

AUG 3 1 2007 HCH 2007-084

CERTIFIED MAIL RETURN RECEIPT REQUESTED ARTICLE NUMBER: 7004 2510 0005 2136 5573

United States Nuclear Regulatory Commission Document Control Desk Washington, DC 20555

Gentlemen:

NJPDES PERMIT NO. NJ0025411 HOPE CREEK GENERATING STATION FACILITY OPERATING LICENSE DPR-70/75 DOCKET NO. 50 - 354

In accordance with section 3.2 of the Hope Creek Environmental Protection Plan, we are providing you with a copy of the Application for Renewal of the New Jersey Pollutant Discharge Elimination System Permit (NJPDES) Permit for Hope Creek Generating Station. The Application has been submitted to the New Jersey Department of Environmental Protection.

Should you have any questions, please contact Mr. Richard Labott at (856) 339-1094.

Sincerely,

George P. Barnes Site Vice President – Hope Creek

Attachment

IRK 95-2168 REV. 7/99

С

Mr. Samuel J Collins, Administrator - Region I U. S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, PA 19406

Mr. Stewart Bailey, Licensing Project Manager - HC U. S. Nuclear Regulatory Commission One White Flint North 11555 Rockville Pike Mail Stop 8B1 Rockville, MD 20852

USNRC Senior Resident Inspector - Hope Creek Mail Code (X24)

Mr. Paul Baldauf, Assistant Director Bureau of Nuclear Engineering P.O. Box 415 Trenton, NJ 08625

PSEG Nuclear, LLC Hope Creek Generating Station

New Jersey Pollutant Discharge Elimination System Permit No. NJ0025411

Renewal Application

September 2007

AUG 3 1 2007 HCH 2007-084

CERTIFIED MAIL RETURN RECEIPT REQUESTED ARTICLE NUMBER: 7004 2510 0005 2136 5573

United States Nuclear Regulatory Commission Document Control Desk Washington, DC 20555

Gentlemen:

NJPDES PERMIT NO. NJ0025411 HOPE CREEK GENERATING STATION FACILITY OPERATING LICENSE DPR-70/75 DOCKET NO. 50 - 354

In accordance with section 3.2 of the Hope Creek Environmental Protection Plan, we are providing you with a copy of the Application for Renewal of the New Jersey Pollutant Discharge Elimination System Permit (NJPDES) Permit for Hope Creek Generating Station. The Application has been submitted to the New Jersey Department of Environmental Protection.

Should you have any questions, please contact Mr. Richard Labott at (856) 339-1094.

Sincerely,

George P. Barnes

George P. Barnes Site Vice President – Hope Creek

Attachment

С

Mr. Samuel J Collins, Administrator - Region I U. S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, PA 19406

Mr. Stewart Bailey, Licensing Project Manager - HC U. S. Nuclear Regulatory Commission One White Flint North 11555 Rockville Pike Mail Stop 8B1 Rockville, MD 20852

USNRC Senior Resident Inspector - Hope Creek Mail Code (X24)

Mr. Paul Baldauf, Assistant Director Bureau of Nuclear Engineering P.O. Box 415 Trenton, NJ 08625

AUG 3 1 2007

HCH-2007-083

CERTIFIED MAIL RETURN RECIEPT REQUESTED ARTICLE NUMBER: 7004 2510 0005 2136 5566

Mr. Narinder Ahuja, Director Division of Water Quality New Jersey Department of Environmental Protection 401 East State Street, CN-029 Trenton, NJ 08625

HOPE CREEK GENERATING STATION NJPDES PERMIT NJ0025411 APPLICATION FOR RENEWAL

Dear Mr. Ahuja:

In accordance with the requirements of N.J.A.C 7:14A-1 *et seq.*, PSEG Nuclear LLC submits herewith two (2) copies of the renewal application for NJPDES Permit NJ0025411 for the Hope Creek Generating Station. The certification required pursuant to N.J.A.C 7:14A-4.9 is provided by Mr. George P. Barnes, Site Vice President, at Form NJPDES-1.

If you have any questions or require further information concerning this submission, please contact Mr. Richard Labott at 856-339-1094 or Mr. Edward Keating at 856-339-7902. We would be happy to meet with you or your staff at your convenience.

Very truly yours,

aget Barnes

George P. Barnes Site Vice President – Hope Creek

Enclosure

State of New Jersey Department of Environmental Protection Division of Water Quality

New Jersey Pollutant Discharge Elimination System Permit Application

Refer to Instructions on Page 6 and the Appropriate Completeness Checklist and Provide All Applicable Information. Please Print or Type. (Attach additional sheets if necessary)

Name_PSEG Nuclear LLC	
Mailing Address PO Box 236 / H15 / End of Allowa	y Creek Road
City or Town_Hancocks Bridge	State NJZip Code 08038
	Telephone (856) <u>339-1094</u>
Fax (856) 339-3546	_{E-Mail} _Richard.Labott@PSEG.Com
Parent Corporation & Place of Incorporation _ Public Servic	e Enerprise Group, New Jersey
PROPERTY/LAND OWNER(S)	
Name PSEG Nuclear LLC	
Mailing Address PO Box 236 / H15 / End of Allowa	
City or Town Hancocks Bridge	State NJZip Code 08038
Federal Tax I.D.#_221-212-800	Telephone (856) <u>339-1094</u>
LOCATION OF FACILITY/SITE	and a second
Name of Facility/Site Hope Creek Generating Static	n
Street Address/Location PO Box 236 / H15 / End of A	Alloway Creek Road
City or Town Hancocks Bridge St	
Municipality Lower Alloways Creek Twp. Count	
FACILITY CONTACT (Person Familiar with	the Facility/Site and this Application)
	Telephone (856) <u>339-1094</u>
Affiliation PSEG Nuclear LLC	
City or Town Hancocks Bridge	State NJ Zip Code 08038
Fax (856) 339-3546	E-Mail_Richard.Labott@PSEG.Com

Monitoring Report Forms (MRFs) and Billing notices are sent to the address listed here. Please provide the attached form at the end of this application, if you wish to receive MRFs and/or Billing notices at a different address.

5. PROJECT and DISCHARGE DESCRIPTION (Under This Application)

Steam Electric Generating Station, utilizing nuclear power; discharges include cooling tower

blowdown, industrial wastewater, treated sanitary wastewater, and stormwater; residuals

generated are disposed off-site. Please see attached for additional information.

6. REQUESTED NJPDES PERMIT ACTION AND OTHER NJPDES PERMITS

Under Table A, for each requested permit action under this application, list each discharge activity associated with this facility/site in the left column using the Discharge Activity Category Sheet (i.e., A, A8, CSO, etc.) and check the requested permit action (new, renewal, etc.). Under Table B, list currently held permits and/or pending applications for this facility/site. For existing permits, list permit number(s) and expiration date.

TABLE A: REQUESTED PERMIT ACTION UNDER THIS APPLICATION

DISCHARGE ACTIVITY (CATEGORY) CODES	PERMIT NUMBER	EXPIR. DATE	NEW	RENEW.	MOD.	REVOC.	REVOC. & REISSUE
В	NJ0025411	2/29/08		1			
	······						

TABLE B: OTHER NJPDES PERMITS ASSOCIATED WITH THIS FACILITY

DISCHARGE ACTIVITY (CATEGORY) CODES	PERMIT NO.	EXP. DATE	PENDING

SUPPLEMENT TO NJPDES 1 - ITEM 5 -PROJECT AND DISCHARGE DESCRIPTION HOPE CREEK GENERATING STATION NJPDES PERMIT NJ0025411 Page 1 of 8

I. DESCRIPTION OF THE STATION

I.A. The Site and Its Surroundings

The Hope Creek Generating Station (Hope Creek, HCGS or the Station) is located in Lower Alloways Creek Township, Salem County, New Jersey, at River Mile 51 on the Delaware River Estuary (Estuary), 17 miles south of the Delaware Memorial Bridge. The Station is located on a projection of land known as Artificial Island on the eastern shore of the Delaware Estuary. It is bordered by Salem Generating Station to the south, the Estuary to the west, and by extensive marshes and uplands. Depictions of five-mile and 50-mile radius maps are attached.

The Estuary in the area of the Station is approximately 2.5 miles wide. The tidal flow of the Estuary past the Station is approximately 400,000 cubic feet per second (cfs) or 259,000 million gallons per day (MGD). The salinity of the Estuary in this area varies with both the tides and season from almost freshwater to almost saltwater. The Estuary in the vicinity of the Station has high turbidity and swift current velocities.

Prominent features in the area (and their approximate distances) are the Chesapeake and Delaware Canal (2 miles to the northwest), Hope Creek Jetty (2 miles to the southeast), and Augustine Beach, Delaware (about 3 miles due west). The entire area is within the Delaware River's estuarine zone, as defined by the Delaware River Basin Commission (Zone 5).

The United States Army Corps of Engineers (USACOE) created the island in the first half of the last century while dredging the shipping channel. Depositing the dredged spoil between two small sandbars, the USACOE first built the island, and later it was connected to the shoreline.

SUPPLEMENT TO NJPDES 1 - ITEM 5 -PROJECT AND DISCHARGE DESCRIPTION HOPE CREEK GENERATING STATION NJPDES PERMIT NJ0025411 Page 2 of 8

As one might expect from its history, Artificial Island's surface soil is generally hydraulic fill composed of clay, silt, sand, gravel, and some organic material. The surface layer is 7.6 to 9.2 m (25 to 30 ft) thick and overlies a 1.5- to 3-m (5- to 10-ft) base of coarse sand and gravel that was the original river bottom.

The peninsula extends about one-third of the way across the Delaware Estuary. It is quite flat, with an average elevation of about 2.7 m (9 ft) above mean sea level. During the construction of Artificial Island, the USACOE built a protective levee along most of the western shore.

The site was selected taking account of several criteria, including adequate acreage and distance from population centers, drawn from the requirements of the United States Atomic Energy Commission (USAEC) (now the United States Nuclear Regulatory Commission [USNRC]). Other considerations were the availability of cooling water, transmission facilities, and ready access for heavy equipment. The Station is adjacent to another generating facility operated by PSEG Nuclear LLC (PSEG Nuclear), Salem Station. Together, the site for the two facilities encompasses 740 acres of land, including 220 acres for Salem Generating Station, 153 acres for Hope Creek Generating Station, and 367 acres of uncommitted land.

The remaining land adjacent to the Hope Creek Station is zoned for industrial and residential or agricultural use but falls under wetlands acts that restrict development. The lands immediately north of the Hope Creek facility are dredge spoil areas utilized by PSEG Nuclear and the USACOE. Although the Station and most of Artificial Island is located in New Jersey, the northern tip of Artificial Island lies in Delaware.

SUPPLEMENT TO NJPDES 1 - ITEM 5 -PROJECT AND DISCHARGE DESCRIPTION HOPE CREEK GENERATING STATION NJPDES PERMIT NJ0025411 Page 3 of 8

1.B The Station

Hope Creek is a single unit nuclear power steam electric generating facility. In addition to the generating station, the Hope Creek site contains associated buildings and structures, a sewage treatment plant, an electrical switchyard, parking areas, roads, and equipment laydown areas. Riprap and bulkheads protect the shore from erosion.

I.C. Electrical Generation

Nuclear reactor systems built for commercial power production have been principally either boiling-water reactor (BWR) or pressurized-water reactor (PWR) systems. Hope Creek Unit 1 is a General Electric BWR 4 design and the containment structure is type Mark I. The BWR has two major cooling systems, the reactor system and the cooling water system. Hope Creek operates with a non-contact, closed cycle cooling water system.

Hope Creek is licensed by the USNRC, Docket No. 50-354. The license currently expires on December 20, 2026. Hope Creek is designed to operate continuously at the licensed thermal power rating as a base-loaded electrical generating unit. HCGS is licensed for a thermal power of 3339 Megawatts Thermal (MWt). The electrical output is approximately 1049 Megawatts Electric net Maximum Dependable Capacity (MDC). PSEG Nuclear has an application pending with the USNRC to allow operation of Hope Creek Generating Station at a thermal power level up to 3840 MWt. The environmental assessment submitted in conjunction with the license power increase application evaluated the potential effects on the Station discharges and determined there would be no changes required in the current effluent limitations and conditions based on this increase in licensed power level. PSEG Nuclear believes this increase in licensed power level will be approved by the USNRC in late 2007.

SUPPLEMENT TO NJPDES 1 - ITEM 5 -PROJECT AND DISCHARGE DESCRIPTION HOPE CREEK GENERATING STATION NJPDES PERMIT NJ0025411 Page 4 of 8

The nuclear reaction process produces heat which is transferred to the reactor water, cooling the reactor, and creating steam in the reactor vessel. The steam enters the high-pressure turbine then the three low-pressure turbines, causing them to rotate. This rotation is transferred to the generator which generates electricity. The exhausted steam leaves the turbines and enters the main condenser, where it is condensed by cooling from the circulating water system that is contained inside the condenser tubes. As this is a non-contact cooling water system, the steam and circulating water are isolated from each other. The condensed steam is purified and returned to the reactor for reuse in the generation of steam.

1.D. Circulating Water System

The circulating water system (CWS) transports excess heat from the condensers to the cooling tower for dissipation. The CWS is a closed cycle cooling water system; the circulating water is recirculated within the CWS. The CWS is also a non-contact cooling water system, the circulating water does not come in contact with the steam being cooled, it is contained inside the tubes within the condenser. There are four circulating water pumps (CWP), each rated at 138,000 gallons per minute, for a total circulating water system flow of about 552,000 gallons per minute. The cooling tower is a natural draft, counterflow, evaporative type which is 432 feet in diameter at the base and 512 feet high. The cooling tower basin contains approximately 9 million gallons of water, and with the volume of the circulating water system provides an operating volume of 11 million gallons for the circulating water system. In the circulating water system, the CWPs draw water from the cooling tower basin, pump the water through the main condensers where it picks up excess heat from the steam, and returns the circulating water to the cooling tower above the fill through a distribution system. As the circulating water falls back to the cooling tower basin over the fill, heat is transferred from the circulating water to the air that is naturally drafted counter to the circulating water flow. This transfer of heat allows the circulating water to be reused. Since there is some evaporative loss, solids from the Delaware Estuary

SUPPLEMENT TO NJPDES 1 - ITEM 5 -PROJECT AND DISCHARGE DESCRIPTION HOPE CREEK GENERATING STATION NJPDES PERMIT NJ0025411 Page 5 of 8

concentrate in the cooling tower basin and continuous blowdown is used to control this concentration. Makeup water to replace the evaporative losses and the continuous blowdown back to the Delaware Estuary is provided by the service water system. Further information regarding the cooling tower blowdown and system chemical usage is contained at Form C, Tab DSN 461A.

The function of the cooling tower is to reduce the temperature of the circulating water entering the cooling tower to a lower temperature, so that it can be recycled for further use. Natural draft cooling towers are essentially static devices which rely on the design of the tower and operation of the laws of thermodynamics to accomplish the cooling of the circulating water. The cooling tower is least efficient for removing heat when the wet bulb temperature is high and the relative humidity is low. The cooling tower utilizes cool ambient air in such a way that heat is transferred from the hot water to the cool air through both latent heat transfer and, to a lesser extent, sensible heat transfer. Latent heat transfer occurs when heated water is evaporated by being exposed to cooler air. Approximately 931 British Thermal Units (BTU) of heat per pound of water evaporated is consumed; the heat is taken from the water remaining after evaporation by lowering its temperature. This transfer of latent heat accounts for approximately seventy-five (75%) percent of the heat transfer that occurs. The balance of the heat transfer involves sensible heat exchange. When two masses having different temperatures come into contact, heat is exchanged so that their temperatures approach an equilibrium. When warm water contacts cool air in the tower, the air is warmed because it receives sensible heat from the water; the water, in turn, loses sensible heat and is cooled. As the air is warmed, it also becomes lighter. The difference in specific weight between the air inside and outside the cooling tower causes the natural draft effect through the tower. The actual transfer of heat from the water to the air is accomplished primarily in the fill, where warm water is passed downward in very thin films through a stream of air moving upward as a result of the natural draft. The fill is designed to maximize the surface area of the water exposed to air, thereby maximizing the amount of

SUPPLEMENT TO NJPDES 1 - ITEM 5 -PROJECT AND DISCHARGE DESCRIPTION HOPE CREEK GENERATING STATION NJPDES PERMIT NJ0025411 Page 6 of 8

evaporation that occurs. The warmed, moist air is then drawn upward through the drift eliminators which contain wave-shaped passages designed to reduce the amount of water leaving the tower as droplets with the warmed air. By causing the air to change direction, the drift eliminators collect many of the water droplets carried by the air. The warm air is then discharged into the atmosphere and the cooled water falls to the cooling tower basin to be recycled in this closed-loop cooling system.

1.E. Service Water System

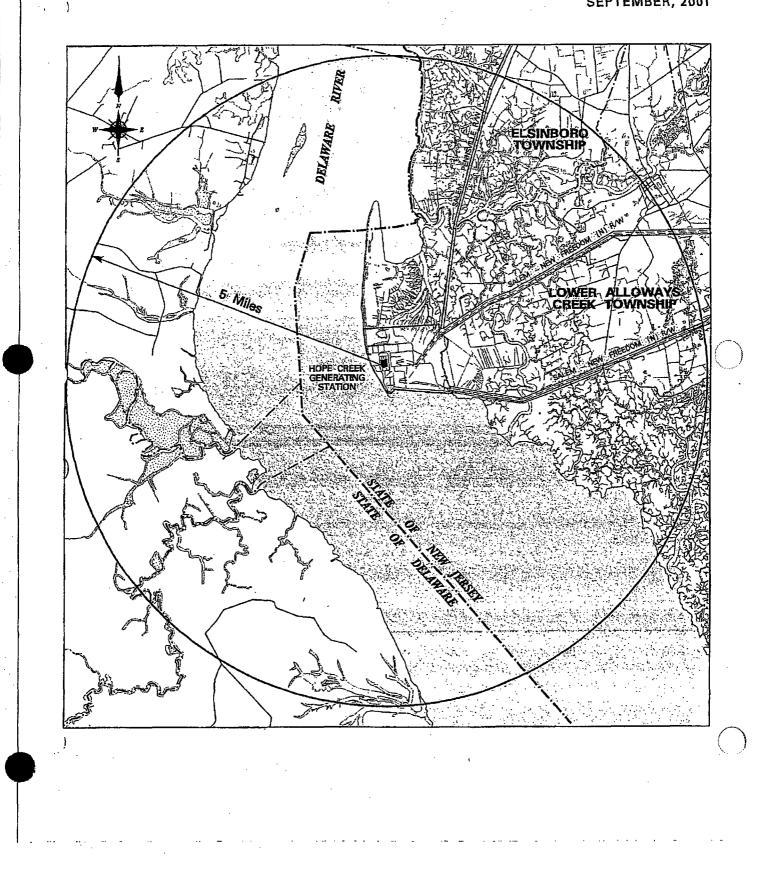
The service water system (SWS) provides Estuary water to cool the Safety Auxiliary Cooling System (SACS) and the Reactor Auxiliary Cooling System (RACS) heat exchangers. SACS is a nuclear safety-related cooling system designed to provide cooling water to the engineered safety features equipment during normal and emergency plant conditions. The RACS provides cooling water to reactor subsystems during normal plant operations. After cooling SACS and RACS, the service water is directed to the cooling tower basin for makeup water. If the cooling tower is not in service, the service water can bypass the cooling tower and discharge directly to the cooling tower blowdown line. There are four service water pumps serving two independent service water cooling loops. Normally, two or three service water pumps are in operation to provide the requisite service water flow.

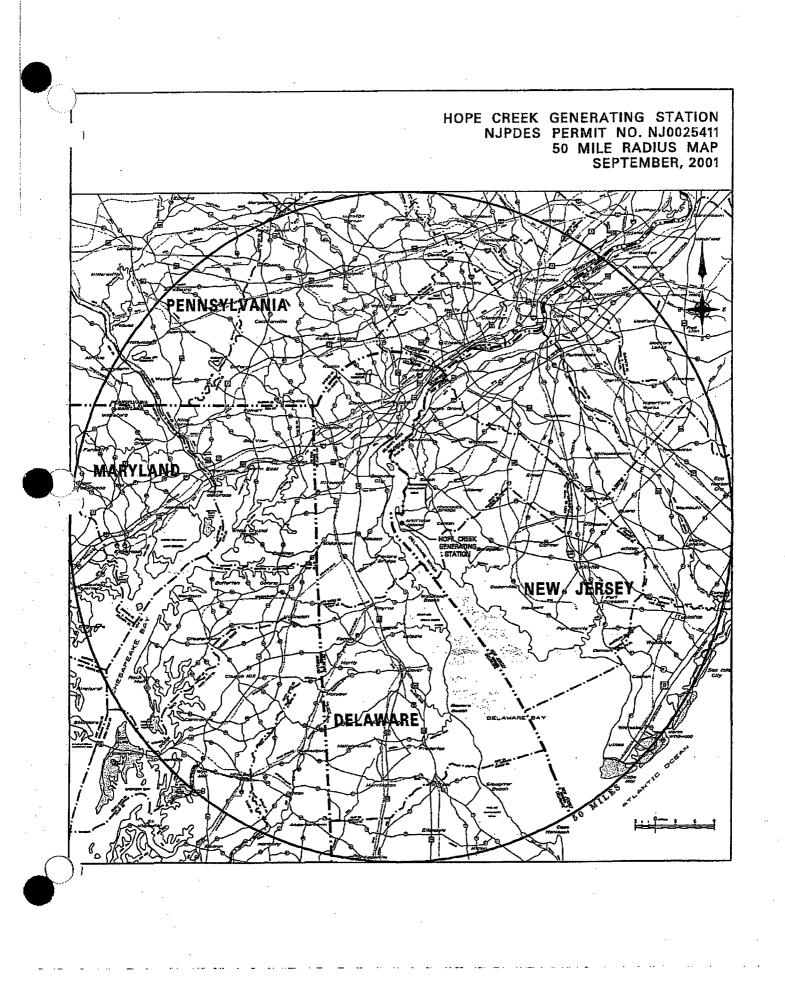
The service water intake structure is located on the shoreline, approximately 800 feet due west of the reactor building. Figure NJPDES-1-Item 5-A shows a cut-away view of the service water intake. The intake occupies approximately 112 feet of shoreline, extends 75 feet inland, and rises 35 feet above grade (excluding the gantry crane). The west face of the intake is parallel to and flush with the shoreline. The intake structure is constructed of reinforced concrete and seismically designed for nuclear safety purposes. The front of the intake contains a continuous line of trash racks and associated trash rakes and a skimmer wall. The intake is divided into eight (8) bays, each with its own traveling screen, service

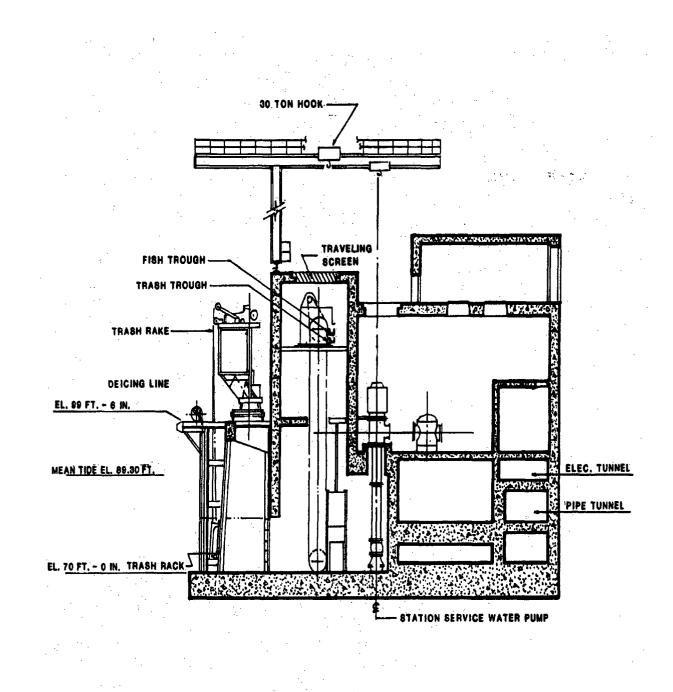
SUPPLEMENT TO NJPDES 1 - ITEM 5 -PROJECT AND DISCHARGE DESCRIPTION HOPE CREEK GENERATING STATION NJPDES PERMIT NJ0025411 Page 7 of 8

water pump, service water strainer, and associated equipment. Four of the bays are used to support Hope Creek, the other four bays were designed for the cancelled Hope Creek Unit 2 and are idle.

- The trash racks are located in front of the intake structure to prevent heavy debris from entering the intake and damaging the traveling screens. They are constructed of coated carbon steel, three inches deep and 0.75 inch wide and are set on three inch centers. Mechanical rakes remove collected debris which is aggregated in trash containers for off-site disposal. The bottom of the trash racks are at elevation 70 ft (PSD). Velocity through the trash racks is approximately 0.1 foot per second. The skimmer wall is designed to prevent the entrance of an oil slick or ice, velocity under the skimmer wall is approximately 0.35 foot per second.
- After passing through the trash racks, intake water flows through vertical traveling screens of a modified Ristroph design at approximately 0.39 ft/sec. Each traveling screen is a continuous linkage of framed baskets. Each basket is approximately 2.5 feet high and 8.33 feet wide and the screening material is No. 14 W&M gage monel wire mesh with 0.375 inch square openings. Each basket has a trough (fish bucket) on the lower lip designed to prevent re-impingement of fish and provide the mechanism to return fish to the Delaware Estuary. The fish buckets allow organisms to remain in the water while being lifted to the fish return trough. As the traveling screen panel travels over the head sprocket of the traveling screen, low pressure sprays (less then 20 psi) wash the organisms into the fish return trough. As the traveling screen panel traveling screen panel traverses further, high pressure sprays (approximately 90 psi) remove the remaining debris into the debris trough. The spray wash water normally comes from the Service Water Pump discharge, but fresh water may be used infrequently. The fish and debris troughs are combined and returned to the


SUPPLEMENT TO NJPDES 1 - ITEM 5 -PROJECT AND DISCHARGE DESCRIPTION HOPE CREEK GENERATING STATION NJPDES PERMIT NJ0025411 Page 8 of 8


Delaware Estuary at a distance from the intake to reduce the potential for reimpingement on the screens.


- After passing through the traveling screen, the intake water enters the
 respective service water pump. Each service water pump is a vertical, wet-pit,
 turbine type, centrifugal pump rated at 16,500 gallons per minute and 150 feet
 total discharge head. Each pump is powered by an 800 horsepower electric
 motor. Sodium hypochlorite is continuously added at the suction of the service
 water pumps as a biocide to prevent fouling.
- Service water next passes through the service water strainers where smaller particles and debris are removed. The service water strainers are full-flow, self-cleaning, strainers with nominally 250 380 micron elements. The strainers continuously backwash when the associated service water pump is operating and the backwash water is discharged in the debris trough. Strainer backwash water, traveling screen spray wash, and service water pump bearing lubrication water are drawn from the system after the service water strainers.
- Any leakage or drains within the building housing the service water pumps, screens, strainers, and associated equipment is directed to the building sumps which discharge to the Delaware Estuary along with the traveling screen and strainer backwash waters. Since sodium hypochlorite is added to the suction side of the service water pumps, residual chlorine may be present in the service water used to wash the screens and strainers or the sumps. This discharge is shown on the Schematic of Water Flow, Form C, Item 3B, Item A.

Additional information regarding the service water system and circulating water system effluent is contained at Form C, Tab 461A. Information regarding other treatment systems and effluents are also contained at Form C Tabs 461A, 461C (Low Volume and Oily Waste System), 462B (Sewage Treatment System), and Yard Drains (DSNs 465A, 463A, and 464).

HOPE CREEK GENERATING STATION NJPDES PERMIT NO. NJ0025411 5 MILE RADIUS MAP SEPTEMBER, 2001

HOPE CREEK GENERATING STATION SERVICE WATER INTAKE NJPDES PERMIT NO. NJ0025411 SEPTEMBER 2007 FIGURE NJPDES-1-ITEM5-A

7. OTHER PERMITS

If any of the following applications have been submitted for this facility/site, complete the applicable information.

Permit Type	Application No. (if assigned)	Ар	Application Status		
		Approved Date	<u>Denied</u> Date	<u>Pending</u> √	
Treatment Works Approval (Municipal - Industrial)	Please see attached list				
Exemption From Sewer Ban					
Water Quality Management Plan Amendment					
Potable Water Supply Well	Please see attached list		,		
Hazardous Waste Management Program	Please see attached list				
Prevention of Significant Deterioration (PSD)					
Nonattainment Program, Clean Air Act					
National Emission Standards - Hazardous Pollutants					
Ocean Dumping Permits (Marine Protection Act)					
Dredge/Fill Permits - Federal Act Section 404	Please see attached list		÷	·.	
 Relevant Environmental Permits - Including Federal, State, & Local Approvals - Specify: 			·		
		· ·			

8. STANDARD INDUSTRIAL CLASSIFICATION CODE(S):

SIC Code #

 (\checkmark) if assigned by Products or Service Provided by Facility/Site NJ Dept. of Labor

.1

4911

Generation of electricity for sale

Page 3 of 7

Revision 08/04

.

Revision 08/04

ł

	SOURCES: Please check ☑ all that apply.	
	Public Water Supply: Name of the water uti	llity
<u> </u>	Private Wells	Delaware River Estuary
•	Surface Water: Name of the surface water	·s
	y/site connected to a sanitary or combined s	
-	name, address, and phone number of receiv	-
	eek Generating Station sanitary sew	
Joes this fa	cility discharge to a storm drainage system?	
	If yes, please check ⊠:	Public <u> </u> Private
	cility discharge to surface water?	Yes No
	cility discharge to ground water?	Yes _ ✓ _No
LICENS		ABLE)
ne	Richard Stowman / Christopher Whi	ite N.J. License No. 0028438,0028491 / 0008859
iation	PSEG Nuclear LLC	
ing Address	PO Box 236 / H15	
or Town	Hancocks Bridge	State NJ Zip Code 08038
phone	(856) <u>339-3301</u> F	Fax (856) 339-3546
ail	Christopher.White@PSEG.Com	
	CANT'S AGENT (Optional)	
		· · ··································
	d below is authorized to act as agent/repres	sentative in all matters pertaining to this application.
le		Position
ipany		· · · · · · · · · · · · · · · · · · ·
ing Address		
or Town		State Zip Code
	() F	Fax ()
phone		·
phone ail		
	() F	Fax ()

SUPPLEMENT TO NJPDES 1 – ITEM 7 – OTHER PERMITS HOPE CREEK GENERATING STATION

PAGE 1 OF 2

ENVIRONMENTAL PERMITS

PERMIT/PURPOSE	NUMBER	EXPIRES
Air Pollution Control Permits (P	rogram Interest II	D 65500)
Title V Operating Permit	BOP05003	02/01/2010
Potable Water	[·] Supply	
Public Water Supply No.	1704306	NA
Groundwater Diversion Permit - Production Wells	2216P	01/31/2010
DRBC Ground Water Withdrawal	D-90-71	11/15/2010
Treatment Works	Approvals	
Cooling Tower TWA	Waiver	NA
Liquid Radwaste Treatment System TWA	Waiver	NA
Low Volume and Oily Waste System TWA	Waiver	NA
Sewage Treatment Plant TWA	Waiver	NA
Hazardous Waste Mana	igement Program	
Hazardous Waste Generator	NJD077070811	NA
	34571	

SUPPLEMENT TO NJPDES 1 – ITEM 7 – OTHER PERMITS HOPE CREEK GENERATING STATION

ENVIRONMENTAL PERMITS

PAGE 2 OF 2

Relevant Environmental Permits					
CAFRA	74-014	NA			
Riparian License	74-46	NA			
Riparian License (Access Road)	68-12	NA			
Type "B" Wetlands Permit	W74-042	NA			
Waterfront Development (Dredging & Desilting)	OP-R-199501755- 45	12/31/2007			
Waterfront Development (Maintenance Dredging)	1704-90-0001.8	02/22/2007 (Renewal Pending)			
DRBC Docket Decision (STP Allocation)	D-85-60CP	NA			
DRBC Docket Decision (STP)	D-87-70	NA			
DRBC HC Construction	D-73-193CP	NA			
Laboratory Certificate	17451	06/30/2012			
Air Navigation Determination	82-AEA-0822-OE	NA			
USNRC Facility Operating License	NPF-57	04/11/2026			
USNRC Facility Operating License (EPP)	50-354	04/11/2026			
Centralized Warehouse	91-5585-4	NA			
DPCC/DCR	170400041000	01/31/08			
Surface Water Discharge Permit (NJPDES)	NJ0025411	02/29/2008			

hereby certify that					
		roperty Owner's Name)			
	d.) below. The owner grants pe Department to conduct on-site i			ermitted under this	
In addition, I certify: (che	ck "yes" or "no")		YES	NO	
A) The activity will take pla	ace in an easement?				
	t (e.g. pipeline, disposal area,				
wells, etc.) is or will be					
owned by the State of	New Jersey?		······		
wells, etc.) is or will be owned by a municipali	et (e.g. pipeline, disposal area, located within property by or county? (If "yes", contact t				
wells, etc.) is or will be owned by a municipalit Acres Program at (609 D) LOT	located within property y or county? (If "yes", contact f) 588-3461 for an applicability	determination.)			
wells, etc.) is or will be owned by a municipalit Acres Program at (609 D) LOT	located within property y or county? (If "yes", contact t	determination.)			
wells, etc.) is or will be owned by a municipalit Acres Program at (609 D) LOT	located within property y or county? (If "yes", contact f) 588-3461 for an applicability	determination.)	ant must p	statements a, b, or rovide evidence o from the other	

13. CERTIFICATION BY APPLICANT

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true. accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for purposely, knowingly, recklessly, or negligently submitting false information."

Barnes

Signature for Applicant

<u>8|30|07</u>

George P. Barnes

Print or Type: Name Vice President - Hope Creek

. . . .

Print or Type: Position

INSTRUCTIONS FOR COMPLETING FORM NJPDES - 1

This form shall accompany all NJPDES permit applications and Requests for Authorizations (RFA) -(excluding RFA's for Stormwater General Permits which use different forms).

Applicant(s)/Operating Entities - Provide the name, as it is legally referred to, of the operating entity(ies) 1. that is the applicant(s) in your application for the NJPDES permit. An "operating entity" is any firm, public agency, individual, or other entity which, alone or along with other operating entities, has primary management and operational decision-making authority over any part of a facility/site.

It is the duty of the operating entity(ies) to obtain a NJPDES permit. When a facility/site or activity is owned by one or more entities, but is currently operated by another entity(ies), it is the duty of the operating entity(ies) to obtain a NJPDES permit. If the facility/site named in Item 3 has an operating entity(ies) which is not an applicant submitting your application, attach an additional sheet that contains a statement to that effect and as much Item 1 information as you have about that operating entity(ies).

Provide the mailing address of the applicant(s). If the mailing address is outside the United States, provide the correct foreign mailing address. Provide the 9-digit Federal Tax Identification Number (also called Federal Identification Number) assigned to the applicant(s) by the IRS for tax reporting purposes. Provide the telephone number (and, if they exist, the fax number and e-mail address) of the applicant(s). If the applicant(s) has a parent corporation(s), provide that parent corporation's name and place of incorporation.

- 2. Property/Land Owner(s) - Provide the legal name of the owner(s) of the property/land upon which the discharge is controlled and/or taking place. A "Property" includes all contiguous lots and blocks, including vacant land, owned or otherwise under the control of the owner or operating entity of the regulated facility. NOTE: For all DGW applications, the property owner where the discharge takes place must also sign item 12
- Location of Facility/Site Provide the location of the facility/site. Street number and name must be used 3. (PO Box #'s will not be acceptable). Use the municipality and county where the facility/site is physically located. Do not use local or neighborhood names.
- Facility Contact Identify a person the Department can contact for facility/site related information. This 4. person should be familiar with the content of the application.
- 5. Project and Discharge Description (Under This Application) - Provide a brief description of the project relating to this application (e.g., municipal sewage treatment plant, factory, shopping center, school, housing development, restaurant, etc.). For each discharge which is the subject of this application, provide the general type of waste discharged (e.g., sanitary, industrial, sludge, etc.) including non-contact cooling water. If requesting a modification to your permit, state the reason for such.
- Requested NJPDES Permitting Action and Other NJPDES Permits Under Table A, for each requested 6. permit action under this application, list each discharge activity associated with this facility/site in the left column using the discharge activity category codes provided below (i.e., A, A8, CSO, etc.) and check the requested permit action (new, renewal, etc.). Under Table B, list currently held permits and/or pending applications for this facility/site. For existing permits, list permit number(s) and expiration date.
- Other Permits This section provides the Department with a facility's permitting status and history. Next to 7. each permit type, list the application number and the date of the approval or denial in the appropriate column. If the application is still pending, place a check in the far right hand column.
- 8. Standard Industrial Classification Code - List, in descending order of priority, up to four 4-digit Standard Industrial Classification (SIC) codes which best reflect the principal products or services provided by the facility/site. These codes are available in the Standard Industrial Classification Manual (1987) issued by the Federal Office of Management and Budget (OMB). (Do not use the codes in the North American Industrial Classification System (NAICS) for the United States adopted by OMB in 1997.) For each SIC code, list the products or services provided. If the NJ Dept. of Labor (NJDOL) has assigned the applicant an SIC code(s), the list of SIC codes shall include, but not necessarily be limited to, the SIC "Industry Code" located in the upper left hand corner of NJDOL's Quarterly Contributions Report (with a check mark next to that code).
- 9. Water Supply/Discharge Information - Provide the overall facility/site water management practices water usage, and disposal for the entire facility/site provided by the facility/site. Do not limit yourself to Item 8, Table A

- 10. Licensed Operator (If Applicable) Provide information pertaining to all licensed operator(s) of the treatment work(s).
- **11.** Applicant's Agent (Optional) Identify the person who is authorized to act as agent/representative in all matters pertaining to this application. Both the agent and the authorized official of the applicant must sign.
- **12. Property Owner's Certification (For DGW Permits Only)** Provide this certification for the property where the discharge takes place.
- Certification by Applicant The certification must be made by the applicant(s) for the NJPDES permit. The applicant(s) is the operating entity(ies) for the facility/site (see item 1 instructions). All signatures in items 11, 12 and 13 must be original signatures.

WHO MUST SIGN?

FOR A CORPORATION: a "responsible corporate officer" <u>or duly authorized representative</u>. A "responsible corporate officer" is (i) a president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation; or (ii) the manager of one or more manufacturing, production, or operating facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25 million (in second-quarter 1980 dollars), if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.

FOR A PARTNERSHIP OR SOLE PROPRIETORSHIP: a general partner or the proprietor, respectively, <u>or duly authorized representative</u>.

FOR A MUNICIPALITY, STATE, FEDERAL OR OTHER PUBLIC AGENCY: either a principal executive officer or ranking elected official, <u>or duly authorized representative</u>.

A "responsible corporate officer," general partner, proprietor, principal executive officer of a public agency, or ranking elected official may assign his or her signatory authority for this Certification to a <u>duly authorized representative</u>, which is a named individual or generic position (e.g., plant manager, operator of a well or a well field, superintendent) having overall responsibility for facility/site operation or the company's or public agency's environmental matters, by submitting a letter to the Bureau of Permit Management stating said authority and naming the individual or position.

Should you need assistance in completing the application, please call the appropriate phone number listed below:

 Discharges to Surface Water (Industrial)	 Sludge and Residuals Issues
(609) 292-4860 or (609) 633-3869	(609) 633-3823
 Discharges to Surface Water (Municipal)	 Indirect Discharges (SIU)
(609) 292-4860 or (609) 633-3869	(609) 633-3823
Discharges to Surface Water (Stormwater)	Discharges to Ground Water
(609) 633-7021	(609) 292-0407

Discharge Activity Category Sheet

For completing the left columns in the NJPDES 1 Form, item 6, tables A and B

Dischause to Curface Water (DCW)
Discharge to Surface Water (DSW)
A Domestic Surface Water Discharge CSO Combined Sewer Overflow
B Industrial/Commercial/Thermal DSW
• B4B GW Petroleum Products Cleanup GP
G Non-Contact Cooling Water GP
Discharge to Ground Water (DGW)
• GW Discharge to Ground Water
• T1 GP Sanitary Subsurface Disposal
Lined Surface Impoundment
• I1 GP Stormwater Basins/Sanitary Landfill
• 12 GP Potable Water Treatment Plant Basins/Drying Beds
Residuals and SIU Discharges
• L Discharge to POTW (SIU)
• D Land Application of Biosolids - Class B
• V Land Application of Biosolids - Class A
• E Land Application of Industrial Residuals
• Z Residuals Transfer Facilities
• 04 Residuals Phragmites Reed Beds
• EG Land Application Food Processing Residual GP
• ZG Residuals Transfer Facilities GP
• 4G Residuals Phragmites Reed Beds GP
Stormwater Discharges
RF Stormwater
Use the following for Table B only
CPM Concrete Products Management GP
SM Scrap Metal Processing/Auto Recycling GP
• 5G2 Stormwater Basic GP
• 5G3 Construction Activity Stormwater GP
R4 Hot Mix Asphalt Producers GP
• R5 Newark Airport Complex GP
R8 Concentrated Animal Feeding Operations (CAFO) GP
R9 Tier A Municipal Stormwater GP
R10 Tier B Municipal Stormwater GP
R11 Public Complex Stormwater GP
R12 Highway Agency Stormwater GP

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 1 (new applicants leave blank) Rev. 08/28/07

FORM R

NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER QUALITY

| **R**

Refer to Appropriate Completeness Checklist and Instructions. Provide All Applicable Information. Please Print or Type. (Attach additional sheets if necessary)

SUPPLEMENTAL APPLICATION FORM TO NJPDES-1 FOR NJPDES RESIDUAL PERMITS

PART A: GENERAL INFORMATION

APPLICATION OVERVIEW: Form R is divided into nine parts (A-I). All applicants for a NJPDES permit must complete Part A. The applicability of Parts B, C, D, E, F, G, H and I can be determined by reviewing section A4 of this form

A1. Screening Information

1. Does/will the facility: (1) generate a residual or a hazardous waste as a by-product of wastewater treatment for which a NJPDES application is being made, (2) generate a residual from the treatment of water for public consumption, or (3) derive a material from residual?

_X_Yes__No

If you answered "yes", go to question 2. If you answered "no", this application does not need to be completed; however, submit this page as documentation that no residual is produced.

2. If you answered "yes" to question 1 above, is the by-product produced a hazardous waste or is the residual manifested as if it were a hazardous waste?

_X_Yes ___No <u>Please see attached</u>

If yes, complete only Part A. If no, you must complete, at a minimum, Parts A, B and I.

A2. Facility Information.

a. Name of facility:	Hope Creek Generating Sta	ation			
b. Facility contact.	Name: Richard Labott				
	Title: Manager-Chemistry, Rad Waste, Env Phone: (856) 339-1094			(856) 339-1094	
c. Facility location:					
Street or Route #:	End of Alloway Creek Nec	End of Alloway Creek Neck Road, P.O. Box 236/H15			
County:	Salem	Salem			
City or town:	Hancocks Bridge State	e: New Jersey	Zip: 08038		
	Lower Alloway Creek Tow	nship			
d. Facility mailing addr	iling address:				
Street or Route #:	End of Alloway Creek Nec	k Road, P.O. Box	236/H15		
City or town:	Hancocks Bridge State	e: New Jersey	Zip: 08038		

HOPE CREEK GENERATING STATION NJPDES PERMIT NJ0025411 ATTACHED INFORMATION FOR FORM R

ITEM A1 - Screening Information

1. The facility may generate a residual or a hazardous waste as a by-product of wastewater treatment for which a NJPDES application is being made. The facility does not: (a) generate a residual from the treatment of water for public consumption, nor (b) derive a material from residual.

2. There are three primary sources from which a residual is generated requiring transport for which a manifest may be appropriate: (1) the Radioactive Liquid Waste (RLW) system; (2) the Low Volume and Oily Waste System (LVOW); and, the Sewage Treatment System (STP).

(1) RLW residuals are radioactive waste and are therefore managed in accordance with US Nuclear Regulatory Commission (USNRC) requirements and transported to USNRC or USNRC Agreement State licensed facilities.

(2) The residuals from the LVOW system are normally collected in the adjacent Sludge Holding Tank until an adequate volume is collected for disposal but may be removed directly from the Oil Water Separator (OWS). In recent history, the wastes have generally been classified as radioactive (due to low levels of radioactivity which enter the system and concentrate in the residual), requiring disposal in an USNRC-approved facility. Prior to the disposal of residuals, the residuals are analyzed to determine the proper classification for handling and disposal. If the residuals are radioactive, they require disposal in an USNRC-approved facility. If the residuals are not radioactive, they are evaluated to determine if they are hazardous, requiring disposal in accordance with the NJDEP hazardous waste regulations; and/or, a solid waste, requiring handling in accordance with those NJDEP regulations.

(3) The residuals from the STP system are normally collected in the adjacent sludge tank or the standby extended aeration package sewage treatment plants until an adequate volume is collected for disposal. Residuals may also be removed directly from the STP if required. In recent history, the wastes have generally been classified as radioactive (due to low levels of radioactivity which enter the system and concentrate in the residual), requiring disposal in an USNRC-approved facility. Prior to the disposal of residuals, the residuals are analyzed to determine the proper classification for handling and disposal. If the residuals are radioactive, they require disposal in an USNRC-approved facility. If the residuals are not radioactive, they are evaluated to determine if they are hazardous, requiring disposal in accordance with the NJDEP hazardous

HOPE CREEK GENERATING STATION NJPDES PERMIT NJ0025411 ATTACHED INFORMATION FOR FORM R

ITEM A1 - Screening Information

waste regulations; and/or, a solid waste, requiring handling in accordance with those NJDEP regulations.

3. The sediment collected in the cooling tower basin is desilted and removed to the dredge spoil disposal area north of the cooling tower in accordance with USACOE Permit CENAP-OP-R-199501755-45.

	(new applicants leave blank) Rev. 08/28/07				
. Us	se and Disposal Sites.				
a.	Amount of residual or hazardous waste: Provide the total dry metric tons per latest 365-day period (calendar year) of residual or hazardous waste handled by the process/discharge for which the NJPDES application is being made.				
	Total amount generated on-site at the facility:26.2 (Sewage Sludge)				
	Total amount received from off-site:0				
b.	Provide the following information for each site on which the residual or hazardous waste indicated above from this facility is treated, transferred, used or disposed (attach additional sheets as necessary):				
	Name of facility: GTS Duratek				
	Facility contact: Name General Manager				
	Title GM Phone (865) 481-8279				
	Facility mailing address:				
	Street or P.O. Box 15460 Bear Creek Road				
	City or town Oak Ridge State TN Zip 37831				
A	Iditional Information.				
	view the following outline to determine if Parts B through I of this form must be completed.				
1.	PART B: GENERATION OR PREPARATION Part B must be completed by applicants who either: 1) Generate a residual which is not being manifested as if it were a hazardous waste (for example, sewage sludge, water treatment residual, food processing residual); or 2) Derive a material from residual.				
2.	PART C: ENVIRONMENTAL ASSESSMENT Part C provides guidance for preparing and submitting an Environmental Assessment as required under N.J.A.C. 7:14A- 20.6. An Environmental Assessment is required for: (1) the locations where residuals are prepared for land application, (2) the location where residuals are or were placed on a surface disposal site, or (3) the location for residual transfer stations, as otherwise determined by the Department under N.J.A.C. 7:14A-20.5. An Environmental Assessment is not required for each individual residual land application site. This requirement may also be waived by the Department if no additional infrastructure is proposed. (For example, if a domestic treatment works already has approval to operate anaerobic digester and is applying for a permit to land apply the residual already generated from the digesters, an environmental assessment not required.) Contact the Bureau of Pretreatment and Residuals at (609) 633-3823 for specific guidance on whether an environmental assessment is required.				
3.	PART D: LAND APPLICATION OF RESIDUAL Part D must be completed by applicants who either: 1) Apply residual to the land; or 2) Prepare residual that is applied to the land by others. Applicants who meet either or both of the above criteria are exempted from this part if all of the resid generated is sent to another facility to be prepared for land application.				
4.	PART E: SURFACE DISPOSAL Part E must be completed by applicants who own or operate a residual surface disposal site.				
5.	PART F: OUT-OF-STATE GENERATORS				

Part F must be completed by out-of-state generators preparing residual for land application in the State of New Jersey.

6. PART G: RESIDUAL TRANSFER STATION

Part G must be completed by applicants who own or operate a residual transfer station.

7. PART H: REED BEDS

Part H must be completed by applicants who own or operate a residual reed bed management system.

8. PART I: CERTIFICATION

Part I must be completed by all applicants required to complete information under Parts B through H above.

For copies of Parts B through I, contact the Bureau of Permits Management at (609) 984-4428. If you have specific questions or need assistance in completing application Form R, contact the Bureau of Pretreatment and Residuals at (609) 633-3823.

22.2

92**012**7483

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 3 (new applicants leave blank) Rev. 08/28/07

PART B. GENERATION OF RESIDUAL OR PREPARATION OF A MATERIAL DERIVED FROM RESIDUAL <u>N/A</u>

Part B must be completed by applicants who generate a residual by a process and/or discharge for which the NJPDES application is being made (including, but not limited to, sewage sludge, water treatment plant residual, and food processing residual), or derive a material from residual.

B1. Facility Information.

a.	Is this facility a Class 1 Sludge Management Facility? (Note: a domestic treatment works req	uired to			
	have an approved industrial pretreatment program is a Class 1 Sludge Management Facility. Other				
	treatment works may be designated as Class 1 by the Department on a case-by-case basis.)				
	YesNo				
b.	Facility design influent flow (wastewater) rate, if applicable:	mgd			

- c. Total population served, if applicable:
- d. For residual management operations (e.g. incinerator, stabilization operation, etc.):

Maximum Daily Capacity: ______ (Dry Metric Tons/day)

- Average Daily Capacity: ______ (Dry Metric Tons/day)
- e. Indicate the type(s) of facility:

_Publicly owned treatment works

Privately owned treatment works

- Federally owned treatment works
- _____Residual blending or treatment operation

_____Surface disposal site

____Industrial treatment works

___Other. If other, explain:__

B2. Line Drawing.

a. Provide a line drawing of residual flow through the facility, and/or a narrative description that identifies all residual practices that will be employed during the term of the permit, including all processes used for collecting, dewatering, storing, or treating residual, the destination(s) of all liquids and solids leaving each unit, and all methods used for pathogen reduction and vector attraction reduction (attach additional sheets as necessary).

b. Provide a description of residual use and disposal practices:

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 4

(new applicants leave blank)

Rev. 08/28/07

%)

B3. Plot Plan.

Where the following information is applicable, attach a Municipal Tax Map (clear copy or original) or equivalent plot plan as may be accepted by the Department drawn to scale depicting the following information:

1. The location of all sites at which residual is stored at the facility for which the NJPDES application is being made; and

2. The location of any sites where the applicant transfers or plans to transfer residuals for treatment and/or disposal.

B4. Contractor Information.

Are any operational or n the responsibility of a co	-	cts of this facility rela	ted to residual generation	on, treatment, use or disposal
Yes		No		
If yes, provide the follow	ving for each con	tractor (attach additio	onal pages if necessary)	
Name:				
Street or P.O. Box:				
City or Town:		State:	Zip:	
Phone Number:	()			
Responsibilities of co	ontractor:			

B5. Residual Quality Information

Provide a summary of all data submitted under the Sludge Quality Assurance Regulations (N.J.A.C. 7:14-4) for the previous 12-month period. If no data is available, a sample must be taken, analyzed and reported where required pursuant to the Sludge Quality Assurance Regulations (SQAR). For new facilities, a sample must be be taken and analyzed within 90 days of the start of operation as required by SOAR.

B6. Residual Amount Generated On Site.

Is domestic sewage included in the process where residual is generated? a. (If yes, percent of total influent flow: Yes No

Volume and types of residual generated on-site: b.

Water treatment plant residual (dry metric tons per 365-day period):

Food processing residual (dry metric tons per 365-day period):

Sewage sludge (dry metric tons per 365-day period):

Other: (describe: _____)

(dry metric tons per 365-day period):

FACILITY NAME:	HOPE CREEK GENERATING STATION	NJPDES PERMIT NO.: NJ0025411	FORM R-5
		(new applicants leave blank)	Rev 08/28/07

pro	vide the following in	, or will receive, residual from another facility for treatment, use, or disposal nformation for each facility from which residual is received. If you receive in one facility, attach additional pages as necessary.
a.	Facility Name:	
b.	Contact Person:	
	Phone number:	
c.	Mailing address:	
d.	Facility address:	
e.	Total dry metric ton	s per 365-day period received from this facility:
f.	•	ent processes known to occur at the off-site facility, including dewatering, blendi uce pathogens or vector attraction characteristics:

c.	Is vector	attraction	reduction	provided	for residual	at your	facility?
----	-----------	------------	-----------	----------	--------------	---------	-----------

_Class B

Yes

Class A

b.

_____ None or unknown

Describe any treatment processes used at your facility to reduce pathogens in residual:

No

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES F	PERMIT NO.:_NJ0025411 (new applicants leave blank)	FORM R - 6 Rev. 08/28/07
B8. Treatment Provided at Your Facility (continued).		

- d. If yes, which vector attraction option is met for the residual at your facility?
 - ____ Option 1 (Minimum 38 percent reduction in volatile solids)
 - ____ Option 2 (Anaerobic process, with bench-scale demonstration)
 - _____ Option 3 (Aerobic process, with bench-scale demonstration)
 - Option 4 (Specific oxygen uptake rate for aerobically digested residual)
 - _____ Option 5 (Aerobic processes plus raised temperature)
 - Option 6 (Raise pH to 12 and retain at 11.5)
 - Option 7 (75 percent solids with no unstabilized solids)
 - Option 8 (90 percent solids with unstabilized solids)
 - _____ None or unknown
- e. Describe any treatment processes used at your facility to reduce vector attraction properties of residual:
- f. Describe any other residual treatment or blending activities not identified above (including dewatering):

B9. Preparation of Exceptional Quality Residual.

Complete Part B9 if residual from your facility meets the ceiling concentrations in Table 1 of 40 CFR 503.13, the pollutant concentrations in Table 3 of 40 CFR 503.13, the Class A pathogen reduction requirements in 40 CFR 503.32(a), and one of the vector attraction reduction requirements in 40 CFR 503.33(b)(1)-(8) and is land applied. Skip this part if residual from your facility does not meet all of these criteria.

a. Total dry metric tons per 365-day period of residual subject to this part that is applied to the land:

No

b. Is residual subject to this part placed in bags or other containers for sale or give-away for application to land?

_Yes ___

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.:_NJ0025411 FORM R - 7 (new applicants leave blank) Rev. 08/28/07

B10. Sale or Give-Away in a Bag or Other Container for Application to the Land.

Complete Part B10 if <u>you</u> place residual in a bag or other container for sale or give-away for land application

a. Total dry metric tons per 365-day period of residual placed in a bag or other container at your facility for sale or give-away for application to the land:

B11. Shipment Off-Site for Treatment or Blending.

Complete Part B11 if residual from your facility is provided to another facility that provides treatment or blending. Skip this part if the residual is covered in Parts B9 or B10. If you provide residual to more than one facility, attach additional pages as necessary. Name of receiving facility: a. b. Facility Contact. Name: _____ Title: Phone Number: () c. Facility mailing address: Street or P.O. Box: _____ State: _____ Zip: _____ City or Town: Total dry metric tons per 365-day period provided to this facility: d. Does the receiving facility provide additional treatment to reduce pathogens in residual from your e. facility? Yes No Which class of pathogen reduction is achieved for the residual at the receiving facility? Class A Class B Pathogen-free or none Describe any treatment processes used at the receiving facility to reduce pathogens in residual: f. Does the receiving facility provide additional treatment to reduce vector attraction characteristics of the g. residual? Yes No

CIL	ITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 8 (new applicants leave blank) Rev. 08/28/07
11.	Shipment Off-Site for Treatment or Blending (continued).
h.	Which vector attraction reduction option is met for the residual at the receiving facility?
	Option 1 (Minimum 38 percent reduction in volatile solids)
	Option 2 (Anaerobic process, with bench-scale demonstration)
	Option 3 (Aerobic process, with bench-scale demonstration)
	Option 4 (Specific oxygen uptake rate for aerobically digested residual)
	Option 5 (Aerobic processes plus raised temperature)
1	Option 6 (Raise pH to 12 and retain at 11.5)
	Option 7 (75 percent solids with no unstabilized solids)
	Option 8 (90 percent solids with unstabilized solids)
	None or unknown
1.	Describe any treatment processes used at the receiving facility to reduce vector attraction properties of residual:
j.	Describe any other residual treatment or blending activities not identified above:
k.	If you answered yes to any of the above, what information do you provide the receiving facility with to comply with the "notice and necessary information" requirement of 40 CFR 503.12(g).
1.	Does the receiving facility place residual from your facility in a bag or other container for sale or give- away for application to the land?
	Yes No
	If yes, provide a copy of all labels or notices that accompany the product being sold or given away.

2. I	Land Application	n of Bul	k Residual.				
	omplete Part B12 if						
in⊴	Parts B9, B10 or B1			an a			
a.	Total dry metric to	ns per 36	5-day period of r	esidual applied	to all land appl	ication sites	:
b.	Did you identify all	l land ap	plication sites in	Part D of this ap	oplication?		
	Yes		No				
	If no, submit a cop	y of the r	notification plan v	with this applica	tion (see Part I	D) .	
c.	Are any land applic	cation sit	es located in Stat	es other than No	ew Jersey?		
	Yes		No				
	If yes, describe how are located. Provide				he States where	e the land ap	plication sites
				<u></u>			
	<u></u>					· · · · · · · · · · · · · · · · · · ·	
ww.z .	Surface Disposal.						
ww.z .	Surface Disposal. Surface Part B13 if 1		from your facili	ty is placed on	a surface disp	oosal site (m	onofill).
		residual					
Co a.	Total dry metric to	residual ns per 36	5-day period of r	esidual placed o	on all surface d	isposal sites	
Co	Total dry metric to Do you own or ope	residual ns per 36 prate all s	5-day period of r urface disposal si	esidual placed o	on all surface d	isposal sites	
Co a.	Total dry metric ton Do you own or ope	residual ns per 36 grate all s	5-day period of r urface disposal si No	esidual placed of tes to which yo	on all surface d	isposal sites	
Co a.	Total dry metric to Do you own or ope	residual ns per 36 prate all s pllowing	5-day period of r urface disposal si No for each surface o	esidual placed of tes to which yo	on all surface d	isposal sites	
Co a.	Total dry metric ton Do you own or ope Yes If no, answer the fo additional sheets as	residual ns per 36 erate all s ollowing s necessar	5-day period of r urface disposal si No for each surface o	esidual placed of tes to which yo lisposal site tha	on all surface d u send residual t you do not ov	isposal sites ? vn or operate	:
Co a. b.	Total dry metric ton Do you own or ope Yes If no, answer the fo additional sheets as	residual ns per 36 erate all s ollowing s necessa	5-day period of r urface disposal si No for each surface o ry).	esidual placed of tes to which yo lisposal site tha	on all surface d u send residual t you do not ov	isposal sites ? vn or operate	:
Со а. b.	Total dry metric tor Do you own or ope Yes If no, answer the fo additional sheets as Site Name:	residual ns per 36 erate all s ollowing s necessa	5-day period of r urface disposal si No for each surface o ry).	esidual placed of tes to which yo lisposal site tha	on all surface d u send residual t you do not ov	isposal sites	: e (attach
Со а. b.	Total dry metric ton Do you own or ope Yes If no, answer the fo additional sheets as Site Name:	residual ns per 36 erate all s ollowing s necessar Name Title:	5-day period of r urface disposal si No for each surface o ry).	esidual placed of tes to which yo lisposal site tha	on all surface d u send residual t you do not ov	isposal sites	:
Со а. b.	Total dry metric ton Do you own or ope Yes If no, answer the fo additional sheets as Site Name:	residual ns per 36 prate all s ollowing s necessar Name Title: Phone	5-day period of r urface disposal si No for each surface o ry).	esidual placed of tes to which yo lisposal site tha	on all surface d u send residual t you do not ov	isposal sites	:
с. d.	Total dry metric tor Do you own or ope Yes If no, answer the fo additional sheets as Site Name: Facility Contact. Facility mailing add	residual ns per 36 erate all s ollowing s necessar Name Title: Phone dress:	5-day period of r urface disposal si No for each surface o ry).	esidual placed of tes to which yo lisposal site tha	on all surface d u send residual t you do not ov	isposal sites	:
с. d.	Total dry metric ton Do you own or ope Yes If no, answer the fo additional sheets as Site Name: Facility Contact.	residual ns per 36 erate all s ollowing s necessar Name Title: Phone dress:	5-day period of r urface disposal si No for each surface o ry).	esidual placed of tes to which yo lisposal site tha	on all surface d u send residual t you do not ov	isposal sites	:

	Incineration.	
Č		residual from your facility is fired in an incinerator.
a.		ns per 365-day period of residual fired in an incinerator:
b.	-	rate all incinerators to which you send residual?
	• -	No
		ollowing for each incinerator that you do not own or operate (attach additional sho
c.	Site Name:	
b.		Name:
		Title:
		Phone Number: ()
c.	Facility mailing add	
	Street or P.O. Box:	_
		State: Zip:
d.		ns per 365-day period of residual from your facility fired at this incinerator:
	omplete Part B15 if r	nicipal Solid Waste Landfill. residual from your facility is placed in a municipal solid waste landfill.
Co	omplete Part B15 if r	
Co a.	Total dry metric tor	residual from your facility is placed in a municipal solid waste landfill.
	Total dry metric tor	residual from your facility is placed in a municipal solid waste landfill.
Co a.	Total dry metric tor Do you own or operYes	residual from your facility is placed in a municipal solid waste landfill. Ins per 365-day period of residual placed in a municipal solid waste landfill: rate all municipal solid waste landfills to which you send residual? No llowing for each municipal solid waste landfill that you do not own or operate
Co a.	Total dry metric tor Do you own or oper Yes If no, answer the fo (attach additional sl	residual from your facility is placed in a municipal solid waste landfill. Ins per 365-day period of residual placed in a municipal solid waste landfill: rate all municipal solid waste landfills to which you send residual? No llowing for each municipal solid waste landfill that you do not own or operate
Co a. b.	Total dry metric tor Do you own or oper Yes If no, answer the fo (attach additional sl	residual from your facility is placed in a municipal solid waste landfill. Ins per 365-day period of residual placed in a municipal solid waste landfill: rate all municipal solid waste landfills to which you send residual? No Illowing for each municipal solid waste landfill that you do not own or operate heets as necessary).
Co a. b.	Total dry metric tor Do you own or oper Yes If no, answer the for (attach additional sl Site Name:	residual from your facility is placed in a municipal solid waste landfill. Ins per 365-day period of residual placed in a municipal solid waste landfill: rate all municipal solid waste landfills to which you send residual? No Illowing for each municipal solid waste landfill that you do not own or operate heets as necessary).
Co a. b.	Total dry metric tor Do you own or oper Yes If no, answer the for (attach additional sl Site Name:	residual from your facility is placed in a municipal solid waste landfill. Ins per 365-day period of residual placed in a municipal solid waste landfill: Instant all municipal solid waste landfills to which you send residual? Instant No Illowing for each municipal solid waste landfill that you do not own or operate heets as necessary). Name:
Co a. b. c. d.	Total dry metric tor Do you own or oper Yes If no, answer the for (attach additional sl Site Name:	residual from your facility is placed in a municipal solid waste landfill. ns per 365-day period of residual placed in a municipal solid waste landfill: rate all municipal solid waste landfills to which you send residual? No Illowing for each municipal solid waste landfill that you do not own or operate heets as necessary). Name: Title: No
Co a. b. c. d.	Total dry metric tor Do you own or oper Yes If no, answer the for (attach additional slich Site Name: Facility Contact.	residual from your facility is placed in a municipal solid waste landfill. Ins per 365-day period of residual placed in a municipal solid waste landfill: rate all municipal solid waste landfills to which you send residual? No Illowing for each municipal solid waste landfill that you do not own or operate heets as necessary). Name: Title: Phone Number:
Co a. b.	Total dry metric tor Do you own or oper Yes If no, answer the for (attach additional slich Site Name: Facility Contact. Facility mailing add	residual from your facility is placed in a municipal solid waste landfill. Ins per 365-day period of residual placed in a municipal solid waste landfill: rate all municipal solid waste landfills to which you send residual? No Illowing for each municipal solid waste landfill that you do not own or operate heets as necessary). Name: Title: No Illowing for each municipal solid waste landfill that you do not own or operate heets as necessary). Name:
Co a. b. d.	Description Part B15 if r Total dry metric tor Total dry metric tor Do you own or oper Yes Do you own or oper Yes If no, answer the for Yes If no, answer the for (attach additional sl Site Name:	residual from your facility is placed in a municipal solid waste landfill. Ins per 365-day period of residual placed in a municipal solid waste landfill: rate all municipal solid waste landfills to which you send residual? No Illowing for each municipal solid waste landfill that you do not own or operate heets as necessary). Name: Title: Phone Number:

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 11 (new applicants leave blank) FORM R - 11 Rev. 08/28/07

PART C: ENVIRONMENTAL ASSESSMENT

All applicants for a permit for residual use or disposal must submit an environmental assessment for the location where residual will be prepared to be applied to the land, the location where residual was placed on a surface disposal site, or the location of any other residual-only facility required to obtain a permit pursuant to N.J.A.C. 7:14A-20. The environmental assessment shall, at a minimum, address the following requirements:

C1. Facility Operations.

a.	•	on of facility operations, including methods of residual hand, and use or disposal of any end products.	dling, facility
	layout (attach lacinty map)	, and use of disposal of any end products.	
b.	Volume and types of residu	al to be handled:	
	Sewage Sludge (dry metric	tons per 365-day period):	-
	Food processing residual (lry metric tons per 365-day period):	
	Water treatment residual (d	ry metric tons per 365-day period):	_
	Other: (describe:)(dry metric tons per 365-day period):	

C2. Environmental Impact and Local Land Use Evaluation.

- 1. Provide an analysis of the impact that the proposed treatment works treating domestic sewage or residual only facility will have on local transportation patterns, drainage and soil characteristics, surface and ground water quality, endangered or threatened wildlife and vegetation, storm water and wastewater collection/treatment capability, water supply capability, ambient acoustical conditions and air quality. Refer to Section 2 of the Bureau of Pretreatment and Residual's Technical Manual for Residual Permits for guidance on completion of the Environmental Assessment.
- 2. Attach a description on how the proposed operation will conform or conflict with the objectives of any applicable Federal, State, or local land use and/or environmental requirements for areas within two miles of the perimeter of a proposed large facility (residual production equal to or greater than 15,000 metric tons per 365 day period), or within one mile of the perimeter of a proposed small facility (residual production less than 15,000 metric tons per 365 day period). Refer to Section 2 of the Bureau of Pretreatment and Residual's Technical Manual for Residuals Permits for guidance on completion of the Environmental Assessment.

 FACILITY NAME:
 HOPE CREEK GENERATING STATION
 NJPDES PERMIT NO.: __NJ0025411
 FORM R - 12

 (new applicants leave blank)
 Rev. 08/28/07

PART D: LAND APPLICATION

All applicants for a NJPDES permit to prepare residual for land application shall submit the following, unless the text clearly indicates otherwise.

D1. Residual Information.

Information on the characteristics of each residual proposed to be applied, to the extent known at the time that the permit application is submitted, including:

N/A

a. Is all residual to be prepared for land application generated on-site?

No

Yes	

If no, describe here the method for transporting the residual from the site of generation to the site of treatment. In addition, attach a map of transportation routes to be used in transporting residuals:

b. List here the origin and quantity (in dry metric tons per 365 day period) of each residual to be processed. For each residual to be processed from off-site sources estimate the approximate number of round trips made per day:

ORIGIN	NJPDES #	<u>QUANTITY</u>	ROUND TRIPS
	 <u> </u>		
	 	·····	
	 		

c. A dated analysis of each residual on a mg/kg dry weight basis (or other unit as specified), at a minimum, for the following constituents:

Total Solids (% by weight) Total Kjeldahl Nitrogen (TKN) Nitrate-Nitrogen (NO₃-N) Potassium (K) Arsenic Copper Mercury Nickel Zinc pH (standard units) Ammonia-Nitrogen (NH₄-N) Calcium (Ca) Phosphorus (P) Cadmium Lead Molybdenum Selenium

- d. A summary of all data submitted under the Sludge Quality Assurance Regulations (SQAR), N.J.A.C. 7:14-4, for the previous 12-month period;
- e. Additional quality analyses (including characteristics pursuant to N.J.A.C. 7:26G) may be required by the Department after evaluation of past SQAR reports or other relevant information, such as information on industrial discharges which might contribute constituents not normally evaluated under the SQAR program or which may exceed levels identified in USEPA's Technical Support Document for Land Application of Sewage Sludge, EPA 822/R-93-001a and 001b, November 1992.

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 13 (new applicants leave blank) Rev. 08/28/07

D1. Residual Information (continued).

f. For residuals generated at industrial treatment works, describe below all industrial processes which generate residual intended to be land applied, including a listing of all raw materials undergoing processing, and all physical and/or chemical additives introduced:

D2. Evaluation for non-domestic residual.

For the land application of residuals other than sewage sludge, water treatment plant residual, or food processing residual, the applicant must submit a detailed report which demonstrates the following:

- a. That the land application of the residual will benefit soil physical properties, soil fertility and/or cover vegetation;
- b. An understanding of the impacts of the residual on soil fertility, soil physical properties and plant growth; and
- c. That the land application of a particular residual has a scientific basis and has been successfully tested or demonstrated in a field application or pilot program.

D3. Topographic Map.

Provide a topographic map that shows the following items of information. Map(s) must include the area one mile beyond all property boundaries of the facility.

- a. Location of all residual treatment, storage, or disposal facilities, including land application sites and locations where residual is generated, treated or disposed in the map area;
- b. Location of all surface water bodies in the map area;
- c. Location of all wells used for drinking water listed in public records or otherwise known to the applicant in the map area.

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 14 (new applicants leave blank) FORM R - 14 Rev. 08/28/07

D4. Land Application Program and Process Information.

Refer to Appendices A through C in the Bureau of Pretreatment and Residual's Technical Manual to determine the quality requirement, pathogen reduction requirement, and vector attraction reduction requirement applicable to your facility. Circle each of the applicable requirements in the table below. The program where all three requirements are circled is the one applicable for your facility. See the program description in the BPR's technical manual for further information.

PROGRAM	Quality Requirements Appendix A	Pathogen Reduction Requirements Appendix B	VAR Requirements Appendix C
Program 1	Column 2	Class A	(1)-(8)
Program 2	Column 2	Class A	(9) or (10)
Program 3	Column 2	Class B	Any
Program 4	Column 1	Class A	(1)-(8)
Program 5	Column 1	Class A	(9) or (10)
Program 6	Column 1	Class B	Any

a. Which pathogen reduction alternative is intended to be met for the residual at your facility?

Class A/Alternative 1 (Thermally treated residual, specify 1A, 1B, 1C, or 1D from 40 CFR 503)

Class A/Alternative 2 (Residuals treated in a High pH – High temperature process)

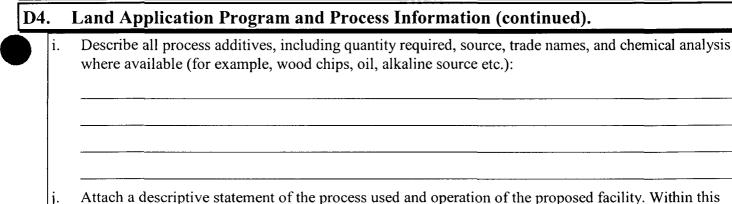
Class A/Alternative 3 (Residuals treated in other known processes)

Class A/Alternative 4 (Residuals treated in unknown processes)

Class A/Alternative 5 (Residuals treated in a PFRP)

Class A/Alternative 6 (Residuals treated in a process equivalent to a PFRP)

Class B/Alternative 1 (Monitoring of indicator organisms)


Class B/Alternative 2 (Residuals treated in PSRP)

Class B/Alternative 3 (Residuals treated in a process equivalent to a PSRP)

- ____ Pathogen-free, none or unknown
- b. Describe, in detail, the treatment processes used at your facility to reduce pathogens in residual (attach additional sheets as necessary):

•	Land Application Program and Process Information (continued).
c.	Describe how information to demonstrate compliance with pathogen reduction requirements will be obtained, where samples to demonstrate compliance will be taken, and how records will be kept (attac additional sheets as necessary):
d.	Are any vector attraction reduction requirements met when residual is applied to the land application site?
	YesNo
	If yes, indicate which vector attraction reduction option is met:
	Option 9 (injection below land surface)
	Option 10 (incorporation into soil within 6 hours)
e.	Describe, in detail, the treatment processes used at your facility for vector attraction reduction (attach additional sheets as necessary):
f.	Describe how information to demonstrate compliance with vector attraction reduction requirements will be obtained, where samples to demonstrate compliance will be taken, and how records will be key (attach additional sheets as necessary):
g.	Describe the mode of transporting the product to distribution sites:
h.	How long will the final product be stored on-site prior to ultimate management?
	Average operation: days
	Peak operation: days For each new structure used to store marketable residual product at the processing facility, submit an "Engineer's Certification of Proper Design for Residual Storage Installations" (See the Bureau of Pretreatment and Residuals Technical Manual for Residuals Management - Appendix I). Note: storage installations used to store residual which has not been processed, or which is not a marketable residual

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 16 (new applicants leave blank) FORM R - 16 Rev. 08/28/07

- j. Attach a descriptive statement of the process used and operation of the proposed facility. Within this format, provide a description and detailed specifications of all process steps (including but not limited to residual delivery, storage, mixing, stabilization method, curing, screening) and the related equipment, pollution control systems, instrumentation and monitoring mechanisms. Within the context of the system description, identify the mix ratio of additives to residual.
- k. Provide a comprehensive materials balance for the proposed system/operation. The materials balance shall account for every handling and processing step starting from residual delivery to the facility and ending with final product removal from the site.

D5. Identification of Land Application Sites.

For bulk residual which does not satisfy the pollutant concentrations in 40 CFR 503.13(b)(3), the Class A pathogen requirements in 40 CFR 503.32(a), or one of the vector attraction reduction options in 40 CFR 503.33(b)(1) through (b)(8) (that is, a program 2 through 6 residual identified above), for each residual land application site identified at the time of permit application, the applicant shall, supply information necessary to determine if the site is appropriate for land application and a description of how the site is or will be managed. Identify each residual land application site known at the time of permit application below. In addition LLAMA application forms 1 through 4 must be submitted for each residual land application site.

- a. Site name or number:
- b. Site location:

Street or Route Number: _

County:	Lot:		Block:	
City or Town:		State:	Zit	

c. Are any groundwater monitoring data available for this land application site?

Yes No

If yes, submit a summary of the ground water monitoring data with this permit application. Also provide a written description of the well locations, approximate depth to groundwater, and the groundwater monitoring procedures used to obtain the data.

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 17 (new applicants leave blank) Rev. 08/28/07

D6. Notification Plan.

For bulk residual which does not satisfy the pollutant concentrations in 40 CFR 503.13(b)(3), the Class A pathogen requirements in 40 CFR 503.32(a), or one of the vector attraction reduction options in 40 CFR 503.33(b)(1) through (b)(8) (that is, a program 2 through 6 residual identified above), where proposed residual land application sites are not identified at the time of permit application, the applicant shall submit a notification plan for the Department's approval which at a minimum:

a. Describe the geographical area covered by the plan:

b. Describe the form of advance public notice which, at a minimum, will be supplied to all landowners and occupants adjacent to or abutting a proposed residual land application site. This requirement may be satisfied through public notice in a newspaper of local circulation. Notice shall include, at a minimum, the name and address of the permittee, the name and address of the proposed residual land application site, a description of the activities that are proposed to occur at the residual land application site, and the name and address of the Bureau within the Department to which the permittee must submit an application for a Letter of Land Application Management Approval (See LLAMA Application Forms):

D7. Exceptional Quality or Residual Sold or Given Away In a Bag or Other Container.

For bulk residual which meets the ceiling concentrations in Table 1 of 40 CFR 503.13, the pollutant concentrations in Table 3 of 40 CFR 503.13, the Class A pathogen requirements in 40 CFR 503.32(a); and one of the vector attraction reduction options in 40 CFR 503.33(b)(1) through (b)(8), or for any residual which is sold or given away in a bag or other container, the applicant shall:

- a. Provide documentation that the residual product has been, or will be, licensed by the New Jersey Department of Agriculture pursuant to the New Jersey Commercial Fertilizer and Soil Conditioner Act, N.J.S.A. 4:9-15.1 et seq., or the New Jersey Agricultural Liming Materials Act, N.J.S.A. 4:9-21.1 et seq.
- b. Provide a copy of the label or instructional literature that will be used to conform to the labeling requirements established by the New Jersey Department of Agriculture pursuant to the New Jersey Commercial Fertilizer and Soil Conditioner Act, N.J.S.A. 4:9-15.1 et seq., the New Jersey Agricultural Liming Materials Act, N.J.S.A. 4:9-21.1 et seq., and/or the Bureau of Pretreatment and Residuals Technical Manual for Residuals Management (see Section 5).
- c. Provide below, or attach additional sheets as necessary, information to demonstrate optimal marketable residual product characteristics, including temperature, total solids and odor characteristics. Include a listing of existing operational facilities of the type proposed:

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 18 (new applicants leave blank) FORM R - 18 Rev. 08/28/07

Ŵ

: * * *

Ş. İr

292

N/A

PART E.

SURFACE DISPOSAL

Complete this part only if you own or operate a residual surface disposal site.

•	Information on Residual Units
a.	Unit name or number:
b.	Unit location:
c.	Total dry metric tons of residual placed on the active residual unit per 365-day period:
d.	Total dry metric tons of residual placed on the active unit over the life of the unit:
e.	Does the active residual unit have a liner with a maximum hydraulic conductivity of 1 X 10 ⁻⁷ cm/sec YesNo
f.	If yes, describe the liner (or attach a description):
g.	Does the active residual unit have a leachate collection system?YesNo If yes, describe the leachate collection system. Also describe the method used for leachate disposal:
h.	If you answered no to either E.1.e or E.1.g., answer the following question:
	Is the boundary of the residual unit less than 150 meters from the property line of the surface disposa site?YesNo
	If yes, provide the actual distance in meters:
i.	Remaining capacity of active residual unit in dry metric tons:
j.	Anticipated or actual closure date for the residual unit:
k.	Provide a copy of any closure plan that has been developed for this active residual unit. A surface disposal site closure plan shall include the information in E5 below.

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 19

	(new applicants leave blank) Rev. 08/28/07
E 2. T	opographic Map.
	ovide a topographic map that shows the following items of information. Map(s) must include the ea one mile beyond all property boundaries of the facility.
a.	Location of all residual treatment, storage, or disposal facilities, including land application sites and locations where residual is generated, treated or disposed in the map area;
b.	Location of all surface water bodies in the map area;
c.	Location of all wells used for drinking water listed in public records or otherwise known to the applicant in the map area.
E 3.	Residual from other facilities
a.	Is residual sent to this active residual unit from any other facilities other than your facility? YesNo
	If yes, provide the following information for each facility. If residual is sent to this active residual unit from more than one such facility, attach additional pages as necessary.
	Facility Name:
	Contact Person: Phone number: ()
	Mailing address:
b. c.	Which class of pathogen reduction is achieved before residual leaves the other facility? Class A Class B Pathogen-free or none Describe any treatment processes used at the other facility to reduce pathogens in residual:
d.	Which vector attraction option is achieved before residual leaves the other facility?
	Option 1 (Minimum 38 percent reduction in volatile solids)
	Option 2 (Anaerobic process, with bench-scale demonstration)
	Option 3 (Aerobic process, with bench-scale demonstration)
	Option 4 (Specific oxygen uptake rate for aerobically digested residual)
	Option 5 (Aerobic processes plus raised temperature)
	Option 6 (Raise pH to 12 and retain at 11.5)
	Option 7 (75 percent solids with no unstabilized solids)
	Option 8 (90 percent solids with unstabilized solids)
	None or unknown

•	Residual from other facilities (continued).
e.	Describe any treatment processes used at the other facility to reduce vector attraction properties of residual:
f.	Describe any other residual treatment activities performed by the other facility not identified above:

E4. Vector Attraction Reduction.

a. Other than the vector attraction reduction options listed in Part B, which vector attraction reduction option below, if any, is met when residual is placed on the active residual unit?

____ Option 9 (Injection below land surface)

____ Option 10 (Incorporation into soil within 6 hours)

____ Option 11 (Covering active residual unit daily)

b. Describe, on this form or another sheet of paper, any treatment processes used at the active residual unit to reduce vector attraction properties of residual:

E5. Surface disposal site closure plan.

a. Approximate date discharge to the surface disposal site ceased:

b. A description of the surface disposal site including:

approximate acreage:

lateral and vertical extent:

The origin and volume of the residual remaining in the surface disposal site:

CILI	ITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 21 (new applicants leave blank) FORM R - 21 Rev. 08/28/07
	Surface disposal site closure plan (continued).
c.	Dated quality analyses of the residual on a mg/kg dry weight basis including analyses of all constituents required to be analyzed in accordance with the Sludge Quality Assurance Regulations (SQAR), N.J.A.C. 7:14-4. The number of samples required to be analyzed shall be based on a statistical method as described in the Department's Field Sampling Procedures Manual, or as otherwise approved by the Department.
	Additional quality analyses may be required if deemed necessary by the Department through evaluation of past SQAR reports or other relevant information, such as information on industrial discharges which might contribute constituents not normally evaluated under the SQAR program.
d.	Explain how pathogen requirements or vector attraction reduction requirements were achieved:
e.	Describe the proposed method of closure, including plans for the removal and/or in-situ closure of the
	residual remaining at the surface disposal site, and an implementation schedule for each component of the closure plan:
For a.	r in-situ closure proposals, the following information: Is the closed surface disposal site located in a floodplain, or can the closed surface disposal site restr the flow of a base flood? If yes, describe:
2	
b.	Is the closed surface disposal site located in an unstable area? If yes, describe:
C.	Does the surface disposal site have a liner and/or leachate collection system?
0.	Liner only Leachate collection only Both Non

FACIL	TY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 22 (new applicants leave blank) Rev. 08/28/07
E5.	Surface disposal site closure plan (continued).
d.	If a cover is to be placed over the closed surface disposal site, provide a description of the system used to monitor for methane gas in the air in any structures within the surface disposal site and in the air at the property line of the surface disposal site for a minimum of five years:
e.	Describe how public access to the surface disposal site will be restricted for a minimum of five years:
f.	Provide a calculation of the surface run-off across the surface disposal site using a 24-hour, 25-year storm event with estimates of the effect of such run-off on treatment capacity, storage capacity, erosion, flooding, impacts on surface water quality and related details:
g. h.	Attach a copy of the detailed description of the surface disposal site recorded, along with the deed, with the appropriate county recording office. Attach a Soil Erosion and Sediment Control Plan certified or approved in accordance with the Soil
	Erosion and Sediment Control Act (N.J.S.A. 4:24-39 et seq.), unless such planning is determined inapplicable by an agency with concurrent jurisdiction.
E6.	Ground Water Monitoring.
a.	Is ground water monitoring currently conducted at the active or closed residual unit? YesNo
	If yes, submit a summary of ground water monitoring data with this permit application. Also, submit information on well construction, a written description of the well locations, approximate depth to ground water, and the ground water monitoring procedures used to obtain these data.
b.	Has a ground water monitoring program been prepared for the active or closed residual unit?
	If yes, submit a copy of the ground water monitoring program with this permit application.

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 23 (new applicants leave blank) Rev. 08/28/07

PART F: OUT-OF-STATE GENERATORS

Please be advised that distribution or land application of an out-of-state Marketable Residual Product in New Jersey requires issuance of a NJDEP approval, which may include issuance of a NJPDES permit, in accordance with N.J.A.C. 7:14A-20.7(l). Out-of-state generators which transport residual into the State of New Jersey to be applied to the land shall, at a minimum, submit the following.

N/A

F1. Additional Information.

Out-of-state generators which transport residual into the State of New Jersey to be applied to the land shall, at a minimum, submit the following additional notice requirements:

- a. Information as required to be submitted pursuant to Parts A, B and D above, and Part I below, as applicable.
- b. Copies of those permits and approvals issued by the permitting authority for the state in which the residual is prepared.
- c. Permitting authority information for the state in which the residual is prepared:

Phone: ()

d. List any brand names under which the marketable residual product will be distributed:

e. The approximate time period during which bulk residual will be applied to each residual land application site identified in Part D above:

R	T G: RESIDUAL TRANSFER STATIONS
Ċ	omplete this part only if you own or operate a residual transfer station.
. R	Lesidual Information.
În	formation on the characteristics of each residual received, to the extent known at the time that the
pe	rmit application is submitted, including:
a.	Describe here the method for transporting the residual from the site of generation to the residual
	transfer station. In addition, attach a map of transportation routes to be used in transporting residuals:
b.	List here the origin and quantity (in dry metric tons per 365 day period) of each residual to be
	processed. For each residual to be processed estimate the approximate number of round trips made p
	day: <u>ORIGIN</u> <u>NJPDES # QUANTITY</u> <u>ROUND TRIPS</u>
	A summary of all data submitted under the Sludge Quality Assurance Degralations (SOAD) NLAC
c.	A summary of all data submitted under the Sludge Quality Assurance Regulations (SQAR), N.J.A.C 7:14-4, for the previous twelve month period;
d.	Additional quality analyses (including characteristics pursuant to N.J.A.C. 7:26G) may be required by
	the Department after evaluation of past SQAR reports or other relevant information, such as information on industrial discharges which might contribute constituents not normally evaluated under the second
	the SQAR program or which may exceed levels identified in USEPA's Technical Support Documen
	for the ultimate management alternative used by the transfer station.
e.	Describe the mode of transporting residual from the transfer station to the ultimate management site
f.	How long will residual be stored on-site prior to ultimate management?
.	Average operation: days
	Peak operation: days
	Note: storage installations used to store residual are required to obtain a Treatment Works Approval

FACIL	ITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 25 (new applicants leave blank) Rev. 08/28/07							
G1. R	1. Residual Information (continued).							
g.	Describe all process additives, including quantity required, source, trade names, and chemical analysis where available:							
h.	Attach a descriptive statement of the process used and operation of the proposed facility. Within this format, provide a description and detailed specifications of all process steps (including but not limited to residual delivery, storage, mixing, dewatering, and any stabilization method) and the related equipment, pollution control systems, instrumentation and monitoring mechanisms.							
i.	Provide a comprehensive materials balance for the proposed system/operation. The materials balance shall account for every handling and processing step starting from residual delivery to the facility and ending with final removal of residual from the site.							

G2. Topographic Map.

Provide a topographic map that shows the following items of information. Map(s) must include the area one mile beyond all property boundaries of the facility.

- a. Location of all residual treatment, storage, or disposal facilities, including land application sites and locations where residual is generated, treated or disposed in the map area;
- b. Location of all surface water bodies in the map area;
- c. Location of all wells used for drinking water listed in public records or otherwise known to the applicant in the map area.

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 26 (new applicants leave blank) Rev. 08/28/07

PART H. REED BEDS

BEDS

Complete this part only if you own or operate a reed bed.

N/A

a.	Number of residual units	or drying beds:		
b.	Unit name or number:		size:	square feet
				square feet
		Bed #	size:	square feet
		Bed #	size:	square feet
		Bed #	size:	square feet
		Bed #	size:	square feet
		Bed #	size:	square feet
c. d.	Total gallons of residual p Average total solids of re		esidual units per	365-day period:
d.	Average total solids of re		•	
e. c			em b):	gallons per sq. ft. per year
f.	Type of residual(s) to be			Anaerobic
		Alum		Primary
3.	Does the active residual u Yes	Other init have a liner with a No		cribe:) raulic conductivity of 1 X 10 ⁻⁷ cm/sec?
	If yes, describe the liner (n):	
1.	Does the active residual u	nit have a leachate co	llection system	? _
	Yes	No		
	If yes, describe the leacha	te collection system.	Also describe th	e method used for leachate disposal:
	· ·	2		
		·		

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 27 (new applicants leave blank) FORM R - 27 Rev. 08/28/07

H1. Information on Active Residual Units (continued)

- i. If you answered no to either H.1.f or H.1.g., answer the following question:
 - Is the boundary of the residual unit less than 150 meters from the property line of the surface disposal site? _____Yes ____No

If yes, provide the actual distance in meters:

- j. Anticipated next evacuation or closure date for active residual unit, if known: _
- k. Provide a copy of any evacuation or closure plan that has been developed for this active residual unit.

H2. Topographic Map.

Provide a topographic map that shows the following items of information. Map(s) must include the area one mile beyond all property boundaries of the facility.

- a. Location of all residual treatment, storage, or disposal facilities, including land application sites and locations where residual is generated, treated or disposed in the map area;
- b. Location of all surface water bodies in the map area.

FACILITY NAME: HOPE CREEK GENERATING STATION NJPDES PERMIT NO.: NJ0025411 FORM R - 28 <u>Rev. 08/</u>23/07 (new applicants leave blank)

ART I: CERTIFICATION

Read and submit the following certification statement with this application. Indicate which parts of Form R you have completed and are submitting:

- X Part A (General Information)
- G Part B (Generation of residual or preparation of a material derived from residual)
- G Part C (Environmental Assessment)
- G Part D (Land Application)
- G Part E (Surface Disposal)
- G Part F (Out-of-state Generators)
- G Part G (Residual Transfer Stations)
- G Part H (Reed Beds)

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with the system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for purposely, knowingly, recklessly, or negligently submitting false information.

Signature of Officer:

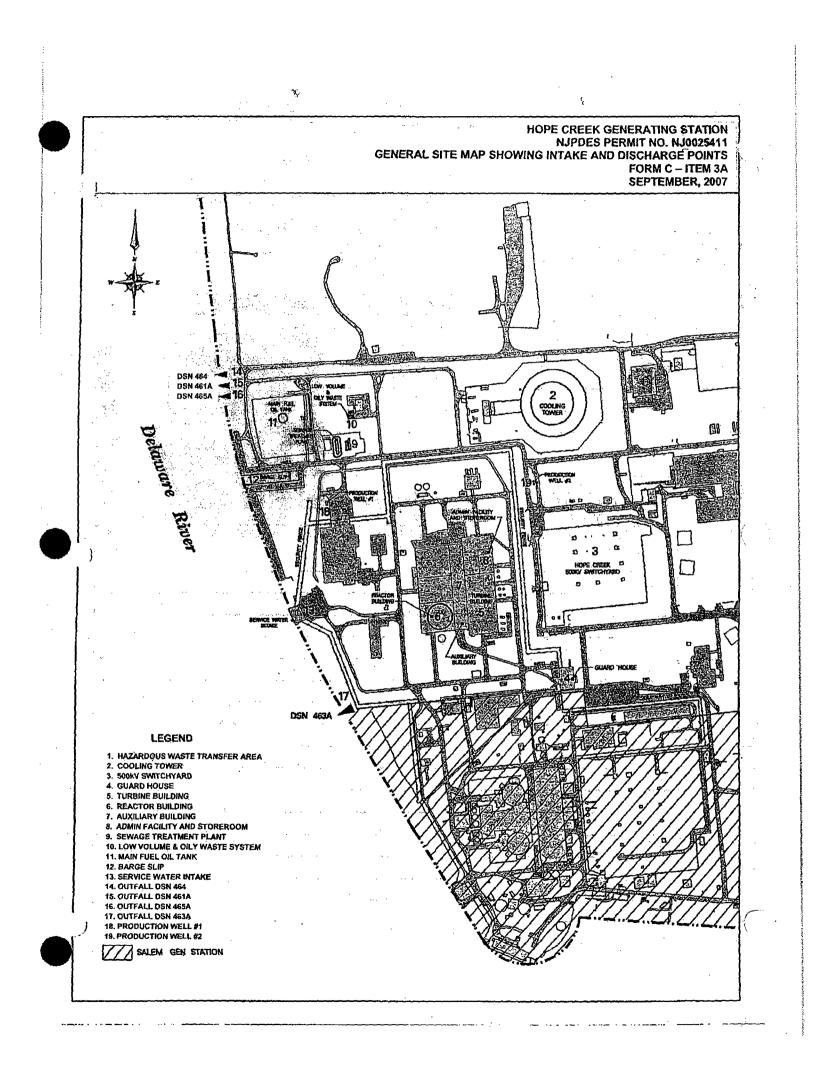
Name of Officer: (type or print) Official Title:

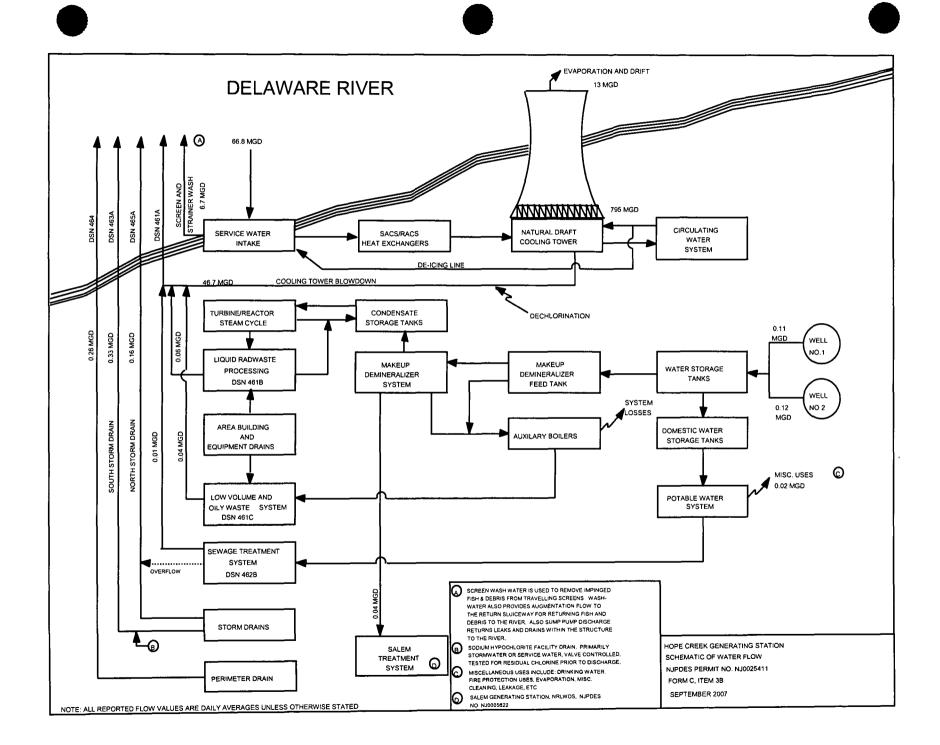
George P. Barnes

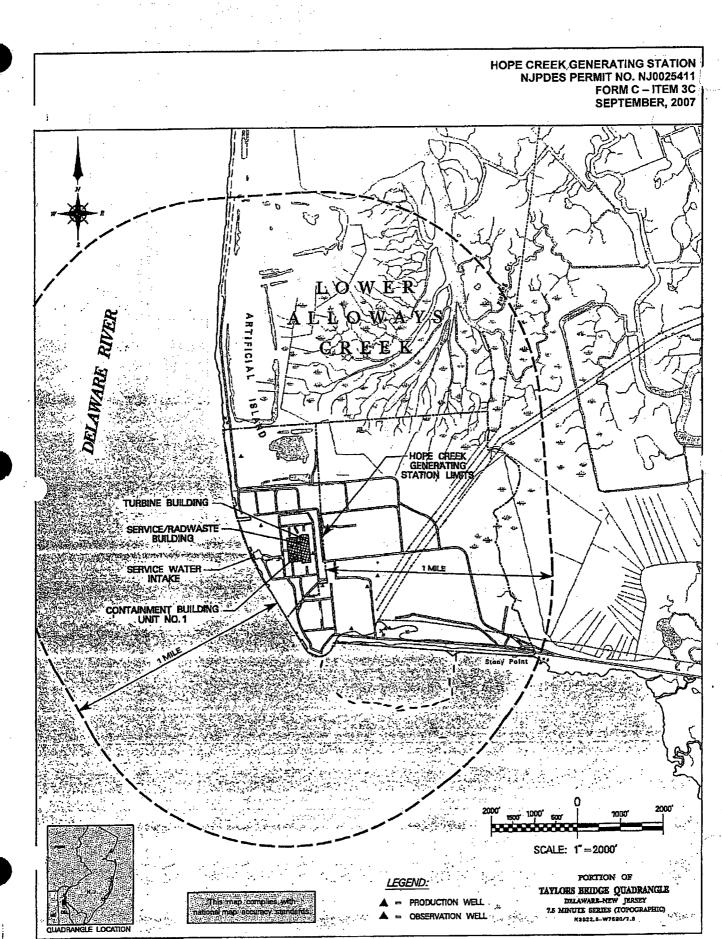
Site Vice President – Hope Creek

Telephone Number:

Date Signed:


(856) 339-1952


8/30/07


Refer to Appropriate Completeness Checklist and Instructions. Provide All Applicable Information. Please Print or Type. (Attach additional sheets if necessary)

SUPPLEMENTAL APPLICATION FORM TO NJPDES-1 FOR INDUSTRIAL NJPDES/DSW PERMITS

	1. FACILITY NAME: Hope Creek Generating Station				2. NJPDES NO. (NEW APPLICANTS LEAVE BLANK) NJ0025411					
	R Generating ST				LITY DIAGRAN					
		HON SHALL IN			DRAWING	n				
	ALL LOCATIO		Lizaas			: 				
For ea	ch outfall, lis	t the latitud	e, longitu	ide and t	he name of	the	receiving	g wate	er.	
OUTFALL NUMBER	LATITUDE (deg, min, sec)	LONGITUDE (deg, min, sec)	RECE	IVING WA	TER (name)	- - 	USEP/ REACH	A No.		VENT AREA
			Please \$	See Atta	ched					
				· · ·						
										in standischer Standischer Standischer Standischer Standischer Standischer Standischer Standischer Standischer Standischer Standischer Standischer Standischer Standischer Standischer Standischer Standischer Standischer Stan Standischer Standischer Standischer Standischer Standischer Standischer Standischer Standischer Standischer Stan
										
	DISCHARGE							Departm	ient Use O	<u>nly</u>
OUTFALL	POLLUTANT	OPERATION C							ECHNOLO	
NUMBER		F OPERATION		AVERAGE				RIPTIO		
(DSN)		DCESS (LIST)		(INCLUDE					N	FROM
	Please See	Attached								TABLE 1
										<u> </u>
						 				
		<u> </u>							-H-	
						ļ				
							····			
		_								

the second se

ITEM 4 - OUTFALL LOCATION

Page 1 of 1

For each outfall, list the latitude, longitude and the name of the receiving water.

OUTFALL NUMBER	LATITUDE (DEG,MIN,SEC) NAD-83	LONGITUDE (DEG,MIN,SEC) NAD-83	RECEIVING WATER (name)	USEPA WATERSHEL REACH MANAGEMEN No. AREA
461A	39° 28' 14"	75° 32' 34"	Delaware Estuary	
461B	39° 28' 15"	75° 32' 20"	Internal	
461C	39° 28' 13"	75° 32' 23"	Internal	
465A	39° 28' 14"	75° 32' 34"	Delaware Estuary	
462B	39° 28' 11"	75° 32' 25"	Internal	
463A	39° 27' 54"	75° 32' 23"	Delaware Estuary	
464	39° 28' 15"	75° 32' 34"	Delaware Estuary	

Page 1 of 1

ITEM 5 - FLOWS, POLLUTANT SOURCES, AND TREATMENT TECHNOLOGIES

	OPERATION CONTRIB	UTING FLOW	TREATMENT TECHNO	DLOGIES
OUTFALL NUMBER (DSN)	NAME OF OPERATION OR PROCESS	AVERAGE FLOW (INCLUDE UNITS)	DESCRIPTION	CODES FROM TABLE 1
461A	Cooling Tower Blowdown See Tab 461A	46.7 MGD	Non-Contact Cooling Water See Tab 461A	2-E 2-F
461B	Liquid Rad Waste System See Tab 461A	0.06 MGD	Liquid Rad Waste See Tab 461A	2-J
461C	Low Volume and Oily Waste See Tab 461C	0.04 MGD	Oil Water Separator See Tab 461C	5-X 6-F
465A	North Yard Drain See Tab Stormwater	0.16 MGD	Yard Drain See Tab Stormwater	XX
462B	Sewage Treatment Plant See Tab 462B	0.01 MGD	Sewage Treatment System See Tab 462B	1-V 2-F 3-A 5-X
463A	South Yard Drain See Tab Stormwater	0.33 MGD	Yard Drain See Tab Stormwater	XX
464	Perimeter Drain See Tab Stormwater	0.26 MGD	Yard Drain See Tab Stormwater	XX
Item A	SWIS Backwash, Strainer, Sumps See Tab 461A	6.9 MGD	Screens, Sumps, Strainers See Tab 461A	XX
Item B	Chlorination Structure See Tab 461A	Intermittent	SW, Precip., and Fresh Water See Tab 461A	XX

EORM C							С
FACIL ITY	NAME: Hope	Creek Genera	ting Station				·····
					bed in Item 5 interm		
	ς YES (compl	ete the followin	ig table) 🛛 🗅 N	O (go to Item 7)			
OUTFALL	FREQ	UENCY			FLOW		
NUMBER	DAYS PER	MONTHS	FLOV	V RATE	TOTAL V		DURATION
(DSN)	WEEK	PER YEAR		mgd)	(specify	the second s	IN DAYS
	(SPECIFY AVERAGE)	(SPECIFY AVERAGE)	monthly average	daily maximum	monthly average	daily maximum	
461B	2	12	0.06	0.26	63,916 gal.	262,080 gal.	N/A
461C	7	12	0.04	0.28	40,000 gal.	280,000 gal.	N/A
				· · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
	ICTION BASE		STANDARDS				l Roževina se
A. Does an	effluent guidelin ς YES (comp	e promulgated b blete 7B)	by USEPA under th □ N	NO (go to Item 8)	pply to any discharge		
B. Are the	limitations in t			expressed in terms NO (go to Item 8)	s of production (or	other measure of	operation)?
					actual measurement		
		UNITS OF			t guideline, and inc MATERIAL, ETC.		OUTFALL
		MEASURES					NUMBER
8 ENEOF		RRECTIVE AC					
					r (OT) corrective or		n(s) required
					f summary of the ac		
DATE	ACTION		Y	SUMMA	RY OF REQUIRED		
None							
9. IMPRO	VEMENTS						
					eet any implementat	ion schedule for c	onstruction,
				ment or practices, or	any other environm	nental programs w	hich may affect
		in this application		· · · · · · · · · · · · · · · · · · ·			
	IDENTIFICATIC			ED OUTFALLS	DESCRIPTION	FINAL COMPI	IANCE DATE
CONDI	TIONS, AGREEN		DSN	SOURCES	OF PROJECT	REQUIRED	PROJECTED
None							
					-		
	<u>.</u>						

HOPE CREEK GENERATING STATION NJPDES PERMIT NJ0025411 FORM C

Pages 3 through 11

ITEM 10 A, B, & C

NJDEP Form C, pages 3 through 11, contain the following information by outfall:

- 10A. EFFLUENT DATA PART A
- 10B. EFFLUENT DATA PART B
- 10C. EFFLUENT DATA PART C

This data is placed behind each respective DSN Tab.

ORM C \ <u>198</u>						
ACILITY NAME: Hope Cre	ek Gen	erating Station				
0D. EFFLUENT DATA - PA				No. Maria	tiste i	
						ach biocide, which you know
or have reason to believe						
describe the reasons you			na repoi	rt any analytical dat	a in your pos	
Please See Attached					000	
1. TOXIC POLLUTANTS U	SED O	R MANUFACTUR	ED			
				Table 3 is a substar	ce or a com	ponent which you currently
use or manufacture as a						
Asbestos						
12. BIOLOGICAL TOXICITY	' TEST	NG DATA				
Is this application for an	indivic	ual NJPDES/DSW	V permit	?		· · · · · · · · · · · · · · · · · · ·
X Y	'ES (Co	mplete Below)		NO (Go to Iter	n 13)	
DATE OF TOXICITY TE 07/24/07-07/28/07	<u>si</u>					RESULT OF TEST
	·····	Mysid 96-Hr A				0%; Survival=100%
07/24/07-07/28/07		Mysid Chronic Toxicity - Growth		IC ₂₅ =>100%; NOEC=100%		
07/24/07-07/28/07		Mysid Chronic		ity - Fecundity	$ C_{25} = >10 $	0%; NOEC=100%
3. CERTIFIED LABORATO					açılın allaza bel	
AME OF CERTIFIED				ICATION NUMBER	POL	UTANT(S)/CATEGORIES
LAB.			GENTIF			ANALYZED
Please See Attached	[
						·····
			• • • • •	<u> </u>		
14. CERTIFICATION BY TH						
14. OLIVITION DI TI						
_						
		enerating Station		FITY (Type or Print)		
	AFFL			iiii (iype or Filin)		
						ler my direction or supervisi
						er and evaluate information
submitted. Based on responsible for gather						/ knowledge and belief, true
						alse information, including t
accurate, and complet						submitting false information
			<u>[</u>	TITLE (TYPE OR I	PRINT)	
possibility of fine and i	·					
				Site Vice Presiden		ek
possibility of fine and i NAME (TYPE OR PRINT) George P. Barnes	1 1			Site Vice Presiden		
possibility of fine and i NAME (TYPE OR PRINT)	R					ek PHONE 856-339-1952

ITEM 10D - EFFLUENT DATA PART D

1. Believed Present

Sodium Hypochlorite is added to the Service Water System and the cooling tower as a biocide. Service water is provided as makeup to the cooling tower and the discharge is through outfall DSN 461A where the effluent is dechlorinated using ammonium bisulfite and the residual chlorine concentrations are monitored. The residual chlorine concentrations are summarized at the DSN 461A summary tables and Form C-10B for the outfall.

2. Table 3 Pollutants

The products identified on Table 10D-1 contain one or more pollutants listed in Table 3 of the instructions. These products are typical of those utilized at the facility in areas which could discharge to an outfall in the event of a spill, leak, or inadvertent drain. Although these pollutants are not intended for normal discharge, unless identified at the DSN specific Tab, there remains the potential for inadvertent discharge. These pollutants are not expected to be detected in the outfall.

3. Area Maintenance Products

Licensed applicators periodically apply herbicides, pesticides and fertilizer to areas of the Station for surface maintenance purposes. The Station currently employs J. C. Ehrlich to apply these materials. The materials currently being applied, as the season warrants, are identified on Table 10D-2. These materials are typical of the area maintenance products normally used at the Station. Although these pollutants are not intended for normal discharge, unless identified at the DSN specific Tab, there remains the potential for inadvertent discharge. These pollutants are not expected to be detected in the outfall.

4. Additional Pollutants

The products identified on Table 10D-3 are typical of the products and constituents utilized at the facility in areas which could discharge in the event of a leak, spill, or inadvertent drain. Although these pollutants are not intended for normal discharge, unless identified at the DSN specific Tab, there remains the potential for inadvertent discharge. These pollutants are not expected to be detected in the outfall.

The current permit provide, at Part IV.E.7.b, that "(T)he permittee is licensed by the U.S. Nuclear Regulatory Commission and responsible to that agency for compliance with radiological effluent limitations, monitoring requirements, and other licensing conditions." PSEG concurs with this provision and requests this provision be retained. Although the Liquid Radioactive Waste (LRW) system is the system designed to handle radioactive liquid wastes, the USNRC requires the Station to conduct low level monitoring of other environmental discharges to ensure radioactivity levels are not being discharged above those authorized. For example, the cooling tower blowdown effluent has an installed radioactivity monitor which triggers an alarm if radioactivity is being discharged above the setpoint. Very low levels of radioactivity can enter non-radiological treatment systems. Low levels of radioactivity have been identified in residuals prior to removal from the treatment systems and have required handling and disposal in accordance with USNRC regulations. Although very low levels of radioactivity may be present in any treatment system or effluent, they are at levels which do not pose any threat to the public or the environment and are well within the limitations imposed by the USNRC.

Any waters, derived from groundwater without the addition of any chemicals, and no matter how internally named, can be discharged through any outfall. This practice is consistent with the application and practice in all prior permit applications but has been more clearly explained in this application. See Tab Yard Drains, Note 5 for further explanation.

PAGE 1 OF 7

ITEM 10D - EFFLUENT DATA PART D, TABLE 3 HAZARDOUS SUBSTANCES TABLE 10D-1

The products identified contain one or more pollutants listed in Table 3 of the instructions. These products are utilized at the facility in areas which could discharge to an outfall in the event of a spill, leak, or inadvertent drain. This listing is representative and typical of chemical used. Although these pollutants are not intended for normal discharge, unless identified at the DSN specific Tab, there remains the potential for inadvertent discharge. These pollutants are not expected to be detected in the outfall.

POLLUTANT	CASNO	SOURCE	COMMENT (1)	
Aniline	101-77-9	Biscoseal TP-28	0200-0053	
		Ceramic EC Barrier Solidifier	0200-0437	
Butyl Acetate	123-86-4	Acrylic Enamel Paint	0200-0787	
		Carbothane134	0200-1209	
		Dykem Steel Blue	0300-0029	
		Epoxy Primer	0200-0379	
		E-Series Epoxy Enamel	0200-0378	
		Acrylic Enamel Hardener	0200-0788	
		J-Series Kolor-Poxy	0200-0928	

ITEM 10D - EFFLUENT DATA PART D, TABLE 3 HAZARDOUS SUBSTANCES TABLE 10D-1

Butyl Acetate (cont)	123-86-4	Kolor-Poxy Primer	0200-0596
		Clearcoat 8853	0200-1777
		Urethane Converter	0200-1209
		U-Series Kolorane Enamel	0200-1431
Carbaryl	63-25-2	Sevin SL	Tru-Green Chemlawn (2)
Cresol	1319-77-3	Copaltite	0200-0376
		Sealant #2X	0200-0299
Cyclohexane	110-82-7	Gasoline	0900-0768
Dimethyl amine	1643-20-5	High Expansion Foam	1000-0203
Diuran	330-54-1	Karmex DFHerbicide	J.C. Ehrlich (2)
Epichlorohydrin	25085-99-8	Sikador Himod Gel	0200-1623
		Biscoseal TP-28	0200-0053
		Centron 402	0200-1649

e.,

ITEM 10D - EFFLUENT DATA PART D, TABLE 3 HAZARDOUS SUBSTANCES TABLE 10D-1

Epichlorohydrin	25085-99-8	Enecrete Duraquartz	0200-0985
		Flexiclad Duratough DL	0200-0969
Ethylene Diamine	10378-23-1	Sodium Thiosulfate Solution	0900-0118
(Found as EDTA)	21265-50-9	Flexiclad Duratough DL Sodium Thiosulfate Solution K-Lens-M Lens Cleaner Kodak Fixer Concentrate Lysol Disinfectant Lesco Granular Fertilizer Copaltite Formaldehyde 37% Polymer Set 1100	0500-0109
	60-00-4	Kodak Fixer Concentrate	0900-0704
	64-02-8	Lysol Disinfectant	0500-0012
Formaldehyde	9011-05-6	Lesco Granular Fertilizer	Tru-Green Chemlawn (2)
	Flexiclad Duratough DL10378-23-1Sodium Thiosulfate Solution21265-50-9K-Lens-M Lens Cleaner60-00-4Kodak Fixer Concentrate64-02-8Lysol Disinfectant9011-05-6Lesco Granular Fertilizer50-00-0Copaltite67-56-1Formaldehyde 37%	0200-0376	
	67-56-1	Formaldehyde 37%	0900-0368
	67953-80-4	Polymer Set 1100	0900-0355
Isoprene	104389-31-3	Stripcoat	0200-1563

ITEM 10D - EFFLUENT DATA PART D, TABLE 3 HAZARDOUS SUBSTANCES TABLE 10D-1

Styrene	100-42-5	Cuz Body Filler	0200-1348
		Automotive Body Putty	0200-0775
		Derakane Vinyl Ester Resin	0200-0715
	9003-53-6	Developer Premix	0300-0028
		Monokote Type MK-6/CFB	0200-1084
Uranium		Nuclear Fuel	(3)
Vinyl Acetate	1332-58-7	All Purpose Joint Compound	0200-0222
	24937-78-8	Cadalag #336	0200-1459
	9003-22-9	PB Touchup Gray	0200-1820
Xylene	1330-20-7	ZRC Galvanizing Compound	0200-0465
		Zinc Galvanize #399	0200-0377
		Acrylic Enamel	0200-0787

ITEM 10D - EFFLUENT DATA PART D, TABLE 3 HAZARDOUS SUBSTANCES TABLE 10D-1

Xylene (cont)	1330-20-7	Acrylic Enamel Reducer	0600-0102
		Air Dry Enamel	0200-0392
		ALBI Primer	0200-0458
		Amercoat 90 Cure	0200-0193
		Amercoat 90 Resin	0200-0195
		Acid Resistant Paint	0200-0089
		Bitumastic 300	0200-0280
		Buff Epoxy Paint	0200-0286
		Carbo Zinc No. 11 Base	0200-0033
		Carboline	0200-0115
		Carbomastic 15	0200-0215
		DC 1200 RTV Prime Coat	0200-0370

ITEM 10D - EFFLUENT DATA PART D, TABLE 3 HAZARDOUS SUBSTANCES TABLE 10D-1

Xylene (cont)	1330-20-7	E-Series Enamel Paint	0200-0378
		Gavanox Type 1	0200-0170
		Glyptal	0200-1628
		Hardener 8871	0200-0788
		Industrial Wash Primer	0200-0878
		J-Series Kolor-Poxy Enamel	0200-0928
		KEM Hi-temp High Performance	0200-1842
		Kolor-Poxy Floor Coat	0200-1002
		Kromik Metal Primer	0200-0863
		Masterseal 330	0200-1678
		Penetrating Oil	0100-0530
		Phenoline Thinner	0600-0092

ITEM 10D - EFFLUENT DATA PART D, TABLE 3 HAZARDOUS SUBSTANCES TABLE 10D-1

Xylene (cont)	1330-20-7	Carb and Choke Cleaner	0600-0154
		Reducer 54	0600-0280
		Rust Barrier White Primer	0200-0301
		Rust Barrier Red Primer	0200-0241
		Sterling Varnish	0200-0610
		Texaco Super Unleaded Gasoline	0900-0250
		Unleaded Gasoline	0900-0768
		Urethane Clearcoat	0200-1777
		Lysol Disinfectant	0500-0012

COMMENTS:

(1) The numbers in the Comment column are the Station Chemical Control System tracking numbers.

(2) Licensed applicator utilizes, no bulk material stored at the facility.

(3) Uranium is used in the electric generation process, no reasonable potential for discharge.

ITEM 10D - EFFLUENT DATA PART D TABLE 10D-2 AREA MAINTENANCE PRODUCTS

Licensed applicators periodically apply herbicides, pesticides and fertilizer to areas of the Station for surface maintenance purposes. The Station currently employs J. C. Ehrlich to apply these materials. The materials currently being applied, as the season and surface warrants, are identified. These materials are typical of the area maintenance products normally used at the Station and other, similar type products, could be used by these or other licensed applicators. Although these pollutants are not intended for normal discharge, unless identified at the DSN specific Tab, there remains the potential for inadvertent discharge. These pollutants are not expected to be detected in the outfall.

PRODUCT	MANUFACTURER/ VENDOR	CURRENT APPLICATOR
ROUNDUP PRO Herbicide	Monsanto	J. C. Ehrlich
OUST Herbicide	DuPont Ag. Products	J. C. Ehrlich
KARMEX DF Herbicide	DuPont Ag. Products	J. C. Ehrlich
BIG SUR 90 Spray Adjuvant	Brewer International	J. C. Ehrlich
Glyphosate	DuPont Ag. Products	J. C. Ehrlich
POLY DRY	Brewer International	J. C. Ehrlich

HOPE CREEK GENERATING STATION ATTACHED INFORMATION FOR FORM C - ITEM 10D - EFFLUENT DATA PART D

TABLE 10D-3 - ADDITIONAL POLLUTANTS

The products identified are representative, but not all inclusive, of products and constituents utilized at the facility in areas which could discharge in the event of a leak, spill, or inadvertent drain. Although these pollutants are not intended for normal discharge, unless identified at the DSN specific Tab, there remains the potential for inadvertent discharge. These pollutants are not expected to be detected in the outfall.

PRODUCT	CICP	CAS No.	COMPONENT
#44 RESIN CORE SOLDER (GE 175A8867P002 AL	0100-0262	7440-69-9	BISMUTH
		7440-22-4	SILVER
		7440-31-5	TIN
02353 TEXACO ANTIFREEZE/COOLANT	1000-0172	7758-11-4	POTASSIUM PHOSPHATE, DIBASIC
1,1,1-TRICHLOROETHANE	0600-0318	123-91-1	1,4-DIOXANE
1000 GREEN CONCENTRATE OIL	0100-0038	518-47-8	GREEN DYE
		19381-50-1	GREEN DYE
1800 PSIG CYLINDER 2% HYDROGEN BALANCE NI	0900-0406	1333-74-0	HYDROGEN
		7727-37-9	NITROGEN (COMPRESSED OR LIQUEFIED)
1-AMINO-2-NAPHTHOL-4-SULFONIC ACID #259	0900-0431	116-63-2	1-NAPHTHALENE SULFONIC ACID, 4-AMINO-3-H
2,2,4 TRIMETHYLPENTANE (ISO-OCTANE)	0900-0763	540-84-1	ISOOCTANE
25 FULL IMPACT NO RINSE STRIPPER CONCENTR	0500-0546	100-51-6	BENZYL ALCOHOL
		29911-28-2	DIPROPYLENE GLYCOL N-BUTYL ETH
4 WAY PLUS PN#74107	0600-0030	127-18-4	TETRACHLOROETHYLENE
4-PHENYLAZODIPHENYLAMINE	0900-0230	101-75-7	4-(PHENYLAZO)DIPHENYLAMINE
5129 KOLOR-POXY PRIMER/SEALER A	0200-0596	68609-97-2	ALKYD GLYCIDYL ETHERS
609 RETAINING COMPOUND FAST CURING 60931	0200-0227	63393-89-5	COUMARONE-INDENE RESIN
		868-77-9	METHACRYLIC ACID, 2-HYDROXYETHYL ESTER
		9003-42-3	POLY(ETHYL METHACRYLATE)
624 SOLVENT	0600-0167	64741-53-3	NAPHTHENIC PETROLEUM OIL
ACETYLENE, ETHYNE, ETHINE	0900-0109	74-86-2	ACETYLENE
ACRYLIC CONFORMAL COATING MS-475N (FORMER	0200-0667	1717-00-6	1,1,-DICHLORO-1-FLUORETHANE
ACTION PLUS DEGREASER CLEANER (1020)	0500-0033	9016-45-9	ETHOXYLATED NONYL PHENOL
		1310-58-3	POTASSIUM HYDROXIDE
		7758-29-4	SODIUM PHOSPHATE, TRIBASIC
			SODIUM SILICATE
			SODIUM XYLENESULFONATE
ACTIVATED CARBON TYPE 828	0900-0410		TRIETHYLENE DIAMINE
AEROSHELL GREASE 16	0100-0089	103-24-2	AZELAIC ACID, BIS(2-ETHYLHEXYL)ESTER

Page 2 of 23

PRODUCT	CICP	CAS No.	COMPONENT
AG 701 / AP 1602	0200-1772	25038-32-8	HYDROCARBON RESIN
		9010-85-9	ISOBUTYLENE-ISOPRENE POLYMER
			POLYBUTENE POLYMER
		9003-07-0	POLYOLEFIN
AIR DRY ENAMEL 1201	0200-0392	1309-38-2	MAGNETITE
AIRCOMATIC GAS (MIXES ARGON / CO2)	0900-0328	7440-37-1	ARGON
AIROILENE OIL P-089507, P-089508, P-08873	0100-0120	64742-46-7	PETROLEUM DISTILLATES HYDROTREATED MIDDL
ALVANIA(R) EP LF GREASE RO (71123)	0100-0500	7620-77-1	LITHIUM 12 HYDROXYSTERATE
			NAPHTHENIC ACID, ZINC SALT
		64742-52-5	PETROLEUM LUBRICATING OIL
AMERCOAT 90 RESIN	0200-0195		CHROMIUM(III) OXIDE(2:3)
			NICKEL ANTIMONY TITANATE
			ORGANIC CLAY
			PROPYLENE GLYCOL T-BUTYL ETHER
AMERCOAT THINNER #6	0600-0200		AROMATIC HYDROCARBONS
			DIACETONE ALCOHOL
			NAPHTHALENE
AMINO ACID F DILUTION SOLVENT (23530)			AMINOMETHYLPROPANOL
AMINO ACID REAGENT FOR PHOSPHATE & SILICA			SODIUM METABISULFITE
AMMONIA STABILIZER SOLN. A1500	0900-0338		POTASSIUM SODIUM TARTRATE
AMMONIA TEST KITS R1501'S		A	MERCURIC IODIDE
AMMONIUM CHLORIDE (A661500)	0900-0002	12125-02-9	AMMONIUM CHLORIDE
AMMONIUM MOLYBDATE REAGENT FOR SILICA 193	0900-0078	12027-67-7	MOLYBDIC ACID, HEXAAMMONIUM SALT
			SULFURIC ACID
AMMONIUM SULFATE, GRANULAR	0900-0336	7783-20-2	AMMONIUM SULFATE
ANCHORFAST RESIN	0200-1637		ACRYLATE MONOMER MG-1
		26142-30-3	DER 732 EPOXY RESIN
ANIONIC SURFACTANT SOLN.	0900-0636	36445-71-3	DECYL(SULFONPHENOXY)BENZENESULFONIC ACID
ANSTAC 2M	0900-0818	104-74-5	LAURYL PYRIDINIUM CHLORIDE
ANTI-FOG LENS PREP II (P/N 60158-00)	0500-0251	1330-78-5	TRICRESYLPHOSPHATE
ARMOR ALL PROTECTANT	0200-0680		ARMOR ALL CONCENTRATE
			SILICONE EMULSION
		50-70-4	SORBITOL

Page 3 of 23

PRODUCT	CICP	CAS No.	COMPONENT
AUTOMOTIVE BODY PUTTY #'S 6369 - 73, 6378	0200-0775		BENZOYL PEROXIDE
			BUTYL BENZYL PHTHALATE
			STYRENE MONOMER
BARBASOL REGULAR SHAVING CREAM	0500-0157		LAURETH 23
			STEARIC ACID
BARIUM NITRATE			BARIUM NITRATE
BATTERY P/N 12-609 NOW MAINTENANCE-FREE M		1317-36-8	
BATTERY WET ELECTRIC STORAGE (DEKA 908D)		7440-36-0	
BD 7-77 PLUS (PENETRATING OIL PLUS TEFLON	0100-0365		BIPHENYL
BEL-RAY ANTI-WEAR LUB 5 5624	0100-0490	64742-44-5	MINERAL OIL
BELZONA 1111 (BELZONA SUPER METAL) BASE 1	0200-0244		DGEBF-EPOXY RESIN
		92797-60-9	MODIFIED SILICA
BELZONA 2131 D&A FLUID ELASTOMER BASE	0200-0351	101-68-8	METHYLENE BISPHENYL ISOCYANATE
BELZONA 3121 (MR-7) SOLIDIFIER			CYCLOHEXANAMINE, 4,4-METHYLENE (BIS 2-ME
BELZONA 5811 (IMMERSION GRADE) SOLIDIFIER	0200-0938	1761-71-3	4,4-METHYLENEBIS (CYCLOHEXANAMINE) POLYM
BELZONA 5811 IMMERSION GRADE BASE 305/016	0200-0938	71888-89-6	BENZENEDICARBOXYLIC ACID ESTER
BELZONA 9111 (CLEANER/DEGREASER)	0600-0336	70693-06-0	C9-C11 AROMATIC HYDROCARBON
BENZOIC ACID (PELLETS)	0900-0791	65-85-0	BENZOIC ACID
BISCOSEAL TP-28 PART A	0200-0053	17557-23-2	DIGLYCIDYL ETHER of NEOPENTYLGYLCOL
			EPICHLOROHYDRIN BISPHENOL A
		028053-14-4	PHENOL-FORMALDEHYDE NOVOLAC
BITUMASTIC 300 M A 0165A5NL	0200-0280		COAL TAR FIVER PITCH
			ORGANOPHILIC CLAY
			TRI(DIMETHYLAMINOMETHYL)PHENOL,2,4,6
BITUMASTIC 300 M B 0165B5NL)			EPOXY RESIN (DIGLYCIDYL ETHER OF BISPHEN
BITUMASTIC NO. 50	0200-1312		COAL TAR CREOSOTE
		65996-79-4	COAL TAR DISTILLATE
			COAL TAR PITCH
			INDENE
BLACK MAX(R) 380 BLACK TOUGH INSTANT ADHE			ETHYLENE COPOLYMER RUBBER
BLEND-A-COLOR TONERS (A60N1 RAW UMBER)	0200-1841		POLYETHYLENE GLYCOL OCTYLPHENYL ETHER
BLUE GAGE OIL	0100-0570	9002-83-9	CHLOROTRIFLUOROETHYLENE POLYMER
BLUE SKIES II DISINFECTANT CLEANER COMMAN	0500-0542	8001-54-5	ALKYL DIMETHYL BENZYL AMMONIUM

.

Page 4 of 23

PRODUCT	CICP	CAS No.	COMPONENT
		7173-51-5	DIDECYL DIMETHYL AMMONIUM CHLORIDE
BRAND SE-FOAM SILICONE RTV FOAM B 3-6548	0200-0044	68037-59-2	DIMETHYL METHYLHYDROGEN SILOXANE
		68083-19-2	POLYDIMETHYLSILOXANE, DIMETHYLVINYL-TERM
BRANSON GENERAL PURPOSE CLEANER	0500-0334	6834-02-0	SODIUM SILICATE (SILICIC ACID, DISODIUM
BROMOPHENOL BLUE (B3925)	0900-0057	115-39-9	BROMOPHENOL BLUE
BTR HYDRAULIC FLUID FOR 400-D HAND GUN	0100-0583	90-30-2	1-NAPHTHYLAMINE, N-PHENYL-
BUFF EPOXY PAINT #74004	0200-0286	110-80-5	2-ETHOXYETHANOL
BUFFER SOLUTION PH 4	0900-0531	127-09-3	SODIUM ACETATE
CADALAG #336	0200-1459	63449-39-8	PARAFFIN WAXES AND HYDROCARBON WAXES, CH
CADMIUM (16411 2001 CX0012 CX0013 CX0015	0900-0753	7440-43-9	CADMIUM
CALCIUM CHLORIDE	0900-0011	10035-04-8	CALCIUM CHLORIDE, DIHYDRATE
CALCIUM CHLORIDE C79500	0900-0275	10043-52-4	
CARBO ZINC NO. 11 BASE	0200-0033	1332-58-7	ALUMINUM SILICATE HYDROXIDE
			COLOR PIGMENT
		78-10-4	ETHYL SILICATE
			METHYL SILICATE
		12001-25-2	
CARBOLINE 890 PART B (0986B1NL)	0200-0115		CYCLOALIPHATIC AMINE BLEND
			DIAMINOCYCLOHEXANE
			ISOPHORONEDIAMINE
CARBOMASTIC 15 PART A			C8 AND C10 ALKYL GLYCIDYL ETHERS
CARBON DIOXIDE, REFRIGERATED LIQUID	0900-0603		CARBON DIOXIDE
CARBON MONOXIDE 20 PPM			CARBON MONOXIDE
CAULK 149 COMP. A			TERT-NONYL SULFIDES
CAULK 149 COMP. B	0200-1629		MANGANESE DIOXIDE
			THIRAM
CAZAR 2 412030-04340	0100-0176	64755-01-7	FATTY ACIDS, TALLOW, CALCIUM SALTS
			PROPRIETARY ADDITIVE MIXTURE
CELL - 11.3% SALT (LITHIUM CHLORIDE) HC-	0900-0539	7447-41-8	LITHIUM CHLORIDE

Page 5 of 23

PRODUCT	CICP	CAS No.	COMPONENT
CERAMIC EC BARRIER BARRIER SOLIDIFER	0200-0437		4,4'-METHYLENE DIANILINE
			TRIMETHYLHEXAMETHYLENEDIAMINE
			TRIS(ETHYLAMINOETHYL) PHENOL
CERAMIC EC BARRIER SOLIDIFIER - RED	0200-0437		4,4'-ISOPROPYLIDENEDIPHENOL
			BISPHENOL A EPOXY MODIFIED ALIPHATIC AMI
			DIETHYLENE TRIAMINE
		68919-79-9	DIMER ACID, TALL OIL FATTY ACID, TRIETHY
			POLYMERIC FATTY ACID AMINE
CHEMGUARD BC DRY CHEMICAL	0900-0715	63148-57-2	METHYL HYDROGEN POLYSILOXANE
CHICO A SEALING COMPOUND	0200-0238	1344-28-1	ALUMINUM OXIDE
			CALCIUM OXIDE
		1345-25-1	FERROUS OXIDE
CHLORIDE CONSUMABLES KIT 151711	0900-0227	64-18-6	FORMIC ACID
CIMTECH 250 WITH MSL	0100-0113	11111-34-5	ALKOXYLATED AMINE
		26896-20-8	NEODECANOIC ACID
CITRIC ACID MONOHYDRATE	0900-0254	5949-29-1	CITRIC ACID MONOHYDRATE
CITRIKLEEN	0500-0007	112-34-5	DIETHYLENE GLYCOL-N-BUTYL ETHER
CITRIKLEEN NST	0500-0426	5989-27-5	LIMONENE,-D
		26836-07-7	MONOETHANOLAMMONIUM DODECYBENZ
		20324-33-8	TRIPROPYLENE GLYCOL METHYL ETH
CLEAN-GEAR TOWLETTE CT943	05000052	111-76-2	2-BUTOXY ETHANOL
COBALT (II) CHLORIDE (C371)	0900-0013	7791-13-1	COBALT CHLORIDE
COMMAND CENTER 32 HEPTAGON DISINFECTANT C	0500-0581	63449-41-2	N-ALKYL DIMETHYL BENZYL AMMONIUM CHLORID
		68356-79-6	N-ALKYL DIMETHYL EHTYL BENZYL AMMONIUM C
COMMAND CENTER BATH MATE ACID FREE WASHRO	0500-0559	68131-40-8	LINEAR ALCOHOL SURFACTANT
COMMAND CENTER HIGH GEAR MULTI-PURPOSE DE	0500-0562	5131-66-8	1-BUTOXY-2-PROPANOL
			ALKOXYLATED LINEAR ALCOHOLS
		112-05-0	N-NONANOIC ACID
COMMAND CENTER PHENEX NS CLEANER, DISINFEC	0500-0563	90-43-7	2-PHENYL PHENOL
		120-32-1	POTASSIUM ORTHOBENZYL PARACHLOROPHENATE
		80-46-6	p-TERTIARY AMYLPHENOL
COMMAND CENTER SPEEDBALL 2000 POWER CLEAN	0500-0545	78-96-6	ISOPROPANOLAMINE
COMMAND CENTER SPEEDTRACK CONCENTRATE 24	0500-0545	68131-39-5	ETHOXYLATED ALCOHOL

Page 6 of 23

PRODUCT	CICP	CAS No.	COMPONENT
COOGAR 800 25% HELIUM/75% ARGON	0900-0739		
COPPER REF STD SOL 1000 PPM	1000-0093	7697-37-2	NITRIC ACID
CORMATIC PINK PEARL HAND SOAP GPM 12-30B	0500-0145		
CP200 POXYLUBE-DRY FILM LUBRICANT (AEROSO	0100-0016	67-64-1	ACETONE
		106-97-8	BUTANE
			FREON 113
			METHYL ISOBUTYL KETONE
			PROPANE
			n-HEXANE
CRP BLAZE OFF	0500-0571	68585-34-2	ALCOHOL ETHOXYSULFATE, SODIUM SALT
			DETERGENTS
CUPRIC SULFATE, 5-HYDRATE	0900-0188	7758-98-7	CUPRIC SULFATE
DBT SILICONE CATALYST	0200-0287	77-58-7	DIBUTYL TIN DILAURATE
DENATURED ALCOHOL SOLVENT	0600-0149	142-82-5	n-HEPTANE
DEODORANT BLOCKS	0500-0213	106-46-7	1,4-DICHLOROBENZENE
DEVELOPER CD-5 78-9020-1535-9	0300-0019	123-31-9	HYDROQUINONE
		7757-83-7	SODIUM SULFITE
DEVELOPER PREMIX - TYPE 252 78-6969-5974-	0600-0078	58353-09-6	STYRENE ACRYLIC RESIN
		25767-47-9	STYRENE BUTYLACRYLATE COPOLYMER
DEVELOPER PREMIX - TYPE 852 #78-6969-5173	0300-0028	7439-89-6	IRON
			IRON OXIDE
		9003-53-6	STYRENE POLYMER
DIPHENYLCARBAZIDE	0900-0149	140-22-7	DIPHENYLCARBAZIDE
		538-62-5	DIPHENYLCARBAZONE
DISSOLVED OXYGEN REFILL & TEST KITS R-750	0900-0107	111-46-6	DIETHYLENE GLYCOL
DIVINYLBENZENE 55 21861 (INSERT - COLU	0900-0508	98-29-3	4-t-BUTYLCATECHOL
		25340-17-4	DIETHYLBENZENE
		1321-74-0	DIVINYLBENZENE
			ETHYLVINYLBENZENE
D-MANNITOL OR MANNITOL	0900-0062	69-65-8	MANNITOL
DOUBLE BUBBLE RED/WHITE EPOWELD 8173 0400	0200-0232	106-89-8	EPICHLOROHYDRIN
		122-60-1	PHENYL GLYCIDYL ETHER
DOW CORNING (R) 4 COMPOUND	0100-0079	68037-74-1	DIMETHYL, METHYL SILICONE RESIN

Page 7 of 23

PRODUCT	CICP	CAS No.	COMPONENT
DOW CORNING (R) 702 DIFFUSION PUMP FLUID	0200-1081	68037-71-8	DIMETHYL, PHENYL METHYL SILOXANE COPOLYM
		807-28-3	TETRAPHENYLDIMETHYLDISILOXANE
DOW CORNING (R) 790 BUILDING SEALANT - PR	0200-0922	50791-87-2	METHYL VINYL BIS(N-METHYL-ACETAMIDO)SILA
DOW CORNING (R) G-N METAL ASSEMBLY PASTE	0200-0309	7784-30-7	ALUMINUM PHOSPHATE
		110-30-5	ETHYLENE-BIS-STEARAMIDE
		64741-89-5	PETROLEUM DISTILLATE
			SOLVENT REFINED PARAFFINIC OIL
		7446-26-6	ZINC PYROPHOSPHATE
DOW CORNING(R) 1200 RTV PRIME COAT - CLEA	0200-0370	2157-45-1	TETRA (2-METHOXYETHOXY) SILANE
			TETRABUTYL TITANATE
			TETRAPROPYL ORTHOSILICATE
DOW CORNING(R) 3451 CHEMICAL RESISTANT BE	0100-0501		ETHYLENE, TETRAFLUORO-, POLYME
			TRIFLUOROPROPYLMETHYL SILOXANE
DOW CORNING(R) 41 EXT. HIGH TEMP. BEARING	0100-0081	63148-52-7	DIMETHYL, PHENYLMETHYLPOLYSILOXANE, TRIM
DOW CORNING(R) 790 BUILDING SEALANT-BLACK		68952-53-4	DIMETHYL METHYLDIETHYL-N-HYDROXYETHAMINE
DOW CORNING(R) 995 SILICONE STRUCTURAL AD	0200-1340		CALCIUM CARBONATE TREATED WITH STEARIC A
		1185-55-3	METHYLTRIMETHOXY SILANE
DOW CORNING(R) Q4-2805 CHANNEL SEALANT	0200-1010	68952-02-3	METHYLVINYL, TRIFLUOROPROPYLETHYL SILOXA
		68909-20-6	SILANAMINE, 1,1,1-TRIMETHYL-N-(TRIMETHYL
		68607-77-2	SILANOL/STPD FLUOROSILICONE FLUID
		9052-95-3	STYRENE-DIVINYLBENZENE-ETHYLSTYRENE POLY
DPD TOTAL CHLORINE REAGENT 14064	0900-0521		CARBOXYLATE SALT
			SALT OF N,N-DIETHYL-P-PHENYLENEDIAMINE
· ·			SODIUM PHOSPHATE, DIBASIC
DPL-2 RUST INHIBITOR CD214	0600-0011	61789-85-3	PETROLEUM SULFONATE
DRIERITE - REGULAR	0900-0012	7778-18-9	CALCIUM SULFATE
DS-8000 SERIES ADHESIVE, HARDNER	0200-0371	6531-38-0	N,N'BIS (2-AMINOETHYL) PIPERAZINE
		24028-46-4	PIPERAZINYLETHYL-ETHYLENEDIAMINE
		4097-89-6	TRIS(2-AMINOETHYL)AMINE
DTM ACRYLIC COATING SEMI-GLOSS, ULTRA WHI	0200-1598	108419-35-8	OXO-TRIDECYL ACETATE
DURALBOND PART A	0200-1390	2461-15-6	PROPANE, 1,2-EPOXY-3-((2-ETHYL HEXYL)OXY)
DURALBOND PART B	0200-1390	123-30-8	AMINOPHENOL
ECODEX P201H,P202H,P202HL,P202HC,P205H,X2	1000-0068	70851-17-1	CELLULOSE FIBER

Page 8 of 23

PRODUCT	CICP	CAS No.	COMPONENT
EN16 SPRAYON OMNI-PAK BLEND FOR ENAMELS	0200-0954		ETHYL 3-ETHOXYPROPIONATE
ENDUST DUSTING AND CLEANING SPRAY	0500-0566		1,1,1-TRICHLOROETHANE
INDUST DUSTING AND CLEANING SPRAY	0500-0566	/1-55-0	OIL, MINERAL
		64740 49 0	
		04/42-40-9	PROPELLANT BLEND A-46 (PROPANE & BUTANE)
ENECRETE DURAQUARTZ BASE	0200-0985	106.00.0	
ENECRETE DURAQUARTZ BASE	0200-0985		
	0000 0700		PROPANE, 1,2-EPOXY-3-(O-TOLYOXY)-
INGINE ENAMEL 88 (UNIVERSAL GREY 7883)			ISOBUTYL ACETATE
EPA 2000 WCI-140 CM HV	0500-0464		ISO PARAFFINIC HYDROCARBONS
THYL ALCOHOL - 200 PROOF	0500-0076		
ETHYL ALCOHOL, DENATURED (A407)	0600-0044		ACETALDEHYDE
			ETHYL ACETATE
EXOSEN COUPLANT	0100-0316	9004-34-6	MICROCRYSTALLINE CELLULOSE
Z WELD PRIMER (CLEAR 211)	0200-1262	108-94-1	CYCLOHEXANONE
		109-99-9	TETRAHYDROFURAN
FILLING SOL FOR REF ELECTRODE 100058 (150	0900-0236	7787-69-1	CESIUM BROMIDE
IRE BARRIER CP-25 N/S NO-SAG CAULK	0200-0395	1305-62-0	CALCIUM HYDROXIDE
		68527-02-6	CHLORINATED OLEFINS (C12-C24)
IRE BARRIER CP-25 WB+CAULK (REVISED)	0200-1794		2-ETHYLHEXYL DIPHENYLPHOSPHATE
······································			CHOPPED FIBERGLASS
			FLAME RETARDAND
			SYNTHETIC POLYMER LATEX
		1332-07-6	ZINC BORATE
IVE STAR EPOXY GROUT HARDENER COMPONENT	0200-0448		DIETHYLAMINOETHANOL
IVE STAR GROUT	0200-0400		HYDRAULIC CALCIUM ALUMINATE CEMENT
LORCO-X ABSORBENT	0500-0136		FULLER'S EARTH
			SILICA, QUARTZ
LUORESCEIN GREEN CONCENTRATE	0900-0266		SODIUM TETRADECYL SULFATE
LUX STRIPPER S 1644-16S, 24S	0500-0143		METHYLENE CHLORIDE
FOAMY Q & A CLEANER	0500-0211		HYDROXYACETIC ACID
			PHOSPHORIC ACID
FOGPRUF	0500-0531		SUCCINIC ACID, SULFO-BIS(ETHYL HEXY)

Page 9 of 23

PRODUCT	CICP	CAS No.	COMPONENT
FORANE (R) 502 CHLORODIFLUOROMETHANE (R22	0900-0643	76-15-3	MONOCHLOROPENTAFLUOROETHANE
FREON 114	0900-0147	76-14-2	DICHLOROTETRAFLUOROETHANE
FREON 116 REFRIGERANT	0900-0728	76-16-4	HEXAFLUOROETHANE
FREON 500, R-500, RACON 500	0900-0141	75-37-6	1,1-DIFLUOROETHANE
FREON TES SOLVENT MS-176/CO2	0500-0171	67-56-1	METHANOL
FREON T-P35 SOLVENT MS-160	0500-0172	75-71-8	DICHLORODIFLUOROMETHANE
FT/HI PURITY BLACK Q404	0300-0089	8005-2-5	C.I. SOLVENT BLACK 7
		65797-05-9	ROSIN(RESIN)
FUSOR 304-1	0200-0072		PROPRIETARY FILLER
		2426-8-6	n-BUTYL GLYCIDYL ETHER
FUSOR 304-2	0200-0073	68410-23-1	FATTY ACIDS
FYRQUEL 150 R&O	0100-0574		BUTYLATED TRIPHENYL PHOSPHATE
		115-86-6	TRIPHENYL PHOSPHATE
FYRQUEL EHC	0100-0574	25155-23-1	PHENOL, DIMETHYL-, PHOSPHATE 3:1
G300	0100-0100	68957-05-1	CHLOROPHENYLMETHYLSILOXYCOPOLYMER
		15590-62-2	LITHIUM, 2 ETHYLHEXOATE
G322L	0100-0099	68607-71-6	METHYL DECYL POLYSILOXANE
		13530-65-9	ZINC CHROMATE
GAGE BLOCK PRESERVATIVE, AEROSOL (458-060	0500-0220	64742-65-0	Heavy Paraffinic Petroleum Dis
		68476-85-7	LIQUEFIED PETROLEUM GAS
		64742-88-7	NAPHTHOL SPIRITS
GALVANOX TYPE 1 0490S1NL	0200-0170	56-23-5	CARBON TETRACHLORIDE
			CHLORINATED RUBBER
GASKET ELIMINATOR(R) 504 SEALANT 50431	0200-0252	51796-19-1	CASTOR OIL DERIVATIVE
GASKET SEALANT #2 (FORM-A-GASKET(R)) 3051	0200-0334	68187-84-8	CASTOR OIL
			ROSIN
			SOYBEAN DERIVATIVE
GEM TYPE HCP STANDARD GREEN INK #815			CHROME YELLOW
GEM TYPE HCP STANDARD ORANGE INK #813			MOLYBDATE ORANGE
GENERATOR SOLN-PYRIDINE FREE 27-128-01	0900-0396	109-86-4	2-METHOXYETHANOL

Page 10 of 23

		1	
PRODUCT	CICP	CAS No.	COMPONENT
GENTLE LOTION CLEANSER / SSS LOTION CLEAN	0500-0106	61789-40-0	COCAMIDOPROPYL BETAINE
		7647-14-5	SODIUM CHLORIDE
		9004-82-4	SODIUM LAURYL ETHER SULFATE
GLASS AND SURFACE CLEANER READY TO USE	0500-0492	69227-21-0	ALKOXYLATED FATTY ALCOHOL
GN METAL ASSEMBLY SPRAY - NEW	0100-0515	1317-33-5	MOLYBDENUM (IV) SULFIDE
GRAFOIL GTS THREAD SEALANT PASTE TG-061	0100-0392	8042-47-5	MINERAL OIL, SLAB OIL
			PETROLEUM JELLY
GREEN POINT HYDRAULIC FLUID TR 22 (WAS #)	0100-0588	3038-35-3	POLYALKYLENEGLYCOL
HARDENER 8871 (ACRYLIC ENAMEL SYSTEM)	0200-0788	28182-81-2	HEXAMETHYLENE DIISOCYANATE POLYMER
HD 5695	0500-0522	68439-46-3	ETHOXYLATED C9-10 ALCOHOL
		68127-33-3	NEUTRALIZED DICARBOXYLIC ACID
HI-GENIC NON-ACID BOWL AND BATHROOM CLEAN	0500-0214	139-08-2	N-ALKYL DIMETHYL BENZYL AMMONI
HIGH CAPACITY, DEIONIZATION, RESIN D0803	1000-0112	69011-20-7	COPOLYMER BEADS
HIGH EXPANSION FOAM 1 1/2%	1000-0203	67762-41-8	LAURYL ALCOHOL
		1643-20-5	LAURYL DIMETHYL AMINE OXIDE
HIGH PERFORMANCE HEAT RESISTANT COATING N	0200-1842	68187-11-1	COBALT CHROMITE BLUE-GREEN SPINEL
HIGH PERFORMANCE HEAT RESISTANT PRIMER NO	0200-1842	30962-78-1	SILOXANE MOD POLYESTER
HORNCURE SEAL 30C	0200-2091	68131-87-3	HYDROCARBON RESIN
HYDRAZINE DIFFUSION REAGENT 151811	0900-0476	7553-56-2	IODINE
HYDRAZINE DIHYDROCHLORIDE (H319500)	0900-0061	5341-61-7	HYDRAZINE, DIHYDROCHLORIDE
HYDRAZINE SULFATE	0900-0234	10034-93-2	HYDRAZINE SULFATE
HYDROGEN PEROXIDE KIT	0900-0104	1762-95-4	AMMONIUM THIOCYANATE
HYDROGEN PEROXIDE SOLNS 3% TO 30% H3254	0900-0649	7722-84-1	HYDROGEN PEROXIDE
HYDROSEP (ADDITIVE FOR EYEWASH STA)	0500-0182	18472-51-0	CHLORHEXIDINE GLUCONATE
			DIGLUCONATE CHLOROHEXIDINE GLUCONATE
HYPERFLEX FR TM	0200-1157	32588-76-4	1H-ISOINDOLE-1,3(2H)-DIONE,2,2'(1,2 ETHA
		25213-02-9	POLYETHYLENE COPOLYMER
IC-PAK ANION COLUMN	0900-0507	12007-60-2	LITHIUM TETRABORATE
			SODIUM GLUCONATE
· · · · ·			TRIMETHYLAMMONIUM FUNCTIONALIZED POLYMET
IMCAS-ESP II (RUBBER COATING)	0200-0308	6683-19-8	CYCLIC HINDERED PHENYLAMINE ANTIOXIDANT
INDIGO CARMINE	0900-0023	860-22-0	INDIGO CARMINE
INDUSTRIAL WATER BASE ACRYLIC ENAMEL (#25	0200-1097	115-10-6	DIMETHYL ETHER

Page 11 of 23

PRODUCT	CICP	CAS No.	COMPONENT
IRON (III) OXALATE	1000-0200	19469-07-9	IRON (III) OXALATE
IRON GRIP 601	0200-0081	69430-35-9	BLOCK COPOLYMER
IRON III AMMONIUM SULFATE HEXAHYDRATE	0900-0150	7783-85-9	FERROUS AMMONIUM SULFATE, HEXAHYDRATE
J-SERIES KOLOR-POXY ENAMELS PARTS B ONLY	0200-0928	98-82-8	CUMENE
KEM HI-TEMP HIGH PERFORMANCE HEAT RESISTA	0200-1842	13255-26-0	BARIUM SILICATE
KLEEN-KOOL	0500-0068	68954-07-4	BORAMIDE
		10043-35-3	BORIC ACID
		9038-95-3	OXIRANE,
			TALL OIL ACIDS
			TRIETHANOLAMINE
KODAK EKTACOLOR RA BLEACH FIX & REPLENISH	0900-0697		AMMONIUM FERRATE
			SODIUM BISULFITE
KÖDAK EKTACOLOR RA DEVELOPER REPLENISHER	0900-0695		HYDROXYLAMINE, N,N-DIETHYL-
			SUBSTITUTED STILBENE
KODAK FLEXICOLOR DEVELOPER PART B			HYDROXYLAMINE SULFATE
KODAK FLEXICOLOR DEVELOPER PART C	0900-0694	25646-77-9	ETHANOL, 2-((4-AMINO-3-METHYPHENYL) ETHY
KODAK FLEXICOLOR FIXER AND REPLENISHER WO	0900-0692	7783-18-8	AMMONIUM THIOSULFATE
KODAK INDUSTREX DEVELOPER REPLENISHER PTS	0900-0619	_	GLUTARALDEHYDE
		7420-89-5	GLUTARALDEHYDE BIS(SODIUM BISULFITE)
KODAK INDUSTREX DEVELOPER REPLENISHER PTS	0900-0619		3-PYRAZOLIDONE 1-PHENYL
			NONIONIC SURFACTANT
KODAK INDUSTREX FIXER & REPLENISHER PART	0900-0623	10043-01-3	ALUMINUM SULFATE
KODAK INDUSTREX FIXER & REPLENISHER PART	0900-0653		AMMONIUM BISULFITE
		12179-04-3	SODIUM TETRABORATE, PENTAHYDRATE
KOLOR-POXY PRIMERS A & B 3200, 4279, NM16	0200-0596	68081-84-5	ALKYL GLYCIDYL ETHER
		-	POLYAMIDE-AMINE RESIN
KRONAPLATE 100 K-100 GREASE (11-425)(BETT	0100-0149	15337-18-5	ZINC DIPENTYLDITHIOCARBAMATE
KRYTOX 240 SERIES FLOURINATED GREASE	0100-0096	60164-51-4	PERFLUOROALKYETHER
LEAD-ACID BATTERY (FLUID)	0900-0374	7440-38-2	ARSENIC
LEAD-ACID CELL (CALCIUM)	0900-0181	7439-92-1	LEAD
		1309-60-0	LEAD DIOXIDE
LECTRA CLEAN #2018; GAGE BLOCK CLEANER,AE	0500-0066	106-88-7	1,2-BUTYLENE OXIDE
		124-38-9	CARBON DIOXIDE

Page 12 of 23

TABLE 10D-3 - ADDITIONAL POLLUTANTS

.

PRODUCT	CICP	CAS No.	COMPONENT
FRODUCT	CICF		TRICHLOROETHYLENE
	1000-0077		
LITHIUM THIONYL CHLORIDE BATTERY	0900-0637	7439-93-2	
			SULFUR DIOXIDE THIONYL CHLORIDE
	0000 4040		
LKYD VOC-COMPLIANT FINISHES A40WZ5 A40WZ6			
LO VOC CHROMOX PR RED 37 V13R28 (WAS 37 1	0200-0828		
LOCTITE ADHESIVE SEALANT 220 - 22041			HEXANOIC ACID, 2-ETHYL-, DIESTER with TE
LOCTITE LOCQUIC (R) PRIMER T (AEROSOL) 74	0200-0074		DIMETHYL-P-TOLUDINE
			MERCAPTOBENZOTHIAZOLE
			tert-BUTYL ALCOHOL
LOCTITE NUT LOCK GRADE-CV 8331	0200-0198		CELLULOSE ACETATE BUTYRATE
			TRIBUTYLAMINE
LOCTITE(R) 569 THREAD SEALANT HIGH STRENG	0200-0255	9003-63-8	POLY(BUTYL METHACRYLATE)
LOW CHLORIDE METAL MARKER	0300-0084	6358-31-2	C.I. YELLOW 11741
		2786-76-7	PIG RED 170 CI 12475
			TITANIUM DIOXIDE
LPS 2 GENERAL PURPOSE LUBRICANT	0100-0190	64742-96-7	HEAVY ALIPHATIC SOLVENT NAPHTHA
LPS CFC-FREE ELECTRO CONTACT CLEANER	0600-0282	107-83-5	ISOHEXANES
LUSTER PHOTO LACQUER	0200-1891		METHYL (N-AMYL) KETONE
			MIXTURE PROP/ISOBUT/BUT 48/2 (AEROSOL PR
LYSOL BULK DISINFECTANT	0500-0012	8052-48-0	SOAP
		1300-71-6	XYLENOL
MA-427 CLEAR-SET FLOOR TILE ADHESIVE - TH	0200-1717	68955-36-2	POLYCYCLIC AROMATIC HYDROCARBONS
MAGMA QUARTZ BASE 3201/1348	0200-0242	26447-14-3	PROPANE, 1,2-EPOXY-3-(TOLYLOXY
MAGNAFLUX PENETRANT SKL-HF/S	0300-0017	68477-31-6	METHYL NAPHTHYLENE #5
MAGNESIUM CHLORIDE	0900-0026	7791-18-6	MAGNESIUM CHLORIDE HEXAHYDRATE
MAGNESIUM NITRATE	0900-0358	13446-18-9	MAGNESIUM(II) NITRATE (1:2), HEXAHYDRATE
MANGANOUS SULFATE, MONOHYDRATE 2550,2552			MANGANOUS SULFATE MONOHYDRATE
MARSH SPRAY STENCIL INK YELLOW, GREEN & O	0300-0025	18454-12-1	LEAD CHROMATE VI OXIDE
MARVEL LUBRICATING OIL			DISTILLATES (PETROLEUM), SOLVENT-DEWAXED

Page 13 of 23

PRODUCT	CICP	CAS No.	COMPONENT
MASONARY CONDITIONER (VOC) B46WZ1000	0200-0677	66070-71-4	TALL OIL ALKYD POLYMER
MASTERSEAL GP PART B (FORMERLY CONCRESIVE	0200-1677	1321-94-4	METHYLNAPHTHALENE
		8000-41-7	TERPINEOL
MEDIUM ALIPHATIC SOLVENT NAPHTHA	0600-0071	64742-95-6	NAPHTHA
		25551-13-7	TRIMETHYL BENZENE
MERCURY (13411)	0900-0309	7439-97-6	MERCURY
METALIST FLOOR FINISH ED-248	0200-0025		ACRYLIC POLYMER EMULSION
		111-77-3	DIETHYLENE GLYCOL MONOMETHYL ETHER
			ETHYLENE GLYCOL
			POLYETHYLENE EMULSION
			ROSIN POLYESTER
METHANESULFONIC ACID	0900-0628		ALKANE SULFONIC ACID
METHYL SALICYLATE	1000-0017		METHYL SALICYLATE
MET-L-X DRY POWDER EXTINGUISHING AGENT	0900-0658	9010-76-8	SARAN
MICRO CONCENTRATED CLEANING SOLUTION			BENZENESULFONIC ACID DIMETHYL
			ETHYLENEDIAMINE TETRA-ACETIC A
		-	TRIETHANOLAMINE DODECYLBENZENE
MINERAL SPIRITS 66/3 11104	0600-0045	71-43-2	BENZENE
MINUTE WAX SILICONE CAR WAX T-15(C)		64741-44-2	
MOBIL SHC 824 LUBRICANT CIRC TURBINE OIL	0100-0189		1-DECENE, HOMOPOLYMER, HYDROGENATED
			ARYL AMINES
MOBIL SHC-525	0100-0387	16958-92-2	HEXANEDIOIC ACID, DITRIDECYL ESTER
MOBILFLUID 424	0100-0533	104-76-7	ETHYLHEXYL ALCOHOL
MOBILITH AW-2	0100-0493	38900-29-7	NONANEDIOIC ACID DILITHIUM SAL
		68649-42-3	ZINC DIALKYLDITHIOPHOSPHATE
MOLECULAR SIEVE TYPE 4A (HYDRO PURGE II)	0900-0698	1313-59-3	SODIUM OXIDE

NJPDES PERMIT NJ0025411

Page 14 of 23

PRODUCT	CICP	CAS No.	COMPONENT
MOLUB-ALLOY 936 SF HEAVY OPEN GEAR LUBRIC	0100-0489	8052-42-4	ASPHALT FUMES
		1333-86-4	CARBON BLACK
		7782-42-5	GRAPHITE
		72162-26-6	OLEFIN SULFIDE
		64742-16-1	
			SUBSTITUTED 1,3,4-THIADIAZOLE
		14807-96-6	
		64741-56-6	VACUUM RESIDUUM
MOLYBDATE 3 REAGENT FOR SILICA (1995)	0900-0203		MOLYBDIC ACID
			SODIUM BISULFATE MONOHYDRATE
MONOETHYLAMINE SOLUTION 151111/181153	0900-0073	75-04-7	ETHYLAMINE
MORNING MIST NEUTRAL DISINFECTANT CLEANER	0500-0580		ALKYL DIMETHYL BENZYL AMMONIUM CHLORIDE
			DIOCTYL DIMETHYL AMMONIUM CHLORIDE
N,N-DIMETHYL-P-PHENYLENEDIAMINE SULFATE	0900-0256	536-47-0	N,N-DIMETHYL-P-PHENYLENEDIAMINE SULFATE
NAPA ECHLIN FUEL INJECTOR SYSTEM CLEANER	0600-0152	64741-84-0	NAPTHA, SOLVENT REFINED, LIGHT
NATRASORB M (CLAY)	0700-0143	1318-93-0	MONTMORILLONITE CLAY
NDT WASH TEST SOLUTION	0900-0821	7761-88-8	SILVER NITRATE
NEBULA EP 2 436032-04571	0100-0062	68307-87-9	CALCIUM COMPLEX SOAP THICKENER
NEUTRACIT(R)-2 CAUSTIC NEUTRALIZER	0500-0431	34722-90-2	BROMOTHYMOL BLUE SODIUM SALT
			FLOUR
NEW RAPID TAP	0100-0447	61788-76-9	CHLORINATED PARAFFINS
		64742-58-1	PARAFFINIC OIL
NICKELOUS SULFATE, 6 HYDRATE 2080	0900-0573	10101-97-0	NICKEL(II) SULFATE HEXAHYDRATE
NITRAVER NITRATE REAGENT 5 14035	0900-0132	7487-88-9	MAGNESIUM SULFATE
		121-57-3	SULFANILIC ACID
NOKORODE SOLDERING SALTS	0200-0360	7646-85-7	ZINC CHLORIDE
NORDSTROM 167 SEALANT (STICK GRADE)	0200-1633	8015-86-9	CARNAUBA WAX
OFF! AEROSOL	0700-0073	134-62-3	DIETHYL-META-TOLUAMIDE,N,N
OIL LEAK REPAIR KIT (CLEANER BLEND 300)	0200-1585	1589-47-5	2-METHOXY-1-PROPANOL
OMALA(R) OIL 100	0100-0469	64742-57-0	LUBRICATING OIL BASE STOCK

Page 15 of 23

PRODUCT	CICP	CAS No.	COMPONENT
ORIGINAL RAPID TAP	0100-0013		ALIPHATIC POLYOL
			CINNAMON OIL PERFUME
			DIOXOLANE
			NATURAL GLYCERIDE (A FATTY ANIMAL OIL)
OXALIC ACID REAGENT FOR SILICA 975	0900-0079	144-62-7	OXALIC ACID
P-400 UF HARDENER	0200-1391	140-31-8	N-AMINOETHYLPIPERAZINE
PACKAGED BLUE INDICATING SILICA GEL / DAV	0700-0146	7646-79-9	COBALTOUS CHLORIDE
PB TOUCHUP GRAY	0200-1820	68131-74-8	ASH
PB TOUCHUP RED	0200-1821	12238-31-2	BON RED PIGMENT
			NAPHTOL AS-D
		9003-22-9	VINYL CHLORIDE-VINYL ACETATE COPOLYMER
P-DIMETHLYAMINOBENZALDEHYDE	0900-0223	100-10-7	DIMETHYLAMINOBENZALDEHYDE, P
PENA-13 PENETROX COMPOUND	0100-0402	8001-79-4	CASTOR OIL
		71011-24-0	ORGANIC PHILIC CLAY
		9003-13-8	POLY(OXY(METHYL-1,2-ETHANEDIYL)), alpha-
PENETRATING OIL 74101	0100-0530	8008-20-6	KEROSENE
PENETROX A, PEN 8A	0100-0194	637-12-7	STEARIC ACID, ALUMINUM SALT
PERMATEX(R) PRUSSIAN BLUE NON-DRYING 35V	0200-1885	14038-43-8	FERRIC FERROCYANIDE
PETROLEUM ETHER	0600-0359	8032-32-4	BENZINE
PHENOLINE 305 PRIMER PART B	0200-1657	25154-52-3	NONYLPHENOL
		109-76-2	PROPYLDIAMINE
		97-84-7	TETRAMETHYL BUTANEDIAMINE
PHENOLINE THINNER (0505S1NL)	0600-0092	110-12-3	METHYL ISOAMYL KETONE
PLASTIC PIPE CLEANER	0500-0183	78-93-3	METHYL ETHYL KETONE
PLASTISEAL F	0200-1712		ALUMINA SILICA
		8029-43-4	CORN SYRUP
		128-31-9	QUINAL
			SORBIC ACID
POLYMER SET 1100 SERIES (ALL)	0900-0355		2-PROPENAMIDE, POLYMER W/FORMALDEHYDE AN
		69418-26-4	ACRYLAMIDE COPOLYMER
POLYSILOXANE FLUID SF1147 (462HA500)	0100-0161	68440-89-1	METHYLDECYLPOLYSILOXANE ANTIOXIDANT
POR-15 RUST PREVENTIVE PAINT BLACK, SILVE	0200-0515	26447-40-5	DIPHENYLMETHANE 4,4'-DIISOCYANATE (MDI)
		68333-23-3	NAPTHA PETROLEUM

Page 16 of 23

TABLE 10D-3 - ADDITIONAL POLLUTANTS

PRODUCT	CICP	CAS No.	COMPONENT
POWER CLEANER	0500-0088	111-42-2	DIETHANOLAMINE
PRECISION BLUE LAYOUT FLUID - BRUSH CAP	0300-0171	64-17-5	ETHYL ALCOHOL
		9004-70-0	NITROCELLULOSE
		123-86-4	n-BUTYL ACETATE
		71-36-3	n-BUTYL ALCOHOL
PREMIUM NICKEL ANTI-SEIZE 772	0100-0006	7429-90-5	ALUMINUM (DUST AND FUME)
		7440-02-0	NICKEL
PROPANE - LIQUEFIED PETROLEUM GAS	1000-0086	115-07-1	PROPYLENE
PRO-STRIP 114156001	0500-0267	1336-21-6	AMMONIUM HYDROXIDE
		141-43-5	ETHANOLAMINE
		39464-70-5	POLYOXYETHYLENE PHENYL ETHER P
PROTEK-SORB, SUPER PROTEK SORB, DRI-PAX P	0500-0094	7440-44-0	CARBON
P-SERIES POLY-SILICONE ENAMELS		7440-47-3	CHROMIUM
PST #580 LOW HALOGEN/LOW SULFUR PIPE SEAL	0200-0021	39382-25-7	BISPHENOL A FUMARATE RESIN
		80-15-9	CUMENE HYDROPEROXIDE
		613-48-9	N,N-DIALKYLTOLUIDINE
		25852-47-5	POLYETHYLENE GLYCOL DIMETHACRYLATE
		9004-81-3	POLYGLYCOL LAUREATES
		81-07-2	SACCHARIN
		112945-52-5	SILICA, AMORPHOUS FUMED
		13463-67-7	TITANIUM DIOXIDE
PULL OUT HEAVY DUTY SPOT REMOVER	0500-0553		BLENDED ANIONIC SURFACTANT
		64741-41-9	MINERAL SPIRITS
PUTTY 87 (GLAZING PUTTY, LIGHT GRAY 6390	0200-0810		BIS (2-ETHYLHEXYL) PHTHALATE
			ROSIN ACIDS
PVC CEMENT	0200-1182	9002-86-2	POLYVINYL CHLORIDE
PYROCRETE 241 0148S7NL	0200-0175	21645-51-2	ALUMINUM HYDROXIDE
		65997-15-1	SILICATE, PORTLAND CEMENT

.

NJPDES PERMIT NJ0025411

Page 17 of 23

PRODUCT	CICP	CAS No.	COMPONENT
QUAKER STATE DOT 3 450 F BRAKE FLUID	0100-0555		3,6,9,12-TETRAOXATETRADECANE-1,14-DIOL
QUAREN STATE DOT 3450 F BRARE FLUID	0100-0555		DIBUTOXY TETRAGLYCOL
			DIETHYLENE GLYCOL METHYL ETHERS
			PENTAOXAHEPTADECANE-3,6,9,12,15
			PENTAOXAPENTADECANE-3,5,8,12,13
			POLYETHYLENE GLYCOL
			TETRAETHYLENE GLYCOL
			TRIETHYLENE GLYCOL
QUICK DRY BACKGROUND ENAMEL BLACK (ENGRAV	0200-0726	7440-48-4	
QUER DIT DAGREROUD ENAMEE DEACK (ENDIAN	0200-0720		RESIN SOLIDS
QUICK SET (TM) 404 INSTANT ADHESIVE	0200-1290		ETHYL CYANOACRYLATE
QUICK SET (TM) 404 INSTANT ADHESIVE	0200-1290		POLYMETHYLMETHACRYLATE
RADCON HAND CLEANER (OH)	0500-0081	3011-14-7	
RC RETAINING COMPOUND 640 HIGH TEMP	0000-0001	79-10-7	ACRYLIC ACID
RC RETAINING COMPOUND 040 HIGH TEMP		79-10-7	POLYURETHANE METHACRYLATE RESINS
		109-16-0	TRIETHYLENE GLYCOL DIMETHACRYLATE
RC(TM) 620 RETAINING CMPD HIGH TEMP 62040	0200 0064		DIMETHACRYLATE ESTER, AROMATIC
	0200-0004		HYDROXYALKYL METHACRYLATE
			MALEIMIDE, N,N'-(m-PHENYLENE)DI-
READY SAFE 158735, 140311, 141349	0000-0586		BRANCHED-NONYLPHENOL, ETHOXYLATE
NEADT SALE 130733, 140311, 141349	0900-0000		PXE (PHENYLXYLYLETHANE)
RED GAGE OIL (SEE 100-571)	0100-0571		ADEPSINE OIL
RED GAGE OIL (SEE 100-571)	0100-0371		PETROLEUM HYDRAULIC OIL
REF ELECTRODE INTERNAL FILLING SOLN 18107	0000-0474		CESIUM CHLORIDE
REF. ELECTRODE LOWER COMPARTMENT SOLUTION	0900-0474		PIGMENT SUN YELLOW
RELY-ON LATEX CAULK	0200-0093		
	0200-1757		POLYGLYCOL OLEATE
REMOVABLE THREADLOCKER 242(R) 24221		1	
RTV 60 SILICONE RUBBER	0200-0287		
	0000 00 17		ETHYL SILICATE 40
RTV ADHESIVE SEALANT #96-081	0200-0047		
	0000 00 11		
RUST BARRIER 55 RED PRIMER	0200-0241	55799-16-1	ZINC HYDROXY PHOSPHITE

Page 18 of 23

PRODUCT	CICP	CAS No.	COMPONENT
RUST-BAN 343 284051-04051	0200-0366		DISTILLATES (PETROLEUM), REFINED LIGHT N
SAFETY SOLVENT CLEANER NR. 261 - BULK	0600-0059		sec-BUTYL ALCOHOL
SANI-FRESH ANTISEPTIC HAND S02	0500-0562	80-04-0	CHLOROXYLENOL
			GLYCOL STEARATE
		107-41-5	HEXYLENE GLYCOL
			SODIUM ALPHA-OLEFIN SULFONATE
SANI-TUFF SUPER DUTY CLEANSER WITH GRIT	0500-0570	68647-53-0	COCOAMPHODIACETATE
		56863-02-6	LINOLEAMIDE DEA
SANURIL 115	1000-0084	7778-54-3	CALCIUM HYPOCHLORITE
SAYLOR PORTLAND CEMENTS TYPES I, IA, ID, IWP	0200-0341	13397-24-5	CALCIUM SULPHATE HYDROUS
		10034-77-2	DICALCIUM SILICATES
		12068-35-8	TETRACALCIUM ALUMINOFERRITE
		12042-78-3	TRICALCIUM ALUMINATE
		12168-85-3	TRICALCIUM SILICATES
SBS-30 WATERLESS SKIN CLEANSER	0500-0163	64741-65-7	ISOPARAFFINIC HYDROCARBON SOLVENT
		61790-67-8	TEA-TALLOWATE
SCAV-OX(R) 35% HYDRAZINE (DEOXY-SOL R)	1000-0008	302-01-2	HYDRAZINE
SCOTCH PHOTO MOUNT SPRAY ADHESIVE 6092 -	0200-0908	64742-49-0	HYDROTREATED LIGHT NAPHTHA
			N.J. TRADE SECRET - 04499600-6166P
SCOTCH-GRIP 62 1300 ADHESIVES (WESTINGHOU	0200-0171	68611-24-5	MAGNESIUM RESINATE
		9010-98-4	POLYCHLOROPRENE
SCOTCH-GRIP(TM) 847 RUBBER AND GASKET ADH	0200-0156	9003-35-4	PHENOL, POLYMER WITH FORMALDEHYDE
		028053-14-4	PHENOL-FORMALDEHYDE NOVOLAC
			PHENOLIC ANTI OXIDANT
SCOTCH-SEAL(R) SYNTHETIC PUTTY 1279	0200-0426	1332-21-4	ASBESTOS
			MINERAL FILLER
SCOTT ANTISEPTIC CLEANER/SANI-FRESH ANTIS	0500-0560	85305-38-0	ACRYLATES/METHACRYLATE COPOLYMER
		88-04-0	PARACHLOROMETAXYLENOL
SEALANT #2X	0200-0299	1319-77-3	CRESOLS, mixed isomers
SEALANT #6, #6W AND #6XR*	0200-0319	17689-77-9	ETHYLTRIACETOXYSILANE
		4253-34-3	METHYLTRIACETOXY SILANE

Page 19 of 23

PRODUCT	CICP	CAS No.	COMPONENT
SHEETROCK ALL PURPOSE JOINT COMPOUND READ			PYROPHYLLITE
	0200 1002		
			VINYL ACETATE EMULSION
SHELL ALVANIA EP GREASE ROO (71039)	0100-0525		LEAD NAPHTHENATE
SHELL DARINA(R) GREASE 2			BENTONITE
	0100 0020		FATTY ACIDS, TALL OIL
			OTHER COMPONENTS
SHELL TURBO T OIL 150 (65608)		64742-70-7	PARAFFIN OILS (PETROLEUM)
SILICONE GREASE VERSILUBE G351	0100-0012		LITHIUM STEARATE
	0100 0012		METHYLPHENYLPOLYSILOXANE
SMOKE DETECTOR TESTER (GC-7)	0900-0155	68515-41-3	DI(C7-9 ALKYL) PHTHALATE
			DI(C7-ALKYL) PHTHALATE
·			DI(C9-ALKYL) PHTHALATE
SMOKE TUBE, MSA PT. NO. 458480	0300-0141		ACETIC ACID
			ETHYLENEDIAMINE
		1332-09-8	PUMICE
		63231-67-4	SILICA AMORPHOUS
SNAPBACK SPRAY BUFF	0500-0028		ACRYLIC POLYMER
			WAX, LIQUID
SNAPBACK UHS RESTORER 14135-6-7 - 14139-6	0500-0271	34590-94-8	DIPROPYLENE GLYCOL METHYL ETHE
			STYRENE/ACRYLIC POLYMER
		78-51-3	TRIS BUTOXYETHYL PHOSPHATE -2
SOFT SCRUB	0500-0313	1317-65-3	LIMESTONE
SOLDER 60/40 GE#175A8867P002	0200-0654	7440-74-6	INDIUM
SOLDER SEAL LIQUID WRENCH #1 (POUR)	0100-0454	64742-06-9	PETROLEUM MINERAL OIL
SP MX #1 & #2 (WAS MULTI-ELEMENT BLEND 10	0900-0522	7789-9-5	AMMONIUM DICHROMATE
		7440-50-8	COPPER
		7440-66-6	ZINC (DUST AND FUME)
SP-50 SOLDERING PASTE FLUX	0200-1666		ETHOXYLATED AMIDES
		68439-49-6	NONIONIC SURFACTANTS
SPARCLING	0500-0036	7647-01-0	HYDROGEN CHLORIDE
SPIC AND SPAN	0500-0005		SODIUM CITRATE
		533-96-0	SODIUM SESQUICARBONATE

Page 20 of 23

PRODUCT	CICP	CAS No.	COMPONENT
SPILL-X-A	0900-0164	1309-48-4	MAGNESIUM OXIDE
			PETRO AGS
		1103-38-4	RED PIGMENT
SPILL-X-C	0900-0164	110-17-8	FUMARIC ÁCID
SPOTCHECK CLEANER/REMOVER SKC-S	0500-0060	64742-89-8	RUBBER HYDROCARBON SOLVENT
SPOTCHECK DEVELOPER SKD-S2	0300-0172	75-28-5	ISOBUTANE
		67-63-0	ISOPROPYL ALCOHOL
SPOTCHECK PENETRANT SKL-SP	0500-0363	84-74-2	DI-N-BUTYL PHTHALATE
STAINLESS STEEL CLEANER & POLISH (AEROSOL	0600-0305	68475-59-2	C3-C4 ALKANE BLEND
STARGLAZE 2011S CURE (201SB1NL)	0200-1037	108-03-2	1-NITROPROPANE
		68611-44-9	MODIFIED SILICON DIOXIDE
STARGLAZE 2202 PARTS A (2202A1NL)	0200-1667	108-83-8	2,6-DIMETHYLHEPTANONE
STARRETT M-1 ALL PURPOSE LUBRICANT	0100-0147	8030-30-6	COAL TAR NAPHTHA
STAY SILV BRAZING FLUXES(WHITE, BLACK, #9	0200-2066	1332-77-0	POTASSIUM BORATE
· · · · ·		7789-29-9	POTASSIUM HYDROGEN FLUORIDE
		11128-29-3	POTASSIUM PENTABORATE
STEEL-MASTER B56T304 PRECAUTION BLUE	0200-1331	108-67-8	1,3,5-TRIMETHYLBENZENE
STP OIL TREATMENT	0100-0085		N-VINYL PYRROLIDONE GRAFTED ETHYLENE/PRO
		19210-06-1	ZINC DITHIOPHOSPHATE
STRAIT-LINE MARKING CHALK (BLUE)	0300-0130	57455-37-5	SODIUM ALUMINO SULPHOSILICATE
STRIPCOAT TLC FREE	0200-1563	104389-31-3	POLY(ISOPRENE)
		9003-27-4	POLYISOBUTYLENE
SUNNEN MB-30 HONING OIL	0100-0381	8016-28-2	LARD OIL
		61790-49-6	OIL, LARD, SULFURIZED
		8002-5-9	PETROLEUM DISTILLATES, n.o.s.
SUPER 3000 (R) MORTAR	0200-0327		CLAY
		1344-09-8	SODIUM SILICATE
SUPER CASTABLE 32 (R)	0200-1272	1302-93-8	ALUMINOSILICATE
		12042-68-1	CEMENT, CALCIUM ALUMINATE
		60676-86-0	SILICA, AMORPHOUS (FUSED)
SUPER DUTY DEGREASER READY TO USE (CLEANW	0500-0490	57-55-6	PROPYLENE GLYCOL
		70750-47-9	QUATERNARY AMMONIUM COMPOUNDS,
SURETT N 270K 456088-05604	0100-0053	64742-11-6	LUBRICATING OIL BASE STOCK

Page 21 of 23

PRODUCT	CICP	CAS No.	COMPONENT
SURF-KOTE A-5021 AEROSOL	0100-0537	1309-64-4	ANTIMONY TRIOXIDE
		12141-20-7	INORGANIC LEAD COMPOUND
SUVA HP62 (R404A) GENETRON 404A	0900-0833	420-46-2	ETHANE, 1,1,1-TRIFLUORO- (HFC-143A)
			PENTAFLUOROETHANE (HFC-125)
TANK-O-LON 18 SANITARY WHITE COMPONENT A	0200-0016	7727-43-7	BARIUM SULFATE
		107-98-2	PROPYLENE GLYCOL MONOMETHYL ETHER
TAP MAGIC CUTTING FLUID 8358	0100-0203	104-55-2	CINNAMIC ALDEHYDE
		68815-10-1	PETROLEUM OIL, ALIPHATIC
TECHNI-PLUS EN 25.3 HARDENER	0200-1107		CYCLOALIPHATIC AMINE
		1477-55-0	m-XYLENE a,a'-DIAMINE
TECHNI-PLUS EN 25.3/EN 25.3 R RESIN	0200-1401	9003-36-5	EPOXY NOVOLAC RESIN
		1318-94-1	FLAKE FILLER
		2210-79-9	PROPANE, 1,2-EPOXY-3-(O-TOLYOXY)-
THC-900	0200-1791	103-23-1	BIS (2-ETHYLHEXYL) ADIPATE
THINNER #2 (0522S1NL)	0600-0197	108-88-3	TOLUENE
THINNER #25 0525S1NL	0600-0049	108-65-6	PROPYLENE GLYCOL METHYL ETHER ACETATE
THORTEX CERAMI TECH FG BASE	0200-0544	67762-90-7	AMORPHOUS SILICA
			DI-IRON PHOSPHIDE
THORTEX CERAMI-TECH EG ACTIVATOR	0200-0549		ALIPHATIC POLYAMINE ADDUCT
			GLASS FIBRE
			IRON OXIDE PIGMENT
			PLIPHATIC POLYAMINE
			TRIS 2,4,6-DIMETHYLAMINOMETHYL PHENOL
		13983-17-0	WOLLASTONITE
THORTEX CERAMI-TECH EG BASE	0200-0549		IRON PHOSPHIDE
		409-21-2	SILICA, GRAPHITE
THORTEX FLEXI-TECH 80 FG ACTIVATOR	0200-0550		AROMATIC DIAMINE
		9011-19-2	POLYSILOXANE
			POTASSIUM SODIUM ALUMINO SILICATE
THORTEX FLEXI-TECH 80 FG BASE	0200-0550	53880-05-0	ALIPHATIC POLYISOCYANATE
		4098-71-9	ISOPHORONE DIISOCYANATE
TISAB III CAT. #940911	0900-0084	482-54-2	1,2-DIAMINOCYCLOHEXANE-N,N'-TETRAACETIC
		631-61-8	AMMONIUM ACETATE

Page 22 of 23

PRODUCT	CICP	CAS No.	COMPONENT
TITANIUM PUTTY HARDENER	0200-0926	931-36-2	2-ETHYL-4-METHYLIMIDAZOLE
		32610-77-8	FORMALDEHYDE POLYMER WITH PHENOL AND TET
			PHENOL
		112-24-3	TRIETHYLENE TETRAMINE
TOC ANALYZER MODEL 800 CONSUMABLES PACKAG	0900-0716	7727-54-0	AMMONIUM PERSULFATE
TOUGH DUTY BATHROOM CLEANER READY TO USE	0500-0491		CITRIC ACID
			DODECYLBENZENE SULFONIC ACID
			GLUCONIC ACID
TRIPLE BOILED LINSEED OIL			LINSEED OIL
TRIZOL PENETRATING SOLVENT	0600-0041		BARIUM PETROLEUM SULFONATE
			DEGUMMED CASTOR OIL
TURBIDITY STD 0.61 NTU #2479		108-90-7	CHLOROBENZENE
TURCO DECON 4324	0500-0069		AMMONIUM BICARBONATE
			SODIUM HEXAMETAPHOSPHATE
TWINKLE STAINLESS STEEL CLEANER (OIL BAS			DIMETHYLPOLYSILOXANE
TWINKLE STAINLESS STEEL CLEANER & POLISH	0500-0022	68082-29-1	FATTY ACIDS WITH ADDITIVES
			OLEFIN COPOLYMERS
ULTIMA GOLD XR	0900-0482		DI(2-ETHYLHEXYL)PHOSPHORIC ACID
			DI-ISOPROPYLNAPHTHALENE (DIN)
ULTRA BLUE(R) SENSOR-SAFE RTV SILICONE GA	0200-0881		
			VINYL OXIMINOSILANE
ULTRAGEL II	0100-0014		CARBOXY POLYMETHYL
		25619-56-1	CORROSION INHIBITORS
			ODORANT
			PRESERVATIVES
			SURFACTANTS
UNIVERSAL PLUS 3/6%	1000-0171		ALKYL POLYGLYCOSIDE
			FLUOROALKYL SURFACTANT
			SODIUM DECYL SULFATE
UNLEADED GASOLINE (GENERAL)	0900-0768		CYCLOHEXANE
			GASOLINE
			METHYL-tert-BUTYL ETHER
		109-66-0	PENTANE

Page 23 of 23

PRODUCT	CICP	CAS No.	COMPONENT
URETHANE CLEARCOAT 8853	0200-1777	112-07-2	ETHYLENE GLYCOL MONOBUTYL ETHER ACETATE
URETHANE CONVERTER 900	0200-1209	822-06-0	HEXAMETHYLENE DIISOCYANATE
		37790-63-3	POLYMERIC HDI
USG ALL PURPOSE JOINT COMPOUND	0200-0222	9003-20-7	POLYVINYL ACETATE
			POLYVINYL ALCOHOL
VARSOL 18	0600-0045		TRIMETHYLBENZENE-1,2,4/1,2,5
VERSIGARD NON-REINFORCED EPDM	0200-1863	25038-36-2	ETHYLENE-PROPYLENE RUBBER
			GROUND COAL
			REFINED PETROLEUM OILS
VISCOSITY STD N1000, ETC.	0100-0391	9003-28-5	BUTYL RUBBER COMPOUND
WALLBOARD JOINT COMPOUND RTU	0100-0529		PALYGORSCITE
		12001-26-2	SILICA, MICA
WASP & HORNET JET FREEZE	0700-0145		METHYL-2-PYRROLIDINONE, N-
			METHYLAL
WATER BASED CATALYZED EPOXY B60V25 SEMIGL	0200-1210		EPOXY POLYMER
			ETHYLENE GLYCOL PROPYL ETHER
			SILICA, CRISTOBALITE
WAUKESHA FOUNDRY BLEND REVISED (GLYCERIN)	0100-0241		GLYCEROL
WELD-ON P-70 PRIMER FOR PVC PIPE	0600-0108		DIMETHYLFORMAMIDE
WINDSHIELD WASHER FLUID	0600-0296		C.I. ACID BLUE 9, DISODIUM SALT
XUPER ULTRABOND 50000	0200-0598		MOLYBDENUM
ZEROSTART STARTING FLUID - CYLINDER	0900-0777	60-29-7	DIETHYL ETHER
ZP-4B ZYGLO DRY DEVELOPER	0300-0159	115-77-5	PENTAERYTHRITOL
ZP-9E ZYGLO DEVELOPER	0300-0160	75-45-6	CHLORODIFLUOROMETHANE

Page 1 of 1

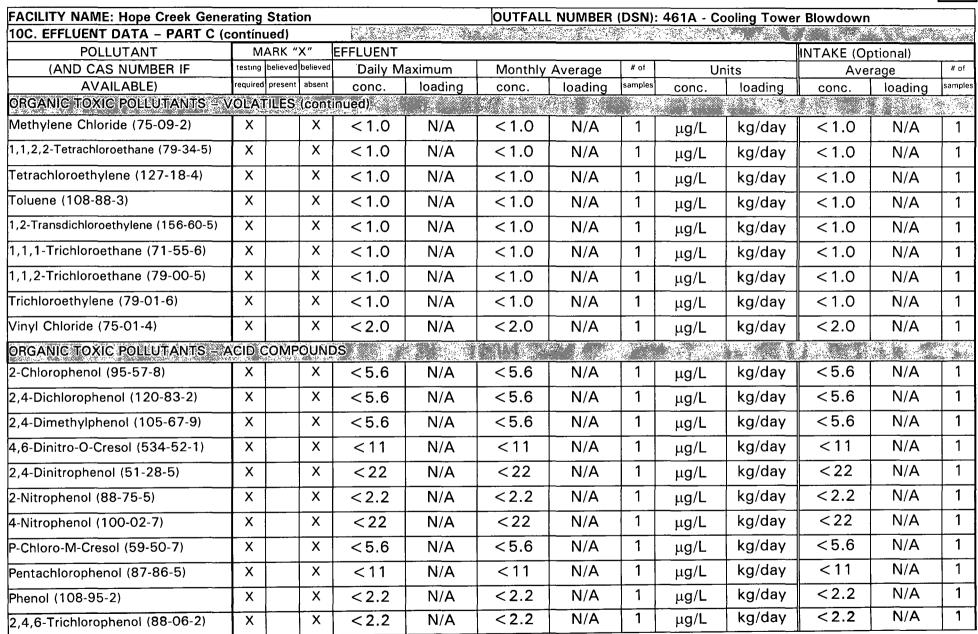
ITEM 13 - CERTIFIED LABORATORY

NAME OF CERTIFIED LABORATORY	TELEPHONE #	CERTIFICATION NUMBER	POLLUTANT(S)/CATEGORIES ANALYZED
New England Bioassay Laboratory	(860)643-9560	NJ46405	Whole Effluent Testing
South Jersey Testing Laboratory	(856)455-4204	NJ06431	TSS, TOC, TPH, Ammonia, Copper, Iron, BOD, Oil & Grease, Fecal Coliform
The Washington Group (Previously Raytheon)	(610)497-8000	NJ77343	TSS, TOC, TPH, Ammonia, Copper, Iron, BOD, Oil & Grease, Fecal Coliform
Severn Trent Laboratories	(732)549-3900	NJ12028	Metals, Organics, Conventionals, Non-conventionals
Maplewood Testing Services	(973)761-1116	NJ07180	Temperature, pH, TRC, TSS
Hope Creek Generating Station	(856)339-5220	NJ77343	Temperature, pH, TRC, TSS, Flow
QC Laboratory	(215) 355-3900	PA166 / NJ06005	TSS, TOC, TPH, Ammonia, Copper, Iron, BOD, Oil & Grease, Fecal Coliform

FACILITY NAME: Hope Creek Generatir	ng Stat				OUTFAL		(DSN)	: 461A - C		er Blowdow		
10A. EFFLUENT DATA – PART A				1.464		a 2 milana				an a		х. Сала
POLLUTANT			EFFLUENT							Intake (Opt	Optional)	
			Daily N	laximum	Monthly	Average	# of	Un	its	Ave	rage	# of
			Conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	sample
Biochemical Oxygen Demand (BOD ₅)			(A)									
Chemical Oxygen Demand (COD)			(A)									1
Total Organic Carbon (TOC)			12.0	3434	6.1	1078	48	mg/L	kg/day	4.5	990	48
Total Suspended Solids (TSS)			72	20603	72	12727	1	mg/L	kg/day	24.0	5278	1
Total Dissolved Solids (TDS)		<u>, ,</u>	11800	3.4x10 ⁶	11800	2.1x10	³ 1	mg/L	kg/day	8870	2.0x10 ⁶	1
Ammonia (as N)			< 0.40	N/A	< 0.40	N/A	1	mg/L	kg/day	< 0.40	N/A	1
UNITS AS INDICATED	· · ·						ار بې دې: ∢	€ \$.25 € ₹ 7	1		 ∰::: ₩::::::::::::::::::::::::::::	
low (specify units)				[,] Max. 5.6	1	ly Avg. 6.7	1461	MGD MGD		58.1		146
emperature (<i>winter</i>)			Daily	[,] Max. 4.0	Month	ly Avg. I.2	1093	0	С	1:	2.6	109
Temperature (<i>summer</i>)			Daily	Max. 5.1	Month	ly Avg. 1.2	368	0	С	2!	5.9	368
pH			min. 7.2	max. 8.9	Ĭ		208	STANDA	RD UNITS	min. 7.5	max. 7.5	1
10B. EFFLUENT DATA – PART B												
POLLUTANT	MAR	к "Х"	EFFLUENT							INTAKE	(Optional)	
(AND CAS NUMBER WHERE	believed	believed	Daily Maxir	num	Monthly Av	verage	# of	l	Jnits	A	verage	# of
AVAILABLE)		absent		loading	conc.	loading	samples	conc.	loading	conc.	loading	sample
CONVENTIONAL and NON-CONVENTIO	NAL P	OLLU	TANTS									
Bromide (24959-67-9)	X(B)											
Chlorine, Total Residual	X		< 0.1	N/A	< 0.1	N/A	1461	mg/L	kg/day		· ·	T
Color, (specify units)	X(B)											
Fecal Coliform	X(C)											
Fluoride (16984-48-8)	X		0.48	137	0.48	85	1	mg/L	kg/day	0.38	84	1
Nitrate-Nitrite (as N)	X		0.84	240	0.84	148	1	mg/L	kg/day	0.64	141	1

С

FACILITY NAME: Hope Creek Generating	stati	on							oling Towe			
10B. EFFLUENT DATA – PART B (contin	ued)			Red and the second			20 (A)		i dh' a suite			Maria
POLLUTANT	MARK		EFFLUENT							INTAKE (O		
(AND CAS NUMBER IF	believed		Daily M	aximum	Monthly Average		# of	Ur	its	Average		# of
AVAILABLE)	present	absent	conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	samples
Nitrogen, Total Organic (as N)	X(C)		< 0.60	N/A	< 0.60	N/A	1	mg/L	kg/day	< 0.60	N/A	1
Oil & Grease or X Pet. Hydrocarbons	X(C)		<0.56	N/A	< 0.56	N/A	1	mg/L	kg/day	< 0.56	N/A	1
Phosphorus (as P), Total (7723-14-0)	X(C)		0.18	52	0.18	32	1	mg/L	kg/day	0.14	31	1
Alpha, Total	X				9.2x10 ⁻¹⁶	N/A	926	Ci/L				
Beta, Total	X				1.4x10 ⁻¹²	N/A	926	Ci/L				
Radium, Total		Х										
Radium 226, Total		Х										
Surfactants	X(C)											
Sulfide (as S)	X(B)		< 2.0	N/A	< 2.0	N/A	1	mg/L	kg/day	< 2.0	N/A	1
Sulfite (as SO ₃) (14265-45-3)	X(C)		··· ·• ·= ·									
Sulfate (as SO ₄) (14808-79-8)	X		974	278706	974	172163	1	mg/L	kg/day	692	152177	1
Aluminum, Total (7429-90-5)	X(C)					· · · · ·						
Barium, Total (7440-39-3)	X(C)											
Boron, Total (7440-42-8)	X		1590	455	1590	281	1	μg/L	kg/day	1130	249	1
Cobalt, Total (7440-48-4)		Х										
Iron, Total (7439-89-6)	X(C)											
Magnesium, Total (7439-95-4)	X(C)											
Molybdenum, Total (7439-98-7)	X(C)											
Manganese, Total(7439-96-5)	X(C)											L
Tin, Total (7440-31-5)		Х										
Titanium, Total (7440-32-6)	X(C)											


FACILITY NAME: Hope Creek Gene	rating	Stati	on			OUTFALL	NUMBER	(DSN)	: 461A - Co	oling Towe	r Blowdown		
10C. EFFLUENT DATA – PART C											u qualify as a		
				Busine three y		tructions for	details), che	eck this	s box and at	tach sales da	ata for the mo	ost recent	
POLLUTANT	M	IARK "	Χ″	EFFLUENT				· · ·			INTAKE (Op	tional)	
(AND CAS NUMBER IF	testing	believed			aximum	Monthly	Average	# of	Ur	its	Aver		# of
AVAILABLE)	required	present	absent	conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	samples
OTHER TOXIC POLLUTANTS (MET	ALS a	ind CY	ANID	E) and TOT	AL PHENOL	S							
Antimony, Total (7440-36-0)	X		Х	< 6.0	N/A	< 6.0	N/A	1	μg/L	kg/day	<6.0	N/A	1
Arsenic, Total (7440-38-2)	X		X	< 8.0	N/A	<8.0	N/A	1	μg/L	kg/day	<8.0	N/A	1
Beryllium, Total (7440-41-7)	X		Х	< 1.0	N/A	< 1.0	N/A	1	μg/L	kg/day	<1.0	N/A	1
Cadmium, Total (7440-43-9)	X	X(C)		<4.0	N/A	<4.0	N/A	1	μg/L	kg/day	<4.0	N/A	1
Chromium, Total (7440-47-3)	X	X(C)		< 10	N/A	< 10	N/A	1	μg/L	kg/day	< 10	N/A	1
Copper, Total (7550-50-8)	X	X(C)		28.4	8.1	28.4	5.0	1	μg/L	kg/day	<25	N/A	1
Lead, Total (7439-92-1)	X	X(C)		4.3	1.2	4.3	0.76	1	μg/L	kg/day	< 3.0	N/A	1
Mercury, Total (7439-97-6)	X	<u> </u>	Х	<0.20	N/A	<0.20	N/A	1	μg/L	kg/day	< 0.20	N/A	1
Nickel, Total (7440-02-0)	X	X(C)		<40	N/A	<40	N/A	1	μg/L	kg/day	<40	N/A	1
Selenium, Total (7782-49-2)	X		X	<10	N/A	<10	N/A	1	μg/L	kg/day	< 10	N/A	1
Silver, Total (7440-22-4)	X		X	<10	N/A	<10	N/A	1	μg/L	kg/day	< 10	N/A	1
Thallium, Total (7440-28-0)	X	1	X	<10	N/A	<10	N/A	1	μg/L	kg/day	<10	N/A	1
Zinc, Total (7440-66-6)	X	X(C)		31.5	9.0	31.5	5.6	1	μg/L	kg/day	27.2	6.0	1
Cyanide, Total (57-12-5)	X		X	< 0.010	N/A	<0.010	N/A	1	μg/L	kg/day	<0.010	N/A	1
Phenols, Total	X		х	<0.20	N/A	<0.20	N/A	1	μg/L	kg/day	<0.20	N/A	1
DIOXIN							x						
2,3,7,8-Tetrachlorodibenzo-P- Dioxin (1764-01-6)			×										

С

FACILITY NAME: Hope Creek Gener	ating	Stati	on			OUTFALL	NUMBER	(DSN):	461A - Co	oling Towe	r Blowdown		
10C. EFFLUENT DATA - PART C (c	ontin	ued)						// 🔬 👌		. h Mar (.
POLLUTANT		IARK "		EFFLUENT							INTAKE (O	otional)	
(AND CAS NUMBER IF	testing	believed	believed	Daily M	laximum	Monthly	Average	# of	Ur	nits	Average		# of
AVAILABLE)		d present	absent	conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	samples
ORGANIC TOXIC POLLUTANTS - V	OLA	TILES	8							ñ / X			
Acrolein (107-02-8)	X		X	< 50	N/A	< 50	N/A	1	μg/L	kg/day	<50	N/A	1
Acrylonitrile (107-13-1)	Х		X	< 10	N/A	< 10	N/A	1	μg/L	kg/day	< 10	N/A	1
Benzene (71-43-2)	X		X	<1.0	N/A	< 1.0	N/A	1	μg/L	kg/day	<1.0	N/A	1
Bromoform (75-25-2)	X		Х	<1.0	N/A	< 1.0	N/A	1	μg/L	kg/day	<1.0	N/A	1
Carbon Tetrachloride (56-23-5)	X		Х	<1.0	N/A	< 1.0	N/A	1	μg/L	kg/day	<1.0	N/A	1
Chlorobenzene (108-90-7)	X		Х	<1.0	N/A	< 1.0	N/A	1	μg/L	kg/day	< 1.0	N/A	1
Chlorodibromomethane (124-48-1)	X		Х	<1.0	N/A	<1.0	N/A	1	μg/L	kg/day	<1.0	N/A	1
Chloroethane (75-00-3)	X		X	<1.0	N/A	< 1.0	N/A	1	μg/L	kg/day	<1.0	N/A	1
2-Chloro-ethyl-vinyl Ether (110-75-8)	X		Х	<5.0	N/A	< 5.0	N/A	1	μg/L	kg/day	<5.0	N/A	1
Chloroform (67-66-3)	X		Х	< 1.0	N/A	<1.0	N/A	1	μg/L	kg/day	<1.0	N/A	1
Dichlorobromomethane (75-27-4)	X		Х	< 1.0	N/A	< 1.0	N/A	1	μg/L	kg/day	<1.0	N/A	1
1,1-Dichloroethane (75-34-3)	X		Х	< 1.0	N/A	< 1.0	N/A	1	μg/L	kg/day	<1.0	N/A	1
1,2-Dichloroethane (107-06-2)	X		Х	< 1.0	N/A	< 1.0	N/A	1	μg/L	kg/day	< 1.0	N/A	1
1,1-Dichloroethylene (75-35-4)	X		Х	< 1.0	N/A	< 1.0	N/A	1	μg/L	kg/day	< 1.0	N/A	1
1,2-Dichloropropane (78-87-5)	X		Х	< 1.0	N/A	< 1.0	N/A	1	μg/L	kg/day	<1.0	N/A	1
1,3-Dichloropropylene (542-75-6)	X		Х	< 1.0	N/A	< 1.0	N/A	1	μg/L	kg/day	< 1.0	N/A	1
Ethylbenzene (100-41-4)	X		Х	<1.0	N/A	< 1.0	N/A	1	μg/L	kg/day	<1.0	N/A	1
Methyl Bromide (74-83-9)	X		Х	< 1.0	N/A	< 1.0	N/A	1	μg/L	kg/day	<1.0	N/A	1
Methyl Chloride (74-87-4)	X		×	< 1.0	N/A	< 1.0	N/A	1	μ g/L	kg/day	<1.0	N/A	1

С

FACILITY NAME: Hope Creek Gener	ating	Statio	on		·	OUTFALI		(DSN):	461A - Co	oling Towe	r Blowdown		
10C. EFFLUENT DATA - PART C (c	ontin	ued)											
POLLUTANT	M	ARK "	X″	EFFLUENT						<u> </u>	INTAKE (O	يني المتناب المتحاد المتحد الم	
(AND CAS NUMBER IF	testing	believed	believed	Daily M	aximum	Monthly Average		# of	Ur	nits	Average		# of
AVAILABLE)		present		conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	samples
ORGANIC TOXIC POLLUTANTS - B	ASE/I	NEUTI	RAL C	OMPOUND	S		A ANTAL A						
Acenaphthene (83-32-9)	Х		Х	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
Acenaphthylene (208-96-8)	Х		Х	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
Anthracene (120-12-7)	Х		Х	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
Benzidine (92-87-5)	Х		X	<22	N/A	<22	N/A	1	μg/L	kg/day	<22	N/A	1
Benzo (a) Anthracene (56-55-3)	Х		Х	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
Benzo (a) Pyrene (50-32-8)	Х		Х	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
3,4-Benzofluoranthene (205-99-2)	Х		X	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
Benzo (ghi) Perylene (191-24-2)	Х		Х	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
Benzo (k) Fluoranthene (207-08-9)	Х		Х	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
Bis (2-Chloroethoxy) Methane (111-91- 1)	х		Х	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
Bis (2-Chloroethyl) Ether (111-44- 4)	X		х	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
Bis (2-Chloroisopropyl) Ether (108-60- 1)	x		Х	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
Bis (2-Ethylhexyl) Phthalate (117-81-7)	Х		Х	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
4-Bromophenyl Phenyl Ether (101-55-3)	Х		Х	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
Butyl Benzyl Phthalate (85-68-7)	Х		х	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
2-Chloronaphthalene (91-58-7)	Х		Х	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
4-Chlorophenyl Phenyl Ether (7005-72-3)	X		Х	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
Chrysene (218-01-9)	Х		Х	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
Dibenzo (a,h) Anthracene (53-70-3)	Х		Х	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1

С

PAGE 6

FACILITY NAME: Hope Creek Gene			on	1.2000 40 No. 1.	a					oling Towe			
10C. EFFLUENT DATA - PART C (c	_					ka Stradi			<u>ta Naza MAz</u>				
POLLUTANT (AND CAS NUMBER IF		ARK "	X libelieved	EFFLUENT	A	N. An an the last		# of		INTAKE (Optional) Units Average			
			absent		Aaximum	· · ·	Average	samples				rage	# of sample
				CONC.	loading	conc. d)	loading	[samples]	<u>conc.</u>	loading	<u>conc.</u>	loading	sample
1,2-Dichlorobenzene (95-50-1)	X	<u>8 - 6 %</u>	x	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
1,3-Dichlorobenzene (541-73-1)	X		X	< 2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	< 2.2	N/A	1
1,4-Dichlorobenzene (106-46-7)	Х		×	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	< 2.2	N/A	1
3,3 –Dichlorobenzidine (91-94-1)	Х		X	< 2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	< 2.2	N/A	1
Diethyl Phthalate (84-66-2)	X		X	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	< 2.2	N/A	1
Dimethyl Phthalate (131-11-3)	Х		X	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	< 2.2	N/A	1
Di-N-Butyl Phthalate (84-74-2)	X	X(B)		< 2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	2.5	N/A	1
2,4-Dinitrotoluene (121-14-2)	Х		X	< 2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	< 2.2	N/A	1
2,6-Dinitrotoluene (606-20-2)	X		X	< 2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	< 2.2	N/A	1
Di-N-Octyl Phthalate (117-84-0)	X		X	< 2.2	N/A	< 2.2	N/A	1	μ̀g/L	kg/day	< 2.2	N/A	1
1,2-Diphenylhydrazine (122-66-7)	X		X	<2.2	N/A	< 2.2	N/A	1	μ g/L	kg/day	< 2.2	N/A	1
Fluoranthene (206-44-0)	Х		X	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	< 2.2	N/A	1
Fluorene (86-73-7)	Х		X	< 2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	< 2.2	N/A	1
Hexachlorobenzene (118-74-1)	X		X	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	< 2.2	N/A	1
Hexachlorobutadiene (87-68-3)	X		X	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	< 2.2	N/A	1
Hexachlorocyclopentadiene (77-47-4)	X		X	<11	N/A	<11	N/A	1	μg/L	kg/day	<11	N/A	1
Hexachloroethane (67-72-1)	X		X	< 5.6	N/A	< 5.6	N/A	1	μg/L	kg/day	< 5.6	N/A	1
Indeno (1,2,3-cd) Pyrene (193-39-5)	X		X	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
Isophorone (78-59-1)	X		X	< 2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1

С

FACILITY NAME: Hope Creek Gene	rating	Stati	on			OUTFAL	L NUMBER	(DSN):	461A - C	ooling Towe	r Blowdowr	<u>ו</u>	
10C. EFFLUENT DATA - PART C (c	ontin	ued)											Ø., * ¥
POLLUTANT		ARK "		EFFLUENT		·					INTAKE (O	ptional)	
(AND CAS NUMBER IF	Ľ.		believed	Daily N	<u>laximum</u>	Monthly	Average	# of	U	nits	Average		# 0
AVAILABLE)		present		conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	sampl
ORGANIC TOXIC POLLUTANTS - E	BASE/I	NEU	RAL C	COMPOUNI	DS (continue	d)							
Naphthalene (91-20-3)	X		X	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day	<2.2	N/A	1
Nitrobenzene (98-95-3)	X		X	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day	< 2.2	N/A	1
N-Nitrosodimethylamine (62-75-9)	Х		X	<2.2	N/A	<2.2	N/A	1	μ g/L	kg/day	< 2.2	N/A	1
N-Nitrosodi-N-Propylamine (621-64-7)	X		X	<2.2	N/A	<2.2	N/A	1	μ g /L	kg/day	< 2.2	N/A	1
N-Nitrosodiphenylamine (86-30-6)	X		X	<5.6	N/A	< 5.6	N/A	1	μ g/L	kg/day	< 5.6	N/A	1
Phenanthrene (85-01-8)	X		X	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day	< 2.2	N/A	1
Pyrene (129-00-0)	X		X	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day	< 2.2	N/A	1
1,2,4-Trichlorobenzene (120-82-1)	X		X	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day	< 2.2	N/A	1
ORGANIC TOXIC POLLUTANTS - F	ESTIC	CIDES						1 💓 1 S					, X
Aldrin (309-00-2)	_		X										
Alpha-BHC (319-84-6)		<u> </u>	X										
Beta-BHC (319-85-7)			X										
Gamma-BHC (58-89-9)			X										
Deita-BHC (319-86-8)	1		X										
Chlordane (57-74-9)			X										
4,4'-DDT (50-29-3)			X	·									
4,4'-DDE (72-55-9)			X										
1,4'-DDD (72-54-8)			X										
Dieldrin (60-57-1)	†	<u> </u>	х										

PAGE 8

С

С

FACILITY NAME: Hope Creek Gene	erating	Station			OUTFAL	NUMBER	(DSN)	: 461A - Co	oling Towe	er Blowdown		
10C. EFFLUENT DATA - PART C (contin	ued)										
POLLUTANT		IARK "X"	EFFLUENT							INTAKE (O	otional)	
(AND CAS NUMBER IF	-	believed believed	Dully IV	laximum	Monthly	Average	# of	Ur	nits	Ave	rage	# of
AVAILABLE)		present absent	Conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	samples
ORGANIC TOXIC POLLUTANTS -	PESTI	CIDES (con	tinued)									
Alpha-Endosulfan (115-29-7)		X										
Beta-Endosulfan (115-29-7)		X										
Endosulfan sulfate (1031-07-8)		X										
Endrin (72-20-8)		X										-
Endrin Aldehyde (7421-93-4)		X										
Heptachlor (76-44-8)		X										
Heptachlor Epoxide (1024-57-3)		X										
PCB-1242 (53469-21-9)	(D)	X		· · · · · · · · · · · · · · · · · · ·								
PCB-1254 (11097-69-1)	(D)	X										
PCB-1221 (11104-28-2)	(D)	X										1
PCB-1232 (11141-16-5)	(D)	X										1
PCB-1248 (12672-29-6)	(D)	×										
PCB-1260 (11096-82-5)	(D)	×						<u></u>				1
PCB-1016 (12674-11-2)	(D)	X										
Toxaphene (8001-35-2)		×										

EXPLANATION OF NOTES - FORM C, ITEM 10 -

(A) Analysis of these parameters is not required per approval of the NJDEP as specified under Item 10A on Page 4 of 8 of the instructions for Form C.

(B) These pollutants are believed present in the effluent based on their presence in the intake water. No addition of these pollutants in the effluent from facility operations is expected to occur.

(C) These pollutants are believed present in the effluent based on their presence in the intake water. These pollutants are also utilized at the facility in areas that could discharge through the respective outfall in the event of a spill, leak or inadvertent drain. These pollutants are not intentionally added to this effluent stream, and are not, therefore, normally discharged through this outfall and are not anticipated to be detected in the outfall in greater mass then the intake water.

(D) Analyses for PCB pesticides was waived by NJDEP based on the analyses collected and reported within the Delaware River Basin Commission Phase II Total Maximum Daily Load program, performed using Method 1668A.

SUMMARY TABLE DSN 461A

Facility: PSEG-Hope Creek Discharge Serial Number (DSN): 461A Latitude: 39° 28' 14" Longitude: 75° 32' 34" Receiving Stream: Delaware Estuary Classification: Zone 5 WQMP Basin 17/Delaware River Basin

Wastewater Type: Non-contact cooling water cooling tower blowdown, LRW (DSN 461B, Note 2) effluent, LVOW (DSN 461C) effluent, STP (DSN 462B) effluent, ancillary sumps and drains. (Note 1)

Parameter All units in mg/L (kg/day) unless otherwise noted		NJPDES/ DSW Permit Application	Existing NJPDES/DSW Permit limits DSN 461A	NJPDES/ DSW DMR 1/03 - 12/06	Note	Draft Permit Limits for DSN 461A
Flow, Effluent, MGD	avg. max. data pts. monitor	46.7 75.6 1461 	NL NL Cont/Mt	46.7 75.6 1461 	3 4 5 6	NL NL Cont/Mt
Temperature, Influent °F °(C) (Sep-May)	avg. max. data pts. monitor	(25.9) (31.0) 1093 	NL NL Cont/Mt	(25.9) (31.0) 1093 	7 6	NL NL Cont/Mt
Temperature, Influent °F (°C) (Jun-Aug)	avg. max. data pts. monitor	(12.6) (28.4) 368 	NL NL Cont/Mt	(12.6) (28.4) 368 	7 6	NL NL Cont/Mt
Temperature, Effluent, °F (°C) (Sep-May)	avg. max. data pts. monitor	(21.2) (34.0) 1093 	NL 97.1(36.2) Cont/Mt	(21.2) (34.0) 1093	8 6	NL 97.1(36.2) Cont/Mt
Temperature, Effluent, °F °(C) (Jun-Aug)	avg. max. data pts. monitor	(31.2) (36.1) 368 	NL 97.1(36.2) Cont/Mt	(31.2) (36.1) 368 	8 6	NL 97.1(36.2) Cont/Mt
Heat Rate MBTU/HR (Sep-May)	avg. max. data pts. monitor	219 657 1093	NL 662 D/Calc	219 657 1093	9	NL 662 D/Calc

Parameter All units in mg/L (kg/day) unless otherwise noted		NJPDES/ DSW Permit Application	Existing NJPDES/DSW Permit limits DSN 461A	NJPDES/ DSW DMR 1/03 - 12/06	Note	Draft Permit Limits for DSN 461A
Heat Rate MBTU/HR (Jun-Aug)	avg. max. data pts. monitor	181 334 368	NL 534 D/Calc	181 334 368	9	NL 534 D/Calc
Chlorine Produced Oxidants (mg/L)	avg. max. data pts. monitor	<0.1 0.5 1461 	0.2 0.5 Cont	<0.1 0.5 1461 	10	0.2 0.5 3-W/G
pH, Effluent (S.U.)	min. max. data pts. monitor	7.2 8.9 208	6.0 9.0 W/G	7.2 8.9 208 	11	6.0 9.0 W/G
Total Organic Carbon Net (mg/L)	avg. max. data pts. monitor	0.51 8.0 48 	NL NL M/G	0.51 8.0 48 	12	NA

The abbreviation "N/A" denotes "Not Applicable"; "NL" denotes "Not Limited" with monitoring and reporting required.

"MGD" denotes "million gallons per day"

"ND" denotes "Non-detected" value.

.

Monitoring requirement abbreviations are: "Cont" denotes "Continuous"; "D" denotes "Daily"; "3-W" denotes "three times per week"; "W" denotes "Weekly"; "2-M" denotes "Twice per Month"; "M" denotes "Monthly"; "Q" denotes "Quarterly"; "Mt" denotes "Meter"; "Cal" denotes "Calculated"; "G" denotes "Grab"; Comp" denotes "Composite"

TAB DSN 461A COOLING TOWER BLOWDOWN

EXPLANATION OF SUMMARY TABLE NOTES PAGE 1 OF 14

1. The effluent discharged via DSN 461A is the largest discharge from HCGS, and primarily comprises cooling tower blowdown (46.7 Million Gallons per Day, or "MGD") with minor waste stream contributions from the Low Volume and Oily Waste System (DSN 461C, 0.04 MGD), the liquid radioactive waste system (DSN 461B, 0.06 MGD), and the Sewage Treatment System (DSN 462B, 0.01 MGD) as presented in the enclosed schematic entitled "Cooling Tower Blowdown". Sediment that collects in the cooling tower basin is removed as necessary for disposal of at an approved onsite dredge spoil area.

The cooling tower removes heat from the circulating water system by latent and sensible heat transfer from the circulating water to the air, at the cooling tower fill, causing the evaporation of a portion of the water (averaging approximately 13 MGD). To makeup for this evaporative loss, service water drawn from the tidal Delaware Estuary enters the cooling tower basin near the circulating water pump suctions. To prevent an excessive concentration of solids in the cooling tower, there is a continuous cooling tower blowdown back to the Delaware Estuary. The service water entering the cooling tower is chlorinated to prevent biofouling, using sodium hypochlorite, at the service water intake. Additional sodium hypochlorite is added to the cooling tower basin to prevent biofouling and biological growth. Ammonium bisulfate is added in the cooling tower blowdown to de-chlorinate the cooling tower blowdown before discharge to the Delaware Estuary. Sodium hydroxide is added to the cooling tower basin to further protect the cooling tower structure and components. Boron used in the Station can enter the circulating water, primarily in the condenser bay dewatering sump, and be discharged in the cooling tower blowdown. The deicing line shown on the Schematic of Water Flow (Form C, Item 3B) allows heated water from the circulating water system or service water system to be directed to the service water intake to prevent icing during harsh

TAB DSN 461A COOLING TOWER BLOWDOWN

EXPLANATION OF SUMMARY TABLE NOTES PAGE 2 OF 14

winter conditions. This flow path bypasses the de-chlorination system but is infrequently used. Most of the water used for deicing is returned to the system through the service water pumps.

The contributions from the Low Volume and Oily Waste System (LVOW, DSN 461C) and the Sewage Treatment System (STP, DSN 462B) are discussed at the respective Tabs for these systems.

2. The liquid radioactive waste system (DSN 461B) is a low volume (0.06 MGD) wastewater source that mixes with the cooling tower blowdown prior to the effluent monitoring point. The liquid radioactive waste (LRW) system is designed to process liquid waste streams from inside the power generation facilities that potentially may contain radioactive material. The treatment system incorporates all necessary equipment to meet both United States Nuclear Regulatory Commission (USNRC) standards for the discharge of radioactivity and the applicable New Jersey State Water Quality Standards, as discussed in the Liquid Radioactive Waste System Treatment Works Application. Much of the wastewater processed through the system is recycled back into a 500,000 gallon condensate storage tank for reuse by the reactor water makeup systems. However, water used in the reactor must be of an extremely high purity and, although some of the wastewater would be considered clean according to state drinking water standards, it is neither practical nor economical to continue the further processing of the wastewater necessary to reach the high level of purity needed for reuse in the reactor.

The influent waste streams are segregated and classified based on the source and quality of the five different types of influent waste streams. They include the following systems:

TAB DSN 461A COOLING TOWER BLOWDOWN

EXPLANATION OF SUMMARY TABLE NOTES

PAGE 3 OF 14

- "Equipment drain wastes", or "high purity wastes", have conductivity values of 10 micromhos per centimeter or less and radioactivity levels ranging from those typical of reactor water to those typical of condensate. Sources of such waste include: the reactor recirculation system, the condensate system, the feedwater system, the cleanup phase separator decant, the waste sludge phase separator decant, and the excess flow from the reactor water cleanup system.
- "Floor drain wastes", or "low purity wastes", have conductivity values on the order of 10 to 100 micromhos per centimeter and generally have a low radioactivity concentration. Low purity wastes originate from floor drains, fuel pool cooling, and residual heat removal system flushing, and could contain small quantities of boron and cleaning and lubrication products utilized in these areas.
- "High conductivity wastes" have conductivity values on the order of 1,000 micromhos per centimeter or greater and have a potentially high radioactivity level. These wastes can be produced by regenerating the condensate demineralizers and the liquid radwaste demineralizers themselves; although to minimize the volume of radwaste, resins in the liquid radwaste system are not currently regenerated they are transported to a USNRC-licensed facility. "High conductivity wastes" also arise from certain high conductivity sumps in the turbine and auxiliary buildings and could contain Delaware River water and small quantities of boron and cleaning and lubrication products utilized in these areas.
- "Chemical wastes" have conductivity values on the order of 1,000

TAB DSN 461A COOLING TOWER BLOWDOWN

EXPLANATION OF SUMMARY TABLE NOTES

micromhos per centimeter or greater with variable chemical concentrations, pH, and levels of radioactivity. Chemical wastes include those wastes from laboratory drains, decontamination drains, radwaste filter drains, and fuel pool filter demineralizer drains, and could contain laboratory reagents, decontamination chemicals, and small quantities of boron and cleaning and lubrication products utilized in these areas.

 "Detergent wastes" have a variable conductivity values, low radioactivity levels, but potential surfactant and other organic content. Personnel decontamination and the chemistry laboratory produce such wastes which could contain laboratory reagents, decontamination chemicals, and small quantities of boron and cleaning and lubrication products utilized in these areas. Although Hope Creek was originally designed to handle laundry cleaning wastes internally, protective clothing is currently shipped offsite for cleaning.

During normal modes of operation, the LRW system receives waste inputs from the liquid waste drainage and collection system, and from the solid radwaste collection subsystem. The attached two liquid waste management process flow schematics ("Equipment/Floor Drain Processing System" and "Chemical/Detergent Waste Processing System") show the normal process flow of wastewater. The inputs are segregated as to chemical content and purity level, with radioactivity level being a secondary consideration. The inputs may contain iron or zinc which may be added to the reactor coolant system in microgram per liter concentrations. The liquid is then processed on a batch basis in the appropriate subsystem. Processed LRW is then returned for plant reuse or discharged to the cooling tower blowdown through DSN 461B.

TAB DSN 461A COOLING TOWER BLOWDOWN

EXPLANATION OF SUMMARY TABLE NOTES

Treatment of LRW influent is dependent on the source and type of wastewater received. Each of the five types of influent waste streams is processed differently and can be routed through various components of the treatment system. Wastewater is treated in a batch mode and not all wastewater is routed through every component of the treatment system.

High purity wastes are normally processed by filtration and demineralization and returned to the condensate storage tank for reuse. Low purity wastes can be processed by filtration and demineralization followed by reuse or discharge. Future plans include evaporation as an option in which the distillate can be returned for reuse or discharged.

Chemical wastes can be processed in several different ways. When the evaporator is functioning, pH adjustment and evaporation produce a concentrate which can then be solidified and drummed in the solid radwaste system prior to offsite disposal. The distillate can then be recycled to the high purity waste influent stream. Detergent wastes are generally not suitable for plant reuse and are normally processed by filtration and discharged. If necessary, "high conductivity wastes" from the regeneration of the condensate demineralizers or LRW demineralizers can be collected in the neutralization tank and treated to a preset pH value by the addition of chemicals. When the evaporator is available, these wastes can also be processed through the waste evaporator for concentration to remove excess water. The distillate can then be transferred back to the waste collection tank for further processing.

The various subsystems of the LRW treatment system have numerous crossconnections to allow operational flexibility. Wastewaters can also be recirculated

PAGE 5 OF 14

TAB DSN 461A COOLING TOWER BLOWDOWN

EXPLANATION OF SUMMARY TABLE NOTES

back to collection tanks for reprocessing as necessary. Temporary additional treatment units may be used to improve water quality when appropriate.

After batch processing, treated wastewaters in excess of Station needs are collected in the final sample tanks where water quality is evaluated prior to discharge. Because of the need to minimize radiation exposure of operating personnel, sampling of these tanks is generally conducted remotely via installed conductivity and radioactivity monitors. A remote sampling panel is also available upon which various analyses can be performed to monitor water quality. Sampling of the treated effluent is restricted to those analyses specifically required to confirm compliance with discharge requirements in order to preclude unnecessary exposure of operating personnel to additional radioactivity.

Although the LRW system is the system designed to handle radioactive liquid wastes, the USNRC requires the Station to conduct low level monitoring of other environmental discharges to ensure radioactivity levels are not being discharged above those authorized. For example, the cooling tower blowdown effluent has an installed radioactivity monitor which triggers an alarm if radioactivity is being discharged above the setpoint. Very low levels of radioactivity can enter non-radiological treatment systems. Low levels of radioactivity have been identified in residuals prior to removal from the treatment systems and have required handling and disposal in accordance with USNRC regulations. Although very low levels of radioactivity may be present in any treatment system or effluent, they are at levels which do not pose any threat to the public or the environment and are well within the limitations imposed by the USNRC.

TAB DSN 461A COOLING TOWER BLOWDOWN

EXPLANATION OF SUMMARY TABLE NOTES

3. Effluent Flow is monitored continuously, calculated daily, and the daily maximum and monthly average flow is reported monthly in MGD. Effluent flow is normally monitored by measuring the height of the effluent over the cooling tower basin effluent weir - the required method is "meter". When the cooling tower is being bypassed, the service water influent flow measurement is reported as the effluent flow. If the continuous monitoring equipment is inoperable (e.g. for preventative maintenance, calibration, or repair), the readings will be taken once per shift to fulfill the continuous monitoring requirement. The provisions in the current regarding continuous monitoring should be retained.

4. Although no dye testing is required, the current Permit authorizes that Rhodamine WT may be used as a tracer dye for flow measurements of the cooling tower and cooling tower related systems by following the approval/notification requirements below:

a. Provide written notification to the Chief, Bureau of Point Source Permitting - Region 2 and the Southern Bureau of Water and Hazardous Waste Enforcement prior to the use of Rhodamine WT dye. This notification shall identify the expected dates of the discharge and the expected concentration of Rhodamine WT dye in the effluent.

b. Provide oral notification to the Southern Bureau of Water and Hazardous
 Waste Enforcement at least 24 hours prior to commencing the discharge of
 Rhodamine WT dye.

c. Within thirty (30) days of completion of the testing, provide written notification of completion to the Chief, Bureau of Point Source Permitting -Region 2 and to the Southern Bureau of Water and Hazardous Waste Enforcement. This notification shall include the actual dates of the discharge, the actual concentration of Rhodamine WT dye in the effluent, and the total quantity of Rhodamine WT dye added.

PAGE 7 OF 14

TAB DSN 461A COOLING TOWER BLOWDOWN

EXPLANATION OF SUMMARY TABLE NOTES PAGE 8 OF 14

This provision should be retained in the renewed Permit. PSEG requests Uranine dye also be authorized within this provision.

5. The service water system normally provides makeup water to the cooling tower and discharges through DSN 461A. When the cooling tower is not in operation, service water normally will bypass the cooling tower and discharge through DSN 461A. Due to nuclear safety requirements, the service water system must remain in operation at all times. To facilitate necessary plant maintenance, the current permit authorizes the temporary redirection of service water to discharge through DSN 463A. The addition of sodium hypochlorite (or other biocide) is terminated during the bypass discharge. The following conditions are required for each planned bypass to DSN 463A:

a. Provide written notification to the Chief, Bureau of Point Source
Permitting - Region 2 and the Southern Bureau of Water and Hazardous
Waste Enforcement prior to the bypass discharge. This notification shall
identify the expected dates of the bypass, confirmation that sodium
hypochlorite addition to the service water system will be terminated during
the bypass, and a brief description of the reason the bypass is necessary.
b. Provide oral notification to the Southern Bureau of Water and Hazardous
Waste Enforcement at least 24 hours prior to commencing the bypass

The current permit also provides for the periodic anticipated bypass of service water through DSN 463A during service water pump swaps (i.e. "change outs") and system transients. The service water pump swaps and resultant bypasses are necessary to ensure sufficient service water cooling volumes to satisfy nuclear safety design parameters, especially during periods of increased river temperature during the summer months. The addition of sodium hypochlorite (or other biocide)

TAB DSN 461A COOLING TOWER BLOWDOWN

EXPLANATION OF SUMMARY TABLE NOTES

to the service water system is terminated during these bypass conditions and the bypass is expected to occur for a short duration (i.e. less then one minute). The Department has authorized these bypass operations and has specifically determined that there are no additional notifications pursuant to N.J.A.C. 7:14A based on the termination of biocide addition and the short duration of the anticipated bypass.

Both of these bypass provisions should be retained in the renewed Permit.

In addition, cooling tower blowdown can foam at the manholes in the blowdown line and foam can come to the surface and discharge on the ground. This is essentially heavy silt laden blowdown water. The blowdown water is chlorinated using sodium hypochlorite at the service water intake to prevent biofouling. Ammonium bisulfate is added in the cooling tower blowdown to de-chlorinate the cooling tower blowdown before discharge to the Delaware Estuary.

The cooling tower can also "mist" onto the ground around the tower under windy conditions. This water contains low levels of sodium hypochlorite that dissipates when it contacts the organic compounds on the ground. Furthermore, due to normal small leaks or weeps associated with thermal expansion and contraction of the piping joints and similar sources, discharges of river water, possibly containing low levels of sodium hypochlorite, to the ground or below the ground may occur. Lastly, incidental leaks or drips from other pipes that contain contaminants that are of a small volume or concentration, or that exhibit a low level of treatment chemical (but not toxic chemicals) may occur as bypasses.

The "pump swap" bypass provision discussed above provides relief for conditions where an additional service water pump is required to be started due to normally

PAGE 9 OF 14

TAB DSN 461A COOLING TOWER BLOWDOWN

EXPLANATION OF SUMMARY TABLE NOTES

changing plant and environmental conditions and there is the time to terminate the addition of sodium hypochlorite at the intake. If it is necessary to start an additional service water pump due to exigent conditions, where there is inadequate time to terminate intake sodium hypochlorite addition, some service water could be discharged through the automatic relief/vent valves on the building and spray onto the ground and be discharged through DSN 463A. This would be for a very short duration, generally less than a minute, and any residual chlorine would eb expected to be dissipated through aeration and contact with the organics on the ground and in the yard drain piping.

The Permittee requests that these additional sources of potential "bypass" be included in the Permit authorization.

6. Prior Permits have defined the reporting requirements for continuous monitoring as:

For continuous monitoring, the daily value shall consist of all the values over a given calendar day (24 hour period) averaged together. The permittee shall report the highest of these daily values as the daily maximum on the DMR, and the average of the daily values as the monthly average.

This definition should be retained and is applicable not only to continuous monitoring but to all monitoring which may be conducted more then once per calendar day for which a daily maximum or a monthly average value must be calculated or reported.

7. Influent Temperature is the temperature in the Delaware Estuary and is monitored continuously - the daily value is used to calculate the heat discharge. Influent temperature is monitored by using either one temperature measuring device or the average of the two temperature measuring devices at the service water intake structure. If these instruments are inoperable (e.g., for preventative

PAGE 10 OF 14

TAB DSN 461A COOLING TOWER BLOWDOWN

EXPLANATION OF SUMMARY TABLE NOTES

maintenance, calibration, or repair), temporary monitors may be installed, the temperature at the adjacent Salem Generating Station intake may be used, or the influent temperature will be monitored manually once per shift. The daily maximum and monthly average are reported in degrees C. The provisions in the current Permit regarding continuous monitoring should be retained.

8. Effluent Temperature is monitored continuously and the daily maximum and monthly average values are reported in degrees C. The daily maximum Effluent Temperature is limited to 97.1 °F (36.2 °C). The provision that "a coincident occurrence of wet bulb temperature that exceeds 76 °F and a relative humidity below 60% during a given day for a period equal to or greater then 60 minutes, the daily maximum temperature limit does not apply and monitoring only is required" should be retained in the Permit.

9. Heat Rate is calculated daily as the product of heat capacity, effluent flow, and discharge-intake temperature difference. The daily maximum and monthly average values are reported in Million British Thermal Units per Hour (MBTU/Hr). Heat Rate is limited to 662 MBTU/Hr from September through May and 534 MBTU/Hr from June through August. The current limitations and conditions for Heat Rate should be retained in the Permit.

Chlorine Produced Oxidants (CPO) are measured continuously by meter. 10. CPO is limited to a daily maximum of 0.5 mg/L and a monthly average of 0.2 mg/L. In accordance with 40 CFR Section 423.12(b)(8), Part III-B prohibits CPO discharges for more then two hours in any one day without prior approval. Chlorine residual concentrations are normally maintained within limitations by the addition of ammonium bisulphate, a de-chlorination agent, in the cooling tower blowdown line. PSEG Nuclear requests he current limitations for Chlorine Produced Oxidants be

PAGE 11 OF 14

TAB DSN 461A COOLING TOWER BLOWDOWN

EXPLANATION OF SUMMARY TABLE NOTES

retained in the Permit but the monitoring requirement be modified to .three times per week by grab sample. The empirical data collected during the term of the current permit identifies that residual chlorine is not normally discharged from the facility. We have not identified any suitable continuous residual chlorine analyzers that are designed to operate well in the brackish water and high solids concentrations in the Delaware Estuary at the site. The existing chlorine analyzers were installed based on significant research and testing, but require extensive maintenance to keep operational. returning to the three times per week grab sample monitoring protocol will provide adequate environmental protection and effluent monitoring without the need for a continuous analyzer.

11. pH is measured weekly by grab sample and the daily minimum and daily maximum pH are reported in Standard Units (SU). pH is limited such that the daily minimum pH shall not be less then 6.0 SU and the daily maximum pH shall not be greater then 9.0 SU. The current limitations and conditions for pH should be retained in the Permit.

12. Total Organic Carbon (TOC) is measured monthly by grab sample and the net daily maximum and monthly average values are reported in mg/L. The net concentration of TOC is determined as follows:

Net TOC = (<u>Eff. TOC</u>) x (<u>Eff. Flow</u>) - (<u>Inf. TOC</u>) x (<u>Inf. Flow</u>) Effluent Flow

The permittee is requesting deletion of TOC monitoring, conditions, and limitations. N.J.A.C. 7:14A-12.4(d) provides that:

PAGE 12 OF 14

TAB DSN 461A COOLING TOWER BLOWDOWN

Ċ

EXPLANATION OF SUMMARY TABLE NOTES PAGE 13 OF 14

Direct discharges to surface water from industrial treatment works shall be exempt from the minimum projected BOD₅ effluent standards in (b) above, when:

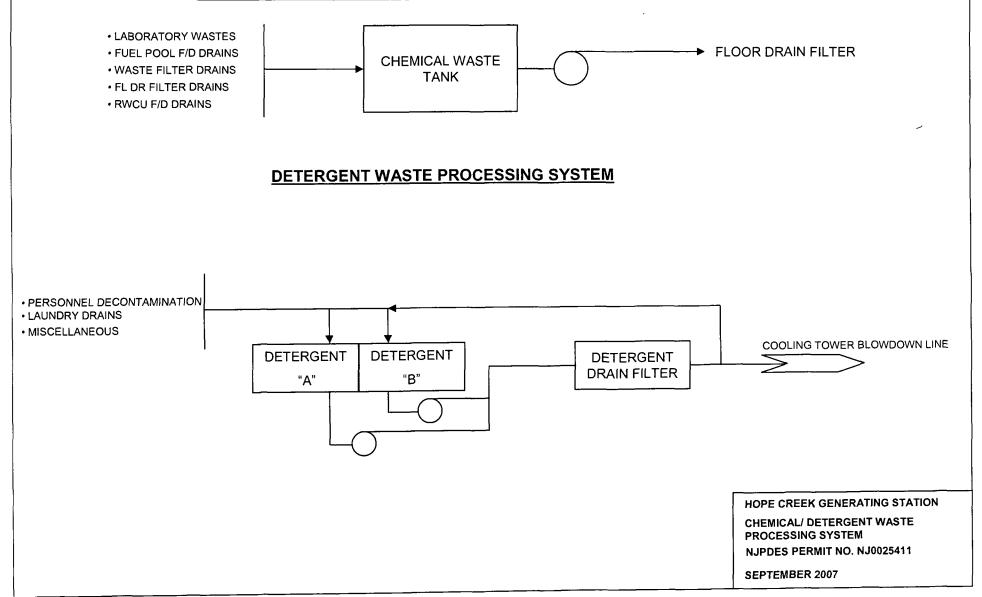
i.Statistically valid data indicate that the maximum projected BOD₅ concentration is consistently below the applicable effluent standard; or

ii. The Department determines that, based on wastewater generating activities, no potential exists for the discharge to add BOD₅, COD or TOC.

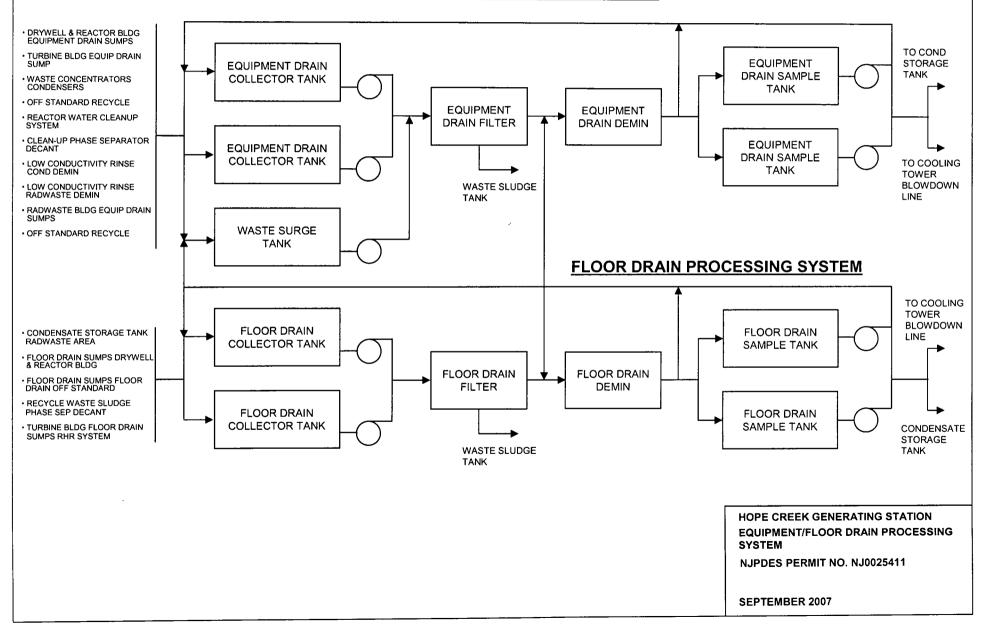
The Hope Creek Cooling Tower is an industrial treatment works designed to remove heat from the circulating water system. In accordance with the current Permit, monitoring has been conducted monthly. The analytical data for the current 48 month permit reporting period shows an average net TOC concentration of 0.51 mg/L and a maximum net TOC concentration of 8.0 mg/L (see attached two graphs).

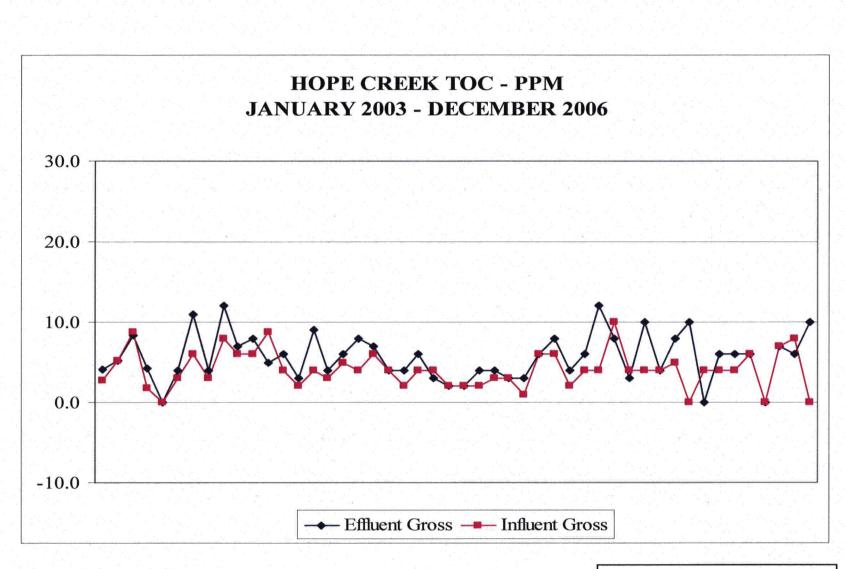
The analytical data for the prior 48-month permit reporting period, 04/01/97 (EDP) through 03/30/01, showed an average net TOC concentration of -0.02 mg/L and a maximum net TOC concentration of 6.0 mg/L. The calculated net TOC concentrations are essentially zero, the value which is expected since the cooling tower does not have the potential to add measurable amounts of BOD₅, COD or TOC. A record of over ten years of monitoring TOC at this outfall provides statistically valid data demonstrating the cooling tower does not have the potential to add measurable amounts of source the potential to add measurable of the potential to add measurable and the potential to add measurable amounts of BOD₅, COD or TOC. A record of over ten years of monitoring TOC at this outfall provides statistically valid data demonstrating the cooling tower does not have the potential to add measurable amounts of TOC. Since this discharge meets both alternative conditions of N.J.A.C. 7:14A-12.4(d), the permittee requests deletion of TOC monitoring, conditions, and limitations.

۱

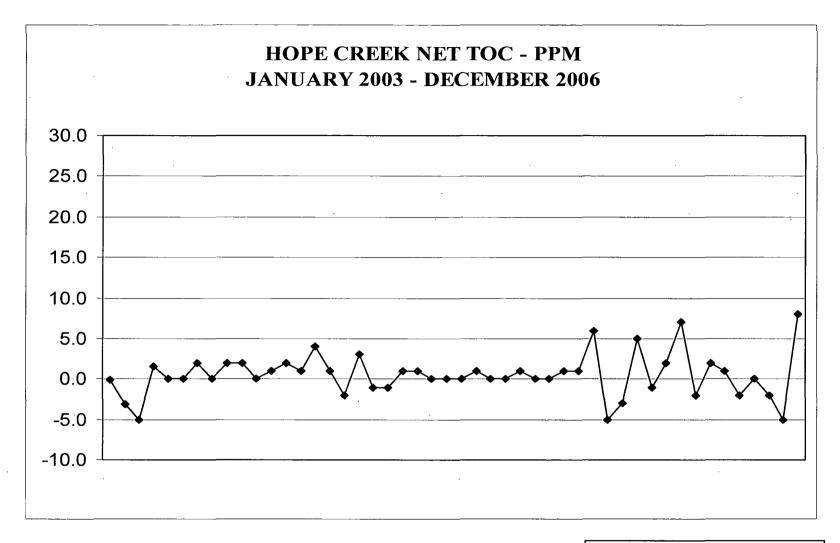

TAB DSN 461A COOLING TOWER BLOWDOWN

EXPLANATION OF SUMMARY TABLE NOTES

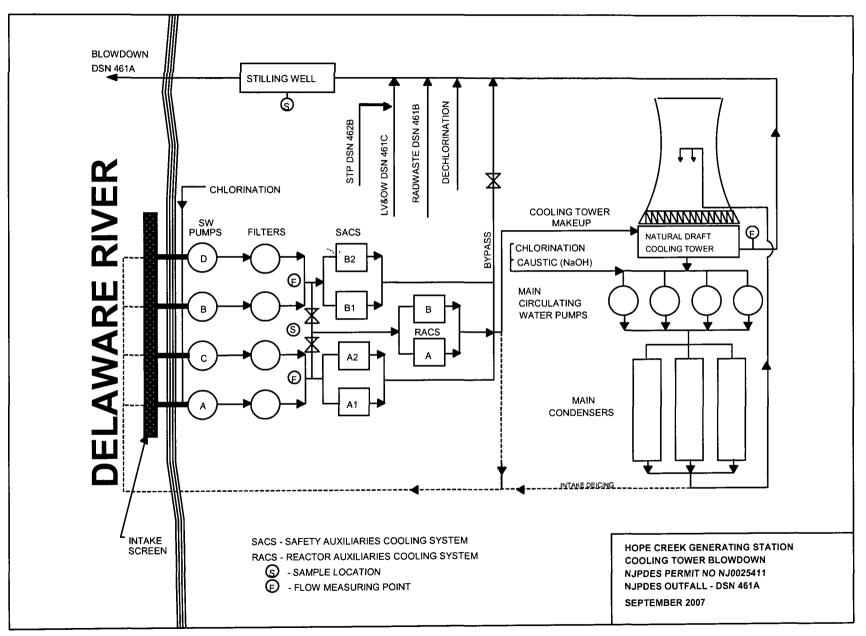

13. Copper, lead, and zinc were identified in the effluent and zinc was identified at the intake. Based on the approximate concentration factor of 1.3 through the cooling tower system and comparing the mass at the intake and effluent, these parameters are not added in the cooling tower system. All are significantly below water quality standards. No organic parameters were identified in the effluent.


PAGE 14 OF 14

CHEMICAL WASTE (DECONTAMINATION SOLUTION) PROCESSING SYSTEM



EQUIPMENT DRAIN PROCESSING SYSTEM

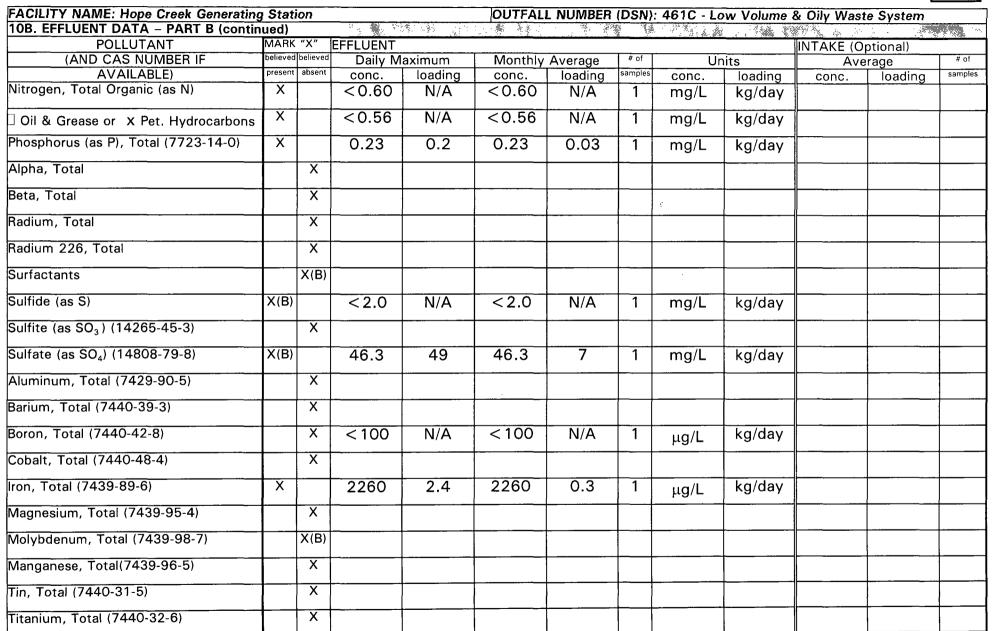


HOPE CREEK GENERATING STATION TOTAL ORGANIC CARBON NJ0025411 DSN 461A SEPTEMBER 2007

,

HOPE CREEK GENERATING STATION NET TOTAL ORGANIC CARBON NJ0025411 DSN 461A SEPTEMBER 2007

.



С

FACILITY NAME: Hope Creek Generating S 10A. EFFLUENT DATA – PART A	Statio			145		L NUMBER			ow Volume	& Oily Was		
POLLUTANT							* *	***. (i				
FOLLOTANT				laximum	Monthly	Average	# of		nits	Intake (Opt		# of
			nc.	loading	conc.	loading	samples	conc.	loading	conc.	erage loading	sample
Biochemical Oxygen Demand (BOD ₅)			A)			louung			loading		loaung	
Chemical Oxygen Demand (COD)		(A)			<u> </u>		<u> </u>				
Total Organic Carbon (TOC)		2	1.0	22.3	8.7	1.3	48	mg/L	kg/day			
Total Suspended Solids (TSS)		8	.0	8.5	8.0	1.2	1	mg/L	kg/day		<u> </u>	
Total Dissolved Solids (TDS)		4	32	458	432	65	1	mg/L	kg/day			
Ammonia (as N)		1	.2	1.3	1.2	0.2	1	mg/L	kg/day		<u> </u>	
UNITS AS INDICATED				L T 🎝 🤅 🧞 T 🖇			لــــــــــــــــــــــــــــــــــــ			in a station	L	
Flow (specify units)	<u></u>		Daily	/ Max. .28		nly Avg. .04	1461	MGD	MGD		••••••••••••••••••••••••••••••••••••••	
Temperature (<i>winter</i>)				/ Max. 3.3		nly Avg. 3.3	1	0	C			
Temperature (<i>summer</i>)				/ Max. 5.6	Month 2	nly Avg. 5.6	1	°(С			-
pH			in. 63	max. 7.63			1	STANDA		min.	max.	
10B. EFFLUENT DATA – PART B							الريا					
POLLUTANT	IARK "	x" EFFLU	JENT	<u></u>			,,,	<u></u>			(Optional)	
	eved beli	^{eved} Daily	Maxir	num	Monthly A	verage	# of	L L	Jnits		verage	# of
	sent ab	1 00	nc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	sample
CONVENTIONAL and NON-CONVENTIONAL	L POL	LUTANT	S									N 🖉
Bromide (24959-67-9)		x						<u></u>				Τ
Chlorine, Total Residual	x	<	D.1	N/A	< 0.1	N/A	1	mg/L	kg/day		<u> </u>	1
Color, (specify units)		x			····							
Fecal Coliform		x						·····	1			
Fluoride (16984-48-8)	(B)	0.	35	0.4	0.35	0.1	1	mg/L	kg/day			-
Nitrate-Nitrite (as N)	x	1	.6	1.7	1.6	0.2	1	mg/L	kg/day		<u></u>	

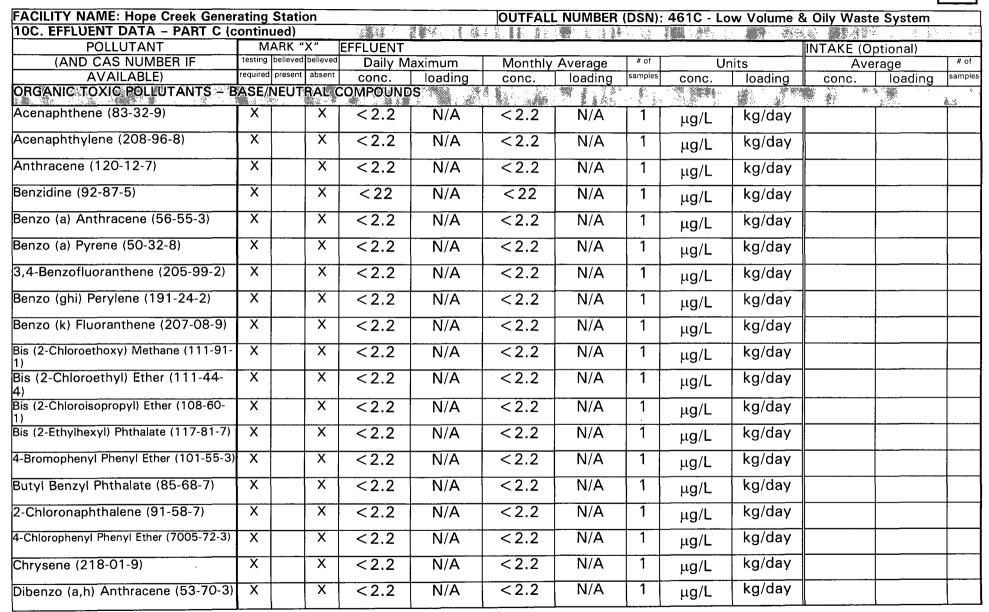
•

FORM C 3/2/98

FACILITY NAME: Hope Creek Gene	rating	Stati	on	· · · · · · · · · · · · · · · · · · ·		OUTFALL	. NUMBER	(DSN)	: 461C - L	ow Volume &	Oily Waste	e System	
10C. EFFLUENT DATA – PART C				⊖ If you o	lo not analy	ze a sample	for certain I	tem 10	C pollutan	s because yo	u qualify as	a "Small	
				Busine	ss" (see ins	structions for	details), che	eck this	s box and a	ttach sales da	ata for the m	ost recent	
				three y	ears.								
POLLUTANT		ARK "		EFFLUENT							INTAKE (Op	otional)	
(AND CAS NUMBER IF	-	believed		Daily M	aximum	Monthly	Average	# of	U	nits	Ave	rage	# of
AVAILABLE)		present	absent	conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	samp
OTHER TOXIC POLLUTANTS (MET	ALS a	nd C	ANIC	E) and TOT	AL PHENO	LS							
Antimony, Total (7440-36-0)	<u> </u>		Х	< 6.0	N/A	< 6.0	N/A	1	μg/L	kg/day	· · · · ·		T
Arsenic, Total (7440-38-2)	X		Х	< 8.0	N/A	< 8.0	N/A	1	μg/L	kg/day			
Beryllium, Total (7440-41-7)	X		Х	<1.0	N/A	< 1.0	N/A	1	μ g/L	kg/day			
Cadmium, Total (7440-43-9)	X		Х	<4.0	N/A	<4.0	N/A	1	μg/L	kg/day			
Chromium, Total (7440-47-3)	X		Х	< 10	N/A	<10	N/A	1	μg/L	kg/day			
Copper, Total (7550-50-8)	×	Х		466	0.5	466	0.1	1	μg/L	kg/day			
.ead, Total (7439-92-1)	X		Х	< 3.0	N/A	< 3.0	N/A	1	μg/L	kg/day			
Mercury, Total (7439-97-6)	X		Х	< 0.20	N/A	<0.20	N/A	1	μg/L	kg/day			1
lickel, Total (7440-02-0)	X		Х	<40	N/A	< 40	N/A	1	μg/L	kg/day			
Gelenium, Total (7782-49-2)	X		Х	<10	N/A	<10	N/A	1	μg/L	kg/day			
Silver, Total (7440-22-4)	X		Х	<10	N/A	<10	N/A	1	μg/L	kg/day			1
hallium, Total (7440-28-0)	X		Х	< 10	N/A	<10	N/A	1	μg/L	kg/day			1
linc, Total (7440-66-6)	X	X		88.5	0.1	88.5	0.01	1	μg/L	kg/day			
Cyanide, Total (57-12-5)	X		Х	< 0.010	N/A	<0.010	N/A	1	μg/L	kg/day			
henols, Total	X	1	Х	< 0.20	N/A	<0.20	N/A	1	μg/L	kg/day			
DIOXIN													
2,3,7,8-Tetrachlorodibenzo-P- Dioxin (1764-01-6)			X										

FACILITY NAME: Hope Creek Gene			1			OUTFAL	NUMBER	(DSN)	: 461C - Lo	w Volume 8	& Oily Wast	e System	
10C. EFFLUENT DATA – PART C (c								·	, , , , , , , , , , , , , , , , , , ,			a katala	·.
POLLUTANT		ARK "X"		EFFLUENT							INTAKE (O	ptional)	
(AND CAS NUMBER IF	-	believed bel		Daily M	aximum	Monthly	Average	# of	Ur	nits		erage	# of
AVAILABLE)	required	I. I	bsent	conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	sample
ORGANIC TOXIC POLLUTANTS - N	OLA	FILES	je je se										
Acrolein (107-02-8)	X		X	<50	N/A	<50	N/A	1	μg/L	kg/day			
Acrylonitrile (107-13-1)	X		X	<10	N/A	< 10	N/A	1	μg/L	kg/day			
Benzene (71-43-2)	X		x	<1.0	N/A	<1.0	N/A	1	μg/L	kg/day			-
Bromoform (75-25-2)	X		x	<1.0	N/A	<1.0	N/A	1	μg/L	kg/day			
Carbon Tetrachloride (56-23-5)	X		X	< 1.0	N/A	<1.0	N/A	1	μg/L	kg/day			1
Chlorobenzene (108-90-7)	X		х	< 1.0	N/A	< 1.0	N/A	1	μg/L	kg/day			+
Chlorodibromomethane (124-48-1)	x		x	0.70	7x10⁴	0.70	1x10 ⁻⁴	1	μg/L	kg/day	· · · ·		1
Chloroethane (75-00-3)	X		X	< 1.0	N/A	<1.0	N/A	1	μg/L	kg/day			
2-Chloro-ethyl-vinyl Ether (110-75-8)	x		X	< 5.0	N/A	< 5.0	N/A	1	μg/L	kg/day			-
Chloroform (67-66-3)	X	X		8.5	9x10 ⁻³	8.5	1.3x10 ⁻³	1	μg/L	kg/day			
Dichlorobromomethane (75-27-4)	X	X		1.7	1.8x10 ⁻³	1.7	2.6x10 ⁻⁴	1	μg/L	kg/day	· · · · · · · · · · · · · · · · · · ·		
1,1-Dichloroethane (75-34-3)	X		x	< 1.0	N/A	< 1.0	N/A	1	μg/L	kg/day			
1,2-Dichloroethane (107-06-2)	X		X	<1.0	N/A	<1.0	N/A	1	μg/L	kg/day			
1,1-Dichloroethylene (75-35-4)	X		X	< 1.0	N/A	<1.0	N/A	1	μg/L	kg/day			
1,2-Dichloropropane (78-87-5)	X		X	<1.0	N/A	< 1.0	N/A	1	μg/L	kg/day			
1,3-Dichloropropylene (542-75-6)	X		X	<1.0	N/A	< 1.0	N/A	1	μg/L	kg/day			
Ethylbenzene (100-41-4)	X		X	<1.0	N/A	<1.0	N/A	1	μg/L	kg/day			
Methyl Bromide (74-83-9)	X		Х	< 1.0	N/A	< 1.0	N/A	1	μg/L	kg/day			
Methyl Chloride (74-87-4)	X		x	<1.0	N/A	<1.0	N/A	1	μg/L	kg/day			

C



~

FACILITY NAME: Hope Creek Gener			on						461C - Lo	w Volume	& Oily Wast	e System	
10C. EFFLUENT DATA - PART C (d				40-64-C1 520000000V/F 21.54 / C 000				in the				52 · · · · · · · · · · · · · · · · · · ·	
POLLUTANT		ARK "		EFFLUENT	_						INTAKE (O		
(AND CAS NUMBER IF		present	believed absent		aximum		Average	# of		nits		rage	# of
AVAILABLE) ORGANIC TOXIC POLLUTANTS = N	1	l.		conc.	loading	conc.	loading	samples	<u>conc.</u>	loading	conc.	loading	sample
	88. Martin 1979	IILES		VA						÷	<u></u>	<u>.</u>	
Methylene Chloride (75-09-2)	X		X	< 1.0	N/A	< 1.0	N/A	1	μg/L	kg/day			
1,1,2,2-Tetrachloroethane (79-34-5)	X		Х	<1.0	N/A	< 1.0	N/A	1	μg/L	kg/day			+
Tetrachloroethylene (127-18-4)	X		X	<1.0	N/A	< 1.0	N/À	1	μg/L	kg/day			1
Toluene (108-88-3)	X		Х	<1.0	N/A	< 1.0	N/A	1	μg/L	kg/day			
1,2-Transdichloroethylene (156-60-5)	X		X	< 1.0	N/A	< 1.0	N/A	1	μg/L	kg/day			
1,1,1-Trichloroethane (71-55-6)	X		X	< 1.0	N/A	< 1.0	N/A	1	μg/L	kg/day			
1,1,2-Trichloroethane (79-00-5)	X		X	<1.0	N/A	< 1.0	N/A	1	μg/L	kg/day			
Trichloroethylene (79-01-6)	X		. X	<1.0	N/A	< 1.0	N/A	1	μg/L	kg/day			
Vinyl Chloride (75-01-4)	Х		×	<2.0	N/A	< 2.0	N/A	1	μg/L	kg/day			
ORGANIC TOXIC POLLUTANTS = A	CID (COMF	OUNE	DS <u>see see</u>									
2-Chlorophenol (95-57-8)	X		X	< 5.6	N/A	< 5.6	N/A		μg/L	kg/day			
2,4-Dichlorophenol (120-83-2)	X		X	< 5.6	N/A	< 5.6	N/A	1	μg/L	kg/day			
2,4-Dimethylphenol (105-67-9)	X		X	< 5.6	N/A	< 5.6	N/A	1	μg/L	kg/day			
4,6-Dinitro-O-Cresol (534-52-1)	X		X	<11	N/A	< 11	N/A	1	μg/L	kg/day			
2,4-Dinitrophenol (51-28-5)	X		X	<22	N/A	<22	N/A	1	μg/L	kg/day			
2-Nitrophenol (88-75-5)	X		X	< 2.2	N/A	< 2.2	N/A	1	μg/L	kg/day			
4-Nitrophenol (100-02-7)	X		X	<22	N/A	<22	N/A	1	μg/L	kg/day			
P-Chloro-M-Cresol (59-50-7)	Х		X	< 5.6	N/A	< 5.6	N/A	1	μg/L	kg/day			
Pentachlorophenol (87-86-5)	X		Х	<11	N/A	<11	N/A	1	μg/L	kg/day			
Phenol (108-95-2)	X		X	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day			
2,4,6-Trichlorophenol (88-06-2)	X		X	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day			

-

FACILITY NAME: Hope Creek Gene					OUTFAL	NUMBER	(DSN)	: 461C - Lo	w Volume a	& Oily Wast	e System	
10C. EFFLUENT DATA - PART C (d									\$4. \$ 2.5.5		âtri - Câta	
POLLUTANT			EFFLUENT							INTAKE (O	ptional)	
(AND CAS NUMBER IF		believed believed	Daily N	/laximum		Average	# of		nits		rage	# of
		present absent	conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	sample
ORGANIC TOXIC POLLUTANTS = I	SASE/	NEUTRAL	COMPOUN	DS (continue	id)							Since 1
1,2-Dichlorobenzene (95-50-1)	X	X	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day			
1,3-Dichlorobenzene (541-73-1)	X	X	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day			
1,4-Dichlorobenzene (106-46-7)	X	X	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day			
3,3 –Dichlorobenzidine (91-94-1)	X	X	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day			
Diethyl Phthalate (84-66-2)	X	X	< 2.2	N/A	<2.2	N/A	1	μg/L	kg/day			1
Dimethyl Phthalate (131-11-3)	X	X	< 2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	·		
Di-N-Butyl Phthalate (84-74-2)	×	X	< 2.2	N/A	<2.2	N/A	1	μg/L	kg/day	·		-
2,4-Dinitrotoluene (121-14-2)	X	X	< 2.2	N/A	<2.2	N/A	1	μg/L	kg/day	/		1
2,6-Dinitrotoluene (606-20-2)	X	X	< 2.2	N/A	<2.2	N/A	1	μg/L	kg/day			1
Di-N-Octyl Phthalate (117-84-0)	X	X	<2.2	N/A	< 2.2	N/A	1	μg/L	kg/day			1
1,2-Diphenylhydrazine (122-66-7)	X	X	< 2.2	N/A	< 2.2	N/A	1	μg/L	kg/day	·		\top
Fluoranthene (206-44-0)	X	×	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day			1
Fluorene (86-73-7)	X	X	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day			
Hexachlorobenzene (118-74-1)	X	X	< 2.2	N/A	< 2.2	N/A	1	μg/L	kg/day			
Hexachlorobutadiene (87-68-3)	X	X	< 2.2	N/A	< 2.2	N/A	1	μg/L	kg/day			
Hexachlorocyclopentadiene (77-47-4)	X	X	<11	N/A	<11	N/A	1	μg/L	kg/day			
Hexachloroethane (67-72-1)	X	X	< 5.6	N/A	< 5.6	N/A	1	μg/L	kg/day			
ndeno (1,2,3-cd) Pyrene (193-39-5)	Х	X	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day			
Isophorone (78-59-1)	X	X	< 2.2	N/A	<2.2	N/A	1	μg/L	kg/day		-	1

FACILITY NAME: Hope Creek Gene	rating	Statio	n			OUTFALL	NUMBER	(DSN)	461C - Lo	w Volume a	& Oily Wast	e Svstem	
10C. EFFLUENT DATA - PART C (c										<u>8</u> 4 4 4			
POLLUTANT		ARK "X		EFFLUENT							INTAKE (O	ptional)	
(AND CAS NUMBER IF	-	believed b			aximum	Monthly		# of		nits	Ave	erage	# of
AVAILABLE)		present a		conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	samples
ORGANIC TOXIC POLLUTANTS - F	SASE/	NEUIR	AL (SOMPOUNE	S (continue	d)							* *
Naphthalene (91-20-3)	X		Х	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day			
Nitrobenzene (98-95-3)	X		Х	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day			
N-Nitrosodimethylamine (62-75-9)	Х		Х	< 2.2	N/A	<2.2	N/A	1	μg/L	kg/day			
N-Nitrosodi-N-Propylamine (621-64-7)	X		Х	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day			
N-Nitrosodiphenylamine (86-30-6)	Х		Х	< 5.6	N/A	<5.6	N/A	1	μg/L	kg/day			-
Phenanthrene (85-01-8)	X		Х	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day			
Pyrene (129-00-0)	X		Х	< 2.2	N/A	<2.2	N/A	1	μg/L	kg/day			
1,2,4-Trichlorobenzene (120-82-1)	Х		Х	<2.2	N/A	<2.2	N/A	1	μg/L	kg/day			
ORGANIC TOXIC POLLUTANTS - F	ESTI												
Aldrin (309-00-2)			Х										T
Alpha-BHC (319-84-6)			Х										-
Beta-BHC (319-85-7)			Х										
Gamma-BHC (58-89-9)			Х										
Delta-BHC (319-86-8)			Х										
Chlordane (57-74-9)			Х										1
4,4'-DDT (50-29-3)			X										
4,4'-DDE (72-55-9)			Х										
4,4'-DDD (72-54-8)			Х										1
Dieldrin (60-57-1)			Х										

С

С

FACILITY NAME: Hope Creek Gen	erating	Stati	on							w Volume &			
10C. EFFLUENT DATA - PART C				1.287 3			i i i i i i i i i i i i i i i i i i i						
POLLUTANT		ARK "		EFFLUENT							INTAKE (O		_
(AND CAS NUMBER IF	-	believed			laximum		Average	# of		nits		erage	# of
	required			Conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	samples
ORGANIC TOXIC POLLUTANTS -	PES III	-IDE9	COM	linued)									
Alpha-Endosulfan (115-29-7)			Х										
Beta-Endosulfan (115-29-7)	1		Х										1
Endosulfan sulfate (1031-07-8)			Х										+
Endrin (72-20-8)	-		х										+
Endrin Aldehyde (7421-93-4)			х									· · ·	1
Heptachlor (76-44-8)			X										1
Heptachlor Epoxide (1024-57-3)			х									<u>+</u>	1
PCB-1242 (53469-21-9)			X									·	-
PCB-1254 (11097-69-1)	1		х										+
PCB-1221 (11104-28-2)			Х	<u> </u>									+
PCB-1232 (11141-16-5)			Х										-
PCB-1248 (12672-29-6)			Х									· · · · ·	
PCB-1260 (11096-82-5)	-		X										-
PCB-1016 (12674-11-2)	-		Х						······································				
Toxaphene (8001-35-2)			x				· · · · · · · · · · · · · · · · · · ·						+

EXPLANATION OF NOTES - FORM C, ITEM 10 -

(A) Analysis of these parameters is not required per approval of the NJDEP as specified under Item 10A on Page 4 of 8 of the instructions for Form C.

(B) These pollutants are utilized at the facility in areas that could discharge through the respective outfall in the event of a spill, leak or inadvertent drain. These pollutants are not intentionally added to this effluent stream, and are not, therefore, normally discharged through this outfall.

SUMMARY TABLE DSN 461C

Facility: PSEG-Hope Creek Discharge Serial Number (DSN): 461C Latitude: 39° 28' 13" Longitude: 75° 32' 23"

Internal Monitoring Point

Wastewater Type: Effluent of the LVOW oil water separator from area, building, auxiliary boiler, and equipment drains. (Note 1)

Parameter All units in mg/L (kg/day) unless otherwise noted		NJPDES/ DSW Permit Application	Existing NJPDES/DSW Permit limits DSN 461C	NJPDES/ DSW DMR 1/03-12/06	Note	Draft Permit Limits for DSN 461C
Flow, Effluent, MGD	avg. max. data pts. monitor	0.04 0.28 1461 	NL NL Cont/Mt	0.04 0.28 1461 	2	NL NL Cont/Mt
Organic Carbon, Total (mg/L)	avg. max. data pts. monitor	8.7 21.0 48 	NL 50 M/Comp	8.7 21.0 48 	3	NL 50 M/Comp
Petroleum Hydrocarbons (mg/L)	avg. max. data pts. monitor	<1.0 14.0 96 	10 15 2-M/G	<1.0 14.0 96 	4	10 15 2-M/G
Total Suspended Solids (mg/L)	avg. max. data pts. monitor	10.9 77.0 48 	30 100 M/Comp	10.9 77.0 48 	5	30 100 M/Comp

The abbreviation "N/A" denotes "Not Applicable"; "NL" denotes "Not Limited" with monitoring and reporting required.

"MGD" denotes "million gallons per day"

"ND" denotes "Non-detected" value.

Monitoring requirement abbreviations are: "Cont" denotes "Continuous"; "D" denotes "Daily"; "3-W" denotes "three times per week"; "W" denotes "Weekly"; "2-M" denotes "Twice per Month"; "M" denotes "Monthly"; "Q" denotes "Quarterly"; "Mt" denotes "Meter"; "Cal" denotes "Calculated"; "G" denotes "Grab"; Comp" denotes "Composite"

HOPE CREEK GENERATING STATIONTAB DSN 461CNJPDES PERMIT NJ0025411LOW VOLUME & OILY WASTE SYSTEM

EXPLANATION OF SUMMARY TABLE NOTES PAGE 1 OF 3

1. The low volume and oily waste (LVOW) system, DSN 461C, is a low volume (0.04 MGD) internal waste stream that collects and treats potentially oily wastewater from area, building, and equipment drains throughout the site. The major influents, flowpaths, and treatment components are shown on the enclosed schematic entitled "Low Volume and Oily Waste System". The oily waste collection system includes transformer catch basins, switchyard underdrains, the fuel oil tank dike and transfer station, secondary containments for tank truck unloading areas, emergency diesel fire pump oil tank dike drains, the turbine building emergency sumps, and miscellaneous equipment and floor drains. The turbine building emergency sumps are designed to remove excess water from the turbine building in the event of flooding. Normal discharges from these sumps are minimal and are composed primarily of groundwater infiltration. Most influent water to the oily waste collection system is precipitation, other influents may include freshwater or service water, along with the pollutants handled or stored within the area drained, primarily petroleum products. The low volume system collects waste streams from cooling tower chemical tank dikes and drains (sodium hydroxide, ammonium bisulfate, and sodium hypochlorite), chlorine analyzer drains (including the analytical reagents), circulating water system building drains, the fuel oil day tank containment drain, and the auxiliary boiler building and blowdown drains (including ammonia and ammonia related [e.g., hydrazine and carbohydrazide] treatment chemicals and analytical reagents).

Flows from containments and dikes are primarily precipitation and may include circulating water or service water and the auxiliary boiler blowdown contains quench water. Most flows to the system are intermittent. Waste waters are collected in one of two lift stations which have level-operated pumps to transfer the wastewater to the treatment system as required.

HOPE CREEK GENERATING STATIONTAB DSN 461CNJPDES PERMIT NJ0025411LOW VOLUME & OILY WASTE SYSTEM

EXPLANATION OF SUMMARY TABLE NOTES PAGE 2 OF 3

Collected waste streams are processed through an API-type oil water separator for removal of solid and floatable materials. Settleable solids are removed from the waste stream by gravity separation and are transferred to the oily sludge holding tank before being removed to an USNRC-licensed facility if the residuals contain low levels of radioactivity, or trucked offsite to a licensed disposal facility. The system also has provisions for recycle of this oily sludge to aid in settling of the influent wastewaters. Oil and floatables removed by the separator are routed to the waste oil tank before being trucked offsite to a licensed disposal facility.

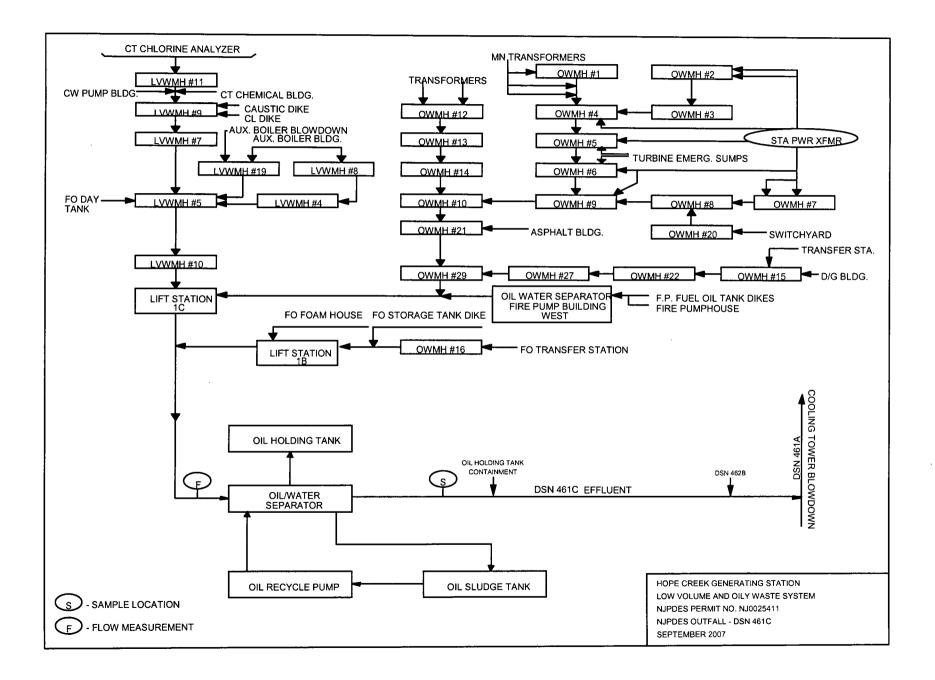
Treated effluent is then discharged through the internal monitoring point DSN 461C (0.04 MGD) which combines with DSN 461A (46.7 MGD) before discharge to the Delaware Estuary. This results in a reduction in concentration of a pollutant by a factor of approximately 1000 prior to discharge. The monitoring point for DSN 461A is after the commingling with DSN 461C.

2. Effluent Flow is monitored continuously by meter on the inlet to the separator and the daily maximum and monthly average flow is reported monthly in Million Gallons per Day (MGD). If the continuous monitoring equipment is 'inoperable (e.g. for preventative maintenance, calibration, or repair), the flow is calculated based on the operating hours of the lift station pumps or the lift station operating events to fulfill the continuous monitoring requirement. The provisions in the current Permit should be retained.

Prior Permits defined the reporting requirements for continuous monitoring as: For continuous monitoring, the daily value shall consist of all the values over a given calendar day (24 hour period) averaged together. The permittee shall

HOPE CREEK GENERATING STATIONTAB DSN 461CNJPDES PERMIT NJ0025411LOW VOLUME & OILY WASTE SYSTEM

EXPLANATION OF SUMMARY TABLE NOTES PAGE 3 OF 3

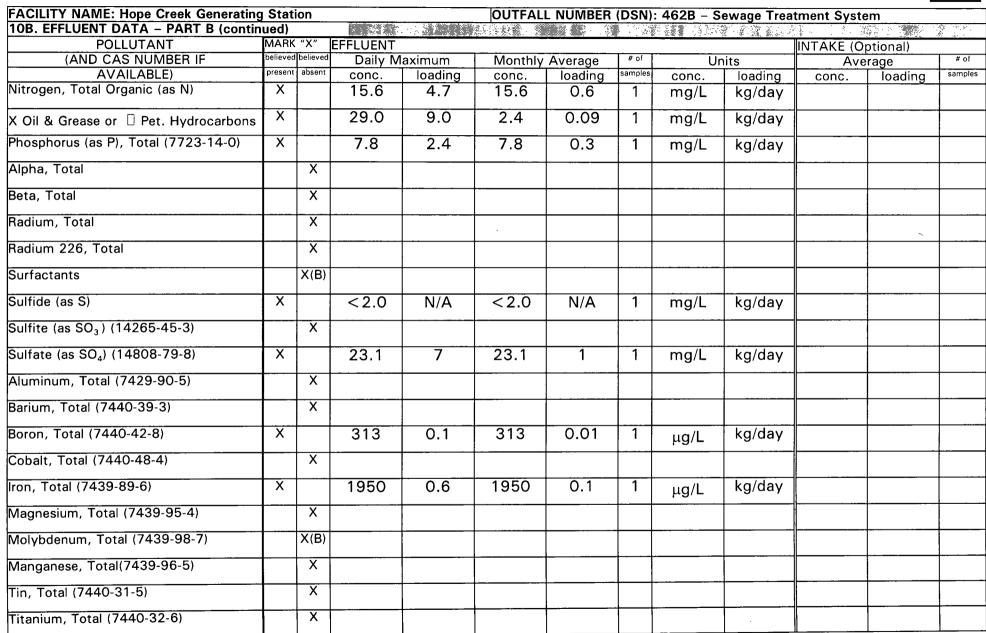

report the highest of these daily values as the daily maximum on the DMR, and the average of the daily values as the monthly average.

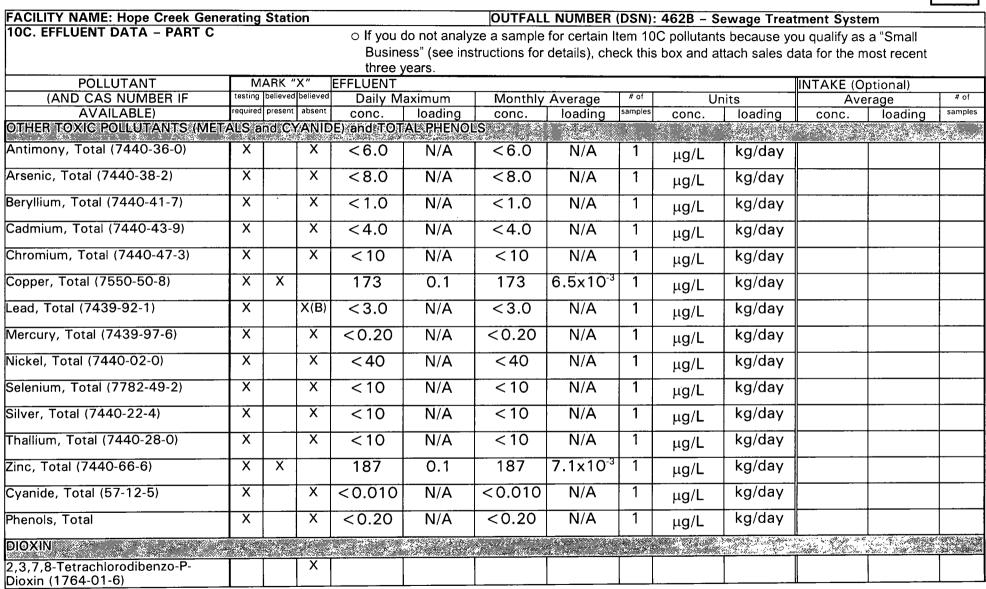
This definition should be retained and is applicable not only to continuous monitoring but to all monitoring which may be conducted more then one per calendar day for which a daily maximum or a monthly average value must be calculated or reported.

3. Total Organic Carbon (TOC) is measured monthly by 24-hour timeweighted composite sample. TOC is limited to a daily maximum of 50 mg/L. The daily maximum concentration and monthly average concentration are reported monthly in mg/L. The current limitations and conditions for Total Organic Carbon should be retained in the Permit.

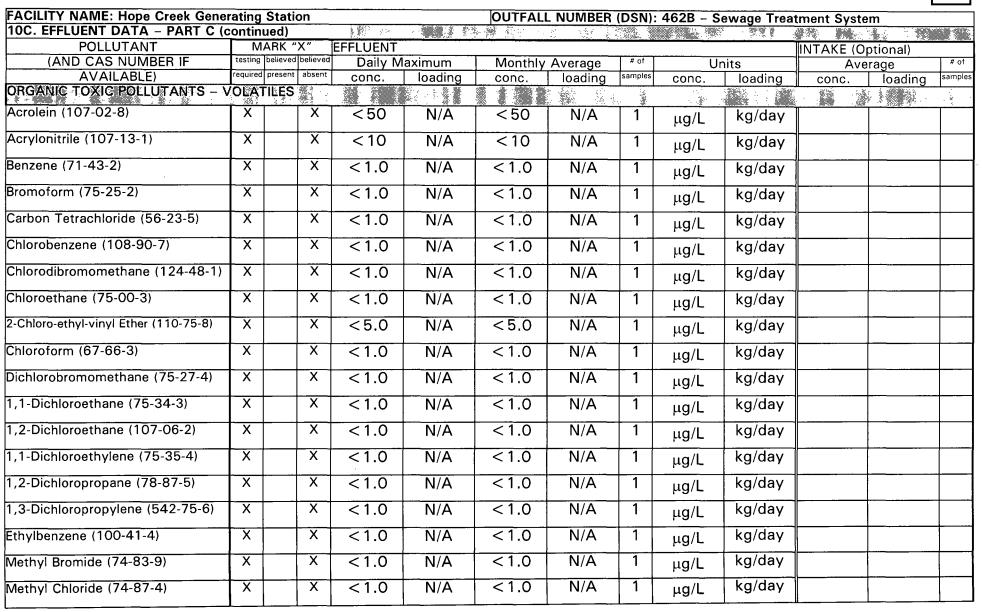
4. Total Petroleum Hydrocarbons (TPH) is measured twice per month by grab sample. TPH is limited to a daily maximum of 15 mg/L and a monthly average of 10 mg/L. The daily maximum concentration and monthly average concentration are reported monthly in mg/L. The current limitations and conditions for Total Petroleum Hydrocarbons should be retained in the Permit.

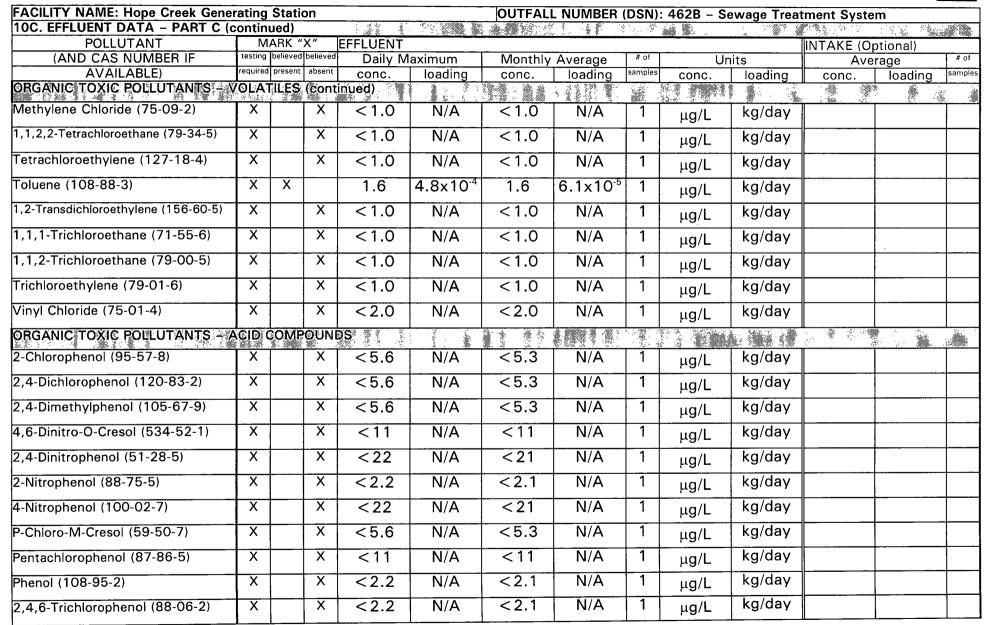
5. Total Suspended Solids (TSS) is measured monthly by 24-hour composite sample. TSS is limited to a daily maximum of 100 mg/L and a monthly average of 30 mg/L. The daily maximum concentration and monthly average concentration are reported monthly in mg/L. The current limitations and conditions for Total Suspended Solids should be retained in the Permit.

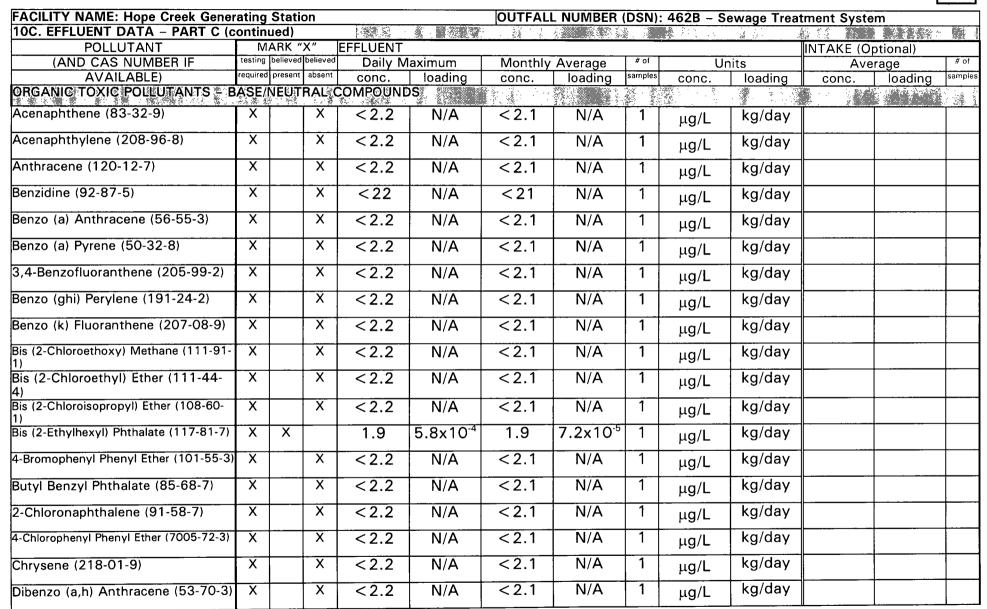

. -



FACILITY NAME: Hope Creek Generati	ng Sta	tion			OUTFAI	L NUMBE	R (DSN)	: 462B -	Sewage Trea	atment Syst	tem	
10A. EFFLUENT DATA – PART A					- 14 - 42-9 -9							ži
POLLUTANT	EFFLUENT							Intake (Opt	tional)			
			Daily N	laximum	Monthly Average		# of	U	nits	Average		# of
			Conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	samples
Biochemical Oxygen Demand (BOD ₅)			10	3.0	5.08	0.2	48	mg/L	kg/day			
Chemical Oxygen Demand (COD)			(A)									
Total Organic Carbon (TOC)			(A)									
Total Suspended Solids (TSS)			73.3	22	73.3	2.8	1	mg/L	kg/day		<u></u>	
Total Dissolved Solids (TDS)			545	165	545	21	1	mg/L	kg/day			
Ammonia (as N)	Ammonia (as N)			3.9	13	0.5	1	mg/L	kg/day			+
UNITS AS INDICATED												
Flow (specify units)				08	Monthly Avg.	01	1461		MGD		- X ())))))))	
Temperature (<i>winter</i>)	emperature (<i>winter</i>)			.3	Monthly Avg. 9.3			c	C			-
Temperature (<i>summer</i>)	emperature (<i>summer</i>)			5.0	9.3 Monthly Avg. 26.0		1	°C				
рН			min. 6.85	max. 6.85				STANDA	RD UNITS	min.	max.	1
10B. EFFLUENT DATA – PART B									an a	II		
POLLUTANT	MAR	к "Х"	EFFLUENT			1 4 4 1 4 1 4 4			<u></u>		(Optional)	
(AND CAS NUMBER WHERE			Daily Maxir	num	Monthly Average		# of	Units		Average		# of
AVAILABLE)		absent		loading	conc.	loading	samples	conc.	loading	conc.	loading	samples
CONVENTIONAL and NON-CONVENTIC	NAL P	OLLU										
Bromide (24959-67-9)		X										T
Chlorine, Total Residual	X		0.02	0.006	0.02	0.0007	1	mg/L	kg/day			
Color, (specify units)	X(B)											
Fecal Coliform	X		620	N/A	16	N/A	48				And a state of the second state	<u> </u>
Fluoride (16984-48-8)	X(B)		1.1	0.3	1.1	0.04	1	mg/L	kg/day			
Nitrate-Nitrite (as N)	X		68.0	21	68.0	2.6	1	mg/L	kg/day			1




FORM C 3/2/98



FACILITY NAME: Hope Creek Gene	OUTFALL NUMBER (DSN): 462B – Sewage Treatment System												
10C. EFFLUENT DATA - PART C (-			32 		たた、 2014年 - 2019年 新聞の一部では、1950年1月	* 22 d			2.2 . - 5		
POLLUTANT		ARK '		EFFLUENT							INTAKE (Op	tional)	
(AND CAS NUMBER IF			believed	Daily N	laximum	Monthly	Average	# of	Ur	nits	Aver	age	# of
AVAILABLE)		present		conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	samples
ORGANIC TOXIC POLLUTANTS - E	BASE/	NEUT	RAL C	OMPOUN	S (continue)	id)							
1,2-Dichlorobenzene (95-50-1)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day		<u> </u>	
1,3-Dichlorobenzene (541-73-1)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
1,4-Dichlorobenzene (106-46-7)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
3,3 –Dichlorobenzidine (91-94-1)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
Diethyl Phthalate (84-66-2)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
Dimethyl Phthalate (131-11-3)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day		····•	
Di-N-Butyl Phthalate (84-74-2)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
2,4-Dinitrotoluene (121-14-2)	X		X	< 2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
2,6-Dinitrotoluene (606-20-2)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day	· · · ·		1
Di-N-Octyl Phthalate (117-84-0)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
1,2-Diphenylhydrazine (122-66-7)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
Fluoranthene (206-44-0)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
Fluorene (86-73-7)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
Hexachlorobenzene (118-74-1)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
Hexachlorobutadiene (87-68-3)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
Hexachlorocyclopentadiene (77-47-4)	X		X	<11	N/A	<11	N/A	1	μg/L	kg/day			
Hexachloroethane (67-72-1)	X		X	< 5.6	N/A	< 5.3	N/A	1	μg/L	kg/day			
Indeno (1,2,3-cd) Pyrene (193-39-5)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
Isophorone (78-59-1)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			

С

FACILITY NAME: Hope Creek Gene			on			OUTFALL	NUMBER	(DSN):	462B – S	ewage Trea	tment Syst	em	
10C. EFFLUENT DATA - PART C (c											¥	× × *	
POLLUTANT		ARK "		EFFLUENT							INTAKE (C		
(AND CAS NUMBER IF	· ·	believed		Dairy iyi	aximum		Average	# of		nits		erage	# of
AVAILABLE)		I present		conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	samples
ORGANIC TOXIC POLLUTANTS - E	SASE/	NEUI	HAL	COMPOUND	DS (continue	id)					det same	144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144	1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -
Naphthalene (91-20-3)	X		X	<2.2	N/A	<2.1	N/A	1	μg/L	kg/day			
Nitrobenzene (98-95-3)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
N-Nitrosodimethylamine (62-75-9)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
N-Nitrosodi-N-Propylamine (621-64-7)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
N-Nitrosodiphenylamine (86-30-6)	X		X	< 5.6	N/A	< 5.3	N/A	1	μg/L	kg/day			
Phenanthrene (85-01-8)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
Pyrene (129-00-0)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
1,2,4-Trichlorobenzene (120-82-1)	X		X	<2.2	N/A	< 2.1	N/A	1	μg/L	kg/day			
ORGANIC TOXIC POLLUTANTS - F	PESTI												
Aldrin (309-00-2)			X										
Alpha-BHC (319-84-6)			X								_		
Beta-BHC (319-85-7)			X										
Gamma-BHC (58-89-9)			X										
Delta-BHC (319-86-8)			X										
Chlordane (57-74-9)			X										
4,4'-DDT (50-29-3)			X										1
4,4'-DDE (72-55-9)			X										
4,4'-DDD (72-54-8)			Х										
Dieldrin (60-57-1)			Х										

FACILITY NAME: Hope Creek Gene			on						: 462B – Se				
10C. EFFLUENT DATA – PART C								S 7 3 2 4					
POLLUTANT		ARK "		EFFLUENT							INTAKE (O	ptional)	
(AND CAS NUMBER IF		believed		Daily Ma	aximum	Monthly	Average	# of	Un	its	Average		# of
AVAILABLE)		present		Conc.	loading	conc.	loading	samples	conc.	loading	conc.	loading	samples
ORGANIC TOXIC POLLUTANTS -	PESTIC	CIDES	(con	tinued)		(<u>.</u>					
Alpha-Endosulfan (115-29-7)	T		Х			<u> </u>	<u></u>	T					
Beta-Endosulfan (115-29-7)	-		Х				·····						
Endosulfan sulfate (1031-07-8)			Х										
Endrin (72-20-8)	1		Х										
Endrin Aldehyde (7421-93-4)			Х										1
Heptachlor (76-44-8)	_		X										
Heptachlor Epoxide (1024-57-3)			X										1 1
PCB-1242 (53469-21-9)			x										+
PCB-1254 (11097-69-1)	1		X										-
PCB-1221 (11104-28-2)	-	<u> </u>	X					<u> </u>					+
PCB-1232 (11141-16-5)			Х						· · · ·				
PCB-1248 (12672-29-6)			х										
PCB-1260 (11096-82-5)			х										-
PCB-1016 (12674-11-2)	+		Х										1
Toxaphene (8001-35-2)	-		x										

EXPLANATION OF NOTES - FORM C, ITEM 10 -

(A) Analysis of these parameters is not required per approval of the NJDEP as specified under Item 10A on Page 4 of 8 of the instructions for Form C.

J

(B) These pollutants are utilized at the facility in areas which could discharge through the respective outfall in the event of a spill, leak or inadvertent drain. These pollutants are not intentionally added to this effluent stream, and are not, therefore, normally discharged through this outfall.

SUMMARY TABLE DSN 462B

Facility: PSEG-Hope Creek Discharge Serial Number (DSN): 462B

Latitude: 39° 28' 11" Longitude: 75° 32' 25"

Internal Monitoring Point

Wastewater Type: Effluent of the Sewage Treatment Plant. (Note 1)

Parameter All units in mg/L (kg/day) unless otherwise noted		NJPDES/ DSW Permit Application	Existing NJPDES/DSW Permit limits DSN 462B	NJPDES/ DSW DMR 1/03-12/06	Note	Draft Permit Limits for DSN 462B
Flow, Effluent, MGD	avg. max. data pts. monitor	0.01 0.08 1461 	NL NL D/Mt	0.01 0.08 1461 	2	NL NL D/Mt
BOD5 (kg/day)	avg. max. data pts. monitor	5.1 10.0 48 	8 NL M/Comp	5.1 10.0 48 	3	8 NL M/Comp
BOD5 (% Removal)	min. max. data pts. monitor	90.0 99.6 48	87.5 N/A M/Calc	90.0 99.6 48	4	87.5 N/A M/Calc
Total Suspended Solids (mg/L)	avg. max. data pts. monitor	9.4 23.0 48 	30 NL M/Comp	9.4 23.0 48 	5	30 NL M/Comp
Total Suspended Solids (% Removal)	min. max. data pts. monitor	87.0 100.0 48	85 N/A M/Calc	87.0 100.0 48	6	85 N/A M/Calc
F. Coliform (MPN/100ml)	avg. max. data pts. monitor	15.7 620 48 	200 400 M/G	15.7 620 48 		200 400 M/G

Oil and Grease (mg/L)	avg. max. data pts. monitor	1.4 29.0 48 	10 15 M/G	1.4 29.0 48 	8	10 15 M/G

The abbreviation "N/A" denotes "Not Applicable"; "NL" denotes "Not Limited" with monitoring and reporting required.

"MGD" denotes "million gallons per day"

"ND" denotes "Non-detected" value.

Monitoring requirement abbreviations are: "Cont" denotes "Continuous"; "D" denotes "Daily"; "3-W" denotes "three times per week"; "W" denotes "Weekly"; "2-M" denotes "Twice per Month"; "M" denotes "Monthly"; "Q" denotes "Quarterly"; "Mt" denotes "Meter"; "Cal" denotes "Calculated"; "G" denotes "Grab"; Comp" denotes "Composite"

TAB DSN 462B SEWAGE TREATMENT SYSTEM

EXPLANATION OF SUMMARY TABLE NOTES

PAGE 1 OF 4

1. The Sewage Treatment System (DSN 462B, an internal monitoring point) treats collected domestic waste waters from the Salem and Hope Creek Generating Stations, support (e.g., administrative) facilities, and sewage holding facilities from unconnected buildings on-site. The major flowpaths and treatment components are shown on the enclosed schematic entitled "Sewage Treatment System". Influent wastewater and return activated sludge are introduced into the single-channel oxidation ditch where extended aeration, a modification of the activated sludge process, is used to oxidize the organic constituents of the influent waste water. This process acts to remove Biochemical Oxygen Demand (BOD), reduce suspended solids, nitrify, and partially denitrify the wastewater. Rotor aerators are used to mix air into the contents of the basin and to keep the contents moving around the oxidation ditch. Following aeration, mechanical settling in the biological clarifiers is used to separate suspended solids from the liquid flow. The settled solids, or sludge, is either returned to the oxidation ditch or wasted to a sludge holding tank, based upon process requirements. The liquid wastewater flows from the clarifiers to the sand filters or directly to the chlorination facilities. The deep-bed downflow gravity sand filters can be used to further reduce suspended solids. Filter effluent flows to the clearwell for use as filter backwash water or is discharged to the chlorination facilities. The chlorination system is a flow-dependant tablet chlorination system, currently using calcium hypochlorite tablets followed by chlorine contact tanks to provide the retention necessary for the biocide to function. The effluent of the chlorine contact tanks flows over a cascading weir to the effluent pump lift station. Level-controlled effluent pumps transfer the treated water (0.01 MGD) to the cooling tower blowdown, DSN 461A (46.7 MGD), for discharge to the Delaware Estuary. Residual cooling tower blowdown de-chlorination chemical, ammonium bisulfite, de-chlorinates the sewage treatment system effluent. Settled solids or sludge is removed from the waste

TAB DSN 462B SEWAGE TREATMENT SYSTEM

EXPLANATION OF SUMMARY TABLE NOTES PAGE 2 OF 4

stream to the sludge holding tank for aeration and dewatering before being trucked offsite to a licensed disposal facility, or to an USNRC-licensed facility if the residuals contain low levels of radioactivity.

In accordance with the current Permit, the sewage treatment system effluent discharges through the cooling tower blowdown outfall (DSN 461A). The sewage treatment system outfall is an internal waste stream. Emergency provisions have been retained for discharge of the sewage treatment system effluent through DSN 465A upon failure of the lift station pumps to prevent sewage overflow. Treated effluent is discharged through the internal monitoring point DSN 462B (0.01 MGD) which combines with DSN 461A (46.7 MGD) before discharge to the Delaware Estuary. This results in a reduction in the concentration of a pollutant by a factor of approximately 2000 prior to discharge. The monitoring point for DSN 461A is after the commingling with DSN 462B.

2. Effluent Flow is monitored daily by meter and the daily maximum and monthly average flow is reported monthly in Million Gallons per Day (MGD). If the monitoring equipment is inoperable (e.g. for preventative maintenance, calibration, or repair), the flow is to be calculated based on the manual measurement of height of the effluent over a v-notched weir. Manual flow measurement should be included with the alternative monitoring provisions in the current Permit at Part IV-G.4.

3. Biochemical Oxygen Demand (BOD_5) is measured monthly by 24-hour timeweighted composite sample. The mass of BOD_5 discharged is limited to a monthly average of 8 Kg/day. This is equivalent to a carbonaceous (first stage)

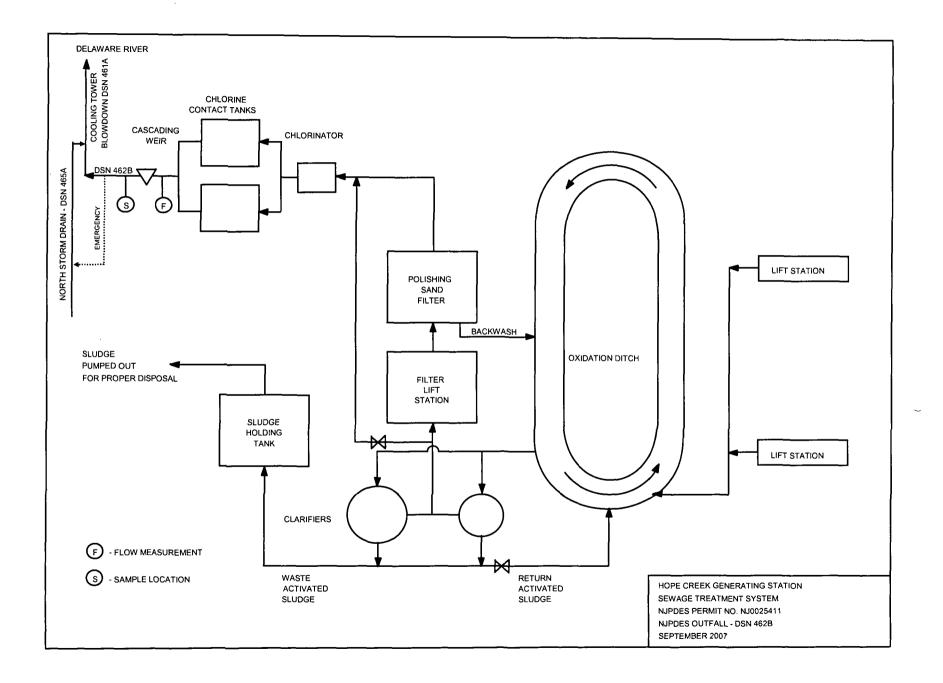
TAB DSN 462B SEWAGE TREATMENT SYSTEM

EXPLANATION OF SUMMARY TABLE NOTES PAGE 3 OF 4

oxygen demand (FSOD) of 9.5 kg/day (21 pounds per day) as assigned by the Delaware River Basin Commission. The daily maximum and monthly average are reported monthly in kg/day. There is no change requested to the current limitations and conditions for BOD₅ loading.

4. The percent removal of Biochemical Oxygen Demand (BOD₅) is calculated from the monthly 24-hour composite samples on the influent and effluent of the Sewage Treatment System. The monthly minimum is reported monthly in percent. The monthly minimum limitation of 87.5% is consistent with the Delaware River Basin Commission (DRBC) Docket Decision D-87-70 and the DRBC Effluent Quality Requirements. There is no change requested to the current limitations and conditions for percent removal of BOD₅.

5. Total Suspended Solids (TSS) is measured monthly by 24-hour timeweighted composite sample. TSS is limited to a monthly average of 30 mg/L. The daily maximum concentration and monthly average concentration are reported monthly in mg/L. There is no change requested to the current limitations and conditions for Total Suspended Solids.


6. The percent removal of Total Suspended Solids (TSS) is calculated from the monthly 24-hour composite samples on the influent and effluent of the Sewage Treatment System. The monthly minimum is reported monthly in percent. The monthly minimum limitation of 85% is consistent with the Delaware River Basin Commission (DRBC) Docket Decision D-87-70 and the DRBC Effluent Quality Requirements. There is no change requested to the current limitations and conditions for percent removal of TSS.

TAB DSN 462B SEWAGE TREATMENT SYSTEM

EXPLANATION OF SUMMARY TABLE NOTES PAGE 4 OF 4

7. Fecal Coliform is monitored monthly by grab sample and reported monthly. The monthly average is calculated as the geometric mean over a 30 consecutive day period and the maximum is calculated as the geometric mean over a seven consecutive day period. Fecal Coliform is limited to a monthly average of 200 MPN/100ml (based on the DRBC Stream Quality Objectives) and a maximum of 400 MPN/100ml (based on the State Water Quality Standards). There is no change requested to the current limitations and conditions for Fecal Coliform.

8. Oil and Grease (O&G) is measured monthly by grab sample. O&G is limited to a monthly average of 10 mg/L and a daily maximum of 15 mg/L. The daily maximum concentration and monthly average concentration are reported monthly in mg/L. There is no change requested to the current limitations and conditions for Oil and Grease.

EXPLANATION NOTES

PAGE 1 OF 4

1. Stormwater runoff at the facility is directed via a conveyance system to three discrete outfalls identified as DSN 465A (North Yard Drain), DSN 463A (South Yard Drain) and DSN 464 (Perimeter Drain). As required in the current Permit the Stormwater Pollution Prevention Plan (SPPP) has been implemented and all requirements of the SPPP have been met for the term of the Permit. The SPPP has been demonstrated to be an effective mechanism to ensure that proper stormwater operations, maintenance procedures, and good housekeeping practices function to minimize the contact between stormwater runoff and the facility's operations. There is no treatment within these systems and therefore there are no residuals generated. As noted in the current Permit, the tidal influence is predominant in the effluent.

2. The North Yard Drain (DSN 465A) [annotated as DSN 462A in earlier permits] collects and discharges (0.16 MGD) to the Delaware Estuary, site drainage from the facility parking lots, Centralized Warehouse roof drain, loading ramp catch basins, Auxiliary Boiler roof drain, Fire Water Pumphouse, No. 2 Reactor Building roof and area drains, Materials Center area and roof drains, construction and excavation dewatering, and runoff from other miscellaneous sources. The sewage treatment system (DSN 462B) emergency overflow can discharge through this outfall but the sewage treatment system is monitored independently. The primary influents and the flow paths are shown on the enclosed schematic entitled North Yard Drain. Containments and isolated catch basins which collect precipitation or other sources of water are first evaluated for pollutants then released to the yard drain system. The evaluation includes a determination based on the source of the water and the potential for pollutant presence and then, if appropriate, the water is analyzed prior to release. The North Yard Drain system may contain precipitation, river water or groundwater (including fresh water and potable water), but the

TAB YARD DRAINS

EXPLANATION NOTES

PAGE 2 OF 4

effluent consists primarily of Delaware Estuary water, largely due to the tidal influence.

3. The South Yard Drain (DSN 463A) collects and discharges (0.33 MGD) to the Delaware Estuary, site drainage from the Security Center roof, drain and parking lot, roof and area drains from the Administrative Building, Auxiliary Boiler, Turbine Building, Reactor Building, Materials Center, and Services Facility Building, as well as the Chlorine Structure drains, service water valve pit, dewatering sump, construction and excavation dewatering, and runoff from other miscellaneous sources. The primary influents and the flow paths are shown on the enclosed schematic entitled South Yard Drain. Containments and isolated catch basins which collect precipitation or other sources of water are first evaluated for pollutants then released to the yard drain system. The evaluation includes a determination based on the source of the water and the potential for pollutant presence and then, if appropriate, the water is analyzed prior to release. For example, the service water sodium hypochlorite tank containment may contain precipitation, fresh water, and service water and contain low concentrations of chlorine residual. The containment contents are analyzed for residual chlorine prior to release to the South Yard Drain and the release is not conducted if residual chlorine is detected. The South Yard Drain system may contain precipitation, river water (including service water) or groundwater (including fresh water and potable water), but the effluent consists primarily of Delaware Estuary water, largely due to the tidal influence

4. The Perimeter Drain (DSN 464) collects and discharges (0.26 MGD) to the Delaware Estuary, site drainage and runoff from the access road area, Administration Building roof drains and parking lots, Combo Shop roof drains, catch basins in undeveloped portions of the site, groundwater infiltration, natural drainage

EXPLANATION NOTES

PAGE 3 OF 4

from the adjacent marshes, and drainage from areas external to the Hope Creek site. Due to the facility elevations and proximity to the River, this outfall can also be tidally influenced.

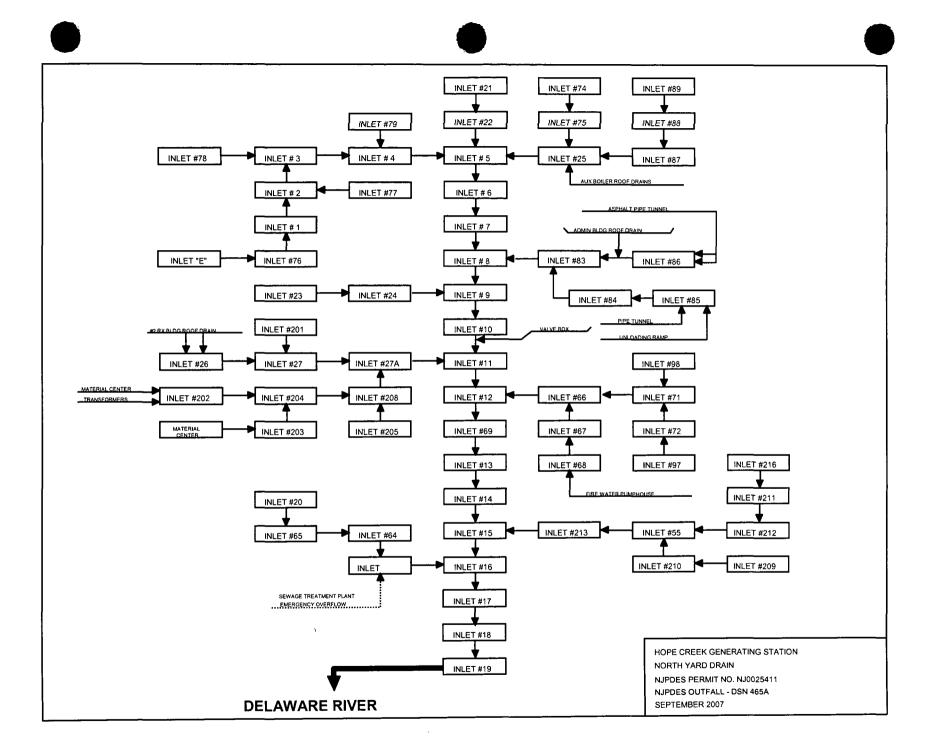
5. As discussed above, groundwater has also been identified as an influent to the yard drains, DSN 463A, DSN 465A and DSN 464. Groundwater can infiltrate or be an influent to any of the three yard drains. Shallow groundwater can infiltrate the piping of the yard drain systems or enter the yard drain systems through leakage into sumps or pits that enter the yard drain systems or through pumping to the yard drains from dewatering activities. Deeper groundwater is obtained at the site from wells that withdraw water from primarily the PRM aguifer, although the Middle Raritan aguifer may be utilized infrequently. This deeper groundwater is employed throughout the site in applications for which brackish water from the Delaware Estuary is not appropriate. This groundwater is called by many names, generally based on the intended use of the groundwater. The deeper groundwater is called fire water when it enters the fire suppression/fighting water tanks and system, fresh water when it is enters the fresh water system, potable water (or domestic or drinking water) when it enters the potable water tank and system, bearing seal water when it is filtered and used to cool and seal pump bearings, demineralized water when it has gone through filtration and ion exchange, and similar designations relative to the intended use.

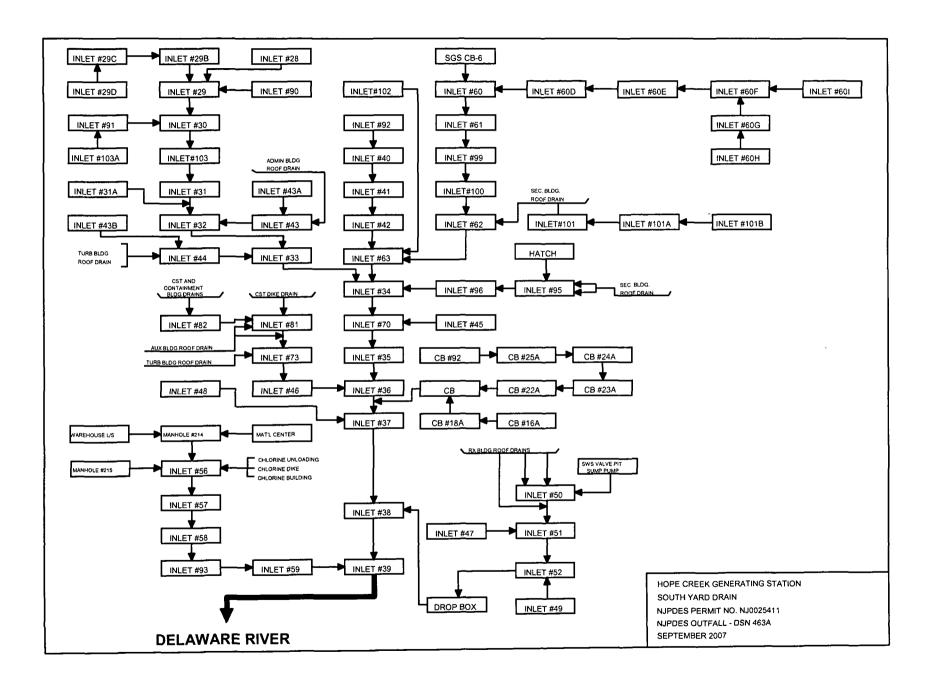
The fire water system, in addition to directing groundwater to the other systems, provides water to sprinklers, hydrants, fire suppression systems, hose connections, and similar fire protection related equipment and applications. Fire water can enter the yard drains through activation of a fire suppression system, flushing or testing of hoses and hydrants, tank or pipe draining, or fire fighting activities or training. There are no chemicals added to the fire water system;

TAB YARD DRAINS

EXPLANATION NOTES

PAGE 4 OF 4


however, there is a foam system that the fire water mixes with for suppression of primarily oil fires which is generally collected in a treatment system if activated.


Fresh water is provided for general uses such as safety showers, small closedloop cooling systems, general hose connections, general wash water, and janitorial supply.

Potable water provides drinking water, sanitary services, sinks, showers, kitchen supply, and similar consistent miscellaneous uses. Potable water can enter the yard drains through draining of the system tanks or pipes or miscellaneous other points. Potable water contains no treatment chemicals.

Demineralized water is ultra-purified groundwater that is specifically required for a variety of processes at the Station. Demineralization consists of processing groundwater through a series of filters and ion exchange resins. Demineralized water can enter the yard drains from leaking process pipes, during analytical testing of the processed water, and during maintenance of demineralized water facilities. Demineralized water contains no treatment chemicals. Since demineralized water is groundwater with some impurities removed, demineralized water may also enter any of the yard drains.

Any waters, derived from groundwater without the addition of any chemicals, and no matter how internally named, can be discharged through any outfall. This practice is consistent with the application and practice in all prior permit applications but has been more clearly explained in this application.

