 Replacement heating element located and installed to controller box Alloy 22 block raised off of counter surface using (4) hand rubber stoppers * Add 50 c and 75 c to temperature points (Pavan Shukla) Controller box set to 95C. After I hour, infored thermometer reading is 34C. Contact thermometer manufacture (place black electrical tape on surface or paint surface dark color) 2/8/07 Alloy 22 block was cleaned using DI water and thoroughly dried with compressed air Block was placed on (4) hand rubber stoppers and heating clements and thermocouple were inserted. (2) lengths of black cleatrical tape were placed on the surface of the block as per manufacturer of thermoters instructions. Controller box turned on and set to 95C. After one hour the surface temperature reading on the dectrical tape was 870. controller temperature increased to 1000. After one hour the surface temperature was gac Recorded by Verified by: Date Date dande 11/0th 2/8/07

Project No. 7 TITLE Book No. _____ 219 67 Controller box turned on and set to 105C. After 1 hour surface temperature was 970. Controller set to 103C. AFter 1 hour, sort surface temperature was 95C. Controller box temperature was decreased to 75C. temperature was allowed to stabilize for a period of two hours and surface temperature was taken. 2/13/07 Controller box turned on and following proceedure done 215/07 and 219/07, incremental controller box adjustments were done to determine temperatures necessary for desired surface temperatures 2/14/07 Below are the controller box settings required to maintain desired surface temperatures. CONTROLLER BOX SETTING SURFACE TEMPERATURE 103C 95C 810 75 C 54C 50C 260 25 C Verified by: Date Date Recorded by: Sande Water 2/16/07

8 Project No. TITLE Book No. 2/20/07 Experimental proceedure for determining flow rate of DI Water at 25C, 50C, 75c and 95 C Alloy 22 block is ultrasonically cleand in actione for 16 minutes, then removed and rinsed well with DI water. Block is then ultra someally cleaned in DI water for 16 minutes. Block is dried throughly with compressed air. Alloy 22 block is placed on hand rubber stoppers and heating elements and thermscouple are inserted. Controller box is set to temperature determined on previous page (831/7) and surface temperature is periodically clecked. Once external temperature stability is achieved, an additional 10 minutes is allowed for certainty. Using disposable pipette, one drop OF DI water is dropped directly on the crack machined into Allay 22 block. Simultaneously the stopwatch is started to record the time When the drop of water is no longer visable over the crack, the stopwatch is stopped and the time recorded. Since only DI water is being used it is not perer necessary to clean block between chops Date Verified by: Recorded by: Date Sauch Wat 2/20/07

			Project N	No
ΓLΕ			Book M	No
Q	I WATER D	ROP Jumma	ry	
	25 C	50 4	75c	95C
DROP #1	Ulmin \$3 sec	8min 425cc	2min 47 sec	Imin 140ec
Drop * 2	56 min 49 sec	9min of Sec 9min of Sec	2min 54500	1min 1850
DROP #3	57 min 3350	8 min 51 sec	2min 415cc	Imin 2150
DROP # 4	49 min 40 sec	9 min 12 scc	2 min 22 sec	Imin 225cc
DROP # 5	50 min 51 sec	9 min ØØ sec	2 min 49 sec	I min 16 sec
DROP # 6	66min 12 soc	8 min 58 sec	2 min 324 sec	1 min 14sec
DROP # 7	lepmin 31 sec	8 min 455cc	2min 36 sec	1 min 19 see
DROP #8	59 min 18 scc	8 min 53 sec	2 min 51 sec	1 min 28 500
DRop#9	56 min 21 sec	8min 49 sec	2min 44 Sec	1 min 22 300
DROP * 10	52mn 18 500	8min 36 500	2 min 335cc	1 min 2000
			3	
		167 502		
		2124107		
ecorded by: Sarche lu		Date Verifie 2 24/07	ed by:	Date

Book No	TITLE		
3/2/07			
•		OR DETERMINING	
		BRINE AND Ca-C	
	•	ITH ONE CHANGE.	
		ALLY CLEANED W	
		REMOVE RESIDUE	
		ED TO ELAPSE BE	•
CLEANING AND	SUBSEQUENT	DROP FOR TEMPERI	ITURE STABILIZAT
			/
		/	/
			Surfamilie Alexies
	_	/	
	Sub		
<u></u>	1		
	12107		
	<i>y</i>		
	·····		
Recorded by: Jande Wats	Date	Verified by:	Date

т	 т	
- 1		

Book	No	
DOOK	INU.	

<u>50m</u>	MARY OF BRINE	5 AT 95 C	
	Call Brine	Neutral Brine	Alkaline Brinz
Drop#1	Imin 32 sec	1min 15 sec	Imin \$1 sec
Drop# 2	lmin 38 scc	1 min 22.500	Ømin 595=c
Drep*3	Imin 45500	1min 2850	Imin \$8 sec
Drop#4	1 min 29 sec	lmin 19 sec	1 min 03 sec
Drop#5	Imin 44 sec	min 21 sec	Ømin 53 sec
Drop*6	I min 38 scc	1 min 26 scc	Imin\$5 sec
Drop *7	Imin 30 sec	1min 29 se	1 min 10/sec
Drep#8	min 41 Sec	I min 20 sec	1 min 183 see
Drep*9	min 33 sec	Imin 23 Sec	Omin 58 sec
Drop# 10	1 min 30 sec	Imin 22500	Imin Øsec
	313107	3 2	
Recorded by:		ate Verified by:	Date

Book	No	TITLE	
Summ	hary of Brine	s at 75 c	
	Ca-Cl Brine	Neubral Brine	Alkaline Brine
$\lambda c c p^{*}$	2min 45scc	2min 500sec	3min 15 see
Drep#2	2 min 545cc	2 min 56 sec	2min 58 sec
Drop#3	3 min QUe Sec	2 min 51 see	3 min 49 sec
Drap*4	2 min 41 sec	3min 10 sec	3 min 21 sec
Drop*5	2min 30 sec	3min 2 sec	3min 26 sec
Drop* 6	2 min 56 sec	2min 42sec	3min 30 sec
Drap # 7	2 min 44 sec	2min 39 sec	3min 17 sec
Drop#8	2min 51 Sec	2 min 49 000	3 min 22 sec
Drop "9	2 min 55 see	2 min 56 sec	3min 25 500
Drop" 1Ø	3min @1 sec	3min O3sec	3min 19 sec
	312107	50	

TITLE			Project No Book No	13
Summi	ary of Brines a	t 50c		
	Ca.C. Brine	NeutralBrine	Alkaline Brine	
Drop #1	9min 10 sec	7run 31sec	9min 07 Sec	
Drop #2	7min 58 sec	8min Ø3sec	9 min 21 see	
Drop#3	8min 41sec	7min 53scc	8min 43sec	
Drap # 4	7min 14 sec	4 min 18sec		
Drop#5	7min 20sec			
Drep #6	7 min 03 soc		· · · · · · · · · · · · · · · · · · ·	
Drop#7	6min 48sec			
Drop*8	Lemin 36300			
Drop #9	lemin 40 sec			
Drcp [±] lø	Lemin 29sec			
		1.1		
		3/23/07 du		
Recorded	þy: che Water	Date Verified by: 3/23/07-	Date	

Book No.	TITLE	
Summary OF Brines	s at 25 c	
Ca-CL Brune	Neutral Brne	Alkaline Brine
Drep#1		
Drapt 2		
Drop*3		
hop #4		
Jop*5	(D)	
1002 * C	ENTERS	
rep [#] 7	DMTA ENTERED DMTA ENTERED DMTA 23107 NO 3123107	
op *8	NO 31231	
)rap*9	/	
rep*/φ		
3/23/07		
	reperimental procedure, se	t-up, and data desired
Recorded by:	Date %22/67 Verified by:	Date

Project No. _____ 15 TITLE Book No. 3/27/07 Two temperature: 25 c and 95 c (original experimental plan) Madified to the following -Drops at 4 temperatures: 25c, 50c, 75c, 95c This experiment will show the amount of time required for complete (visible) evaporation of a single, 15 jui drop of DI water on a heated block of Alloy 22 at four different temperatures in a controlled environment. Equiptment -Alloy 22 block (2) chromalox heating elements Omega Hermocouple wattow 93 controller box Oakton inFrapro inFrared Hermoneter (AN* 010864) (5N° 2332580201) Nortake scientific environmental chamber plexiglass shelld Supplies-Eppendorf reference pipetter disposable pipette tips stopwatch hand rubber stoppers electrical tape Reagents -DI water Sanda Wat Date Verified by: Date Recorded by 3/27/07

16 Project No. -

ð,

Book No.			
3/27/07			
5-L			
Set up -	ai il		
Alloy 22 DIOCK Was	thorough	ly cleaned in DI water	and
aried with compres	Sed air.		
Black was along	(h)	hard rubber stoppers to	aleuste
It from work surf		nora route steppers as	ecoc
			<u></u>
Heating clamats	and the	Magazie in the alaced	a hola
and alled in block	s and the	ermolouple were placed u	J
piedine in ober	<u>, , , , , , , , , , , , , , , , , , , </u>		N
Black electrical ta	de mas	placed along sides of ble	Jok For
tenseature messi	pr monts	placed along sides of ble	
two-sided Dirxigla	55 COVER	was placed over block :	set-up
to minimize air f	Plow		1
· · · · · · · · · · · · · · · · · · ·			
Experimental procedure			
		and clean pipette tip,	15 ul
of DI water is d	ropped as	s a single drop onto the	Surface
of the alloy 22 1	Jock. Jim	utaneously the stop wat	ch 15
started to rea	ord. the t	me. The drop 13 continuou:	sly
observed until 1	t has w	sibly disappeared and at	that
point the stop	watch 15	stopped. The clapsed tim	15 IS
recorded on the	chart o	n p. 17 of this notebook.	Using
the infrared ther	mometer	, the surface temperature	- of
		and recorded under the	
entry. The tempsi	able is	placed in paranthesis For	easter
VISIbility.			
/			•••••
this provedure is	s repeated	for each drop	
			alwaysaan alifaan taalaa kay aya taata ta ta gaasaa aa aa
99c block -> 9			
$77c block \rightarrow 7$			
51c block -> 5	_		
25c block →			Date
Recorded by:	Date	Verified by:	Dale
Carlo Ukh	3/27/07		

			-	ect No	
DI Wate	er diop sum	mary - 15 M	(
	950250	75000	5dc 75-C	25850	
Drop* 1	56" (96c))' Ø8 " (75c)	7'04'" 500 (555)(50c)		
Drop*2	55" (96 c)	J'Ø9" (75c)	7'02",10 ^{7 50} (55°C) (SØC)	3	
Orep*3	56 * (95c)	2'10" (75c)	7'06" (5¢c)	4/3/03	
Drep*4	55 " (96 c)	2'13" (74c)	7'11" (49c)	-0 2 2	
Drop#5	57 " (१७ c)	2'09" (75c)	7'17 (49c)	P P V	
Drop#6	55" (97c)	J'11" (75c)	7'11" (50c)	2 2 2	
Drcp "7	53" (97c)	J'12" (75c)	7'13" (5@c)	т Т Т	
Drap * 8	56" (96c)	2'11" (76c)	7'98" (51c)	U U U	
Drop* 9	56" (95 s.)	2'14" (75c)	7'10" (50c)		
Drop [#] 10	57" (१५८)	J'13" (740)	7 '14" (50 c)		
Environmente	al chamber c	onditions -	75°E 69% humidit	y (START)	
Recorded by:	i Water	Date	Verified by:	Date	e

18 Project No. _____ TITLE Book No. 4/2/07 Pavan Shukla has requested a change in 'drop size' form 15 ul to 30 ul. 4/3/07 Restart experiment (initial SN 831/15) Using 30, Il drop of DI water Equiptment, Supplies, reagents identical Addition to set up / procedure -Prior to placing drop on block, the surface temperature is verified using infrared thermometer and the following guideline: Controller box setting SUFFACE reading 95 c 99 C 75c 77C 50c 51C 25c 25c Also, conditions in the environmental chamber are noted at both beginning and end of experimental procedure Recorded by: Jande Watt Verified by: Date Date 4/3/07

à

Project No. 19 TITLE Book No. 4/4/07 DI water drop summary - 30 ul drop 95c 75c 5¢c 25C 3'40" 2:18'49" 11'18" 1'37" Drop*1 (25c) (75c) (50c) (95c)3'42" 11'20" Drop"2 1'34" 2:04'33" (25c) (74c) (95c) (50C) 1'35" 3'44" 11'18" 1:59'42" Drop*3 (74c) (50c)(25c) (94c) 1' 34" 3'43" 11'21" 2:12'09" Drojty (25c) (490) (75c)(95c) 2:110-18" 2:10'18" 3'44" 1'36" 11'24" Drop*5 (75c)(95c)(49c)(25c) 1'35' 11'20" NIA Drop 6 3'41" (95c)(75c)(500) Drop#7 3'43" NIA 1' 34" 11'19" (95c) (76c) (50c) 3'40" 11'18" 1.34 NIA Drop 8 (94c) (76c) (51C) 11.21" NIA 1'36" 3'43" Drop*9 (94c)(75c) (50c)1' 35" N/A 3'41" 11'23" Drop# 10 (95c) (75c)(50c) Beginning Conditions - 74 F air temp, 70% humidity Ending Conditions - 76 F air temp 69% humidity Recorded by: Date Verified by Date Jarde Watt 4/23/07

Book No.	TITLE	
The experiment three (3) solut	on the previous page is	s repeated using
- Aikalina	brine (SN 768/14)	
- Ca.Cl b	rine (SN 768/14)	
- Nestra	l brine (SN 768/14)	
Alloy 22 blo between each	ck is rinsed well with I drop to remove residuals) water and dried
<u> </u>		
	Ture 12	
		<i>}</i>
corded by:	Date Verified by:	Date

ļ

Book No.

Alkaline Bone drop summary - 30 ul size - smooth surface 95c 75c 50 c 25C 12'18" 1'32" 3'41' Drop*1 2:28'19" (95c)(75c) (51c) (25c) 1'30" 3"42" 12'19" 2:30/07" Drop#2 (95c)(75c)(50c) (25c) 1'32" 2:08'56" Orcp#3 3'45" 12"27" (940) (75c)(50c) (25c) 1'29" Drop#4 3'42" 12'22' 2:03'43" (95c)(50c) (74c)(25c) 1'33" 3'43" 2:17"33" 12'28' Drop#5 (96c)(49c)(75c)(25c) 1'32" 3'49" 12'20" Drop#6 NIA (96c) (5¢c) (76c) 12.30" 1'33" 3'42" Drop#7 NIA (95c) (50C) (76c) 12.25" 3'41" 1'30" 8 gard NIA (75c) $(5 \varphi c)$ (95c) 3'41" 12'27" Drop#9 1'31" NA (95c) (76c) (SOC) 12'21" NA Drop* 10 1'32" 3'42" (950) (50c) (75c)Initial 76F/70h 75F/67h end Recorded by: Manay Martin Verified by: Date Date 6/1/07

TITLE

22 Project No. _____

Book No. _____

TITLE

Ca. CL Brine drop summary - 30 ul size - smooth surface 5ØC 95c 75c 25C 2:16'16" 1'31" 3'37" 13'15" Prop#1 (5@c) (95c) (25c) (75c) J:23'31' Drop#2 1'31" 3'37" 13'22" (95c) (søc) (252) (75c) 2:04'29" 1'32" 12:57" 3'36" Drop#3 (96c) (75c) (SØC) (25c) 3'37" 13'11' 2:27'40" 1'29" Drop#4 (95c) (Soc) (25c) (75c)13'25" 1'33" 2:19'20" 3'34" Drop#5 (95c)(22c) (76c) (50c) 1'32' 3'35" 13'29" Drop#6 NA (95c)(75c) (SOC)13.40" 1'31' Orop"7 3'38" NIA (95c)(75c)(50) 1'32" NIA 13'36" Drop#8 3'37" (94c) (75c)(SØc)13'19" 1' 30" NIA Orop*9 3'38' (95c) (74c) (SOC) 13' 29" Drop #10 1'33 3'36' NA (95c) $(S\phi c)$ (75c)Verified by: Date Recorded by: Date Nancy Martin 6/2/07

TITLE

Neutral Brine drop summary - 30 ul size - smooth surface 95c 75c 50 C 25 c 1'35" Drop#1 3'26" 12'56" 2:31'08" (95c)(75c) (50c) (25c) 1'33" 2:26'39" Drcp#2 3'28" 12'41" (75c) (95c) (51c)(25c)1'33" Drop#3 2:38'12" 3'30' 12'39" (75c) (95c) (51c)(25c)Prep#4 1'34" 12'52" 2:10:19" 3'32" (95c) (740) (50c)(25c) 1'32" Drop#5 3'31" 2:03'51." 12'58" (96c) (75c) (50c) (24c) 1'33" Drop*6 12'50" 3'29" N/A (75c)(95c) (SOC)1'34' 3 28* Drop#7 12'44" NIA (95c) (71x) (50c) 1'33" 3'26" 12' 49" NA 8 GOID (950) (75c)(50c) 1'31" NA 3'27" 12'57" P " con C (95c)(75c) (49c) 1'32" NA 3'28" Drop#10 13'02" (95c) (74c) (5¢c) Recorded by: Mary Martin Verified by: Date Date 6/1/07

Project No Book No		
	07	
	Ene	
	<u>\`</u> }	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		(,
		<u>_</u>
		<u>_</u>
corded by: anay Mahi	Date Verified by: $G_{1}^{2}/O_{1}^{2}$	Date

	TITLE		Project No Book No	2!
	······		DOUR NO	
	<u> </u>			
	· · · · · · · · · · · · · · · · · · ·			
	<u> </u>			
		- Ve	*****	
			<u>e</u>	
			E	
			<u>\</u>	
			<u>_</u>	
			<u>_</u>	
				$\mathbf{h}$
		×		
Recorded by: Date Verified by: Date	Recorded by: Maucy Martin	Date , 6/1/07	Verified by:	Date

Ż

Project i Book i		TITLE		
DI Wa	ater drop sur	mary - 30,11	l - cracked su	rface
	95 C	75c	5¢c_	25c
Drcp ³ I	1'34" (95c)	3'4¢" (75c)	)('4¢` (5¢c)	1.58'34" (25c)
Drop#2	1' <i>3</i> 2" (95c)	3'44" (75c)	`36" (STAC)	2'26'i7" (25c)
Drep#3	1'32" (95c)	3'41" (74c)	11'42' (5фс)	2:15'28" (25c)
ᡗᡊᢩᡱᡟ	1'31" (95c)	3'46" (74c)	11~49" (5¢c)	1:59'53" (25c)
Drop#5	1'33" (95c)	3'46" (75c)	11'32' (51c)	2:10'41" (25c)
Drojslo	1'32" (95c)	3'45″ (75c)	11 '51'' (5φe)	N/A
Drop#7	1'31" (95e)	3'47" (75c)	11'43" (49c)	N/A
Drop* 8	1'3¢" (96¢)	3 44 " (75 c)	11' 40" (SØC)	NIA
Dropt 9	1'33" (95e)	3'41" (75c)	11'28" (5øc)	NIA
Diop#14	1' 32" (95c)	3' 43" (7%)	11'39' (5¢c)	N/A_
Recorded b	v: Uâvlii	Date 10/7/07	Veriñed by:	Date

TITLE _____

ſ

.

Project No.

Book No.

	95c	75c	50 c	25c
Droft	1'34'	3'38'	13'19'	2:10,04.
•	(95e)	(95c)	(5Øc)	(25c)
Drepta	1'35"	3'40"	13'12"	1:52'37"
•	(94c)	(75c)	(5¢c)	(25c)
Drop#3	1'33"	3'44'	13'26"	2:17'40"
	(95c)	(75c)	(5¢c)	(25c)
Drep#4	1'33"	3'41"	13'20"	2:23:31"
- T	(95c)	(75c)	(5ØC)	(25c)
Drop#5	1'31"	3'37"	13'31"	2:18'43"
<del></del>	(95c)	(74c)	(50c)	(25c)
Dropt	1'32"	3'36"	13`39"	NIA
	(960)	(75c)	(5Øc)	· · · · · · · · · · · · · · · · · · ·
Drep#7	1'33"	3'39'	13'28"	NIA
	(95c)	(75c)	(500)	
Drop#8	1'34"	3'38"	13'40'	NA
	(95c)	5 50 115107 (75c)	(5¢c)	
Drop*9	1'32"	3'42'	13' 35 "	NIA
<u> </u>	(95c)	(740)	(51c)	
	1'33"	3.41"	13'29"	NIA
Drop*10	1 3 2	(75c)	(5¢c)	

28 Project No. _____

TITLE Book No. Ca-cl Brine drop summary - 30 ml - cracked surface 75 C 5\$c 95 C 25C 3'44" 1:55' 39" 1:32" 13'09" Dropil (950) (75c) (5|c)(25c) 3'45" 13'11" 2:12'43" 1'33" Dogta (75c)(5lc)(25c) (95c) 3'37" 13.26" 2:19'18" 1'31" Droft 3 (50c)(25c) (94c)(75c)1'33" 3'41" 13'22" 1:56'32" Dropty  $(5 \ \ c)$ (75c)(25c) (95c) 3'49" 13'31" 2:06'29" 1'34" Drop#5 (75c)(5¢c) (25c) (95c)1'34" 3'48" 13'29" Dropt NIA (75c) (5 @c)(95c) 3'47" 1'31' 13'20" NIA Drop#7 (5øc) (75c)(95c) (3'50")* 1'32" 13'19" NIA Drop 8 (5Øc) (74c) (95c) (3'53")* 13'23' 1'31" NIA Drop*9 (74c)  $(5\phi c)$ (96c)(3'48")* 1'34" 13'33" NIA Drop* 10 (75 c) (50C (94c) * inadvertantly placed parallesis Recorded by: Mancy Martin Verified by: Date Date 6/1/07

 •		
 $\sim$	<u></u>	No.
 		<b>V</b> ()
	<b>.</b>	••••

Book No.

29

	95c	75c	5pc	25C
Dropil	1'35"	3' 34"	12'29'	2:20,23,
	(952)	(75c)	(51c)	(25c)
Jrcp#J	1'33'	3'30"	12'49"	1:41'58"
1	(95c)	(75c)	(5¢c)	(25c)
Drcp#3	1'36"	3'3("	12' 36"	2:14 "19"
	(940)	(75c)	(5¢c)	(25c)
Drop#4	1'35"	3' 35"	12'41"	2:09'31"
	(95e)	(750)	(49c)	(25c)
Drop\$5	1'34"	3'38*	12:56"	2:39'17"
	(95c)	(75,)	(5¢c)	(25c)
Dropil	1'35"	3'36"	12.53"	N/A
- P -	(950)	(75c)	(5¢c)	
Droz 7	1'36"	3'35"	12'48"	NJA
	(95c)	(75c)	(5øc)	1.
Drop* 8	1'33"	3'34"	13'04"	NIA
	(94c)	(75c)	(50c)	
Drop [*] 9	1'32"	3'31"	12'50"	NIA
	(96c)	(7c5)	(5¢ c)	
rop "10	1' 34"	3'36'	12'42'	NJA
×	(95C)	(75c)	(5¢c)	
Recorded by		Date Veri	fied by:	Date
Naucy i	Martin	6/1/07		

TITLE

Analysis of Contact Angles on Alloy 22         Initially Assigned To: Nancy Hawkins and Scott Hutzler         Objective:       Measure the contact angle of four solutions on a planar, alloy 22 specimen at varying temperatures to determine flow probability.         Sample:       Alloy 22 Metal Block         Reagents:       Alkaline Brine (SN 768/14) CaCl Brine (SN 768/14) DI water         Acetone       Equipment:         (2) Chromalox Heating Elements Ornega Thermocouple Wathow 93 controller box Oakton Infraro Infrared Thermometer (model #3649 #5n: 2332580201) Standard Goniometer (model #: 250-F1; sn: 607113) Auto Dispenser (model #: 10-22-100; sn: 607113) DROPimage Computer Software (Ramé-Hart Instrument Co.) Ultrasonicator (Colice of Context) QECLINCLING (LEVICE (Mn: 01305 T) Supplies:         Di water       Di water         Kimwipes       Gloves         Gloves       Electrical tape         Compressed air       Di water         • Calibrate the standard goniometer with the ball bearing provided by the manufacturer         • Position alloy block on the stage and center/focus it on the live view on the computer         • Position the pipette over the alloy surface and adjust the distance from the pipette tip to the surface where desired         • Position the pipette over the alloy surface and adjust the distance from the pipette tip to the surface where desired         • Position the pipette over the alloy surface and adjust the distance from the pipette tip to the surface where desired         • Releas	8001	< No			
Initially Assigned To: Nancy Hawkins and Scott Hutzler         Objective:       Measure the contact angle of four solutions on a planar, alloy 22 specimen at varying temperatures to determine flow probability.         Sample:       Alloy 22 Metal Block         Reagents:       Alkaline Brine         (SN 768/14)       CaCl Brine         DI water       Acetone         Equipment:       (2) Chromatox Heating Elements         Omega Thermocouple       Wattow 93 controller box         Oakton InfraPro Infrared Thermometer (model #56/37/sn: 2332580201)         Standard Goniometer (model #: 250-F1; sn: 607113)         Auto Dispenser (model #: 110-22-100; sn: 607113)         DROPimage Computer Software (Ramé-Hart Instrument Co.)         Ultrasonicator         Cikitoxick() pecision Convex (Coliver (chroir) cheoir(c) (hr 01/3057)         Suppleis:         Disposable transfer pipette tips         Di water         Kinnwipes         Gloves         Electrical tape         Compressed air         Basic Outline of Procedure:         • Clean alloy 22 block according to the procedure in SN 831/4         • Clean alloy 22 block according to the stage and center/focus it on the live view on the computer         • Place clean pipette tip on the auto dispenser and alull. Oll. I dilquid into the pipette or			Analysis	of Contact Angles on Alloy 22	
Objective:       Measure the contact angle of four solutions on a planar, alloy 22 specimen at varying temperatures to determine flow probability.         Sample:       Alloy 22 Metal Block         Reagents:       Alkaline Brine (SN 768/14) CaCl Brine (SN 768/14) Neutral Brine (SN 768/14) DI water         Acetone       CaCl Chromalox Heating Elements Omega Thermocouple Watlow 93 controller box Oakton InfraPro Infrared Thermometer (model #56/47*5sn: 2332580201) Standard Goniometer (model #: 110-22-100; sn: 607113) Auto Dispenser (model #: 110-22-100; sn: 607113) DROPimage Computer Software (Ramé-Hart Instrument Co.) Ultrasonicator Calded 1155/07 NF         Supplies:       Disposable transfer pipette tips DI water Kimwipes Gloves Electrical tape Compressed air         Basic Outline of Procedure:       • Clean alloy 22 block according to the procedure in SN 831/4 • Claibrate the standard goniometer with the ball bearing provided by the manufacturer • Position alloy block on the stage and center/focus it on the live view on the computer • Place clean pipette tip on the auto dispenser and pull 30µL of liquid into the pipette • Position the pipette over the alloy surface and adjust the distance from the pipette tip to the surface where desired • Release the liquid onto the surface • Measure the contact angle by masking unwanted portions of the drop with the appropriate cursor lines using computer software • 10 measurements are taken for each drop. An average of the left and right contact angle is			v		
varying temperatures to determine flow probability.         Sample:       Alloy 22 Metal Block         Reagents:       Alkaline Brine (SN 768/14) CaCl Brine (SN 768/14) Neutral Brine (SN 768/14) DI water Acetone         Equipment:       (2) Chromalox Heating Elements Omega Thermocouple Watlow 93 controller box Oakton InfraPro Infrared Thermometer (model #366/4*5sn: 2332580201) Standard Goniometer (model #: 250-F1; sn: 607113) Auto Dispenser (model #: 10-22-100; sn: 607113) DROPimage Computer Software (Ramé-Hart Instrument Co.) Ultrasonicator Disposable transfer pipette tips DI water Kimwipes Gloves Electrical tape Compressed air         Basic Outline of Procedure:       • Clean alloy 22 block according to the procedure in SN 831/4         • Clean alloy 22 block according to the stage and center/focus it on the live view on the computer Position alloy block on the stage and center/focus it on the live view on the computer         • Place clean pipette tip on the auto dispenser and pull 30µL of liquid into the pipette         • Position the pipette over the alloy surface and adjust the distance from the pipette tip to the surface where desired         • Release the liquid onto the surface Measure the contact angle by masking unwanted portions of the drop with the appropriate cursor lines using computer software         • Measure the contact angle by masking unwanted portions of the left and right contact angle is		Initially Assign	ed To: Nancy Hawk	tins and Scott Hutzler	
Reagents:       Alkaline Brine       (SN 768/14)         CaCl Brine       (SN 768/14)         Neutral Brine       (SN 768/14)         DI water       Acetone         Equipment:       (2) Chromalox Heating Elements         Omega Thermocouple       Watlow 93 controller box         Oakton InfraPro Infrared Thermometer (model #360/4.4% sn: 2332580201)         Standard Goniometer (model #: 110-22-100; sn: 607113)         Auto Dispenser (model #: 110-22-100; sn: 607113)         DROPimage Computer Software (Ramé-Hart Instrument Co.)         Ultrasonicator         Caliborated Decision Control Caliboration Caliborat		Objective:		• • • •	
CaCl Brine       (SN 768/14)         Neutral Brine       (SN 768/14)         DI water       Acetone         Equipment:       (2) Chromalox Heating Elements         Omega Thermocouple       Watlow 93 controller box         Oakton InfraPro Infrared Thermometer (model #36491 \$sn: 2332580201)       Standard Goniometer (model #: 110-22-100; sn: 607113)         Auto Dispenser (model #: 110-22-100; sn: 607113)       DROPimage Computer Software (Ramé-Hart Instrument Co.)         Ultrasonicator       Caliborated Qeecision Combo Colibacation Clevice (Ant: 013051)         Supplies:       Di water         Kimwipes       Gloves         Electrical tape       Compressed air         Basic Outline of Procedure:       Electrical tape         Calibrate the standard goniometer with the ball bearing provided by the manufacturer         Position alloy 22 block according to the procedure in SN 831/4         Clean alloy 22 block according to the ball bearing provided by the manufacturer         Position alloy block on the surface and adjust the distance from the pipette         Position alloy block on the surface         Release the liquid onto the surface         Release the liquid onto the surface         Measure the contact angle by masking unwanted portions of the drop with the appropriate cursor lines using computer software         I Measure the contact angles using computer softwar		Sample:	Alloy 22 Metal Blo	ock	
Omega Thermocouple         Watlow 93 controller box         Oakton InfraPro Infrared Thermometer (model #36/24-42 sn: 2332580201)         Standard Goniometer (model #: 250-F1; sn: 607113)         Auto Dispenser (model #: 110-22-100; sn: 607113)         DROPimage Computer Software (Ramé-Hart Instrument Co.)         Ultrasonicator         7/35/07 Nd         Disposable transfer pipette tips         DI water         Kimwipes         Gloves         Electrical tape         Compressed air    Basic Outline of Procedure:           • Clean alloy 22 block according to the procedure in SN 831/4         • Clean alloy 22 block according to the procedure in SN 831/4         • Clean alloy block on the stage and center/focus it on the live view on the computer         P Position alloy block on the stage and center/focus it on the live view on the computer         P Position the pipette over the alloy surface and adjust the distance from the pipette tip to the surface where desired         Release the liquid onto the surface         Measure the contact angle by masking unwanted portions of the drop with the appropriate cursor lines using computer software         I Measure the contact angle by masking unwanted portions of the left and right contact angle is		Reagents:	CaCl Brine ( Neutral Brine ( DI water	SN 768/14)	
<ul> <li>added Childrated Accision combo eatibaction device (Art 015051) 1/35/07 NH Disposable transfer pipette tips DI water Kimwipes Gloves Electrical tape Compressed air</li> <li>Basic Outline of Procedure:</li> <li>Clean alloy 22 block according to the procedure in SN 831/4</li> <li>Clean alloy 22 block according to the procedure in SN 831/4</li> <li>Clean alloy 22 block according to the procedure in the ball bearing provided by the manufacturer</li> <li>Position alloy block on the stage and center/focus it on the live view on the computer</li> <li>Place clean pipette tip on the auto dispenser and pull 30µL of liquid into the pipette</li> <li>Position the pipette over the alloy surface and adjust the distance from the pipette tip to the surface where desired</li> <li>Release the liquid onto the surface</li> <li>Measure the contact angle by masking unwanted portions of the drop with the appropriate cursor lines using computer software</li> <li>Measure the contact angles using computer software</li> <li>10 measurements are taken for each drop. An average of the left and right contact angle is</li> </ul>			Omega Thermocou Watlow 93 controll Oakton InfraPro In Standard Goniomer Auto Dispenser (m DROPimage Comp	nple ler box frared Thermometer (model #35629-20, sn: 2332580201) ter (model #: 250-F1; sn: 607113) odel #: 110-22-100; sn: 607113) outer Software (Ramé-Hart Instrument Co.)	
<ul> <li>Clean alloy 22 block according to the procedure in SN 831/4</li> <li>Calibrate the standard goniometer with the ball bearing provided by the manufacturer</li> <li>Position alloy block on the stage and center/focus it on the live view on the computer</li> <li>Place clean pipette tip on the auto dispenser and pull 30µL of liquid into the pipette</li> <li>Position the pipette over the alloy surface and adjust the distance from the pipette tip to the surface where desired</li> <li>Release the liquid onto the surface</li> <li>Measure the contact angle by masking unwanted portions of the drop with the appropriate cursor lines using computer software</li> <li>Measure the contact angles using computer software</li> <li>10 measurements are taken for each drop. An average of the left and right contact angle is</li> </ul>		7/25/07 NH	DI water Kimwipes Gloves Electrical tape	pipette tips	
<ul> <li>Calibrate the standard goniometer with the ball bearing provided by the manufacturer</li> <li>Position alloy block on the stage and center/focus it on the live view on the computer</li> <li>Place clean pipette tip on the auto dispenser and pull 30µL of liquid into the pipette</li> <li>Position the pipette over the alloy surface and adjust the distance from the pipette tip to the surface where desired</li> <li>Release the liquid onto the surface</li> <li>Measure the contact angle by masking unwanted portions of the drop with the appropriate cursor lines using computer software</li> <li>Measure the contact angles using computer software</li> <li>10 measurements are taken for each drop. An average of the left and right contact angle is</li> </ul>		Basic Outline o	f Procedure:		
		<ul> <li>Calibra</li> <li>Position</li> <li>Place cl</li> <li>Position</li> <li>the surf</li> <li>Release</li> <li>Measur</li> <li>cursor l</li> <li>Measur</li> <li>10 measur</li> </ul>	te the standard gonio n alloy block on the lean pipette tip on the n the pipette over the ace where desired the liquid onto the e the contact angle b ines using computer e the contact angles surements are taken	ometer with the ball bearing provided by the manufacturer stage and center/focus it on the live view on the computer he auto dispenser and pull $30\mu$ L of liquid into the pipette e alloy surface and adjust the distance from the pipette tip to surface by masking unwanted portions of the drop with the appropriate r software using computer software for each drop. An average of the left and right contact angle is	- <u></u>
Recorded by: Date Verified by: Date Verified by: Date		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		Date

TLE		
U	8	107

Т

Project No.

Book No. -

cleaned alloy 22 block according to SN 831/4.

Preliminary analysis was performed using the Standard aphiometer and DROPimage software to learn the methods necessary to run a contact angle experiment. The equipment is owned and located in Division 8, building 140.

## PRELIMINARY TEST METHODS

## Adjustments and Calibration

- Adjust the entire apparatus with the two knobs closest to the bench with the bubble (circle) level on the base.
- Make sure the stage is level at all angles with a hand-held bubble level.
- Put alloy block on stage and lock the stage into the desired vertical position. On the software's' live image the block should be viewed as a silhouette, not looking down on the surface.
  - To create a silhouette, adjust the stage to the desired height.
  - Focus the solid surface using the depth adjustment wheel under the camera
  - Put a fresh pipette tip on the auto dispenser and position the tip at the desired distance from the block. *The closer the tip to the block the less likely the drop will detach from the pipette tip.* 
    - If the tip is not in focus it will not appear on the screen.
    - When the tip is in focus it wall be square shaped, not tip shaped.
    - To move the pipette tip towards or away from the block surface adjust the screw facing down on the pipette stand.
- Place calibration tool on the stage. Focus the ball bearing and take a picture of the live feed.
  - Click calibration menu 
     new calibration 
     sphere: diameter should
     = 4
  - Aspect ratio should be close to 1 (preliminary results = 1.005).

Recorded by: Maucy Marlin

n	ot	0		
1.1	01	· · ·		

618107

Book No.	TITLE	
Settin	g up a Method	
•	File New Experiment Wizard CA Name the Method (preliminary	-
	name = $CA-20$ ).	-
and a set of	• Droplet = water	-
	• External = air	_
	<ul> <li>Solid = steel</li> <li>No volume step (default)</li> </ul>	-
1440 a. Marsh	O NO volume step (default)	-
<u>Runn</u>	ing a Sample	:
•	Device control	-
	• volume step = $30\mu L$ ( <i>Refers to the volume pulled into the pipette</i> )	-
	o syringe volume = 250 (Refers to the auto dispenser)	-
	• full stroke = $240.0 \sec (Refers to how quickly the solution is pulled in and$	-
	dispensed. The longer the time the less likely for a splash).	_
	o syringe level 58% (Refers to the piston in the auto dispenser)	
		-
<i>i</i> •	Transfer solution that will be used to measure the contact angle into a clean	
	beaker	
•	Pull solution into pipette by clicking "input step" on the screen. With a Kim wipe	
In an approximation and	remove any solution residue that may have attached to the pipette tip. Be gentle to	
	make sure the tip is not loosened.	
•	Be sure the tip is focused on the screen. Position the pipette over the block in the prearranged position and release the drop by clicking "output step"	
	prearranged position and release the drop by cheking output step	
•	Once the auto dispenser is finished (listen carefully), carefully pull the pipette tip	
	away from the stage, detaching from the drop.	
•	Center the drop in the live feed screen.	
•	Take a picture of the drop.	·
_		
•	Bring cursors into view (green "play button" icon). Be sure the green and red vertical cursors are on either side of the center tick marks. Also, the red horizontal	
	line must be above the tick marks, and the green horizontal line below the tick	
	marks. The spaces between the green and yellow vertical lines, above the red line,	
	and below the green horizontal line are not included in the measurement.	
	· · · · · · · · · · · · · · · · · · ·	
ordod by:	Date Verified by: Curlina 6/8/07	Date

P				
	FOI	ect	• n =	$\sim$

Book N	10.
--------	-----

TITLE				Book No				
	Data Generated							
	<ul> <li>10 measurements are r</li> <li>1. Left contact an</li> <li>2. Right contact a</li> <li>3. Combined cont</li> </ul>	gle ngle	(approximately 2 min.)					
	At the end of each set,	C C	e averaged.					
	Reports			-				
	After the data is collec saved pictures (not the	-	gle screen, select the follow	ving menus on the				
	─ Results → Se ─ Save Report	tup Report (make sure	e everything is selected) -	→ Show Report →				
C2. January 1	Once the initial report the Div. 20 folder on the	•	reports will replace the exi	isting report under				
	The following progr	The following programs are shown in the Div. 20 folder:						
	JPG – image	le (current, complete s nal results reported	report)					
94 (94) 1 (94				,				
ob also a The Sw	served on the o examined to olifferent solut dota collected	alloy block o note any tion. I from the	K. TWO CACI-B	ct angles were brine drops were htact angle with hallysis is on the next				
Recorde Naue	ed by: ry Uarli	Date 6/8/07	Verified by:	Date				

- 610-12⁻²

34 Project No.

Book No.

TITLE

	Drop #	Solution	Average Contact Angle	Comments
	1	DI	69.57	One drop was transferred from pipette tip to
	2	DI	68.68	One drop was transferred from pipette tip to
	3	DI	78	The liquid was dropped on itself in increments of approximately 5 microliters
	4	DI	65	One drop was transferred from pipette tip tosurface
	5	DI	64.55	One drop was transferred from pipette tip to
	. 6	DI	65.34	One drop was transferred from pipette tip to surface
	- 7	DI	72.23	One drop was transferred from pipette tip to
	8	CaCl Brine	68.75	The liquid was dropped on itself in increments of approximately 5 microliters
	- 9	CaCl Brine	71.5	The liquid was dropped on itself in increments of approximately 5 microliters
<u>н</u> 10	ntact	angle	vieasurer alysis.	n drop is preferred for ments arose from the The two drops in question drop transferred directly
P i f t	s the rom the the dru the blu Even sc of solu	ne pipe op that ock swa o, both	the tip to chripped face in chrops con	the block surface, and from the pipette tip to smaller increments. Haised the same amount the end.
P ie f t	s the rom the the dru the blu Even sc of solu	ne pipe op that ock swa o, both	the tip to chripped face in chrops con	the block surface, and from the pipette tip to smaller increments. Haised the same amount

the pipette tip to the allow block, and five drops that dripped to form one by drop on the allow block. Both Kinds of drops contained 30 µL. The contact angle comparisons can be found on the next mail

the next page.

Recorded by: Naucy Marti

 Date
 6/8/07

Verified by:

Date

TLE _						Во	ok No	 
	<b>Drop Co</b> 6/12/2007	mparisor	IS					
•	Dripped D	rop			Continuo	us Drop		
	Drop # 1 2 3 4 - 5	Right CA 71.87 72.95 71.63 60.02 54.57	Left CA 70.05 72.76 72.21 57.58 65.30	Total CA 70.96 72.85 71.92 58.80 59.94	Drop # 1 2 3 4 5	Right CA 69.66 79.63 72.17 71.97 64.42	Left CA 68.2 77.75 73.76 71.43 63.88	Total CA 68.93 78.69 72.97 71.7 64.15
	Average	66.208	67.58	66.894	Average	71.57	71.004	71.288
0 2t	drop. DIOT			HINUOUS	ngle mea . 4.394 i drop and	d the	drippe	2d
A bi as ei	drop. 2107 Calibrat y Rame S a Tec xplain - nuolued in to calibrat	tion p 2-Har- Innical the pu in the prate t tion e	rocedi t Ins Operi calibi the ar ata	ure based trument ating Pro of using action Me aniometer an be f	1 on the 20. was in xedure a gonion threads, the r, and the bund. If	Meth oritter The fi meter, ne prov ne rece h addi	od pr for pillowing the sedure ords tion t	roviclect approval ng pages responsibil e used where to the
A bi as e in t	drop. 2107 Calibrat y Rame S a Tec xplain - nuolued in to calibrat	tion p 2-Har- Innical the pu in the prate t tion e	rocedi t Ins Operi calibi the ar ata	ure based trument ating Pro of using action Me aniometer an be f	1 on the 20. was in xedure a gonion threads, the r, and the bund. If	Meth oritter The fi meter, ne prov ne rece h addi	od pr for pillowing the sedure ords tion t	rovided approval naj pages responsibil e used where

.

36	Project	Nc.	

Book No	TITLE				
10 10 1997 second of	PROCEDURE FOR VERIFICATION OF THE PERFORMANCE OF A S AUTOMATED GONIOMETER AND ASSOCIATED IMAGE ANALYSIS S				
<b>1.</b>	PURPOSE AND APPLICABILITY				
This	The purpose of this procedure is to provide a method for the verification formance of a standard automated goniometer and the associated image s procedure establishes controls required by Quality Assurance Manual (Control of Measuring and Test Equipment."	analysis software.			
vap proc Und	Goniometers are used to measure the contact angle between a liquid, d surface. Surface tension can also be measured to predict the spreading or over the solid surface. However, reference is made in this document o cedures applicable for contact angle measurements between a liquid and derstanding the contact angle will provide information on the probability of bugh the material	of the liquid or nly to the a solid surface.			
2.	RESPONSIBILITIES				
2.1	Principal investigators are responsible for the implementation of this pro	ocedure.			
2.2 requ	Personnel performing contact angle tests are responsible for complying uirements of this procedure.	g with the			
3.	PROCEDURE				
	Contact angle measurements are digitally collected with the standard a iometer using the DROPimage software included with the system. Calibra ig a certified precision combo calibration device provided by the manufact	ition is attained			
mon	The standard automated goniometer shall be calibrated periodically as , "Control of Measuring and Test Equipment". The initial calibration interva- nth, but shall be adjusted as needed when the instrument is first set up, me aponents are added to the system, and/or the setup has significantly change	al shall be one			
3.3 the s to th	Before calibrating the equipment, ensure the live image is visible on the sample stage is level. Using compressed air, remove any dust particles the calibration ball.	e PC screen andat have attached			
calib and	To calibrate the instrument, use the sphere calibration tool (a calibrated ring secured to a glass slide) on the precision combo calibration device. P pration ball assembly vertically on the stage so the steel ball is imaged through positioned in the middle of the live image screen. Use the depth adjustme camera to focus the ball as shown in Figure 1.	lace the			
corded by:	Date Verified by: Warkin 6/20/07	Date			

I				Project No.	
TITLE				Book No.	
(10) re green	ete profile of the sphere. equired for accurate calibi	Enter the diameter ration results. On f the ball, and the	er of the ball (4mm) the live image scre	drop down menu to attain a and the number of runs en, position the vertical ugh the area below the ball	<b></b>
and as (upper close t	ation sequence. The calib spect ratio (y/x) obtained t	ration values will from 2 nd degree p use the video cam slightly because	include the vertical polymonials fitted to nera has "square pix of small inaccuracion	roperly aligned, begin the (x) pixel, horizontal (y) pixe the four extreme regions cels", the aspect ratio will be s in the hardware. Once P.CAL file.	
Enter 1 appea	each use to verify precis	sion. Select "chec and position the c alues from the las	k calibration" on the ursors as shown in t calibration, the cu	Figure 2. A dialog box will rently tested values and	d 
gonion instrun include Perfori	cting contact angle measu neter has been verified, a nent. An example perform	urements. When a performance ver nance verification I the date the nex standard automat	the performance of ification label shall label is shown in F t scheduled verifica ted goniometer sho	be placed on the igure 3. The label should tion should be performed.	· · · · · · · · · · · · · · · · · · ·
Docum	RECORDS nents containing verification cords in accordance with the	on data, including QAP-12, "Quality	scientific notebook Assurance Record	s, shall be controlled as s Control".	
7/13/07					
Clean	ed alloy 22	2 block	accordin	g to SN 831	14
Calib Drecis	rated the c	joniomete	er with - an device	the calibrate 2 recieved from	d
	s were as fo		• 011 112	07. The calibra	
hor	tical pixel: ( rizontal pixe pect ratio: ()	1: 9.510N	200		
Recorded by: Naucy Ma	lin	Date 6/20/07	Verified by:		Date

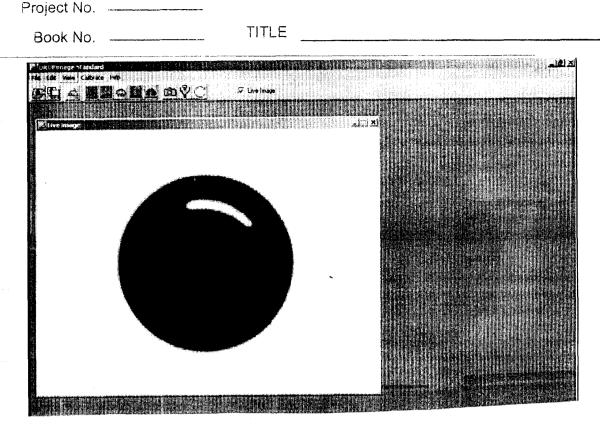



Figure 1: Live image of calibration ball centered and focused on the standard automated goniometer stage on the DROPimage software.

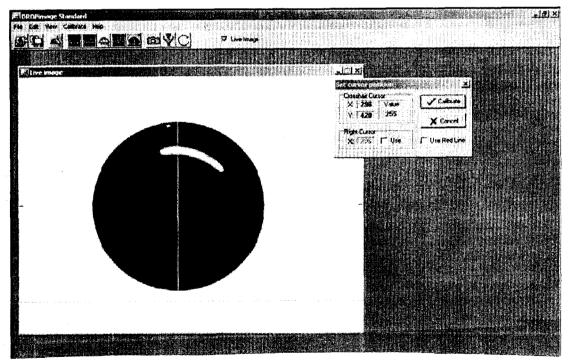



Figure 2: Required cursor alignment to center calibration ball in the live image window. Vertical line shall be through the center of the ball and the horizontal line through the area below the ball.

Recorded by: Mancy Martin

Date 6/20/07

Verified by:

Project No	
۲LE Book No	
1/25/07	
Rinsed the lines of the auto dispenser using DI wate the directions below.	r and
1. Maka mus the bashes ' C II. CDI	
1. Make sure the beaker is full of DI water and remove any air bubbles that may	
<ul><li>have accumulated in the fresh water with a sonicator.</li><li>2. Turn on auto dispenser.</li></ul>	
	······································
3. When turning on the PC it asks you if you want to reset the auto dispenser.	<u></u>
a. Click yes if you wish to flush out the lines with fresh water.	
b. Click no if you are satisfied with the current setting. $\frac{NH}{8/2}$ of	
4. Place a beaker on the stage to collect water that is emitted from the tip.	<u></u>
5. Make sure the <i>Drop Volume</i> option is selected under the <i>Device Control</i> drop	<b></b>
down menu.	<u> </u>
a. If it is not highlighted select <i>Options</i> in the <i>Edit</i> drop down menu and	·
select Drop Volume in the Installed Options box.	
6. In the Drop Volume dialog box change the Full Stroke Time to 10 sec. so the	<u> </u>
water will move through the lines quicker.	
7. Input 4 as the number of rinse cycles.	
8. Press <i>Start</i> to begin the rinse cycles.	
9. Change the Volume Step to 150µl.	
10. Select <i>Input Step</i> to draw 150µl of air into the line to avoid the mixing of sample	
fluid and DI water. At this time the Syringe Level should go up to about $60\% \pm$	
5%.	
11. Before beginning an experiment change the Volume Step back to 30µl and the	
Stroke Time to 240µ1.	
Calibrated the aprilonneter with the calibrated precis	sidn
combo calibration device verified by the calibrat	NON
Laboratory on SwRI campus 7/24/07. The calibre	ition
values ave as follows:	
Nortical pixel: 9.121 pum Norizontal pixel: 9.127 pum	
aspect ratio: 1.0007	
	Date
Date Verified by: 1907 125/07	
1 million and a second s	

Book No.	TITLE		· · · · · · · · · · · · · · · · · · ·
7/26/07			
Perform (an acce Howeve	ect yesterclay and eptable cleviation	The goniometer that I only had a 0.1% de is less than 1.0%. was rain to record or of 10.	eviation).
In order to be Values	•	ements, the instrume produced the follow	ent had
	vertical pixel: 9 horizontal pixe aspect ratio: 1.	1: 9.283 run	
with no	of DI water an complications. The at room tempera	ed Call Brine was me e measurements were ture.	easured
7/27/07			
a 3.6% d	the calibration on H eviation from yest ted the equipment vertical pixel: 9.3° horizontal pixel: 9 aspect ratio: 1.001	H: 10 pun .399 pun	è was
were mea particles h distortives th	sured with some	nd allkaline brine solut complications. A lot of an the alloy block s f the arops. Used com	dust
	-	······································	
Recorded by: Naucy Mar	lui Date 1/27/07	Verified by:	Date

T	11	Т		<b>m</b>
	Ł		1	-
•	•		_	

Project No. ____

Book No. ___

Checked the calibration that was performed Friday and there was a -3.2% deviation (% deviation may be due to a change in room temperature). Recalibrated the equipment: vertical pixel: 9.092, um norizontal pixel: 9.101 pm aspect ratio: 1.0009 pm Five drops of DI water and Call Bripe was measured at 25°C. Because the room was 20°C it took about one hour to heat the block. The temperature controller was set to 35°C to maintain a surface temperature between 24.6°C and 25.1°C. By comparison, the contact angles of the DI water and Call Brine decreased by 20° with an increase of Surface temperature. Data will be snown at the end of the experiment (SN 831/49). 8/107 Checked the calibration performed on 7/31/07 and there was a 0% deviation between the stored values and the news "values meaning a new rail bration is not necessary. Five drops of Alkaline Brine and Neutral Brine solution were measured at 25°C. It took about one hour to heat the block with the temperature controller set at 3500. On average the Allhaline Brine solution had an 8° decrease in contact angle with an increase in temperature. Neutral Brine only had a 3° decrease in contact angle with an increase in temperature. Verified by: Date Date Recorded by: 1 Janey Martin 8/1/07

42 Project No. _____

Book No.	

Data is presented at the end of the experiment- (SN 831/49).	
Attempted to begin 95°C portion of the experiment. Calibration had 2% deviation and was recalibrated: vertical pixel: 9.275 pm	
borizontal pixel: 9.282e pm aspect ratio: 1.0012	
Gradually increased the temperature control box beginning at 75°C, 105°C, 115°C, 125°C. After one hour of heat of an internal temperature of 125°C, the surface temperature was 45°C according to the infrared thermometer. Will resume this portion of the experiment when more time can be devoted to heating.	
8/2/07	
Calibration was > 1% deviation requiring new calibratic The values are as follows: vertical pixel: 9.397µm horizontal pixel: 9.395µm aspect ratio: 0.9997.	20.
Insulated the block with glass cloth electrical tape described as having class "B" insulation operating @ 130° (2106°F). However, the block surface temperature would plateau between 40°C and 50°C. Limitations to and insulation used on the block is that it cannot obstru- the camera's view of the surface and it must fit of the goniometer stage.	J J
8 3 07	
Checked the calibration values and they did not exc 1% deviation from the previous values.	eed
Recorded by: Date Verified by: Date Verified by: Date Verified by: Date Verified by: Date Date Date Date Date Date Date Date	ate

In order to heat the block to 95°C the block was
wrapped in a thermal bianket careful not to obstruct the Camera's view of the surface. The temperature nontroll box was set to 130°C, heating up the block surface Very quickly. Between 95-100°C DI water and neutral brine Solution was dropped onto the surface. Due to the extreme heat, the liquid burned off immediately not allowing enough time to measure the confact angle. The next test will be to determine at what temperature the solutions can form a drop and a contact angle be measured before burning off.
8/8/07
New calibration: vertical pixel: 9.222 µm horizontal pixel: 9.220 µm aspect ratio: 0.9998
To determine the maximum temperature in which a contact angle can be measured, I began between 75°C and 80°C. When the drop hit the surface it began to bubble, but I was able to capture an image. However, the light reflected from the bubble caused the software to measure the contact angle through the drop instead of around it.
The same test was performed at 65°C-70°C, but the results were unreliable. The previous brine drops had left a residue on the surface pulling the new drops in that direction. The temperature the drop was exposed to could not be certain at the new location because the block surface is not uniformly heated.
The block suxface needs to be cleaned and remove the brine residue in order to get accurate results at Recorded by: Date Verified by: Date Mancy Manhin 8/8/07

43

TITLE _____

44 Project No. _____

|--|

#### TITLE

this temperature.

### 8/9/07

New calibration vertical pixel: 9.436 µm horizon tal pixel: 9.433 µm aspect ratio: 0.9996

Started the drop analysis at 70°C to be sure the Surface temperature was accurate from the previous day. However, bubbles were still present within the drop distorting the contact angle.

Tried to collect data at 50°C. Buddles were still present. Attempted to wait for buddles to disappear but at that point the drop was too flat for a measurement to be made.

Since the block temperature is constantly fluctuating as well as the infrared thermometer, the surface temperature will be observed from now on with the thermocouple. It produces accurate reading and does not require a black background as does the infrared thermometer.

Tried to collect data at 52°C as inclirated by the thermocouple. Again, there were too many bubbles to make a measurement.

Date

8/13/01

8/13/07

New Calibration Vertical pixel: 9.203, um horizontal pixel 9.202, um aspect ratio: 0.9999

Recorded by: Mancy Mawlin

Verified by:

Date

TITLE

Collected contact angle measurements of DI water at 50°C. The surface temperature of the block was determined by the thermocouple. When the thermocouple was not in use, it was reverted back into the block to measure the internal temperature and limit the overall temperature increase of the block. Five drops of DI water was observed. The contact angles were 10°-20° lower than the measurements collectedat 25°C and room temperature. Data is presented on p.50. In addition to collecting contact angle data, the autodispenser was reset and the lines should be rinsed before the next session. The bloch was cleaned according to SN 831/4 after it was allowed to cool for approximately one hour. 8/14/07 New calibration: 9/ stiller vertical pixel: 9.178 mm horizontal pixel: 9.176 pum aspect ratio: 0.9999 Rinsed the lines of the autodispenser le times to remove any trapped air and replace the DI water in the lines with fresh DI water. Five drops of Call and neutral brine solution was observed at SD°C to measure the contact angles. The Call contact angles were about the same as the 25°C measurements but are approximately 10° less than the room temperature measurements. The neutral brine solution had contact angles approximately 5° less than the 25°C and room temperature Verified by: Date Date Recorded by: Hancy Martin 8114/07

46	Project No Book No TITLE
	measurements.
, , de , inc. E , mir 'm , .	The block was cleaned according to SN 831/4 after it was allowed to cool for approximately 2 hours.
· · · · · · · · · · · · · · · · · · ·	8/15/07
s ta na a balancia a ta su antes an	New calibration: vertical pixel: 9.070 horizontal pixel: 9.070 aspect ratio: 1.0000
and and a set of the s	Measured the contact angle of five drops of alkaline brine solution at 50°C. Temperature controller box had to be set at 75°C to maintain the surface temperature because the rann was cold.
	The contact angles of the alkalise brise solution at SO'C were similar to the data collect at 25°C but less than the contact angles collected at room temperature.
	8/20107
	New calibration: Vertical pixel: 9.124 µm horizontal pixel: 9.121 µm aspect ratio: 0.9998
	Neasured the contact angle of five drops of DI water at (e0°C.
والمتعادين والمتعادين والمتعادين والمتعادين والمتعادين والمتعادين	The higher temperature created bubbles in the drop distorting the overall chape of the contact angle. The figure on the proceeding profile page shows the drop (black) and where the measurements were recorded on the drop. (red).
	Recorded by: Date Verified by: Date Date

Project No. _____ 47 TITLE Book No. The dotted line is usually flush against the curve of the drop. In this case, however, the measurement is taken towards the inside of the drop instead of around the edge. When comparing the 60°C data with the other measurements, the 60°C contact angles resembled the 50°C MEM 25°C data rather than the 50°C data. This may be due to the addition of bubbles at the higher temperature. Five drops of neutral brine and alkaline brine Solution were measured at 60°C. No publies were generated in the drop like the DI water. Overall, the contact angles at a higher temperature appears to be less than the measurements taken at the other temperatures for both solutions. 8/21/07 Cleaned the block according to SN 831/4 after it was allowed to cool over night. New ralibration: vertical pixel: 9.328 pm horizontal pixel: 9.325 µm aspect ratio: 0.9997 Measured the contact angle of five drops of Cacl brine solution at 60°C Recorded by: Manay Marlin Date Verified by: Date 8/21/07

Overall, the contact angle at 60°C was less than the other observed measurements.

## 8/22/07

Presented on the proceeding pages is the data collected from the contact angle experiments discussed on pages 30-48 of this note DOOK.

The standard deviations were determined from the 10 measurements collected for each drop by the software.

#### CONTACT ANGLE MEASUREMENTS OF DI WATER, CaCI BRINE, NEUTRAL BRINE, AND ALKALINE BRINE AT ROOM TEMPERATURE, 25C, 50C, and 60C

DI Water

Room	remperature	

Room Ten	iperature		
	Theta R	Theta L	Mean
Drop 1	83.89 <u>+</u> 0.13	81.76 <u>+</u> 0.14	82.82 <u>+</u> 0.08
Drop 2	88.78 ± 0.04	85.71 <u>+</u> 0.02	87.25 <u>+</u> 0.02
Drop 3	90.23 ± 0.07	89.58 <u>+</u> 0.22	89.91 <u>+</u> 0.11
Drop 4	88.77 <u>+</u> 0.05	86.68 ± 0.04	87.72 <u>+</u> 0.02
Drop 5	93.11 <u>+</u> 0.04	86.41 <u>+</u> 0.02	89.76 <u>+</u> 0.02
Average	88.956	86.028	87.492
CaCl Brine			
Room Ten			
	Theta R	Theta L	Mean
Drop 1	91.63 <u>+</u> 0.03	86.07 <u>+</u> 0.02	88.85 <u>+</u> 0.02
Drop 2	84.51 <u>+</u> 0.04	88.85 <u>+</u> 0.05	86.68 <u>+</u> 0.03
Drop 3	90.08 <u>+</u> 0.05	91.36 <u>+</u> 0.03	90.72 <u>+</u> 0.03
Drop 4	82.47 <u>+</u> 0.05	80.21 <u>+</u> 0.14	81.34 <u>+</u> 0.08
Drop 5	78.85 <u>+</u> 0.05	86.39 <u>+</u> 0.04	82.62 <u>+</u> 0.04
Average	85.508	86.576	86.042
Neutral Bri	ne		
Room Ten			
	Theta R	Theta L	Mean
Drop 1	76.93 <u>+</u> 0.03	78.58 ± 0.02	77.76 <u>+</u> 0.01
Drop 2	74.48 + 0.07	73.83 + 0.01	74.15 + 0.04
Drop 3	82.98 <u>+</u> 0.01	80.49 <u>+</u> 0.02	81.73 <u>+</u> 0.01
Drop 3	71.64 + 0.03	80.97 + 0.02	76.31 <u>+</u> 0.01
	81.77 + 0.02	88.03 + 0.02	84.90 <u>+</u> 0.01
Drop 5	01.77 <u>+</u> 0.02	00.03 <u>+</u> 0.02	04.90 - 0.01
Average	77.56	80.38	78.97

Recorded by. Nancy Meulen

()ele 8122107

ITLE					Project No.
· · · · · · · · · · · · · · · · · · ·					Book No.
	Alkaline E				
	Room Te	mperature			
		Theta R	Theta L	Mean	
	Drop 1	78.25 <u>+</u> 0.01	83.78 <u>+</u> 0.02	81.02 <u>+</u> 0.01	
	Drop 2	79.47 <u>+</u> 0.02	73.57 <u>+</u> 0.01	76.52 <u>+</u> 0.01	
P	Drop 3	77.57 <u>+</u> 0.01	78.29 <u>+</u> 0.02	77.93 <u>+</u> 0.01	
	Drop 4	75.87 <u>+</u> 0.01	80.61 <u>+</u> 0.01	78.24 <u>+</u> 0.01	
	Drop 5	79.02 <u>+</u> 0.02	79.99 <u>+</u> 0.02	79.51 <u>+</u> 0.01	
	Average	78.036	79.248	78.644	
					· · · · · · · · · · · · · · · · · · ·
	DI Water				
	25C				
	200	Theta R	Theta L	Mean	
	Drop 1	69.95 <u>+</u> 0.04	64.54 <u>+</u> 0.02	67.24 <u>+</u> 0.03	
	Drop 1	69.06 <u>+</u> 0.04	62.61 <u>+</u> 0.02	65.84 <u>+</u> 0.03	
	Drop 3	70.21 <u>+</u> 0.06	67.82 <u>+</u> 0.02	$69.02 \pm 0.01$	
	Drop 3	67.92 <u>+</u> 0.03	73.10 <u>+</u> 0.02	70.51 + 0.02	
	Drop 5	66.73 <u>+</u> 0.03	63.92 <u>+</u> 0.02	65.32 + 0.01	
	Average	68.774	66.398	67.586	
	CaCl Brine				
	<u>0201 Dinie</u> 25C				
		Theta R	Theta L	Mean	
	Drop 1	78.42 <u>+</u> 0.05	74.76 <u>+</u> 0.19	76.59 <u>+</u> 0. <b>10</b>	
	Drop 2	64.25 <u>+</u> 0.14	68.08 <u>+</u> 0.05	66.17 <u>+</u> 0. <b>08</b>	
	Drop 3	73.30 <u>+</u> 0.03	74.05 <u>+</u> 0.03	73.68 <u>+</u> .0.02	
	Drop 4	77.48 <u>+</u> 0.03	80.03 <u>+</u> 0.03	78.75 <u>+</u> 0. <b>02</b>	
	Drop 5	72.93 <u>+</u> 0.03	65.36 <u>+</u> 0.03	69.14 <u>+</u> 0.02	
	Average	73.276	72.456	72.866	
	Neutral Bri	ne			
	25C	Thata D		Maaa	
	Dren 1	Theta R	Theta L	Mean	
	Drop 1	69.87 <u>+</u> 0.02	75.47 <u>+</u> 0.01	72.67 <u>+</u> 0.01	
	- Drop 2	74.88 <u>+</u> 0.02	79.13 <u>+</u> 0.02	77.00 <u>+</u> 0.01	
	Drop 3 Drop 4	83.66 <u>+</u> 0.02	80.95 <u>+</u> 0.02	82.31 <u>+</u> 0.01	
	Drop 4     Drop 5	80.27 <u>+</u> 0.02 69.03 <u>+</u> 0.06	74.03 <u>+</u> 0.02 72.64 <u>+</u> 0.03	77.15 <u>+</u> 0.01 70.83 <u>+</u> 0.02	
		_	_		
	Average	75.542	76.444	75.992	
ecorded by			Date	Verified by:	Date
1) have 1	Vanlin		8/22/07		
	A RIANA IAA		ハーコリー		1

49

----

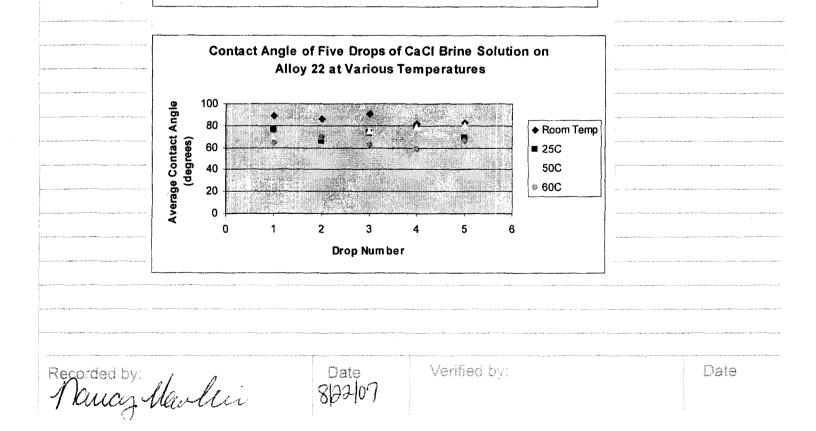
____

Project No. _____

Rook Nr

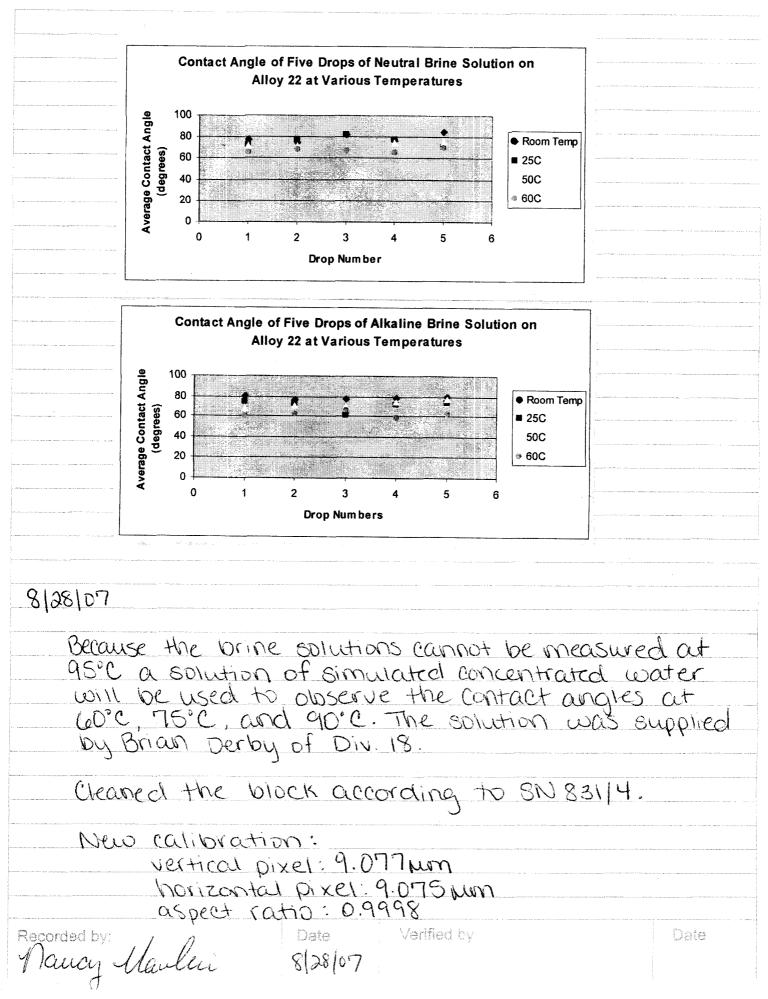
TITIF

C	25C	ne		
D	200	Theta R	Theta L	Mean
D	rop 1	69.72 <u>+</u> 0.03	80.46 <u>+</u> 0.20	75.09 <u>+</u> 0.10
	rop 2	75.60 <u>+</u> 0.03	69.80 <u>+</u> 0.03	72.70 <u>+</u> 0.02
	rop 3	60.63 <u>+</u> 0.02	62.01 <u>+</u> 0.01	61.32 <u>+</u> 0.02
	rop 4	75.82 <u>+</u> 0.03	68.41 <u>+</u> 0.01	72.11 <u>+</u> 0.01
Ď	rop 5	75.35 <u>+</u> 0.28	72.66 ± 0.28	74.01 <u>+</u> 0.20
Av	verage	71.424	70.668	71.046
DI	Water			
	50C			
		Theta R	Theta L	Mean
D	rop 1	54.76 <u>+</u> 0.03	55.36 <u>+</u> 0.04	55.06 <u>+</u> 0.03
	rop 2	54.60 <u>+</u> 0.01	56.80 <u>+</u> 0.03	55.70 <u>+</u> 0.02
	rop 3	67.76 <u>+</u> 0.07	69.53 <u>+</u> 0.08	68.64 <u>+</u> 0.05
	rop 4	58.57 <u>+</u> 0.04	64.59 <u>+</u> 0.06	61.58 <u>+</u> 0.03
	rop 5	$59.00 \pm 0.04$	60.34 <u>+</u> 0.04	$59.67 \pm 0.03$
A۱	verage	58.938	61.324	60.13
Ca	<u>CI Brine</u>			
	50C			
		Theta R	Theta L	Mean
D	rop 1	66.46 <u>+</u> 0.04	69.93 <u>+</u> 0.04	68.20 <u>+</u> 0.03
	rop 2	67.94 <u>+</u> 0.05	73.59 <u>+</u> 0.05	70.76 <u>+</u> 0.04
	rop 3	73.24 <u>+</u> 0.04	76.50 <u>+</u> 0.05	74.87 <u>+</u> 0.04
	rop 4	76.31 <u>+</u> 0.06	81.44 ± 0.07	78.87 <u>+</u> 0.04
	rop 5	83.53 <u>+</u> 0.03	77.23 <u>+</u> 0.04	80.38 <u>+</u> 0.02
		-	-	-
A١	verage	73.496	75.738	74.616
	<u>utral Brin</u> 50C	<u>e</u>		
	000	Theta R	Theta L	Mean
-	rop 1	69.63 <u>+</u> 0.08	74.28 <u>+</u> 0.08	71.96 <u>+</u> 0.07
	rop 2	70.58 + 0.13	72.56 ± 0.04	71.57 <u>+</u> 0.08
		$65.60 \pm 0.06$	72.22 <u>+</u> 0.07	68.91 <u>+</u> 0.05
D	ron 3		12.22 - 0.01	
D	rop 3		$76.97 \pm 0.03$	$71 A7 \pm 0.06$
- D - D	rop 3 rop 4 rop 5	71.97 <u>+</u> 0.11 77.37 <u>+</u> 0.29	76.87 <u>+</u> 0.03 74.51 <u>+</u> 0.03	74.42 <u>+</u> 0.06 75.94 <u>+</u> 0.15


TITLE

Project No.

50C       Theta R       Theta L       Mean         Drop 1 $68.75 \pm 0.04$ $67.84 \pm 0.05$ $68.3 \pm 0.04$ Drop 2 $70.12 \pm 0.02$ $72.08 \pm 0.04$ $71.10 \pm 0.02$ Drop 4 $76.60 \pm 0.06$ $73.46 \pm 0.07$ $75.03 \pm 0.04$ Drop 5 $76.02 \pm 0.07$ $79.02 \pm 0.12$ $77.55 \pm 0.07$ Average $73.024$ $71.908$ $72.468$ Di Water $60C$ $68.25 \pm 0.03$ $65.55 \pm 0.03$ Drop 1 $63.64 \pm 0.04$ $68.25 \pm 0.03$ $65.55 \pm 0.03$ Drop 2 $69.41 \pm 0.03$ $68.75 \pm 0.06$ $69.08 \pm 0.03$ Drop 3 $67.33 \pm 0.03$ $64.28 \pm 0.06$ $65.80 \pm 0.04$ Drop 4 $65.71 \pm 0.03$ $67.45 \pm 0.07$ $65.83 \pm 0.04$ Orop 5 $64.01 \pm 0.03$ $67.65 \pm 0.07$ $65.83 \pm 0.04$ Orop 5 $64.01 \pm 0.03$ $67.65 \pm 0.07$ $65.83 \pm 0.04$ Drop 4 $65.71 \pm 0.02$ $62.90 \pm 0.5$ $70.07 \pm 0.04$ Drop 5 $64.02 \pm 0.57$ $70.07 \pm 0.04$ $70.79 \pm 0.04$ Drop 1 $65.51 \pm 0.02$ $62.90 \pm 0.57$ $70.07 \pm 0.04$		Alkaline Bri	ne				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		50C					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Dura d					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Average       73.024       71.908       72.468 $\hline DI Water60C       Theta R       Theta L       Mean         Drop 1 63.64 \pm 0.04 68.26 \pm 0.03 65.95 \pm 0.03 Drop 2 69.41 \pm 0.03 68.75 \pm 0.06 69.08 \pm 0.03 Drop 3 67.33 \pm 0.03 64.28 \pm 0.06 65.80 \pm 0.04 Drop 4 65.71 \pm 0.03 64.28 \pm 0.06 65.80 \pm 0.04 Drop 5 64.01 \pm 0.03 67.65 \pm 0.07 65.83 \pm 0.04 Average 66.02 66.494 66.316 CaCl Brine 60C 72.29 \pm 0.05 70.07 \pm 0.04 Drop 1 65.51 \pm 0.02 62.90 \pm 0.05 64.20 \pm 0.03 Drop 2 67.84 \pm 0.05 72.29 \pm 0.05 70.07 \pm 0.04 Drop 3 63.14 \pm 0.03 62.13 \pm 0.07 62.63 \pm 0.04 Drop 4 59.66 \pm 0.05 57.01 \pm 0.05 68.34 \pm 0.06 Drop 5 65.18 \pm 0.05 67.49 \pm 0.08 66.34 \pm 0.06 Drop 5 65.18 \pm 0.05 67.49 \pm 0.13 65.53 \pm 0.07 Drop 5 65.18 \pm 0.04 68.52 \pm 0.09 $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Drop 5	76.08 <u>+</u> 0.07	79.02 <u>+</u> 0.12	77.55 <u>+</u> 0.07		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Average	73.024	71.908	72.468		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 años		i i i i stanovni se st	a al'anala an a			· · · · · · · · · · · · · · · · · · ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		60C				•	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						L	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Average $66.02$ $66.494$ $66.316$ CaCl Brine 60C       Theta R       Theta L       Mean         Drop 1 $65.51 \pm 0.02$ $62.90 \pm 0.05$ $64.20 \pm 0.03$ Drop 2 $67.84 \pm 0.05$ $72.29 \pm 0.05$ $70.07 \pm 0.04$ Drop 3 $63.14 \pm 0.03$ $62.13 \pm 0.07$ $62.63 \pm 0.04$ Drop 4 $59.66 \pm 0.05$ $57.01 \pm 0.05$ $58.33 \pm 0.04$ Drop 5 $65.18 \pm 0.05$ $67.49 \pm 0.08$ $66.34 \pm 0.06$ Average $64.266$ $64.364$ $64.314$ Meutral Brine 60C       Theta R       Theta L       Mean         Drop 1 $65.58 \pm 0.08$ $65.49 \pm 0.13$ $65.53 \pm 0.07$ Drop 2 $67.36 \pm 0.07$ $67.94 \pm 0.07$ $67.65 \pm 0.04$ Drop 3 $65.19 \pm 0.04$ $68.52 \pm 0.09$ $66.85 \pm 0.05$ Drop 3 $65.19 \pm 0.04$ $68.73 \pm 0.04$ $69.71 \pm 0.05$ Drop 5 $67.18 \pm 0.07$ $72.24 \pm 0.08$ $69.71 \pm 0.05$				63.53 <u>+</u> 0.03			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Drop 5	64.01 <u>+</u> 0.03	67.65 <u>+</u> 0.07	65.83 <u>+</u> 0.04		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Average	66.02	66.494	66.316		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CaCl Brine					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	······						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · · · · · · · · · · · · · · · · ·		Theta R	Theta I	Mean	······	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Drop 1					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Drop 5 $65.18 \pm 0.05$ $67.49 \pm 0.08$ $66.34 \pm 0.06$ Average $64.266$ $64.364$ $64.314$ Neutral Brine       60C       60C         Theta R       Theta L       Mean         Drop 1 $65.58 \pm 0.08$ $65.49 \pm 0.13$ $65.53 \pm 0.07$ Drop 2 $67.36 \pm 0.07$ $67.94 \pm 0.07$ $67.65 \pm 0.04$ Drop 3 $65.19 \pm 0.04$ $68.52 \pm 0.09$ $66.85 \pm 0.05$ Drop 4 $61.58 \pm 0.04$ $68.73 \pm 0.04$ $65.16 \pm 0.03$ Drop 5 $67.18 \pm 0.07$ $72.24 \pm 0.08$ $69.71 \pm 0.05$							
Neutral Brine         Mean           60C         Theta R         Theta L         Mean           Drop 1 $65.58 \pm 0.08$ $65.49 \pm 0.13$ $65.53 \pm 0.07$ Drop 2 $67.36 \pm 0.07$ $67.94 \pm 0.07$ $67.65 \pm 0.04$ Drop 3 $65.19 \pm 0.04$ $68.52 \pm 0.09$ $66.85 \pm 0.05$ Drop 4 $61.58 \pm 0.04$ $68.73 \pm 0.04$ $65.16 \pm 0.03$ Drop 5 $67.18 \pm 0.07$ $72.24 \pm 0.08$ $69.71 \pm 0.05$						<u></u>	
Neutral Brine         Mean           60C         Theta R         Theta L         Mean           Drop 1 $65.58 \pm 0.08$ $65.49 \pm 0.13$ $65.53 \pm 0.07$ Drop 2 $67.36 \pm 0.07$ $67.94 \pm 0.07$ $67.65 \pm 0.04$ Drop 3 $65.19 \pm 0.04$ $68.52 \pm 0.09$ $66.85 \pm 0.05$ Drop 4 $61.58 \pm 0.04$ $68.73 \pm 0.04$ $65.16 \pm 0.03$ Drop 5 $67.18 \pm 0.07$ $72.24 \pm 0.08$ $69.71 \pm 0.05$		Average	64 266	64 364	64 314		
60C       Theta R       Theta L       Mean         Drop 1 $65.58 \pm 0.08$ $65.49 \pm 0.13$ $65.53 \pm 0.07$ Drop 2 $67.36 \pm 0.07$ $67.94 \pm 0.07$ $67.65 \pm 0.04$ Drop 3 $65.19 \pm 0.04$ $68.52 \pm 0.09$ $66.85 \pm 0.05$ Drop 4 $61.58 \pm 0.04$ $68.73 \pm 0.04$ $65.16 \pm 0.03$ Drop 5 $67.18 \pm 0.07$ $72.24 \pm 0.08$ $69.71 \pm 0.05$		-		04.004	04.014		
Theta RTheta LMeanDrop 1 $65.58 \pm 0.08$ $65.49 \pm 0.13$ $65.53 \pm 0.07$ Drop 2 $67.36 \pm 0.07$ $67.94 \pm 0.07$ $67.65 \pm 0.04$ Drop 3 $65.19 \pm 0.04$ $68.52 \pm 0.09$ $66.85 \pm 0.05$ Drop 4 $61.58 \pm 0.04$ $68.73 \pm 0.04$ $65.16 \pm 0.03$ Drop 5 $67.18 \pm 0.07$ $72.24 \pm 0.08$ $69.71 \pm 0.05$			ne			·	
Drop 2 $67.36 \pm 0.07$ $67.94 \pm 0.07$ $67.65 \pm 0.04$ Drop 3 $65.19 \pm 0.04$ $68.52 \pm 0.09$ $66.85 \pm 0.05$ Drop 4 $61.58 \pm 0.04$ $68.73 \pm 0.04$ $65.16 \pm 0.03$ Drop 5 $67.18 \pm 0.07$ $72.24 \pm 0.08$ $69.71 \pm 0.05$				Theta L	Mean		
Drop 3 $65.19 \pm 0.04$ $68.52 \pm 0.09$ $66.85 \pm 0.05$ Drop 4 $61.58 \pm 0.04$ $68.73 \pm 0.04$ $65.16 \pm 0.03$ Drop 5 $67.18 \pm 0.07$ $72.24 \pm 0.08$ $69.71 \pm 0.05$		Drop 1		65.49 <u>+</u> 0.13	65.53 <u>+</u> 0. <b>0</b> 7		
Drop 4 61.58 ± 0.04 68.73 ± 0.04 65.16 ± 0.03 Drop 5 67.18 ± 0.07 72.24 ± 0.08 69.71 ± 0.05					67.65 <u>+</u> 0. <b>0</b> 4		
Drop 5 $67.18 \pm 0.07$ $72.24 \pm 0.08$ $69.71 \pm 0.05$		Drop 3			66.85 <u>+</u> 0.05		
Drop 5 67.18 $\pm$ 0.07 72.24 $\pm$ 0.08 69.71 $\pm$ 0.05		Drop 4		68.73 <u>+</u> 0.04	65.16 <u>+</u> 0. <b>03</b>	•	
Average 65.378 68.584 66.98		Drop 5	67.18 <u>+</u> 0.07	72.24 <u>+</u> 0.08			
		Average	65.378	68.584	66.98		
			-				
						<u> </u>	
				· · · · · · · · · · · · · · · · · · ·			
man Date Verified by: Warlin 8/23/07	ded by:	Λ	Date	e Ver	ified by:		Date


51

Alkaline Brine 60C       Theta R       Theta L       Mean         Drop 1 $56.68 \pm 0.06$ $64.45 \pm 0.06$ $60.57 \pm 0.04$ Drop 2 $62.03 \pm 0.06$ $61.69 \pm 0.05$ $61.86 \pm 0.05$ Drop 3 $62.45 \pm 0.06$ $68.95 \pm 0.06$ $65.70 \pm 0.04$ Drop 4 $58.20 \pm 0.21$ $58.00 \pm 0.05$ $58.10 \pm 0.11$ Drop 5 $59.92 \pm 0.05$ $64.25 \pm 0.04$ $62.09 \pm 0.04$ Average $59.856$ $63.468$ $61.664$	Book No	• • • • • • • • • • • • • • • • • • •	TTLE		nga ng mananana sa kata sa kat Kata sa kata sa	
Theta R       Theta L       Mean         Drop 1 $56.68 \pm 0.06$ $64.45 \pm 0.06$ $60.57 \pm 0.04$ Drop 2 $62.03 \pm 0.06$ $61.69 \pm 0.05$ $61.86 \pm 0.05$ Drop 3 $62.45 \pm 0.06$ $68.95 \pm 0.06$ $65.70 \pm 0.04$ Drop 4 $58.20 \pm 0.21$ $58.00 \pm 0.05$ $58.10 \pm 0.11$ Drop 5 $59.92 \pm 0.05$ $64.25 \pm 0.04$ $62.09 \pm 0.04$ Average $59.856$ $63.468$ $61.664$			ine			
Drop 1 56.68 $\pm 0.06$ 64.45 $\pm 0.06$ 60.57 $\pm 0.04$ Drop 2 62.03 $\pm 0.06$ 61.69 $\pm 0.05$ 61.86 $\pm 0.05$ Drop 3 62.45 $\pm 0.06$ 68.95 $\pm 0.06$ 65.70 $\pm 0.04$ Drop 4 58.20 $\pm 0.21$ 58.00 $\pm 0.05$ 58.10 $\pm 0.11$ Drop 5 59.92 $\pm 0.05$ 64.25 $\pm 0.04$ 62.09 $\pm 0.04$ Average 59.856 63.468 61.664 $2 \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} 2$		000	Theta R	Theta L	Mean	
Drop 2 62.03 ± 0.06 61.69 ± 0.05 61.86 ± 0.05 Drop 3 62.45 ± 0.06 68.95 ± 0.06 65.70 ± 0.04 Drop 4 58.20 ± 0.21 58.00 ± 0.05 58.10 ± 0.11 Drop 5 59.92 ± 0.05 64.25 ± 0.04 62.09 ± 0.04 Average 59.856 63.468 61.664 Average 59.856 63.468 61.664 $e^{it} e^{it} e^$		Drop 1		64.45 <u>+</u> 0.06	60.57 <u>+</u> 0.04	
Drop 3 $62.45 \pm 0.06$ $68.95 \pm 0.06$ $65.70 \pm 0.04$ Drop 4 $58.20 \pm 0.21$ $58.00 \pm 0.05$ $58.10 \pm 0.11$ Drop 5 $59.92 \pm 0.05$ $64.25 \pm 0.04$ $62.09 \pm 0.04$ Average 59.856 $63.468$ $61.664$ Drep 5 $63.468$ $61.664$ Drep 5 $63.468$ $61.664$ Drep 6 $63.468$ $61.664$ Drep 7 $64.25 \pm 0.04$ $62.09 \pm 0.04$ Drep 7 $64.25 \pm 0.04$	naga na ang kana na ka			61.69 <u>+</u> 0.05	61.86 <u>+</u> 0.05	
Drop 5 59.92 ± 0.05 64.25 ± 0.04 62.09 ± 0.04 Average 59.856 63.468 61.664 re following graphs are illustrations from the t data cpresented above. The graphs were generated in excel. Contact Angle of Five Drops of DI Water on Alloy 22 at Various		Drop 3		68.95 <u>+</u> 0.06		
Average 59.856 63.468 61.664 Perfollowing graphs are illustrations from the data presented above. The graphs were generated in excel. Contact Angle of Five Drops of DI Water on Alloy 22 at Various		Drop 4				
Le following graphs are illustrations from the data presented above. The graphs were generated in excel. Contact Angle of Five Drops of DI Water on Alloy 22 at Various		Drop 5	59.92 <u>+</u> 0.05	64.25 <u>+</u> 0.04	62.09 <u>+</u> 0.04	
De following graphs are illustrations from thet data Epresented above. The graphs were generated in excel. Contact Angle of Five Drops of DI Water on Alloy 22 at Various		Average	59.856	63.468	61.664	an ann an ann an ann ann ann ann ann an
I OM NOT 2 TITAS	le followi	Na gray	Shis are	illustrat	1005 from	thext data
		······································	le of Five Drops o	f DI Water on Allo		thext data
		Contact Ang	le of Five Drops o	f DI Water on Allo	y 22 at Various	
		Contact Ang	le of Five Drops o	f DI Water on Allo eratures	y 22 at Various	
No         No<		Contact Ang	le of Five Drops o	f DI Water on Allo eratures	y 22 at Various	
br     80     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •     •<		Contact Ang	le of Five Drops o	f DI Water on Allo eratures	y 22 at Various	
80       • • • • •         90       • • • • •         90       • • • • • •         90       • • • • • • •         90       • • • • • • • •         90       • • • • • • • • • • • • • • • • • • •	Angle	Contact Ang	le of Five Drops o	f DI Water on Allo eratures	y 22 at Various	



Drop Number

Book No.



54 Project No. _____ TITLE Book No. Tried to measure the contact angle at 60°C with no success. The software would not recognize the angles of the drop. While pubbles would distort the shape of DI and Wine solutions, increased sait concentration made the drop inrecognizable as shown below. Not only is the shape of the drop not recognized but the point at which the drop comes in contact with the surface is not measured correctly. One possible explanation for the distorted contact angle is that the reflection of light off of the salt in solution is similiar to that of the atomosphere making the drop unrecognizable. Cleaned block according to SN 83114 after it was allowed to cool for approximately I hour. 8/29/07 New calibration Vertical Dixel: 9.082 norizontal pixel: 9.082 aspect ratio: 1.0001 Tried to measure the contact aggle of simulated concentrated water at noom température. Some europs would spread beyond the observation screen on the PC making me measure each side seperately. Some of the Recorded by: Lancy Meulin Verified by: Date Date 8/29/07

				Project No.
TLE				Book No.
1				
drops also b	readed.			
8 30 07				
New calibra	tion :	·		
vertica	y pixel 9	325		
horizo	tal pixel:	9.321		
Cispect	- ratio 0.	9996		
•				cal concentrated
Measured the	contact (	ragle of	Sinulat	cd concentrated
water at 50	)°C. Some	of the	oups s	pread only allowing
enough time	to measu	Le ope	side of	the arop
whereas of	ners beac	led up	normally	<u>} -</u>
Doon diago ba	the drite	helow	thore is	s not much of a
HUCUTOUNDE TU	HIC AUTU	mulcted	merchi	s not much of a ted water contact
aitterence be	TWEEN DI	MULLATCA	Enco	
angles at rol	om tempe	arue ve	3.30 C·	
		·····		
	ed Concentrated W	ater		
Room I	Femperature Theta R	Theta L	Moon	
Drop			Mean 49.59 <u>+</u> 0.19	
Drop	2 56.97 <u>+</u> 0.06	59.89 <u>+</u> 0.03	57.30 ± 0.18	
Drop		69.91 <u>+</u> 0.02	68.99 <u>+</u> 0.01	
Drop		83.09 <u>+</u> 0.03	79.86 <u>+</u> 0.02	
Drop	5 79.00 <u>+</u> 0.03	74.52 <u>+</u> 0.03	76.76 <u>+</u> 0.02	
Averaç	ge 66.032	67.418	66.5	A
Simulate 50C	ed Concentrated W	<u>ater</u>		
	Theta R	Theta L	Mean	
Drop		37.60 <u>+</u> 0.11	na	
Drop 2		44.26 <u>+</u> 0.07	na 74.00 × 0.04	
	3 66.32 <u>+</u> 0.08	75.80 <u>+</u> 0.09	71.06 <u>+</u> 0.04	
Drop	1 70 00 + 0 12	68 52 + 0 10		
Drop 3 Drop 4		68.53 <u>+</u> 0.19 58.86 + 0.07	69.76 <u>+</u> 0.10 59.06 + 0.04	
Drop	5 59.25 <u>+</u> 0.04	58.86 <u>+</u> 0.07	59.06 <u>+</u> 0.04	
Drop 2 Drop 4 Drop 4	5 59.25 <u>+</u> 0.04 6 65.25 <u>+</u> 0.06			
Drop 2 Drop 4 Drop 5 Drop 6	$5   59.25 \pm 0.04 \\6   65.25 \pm 0.06 \\7   62.78 \pm 0.03 \\$	58.86 <u>+</u> 0.07 60.88 <u>+</u> 0.07	59.06 <u>+</u> 0.04 63.06 <u>+</u> 0.03	
Drop 5 Drop 6 Drop 7	$5   59.25 \pm 0.04 \\6   65.25 \pm 0.06 \\7   62.78 \pm 0.03 \\$	58.86 <u>+</u> 0.07 60.88 <u>+</u> 0.07 67.50 <u>+</u> 0.05 59.06	59.06 <u>+</u> 0.04 63.06 <u>+</u> 0.03 65.14 <u>+</u> 0.03 65.62	
Drop 2 Drop 2 Drop 2 Drop 6 Drop 7 Averag	$5   59.25 \pm 0.04 \\ 6   65.25 \pm 0.06 \\ 7   62.78 \pm 0.03 \\ 9   64.92 \\ \hline$	58.86 <u>+</u> 0.07 60.88 <u>+</u> 0.07 67.50 <u>+</u> 0.05 59.06	59.06 <u>+</u> 0.04 63.06 <u>+</u> 0.03 65.14 <u>+</u> 0.03	Date
Drop 5 Drop 4 Drop 6 Drop 7	$5   59.25 \pm 0.04 \\ 6   65.25 \pm 0.06 \\ 7   62.78 \pm 0.03 \\ 9   64.92 \\ \hline$	58.86 <u>+</u> 0.07 60.88 <u>+</u> 0.07 67.50 <u>+</u> 0.05 59.06	59.06 <u>+</u> 0.04 63.06 <u>+</u> 0.03 65.14 <u>+</u> 0.03 65.62	Date

56 Project No.		
Book No.	TITLE	
	· · · · · · · · · · · · · · · · · · ·	W/
	·	and the second s
	· · · · · · · · · · · · · · · · · · ·	Pol
······································	· · · · · · · · · · · · · · · · · · ·	
An		- 5
· · · · · · · · · · · · · · · · · · ·		Jr.
		P
		5/
a na anti-anti-anti-anti-anti-anti-anti-anti-		/
	*/	
	ಲ/	
	5	
	×/	
	~3/	,
	×//`	
·		
	$\nabla$ (· ) $\langle$	
	5/4	
· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·		
Recorded by:	Date Verified by:	Date

Ser.