

Dominion Nuclear Connecticut, Inc. Millstone Power Station Rope Ferry Road Waterford, CT 06385

AUG 2 2 2007

U. S. Nuclear Regulatory Commission Attention: Document Control Desk One White Flint North 11555 Rockville Pike Rockville, Maryland 20852-2738

Serial No.	07-0532
NSS&L/DF	R0
Docket No.	50-423
License No.	NPF-49

DOMINION NUCLEAR CONNECTICUT, INC. MILLSTONE POWER STATION UNIT 3 STARTUP TEST REPORT FOR CYCLE 12

Pursuant to Section 6.9.1.1 of the Millstone Unit 3 Technical Specifications, Dominion Nuclear Connecticut, Inc. hereby submits the enclosed Startup Test Report for Cycle 12.

Should you have any questions about the information provided or require additional information, please contact Mr. David W. Dodson at (860) 447-1791, extension 2346.

Sincerely,

Sile Vice President - Millstone

Enclosure: (1)

Commitments made in this letter: None.

cc: U.S. Nuclear Regulatory Commission Region I 475 Allendale Road King of Prussia, PA 19406-1415

> Mr. J. D. Hughey Project Manager U.S. Nuclear Regulatory Commission One White Flint North 11555 Rockville Pike Mail Stop 8B3 Rockville, MD 20852-2738

Serial No. 07-0532 Docket No. 50-423 Startup Test Report Page 2 of 2

NRC Senior Resident Inspector Millstone Power Station

.

Serial No. 07-0532 Docket No. 50-423

ENCLOSURE

STARTUP TEST REPORT FOR CYCLE 12

;

DOMINION NUCLEAR CONNECTICUT, INC. MILLSTONE POWER STATION UNIT 3

Table of Contents

<u>Page</u>

1.0	SUMMARY	2
2.0	INTRODUCTION	2
3.0	FUEL DESIGN	3
4.0 5.0	LOW POWER PHYSICS TESTING	3344 5566
6.0	REFERENCES	7
7.0	FIGURES	7

.

٠

1.0 <u>SUMMARY</u>

Low Power Physics Testing and Power Ascension Testing for Millstone Unit 3 Cycle 12 identified no unusual core response or reactivity anomalies. All measured core parameters were determined to be within their acceptance criteria. All Technical Specification surveillance requirements were met.

2.0 INTRODUCTION

The Millstone Unit 3 Cycle 12 fuel reload was completed on May 5, 2007. The attached core map (Figure 1) shows the final core configuration. Reference [6.3] documents that Cycle 12 uses a low leakage loading pattern (L3P) consisting of 76 new Region 14 fuel assemblies, 72 Region 13 once-burned fuel assemblies, and 45 Region 12 twice-burned fuel assemblies. The 76 feed fuel assemblies, 72 onceburned fuel assemblies and 40 out of 45 twice-burned assemblies are the Westinghouse 17x17 Robust Fuel Assembly (RFA) design. Five of the twice-burned fuel assemblies are Westinghouse 17x17 Next Generation Fuel (NGF) Lead Test Assemblies (LTAs).

The 76 Region 14 assemblies are comprised of 36 assemblies enriched to 4.70 weight percent Uranium-235 (w/o U^{235}) and 40 assemblies enriched to 4.95 w/o U^{235} . The top and bottom regions of all fuel assemblies in the Cycle 12 core are comprised of a 6-inch annular blanket region enriched to 2.6 w/o U^{235} . The fuel assembly locations for the fresh fuel were randomly assigned to prevent power tilts across the core due to systematic deviations in the fresh fuel composition.

Every fuel assembly in Cycle 12 contains an insert from the following list of items: 61 RCCAs, and 132 thimble plugs.

Subsequent operational and testing milestones were completed as follows:

Initial Criticality	May 17, 2007
Low Power Physics Testing completed	May 17, 2007
Main Turbine Online	May 19, 2007
30% Power Testing completed	May 20, 2007
75% Power Testing completed	May 21, 2007
100% Power Testing completed	May 23, 2007
Startup Test Program completed	June 4, 2007

3.0 FUEL DESIGN

The Robust Fuel Assembly (RFA) design comprises 188 out of the 193 assemblies in the Cycle 12 core. This fuel design differs from the previous fuel design in that it incorporates the Westinghouse protective bottom grid (P-Grid), thicker walled control rod guide tubes and instrument tube, and modifications to the mixing vane grids and Intermediate Flow Mixer (IFM) grids. The P-Grid improves the fuel assembly's resistance to debris and thus debris related failures. The thicker walled guide and instrument tubes make the fuel assembly more resistant to bowing and twisting, thereby further reducing the possibility of an incomplete rod insertion event. The modifications to the mixing vanes grids and IFMs improve the fuel assembly thermal performance and increase the margin to fuel-related design limits.

The final 5 assemblies in the Cycle 12 core are Next Generation Fuel (NGF) Lead Test Assemblies (LTAs). These LTAs, designated Region 12C, have several mechanical differences from the RFA assemblies. The LTAs have an Integral Top Nozzle, enhanced structural and IFM grids, two additional IFM grids per assembly, and utilize a tube-in-tube design for the guide tubes. The LTAs also have reduced pressure drop Debris Filter Bottom Nozzles (DFBNs), optimized ZIRLO[™] cladding, and have had the plenum spring used on an RFA replaced by a spring clip. The central fuel assembly in Cycle 12 location H-08 is an LTA with an approved fuel rod average burnup limit of 71,000 MWD/MTU.

4.0 LOW POWER PHYSICS TESTING

The low power physics testing program for Cycle 12 was completed using the procedure in reference [6.1] based on the Westinghouse Dynamic Rod Worth Measurement (DRWM) Technique described in reference [6.4]. This program consisted of the following: Control and Shutdown Bank Worth measurements, Critical Boron Endpoint measurements for All Rods Out (ARO), and ARO Moderator/Isothermal Temperature Coefficient measurements. Low power physics testing was performed at a power level below the point of nuclear heat to avoid nuclear heating reactivity feedback effects.

4.1 Critical Boron Concentration

The critical boron concentration was measured for the ARO configuration. The measured values include corrections to account for differences between the measured critical rod configuration and the ARO configuration. The review and acceptance criteria of ± 500 and ± 1000 percent milliRho (pcm) respectively were met for the ARO configuration.

	Measured (ppm)	Predicted (ppm)	M-P (ppm)	Acceptance Criteria (pcm)
All Rods Out (ARO)	2171	2177	-6 (-40 pcm)	<u>+</u> 1000

Summary of Boron Endpoint Results

4.2 Moderator Temperature Coefficient

Isothermal Temperature Coefficient (ITC) data was measured at the ARO configuration. Controlled heat-ups and cool-downs were performed and the reactivity change was measured. These measurements were corrected for ARO conditions and the averages of the corrected results are presented below. They were then compared to the design predictions and review criteria. The review criteria of ± 2 pcm/°F to the predictions were met.

The ARO Moderator Temperature Coefficient (MTC) of -0.17 pcm/°F was calculated by subtracting the design Doppler Temperature Coefficient (-1.77 pcm/°F) from the measured ARO Isothermal Temperature Coefficient of -1.94 pcm/°F. The Technical Specification Limit of MTC < +5.0 pcm/°F at ARO Hot Zero Power (HZP) was met.

	Measured (pcm/ºF)	Corrected Predicted (pcm/°F)	M-P (pcm/⁰F)	Acceptance Criteria (pcm/°F)
ARO ITC	-1.94	-2.04	+0.10	NA
ARO MTC	-0.17	NA	NA	MTC < +5.0

Isothermal/Moderator Temperature Coefficient Results

4.3 Control Rod Reactivity Worth Measurements

The integral reactivity worths of all RCCA Control and Shutdown Banks were measured using the Dynamic Rod Worth Measurement Technique (DRWM). The review criteria is that the measured worth is $\pm 15\%$ or 100 pcm of the individual predicted worth, whichever is greater and sum of the measured worths is $\pm 8\%$ of the predicted worths. The DRWM rod worth acceptance criteria is defined as: the sum of the measured worths (M) of all banks shall be greater than or equal to 90% of the sum of their predicted worths (P).

	Measured (pcm)	Predicted (pcm)	M-P (pcm)	% Difference (M-P) / P
Control Bank A	717.7	731.9	-14.2	-1.9
Control Bank B	722.9	691.6	31.3	4.5
Control Bank C	762.4	744.3	18.1	2.4
Control Bank D	443.4	449.8	-6.4	-1.4
Shutdown Bank A	407.3	400.0	7.3	1.8
Shutdown Bank B	1170.1	1133.5	36.6	3.2
Shutdown Bank C	400.5	397.6	2.9	0.7
Shutdown Bank D	404.4	396.1	8.3	2.1
Shutdown Bank E	67.8	63.3	4.5	7.1
Totals	5096.5	5008.1	88.4	1.8

Control Bank Integral Worth Results

The measured results of the individual bank worths and the total control bank worth showed excellent agreement with the predicted values. All individual and total worth review criteria were met. The acceptance criteria for sum of the measured rod worths (greater than or equal to 90% of the sum of the predicted worths) was met.

5.0 POWER ASCENSION TESTING

5.1 Power Distribution, Power Peaking and Tilt Measurements

The core power distribution was measured through the performance of a series of flux maps during the power ascension as specified in reference [6.2]. The results from the flux maps were used to verify compliance with the power distribution Technical Specifications.

A low power flux map, at approximately 30% rated thermal power (RTP), was performed to determine if any gross neutron flux abnormalities existed. At the 30% power plateau flux map, data necessary to perform an INCORE to EXCORE calibration via the single point methodology was obtained. Per Technical Specification Surveillance 4.3.1.1, Table 4.3-1 Functional Unit 2 Note 6, a flux map at approximately 100% power was performed for INCORE to EXCORE calibration. The 100% power map also verified core power distributions were within the design limits.

A summary of the Measured Axial Flux Difference (AFD) and INCORE Tilt for the flux maps performed during the power ascension is provided below. Additional tables provide comparisons of the most limiting measured Heat Flux Hot Channel Factor (F_{α}) and Nuclear Enthalpy Rise Hot Channel Factor ($F_{\Delta}h$), including uncertainties, to their respective limits from each of the flux maps performed during the power ascension. The most limiting F_{α} reported is based on minimum margin to the steady state limit that varies as a function of core height.

As can be seen from the data presented, all Technical Specification limits were met and no abnormalities in core power distribution were observed during power ascension.

Power (%RTP)	Burnup (MWD/MTU)	Rod Position (steps)	AFD (%)	INCORE Tilt
30.0	7.1	216	5.362	1.0049
74.0	26.4	216	4.126	1.0025
99.8	116.1	216	0.756	1.0012

Summary of Measured Axial Flux Difference and INCORE Tilt

Power (%RTP)	Burnup (MWD/MTU)	Measured F_Q	F _Q ^{RTP} steady state limit	Margin to Transient Limit
30.0	7.1	N/A	N/A	N/A
74.0	26.4	1.907	3.396	33.9 %
99.8	116.1	1.820	2.518	14.8 %

Comparison of Measured F_Q to F_Q^{RTP} Limit

Comparison of Measured $F_{\Delta}h$ to $F_{\Delta}h$ Limit for each Fuel Type

Power (%RTP)	Burnup (MWD/MTU)	Type 1 (NGF)	Type 1 Limit	Type 2 (RFA)	Type 2 Limit
30.0	7.1	0.849	1.827	1.525	1.912
74.0	26.4	0.898	1.628	1.468	1.703
99.8	116.1	0.927	1.511	1.454	1.581

Presented in Figures 2, 3 and 4 are measured Power Distribution Maps showing percent difference from the predicted power for the 30%, 75% and 100% power plateaus. From these data it can be seen that there is good agreement between the measured and predicted assembly powers.

5.2 Boron Measurements

Hot full power all rods out boron concentration measurements were performed after reaching equilibrium conditions. The measured All Rods Out, Hot Full Power, equilibrium xenon, boron concentration was 1506 ppm with a predicted value of 1502 ppm. The predicted to measured difference was +24 pcm which met the acceptance criteria of \pm 1000 pcm.

5.3 Reactor Coolant System Flow Measurement

The Reactor Coolant Flow rate was determined using a secondary calorimetric heat balance for each loop using the steam generators as the control volumes. The following parameters were measured:

- Reactor Coolant System Pressure
- Hot Leg Temperatures
- Cold Leg Temperatures
- Feedwater Temperatures
- Feedwater Flow Rates
- Feedwater Pressure
- Steam Generator Pressure

Steam generator blowdown was not isolated during the data acquisition period.

Per Technical Specification Surveillance 4.2.3.1.2, the Reactor Coolant System Flow was measured prior to operation above 75% rated thermal power. The measured flow at approximately 74% rated thermal power was 402,334 gallons per minute

(gpm) with a minimum required flow of 372,292 gpm. The reactor coolant system flow measurement was re-performed after reaching 100% rated thermal power. The measured flow at 100% power was 400,661 gpm with a minimum required flow of 372,292 gpm. All Technical Specification limits were met.

6.0 <u>REFERENCES</u>

- 6.1 SP 31008, Rev. 003-01, "Low Power Physics Testing (IPTE)"
- 6.2 EN 31015, Rev. 002-01, "Power Ascension Testing of Millstone Unit 3"
- 6.3 Nuclear Design and Core Physics Characteristics of the Millstone Generating Station Unit 3, Cycle 12
- 6.4 WCAP-13360-P-A, Revision 1, "Westinghouse Dynamic Rod Worth Measurement Technique"
- 6.5 NEU-07-133, Letter from W. F. Staley (Westinghouse) to Robert Borchert, "Dominion Nuclear Connecticut Millstone Unit 3 Low Power Physics Tests (LPPT)," dated June 28, 2007.

7.0 <u>FIGURES</u>

		Page
1	Cycle 12 Loading Plan	8
2	INCORE Power Distribution - 30%	9
3	INCORE Power Distribution - 74%	10
4	INCORE Power Distribution - 100%	11

	R	P	N	M	L	ĸ	J	н	G	F	E	D	с	в	A		
											1						
					12B	12B	12C	12B	12B	12B	12B						
					¥19	M 33	M72	M43	M46	H4 7	E6 3		-1			- 1	
			12B	12B	14B	14B	14B	14B	14B	14B	14B	128	12B				
			M 34	M2 3	P42	P20	P59	P64	P66	₽52	P44	H 24	K23			<u> </u>	
		12B	14B	14B	14A	13B	13B	13B	13B	13B	14A	14B	14B	12B			
		M59	P37	P7 2	P15	3170	N42	N67	N43	N69	₽20	¥73	₽38	M37		3	
		12B	14B	137	13B	13B	13 a	147	137	13B	13B	138	14B	12B		(
		M25	₽58	N22	N47	N57	N18	P22	N25	N49	N56	N29	P76	M28			
	12B	14B	147	13B	142	13A	14 a	13 a	14A	13A	143	13B	14A	14B	12B	_ s	
	M56	P45	P31	N65	P32	N03	₽06	N16	P08	N08	P14	N51	P35	P46	M22	· -	
	12B	14B	13B	13B	13A	14 a	13A	14 a	13A	148	13A	13B	13B	14B	12B	— б	
	M39	P53	N62	NS0	N01	P16	M35	P26	N32	₽27	N07	N63	N54	₽54	M41	-	
	128	14B	13B	13A	141	13 a	147	138	14A	13A	14A	13A	13B	14B	12C	_ 7	
	H32	260	N39	N11	P09	N33	P01	N27	P02	N15	P10	N24	N41	P69	M69		
900	12B	14B	13B	14A	13A	14A	13A	12C	138	147	138	14A	13B	14B	12B	a	
20	M29	P70	1172	P23	N30	P24	N13	271	N37	P19	N14	P21	N61	P67	M30		
	12C	14B	13B	13A	14A	13A	142	13A	147	13A	14A	13 X	13B	14B	12B	。	1
	M65	P68	N45	N10	P11	M23	₽03	N36	P04	N26	P05	N19	N40	P63	M35	1	
	12B	14B	13B	13B	13A	14A	132	147	13A	14A	13A	13B	13B	14B	12B	_ 1	0
	M40	₽55	NS5	N58	N06	P13	N31	P30	N21	P18	N05	N46	N73	P49	M42		•
	12B	14B	143	13B	14A	138	14A	13A	143	13A	148	13B	143	14B	12B	_ 1	1
	H 20	P47	P17	N52	P34	N04	P12	N17	P07	N02	P33	N66	P29	P41	M 55]	•
		12B	14B	138	13B	13B	13A	143	138	13B	13B	13A	14B	12B	I	1	2
		H17	P65	N20	N71	N53	N28	P36	N12	N60	N48	N34	P 57	M21		• •	
		12B	14B	14B	14A	13B	13B	13B	13B	13B	142	14B	14B	12B		1	.3
		M48	P 39	P71	P28	N59	1944	N64	N38	N68	P25	P62	P40	M52		-	-
			12B	12B	14B	14B	14B	14B	14B	14B	14B	12B	12B			1	4
			M62	M26	P48	P56	P61	₽75	P74	P51	P43	M18	M44			-	-
					12B	12B	12B	12B	12C	12B	12B						5
					W58	M36	W31	MAS	M68	1138	M27						

FIGURE 1 CORE LOADING PATTERN MILLSTONE UNIT 3 - CYCLE 12

11

00

LEGEND

.

R Region Identifier ID Fuel Assembly Identifier

REGION	ASSEMBLIES	ENRICHMENT
12B	40	4.95
12C	5	4.95
13A	36	4.00
13B	36	4.95
14A	36	4.70
14B	40	4.95

R I	Р I	N I	М	Ļ	ĸ	Ļ	H	Ģ	F	Ē	D	C I	B I	A	
				0.284 0.4	0.380 1.9	0.386 1.6	0.380 2.2	0.382 1.1	0.372 1.1	0.276 1.1					- 1
		0.265 -2.2	0.475 -2.3	1.062 0.4	1.252 1.5	1.223 1.7	1.202 2.1	1.220 2.0	1.258 2.4	1.070 0.8	0.492 -2.0	0.268 -1.5			- 2
	0.265 -2.6	0.940 -2.5	1.138 -2.7	1.312 0.3	1.322 0.4	1.333 0.8	1.292	1.337 1.7	1.369 3.6	1.322 0.8	1.151 -2.0	0.952 -1.2	0.269 -0.7		- 3
	0.489 -2.6	1.143 -2.7	1.050 -3.0	1.214 -2.6	1.206 -2.6	1.123 0.8	1.318 0.2	1.125 1.0	1.250 0.6	1.247 0.2	1.070 -1.1	1.160 -0.9	0.485 -0.2		- 4
0.270 -1.1	1.052 -0.8	1.300 -0.9	1.232 -1.0	1.252 -2.9	1.038 -3.0	1.258 -2.6	1.057 -1.8	1.269 -1.7	1.057 -1.0	1.276 -1.1	1.240 -0.5	1.316	1.066 0.8	0.287 1.4	- 5
0.367	1.243 1.1	1.358 2.8	1.256 1.1	1.056 -1.1	1.203 -2.8	1.017 -3.0	1.188	1.041 -0.7	1.240 0.2	1.077	1.252 1.1	1.342 1.9	1.255 1.8	0.378 1.3	- e
0.384 1.6	1.221 2.1	1.351 2.7	1.141	1.296 0.4	1.039 -0.9	1.234 -2.0	0.947 -1.7	1.244 -1.2	1.048	1.289 -0.2	1.142 2.5	1.354 2.4	1.236 2.8	0.387 1.8	- 7
0.382	1.207 2.5	1.310 2.4	1.346 2.3	1.099 2.1	1.217 0.1	0.957	0.778 -1.4	0.951 -1.2	1.197 -1.6	1.067 -0.8	1.332	1.312	1.215 3.2	0.382 2.7	- 8
0.390 2.6	1.231 2.4	1.350 2.1	1.136 2.0	1.312 1.6	1.062 1.3	1.272 1.0	0.959 -0.4	1.221 -3.0	1.018 -2.9	1.273	1.117 0.3	1.336 1.6	1.231 2.9	0.388 2.6	- {
0.376 0.8	1.243 0.8	1.340 1.7	1.239 0.1	1.071	1.243 0.4	1.059	1.212 -0.3	1.035 -1.2	1.200 -3.1	1.047 -2.0	1.221	1.326 0.4	1.239 0.8	0.371 0.8	- 1
0.283	1.058 0.0	1.281 -2.1	1.245 -0.1	1.296	1.076 0.7	1.308 1.3	1.090	1.309 1.4	1.063 -0.7	1.274	1.233 -1.0	1.314 0.2	1.044 -1.6	0.269	- 1
~	0.480 -1.2	1.142 -2.4	1.061 -1.9	1.240 -0.4	1.240	1.130 1.4	1.335 1.4	1.131	1.232 -0.5	1.225 -1.7	1.065	1.151 -2.0	0.487 -3.0		- 1
	0.265 -2.2	0.942 -2.3	1.153 -1.9	1.314	1.324 0.2	1.330 1.1	1.295 1.3	1.336	1.327 0.8	1.297 -0.8	1.160 -0.9	0.945 -2.0	0.260		- 1
I		0.266 -2.2	0.491 -2.2	1.040 -2.0	1.213 -1.3	1.206	1.187 0.8	1.210 0.7	1.225 -0.6	1.046 -1.1	0.478 -1.6	0.263 -3.0			- 1
				0.266	0.363	0.380	0.375	0.381	0.371	0.279		. <u> </u>	I		- 1

FIGURE 2 INCORE Power Distribution - 30% MILLSTONE UNIT 3 - CYCLE 12

Measured Power % Difference (M-P)/P

Measured Location

2

R	P I	N I	м	Ļ	ĸ	j	H	Ģ	F	Ę	D	C I	B 1	A	
				0.287 0.0	0.384 1.9	0.390 1.3	0.384 1.6	0.384 0.3	0.373 0.3	0.279 0.4	+		_		- 1
		0.272 -1.4	0.483 -1.4	1.040 0.1	1.219 1.5	1.189 1.1	1.170	1.184 1.1	1.217 1.6	1.043 0.1	0.490 -3.2	0.273 -1.8			- 2
	0.272 -2.2	0.935 -2.0	1.122 -2.4	1.281 0.1	1.293 0.1	1.302 0.0	1.264	1.306 0.8	1.332	1.282 -0.2	1.120	0.939 -1.6	0.276		- 3
	0.495	1.129	1.039 -2.8	1.208	1.210 -2.3	1.123	1.313	1.128 0.3	1.244 0.2	1.230 -0.5	1.055 -1.3	1.140 -0.9	0.491 0.2		- 4
0.276	1.034 -0.8	1.272 -0.9	1.219	1.259	1.065 -2.5	1.286 -2.0	1.087 -1.5	1.292	1.076 -1.3	1.274	1.232 -0.4	1.287	1.045 0.6	0.289 0.7	- 5
0.371	1.205	1.325	1.252 0.9	1.082 -0.7	1.236	1.062 -2.1	1.228	1.083 -0.2	1.268 0.4	1.103	1.248 0.8	1.311 1.5	1.217	0.380 0.8	- 6
0.390	1.191 1.7	1.324 2.2	1.148	1.323 0.8	1.081 -0.4	1.283	0.998 -1.0	1.297 -0.2	1.095	1.319 0.5	1.145 1.8	1.322	1.197 1.8	0.388 0.8	- 7
0.388	1.181 2.4	1.290	1.348 2.2	1.129	1.257 0.6	1.008	0.825 -0.6	1.005 -0.3	1.242	1.101 -0.3	1.330	1.285	1.183	0.387 2.4	- 8
0.395	1.202	1.322 1.5	1.145 1.8	1.336 1.8	1.103 1.7	1.322 1.8	1.012 0.4	1.274	1.063	1.299	1.127 0.2	1.309 1.0	1.200 2.5	0.393	- 9
0.378	1.205 0.3	1.309 1.3	1.236 -0.2	1.091	1.271 0.6	1.106	1.260 0.8	1.084 -0.1	1.232 -2.5	1.071 -1.7	1.223	1.302 0.5	1.209 0.9	0.376	- 10
0.285	1.032	1.249 -2.4	1.233 -0.3	1.291	1.096 0.6	1.335	1.125	1.337 1.9	1.082	1.279 -0.9	1.228 -0.6	1.293 0.7	1.021 -2.0	0.272	- 11
<u>م</u> لك	0.484 -1.2	1.131 -1.7	1.050 -1.8	1.225 -0.9	1.233	1.139 1.2	1.339 1.5	1.142	1.229 -0.7	1.221 -1.3	1.058 •1.0	1.146 -0.8	0.494 -2.4		- 12
<u> </u>	0.268 -2.9	0.925 -3.0	1.126 -2.5	1.282	1.296 0.0	1.305 0.7	1.275	1.311 0.7	1.300 0.6	1.281 0.1	1.153 0.3	0.948 -0.6	0.271		- 13
	•	0.269	0.493 -2.6	1.024 -1.7	1.185 -1.1	1.180	1.163 0.9	1.183 0.6	1.195	1.036 -0.3	0.488 -0.4	0.272 -1.4			- 14
				0.271	-0.368 -1.1	-0.386	-0.381	-0.387 0.5	-0.376 -0.3	-0.286 -0.3					— -15

FIGURE 3 INCORE Power Distribution - 74% MILLSTONE UNIT 3 - CYCLE 12

Measured Power % Difference (M-P)/P

Measured Location

	F	IGURE	- 4		
INCORE	Power	Dist	ribu	tion -	100%
MILL	STONE	UNIT	3 -	CYCLE	12

R	P I	N	м	Ļ	ĸ	ŗ	H.	Ģ	F	Ē	D	ç	B	A	
		ľ		0.289 -0.7	0.385 1.0	0.391 0.8	0.385 1.0	0.385 -0.3	0.377 0.3	0.282 0.4	+-				- 1
		0.277 -1.4	0.488 -1.2	1.031 -0.5	1.203 1.0	1.173 0.5	1.154 0.7	1.167 0.4	1.199 0.9	1.033 -0.5	0.492 -3.3	0.278 -1.4	+		- 2
	0.277 -1.8	0.937 -1.9	1.118 -2.4	1.265 -0.5	1.274 -0.5	1.283 -0.5	1.247 -0.6	1.284 0.0	1.303 1.6	1.263 -0.9	1.112 -3.4	0.941 -1.5	0.282 0.4	+	- 3
	0.499 -2.0	1.124 -2.3	1.037 -2.9	1.204 -2.2	1.207 -2.2	1.121 -0.4	1.312 -0.5	1.126 0.0	1.239 0.2	1.219 -0.9	1.049 -1.8	1.131 -1.3	0.493 -0.2	+	- 4
0.279	1.028 -1.0	1.261 -1.1	1.211 -1.5	1.263 -2.1	1.075 -2.1	1.300 -1.4	1.103 <i>-</i> 0.9	1.307 -0.8	1.089 -0.6	1.279 -0.9	1.219 -1.0	1.260 -0.9	1.027 -0.9	0.289 -0.7	- 5
0.373 -0.8	1.192 0.3	1.308 1.9	1.246 0.7	1.090 -0.5	1.252 -1.6	1.084	1.255 -0.7	1.107 0.9	1.286 1.0	1.115 1.5	1.238 0.3	1.285 0.4	1.195 0.3	0.379 -0.5	- 6
0.392 1.6	1.179 1.5	1.310 2.0	1.150 2.1	1.334 1.2	1.103 0.5	(1.312 -0.2	1.028 0.3	1.327 1.0	1.118 1.9	1.338 1.5	1.146 1.8	1.308 1.4	1.184 1.5	0.386 -0.5	- 7
0.389 2.1	1.166	1.273 1.5	1.349 2.4	(1.143 2.7	1.283 1.5	(1.036 1.1	0.851 0.4	1.032 0.7	1.265 0.1	1.119 0.5	(1.330 0.9	1.277	1.179 2.9	0.395 3.7	- 8
0.395 1.8	1.186 1.6	1.301 0.9	1.152 2.3	1.353 2.7	1.127 2.7	1.352 2.9	1.039 1.4	1.302 -0.9	1.084 -1.2	1.315 -0.2	1.130 0.4	1.301 1.3	1.196 2.9	0.401 3.9	- 9
0.379 -0.5	1.185 -0.5	1.280 0.0	1.238 0.3	1.103 0.5	1.288 1.2	1.124 2.5	1.279 1.2	1.100 0.3	1.248 -2.0	1.083 -1.2	1.225 -1.0	1.296 1.0	1.201 1.1	0.380 1.1	- 10
0.288 -1.0	1.026 -1.0	1.242 -2.3	1.233 0.2	1.295 0.4	1.107 1.0	1.345 2.0	1.139 2.3	1.346 2.1	1.094 -0.4	1.284 -0.5	1.227 -0.2	1.287 0.9	1.022 -1.5	0.277	- 11
	0.485 -1.8	1.116 -2.6	1.042 -2.4	1.216 -1.1	1.225 -1.0	1.137 1.0	1.336 1.4	1.141 1.3	1.232 -0.2	1.221 -0.8	1.061 -0.7	1.144 -0.6	0.499 -2.0		- 12
	0.271 -3.6	0.922 -3.5	1.115 -3.1	1.265 -0.8	1.274 -0.7	1.284 0.0	1.258 0.3	1.294 0.3	1.286 0.5	1.269 -0.2	1.150 0.3	0.949 -0.6	0.275 -2.5		- 13
		(0.272 -3.5	0.494 -2.9	1.011 -2.6	1.164 -2.0	(1.160 -0.2	1.145 -0.1	1.164 -0.3	(1.177 -1.2	1.028 -0.8	(0.492 -0.4	0.277 -1.4			- 14
				0.273	0.368 -2.1	0.386 0.0	(0.381 0.0	0.388 0.0	0.376 -1.3	0.288 -1.0				<u> </u>	- 15

.

Measured Power % Difference (M-P)/P

Measured Location