Low Frequency Phased Array Methods for Crack Detection in Cast Austenitic Piping Components

Michael Anderson Susan Crawford Stephen Cumblidge Aaron Diaz Steven Doctor

6th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components October 8-10, 2007 Budapest, Hungary

> Sponsored by: The U.S. NRC, Office of Research Wallace Norris, Project Manager

> > Pacific Northwast National Laboratory Operated by Estalls for the U.S. Department of Energy

Acknowledgements

- Greg Selby at EPRI for use of Westinghouse Owners Group (WOG) "practice" and new vintage pipe specimens
- Michel DeLaide at AIB-Vincotte for use of 500 kHz prototype phased array
- Guy Maes at Zetec, Inc. for modifying Tomoscan III to enable operation at 500 kHz
- G. Lagleder at IHI Southwest, Inc. and D. Kurek at Westinghouse for vintage piping specimens
- Activities sponsored by: The U.S. NRC Office of Research, JCN-Y6604, Wallace Norris, Program Manager

Presentation Outline

Inspection problems with cast materials

- Specimens
- Ultrasonic Phased Array Inspections
- Ultrasonic Conclusions
- Eddy Current Inspection
- Eddy Current Conclusions

Coarse Grain Effects on UT

- FCC lattice structure in austenitic materials, coupled with large grains, cause very difficult inspection problems
- Refraction and reflection of ultrasound within these microstructures cause field skewing and partitioning, resulting in:
 - Decreased signal-to-noise ratio
 - Difficulty with signal interpretation
- Which can lead to:
 - Cracks not being detected
 - False reporting of defects
 - Incorrect reporting of defect locations
 - Specific volumes of material not being examined

Ultrasonic Phased Array Inspection

Phased Array:

- Allows multiple, simultaneous angles with line scans for a decreased acquisition time
- Inherent data fusion (multiple angles), so reduced analysis time;
- Skewing

Pacific Northwest National Laboratory U.S. Department of Energy 5

Westinghouse Owners Group Welded Specimens

Varied OD/ID geometries and weld configurations:

- Elbow-to-safe end
 - (SCSS FGSS)
- Pipe-to-safe end
 (CCSS FGSS)
- Nozzle-to-safe end-to -pipe
 - (CS FGSS CCSS)
- Pipe-to-elbow
 - (CCSS SCSS)
- Mixed/coarse grain structures in pipes and elbows
- Note OD/ID geometries
- Grain size 0.2 16.7 mm

Acronyms:

SCSS = statically cast stainless steel FGSS = fine-grained stainless steel CCSS = centrifugally cast stainless steel CS = carbon steel

Pacific Northwest National Laboratory U.S. Department of Energy 6

CSS Microstructure – EPRI Base Metal Specimen

EPRI Pipe Sample @ 300° - shows mixed, but mostly equiaxed semi-coarse structure with 0.5 – 7.4 mm grain size

> Pacific Northwest National Laboratory U.S. Department of Energy 7

CSS Microstructure – Westinghouse Base Metal Specimen

Pacific Northwest National Laboratory U.S. Department of Energy 8

Battelle

Vorthwest

Nationa

8

9

Pacific Northwest National Laboratory U.S. Department of Energy 9

CSS Base Material Evaluation

Pacific Northwest National Laboratory U.S. Department of Energy 10

Detected Corner Response Values for Base Material As Determined from Inspecting the End of CCSS Specimens

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 11

Regions of Diminished Signal Strength in Base Metal CCSS Specimens

	Number of	Measured Length of Diminished Signal Regions				
Specimen	Regions Observed	Minimum Maximum		Average	Median	
EPRI	21	0.25 cm (0.10 in.)	11.43 cm (4.50 in.)	3.57 cm (1.41 in.)	2.29 cm (0.90 in.)	
IHI-SW	27	0.25 cm (0.10 in.)	6.10 cm (2.40 in.)	1.55 cm (0.61 in.)	1.02 cm (0.40 in.)	
Westinghouse	26	0.25 cm (0.10 in.)	3.05 cm (1.20 in.)	0.75 cm (0.30 in.)	0.51 cm (0.20 in.)	
APE-1	4	1.02 cm (0.40 in.)	3.05 cm (1.20 in.)	1.78 cm (0.70 in.)	1.52 cm (0.60 in.)	
MPE-3	5	0.25 cm (0.10 in.)	2.54 cm (1.0 in.)	0.91 cm (0.36 in.)	0.51 cm (0.20 in.)	
OPE-5	0	0	0	0	0	
POP-7	4	0.25 cm (0.10 in.)	4.32 cm (1.70 in.)	1.97 cm (0.78 in.)	1.65 cm (0.65 in.)	

Largest area = 4.5 inches; median = 0.9 inches

No random noise to cause false calls

Detected Flaw: Mechanical Fatigue Crack in Specimen MPE-3 as Viewed From the SCSS Side at 500 kHz

Pacific Northwest National Laboratory U.S. Department of Energy 13

Undetected Flaw: Mechanical Fatigue Crack in Specimen MPE-3 As Viewed from CCSS Side at 1.0 MHz

Crack Detection in WOG Specimens

500 kHz Phased Array

Crack Detections

Mechanical fatigue = 93%

Thermal fatigue = 57%

Combined = 75%

			Crack	
WOG		Crack	Through-Wall	Crack Location
Specimen	Mock-Up Configuration	Туре	(%)	(Side of Weld)
APE-1	CCSS pipe-to-SCSS elbow	MF	13	SCSS
APE-4	CCSS pipe-to-SCSS elbow	MF	14	SCSS
INE-A-1	SCSS elbow-to-WSS safe end	MF	42	SCSS
INE-A-4	SCSS elbow-to-WSS safe end	TF	29	SCSS
INE-A-5	SCSS elbow-to-WSS safe end	MF	34	WSS
MPE-3	CCSS pipe-to-SCSS elbow	MF	30	SCSS
MPE-6	CCSS pipe-to-SCSS elbow	TF	18	SCSS
ONP-D-2	CCSS pipe-to-WSS safe end	TF	28	CCSS
ONP-D-5	CCSS pipe-to-WSS safe end	MF	18	CCSS
ONP-3-5	CCSS pipe-to-WSS safe end	TF	28	WSS
ONP-3-8	CCSS pipe-to-WSS safe end	MF	28	WSS
OPE-2	CCSS pipe-to-SCSS elbow	MF	18	SCSS
OPE-5	CCSS pipe-to-SCSS elbow	TF	23	SCSS
POP-7	CCSS pipe-to-SCSS pump nozzle	MF	31	SCSS
POP-8	CCSS pipe-to-SCSS pump nozzle	TF	18	CCSS

Pacific Northwest National Laboratory U.S. Department of Energy 15

Phased Array Length Sizing Results

	Flaw Length-Sizing Error (RMSE)				
Frequency	CCSS	SCSS	Combined		
500 kHz	2.54 cm	2.22 cm	2.37 cm		
	(1.0 in)	(0.87 in)	(0.93 in)		
750 kHz	3.81 cm	2.37 cm	3.00 cm		
	(1.5 in)	(0.93 in)	(1.18 in)		
1.0 MHz	2.07 cm	1.93 cm	1.98 cm		
	(0.81 in)	(0.76 in)	(0.78 in)		

Phased Array Ultrasonic Conclusions

- Use of lower frequency phased array can improve the effectiveness of UT for inspection of CSS from the OD surface of piping
- 500 kHz phased array detected cracks greater than approximately 30% through wall
- Phased array line scans are fast and currently field deployable
- No tip signals detected for depth sizing new methods being reviewed to address this issue.
- Length sizing RMSE is greater than currently allowed by ASME Code

Eddy Current Inspection on the ID Using Plus-Point Probe

Eddy current testing (ET) from the inside surface of CSS pipe weld using a ZETEC MIZ-27SI instrument and a ZETEC Plus-point[™] probe operating at 250 kHz; examined all WOG and selected PNNL specimens having MF and TF cracks

Pacific Northwest National Laboratory U.S. Department of Energy 18

Examples of ET Data (Scale on plot in inches)

WOG Specimen with MFC on Elbow Side of Weld

> Pacific Northwest National Laboratory U.S. Department of Energy 19

Examples of ET Data with Demagnetization

Pacific Northwest National Laboratory U.S. Department of Energy 20

ET Results from ID Studies

	Specimen ID Descriptor	Was Flaw Detected?/ Did Degaussing Improve SNR?	Peak Mag. from Flaw (Volts) and SNR (dB)		Range of Phase Response from Flaw	Measured Flaw Length	True State Flaw Length	True State Flaw Depth
			V	dB	(deg.)	(cm)	(cm)	(cm)
	APE-1	Yes/No	9.77	11.8	92° - 97°	3.82 cm	3.94 cm	1.1 cm
	APE-4	Yes/No	8.00	16.1	50° - 115°	4.11 cm	4.19 cm	1.27 cm
	INE-A-1	Yes/Yes	10.12	10.6	275°- 292°	6.60 cm	6.99 cm	2.64 cm
	INE-A-4	Yes/No	10.20	11.4	270°- 282°	5.90 cm	6.86 cm	1.85 cm
	INE-A-5	Yes/Yes	10.0	15.1	200°- 290°	6.35 cm	6.73 cm	2.54 cm
	MPE-3	Yes/No	10.11	14.1	270°- 285°	6.12 cm	6.73 cm	2.54 cm
	MPE-6	Yes/No	8.42	10.5	270°- 285°	3.80 cm	5.92 cm	1.5 cm
	ONP-3-5	Yes/No	5.75	21.2	70°- 110°	6.40 cm	6.60 cm	1.78 cm
	ONP-3-8	Yes/Yes	1.20	10.7	50°- 120°	4.21 cm	5.13 cm	1.78 cm
	ONP-D-2	Yes/Yes	9.18	13.9	250°- 285°	5.49 cm	6.60 cm	1.78 cm
	ONP-D-5	Yes/No	6.58	16.4	260°- 275°	3.73 cm	4.06 cm	1.19 cm
	OPE-2	Yes/Yes	6.25	8.0	105°- 130° 7° - 38°	4.37 cm	4.19 cm	1.27 cm
	OPE-5	Yes/Yes	8.06	11.1	70°- 105°	5.58 cm	6.15 cm	1.63 cm
	POP-7	Yes/Yes	7.52	11.5	273°- 280°	6.72 cm	6.78 cm	2.55 cm
	POP-8	Yes/No	9.25	15.8	230°- 258° 80°- 150°	6.02 cm	5.72 cm	1.5 cm
	B-501	Yes/No	8.42	12.5	45° - 130°	2.84 cm	2.92 cm	2.0 cm
	B-504	Yes/No	6.47	14.3	260°- 285°	6.19 cm	6.15 cm	2.79 cm
	B-515	Yes/Yes	5.86	13.4	85° - 105°	2.87 cm	2.92 cm	1.52 cm
	B-519	Yes/No	4.90	16.3	260°- 285°	4.18 cm	5.72 cm	2.79 cm
Batt	RMSE					0.77 cm	U.S. Canarina	nt of Engineer 21

ET Conclusions from ID Studies

- All cracks were detected
- If calling nothing less than 12.5 mm then no false calls
- Demagnetizing the inspection zones was useful 42% of the time (improved SNR in 8 out of 19 specimens)
- For cast specimens, no correlation was found between background noise or clutter (magnitude or phase) and variables such as microstructural classification, grain size, orientation, etc.

Loss of Signal was used for length sizing

- 16 of 19 flawed specimens were undersized
- Largest length difference (from undersizing) was 21.2 mm (0.83 in.)
- 3 of 19 flawed specimens were oversized
- Largest length difference (from oversizing) was 3 mm (0.12 in.)
- Study yielded a length RMSE of 7.7 mm (0.30 in.), ASME Code acceptable