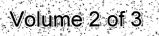

LOST CREEK ISR, LLC Lost Creek Project South-Central Wyoming

Technical Report



Application for US NRC Source Material License (Docket No. 40-9068)) October, 2007

TABLE OF CONTENTS - General

VOLUME 1 of 3

.0	PROPOSED ACTIVITIES	
2.0	SITE CHARACTERIZATION	2.1-1
2.1	Site Location and Layout	
2.2	Uses of Adjacent Lands and Waters	
2.3	Population Distribution and Socioeconomic Conditions	2.3-1
2.4	Historic, Scenic, and Cultural Resources	2.4-1
2.5	Meteorology, Climatology and Air Quality	
2.6	Geology and Soils	

VOLUME 2 of 3

2.0	SITE CHARACTERIZATION (continued)	,
2.7	Hydrology	
2.8	Ecology	
2.9	Background Radiological Characteristics	
2.10	Other Environmental Features	

VOLUME 3 of 3

3.0	DESCRIPTION OF THE PROPOSED FACILITY
4.0	EFFLUENT CONTROL SYSTEMS
5.0	OPERATIONAL ORGANIZATION, MANAGEMENT, PROGRAMS, & TRAINING
6.0	GROUNDWATER QUALITY RESTORATION, SURFACE RECLAMATION, AND FACILITY DECOMMISSIONING
7.0	ENVIRONMENTAL EFFECTS
8.0	ALTERNATIVES
9.0	COST-BENEFIT ANALYSIS9-1
10.0	ENVIRONMENTAL APPROVALS AND CONSULTATIONS 10-1

i

TABLE OF CONTENTS - Detailed

VOLUME 1 of 3

1.0 PROPOSED ACTIVITIES	1
1.1 Licensing Action Requested1-	1
1.2 Project Background	2
1.3 Site Location and Description1-	
1.4 Orebody Description	
1.5 Solution Mining Method and Recovery Process	4
1.6 Operating Plans, Design Throughput, and Production1-:	5
1.7 Project Schedules	
1.7.1 Pre-Operational Development Schedule1-	6
1.7.2Operations Schedule1-01.8Waste Management and Disposal1-7	7
1.9 Source and Byproduct Material Transportation	7
1.10 Groundwater Restoration	8
1.11 Decommissioning and Reclamation1-	9
1.12 Surety Arrangements	9
2.0 SITE CHARACTERIZATION	1
2.1 Site Location and Layout	1
2.2 Uses of Adjacent Lands and Waters	1
2.2.1 Land Use	1
2.2.1.1 Planned Land Uses and Developments	
2.2.2 Water Use	3
2.2.2.1 Surface Water	3
2.2.2.2 Groundwater	4
2.3 Population Distribution and Socioeconomic Conditions2.3-	1
2.3.1 Demographics	1
2.3.1.1 Sweetwater County	1
2.3.1.2 Carbon County	2
2.3.2 Socioeconomic Conditions	2
2.3.2.1 Employment Sectors and Industry Income	3
2.3.2.2 Labor	4
2.3.2.3 Personal Income	4
2.3.3 Other Resources	5
2.3.3.1 Housing	
2.3.3.2 Public Facilities and Services	6
2.3.3.3 Taxes and Revenues	9

ii

<u>VOLUME 1 of 3</u> (continued)

2.0 SITE CHARACTERIZATION (continued)
2.4 Historic, Scenic, and Cultural Resources
2.4.1 Historic and Cultural Resources
(separate volume – requesting NRC confidentiality)
2.4.2 Scenic Resources
2.4.2.1 Visual Quality
2.4.2.2 Visual Sensitivity
2.5 Meteorology, Climatology and Air Quality2.5-1
2.5.1 Temperature
2.5.2 Precipitation
2.5.3 Humidity
2.5.4 Winds2.5-2
2.5.5 Air Quality
2.5.5.1 Air Particulate Sampling2.5-4
2.5.5.2 Radiological Sampling2.5-5
2.6 Geology and Soils2.6-1
2.6.1 Regional Geology2.6-1
2.6.1.1 Stratigraphy2.6-1
2.6.1.2 Structure
2.6.2 Site Geology2.6-2
2.6.2.1 Stratigraphy
2.6.2.2 Structure
2.6.2.3 Ore Mineralogy and Geochemistry2.6-4
2.6.2.4 Historic Uranium Exploration Activities2.6-5
2.6.3 Seismology2.6-6
2.6.3.1 Historic Seismicity2.6-7
2.6.3.2 Uniform Building Code
2.6.3.3 Deterministic Analysis of Active Fault Systems
2.6.3.4 Maximum Tectonic Province Earthquake
"Floating Earthquake" Seismogenic Source
2.6.3.5 Short-Term Probabilistic Seismic Hazard Analysis2.6-12
2.6.4 Soils2.6-12
2.6.4.1 Soil Survey2.6-13
2.6.4.2 Field Sampling2.6-13
2.6.4.3 Results and Discussion
2.6.4.4 Soil Suitability as a Plant Growth Medium2.6-15
2.6.4.5 Topsoil Protection2.6-16
2.6.4.6 Prior Surface Disturbances

VOLUME 2 of 3

2.0 SITE CHARACTERIZATION (continued)	
2.7 Hydrology	2.7-1
2.7.1 Surface Water	2.7-1
2.7.1.1 Drainage Characteristics	2.7-1
2.7.1.2 Surface Water Quality	2.7-3
2.7.2 Groundwater Occurrence	2.7-4
2.7.2.1 Regional Hydrogeology	2.7-4
2.7.2.2 Site Hydrogeology	2.7-9
2.7.3 Groundwater Quality	2.7-17
2.7.3.1 Regional Groundwater Quality	
2.7.3.2 Site Groundwater Quality	2.7-20
2.7.4 Hydrologic Conceptual Model	2.7-23
2.7.4.1 Regional Groundwater Conceptual Model	2.7-23
2.7.4.2 Site Groundwater Conceptual Model	
2.8 Ecology	2.8-1
2.8.1 Vegetation	2.8-1
2.8.1.1 Upland Big Sagebrush Shrubland	2.8-2
2.8.1.2 Lowland Big Sagebrush Shrubland	2.8-3
2.8.1.3 Threatened, Endangered, and Special Concern Plant	
Species	2.8-4
2.8.1.4 Weeds and Selenium Indicator Species	
2.8.2 Aquatic Life and Wetlands	
2.8.3 Wildlife	
2.8.3.1 Wildlife Habitat Description	
2.8.3.2 Methods	
2.8.3.3 Results	2.8-8
2.9 Background Radiological Characteristics	2.9-1
2.9.1 Background Gamma Radiation Survey and Soils Sampling	z 2.9-1
2.9.1.1 Methods	-
2.9.1.2 Data Quality Assurance and Quality Control	
2.9.1.3 Results	
2.10 Other Environmental Features	

VOLUME 3 of 3

3.0	DESCRIPTION OF THE PROPOSED FACILITY		
		Process and Equipment	
		Site Facilities Layout	
		Ore Deposits	

<u>VOLUME 3 of 3</u> (continued)

3.0 DE	SCRIPTION OF THE PROPOSED FACILITY (continued)	
3.2 Min	ne Unit Processes, Instrumentation, and Control	3-3
3.2.1	Mine Unit Chemistry	3-3
3.2.2	6	
3.2.2.	1 Production and Injection Well Patterns	3-5
3.2.2.	2 Monitor Well Locations	3-5
3.2.3	Mine Unit Installation	
3.2.4	Well Completion	
3.2.5	Well Integrity Testing	
3.2.6	Mine Unit Piping and Instrumentation	
3.2.7	Mine Unit Control	
3.2.7.	1 Header House Control	3-10
3.2.7.		
3.2.7.	J U	
3.2.7.	5	
	nt Processes, Instrumentation, and Control	
3.3.1	Ion Exchange (Resin-Loading) Circuit	
3.3.2	Elution Circuit	
3.3.3	Precipitation/Filtration Circuit	
3.3.4	Major Process Equipment and Instrumentation	3-18
	UENT CONTROL SYSTEMS	
	seous Emissions and Airborne Particulates	
4.1.1	Non-Radioactive Emissions and Particulates	
4.1.2	Radioactive Emissions	
-	uid Wastes	
4.2.1	"Native" Groundwater Recovered during Well Developmer	
4.0.0	Sample Collection, and Pump Testing	
4.2.2	Storm Water Runoff	
4.2.3	Waste Petroleum Products and Chemicals	
4.2.4		
4.2.5	Liquid 11(e)(2) Byproduct Material	
	1 Liquid Process Wastes	
4.2.5.	5 1	
105	and Sample Collection	
4.2.5.	. 0 1	
4.2.5.		
4.2.5.		
•	id Wastes	
4.3.1	Solid Non-11(e)(2) Byproduct Materials	
4.3.2	Solid 11(e)(2) Byproduct Materials	4-10

v

VOLUME 3 of 3 (continued)

5.0 OPH	ERATIONAL ORGANIZATION, MANAGEMENT, PRO	OGRAMS,
	RAINING	
5.1 C	orporate Organization and Administration	
5.1.1	President	
5.1.2	General Manager	
5.1.3	Mine Manager	
5.1.4	Manager EHS and Regulatory Affairs	
5.1.5	Site Supervisor EHS/RSO	5-3
5.1.	5.1 Health Physics Technician	
5.1.6	Department Heads Uranium Recovery Workers	
5.1.7	Uranium Recovery Workers	
5.2 N	Ianagement Control Program	
5.2.1	Safety and Environmental Review Panel (SERP)	
	1.1 Organization of the SERP	
	1.2 SERP Responsibilities	
	1.3 Record Keeping and Reporting	
5.3 N	Ianagement Audit and Inspection Program	
5.3.1	Radiation Safety Inspections	5-10
5.3.	1.1 Daily Inspections	
5.3.	1.2 Weekly Operations Inspections	
5.3.2	Storage Pond Inspections	
5.3.		
5.3.	2.2 Weekly Storage Pond Inspections	
	2.3 Quarterly Storage Pond Inspections	
5.3.		
5.3.3	Annual ALARA Audit	5-13
5.4 Qua	lifications for Personnel Conducting Radiation Safety	•
	gram	
5.4.1	Mine Manager	
5.4.2		
5.4.3	Site Supervisor EHS / RSO	
5.4.	3.1 Health Physics Technician	
5.4.4	Department Heads	5-16
5.5 R	adiation Safety Training	5-16
5.6 P	ermit Area Security	
5.6.1	Mine Unit and Storage Pond Security	5-18
5.6.2	Plant Security	
5.6.3	Transportation Security	

<u>VOLUME 3 of 3</u> (continued)

5.0 OPERATIONAL ORGANIZATION, MANAGEMEN	JT, PROGRAMS,
& TRAINING (continued)	· · ·
5.7 Radiation Safety Controls and Monitoring	
5.7.1 Effluent Control Techniques	
5.7.2 External Radiation Exposure Monitoring Progr	ram 5-20
5.7.2.1 Personal External Dosimetry	
5.7.2.2 Direct Readings for External Exposure	
5.7.3 In-Plant Airborne Radiation Monitoring Progra	am 5-23
5.7.3.1 Airborne Uranium Particulate Monitoring	
5.7.3.2 Surveys for Radon-222 and Its Daughters	
5.7.4 Exposure Calculations	
5.7.5 Bioassay Program	
5.7.6 Contamination Control Program	
5.7.7 Airborne Effluent and Environmental Monitor	ing Programs 5-29
5.7.8 Groundwater and Surface-Water Monitoring P	rograms 5-30
5.7.8.1 Baseline Conditions	
5.7.8.2 Operational Monitoring	
5.7.8.3 Storage Pond Leak Detection Monitoring	
5.7.9 QA Program for Radiological Monitoring Prog	grams 5-35
5.7.9.1 Organizational Structure and Responsibilitie	es of Managerial
and Operational Personnel	
5.7.9.2 Specification of Qualifications of Personnel	
5.7.9.3 SOPs and Instructions	
5.7.9.4 Records	
6.0 GROUNDWATER QUALITY RESTORATION, SUI	
RECLAMATION, AND FACILITY DECOMMISSIO	
6.1 Completion of Mining Operations	
6.2 Plans and Schedules for Groundwater Quality Resto	
6.2.1 Conditions in the Mineralized Zone Before and	
Operations	
6.2.2 Restoration Requirements	
6.2.3 Groundwater Restoration Methods	
6.2.3.1 Groundwater Sweep	
6.2.3.2 Groundwater Treatment	
6.2.3.3 Recirculation	
6.2.4 Stabilization Phase	
6.2.5 Reporting	
6.3 Mine Unit Reclamation	
6.3.1 Preliminary Radiological Surveys and Contam	
6.3.2 Well Abandonment	
6.3.3 Facility and Road Reclamation	

С

VOLUME 3 of 3 (continued)

6.0	GROU	INDWATER QUALITY RESTORATION, SURFACE	
	RECL	AMATION, AND FACILITY DECOMMISSIONING (continu	ied)
6.	4 Rec	lamation and Decommissioning of Processing and Support	
	Faci		6-11
	6.4.1	Preliminary Radiological Surveys and Contamination Control.	6-12
	6.4.2	Removal and Disposal of Equipment and Structures	6-12
	6.4.3	Waste Storage, Treatment, and Disposal Facilities	
	6.4.4	Buried Piping and Engineering Control Structures	
	6.4.5	Roads	6-14
6.		-Reclamation and Decommissioning Radiological Surveys	
	6.5.1	Determination of Site Soil Cleanup Criteria	
	6.5.2	Soil Verification Survey Methodology	
6.		Replacement and Revegetation	
	6.6.1	Post-Operational Land Use	
	6.6.2	Surface Preparation	
	6.6.3	Soil Replacement	
	6.6.4	Seed Mix, Reseeding Methods, and Fencing	
	6.6.5	Revegetation Success Criteria	
6.		ommissioning Health Physics and Radiation Safety	
6.	8 Fina	incial Assurance	6-17
7.0		RONMENTAL EFFECTS	
7.		Preparation, Construction, and Operations	
٠,	7.1.1	Land Use	
	7.1.2	Transportation	
	7.1.3	Soils	
	7.1.4	Geology	
	7.1.5	Hydrology	
	7,1.5.1		
	7.1.5.2		
	7.1.6	Ecology	
	7.1.6.1	5	
	7.1.6.2		
	7.1.7	Air Quality	
	7.1.8	Noise	-
	7.1.9	Cultural Resources	
	7.1.10	Visual/Scenic Resources	
	7.1.11	Socioeconomics	
	7.1.12	Environmental Justice	
	7.1.13	Public and Occupational Health	
	7.1.14	Waste Management	. 7-13

<u>VOLUME 3 of 3</u> (continued)

7.0 ENVIRONMENTAL EFFECTS (continued)
7.2 Radiological Effects
7.2.1 Exposure Pathways
7.2.1.1 Exposures from Water Pathways
7.2.1.2 Exposures from Air Pathways
7.2.1.3 Exposures from External Radiation
7.2.1.4 Total Human Exposures
7.2.1.5 Exposures to Flora and Fauna
7.3 Non-Radiological Effects
7.3.1 Airborne Emissions
7.3.2 Sediment Loads
7.3.3 Groundwater Quantity and Quality7-18
7.4 Effects of Accidents
7.4.1 Tank Failure
7.4.2 Pipeline Failure
7.4.3 Pond Failure
7.4.4 Casing Failure
7.4.5 Leaking Exploration Holes
7.4.6 Excursions
7.4.7 Transportation Accidents
7.4.7.1 Yellowcake Slurry Shipments
7.4.7.2 Shipment of Chemicals
7.4.7.3 Shipments of Material for Off-site Disposal7-23
7.4.8 Other Accidents
7.4.8.1 Fires and Explosions
7.4.8.2 Tornadoes
7.5 Economic and Social Effects of Construction and Operation
8.0 ALTERNATIVES
9.0 COST-BENEFIT ANALYSIS
9.1 Costs
9.1.1 Health and Environmental Costs
9.1.2 Internal Costs
9.1.3 External costs
9.2 Benefits
10.0 ENVIRONMENTAL APPROVALS AND CONSULTATIONS 10-1

LIST OF FIGURES

<u>VOLUME 1 of 3</u>

SECTION 1.0 INTRODUCTION

Figure 1.3-1 Regional Map of the Permit Area

Figure 1.4-1 Lost Creek Ore Trend

Figure 1.5-1 Typical ISR Operation

Figure 1.5-2a Ion Exchange Process Flow

Figure 1.5-2b Plant Process Flow

Figure 1.6-1 Solution Flow Patterns

Figure 1.7-1 Pre-Operation Schedule of Lost Creek Project

Figure 1.7-2 Lost Creek Project Development, Production, and Restoration Schedule

SECTION 2.0 SITE CHARACTERIZATION

Section 2.1 Site Location and Layout

Figure 2.1-1 Site Layout

Figure 2.1-2 Regional Transportation Network

Section 2.2 Uses of Adjacent Lands and Waters

Figure 2.2-1 Land Ownership

Figure 2.2-2 BLM Grazing Allotment

Figure 2.2-3 Nuclear Facilities and Mines within 50 miles

Figure 2.2-4 Groundwater Use Permits

Figure 2.2-4 BLM Battle Spring Well No. 47777

Figure 2.2-4 BLM East Eagle Nest Draw Well

Section 2.3 Population Distribution and Socioeconomic Conditions Figure 2.3-1 Significant Population Centers within 80 Kilometers

Section 2.4 Historic, Scenic, and Cultural Resources

Section 2.4.1 Historic and Cultural Resources

(separate volume – requesting NRC confidentiality)

Section 2.4.2 Scenic Resources

Figure 2.4-2a View from Center of Lost Creek Permit Area Facing North

Figure 2.4-2b View from Center of Lost Creek Permit Area Facing Northeast

Figure 2.4-2c View from Center of Lost Creek Permit Area Facing East

Figure 2.4-2d View from Center of Lost Creek Permit Area Facing Southeast

Figure 2.4-2e View from Center of Lost Creek Permit Area Facing South

Figure 2.4-2f View from Center of Lost Creek Permit Area Facing Southwest

Figure 2.4-2g View from Center of Lost Creek Permit Area Facing West

Figure 2.4-2h View from Center of Lost Creek Permit Area Facing Northwest

х

<u>VOLUME 1 of 3</u> (continued)

SECTION 2.0 SITE CHARACTERIZATION (continued)

Section 2.5 Meteorology, Climatology, and Air Quality

Figure 2.5-1 Meteorological Stations within 50 Miles of the Permit Area

Figure 2.5-2 Total Monthly Precipitation in the Project Region

Figure 2.5-3 Wind Speed and Direction at the Lost Soldier Meteorological Station

Figure 2.5-4 Air Particulate Sampling Locations

Figure 2.5-5 Passive Radiological Sampling Locations

Section 2.6 Geology and Soils

Figure 2.6-1 Regional Geologic Map

Figure 2.6-2a Geologic Cross Section Schematic

Figure 2.6-2b Stratigraphic Column, Upper Battle Spring Formation

Figure 2.6-3 Historical Seismicity Map

Figure 2.6-4 UBC Seismic Zones

Figure 2.6-5 Active Fault Systems in the Vicinity of the Permit Area

Figure 2.6-6 500-Year Probabilistic Map

Figure 2.6-7a Soils (1:100,000)

Figure 2.6-7b Soils (1:500,000)

Figure 2.6-8 Typical Soil Pit

Figure 2.6-9 Soil Sampling Locations

Figure 2.6-10 Existing Road Disturbance

Figure 2.6-11 Typical Two-Track Road

VOLUME 2 of 3

Section 2.7 Hydrology

Figure 2.7-1 Surface Drainage Map for the Lost Creek Permit Area

Figure 2.7-2 Longitudinal Profile along Battle Spring Draw from the Northern Boundary

Figure 2.7-3 Photo of Crooked Well Reservoir Taken During Spring Snowmelt Runoff Looking West.

Figure 2.7-4 Storm Water Sampler Installed to Collect a One-Liter Sample of Snowmelt or Storm Surface Runoff

Figure 2.7-5 Locations of Storm Water and Snowmelt Samplers

Figure 2.7-6 Potentiometric Surface, Wasatch/Battle Spring Aquifers, Great Divide Basin (After Welder and McGreevey, 1966)

Figure 2.7-7 Regional Hydrostratigraphic Units of Interest, Great Divide Basin

Figure 2.7-8 Potentiometric Surface, Tertiary Aquifer System, Great Divide Basin (After Naftz, 1966)

Figure 2.7-9 Location Map, Lost Creek Monitor Wells

Figure 2.7-10 Site Hydrostratigraphic Units

<u>VOLUME 2 of 3</u> (continued)

SECTION 2.0 SITE CHARACTERIZATION (continued)

Section 2.7 Hydrology (continued)

Figure 2.7-11a Potentiometric Surface, HJ Production Zone, June 2007

Figure 2.7-11b Potentiometric Surface, HJ Production Zone, August 1982 and October 2006

Figure 2.7-11c Potentiometric Surface, Overlying Aquifer (LFG), August 1982 and October 2006

Figure 2.7-11d Potentiometric Surface, Underlying Aquifer (UKM), August 1982 and October 2006

Figure 2.7-12 Location of Well Groups Used to Evaluate Vertical Hydraulic Gradients

Figure 2.7-13 Location of Pump Tests Conducted in 1982 and 2006

Figure 2.7-14 Location of Pump Test and Monitor Wells, 2006

Figure 2.7-15 Drawdown in the HJ Aquifer at the End of the LC19M Pump Test

Figure 2.7-16 Potentiometric Surface in the HJ Aquifer at the End of the LC19M Pump Test

Figure 2.7-17 Spatial Distribution of Aquifer Transmissivity

Figure 2.7-18 Location of Historic Site Monitor Wells

Figure 2.7-19 Location of Site Baseline Monitor Wells

Figure 2.7-20a Distribution of TDS, August 1982

Figure 2.7-20b Distribution of Radium-226, August 1982

Figure 2.7-20c Distribution of Uranium, August 1982

Figure 2.7-21a Distribution of Average TDS-September 2006 to May 2007

Figure 2.7-21b Distribution of Average Sulfate-September 2006 to May 2007

Figure 2.7-22a Piper Diagram-Average Water Quality at Individual Monitor Wells

Figure 2.7-22b Piper Diagram-Average Water Quality in Aquifers of Interest Figure 2.7-23a Distribution of Average Uranium-September 2006 to May 2007

Figure 2.7-23b Distribution of Average Radium 226+228-September 2006 to May 2007

Section 2.8 Ecology

Figure 2.8-1 Vegetation Map

Figure 2.8-2 Upland Big Sagebrush Shrubland

Figure 2.8-3 Lowland Big Sagebrush Shrubland

Figure 2.8-4 Pronghorn Range

Figure 2.8-5 Mule Deer Range

Figure 2.8-6 Elk Range

Figure 2.8-7 Moose Range

Figure 2.8-8 Sage Grouse Leks

Figure 2.8-9 Raptor Nest Locations

<u>VOLUME 2 of 3</u> (continued)

SECTION 2.0 SITE CHARACTERIZATION (continued)

Section 2.9 Background Radiological Characteristics

Figure 2.9-1 Scanning System Equipment and Configuration

Figure 2.9-2 Correlation Grid Sampling Design

Figure 2.9-3 NaI-Based Gamma Survey Results

Figure 2.9-4 NaI Gamma Survey Results and HPIC Measurement Locations

Figure 2.9-5 OHV Re-Scan Results

Figure 2.9-6 Soil Sampling and Gamma Survey Results Overlay

Figure 2.9-7 Ra-226 Soil Concentration and Gamma Exposure Rate Correlation

Figure 2.9-8 Ra-226 and Uranium Soil Concentration Correlation

Figure 2.9-9 Calibration Curves for HPIC versus NaI Detectors

Figure 2.9-10 Three-Foot NaI Detector Height Data

Figure 2.9-11 Three-Foot and 4.5-Foot NaI Detector Height Readings Correlation

Figure 2.9-12 Calculated Three-Foot-HPIC-Equivalent Gamma Exposure Rates

Figure 2.9-13 Kriged Estimates of the Three-Foot-HPIC-Equivalent Gamma Exposure Rates

Figure 2.9-14 Regression Used to Predict Soil Ra-226 Concentrations Figure 2.9-15 Estimated Soil Ra-226 Concentrations

VOLUME 3of 3

SECTION 3.0 DESCRIPTION OF THE PROPOSED FACILITY

Section 3.1 ISR Process and Equipment

Figure 3.1-1 Regional Map of the Permit Area (repeat of Figure 1.3-1)

Figure 3.1-2 Site Layout (repeat of Figure 2.1-1)

Figure 3.1-3 Lost Creek Project Development, Production, and Restoration Schedule (repeat of Figure 1.7-2)

Section 3.2 Mine Unit Processes, Instrumentation, and Control

Figure 3.2-1 Alkaline Uranium Leach Chemistry in the Aquifer

Figure 3.2-2 Injection Well Construction

Figure 3.2-3 Production Well Construction

Figure 3.2-4 Monitor Well Construction

Figure 3.2-5 Project Water Balance

<u>VOLUME 3 of 3</u> (continued)

SECTION 5.0 OPERATIONAL ORGANIZATION, MANAGEMENT, PROGRAMS, & TRAINING (continued)

Section 5.1 Corporate Organization and Administration Figure 5.1-1 Lost Creek Project Management Organization Chart

SECTION 6.0 GROUNDWATER QUALITY RESTORATION, SURFACE RECLAMATION, AND FACILITY DECOMMISSIONING

Section 6.2 Plans and Schedules for Groundwater Quality Restoration Figure 6.2-1 Restoration Flow Diagram

SECTION 7.0 ENVIRONMENTAL EFFECTS

Section 7.2 Radiological Effects

Figure 7.2-1 Pathways for Potential Human Exposures

Figure 7.2-2 Locations of Modeled Receptor Points for the Lost Creek Project Figure 7.2-3a Total Effective Dose Equivalent by Receptor at the Site 1 Plant Location

Figure 7.2-3b Total Effective Dose Equivalent by Receptor at the Site 2 Plant Location

Figure 7.2-4 MILDOS-Calculated Doses to a Hypothetical Worker Located 140 Meters from Plant 1

LIST OF TABLES

VOLUME 1 of 3

SECTION 2.0 SITE CHARACTERIZATION

Section 2.2 Use of Adjacent Lands and Water Table 2.2-1 Hunting Statistics for Hunt Areas that Include the Permit Area Table 2.2-2 Groundwater Rights Table 2.2-3 Cancelled and Abandoned Wells Section 2.3 Population Distribution and Socioeconomic Conditions Table 2.3-1 Demographic Information Table 2.3-2 Population Distribution Table 2.3-3 Population Forecasts for the Study Area Table 2.3-4 Labor Force Statistics Table 2.3-5 Average Rental Rates Section 2.4 Historic, Scenic, and Cultural Resources Section 2.4.1 Historic and Cultural Resources (separate volume – requesting NRC confidentiality) Section 2.5 Meteorology, Climatology, and Air Quality Table 2.5-1 Comparison of Temperature Data Table 2.5-2 Monthly Maximum and Minimum Humidity Measured at the Lost Soldier Met Station Table 2.5-3 Primary and Secondary Limits for National Ambient Air Quality Standards Table 2.5-4 Allowable Increments for Prevention of Significant Deterioration of Air Quality Table 2.5-5 PM₁₀ Concentrations at Lost Creek Table 2.5-6 Analytical Results for Passive Radon and Gamma Sampling Section 2.6 Geology and Soils Table 2.6-1 Permit Area Stratigraphy Table 2.6-2 Permit Area Soil Map Units Table 2.6-3 Permit Area Soil Suitability Ranges <u>VOLUME 2 of 3</u> Section 2.7 Hydrology Table 2.7-1 Peak Flow Regression Equations Table 2.7-2 Calculated Peak Flows for Battle Spring Draw Table 2.7-3 Historic Water Quality Results for Battle Spring from the Sweetwater Mill Permit Application Table 2.7-4 Water Quality Results for Seven Storm Water/Spring Snowmelt Samples Collected on 17 April 2007

Table 2.7-5 Monitor Well Data

Table 2.7-6 Water Level Data

Table 2.7-0 water Level Data

Table 2.7-7 Horizontal Hydraulic Gradients

 Table 2.7-8 Vertical Hydraulic Gradients

LIST OF TABLES (continued)

<u>VOLUME 2 of 3</u> (continued)

SECTION 2.0 SITE CHARACTERIZATION (continued)

Section 2.7 Hydrology (continued)

Table 2.7-9 1982 Pump Test Results

Table 2.7-10 2006 Pump Test Results

Table 2.7-11 2007 Pump Test Results

Table 2.7-12 Baseline Water Quality Monitoring Parameters

Table 2.7-13 Analytical Results of Baseline Monitoring

Table 2.7-14 Distribution of Samples Exceeding EPA MCL for Radium-226+228

Section 2.8 Ecology

 Table 2.8-1 Summary of Vegetation Data

 Table 2.8-2 Rare Plant Species

 Table 2.8-3 Prohibited and Restricted Noxious Weeds

Table 2.8-4 Wildlife Species Observed or Potentially Occurring in the Permit Area

Table 2.8-5 Relative Abundance of Big Game Observations

 Table 2.8-6 Sage Grouse Lek Counts

 Table 2.8-7 Raptor Nest Locations

Table 2.8-8 T&E Wildlife Species Potentially Occurring in the Permit Area

 Table 2.8-9 Wildlife Species of Special Concern

Section 2.9 Background Radiological Characteristics

Table 2.9-1 Soil Sampling and Correlation Grid Results

Table 2.9-2 Gamma Exposure Rate Differences from Two Nal Detector Heights

<u>VOLUME 3 of 3</u>

SECTION 5.0 OPERATIONAL ORGANIZATION, MANAGEMENT, PROGRAMS, & TRAINING

Section 5.7 Radiation Safety Controls and Monitoring

 Table 5.7-1 Baseline Water Quality Monitoring Parameters

SECTION 6.0 GROUNDWATER QUALITY RESTORATION, SURFACE RECLAMATION, AND FACILITY DECOMMISSIONING

Section 6.2 Plans and Schedules for Groundwater Quality Restoration

Table 6.2-1 Restoration Groundwater Quality Parameters

Table 6.2-2 Typical Specification Data for Removal of Ion Constituents

Section 6.3 Mine Unit Reclamation

Table 6.3-1 Approved Permanent Seed Mixture

Section 6.8 Financial Assurance

 Table 6.8-1 Surety Estimate

LIST OF TABLES (continued)

<u>VOLUME 3 of 3</u> (continued)

SECTION 7.0 ENVIRONMENTAL EFFECTS

Section 7.1 Site Preparation, Construction, and Operations

Table 7.1-1 Itemized Calculations on the Areas of the Expected DisturbanceSection 7.2 Radiological Effects

Table 7.2-1 MILDOS Modeling Results for Plant 1

- Table 7.2-2 MILDOS-Calculated Doses to a Hypothetical Worker Located within 460 Feet (140 Meters) from Plant 1
- Table 7.2-3 Population of Towns within 50 miles (80 km) from the Permit Area

Table 7.2-4 Estimated Doses to Populations Surrounding the Permit Area

SECTION 9.0 COST-BENEFIT ANALYSIS

Section 9.1 Costs

Table 9.1-1 Estimated Project Costs

Section 9.2 Benefits

Table 9.2-1 Estimated Project Benefits

SECTION 10.0 ENVIRONMENTAL APPROVALS AND CONSULTATIONS Table 10.0-1 Required Permits and Licenses

ATTACHMENTS

VOLUME 1 of 3

SECTION 2.0 SITE CHARACTERIZATION

Section 2.4 Historic, Scenic, and Cultural Resources Attachment 2.4-1 Historic and Cultural Resources (separate volume – requesting NRC confidentiality)

Section 2.6 Geology and Soils

Attachment 2.6-1 Typical Geophysical Logs

Attachment 2.6-2 Locations, Total Depths, and Completion Dates of Historic Exploration Holes

<u>VOLUME 2 of 3</u>

Section 2.7 Hydrology Attachment 2.7-1 Evaluation of Pump Tests Section 2.8 Ecology Attachment 2.8-1 WGFD Wildlife Observations System Data Attachment 2.8-2 Work Plan for Wildlife 2007 Attachment 2.8-2 Work Plan for Wildlife 2007 Attachment 2.8-3 MBHFI in Wyoming Attachment 2.8-4 BLM and WDEQ Correspondence Section 2.9 Background Radiological Characteristics Attachment 2.9-1 Data Quality Assurance Documentation Attachment 2.9-2 Data Quality Control Documentation Attachment 2.9-3 Final Baseline Gamma Survey and Ra-226 Soil Maps Attachment 2.9-4 HPIC-Adjusted Gamma Datasets (Electronic Dataset Only) Section 7.2 Radiological Effects

Attachment 7.2-1 MILDOS-AREA Modeling Results

Lost Creek Project NRC Technical Report October 2007

xviii

PLATES

VOLUME 1 of 3

SECTION 2.0 SITE CHARACTERIZATION

Section 2.6 Geology and Soils

Plate 2.6-1a Geologic Cross Section A-A'

Plate 2.6-1b Geologic Cross Section B-C

Plate 2.6-1c Geologic Cross Section C-D

Plate 2.6-1d Geologic Cross Section D-E

Plate 2.6-1e Geologic Cross Sections F-F, G-G, and H-H

Plate 2.6-2a Lost Creek Shale Isopach Map

Plate 2.6-2b HJ Sand Isopach Map

Plate 2.6-2c Sagebrush Shale Isopach Map

Plate 2.6-2d UKM Sand Isopach Map

Plate 2.6-3 Soil Survey Mapping Units

VOLUME 2 of 3.

SECTION 3.0 DESCRIPTION OF THE PROPOSED FACILITY

Section 3.1 ISR Process and Equipment

Plate 3.1-1 Plant Site Plan

LIST OF ABBREVIATIONS AND ACRONYMS

$[UO_2(CO3)_3]^{-4}$ $[UO_2(CO3)_2]^{-2}$	uranyl tricarbonate ion uranyl dicarbonate ion		
°F	degrees Fahrenheit		
µCi/mL	microCuries per milliliter		
μg	microgram		
μg/L	micrograms per liter		
μg/m3	micrograms per cubic meter		
µmhos/cm	micromhos per centimeter		
µR/hr	microRoentgens per hour		
ACEC	Area of Critical Environmental Concern		
ALARA	As Low As Reasonably Achievable		
ANSI	American National Standards Institute		
ARSO	Alternate Radiation Safety Officer		
ASME	American Society of Mining Engineers		
ASTM	American Society for Testing and Materials		
ASQC	American Society for Quality Control		
AUM	animal unit months		
Basin	Great Divide Basin		
BLM	Bureau of Land Management		
BMP	Best Management Practice		
BPT	Best Practicable Technology		
CaCO ₃	calcium carbonate		
CFR	Code of Federal Regulations		
CO	carbon monoxide		
Conoco	Conoco, Inc.		
CR	County Road		
Cs-137	cesium-137		
ĊSU	Colorado State University		
ĈV	curriculum vitaes		
DAC	derived air concentration		
dBA	A-weighted decibels		
DDE	Deep Dose Equivalent		
DOE	Department of Energy		
DOT	Department of Transportation		
dpm	disintegrations per minute		
DQO	Data Quality Objectives		
Eh	oxidation-reduction potential		
EHS	Environment, Health, and Safety		
EHSMS	Environment, Health, and Safety Management System		
ELI	Energy Laboratories Incorporated		
EMT	Emergency Medical Technician		
EPA	Environmental Protection Agency		
ER	Environmental Report		

ft amsl	feet above mean sea level
ft bgs	feet below ground surface
ft/d	feet per day
ft/ft	feet per foot
ft/mi	feet per mile
ft/s	feet per second
ft^2/d	square feet per day
FTE	full-time equivalent
FSER	final safety evaluation report
FWS	Fish and Wildlife Service
g	gravity
g/L	grams per liter
GIS	Geographic Information System
gpd/ft	gallons per day per foot
gpm	gallons per minute
GPS	Global Positioning System
GSP	Gross State Product
HDPE	high-density polyethylene
HMA	Herd Management Area
HPGe	High-Purity Germaniun
HPIC	High-Pressure Ionization Chamber
HPRCC	High Plains Regional Climate Center
ICRP	International Commission on Radiological Protection
IEC	International Electrotechnical Institute
IR	Isolated Resource
ISO	International Organization for Standardization
ISR	In Situ Recovery
JCR	Job Completion Report
km	kilometers
lb/mi ³	pounds per cubic mile
LC	Lost Creek
LC ISR, LLC	Lost Creek ISR, LLC
LLD	lower level detection
LLRWDF	low-level radioactive waste disposal facility
LQD	Land Quality Division
LS	Lost Soldier
LSA	Low Specific Activity
m ²	square meters
m/s	meters per second
man-Sv	man-Sievert
mSv	milliSievert
MARSSIM	Multi-Agency Radiation Survey and Site Investigation
	Manual
	Ivialiual

MBHFI	Migratory Birds of High Federal Interest
MCL	Maximum Contaminant Level
mg/L	milligrams per liter
MiniVol	Mini Volumetric
MIT	mechanical integrity test
mph	miles per hour
mrem/yr	millirem per year
MSHA	Mine Safety and Health Administration
Na ₂ S	sodium sulfide
NAAQS	National Ambient Air Quality Standards
NaI	sodium iodide
NARM	Naturally occurring and/or Accelerator-produced
	Radioactive Material
NEPA	National Environmental Protection Act
NFU, LLC	New Frontiers Uranium, LLC
NIRMA	Nuclear Information and Records Management Association
NIST	National Institute of Standards and Technology
NO ₂	nitrogen dioxide
NQA	National Quality Assurance
NRC	Nuclear Regulatory Commission
NRCS	Natural Resources Conservation Service
NRHP	National Register of Historic Places
NSS	Native Species Status
NVLAP	National Voluntary Laboratory Accreditation Program
NWIS	National Water Information System
NWS	National Weather Service
O ₃	ozone
OHV	off-highway vehicle
Pb-210	lead-210
PC	personal computer
pCi/L	picoCuries per liter
Permit Area	Lost Creek Permit Area
person-rem/yr	person-rem per year
PFN	Prompt Fission Neutron
PILT	Payments in Lieu of Taxes
PM_{10}	particulate matter less than ten micrometers
PPE	personal protective equipment
ppm	parts per million
Program	Contamination Control Program
Project	Lost Creek Project
PSD	Prevention of Significant Deterioration
psi	pounds per square inch
psig	pound-force per square inch gauge

DUC			
PVC	polyvinyl chloride		
PWMTF	Permanent Wyoming Mineral Trust Fund		
QA	quality assurance		
QAPP	Quality Assurance Project Plan		
QC	quality control		
Ra-226	radium-226		
Ra-228	radium-228		
rad/d	rad per day		
rem	röntgen (roentgen) equivalent in man		
RMP	Resource Management Plan		
Rn-222	radon-222		
RO	reverse osmosis		
RSD	Radiation Safety Department		
RSO	Radiation Safety Officer		
RV	recreational vehicle		
RWP	Radiation Work Permit		
SAR	sodium adsorption ratio		
SCS	Soil Conservation Service		
SDR	standard dimension ratio		
SDWS	Secondary Drinking Water Standard		
SEM	scanning electron microprobe		
SER	Safety Evaluation Report		
SERP	Safety and Environmental Review Panel		
SHPO	State Historic Preservation Office		
SMU	soil mapping unit		
SO ₂	sulfur dioxide		
SOP	standard operating procedure		
SSC	structure, system, or component		
SWEDA	Sweetwater Economic Development Association		
TAC	Technical Assignment Control		
T&E	threatened and endangered		
TDS	total dissolved solids		
TEDE			
TER	Total Effective Dose Equivalent Technical Evaluation Report		
Texasgulf, Inc.	Texasgulf		
Th-230	thorium-230		
TR			
	Technical Report uranium oxide		
U ₃ O ₈ UBC			
	Uniform Building Code		
UCL	Upper Control Limit		
UIC	Underground Injection Control		
U-nat	natural uranium		
Ur-E	Ur-Energy USA Inc.		

URPA	Ur-E Project Air		
US	United States		
USGS	United States Geological Survey		
VP ·	Vice President		
VRM	Visual Resource Management		
WAAQS	Wyoming Ambient Air Quality Standard		
WDEQ	Wyoming Department of Environmental Quality		
WGFD	Wyoming Game and Fish Department		
WHDP	Wyoming Housing Database Partnership		
WOS	Wildlife Observation System		
WQD	Water Quality Division		
WRDS	Water Resources Data System		
WS	Wyoming Statute		
WSA	Wilderness Study Area		
WSEO	Wyoming State Engineer's Office		
WYDOT	Wyoming Department of Transportation		
WYPDES	Wyoming Pollution Discharge Permit		
	. –		

TABLE OF CONTENTS

2.7 Hydrology		
2.7.1	Surface Water	
2.7.1.1	Drainage Characteristics	
2.7.1.2	Surface Water Quality	
2.7.2	Groundwater Occurrence	
2.7.2.1	Regional Hydrogeology	
2.7.2.2		
2.7.3	Groundwater Quality	
2.7.3.1	Regional Groundwater Quality	
2.7.3.2	Site Groundwater Quality	
2.7.4	Hydrologic Conceptual Model	
2.7.4.1	Regional Groundwater Conceptual Model	
2.7.4.2	Site Groundwater Conceptual Model	

LIST OF FIGURES

Figure 2.7-1 Surface Drainage Map for the Lost Creek Permit Area

Figure 2.7-2 Longitudinal Profile along Battle Spring Draw from the Northern Boundary

Figure 2.7-3 Photo of Crooked Well Reservoir Taken During Spring Snowmelt Runoff Looking West.

Figure 2.7-4 Storm Water Sampler Installed to Collect a One-Liter Sample of Snowmelt or Storm Surface Runoff

Figure 2.7-5 Locations of Storm Water and Snowmelt Samplers

Figure 2.7-6 Potentiometric Surface, Wasatch/Battle Spring Aquifers, Great Divide Basin (After Welder and McGreevey, 1966)

Figure 2.7-7 Regional Hydrostratigraphic Units of Interest, Great Divide Basin

Figure 2.7-8 Potentiometric Surface, Tertiary Aquifer System, Great Divide Basin (After Naftz, 1966)

Figure 2.7-9 Location Map, Lost Creek Monitor Wells

Figure 2.7-10 Site Hydrostratigraphic Units

Figure 2.7-11a Potentiometric Surface, HJ Production Zone, June 2007

Figure 2.7-11b Potentiometric Surface, HJ Production Zone, August 1982 and October 2006

Figure 2.7-11c Potentiometric Surface, Overlying Aquifer (LFG), August 1982 and October 2006

Figure 2.7-11d Potentiometric Surface, Underlying Aquifer (UKM), August 1982 and October 2006

Figure 2.7-12 Location of Well Groups Used to Evaluate Vertical Hydraulic Gradients

Figure 2.7-13 Location of Pump Tests Conducted in 1982 and 2006

Figure 2.7-14 Location of Pump Test and Monitor Wells, 2006

Figure 2.7-15 Drawdown in the HJ Aquifer at the End of the LC19M Pump Test

Figure 2.7-16 Potentiometric Surface in the HJ Aquifer at the End of the LC19M Pump Test

Figure 2.7-17 Spatial Distribution of Aquifer Transmissivity

Figure 2.7-18 Location of Historic Site Monitor Wells

Lost Creek Project NRC Technical Report

October 2007

Figure 2.7-19 Location of Site Baseline Monitor Wells

Figure 2.7-20a Distribution of TDS, August 1982

Figure 2.7-20b Distribution of Radium-226, August 1982

Figure 2.7-20c Distribution of Uranium, August 1982

Figure 2.7-21a Distribution of Average TDS-September 2006 to May 2007

Figure 2.7-21b Distribution of Average Sulfate-September 2006 to May 2007

Figure 2.7-22a Piper Diagram-Average Water Quality at Individual Monitor Wells

Figure 2.7-22b Piper Diagram-Average Water Quality in Aquifers of Interest

Figure 2.7-23a Distribution of Average Uranium-September 2006 to May 2007

Figure 2.7-23b Distribution of Average Radium 226+228-September 2006 to May 2007

LIST OF TABLES

 Table 2.7-1 Peak Flow Regression Equations

 Table 2.7-2 Calculated Peak Flows for Battle Spring Draw

Table 2.7-3 Historic Water Quality Results for Battle Spring from the Sweetwater Mill Permit Application

Table 2.7-4 Water Quality Results for Seven Storm Water/Spring Snowmelt Samples Collected on 17 April 2007

Table 2.7-5 Monitor Well Data

Table 2.7-6 Water Level Data

 Table 2.7-7 Horizontal Hydraulic Gradients

Table 2.7-8 Vertical Hydraulic Gradients

Table 2.7-9 1982 and 2006 Pump Test Results

Table 2.7-10 2007 LC19M Long-Term Pump Test Monitor Wells

Table 2.7-11 2007 LC19M Pump Test Results

Table 2.7-12 Baseline Water Quality Monitoring Parameters

Table 2.7-13 Analytical Results of Baseline Monitoring

Table 2.7-14 Distribution of Samples Exceeding EPA MCL for Radium-226+228

ATTACHMENTS

Attachment 2.7-1 Evaluation of Pump Tests

2.7 Hydrology

NUREG-1569 Section 2.7 states that, "characterization of the hydrology at in situ leach uranium extraction facilities must be sufficient to establish the potential effects of in situ operations on the adjacent surface-water and groundwater resources and the potential effects of surface-water flooding on the in situ leach facility" (NRC, 2003). To meet these requirements, this section addresses surface water features (Section 2.7.1), groundwater characteristics (Section 2.7.2), surface water and groundwater quality (Section 2.7.3), water use information (Section 2.7.4), and the overall hydrologic conceptual model (Section 2.7.5) based on the geology and hydrology of the Permit Area. Water use, which is limited in the vicinity of the Permit Area, is addressed in Section 2.2.2.

2.7.1 Surface Water

2.7.1.1 Drainage Characteristics

The Permit Area is located in the Great Divide Basin, a topographically closed system which drains internally, due to a divergence in the Continental Divide. Most of the surface water is runoff from precipitation or snowmelt, and it quickly infiltrates, recharging shallow groundwater, evaporates, or is consumed by plants through evapotranspiration. Alluvial deposits, if any, along drainages are not extensive, and the shallow aquifer, Battle Spring, underlying the Permit Area is unconfined, unconsolidated, and poorly stratified. The shallow water table is typically 80 to 150 feet below ground surface (ft bgs).

There are no perennial or intermittent streams within the Permit Area or on adjacent lands. The principal drainage within the Permit Area is Battle Spring Draw, which is dry for the majority of the year (Figure 2.7-1). Battle Spring Draw drains the northeastern 14 percent of the Permit Area; a sub-basin drains the central 47 percent; and an unnamed wash drains the southwestern 39 percent. The central basin is considered a sub-basin because its headwaters begin approximately one mile north of the Permit boundary and end five miles southwest of the Permit boundary near the Kennecott Sweetwater Mill (NRC Source Material License No. SUA-1350, WDEQ Permit 481). The watersheds in the Project Area drain into the Battle Spring Flat, approximately nine miles southwest of the Permit Area. Much of the water conveyed through the ephemeral channels does not reach Battle Spring Flat. Instead, it infiltrates into the alluvium and recharges the Battle Spring aquifer.

The average slope of the Battle Spring Draw (northeastern) drainage in the Permit Area is 1.2 percent, the central drainage has an average slope of 1.5 percent, and the southwestern drainage has an average slope of 1.7 percent. The sinuosity (length of the channel divided by the length of valley) was calculated for the major channel in each basin. The sinuosity values for the northeastern Battle Spring Draw, central, and southwestern basins are 1.02, 1.15, and 1.16, respectively. The drainage densities range from 3.3 miles per square mile in the southwestern basin to 4.6 miles per square mile and 4.5 miles per square mile in the central and northeastern basins, respectively. A longitudinal profile of the northeastern Battle Spring Draw within the Permit Area is shown in Figure 2.7-2.

The existing drainages are incised, wide u-shaped and trapezoidal cross-sectional morphologies. Vertical and slumping banks exist where active erosion is occurring. The channels near the downstream boundary of the Permit Area are incised three to six feet and are ten to 15 feet wide. The channel side-slopes range in slope from 1:1 to approximately 2.5:1. The bed material in the larger draws is sandy textured and non-cohesive. Draws around the Permit Area are typically vegetated with sagebrush.

Annual runoff in the Permit Area is very low due to the high infiltration capacity and low annual precipitation. The channels are dry for the majority of the year. Drainages in the Permit Area are naturally ephemeral and primarily flow during spring snowmelt as saturated overland flow when soil moisture is at a maximum. The quantity of spring runoff is variable, depending on the amount of winter snowfall accumulation. Peak runoff from high intensity rain events can be significant; but surface flow is generally short-lived. Storm-water runoff after high intensity rain events is very rare because surface water infiltrates very rapidly or evaporates. Some intermittent and localized flow can occur near a small number of springs; but no surface runoff has been observed from springs within the Permit Area.

Runoff data are limited for the ephemeral and intermittent streams in the Great Divide Basin. There are two USGS streamflow gaging stations within 40 miles of the Permit Area; but they are on perennial streams and are not representative of drainages in the Permit Area. On April 6, 1976, the USGS measured the instantaneous discharge of Lost Soldier Creek, approximately 14.5 miles northeast of the Permit Area. The measurement of 0.2 cubic feet per second was taken during spring runoff so the source of water was predominantly snowmelt (USGS, 2006).

A method for estimating peak stream discharge in ungaged watersheds in response to storms with recurrence intervals from two to 100 years has been developed by Miller (2003). Miller analyzed streamflow data for hundreds of gaged watersheds in Wyoming ranging from one to 1,200 square miles, and developed regional regression relationships based upon basin characteristics (drainage area, geographic factors, elevation, etc.). The most significant independent variables in Sweetwater County were drainage area and latitude. The equations used for each calculation as well as the associated percent errors are summarized in <u>Table 2.7-1</u>. <u>Table 2.7-2</u> shows the calculated peak discharges for Battle Spring Draw (the major drainage in the project area) at the exit boundary of the Project area. Due to the incised nature and the width of the channels, flows from the 100-year flood would likely remain mostly within the channels.

One small (less than one-quarter acre) detention pond exists in the Permit Area, which acts as an off-channel storage area for stock watering. This is Crooked Well Reservoir which is shown in <u>Figure 2.7-3</u>. This pond is dry for the majority of the year and typically fills from spring snowmelt during the months of March and April. Wetland vegetation has not been observed around this impoundment. This detention pond is not included in the active surface water rights in the area.

2.7.1.2 Surface Water Quality

Under the WDEQ Water Quality Division (WQD) Classification, Battle Spring Draw is listed as a Class 3B water body. Beneficial uses for Class 3B waters can include recreation, wildlife, "other aquatic life," agriculture, industry, and scenic value, but do not include drinking water, game fish, non-game fish, and fish consumption.

Background historic surface water quality within the study area was characterized using water quality data from 1974 and 1975 that were collected as part of the environmental report for the Sweetwater Uranium permit application (Shephard Miller Inc., 1994). Samples were collected at Battle Spring, which is seven miles southwest of the Permit Area. The historic dataset is small, and more representative of groundwater quality than surface water quality so are not directly comparable to expected surface water conditions within the Permit Area. The water-quality data for the historic sampling at Battle Spring are summarized in <u>Table 2.7-3</u>. Historic sampling of Battle Spring in July 1974 showed that pH was highly alkaline at 9.5. Uranium concentrations ranged from 0.006 to 0.95 milligrams per liter (mg/L).

In April 2006, storm-water samplers were installed at 12 locations in the Permit Area (Figures 2.7-4 and 2.7-5). In April 2007, an additional sampler was added to represent an area in the southeastern corner that was added to the Permit Area in the summer of 2006. Three samplers were installed to capture runoff as it enters the Permit Area from the upstream side, and the others capture runoff within the Permit Area or at the downstream boundary. The water samples were collected to characterize the quality of ephemeral surface runoff. The sampling locations were selected based on their topographic potential to concentrate ephemeral surface flow.

Seven samplers collected full, one-liter samples from snowmelt runoff in March and April 2007. These samples were collected on April 17, 2007. The water quality data for these seven samples are summarized in <u>Table 2.7-4</u>.

Ionic strength was low in all samples, probably due to the majority of the sample being snowmelt water that did not come into contact with the underlying soil. For all samples, the dissolved and total concentrations of trace metals were near or below the detection limit. Radiometric parameters, including uranium, lead-210, polonium-210, and thorium-230, were generally below detection with the exception of dissolved uranium, which was detected at very low concentrations (0.0003 to 0.0004 mg/L) in two samples, suspended uranium (0.0003 to 0.0009 mg/L) in two samples, and total uranium (0.0003 to 0.0009 mg/L) in four samples. Total radium-226 was detected at a low concentration (0.5 picoCuries per liter [pCi/L]) in one sample. This was the LC2 location in the center of the Permit Area in one of the larger channels. Gross alpha was also detected in small amounts (1.1 to 3.6 pCi/L) in six samples. The highest concentration of 3.6 pCi/L was again from the LC2 location. The pH of the sites was slightly acidic to neutral ranging from 6.39 to 7.12. Conductivity was low with less than 100 microSiemens per centimeter for all samples.

In general, the quality of water was very good for all samples. The radiometric parameters detected in the LC2 correlate well with the radiological scans of the Permit Area. This central area has the highest radioactivity, as indicated by the results from the radiological surveys. Still, the levels are well below all Wyoming agricultural and drinking water standards.

2.7.2 Groundwater Occurrence

This section describes the regional and local groundwater hydrology including hydrostratigraphy, groundwater flow patterns, hydraulic gradient, and aquifer parameters. The discussion is based on information from investigations performed within the Great Divide Basin, data presented in previous applications/reports for the Permit Area, and the geologic information presented in Section 2.6. Regional and site baseline groundwater quality conditions are discussed in Sections 2.7.3, and the conceptual site hydrologic model is summarized in Section 2.7.4 of this application.

2.7.2.1 Regional Hydrogeology

The Project is located within the northeastern portion of the Great Divide Basin. The basin is topographically closed with all surface water drainage being to the interior of the basin (**Figure 2.7-1**). Available data suggest that groundwater flow within the basin is predominately toward the interior of the basin (Collentine, 1981; Welder, 1966; and

Mason, 2005). A generalized potentiometric surface map of the Battle Spring/Wasatch Formations, prepared by Welder and McGreevey (1966), indicates groundwater movement toward the center of the basin (Figure 2.7-6). Fisk (1967) suggests that aquifers within the Great Divide Basin may be in communication with aquifers in the Washakie Basin to the south and that groundwater may potentially move across the Wamsutter Arch between the basins.

The topographically elevated area known as the Green Mountains (Townships 26 and 27 North, between Ranges 90 to 94 West) was identified by Fisk as a major recharge area to aquifers within the northeastern portion of the Great Divide Basin (1967). The Rawlins Uplift, Rock Springs Uplift, and Creston Junction, located east, southwest, and southeast, respectively, from the Permit Area, were also identified as major recharge areas for aquifers within the Great Divide Basin (Fisk, 1967). The main discharge area for the Battle Spring/Wasatch aquifer system is to a series of lakes, springs and playa lakes beds near the center of the basin. Groundwater potentiometric elevations within the Tertiary aquifer system in the central portion of the basin are generally close to the land surface.

The Battle Spring Formation crops out over most of the northeastern portion of the Great Divide Basin, including much of the Permit Area. The Battle Spring Formation is considered part of the Tertiary aquifer system by Collentine et al. (1981). The Tertiary aquifer system is identified as "the most important and most extensively distributed and accessible groundwater source in the study area" (Collentine, 1981). This aquifer system includes the laterally equivalent Wasatch Formation (to the west and south) and the underlying Fort Union and Lance Formations. The base of the Tertiary aquifer system is marked by the occurrence of the Lewis Shale. The Lewis Shale is generally considered a regional aquitard, although this unit does produce limited amounts of water from sandstone lenses at various locations within the Great Divide Basin and to the south in the Washakie Basin.

Shallower aquifer systems that can be significant water supply aquifers within the Great Divide Basin include the Quaternary and Upper Tertiary aquifer systems. However, as previously stated, the Battle Spring Formation of the Tertiary aquifer system crops out over most of the northeast part of the basin; and the Quaternary and Upper Tertiary aquifer systems are absent or minimal in extent. The shallower aquifer systems are only important sources of groundwater in localized areas, typically along the margin of the basin where the Battle Spring Formation is absent. Aquifer systems beneath the Tertiary include the Mesaverde, Frontier, Cloverly, Sundance-Nugget and Paleozoic aquifer systems are only important sources of water in the vicinity of outcrops near structural highs such as the Rawlins Uplift.

For purposes of this application, only hydrogeologic units younger than and including the Lewis Shale (Upper Cretaceous age) are described, with respect to general hydrologic properties and potential for groundwater supply. The Lewis Shale is an aquitard and is considered the base of the hydrogeologic sequence of interest within the Great Divide Basin. Units deeper than the Lewis Shale are generally too deep to economically develop for water supply or have elevated total dissolved solid (TDS) concentration that renders them unusable for human consumption. Exceptions to this can be found along the very eastern edge of the basin, tens of miles from the Permit Area, where some Lower Cretaceous and older units provide relatively good quality water from shallow depths. Hydrologic units of interest within the northeast Great Divide Basin are shown on the stratigraphic column in Figure 2.7-7 and further described below, from deepest to shallowest:

- Lewis Shale (aquitard between Tertiary and Mesaverde aquifer systems);
- Fox Hills Formation
- Lance Formation (Tertiary aquifer system);
- Fort Union Formation (Tertiary aquifer system);
- Battle Spring Formation-Wasatch Formation (Tertiary aquifer system);
- Undifferentiated Tertiary Formations (Upper Tertiary aquifer system, including Bridger, Uinta, Bishop Conglomerate, Browns Park, and South Pass); and
- Undifferentiated Quaternary Deposits (Quaternary aquifer system).

Discussion of the regional characteristics for each of these hydrostratigraphic units is provided below.

Lewis Shale

The Lewis Shale underlies the Fox Hills Formation and is generally considered an aquitard in the Great Divide Basin. This unit is described by Welder and McGreevey (1966) as light to dark gray, carbonaceous shale with beds of siltstone and very finegrained sandstone. The Lewis Shale is up to 2,700 feet thick, generally increasing in thickness toward the east side of the basin. In the Permit Area, the Lewis Shale is 1,200 feet thick. Small quantities of water may be available from the thin sandstone beds within this unit near the margins of the basin. The Lewis Shale acts as the confining unit between the Tertiary and Mesaverde aquifer systems.

Fox Hills Formation

Fox Hills Formation overlies the Lewis Shale and consists of very fine-grained sandstone, siltstone and coal beds. It is not considered to be an important aquifer in the Permit Area.

Lance Formation

Overlying the Fox Hills Formation is the Lance Formation, consisting, predominately, of very fine-to fine-grained lenticular, clayey, calcareous sandstone. Shale, coal, and lignite beds are present within the formation, which reaches a maximum thickness of approximately 4,500 feet (Welder, 1966). In the Permit Area, the Lance Formation is 2,950 feet thick.

Collentine and others (1981) include the Lance Formation (Aquifer) as the lower-most aquifer within the Tertiary aquifer system. However, the Lance Aquifer is included as part of the Mesaverde aquifer system by Freethey and Cordy (1991). Several stock wells, located along the eastern outcrop area of the basin, are completed in the Lance Aquifer. The stock wells have estimated yields of five to 30 gpm. Hydraulic conductivity for the Mesaverde aquifer system reported by Freethey and Cordy (1991) (which, by the authors' designation, includes the Fox Hills Sandstone, Lewis Shale, and Mesaverde Group, in addition to the Lance Aquifer) is reported to range from 0.0003 to 2.2 feet per day (ft/d). Because of the limited number of wells completed within the Lance Aquifer in the Great Divide Basin, there are insufficient data to develop representative potentiometric surface maps for this hydrologic unit. However the potentiometric surface is most likely similar in orientation to that seen in the overlying Fort Union and Battle Spring/Wasatch aquifers, with inferred groundwater movement generally toward the center of the basin. No regionally extensive aquitards between the Fort Union and Lance Formation were identified or reported in the hydrologic studies, investigations, and reports reviewed for this permit application.

Fort Union Formation

The Paleocene-age Fort Union Formation is between the Lance Formation and the overlying Wasatch and Battle Spring Formations, reaching a maximum thickness of approximately 6,000 feet within the Great Divide/Washakie Basin area. In the Permit Area, it is 4,650 feet thick. The Fort Union Formation is present at or near land surface in a band around the Rock Springs Uplift and in the northeastern corner of the Great Divide Basin (Mason, 2005). The Fort Union Formation is described as a fine- to coarse-grained sandstone with coal and carbonaceous shale. Siltstone and claystone are present in the upper part of the formation (Welder, 1966).

A potentiometric surface map prepared by Naftz (1996) that groups the Fort Union aquifer with the Battle Spring/Wasatch aquifers, shows inferred movement of groundwater toward the basin center (Figure 2.7-8).

The Fort Union aquifer is largely undeveloped and unknown as a source of groundwater supply except in areas where it occurs at shallow depths along the margins of the basin.

Well yields from the Fort Union aquifer within the Great Divide and Washakie Basins range from three to 300 gpm. Estimates of transmissivity for the Fort Union aquifer are highly variable. Ahern (1981) estimated transmissivity of less than three square feet per day (ft^2/d) for ten Fort Union Formation oil fields in the Green River Basin. Collentine and others (1981) reported transmissivity of the Fort Union aquifer as characteristically less than 325 ft^2/d from oil well data.

Water quality for the Fort Union aquifer is described in Section 2.7.3.

Battle Spring Formation- Wasatch Formation

The most important water-bearing aquifers within the Great Divide Basin are in the Wasatch Formation and the Battle Spring Formation. The Wasatch and Green River Formations grade into the Battle Spring Formation in the northeastern portion of the basin. The Battle Spring Formation is absent along the eastern margin of the Great Divide Basin near the county line between Sweetwater and Carbon Counties. The termination of the Battle Spring Formation to the east is controlled, largely, by structural features, including the Rawlins Uplift to the east and the Green Mountains to the north. A dry oil test in Section 14, Township 24 North, Range 90 West, located within a few miles of the eastern limit of the Battle Spring Formation, had a reported thickness of over 6,000 feet of fine- to coarse-grained sandstone that was interpreted by the American Stratigraphic Company as the Battle Spring Formation. Within the Permit Area, the Battle Spring/Wasatch Formations are 6,200 feet thick.

The Battle Spring Formation is described as an arkosic, fine- to coarse-grained sandstone with claystone and minor conglomerates. There are typically several water-bearing sands within the Battle Spring Formation. The Battle Spring aquifers are included in the Tertiary aquifer system, as defined by Collentine (1981).

Groundwater within the Battle Spring aquifers is typically under confined conditions, although locally unconfined conditions exist. The potentiometric surface within the Battle Spring aquifers is usually within 200 feet of the ground surface (Welder, 1966). Most wells drilled for water supply in this unit are less than 1,000 feet deep. The potentiometric surface map of Wasatch and Battle Spring aquifers (Figure 2.7-6) indicates groundwater movement toward the center of the basin (Welder, 1966). From the Permit Area, the potentiometric surface dips to the southwest at approximately 50 feet per mile (ft/mi) (a hydraulic gradient of 0.01 feet per foot [ft/ft]). The hydraulic gradient becomes steeper near the margins of the basin, where recharge to the aquifer is occurring.

Collentine and others (1981) report that wells completed in the Battle Spring aquifers typically yield 30 to 40 gpm; but that yields as high as 150 gpm are possible. Collentine and others (1981) also reported that pump tests conducted on 26 wells completed within

the Battle Spring aquifers resulted in transmissivity values ranging from 3.9 to 423 ft^2/d , although most wells were less than 67 ft^2/d . Specific capacity was less than one gallon per minute per foot for 23 of 26 wells tested.

Water quality for the Wasatch/Battle Spring aquifers is described in Section 2.7.3.

Undifferentiated Tertiary and Quaternary Sediments

Undifferentiated Tertiary and Quaternary units above the Battle Spring/Wasatch Formations can be sources of water supply; but wells in the northeastern part of the Great Divide Basin are rare and generally limited to the margins of the basin where the Battle Spring Formation is not present. Commonly, along the margins of the basin, hydrostratigraphic units younger than the Battle Spring/Wasatch have been deposited on rocks of Cretaceous age or older. Water supply wells along the margins of the basin are often completed in both the older hydrostratigraphic units and Tertiary and Quaternary sediments. Water quality within these units tends to be variable and of limited quantity.

The undifferentiated Tertiary units consist of interbedded claystone, sandstone and conglomerate with the coarser grained facies providing suitable groundwater resources where present. The undifferentiated Tertiary units are absent within the Permit Area and are not discussed further.

The undifferentiated Quaternary units consist of clay, silt, sand, gravel and conglomerates that are poorly consolidated to unconsolidated (Welder, 1966). These units represent windblown, alluvial and lake deposits. Where present, these deposits can provide acceptable yields of groundwater of relatively good quality. Thin deposits of Quaternary sediments are present within surface drainages in the Permit Area but are usually above the water table and unsaturated. Therefore, Quaternary sediments are not an important groundwater source in the vicinity of the Project and are not described further.

2.7.2.2 Site Hydrogeology

LC ISR, LLC has been collecting lithologic, water level, and pump test data as part of its ongoing evaluation of hydrologic conditions at the Project. In addition to recent data acquisition, historic data collected for Conoco (Hydro-Search, Inc., 1982) were used to support this evaluation. Drilling and installation of borings and monitor wells is ongoing to provide additional data to further refine the site hydrologic conceptual model. Water level measurements, both historic and recent, provide data to assess potentiometric surface, hydraulic gradients and inferred groundwater flow directions for the aquifers of interest at the Project. A recently completed long-term pump test (Petrotek Engineering Corporation, 2007) and several shorter-term pump tests (Hydro-Engineering, 2007), as

well as the pump tests conducted for Conoco (Hydro-Search, Inc., 1982), were used to evaluate hydrologic properties of the aquifers of interest, to assess hydraulic characteristics of the confining units, and to evaluate impacts to the hydrologic system of the Fault through the Permit Area (Section 2.6.2.2).

Figure 2.7-9 shows the monitor wells, current and historic, that were used in the site hydrologic evaluation. Table 2.7-5 provides data for those wells to the extent available.

Hydrostratigraphic Units

LC ISR, LLC has employed the following nomenclature for the hydrostratigraphic units of interest within the Project. The primary uranium production zone is identified as the HJ Horizon. The HJ Horizon is subdivided into the Upper (UHJ), Middle (MHJ) and Lower (LHJ) Sands. The HJ Horizon is bounded above and below by aerially extensive confining units identified as the Lost Creek Shale and the Sage Brush Shale, respectively. Overlying the Lost Creek Shale is the FG Horizon. The deepest sand in the FG Horizon, the Lower FG (LFG) Sand, is the overlying aquifer to the HJ Horizon. Beneath the Sage Brush Shale is the KM Horizon. The uppermost sand within the KM Horizon, designated the Upper KM (UKM) Sand, is a potential secondary production zone and also the underlying aquifer to the HJ Horizon. The No Name Shale separates the UKM and Middle KM (MKM) Sand. The MKM Sand is the underlying aquifer to the UKM Sand. The shallowest occurrence of groundwater within the Permit Area occurs within the DE Horizon, which is above the FG Horizon. Figure 2.7-10 depicts the hydrostratigraphic relationship of these units.

A brief description of each hydrostratigraphic unit follows, going from shallowest to deepest.

DE Horizon

The DE Horizon is the shallowest occurrence of groundwater within the Permit Area, although the horizon is not saturated in all portions of the Permit Area. The DE Horizon consists of a sequence of sands and discontinuous clay/shale units. In the southern part of the Permit Area, sands of the DE Horizon coalesce with sands of the FG Horizon. The top of the unit ranges from 100 to 200 ft bgs.

FG Horizon

The top of the FG Horizon occurs at depths of approximately 200 to 250 ft bgs on the north side of the Fault and 300 to 350 ft bgs on the south side of the fault within the Permit Area (Section 2.6.2.2). The FG Horizon is subdivided into the Upper (UFG), Middle (MFG) and Lower (LFG) Sands. The total thickness of the FG Horizon is

approximately 160 feet. The basal unit in the FG Horizon, the LFG Sand, ranges from 20 to 50 feet thick within the Permit Area. The LFG Sand is designated as the overlying aquifer for the HJ Horizon.

Lost Creek Shale

Underlying the FG Sands is the Lost Creek Shale. The Lost Creek Shale appears continuous across the Permit Area, ranging from five to 45 feet in thickness. Typically, this unit has a thickness of 10 to 25 feet (Figure 2.7-10). The Lost Creek Shale is the confining unit between the overlying aquifer (LFG Sand) and the HJ Horizon. The confining characteristics of the Lost Creek Shale have been demonstrated with a pump test, as described later in this application.

HJ Horizon

The HJ Horizon is the primary target for uranium production at the Lost Creek Project. For purposes of uranium ISR operations, the HJ Horizon has been subdivided into three Sands: the Upper HJ (UHJ), Middle HJ (MHJ) and the Lower (LHJ) Sand. These sands are generally composed of coarse-grained arkosic sands with thin lenticular intervals of fine sand, mudstone and siltstone. The bulk of the uranium mineralization is present in the MHJ Sand. The total thickness of the HJ Horizon ranges from 100 to 160 feet, averaging approximately 120 feet (Figure 2.7-10). The top of the HJ Horizon ranges from approximately 300 to 450 ft bgs within the Permit Area. The three sands are generally separated by thin clayey units that are not laterally extensive and, based on pump test results, do not act as confining units to prevent groundwater movement vertically between the HJ Sands. The underlying aquifer to the HJ Horizon is the UKM Sand, which is also a potential uranium production zone. Therefore, the deepest sand within the HJ Horizon, the LHJ Sand, is also designated as the overlying aquifer to the UKM Sand.

Sage Brush Shale

Beneath the HJ Horizon is the Sage Brush Shale, with the top of the shale ranging from 450 to 550 ft bgs. The Sage Brush Shale is laterally extensive and ranges from five to 75 feet in thickness (Figure 2.7-10). The Sage Brush Shale is the lower confining unit to the HJ Horizon. The confining characteristics of this unit have been demonstrated through pump tests, as described in later sections of this application.

UKM Sand

The UKM Sand is present beneath the Sage Brush Shale. The UKM Sand is the upper member of the KM Horizon and is generally a massive coarse sandstone with lenticular fine sandstone intervals. The UKM Sand is the underlying aquifer to the HJ Horizon but is also a potential production zone within the Permit Area. The UKM Sand is typically 30 to 60 feet thick but can reach to over 75 feet in thickness (Figure 2.7-10). The top of the UKM Sand is usually between 450 and 600 ft bgs within the Permit Area. The decision to proceed with a license amendment for production of the UKM Sand will depend on the results of additional delineation drilling and characterization of the lower confining unit and underlying aquifer that are described below.

No Name Shale

The No Name Shale at the base of the UKM Sand has not yet been fully characterized. The top of the unit is approximately 480 to 650 ft bgs. This unit is generally ten to 30 feet thick. This shale will be the lower confining unit to the UKM Sand. Additional drilling is being conducted and a pump test is planned for the fall of 2007 to assess the confining characteristics of this unit.

MKM Sand

The MKM Sand is the underlying aquifer to the UKM Sand. Information on the MKM Sand is limited at this time. Additional borings are being drilled to evaluate the geologic and hydrologic characteristics of this sand. A pump test is planned to assess the hydrologic relationship between the UKM and MKM Sands in the fall of 2007.

Potentiometric Surface, Groundwater Flow Direction and Hydraulic Gradient

The LC ISR, LLC hydrologic evaluation of the Project included measurement of water levels in monitor wells completed in the HJ Horizon, the overlying aquifers (DE and LFG) and the underlying aquifer (UKM) to assess the potentiometric surface, groundwater flow direction and hydraulic gradient of those units. Additional historic water level data were available from the Conoco hydrologic evaluation of the site (Hydro-Search Inc., 1982). <u>Table 2.7-6</u> lists static water level data recorded in 1982, 2006 and 2007.

The potentiometric surface for the HJ Horizon is shown on Figure 2.7-11a. The water level data were collected just prior to beginning a long-term pump test in June 2007. From the figure, it is evident that the Fault provides a significant hydraulic barrier to groundwater flow. The potentiometric surface on the north side of the Fault is 15 feet higher than on the south side, based on wells located approximately 100 feet apart on either side of the Fault (Wells HJT104 and HJMP107). During the long-term pump test, the hydraulic barrier effect of the Fault was confirmed, as described more fully in the following section on aquifer properties. Based on the potentiometric surface map, groundwater is inferred to flow to the west-southwest; generally consistent with the regional flow system. The Fault may redirect groundwater more westward than if the Fault were not present. Data from 1982 and 2006 are shown on <u>Figure 2.7-11b</u>. There is an insufficient number of data points to accurately represent the potentiometric surface for those measurement periods. However, the data illustrate the difference in water levels within the HJ Horizon across the Fault.

The horizontal hydraulic gradient for the HJ Sand, determined from water level data from 1982, 2006 and 2007, ranged from 0.0034 to 0.0056 ft/ft (18.0 to 29.6 ft/mi). <u>Table 2.7-</u> 7 summarizes the hydraulic gradients determined from the water level data.

Water levels collected from the overlying aquifer (LFG Sand) in 1982 and 2006 indicate a similar southwesterly groundwater flow direction as the HJ aquifer, although the data are sparse (Figure 2.7-11c). Horizontal hydraulic gradients for the LFG aquifer range from 0.0046 to 0.0058 ft/ft (24.3 to 30.6 ft/mi).

Figure 2.7-11d shows the potentiometric surface of the UKM Sand for data collected in 1982 and 2006. The difference in hydraulic heads across the Fault does not appear as pronounced for the UKM Sand as for the other shallower sands. Horizontal hydraulic gradients calculated for the UKM Sand from available water level data ranged from 0.0053 to 0.0063 ft/ft (28.0 to 33.3 ft/mi) (Table 2.7-7). While data in the UKM Sand are limited, it is presumed that the general flow direction is consistent with the HJ Horizon (e.g., to the southwest).

The horizontal hydraulic gradient calculated from only two wells completed in the DE Sand on the south side of the Fault was 0.0064 ft/ft (33.0 ft/mi) (Table 2.7-7).

Although several monitor wells were completed in the overlying (LFG) and underlying (UKM) aquifers, the hydraulic barrier effect of the Fault limits the number of data points for each aquifer on either side of the Fault. This limits the number of available monitor well locations, at this time, and makes determination of flow direction more complicated. However, the similarity in hydraulic gradients between the HJ aquifer and the LFG and UKM aquifers suggests that, although there is a significant difference in potentiometric heads, the orientation of the potentiometric surface is probably similar. Drilling is currently being conducted that will provide additional potentiometric surface data for those units as well as the MKM aquifer that is the underlying aquifer to the UKM Sand.

Vertical hydraulic gradients were determined by measuring water levels in closely grouped wells completed in different hydrostratigraphic units. Figure 2.7-12 shows the location of the well groups used for the assessment of vertical hydraulic gradients. Table 2.7-8 summarizes the calculated vertical gradients between the DE, LFG, HJ and UKM aquifers. Vertical hydraulic gradients range from 0.05 to 0.34 ft/ft between the LFG, HJ and UKM aquifers and consistently indicate decreasing hydraulic head with depth. The

vertical gradient between the DE and LFG aquifers is minimal in the two places measured. This is consistent with earlier observations that the DE and LFG Sands coalesce in places within the Permit Area. Of the six well groups evaluated, the only place where a downward potential is not evident is between the DE and LFG aquifers in the southwest portion of the Permit Area. The vertical gradients indicate the potential for groundwater flow is downward. A downward potential is indicative of an area of recharge, as opposed to an upward potential that is normally indicative of an area of groundwater discharge. A downward gradient is consistent with the structural and stratigraphic location of the Project with regard to Great Divide Basin.

Aquifer Properties

Aquifer properties for the Battle Spring aquifers within the Permit Area have been estimated from historic and recent pump tests. Hydro-Search Inc. performed a hydrologic evaluation in 1982 to determine the feasibility of in situ production of the Conoco uranium orebody at Lost Creek. Hydro-Search Inc conducted two 25-hour tests within the HJ Horizon. Both pump tests were conducted at a rate of 30 gpm and on the south side of the Fault. The locations of the pumping wells and monitor wells are shown in **Figure 2.7-13**. The results of the tests were variable, with one test indicating a transmissivity of approximately 95 ft²/d (700 gallons per day per foot [gpd/ft]) and the other indicating a value of 270 ft²/d (2,000 gpd/ft). The storativity calculated from the first test averaged 5 x 10⁻⁴. There was no reported response in the HJ aquifer north of the Fault. Monitor wells in the overlying (LFG) and underlying (UKM) aquifers did not show any effects from the pump test as reported by Hydro-Search Inc. (1982). Results of the pump tests are summarized in **Table 2.7-9**.

2006 Pump Tests

Hydro-Engineering, Inc. (2007) conducted several short-term single well pump tests and three longer multi-well pump tests in October 2006. The single well tests ranged from 30 minutes to five hours in duration at rates from 0.67 to 14 gpm. The long-term tests were from 20 to 45 hours long at rates of 15 to 19 gpm. Each of the long-term tests were conducted in HJ well completions. The locations of the wells included in the pump test program are shown on <u>Figure 2.7-13</u>. Results of the pump test are summarized in <u>Table 2.7-9</u>.

The range of transmissivity calculated by Hydro-Engineering for the HJ aquifer was from 44 to 400 ft²/d (330 to 3,000 gpd/ft). None of the HJ tests indicated significant communication with the overlying or underlying aquifers. There was also no indication of hydraulic communication across the fault in any of the pump tests. Hydro-Engineering concluded that the Fault acts as a hydraulic barrier (2007).

The Hydro-Engineering data suggest that the transmissivity of the LFG aquifer, calculated from four tested wells, was generally much lower than the values estimated for the HJ aquifer. The range of transmissivity for the LFG aquifer was 4.4 to 40 ft²/d (33 to 303 gpd/ft). Transmissivity for the UKM aquifer, estimated from single well tests at four wells, was similar to but lower than the HJ aquifer, ranging from 26 to 115 ft²/d (195 to 858 gpd/ft). Three DE well completions were tested, with resulting transmissivity of 1.3 to 130 ft²/d (10 to 1,000 gpd/ft).

2007 Pump Test

In June to July 2007, a long-term pump test was conducted in the HJ aquifer at Well LC19M (Petrotek Engineering Corporation, 2007). LC19M had been previously tested by Hydro-Engineering (2007) and is located on the north side of the Fault. The objectives of the test were to further develop aquifer characteristics of the HJ Horizon, to evaluate the hydraulic impacts of the Fault, and to demonstrate confinement of the production zone (HJ Horizon) aquifer. HJ monitor wells, on both sides of the Fault and within distances likely to be impacted by the pump test, were included as observation wells. Observation wells in the overlying (LFG) and underlying (UKM) aquifers near the pumping well and across the Fault were also monitored during the test. Table 2.7-10 lists the data for monitor wells included in the pump test. Figure 2.7-14 includes the locations of the pumping well and all observation wells included in the test.

Pre-pumping monitoring was performed several days in advance of the test to establish baseline conditions and to evaluate barometric effects. A step-rate test was performed on June 23, 2007 to determine a suitable pumping rate for the long-term test. The long-term test was started at 17:20 hours on June 27, 2007 and was terminated on July 3, 2007 at 10:51 hours. The total duration of the test was 5.7 days (8,251 minutes). The average pumping rate during the test was 42.9 gpm. Maximum drawdown in the pumping well was 93.3 feet. Monitoring was continued after pump shut-in to record recovery.

The transmissivity calculated from five wells completed in the HJ aquifer on the north side of the Fault (including the pumping well) were similar, ranging from 30.0 to 75.5 ft^2/d and averaging 68.3 ft^2/d . The average hydraulic conductivity calculated for the five wells, assuming an aquifer thickness of 120 feet, was 0.57 ft/d. Storativity calculated from those wells ranged from 6.6 x 10⁻⁵ to 1.5 x 10⁻⁴ and averaged 1.1 x 10⁻⁴. <u>Table 2.7-11</u> summarizes the analyses of the pump test. Drawdown at the end of the test in the HJ aquifer is shown on <u>Figure 2.7-15</u>. <u>Figure 2.7-16</u> shows the water levels in the HJ monitor wells at the end of the test.

A pair of observation wells was placed on either side of the Fault, within 100 feet of each other. Well HJT104, located on the north side of the Fault, had a maximum drawdown of 40.5 feet at the end of the test. Well HJMP107 (south of the Fault) in the HJ Horizon had

a net decrease of 1.4 feet from the beginning of the test to the end of pumping. At least a portion of that change is attributable to a declining trend in water levels that was observed in all monitor wells prior to the start of the test. The reason for the background trend observed has not been identified; however, it might be a result of offset pumping (e.g., LC ISR, LLC's first two water supply wells that are screened over multiple sands).

At the beginning of the test, the water level at HJT104 was at 6,770.68 feet above mean sea level (ft amsl) and the water level at HJMP107 was at 6,754.85 ft amsl, a head difference of almost 15 feet with the higher head north of the Fault. At the end of the pump test, the water levels for HJT104 and HJMP107 were 6,730.14 ft amsl and 6753.47 ft amsl, respectively. The drawdown observed in HJT104 (immediately north of the Fault) was greater than 40 feet, and the water level difference between HJT104 and HJMP107 (across the Fault from each other) was 23 feet with the higher head south of the Fault. Minor responses to pumping were observed across the Fault (e.g., approximately 0.3 to 0.7 feet of drawdown related to pumping in HJMP107 and other wells south of the Fault). Based on the results, the Fault, while not entirely sealing, significantly impedes groundwater flow, even under considerable hydraulic stress.

The response of the overlying and underlying aquifers during the pump tests was small (e.g., on the order of 0.2 to 0.5 feet); but the water level responses did correspond to the start and stop of pumping from LCM19 in the HJ Horizon. The underlying/overlying responses appear to be relatively consistent, regardless of distance from the pumping well, the hydrostratigraphic interval monitored, or the location relative to the Fault. These water level changes suggest potential impacts from off-site pumping or background trends that, because of distance from the monitor wells, are manifested at multiple locations at the same or similar times. As previously stated, a declining trend in water level elevations was observed prior to the start of the test. Most of the wells showed an initial inverted response (increase in water level) at the start of the test and then resumed a gradual downward trend during the test. This phenomenon was also observed and noted by Hydro-Engineering during the 2006 pump tests. It is possible that some of the response could be caused by: 1) pumping in the drilling water well (LC-1) which is completed in both the DE and FG Horizons; 2) communication across multiple sands due to the scissors nature of the Fault distant from the pumping well location; or 3) both. Additional discussion regarding the results of the testing are included in Attachment 2.7-1.

It is noted that detailed mine unit pump tests will be conducted during development of each future mine unit. As such, additional investigations will be performed to assess the background trends observed, characteristics of the Fault and potential communication between the sands monitored for the 2007 test. Based on testing results to date, it is anticipated that any minor communication between the HJ Horizon and the overlying and underlying sands can be managed through operational practices, detailed monitoring, and engineering operations. In this regard, the potential communication observed at Lost Creek is much lower (e.g., five to ten times less) than has been observed in other ISR operations where engineering practices were successfully implemented to isolate lixiviant from overlying and underlying aquifers. Figure 2.7-17 summarizes the results of the Hydro-Search, Inc. (1982), Hydro-Engineering (2007), and Petrotek Engineering Corporation (2007) pump test results.

The 2007 pump test data support the following conclusions:

- the pump test results provide sufficient aquifer characterization of the HJ Horizon;
- the HJ Horizon has sufficient transmissivity such that mining operations can be conducted consistent with the Operations Plan (see Section 3.0);
- the HJ Horizon is sufficiently isolated from the overlying and underlying sands by the Lost Creek and Sage Brush Shales;
- hydraulic continuity of the HJ Horizon has been demonstrated over a large scale (e.g., more than 1,000 feet) such that mine planning (e.g., mine unit and monitor well layout) can proceed;
- hydraulic properties of the Fault have been defined over the test area to an extent such that mine planning can be achieved; and
- testing data to date indicate that the Fault significantly restricts flow in the HJ Horizon.

2.7.3 Groundwater Quality

This section describes the regional and local groundwater quality based on information from investigations performed within the Great Divide Basin, data presented in previous applications/reports for the Permit Area, and recent data collected in the Permit Area.

2.7.3.1 Regional Groundwater Quality

Water quality within the Great Divide Basin ranges from very poor to excellent. Groundwater in the near surface, more permeable aquifers is generally of better quality than groundwater in deeper and less permeable aquifers. Groundwater with TDS less than 3,000 mg/L can generally be found at depths less than 1,500 feet within the Tertiary aquifer system, which includes the Battle Spring/Wasatch, Fort Union and Lance aquifers (Collentine, 1981).

Water quality for the Great Divide Basin is available from a large number of sources including the USGS National Water Information System (NWIS) database, the University of Wyoming Water Resources Data System (WRDS) and the USGS Produced

Waters Database. Much of these data are tabulated in "Water Resources of Sweetwater County, Wyoming", a USGS Scientific Investigation Report by Mason and Miller (2005). However, the quality and accuracy of much of the data are difficult to assess. This section of the permit application describes general water quality of the Great Divide Basin, primarily by reference to these sources.

Mason and Miller (2005) noted that water quality in Sweetwater County is highly variable within even a single hydrogeologic unit; and that water quality tends to be better near outcrop areas, where recharge occurs. They also noted that groundwater quality samples from the Quaternary and Tertiary aquifers are most likely biased toward better water quality and do not necessarily represent a random sampling, for the following reasons. Wells and springs that do not produce useable water usually are abandoned or not developed. Deeper portions of the aquifers typically are not exploited as a groundwater resource because a shallower water supply may be available. As a result, these water sources do not become part of the sampled network of wells and springs that ultimately make up the available groundwater database. Groundwater quality samples from deeper Mesozoic and Paleozoic hydrostratigraphic units are often available where oil and gas production or exploration has occurred. Therefore, groundwater samples from older geologic units may have less bias in representing ambient groundwater quality than samples collected from Quaternary and Tertiary aquifers.

Water quality within the shallow Tertiary aquifers generally represents sodiumbicarbonate to sodium-sulfate water types. TDS levels within the Wasatch aquifer in the west and south parts of the Great Divide Basin tend to be high relative to the US EPA's Secondary Drinking Water Standard (SDWS) of 500 mg/L, even within the shallow aquifers. TDS levels within the Battle Spring/ Wasatch aquifers are generally below 500 mg/L along the northern flank of the Great Divide Basin (which includes the Permit Area). Elevated TDS levels (greater than 3,000 mg/L) are present within the Wasatch aquifer along the eastern edge of the Washakie Basin and within the Fort Union and Lance aquifers along the east side of the Rock Springs uplift. Elsewhere within the Great Divide and Washakie Basins, TDS levels in the Tertiary aquifer system are typically between 1,000 and 3,000 mg/L (Collentine, 1981).

Low-TDS waters within the Battle Spring aquifer are predominately sodium-bicarbonate type waters. With increasing salinity, the water type tends to become more calciumsulfate dominated. However, this trend is not exhibited in the Wasatch, Fort Union and Lance aquifers within the Great Divide and Washakie Basins. The Wasatch and Lance aquifers are characterized by predominately sodium-sulfate type waters, particularly near outcrop areas. The Fort Union is more variable in composition.

Water quality data for Tertiary aquifers away from the outcrop areas are sparse, but available data indicate that TDS levels increase rapidly away from the basin margins. A

Lance pump test in Section 14, Township 23 North, Range 99 West has TDS levels in excess of 35,000 mg/L. A Fort Union test in Section 25, Township 13 North, Range 95 West had TDS levels in excess of 60,000 mg/L, based on resistivity logs (Collentine, 1981). Water quality samples from produced water in the Wasatch and Fort Union Formations from an average depth of 3,500 feet had TDS values ranging from 1,050 to 153,000 mg/L with a median value of 13,900 mg/L (Mason, 2005). TDS from four wells completed in the Fort Union Formation located along the margins of the basin ranged from 800 to 3,400 mg/L (Welder and McGreevy, 1966).

A graph of TDS versus sampling depth for produced water samples from the Wasatch Formation in Sweetwater County prepared by Mason and Miller (2005) shows that, at depths greater than 3,000 feet, TDS values are typically above 10,000 mg/L. It is noted that the Mason and Miller data set is small for a large area and may be biased by data from the southern part of the Great Divide Basin; few site-specific data directly applicable to the Project are available.

Water quality within the Battle Spring aquifer is generally good in the northeast portion of the basin with TDS levels usually less than 1,000 mg/L and frequently less than 200 mg/L. Water type within the Battle Spring aquifer is typically sodium bicarbonate to sodium sulfate. Mason and Miller (2005) reviewed eighteen groundwater samples, collected from the Battle Spring aquifer, and observed that those samples represented some of the best overall quality of those studied in Sweetwater County. Sulfate levels can be elevated in Tertiary aquifers, but are generally low in the shallow aquifers of the Battle Spring Formation. Out of eighteen samples included in the Mason study, only one sample exceeded the WDEQ Class I Drinking Water Standard for sulfate of 250 mg/L. Most of the samples were also below the WDEQ TDS Class I Drinking Water Standard of 500 mg/L. Nitrate, fluoride and arsenic levels were below WDEQ and EPA standards for all of the samples.

Notable exceptions to the relatively good water quality included waters with elevated radionuclides. Uranium and radium-226 (Ra-226) concentrations exceeded their respective EPA Maximum Contaminant Levels (MCLs) of 0.03 mg/l and 5 pCi/l in some of the samples; radon-222 (Rn-222) concentrations were also relatively high in some samples (Mason, 2005); and the presence of high levels of uranium in Tertiary sediments and groundwater of the Great Divide Basin has been well documented. The Lost Creek Shroeckingerite deposit, located northwest of the Permit Area, is noted for high uranium levels in groundwater. Uranium-bearing coals are also present in Great Divide Basin. Sediments of the Battle Spring Formation were derived from the Granite Mountains and contain from 0.0005 to 0.001 percent uranium (Masursky, 1962). Based on historical exploration results, certain areas of the Battle Spring Formation (e.g., Lost Creek) contain much higher uranium concentrations.

Water quality for aquifer systems deeper than the Tertiary (such as the Mesaverde aquifer system) are not described in this report; because they are several thousands of feet deep in the vicinity of the Project and are separated from the Tertiary aquifer system by the Lewis Shale, a regional aquitard. The deeper aquifer systems of the Great Divide Basin will not impact nor be impacted by ISR activities at the Project.

2.7.3.2 Site Groundwater Quality

Information regarding site water quality is primarily derived from reconnaissance studies conducted by Conoco (Hydro-Search, Inc., 1982) and ongoing exploration and delineation of the Project by LC ISR, LLC.

Groundwater Monitoring Network and Parameters

Conoco installed 12 wells, separated into four groups, to evaluate aquifer properties and water quality of the uranium ore-bearing sands and overlying and underlying aquifers within the Permit Area. Three of the groups included wells completed within the HJ aquifer and the overlying (LFG) and underlying (UKM) aquifers. The fourth group included three wells completed within the HJ aquifer. The location of the wells is shown on Figure 2.7-18. The Conoco wells were sampled for the parameters listed in Table 2.7-12.

LC ISR, LLC installed wells in 2006 completed in the DE, LFG, HJ and UKM aquifers and initiated baseline sampling for the same constituents as Conoco, with the addition of alkalinity (as calcium carbonate [CaCO₃]), gross alpha, gross beta and radium-228. Four quarters of sampling have been completed for several of the wells that were installed in 2006. Additional wells have been installed in 2007 and are being incorporated into the groundwater monitoring network. The locations of the LC ISR, LLC monitor wells that have been sampled for water quality are indicated on Figure 2.7-19.

Groundwater Quality Sampling Results

Ten of the 12 monitor wells installed by Conoco were sampled in August 1982. Hydro-Search, Inc. reported that there were no major differences in water quality between the HJ aquifer and the overlying and underlying aquifers (1982). The predominant ions were calcium and sulfate. TDS values were all below the WDEQ Class I Standard of 500, ranging from 200 to 490 mg/L (Figure 2.7-20a). The pH of the waters ranged from 7.1 to 8.5, indicating slightly alkaline conditions. Chloride levels were very low, ranging from seven to 18 mg/L.

One of the sampled wells had an obstruction in the well and elevated pH (11.1) and potassium (54 mg/L) values. It was determined that the sampling results are not representative of the site aquifers and that the well is possibly contaminated with cement.

Most trace constituents were below the detection limits. Selenium was present in two samples at 0.023 mg/L, which was above the WDEQ standard at that time (0.01 mg/l). The WDEQ Class I Standard and the EPA MCL are currently 0.05 mg/L. Ra-226 was detected in all of the samples, with a range of 2.5 to 300 pCi/L. Only two samples, one collected from the overlying aquifer and one from the underlying aquifer, were below the WDEQ Class I Standard and EPA MCL for ra-226 (5.0 pCi/L). Figure 2.7-20b depicts the distribution of Ra-226 from the 1982 sampling round. Elevated Ra-226 groundwater concentrations are common within and around uranium ore-bodies. Uranium levels ranged from below detection (less than 0.005 mg/L) to 0.48 mg/L. Six of the ten samples exceeded the current EPA MCL for uranium (0.03 mg/L) (Figure 2.7-20c).

LC ISR, LLC began baseline sampling in September 2006. The initial sampling round included the following thirteen locations:

- DE Monitor Wells: LC29M, LC30M and LC31M;
- LFG Monitor Wells: LC18M, LC21M, and LC25M;
- HJ Monitor Wells: LC19M, LC22M, LC26M and LC28M; and
- UKM Monitor Wells: LC20M, LC23M and LC24M.

During the second sampling round, conducted in November 2006, the following three wells were added to the program:

- LFG Monitor Well: LC15M;
- HJ Monitor Well: LC27M; and
- UKM Monitor Well: LC17M.

In the third sampling round conducted in February to March 2007, HJ monitor well LC16M was added to the program. The fourth sampling round was conducted in May 2007. All 17 of the wells listed above were included in that sampling event. Many of the recently installed wells used for the long-term pump test will be added into the monitoring program in the next sampling round. In addition to the baseline sampling program, LC ISR, LLC has also sampled two of the water supply wells, LC1W, and LC2.

Results of the LC ISR, LLC baseline monitoring program are summarized in <u>Table 2.7-</u> <u>13</u>. The table shows that the WDEQ TDS Class I standard is exceeded at one well in the DE, HJ and UKM aquifers. Fourteen out of the 17 wells have TDS levels below the Class I Standard. The distribution of TDS is shown in <u>Figure 2.7-21a</u>. Sulfate exceeds the WDEQ Class I Standard (250 mg/L) in one DE monitor well (LC31M) and one HJ monitor well (LC26M). The average distribution of sulfate from September 2006 to May 2007 is shown in <u>Figure 2.7-21b</u>. As with the Conoco monitoring results, chloride values are low with all but one sample at ten mg/L or lower (<u>Table 2.7-13</u>).

Piper diagrams have been developed to compare groundwater quality between individual wells (Figure 2.7-22a) and between different aquifers (Figure 2.7-22b). The individual well comparison plots the average value for each of the wells for all of the samples analyzed. The piper diagram comparing different aquifers represents the average water quality for all wells sampled within individual aquifers (DE, LFG, HJ and UKM). Groundwater within the shallow Battle Spring aquifers beneath the Permit Area is a calcium sulfate to calcium bicarbonate type water. There is some variability in water chemistry when the wells are compared individually. However, when the average for the aquifers is plotted, there is no significant difference in major water chemistry between the production zone and overlying and underlying aquifers.

The trace constituents, boron, cadmium, chromium, copper, mercury, molybdenum, nickel, vanadium, and zinc were at or below detection limits for all samples. Ammonia and selenium exceeded either a WDEQ Class I Standard or an EPA MCL in two monitor wells. Selenium exceeded the WDEQ Class I Standard and EPA MCL (0.05 mg/L in one DE monitor well, LC31M). Iron exceeded the WDEQ Class I Standard and EPA MCL (0.05 mg/L) in one DE monitor well (LC29M), two LFG monitor wells (LC18M and LC21M), and one UKM monitor well (LC24M). Manganese was above the WDEQ Class I Standard and EPA MCL (0.05 mg/L) in seven of the 12 samples collected from DE monitor wells but did not exceed those standards in any other sampled aquifer.

With the exception of HJ monitor wells LC27M and LC29M, every uranium analysis exceeded the EPA MCL of 0.03 mg/L. The average uranium concentration of all samples collected in the baseline monitoring program (0.306 mg/L) is over an order of magnitude greater than the MCL. The average distribution of uranium at individual wells from September 2006 to May 2007 is shown on Figure 2.7-23a.

The average distribution of radium-226+228 is shown on Figure 2.7-23b. The WDEQ Class I Standard and EPA MCL for radium-226+228 is 5.0 pCi/L. <u>Table 2.7-14</u> summarizes the number of wells in each aquifer that exceed the EPA MCL.

In summary, general water quality in the shallow Battle Spring aquifers within the Permit Area tends to be relatively good, with the exception of the presence of radionuclides. TDS and sulfate values are relatively low, with occasional exceedances of WDEQ Class I standards. Manganese is elevated above state and federal standards in the water table aquifer (DE) but is below standards in deeper confined aquifers in the vicinity of the uranium orebodies. Radium-226+228 exceeds the EPA MCL in over two-thirds of the samples collected and the average uranium concentration is an order of magnitude greater than the EPA MCL for that constituent. Elevated concentration of these constituents is consistent with the presence of uranium orebodies.

2.7.4 Hydrologic Conceptual Model

A hydrologic conceptual model of the Project and surrounding area has been developed to provide a framework that allows LC ISR, LLC to make decisions regarding optimal methods for extracting uranium from mineralized zones, and to minimize environmental and safety concerns caused by ISR operations.

LC ISR, LLC will use ISR technology at the Project to extract uranium from permeable uranium-bearing sandstones within the upper portion of the Battle Spring Formation, at depths ranging from 350 to 900 feet. A conceptual hydrologic model of the Project is summarized below.

2.7.4.1 Regional Groundwater Conceptual Model

The Project is located within the northeastern portion of the Great Divide Basin. The Eocene Battle Spring Formation crops out over most of the northeastern portion of the Great Divide Basin, including the Permit Area. The total thickness of the Battle Spring Formation in the vicinity of the Permit Area is approximately 6,200 feet. The Battle Spring Formation contains multiple aquifers that are a part of the Tertiary aquifer system. Groundwater flow within the Battle Spring aquifers is primarily toward the interior of the basin, southwest of the Project. Recharge to the Battle Spring aquifers within the Project area is mostly the result of infiltration of precipitation to the north and northeast in the Green Mountains and Ferris Mountains. Based on available information, discharge from the Battle Spring aquifers is primarily to a series of lakes, springs, and playa lake beds near the center of the basin. Some groundwater from the Battle Spring aquifers is discharged through pumping for stock watering, irrigation, industrial, and domestic use.

The Battle Spring Formation is described as an arkosic fine- to coarse-grained sandstone with claystone and conglomerates. Groundwater within the Battle Spring aquifers is typically under confined conditions, although locally unconfined conditions exist. The potentiometric surface within the Battle Spring aquifers is usually within 200 feet of the ground surface. Most wells drilled for water supply in this unit are less than 1,000 feet deep. Wells completed in the Battle Spring aquifers typically yield 30 to 40 gpm but yields as high as 150 gpm are possible.

Water quality within the shallow Tertiary aquifers generally represents sodiumbicarbonate to sodium-sulfate water types. TDS levels within the Battle Spring aquifers are generally below 500 mg/L along the northern flank of the Great Divide Basin near areas of outcrop. Low TDS waters within the Battle Spring aquifer are predominately sodium-bicarbonate type waters. With increasing salinity, the water type tends to become more calcium-sulfate dominated. Notable exceptions to the relatively good water quality included waters with elevated radionuclides (uranium, radium-226 and radon-228). High levels of uranium are common in Tertiary sediments and groundwater of the Great Divide Basin. The Lost Creek Shroeckingerite deposit located northwest of the Project is noted for high uranium levels in groundwater. Uranium-bearing coals are present in the Wasatch Formation in the central part of the Great Divide Basin.

As described previously, the Battle Spring Formation outcrops over most of the Permit Area. The Battle Spring is the shallowest occurrence of groundwater within the Permit Area. Water-bearing Quaternary and Tertiary units younger than the Battle Spring Formation are present several miles to the north and east and are hydraulically upgradient of the Permit Area. Therefore, ISR operations conducted at the Project will have no impact on those shallower hydrostratigraphic units.

2.7.4.2 Site Groundwater Conceptual Model

Hydrostratigraphic Units

The hydrostratigraphic units of interest within the Battle Spring Formation, with respect to the Project include, from shallowest to deepest:

• DE Horizon (shallowest occurrence of groundwater):

- o sands and discontinuous clay/shale units, top of unit 100 to 200 ft bgs;
- o coalesces with underlying FG Horizon to the south; and
- water levels in the DE Sand are typically 140 to 200 ft bgs;
- Upper No Name Shale (upper confining unit to the FG Horizon):
 - \sim 0 to 50 feet thick;
- FG Horizon (includes overlying aquifer to HJ Horizon):
 - o subdivided into UFG, MFG and LFG Sands;
 - o total thickness of Horizon is 100 feet;
 - o top of unit is 200 to 350 ft bgs;
 - o LFG Sand the overlying aquifer to HJ Horizon;
 - o LFG Sand is 20 to 50 feet thick; and
 - o water levels in the LFG Sand are typically 160 to 200 ft bgs;

- Lost Creek Shale (upper confining unit to the HJ Horizon):
 - o laterally continuous across Permit Area;
 - \circ five to 45 feet thick; and
 - o confining properties demonstrated from water levels and pump test;
- HJ Horizon (contains the primary production zone):
 - subdivided into UHJ, MHJ, and LHJ Sands, although sands are hydraulically connected;
 - coarse-grained arkosic sands with thin lenticular intervals of fine sand, mudstone and siltstone;
 - o averages 120 feet thick;
 - top of unit is 300 to 450 feet bgsk and
 - water levels in the HJ Horizon range from 150 to 200 ft bgs;
- Sage Brush Shale (lower confining unit to the HJ Horizon and upper confining unit to the KM Horizon):
 - o laterally continuous across Permit Area;
 - o five to 75 feet thick;
 - top of unit 450 to 550 ft bgs; and
 - o confining properties demonstrated from water levels and pump test;
- KM Horizon (includes secondary production zone, lower confining units, and underlying aquifers):
 - subdivided into UKM, MKM and LKM Sands;
 - o massive coarse sandstones with thin lenticular fine sandstone intervals;
 - \circ top of unit is 450 to 600 ft bgs;
 - UKM Sand is a secondary production zone and first underlying aquifer;
 - UKM Sand is 30 to 60 feet thick;
 - water levels in the UKM Sand are generally 185 to 220 ft bgs;
 - No Name Shale is the lower confining unit to the UKM Sand; and
 - No Name Shale is ten to 30 feet thick and laterally extensive but will require additional characterization:
 - MKM is the underlying aquifer to the UKM Sand, but will require additional characterization.

Potentiometric Surface and Hydraulic Gradients

Potentiometric surface of the HJ Horizon indicates that groundwater flow is to the westsouthwest under a hydraulic gradient of 0.003 to 0.006 ft/ft (15.8 to 31.6 ft/mi), generally consistent with the regional flow system. The Fault acts as a hydraulic barrier to groundwater flow as demonstrated from water level differences of 15 feet across the Fault within the HJ Horizon and the pump test results. The Fault may redirect groundwater more westward than if it were not present. Groundwater flow direction and hydraulic gradients for the overlying (DE and FG) and underlying aquifers (UKM) are generally similar to that of the HJ Horizon. The potentiometric heads decrease with depth. Differences in water level elevations between the LFG, HJ and UKM aquifers indicate that confining units are present between these hydrostratigraphic units. Pump tests indicate the presence of confining units between the LFG and HJ aquifers and between the HJ and UKM aquifers.

Vertical hydraulic gradients range from 0.050 to 0.34 ft/ft between the LFG, HJ and UKM aquifers and consistently indicate decreasing hydraulic head with depth. The vertical gradients indicate the potential for groundwater flow is downward. The vertical gradients also support the confining nature of the Lost Creek and Sage Brush Shale. The vertical gradient between the DE and LFG aquifers is minimal, consistent with observations that those hydrostratigraphic units coalesce in places within the Permit Area.

Aquifer Properties

Transmissivity for the HJ Horizon ranges from 35 to 400 ft²/d (260 to 3,000 gpd/ft). Based on long-term pump tests, the estimated "effective" transmissivity (because of the impacts of the Fault) is 60 to 70 ft²/d (450 to 525 gpd/ft) on the north side of the Fault. Because of the boundary effect of the Fault (e.g., the system is not an infinite-acting aquifer), the actual transmissivity of the aquifer, without impacts from the Fault, would be higher. Storativity of the HJ Horizon ranges from 5.0×10^{-5} to 5.0×10^{-4} .

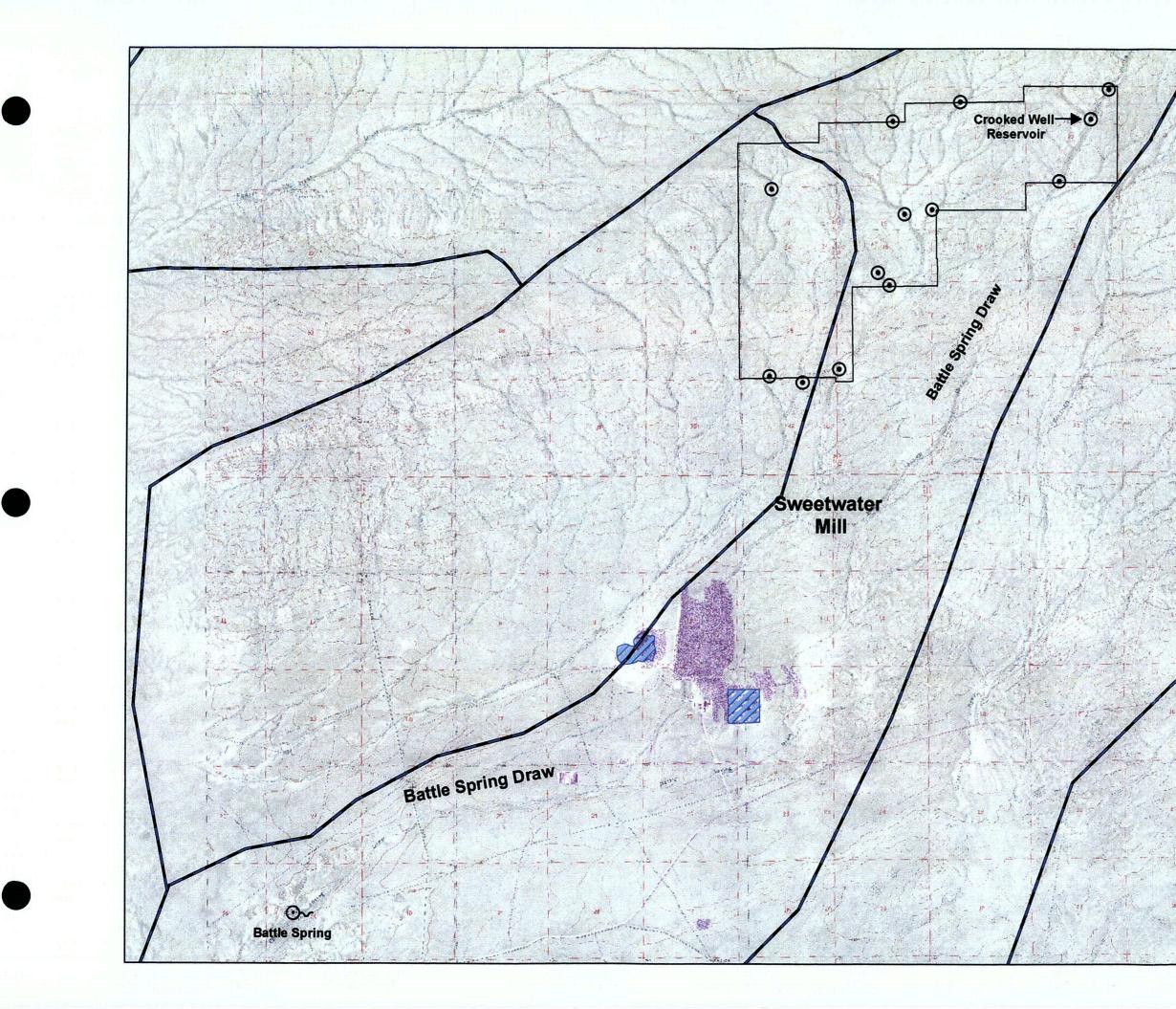
Based on more limited testing, the transmissivity of the LFG aquifer is lower than for the HJ Horizon ranging from 4.4 to 40 ft^2/d (30 to 300 gpd/ft). The range of transmissivity of the UKM aquifer is similar to but slightly lower than the HJ aquifer, from 26 to 115 ft^2/d (195 to 860 gpd/ft). Transmissivity of the DE Horizon is variable, ranging from 1.3 to 130 ft^2/d (10 to 1,000 gpd/ft). Storativity values have not been determined for the overlying and underlying aquifers at this time because no multi-well pump tests have been conducted within those aquifers. However, it is expected that storativity values in the FG and KM Horizons will be similar to the range observed in the HJ Horizon. The DE Horizon is at least partially under unconfined conditions and therefore will have a specific yield instead of a storage coefficient. Long-term multi-well pump tests will be performed in the fall of 2007 to collect additional data regarding aquifer properties of the overlying and underlying aquifers.

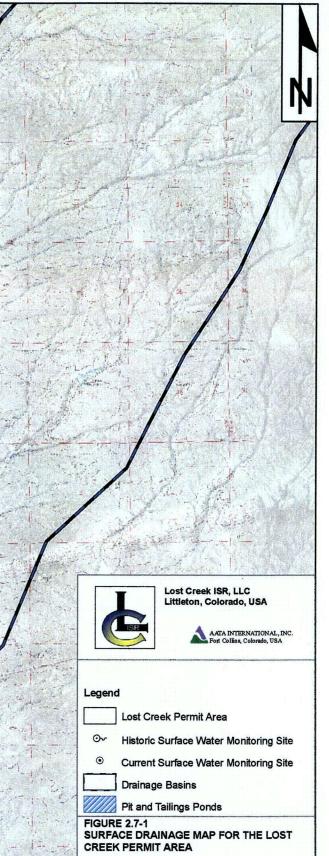
Water Quality

Water quality within the hydrostratigraphic units of interest (the production zones and overlying and underlying aquifers) is generally good with respect to major chemistry. TDS and sulfate levels are typically below respective WDEQ Class I Standards and EPA SDWS, although occasionally, regulatory standards are exceeded. Chloride levels are low, (typically less than ten mg/L) making this parameter a good indicator for excursion

monitoring. There is no significant difference in major water chemistry between the production zone and overlying and underlying aquifers.

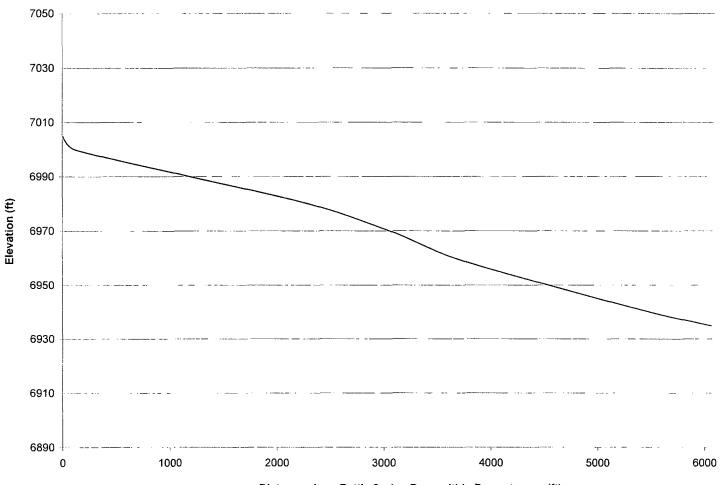
Trace metals generally are below WDEQ Class I Standards and EPA MCLs in the production zone, overlying and underlying aquifers. Ammonia, arsenic, iron, and selenium occasionally exceed the respective standards. Manganese is present above the regulatory standards in over half of the samples collected from the DE Horizon. Manganese was below the WDEQ Class I Standards and EPA MCL in all samples from other hydrostratigraphic units.


Uranium is present in nearly all of the wells at levels exceeding the EPA MCL of 0.03 mg/L. For example, the average uranium concentration for all of the hydrostratigraphic units of interest is 0.31 mg/L, an order of magnitude greater than the EPA MCL. Radium-226+228 levels exceed the EPA MCL and WDEQ Class I Standard (five pCi/L) in two-thirds of the samples collected. The percentage of wells that exceed radium-226+228 standards is greater for the HJ and UKM aquifers than for the FG and DE Horizons. Dissolved radionuclide levels are commonly elevated in groundwater associated with uranium-bearing sandstones.

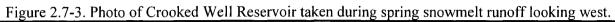

Summary

The uranium bearing sandstones within the upper Battle Spring Formation appear to be suitable targets for ISR operations. The primary production zone aquifer (HJ Sand) is bounded by laterally extensive upper and lower confining units, as demonstrated by static water level differences and responses to pump tests. Aquifer properties (transmissivity, hydraulic conductivity and storativity) are within the ranges observed at other ISR operations that have successfully extracted uranium reserves. Water quality is generally consistent throughout the hydrostratigraphic units of interest. Elevated radionuclides are present in the groundwater, but this is consistent with the presence of uranium ore deposits within the sandstones. The Fault acts as a hydraulic barrier to flow and will need to be accounted for in mine unit design and operation.

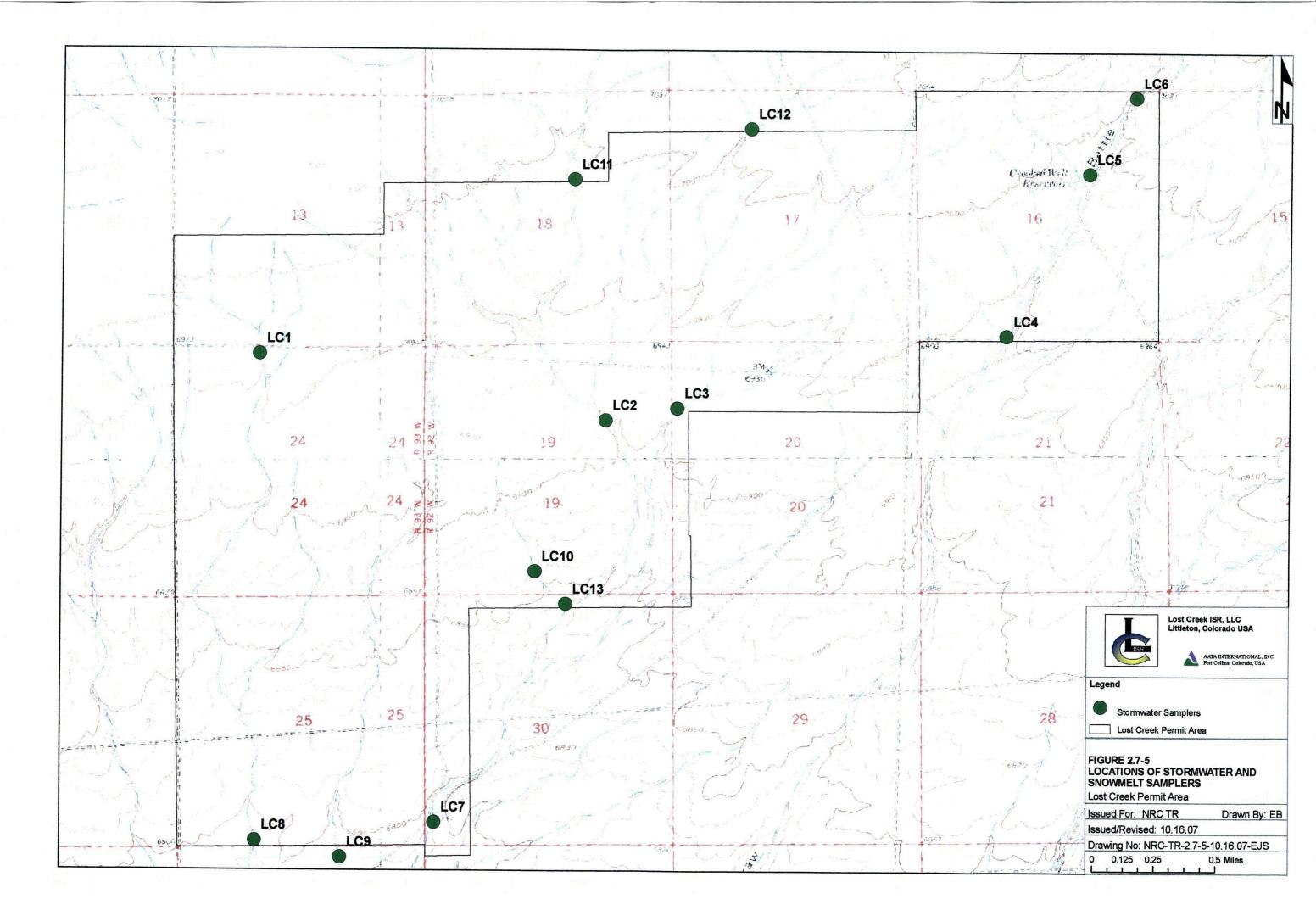
Lost Creek Project NRC Technical Report October 2007


2.7-27

Lost Creek Permit Area


Issued For: NRC TR			Drawn By: EB	
Issi	ued/Revised:	10.16.0)7	
Dra	wing No: NR	C-TR-2.	7-1-10.15.07-EJS	
0	0.375 0.7	5	1.5 Miles	
L	1 1 1	1 1		

Distance along Battle Spring Draw within Property area (ft)



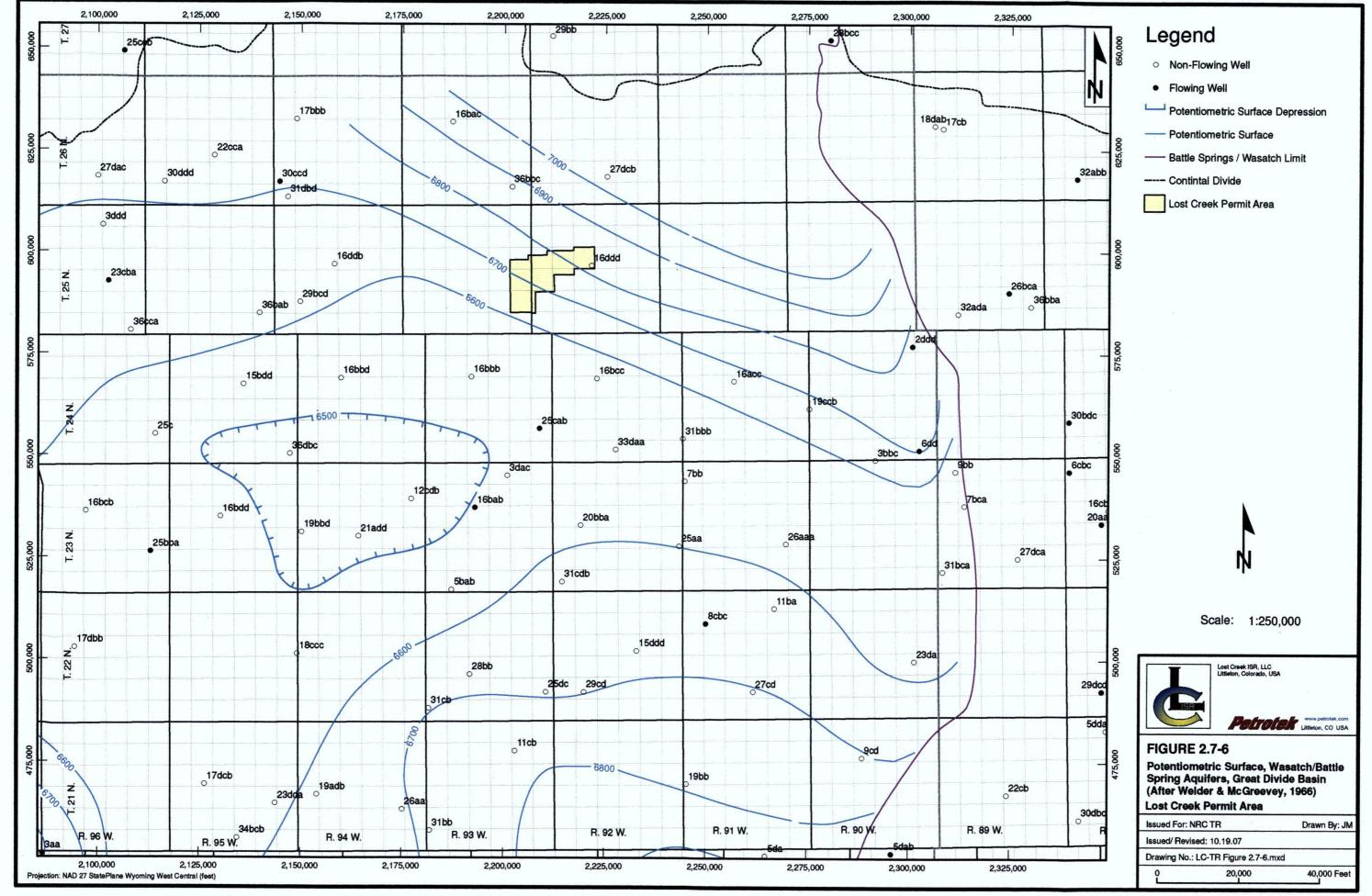
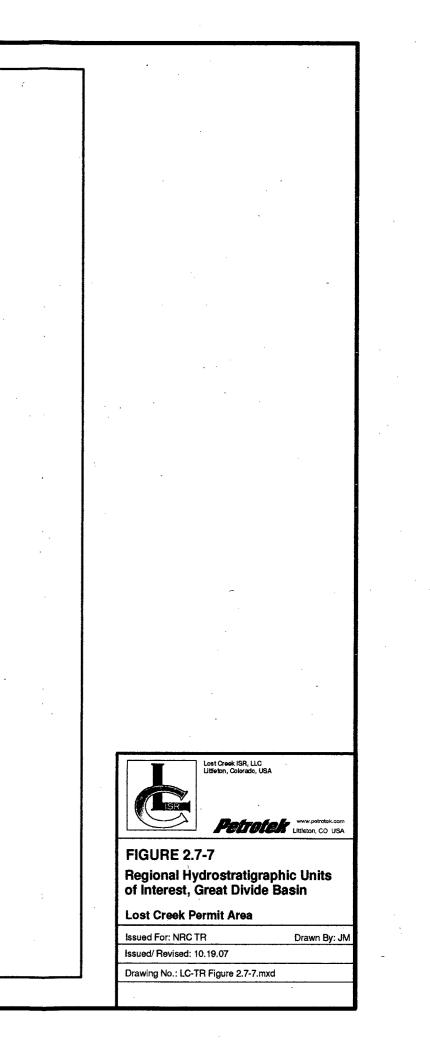
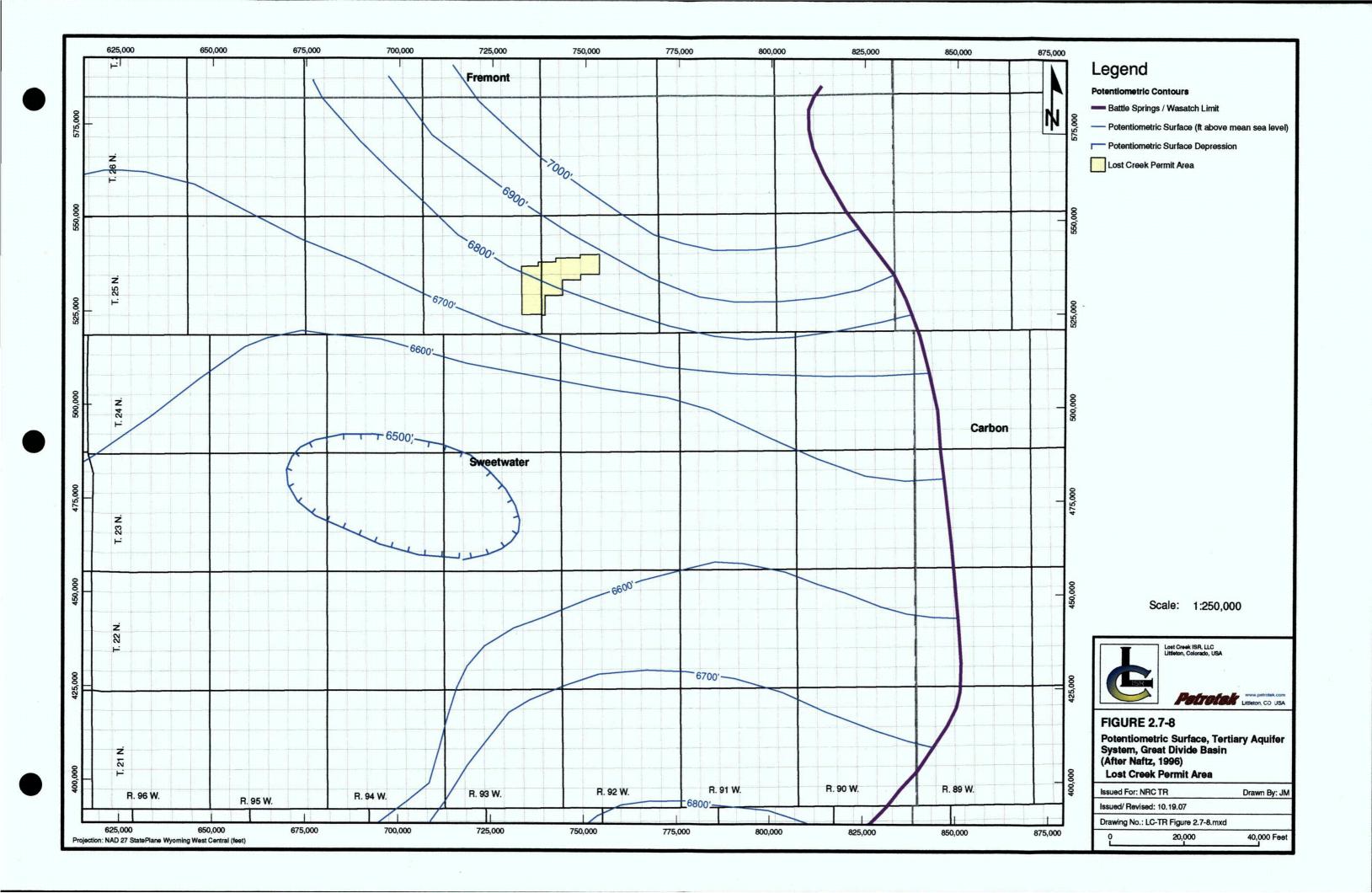
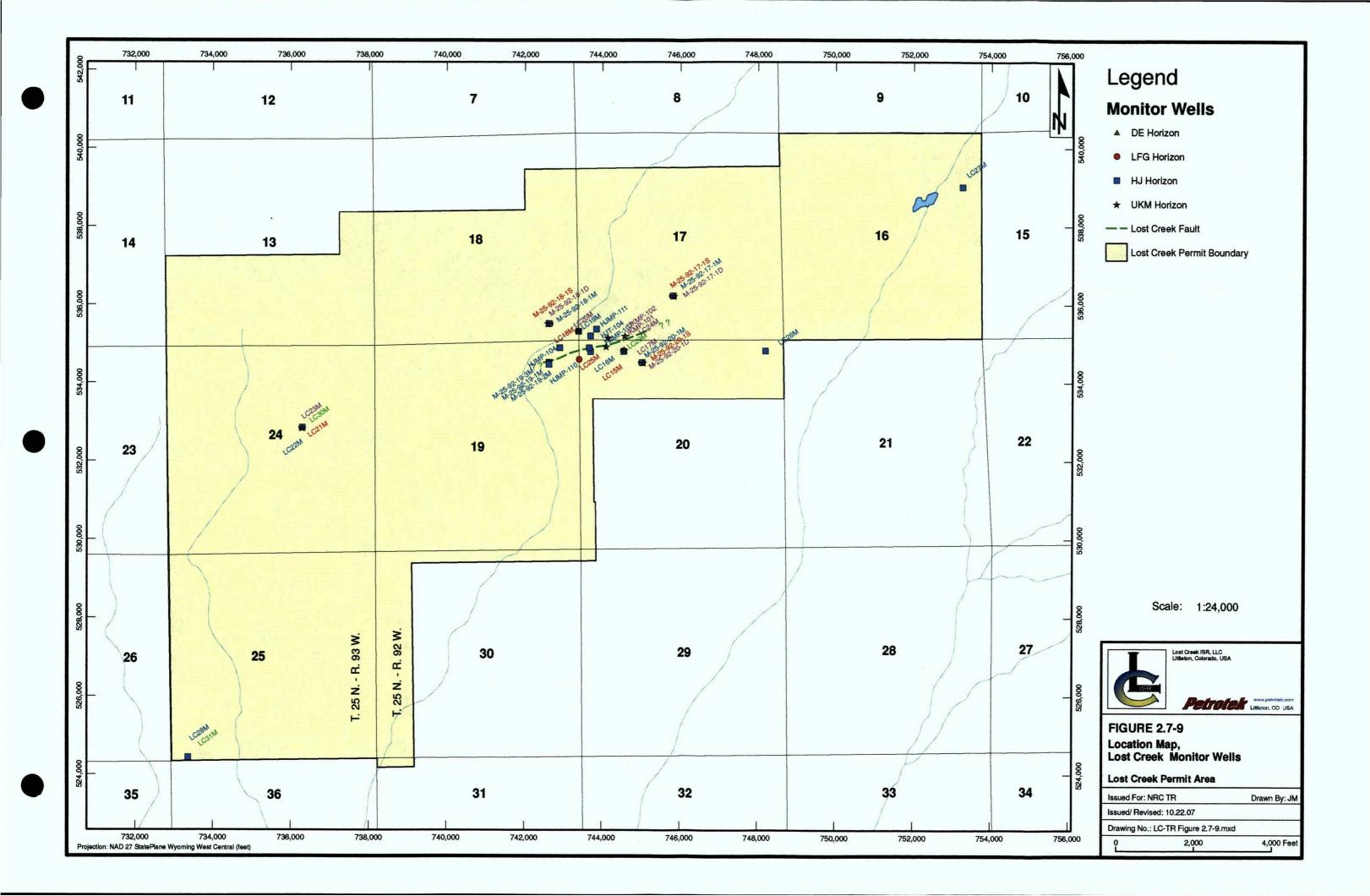
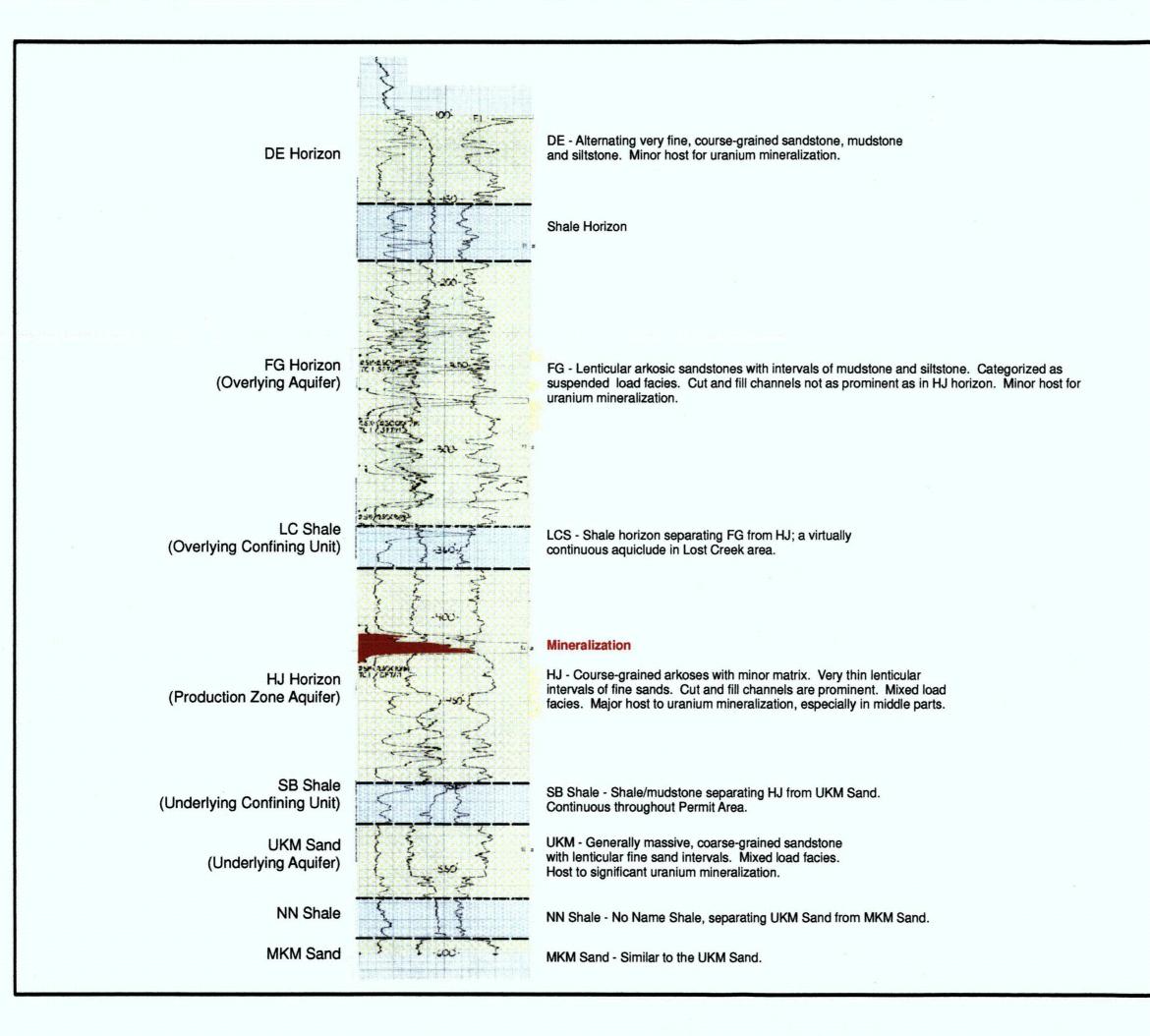

(April 2007)

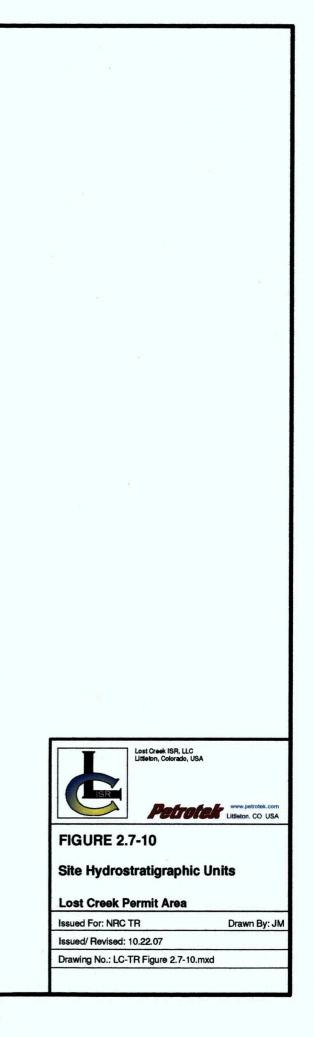
Figure 2.7-4. Stormwater sampler installed to collect a 1-L sample of snowmelt or storm surface runoff.

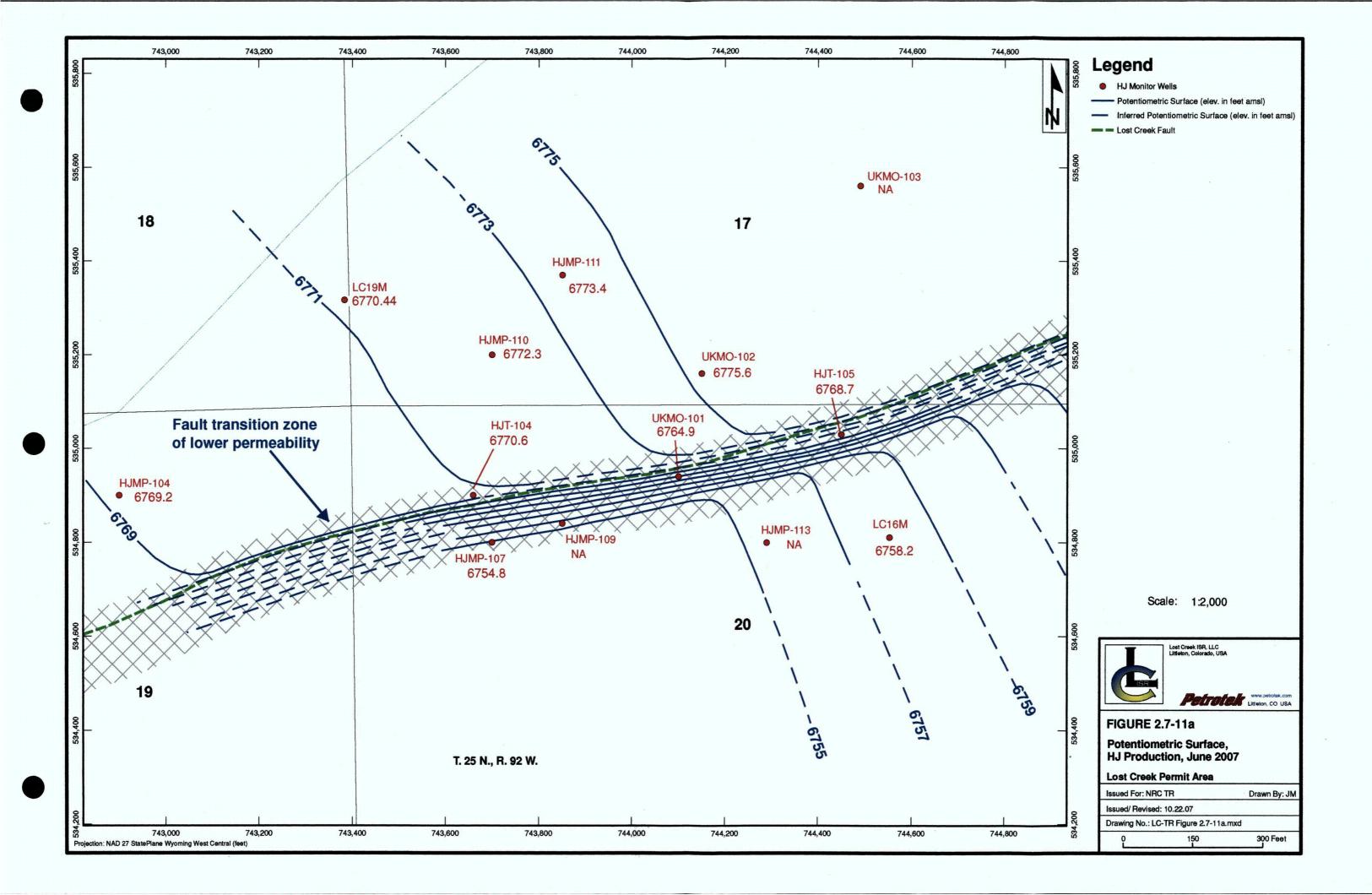

(April, 2007)

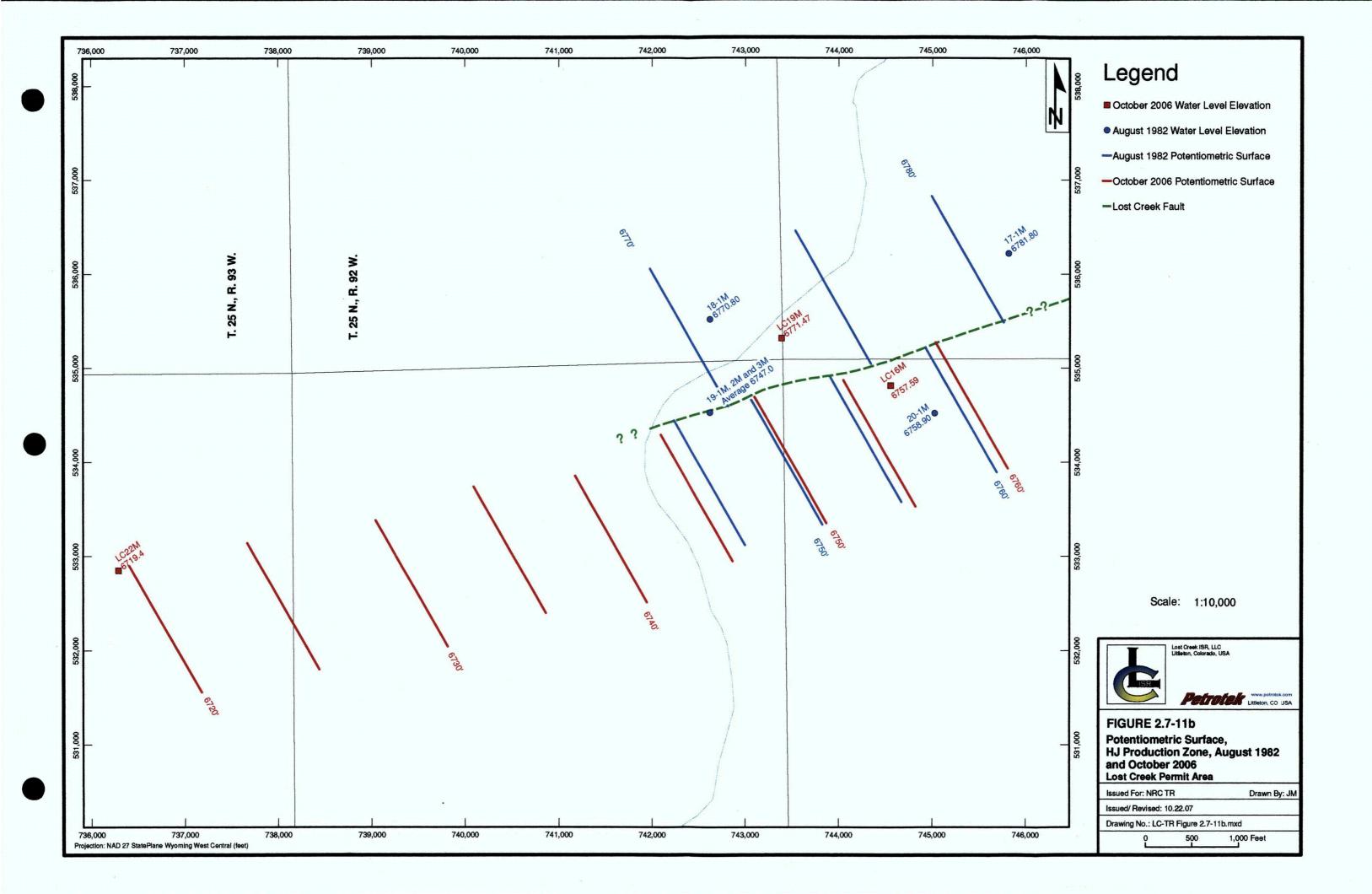


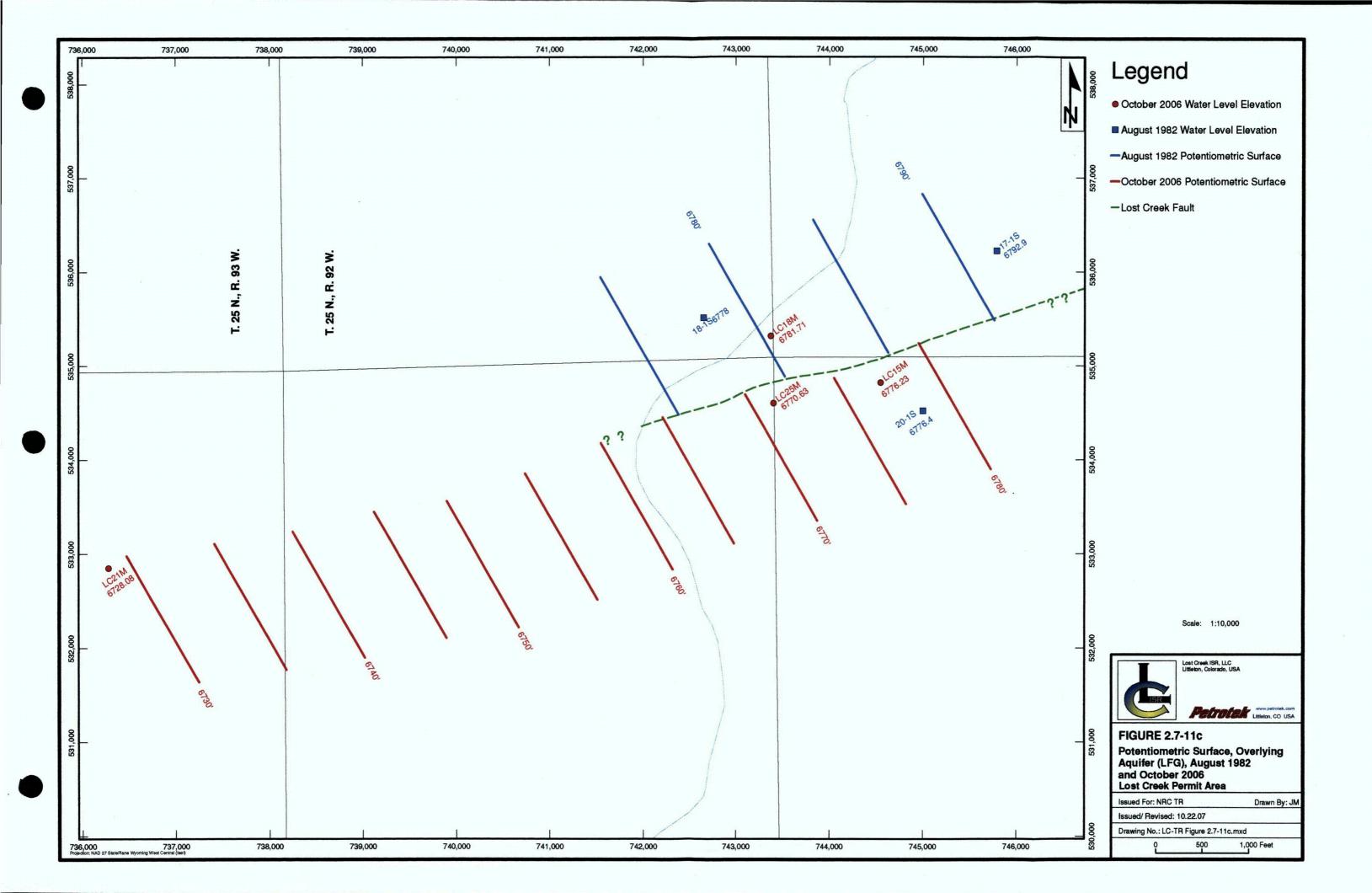


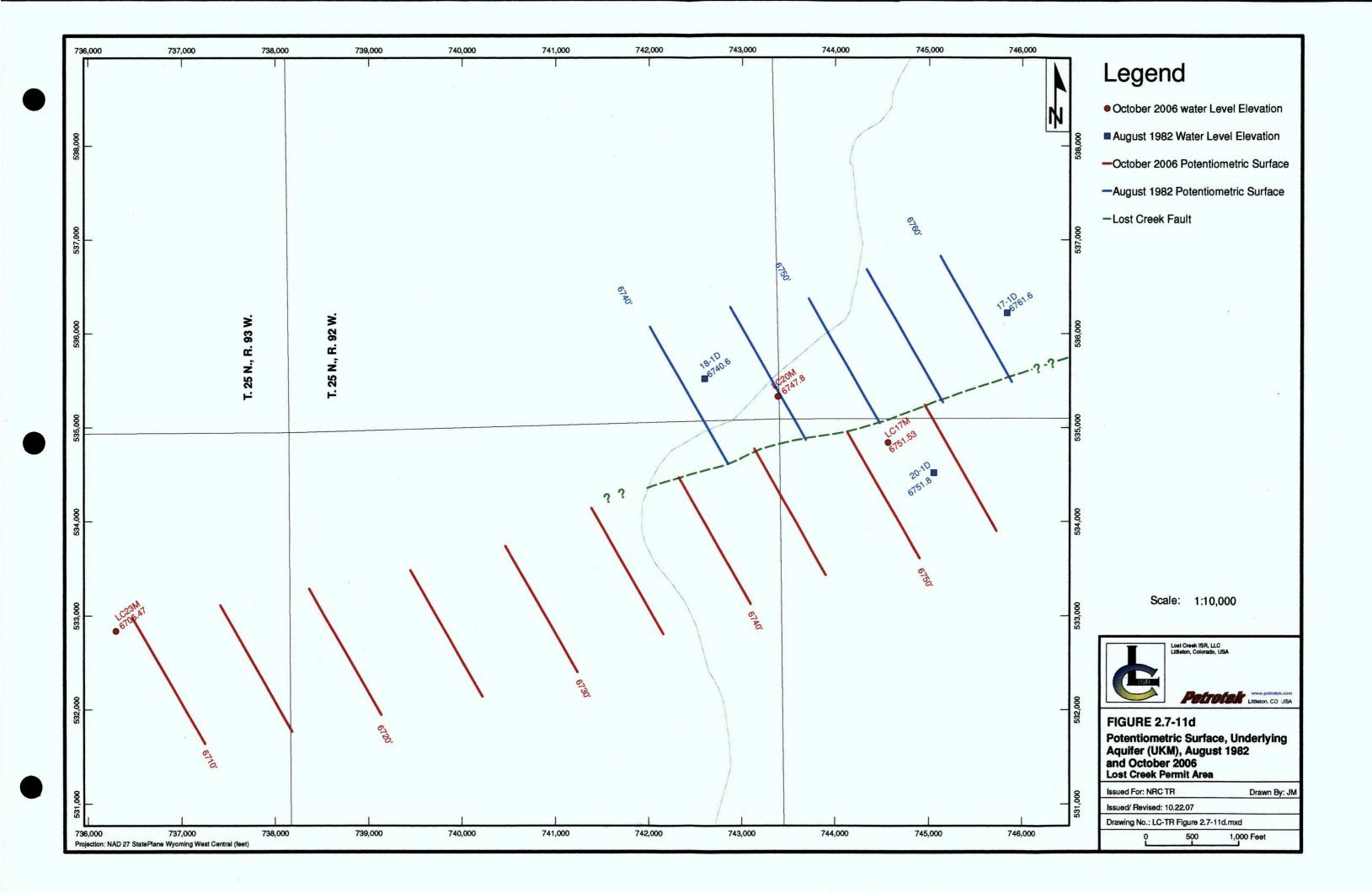

.

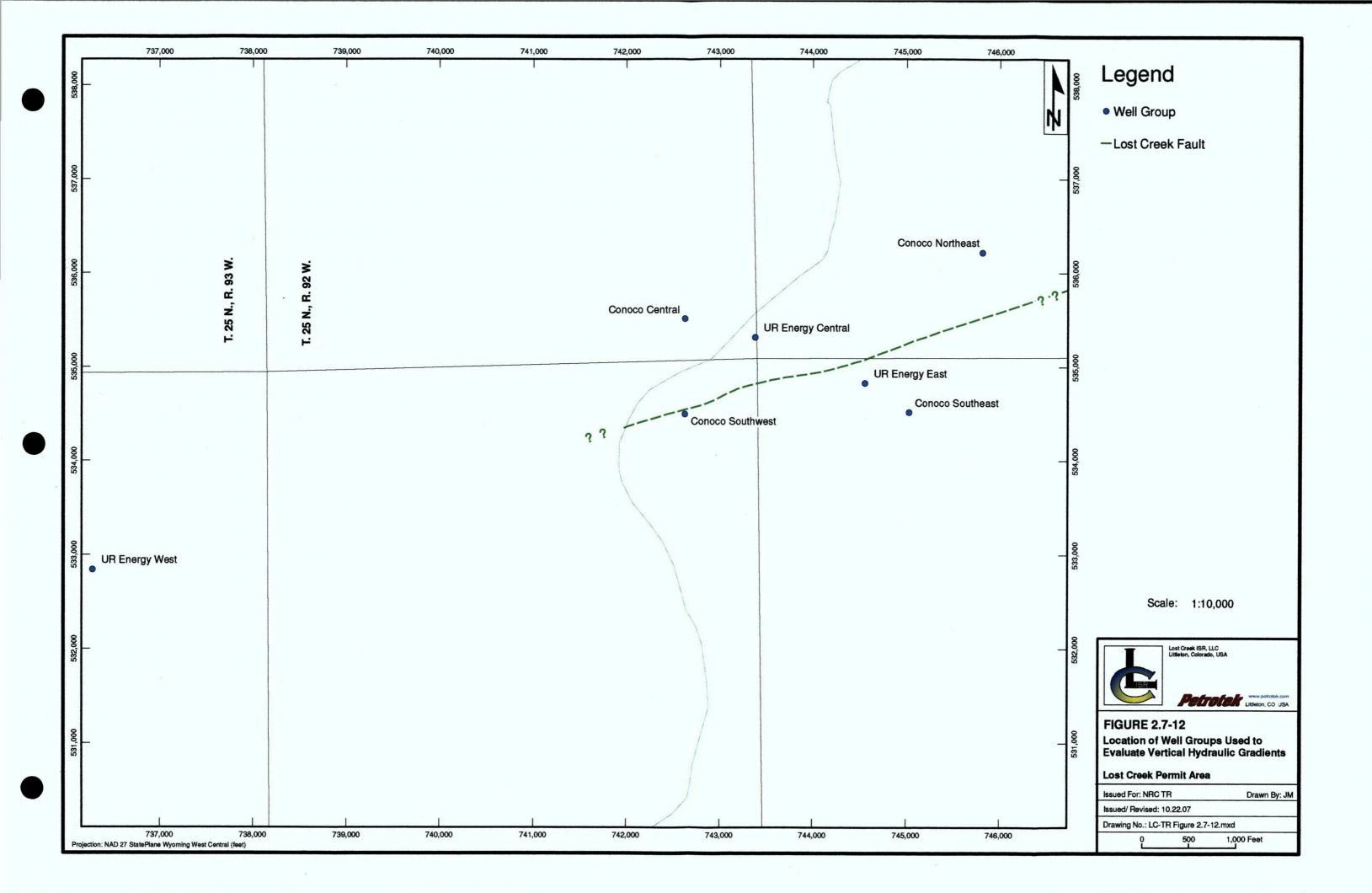

ERA	SYSTEM, SERIES AND OTHER SUBDIVISIONS			STRATIGRAPHIC UNIT	HYDROGEOLOGIC UNIT	
		Quaternary		Unnamed Alluvium	Alluvial Aquifers	
Cenozoic	Miocene		Upper	Browns Park, North Park, and South Pass Formations Bishop Conglomerate	UpperTertiary Aquifers	
	Tertiary	Eocene	e Lower	Bridger Formation Green River Formation	(Not present near Lost Creek)	
		Paleocene		Wasatch Formation-Battle Spring Formation Fort Union Formation		
-	ğ		ber	Fox Hills Sandstone		
		Cretaceous		Lewis Shale	Confining Unit	
Mesozoic				Mesaverde Formation	Measaverde Aquifer	
				Steele Shale Cody Shale	Confining Unit	
				Niobrara Formation		
				Frontier Formation	Frontier Aquifer	
I				Mowry Shale	Confining Unit	
	Lower		ver	Muddy Sandstone		
			Lov	Thermopolis Shale		
			****	Cloverly Formation	Cloverly (Dakota) Aquifer	
1	Jurassic –			Morrison Formation	Confining Unit	
Juras		Jui 85510	-	Sundance Formation		
				Nugget Sandstone		
Triassic Permian				Chugwater Formation	Confining Unit	
				Dinwoody Formation		
				Phosphoria Formation		
Paleozoic		Pennsylvanian		Tensleep Sandstone	-	
				Amsden Formation	Paleozoic Aquifers	
Mississippian			-	Madison Formation		
Cambrian				Flathead Sandstone	-	

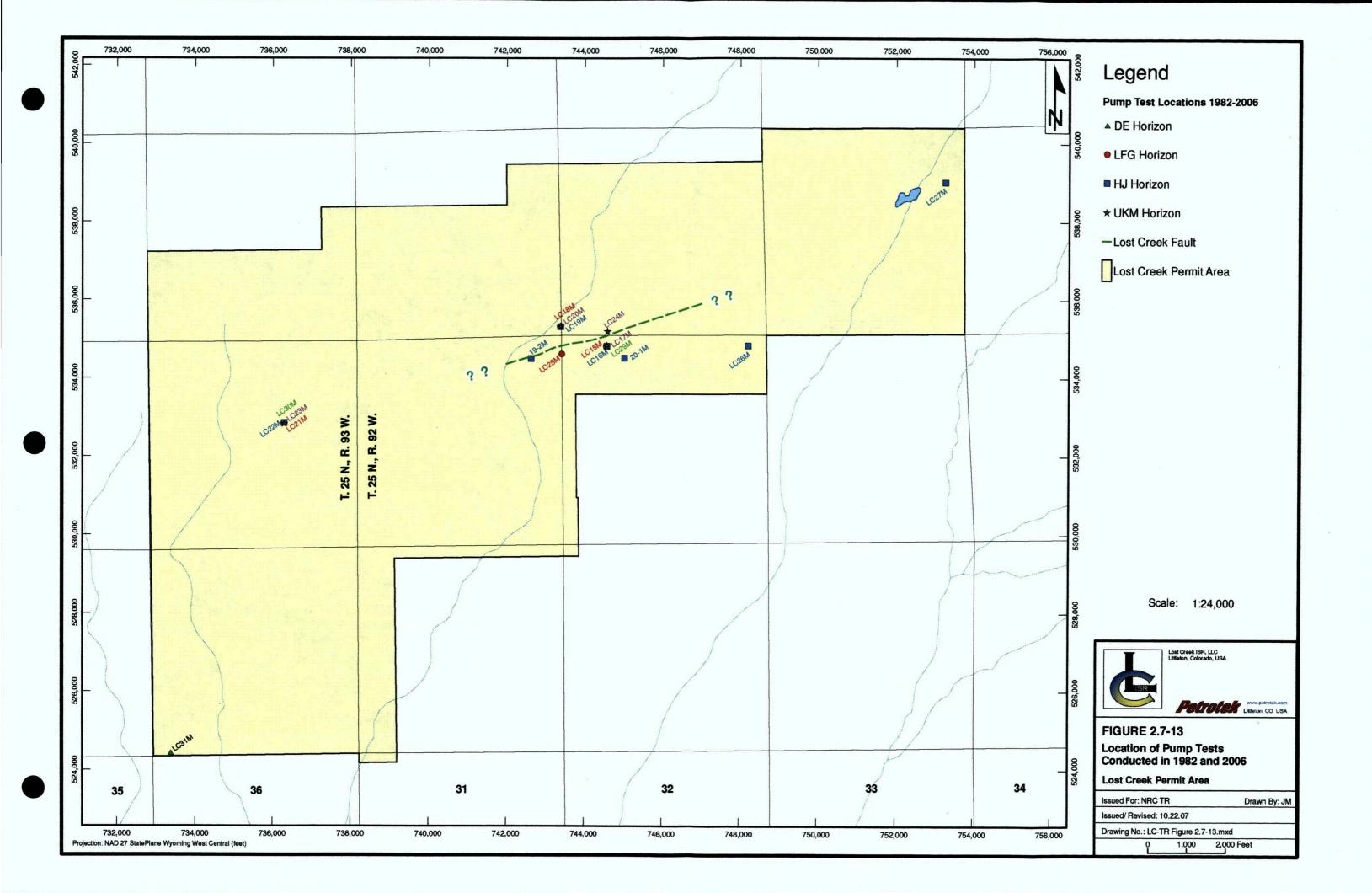


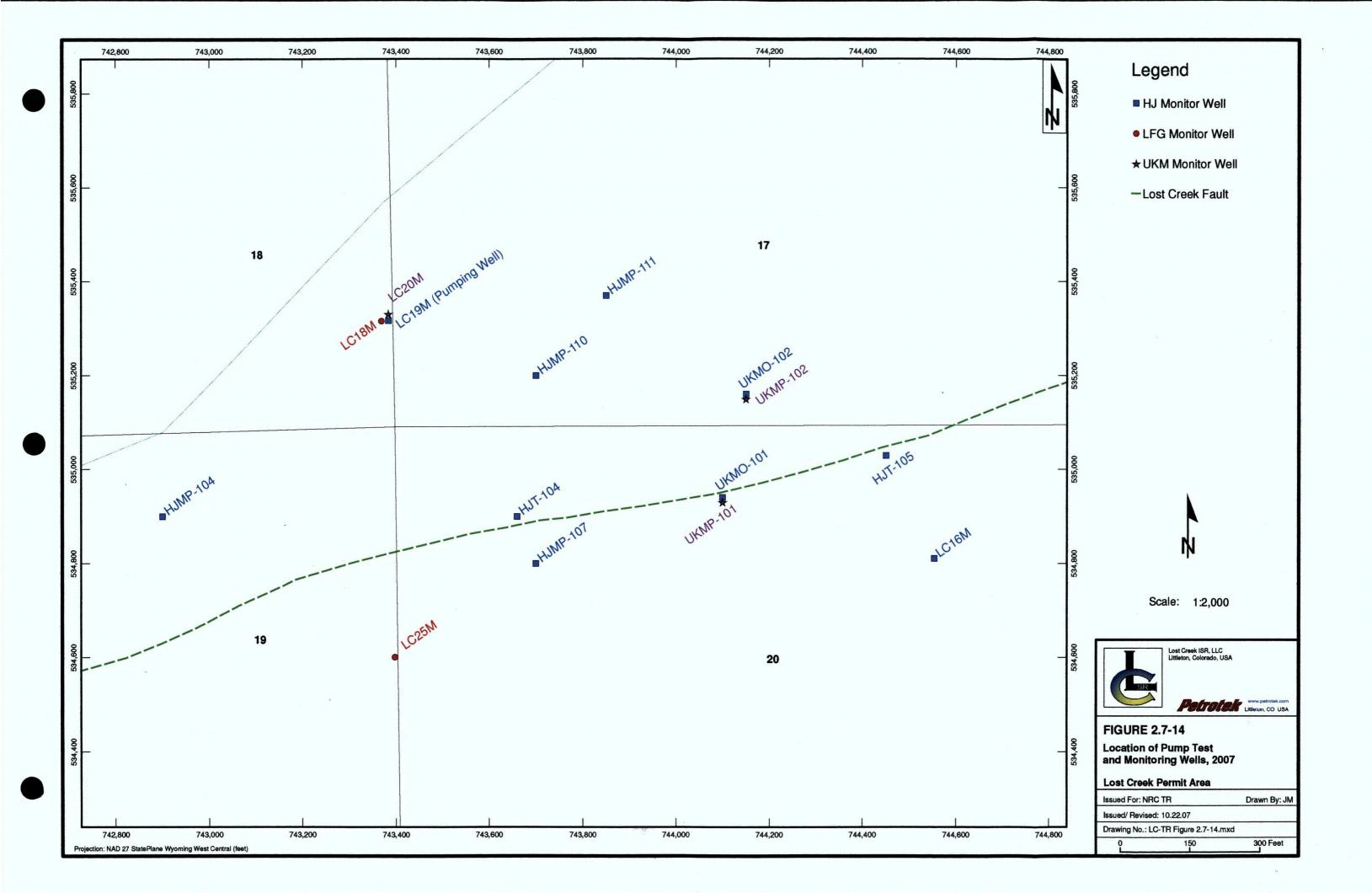


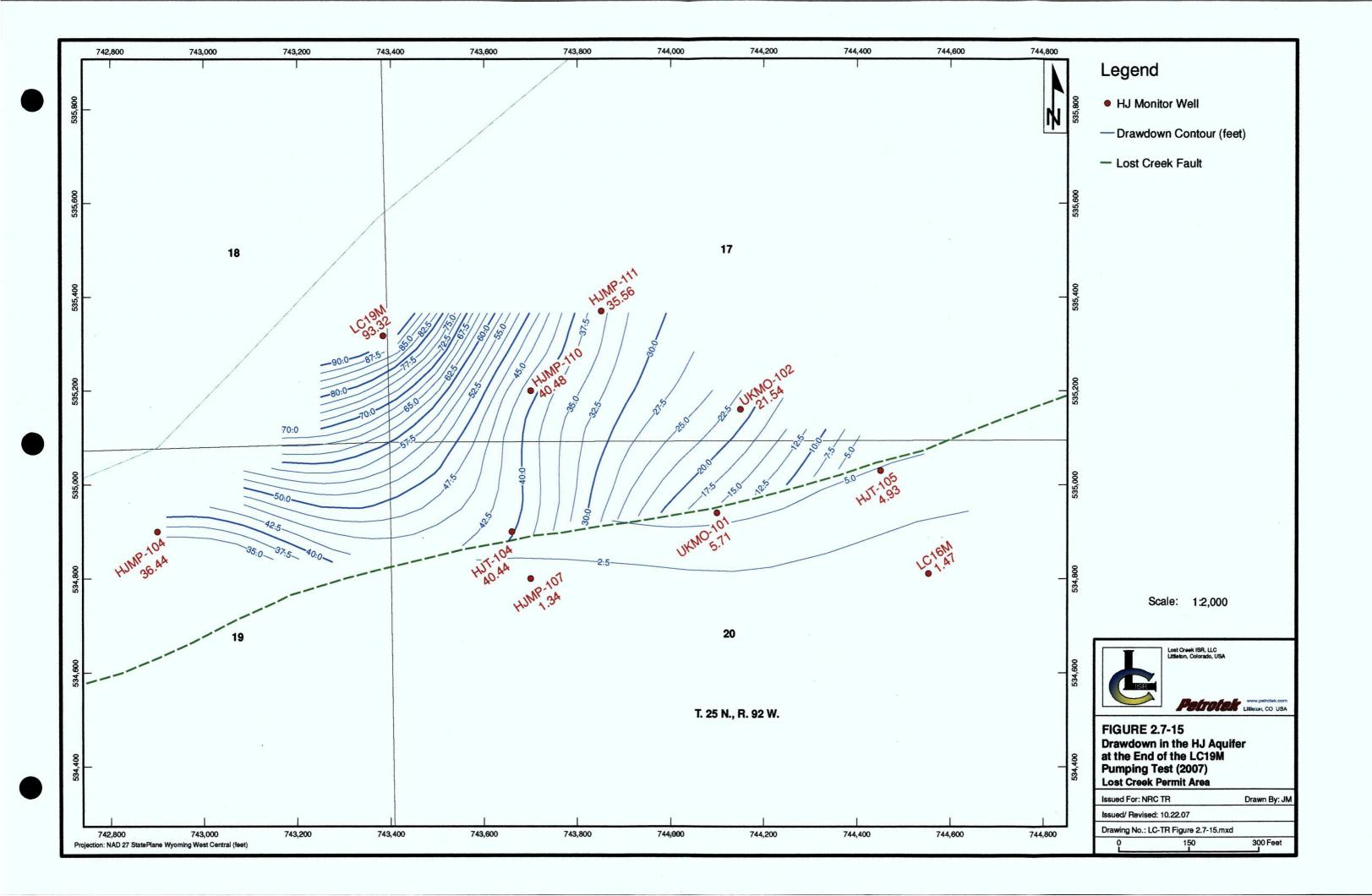


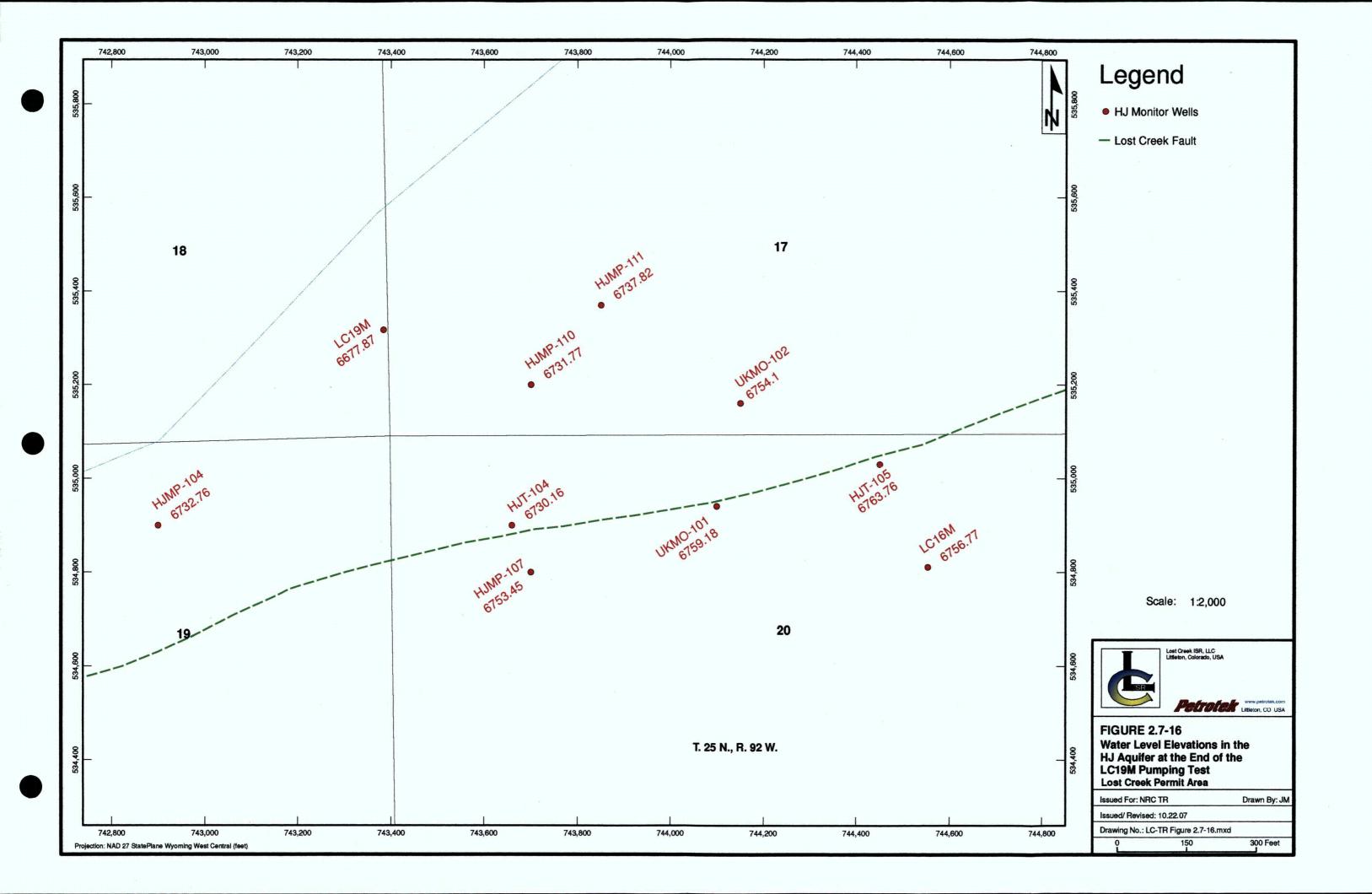


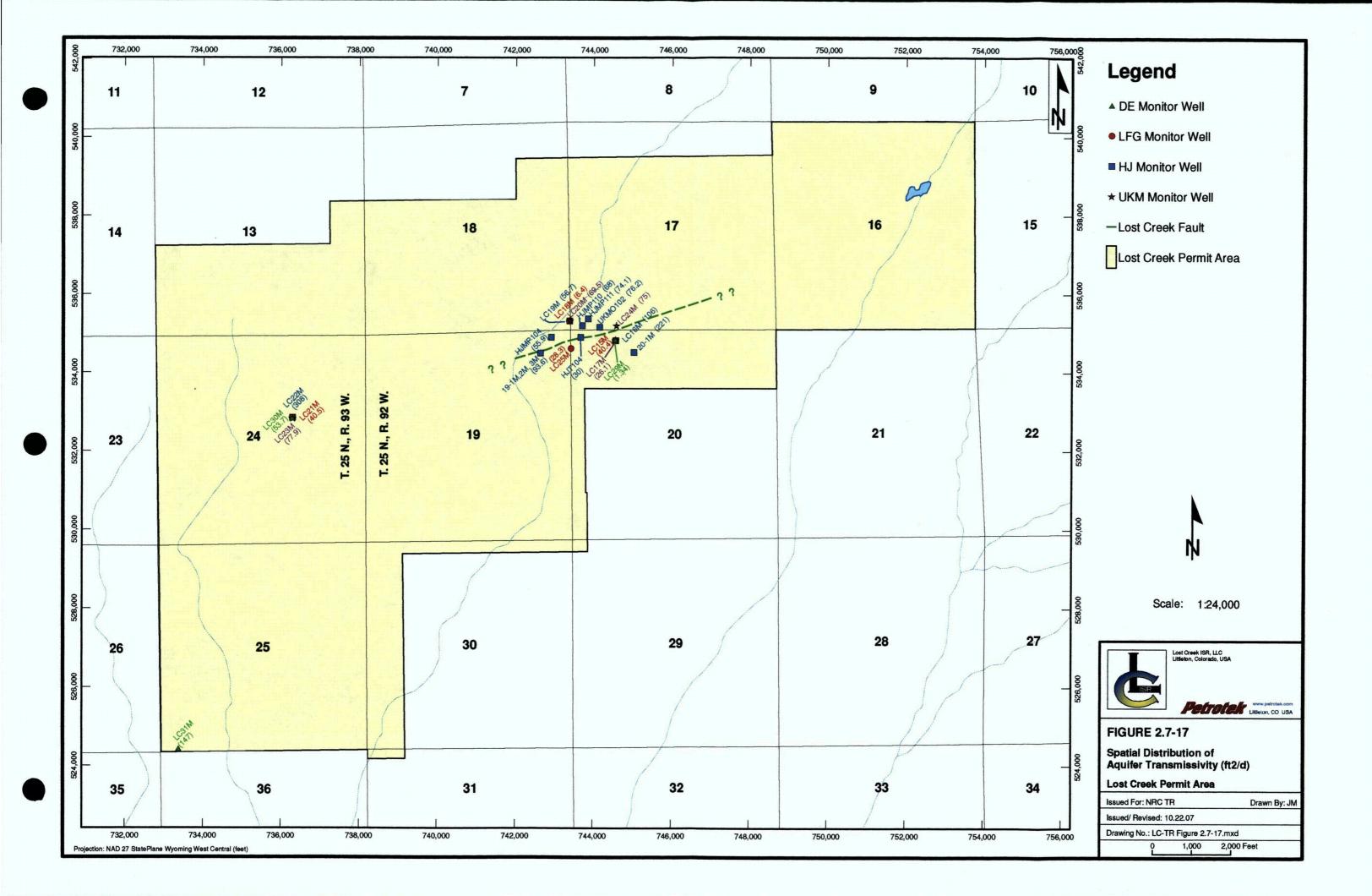


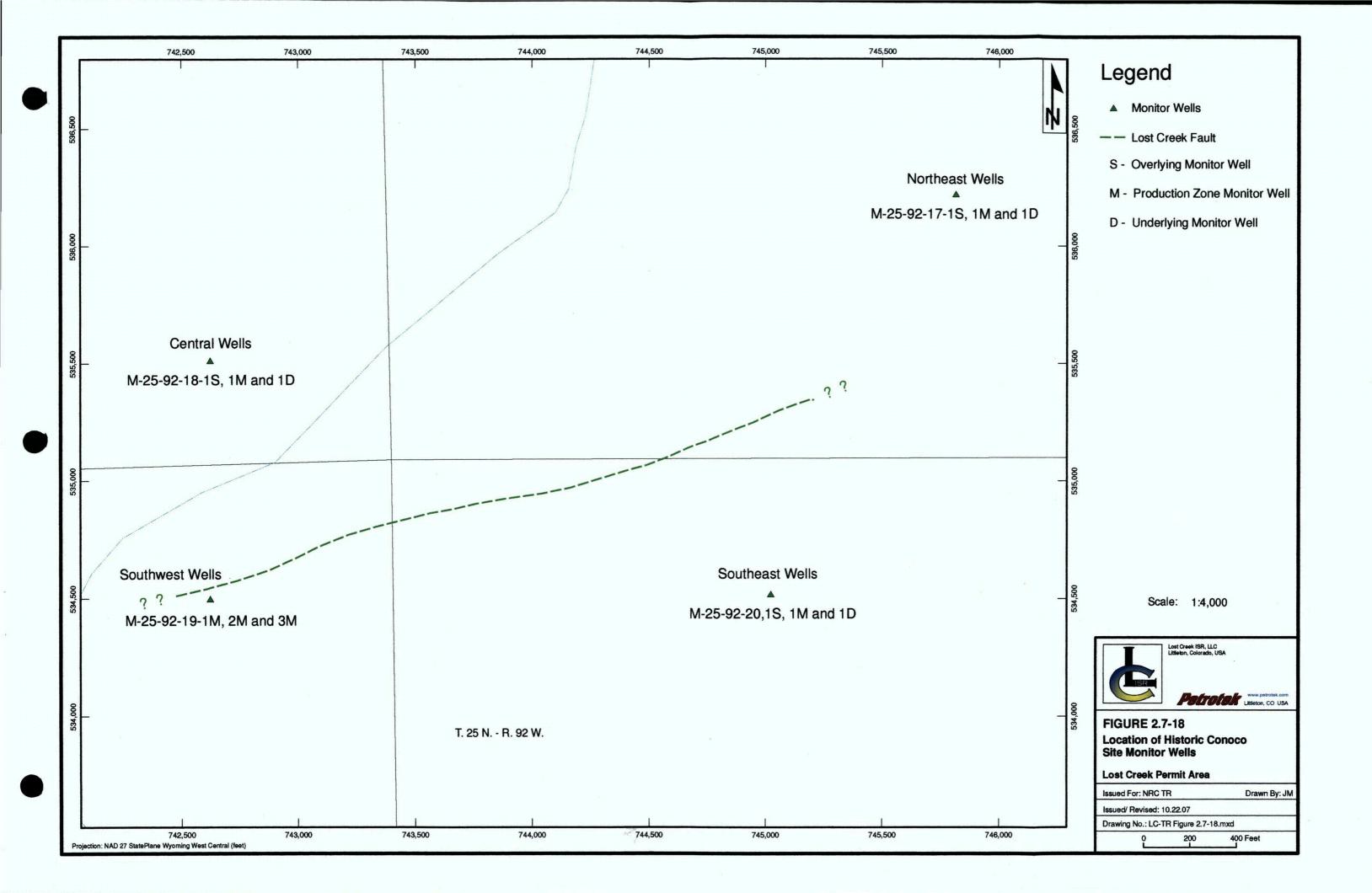


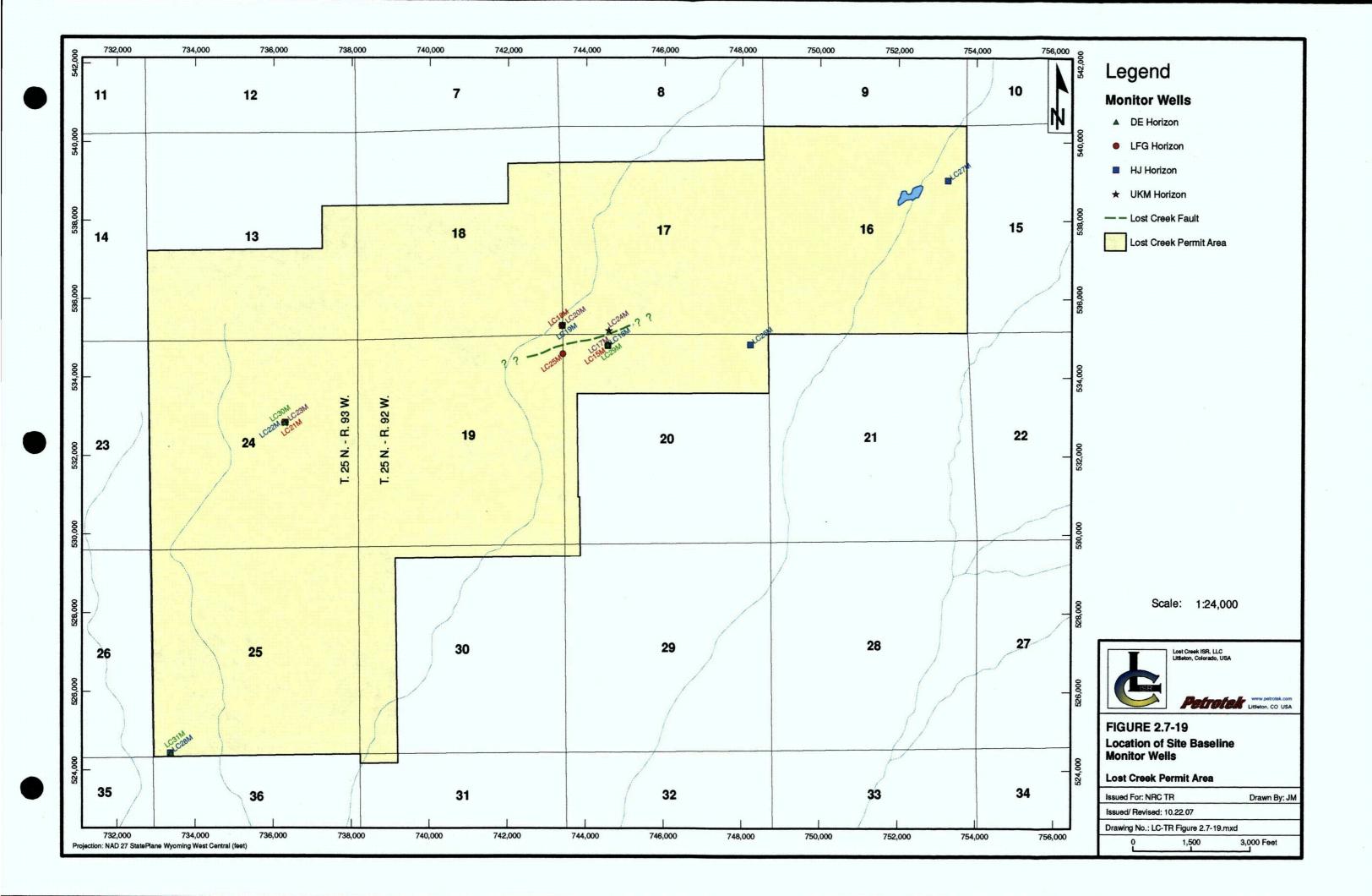




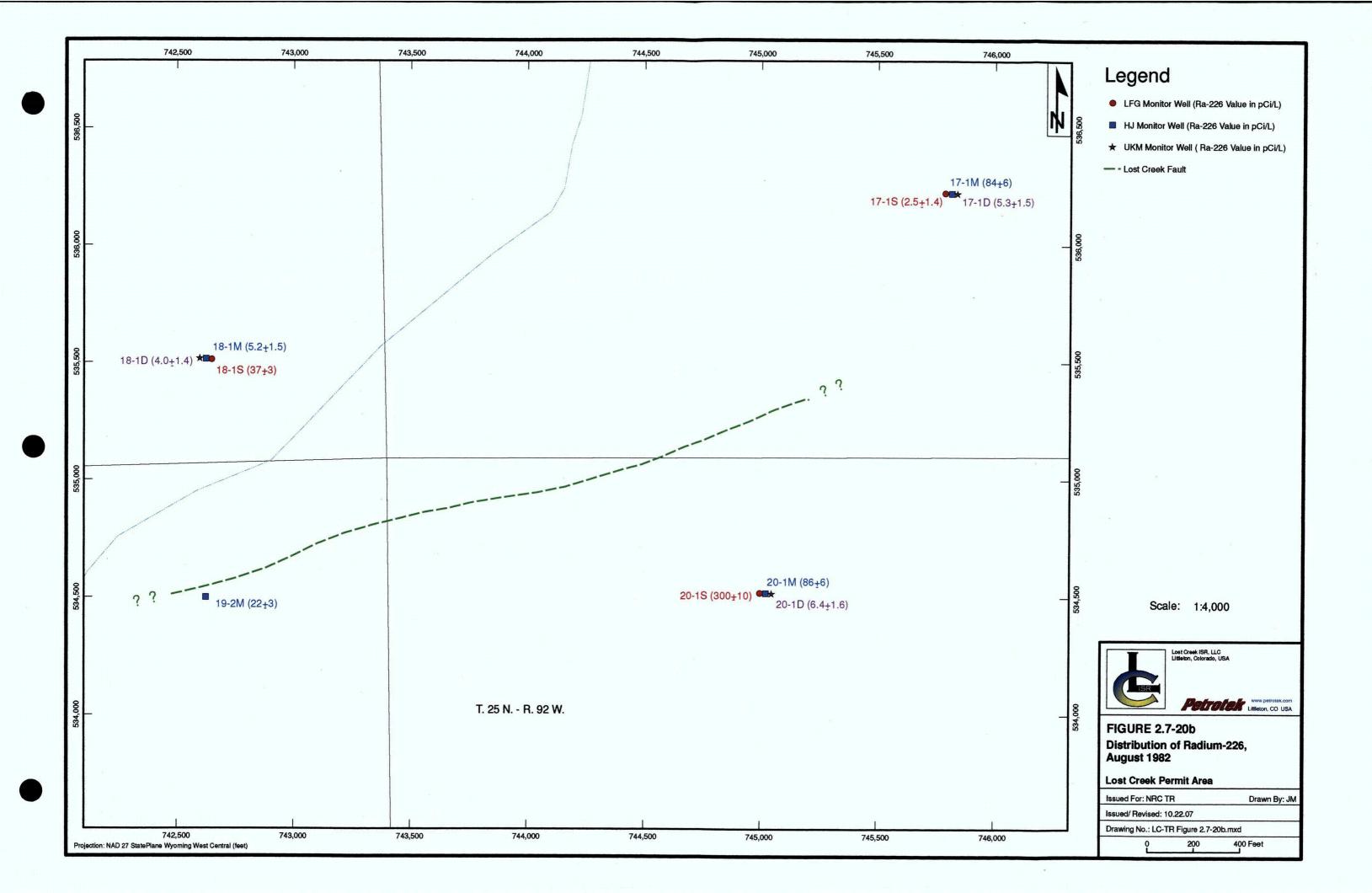


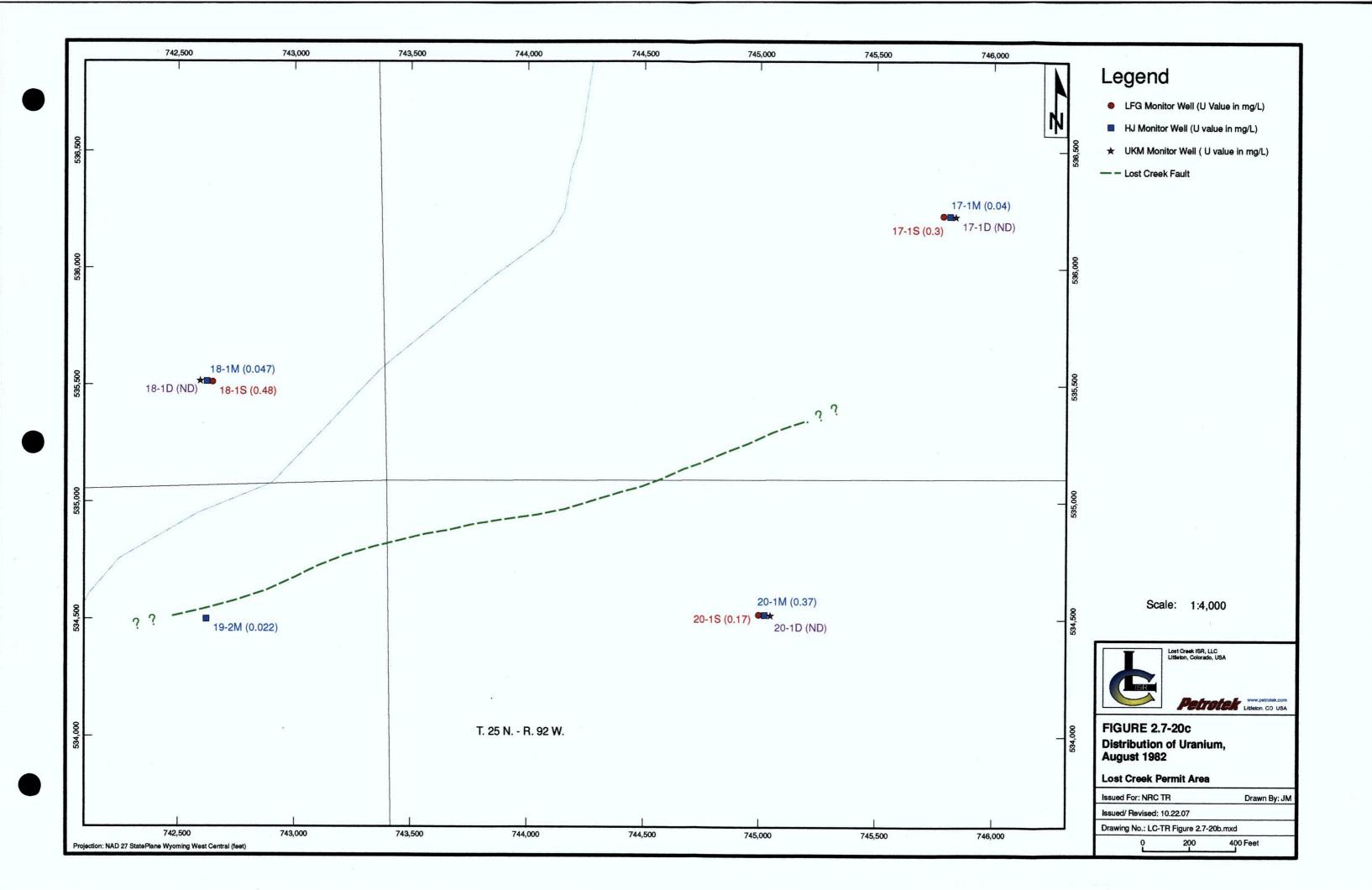


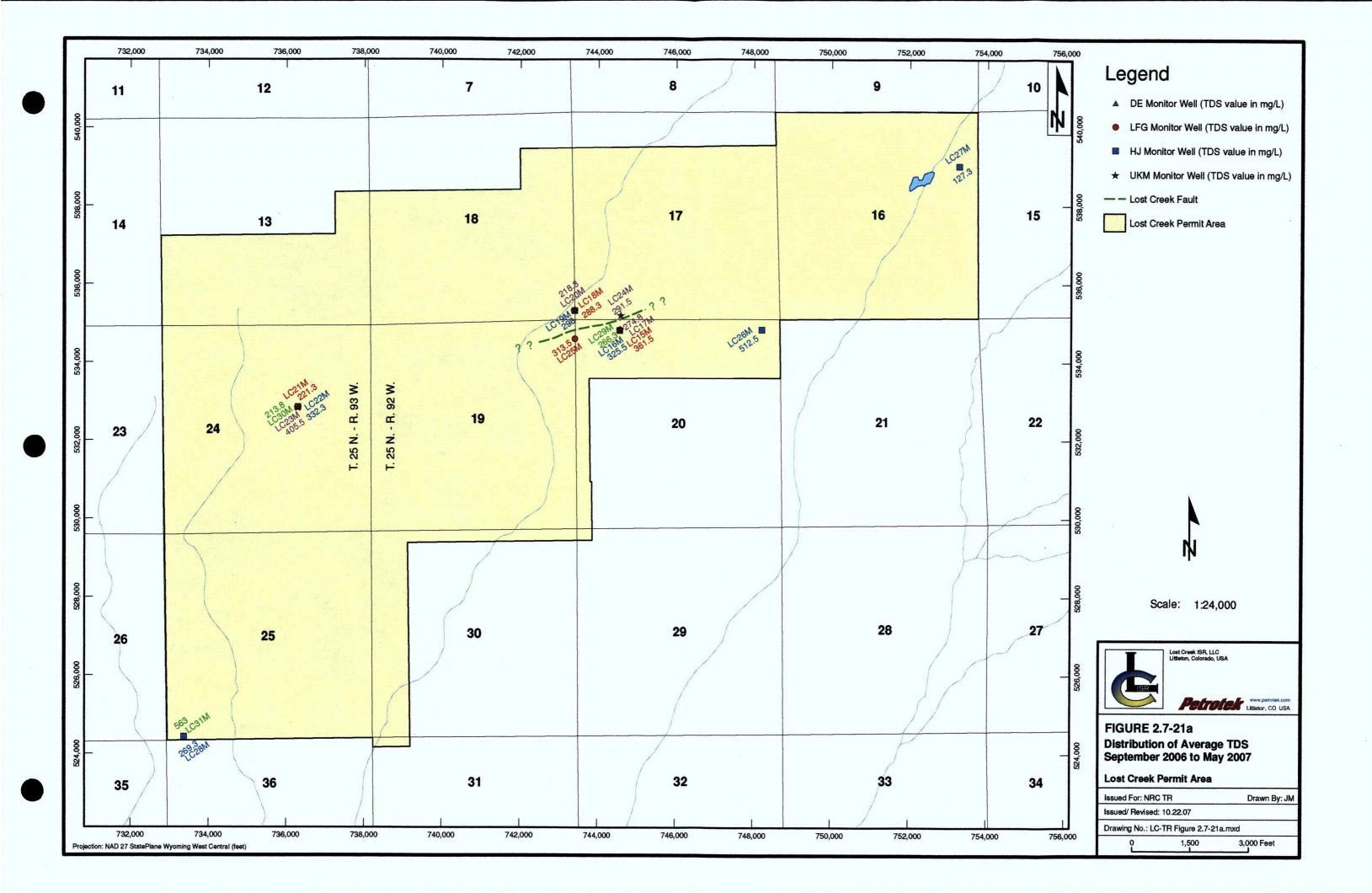


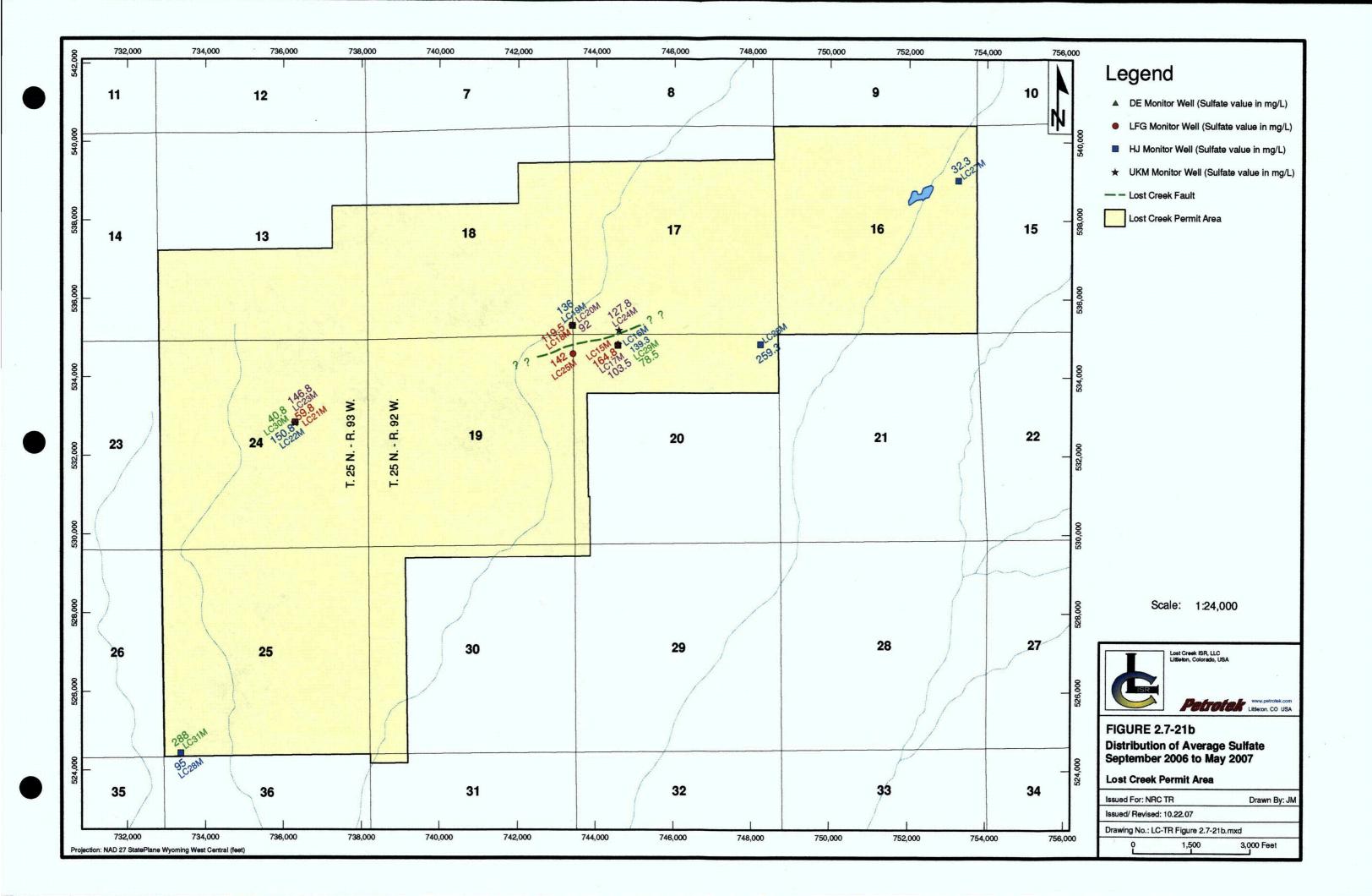


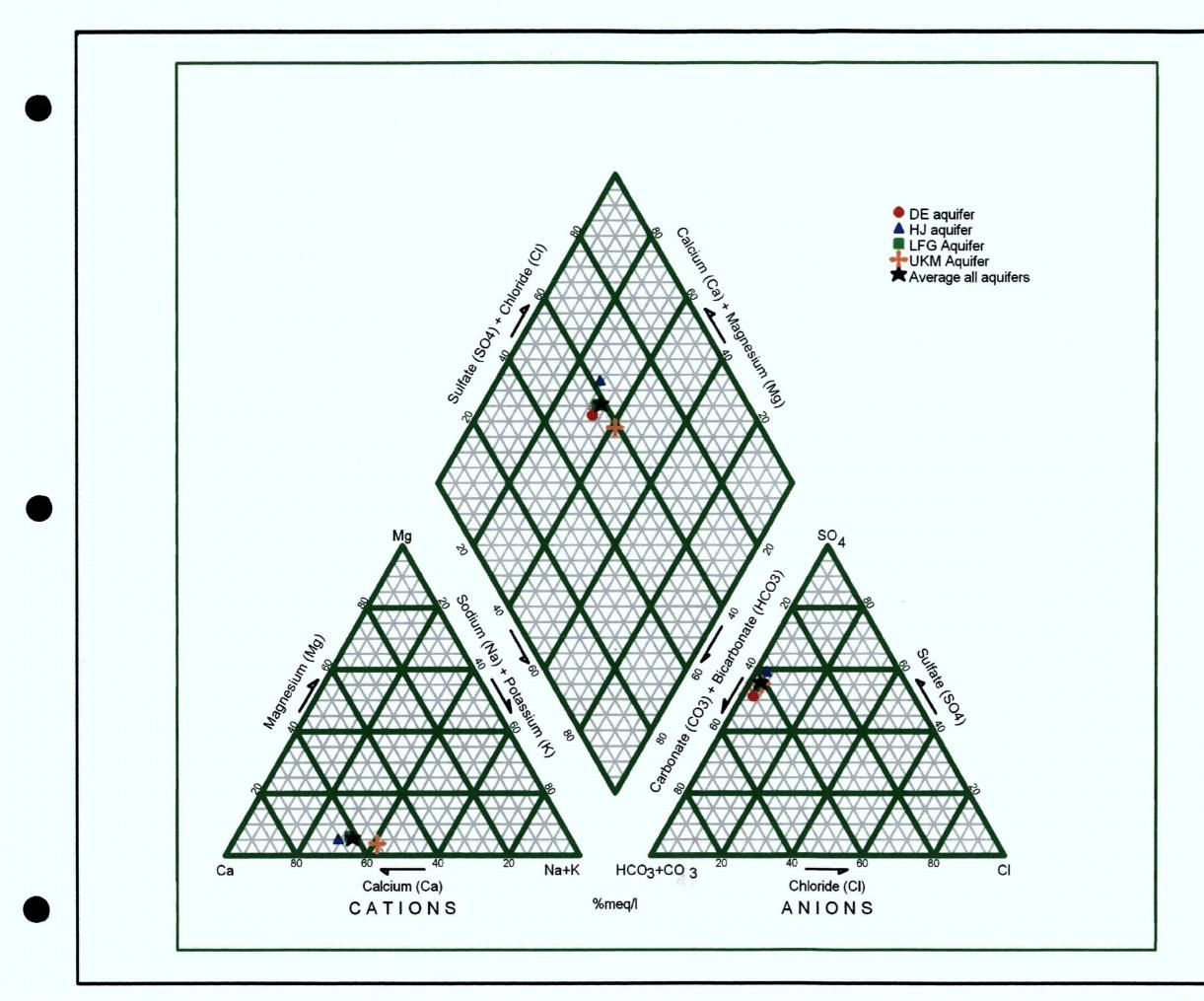




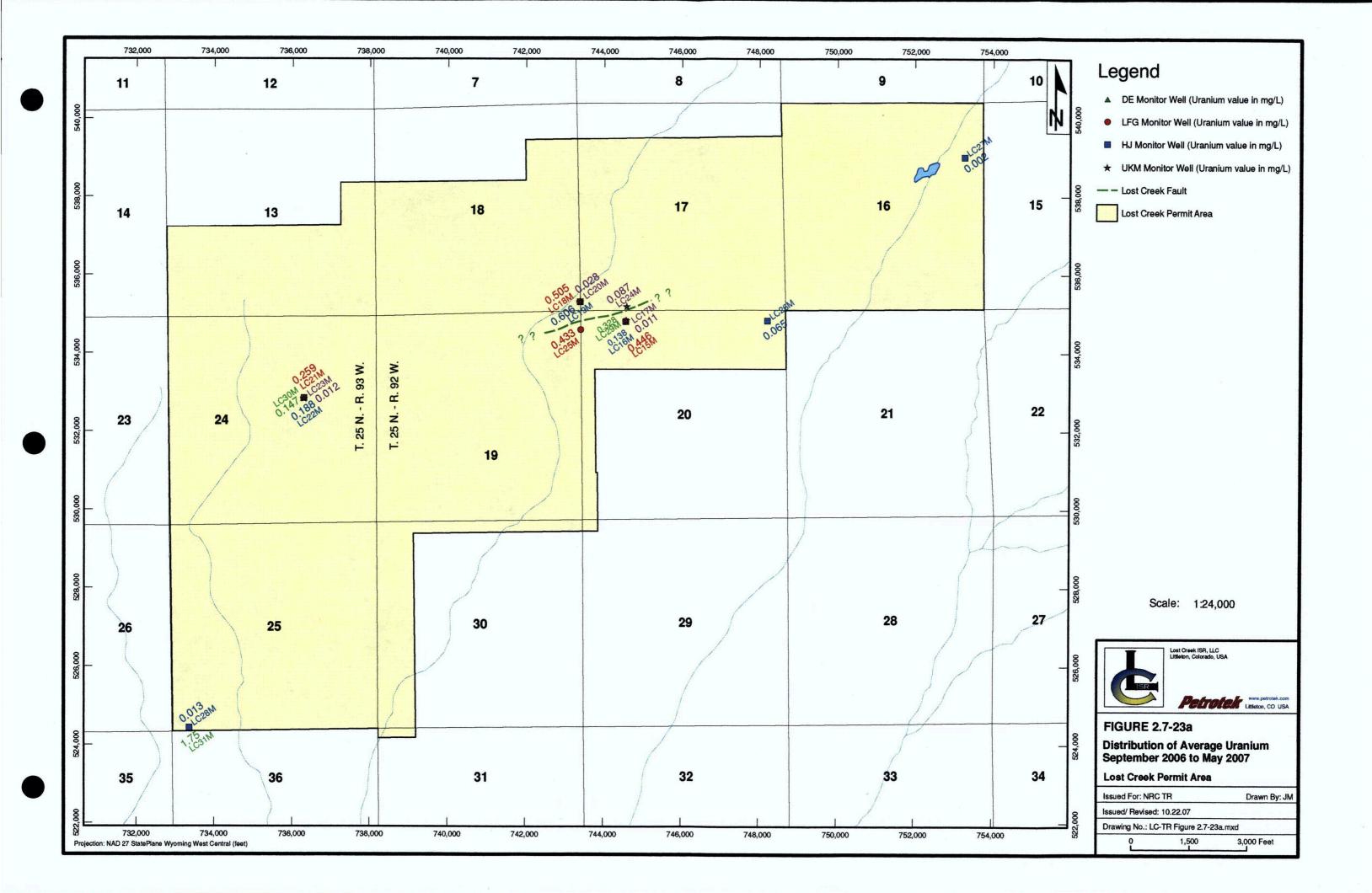












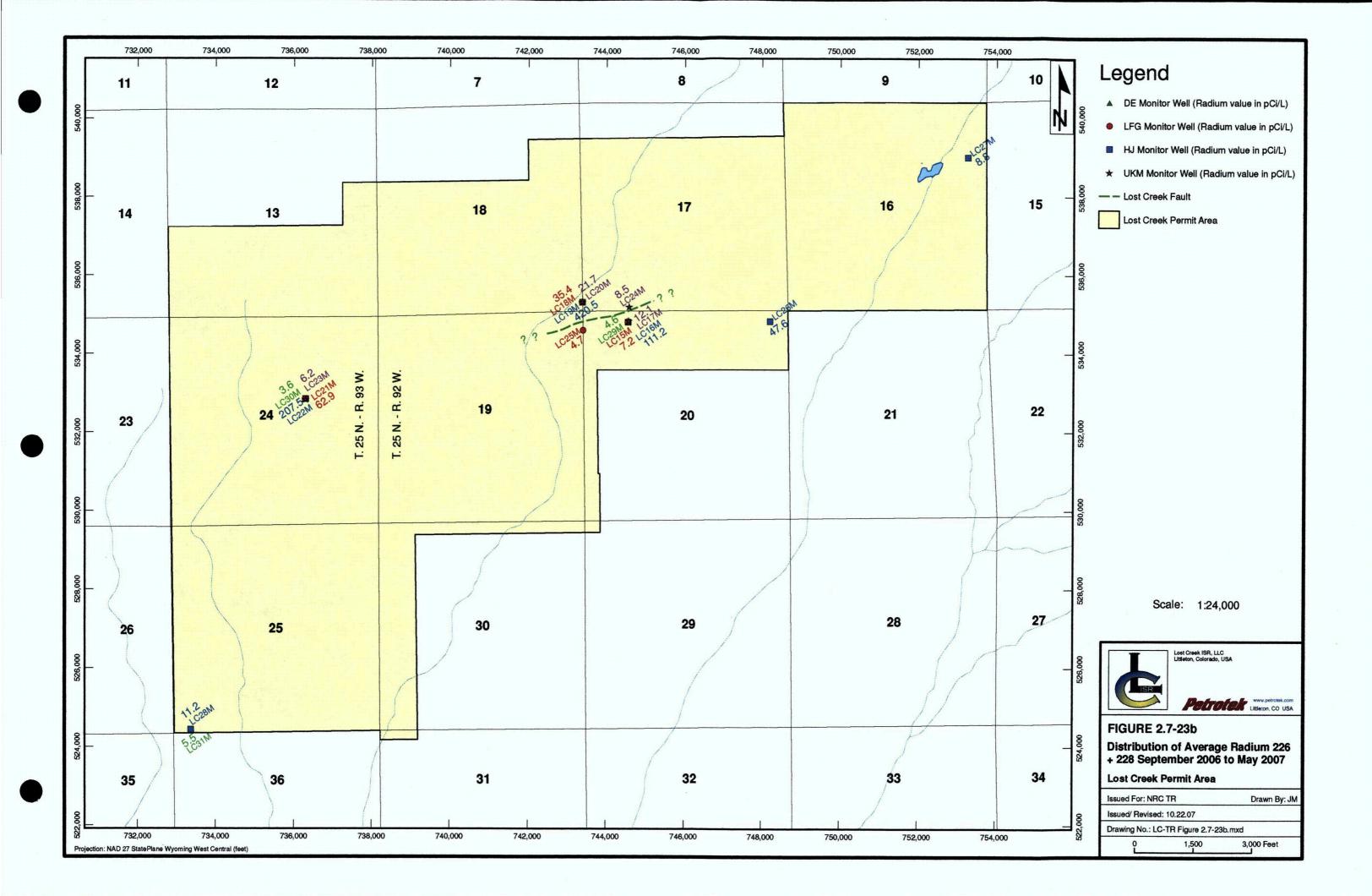


Table 2.7-1 Peak Flow Regression Equations

	. ·		Average equivalent	•	prediction I factor
Equation	SE _E {percent}	SEp (percent)	years of record	Lower limit	Upper limit
$Q_{1.5} = 12.7(AREA^{0.626})((LAT-40)^{-1.18})$	66	- 72	3.2	0.266	3.76
$Q_2 = 22.2(AREA^{0.608})((LAT-40)^{-1.24})$	60	. 66	3.2	.29 2	3.43
$\mathcal{Q}_{2.33} = 28.1(AREA^{0.600})((LAT-40)^{-1.26})$	59	64	3.3	.301	3.32
$Q_5 = 66.4(AREA^{0.567})((LAT-40)^{-1.35})$	53	59	4.7	.328	3.05
$Q_{10} = 116(AREA^{0.544})((LAT-40)^{-1.40})$	52	57	6.4	.336	2.98
$Q_{25} = 204(AREA^{0.520})((LAT-40)^{-1.44})$	52	58	8:5	.331	3.02
$2_{50} = 290(AREA^{0.504})((LAT-40)^{-1.46})$	53	60	9.7	.320	3.13
$Q_{100} = 394(AREA^{0.489})((LAT-40)^{-1.47})$	56	63	10.4	_304	3.29
$2_{200} = 519(AREA^{0.476})((LAT-40)^{-1.48})$	59	67	10.9	.286	3.49
$Q_{500} = 719(AREA^{0.459})((LAT-40)^{-1.49})$	64	73	11.1	.261	3.83

 SE_{g} =average standard error of estimate; SE_{P} =average standard error of prediction; Q_{T} =estimated peak flow (cfs) for the recurrence interval of T years; AREA=total drainage area (mi²); LAT=latitude of basic outlet location in decimal degrees.

Basin	Drainage Area (mi ²)	Latitude (Decimal deg.)	2-Year (cfs)	5-Year (cfs)	10-Year (cfs)		50-Year (cfs)	100-Year (cfs)
Battle Spring Draw	4.9	42.1	22.9	59.1	95.9	157.4	214.8	282.8

Table 2.7-2Calculated Peak Flows for Battle Spring Draw

			Battle Spring			
Sample Date	July 18-20, 1974	April 29, 1975	June 20-23, 1975	August 21-28, 1975	October 3-6, 1975	July 30, 1976
Sodium (mg/L)	116					
Potassium (mg/L)	8					
Calcium (mg/L)	23	•				
Magnesium (mg/L)	5					
Sulfate (mg/L)	130					
Chloride (mg/L)	18			•	· · · · · · · · · · · · · · · · · · ·	•
Carbonate (mg/L)	0			/		· .
Bicarbonate (mg/L)	220				· · · · · · · · · · · · · · · · · · ·	
TDS (mg/L)	276					
pH (SU)	9.5					
Gross Alpha (pCi/L)				156 ± 34		
Gross Beta (pCi/L)				90.3 ± 8.8	- Co.	
Th-230 (pCi/L)				3.34 ± 0.43		
Ra-226 (pCi/L)				33.5 ± 1.1		
Sr-90 (pCi/L)				1.5 ± 0.6		
Uranium (mg/L)	0.006	0.153	0.153	0.289	0.95	0.5

Table 2.7-3Historic Water Quality Results for Battle Spring from the Sweetwater Mill Permit Application *

* (Shepherd and Miller, 1994)

			Sample ID:	1.Ci	LC2	LC4	LC5	LC10	LC11	LC12
			Lab ID	C07040912-001	C07040912-002	C07040912-003	C07040912-004	C07040912-005	C07040912-006	C07040912-007
Laboratory An	alvsis Report -	UR Energy Pr	pject Sample Matrix	Stormwater	Stormwater	Stormwater	Stormwater	Stormwater	Stormwater	Stormwater
	1.00		Sample Date	4/17/2007	4/17/2007	c4/17/2007	4/17/2007	4/17/2007	4/17/2007	4/17/2007
			Report Date:	6/5/2007	6/5/2007	6/5/2007	6/5/2007	6/5/2007	6/5/2007	6/5/2007
	I			· · ·						
Major lons-Dissolved		Units	Detection Limit	Results	Results	Results	Results	Results	Results	Results
Calcium	Ca	mg/L	1.0	2.8	5,6	3.3	5.5	3.3	5.2	7.4
Magnesium	Mg	mg/L	1.0	0.9	1.5	0.9	1.6	0.6	1.3	1
Sodium	Na	mg/L	1.0	1.1	1.1	0.8	1.2	1.4	1	1
Patassium	К	mg/L	1.0	4.1	. 6.2	5	7.8	8.4	9.4	3.4
Carbonate	CO3	mg/L	1.0	<]	<1	<]	<1	· <1	<1	<1
Bicarbonate	HCO,	mg/L	1.0	12	27	17	30	29	15	24
Sulfate	SO4	mg/L	1.0	3	3	3	5	13	6	· 6
Chloride	CL	mg/L	1.0	2	1	1	2	1	2	<1
Ammonia as N	NH3	mg/L	0.05	0.46	0.6 .	0.55	1.11	8.7	0.86	0.41
Nitrite as N	NO ₂	mg/L	0.10	<0.1	<0.1	<0.1	. <0.1	0.3	0.2	<0.1
Nitrite + Nitrate as N	NO ₂ +NO ₃	mg/L	0,10	0.3	0.3	0.3	<0.1	0.7	0.6	0.9
Fluoride	F	mg/L	0,10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Silica	SiO ₂	mg/L	1,0	6.9	9.9	7.1	14.5	0.9	1.1	3.9
Trace Metals-Dissolved				C		1	i na se			
Aluminum	Al	mg/L	0,10	0:3	0.7	0.6	0.6	<0.1	0.2	0.7
Arsenic	As	mg/L	0.001	0.002	0,003	0.002	0.006	0.002	0.002	0.001
Barium	Ba	mg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Boron	В	mg/L	0,10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Cadmium	Cd	mg/L	0.005	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chromium	Cr	mg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Copper	Cu	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Iron	Fe	mg/L	0.05	0.66	0.76	0.66	1.26	0.04	0.17	0.35
Lead	Pb	mg/L	0.001	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese	Mn	mg/L	0.01	0.03	0.01	0.07	0.4	0.07	0.13	0.04
Mercury	Hg	mg/L	0,001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Molybdenum	Mo	mg/L	0.10	<0.1	. <0.1	<0.1	<0.1	<0,1	<0.1	<0.1
Nickel	Ni	mg/L	0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Selenium	Se	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.004	<0.001
Silver	Ag	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	v	mg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Zinc	Zn	mg/L	0.01	0.07	0.04	0.05	0.03	0.22	0,13	0.08

Table 2.7-4 Water Quality Results for Seven Stormwater/Spring Snowmelt Samples Collected on 17 April 2007 (Page 1 of 3)

			Sample ID;	LCI	LC2	LC4	LC5	LC10	LC11	LC12
			LabiD	C07040912-001	C07040912-002	C07040912-003	C07040912-004	C07040912-005	C07040912-006	C07040912-007
Laboratory	Analysis Report -	UR Energy Pro	ject Sample Matrix.	Stormwater	Stormwater	Stormwater	Stormwater	Stormwater	Stormwater	Stormwater
			Sample Date	4/17/2007	4/17/2007	4/17/2007	4/17/2007	4/17/2007	4/17/2007	4/17/2007
			Report Date:	6/5/2007	6/5/2007	6/5/2007	6/5/2007	6/5/2007	6/5/2007	6/5/2007
							· . ·			
								2007 - 10 C 200 C 20		
Major lons-Dissolved		Units	Detection Limit	Results	Results	Results			Results	Results
Trace Metals-Total		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	2000						T	
Aluminum	Al	mg/L	0.10	0.5	1.4	1.6	2.7	0.1	0.3	0.8
Arsenic	As	mg/L	0.001	0.001	0.002	<0.001	0.004	<0.001	<0.001	<0.001
Barium	Ba	mg/L	0.10	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1
Boron	В	mg/L	0.10	0.6	. 1	0.8	0.4	0.7	0.8	1.2
Cadmium	Cd	mg/L	0.005	<0.01	<0.01	<0.01	<0.01	. <0.01	<0.01	<0.01
Chromium	Cr	mg/L	0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
Copper	Cu	mg/L	0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Iron	Fe	mg/L	0.05	0.24	0.54	0.29	1.83	0.06	0.21	0.17
Lead	Pb	mg/L	0.001	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Manganese	Mn	mg/L	0.01	0.04	0.13	0.08	1.45	0.06	0.13	0.03
Mercury	Hg	mg/L	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Molybdenum	Mo	mg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	Ni	mg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Selenium	Se	mg/L	0.001	0.001	<0.001	0.001	<0.001	<0.001	<0.001	· <0.001
Silver	Ag	mg/L	0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Vanadium	V	mg/L	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Zinc	Zn	mg/L	0.01	0.06	0.03	0.05	0.08	0.22	0.13	0.09

Table 2.7-4 Water Quality Results for Seven Stormwater/Spring Snowmelt Samples Collected on 17 April 2007 (Page 2 of 3)

			Sample ID:	LCI	LC2	LC4	LC5	LC10	LCI1	LC12
			Lab ID:	C07040912-001	C07040912-002	C070409124003	C07040912-004	C07040912-005*	C07040912-006	C07040912-007
Laboratory An	niysis Report -	UR Energy Pr	oject Sample Matrix:	Stormwater.	Stormwater	Stormwater	Stormwater	Stormwater	Stormwater	Stormwater
			Sample Date:	4/17/2007	4/17/2007	4/17/2007	4/17/2007	4/17/2007	4/17/2007	4/17/2007
			Report Date:	6/5/2007	6/5/2007	6/5/2007	6/5/2007	6/5/2007	6/5/2007	6/5/2007
Radiometric-Dissolved										
Uranium	NatU	mg/L	0.0003	<0.0003	0.0004	<0.0003	0.0003	<0.0003	< 0.0004	< 0.0003
Lead 210	Pb	pCi/L	2.2	<2.4	<2.2	<2.2	<2.5	<2.2	<2.3	<2.2
Polonium 210	Po	pCi/L	2.2	<2.4	<2.2	<2.2	<2.5	<2.2	<2.3	<2.2
Thorium230	Th	pCi/L	0.4	<0.5	<0.4	<0.4	<0.5	<0.4	<0.5	<0.4
Radiometric-Suspended										74
Uranium	NatU	mg/L	0.0003	<0,0003	0.0005	<0.0003	0.0006	<0.0003	< 0.0003	< 0.0003
Lead 210	Pb	pCi/L	1.	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Polonium 210	Po	pCi/L	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Thorium230	Th	pCi/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
226Radium	226Ra	pCi/L	0.2	<0.2	<0,2	<0.2	<0.2	<0.2	<0.2	<0.2
Radiometric-Total -								1		
Uranium	NatU	mg/L	0.0003	0.0003	0.0008	0.0003	0.0009	< 0.0003	< 0.0003	<0.0003
226Radium	NatU	pCi/L	0.2	<0.2	0.5	<0.2	<0.2	<0.2	<0.2	<0.2
228Radium	NatU	pCi/L	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Gross Alpha minus Rn & U	226Ra	pCi/L	1	1.3	3.6	1.4	2.6	1.2	<1.0	1,1
Gross Beta	a	pCi/L	2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Quality Assurance Data			Target Range					11. A		
Anion	-	meq/L		0.355	0.571	0.377	0.655	0.823	0.486	0.609
Cation	-	meq/L		0.462	0.766	0.537	0.881	1,12	0.748	0.698
WYDEQ A/C Balance	-	%	-5 to +5	- 13	14.6	17.4	14.7	15.2	21,3	6.82
Calc TDS	-	mg/L		29 .	43	30	52	46	37	40
Non-Metals										
pH	S.U	std. units	0.01	7.1	6.86	6.66	6.83	7.12	6,41	6.39
Conductivity	Cond.	µmho/cm	1.0	36.4	57.3	40.5	64.5	100	66.4	62.6
Total Suspended Solids @ 105°C	TSS	mg/L	1.0 .	36	422	24	5280	4	14	9
Alkalinity as CaCO3	Alk.	mg/L	1.0	10	22	14	25	24	12	20

~

.

Water Quality Results for Seven Stormwater/Spring Snowmelt Samples Collected on 17 April 2007 (Page 3 of 3) Table 2.7-4

Table 2.7-5Monitor Well Data

Well ID	Easting	Northing	Completion Zone	Ground Surface Elevation	Measure Point Elevation	Total Depth	Top Under- Reamed Interval	Bottom Under- Reamed Interval	Total Under- Reamed Thickness
	(feet)	(feet)	(feet)	(ft amsl)	(ft amsl)	(ft bgs)	(ft bgs)	(ft bgs)	(feet)
LC29M	744547	534837	DE	6935.11	6936.86	171	140	164	24
LC30M	736276	532836	DE	6925.10	6927.40	236	196	236	40
LC31M	733380	524434	DE	6856.52	6805.83	191	150	190	40
LC15M	744546	534823	LFG	6934.72	6936.57	350	286	340	54
LC18M	743368	535316	LFG	6948.43	6949.03	350	290	332	42
LC21M	736277	532850	LFG	-	6927.13	410	375	398	23
LC25M	743397	534601	LFG	6935.00	6936.52	380	316 ·	369	53
JJMP-104	742900	534900	НЈ	6939.76	6941.01	430	405	430	25
HJMP-107	743700	534800	HJ	6937.13	6938.40	464	443	460	17
HJMP-110	743700	535200	HJ	6945.95	6947.14	476	430	475	45
HJMP-111	743850	535370	HJ	6948.98	6950.32	440	395	440	45
JJT-104	743660	534900	ш	6938.78	6940.11	460	413	463	50
LC16M	744553	534811	HJ	6934.76	6936.38	472	410	467	57
LC19M	743383	535317	HJ	6949.32	6950.52	463	412	463	51
.C22M	736292	532850	HJ	6924.91	6926.06	592	504	585	81
_C26M	748203	534832	HJ	6952.96	6955.67	436	376	431	55
LC27M	753260	539018	HJ HJ	7010.00	7012.16	477	433 502	456	23 55
LC28M	733364	524437	HJ	7804.15	6805.19	563	502	557	22
LC17M	744562	534840	UKM	6935.13	6936.87	575	529	565	36
_C20M	743383	535331	UKM	6949.27	6950.64	543	511	543	32
LC23M	736292	532835	UKM	6924.41	6926.80	634	595	630	35
JKMP-101	744100	534930	UKM	6940.26	6941.75	575	540	572	32
JKMP-102	744150	535150	UKM	6940.87	6942.03	498	485	505	20
LC24M	744580	535203	UKM	6942.76	6944.63	542	478	531	53
Conoco Wells					·				
4-25-92-17-1S	745785	536224	LFG	UNK ¹	6966.20	UNK.	UNK	UNK	UNK.
M-25-92-18-1S	742648	535513	LFG	UNK	6939.30	UNK	UNK	UNK	UNK
M-25-92-20-1S	744998	534521	LFG	UNK	6934.50	UNK	UNK	UNK	UNK
M-25-92-17-1M	745813	536223	НЈ	UNK	6966.70	UNK	UNK	UNK	UNK
M-25-92-18-1M	742623	535515	HJ ·	ŲNK.	6940.00	UNK	UNK	UNK	UNK
M-25-92-20-1M	745023	534520	HJ ·	UNK	6934.90	UNK	UNK	UNK	UNK
M-25-92-19-1M	742622	534524	НJ	UNK	6926.10	UNK	UNK	UNK	UNK
M-25-92-19-2M	742623	534500	HJ	UNK	6925.50	UNK	UNK	UNK	UNK
M-25-92-19-3M	742623	534474	HJ	UNK	6923.90	UNK	UNK	UNK	UNK
M-25-92-17-1D	745837	536222	UKM	UNK.	6967.40	UNK	UNK	UNK	UNK
M-25-92-18-1D	742596	535517	UKM	UNK	6938.70	UNK	UNK	UNK	UNK
M-25-92-20-1D	745048	534519	UKM	UNK	6935.00	UNK	UNK	UNK	UNK

(-) Ongoing well installation, data provided when becomes available

Table 2.7-6 Water Level Data

· Well ID	Completion Zone	Measure Point Elevation (ft amsl)	DTW ¹ 8/18/82 (ft bgs)	WL Elev ² 8/18/82 (ft amsl)	DTW 10/25/06 (ft bgs)	WL Elev 10/25/06 (ft amsl)	DTW 2/28/07 (ft bgs)	WL Elev 2/28/07 (ft amsl)	DTW 6/27/07 (ft bgs)	WL Elev 6/27/07 (ft amsl)
M-25-92-17-1D	UKM	6,967.40	#	6,761.60	-					-
M-25-92-17-1M	нл	6,966.70	Ħ	6,781.80	-	-	_	-	· -	-
M-25-92-17-1S	LFG	6,966.20	Ħ	6,792.90		-	-	-	_	-
M-25-92-18-1D	UKM	6,938.70	. #	6,740.60	-		-		-	-
M-25-92-18-1M	НЈ	6,940.00	Ħ	6,770.80		_				
M-25-92-18-1M	LFG		#	6,778.00						
		6,939.30	#	,	-		-	-	-	
M-25-92-19-1M	HJ	6,926.10	#	6,749.80		<u>.</u>	·			
M-25-92-19-2M	HJ	6,925.50		6,745.50		-	-	-		-
M-25-92-19-3M	HJ	6,923.90	.#	6,745.70						-
M-25-92-20-1D	UKM	6,935.00	#	6,751.80	-	-	-	-	-	-
M-25-92-20-1M	НJ	6,934.90	#	6,758.90	-	-	-	-	-	-
M-25-92-20-1S	LFG	6,934.50	#	6,776.40	-	-	-	-	-	-
LC15M	LFG	6,936.57	-	-	160.34	6,776.23	160.80	6,775.77	-	
LC16M	HJ	6,936.38	-	-	178.79	6,757.59	178.62	6,757.76	178.14	6,758.24
LC17M	UKM	6,936.87	-	-	185.34	6,751.53	185.26	6,751.61		
LC18M	LFG	6,949.03	-	-	167.32	6,781.71	165.15	6,783.88	168.04	6,780.99
LC19M	HJ	6,950.52	-	-	179.05	6,771.47	179.15	6,771.37 ,	180.08	6,770.44
LC20M	UKM	6,950.64	-	-	202.84	6,747.80	203.35	6,747.29	202.36	6,748.28
LC21M	LFG	6,927.13	-	-	199.05	6,728.08	198.20	6,728.93	-	-
LC22M	HJ	6,926.06	-	-	206.66	6,719.40	206.73	6,719.33		-
LC23M	UKM	6,926.80	-	-	220.33	6,706.47	220.75	6,706.05		-
LC24M	UKM	6,944.63	-	-	-	-	192.11	6,752.52	-	-
LC25M	LFG	6,936.52	-	-	165:89	6,770.63	169.01	6,767.51	167.05	6,769.47
LC26M	Hl	6,955.67	÷	-	-	-	171.10	6,784.57	-	· -
LC27M	HJ	7,012.16	-	-		-	189.80	6,822.36	-	- 1
LC28M	НЈ	6,805.19	-	-	-	-	154.45	6,650.74	-	•
LC29M	DE	6,936.86	-	~ <u>-</u>	153.75	6,783.11	153.95	6,782.91	-	-
LC30M	DE	6,927.40	-	-	199.02	6,728.38	198.91	6,728.49	-	-
LC31M	DE	6,805.83	-	- '	-	-	144.01	6,661.82	-	-
HJMP-104	HJ	6,941.01	-	-	-	•. •	. ~ .	-	171.81	6,769.20
HJMP-107	HJ	6,938.40		-					183.61	6,754.79
HJMP-110 HJMP-111	HI	6,947.14 6,950.32	-	-	-			· -	174.89	6,772.25 6,773.38
HJT-104		6,930.32		-			<u> </u>		1/6.94	6,770.60
UKMP-101	UKM	6,941.75	-	-	-	-			192.13	6,749.62
UKMP-102	UKM	6,942.03	-	-					190.68	6,751.35

¹ DTW = depth to water ² WL Elev = water level elevation ⁴ values not provided in Hydro-Search Inc 1982 report - water level not measured

Well Pair	Easting	Northing	Water Level Elevation	Distance Between Wells	Head Difference	Hydraulic Gradient	Description (Aquifer, Location and Date)
	(feet)	(feet)	(ft amsl)	(feet)	(feet)	(ft/ft)	
· · ·							· .
LC16M	744553	534811	6757.59	8490.6	38.19	0.0045	HJ Aquifer-South Side of Fault 2006
LC22M	736292	532850	6719.40				
M-25-92-17-1M	745813	536223	6781.80	3267.9	11.00	0.0034	HJ Aquifer-North Side of Fault 1982
M-25-92-18-1M	742623	535515	6770.80	5207.5			
		50.1500	<u></u>	0 100 0	10.10	0.0056	
M-25-92-20-1M	745023	534520	6758.90	2400.8	13.40	0.0056	HJ Aquifer-South Side of Fault 1982
M-25-92-19-2M	742623	534500	6745.50				
M-25-92-20-1M	745023	534520	6758.90	2400.8	9.10	0.0038	HJ Aquifer-South Side of Fault 1982
M-25-92-19-1M	742622	534524	6749.80				
LC16M	744553	534811	6758.24	853.1	3.45	0.0040	HJ Aquifer-South Side of Fault 2007
НЈМР-107	743700	534800	6754.79				
HJMP-111	743850	535370	6773.38	1059.9	4.18	0.0039	HJ Aquifer-North Side of Fault 2007
HJMP-104	742900	534900	6769.20				
M-25-92-17-18	745785	536224	6792.90	3216.8	14.90	0.0046	LFG Aquifer-North Side of Fault 1982
M-25-92-18-18	742648	535513	6778.00	····			
		<u> </u>		· · · · · · · · · · · · · · · · · · ·		L	L

Table 2.7-7Horizontal Hydraulic Gradients (Page 1 of 2)

Well Pair	Easting	Northing	Water Level Elevation	Distance Between Wells	Head Difference	Hydraulic Gradient	Description (Aquifer, Location and Date)
·····	(feet)	(feet)	(ft amsl)	(feet)	(feet)	(ft/ft)	
LC15M	744546	534823	6776.23	1170.2	5.60	0.0048	LFG Aquifer-South Side of Fault 2006
LC25M	743397	534601	6770.63		· · · · · · · · · · · · · · · · · · ·		
LC15M	744546	534823	6776.23	8501.1	48.15	0.0057	LFG Aquifer-South Side of Fault 2006
LC21M	736277	532850	6728.08				
LC25M	743397	534601	6770.63	7332.1	42.55	0.0058	LFG Aquifer-South Side of Fault 2006
LC21M	736277	532850	6728.08				·
M-25-92-17-1D	745837	536222	6761.60	3317.3	21.00	0.0063	UKM Aquifer-North Side of Fault 1982
M-25-92-18-1D	742596	535517	6740.60				
LC17M	744562	534840	6751.53	8509.6	45.06	0.0053	UKM Aquifer-South Side of Fault 2006
LC23M	736292	532835	6706.47	-	· · · · · · · · · · · · · · · · · · ·		
LC29M	744547	534837	6783.11	8509.6	54.73	0.0064	DE Aquifer-South Side of Fault 2006
LC30M	736276	532836	6728.38				1

Table 2.7-7Horizontal Hydraulic Gradients (Page 2 of 2)

Weil ID	Easting (feet)	Northing (feet)	Completion Zone	Measure Point Elevation (ft amsl)	Top Under- Reamed Interval (ft bgs)	Bottom Under- Reamed Interval (ft bgs)	Midpoint Under- Reamed Interval (ft bgs)	Date of Measurement	Depth to Water (ft bgs)	Water Level Elevation (ft amsl)	Vertical Hydraulic Gradient (ft/ft)
Central Well Group	(1001)	(reet)	· · · · · ·	(n amsi)	(n bgs)	[(It bgs)]	(it bgs)		(It bgs)		(10/10)
LC18M	743368	535316	LFG	6,949,03	290	332	311	10/25/2006	167.32	6,781,71	
LC19M	743383	535317	НЈ	6,950.52	412	463	438	10/25/2006	179.05	6.771.47	0.08
LC20M	743383	535331	UKM	6,950.64	511	543	527	10/25/2006	202.84	6,747.80	0.26
LC18M	743368	535316	LFG	6,949.03	290	332	311	6/27/2007	168.04	6780.99	
LC19M	743383	535317	HJ	6,950.52	412	463	438	6/27/2007	180.08	6770.44	0.08
LC20M	743383	535331	UKM	6,950.64	511	543	. 527 .	6/27/2007	202.36	6748.28	0.25
East Well Group		· · ·			-			· · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
LC29M	744547	534837	DE	6936.86	140	164	152	10/25/2006	153,75	6,783.11	
LCM15	744546	534823	LFG	6936.57	286	340	313	10/25/2006	160.34	6,776.23	0.04
LCM16	744562	. 534820	НJ	6936.38	410	467	438.5	10/25/2006	178.79	6,757.59	0.15
LCM17	744562	534840	UKM	6936.87	529	565	547	10/25/2006	185.34	6,751.53 .	0.06
West Well Group		•				_		· · · · · · · · · · · · · · · · · · ·			
LC30M	736276	532836	DE	6927.404	196	236	216	10/25/2006	199.02	6,728.38	-
LC21M	736277	532850	LFG	6927.13	375	398	387	10/25/2006	199.05	6,728.08	0.00
LC22M	736292	532850	нı	6926.06	504	585	544.5	10/25/2006	206.66	6,719.40	0.06
LC23M	736292	532835	UKM	6926.8	595	630	612.5	10/25/2006	220,33	6,706.47	0.19
Conoco Northeast W	/ells	•									
M-25-92-17-1S	745785	536224	LFG	6966.2	. #	#	334	8/18/1982	· #	6792.90	-
M-25-92-17-1M	745813	536223	нл	6966.7	Ħ	Ħ	422	8/18/1982	H	6781.80	0.13
M-25-92-17-1D	745837	536222	UKM	6967.4	# .	#	516	8/18/1982	#	6761.60	0.21
Conoco Central Wel	ls					· · · · · · · · · · · · · · · · · · ·				•	
M-25-92-18-1S	742648	535513	LFG	6939.3	# .	#	340	8/18/1982	Ħ	6778.00	• •
M-25-92-18-1M	742623	535515	HJ	· 6940	#	Ħ.	413	8/18/1982	#	6770.80	0.10
M-25-92-18-1D	742596	535517	UKM	6938.7	#	. #	608	8/18/1982	#	6740.60	0.15
Conoco Southeast W	/ells			•							
M-25-92-20-1S	744998	534521	LFG	6934.5	#	-#	341	8/18/1982	#	6776.40	-
M-25-92-20-1M	745023	534520	нл	6934.9	#	Ħ	388	8/18/1982	#	6758.90	0,37
M-25-92-20-1D	745048	534519	UKM	6935	#	#	522	8/18/1982	#	6751.80	0.05

Vertical Hydraulic Gradients **Table 2.7-8**

[#] Values were not reported by HydroSearch, Inc. (1982)
Vertical hydraulic gradient is calculated between middle of underreamed interval in overlying aquifer to middle of underreamed interval in underlying aquifer (a positive number indicates a downward potential)

			Under-	D		N ·		Transm	issivity/A	nalytical	Method			Average	
Well Identification	Completion Zone	Pumping Well	Reamed Interval ⁶	Pumping Rate	Length of Test (hour:minute)	Maximum Drawdown (feet)	Cooper	Jacobs ⁷		tush	Jacob R	ecovery	Average (ft ² /d)	Hydraulic Conductivity	Storativity
			(feet)	(gpm)		(leet)	(gpd/ft)	(ft^2/d)	(gpd/ft)	(ft^2/d)	(gpd/ft)	(ft ² /d)		(ft/d)	
Multi-Well Tests															
LC16M ¹	нj	LC16M	57	15	19:50	21.8	818	109.4			769	102.8	106.1	1.9	
LC19M 1st ²	ні	LC19M	51	17.6 to 18.8	10:42	26.4	553	73.9			719	. 96.1	85.0	1.7	
LC19M 2nd ²	нл	LC19M	51	17.6 to 18.8	25:30	. 29.1	590	78.9			773	103.3	91.1	1.8	
LC22M ³	нJ	LC22M	81	11.75	45:00	36.3	3007	402.0			1605	214.6	308.3	3.8	
M-25-92-19-1M	НЈ	M-25-92-19-2M	~ 50	30	25:10	28.5	700	93.6	730	97.6	760	101.6	97.6	2.0	0.00084
M-25-92-19-2M	HJ∙ -	M-25-92-19-2M	~ 50	30	25:10	49	730	97.6	580	77.5	620	82.9	86.0	1.7	
M-25-92-19-3M	нл	M-25-92-19-2M	~ 50	30	25:10	31.7	680	90.9	610	81.6	730	97.6	90.0	1.8	0.00033
M-25-92-20-1M ⁴	нJ	M-25-92-20-1M	~ 50	30	25:00	25	2000	267.4			1300	173.8	220.6	4.4	
Single Well Tests						· · · · · · ·					······		· · · · · · · · · · · · · · · · · · ·		•
LC26M	HJ		55	13.6 to 14.3	1:09	9.7	1821	243.4						4.4	
LC27M 1st	HJ		23	12.8 to 13.0	2:05	12.5	1659	221.8						9.6	
LC27M 2nd ⁵	Ш,		23	8.8	2:13	8.2	2013	269.1						. 11.7	
LC15M	LFG		54	14.2	1:50	32.1	302	40.4						0.7	1
LC18M 1st	LFG		42	8.8 to 13.0	3:25	94	33	4.4						0.1	
LC18M 2nd	LFG		42	7.5 to 10	2:17	50,5	62	8.3						0.2	
LC21M	LFG		23	13.1	3:45	50.2	303	40.5						1.8	
LC25M	LFG		33	9.4 to 12.2	2:01	75	212	28.3						0.9	
LCI7M	UKM		36	13	2:15	26	195	26.1						0.7	
LC20M	UKM		32	12 to 12.5	2:21	23.5	520	69.5						2.2	
LC23M	UKM		35	9.9	3:56	25	583	77.9						2.2	
LC24M	UKM		53	12.1	1:12	24	561	.75,0						1.4	
LC29M	DE		40	0.67	0:31	10.3	10	1.3						0.0	
LC30M 1st	DE		40	2.7 to 3.3	5:02	13	231	30.9						0.8	
LC30M 2nd	DE		40	7	2:55	24	573	76.6						1.9	
LC31M	DE		40	7	1:34	14	1098	146.8						3.7	

Table 2.7-91982 and 2006 Pump Test Results

¹ No significant response from the HJ observation wells LC19M (across the Fault 1,284 feet), LC22M (8,500 feet) or LC26M (3,640 feet) during the test.

² No significant response from the HJ observation wells LC16M (1,284 feet), LC22M (7,500 feet) or LC26M (4,850 feet), which are all located across the Fault, during the test.

³ No significant response from the HJ observation wells LC16M (8,502 feet) or LC28M (8,908 feet) or from LFG well LC21M (15 feet) or UKM well LC23M (15 feet) during the test.

⁴ No response from the overlying (M-25-92-20S) or underlying (M25-92-20-D) observation wells during the test.

⁵ The pump was shut off after 59 minutes for ten minutes; then the test was resumed.

⁶ The 50-foot under-reamed interval for wells M-25-92 was an estimate; these data were not provided in the Hydro-Search, Inc. report (1982).

⁹ Hydro Engineering (2007) reported early and late time values for Cooper Jacobs analytical methods; only late time data results are shown here.

Late time data provides better representation, as much of the early time data is impacted by casing storage and later time date shows effects of the Fault.

Well ID	Type of Well	Completion Zone	Ground Surface Elevation (ft amsl)	Top of Casing Elevation (ft amsl)	Top of Under- Reamed Zone (ft bgs)	Bottom of Under- Reamed Zone (ft bgs)	Distance from Pumping Well (feet)	Same Side of Fault as Pumping Well?	Initial Depth to Water (ft bgs)	Static Water Level Elevation (ft amsl)
LC19M	Pumping	HJ	6949.32	6950.52	412	463	0	Yes	180.08	6770.44
HJT-104	Production Zone Monitor	HJ	6938.78	6940.11	413	463	501	Yes	169.51	6770.60
HJMP-104	Production Zone Monitor	HJ	6939.76	6941.01	405	430	638	Yes	171.81	6769.20
HJMP-110	Production Zone Monitor	HJ	6945.95	6947.14	430	475	338	Yes	174.89	6772.25
HJMP-111	Production Zone Monitor	HJ	6948.98	6950.32	395	440 :	470	Yes	176.94	6773.38
HJMP-107	Production Zone Monitor	HJ	6937.13	6938.40	443	460	606	No	183.61	6754.79
LC16M	Production Zone Monitor	HJ	6934.76	6936.38	410	467	1284	No	178.14	6758.24
LC20M	Underlying Monitor	UKM	6949.27	6950.64	511	543	14	Yes	202.36	6748.28
UKMP-102	Underlying Monitor	UKM	6940.87	6942.03	485	505	785	Yes	190.68	6751.35
UKMP-101	Underlying Monitor	UKM	6940.26	6941.75	540	572	815	No	192.13	6749.62
LC18M	Overlying Monitor	LFG	6948.43	6949.03	290	332	15	Yes	168.04	6780:99
LC25M	Overlying Monitor	LFG	6935.00	6936.52	316	369	697	No	167.05	6769.47

Table 2.7-102007 LC19M Long Term Pump Test Monitor Wells

Lost Creek Project NRC Technical Report October 2007

́. т.

2

Transmissivity (ft²/d) Hydraulic **Distance** from Same side of Drawdown Theis Storage Underreamed pumping well Conductivity fault as at End of Theis Average Well ID Type Well Coefficient interval (feet) Recovery $(ft/d)^{1}$ pumping well? Pumping (feet) 93.3 0.47 Yes LC19M 51 0 -56.7 56.7 -Pumping 501 Yes 40.5 30.0 56.9 43.5 9.60E-05 0.36 HJT-104 Prod. Zone Monitor 50 6.60E-05 0.49 HJMP-104 25 638 Yes 36.5 61.3 56.8 59.1 Prod. Zone Monitor 1.30E-04 HJMP-110 45 .338 Yes 40.5 66.4 63.0 64.7 0.54 Prod. Zone Monitor 470 Yes 35.6 69.8 64.1 67.0 9.10E-05 0.56 HJMP-111 Prod. Zone Monitor 45 1.50E-04 75.5 76.2 0.64 UKMO-102 76.9 62.4 61.2 1.07E-04 0.51 43 --60.6 Average -NA³ HJMP-107 Prod. Zone Monitor 17 606 No 1.4 NA NA NA NA 1284 1.2 NA LC16M 57 No NA NA NA NA Prod. Zone Monitor LC20M 14 Yes -0.7 NA NA NA NA Underlying Monitor 32 NA UKMP-102 Underlying Monitor 20 785 Yes 1.2 NA NA NA NA NA 2.6^{2} UKMP-101 Underlying Monitor 32 815 No NA NA NA NA NA 15 Yes 1.1 LC18M Overlying Monitor 42 NA NA NA NA NA LC25M 53 697 No 1.6 NA NA NA NA NA Overlying Monitor

Table 2.7-112007 LC19M Pump Test Results

¹ Hydraulic Conductivity Calculated from Average Transmissivity and Estimated Aquifer Thickness of 120 feet.

² Value shifted abruptly downward 2.7 feet between consecutive measure points one hour prior to end of test.

³NA - Not analyzed because of insufficient response

Major Ions	Trace Constituents
Calcium	Aluminum
Magnesium	Ammonia
Potassium	Arsenic
Sodium	Barium
Bicarbonate	Boron
Chloride	Cadmium
Carbonate	Chromium
Sulfate	Copper
Nitrate (Total)	Iron
-	Fluoride
General Water Chemistry	Manganese
Alkalinity ¹	Mercury
Total Dissolved Solids	Molybdenum
pH (field measured)	Nickel
pH (lab measured)	Selenium
Specific Conductance (field measured)	Silica
Temperature (field measured)	Vanadium
	Zinc
Radionuclides	
Gross Alpha ¹	
Gross Beta ¹	
Radium-226	
Radium-228 ¹	
Uranium	

Table 2.7-12 Baseline Water Quality Monitoring Parameters

¹ The 1982 sampling did not include these parameters.

Lost Creek Project NRC Technical Report October 2007

1999 <u>- 1</u>83

					·	· N	lajor Cation	s and Anior	าร			
Well ID	Completion Zone	Sample Date	Na	K .	Са	Mg	CI	HCO₃	CO₃	SO₄	Si	NO ₃
	•		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
LC29M	DE	9/20/06	26.0	2.0	57.0	4.0	6.0	137.0	ND ¹	108.0	12.0	ND
LC29M	DE	11/26/06	26.0	3.0	64.0	4.0	4.0	98.0	ND	131.0	17.2	ND
LC29M	DE	3/1/07	24.0	2.0	57.0	3.0	4.0	205.0	ND	54.0	18.1	ND
LC29M	DE	5/4/07	27.0	2.0	47.0 .	3.0	10.0	183.0	ND	21.0	15.3	0.90
LC30M	DE	9/20/06	29.0	2.0	33.0	2.0	6.0	122.0	ND	31.0	14.7	1.40
LC30M	DE	11/26/06	25.0	1.0	31.0	2.0	5.0	124.0	ND	26.0	13.7	1.20
LC30M	DE	3/1/07	51.0	2.0	33.0	2.0	6.0	156.0	ND	51.0	17.4	0.60
LC30M	DE	5/3/07	62.0	2.0	28.0	2.0	6.0	176.0	ND ND	55.0	17.7	ND
LC31M	DE	9/21/06	40.0	3.0	140.0	9.0	7.0	140.0	ND	316.0	15.0	0.80
LC31M	DE	11/26/06	39.0	3.0	120.0	8.0	7.0	145.0	ND	280.0	13.9	0.40
LC31M	DE	2/28/07	64.0	3.0	108.0	7.0	8.0	156.0	ND	277.0	17.0	0.30
LC31M	DE	5/3/07	71.0	3.0	99.0	6.0	6.0	159.0	ND ND	279.0	15.9	0.20
LC16M	HJ	3/1/07	30.0	2.0	74.0	4.0	4.0	132.0	ND	138.0	15.0	ND
LC16M	HJ	5/4/07	29.0	2.0	74.0	4.0	5.0	137.0	ND	139.0	14.8	ND
LC19M	HJ	9/20/06	35.0	3.0	66.0	3.0	6.0	103.0	2.0	139.0	NM	ND
LC19M	HJ	11/3/06	32.8	2.1	72.9	3.2	6.0	132.0	ND	146.0	15.0	ND-
LC19M	HJ	3/5/07	40.0	13.0	41.0	3.0	6.0	.73.0	ND	124.0	14.5	ND
LC19M	HJ .	5/4/07	33.0	8.0	45.0	3.0	5.0	93.0	ND	137.0	14.8	ND
LC19M	. HJ	5/4/07	33.0	8.0	46.0	3.0	5.0	96.0	ND	137.0	14.6	ND
LC22M	HJ	9/21/06	40.0	2.0	74.0	3.0	5.0	113.0	ND	170.0	15.0	ND
LC22M	HJ	11/16/06	36.0	2.0	62.0	3.0	4.0	109.0	ND	154.0	12.8	ND
LC22M	HJ	3/1/07	37.0	4.0	60.0	3.0	6.0	110.0	ND	142.0	14.2	ND
LC22M	HJ	5/3/07	35.0	4.0	64.0	3.0	5.0	113.0	ND	137.0	13.0	ND

 Table 2.7-13
 Analytical Results of Baseline Monitoring (Page 1 of 12)

Lost Creek Project NRC Technical Report October 2007

1 .

·	·					N	lajor Cation	s and Anior	15			
	Completion	Sample								· ·		
Well ID	Zone	Date	Na	К	Ca	Mg	CI	HCO₃	CO3	SO4	Si	NO3
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L
LC26M	HJ	9/21/06	35.0	4.0	133.0	6.0	6.0	168.0	ND	269.0	17.7	ND
LC26M	HJ	11/17/06	33.0	3.0	127.0	5.0	6.0	166.0	ND	256.0	17.0	ND
LC26M	ΗJ	3/1/07	33.0	3.0	125.0	5.0	5.0	159.0	ND	253.0	16.2	ND
LC26M	НJ	5/3/07	34.0	8.0	90.0	5.0	5.0	57.0	ND	259.0	17.5	ND
LC27M	HJ	11/16/06	21.0	4.0	27.0	ND	6.0	82.0	2.0	29.0	15.5	ND
LC27M	HJ	3/1/07	21.0	5.0	11.0	ND	4.0	38.0	ND	39.0	16.4	ND
LC27M	HJ	5/3/07	22.0	5.0	7.0	ND	4.0	33.0	5.0	32.0	17.8	ND
LC28M	НJ	9/21/06	27.0	3.0	60.0	3.0	6.0	125.0	ND	101.0	16.1	ND
LC28M	НJ	11/26/06	24.0	2.0	58.0	3.0	4.0	127.0	ND	88.0	15.7	ND
LC28M	HJ	2/28/07	25.0	2.0	59.0	3.0	6.0	127.0	ND	95.0	16.9	ND
LC28M	HJ	5/3/07	25.0	2.0	62.0	3.0	6.0	130.0	ND	96.0	15.0	ND
LC15M	LFG	11/26/06	31.0	2.0	84.0	4.0	6.0	134.0	ND	157.0	14.3	ND
LC15M	LFG	3/1/07	33.0	3.0	89.0	5.0	1.0	130.0	ND	180.0	14.8	0.20
LC15M	LFG	5/4/07	34.0	9.0	46.0	3.0	6.0	85.0	ND	142.0	13.0	0.40
LC18M	LFG	9/20/06	35.0	3.0	61.0	3.0	5.0	122.0	ND	122.0	13.2	ND
LC18M	LFG	11/22/06	31.0	2.0	55.0	3.0	5.0	117.0	ND	117.0	12.4	ND
_C18M	LFG	3/1/07	33.0	2.0	60.0	3.0	5.0	120.0	ND	120.0	13.6	ND
_C18M	LFG	5/4/07	30.0	3.0	.49.0	3.0	5.0	112.0	ND	119.0	12.6	ND
LC21M	LFG	9/20/06	33.0	2.0	46.0	3.0	6.0	121.0	5.0	62.0	15.8	1.00
LC21M	LFG	11/26/06	30.0	2.0	41.0	3.0	5.0	132.0	ND	59.0	13.9	0.80
_C21M	LFG	2/28/07	31.0	3.0	35.0	3.0	5.0	120.0	ND	60.0	15.2	1.00
_C21M	LFG	5/3/07	30.0	2.0	41.0	3.0	5.0	124.0	ND	58.0	13.7	1.00

 Table 2.7-13
 Analytical Results of Baseline Monitoring (Page 2 of 12)

						N	lajor Cation	s and Anior	าร			
	Completion	Sample									,	
Well ID	Zone	Date	Na	к	Ca	Mg	CI	HCO₃	CO3	SO₄	Si	NO ₃
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
LC25M	LFG	9/21/06	35.0	4.0	73.0	2.0	6.0	100.0	2.0	146.0	14.1	0.30
LC25M	LFG	11/17/06	34.0	2.0	70.0	4.0	6.0	120.0	ND	139.0	14.6	0.20
LC25M	LFG	3/1/07	32.0	2.0	72.0	4.0	6.0	126.0	ND	150.0	14.7	0.20
LC25M	LFG	5/3/07	34.0	4.0	34.0	3.0	4.0	36.0	ND	133.0	13.5	ND
LC17M	UKM	11/26/06	27.0	2.0	55.0	2.0	5.0	120.0	ND	94.0	15.1	ND
LC17M	UKM	3/1/07	29.0	2.0	62,0	3.0	5.0	124.0	ND	105.0	16.8	ND
LC17M	UKM	5/4/07	27.0	2.0	61.0	3.0	4.0	142.0	ND	108.0	15.9	ND
LC20M	UKM	9/21/06	32.0	3.0	56.0	2.0	6.0	113.0	2.0	102.0	17.2	ND
LC20M	UKM	11/22/06	32.0	5.0	38.0	ND	6.0	63.0	3.0	80.0	12.7	ND
LC20M	UKM	3/1/07	36.0	11.0	15.0	ND .	5.0	39.0	ND	95.0	14.6	ND
LC20M	UKM	5/4/07	35.0	11.0	12.0	ND	6.0	34.0	2.0	91.0	14.1	ND
LC23M	UKM	9/21/06	44.0	. 8.0	58.0	ND .	5.0	83.0	6.0	165.0	13.9	ND
_C23M	UKM	11/26/06	41.0	7.0	50.0	2.0	3.0	85.0	ND	150.0	14,1	ND
_C23M	UKM	3/1/07	64.0	48.0	52.0	ND	15.0	7.0	137.0	146.0	10.7	ND
_C23M	UKM	5/3/07	63.0	52.0	86.0	ND	5:0	4.0	66.0	126.0	9.4	ND
_C24M	UKM	9/21/06	32,0	3.0	68.0	4.0	5.0	109.0	ND	138.0	16.1 ·	ND
LC24M	UKM	11/26/06	29.0	2.0	66.0	3.0	4.0	126.0	2.0	121.0	14.7	ND
_C24M	UKM	3/1/07	31.0	7.0	43.0	3.0	5.0	73.0	ND	126.0	14.8	ND
.C24M	UKM	5/4/07	31.0	7.0	48.0	3.0	5.0	85.0	ND	126.0	14.6	ND

U

Table 2.7-13 Analytical Results of Baseline Monitoring (Page 3 of 12)

.

				General Wate	r Quality				D_	dionuclides		
	Completion	Sample		Specific	a Quality		Gr	OSS	Gross	aionucilaes		
Well ID	Zone	Date	TDS	Conductivity	Lab pH	Alkalinity	-	pha	Beta	Ra-226	Ra-228	Uranium
vvenito	Lone	Date	-	Conducting	•	-			•			
			(mg/L)		s.u	(mg/L)	· (p(Ci/L)	(pCi/L)	(pCi/L)	(pCi/L)	(mg/L)
_C29M	DE	9/20/06	283.0			112.0		328.0	142.0	1.9	ND	0.49
_C29M	DE	11/26/06	298.0	491.0	7.68	80.0		158.0	54.0	1.7	4.7	0.24
_C29M	DE	3/1/07	265.0	385.0	7.77			265.0	86.1	4.0	ND	0.3
.C29M	DE	5/4/07	219.0	356.0	7.75			200.0	84.6	3.0	ND	0.2
_C30M	DE	9/20/06	184.0			100.0		129.0	41.5	1.0	ND	0.1
_C30M	DE	11/26/06	170.0	288.0	7.33	102.0		107.0	-32.3	0.9	1.6	0.1
_C30M	DE	3/1/07	241.0	393.0	8.02			108.0	31.9	5.7	, ND	0.1
_C30M	DE	5/3/07	260.0	440.0	8.07			109.0	40.0	2.1	ND	0.1
.C31M	DE	9/21/06	602.0	. 800.0	7.85	114.0		1120.0	405.0	2.0	1.7	1.8
_C31M	DE	11/26/06	528.0	838.0	7.79	119.0		1430.0	395.0	2.6	3.2	2.1
_C31M	DE	2/28/07	563.0	817.0	7.94			967.0	262.0	7.2	1.0	1.4
_C31M	DE	5/3/07	559.0	. 860.0	7.79			1030.0	319.0	1.9	2.4	1.6
.C16M	, HJ	3/1/07	333.0	509.0	7.92			290.0	79.7	65.1	3.8	0.1
_C16M	HJ	5/4/07	335.0	534.0	8.01			188.0	69.2	122.0	3.2	0.1
.C19M	HJ	9/20/06	319.0.			87.0		985.0	540.0	366.0	4.8	0.3
.C19M	, HJ	11/3/06	328.0	506.0	7.85	108.0		863.0	592.0	547.0	4.1	0.0
.C19M	HJ ·	· 3/5/07	278.0	432.0	8.02			1220.0	473.0	316.0	3.4	0.84
C19M	HJ	5/4/07	292.0	. 482.0	8.11			1470.0	603.0	423.0	· 1.0	0.7
.C19M	HJ	5/4/07	294.0	487.0	8.09		· •	1350.0	568.0	386.0	1.6	0.7
C22M	HJ	9/21/06	366.0	511.0	8.14	93.0		810.0	358.0	261.0	3.2	• 0.3
.C22M	HJ	11/16/06	328.0	531.0	8.15			597.0	258.0	247.0	1.9	0.1
C22M	HJ	3/1/07	319.0	483.0	7.87			86.5	97.9	1.7	3.6	0.1
.C22M	HJ	5/3/07	316.0	513.0	8.11			576.0	186.0	308.0	3.8	0.0

 Table 2.7-13
 Analytical Results of Baseline Monitoring (Page 4 of 12)

 Table 2.7-13
 Analytical Results of Baseline Monitoring (Page 5 of 12)

			General Wa	ater Quality				Ra	dionuclides		
	Completion	Sample		Specific							
Wéll ID	Zone	Date	TDS	Conductivity	Lab pH	Alkalinity	Gross Alpha	Gross Beta	Ra-226	Ra-228	Uranium
			(mg/L)		s.u	(mg/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(mg/L)
LC26M	HJ	9/21/06	554.0	741.0	8.16	138.0	306.0	111.0	87.7	4.6	0.10
_C26M	HJ	11/17/06	528.0	786.0	8.06		300.0	119.0	77.2		0.07
LC26M	HJ	3/1/07	519.0	745.0	7.85		30.5	46.1	ND	3.6	0.04
LC26M	HJ	5/3/07	449.0	653.0	8.44	. ,	50.2	23.4	12.4	ND	0.03
_C27M	HJ	11/16/06	145.0	243.0	8.66		6.8	9.4	1.1	3.6	0.00
_C27M	·HJ	3/1/07	117.0	171.0	8.74		77.7	4.1	26.6	- ND	0.00
LC27M	HJ	5/3/07	111.0	178.0	9.51		2.9	3.9	0.4	ND	0.00
_C28M	HJ	9/21/06	276.0	394.0	8.14	103.0	30.7	19.4	8.1	3.4	0.01
_C28M	HJ	11/26/06	259.0	435.0	8.00	104.0	18.1	14.4	8.4	4.2	0.00
_C28M	HJ	2/28/07	269.0	400.0	8.15		27.0	13.0	7.7	2:1	0.00
_C28M	HJ	5/3/07	273.0	440.0	8.01		19.4	11.2	7.1	3.7	0.02
_C15M	LFG	11/26/06	370.0	605.0	7.84	110.0	334.0	. 116.0	3.8	4.8	0.47
LC15M	LFG	3/1/07	390.0	587.0	7.32		374.0	92.7	6.0	3.5	0.46
_C15M	LFG	5/4/07	296.0	492.0	8.27		236.0	92.1	3.6	ND	0.35
_C18M	LFG	9/20/06	303.0		. •	100.0	518.0	192.0	43.0	2.8	0.52
_C18M	LFG	11/22/06	277.0	461.0	8.33	98.0	490.0	199.0	63.5	3.9	0.54
_C18M	LFG	3/1/07	296.0	460.0	7.86		439.0	148.0	ND	ND	0.53
LC18M	LFG	5/4/07	277.0	467.0	8.09		385.0	115.0	26.4	ND	0.41
_C21M	LFG	9/20/06	233.0			106.0	219.0	70.3	1:6	1.2	
_C21M	LFG	11/26/06	219.0	373.0	8.17	108.0	205.0	49.2	1.2	- 12.0	0.27
_C21M	LFG	2/28/07	214.0	333.0	8.25		815.0	62.6	230.0	ND	0.2
_C21M	LFG	5/3/07	219.0	371.0	. 8.17		202.0	65.2	3.7	- ND	0.23

General Water Quality Radionuclides Completion Sample Specific Date Conductivity Zone Gross Alpha Gross Beta Ra-226 Uranium Well ID TDS Lab pH Alkalinity Ra-228 (mg/L) (mg/L) (pCi/L) (pCi/L) (pCi/L) (pCi/L) s.u (mg/L) LC25M LFG 9/21/06 336.0 452.0 8.37 91.0 353.0 124.0 3.1 3.3 0.465 LC25M LFG 11/17/06 330.0 516.0 8.28 301.0 138.0 3.1 ND 0.460 LC25M LFG . 3/1/07 344.0 519.0 7.97 369.0 107.0 2.3 2.3 0.517 LC25M LFG 5/3/07 244.0 390.0 8.57 194.0 72.5 2.9 ND 0.289 LC17M UKM 11/26/06 262.0 436.0 8.02 98.0 29.0 15.5 8.8 12.9 0.010 LC17M UKM 3/1/07 284.0 433.0 7.88 26.8 11.5 5.5 ND 0.011 LC17M UKM 291.0 467.0 5/4/07 8.11 17.3 9.1 7.2 1.5 0.009 274.0 LC20M UKM 388.0 8.56 96.0 9.6 9/21/06 44.4 24.0 3.9 0.036 LC20M UKM 11/22/06 216.0 362.0 8.91 56.0 38.7 19.5 9.3 3.4 0.025 LC20M UKM 3/1/07 197.0 305.0 7.66 23.9 47.8 ND 65.3 0.024 . LC20M UKM 5/4/07 188.0 322.0 9.04 31.9 23.6 9.2 2.6 0.025 LC23M UKM 9/21/06 341.0 451.0 8.87 76.0 32.8 3.3 ND 17.5 0.023 LC23M 498.0 70.0 UKM 11/26/06 303.0 7.97 35.0 14.9 4.7 6.7 0.019 LC23M 452.0 1180.0 11.60 UKM 3/1/07 5.3 34.8 1.9 1.0 0.002 LC23M UKM 5/3/07 526.0 1720.0 11.60 15.1 44.7 4.7 1.5 0.002 LC24M UKM 9/21/06 321.0 455.0 8.30 91.0 107.0 43.2 6.5 1.5 0.134 LC24M UKM 11/26/06 302.0 500.0 8.33 105.0 86.8 27.6 5.9 5.8 0.100 LC24M UKM 3/1/07 266.0 410.0 7.99 48.6 22.6 1.8 2.0 0.062 LC24M UKM 5/4/07 277.0 452.0 8.08 49.1 23.8 8.9 1.5 0.052

Table 2.7-13 Analytical Results of Baseline Monitoring (Page 6 of 12)

					Trace	Parameter	S			· · ·	
Well ID	Completion Zone	Sample Date	AI	NH₄	As	Ва	Во	Cd	Cr	Cu	F
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	_(mg/L)	(mg/L)	(mg/L)	_(mg/L)
LC29M	DE	9/20/06	ND	1.07		ND	ND	ND	ND	ND	0.3
LC29M	DE	11/26/06	ND	0.57	0.003	ND.	ND	ND	ND	ND	ຸ 🤇 0.3
LC29M	DE	3/1/07	ND	0.26	0.005	. ND	ND	ND	ND	ND	0.Ż
LC29M	DE	5/4/07	ND	0.18	ND	ND	ND	ND	ND	ND	0.2
LC30M	DE	9/20/06	ND	0.11	0.002	ND	' ND	ND	ND	ND	0.5
LC30M	DE 1	11/26/06	ND	0.08	0.002	ND	ND	ND	ND	ND	0.5
LC30M	DE	3/1/07	ND	0.07	0.004	ND	ND	ND	ND	ND	0.5
LC30M	DE	5/3/07	ND	0.06	0.007	ND	ND	ND	ND	ND	0.5
LC31M	DE	9/21/06	ND	ND	ND	ND	ND	ND	ND	ND	Ni
LC31M	DE	11/26/06	ND	0.07	ND	ND	ND	ND	ND	ND	0.2
LC31M	DE	2/28/07	ND	ND	ND	ND	ND	ND	ND	ND	0.2
LC31M	DE	5/3/07	ND,	ND	ND	ND	ND	ND	ND	ND	0.2
LC16M	HJ	3/1/07	ND	. ND	ND	ND	ND	ND	ND	ND	0.2
LC16M	HJ	5/4/07	ND	· ND	ND	ND	ND	ND	ND	ND	0.2
LC19M	HJ	9/20/06	ND	ND	0.014	ND	ND	ND	ND	ND	NI
LC19M	HJ	11/3/06	ND	ND	0.002	ND	ND	ND	ND	ND	N
LC19M	HJ	3/5/07	ND	0.06	0.008	ND	ND	. ND	. ND	ND	0.2
LC19M	HJ	5/4/07	ND	ND	0.007	ŃD	ND	ND	ND	ND	N
LC19M	HJ	5/4/07	ND	ND	0.006	ND	ND	ND	ND	ND	N
_C22M	НJ	9/21/06	NĎ	ND	0.005	ND	ND	ND	ND	ND	· NI
C22M	HJ	11/16/06	ND	ND	ND	ND	ND	ND	ND	ND	0.2
C22M	HJ	3/1/07	ND	ND	0.002	ND	ND	ND	ND	ND	0.2
_C22M	HJ	5/3/07	ND	ND	0.002	ND	ND	ND	ND	ND	0.2

 Table 2.7-13
 Analytical Results of Baseline Monitoring (Page 7 of 12)

				Tra	ace Parame	ters					
	Completion	,									
Well ID	Zone	Sample Date	AI	NH₄	As	Ba	Во	Cd	Cr	Cu	۰F
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
LC26M	HJ	9/21/06	ND	ND	0.003	ND	ND	ND	ND	ND	: N
LC26M	HJ	11/17/06	ND	ND	ND	ND	ND	ND	ND	ND	N
LC26M	HJ	3/1/07	ND	0.07	ND	ND	ND	ND	ND	ND	'N
LC26M	HJ	5/3/07	ND	ND	ND	ND	ND	ND	ND	ND-	0.2
LC27M	НJ	11/16/06	, ND	ND	0.006	ND	ND	ND	ND	ND	0.3
LC27M	HJ	3/1/07	: ND	ND	0.007	ND	• ND	ND	ND	.ND	0.3
LC27M	HJ	5/3/07	ND	ND	0.005	ND	ND	ND	ND	ND	0.3
LC28M	HJ	9/21/06	ND	ND	0.005	ND	ND	ND	ND	ND	N
LC28M	HJ.	11/26/06	ND	ND	ND	ND	ND	ND	ND	ND	0.2
LC28M	· HJ	2/28/07	ND	ND	ND	ND ·	ND	ND	ND	ND	0.2
LC28M	HJ	5/3/07	ND	ND	ND	ND	ND	ND	ND	ND	0.2
LC15M	LFG	11/26/06	ND	ND	ND	ND	ND	ND	ND	ND	0.2
LC15M	LFG	3/1/07	ND	ND	ND	ND	ND	ND	ND	ND	0.2
LC15M	LFG	5/4/07	ND	ND	ND	ND	ND	ND	ND	ND	0.2
LC18M	LFG	9/20/06	ND	ND	0.004	ND	ND	ND	ND	ND	. 0.2
LC18M	LFG	11/22/06	ND	ND	0.002	ND	ND	ND	ND	NÐ	0.2
LC18M	LFG	3/1/07	ND	ND	0.002	ND	ND	ND ·	ND	ND	0.2
LC18M	LFG	5/4/07	ND	ND	ND	ND	· ND	ND	ND	ND	0.2
LC21M	LFG	9/20/06	ND	0.08	ND	ND	ND	ND	ND	ND	0.3
LC21M	LFG	11/26/06	ND	· ND	ND	ND	ND	ND	ND	'ND	0.
LC21M	ĹFG	2/28/07	ND	ND	ND.	ND	ND	ND	ND	ND	0.2
LC21M	LFG	5/3/07	ND	. ND	ND	ND	ND	ND	ND	ND	0.2

Table 2.7-13 Analytical Results of Baseline Monitoring (Page 8 of 12)

						Trac	e Paramete	ers			
	Completion					*					
Well ID	Zone	Sample Date	AI	NH₄	As	Ва	Во	Cd	Cr	Cu	۰F
			(mg/L)	(mg/L)	(mg/L) .	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
LC25M	LFG	9/21/06	ND	ND	0.004	ND	ND	ND	ND	ND	0.20
LC25M	LFG	11/17/06	ND	ND	ND	ND	ND	ND	ND	ND	0.20
LC25M	LFG	3/1/07	ND	ND	ND	ND	ND	ND	ND	ND	0.20
LC25M	LFG	5/3/07	ND	ND	ND	ND	ND	ND	ND	ND	0.20
LC17M	UKM	11/26/06	ND	ND	0.003	ND	ND	ND	ND	ND	0.20
LC17M	UKM	3/1/07	ND	0.06	0.002	· ND	ND	ND	ND	ND	0.20
LC17M	UKM	5/4/07	ND	ND	0.002	ND	ND	ND	ND	ND	0.20
LC20M	UKM	9/21/06	ND	ND	0.012	ND	ND	ND	ND	ND	NE
LC20M	UKM	11/22/06	ND	ND	0.012	ND	ND	ND	ND	ND	0.20
LC20M	UKM	3/1/07	ND	· ND	0.012	ND	ND	ND	ND	ND	0.20
LC20M	UKM	5/4/07	ND	ND	0.011	ND	ND	ND	ND	ND	0.20
LC23M	UKM	9/21/06	ND	ND	0.009	ND	ND	ND ·	ND	ND	NE
LC23M	UKM	11/26/06	ND	ND	0.004	ND	ND	. ND	ND	ND	0.20
LC23M	UKM	3/1/07	ND	0.86	0.003	0.30	· ND	ND	ND	ND	0.40
LC23M	UKM	5/3/07	0.20	0.75	0.002	0.30	ND	ND	ND	ND	0.20
LC24M	UKM	9/21/06	ND	0.13	0.003	ND	ND	ND	ND	ND	NE
LC24M	UKM	11/26/06	ND	0.08	ND	ND	ND	ND	ND	ND	0.20
LC24M	UKM	3/1/07	ND	0.08	ND	ND	ND	ND	ND	ND	NE
LC24M	UKM	5/4/07	ND	ND	· ND	ND	ND	ND	ND	ND	0.20

 Table 2.7-13
 Analytical Results of Baseline Monitoring (Page 9 of 12)

						Trac	e Paramete	ers			
Well ID	Completion Zone	Sample Date	Fe	Hg	Mn	Мо	Ni	Pb	Se	Vn	Zn
			(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
LC29M	DE	9/20/06	0.09	ND	0.12	ND	ND	ND	0.002	ND	NC
LC29M	DE	11/26/06	0.67	ND	0.48	ND	ND	ND ND	ND	ND	· NE
LC29M	DE	3/1/07	0.40	ND	0.24	ND	ND	ND	ND	ND	NE
LC29M	DE	5/4/07	0.14	ND	0.04	ND	ND	ND	ND	ND	NE
LC30M	DE	9/20/06	ND-	ND	0.01	ND	ND	ND	0.016	NĎ	NE
LC30M	DE	11/26/06	ND	ND	0.01	ND	ND	ND	0.016	ND	NE
LC30M	DE	3/1/07	0.11	ND	0.08	ND	ND	ND	0.006	ND	ŇC
LC30M	DE	5/3/07	0.09	ND	0.07	ND	ND	ND	0.003	ND	NE
LC31M	DE	9/21/06	ND	ND	0.01	ND	ND	ND	0.215	ND	NE
LC31M	DE	11/26/06	· ND	ND	0.06	ND	ND	ND	0.211	ND	NE
LC31M	DE	2/28/07	0.10	ND	0.10	ND	ND	ND	0.151	ND	NC
LC31M	DE	5/3/07	0.07	ND	0.02	ND	ND	ND	0.111	ND	NE
LC16M	HJ	3/1/07	ND	ND	ND	ND	ND	ND	ND	ND	NC
LC16M	HJ	5/4/07	ND	ND	ND	ND	ND	ND	· ND	ND	NE
LC19M	HJ	9/20/06	ND	ND	ND	ND	ND	ND	ND	ND	ND
LC19M	HJ	11/3/06	ND	ND	ND	ND	ND	ND	ND	ND	ND
LC19M	HJ	3/5/07	ND	ND	ND	ND	ND [,]	ND	ND 1	ND	ND
LC19M	HJ	5/4/07	ND	ND	ND	ND	ND	ND	ND	ND	ND
LC19M	HJ	5/4/07	ND	ND	NĐ	ND	ND	ND	ND	ND.	ND
LC22M	HJ	9/21/06	ND	ND	ND	ND	ND	ND	ND	ND	·ND
LC22M	HJ	11/16/06	ND	ND	ND	ND	ND	ND	ND	ND	ND
LC22M	HJ	3/1/07	ND	ND	0.02	· ND	ND	ND	ND	ND	ND
LC22M	HJ	5/3/07	NÐ	ND	ND	ND	ND	ND	ND`	ND	ND

 Table 2.7-13
 Analytical Results of Baseline Monitoring (Page 10 of 12)

•						Trac	e Paramete	ers			
	Completion										
Well ID	Zone	്യ Sample Date	Fe	Hg	Mn	Mo_	Ni	Pb	Se	· Vn	Zn
		-	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
LC26M	HJ	9/21/06	ND	ND	0.02	ND	. ND	ND	ND	ND	NE
LC26M	HJ	11/17/06	0.23	ND	0.03	ND	ND	ND	ND	ND	NE
LC26M	HJ	3/1/07	ND	ND	0.02	ND	. ND	ND	ND	ND	NE
LC26M	HJ	5/3/07	ND	ND	ND	ND	ND	ND	ND	ND	NE
LC27M	, HJ	11/16/06	. 0.08	ND	ND	ND	ND	ND	ND	ND	NC
LC27M	HJ	3/1/07	ND	ND	ND	ND	ND	ND	ND	ND	NE
LC27M	HJ	5/3/07	0.04	ND	ND	ND	ND	ND	ND	ND	NE
LC28M	НJ	9/21/06	ND	ND	ND	ND	ND	ND	ND	ND	NE
LC28M	HJ ·	11/26/06	0.04	ND	ND	ND	ND	ND	ND	ND	' ND
LC28M	HJ	2/28/07	ND	ND	ND	ND	ND	ND	ND	ND	ND
LC28M	HJ ·	5/3/07	0.05	ND	- ND	ND	· ND	ND	0.002	ND	NE
LC15M	LFG	11/26/06	ND ·	ND	ND	ND	ND	ND	0.016	ND	ND
LC15M	LFG	3/1/07	ND	ND	ND	ND	ND	ND	0.017	ND	ND
LC15M	LFG	5/4/07	· ND	ND	ŅD	ND	ND	ND	0.010	ND	ND
LC18M	LFG	9/20/06	0.53	ND	ND	ND	ND	ND	0.024	ND	ND
LC18M	LFG	11/22/06	0.51	ND	ND	ND	ND	ND	0.015	ND	ND
LC18M	LFG	3/1/07	0.67	ND	ND	ND	ND	ND	0.016	ND	ND
LC18M	LFG	5/4/07	0.10	'ND	ND	ND	ND	ND	ND	ND	ND
LC21M	LFG	9/20/06	0.40	ND	0.02	ND	ND	ND	0.040	ND	ND
LC21M	LFG	11/26/06	ND	ND	ND	ND	ND	ND	0.039	ND	ND
LC21M	LFG	2/28/07	ND	ND	ND	ND	ND	ND	0.034	ND	ND
.C21M	LFG	5/3/07	ND	ND	ND	ND	ND	. ND	. 0.032	ND	ND

 Table 2.7-13
 Analytical Results of Baseline Monitoring (Page 11 of 12)

	Trace Parameters.									,	
	Completion	0									
Well ID	Zone	Sample Date	Fe	Hg	Mn	Мо	Ni	Pb	Se	Vn	Zn
			(mg/L)	_(mg/L)	(mg/L)						
LC25M	LFG	9/21/06	ND	ND	ND	ND	ND	ND	0.027	ND	. ND
LC25M	LFG	11/17/06	ND	, ND	ND	ND	ND	ND	0.027	ND	ND
LC25M	LFG	3/1/07	ND	ND	ND	ND	ND	ND	0.025	ND	ND
LC25M	LFG	5/3/07	ND	ND	ND	ND	ND	NÐ	0.015	ND	ND
	•										ND
LC17M	UKM	11/26/06	ND	ND	ND	ND	ND	ND	ND	ND	. ND
LC17M	UKM	3/1/07	· ND	ND	ND	ND	ND	ND	ND	ND	ND
LC17M	UKM	5/4/07	0.05	ND	ND	ND	ND	ND	ND	ND	ND
_C20M	UKM	9/21/06	ND	ND	ND	ND	ND	ND	ND	ND	ND
LC20M	UKM	11/22/06	ND	ND	ND	ND	ND	ND	ND	ND	ND
LC20M	UKM	3/1/07	ND	ND	ND	ND	ND	ND	ND	ND	ND
LC20M	UKM	5/4/07	ND	ND	ND	ND	ND	ND	ND	ND	ND
LC23M	UKM	9/21/06	ND	ND	ND	ND	ND	ND	0.002	ND	ND
_C23M	UKM	11/26/06	ND	ND	ND	ND	ND	ND	0.002	ND	ND
.C23M	UKM	3/1/07	· ND	ND	ND	ND	ND	ND	ND	ND	ND
_C23M	ÜKM	5/3/07	ND	ND	ND	ND	ND	0.002	0.005	ND	ND
											ND
.C24M	UKM	9/21/06	0.32	ND	ND	ND	ND	ND	0.002	ND	ND
.C24M	UKM	11/26/06	0.16	ND	ND	ND	ND	. ND	0.002	ND	ND
C24M	UKM	3/1/07	0.06	ND	ND	ND	ND	ND	ND	ND	ND
C24M	UKM	5/4/07	· ND	ND	ND	ND	ND	ND	ND	ND	ND

 Table 2.7-13
 Analytical Results of Baseline Monitoring (Page 12 of 12)

ND = Non Detect-sample was below the Detection Limit

Monitored	Number	Number of Samples	Percent of		
Aquifer	of	Exceeding EPA	Exceedances		
	Samples	MCL	(percent)		
DE	12	4	33.3		
LFG	15	8	53.3		
HJ	22	19	86.3		
UKM	15	12	80.0		
Total	64	43 ,	67.2		

 Table 2.7-14
 Distribution of Samples Exceeding EPA MCL for Radium-226+228