A Comparison of Ultrasonic Flaw Responses as Observed Through Austenitic Stainless Steel Piping Welds

Michael Anderson Susan Crawford Stephen Cumblidge Aaron Diaz Steven Doctor

6th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components October 8-10, 2007 Budapest, Hungary

> Sponsored by: The U.S. NRC, Office of Research Wallace Norris, Project Manager

> > Pacific Northwast National Laboratory Operated by Estalls for the U.S. Department of Energy

Outline

Discuss far-side weld problem and UT techniques applied

- Describe laboratory work on flawed piping specimens using L- and S-waves and provide synopsis of results
- Discuss conclusions for capability of ultrasonic examination as applied to austenitic welds
- Discuss future work

Difficulties with Inspecting Austenitic Stainless Steel Welds

- Far-side austenitic weld inspection techniques continue to be of limited effectiveness due to coarse grain structures
- The large size and orientation of the anisotropic grains in the weld metal scatter and attenuate sound, complicating flaw detection and characterization
- Current U.S. performance demonstration qualifications through PDI are considered 'best effort"
- This work is being conducted to determine the feasibility of using advanced UT methods to detect and size flaws on the far-side of austenitic welds
 - Outcome is expected to baseline capabilities to support performance qualification

Research Approach

- Evaluate UT techniques on uniformly-welded piping specimens (Part 1)
 - Examine welded specimens with L- and S-waves using multiple angles to detect and characterize flaws through consistent weld microstructures
- Apply best methods to non-uniform welds (Part 2)
 - Observe acoustic responses from far-side reflectors in piping having varied, field-simulated weld parameters
- Correlate acoustic responses as function of weld microstructures
 - Through-weld sound field mapping
 - Optical micrographs of weld cross-sections

Ultrasonic Techniques Applied

Low-frequency/SAFT

 250-450 kHz

Phased Array

 2.0 MHz

Automated conventional UT

• 1.5 MHz and 2.25 MHz

Low-frequency/SAFT

- ► Range of frequencies between 250-450 kHz
- Raster scanning, digital data storage
- Data post-processed using Synthetic Aperture Focusing Technique (SAFT)
 - Full-volume, 3D SAFT reconstructions at varied beam angles between 6° and 24°

Phased Array

- ► Tomoscan III[®], 32/64 channel instrument
- Data acquired and viewed in Tomoview[®], version 2.2R9
- Line scans performed parallel to weld at varied distances from weld centerline
- Steered angles from 30° to 70°, at 1° increments
 - No beam skewing performed

Transmit-Receive Phased Arrays Applied

Longitudinal Wave Probe

- 2 x 2 x 14 elements, aperture of 20mm (active) by 10mm (passive)
- 2.0 MHz 70% bandwidth
- Wedge angle for a nominal 50° L-wave (SS)
- Roof and squint angles to produce 20mm crossover depth (SS)
- Shear Wave Probe
 - 2 x 1 x 12 elements, aperture of 32mm (active) by 12mm (passive)
 - 2.0 MHz 70% bandwidth
 - 55 nominal shear wave (SS)
 - Roof and squint angles to produce 36mm crossover depth (SS)

Conventional Technique

Automated raster scanning and digital data storage

Allowed off-line analyses and imaging

1.5 and 2.25 MHz transducers

- Both 9.5mm and 12.7mm diameter search units were applied for each frequency
- Wedges to produce 60° and 70° shear waves
- Conventional transducers used as benchmark for comparing results
 - Probes match those used for manual austenitic piping weld qualifications

Initial Specimen

 Uniformly-welded pipe specimens with implanted thermal fatigue cracks and machined reflectors

Vintage 304-L stainless, thermal fatigue flaws

Flaw Designation	А	В	С	D	Е
Flaw Orientation	Circ.	Circ.	Circ.	Axial	Circ.
Flaw Length [±1.0-mm]	10.7 mm	30.5 mm	43.6 mm	13.3 mm	33.8 mm
Through-wall Depth [±1.0 mm]	5.0 mm	14.9 mm	21.5 mm	6.6 mm	16.5 mm
% Wall Thickness	15	43	64	19	48
Aspect Ratio	2.3	2.1	2.1	2.1	2.1
Circumferential Location (from 0°)	30°	65°	165°	270°	330°

Saw-cuts added for consistent UT reflectors

Designation	А	В	C	D	E	F	G	Н
Angle to Surface	90°	90°	35°	90°	90°	35°	35°	35°
Length [±0.4mm]	32.8 mm	65.2 mm	36.2 mm	54.1 mm	43.7 mm	59.7 mm	57.3 mm	68.4 mm
Depth [±0.4mm]	2.7 mm	10.2 mm	2.5 mm	6.8 mm	4.3 mm	7.0 mm	6.3 mm	9.3 mm
% Wall	7.5	28.4	7.1	18.8	12	19	18	26
Aspect Ratio	12	6	15	8	10.2	8.5	9.1	7.4
Location	22.5°	45°	85°	150°	185°	210°	285°	310°

Battelle

Pacific Northwest National Laboratory U.S. Department of Energy 10

Initial Specimen (Cont'd.)

Pacific Northwest National Laboratory U.S. Department of Energy 11

Initial Specimen Scans

Initial specimen was sectioned into 3 segments and UT scans acquired with magnetic track scanner; water-coupled

Part 1 Results

All UT methods detected most flaws, but phased array out-performed all methods for shallow through-wall flaw detections

Comparison of typical responses from automated conventional UT, Phased array, and low-frequency SAFT; note TRL phased array showed best overall performance.

Pacific Northwest National Laboratory U.S. Department of Energy 13

PA Response for Small Flaw - TRL

Near-side response for Flaw A - 15% through-wall

Far-side response for Flaw A – no tip diffracted signal

Pacific Northwest National Laboratory U.S. Department of Energy 14

PA Response for Large Flaw - TRL

Near-side response for Flaw E - 48% through-wall

Far-side response for Flaw E

Pacific Northwest National Laboratory U.S. Department of Energy 15

Length-sizing of Flaws

All UT techniques were capable of adequately length-sizing flaws on the far-side of austenitic welds; no TOF depth sizing possible

Length-sizing (Cont'd.)

Far-Side Length-Sizing Results for All Ultrasonic Methods								
Thermal Fatigue (RMS Error)	Best Tech	nique	Saw-Cuts (RMS Error)	Best Technique				
Conventional	2.2-mm	70° -6dB	4.0-mm	70° LOS				
LF/SAFT	3.4-mm	400 kHz, 45° Shear LOS	9.2-mm	400 kHz, 45° Longitudinal -6dB				
Phased Array	6.3-mm (Note 1)	TRL LOS	6.3-mm	TRL LOS				
Note: For very small thermal fatigue cracks (<10% thru-wall), the TRS -6dB technique was better with an RMS Error of 8.9-mm.								

RMS error for LOS and -6dB methods were well within ASME Code Appendix VIII requirements (19 mm)

Field-Welded Specimen

Contains 3 field-like welds, all with circumferential 10%, 360° notches in HAZ:

- Vintage 304-L austenitic stainless steel
- All welds performed in position
 - Weld 1 horizontal; air-backed
 - Weld 2 vertical; air-backed
 - Weld 3 horizontal; water-backed
- 3 small (5, 10 and 15%) flaws also implanted on Weld 2

Simulating Field Welds

Pacific Northwest National Laboratory U.S. Department of Energy 19

PA Results on Field-Like Welds

10% notch shows short-range variability, but no regional areas of weld with significantly decreased response

Field-Like Weld Results (con't)

Responses for small implanted TF cracks from farside of weld

- TRS better for 5% and 10% flaws
- TRL shows less beam distortion
- No tips for sizing

Pacific Northwest National Laboratory U.S. Department of Energy 21

Conclusions

Results show conventional, low-frequency/SAFT and phased array technology capable of detecting and lengthsizing flaws on the far-side of austenitic welds

- Phased array provided best overall results, based on detecting all targeted flaws and better signal-to-noise ratios
- For cracks, responses may be limited to specular reflections from flaw face
- Depth-sizing (through-wall extent) of flaws using time-offlight techniques is not possible - no crack tip responses
- Welding process (heat flow) has greater effect than welding position on acoustic transmission
 - Air-backed weld shows less attenuation and scattering
 - No regional areas (due to welding position) were observed

Planned Work

Apply phased array for far-side detection of IGSCC on field-removed piping at EPRI NDE Center

Planned Work (Cont'd.)

Metallographic analysis of weld grain structures

 Assess grain size and orientation for different welding processes used in specimens

Through-weld ultrasonic beam mapping

- Determine beam distortion and energy profile as a function of propagation angle through varied weld microstructures
- Evaluate advanced techniques to improve far-side tip signal detection
 - Signal processing
 - Combining SAFT with phased array
 - Other noise reduction or image enhancing methods