# FINAL SAFETY ANALYSIS REPORT

# for the

# HOLTEC INTERNATIONAL

# STORAGE AND TRANSFER OPERATION

# REINFORCED MODULE CASK SYSTEM

# (HI-STORM 100 CASK SYSTEM)

DOCKET 72-1014

VOLUME I OF II



Holtec Center, 555 Lincoln Drive West, Marlton, NJ 08053

Telephone (856) 797-0900 Fax (856) 797-0909

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Document ID 5014395 Page 3 of 3

#### Distribution (w/o encl.):

#### Recipient

#### **Affiliation**

Southern Nuclear Operating Company Mr. George Bockhold Southern Nuclear Operating Company Mr. Robert Berryhill New York Power Authority Mr. Kenneth Phy Commonwealth Edison Mr. J. Nathan Leech **Private Fuel Storage** Dr. Max DeLong Vermont Yankee Nuclear Power Corporation Mr. Stan Miller **Energy Northwest** Mr. David Larkin Mr. Bruce Patton Pacific Gas & Electric - Diablo Canyon Pacific Gas & Electric - Humboldt Bay Mr. Mark Smith Pacific Gas & Electric Mr. Terry Grebel Pacific Gas & Electric Mr. Roger Johnson Tennessee Valley Authority - Sequoyah Plant Mr. Charles Davis American Electric Power Mr. Rodney Pickard Wisconsin Electric Power Company Mr. Eric Meils Maine Yankee Atomic Power Company Mr. Paul Plante Southern California Edison Mr. Robert Ashe-Everest Entergy Operations - Arkansas Nuclear One Mr. Darrell Williams Mr. Chris Kudla Entergy Operations - Millstone Unit 1 Decommissioning Entergy Operations - Pilgrim Station Mr. Charles Minnot Entergy Operations - Grand Gulf Station Mr. Vee Dunn Entergy Operations - River Bend Station Ms. Jodi Furr GPUN - Oyster Creek Nuclear Power Station Mr. Ben Garrett Mr. Brian Wohlers Alliant Energy Nebraska Public Power District Mr. William Swantz Nuclear Management Company Mr. Gary Krieser **PECO Energy** Mr. Matt Evre Florida Power & Light Mr. Al Gould Dr. Seymour Raffety **Dairyland Power** Consolidated Edison Company Mr. John Sanchez Niagara Mohawk Power Corporation Ms. Kathy Picciott Private Fuel Storage, LLC (SWEC) Mr. John Donnell Carolina Power and Light Mr. Steve Edwards Mr. Simon Hseih **Detroit Edison Omaha Public Power District** Mr. Rick Scofield Holtec International, Florida Operations Center Dr. Stanley Turner



Holtec Center, 555 Lincoln Drive West, Marlton, NJ 08053

Telephone (856) 797-0900 Fax (856) 797-0909

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Document ID 5014395 Page 2 of 3

If you have any questions or require additional information, please contact us.

Sincerely,

Brian Gutherman, P.E. Licensing Manager

Approval:

K.P. Scugh/hlm K.P. Singh, Ph.D, P.E.

President and CEO

Ms. Marissa Bailey, USNRC (w/2 hard copies of FSAR Rev. 0) cc: Mr. E. William Brach, USNRC (w/o encl.)

Document ID: 5014395

Revision 0 of the HI-STORM 100 System Final Safety Analysis Report. Enclosure:

#### **Technical Concurrence:**

Dr. Alan Soler (Structural Evaluation)

Dr. Indresh Rampall (Thermal Evaluation)

Dr. Everett Redmond II (Shielding Evaluation)

Dr. Stefan Anton (Criticality Evaluation)

Mr. Kris Cummings (Confinement Evaluation)

Mr. Steve Agace (Operations and Radiation Protection)

Mr. Evan Rosenbaum (Accident Evaluation)

Mr. Mark Soler (Quality Assurance)



Holtec Center, 555 Lincoln Drive West, Marlton, NJ 08053

Telephone (856) 797-0900 Fax (856) 797-0909

July 19, 2000

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

Subject: USNRC Docket No. 72-1014; TAC No. L22221 HI-STORM 100 Certificate of Compliance 1014 HI-STORM FSAR, Revision 0

References: 1. Holtec Project 5014
2. NRC Letter, E.W. Brach, to Holtec International, K.P. Singh, dated May 4, 2000

Dear Sir:

On May 4, 2000 the Nuclear Regulatory Commission issued the final 10 CFR 72 Certificate of Compliance (CoC) and Safety Evaluation Report for the HI-STORM 100 dry cask spent fuel storage system. The CoC became effective on May 31, 2000. In accordance with 10 CFR 72.248(a)(1), enclosed herewith please find one copy of Holtec Report No. HI-2002444, Revision 0, comprising the HI-STORM 100 System Final Safety Analysis Report (FSAR). The HI-STORM FSAR is identical to HI-STORM TSAR, Revision 10 with the following clarifications:

- 1. The term "TSAR" is changed to "FSAR" throughout, except where reference is made to the HI-STAR 100 System, where the term "TSAR" is still correct.
- 2. A small number of typographical errors have been corrected.
- 3. An editorial clarification is made to Subsection 3.4.7.1 to conform to a change made in Chapter 2 (Table 2.2.9) during final licensing to require verification by testing of the coefficient of friction between the HI-STORM 100 cask and the ISFSI pad. Since testing is required, the requirement for a "broom finish" on the ISFSI pad concrete has been made optional at the user's discretion.
- 4. Figure 5.1.4 has been revised to more accurately depict the HI-TRAC 100 lid design.

| СНА | APTER 1: | GENERAL DESCRIPTION                                                                     | 1.0-1    |
|-----|----------|-----------------------------------------------------------------------------------------|----------|
| 1.0 | GENE     | RAL INFORMATION                                                                         | 1.0-1    |
| 1.1 | INTRO    | DUCTION                                                                                 | 1.1-1    |
| 1.2 | GENEI    | RAL DESCRIPTION OF HI-STORM 100 SYSTEM                                                  |          |
| 1.2 | 1.2.1    | System Characteristics                                                                  | 1.2-1    |
|     | 1.2.1    | 1.2.1.1 Multi-Purpose Canisters                                                         | 1.2-3    |
|     |          | 1.2.1.1 Multi-1 upose Canisers                                                          | 1.2-6    |
|     |          | 1.2.1.2 Overpacks                                                                       | 1.2-6    |
|     |          | 1.2.1.2.2 HI-TRAC (Transfer Cask)                                                       |          |
|     |          | 1.2.1.3 Shielding Materials                                                             |          |
|     |          | 1.2.1.3 Sinciding indernals                                                             |          |
|     |          | 1.2.1.3.2 Neutron Shielding                                                             |          |
|     |          | 1.2.1.3.3 Gamma Shielding Material                                                      |          |
|     |          | 1.2.1.4 Lifting Devices                                                                 |          |
|     |          | 1.2.1.5 Design Life                                                                     | 1.2-14   |
|     | 1.2.2    | Operational Characteristics                                                             | 1.2-15   |
|     |          | 1.2.2.1 Design Features                                                                 | 1.2-15   |
|     |          | 1.2.2.2 Sequence of Operations                                                          | 1.2-16   |
|     |          | 1.2.2.3 Identification of Subjects for Safety and Reliability Analysi                   | s 1.2-20 |
|     |          | 1.2.2.3.1 Criticality Prevention                                                        | 1.2-20   |
|     |          | 1.2.2.3.2 Chemical Safety                                                               |          |
|     |          | 1.2.2.3.3 Operation Shutdown Modes                                                      |          |
|     |          | 1.2.2.3.4 Instrumentation                                                               | 1.2-21   |
|     |          | 1.2.2.3.5 Maintenance Technique                                                         | 1.2-22   |
|     | 1.2.3    | Cask Contents                                                                           | 1.2-22   |
| 1.3 | IDENT    | TIFICATION OF AGENTS AND CONTRACTORS                                                    | 1.3-2    |
| 1.4 | GENE     | RIC CASK ARRAYS                                                                         | 1.4-2    |
| 1.5 | GENE     | RAL ARRANGEMENT DRAWINGS                                                                | 1.5-:    |
| 1.6 | REFEI    | RENCES                                                                                  | 1.6-2    |
|     |          |                                                                                         |          |
|     |          | NDIX 1.A: ALLOY X DESCRIPTION                                                           |          |
|     |          | NDIX 1.B: HOLTITE™ MATERIAL DATA                                                        |          |
|     |          | NDIX 1.C: MISCELLANEOUS MATERIAL DATA<br>NDIX 1.D: REQUIREMENTS ON HI-STORM 100 SHIELDI |          |

i

| CHA | PTER 2 | PRINCIPAL DESIGN CRITERIA 2.0-1                                                                |
|-----|--------|------------------------------------------------------------------------------------------------|
| 2.0 | PRIN   |                                                                                                |
|     | 2.0.1  | CIPAL DESIGN CRITERIA                                                                          |
|     | 2.0.2  | MPC Design Criteria                                                                            |
|     | 2.0.3  | HI-STORM 100 Overpack Design Criteria2.0-1HI-TRAC Transfer Cask Design Criteria2.0-52.0-72.0-7 |
|     |        |                                                                                                |
| 2.1 | SPEN   | T FUEL TO BE STORED                                                                            |
|     | 2.1.1  | Determination of the Design Basis Fuel                                                         |
|     | 2.1.2  | intact Stat Specifications                                                                     |
|     | 2.1.3  | Dumaged Styl and rull Deplis Specifications                                                    |
|     | 2.1.4  |                                                                                                |
|     | 2.1.5  | Structural ratafficters for Design Basis SNF                                                   |
|     | 2.1.6  | Thermal Lataniciels for Design Basis SNF                                                       |
|     | 2.1.7  | Raubiogical rarameters for Design Basis SNF                                                    |
|     | 2.1.8  | Chucanty I atameters for Design Basis SNF                                                      |
|     | 2.1.9  | Summary of SNF Design Criteria                                                                 |
| 2.2 | HI-ST  | ORM 100 DESIGN CRITERIA                                                                        |
|     | 2.2.1  | Normal Condition Design Criteria                                                               |
|     |        | 2.2.1.1 Dead Weight                                                                            |
|     |        | 2.2.1.2 Handling                                                                               |
|     |        | 2.2.1.3 Pressure                                                                               |
|     |        | 2.2.1.4 Environmental remoratives                                                              |
|     |        | 2.2.1.5 Design Temperatures                                                                    |
|     |        |                                                                                                |
|     | 2.2.2  | Off-Normal Conditions Design Criteria                                                          |
|     |        |                                                                                                |
|     |        | 2.2.2.2 Environmental remperatures                                                             |
|     |        | 2.2.2.5 Design remperatures                                                                    |
|     |        | 2.2.2. + Loakage of Olic Scal                                                                  |
|     |        | - 2.2.5 Yarda Diockage of All fillers                                                          |
|     | • • •  |                                                                                                |
|     | 2.2.3  | Environmental Including and Accident Condition Design Criteria                                 |
|     |        | 2.2.5.1 Hanuning Accident                                                                      |
|     |        |                                                                                                |
|     |        |                                                                                                |
|     |        | 2.2.3.4 I altial Diockage of MPC Basket Vent Holes                                             |
|     |        |                                                                                                |
|     |        |                                                                                                |
|     |        | 2.2.5.7 Seisine Design Loadings                                                                |
|     |        |                                                                                                |
|     |        | 2.2.5.9 Commentent Douldary Leakage                                                            |
|     |        |                                                                                                |
|     |        |                                                                                                |
|     |        | 2.2.3.12 Burial Under Debris                                                                   |

L

| -   |         |                                                                        |          |
|-----|---------|------------------------------------------------------------------------|----------|
|     |         | 2.2.3.13 100% Blockage of Air Inlets                                   | . 2.2-13 |
|     |         | 2 2 3 14 Extreme Environmental Temperature                             | . 2.2-15 |
|     | 2.2.4   | Applicability of Governing Documents                                   | . 2.2-13 |
|     | 2.2.5   | Service Limits                                                         | . 2.2-14 |
|     | 2.2.6   | I oads                                                                 | . 2.2-15 |
|     | 2.2.7   | Load Combinations                                                      | . 2.2-10 |
|     | 2.2.8   | Allowable Stresses                                                     | . 2.2-16 |
|     | 2.2.0   |                                                                        |          |
| 2.3 | SAFE    | <b>FY PROTECTION SYSTEMS</b>                                           | 2.3-1    |
| 2.5 | 2.3.1   | General                                                                | 2.3-1    |
|     | 2.3.2   | Protection by Multiple Confinement Barriers and Systems                | 2.3-2    |
|     | 2.3.2   | 2.3.2.1 Confinement Barriers and Systems                               | 2.3-2    |
|     |         | 2322 Cask Cooling                                                      | 2.3-3    |
|     | 2.3.3   | Protection by Equipment and Instrumentation Selection                  | 2.3-4    |
|     | 2.3.3   | 2.3.3.1 Equipment                                                      | 2.3-4    |
|     |         | 2.3.3.2 Instrumentation                                                | . 2.3-16 |
|     | 0.0.4   | Nuclear Criticality Safety                                             | . 2.3-17 |
|     | 2.3.4   | 2.3.4.1 Control Methods for Prevention of Criticality                  | . 2.3-17 |
|     |         | 2.3.4.1 Control Methods for Prevention of Criticality                  | 2.3-17   |
|     |         | 2.3.4.2 Error Contingency Chiena         2.3.4.3 Verification Analyses | 2.3-18   |
|     |         | 2.3.4.3 Verification Analyses                                          | 2.3-18   |
|     | 2.3.5   | Radiological Protection                                                | 2 3-18   |
|     |         | 2.3.5.1 Access Control                                                 | 2 3-18   |
|     |         | 2.3.5.2 Shielding                                                      | 2.3-10   |
|     |         | 2.3.5.3 Radiological Alarm System                                      | 2.3-19   |
|     | 2.3.6   | Fire and Explosion Protection                                          | 4.5-17   |
| 2.4 | DECC    | OMMISSIONING CONSIDERATIONS                                            | 2.4-1    |
|     |         |                                                                        | 251      |
| 2.5 | REGU    | JLATORY COMPLIANCE                                                     | 2        |
| 2.6 | DEFE    | RENCES                                                                 | 2.6-1    |
| 2.0 | KLI L   |                                                                        |          |
| CHA | PTER 3  | : STRUCTURAL EVALUATION                                                | 3.0-1    |
|     |         |                                                                        |          |
| 3.1 | STRU    | JCTURAL DESIGN                                                         | 3.1-1    |
|     | 3.1.1   | Discussion                                                             | 3.1-1    |
|     | 3.1.2   | Design Criteria                                                        | 3.1-5    |
|     | -       | 3.1.2.1 Loads and Load Combinations                                    | 3.1-/    |
|     |         | 3.1.2.1.1 Individual Load Cases                                        | 3.1-8    |
|     |         | 3.1.2.1.2 Load Combinations                                            | 3.1-12   |
|     |         | 3.1.2.2 Allowables                                                     | 3.1-15   |
|     |         | 3123 Brittle Fracture                                                  | 3.1-17   |
|     |         | 3.1.2.4 Fatigue                                                        | 3.1-19   |
|     |         | 3.1.2.5 Buckling                                                       | 3.1-19   |
|     |         | J.1.2.J Ducking                                                        |          |
| 3.2 | WEI     | GHTS AND CENTERS OF GRAVITY                                            | 3.2-1    |
| 5.4 | ** 1.10 |                                                                        |          |
|     |         |                                                                        |          |

| 3.3 | MECH<br>3.3.1 | IANICAL PROPERTIES OF MATERIALS       3.3-1         Structural Materials       3.3-1                  |
|-----|---------------|-------------------------------------------------------------------------------------------------------|
|     |               | 3.3.1.1 Alloy X                                                                                       |
|     |               | 3.3.1.2 Carbon Steel, Low-Alloy and Nickel Alloy Steel 3.3-2                                          |
|     |               | 3.3.1.3 Bolting Materials 3.3-3                                                                       |
|     |               | 3.3.1.4 Weld Material 3.3-3                                                                           |
|     | 3.3.2         | Nonstructural Materials 3.3-3                                                                         |
|     |               | 3.3.2.1 Solid Neutron Shield                                                                          |
|     |               | 3.3.2.2 Boral <sup>TM</sup> Neutron Absorber $\dots$ 3.3-3                                            |
|     |               | 3.3.2.3 Concrete                                                                                      |
|     |               | 3.3.2.4 Lead                                                                                          |
|     |               | 3.3.2.5 Aluminum Heat Conduction Elements                                                             |
| 3.4 | GENE          | RAL STANDARDS FOR CASKS                                                                               |
|     | 3.4.1         | Chemical and Galvanic Reactions                                                                       |
|     | 3.4.2         | Positive Closure                                                                                      |
|     | 3.4.3         | Lifting Devices                                                                                       |
|     |               | 3.4.3.1 125 Ton HI-TRAC Lifting Analysis - Trunnions                                                  |
|     |               | 3.4.3.2 125 Ton HI-TRAC Lifting - Trunnion Lifting                                                    |
|     |               | Block Welds, Bearing, and Thread Shear Stress (Region A) 3.4-5                                        |
|     |               | 3.4.3.3 125 Ton HI-TRAC Lifting - Structure near Trunnion                                             |
|     |               | (Region B/Region A) 3.4-5                                                                             |
|     |               | 3.4.3.4 100 Ton HI-TRAC Lifting Analysis 3.4-6                                                        |
|     |               | 3.4.3.5 HI-STORM 100 Lifting Analyses 3.4-7                                                           |
|     |               | 3.4.3.6 MPC Lifting Analysis 3.4-10                                                                   |
|     |               | 3.4.3.7 Miscellaneous Lid Lifting Analyses 3.4-10                                                     |
|     |               | 3.4.3.8 HI-TRAC Pool Lid Analysis - Lifting MPC                                                       |
|     |               | From the Spent Fuel Pool (Load Case 01 in Table 3.1.5) 3.4-11                                         |
|     |               | 3.4.3.9 HI-TRAC Transfer Lid Analysis - Lifting MPC                                                   |
|     |               | Away From Spent Fuel Pool (Load Case 01 in Table 3.1.5) 3.4-12                                        |
|     |               | 3.4.3.10 HI-TRAC Bottom Flange Evaluation during Lift                                                 |
|     |               | (Load Case 01 in Table 3.1.5) 3.4-14                                                                  |
|     |               | 3.4.3.11 Conclusion                                                                                   |
|     | 3.4.4         | Heat                                                                                                  |
|     |               | 3.4.4.1 Summary of Pressures and Temperatures                                                         |
|     |               | 3.4.4.2 Differential Thermal Expansion                                                                |
|     |               | 3.4.4.2.1 Normal Hot Environment                                                                      |
|     |               | 3.4.4.2.2 Fire Accident                                                                               |
|     |               | 3.4.4.3 Stress Calculations       3.4-19         3.4.4.3.1       MPC Stress Calculations       3.4-20 |
|     |               |                                                                                                       |
|     |               | 3.4.4.3.2 HI-STORM 100 Storage Overpack Stress                                                        |
|     |               | Calculations3.4-323.4.4.3.3HI-TRAC Transfer Cask Stress Calculations3.4-39                            |
|     |               |                                                                                                       |
|     |               | 3.4.4.4 Comparison with Allowable Stresses       3.4-49         3.4.4.1       MPC                     |
|     |               | 3.4.4.4.1 MFC                                                                                         |
|     |               | 5.7.7.7.4. Stolage Overpack and III-110AC                                                             |

|     |        | 3.4.4.5 Elastic Stability Considerations                                           |
|-----|--------|------------------------------------------------------------------------------------|
|     |        | 3.4.4.5.1 MPC Elastic Stability 3.4-51                                             |
|     |        | 3.4.4.5.2 HI-STORM 100 Overpack Elastic Stability 3.4-51                           |
|     | 3.4.5  | Cold                                                                               |
|     | 3.4.6  | HI-STORM 100 Kinematic Stability Under Flood Condition                             |
|     |        | (Load Case A in Table 3.1.1)                                                       |
|     | 3.4.7  | Seismic Event and Explosion - HI-STORM 100 3.4-57                                  |
|     |        | 3.4.7.1 Seismic Event (Load Case C in Table 3.1.1)                                 |
|     |        | 3.4.7.2 Explosion (Load Case 05 in Table 3.1.5)                                    |
|     | 3.4.8  | Tornado Wind and Missile Impact (Load Case B in Table 3.1.1                        |
|     |        | and Load Case 04 in Table 3.1.5)                                                   |
|     |        | 3.4.8.1 HI-STORM 100 Storage Overpack                                              |
|     |        | 3.4.8.2 HI-TRAC Transfer Cask                                                      |
|     |        | 3.4.8.2.1 Intermediate Missile Strike                                              |
|     |        | 3.4.8.2.2 Large Missile Strike                                                     |
|     | 3.4.9  | HI-TRAC Drop Events (Load Case 02.b in Table 3.1.5)                                |
|     |        | 3.4.9.1 Working Model 2D Analysis of Drop Event                                    |
|     |        | 3.4.9.2 DYNA3D Analysis of Drop Event                                              |
|     | 3.4.10 | HI-STORM 100 Non-Mechanistic Tip-Over and Vertical Drop Event                      |
|     |        | (Load Cases 02.a and 0.2c in Table 3.1.5)                                          |
|     | 3.4.11 | Storage Overpack and HI-TRAC Transfer Cask Service Life                            |
|     |        | 3.4.11.1 Storage Overpack                                                          |
|     |        | 3.4.11.2 Transfer Cask                                                             |
|     | 3.4.12 | MPC Service Life                                                                   |
|     |        | Design and Service Life                                                            |
|     |        |                                                                                    |
| 3.5 | FUEL   | RODS 3.5-1                                                                         |
|     |        |                                                                                    |
| 3.6 |        | LEMENTAL DATA                                                                      |
|     | 3.6.1  | Additional Codes and Standards Referenced in HI-STORM 100                          |
|     |        | System Design and Fabrication 3.6-1                                                |
|     | 3.6.2  | Computer Programs 3.6-7                                                            |
|     | 3.6.3  | Appendices Included in Chapter 3 3.6-9                                             |
|     | 3.6.4  | Calculation Package 3.6-10                                                         |
| 3.7 | COMP   | PLIANCE TO NUREG-1536 3.7-1                                                        |
| 3.8 | REFER  | RENCES                                                                             |
|     | APPEN  | NDIX 3.A HI-STORM DECELERATION UNDER POSTULATED VERTICAL<br>DROP EVENT AND TIPOVER |

| APPENDIX 3.B        | HI-STORM 100 OVERPACK DEFORMATION IN NON-MECHANISTIC           |
|---------------------|----------------------------------------------------------------|
| APPENDIX 3.C        | TIPOVER EVENT<br>RESPONSE OF CASK TO TORNADO WIND A CAT        |
|                     | RESPONSE OF CASK TO TORNADO WIND LOAD AND LARGE MISSILE IMPACT |
| APPENDIX 3.D        | VERTICAL HANDLING OF OVERPACK WITH HEAVIEST MPC                |
| APPENDIX 3.E        | LIFTING TRUNNION STRESS ANALYSIS FOR HI-TRAC                   |
| APPENDIX 3.F        | LEAD SLUMP ANALYSIS (HI-TRAC SIDE DROP)                        |
| <b>APPENDIX 3.G</b> | MISSILE PENETRATION ANALYSIS FOR HI-STORM 100                  |
| <b>APPENDIX 3.H</b> | MISSILE PENETRATION ANALYSES FOR HI-TRAC                       |
| <b>APPENDIX 3.I</b> | HI-TRAC FREE THERMAL EXPANSIONS                                |
| APPENDIX 3.J        | DELETED                                                        |
| APPENDIX 3.K        | HI-STORM TIPOVER - LID ANALYSIS                                |
| APPENDIX 3.L        | HI-STORM LID TOP PLATE BOLTING                                 |
| APPENDIX 3.M        | VERTICAL DROP OF OVERPACK                                      |
| APPENDIX 3.N        | DETAILED FINITE ELEMENT LISTINGS FOR MPC-24 FUEL BASKET        |
| APPENDIX 3.0        | DETAILED FINITE ELEMENT LISTINGS FOR MPC-24 FUEL BASKET        |
|                     | VESSEL                                                         |
| APPENDIX 3.P        | DELETED                                                        |
| APPENDIX 3.Q        | DELETED                                                        |
| APPENDIX 3.R        | DETAILED FINITE ELEMENT LISTINGS FOR MPC-68 FUEL BASKET        |
| APPENDIX 3.S        | DETAILED FINITE ELEMENT LISTINGS FOR MPC-68 ENCLOSURE          |
|                     | VESSEL                                                         |
| APPENDIX 3.T        | ANSYS FINITE ELEMENT RESULTS FOR THE MPCS                      |
| APPENDIX 3.U        | HI-STORM 100 COMPONENT THERMAL EXPANSIONS - MPC-24             |
| APPENDIX 3.V        | DELETED                                                        |
| APPENDIX 3.W        | HI-STORM 100 COMPONENT THERMAL EXPANSIONS - MPC-68             |
| APPENDIX 3.X        | CALCULATION OF DYNAMIC LOAD FACTORS                            |
| APPENDIX 3.Y        | MISCELLANEOUS CALCULATIONS                                     |
| APPENDIX 3.Z        | HI-TRAC HORIZONTAL DROP ANALYSIS                               |
| APPENDIX 3.AA       | HI-TRAC 125 - ROTATION TRUNNION WELD ANALYSIS                  |
| APPENDIX 3.AB       | HI-TRAC POOL LID STRESSES AND CLOSURE ANALYSIS                 |
| APPENDIX 3.AC       | LIFTING CALCULATIONS                                           |
| APPENDIX 3.AD       | 125 TON HI-TRAC TRANSFER LID STRESS ANALYSES                   |
| APPENDIX 3.AE       | GLOBAL ANALYSIS OF HI-TRAC LIFT                                |
| APPENDIX 3.AF       | MPC TRANSFER FROM HI-TRAC TO HI-STORM 100 UNDER COLD           |
|                     | CONDITIONS OF STORAGE                                          |
| APPENDIX 3.AG       | STRESS ANALYSIS OF THE HI-TRAC WATER JACKET                    |
| APPENDIX 3.AH       | HI-TRAC TOP LID SEPARATION ANALYSES                            |
| APPENDIX 3.AI       | HI-TRAC 100-ROTATION TRUNNION WELD ANALYSIS                    |
| APPENDIX 3.AJ       | 100 TON HI-TRAC TRANSFER LID STRESS ANALYSES                   |
| APPENDIX 3.AK       | CODE CASE N-284 STABILITY CALCULATIONS                         |
| APPENDIX 3.AL       | HI-TRAC LUMPED PARAMETERS FOR SIDE DROP ANALYSIS               |
| APPENDIX 3.AM       | HI-TRAC 100 TRANSFER CASK CIRCUMFERENTIAL                      |
|                     | DEFORMATION AND STRESS                                         |

|      | APPEN                             | IDIX 3.AN                                                                | DYNA3D ANALYSES OF HI-TRAC SIDE DROPS AND IMPACT BY A<br>LARGE TORNADO MISSILE                                                                                                          |
|------|-----------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHAP | TER 4:                            | THERMAL E                                                                | <b>ALUATION</b> 4.0-1                                                                                                                                                                   |
| 4.1  | DISCU                             | SSION                                                                    |                                                                                                                                                                                         |
| 4.2  | SUMM                              | IARY OF THER                                                             | MAL PROPERTIES OF MATERIALS 4.2-1                                                                                                                                                       |
| 4.3  | SPECIJ<br>4.3.1<br>4.3.2<br>4.3.3 | Evaluation of Z<br>4.3.1.1 Claddin<br>4.3.1.2 Permiss<br>Evaluation of S | R COMPONENTS4.3-1ircaloy Clad Fuel4.3-1ag Temperature Limits (DCCG Criteria)4.3-2sible Cladding Temperatures (PNL Method)4.3-6tainless Steel Clad Fuel4.3-8dding Temperature Limit4.3-9 |
| 4.4  | THERN<br>4.4.1                    | Thermal Model                                                            | TION FOR NORMAL CONDITIONS OF STORAGE       4.4-1                                                                                                                                       |
|      |                                   | 4.4.1.1.<br>4.4.1.1.                                                     | 1 Overview of the Thermal Model 4.4-2                                                                                                                                                   |
|      |                                   | 4.4.1.1.                                                                 | 3 Effective Thermal Conductivity of Boral/<br>Sheathing/Box Wall Sandwich 4.4-8                                                                                                         |
|      |                                   | 4.4.1.1.                                                                 | 4 Finite Element Modeling of Basket In-Plane<br>Conductive Heat Transport 4.4-8                                                                                                         |
|      |                                   | 4.4.1.1.<br>4.4.1.1.                                                     | 1 8                                                                                                                                                                                     |
|      |                                   | 4.4.1.1<br>4.4.1.1<br>4.4.1.1<br>4.4.1.1<br>4.4.1.1                      | <ul> <li>Betermination of Solar Heat Input</li></ul>                                                                                                                                    |
|      |                                   | 4.4.1.1                                                                  | Backfill Helium4.4-2012Thermal Conductivity Calculations with Diluted<br>Backfill Helium4.4-21                                                                                          |
|      |                                   |                                                                          | odel 4.4-23                                                                                                                                                                             |
|      | 4.4.2                             |                                                                          | peratures 4.4-23                                                                                                                                                                        |
|      | 4.4.3                             |                                                                          | peratures                                                                                                                                                                               |
|      | 4.4.4                             |                                                                          | mal Pressure                                                                                                                                                                            |
|      | 4.4.5                             |                                                                          | mal Stresses                                                                                                                                                                            |
|      | 4.4.6                             |                                                                          | ystem Performance for Normal<br>torage                                                                                                                                                  |

| 4.5      | THE   | RMAL EVALUATION F         | OR NORMAL HANDLING AND                                      |
|----------|-------|---------------------------|-------------------------------------------------------------|
|          | 4.5.1 | Thermal Model             |                                                             |
|          |       | 4511 Analytical Ma        | 4.5-1                                                       |
|          |       | 4.5.1.1.1                 | del                                                         |
|          |       | 4.5.1.1.2                 | Effective Thermal Conductivity of Water Jacket 4.5-2        |
|          |       | 4.3.1.1.2                 | Heat Rejection from Overpack Exterior                       |
|          |       | 45112                     | Surfaces                                                    |
|          |       | 4.5.1.1.3<br>4.5.1.1.4    | Determination of Solar Heat Input                           |
|          |       | 4.5.1.1.4                 | MPC Temperatures during Vacuum Drving                       |
|          |       | 45115                     | Operations                                                  |
|          |       | 4.5.1.1.5                 | Maximum Time Limit During Wet Transfer                      |
|          |       |                           | Operations                                                  |
|          |       | 4.5.1.1.6                 | Cask Cooldown and Reflood Analysis During Fuel              |
|          |       |                           | Unloading Operation                                         |
|          |       | 4.5.1.1.7                 | Study of Lead-to-Steel Gaps on Predicted Temperatures 4.5-9 |
|          |       |                           |                                                             |
|          | 4.5.2 | 4.5.1.2 Test Model        |                                                             |
|          | 4.5.2 | Maximum Temperature       | S                                                           |
|          |       |                           | Defailures Linder Unsite Transport Conditions               |
|          |       |                           | Dasket Temperature Under Vacuum Conditions                  |
|          | 4.5.3 | minimum remperatures      |                                                             |
|          | 4.5.4 | Maximum Internal Pres     | Sure                                                        |
|          | 4.5.5 | Maximum Thermai Sire      | SSES                                                        |
|          | 4.5.6 | Evaluation of System Pe   | criormance for Normal Conditions of Handling                |
|          |       | and Unsite Transport .    | 4.5-14                                                      |
| 4.6      | REGL  | LATORY COMPLIANC          | Е                                                           |
|          | 4.6.1 | Conditions of S           | lorage                                                      |
|          | 4.6.2 | Normal Handling and O     | nsite Transfer                                              |
| 4.7      | REFE  |                           |                                                             |
| <u> </u> |       |                           |                                                             |
|          |       |                           | ION 5.0-1                                                   |
| 5.0      |       |                           | 5.0-1                                                       |
| 5.1      | DISCU | JSSION AND RESULTS        | Operations 5.1-1                                            |
|          | 5.1.1 | Normal and Off-Normal     | Operations                                                  |
|          | 5.1.2 | Accident Conditions       | 5.1-3                                                       |
|          |       |                           |                                                             |
| 5.2      | SOUR  | CE SPECIFICATION          | 5.2-1                                                       |
|          | 5.2.1 |                           | 5.2.2                                                       |
|          | 5.2.2 | incution Source           |                                                             |
|          | 5.2.3 | Stainless Steel Clad Fuel | Source                                                      |
|          | 5.2.4 | control components        |                                                             |
|          | 5.2.5 | Choice of Design Basis A  | Assembly                                                    |
|          |       | 0                         | 5.2-6                                                       |

|      |                | 5.2.5.1 PWR Design Basis Assembly5.2-65.2.5.2 BWR Design Basis Assembly5.2-75.2.5.3 Decay Heat Loads5.2-8   |
|------|----------------|-------------------------------------------------------------------------------------------------------------|
| 5.3  | MODE<br>5.3.1  | L SPECIFICATIONS                                                                                            |
|      |                | Configuration                                                                                               |
|      |                | 5.3.1.1 Fuel Configuration                                                                                  |
|      | 5.3.2          | 5.3.1.2 Streaming Considerations                                                                            |
|      | 5.5.2          | Regional Delisities                                                                                         |
| 5.4  | SHIEL          | DING EVALUATION                                                                                             |
|      | 5.4.1          | Streaming Through Radial Steel Fins and Pocket Trunnions and                                                |
|      | 5.4.2          | Azimuthal Variations                                                                                        |
|      | 5.4.2<br>5.4.3 | Damaged Fuel Post-Accident Shielding Evaluation5.4-4Site Boundary Evaluation5.4-5                           |
|      | 5.4.4          | Stainless Steel Clad Fuel Evaluation                                                                        |
|      | 5.4.5          | Mixed Oxide Fuel Evaluation                                                                                 |
| 5.5  | REGU           | LATORY COMPLIANCE 5.5-1                                                                                     |
| 5.6  | REFEF          | RENCES                                                                                                      |
|      | APPEN          | NDIX 5.ASAMPLE INPUT FILE FOR SAS2HNDIX 5.BSAMPLE INPUT FILE FOR ORIGEN-SNDIX 5.CSAMPLE INPUT FILE FOR MCNP |
|      |                | VDIX 5.D DOSE RATE COMPARISON FOR DIFFERENT COBALT                                                          |
|      |                | IMPURITY LEVELS                                                                                             |
| CHAI | PTER 6:        | CRITICALITY EVALUATION                                                                                      |
| 6.1  | DISCU          | SSION AND RESULTS 6.1-2                                                                                     |
| 6.2  | SPENT          | FUEL LOADING                                                                                                |
|      | 6.2.1          | Definition of Assembly Classes                                                                              |
|      | 6.2.2          | PWR Fuel Assemblies in the MPC-24 6.2-2                                                                     |
|      | 6.2.3          | BWR Fuel Assemblies in the MPC-68                                                                           |
|      | 6.2.4          | Damaged BWR Fuel Assemblies and BWR Fuel Debris                                                             |
| 6.3  | MODE           | L SPECIFICATION                                                                                             |
|      | 6.3.1          | Description of Calculational Model                                                                          |
|      | 6.3.2          | Cask Regional Densities 6.3-2                                                                               |

| 6.4  | CRITICALITY CALCULATIONS6.4-16.4.1Calculational or Experimental Method6.4-16.4.1.1Basic Criticality Safety Calculations6.4-16.4.2Fuel Loading or Other Contents Loading Optimization6.4-26.4.2.1Internal and External Moderation6.4-26.4.2.2Partial Flooding6.4-36.4.2.3Clad Gap Flooding6.4-36.4.2.4Preferential Flooding6.4-36.4.2.5Design Basis Accidents6.4-46.4.3Criticality Results6.4-56.4.4Damaged Fuel Container6.4-66.4.5Fuel Assemblies with Missing Rods6.4-76.4.6Applicability of HI-STAR Analyses to HI-STORM 100 System6.4-7 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.5  | CRITICALITY BENCHMARK EXPERIMENTS 6.5-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.6  | REGULATORY COMPLIANCE 6.6-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6.7  | REFERENCES 6.7-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | APPENDIX 6.ABENCHMARK CALCULATIONSAPPENDIX 6.BDISTRIBUTED ENRICHMENTS IN BWR FUELAPPENDIX 6.CCALCULATIONAL SUMMARYAPPENDIX 6.DSAMPLE INPUT FILES                                                                                                                                                                                                                                                                                                                                                                                            |
| СНАР | TER 7: CONFINEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7.0  | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.1  | CONFINEMENT BOUNDARY       7.1-1         7.1.1       Confinement Vessel       7.1-1         7.1.2       Confinement Penetrations       7.1-2         7.1.3       Seals and Welds       7.1-3         7.1.4       Closure       7.1-3         7.1.5       Damaged Fuel Container       7.1-4                                                                                                                                                                                                                                                 |
| 7.2  | REQUIREMENTS FOR NORMAL CONDITIONS OF STORAGE7.2-17.2.1Release of Radioactive Material7.2-17.2.2Pressurization of the Confinement Vessel7.2-17.2.3Confinement Integrity During Dry Storage7.2-27.2.4Control of Radioactive Material During Fuel Loading Operations7.2-27.2.5External Contamination Control7.2-37.2.6Confinement Vessel Releasable Source Term7.2-37.2.7Release of Contents Under Normal Storage Conditions7.2-37.2.7.1Seal Leakage Rate7.2-37.2.7.2Fraction of Volume Released7.2-3                                         |

----

|      |                | 7.2.8.1 Whol | le Body Dose                                                                                     | 7.2-5           |
|------|----------------|--------------|--------------------------------------------------------------------------------------------------|-----------------|
|      |                |              | oid Dose                                                                                         |                 |
|      | 7.2.9          |              |                                                                                                  |                 |
| 7.2  | CONT           |              |                                                                                                  |                 |
| 7.3  |                |              | QUIREMENTS FOR HYPOTHETICAL                                                                      |                 |
|      |                |              | FIONS                                                                                            |                 |
|      | 7.3.1<br>7.3.2 |              | Vessel Releasable Source Term                                                                    |                 |
|      | 7.3.3          |              | uclides                                                                                          |                 |
|      | 1.3.3          |              | Sintents Under Non-Mechanistic Accident Conditions                                               | 722             |
|      |                |              | Leakage Rate                                                                                     |                 |
|      |                |              | ion of Volume Released                                                                           |                 |
|      |                |              | ase Fraction                                                                                     |                 |
|      |                |              | onuclide Release Rate                                                                            |                 |
|      |                |              | ospheric Dispersion Factor                                                                       |                 |
|      |                |              | Conversion Factors                                                                               |                 |
|      |                |              | pancy Time                                                                                       |                 |
|      |                |              | thing Rate                                                                                       |                 |
|      | 7.3.4          |              | ccident Doses                                                                                    |                 |
|      |                | 7.3.4.1 Whol | le Body Dose (Total Effective Dose Equivalent)                                                   |                 |
|      | 7.3.5          |              | cal Organ Dose                                                                                   |                 |
|      | 7.3.6          |              | y                                                                                                |                 |
|      | 7.5.0          | Assumptions  |                                                                                                  |                 |
| 7.4  | REFE           | RENCES       |                                                                                                  | 7.4-1           |
|      | APPEN          | NDIX 7.A     | EXAMPLE DOSE CALCULATIONS FOR NORM                                                               | AL OFENORMAL    |
|      | 101121         |              | AND ACCIDENT CONDITIONS OF STORAGE                                                               | AL, OIT-NORMAL. |
| CHAP | <b>TER 8</b> : | OPERATING    | PROCEDURES                                                                                       | 8.0-1           |
| 8.0  | INTRO          | DUCTION .    |                                                                                                  | 8.0-1           |
| 0.4  | <b>DDOO</b>    |              |                                                                                                  |                 |
| 8.1  |                |              | LOADING THE HI-STORM 100 SYSTEM IN THE                                                           |                 |
|      | 8.1.1          |              | Looding Organians                                                                                | 8.1-1           |
|      | 8.1.2          | HI TRAC and  | Loading Operations                                                                               | 8.1-1           |
|      | 8.1.2          | HI-TRAC and  | d HI-STORM Receiving and Handling Operations<br>d MPC Receipt Inspection and Loading Preparation | ····· ð.1-4     |
|      | 8.1.3<br>8.1.4 | MPC Fuel Los | ading                                                                                            | ····· ð.1-8     |
|      | 0.1.7          |              | ампд                                                                                             |                 |
|      |                |              |                                                                                                  |                 |

|                    | 8.1.5                                                        | MBC Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
|--------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|                    | 8.1.6                                                        | MPC Closure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                          |
|                    | 8.1.7                                                        | Preparation for Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24                         |
|                    | 0.1.7                                                        | Placement of HI-STORM into Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26                         |
| 8.2                | ISESI                                                        | OPERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| 0.2                | 101 01                                                       | OPERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1                         |
| 8.3                | PROC                                                         | CEDURE FOR UNLOADING THE HI-STORM 100 SYSTEM IN THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
|                    | SPEN                                                         | T FUEL POOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
|                    | 8.3.1                                                        | Overview of HLSTORM 100 System Unloading Occurting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1                         |
|                    | 8.3.2                                                        | Overview of HI-STORM 100 System Unloading Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·1                         |
|                    | 8.3.3                                                        | HI-STORM Recovery From Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2                         |
|                    | 8.3.4                                                        | Preparation for Unloading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                          |
|                    | 8.3.5                                                        | MPC Unloading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .9                         |
|                    | 0.0.0                                                        | Post-Unloading Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .9                         |
| 8.4                | MPC '                                                        | TRANSFER TO HI-STAR 100 OVERPACK FOR TRANSPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |
|                    | OR ST                                                        | TORAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
|                    | 8.4.1                                                        | Overview of Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                          |
|                    | 8.4.2                                                        | Recovery from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                          |
|                    | 8.4.3                                                        | MPC Transfer into the HI-STAR 100 Overpack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                          |
|                    |                                                              | 8.4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                          |
| 8.5                | MPC                                                          | <b>FRANSFER TO HI-STORM DIRECTLY FROM TRANSPORT</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                          |
|                    | 8.5.1                                                        | Overview of Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                          |
|                    | 8.5.2                                                        | HI-STAR Receipt and Preparation for MPC Transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1<br>1                     |
|                    |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
|                    |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
| 8.6                | REFE                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
|                    |                                                              | RENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                          |
|                    |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                          |
| СНАР               | TER 9:                                                       | ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>1                     |
|                    | TER 9:                                                       | RENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>1                     |
| <b>СНАР</b><br>9.0 | <b>TER 9</b> :<br>INTRO                                      | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>1<br>1                |
| СНАР               | TER 9:<br>INTRO<br>ACCE                                      | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1         PTANCE CRITERIA       9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>1<br>1                |
| <b>СНАР</b><br>9.0 | <b>TER 9</b> :<br>INTRO                                      | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1         PTANCE CRITERIA       9.1-1         Fabrication and Nondestructive Examination (NDE)       9.1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>1<br>1                |
| <b>СНАР</b><br>9.0 | TER 9:<br>INTRO<br>ACCE<br>9.1.1                             | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1         PTANCE CRITERIA       9.1-1         Fabrication and Nondestructive Examination (NDE)       9.1-1         9.1.1.1       MPC Lid-to-Shell Weld Volumetric Inspection       9.1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>1<br>1<br>1           |
| <b>СНАР</b><br>9.0 | TER 9:<br>INTRO<br>ACCE                                      | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1         PTANCE CRITERIA       9.1-1         Fabrication and Nondestructive Examination (NDE)       9.1-1         9.1.1.1       MPC Lid-to-Shell Weld Volumetric Inspection       9.1-5         9.1.5       9.1-6         9.1.5       9.1-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>1<br>1<br>1           |
| <b>СНАР</b><br>9.0 | TER 9:<br>INTRO<br>ACCE<br>9.1.1                             | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1         PTANCE CRITERIA       9.1-1         Fabrication and Nondestructive Examination (NDE)       9.1-1         9.1.1.1       MPC Lid-to-Shell Weld Volumetric Inspection       9.1-5         9.1.2.1       Lifting Trunnions       9.1-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>1<br>1<br>1<br>4<br>5 |
| <b>СНАР</b><br>9.0 | TER 9:<br>INTRO<br>ACCE<br>9.1.1                             | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DUCTION       9.0-1         PTANCE CRITERIA       9.1-1         Fabrication and Nondestructive Examination (NDE)       9.1-1         9.1.1.1 MPC Lid-to-Shell Weld Volumetric Inspection       9.1-5         9.1.2.1 Lifting Trunnions       9.1-6         9.1.2.2 Hydrostatic Testing       9.1-6                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| <b>СНАР</b><br>9.0 | TER 9:<br>INTRO<br>ACCE<br>9.1.1                             | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1         PTANCE CRITERIA       9.1-1         Fabrication and Nondestructive Examination (NDE)       9.1-1         9.1.1.1       MPC Lid-to-Shell Weld Volumetric Inspection       9.1-5         9.1.2.1       Lifting Trunnions       9.1-5         9.1.2.2       HJ-TRAC Transfer Cask Water Jacket       9.1-6                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
| <b>СНАР</b><br>9.0 | TER 9:<br>INTRO<br>ACCE<br>9.1.1                             | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1         PTANCE CRITERIA       9.1-1         Fabrication and Nondestructive Examination (NDE)       9.1-1         9.1.1.1       MPC Lid-to-Shell Weld Volumetric Inspection       9.1-4         Structural and Pressure Tests       9.1-5         9.1.2.1       Lifting Trunnions       9.1-5         9.1.2.2       MPC Confinement Boundary       9.1-6                                                                                                                                                                                                                                                                                                                                                                      |                            |
| <b>СНАР</b><br>9.0 | PTER 9:<br>INTRO<br>ACCE<br>9.1.1<br>9.1.2                   | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1         PTANCE CRITERIA       9.1-1         Fabrication and Nondestructive Examination (NDE)       9.1-1         9.1.1       MPC Lid-to-Shell Weld Volumetric Inspection       9.1-4         Structural and Pressure Tests       9.1-5         9.1.2.1       Lifting Trunnions       9.1-5         9.1.2.2       MPC Confinement Boundary       9.1-7         9.1.2.3       Materials Testing       9.1-7                                                                                                                                                                                                                                                                                                                    |                            |
| <b>СНАР</b><br>9.0 | PTER 9:<br>INTRO<br>ACCE<br>9.1.1<br>9.1.2                   | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1         PTANCE CRITERIA       9.1-1         Fabrication and Nondestructive Examination (NDE)       9.1-1         9.1.1       MPC Lid-to-Shell Weld Volumetric Inspection       9.1-5         9.1.2.1       Lifting Trunnions       9.1-5         9.1.2.2       HI-TRAC Transfer Cask Water Jacket       9.1-6         9.1.2.3       Materials Testing       9.1-7         Leakage Testing       9.1-8                                                                                                                                                                                                                                                                                                                        |                            |
| <b>СНАР</b><br>9.0 | PTER 9:<br>INTRO<br>ACCE<br>9.1.1<br>9.1.2                   | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1         PTANCE CRITERIA       9.1-1         Fabrication and Nondestructive Examination (NDE)       9.1-1         9.1.1       MPC Lid-to-Shell Weld Volumetric Inspection       9.1-4         Structural and Pressure Tests       9.1-5         9.1.2.1       Lifting Trunnions       9.1-5         9.1.2.2       Hydrostatic Testing       9.1-6         9.1.2.2.1       HI-TRAC Transfer Cask Water Jacket       9.1-6         9.1.2.2.3       MPC Confinement Boundary       9.1-7         Leakage Testing       9.1-8       9.1-8         Component Tests       9.1-8       9.1-8                                                                                                                                         |                            |
| <b>СНАР</b><br>9.0 | PTER 9:<br>INTRO<br>ACCE<br>9.1.1<br>9.1.2                   | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1         PTANCE CRITERIA       9.1-1         Fabrication and Nondestructive Examination (NDE)       9.1-1         9.1.1.1       MPC Lid-to-Shell Weld Volumetric Inspection       9.1-5         9.1.2.1       Lifting Trunnions       9.1-5         9.1.2.2       HI-TRAC Transfer Cask Water Jacket       9.1-6         9.1.2.2.2       MPC Confinement Boundary       9.1-7         9.1.2.3       Materials Testing       9.1-7         Leakage Testing       9.1-8       9.1-8         9.1.4.1       Valves, Rupture Discs, and Fluid Transport Devices       9.14                                                                                                                                                         |                            |
| <b>СНАР</b><br>9.0 | PTER 9:<br>INTRO<br>ACCE<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4 | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1         PTANCE CRITERIA       9.1-1         Fabrication and Nondestructive Examination (NDE)       9.1-1         9.1.1.1       MPC Lid-to-Shell Weld Volumetric Inspection       9.1-4         Structural and Pressure Tests       9.1-5         9.1.2.1       Lifting Trunnions       9.1-5         9.1.2.2       Hydrostatic Testing       9.1-6         9.1.2.2.3       MPC Confinement Boundary       9.1-7         9.1.2.3       Materials Testing       9.1-7         9.1.2.3       Materials Testing       9.1-8         Component Tests       9.1-8       9.1-8         9.1.4.1       Valves, Rupture Discs, and Fluid Transport Devices       9.1-8         9.1.4.2       Seals and Gaskets       9.1-9             |                            |
| <b>СНАР</b><br>9.0 | PTER 9:<br>INTRO<br>ACCE<br>9.1.1<br>9.1.2                   | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1         PTANCE CRITERIA       9.1-1         Fabrication and Nondestructive Examination (NDE)       9.1-1         9.1.1       MPC Lid-to-Shell Weld Volumetric Inspection       9.1-4         Structural and Pressure Tests       9.1-5         9.1.2.1       Lifting Trunnions       9.1-5         9.1.2.2       Hydrostatic Testing       9.1-6         9.1.2.2.1       HI-TRAC Transfer Cask Water Jacket       9.1-7         9.1.2.3       Materials Testing       9.1-7         9.1.2.3       Materials Testing       9.1-7         9.1.4.1       Valves, Rupture Discs, and Fluid Transport Devices       9.1-8         9.1.4.2       Seals and Gaskets       9.1-9         9.1.4.2       Seals and Gaskets       9.1-9 |                            |
| <b>СНАР</b><br>9.0 | PTER 9:<br>INTRO<br>ACCE<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4 | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1         PTANCE CRITERIA       9.1-1         Fabrication and Nondestructive Examination (NDE)       9.1-1         9.1.1       9.1.1         9.1.1       MPC Lid-to-Shell Weld Volumetric Inspection       9.1-4         Structural and Pressure Tests       9.1-5         9.1.2.1       Lifting Trunnions       9.1-5         9.1.2.2       MPC Confinement Boundary       9.1-7         9.1.2.3       Materials Testing       9.1-7         9.1.2.3       Materials Testing       9.1-7         9.1.4.1       Valves, Rupture Discs, and Fluid Transport Devices       9.1-8         9.1.4.2       Seals and Gaskets       9.1-9         9.1.5.1       Fabrication Testing and Control       9.1-9                           |                            |
| <b>СНАР</b><br>9.0 | PTER 9:<br>INTRO<br>ACCE<br>9.1.1<br>9.1.2<br>9.1.3<br>9.1.4 | RENCES       8.6-1         ACCEPTANCE CRITERIA AND MAINTENANCE PROGRAM       9.0-1         DDUCTION       9.0-1         PTANCE CRITERIA       9.1-1         Fabrication and Nondestructive Examination (NDE)       9.1-1         9.1.1.1       MPC Lid-to-Shell Weld Volumetric Inspection       9.1-4         Structural and Pressure Tests       9.1-5         9.1.2.1       Lifting Trunnions       9.1-5         9.1.2.2       Hydrostatic Testing       9.1-6         9.1.2.2.3       MPC Confinement Boundary       9.1-7         9.1.2.3       Materials Testing       9.1-7         9.1.2.3       Materials Testing       9.1-8         Component Tests       9.1-8       9.1-8         9.1.4.1       Valves, Rupture Discs, and Fluid Transport Devices       9.1-8         9.1.4.2       Seals and Gaskets       9.1-9             |                            |

1

|      | 9.1.5.3 Neutron Absorber Tests9.1-119.1.6 Thermal Acceptance Tests9.1-129.1.7 Cask Identification9.1-12                                                                                                                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.2  | MAINTENANCE PROGRAM9.2-19.2.1Structural and Pressure Parts9.2-19.2.2Leakage Tests9.2-29.2.3Subsystem Maintenance9.2-29.2.4Pressure Relief Valve9.2-29.2.5Shielding9.2-29.2.6Thermal9.2-3                                                         |
| 9.3  | REGULATORY COMPLIANCE                                                                                                                                                                                                                            |
| 9.4  | REFERENCES                                                                                                                                                                                                                                       |
| CHAF | TER 10: RADIATION PROTECTION                                                                                                                                                                                                                     |
| 10.1 | ENSURING THAT OCCUPATIONAL RADIATION EXPOSURESARE AS-LOW-AS-REASONABLY-ACHIEVABLE (ALARA)10.1-110.1.1Policy Considerations10.1-110.1.2Design Considerations10.1-210.1.3Operational Considerations10.1-510.1.4Auxiliary/Temporary Shielding10.1-6 |
| 10.2 | RADIATION PROTECTION DESIGN FEATURES                                                                                                                                                                                                             |
| 10.3 | ESTIMATED ON-SITE COLLECTIVE DOSE ASSESSMENT10.3-110.3.1Estimated Exposures for Loading and Unloading Operations10.3-210.3.2Estimated Exposures for Surveillance and Maintenance10.3-2                                                           |
| 10.4 | ESTIMATED COLLECTIVE DOSE ASSESSMENT10.4-110.4.1Controlled Area Boundary Dose for Normal Operations10.4-110.4.2Controlled Area Boundary Dose for Off-Normal Conditions10.4-210.4.3Controlled Area Boundary Dose for Accident Conditions10.4-2    |
| 10.5 | REFERENCES                                                                                                                                                                                                                                       |

| CHAPTER 11: ACCIDENT ANALYSIS |        |                 |                                                                                   |
|-------------------------------|--------|-----------------|-----------------------------------------------------------------------------------|
| 11.1                          |        |                 | IDITIONS 11.1-1                                                                   |
|                               | 11.1.1 | Off-Normal F    | Pressures                                                                         |
|                               |        | 11.1.1.1        | Postulated Cause of Off-Normal Pressure                                           |
|                               |        | 11.1.1.2        | Detection of Off-Normal Prosource                                                 |
|                               |        | 11.1.1.3        | Detection of Off-Normal Pressure                                                  |
|                               |        |                 | Off-Normal Pressure                                                               |
|                               |        | 11.1.1.4        | Off-Normal Pressure                                                               |
|                               |        | 11.1.1.5        | Radiological Impact of Off-Normal Pressure                                        |
|                               | 11.1.2 | Off-Normal E    | Invironmental Temperatures                                                        |
|                               |        | 11.1.2.1        | Postulated Cause of Off-Normal Environmental                                      |
|                               |        |                 | Temperatures                                                                      |
|                               |        | 11.1.2.2        | Detection of Off-Normal Environmental                                             |
|                               |        |                 | Temperatures                                                                      |
|                               |        | 11.1.2.3        | Analysis of Effects and Consequences of Off-Normal                                |
|                               |        |                 | Environmental Temperatures                                                        |
|                               |        | 11.1.2.4        | Corrective Action for Off-Normal                                                  |
|                               |        |                 | Environmental Temperatures 11.1-6                                                 |
|                               |        | 11.1.2.5        | Radiological Impact of Off-Normal                                                 |
|                               |        |                 | Environmental Temperatures 11.1-7                                                 |
|                               | 11.1.3 | Leakage of Or   | ne Seal                                                                           |
|                               |        | 11.1.3.1        | Postulated Cause of Leakage of One Seal in the                                    |
|                               |        |                 | Confinement Boundary 11.1-7                                                       |
|                               |        | 11.1.3.2        | Detection of Leakage of One Seal in the                                           |
|                               |        |                 | Confinement Boundary 11.1-8                                                       |
|                               |        | 11.1.3.3        | Analysis of Effects and Consequences of Leakage                                   |
|                               |        |                 | of One Seal in the Confinement Boundary 11.1-8                                    |
|                               |        | 11.1.3.4        | Corrective Action for Leakage of One Seal in the                                  |
|                               |        |                 | Confinement Boundary                                                              |
|                               |        | 11.1.3.5        | Radiological Impact of Leakage of One Seal in the                                 |
|                               |        |                 | Confinement Boundary 1110                                                         |
|                               | 11.1.4 | Partial Blockag | ge of Air Inlets                                                                  |
|                               |        | 11.1.4.1        | Postulated Cause of Partial Blockage of Air Inlets                                |
|                               |        | 11.1.4.2        | Detection of Partial Blockage of Air Inlets                                       |
|                               |        | 11.1.4.3        | Analysis of Effects and Consequences of Partial                                   |
|                               |        |                 | Blockage of Air Inlets                                                            |
|                               |        | 11.1.4.4        | Corrective Action for Partial Blockage of Air Inlets                              |
|                               |        | 11.1.4.5        | Radiological Impact of Partial Blockage of Air                                    |
|                               |        |                 | Inlets                                                                            |
|                               | 11.1.5 | Off-Normal Ha   | inding of HI-TRAC                                                                 |
|                               |        | 11.1.3.1        | Postulated Cause of Off-Normal Handling of HI-TRAC 11 1-12                        |
|                               |        | 11.1.5.2        | Detection of Off-Normal Handling of HI-TRAC.                                      |
|                               |        | 11.1.5.3        | Analysis of Effects and Consequences of Off-Normal Handling 11.1-13<br>of HI-TRAC |
|                               |        | 11.1.5.4        | Corrective Action for Off-Normal Handling of HI-TRAC                              |

1

|      | 11.1.5       | 5.5 Rad        | iological Consequences of Off-Normal Handling of HI-TRAC .11.1-14 |
|------|--------------|----------------|-------------------------------------------------------------------|
|      | 11.1.6 Off-N | Iormal Load Co | ombinations                                                       |
| 11.2 | ACCIDENTS    |                |                                                                   |
|      |              |                | Cask Handling Accident 11.2-1                                     |
|      | 11.2.1       |                | se of HI-TRAC Transfer Cask Handling Accident 11.2-1              |
|      | 11.2.1       |                | TRAC Transfer Cask Handling Accident Analysis 11.2-1              |
|      | 11.2.1       |                | rRAC Transfer Cask Handling Accident Dose                         |
|      | 11.2.7       |                | culations                                                         |
|      | 11.2.1       |                | rRAC Transfer Cask Handling Accident                              |
|      | 11.2.1       |                | rective Action                                                    |
|      | 11.2.2 HLST  |                | k Handling Accident                                               |
|      | 11.2.2 11-51 |                | se of HI-STORM Overpack Handling Accident                         |
|      | 11.2.2       |                | STORM Overpack Handling Accident Analysis                         |
|      | 11.2.2       |                | STORM Overpack Handling Accident Dose Calculations 11.2-6         |
|      | 11.2.2       |                | STORM Overpack Handling Accident Dose Calculations 11.2-6         |
|      |              |                | 1 0                                                               |
|      | 11.2.3 11p-0 |                | 11.2-6                                                            |
|      | 11.2.3       |                | se of Tip-Over                                                    |
|      |              | 1              | Over Analysis                                                     |
|      | 11.2.3       |                | Over Dose Calculations                                            |
|      | 11.2.3       | 1              | Over Accident Corrective Action 11.2-8                            |
|      |              |                |                                                                   |
|      | 11.2.4       |                | se of Fire 11.2-8                                                 |
|      | 11.2.4       |                | Analysis 11.2-8                                                   |
|      |              |                | .4.2.1 Fire Analysis for HI-STORM Overpack 11.2-8                 |
|      |              |                | .4.2.2 Fire Analysis for HI-TRAC Transfer Cask 11.2-14            |
|      | 11.2.4       |                | Dose Calculations 11.2-16                                         |
|      | 11.2.4       |                | Accident Corrective Actions 11.2-17                               |
|      |              |                | MPC Basket Vent Holes 11.2-17                                     |
|      | 11.2.5       |                | se of Partial Blockage of MPC Basket Vent Holes 11.2-17           |
|      | 11.2.5       |                | ial Blockage of MPC Basket Vent Hole Analysis 11.2-18             |
|      | 11.2.5       |                | ial Blockage of MPC Basket Vent Holes                             |
|      |              |                | e Calculations 11.2-19                                            |
|      | 11.2.5       |                | ial Blockage of MPC Basket Vent Holes                             |
|      |              |                | rective Action                                                    |
|      | 11.2.6 Torna |                |                                                                   |
|      | 11.2.6       | 5.1 Cau        | se of Tornado 11.2-19                                             |
|      | 11.2.6       |                | nado Analysis 11.2-19                                             |
|      | 11.2.6       | 5.3 Torr       | nado Dose Calculations 11.2-21                                    |
|      | 11.2.6       |                | nado Accident Corrective Action                                   |
|      | 11.2.7 Flood |                |                                                                   |
|      | 11.2.7       | 7.1 Cau        | se of Flood 11.2-21                                               |
|      | 11.2.7       | 7.2 Floo       | d Analysis 11.2-21                                                |
|      | 11.2.7       | 7.3 Floo       | d Dose Calculations 11.2-23                                       |
|      | 11.2.7       | 7.4 Floo       | d Accident Corrective Action 11.2-23                              |

|       | 11.2.8    | Earthquake .   |                                                     | 11 0 00   |
|-------|-----------|----------------|-----------------------------------------------------|-----------|
|       |           | 11.2.8.1       | Cause of Earthquake                                 | 11.2-23   |
|       |           | 11.2.8.2       | Earthquake Analysis                                 | 11.2-23   |
|       |           | 11.2.8.3       | Earthquake Dose Calculations                        | 11.2-23   |
|       |           | 11.2.8.4       | Earthquake Accident Corrective Action               | 11 2 24   |
|       | 11.2.9    | 100% Fuel Ro   | od Rupture                                          | 11.2-24   |
|       |           | 11.2.9.1       | Cause of 100% Fuel Rod Rupture                      | 11 2 25   |
|       |           | 11.2.9.2       | 100% Fuel Rod Rupture Analysis                      | 11 2 25   |
|       |           | 11.2.9.3       | 100% Fuel Rod Rupture Dose Calculations             | 11.2-25   |
|       |           | 11.2.9.4       | 100% Fuel Rod Rupture Accident Corrective Action    | 11 2 26   |
|       | 11.2.10   | Confinement I  | Boundary Leakage                                    | 11 2-20   |
|       |           | 11.2.10.1      | Cause of Confinement Boundary Leakage               | 11.2-20   |
|       |           | 11.2.10.2      | Confinement Boundary Leakage Analysis               | 11.2-20   |
|       |           | 11.2.10.3      | Confinement Boundary Leakage Dose Calculations      | 11 2-20   |
|       |           | 11.2.10.4      | Continement Boundary Leakage Accident               |           |
|       |           |                | Corrective Action                                   | 11 2-28   |
|       |           | Explosion      |                                                     | 11 2-28   |
|       |           | 11.2.11.1      | Cause of Explosion                                  | 11 2-28   |
|       |           | 11.2.11.2      | Explosion Analysis                                  | 11 2-28   |
|       |           | 11.2.11.3      | Explosion Dose Calculations                         | . 11.2-29 |
|       |           | 11.2.11.4      | Explosion Accident Corrective Action                | . 11.2-30 |
|       |           | Lightning      |                                                     | . 11.2-30 |
|       |           | 11.2.12.1      | Cause of Lightning                                  | 11 2-30   |
|       |           | 11.2.12.2      | Lightning Analysis                                  | 11 2-30   |
|       |           | 11.2.12.3      | Lightning Dose Calculations                         | 11 2-31   |
|       |           | 11.2.12.4      | Lightning Accident Corrective Action                | 11 2 21   |
|       | 11.2.13   | 100% Blockag   | e of Air Inlets                                     | 11 2.31   |
|       |           | 11.2.13.1      | Cause of 100% Blockage of Air Inlets                | 11 2-31   |
|       |           | 11.2.13.2      | 100% Blockage of Air Inlets Analysis                | 11 2-31   |
|       |           | 11.2.13.3      | 100% Blockage of Air Inlets Dose Calculations       | . 11.2-34 |
|       |           | 11.2.13.4      | 100% Blockage of Air Inlets Accident Corrective     |           |
|       | 11 2 14 1 |                | Action                                              | . 11.2-34 |
|       | 11.2.14 1 | Surial Under D | lebris                                              | 11 2-35   |
|       | 1         | 11.2.14.1      | Cause of Burial Under Debris                        | 11 2-35   |
|       |           | 1.2.14.2       | Burial Under Debris Analysis                        | 11 2-35   |
|       |           | 1.2.14.3       | Burial Under Debris Dose Calculations               | 11 2-38   |
|       |           | 1.2.14.4       | Burial Under Debris Accident Corrective Action      | 11 2 20   |
|       | 11.2.15 E | 1 2 15 1       | onmental Temperature                                | . 11.2-38 |
|       | 1         | 1.2.13.1       | Cause of Extreme Environmental Temperature          | 11 2-38   |
|       |           | 1.2.15.2       | Extreme Environmental Temperature Analysis          | 11 2-38   |
|       |           | 1.2.15.3       | Extreme Environmental Temperature Dose Calculations | 11 2-40   |
|       | 1         | 1.2.15.4       | Extreme Environmental Temperature Corrective Action | . 11.2-40 |
| 11.3  | REFERE    | NCES           |                                                     | 11.3-1    |
| СНАРТ | ER 12:    | OPERATING      | CONTROLS AND LIMITS                                 | 1201      |
|       |           |                |                                                     | . 12.0-1  |
|       |           |                |                                                     |           |

| 12.0 | INTRODUCTION                                                                                                                                                                                                                                                                                    |                                                                                            | 0-1                                                          |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 12.1 |                                                                                                                                                                                                                                                                                                 | G CONTROLS AND LIMITS                                                                      |                                                              |
| 12.2 | <ul> <li>12.2.1 Training Modules</li> <li>12.2.2 Dry Run Training</li> <li>12.2.3 Functional and Op<br/>Control Settings .</li> <li>12.2.4 Limiting Condition</li> <li>12.2.5 Equipment</li> <li>12.2.6 Surveillance Requisite</li> <li>12.2.7 Design Features .</li> <li>12.2.8 MPC</li> </ul> | ERATING CONTROLS AND LIMITS                                                                | .2-1<br>.2-2<br>.2-3<br>.2-3<br>.2-3<br>.2-4<br>.2-4<br>.2-4 |
| 12.3 | TECHNICAL SPECIFICA                                                                                                                                                                                                                                                                             | ATIONS 12.                                                                                 | .3-1                                                         |
| 12.4 | REGULATORY EVALUA                                                                                                                                                                                                                                                                               | ATION                                                                                      | .4-1                                                         |
| 12.5 | REFERENCES                                                                                                                                                                                                                                                                                      |                                                                                            | .5-1                                                         |
|      | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                         | ECHNICAL SPECIFICATIONS BASES FOR THE HOLTEC<br>I-STORM 100 SPENT FUEL STORAGE CASK SYSTEM |                                                              |
|      | APPENDIX 12.B C                                                                                                                                                                                                                                                                                 | OMMENT RESOLUTION LETTERS                                                                  |                                                              |

| СНА  | CHAPTER 13: QUALITY ASSURANCE                                                                                                                      |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 13.0 | INTRODUCTION                                                                                                                                       |  |  |
| 13.1 | GRADED APPROACH TO QUALITY ASSURANCE                                                                                                               |  |  |
| 13.2 | PROJECT ORGANIZATION                                                                                                                               |  |  |
| 13.3 | QUALITY ASSURANCE PROGRAM13.3-113.3.1 Overview13.3-113.3.2 Quality Assurance Program Documents13.3-113.3.3 Quality Assurance Program Content13.3-1 |  |  |
| 13.4 | PROJECT PLAN 13.4-1                                                                                                                                |  |  |
| 13.5 | REGULATORY COMPLIANCE                                                                                                                              |  |  |
| 13.6 | REFERENCES                                                                                                                                         |  |  |
|      | APPENDIX 13.ADESIGN VERIFICATION CHECKLISTAPPENDIX 13.BHOLTEC QA PROCEDURES                                                                        |  |  |

#### LIST OF FIGURES

\_

| 1.1.1   | HI-STORM 100 Overpack with MPC Partially Inserted                              |
|---------|--------------------------------------------------------------------------------|
| 1.1.2   | Cross Section Elevation View of MPC                                            |
| 1.1.3   | HI-STORM 100 Overpack Cross Sectional Elevation View                           |
| 1.2.1   | Cross Sectional View of the HI-STORM 100 System                                |
| 1.2.2   | MPC-68 Cross Section View                                                      |
| 1.2.3   | DELETED                                                                        |
| 1.2.4   | MPC-24 Cross Section View                                                      |
| 1.2.5   | Cross Section Elevation View of MPC                                            |
| 1.2.6   | MPC Confinement Boundary                                                       |
| 1.2.7   | Cross Section of HI-STORM Overpack                                             |
| 1.2.8   | HI-STORM 100 Overpack Cross Sectional Elevation View                           |
| 1.2.9   | 125-Ton HI-TRAC Transfer Cask with Pool Lid Cross Sectional Elevation View     |
| 1.2.10  | 125-Ton HI-TRAC Transfer Cask with Transfer Lid Cross Sectional Elevation View |
| 1.2.11  | 100-Ton HI-TRAC Transfer Cask with Pool Lid Cross Sectional Elevation View     |
| 1.2.12  | 100-Ton HI-TRAC Transfer Cask with Transfer Lid Cross Sectional Elevation View |
| 1.2.13  | DELETED                                                                        |
| 1.2.14  | DELETED                                                                        |
| 1.2.15  | DELETED                                                                        |
| 1.2.16a | Major HI-STORM 100 Loading Operations (Sheet 1 of 6)                           |
| 1.2.16b | Major HI-STORM 100 Loading Operations (Sheet 2 of 6)                           |
| 1.2.16c | Major HI-STORM 100 Loading Operations (Sheet 3 of 6)                           |
| 1.2.16d | Major HI-STORM 100 Loading Operations (Sheet 4 of 6)                           |
| 1.2.16e | Example of HI-STORM 100 Handling Options (Sheet 5 of 6)                        |
|         |                                                                                |

| 1.2.16f | Example of HI-STORM 100 Handling Options (Sheet 6 of 6)                       |
|---------|-------------------------------------------------------------------------------|
| 1.2.17a | Major HI-STORM 100 Unloading Operations (Sheet 1 of 4)                        |
| 1.2.17b | Major HI-STORM 100 Unloading Operations (Sheet 2 of 4)                        |
| 1.2.17c | Major HI-STORM 100 Unloading Operations (Sheet 3 of 4)                        |
| 1.2.17d | Major HI-STORM 100 Unloading Operations (Sheet 4 of 4)                        |
| 1.4.1   | Cask Layout Pitch Requirements Based on 2 by N Array(s)                       |
| 1.4.2   | Cask Layout Pitch Requirements Based on a Square Array                        |
| 1.A.1   | Design Stress Intensity vs. Temperature                                       |
| 1.A.2   | Tensile Strength vs. Temperature                                              |
| 1.A.3   | Yield Stress vs. Temperature                                                  |
| 1.A.4   | Coefficient of Thermal Expansion vs. Temperature                              |
| 1.A.5   | Thermal Conductivity vs. Temperature                                          |
| 2.1.1   | Damaged Fuel Container for Dresden Unit-1/Humboldt Bay SNF                    |
| 2.1.2   | DELETED                                                                       |
| 2.1.3   | PWR Axial Burnup Profile with Normalized Distribution                         |
| 2.1.4   | BWR Axial Burnup Profile with Normalized Distribution                         |
| 2.1.5   | MPC With Upper and Lower Fuel Spacers                                         |
| 2.1.6   | Illustrative Burnup and Cooling Time for Decay Heat and Radiation Source Term |
| 2.1.7   | DELETED                                                                       |
| 2.1.8   | DELETED                                                                       |
| 2.3.1   | HI-STAR Upending and Downending on a Rail Car                                 |
| 2.3.2   | HI-TRAC Upending and Downending on a Heavy-Haul Transport Trailer             |
| 2.3.3   | HI-TRAC Placement on HI-STORM 100 for MPC Transfer Operations                 |
|         |                                                                               |

l

| 2.3.4   | HI-TRAC Placement on HI-STAR 100 for MPC Transfer Operations          |
|---------|-----------------------------------------------------------------------|
| 3.1.1   | MPC Fuel Basket Geometry                                              |
| 3.1.2   | 0E Drop Orientations for the MPCs                                     |
| 3.1.3   | 45E Drop Orientations for the MPCs                                    |
| 3.4.1   | Finite Element Model of MPC-24 (0 Degree Drop Model)                  |
| 3.4.2   | DELETED                                                               |
| 3.4.3   | Finite Element Model of MPC-68 (0 Degree Drop Model)                  |
| 3.4.4   | Finite Element Model of MPC-24 (45 Degree Drop Model)                 |
| 3.4.5   | DELETED                                                               |
| 3.4.6   | Finite Element Model of MPC-68 (45 Degree Drop Model)                 |
| 3.4.7   | Detail of Fuel Assembly Pressure Load on MPC Basket                   |
| 3.4.8   | 0 Degree Side Drop of MPC                                             |
| 3.4.9   | 45 Degree Side Drop of MPC                                            |
| 3.4.10  | Comparison of 125 Ton and 100 Ton HI-TRAC Lifting Trunnion Connection |
| 3.4.11  | Confinement Boundary Model Showing Temperature Data Points            |
| 3.4.12  | MPC-Confinement Boundary Finite Element Grid (Exploded View)          |
| 3.4.13  | Von Mises Stress - Outer Shell                                        |
| 3.4.14  | Plastic Strain Outer Shell                                            |
| 3.4.15  | Von Mises Stress - Inner Shell                                        |
| 3.4.16  | Plastic Strain - Inner Shell                                          |
| 3.4.16a | Von Mises Stress - Channel                                            |
| 3.4.16b | Plastic Strain - Channel                                              |
| 3.4.17  | Top and Bottom Lifting of the Loaded HI-STORM 100                     |

| 3.4.18 | HI-TRAC Upending in the Upending Frame                                                                                    |
|--------|---------------------------------------------------------------------------------------------------------------------------|
| 3.4.19 | HI-STORM 100 Tip-Over Event                                                                                               |
| 3.4.20 | HI-STORM 100 End Drop Event                                                                                               |
| 3.4.21 | HI-TRAC Lifting with the Pool and Transfer Lids                                                                           |
| 3.4.22 | HI-TRAC Side Drop Event                                                                                                   |
| 3.4.23 | Forces and Moments on 125 Ton Rotation Trunnion Weld                                                                      |
| 3.4.24 | Working Model Solution for Impact Force on HI-TRAC 100 Transfer Cask Outer Shell                                          |
| 3.4.25 | HI-STORM 100 Overturning Scenario - Initial Angular Velocity = 0.628 Radians/Second<br>Assumed Caused By a Pressure Pulse |
| 3.4.26 | HI-STORM 100 Overturning Scenario - Initial Angular Velocity = 0.628 Radians/Second<br>Maximum Angular Excursion          |
| 3.4.27 | HI-TRAC Transfer Cask in Short-Side Impact (Cask Rests at a Position of -5° from Horizontal)                              |
| 3.4.28 | HI-TRAC Transfer Cask in Long-Side Impact (Cask Rests at a Position of -1° from Horizontal)                               |
| 3.4.29 | Free-Body of Transfer Lid During Primary Impact with Target                                                               |
| 3.5.1  | Fuel Rod Deformation Phases, $g_1 > 0$                                                                                    |
| 3.5.2  | Fuel Rod Deformation Phases, $g_1 = 0$                                                                                    |
| 3.5.3  | Fuel Rod Deformation Phases, $g_1 = 0$ , $F_2 > F_1$                                                                      |
| 3.5.4  | Fuel Rod Deformation Phases, Inter-grid Strap Deformation $F_3 > F_2$                                                     |
| 3.5.5  | Fuel Rod Deformation Phases, Point Contact at Load F <sub>4</sub> Maximum Bending Moment at A                             |
| 3.5.6  | Fuel Rod Deformation Phases, Extended Region of Contact $F_5 > F_4$ , Zero Bending Moment at A'                           |
| 3.5.7  | Free Body Diagram When Moment at $A' = 0$                                                                                 |
| 3.5.8  | View C - C                                                                                                                |

| 3.5.9  | Exaggerated Detail Showing Multiple Fuel Rods Subject to Lateral Deflection with Final Stacking of Rod Column |
|--------|---------------------------------------------------------------------------------------------------------------|
| 3.A.1  | Tipover Finite Element Model (3-D View)                                                                       |
| 3.A.2  | Tipover Finite-Element Model (Plan)                                                                           |
| 3.A.3  | Tipover Finite-Element Model (XZ View)                                                                        |
| 3.A.4  | Tipover Finite-Element Model (YZ View)                                                                        |
| 3.A.5  | End-Drop Finite-Element Model (3-D View)                                                                      |
| 3.A.6  | End-Drop Finite-Element Model (Plan)                                                                          |
| 3.A.7  | End-Drop Finite-Element Model (XZ View)                                                                       |
| 3.A.8  | End-Drop Finite-Element Model (YZ View)                                                                       |
| 3.A.9  | Soil Finite-Element Model (3-D View)                                                                          |
| 3.A.10 | Concrete Pad Finite-Element Model (3-D View)                                                                  |
| 3.A.11 | Overpack Steel Structure Finite-Element Model (3-D View)                                                      |
| 3.A.12 | Inner Shell and Channels Finite-Element Model (3-D View)                                                      |
| 3.A.13 | Lid Steel Finite-Element Model (3-D View)                                                                     |
| 3.A.14 | Overpack Concrete Components Finite-Element Model (3-D View)                                                  |
| 3.A.15 | MPC Finite Element Model (3-D View)                                                                           |
| 3.A.16 | Pivot Point During Tip-Over Condition                                                                         |
| 3.A.17 | Tip-Over Event Overpack Slams Against the Foundation Developing a Resistive Force                             |
| 3.A.18 | Measurement Points and Corresponding Finite-Element Model Nodes                                               |
| 3.A.19 | Tipover Scenario: Impact Force Time-Histories                                                                 |
| 3.A.20 | Tipover Scenario: Channel A2 Displacement Time-History                                                        |
| 3.A.21 | Tipover Scenario: Channel A2 Velocity Time-History                                                            |
|        |                                                                                                               |

| 3.A.22 | Tipover Scenario: Channel A2 Deceleration Time-Histories                            |
|--------|-------------------------------------------------------------------------------------|
| 3.A.23 | End-Drop Scenario: Impact Force Time-Histories                                      |
| 3.A.24 | End-Drop Scenario: Channel A1 Displacement Time-History                             |
| 3.A.25 | End-Drop Scenario: Channel A1 Velocity Time-History                                 |
| 3.A.26 | End-Drop Scenario: Average Baseplate Top Plate Deceleration Time-Histories          |
| 3.A.27 | Tipover (With Increased Initial Clearance): Impact Force Time Histories             |
| 3.A.28 | Tipover (With Increased Initial Clearance): Channel A2 Displacement Time History    |
| 3.A.29 | Tipover (With Increased Initial Clearance): Channel A2 Velocity Time History        |
| 3.A.30 | Tipover (With Increased Initial Clearance): Top Lid Plate Deceleration Time History |
| 3.C.1  | Free Body Diagram of Cask for Large Missile Strike/Tornado Event                    |
| 3.C.2  | Centroid Motion - Impact/Wind                                                       |
| 3.C.3  | Centroid Motion - Impact/Dip                                                        |
| 3.D.1  | Bottom End Lift at the Inlet Vents                                                  |
| 3.D.2a | Top End Lift Finite Element Model                                                   |
| 3.D.2b | Top End Lift Finite Element Model                                                   |
| 3.D.2c | Top End Lift Finite Element Model                                                   |
| 3.D.3  | Bottom End Lift at the Inlet Vents - Stress Intensity Profile (psi)                 |
| 3.D.4a | Top End Lift at the Lifting Lugs - Stress Intensity (psi)                           |
| 3.D.4b | Top End Lift at the Lifting Lugs - Stress Intensity (psi)                           |
| 3.D.4c | Top End Lift at the Lifting Lugs - Stress Intensity (psi)                           |
| 3.D.5a | Top End Lift - Baseplate Stress Intensity (psi)                                     |
| 3.D.5b | Top End Lift - Baseplate Stress Intensity (psi)                                     |
| 3.D.5c | Top End Lift - Baseplate Stress Intensity (psi)                                     |

| 3.E.1 | Sketch of Lifting Trunnion Geometry Showing Applied Load                                                           |
|-------|--------------------------------------------------------------------------------------------------------------------|
| 3.E.2 | Free Body Sketch of Lifting Trunnion Threaded Region Showing Moment<br>Balance by Shear Stresses                   |
| 3.E.3 | Weld Configuration in Lifting Trunnion Block                                                                       |
| 3.F.1 | Lead Slump Finite Element Model                                                                                    |
| 3.F.2 | Lead Slump Analysis (Phase I) Lead Contraction                                                                     |
| 3.F.3 | Lead Slump Analysis (Phase II)                                                                                     |
| 3.F.4 | Lead Slump Analysis (Phase II) Stress Intensity                                                                    |
| 3.G.1 | Small Missile Impact                                                                                               |
| 3.G.2 | Post Impact Deformation of HI-STORM 100 Outer Shell Backed by Concrete and Impacted by a Horizontal Missile Strike |
| 3.G.3 | Missile Impact on Top Lid                                                                                          |
| 3.G.4 | Missile Strike at Top of HI-STORM                                                                                  |
| 3.G.5 | Top Lid Missile Impact                                                                                             |
| 3.H.1 | HI-TRAC Missile Strike Locations                                                                                   |
| 3.I.1 | Geometry of Section for Thermal Expansion Calculations                                                             |
| 3.M.1 | Geometry of Lid Shield                                                                                             |
| 3.U.1 | Geometry of Section for Thermal Expansion Calculations                                                             |
| 3.W.1 | Geometry of Section for Thermal Expansion Calculations                                                             |
| 3.X.1 | Triangular Deceleration Pulse Shape                                                                                |
| 3.X.2 | Dynamic Load Factor for Single Degree of Freedom System - Triangular Pulse Shape, No<br>Damping                    |
| 3.X.3 | Dynamic Model for Multi-Degree of Freedom Analysis for DLF Determination                                           |
| 3.X.4 | Dynamic Force in Lower Panel Spring - PWR                                                                          |

| 3.X.5   | Dynamic Force in Lower Panel Spring - BWR                           |
|---------|---------------------------------------------------------------------|
| 3.Y.1   | Freebody of Stress Distribution in the Weld and the Honeycomb Panel |
| 3.Y.2   | Freebody of Idealized Fuel Basket Support                           |
| 3.Z.1   | HI-TRAC 125 Results                                                 |
| 3.Z.2   | HI-TRAC 100 Results                                                 |
| 3.Z.3   | HI-TRAC 125 Mass Properties                                         |
| 3.Z.4   | HI-TRAC 100 Mass Properties                                         |
| 3.Z.5   | HI-TRAC Lower Impact Spring                                         |
| 3.Z.6   | HI-TRAC Upper Spring                                                |
| 3.AA.1  | Forces and Moments on 125 Ton Rotation Trunnion Weld                |
| 3.AA.2  | 125-Ton HI-TRAC - Pocket Trunnion Model                             |
| 3.AA.3  | 125-Ton HI-TRAC - Pocket Trunnion Model (Outer Shell)               |
| 3.AA.4  | 125-Ton HI-TRAC - Pocket Trunnion Model (Outer Shell)               |
| 3.AA.5  | 125-Ton HI-TRAC - Pocket Trunnion Model (Inner Shell)               |
| 3.AA.6  | 125-Ton HI-TRAC - Pocket Trunnion Model (Inner Shell)               |
| 3.AA.7  | 125-Ton HI-TRAC - Pocket Trunnion Model (Radial Channels)           |
| 3.AA.8  | 125-Ton HI-TRAC - Pocket Trunnion Model (Radial Channels)           |
| 3.AD.1  | Door Plate Simply Supported Beam Model                              |
| 3.AD.2  | Minimum Section of Bottom Plate for Stress Analysis                 |
| 3.AD.3  | Housing Bolt Array to Support Lift Operation                        |
| 3.AE.1a | Finite Element Plot                                                 |
| 3.AE.1b | Finite Element Plot                                                 |
| 3.AE.1c | Finite Element Plot                                                 |

| 3.AE.2   | Stress | Intensity | Plot | (psi) |
|----------|--------|-----------|------|-------|
| J./ ML.2 | 011033 | monony    | 1101 |       |

- 3.AE.3 Free-Body of HI-TRAC 125 Bottom Flange Showing Load from Lid Bolts "T" and Equilibrium Loads "T1" and "T2" in the Inner and Outer Shells
- 3.AE.4 125 Ton Top End Trunnion Block Showing Four Added Stiffeners
- 3.AI.1 100-Ton HI-TRAC Pocket Trunnion Model (Outer Shell)
- 3.AI.2 100-Ton HI-TRAC Pocket Trunnion Model (Outer Shell)
- 3.AI.3 100-Ton HI-TRAC Pocket Trunnion Model (Inner Shell)
- 3.AI.4 100-Ton HI-TRAC Pocket Trunnion Model (Inner Shell)
- 3.AI.5 100-Ton HI-TRAC Pocket Trunnion Model (Radial Channels)
- 3.AI.6 100-Ton HI-TRAC Pocket Trunnion Model (Radial Channels)
- 3.AJ.1 Door Plate Simply Supported Beam Model
- 3.AJ.2 Section of Bottom Plate for Stress Analysis
- 3.AJ.3 Housing Bolt Array to Support Lift Operation
- 3.AN.1 HI-TRAC Transfer Cask in Short-Side Impact (Cask Rests at a Position of -5° from Horizontal)
- 3.AN.2 HI-TRAC Transfer Cask in Long-Side Impact (Cask Rests at a Position of -1° from Horizontal)
- 3.AN.3 125-Ton HI-TRAC, Scenario A
- 3.AN.4 HI-TRAC 125 Finite Element Mesh
- 3.AN.5 Vertical Displacement at Transfer Lid, Top Lid Outer Points, Scenario A
- 3.AN.6 Vertical Deceleration at Transfer Lid, Scenario A
- 3.AN.7 Vertical Deceleration at Inner Shell Centroid, Scenario A
- 3.AN.8 Vertical Deceleration of Top Lid, Scenario A
- 3.AN.9 Interface Forces at Target/Primary and Secondary Impact Sites

- 3.AN.10 Absolute Vertical Displacement at Centroid Location (Top and Bottom of Inner Shell)
- 3.AN.11 Overall Model of 125-Ton Drop, Scenario B
- 3.AN.12 Absolute Vertical Displacement at Transfer Lid and Top Lid
- 3.AN.13 Rigid Body Deceleration Transfer Lid, Centroid, Top Lid, Scenario B
- 3.AN.14 Interface Force on Target, Scenario B
- 3.AN.15 Vertical Displacements at Top and Bottom of Inner Shell, Scenario B
- 3.AN.16 Force at MPC-Top Lid Interface, Scenario B
- 3.AN.17 Rigid Body Decelerations Transfer Lid, Centroid, Top Lid, Scenario A
- 3.AN.18 Interface Force at Target (Lower Trunnion, Water Jacket, Upper Trunnion)
- 3.AN.19 Upper and Lower Vertical Displacements at Centroid
- 3.AN.20 Vertical Displacement at Transfer Lid and Top Lid, Scenario B
- 3.AN.21 Rigid Body Decelerations, Scenario B
- 3.AN.22 Force at Target Impact Sites, Scenario B
- 3.AN.23 Inner Shell Vertical Displacements Upper and Lower Points at Centroid
- 3.AN.24 Interface Force MPC/Top Lid Impact Site, Scenario B
- 3.AN.25 Geometry of Inner Shell Deformation
- 3.AN.26 Large Tornado Missile Impact Total Force Applied to Transfer Cask
- 3.AN.27 Von Mises Stress in Water Jacket Large Tornado Missile Impact on 125-Ton HI-TRAC
- 3.AN.28 Von Mises Stress in Water Jacket Large Tornado Missile Impact on 100-Ton HI-TRAC
- 3.AN.29 Slap Down of HI-TRAC 100, Scenario B
- 3.AN.30 Local View at Secondary Impact Location
- 4.2.1 Thermal Conductivity of Helium and Air vs. Temperature
- 4.2.2 Viscosity of Helium and Air vs. Temperature

| 4.3.1  | Comparison of Calculated (By EPRI and PNL) and Theoretical Maximum Fuel Rod<br>Pressures for PWR Fuel |
|--------|-------------------------------------------------------------------------------------------------------|
| 4.3.2  | Comparison of Reg. Guide 3.54 Decay Heat Data With ORIGEN-S for BWR Fuel                              |
| 4.3.3  | Comparison of Reg. Guide 3.54 Decay Heat Data With ORIGEN-S for PWR Fuel                              |
| 4.3.4  | Comparison of Fuel Cladding Temperature Limits with HI-STORM Permissible Temperatures                 |
| 4.4.1  | Homogenization of the Storage Cell Cross-Section                                                      |
| 4.4.2  | MPC Cross-Section Replaced With an Equivalent Two Zone Axisymmetric Body                              |
| 4.4.3  | Westinghouse 17x17 OFA PWR Fuel Assembly Model                                                        |
| 4.4.4  | General Electric 9x9 BWR Fuel Assembly Model                                                          |
| 4.4.5  | Comparison of FLUENT Calculated Fuel Assembly Conductivity Results with Published Technical Data      |
| 4.4.6  | Typical MPC Basket Parts in a Cross-Sectional View                                                    |
| 4.4.7  | Resistance Network Model of a "Box Wall-Boral-Sheathing" Sandwich                                     |
| 4.4.8  | DELETED                                                                                               |
| 4.4.9  | MPC-24 Basket Cross-Section ANSYS Finite Element Model                                                |
| 4.4.10 | MPC-68 Basket Cross-Section ANSYS Finite Element Model                                                |
| 4.4.11 | Illustration of an MPC Basket to Shell Aluminum Heat Conduction Element                               |
| 4.4.12 | Stack Air Temperature as a Function of Height                                                         |
| 4.4.13 | Schematic Depiction of the HI-STORM Thermal Analysis                                                  |
| 4.4.14 | HI-STORM Model Mesh for Thermal Analysis                                                              |
| 4.4.15 | DELETED                                                                                               |
| 4.4.16 | MPC-24 Peak Fuel Rod Axial Temperature Profile for Normal Storage                                     |
| 4.4.17 | MPC-68 Peak Fuel Rod Axial Temperature Profile for Normal Storage                                     |

| 4.4.18 | DELETED                                                                                                                                         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.4.19 | MPC-24 Radial Temperature Profile                                                                                                               |
| 4.4.20 | MPC-68 Radial Temperature Profile                                                                                                               |
| 4.4.21 | DELETED                                                                                                                                         |
| 4.4.22 | MPC-24 Concrete Overpack Inner Shell & Annulus Air Axial Temperature Plots                                                                      |
| 4.4.23 | MPC-68 Concrete Overpack Inner Shell and Annulus air Axial Temperature Plots                                                                    |
| 4.4.24 | Illustration of Minimum Available Planar Area Per HI-STORM Module at an ISFSI                                                                   |
| 4.5.1  | Water Jacket Resistance Network Analogy for Effective Conductivity Calculation                                                                  |
| 4.5.2  | Loaded HI-TRAC Temperature Contours Plot                                                                                                        |
| 4.5.3  | MPC Vacuum Temperature Contours Plot                                                                                                            |
| 5.1.1  | Cross Section Elevation View of Overpack with Dose Point Location                                                                               |
| 5.1.2  | Cross Section Elevation View of 125-Ton HI-TRAC Transfer Cask with Dose Point Locations                                                         |
| 5.1.3  | Annual Dose Versus Distance for Various Configurations of the MPC-24<br>45,000 MWD/MTU and 5-Year Cooling (8760 Hour Occupancy Assumed)         |
| 5.1.4  | Cross Section Elevation View of 100-Ton HI-TRAC Transfer Cask (With Pool Lid) With Dose Point Locations                                         |
| 5.1.5  | Dose Rate 1-Foot From the Side of the 100-Ton HI-TRAC Transfer Cask with the MPC-24 for 35,000 MWD/MTU and 5-Year Cooling                       |
| 5.1.6  | Dose Rate on the Surface of the Pool Lid on the 100-Ton HI-TRAC Transfer Cask with the MPC-24 for 35,000 MWD/MTU and 5-Year Cooling             |
| 5.1.7  | Dose Rate 1-Foot From the Bottom of the Transfer Lid on the 100-Ton HI-TRAC Transfer Cask with the MPC-24 for 35,000 MWD/MTU and 5-Year Cooling |
| 5.1.8  | Dose Rate 1-Foot From the Top of Top Lid on the 100-Ton HI-TRAC Transfer Cask with the MPC-24 for 35,000 MWD/MTU and 5-Year Cooling             |

1

| 5.1.9  | Dose Rate 1-Foot From the Side of the 100-Ton HI-TRAC Transfer Cask With Temporary Shielding Installed, with the MPC-24 for 35,000 MWD/MTU and 5-Year Cooling (Total Dose Without Temporary Shielding Shown for Comparision) |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.1.10 | Dose Rate At Various Distances From the Side of the 100-Ton HI-TRAC Transfer Cask with the MPC-24 for 35,000 MWD/MTU and 5-Year Cooling                                                                                      |
| 5.1.11 | Dose Rate At Various Distances From the Bottom of Transfer Lid on the 100-Ton HI-TRAC Transfer Cask with the MPC-24 for 35,000 MWD/MTU and 5-Year Cooling                                                                    |
| 5.3.1  | DELETED                                                                                                                                                                                                                      |
| 5.3.2  | HI-STORM 100 Overpack with MPC-24 Cross Sectional View as Modelled in MCNP                                                                                                                                                   |
| 5.3.3  | HI-STORM 100 Overpack with MPC-68 Cross Sectional View as Modelled in MCNP                                                                                                                                                   |
| 5.3.4  | DELETED                                                                                                                                                                                                                      |
| 5.3.5  | Cross Sectional View of an MPC-24 Basket Cell as Modeled in MCNP                                                                                                                                                             |
| 5.3.6  | Cross Sectional View of an MPC-68 Basket Cell as Modeled in MCNP                                                                                                                                                             |
| 5.3.7  | HI-TRAC Overpack with MPC-24 Cross Sectional View as Modelled in MCNP                                                                                                                                                        |
| 5.3.8  | Axial Location of PWR Design Basis Fuel in the HI-STORM Overpack                                                                                                                                                             |
| 5.3.9  | Axial Location of BWR Design Basis Fuel in the HI-STORM Overpack                                                                                                                                                             |
| 5.3.10 | Cross Section of HI-STORM 100 Overpack                                                                                                                                                                                       |
| 5.3.11 | HI-STORM 100 Overpack Cross Sectional Elevation View                                                                                                                                                                         |
| 5.3.12 | 100-Ton HI-TRAC Transfer Cask with Pool Lid Cross Sectional Elevation View (As Modeled)                                                                                                                                      |
| 5.3.13 | 125-Ton HI-TRAC Transfer Cask with Pool Lid Cross Sectional Elevation View (As Modeled)                                                                                                                                      |
| 5.3.14 | 100-Ton HI-TRAC Transfer Cask with MPC-24 Cross-Sectional View (As Modeled)                                                                                                                                                  |
| 5.3.15 | 125-Ton HI-TRAC Transfer Cask with MPC-24 Cross-Sectional View (As Modeled)                                                                                                                                                  |
| 5.3.16 | 100-Ton HI-TRAC Transfer Lid (As Modeled)                                                                                                                                                                                    |
| 5.3.17 | 125-Ton HI-TRAC Transfer Lid (As Modeled)                                                                                                                                                                                    |

#### 6.2.1 DELETED

- 6.3.1 Typical Cell in the Calculation Model (Planar Cross-Section) with Representative Fuel in the MPC-24 Basket
- 6.3.2 DELETED
- 6.3.3 Typical Cell in the Calculation Model (Planar Cross-Section) with Representative Fuel in the MPC-68 Basket
- 6.3.4 Calculation Model (Planar Cross-Section) with Fuel Illustrated in One Quadrant of the MPC-24
- 6.3.5 DELETED
- 6.3.6 Calculation Model (Planar Cross-Section) with Fuel Illustrated in One Quadrant of the MPC-68
- 6.3.7 Sketch of the Calculational Model in the Axial Direction

#### 6.4.1 DELETED

- 6.4.2 Failed Fuel Calculation Model (Planar Cross-Section) with 6x6 Array with 4 Missing Rods in the MPC-68 Basket
- 6.4.3 Failed Fuel Calculation Model (Planar Cross-Section) with 6x6 Array with 8 Missing Rods in the MPC-68 Basket
- 6.4.4 Failed Fuel Calculation Model (Planar Cross-Section) with 6x6 Array with 12 Missing Rods in the MPC-68 Basket
- 6.4.5 Failed Fuel Calculation Model (Planar Cross-Section) with 6x6 Array with 18 Missing Rods in the MPC-68 Basket
- 6.4.6 Failed Fuel Calculation Model (Planar Cross-Section) with 7x7 Array with 8 Missing Rods in the MPC-68 Basket
- 6.4.7 Failed Fuel Calculation Model (Planar Cross-Section) with 7x7 Array with 13 Missing Rods in the MPC-68 Basket
- 6.4.8 Failed Fuel Calculation Model (Planar Cross-Section) with 7x7 Array with 24 Missing Rods in the MPC-68 Basket
- 6.4.9 Failed Fuel Calculation Model (Planar Cross-Section) with Damaged Fuel Collapsed Into 8x8 Array in the MPC-68 Basket

\_\_\_\_\_

| 6.4.10  | Calculated K-Effective As A Function of Internal Moderator Density                                |
|---------|---------------------------------------------------------------------------------------------------|
| 6.A.1   | MCNP4a Calculated k-eff Values for Various Values of the Spectral Index                           |
| 6.A.2   | KENO5a Calculated k-eff Values for Various Values of the Spectral Index                           |
| 6.A.3   | MCNP4a Calculated k-eff Values at Various U-235 Enrichments                                       |
| 6.A.4   | KENO5a Calculated k-eff Values at Various U-235 Enrichments                                       |
| 6.A.5   | Comparison of MCNP4a and KENO5a Calculations for Various Fuel Enrichments                         |
| 6.A.6   | Comparison of MCNP4a and KENO5a Calculations for Various Boron-10 Areal Densities                 |
| 7.1.1   | HI-STORM 100 System Confinement Boundary                                                          |
| 8.1.1   | Loading Operations Flow Diagram                                                                   |
| 8.1.2a  | Major HI-STORM 100 Loading Operations                                                             |
| 8.1.2b  | Major HI-STORM 100 Loading Operations                                                             |
| 8.1.2c  | Major HI-STORM 100 Loading Operations                                                             |
| 8.1.2d  | Major HI-STORM 100 Loading Operations                                                             |
| 8.1.2e  | Example of HI-STORM 100 Handling Options                                                          |
| 8.1.2.f | Example of HI-TRAC Handling Options (Missile Shields Not Shown for Clarity)                       |
| 8.1.3   | Lift Yoke Engagement and Vertical HI-TRAC Handling (Shown with the Pool Lid and the Transfer Lid) |
| 8.1.4   | HI-TRAC Upending/Downending in the Transfer Frame                                                 |
| 8.1.5   | HI-STORM Vertical Handling                                                                        |
| 8.1.6   | MPC Upending in the MPC Upending Frame                                                            |
| 8.1.7   | MPC Rigging for Vertical Lifts                                                                    |
| 8.1.8   | MPC Alignment in HI-TRAC                                                                          |
| 8.1.9   | MPC Lid and HI-TRAC Accessory Rigging                                                             |
|         |                                                                                                   |

| 8.1.10  | Fuel Spacers                                       |
|---------|----------------------------------------------------|
| 8.1.11  | Drain Port Details                                 |
| 8.1.12  | Drain Line Positioning                             |
| 8.1.13  | Annulus Shield/Annulus Seal                        |
| 8.1.14  | Annulus Overpressure System                        |
| 8.1.15  | HI-TRAC Lid Retention System in Exploded View      |
| 8.1.16  | MPC Vent and Drain Port RVOA Connector             |
| 8.1.17  | Drain Line Installation                            |
| 8.1.18  | Temporary Shield Ring                              |
| 8.1.19  | MPC Water Pump-Down for MPC Lid Welding Operations |
| 8.1.20  | MPC Air Displacement and Hydrostatic Testing       |
| 8.1.21  | MPC Blowdown                                       |
| 8.1.22  | Vacuum Drying System                               |
| 8.1.23  | Helium Backfill System                             |
| 8.1.24  | MPC Lift Cleats                                    |
| 8.1.25  | MPC Support Stays                                  |
| 8.1.26  | HI-TRAC Bottom Lid Replacement                     |
| 8.1.27  | HI-STORM Lid Rigging                               |
| 8.1.28  | Sample MPC Transfer Options                        |
| 8.1.29a | Sample HI-STORM and HI-TRAC Transfer Options       |
| 8.1.29b | Sample HI-STORM and HI-TRAC Transfer Options       |
| 8.1.30  | Sample HI-STORM Vent Duct Shield Inserts           |
| 8.1.31  | HI-TRAC Alignment Over HI-STORM                    |
|         |                                                    |

| 8.1.32  | Examples of an MPC Downloader                                          |
|---------|------------------------------------------------------------------------|
| 8.1.33  | Transfer Lid Trim Plates                                               |
| 8.1.34a | HI-STORM Vent Screens and Gamma Shield Cross Plate Installation (Typ.) |
| 8.1.34b | HI-STORM Thermocouple Installation                                     |
| 8.1.35  | HI-STORM Placement of the ISFSI Pad                                    |
| 8.1.36  | HI-STORM Jacking                                                       |
| 8.1.37  | HI-TRAC Lid Bolt Torquing Pattern                                      |
| 8.3.1   | Unloading Operations Flow Diagram                                      |
| 8.3.2a  | Major HI-STORM 100 Unloading Operations                                |
| 8.3.2b  | Major HI-STORM 100 Unloading Operations                                |
| 8.3.2c  | Major HI-STORM 100 Unloading Operations                                |
| 8.3.2d  | Major HI-STORM 100 Unloading Operations                                |
| 8.3.3   | MPC Gas Sampling in Preparation for Unloading                          |
| 8.3.4   | MPC Cool-Down                                                          |
| 8.4.1   | HI-STAR and HI-TRAC Mating                                             |
| 8.5.1   | HI-STAR Annulus Gas Sampling                                           |
| 10.1.1  | HI-STORM 100 System Auxiliary/Temporary Shielding                      |
| 10.3.1a | Operator Work Locations Used for Estimating Personnel Exposure         |
| 10.3.1b | Operator Work Locations Used for Estimating Personnel Exposure         |
| 10.3.1c | Operator Work Locations Used for Estimating Personnel Exposure         |
| 10.3.1d | Operator Work Locations Used for Estimating Personnel Exposure         |
| 10.3.1e | Operator Work Locations Used for Estimating Personnel Exposure         |
| 11.2.1  | Fire Transient ANSYS Model Element Plot                                |

| 11.2.2 | Temperature Profiles Through Overpack Wall At 60, 120, and 217 Seconds   |
|--------|--------------------------------------------------------------------------|
| 11.2.3 | Temperature Profiles Through Overpack Wall At 217, 600, and 1200 Seconds |
| 11.2.4 | Temperature Profiles Through Overpack Wall At 20, 40, and 90 Minutes     |
| 11.2.5 | Temperature vs. Time At Concrete Mid-Height                              |
| 11.2.6 | Maximum Allowable Burial Under Debris Time Versus Decay Heat Load        |
| 11.2.7 | Temperature Rise versus Duct Blockage Time                               |
| 11.2.8 | Temperature Contour Snapshots During Duct Blockage Transient             |

\_\_\_\_

| Page    | Revision | Page       | Revision         |
|---------|----------|------------|------------------|
|         | 0        | 1.0-16     | 0                |
| ii      | 0        | 1.0-17     | 0                |
|         | 0        | 1.0-18     | 0                |
| iv      | 0        | 1.0-19     | 0                |
| v       | 0        | 1.0-20     | 0                |
| vi      | 0        | 1.0-21     | 0                |
| vii     | 0        | 1.0-22     | 0                |
| viii    | 0        | 1.0-23     | 0                |
| ix      | 0        | 1.0-24     |                  |
|         | 0        | 1.0-25     | 0                |
| x<br>xi | 0        | 1.0-26     | 0                |
| xii     | 0        | 1.0-27     |                  |
|         |          |            | 0                |
| xiii    | 0        | 1.0-28     | 0                |
| xiv     | 0        | 1.0-29     | 0<br>0<br>0<br>0 |
| xv.     | 0        | 1.0-30     | 0                |
| xvi     | 0        | 1.0-31     | 0                |
| xvii    | 0        | 1.0-32     | 0                |
| xviii   | 0        | 1.0-33     | 0                |
| xix     | 0        | 1.1-1      | 0                |
| xx      | 0        | 1.1-2      | 0                |
| xxi     | 0        | 1.1-3      | 0                |
| xxii    | 0        | 1.1-4      | 0                |
| xxiii   | 0        | Fig. 1.1.1 | 0                |
| xxiv    | 0        | Fig. 1.1.2 | 0                |
| XXV     | 0        | Fig. 1.1.3 | 0                |
| xxvi    | 0        | 1.2-1      | 0                |
| xxvii   | 0        | 1.2-2      | 0                |
| xxviii  | 0        | 1.2-3      | 0                |
| xxix    | 0        | 1.2-4      | 0                |
| xxx     | 0        | 1.2-5      | 0                |
| xxxi    | 0        | 1.2-6      | 0                |
| xxxii   | 0        | 1.2-7      | 0                |
| xxxiii  | 0        | 1.2-8      | 0                |
| xxxiv   | 0        | 1.2-9      | 0                |
| XXXV    | 0        | 1.2-10     | 0                |
| xxxvi   | 0        | 1.2-11     | 0                |
| 1.0-1   | 0        | 1.2-12     | 0                |
| 1.0-2   | 0        | 1.2-13     | 0                |
| 1.0-3   | 0        | 1.2-14     | 0                |
| 1.0-4   | 0        | 1.2-15     | 0                |
| 1.0-5   | 0        | 1.2-16     | 0                |
| 1.0-6   | 0        | 1.2-17     | 0                |
| 1.0-7   |          | 1.2-18     | 0                |
| 1.0-8   | 0        | 1.2-19     | 0                |
| 1.0-9   | 0        | 1.2-19     | 0                |
|         | 0        |            | 0                |
| 1.0-10  |          | 1.2-21     |                  |
| 1.0-11  | 0        | 1.2-22     | 0                |
| 1.0-12  | 0        | 1.2-23     | 0                |
| 1.0-13  | 0        | 1.2-24     | 0                |
| 1.0-14  | 0        | 1.2-25     | 0                |
| 1.0-15  | 0        |            |                  |

......

1

ŀ

| Page<br>1.2-26             | Revision                                | Page       | Revision |
|----------------------------|-----------------------------------------|------------|----------|
| 1.2-26                     | • _ • • • • • • • • • • • • • • • • • • | Fig. 1.A-3 |          |
|                            | 0                                       | Fig. 1.A.4 |          |
| 1.2-28                     | 0                                       | Fig. 1.A.5 |          |
| Fig. 1.2.1                 | 0                                       | 1.B-1      |          |
| -ig. 1.2.2                 | 0                                       | 1.B-2      |          |
| -ig. 1.2.3                 | 0                                       | 1.B-3      |          |
| -ig. 1.2.4                 | 0                                       | 1.B-4      |          |
| -ig. 1.2.5                 | 0                                       | 1.B-5      |          |
| -ig. 1.2.6                 | 0                                       | 1.B-6      |          |
| -ig. 1.2.7                 | 0                                       | 1.B-7      |          |
| -ig. 1.2.8                 | 0                                       | 1.B-8      |          |
| ig. 1.2.9                  |                                         | 1.B-9      |          |
| ig. 1.2.10                 | 0                                       | 1.B-10     |          |
| ig. 1.2.11                 |                                         |            |          |
| ig. 1.2.12                 |                                         | 1.B-11     |          |
| ig. 1.2.13                 | 0                                       | 1.B-12     |          |
| ig. 1.2.14                 |                                         | 1.B-13     |          |
| ig. 1.2.15                 | 0                                       | 1.B-14     |          |
| ig. 1.2.16a                | $\frac{0}{2}$                           | 1.B-15     |          |
| ig. 1.2.16b                | 0                                       | 1.B-16     |          |
| ig. 1.2.16c                |                                         | 1.B-17     |          |
| ig. 1.2.16d                | 0                                       | 1.B-18     |          |
|                            | 0                                       | 1.B-19     |          |
| ig. 1.2.16e                | 0                                       | 1.B-20     |          |
| ig. 1.2.16f                | . 0                                     | 1.C-1      |          |
| ig. 1.2.17a                | 0                                       | 1.C-2      |          |
| g. 1.2.17b                 | 0                                       | 1.C-3      | (        |
| g. 1.2.17c                 | 0                                       | 1.C-4      |          |
| g. 1.2.17d                 | 0                                       | 1.C-5      |          |
| 3-1                        | 0                                       | 1.C-6      |          |
| 4-1                        | 0                                       | 1.D-1      |          |
| 4-2                        |                                         | 1.D-2      | <u> </u> |
| 4-3                        | 0                                       | 1.D-3      |          |
| g. 1.4.1                   |                                         | 1.D-4      | <u>C</u> |
| g. 1.4.2                   | <b>0</b>                                | 1.D-5      | 0        |
| 5-1                        |                                         |            | <u>C</u> |
| 5-2                        | 0                                       |            |          |
| 5-3                        |                                         |            |          |
| 5-4                        |                                         |            |          |
| Drawings w/ 57 sheets      | See Section 1.5                         |            |          |
| Bill-of-Materials w/ 13 sh | Pote Section 1.5                        | ··· +··    |          |
| 6-1                        |                                         |            |          |
| 5-2                        | 0                                       |            |          |
| A-1                        |                                         | 1          |          |
| A-2                        | ······································  | · ····     |          |
|                            |                                         |            |          |
| <b>\-3</b>                 | 0                                       |            |          |
| \-4<br>                    | 0                                       | ·····      |          |
| <b>\-5</b>                 | 0                                       |            |          |
| <b>\-6</b>                 | 0                                       |            |          |
| -7                         | 0                                       |            |          |
| . 1.A.1                    | 0                                       |            |          |
| . 1.A.2                    | ······································  | L          |          |

\_\_\_\_

\_--

| Page   | Revision | Page       | Revision    |
|--------|----------|------------|-------------|
| 2.0-1  | 0        | 2.1-16     | 0           |
| 2.0-2  | 0        | 2.1-17     | 0           |
| 2.0-3  | 0        | 2.1-18     | 0           |
| 2.0-4  | 0        | 2.1-19     | 0           |
| 2.0-5  | 0        | 2.1-20     | 0           |
| 2.0-6  | 0        | 2.1-21     | 0           |
| 2.0-7  | 0        | 2.1-22     | 0           |
|        | 0        | Fig. 2.1.1 | 0           |
| 2.0-8  | 0        | Fig. 2.1.2 | 0           |
| 2.0-9  |          | Fig. 2.1.3 | 0           |
| 2.0-10 | 0        |            | 0           |
| 2.0-11 | 0        | Fig. 2.1.4 | 0           |
| 2.0-12 | 0        | Fig. 2.1.5 | 0           |
| 2.0-13 | 0        | Fig. 2.1.6 |             |
| 2.0-14 | 0        | Fig. 2.1.7 | 0           |
| 2.0-15 | 0        | Fig. 2.1.8 | 0<br>0<br>0 |
| 2.0-16 | 0        | 2.2-1      | 0           |
| 2.0-17 | 0        | 2.2-2      | 0           |
| 2.0-18 | 0        | 2.2-3      | 0           |
| 2.0-19 | 0        | 2.2-4      | 0           |
| 2.0-20 | 0        | 2.2-5      | 0           |
| 2.0-21 | 0        | 2.2-6      | 0           |
| 2.0-22 | 0        | 2.2-7      | 0           |
| 2.0-23 | 0        | 2.2-8      | 0           |
| 2.0-24 | 0        | 2.2-9      | 0           |
| 2.0-25 | 0        | 2.2-10     | 0           |
| 2.0-26 | 0        | 2.2-11     | 0           |
| 2.0-27 | 0        | 2.2-12     | 0           |
| 2.0-28 | 0        | 2.2-13     | 0           |
| 2.0-29 | 0        | 2.2-14     | 0           |
| 2.0-30 | 0        | 2.2-15     | 0           |
| 2.0-31 | 0        | 2.2-16     | 0           |
| 2.0-32 |          | 2.2-17     | 0           |
| 2.0-32 | 0        | 2.2-18     | 0           |
| 2.0-33 | 0        | 2.2-19     | 0           |
| 2.0-34 | 0        | 2.2-20     | 0           |
|        | 0        | 2.2-20     |             |
| 2.0-36 | 0        | 2.2-21     |             |
| 2.1-1  | 0        | 2.2-22     |             |
| 2.1-2  |          | 2.2-23     |             |
| 2.1-3  | 0        |            |             |
| 2.1-4  | 0        | 2.2-25     |             |
| 2.1-5  | 0        | 2.2-26     | 0           |
| 2.1-6  | 0        | 2.2-27     | 0<br>0<br>0 |
| 2.1-7  | 0        | 2.2-28     | C           |
| 2.1-8  | 0        | 2.2-29     |             |
| 2.1-9  | 0        | 2.2-30     | 0           |
| 2.1-10 | 0        | 2.2-31     | C           |
| 2.1-11 | 0        | 2.2-32     | C           |
| 2.1-12 | 0        | 2.2-33     | 0           |
| 2.1-13 | 0        | 2.2-34     |             |
| 2.1-14 | 0        | 2.2-35     | C           |
| 2.1-15 | 0        | 2.2-36     |             |

| <u>Page</u><br>2.2-37 |                                          | Revision                                | Page                                   | Revision                              |
|-----------------------|------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------|
| 2.2-37                | · · · · · · · · · · · · · · · · · · ·    | 0                                       |                                        |                                       |
| 2.2-38                |                                          | 0                                       |                                        |                                       |
|                       |                                          | 0                                       |                                        |                                       |
| 2.2-40                |                                          | 0                                       |                                        |                                       |
| 2.2-41                |                                          | 0                                       |                                        |                                       |
| 2.2-42                |                                          | 0                                       |                                        |                                       |
| 2.2-43                |                                          | 0                                       |                                        |                                       |
| 2.2-44                |                                          | 0                                       |                                        |                                       |
| 2.2-45                |                                          | 0                                       |                                        |                                       |
| 2.2-46                |                                          |                                         |                                        |                                       |
| 2.2-47                |                                          |                                         |                                        |                                       |
| 2.2-48                |                                          | 0                                       |                                        |                                       |
| 2.2-49                |                                          | 0                                       | · · · · · · · · · · · · · · · · · · ·  |                                       |
| 2.3-1                 | ····                                     |                                         | · · · · · · · · · · · · · · · · · · ·  |                                       |
| 2.3-2                 | en e | 0<br>0                                  |                                        |                                       |
| .3-3                  |                                          | 0                                       |                                        |                                       |
| .3-4                  |                                          | 0                                       |                                        |                                       |
| .3-5                  |                                          |                                         |                                        |                                       |
| .3-6                  | 99 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -  |                                         |                                        |                                       |
| .3-7                  |                                          | $\frac{0}{2}$                           |                                        |                                       |
| .3-8                  |                                          | $-\frac{0}{2}$                          |                                        |                                       |
| .3-9                  |                                          | 0                                       | •                                      |                                       |
| .3-10                 |                                          | 0                                       | ·                                      |                                       |
| .3-11                 |                                          | •                                       |                                        |                                       |
| .3-12                 |                                          | 0                                       |                                        |                                       |
| .3-12                 |                                          | Ō                                       | · · · · ·                              | · · · · · · · · · · · · · · · · · · · |
| .3-13                 |                                          | . 0                                     |                                        |                                       |
| .3-14                 |                                          | 0                                       | ······································ |                                       |
|                       |                                          | 0                                       | · · · · · · · · · · · · · · · · · · ·  |                                       |
| 3-16                  |                                          | 0                                       |                                        |                                       |
| 3-17                  |                                          | 0                                       | ······································ |                                       |
| 3-18                  |                                          | 0                                       | · · · · · · · · · · · · · · · · · · ·  |                                       |
| 3-19                  |                                          | Ō                                       | · · · · · · · · · · · · · · · · · · ·  |                                       |
| 3-20                  |                                          | 0                                       | · · · · · · · · · · · · · · · · · · ·  |                                       |
| 3-21                  |                                          | 0                                       | · · · · · · · · · · · · · · · · · · ·  |                                       |
| g. 2.3.1              | _                                        |                                         | ·····                                  |                                       |
| g. 2.3.1<br>g. 2.3.2  |                                          | 0                                       |                                        |                                       |
| g. 2.3.3              |                                          |                                         |                                        |                                       |
| g. 2.3.4              |                                          | 0                                       |                                        |                                       |
| 4-1                   | -                                        | 0                                       |                                        |                                       |
| 4-2                   | ······                                   |                                         |                                        |                                       |
| 4-3                   |                                          |                                         |                                        |                                       |
| 5-1                   |                                          | <pre></pre>                             |                                        |                                       |
| S-1                   | ·                                        | $-\frac{1}{2}$                          |                                        |                                       |
| 6-2                   | ·····                                    | 0                                       |                                        |                                       |
| -3                    | ··· .                                    | $\frac{0}{2}$                           |                                        |                                       |
|                       | · · · · · · · ·                          | 0                                       |                                        |                                       |
| -                     |                                          | 1                                       |                                        |                                       |
|                       | · · · · · · · · · · · · · · · · · · ·    | + ··· · · · · · · · · · · · · · · · · · |                                        |                                       |
|                       |                                          |                                         |                                        |                                       |
|                       |                                          |                                         |                                        |                                       |
|                       |                                          |                                         |                                        |                                       |
|                       |                                          |                                         |                                        |                                       |

-----

| Page       | Revision | Page       | Revision    |
|------------|----------|------------|-------------|
| 3.0-1      | 0        | Fig. 3.1.2 | 0           |
| 3.0-2      | 0        | Fig. 3.1.3 | 0           |
| 3.0-3      | 0        | 3.2-1      | 0           |
| 3.0-4      | 0        | 3.2-2      | 0           |
| 3.0-5      | 0        | 3.2-3      | 0           |
| 3.0-6      | 0        | 3.2-4      | 0<br>0<br>0 |
| 3.0-7      | 0        | 3.2-5      | 0           |
| 3.0-8      | 0        | 3.2-6      | 0           |
| 3.0-9      | 0        | 3.2-7      | 0           |
| 3.1-1      | 0        | 3.3-1      | 0           |
| 3.1-2      | 0        | 3.3-2      | 0           |
| 3.1-3      | 0        | 3.3-3      | 0           |
| 3.1-4      | 0        | 3.3-4      | 0           |
| 3.1-5      | 0        | 3.3-5      | 0           |
| 3.1-6      | 0        | 3.3-6      | 0           |
| 3.1-7      | 0        | 3.3-7      | 0           |
| 3.1-8      | 0        | 3.3-8      | 0           |
| 3.1-9      | 0        | 3.3-9      | 0           |
| 3.1-10     | 0        | 3.3-10     | 0           |
| 3.1-11     | 0        | 3.4-1      | 0           |
| 3.1-12     | 0        | 3.4-2      | 0           |
| 3.1-13     | 0        | 3.4-3      | 0           |
| 3.1-14     | 0        | 3.4-4      | 0           |
| 3.1-15     | 0        | 3.4-5      | 0           |
| 3.1-16     | 0        | 3.4-6      | 0           |
| 3.1-17     |          | 3.4-7      | 0           |
| 3.1-18     | 0        | 3.4-8      | 0           |
| 3.1-19     | 0        | 3.4-9      | 0           |
| 3.1-20     | 0        | 3.4-10     | 0           |
| 3.1-21     | 0        | 3.4-11     | 0           |
| 3.1-22     | 0        | 3.4-12     | 0           |
| 3.1-23     | 0        | 3.4-13     | 0           |
| 3.1-24     | 0        | 3.4-14     | 0           |
| 3.1-25     | 0        | 3.4-15     | 0           |
| 3.1-26     | 0        | 3.4-16     | 0           |
| 3.1-27     | 0        | 3.4-17     |             |
| 3.1-28     | 0        | 3.4-18     | 0<br>0<br>0 |
| 3.1-29     | 0        | 3.4-19     |             |
| 3.1-30     | 0        | 3.4-20     |             |
| 3.1-31     | 0        | 3.4-21     |             |
| 3.1-32     | 0        | 3.4-22     | 0<br>0<br>0 |
| 3.1-33     | 0        | 3.4-23     | 0           |
| 3.1-34     | 0        | 3.4-24     | 0           |
| 3.1-35     | 0        | 3.4-25     | 0           |
| 3.1-36     | 0        | 3.4-26     | 0           |
|            |          |            | 0           |
| 3.1-37     | 0        | 3.4-27     |             |
| 3.1-38     | 0        | 3.4-28     | 0           |
| 3.1-39     | 0        | 3.4-29     | 0           |
| 3.1-40     | 0        | 3.4-30     | 0           |
| 3.1-41     | 0        | 3.4-31     | 0           |
| Fig. 3.1.1 | 0        | 3.4-32     | 0           |

\_

\_\_\_\_\_

| Page   | Revision                              | Page         | Revision                              |
|--------|---------------------------------------|--------------|---------------------------------------|
| 3.4-33 | 0                                     | 3.4-84       |                                       |
| 3.4-34 |                                       | 3.4-85       |                                       |
| 3.4-35 | 0                                     | 3.4-86       |                                       |
| 3.4-36 | 0                                     | 3.4-87       |                                       |
| 3.4-37 | 0                                     | 3.4-88       |                                       |
| 3.4-38 | 0                                     | 3.4-89       |                                       |
| 3.4-39 | 0                                     | 3.4-90       |                                       |
| 3.4-40 | 0                                     | 3.4-91       |                                       |
| 3.4-41 | 0                                     |              |                                       |
| 3.4-42 | 0                                     | 3.4-92       |                                       |
| 3.4-43 |                                       | 3.4-93       |                                       |
| 3.4-44 |                                       | 3.4-94       |                                       |
| 3.4-45 |                                       | 3.4-95       |                                       |
| 3.4-46 | 0                                     | 3.4-96       |                                       |
| 3.4-47 | 0                                     | 3.4-97       |                                       |
| 3.4-48 | 0                                     | 3.4-98       |                                       |
| 3.4-49 | 0                                     | 3.4-99       |                                       |
| 3.4-50 | <b>O</b>                              | 3.4-100      |                                       |
|        | 0                                     | 3.4-101      |                                       |
| 3.4-51 | <u> </u>                              | 3.4-102      |                                       |
| 3.4-52 | 0                                     | Fig. 3.4.1   |                                       |
| 3.4-53 | 0                                     | Fig. 3.4.2   |                                       |
| 3.4-54 | 0                                     | Fig. 3.4.3   |                                       |
| 3.4-55 | 0                                     | Fig. 3.4.4   |                                       |
| 3.4-56 | <b>0</b> <sup>+</sup>                 | Fig. 3.4.5   | · · · · · · · · · · · · · · · · · · · |
| 3.4-57 | 0                                     | Fig. 3.4.6   |                                       |
| .4-58  | Ō                                     | Fig. 3.4.7   |                                       |
| .4-59  | $\frac{1}{0}$                         | Fig. 3.4.8   |                                       |
| .4-60  | , ol                                  |              |                                       |
| .4-61  | o o                                   | Fig. 3.4.9   |                                       |
| .4-62  | $-\frac{0}{0}$                        | Fig. 3.4.10  |                                       |
| .4-63  | · · · · · · · · · · · · · · · · · · · | Fig. 3.4.11  |                                       |
| .4-64  | 0                                     | Fig. 3.4.12  |                                       |
| .4-65  | 0                                     | Fig. 3.4.13  |                                       |
| .4-66  | 0                                     | Fig. 3.4.14  |                                       |
| .4-67  | 0                                     | Fig. 3.4.15  |                                       |
| .4-68  |                                       | Fig. 3.4.16  |                                       |
| .4-69  | 0                                     | Fig. 3.4.16a |                                       |
| 4-70   | 0                                     | Fig. 3.4.16b |                                       |
| 4-70   | 0                                     | Fig. 3.4.17  |                                       |
|        | 0                                     | Fig. 3.4.18  |                                       |
| 4-72   | 0                                     | Fig. 3.4.19  |                                       |
| 4-73   | 0                                     | Fig. 3.4.20  |                                       |
| 4-74   | 0                                     | Fig. 3.4.21  |                                       |
| 4-75   | 0                                     | Fig. 3.4.22  |                                       |
| 4-76   | 0                                     | Fig. 3.4.23  |                                       |
| 4-77   | 0                                     | Fig. 3.4.24  | C                                     |
| 4-78   | 0                                     | Fig. 3.4.25  | C                                     |
| 4-79   | 0                                     |              | C                                     |
| 4-80   |                                       | Fig. 3.4.26  | 0                                     |
| 4-81   |                                       | Fig. 3.4.27  | 0                                     |
| 4-82   | $\frac{0}{0}$                         | Fig. 3.4.28  | 0                                     |
| 4-83   |                                       | Fig. 3.4.29  | 0                                     |
|        | 0                                     |              |                                       |

\_\_\_\_

\_\_\_\_\_

| Page       | Revision | Page        | Revision    |
|------------|----------|-------------|-------------|
| 3.5-1      | 0        | 3.7-14      | 0           |
| 3.5-2      | 0        | 3.8-1       | 0           |
| 3.5-3      | 0        | 3.8-2       | 0           |
| 3.5-4      | 0        | 3.A-1       | 0           |
| 3.5-5      | 0        | 3.A-2       | 0           |
| 3.5-6      | 0        | 3.A-3       | 0           |
| 3.5-7      | 0        | 3.A-4       | 0           |
| 3.5-8      | 0        | 3.A-5       | 0           |
| 3.5-9      | 0        | 3.A-6       | 0           |
| 3.5-10     | 0        | 3.A-7       | 0           |
| 3.5-11     | 0        | 3.A-8       | 0           |
| 3.5-12     | 0        | 3.A-9       | 0           |
| 3.5-13     | 0        | 3.A-10      | 0           |
| 3.5-14     | 0        | 3.A-11      | 0<br>0<br>0 |
| 3.5-15     | 0        | 3.A-12      | 0           |
| 3.5-16     | 0        |             | 0           |
| 3.5-17     |          | 3.A-13      | 0           |
|            | 0        | 3.A-14      | 0           |
| 3.5-18     | 0        | 3.A-15      | 0           |
| 3.5-19     | 0        | Fig. 3.A.1  | 0           |
| Fig. 3.5.1 | 0        | Fig. 3.A.2  | 0           |
| Fig. 3.5.2 | 0        | Fig. 3.A.3  | 0           |
| Fig. 3.5.3 | 0        | Fig. 3.A.4  | 0           |
| Fig. 3.5.4 | 0        | Fig. 3.A.5  | 0           |
| Fig. 3.5.5 | 0        | Fig. 3.A.6  | 0           |
| Fig. 3.5.6 | 0        | Fig. 3.A.7  | 0           |
| Fig. 3.5.7 | 0        | Fig. 3.A.8  | 0           |
| Fig. 3.5.8 | 0        | Fig. 3.A.9  | 0           |
| Fig. 3.5.9 | 0        | Fig. 3.A.10 | 0           |
| 3.6-1      | 0        | Fig. 3.A.11 | 0           |
| 3.6-2      | 0        | Fig. 3.A.12 | 0           |
| 3.6-3      | 0        | Fig. 3.A.13 | 0           |
| 3.6-4      | 0        | Fig. 3.A.14 | 0           |
| 3.6-5      | 0        | Fig. 3.A.15 | 0           |
| 3.6-6      | 0        | Fig. 3.A.16 | 0           |
| 3.6-7      | 0        | Fig. 3.A.17 | 0           |
| 3.6-8      | 0        | Fig. 3.A.18 | 0           |
| 3.6-9      | 0        | Fig. 3.A.19 | 0           |
| 3.6-10     | 0        | Fig. 3.A.20 | 0           |
| 3.7-1      | 0        | Fig. 3.A.21 | 0           |
| 3.7-2      | 0        | Fig. 3.A.22 | 0           |
| 3.7-3      | 0        | Fig. 3.A.23 | 0           |
| 3.7-4      | 0        | Fig. 3.A.24 | 0           |
| 3.7-5      | 0        | Fig. 3.A.25 | 0           |
| 3.7-6      | 0        | Fig. 3.A.26 | 0           |
| 3.7-7      | 0        | Fig. 3.A.27 | 0           |
| 3.7-8      | 0        | Fig. 3.A.28 | 0           |
| 3.7-9      | 0        | Fig. 3.A.29 | 0           |
| 3.7-10     | 0        | Fig. 3.A.30 | 0           |
| 3.7-11     | 0        | 3.B-1       |             |
| 3.7-12     | 0        |             | 0           |
| 3.7-13     |          | 3.B-2       | 0           |
| 0.7-10     | 0        | 3.B-3       | 0           |

----

| Page   |                                          | Revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Page        | Revision              |
|--------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|
| 3.B-4  |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.B-55      |                       |
| 3.B-5  |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.B-56      | C                     |
| 3.B-6  |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.B-57      | C                     |
| 3.B-7  |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.B-58      | C                     |
| 3.B-8  |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.B-59      |                       |
| 3.B-9  |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.B-60      | 0                     |
| 3.B-10 |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.B-61      |                       |
| 3.B-11 |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.B-62      |                       |
| 3.B-12 | · · · · · · · · · · · · · · · · · · ·    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.C-1       | C                     |
| 3.B-13 |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.C-2       | 0                     |
| 3.B-14 |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.C-3       | C                     |
| 3.B-15 |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.C-4       | C                     |
| 3.B-16 | ••• ••• •••                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.C-5       | C                     |
| 3.B-17 | · · · · · · · · · · · · · · · · · · ·    | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.C-6       | O                     |
| 3.B-18 | - · · · · · · · · · · · · · · · · · · ·  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.C-7       | 0                     |
| 3.B-19 | · ·-                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                       |
| 3.B-20 | · · · · · · · ·                          | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.C-8       | 0                     |
| 3.B-21 | · -                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fig. 3.C.1  | O                     |
| 3.B-22 |                                          | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fig. 3.C.2  | 0                     |
| 3.B-23 | -                                        | <u>0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fig. 3.C.3  | 0                     |
| 3.B-24 | :<br>• • ··                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.D-1       | 0                     |
| 3.B-25 |                                          | 0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.D-2       | 0                     |
| 3.B-26 | · +·                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.D-3       | 0                     |
| 3.B-27 |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.D-4       | 0                     |
| 3.B-28 | •                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.D-5       | 0                     |
| 3.B-29 | en e | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.D-6       | 0                     |
| 3.B-29 |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.D-7       | 0                     |
| 3.B-30 | •                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.D-8       | 0                     |
| 3.B-31 | r                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.D-9       | 0                     |
|        |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.D-10      | 0                     |
| 3.B-33 | · · · · · · · · · · · · · · · · · · ·    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.D-11      |                       |
| 3.B-34 | · · · · · · · · · · · ·                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.D-12      | 0<br>0<br>0<br>0<br>0 |
| 3.B-35 | ···· ·                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.D-13      | 0                     |
| 3.B-36 |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fig. 3.D.1  | 0                     |
| 3.B-37 |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fig. 3.D.2a | 0                     |
| 3.B-38 |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fig. 3.D.2b |                       |
| 3.B-39 |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fig. 3.D.2c | 0                     |
| 3.B-40 |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fig. 3.D.3  |                       |
| B.B-41 |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fig. 3.D.4a |                       |
| B.B-42 | ·                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fig. 3.D.4b |                       |
| 3.B-43 |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fig. 3.D.4c | 0                     |
| B.B-44 |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fig. 3.D.5a | 0                     |
| .B-45  | • • • • • • • • • • • • • • • • • • •    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fig. 3.D.5b |                       |
| .B-46  | · · · ·                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fig. 3.D.5c | 0                     |
| B-47   |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.E-1       | 0                     |
| .B-48  |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.E-2       | 0                     |
| .B-49  | · ···· · · · · · · · · · · · · · · · ·   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.E-3       | 0                     |
| .B-50  | · · · · · ·                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.E-4       | 0                     |
| B-51   | · · · · · · · · · · · ·                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 0                     |
| .B-52  | •••                                      | and the second sec | 3.E-5       |                       |
| .B-53  | · · · · · · · · · · · · · · · · · · ·    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.E-6       | 0                     |
| .B-54  |                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.E-7       | 0                     |
|        | ·····                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.E-8       | 0                     |

\_\_\_\_

| Page         | Revision | Page             | <u>Revision</u>                       |
|--------------|----------|------------------|---------------------------------------|
| 3.E-9        | 0        | 3.K-1            | 0                                     |
| 3.E-10       | 0        | 3.K-2            | 0                                     |
| Fig. 3.E.1   | 0        | 3.K-3            | 0                                     |
| Fig. 3.E.2   | 0        | 3.K-4            | 0                                     |
| Fig. 3.E.3   | 0        | 3.K-5            | 0                                     |
| 3.F-1        | 0        | 3.K-6            | 0                                     |
| 3.F-2        | 0        | 3.K-7            | 0                                     |
| 3.F-3        | 0        | 3.L-1            | 0                                     |
| 3.F-4        | 0        | 3.L-2            | C                                     |
| Fig. 3.F.1   | 0        | 3.L-3            | 0                                     |
| Fig. 3.F.2   | 0        | 3.L-4            | 0                                     |
| Fig. 3.F.3   |          | 3.L-5            |                                       |
| Fig. 3.F.4   | 0        | 3.L-6            |                                       |
| 3.G-1        | 0        | 3.M-1            |                                       |
| 3.G-2        | 0        | 3.M-2            | · · · · · · · · · · · · · · · · · · · |
| 3.G-3        | 0        | 3.M-2            |                                       |
| 3.G-4        | 0        | 3.M-3            |                                       |
| 3.G-5        |          |                  |                                       |
|              | 0        | 3.M-5            | 0                                     |
| 3.G-6        | 0        | 3.M-6            | 0                                     |
| 3.G-7        | 0        | 3.M-7            | C                                     |
| 3.G-8        | 0        | 3.M-8            | 0                                     |
| 3.G-9        | 0        | 3.M-9            | C                                     |
| 3.G-10       | 0        | 3.M-10           | C                                     |
| 3.G-11       | 0        | 3.M-11           |                                       |
| 3.G-12       | 0        | 3.M-12           |                                       |
| 3.G-13       | 0        | 3.M-13           | C                                     |
| Fig. 3.G.1   | 0        | 3.M-14           | C                                     |
| Fig. 3.G.2   | 0        | 3.M-15           | C                                     |
| Fig. 3.G.3   | 0        | 3.M-16           | C                                     |
| Fig. 3.G.4   | 0        | 3.M-17           | C                                     |
| Fig. 3.G.5   | 0        | 3.M-18           | C                                     |
| 3.H-1        | 0        | 3.M-19           | C                                     |
| 3.H-2        | 0        | 3.N-1            | C                                     |
| 3.H-3        | 0        | 3.N-2            |                                       |
| 3.H-4        | 0        | 3.N-3            | C                                     |
| 3.H-5        | 0        | 3.N-4            | C                                     |
| 3.H-6        | 0        | 3.N-5            | C                                     |
| 3.H-7        | 0        | 3.N-6            | C                                     |
| Fig. 3.H.1   | 0        | 3.N-7            | C                                     |
| 3.1-1        | 0        | 3.N-8            | 0                                     |
| 3.1-2        | 0        | 3.N-9            | 0                                     |
| 3.1-3        | 0        | 3.N-10           |                                       |
| 3.1-4        | 0        | 3.N-11           |                                       |
| 3.1-5        | 0        | 3.N-12           |                                       |
| 3.1-6        | 0        | 3.N-13           | 0                                     |
| 3.1-7        | 0        | 3.N-14           | 0                                     |
| 3.1-8        | 0        | 3.N-15           | 0                                     |
| 3.1-9        | 0        | 3.N-16           |                                       |
| 3.I-10       | 0        |                  | 0                                     |
| Fig. 3.1.1   |          | 3.N-17           | 0                                     |
| i iy. 3.1. i | 0        | 3.N-18<br>3.N-19 | 0                                     |

**HI-STORM FSAR** 

| Page   | Revision                              | Page                                  | Revision                   |
|--------|---------------------------------------|---------------------------------------|----------------------------|
| 3.N-20 | 0                                     | 3.R-27                                | (                          |
| 3.N-21 | 0                                     | 3.R-28                                |                            |
| 3.N-22 | 0                                     | 3.R-29                                |                            |
| 3.N-23 | 0                                     | 3.R-30                                |                            |
| 3.N-24 | 0                                     | 3.R-31                                |                            |
| 3.N-25 | 0                                     | 3.R-32                                |                            |
| 3.N-26 | 0                                     | 3.R-33                                | C                          |
| 3.0-1  | 0                                     | 3.R-34                                | C                          |
| 3.0-2  |                                       | 3.R-35                                | C                          |
| 3.0-3  | 0                                     |                                       | C                          |
| 3.0-4  |                                       | 3.R-36                                | C                          |
| 3.0-5  | 0                                     | 3.R-37                                |                            |
| 3.0-6  | 0                                     | 3.R-38                                | 0                          |
| 3.0-7  | 0                                     | 3.R-39                                | 0                          |
| 3.0-8  | 0                                     | 3.R-40                                | 0                          |
| 3.0-9  | 0                                     | 3.R-41                                | 0                          |
|        | - 0                                   | 3.R-42                                | 0                          |
| 3.0-10 | 0                                     | 3.R-43                                | 0                          |
| 3.0-11 | 0                                     | 3.R-44                                | 0                          |
| 3.0-12 | 0                                     | 3.R-45                                | 0                          |
| 3.0-13 | 0                                     | 3.R-46                                | 0                          |
| 3.0-14 | 0                                     | 3.R-47                                | 0                          |
| 3.0-15 | . 0                                   | 3.R-48                                |                            |
| 3.0-16 |                                       | 3.R-49                                | 0                          |
| 3.0-17 |                                       | 3.R-50                                |                            |
| 3.0-18 | 0                                     | 3.R-51                                | 0                          |
| 3.R-1  | · · · · · · · · · · · · · · · · · · · | 3.R-52                                | 0                          |
| 3.R-2  |                                       | 3.R-53                                | 0                          |
| 3.R-3  | <b>0</b>                              | • • • • • • • • • • • • • • • • • • • | 0                          |
| 3.R-4  | · · · · · · · · · · · · · · · · · · · | 3.R-54                                | 0                          |
| 3.R-5  |                                       | 3.R-55                                | 0                          |
| 3.R-6  |                                       | 3.R-56                                | 0<br>0<br>0<br>0<br>0<br>0 |
| 3.R-7  | 0                                     | 3.R-57                                | 0                          |
| 3.R-8  | 0                                     | 3.R-58                                | 0                          |
| 3.R-9  | · <u>0</u>                            | 3.R-59                                | 0                          |
|        | 0                                     | 3.R-60                                | 0                          |
| 3.R-10 | 0                                     | 3.R-61                                |                            |
| 3.R-11 | 0                                     | 3.R-62                                | 0                          |
| 3.R-12 | 0                                     | 3.R-63                                | 0                          |
| 3.R-13 | 0                                     | 3.R-64                                | 0                          |
| 3.R-14 | 0                                     | 3.R-65                                |                            |
| 3.R-15 | 0                                     | 3.R-66                                |                            |
| 3.R-16 |                                       | 3.R-67                                | 0                          |
| 3.R-17 | o o                                   | 3.R-68                                | 0                          |
| 3.R-18 | 0                                     | 3.R-69                                | 0                          |
| 3.R-19 | 0                                     | 3.R-70                                | 0                          |
| 3.R-20 |                                       |                                       | 0                          |
| 3.R-21 |                                       | 3.S-1                                 | 0                          |
| 3.R-22 | 0                                     | 3.S-2                                 | 0                          |
| 9.R-23 | 0                                     | 3.S-3                                 | 0                          |
| 0.R-24 | 0                                     | 3.S-4                                 | 0                          |
|        | 0                                     | 3.S-5                                 | 0                          |
| .R-25  | 0                                     | 3.S-6                                 | 0                          |
| .R-26  | 0                                     | 3.S-7                                 | 0                          |

| Page   | Revision | Page             | Revision |
|--------|----------|------------------|----------|
| 3.S-8  | 0        | 3.T-41           | 0        |
| 3.S-9  | 0        | 3.T-42           | 0        |
| 3.S-10 | 0        | 3.T-43           | 0        |
| 3.S-11 | 0        | 3.T-44           | 0        |
| 3.S-12 | 0        | 3.T-45           | 0        |
| 3.S-13 | 0        | 3.T-46           | 0        |
| 3.S-14 | 0        | 3.T-47           | 0        |
| 3.S-15 | 0        | 3.T-48           | 0        |
| 3.S-16 | ŏ        | 3.T-49           | 0        |
| 3.S-17 | 0        | 3.T-50           | 0        |
| 3.S-18 | 0        | 3.T-50           | 0        |
| 3.T-1  | 0        | 3.T-52           | 0        |
|        |          | 3.T-52<br>3.T-53 | 0        |
| 3.T-2  | 0        |                  | 0        |
| 3.T-3  | 0        | 3.T-54           | 0        |
| 3.T-4  | 0        | 3.T-55           | 0        |
| 3.T-5  | 0        | 3.T-56           | 0        |
| 3.T-6  | 0        | 3.T-57           | 0        |
| 3.T-7  | 0        | 3.T-58           | 0        |
| 3.T-8  | 0        | 3.T-59           | 0        |
| 3.T-9  | 0        | 3.T-60           | 0        |
| 3.T-10 | 0        | 3.T-61           | 0        |
| 3.T-11 | 0        | 3.T-62           | 0        |
| 3.T-12 | 0        | 3.T-63           | 0        |
| 3.T-13 | 0        | 3.T-64           | 0        |
| 3.T-14 | 0        | 3.T-65           | 0        |
| 3.T-15 | 0        | 3.T-66           | 0        |
| 3.T-16 | 0        | 3.T-67           | 0        |
| 3.T-17 | 0        | 3.T-68           | 0        |
| 3.T-18 | 0        | 3.T-69           | 0        |
| 3.T-19 | Ó        | 3.T-70           | 0        |
| 3.T-20 | 0        | 3.T-71           | 0        |
| 3.T-21 | 0        | 3.T-72           | 0        |
| 3.T-22 | 0        | 3.T-73           | 0        |
| 3.T-23 | 0        | 3.T-74           | 0        |
| 3.T-24 |          | 3.T-75           | 0        |
| 3.T-25 | 0        | 3.T-76           | 0        |
| 3.T-26 | 0        | 3.T-77           | 0        |
| 3.T-27 | 0        | 3.T-78           | 0        |
| 3.T-28 | 0        | 3.T-79           | 0        |
| 3.T-29 | 0        | 3.T-80           | 0        |
|        | 0        | 3.T-80           |          |
| 3.T-30 |          |                  | 0        |
| 3.T-31 | 0        | 3.T-82           | 0        |
| 3.T-32 | 0        | 3.T-83           | 0        |
| 3.T-33 | 0        | 3.T-84           | 0        |
| 3.T-34 | 0        | 3.T-85           | 0        |
| 3.T-35 | 0        | 3.T-86           | 0        |
| 3.T-36 | 0        | 3.T-87           | 0        |
| 3.T-37 | 0        | 3.T-88           | 0        |
| 3.T-38 | 0        | 3.T-89           | 0        |
| 3.T-39 | 0        | 3.T-90           | 0        |
| 3.T-40 | 0        | 3.T-91           | 0        |

| Page             | Revision                              | Page               | Revision                               |
|------------------|---------------------------------------|--------------------|----------------------------------------|
| 3.T-92           | 0                                     | 3.T-143            |                                        |
| 3.T-93           | 0                                     | 3.T-144            |                                        |
| 3.T-94           | 0                                     | 3.T-145            |                                        |
| 3.T-95           | 0                                     | 3.T-146            |                                        |
| 3.T-96           | 0                                     | 3.T-147            |                                        |
| 3.T-97           | 0                                     | 3.T-148            |                                        |
| 3.T-98           | 0                                     | 3.T-149            |                                        |
| 3.T-99           | 0                                     | 3.T-150            |                                        |
| 3.T-100          |                                       |                    |                                        |
| 3.T-101          |                                       | 3.T-151            |                                        |
| 3.T-102          | 0                                     | 3.T-152            |                                        |
| 3.T-103          | 0                                     | 3.T-153            |                                        |
| 3.T-104          | 0                                     | 3.T-154            |                                        |
| B.T-105          | 0                                     | 3.T-155            |                                        |
| B.T-106          | 0                                     | 3.T-156            |                                        |
| B.T-107          | 0                                     | 3.T-157            |                                        |
| .T-107<br>.T-108 | 0                                     | 3.T-158            |                                        |
|                  | 0                                     | 3.T-159            |                                        |
| T-109            | 0                                     | 3.T-160            |                                        |
| .T-110           | 0                                     | 3.T-161            | · ···· · · · · · · · · · · · · · · · · |
| .T-111           | , O                                   | 3.T-162            |                                        |
| .T-112           | 0                                     | 3.T-163            |                                        |
| .T-113           | 0                                     | 3.T-164            |                                        |
| .T-114           | 0                                     | 3.T-165            |                                        |
| .T-115           | 0                                     | 3.T-166            |                                        |
| .T-116           | 0                                     | 3.T-167            |                                        |
| .T-117           | 0                                     | 3.T-168            |                                        |
| .T-118           |                                       | 3.T-169            |                                        |
| .T-119           | 0                                     | 3.T-170            |                                        |
| T-120            |                                       | 3.T-170            |                                        |
| T-121            | 0                                     |                    |                                        |
| T-122            | • • • • • • • • • • • • • • • • • • • | 3.T-172            |                                        |
| T-123            | 0                                     | 3.T-173            |                                        |
| T-124            | 0                                     | 3.T-174            |                                        |
| T-125            | 0                                     | 3.T-175            |                                        |
| T-125            | 0                                     | 3.T-176            |                                        |
| T-127            | 0                                     | 3.T-177            |                                        |
|                  | 0                                     | 3.T-178            |                                        |
| T-128            | 0                                     | 3.T-179            |                                        |
| T-129            | 0                                     | 3.T-180            |                                        |
| T-130            | 0                                     | 3.T-181            |                                        |
| T-131            | 0                                     | 3.T-182            |                                        |
| T-132            | 0                                     | 3.T-183            |                                        |
| T-133            | 0                                     | 3.T-184            |                                        |
| T-134            | 0                                     | 3.T-185            | · · · · · · · · · · · · · · · · · · ·  |
| T-135            | 0                                     | 3.T-186            |                                        |
| T-136            | 0                                     | 3.T-187            |                                        |
| T-137            | 0                                     | 3.T-187<br>3.T-188 |                                        |
| T-138            | 0                                     |                    |                                        |
| Г-139            |                                       | 3.T-189            |                                        |
| Г-140            |                                       | 3.T-190            | (                                      |
| Γ-141            |                                       | 3.T-191            |                                        |
| Г-142            | 0                                     | 3.T-192            | (                                      |
| - 142            | 0                                     | 3.T-193            |                                        |

\_\_\_\_\_

......

\_

. .....

| Page    | Revision | Page    | Revision |
|---------|----------|---------|----------|
| 3.T-194 | 0        | 3.T-245 | 0        |
| 3.T-195 | 0        | 3.T-246 | 0        |
| 3.T-196 | 0        | 3.T-247 | 0        |
| 3.T-197 | 0        | 3.T-248 | 0        |
| 3.T-198 | 0        | 3.T-249 | 0        |
| 3.T-199 | 0        | 3.T-250 | 0        |
| 3.T-200 | 0        | 3.T-251 | 0        |
| 3.T-201 | 0        | 3.T-252 | 0        |
| 3.T-202 | 0        | 3.T-253 | 0        |
| 3.T-203 | 0        | 3.T-254 | 0        |
| 3.T-204 | 0        | 3.T-255 | 0        |
| 3.T-205 | 0        | 3.T-256 | 0        |
| 3.T-206 | 0        | 3.T-257 | 0        |
| 3.T-207 | 0        | 3.T-258 |          |
| 3.T-207 | 0        | 3.T-259 | 0        |
| 3.T-209 |          |         |          |
| 3.T-210 | 0        | 3.T-260 | 0        |
|         | 0        | 3.T-261 | 0        |
| 3.T-211 | 0        | 3.T-262 | 0        |
| 3.T-212 | 0        | 3.T-263 | 0        |
| 3.T-213 | 0        | 3.T-264 | 0        |
| 3.T-214 | 0        | 3.T-265 | 0        |
| 3.T-215 | 0        | 3.T-266 | 0        |
| 3.T-216 | 0        | 3.T-267 | 0        |
| 3.T-217 | 0        | 3.T-268 | 0        |
| 3.T-218 | 0        | 3.T-269 | 0        |
| 3.T-219 | 0        | 3.T-270 | 0        |
| 3.T-220 | 0        | 3.T-271 | 0        |
| 3.T-221 | 0        | 3.T-272 | 0        |
| 3.T-222 | 0        | 3.T-273 | 0        |
| 3.T-223 | 0        | 3.T-274 | 0        |
| 3.T-224 | 0        | 3.T-275 | 0        |
| 3.T-225 | 0        | 3.T-276 | 0        |
| 3.T-226 | 0        | 3.T-277 | 0        |
| 3.T-227 | 0        | 3.T-278 | 0        |
| 3.T-228 | 0        | 3.T-279 | 0        |
| 3.T-229 | 0        | 3.T-280 | 0        |
| 3.T-230 | 0        | 3.T-281 | 0        |
| 3.T-231 | 0        | 3.T-282 | 0        |
| 3.T-232 | 0        | 3.T-283 | 0        |
| 3.T-233 | 0        | 3.T-284 | 0        |
| 3.T-234 | 0        | 3.T-285 | 0        |
| 3.T-235 | 0        | 3.T-286 | 0        |
| 3.T-236 | 0        | 3.T-287 | 0        |
| 3.T-237 | 0        | 3.T-288 | 0        |
| 3.T-238 | 0        | 3.T-289 | 0        |
| 3.T-239 | 0        | 3.T-290 | 0        |
| 3.T-240 | 0        | 3.T-291 |          |
| 3.T-241 | 0        | 3.T-292 | 0        |
| 3.T-242 | 0        | 3.T-293 | 0        |
| 3.T-243 | 0        | 3.T-295 | 0        |
| 3.T-243 | 0        |         |          |
| 0.1-244 |          | 3.T-295 | 0        |

\_\_\_\_\_

| Page           | Revision     | Page             | Revision   |
|----------------|--------------|------------------|------------|
| 3.T-296        | 0            | 3.T-347          | 0          |
| 3.T-297        |              | 3.T-348          | 0          |
| 3.T-298        | 0            | 3.T-349          | 0          |
| 3.T-299        | 0            | 3.T-350          |            |
| 3.T-300        | 0            | 3.T-351          | 0          |
| 3.T-301        | 0            | 3.T-352          |            |
| 3.T-302        | 0            | 3.T-353          |            |
| 3.T-303        | 0            | 3.T-354          | 0          |
| 3.T-304        | 0            | 3.T-355          | 0          |
| 3.T-305        | 0            | 3.T-356          | 0          |
| 3.T-306        | 0            | 3.T-357          | 0          |
| 3.T-307        | 0            | 3.T-358          | 0          |
| 3.T-308        | 0            | 3.T-359          |            |
| 3.T-309        | 0            | 3.T-360          | 0          |
| 3.T-310        | 0            | 3.T-361          | 0          |
| 3.T-311        | 0            | 3.T-362          | 0          |
| 3.T-312        | 0            | 3.T-363          | 0          |
| 3.T-313        | 0            | 3.T-364          | 0          |
| 3.T-314        | 0            | 3.T-365          | 0          |
| 3.T-315        | <del>0</del> | 3.T-366          | 0          |
| 3.T-316        | 0            | 3.T-367          | 0          |
| B.T-317        | 0            | 3.T-368          | 0          |
| 9.T-318        |              | 3.T-369          | 0          |
| .T-319         | 0            | 3.T-370          | 0          |
| .T-320         | Ö            | 3.T-371          |            |
| 3.T-321        | 0            | 3.T-372          | 0          |
| .T-322         | ·            | 3.T-373          | <u> </u>   |
| .T-323         | 0            | 3.T-374          | 0          |
| .T-324         | 0            | 3.T-375          | 0          |
| .T-325         | 0            | 3.T-375          | 0          |
| .T-326         | 0            |                  | 0          |
| .T-327         | 0            | 3.T-377          | 0          |
| .T-328         | 0            | 3. <b>⊤</b> -378 | 0          |
| .T-329         |              | 3.T-379          | <u>0</u> 0 |
| .T-330         | 0            | 3.T-380          | 0          |
| .T-331         |              | 3.T-381          | 0          |
| .T-332         | <u> </u>     | 3.T-382          | 0          |
| .T-333         |              | 3.T-383          | 0          |
| T-334          | 0            | 3.T-384          | 0          |
| T-335          |              | 3.U-1            | 0          |
| T-336          | 0            | 3.U-2            | 0          |
| T-337          | 0            | 3.U-3            | 0          |
| T-338          | 0            | 3.U-4            | 0          |
| T-339          | 0            | 3.U-5            | 0          |
| T-340          | 0            | 3.U-6            | 0          |
| T-340<br>T-341 |              | 3.U-7            | 0          |
| T-341          | 0            | 3.U-8            | 0          |
|                |              | 3.U-9            | 0          |
| T-343          | 0            | 3.U-10           | 0          |
| T-344          | 0            | Fig. 3.U.1       | 0          |
| T-345          | 0            | 3.W-1            | 0          |
| T-346          | 0            |                  | U          |

\_

\_

| Page           | Revision | Page             | Revision    |
|----------------|----------|------------------|-------------|
| 3.W-3          | 0        | 3.W-2            | 0           |
| 3.W-4          | 0        | 3.Z-10           | 0           |
| 3.W-5          | 0        | 3.Z-11           | 0           |
| 3.W-6          | 0        | 3.Z-12           | 0           |
| 3.W-7          | 0        | Fig. 3.Z.1       | 0           |
| 3.W-8          | 0        | Fig. 3.Z.2       | 0           |
| 3.W-9          | 0        | Fig. 3.Z.3       | 0           |
| 3.W-10         | 0        | Fig. 3.Z.4       | 0           |
| Fig. 3.W.1     | 0        | Fig. 3.Z.5       | 0           |
| 3.X-1          | 0        | Fig. 3.Z.6       | 0           |
| 3.X-2          | 0        | 3.AA-1           | 0           |
| 3.X-3          | 0        | 3.AA-1<br>3.AA-2 |             |
| 3.X-3<br>3.X-4 | 0        |                  | 0           |
| 3.X-4<br>3.X-5 |          | 3.AA-3           | 0           |
|                | 0        | 3.AA-4           | 0           |
| 3.X-6          | 0        | 3.AA-5           | 0           |
| 3.X-7          | 0        | 3.AA-6           | 0           |
| 3.X-8          | 0        | 3.AA-7           | 0           |
| 3.X-9          | 0        | 3.AA-8           | 0           |
| 3.X-10         | 0        | Fig. 3.AA.1      | 0           |
| Fig. 3.X.1     | 0        | Fig. 3.AA.2      | 0           |
| Fig. 3.X.2     | 0        | Fig. 3.AA.3      | 0           |
| Fig. 3.X.3     | 0        | Fig. 3.AA.4      | 0           |
| Fig. 3.X.4     | 0        | Fig. 3.AA.5      | 0           |
| Fig. 3.X.5     | 0        | Fig. 3.AA.6      | 0           |
| 3.Y-1          | 0        | Fig. 3.AA.7      | 0           |
| 3.Y-2          | 0        | Fig. 3.AA.8      | 0           |
| 3.Y-3          | 0        | 3.AB-1           | 0           |
| 3.Y-4          | 0        | 3.AB-2           | 0           |
| 3.Y-5          | 0        | 3.AB-3           | 0           |
| 3.Y-6          | 0        | 3.AB-4           | 0           |
| 3.Y-7          | 0        | 3.AB-5           | 0           |
| 3.Y-8          | 0        | 3.AB-6           |             |
| 3.Y-9          | 0        | 3.AB-7           | 0<br>0<br>0 |
| 3.Y-10         | 0        | 3.AB-8           | 0           |
| 3.Y-11         | 0        | 3.AB-9           |             |
| 3.Y-12         | 0        | 3.AB-10          |             |
| 3.Y-13         | 0        | 3.AB-11          | 0           |
| 3.Y-14         | 0        | 3.AB-12          |             |
| 3.Y-15         | 0        | 3.AB-13          | 0<br>0<br>0 |
| 3.Y-16         | 0        | 3.AB-14          |             |
| 3.Y-17         | 0        | 3.AC-1           |             |
| Fig. 3.Y.1     | 0        | 3.AC-2           | 0           |
| Fig. 3.Y.2     |          |                  | 0           |
| 3.Z-1          | 0        | 3.AC-3           | 0           |
| 3.Z-1<br>3.Z-2 | 0        | 3.AC-4           | 0           |
|                | 0        | 3.AC-5           |             |
| 3.Z-3          | 0        | 3.AC-6           | 0           |
| 3.Z-4          | 0        | 3.AC-7           | 0           |
| 3.Z-5          | 0        | 3.AC-8           | 0           |
| 3.Z-6          | 0        | 3.AC-9           | 0           |
| 3.Z-7          | 0        | 3.AC-10          | 0           |
| 3.Z-8          | 0        | 3.AC-11          | 0           |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Revision                                                                                                         | Page                                  | Revision                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the second second second              |                                                                                                                  |                                       | 0                                      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                                  |                                       | 0                                      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · · |                                                                                                                  |                                       |                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                     |                                                                                                                  |                                       | 0                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                     |                                                                                                                  |                                       | 0                                      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                                                                                                  |                                       | 0                                      |
| 3.AD-7       0       3.AH-8         3.AD-8       0       3.AH-1         3.AD-9       0       3.AI-2         3.AD-10       0       3.AI-2         3.AD-11       0       3.AI-3         3.AD-12       0       3.AI-4         3.AD-13       0       3.AI-5         3.AD-14       0       3.AI-6         3.AD-15       0       3.AI-7         3.AD-16       0       3.AI-8         3.AD-16       0       3.AI-9         3.AD-16       0       3.AI-10         Fig.3.AD.1       0       3.AI-10         Fig.3.AD.2       0       3.AI-11         Fig.3.AD.3       0       3.AI-12         S.AE-1       0       3.AI-13         3.AE-1       0       3.AI-14         3.AE-2       0       3.AI-16         3.AE-3       0       3.AI-17         3.AE-4       0       3.AI-17         3.AE-5       0       3.AI-18         3.AE-6       0       3.AI-17         S.AE-3       0       3.AI-16         3.AE-4       0       3.AI-16         3.AE-5       0       3.AI-17                                                                                                   |                                       |                                                                                                                  |                                       | 0                                      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                                  |                                       | 0                                      |
| 3.AD-9       0       3.Al-1         3.AD-10       0       3.Al-2         3.AD-11       0       3.Al-3         3.AD-12       0       3.Al-4         3.AD-12       0       3.Al-4         3.AD-13       0       3.Al-5         3.AD-14       0       3.Al-6         3.AD-15       0       3.Al-7         3.AD-16       0       3.Al-9         3.AD-17       0       3.Al-9         3.AD-15       0       3.Al-9         3.AD-16       0       3.Al-9         3.AD-17       0       3.Al-10         Fig. 3.AD.1       0       3.Al-11         Fig. 3.AD.2       0       3.Al-12         Fig. 3.AD.3       0       3.Al-13         3.AE-1       0       3.Al-14         3.AE-3       0       3.Al-16         3.AE-4       0       3.Al-16         3.AE-5       0       3.Al-16         3.AE-5       0       3.Al-16         3.AE-6       0       Fig. 3.Al.2         Fig. 3.AE.10       0       Fig. 3.Al.3         Fig. 3.AE.12       0       Fig. 3.Al.4         Fig. 3.AE.2       0 <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>0</td> |                                       | · · · · · · · · · · · · · · · · · · ·                                                                            |                                       | 0                                      |
| 3.AD-10       0       3.Al-3         3.AD-11       0       3.Al-3         3.AD-12       0       3.Al-3         3.AD-13       0       3.Al-5         3.AD-14       0       3.Al-7         3.AD-15       0       3.Al-7         3.AD-14       0       3.Al-7         3.AD-15       0       3.Al-7         3.AD-16       0       3.Al-9         3.AD-17       0       3.Al-10         Fig. 3.AD.1       0       3.Al-11         Fig. 3.AD.2       0       3.Al-12         Fig. 3.AD.3       0       3.Al-13         3.AE-1       0       3.Al-14         3.AE-2       0       3.Al-16         3.AE-3       0       3.Al-16         3.AE-4       0       3.Al-16         3.AE-5       0       3.Al-18         3.AE-6       0       3.Al-18         Fig. 3.AE.1a       0       Fig. 3.Al.2         Fig. 3.AE.1b       0       Fig. 3.Al.2         Fig. 3.AE.2       0       Fig. 3.Al.3         Fig. 3.AE.4       0       Fig. 3.Al.4         3.AF-1       0       3.Al-1         3.AF-2                                                                              |                                       |                                                                                                                  |                                       | 0                                      |
| 3.AD-11       0       3.Al-4         3.AD-12       0       3.Al-4         3.AD-13       0       3.Al-6         3.AD-14       0       3.Al-7         3.AD-15       0       3.Al-9         3.AD-16       0       3.Al-9         3.AD-17       0       3.Al-9         Fig. 3.AD.1       0       3.Al-10         Fig. 3.AD.2       0       3.Al-12         Fig. 3.AD.3       0       3.Al-14         3.AE-1       0       3.Al-12         Fig. 3.AD.3       0       3.Al-12         Fig. 3.AD.3       0       3.Al-14         3.AE-1       0       3.Al-15         3.AE-2       0       3.Al-16         3.AE-3       0       3.Al-16         3.AE-4       0       3.Al-16         3.AE-5       0       3.Al-16         3.AE-6       0       3.Al-18         Fig. 3.AE.1a       0       Fig. 3.Al.1         Fig. 3.AE.1a       0       Fig. 3.Al.2         Fig. 3.AE.3       0       Fig. 3.Al.4         SAF-3       0       Fig. 3.Al.5         Sig.3.AE.3       0       Fig. 3.Al.6         3.AF-1                                                                  |                                       |                                                                                                                  |                                       | 0                                      |
| 3.AD-12       0       3.AI-5         3.AD-13       0       3.AI-5         3.AD-14       0       3.AI-6         3.AD-15       0       3.AI-8         3.AD-16       0       3.AI-9         3.AD-17       0       3.AI-9         3.AD-16       0       3.AI-9         3.AD-17       0       3.AI-10         Fig. 3.AD.1       0       3.AI-11         Fig. 3.AD.2       0       3.AI-12         Fig. 3.AD.3       0       3.AI-13         3.AE-1       0       3.AI-14         3.AE-2       0       3.AI-16         3.AE-3       0       3.AI-17         3.AE-4       0       3.AI-17         3.AE-5       0       3.AI-17         3.AE-6       0       3.AI-17         Fig. 3.AE.1a       0       Fig. 3.AI.17         S.AE-3       0       3.AI-17         3.AE-4       0       3.AI-18         S.AE-5       0       3.AI-17         3.AE-1       0       Fig. 3.AI.2         Fig. 3.AE.1a       0       Fig. 3.AI.2         Fig. 3.AE.2       0       Fig. 3.AI.4         S.AE-3 <td< td=""><td></td><td></td><td></td><td>0</td></td<>                          |                                       |                                                                                                                  |                                       | 0                                      |
| 3.AD-13       0       3.AI-6         3.AD-14       0       3.AI-6         3.AD-14       0       3.AI-7         3.AD-15       0       3.AI-9         3.AD-16       0       3.AI-9         3.AD-17       0       3.AI-10         Fig. 3.AD.1       0       3.AI-11         Fig. 3.AD.2       0       3.AI-12         Fig. 3.AD.3       0       3.AI-13         3.AE-1       0       3.AI-14         3.AE-2       0       3.AI-15         3.AE-3       0       3.AI-15         3.AE-4       0       3.AI-16         3.AE-5       0       3.AI-16         3.AE-6       0       3.AI-17         3.AE-7       0       3.AI-16         3.AE-8       0       3.AI-16         3.AE-9       0       3.AI-16         3.AE-10       Fig. 3.AI.10       Fig. 3.AI.2         Fig. 3.AE.1a       0       Fig. 3.AI.2         Fig. 3.AE.2       0       Fig. 3.AI.3         Fig. 3.AE.2       0       Fig. 3.AI.4         Fig. 3.AE.2       0       Fig. 3.AI.5         Fig. 3.AE.3       0       3.AJ-3 <t< td=""><td></td><td></td><td></td><td>0</td></t<>                    |                                       |                                                                                                                  |                                       | 0                                      |
| 3.AD-14       0       3.Al-7         3.AD-15       0       3.Al-7         3.AD-16       0       3.Al-9         3.AD-17       0       3.Al-9         Fig. 3.AD.1       0       3.Al-10         Fig. 3.AD.2       0       3.Al-12         Fig. 3.AD.3       0       3.Al-14         3.AE-1       0       3.Al-15         3.AE-2       0       3.Al-16         3.AE-3       0       3.Al-16         3.AE-4       0       3.Al-16         3.AE-5       0       3.Al-16         3.AE-4       0       3.Al-17         3.AE-5       0       3.Al-16         3.AE-6       0       3.Al-18         Fig. 3.AE.1a       0       Fig. 3.Al.1         Fig. 3.AE.1a       0       Fig. 3.Al.2         Fig. 3.AE.1b       0       Fig. 3.Al.2         Fig. 3.AE.2       0       Fig. 3.Al.4         Fig. 3.AE.3       0       Fig. 3.Al.4         3.AF-2       0       3.Al-7         3.AF-3       0       3.Al-7         3.AF-2       0       3.Al-6         3.AF-3       0       3.Al-6         3.AF-3                                                                        |                                       |                                                                                                                  |                                       | 0                                      |
| 3.AD-15       0       3.Ai-8         3.AD-16       0       3.Ai-8         3.AD-16       0       3.Ai-9         3.AD-17       0       3.Ai-10         Fig. 3.AD.1       0       3.Ai-11         Fig. 3.AD.2       0       3.Ai-12         Fig. 3.AD.3       0       3.Ai-14         3.AE-1       0       3.Ai-13         3.AE-2       0       3.Ai-16         3.AE-3       0       3.Ai-16         3.AE-4       0       3.Ai-16         3.AE-5       0       3.Ai-16         3.AE-6       0       3.Ai-19         Fig. 3.AE.1a       0       Fig. 3.Ai.18         3.AE-6       0       3.Ai-19         Fig. 3.AE.1a       0       Fig. 3.Ai.2         Fig. 3.AE.1a       0       Fig. 3.Ai.2         Fig. 3.AE.2       0       Fig. 3.Ai.4         Fig. 3.AE.3       0       Fig. 3.Ai.4         SAF-1       0       3.Aj-3         3.AF-3       0       3.Aj-3         3.AF-3       0       3.Aj-3         3.AF-4       0       3.Aj-3         3.AF-3       0       3.Aj-3         3.AF-5                                                                        |                                       |                                                                                                                  |                                       | 0                                      |
| 3.AD-16       0       3.Al-9         3.AD-17       0       3.Al-9         Fig. 3.AD.1       0       3.Al-10         Fig. 3.AD.2       0       3.Al-12         Fig. 3.AD.3       0       3.Al-13         3.AE-1       0       3.Al-14         3.AE-2       0       3.Al-16         3.AE-3       0       3.Al-16         3.AE-4       0       3.Al-16         3.AE-5       0       3.Al-16         3.AE-6       0       3.Al-18         Fig. 3.AE.1a       0       Fig. 3.Al.1         Fig. 3.AE.1a       0       Fig. 3.Al.2         Fig. 3.AE.1b       0       Fig. 3.Al.2         Fig. 3.AE.1c       0       Fig. 3.Al.3         Fig. 3.AE.2       0       Fig. 3.Al.3         Fig. 3.AE.4       0       Fig. 3.Al.6         3.AF-1       0       3.Al-5         3.AF-2       0       3.Al-6         3.AF-3       0       3.Al-6         3.AF-3       0       3.Al-3         3.AF-4       0       3.Al-6         3.AF-5       0       3.Al-6         3.AF-6       0       3.Al-6         3.AF-                                                                  |                                       |                                                                                                                  |                                       | 0                                      |
| 3.AD-17       0       3.Al-10         Fig. 3.AD.1       0       3.Al-11         Fig. 3.AD.2       0       3.Al-12         Fig. 3.AD.3       0       3.Al-13         3.AE-1       0       3.Al-14         3.AE-2       0       3.Al-14         3.AE-3       0       3.Al-16         3.AE-3       0       3.Al-16         3.AE-4       0       3.Al-17         3.AE-5       0       3.Al-18         3.AE-6       0       3.Al-18         Fig. 3.AE.1a       0       Fig. 3.Al.19         Fig. 3.AE.1a       0       Fig. 3.Al.2         Fig. 3.AE.1b       0       Fig. 3.Al.2         Fig. 3.AE.1c       0       Fig. 3.Al.3         Fig. 3.AE.3       0       Fig. 3.Al.4         Fig. 3.AE.4       0       Fig. 3.Al.6         3.AF-1       0       3.AJ-1         3.AF-2       0       3.AJ-3         3.AF-3       0       3.AJ-3         3.AF-4       0       3.AJ-3         3.AF-5       0       3.AJ-6         3.AF-6       0       3.AJ-6         3.AF-6       0       3.AJ-7         3.A                                                                  |                                       | · · · · · · · · · · · · · · · · · · ·                                                                            |                                       | 0                                      |
| Fig. 3.AD.1       0       3.Al-11         Fig. 3.AD.2       0       3.Al-12         Fig. 3.AD.3       0       3.Al-13         3.AE-1       0       3.Al-14         3.AE-2       0       3.Al-15         3.AE-3       0       3.Al-16         3.AE-4       0       3.Al-17         3.AE-5       0       3.Al-16         3.AE-6       0       3.Al-18         9       3.Al-16       3.Al-16         3.AE-5       0       3.Al-16         3.AE-5       0       3.Al-16         3.AE-6       0       3.Al-17         3.AE-5       0       3.Al-18         3.AE-6       0       3.Al-19         Fig. 3.AE.1a       0       Fig. 3.Al.2         Fig. 3.AE.1b       0       Fig. 3.Al.4         Fig. 3.AE.2       0       Fig. 3.Al.4         Fig. 3.AE.4       0       Fig. 3.Al.6         3.AF-1       0       3.Al-2         3.AF-3       0       3.Al-2         3.AF-3       0       3.Al-2         3.AF-3       0       3.Al-3         3.AF-4       0       3.Al-3         3.AF-5                                                                                  |                                       |                                                                                                                  | · · · · · · · · · · · · · · · · · · · | 0                                      |
| Fig. 3.AD.2       0       3.Al-12         Fig. 3.AD.3       0       3.Al-13         3.AE-1       0       3.Al-14         3.AE-2       0       3.Al-15         3.AE-3       0       3.Al-16         3.AE-3       0       3.Al-16         3.AE-4       0       3.Al-17         3.AE-5       0       3.Al-17         3.AE-6       0       3.Al-18         3.AE-6       0       3.Al-19         Fig. 3.AE.10       0       Fig. 3.Al.2         Fig. 3.AE.10       0       Fig. 3.Al.2         Fig. 3.AE.2       0       Fig. 3.Al.3         Fig. 3.AE.2       0       Fig. 3.Al.4         Fig. 3.AE.4       0       Fig. 3.Al.5         Fig. 3.AE.4       0       Fig. 3.Al.6         3.AF-1       0       3.AJ-1         3.AF-2       0       3.AJ-2         3.AF-3       0       3.AJ-3         3.AF-4       0       3.AJ-3         3.AF-5       0       3.AJ-3         3.AF-5       0       3.AJ-6         3.AF-6       0       3.AJ-6         3.AF-7       0       3.AJ-6         3.AF-8                                                                         |                                       | 0                                                                                                                |                                       | 0                                      |
| Fig. 3.AD.3       0       3.Al-13         3.AE-1       0       3.Al-14         3.AE-2       0       3.Al-15         3.AE-3       0       3.Al-16         3.AE-3       0       3.Al-16         3.AE-4       0       3.Al-17         3.AE-5       0       3.Al-18         3.AE-6       0       3.Al-19         Fig. 3.AE.1a       0       Fig. 3.Al.19         Fig. 3.AE.1b       0       Fig. 3.Al.2         Fig. 3.AE.1c       0       Fig. 3.Al.2         Fig. 3.AE.3       0       Fig. 3.Al.4         Fig. 3.AE.4       0       Fig. 3.Al.4         S.AF-1       0       Fig. 3.Al.2         S.AF-1       0       Fig. 3.Al.4         S.AF-1       0       Fig. 3.Al.4         S.AF-1       0       S.Al-1         S.AF-3       0       S.Al-2         S.AF-4       0       S.Al-3         S.AF-5       0       S.Al-3         S.AF-5       0       S.Al-4         S.AF-6       0       S.Al-3         S.AF-7       0       S.Al-3         S.AF-6       0       S.Al-6         S.AF-7                                                                         |                                       | 0                                                                                                                |                                       | 0                                      |
| 3.AE-1       0       3.AI-14         3.AE-2       0       3.AI-15         3.AE-3       0       3.AI-16         3.AE-4       0       3.AI-17         3.AE-5       0       3.AI-18         3.AE-6       0       3.AI-19         Fig. 3.AE.1a       0       Fig. 3.AI.1         Fig. 3.AE.1b       0       Fig. 3.AI.2         Fig. 3.AE.1c       0       Fig. 3.AI.3         Fig. 3.AE.2       0       Fig. 3.AI.4         Fig. 3.AE.3       0       Fig. 3.AI.4         Fig. 3.AE.4       0       Fig. 3.AI.5         SAF-1       0       3.AJ-1         3.AF-2       0       Fig. 3.AI.6         3.AF-2       0       J.AJ-1         3.AF-3       0       J.AJ-3         3.AF-4       0       3.AJ-3         3.AF-5       0       3.AJ-4         3.AF-6       0       3.AJ-4         3.AF-7       0       3.AJ-6         3.AF-8       0       3.AJ-7         3.AF-8       0       3.AJ-8                                                                                                                                                                         |                                       |                                                                                                                  |                                       | 0                                      |
| 3.AE-2       0       3.Al-14         3.AE-3       0       3.Al-16         3.AE-4       0       3.Al-17         3.AE-5       0       3.Al-18         3.AE-6       0       3.Al-19         Fig. 3.AE.1a       0       Fig. 3.Al.1         Fig. 3.AE.1b       0       Fig. 3.Al.2         Fig. 3.AE.1c       0       Fig. 3.Al.3         Fig. 3.AE.3       0       Fig. 3.Al.4         Fig. 3.AE.4       0       Fig. 3.Al.5         3.AF-2       0       Al.6         3.AF-3       0       S.Al-6         3.AF-4       0       S.Al-3         3.AF-5       0       3.Al-3         3.AF-5       0       3.Al-6         3.AF-6       0       3.Al-6         3.AF-7       0       3.Al-6         3.AF-8       0       3.Al-6         3.AF-7       0       3.Al-7                                                                                                                                                                                                                                                                                                      |                                       | 0                                                                                                                |                                       | 0                                      |
| 3.AE-3       0       3.AI-16         3.AE-4       0       3.AI-17         3.AE-5       0       3.AI-18         3.AE-6       0       3.AI-19         Fig. 3.AE.1a       0       Fig. 3.AI.1         Fig. 3.AE.1b       0       Fig. 3.AI.2         Fig. 3.AE.1c       0       Fig. 3.AI.2         Fig. 3.AE.2       0       Fig. 3.AI.4         Fig. 3.AE.3       0       Fig. 3.AI.5         Fig. 3.AE.4       0       Fig. 3.AI.6         3.AF-1       0       3.AJ-1         3.AF-2       0       3.AJ-1         3.AF-3       0       3.AJ-2         3.AF-4       0       3.AJ-2         3.AF-5       0       3.AJ-3         3.AF-6       0       3.AJ-3         3.AF-7       0       3.AJ-6         3.AF-8       0       3.AJ-7         3.AF-8       0       3.AJ-9                                                                                                                                                                                                                                                                                           |                                       | 0                                                                                                                | 3.AI-14                               |                                        |
| 3.AE-4       0       3.AI-10         3.AE-5       0       3.AI-18         3.AE-6       0       3.AI-19         Fig. 3.AE.1a       0       Fig. 3.AI.1         Fig. 3.AE.1b       0       Fig. 3.AI.2         Fig. 3.AE.1c       0       Fig. 3.AI.3         Fig. 3.AE.2       0       Fig. 3.AI.4         Fig. 3.AE.3       0       Fig. 3.AI.5         Fig. 3.AE.4       0       Fig. 3.AI.6         3.AF-1       0       3.AJ-1         3.AF-2       0       3.AJ-3         3.AF-3       0       3.AJ-3         3.AF-4       0       3.AJ-3         3.AF-5       0       3.AJ-6         3.AF-6       0       3.AJ-7         3.AF-7       0       3.AJ-7         3.AF-8       0       3.AJ-9                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                                                                                                  | 3.Al-15                               | 0                                      |
| 3.AE-5       0       3.AI-17         3.AE-6       0       3.AI-18         Fig. 3.AE.1a       0       Fig. 3.AI.1         Fig. 3.AE.1b       0       Fig. 3.AI.2         Fig. 3.AE.1c       0       Fig. 3.AI.3         Fig. 3.AE.3       0       Fig. 3.AI.4         Fig. 3.AE.3       0       Fig. 3.AI.5         Fig. 3.AE.4       0       Fig. 3.AI.6         3.AF-1       0       3.AJ-1         3.AF-2       0       AJ-1         3.AF-3       0       3.AJ-2         3.AF-4       0       3.AJ-3         3.AF-5       0       3.AJ-4         3.AF-6       0       3.AJ-6         3.AF-7       0       3.AJ-7         3.AF-8       0       3.AJ-8                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Ō                                                                                                                | 3.Al-16                               |                                        |
| 3.AE-5       0       3.AI-18         3.AE-6       0       3.AI-19         Fig. 3.AE.1a       0       Fig. 3.AI.1         Fig. 3.AE.1b       0       Fig. 3.AI.2         Fig. 3.AE.1c       0       Fig. 3.AI.3         Fig. 3.AE.2       0       Fig. 3.AI.4         Fig. 3.AE.3       0       Fig. 3.AI.5         Fig. 3.AE.4       0       Fig. 3.AI.6         3.AF-1       0       3.AJ-1         3.AF-2       0       3.AJ-2         3.AF-3       0       3.AJ-3         3.AF-4       0       3.AJ-3         3.AF-5       0       3.AJ-3         3.AF-6       0       3.AJ-4         3.AF-7       0       3.AJ-6         3.AF-7       0       3.AJ-6         3.AF-7       0       3.AJ-7         3.AF-8       0       3.AJ-8         3.AF-7       0       3.AJ-8                                                                                                                                                                                                                                                                                             |                                       |                                                                                                                  | 3.AI-17                               | 0                                      |
| 3.AE-6       0       3.AI-19         Fig. 3.AE.1a       0       Fig. 3.AI.1         Fig. 3.AE.1b       0       Fig. 3.AI.2         Fig. 3.AE.1c       0       Fig. 3.AI.3         Fig. 3.AE.2       0       Fig. 3.AI.4         Fig. 3.AE.3       0       Fig. 3.AI.5         Fig. 3.AE.4       0       Fig. 3.AI.6         3.AF-1       0       3.AJ-1         3.AF-2       0       3.AJ-2         3.AF-3       0       3.AJ-3         3.AF-4       0       3.AJ-3         3.AF-5       0       3.AJ-6         3.AF-6       0       3.AJ-7         3.AF-7       0       3.AJ-8         3.AF-8       0       3.AJ-9                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 0                                                                                                                |                                       |                                        |
| Fig. 3.AE. 1a       0       Fig. 3.Al. 1         Fig. 3.AE. 1b       0       Fig. 3.Al. 2         Fig. 3.AE. 1c       0       Fig. 3.Al. 3         Fig. 3.AE. 2       0       Fig. 3.Al. 4         Fig. 3.AE.3       0       Fig. 3.Al. 5         Fig. 3.AE.4       0       Fig. 3.Al. 6         3.AF-1       0       Fig. 3.Al. 6         3.AF-2       0       Fig. 3.Al. 6         3.AF-3       0       S.AJ-1         3.AF-3       0       3.AJ-2         3.AF-4       0       3.AJ-3         3.AF-5       0       3.AJ-6         3.AF-6       0       3.AJ-7         3.AF-8       0       3.AJ-8                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 0                                                                                                                |                                       | 0<br>0<br>0<br>0                       |
| Fig. 3.AE.1b       0       Fig. 3.Al.2         Fig. 3.AE.1c       0       Fig. 3.Al.3         Fig. 3.AE.2       0       Fig. 3.Al.4         Fig. 3.AE.3       0       Fig. 3.Al.5         Fig. 3.AE.4       0       Fig. 3.Al.6         3.AF-1       0       3.AJ-1         3.AF-2       0       3.AJ-2         3.AF-3       0       3.AJ-3         3.AF-4       0       3.AJ-3         3.AF-5       0       3.AJ-6         3.AF-6       0       3.AJ-7         3.AF-7       0       3.AJ-8         3.AF-8       0       3.AJ-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 0                                                                                                                | •                                     |                                        |
| Fig. 3.AE.1c       0       Fig. 3.AI.3         Fig. 3.AE.2       0       Fig. 3.AI.4         Fig. 3.AE.3       0       Fig. 3.AI.5         Fig. 3.AE.4       0       Fig. 3.AI.6         3.AF-1       0       3.AJ-1         3.AF-2       0       3.AJ-2         3.AF-3       0       3.AJ-2         3.AF-4       0       3.AJ-3         3.AF-5       0       3.AJ-4         3.AF-6       0       3.AJ-5         3.AF-7       0       3.AJ-6         3.AF-7       0       3.AJ-6         3.AF-8       0       3.AJ-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | • • • • • • • • • • • • • • • • • • • •                                                                          |                                       |                                        |
| Fig. 3.AE.2       0       Fig. 3.AI.4         Fig. 3.AE.3       0       Fig. 3.AI.5         Fig. 3.AE.4       0       Fig. 3.AI.6         3.AF-1       0       3.AJ-1         3.AF-2       0       3.AJ-2         3.AF-3       0       3.AJ-2         3.AF-4       0       3.AJ-2         3.AF-5       0       3.AJ-3         3.AF-6       0       3.AJ-4         3.AF-7       0       3.AJ-5         3.AF-7       0       3.AJ-6         3.AF-8       0       3.AJ-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                                                                                  |                                       | 0                                      |
| Fig. 3.AE.3       0       Fig. 3.AI.5         Fig. 3.AE.4       0       Fig. 3.AI.6         3.AF-1       0       3.AJ-1         3.AF-2       0       3.AJ-2         3.AF-3       0       3.AJ-3         3.AF-4       0       3.AJ-3         3.AF-5       0       3.AJ-4         3.AF-6       0       3.AJ-5         3.AF-7       0       3.AJ-6         3.AF-7       0       3.AJ-7         3.AF-8       0       3.AJ-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                                                                                                  |                                       |                                        |
| Fig. 3.AE.4       0       Fig. 3.Al.6         3.AF-1       0       3.AJ-1         3.AF-2       0       3.AJ-2         3.AF-3       0       3.AJ-3         3.AF-4       0       3.AJ-3         3.AF-5       0       3.AJ-4         3.AF-6       0       3.AJ-5         3.AF-7       0       3.AJ-6         3.AF-7       0       3.AJ-6         3.AF-8       0       3.AJ-7         3.AF-8       0       3.AJ-8         3.AG-1       0       3.AJ-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | and the second |                                       | 0                                      |
| 3.AF-1       0       3.AJ-1         3.AF-2       0       3.AJ-2         3.AF-3       0       3.AJ-3         3.AF-4       0       3.AJ-3         3.AF-5       0       3.AJ-4         3.AF-6       0       3.AJ-5         3.AF-7       0       3.AJ-6         3.AF-7       0       3.AJ-6         3.AF-8       0       3.AJ-6         3.AF-8       0       3.AJ-7         3.AG-1       0       3.AJ-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | λE.4                                  | and the second |                                       | 0                                      |
| 3.AF-2       0       3.AJ-2         3.AF-3       0       3.AJ-3         3.AF-4       0       3.AJ-4         3.AF-5       0       3.AJ-4         3.AF-6       0       3.AJ-6         3.AF-7       0       3.AJ-6         3.AF-8       0       3.AJ-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                                                                                                                  |                                       |                                        |
| 3.AF-3     0     3.AU-3       3.AF-4     0     3.AU-3       3.AF-5     0     3.AU-3       3.AF-6     0     3.AU-5       3.AF-7     0     3.AU-6       3.AF-8     0     3.AU-7       3.AF-8     0     3.AU-8       3.AG-1     0     3.AU-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | · · · · · · · · · · · · · · · · · · ·                                                                            |                                       | 0                                      |
| 3.AF-4       0       3.AJ-4         3.AF-5       0       3.AJ-5         3.AF-6       0       3.AJ-6         3.AF-7       0       3.AJ-7         3.AF-8       0       3.AJ-7         3.AF-8       0       3.AJ-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | in the second  |                                       | ······································ |
| 3.AF-5       0       3.AJ-5         3.AF-6       0       3.AJ-6         3.AF-7       0       3.AJ-7         3.AF-8       0       3.AJ-7         3.AG-1       0       3.AJ-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                                                                                                                  |                                       | 0                                      |
| 3.AF-6     0     3.AJ-6       3.AF-7     0     3.AJ-7       3.AF-8     0     3.AJ-8       3.AG-1     0     3.AJ-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                                                                  |                                       | 0                                      |
| 3.AF-7     0     3.AJ-7       3.AF-8     0     3.AJ-8       3.AG-1     0     3.AJ-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | i tra i cara je                                                                                                  |                                       | 0                                      |
| 3.AF-8<br>3.AG-1<br>0<br>3.AJ-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                     |                                                                                                                  |                                       | 0                                      |
| 3.AG-1 0 3.AJ-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                     | · · · · · · · · · · · · · · · · · · ·                                                                            |                                       | 0                                      |
| 0.A0-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                                   | and the second |                                       | 0                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | in the second  |                                       | 0                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | · · · · · · · · · · · · · · · · · · ·                                                                            |                                       | 0                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                                                                                                  |                                       | 0                                      |
| 0.40-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                                                                                  |                                       | 0                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | a the second the second to be seen and the                                                                       |                                       | 0                                      |
| 0.40.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | · · · · · · · · · · · · · · · · · · ·                                                                            |                                       | 0                                      |
| 3.AG-7 0 3.AJ-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |                                                                                                                  |                                       | 0                                      |
| 0 3.AJ-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·                                     | 0                                                                                                                | 3.AJ-16                               | 0                                      |
| 3.AG-9 0 Fig. 3.AJ.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                                                                                  | Fig. 3.AJ.1                           | 0                                      |
| 3.AG-10 0 Fig. 3.AJ.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                     | 0                                                                                                                |                                       | 0                                      |

\_

\_\_\_\_\_

| Page               | Revision | Page         | Revision |
|--------------------|----------|--------------|----------|
| Fig. 3.AJ.3        | 0        | 3.AM-23      | 0        |
| 3.AK-1             | 0        | 3.AM-24      | 0        |
| 3.AK-2             | 0        | 3.AM-25      | 0        |
| 3.AK-3             | 0        | 3.AM-26      | 0        |
| 3.AK-4             | 0        | 3.AM-27      | 0        |
| 3.AK-5             | 0        | 3.AM-28      | 0        |
| 3.AK-6             | 0        | 3.AM-29      | 0        |
| 3.AK-7             | 0        | 3.AM-30      | 0        |
| 3.AK-8             | 0        | 3.AN-1       | 0        |
| 3.AK-9             | 0        | 3.AN-2       | 0        |
| 3.AK-10            | 0        | 3.AN-3       | 0        |
| 3.AK-11            | 0        | 3.AN-4       | 0        |
| 3.AK-12            | 0        | 3.AN-5       | 0        |
| 3.AK-13            |          |              |          |
| 3.AK-14            | 0        | 3.AN-6       | 0        |
| 3.AK-14<br>3.AK-15 | 0        | 3.AN-7       | 0        |
| 3.AK-15<br>3.AK-16 | 0        | 3.AN-8       | 0        |
|                    | 0        | 3.AN-9       | 0        |
| 3.AK-17            | 0        | 3.AN-10      | 0        |
| 3.AK-18            | 0        | 3.AN-11      | 0        |
| 3.AL-1             | 0        | 3.AN-12      | 0        |
| 3.AL-2             | 0        | 3.AN-13      | 0        |
| 3.AL-3             | 0        | 3.AN-14      | 0        |
| 3.AL-4             | 0        | Fig. 3.AN.1  | 0        |
| 3.AL-5             | 0        | Fig. 3.AN.2  | 0        |
| 3.AL-6             | 0        | Fig. 3.AN.3  | 0        |
| 3.AL-7             | 0        | Fig. 3.AN.4  | 0        |
| 3.AL-8             | 0        | Fig. 3.AN.5  | 0        |
| 3.AL-9             | 0        | Fig. 3.AN.6  | 0        |
| 3.AL-10            | 0        | Fig. 3.AN.7  | 0        |
| 3.AM-1             | 0        | Fig. 3.AN.8  | 0        |
| 3.AM-2             | 0        | Fig. 3.AN.9  | 0        |
| 3.AM-3             | 0        | Fig. 3.AN.10 | 0        |
| 3.AM-4             | 0        | Fig. 3.AN.11 | 0        |
| 3.AM-5             | 0        | Fig. 3.AN.12 | 0        |
| 3.AM-6             | 0        | Fig. 3.AN.13 | 0        |
| 3.AM-7             | 0        | Fig. 3.AN.14 | 0        |
| 3.AM-8             | 0        | Fig. 3.AN.15 | 0        |
| 3.AM-9             | 0        | Fig. 3.AN.16 | 0        |
| 3.AM-10            | 0        | Fig. 3.AN.17 | 0        |
| 3.AM-11            | 0        | Fig. 3.AN.18 | 0        |
| 3.AM-12            | 0        | Fig. 3.AN.19 |          |
| 3.AM-12            | 0        |              | 0        |
| 3.AM-14            | 0        | Fig. 3.AN.20 | 0        |
| 3.AM-14<br>3.AM-15 |          | Fig. 3.AN.21 | 0        |
| 3.AM-15            | 0        | Fig. 3.AN.22 | 0        |
|                    | 0        | Fig. 3.AN.23 | 0        |
| 3.AM-17            | 0        | Fig. 3.AN.24 | 0        |
| 3.AM-18            | 0        | Fig. 3.AN.25 | 0        |
| 3.AM-19            | 0        | Fig. 3.AN.26 | 0        |
| 3.AM-20            | 0        | Fig. 3.AN.28 | 0        |
| 3.AM-21            | 0        | Fig. 3.AN.29 | 0        |
| 3.AM-22            | 0        | Fig. 3.AN.20 | 0        |

| Page<br>4.0-1 | Revision                              | Page       | Revision         |
|---------------|---------------------------------------|------------|------------------|
| 4.0-2         | 0                                     | 4.4-10     | (                |
| 4.1-1         | 0                                     | 4.4-11     |                  |
| 4.1-2         | 0                                     | 4.4-12     | (                |
|               | 0                                     | 4.4-13     |                  |
| 4.1-3         | 0                                     | 4.4-14     | (                |
| 4.1-4         | 0                                     | 4.4-15     |                  |
| 4.1-5         | 0                                     | 4.4-16     |                  |
| 4.2-1         | 0                                     | 4.4-17     |                  |
| 4.2-2         | 0                                     | 4.4-18     |                  |
| 4.2-3         | 0                                     | 4.4-19     | (                |
| 4.2-4         | 0                                     | 4.4-20     |                  |
| 4.2-5         | 0                                     | 4.4-21     | (                |
| 4.2-6         | 0                                     | 4.4-22     | C                |
| 4.2-7         | 0                                     |            | C                |
| 4.2-8         |                                       | 4.4-23     | C                |
| 4.2-9         | 0                                     | 4.4-24     | C                |
| 4.2-10        | 0                                     | 4.4-25     | O                |
| 4.2-11        | 0                                     | 4.4-26     | C                |
| Fig. 4.2.1    | 0                                     | 4.4-27     | 0                |
| Fig. 4.2.2    | 0                                     | 4.4-28     | 0                |
| 4.3-1         | 0                                     | 4.4-29     | 0                |
| 4.3-2         | 0                                     | 4.4-30     | 0                |
|               | 0                                     | 4.4-31     | 0                |
| 4.3-3         | 0                                     | 4.4-32     | 0                |
| 4.3-4         | 0<br>0                                | 4.4-33     |                  |
| 4.3-5         | 0                                     | 4.4-34     | 0                |
| 4.3-6         | 0                                     | 4.4-35     |                  |
| 4.3-7         |                                       | 4.4-36     | 0                |
| 4.3-8         | 0                                     | 4.4-37     | 0                |
| 1.3-9         | · · · · · · · · · · · · · · · · · · · | 4.4-38     | 0                |
| 4.3-10        | 0                                     | 4.4-39     | 0                |
| 4.3-11        |                                       | 4.4-40     |                  |
| 4.3-12        |                                       | 4.4-41     | 0<br>0<br>0<br>0 |
| 1.3-13        |                                       |            | 0                |
| 1.3-14        |                                       | 4.4-42     | 0                |
| 1.3-15        | 0                                     | 4.4-43     | 0                |
| 1.3-16        | 0                                     | 4.4-44     | 0                |
| <b>.3</b> -17 |                                       | 4.4-45     | 0                |
| .3-18         |                                       | 4.4-46     | 0                |
| -ig. 4.3.1    | 0                                     | 4.4-47     | 0                |
| ig. 4.3.2     | 0                                     | 4.4-48     | 0                |
| ig. 4.3.3     | 0                                     | 4.4-49     | 0                |
|               | 0                                     | 4.4-50     | 0                |
| ig. 4.3.4     | 0                                     | Fig. 4.4.1 |                  |
| .4-1          | 0                                     | Fig. 4.4.2 |                  |
| 4-2           | 0                                     | Fig. 4.4.3 | 0                |
| .4-3          | 0                                     | Fig. 4.4.4 |                  |
| .4-4          | 0                                     | Fig. 4.4.5 | 0                |
| .4-5          |                                       | Fig. 4.4.6 | 0                |
| .4-6          | 0                                     | Fig. 4.4.7 | 0                |
| .4-7          |                                       | Fig. 4.4.8 | 0                |
| .4-8          | 0                                     |            | 0                |
| .4-9          |                                       | Fig. 4.4.9 | 0                |

\_

| Page             | <u>Revision</u> | Page                                      | Revision |
|------------------|-----------------|-------------------------------------------|----------|
| Fig. 4.4.10      | 0               |                                           |          |
| Fig. 4.4.11      | 0               |                                           |          |
| Fig. 4.4.12      | 0               |                                           |          |
| Fig. 4.4.13      | 0               |                                           |          |
| Fig. 4.4.14      | 0               |                                           |          |
| Fig. 4.4.15      | 0               |                                           |          |
| Fig. 4.4.16      | 0               |                                           |          |
| Fig. 4.4.17      | 0               |                                           |          |
| Fig. 4.4.18      | 0               |                                           |          |
| Fig. 4.4.19      | 0               |                                           |          |
| Fig. 4.4.20      | 0               | <u></u>                                   |          |
| Fig. 4.4.21      | 0               | <br>                                      |          |
| Fig. 4.4.22      | 0               |                                           |          |
| Fig. 4.4.23      | 0               |                                           |          |
| Fig. 4.4.24      | 0               |                                           |          |
| 4.5-1            | 0               |                                           |          |
| 4.5-2            | 0               |                                           |          |
| 4.5-3            | 0               |                                           |          |
| 4.5-4            |                 |                                           |          |
| 4.5-5            | 0               |                                           |          |
| 4.5-6            | 0               |                                           |          |
|                  | 0               |                                           |          |
| 4.5-7<br>4.5-8   | 0               |                                           |          |
| 4.5-9            | 0               |                                           |          |
| 4.5-10           | 0               | <br>                                      |          |
|                  | 0               | <br>                                      |          |
| 4.5-11<br>4.5-12 | 0               | <br>                                      |          |
|                  | 0               | <br>                                      |          |
| 4.5-13           | 0               | <br>                                      |          |
| 4.5-14<br>4.5-15 | 0               | <br>                                      |          |
|                  | 0               | <br>                                      |          |
| 4.5-16<br>4.5-17 | 0               | <br>· · · · · · · · · · · · · · · · · · · |          |
|                  | 0               | <br>                                      |          |
| 4.5-18           | 0               | <br>                                      |          |
| 4.5-19<br>4.5-20 | 0               | <br>                                      |          |
|                  | 0               | <br>                                      |          |
| 4.5-21           | 0               | <br>                                      |          |
| 4.5-22           | 0               | <br>                                      |          |
| 4.5-23           | 0               | <br>                                      |          |
| Fig. 4.5.1       | 0               | <br>                                      |          |
| Fig. 4.5.2       | 0               |                                           |          |
| Fig. 4.5.3       | 0               | <br>                                      |          |
| 4.6-1            | 0               | <br>                                      |          |
| 4.6-2            | 0               | <br>                                      |          |
| 4.7-1            | 0               | <br>                                      |          |
| 4.7-2            | 0               | <br>                                      |          |
| 4.7-3            | 0               |                                           |          |
|                  |                 | <br>                                      |          |

\_\_\_\_\_

| Page        | Revision | Page         | Revision |
|-------------|----------|--------------|----------|
| 5.0-1       | 0        | 5.2-20       | 0        |
| 5.0-2       | 0        | 5.2-21       | 0        |
| 5.0-3       | 0        | 5.2-22       | 0        |
| 5.1-1       | 0        | 5.2-23       | 0        |
| 5.1-2       | 0        | 5.2-24       | 0        |
| 5.1-3       | 0        | 5.2-25       | 0        |
| 5.1-4       | 0        | 5.2-26       |          |
| 5.1-5       | 0        | 5.2-27       | 0        |
| 5.1-6       |          | 5.2-28       | 0        |
| 5.1-7       | 0        | 5.2-29       | 0        |
| 5.1-8       | 0        | 5.2-30       | 0        |
| 5.1-9       |          | 5.2-31       | 0        |
| 5.1-10      | 0        | 5.2-32       | 0        |
| 5.1-11      |          |              | 0        |
| 5.1-12      |          | 5.2-33       | 0        |
| 5.1-13      |          | 5.2-34       | 0        |
| 5.1-14      |          | 5.2-35       | 0        |
| 5.1-15      |          | 5.2-36       | 0        |
| 5.1-16      |          | 5.2-37       | 0        |
| 5.1-17      |          | 5.2-38       | 0        |
| 5.1-18      |          | 5.3-1        | 0        |
| Fig. 5.1.1  | • • •    | 5.3-2        | 0        |
| Fig. 5.1.2  |          | 5.3-3        | 0        |
| Fig. 5.1.3  |          | 5.3-4        | 0        |
| Fig. 5.1.4  |          | 5.3-5        | 0        |
|             | T        | 5.3-6        | 0        |
| Fig. 5.1.5  |          | 5.3-7        | 0        |
| Fig. 5.1.6  |          | 5.3-8        | 0        |
| Fig. 5.1.7  |          | 5.3-9        | 0        |
| Fig. 5.1.8  | 0        | 5.3-10       | 0        |
| Fig. 5.1.9  | 0        | 5.3-11       | 0        |
| Fig. 5.1.10 | 0        | Fig. 5.3.1   | 0        |
| Fig. 5.1.11 |          | Fig. 5.3.2   | 0        |
| 5.2-1       |          | Fig. 5.3.3   | 0        |
| 5.2-2       |          | Fig. 5.3.4   |          |
| 5.2-3       |          | Fig. 5.3.5   | 0        |
| 5.2-4       | 0        | Fig. 5.3.6   |          |
| 5.2-5       |          | -ig. 5.3.7   | 0        |
| 5.2-6       |          | -ig. 5.3.8   |          |
| 5.2-7       |          | -ig. 5.3.9   | 0        |
| 5.2-8       |          | Fig. 5.3.10  | 0        |
| 5.2-9       |          | Fig. 5.3.11  | 0        |
| 5.2-10      |          | Fig. 5.3.12  | 0        |
| 5.2-11      |          | Fig. 5.3.13  | 0        |
| 5.2-12      |          | Fig. 5.3.14  | 0        |
| 5.2-13      |          |              | 0        |
| 5.2-14      |          | Fig. 5.3.15  | 0        |
| 5.2-15      |          | ig. 5.3.16   | 0        |
| 5.2-16      |          | ig. 5.3.17   | 0        |
| 5.2-17      |          | <u>5.4-1</u> | 0        |
| 5.2-18      |          | .4-2         | 0        |
| 5.2-19      |          | .4-3         | 0        |
| 13          | 05       | 0.4-4        | 0        |

-----

\_\_\_\_

| Page   | Revision | Page   | Revision |
|--------|----------|--------|----------|
| 5.4-5  | 0        | 5.C-23 | 0        |
| 5.4-6  | 0        | 5.C-24 | 0        |
| 5.4-7  | 0        | 5.C-25 | 0        |
| 5.4-8  | 0        | 5.C-26 | 0        |
| 5.4-9  | 0        | 5.C-27 | 0        |
| 5.4-10 | 0        | 5.C-28 | 0        |
| 5.4-11 | 0        | 5.C-29 | 0        |
| 5.4-12 | 0        | 5.C-30 | 0        |
| 5.4-13 | 0        | 5.C-31 | 0        |
| 5.4-14 | 0        | 5.C-32 | 0        |
| 5.4-15 | 0        | 5.C-33 | 0        |
| 5.4-16 | 0        | 5.C-34 | 0        |
| 5.4-17 | 0        | 5.C-35 | 0        |
| 5.4-18 | 0        | 5.C-36 | 0        |
| 5.4-19 | 0        | 5.C-37 | - 0      |
|        |          |        | 0<br>0   |
| 5.4-20 | 0        | 5.C-38 | 0        |
| 5.5-1  | 0        | 5.C-39 | 0        |
| 5.6-1  | 0        | 5.C-40 | 0        |
| 5.6-2  | 0        | 5.C-41 | 0        |
| 5.A-1  | 0        | 5.C-42 | 0        |
| 5.A-2  | 0        | 5.C-43 | 0        |
| 5.A-3  | 0        | 5.C-44 | 0        |
| 5.B-1  | 0        | 5.C-45 | 0        |
| 5.B-2  | 0        | 5.C-46 | 0        |
| 5.B-3  | 0        | 5.C-47 | 0        |
| 5.B-4  | 0        | 5.C-48 | 0        |
| 5.B-5  | 0        | 5.C-49 | 0        |
| 5.B-6  | 0        | 5.C-50 | 0        |
| 5.B-7  | 0        | 5.C-51 | 0        |
| 5.C-1  | Ó        | 5.C-52 | 0        |
| 5.C-2  | 0        | 5.C-53 | 0        |
| 5.C-3  | 0        | 5.C-54 | 0        |
| 5.C-4  | 0        | 5.C-55 | 0        |
| 5.C-5  | 0        | 5.C-56 | 0        |
| 5.C-6  | 0        | 5.C-57 | 0        |
| 5.C-7  | 0        | 5.C-58 | 0        |
| 5.C-8  | 0        | 5.C-59 | 0        |
| 5.C-9  | 0        | 5.C-60 | 0        |
| 5.C-10 | 0        | 5.C-61 | 0        |
| 5.C-11 | 0        | 5.D-1  | 0        |
| 5.C-12 | 0        | 5.D-2  | 0        |
| 5.C-13 | 0        | 5.D-3  | 0        |
| 5.C-14 | 0        | 5.D-4  | 0        |
| 5.C-15 | 0        | 5.D-5  | 0        |
| 5.C-16 | 0        | 5.D-6  | 0        |
| 5.C-17 | 0        |        |          |
| 5.C-18 | 0        |        |          |
| 5.C-19 | 0        |        |          |
| 5.C-20 | 0        |        |          |
| 5.C-21 | 0        |        |          |
| 5.C-22 |          |        |          |
| 0.0-22 | 0        |        |          |

ł

| Page           |                                        | Revision     | Page       | Revision |
|----------------|----------------------------------------|--------------|------------|----------|
| 6.1-1          |                                        | 0            | 6.2-40     |          |
| 6.1-2          | ·····                                  | 0            | 6.2-41     |          |
| 6.1-3          |                                        | 0            | 6.2-42     |          |
| 6.1-4          |                                        | 0            | 6.2-43     |          |
| 6.1-5          |                                        | 0            | 6.2-44     |          |
| 6.1-6          |                                        | 0            | 6.2-45     |          |
| 6.1-7          |                                        | 0            | 6.2-46     |          |
| 6.1-8          | · · · · · · · · · · ·                  | 0            | 6.2-47     |          |
| 6.1-9          |                                        | 0            | 6.2-48     |          |
| 6.1-10         |                                        |              | 6.2-49     |          |
| 6.1-11         | ···· ······· ···· ····· ·····          |              | Fig. 6.2.1 |          |
| 6.2-1          | ······································ |              |            |          |
| 6.2-2          | · · ·                                  | 0            | 6.3-1      |          |
| 6.2-3          | · · · · ·                              |              | 6.3-2      |          |
| 5.2-4          |                                        | 0            | 6.3-3      |          |
| 5.2-5          |                                        | 0            | 6.3-4      |          |
| 5.2-5<br>5.2-6 |                                        | 0            | 6.3-5      |          |
| 5.2-0<br>5.2-7 |                                        | 0            | 6.3-6      | (        |
|                |                                        | 0            | 6.3-7      | (        |
| 5.2-8          |                                        | . 0          | 6.3-8      |          |
| 6.2-9          |                                        | . 0          | 6.3-9      | (        |
| 5.2-10         |                                        | 0            | 6.3-10     |          |
| 6.2-11         |                                        | 0            | 6.3-11     |          |
| 6.2-12         |                                        | 0            | Fig. 6.3.1 |          |
| 5.2-13         |                                        | 0            | Fig. 6.3.2 |          |
| 6.2-14         |                                        | , <b>0</b> , | Fig. 6.3.3 |          |
| 6.2-15         |                                        | о            | Fig. 6.3.4 | (        |
| 5.2-16         |                                        | 0            | Fig. 6.3.5 | (        |
| 5.2-17         |                                        |              | Fig. 6.3.6 |          |
| 5.2-18         |                                        | 0            |            |          |
| 5.2-19         |                                        |              | Fig. 6.3.7 |          |
| .2-20          |                                        | 0            | 6.4-1      |          |
| .2-21          |                                        | - 0          | 6.4-2      | C        |
| .2-22          |                                        | - <u>-</u>   | 6.4-3      | C        |
| .2-23          |                                        |              | 6.4-4      | 0        |
| .2-23          |                                        | 0            | 6.4-5      |          |
| .2-24          |                                        | . 0          | 6.4-6      | C        |
| .2-25          |                                        | 0            | 6.4-7      | 0        |
| .2-26          |                                        | 0            | 6.4-8      |          |
| .2-27          |                                        | 0            | 6.4-9      | 0        |
| .2-28          |                                        | . 0          | 6.4-10     | 0        |
| 2-29           |                                        | 0            | 6.4-11     | <u>0</u> |
| 2-30           |                                        | 0            | 6.4-12     | 0        |
| .2-31          |                                        | 0            | Fig. 6.4.1 |          |
| 2-32           |                                        | 0            | Fig. 6.4.2 | 0        |
| 2-33           |                                        | 0            | Fig. 6.4.3 | 0        |
| 2-34           |                                        | 0            | Fig. 6.4.4 | 0        |
| 2-35           |                                        |              |            | 0        |
| 2-36           |                                        |              | Fig. 6.4.5 | 0        |
| 2-37           |                                        |              | Fig. 6.4.6 | 0        |
| 2-38           |                                        | 0            | Fig. 6.4.7 | 0        |
| 2-39           |                                        | 0            |            |          |
| 2-09           |                                        | 0            |            |          |

-----

\_\_\_\_

| Page           | Revision | Page   | Revision |
|----------------|----------|--------|----------|
| Fig. 6.4.8     | 0        | 6.D-8  |          |
| Fig. 6.4.9     | 0        | 6.D-9  | 0        |
| Fig. 6.4.10    | 0        | 6.D-10 | 0        |
| 6.5-1          | 0        | 6.D-11 | 0        |
| 6.6-1          | 0        | 6.D-12 | 0        |
| 6.7-1          | 0        | 6.D-13 | 0        |
| 6.7-2          | 0        | 6.D-14 | 0        |
| 6.A-1          | 0        | 6.D-15 | 0        |
| 6.A-2          | 0        | 6.D-16 | 0        |
| 6.A-3          | 0        | 6.D-17 | 0        |
| 6.A-4          | 0        | 6.D-18 | 0        |
| 6.A-5          | 0        | 6.D-19 | 0        |
| 6.A-6          | 0        | 6.D-20 | 0        |
| 6.A-7          | 0        | 6.D-21 | 0        |
| 6.A-8          | 0        | 6.D-22 |          |
| 6.A-9          | 0        | 6.D-23 | 0        |
| 6.A-10         | 0        | 6.D-24 | 0        |
| 6.A-11         | 0        | 6.D-25 | 0        |
| 6.A-12         | 0        | 6.D-25 | 0        |
| 6.A-13         | 0        | 6.D-27 | 0        |
| 6.A-14         | 0        | 6.D-27 | 0        |
| 6.A-15         |          | 6.D-29 |          |
| 6.A-16         | 0        |        | 0        |
| 6.A-17         | 0        | 6.D-30 | 0        |
| 6.A-18         | 0        | 6.D-31 | 0        |
| 6.A-19         | 0        | 6.D-32 | 0        |
| 6.A-20         | 0        | 6.D-33 | 0        |
|                | 0        |        |          |
| Fig. 6.A.1     | 0        |        |          |
| Fig. 6.A.2     | 0        |        |          |
| Fig. 6.A.3     | 0        |        |          |
| Fig. 6.A.4     | 0        |        |          |
| Fig. 6.A.5     | 0        |        |          |
| Fig. 6.A.6     | 0        |        |          |
| 6.B-1          | 0        |        |          |
| 6.B-2          | _        |        |          |
| 6.C-1<br>6.C-2 | 0        |        |          |
|                | 0        |        |          |
| 6.C-3<br>6.C-4 | 0        |        |          |
|                | 0        |        |          |
| 6.C-5          | 0        |        |          |
| 6.C-6          | 0        |        |          |
| 6.C-7          | 0        |        |          |
| 6.C-8          | 0        |        |          |
| 6.C-9          | 0        |        |          |
| 6.D-1          | 0        |        |          |
| 6.D-2          | 0        |        |          |
| 6.D-3          | 0        |        |          |
| 6.D-4          | 0        |        |          |
| 6.D-5          | 0        |        |          |
| 6.D-6          | 0        |        |          |
| 6.D-7          | 0        |        |          |

-----

\_\_\_\_

| Page<br>7.0-1 | Revision | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Revision                              |
|---------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|               |          | 0 7.A-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| 7.1-1         |          | 0 7.A-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| 7.1-2         |          | 0 7.A-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| 7.1-3         |          | 0 7.A-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| 7.1-4         |          | 0 7.A-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| 7.1-5         |          | 0 7.A-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| 7.1-6         |          | 0 7.A-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| 7.1-7         |          | 0 7.A-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| Fig. 7.1.1    |          | 0 7.A-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| 7.2-1         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| 7.2-2         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| 7.2-3         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| 7.2-4         |          | 7.A-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| 7.2-5         | ·····    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| 7.2-6         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| 7.2-7         | (        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| .3-1          | [        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
|               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| 2.3-2         |          | ) 7.A-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| .3-3          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| .3-4          |          | 7.A-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| .3-5          | C        | ) 7.A-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · · |
| .3-6          | C        | 7.A-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · · |
| .3-7          | . 0      | 7 A-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| .3-8          | C        | 7.A-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| .3-9          | •        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| .3-10         | 0        | 7.A-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| .3-11         | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| .3-12         | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| .3-13         |          | The second s                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| .3-14         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| 3-15          |          | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| .3-16         | 0        | the second states and the se |                                       |
| 3-17          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| 4-1           | 0        | • · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
|               | 0        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| 4-2           | . 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · · |
| A-1           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| A-2           | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| A-3           | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| A-4           | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · ···· ···· · · · · · · · · · · · · · |
| A-5           | 0        | · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| A-6           | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| A-7           |          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| A-8           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| A-9           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| A-10          | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| A-11          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| A-12          | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
|               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| A-13          | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| A-14          | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| A-15          | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| A-16          | 0        | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · ·                         |

| Page       | Revision | Page         | Revision |
|------------|----------|--------------|----------|
| 8.0-1      | 0        | Fig. 8.1.2a  | 0        |
| 8.0-2      | 0        | Fig. 8.1.2b  | 0        |
| 8.0-3      | 0        | Fig. 8.1.2c  | 0        |
| 8.0-4      | 0        | Fig. 8.1.2d  | 0        |
| 8.0-5      | 0        | Fig. 8.1.2e  | 0        |
| 8.0-6      | 0        | Fig. 8.1.2f  | 0        |
| 8.1-1      | 0        | Fig. 8.1.3   | 0        |
| 8.1-2      | 0        | Fig. 8.1.4   | 0        |
| 8.1-3      | 0        | Fig. 8.1.5   | 0        |
| 8.1-4      | 0        | Fig. 8.1.6   | 0        |
| 8.1-5      | 0        | Fig. 8.1.7   | 0        |
| 8.1-6      | 0        | Fig. 8.1.8   | 0        |
| 8.1-7      | 0        | Fig. 8.1.9   | 0        |
| 8.1-8      | 0        | Fig. 8.1.10  |          |
| 8.1-9      | 0        | Fig. 8.1.11  | 0        |
| 8.1-10     | 0        | Fig. 8.1.12  | 0        |
| 8.1-11     | 0        |              | 0        |
| 8.1-12     | 0        | Fig. 8.1.13  | 0        |
| 8.1-13     |          | Fig. 8.1.14  | 0        |
| 8.1-14     | 0        | Fig. 8.1.15  | 0        |
| 8.1-15     | 0        | Fig. 8.1.16  | 0        |
| 8.1-16     | 0        | Fig. 8.1.17  | 0        |
|            | 0        | Fig. 8.1.18  | 0        |
| 8.1-17     | 0        | Fig. 8.1.19  | 0        |
| 8.1-18     | 0        | Fig. 8.1.20  | 0        |
| 8.1-19     | 0        | Fig. 8.1.21  | 0        |
| 8.1-20     | 0        | Fig. 8.1.22  | 0        |
| 8.1-21     | 0        | Fig. 8.1.23  | 0        |
| 8.1-22     | 0        | Fig. 8.1.24  | 0        |
| 8.1-23     | 0        | Fig. 8.1.25  | 0        |
| 8.1-24     | Ò        | Fig. 8.1.26  | 0        |
| 8.1-25     | 0        | Fig. 8.1.27  | 0        |
| 8.1-26     | 0        | Fig. 8.1.28  | 0        |
| 8.1-27     | 0        | Fig. 8.1.29a | 0        |
| 8.1-28     | 0        | Fig. 8.1.29b | 0        |
| 8.1-29     | 0        | Fig. 8.1.30  | 0        |
| 8.1-30     | 0        | Fig. 8.1.31  | 0        |
| 8.1-31     | 0        | Fig. 8.1.32  | 0        |
| 8.1-32     | 0        | Fig. 8.1.33  | 0        |
| 8.1-33     | 0        | Fig. 8.1.34a | 0        |
| 8.1-34     | 0        | Fig. 8.1.34b | 0        |
| 8.1-35     | 0        | Fig. 8.1.35  | 0        |
| 8.1-36     | 0        | Fig. 8.1.36  |          |
| 8.1-37     | 0        | Fig. 8.1.37  |          |
| 8.1-38     | 0        | 8.2-1        | 0        |
| 8.1-39     | 0        | 8.3-1        | 0        |
| 8.1-40     | 0        | 8.3-2        | 0        |
| 8.1-41     | 0        | 8.3-3        | 0        |
| 8.1-42     | 0        | 8.3-4        | 0        |
| 8.1-43     |          |              | 0        |
| 8.1-44     | 0        | 8.3-5        | 0        |
| Fig. 8.1.1 | 0        | 8.3-6        | 0        |
| rig. 0.1.1 | 0        | 8.3-7        | 0        |

· · ···

| Page                    | Revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | Page                                   | Bovision                              |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------|
| 8.3-8                   | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | <u>_ayc</u>                            | Revision                              |
| 8.3-9                   | + ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                       |                                        |                                       |
| 8.3-10                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        | +                                     |
| Fig. 8.3.1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        |                                       |
| Fig. 8.3.2a             | ·· • · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )                                       |                                        |                                       |
| Fig. 8.3.2b             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>)</u>                                |                                        | +                                     |
| Fig. 8.3.2c             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        |                                       |
| Fig. 8.3.2d             | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                        |                                       |
| Fig. 8.3.3              | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                        |                                       |
| Fig. 8.3.4              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        |                                       |
| 8.4-1                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                        |                                       |
| 8.4-2                   | the second |                                         |                                        | -                                     |
| 8.4-3                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        |                                       |
| 8.5-1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        |                                       |
| 8.5-2                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · • • · · · · · · · · · · · · · · · · · |                                        |                                       |
| 8.5-2                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | · · · · · · · · · · · · · · · · · · ·  |                                       |
| 8.5-4                   | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                        |                                       |
|                         | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                       | · · · · · · · · · · · · · · · · · · ·  |                                       |
| 8.6-1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        | · · · · · · · · · · · · · · · · · · · |
|                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                       |                                        |                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        |                                       |
|                         | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | ··· ··· ···                            |                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | ······································ |                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | ·····                                  |                                       |
|                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                        | · · · · · · · · · · · · · · · · · · · |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | · · · · · · · · · · · · · · · · · · ·  |                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | · · · · · · · · · · · · · · · · · · ·  | +                                     |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | ····                                   |                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        |                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                       | · · · · · · · · · · · ·                | • •                                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        |                                       |
|                         | • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                       |                                        | +                                     |
|                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · ·               |                                        |                                       |
|                         | Ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | · · · · · · · · · · · · · · · · · · ·  |                                       |
| · · · · · · · · · · · · | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • • • • • •                             | · · · · · · · · · · · · · · · · · · ·  | · · · · · · · · · · · · · · · · · · · |
|                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ··· ·                                   | · · · · · · · · · · · · · · · · · · ·  |                                       |
|                         | • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | ·····                                  |                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        | 1 1                                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | · · · · · · · · · · · · · · · · · · ·  |                                       |
|                         | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | · · · · · · · · · · · · · · · · · · ·  | · · · · · · · · · · · · · · · · · · · |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · ·                   | · · · · · · · · · · · · · · · · · · ·  | ······                                |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·   | · ·                                    |                                       |
| ····                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t                                       | · · · · · · · · · · · · · · · · · · ·  | · · · · · · · · · · · · · · · · · · · |
| · ··· ··                | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +                                       |                                        |                                       |
|                         | •• •• •• •• •• •• ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ++                                      |                                        |                                       |
| - M. M                  | • · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        |                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | · · · · · · · · · · · · · · · · · · ·  |                                       |
| n an an <u>a</u> ur     | - ··· · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ······································  |                                        |                                       |
| •••• • • •              | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                        |                                       |
| · · · ··                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        |                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        |                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        |                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        |                                       |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                        |                                       |

\_\_\_\_

| Page   | Revision |  | Page | Revision |
|--------|----------|--|------|----------|
| 9.0-1  | 0        |  |      |          |
| 9.1-1  | 0        |  |      |          |
| 9.1-2  | 0        |  |      |          |
| 9.1-3  | 0        |  |      |          |
| 9.1-4  | 0        |  |      |          |
| 9.1-5  | 0        |  |      |          |
| 9.1-6  | 0        |  |      |          |
| 9.1-7  | 0        |  |      |          |
| 9.1-8  | 0        |  |      |          |
| 9.1-9  | 0        |  |      |          |
| 9.1-10 | 0        |  |      |          |
| 9.1-11 | 0        |  |      |          |
| 9.1-12 | 0        |  |      |          |
| 9.1-13 | 0        |  |      |          |
| 9.1-14 | 0        |  |      |          |
| 9.1-15 | 0        |  |      |          |
| 9.1-16 | 0        |  |      |          |
| 9.1-17 | 0        |  |      |          |
| 9.1-18 | 0        |  |      |          |
| 9.1-19 | 0        |  |      |          |
| 9.1-20 | 0        |  |      |          |
| 9.1-20 | 0        |  |      |          |
| 9.1-22 | 0        |  |      |          |
| 9.1-23 | 0        |  |      |          |
| 9.1-24 | 0        |  |      |          |
| 9.1-25 | 0        |  |      |          |
| 9.1-26 | 0        |  |      |          |
| 9.1-27 | 0        |  |      |          |
| 9.2-1  | 0        |  |      |          |
| 9.2-2  | 0        |  |      |          |
| 9.2-3  | 0        |  |      |          |
| 9.2-4  | 0        |  |      |          |
| 9.3-1  | 0        |  |      |          |
| 9.4-1  | 0        |  |      |          |
| 0.4 7  | 0        |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |
|        |          |  |      |          |

| Page                                                                                                            | Revision                              | T                                       | Page                                     | Rovicion                              |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------|
| 10.1-1                                                                                                          | 0                                     | , <del> </del>                          | Fig. 10.3.1c                             | Revision                              |
| 10.1-2                                                                                                          | 0                                     |                                         | Fig. 10.3.1d                             | 0                                     |
| 10.1-3                                                                                                          | ····· · · · · · · · · · · · · · · · · | +                                       | Fig. 10.3.1e                             | 0                                     |
| 10.1-4                                                                                                          |                                       | • • • • • • • • • • • • • • • • • • •   |                                          | 0                                     |
| 10.1-5                                                                                                          |                                       |                                         | 10.4-1                                   | 0                                     |
| 10.1-6                                                                                                          | 0                                     | +                                       | 10.4-2                                   | 0                                     |
| 10.1-7                                                                                                          |                                       |                                         | 10.4-3                                   | 0                                     |
| 10.1-8                                                                                                          | 0                                     | +                                       | 10.4-4                                   | 0                                     |
| Fig. 10.1.1                                                                                                     | 0                                     | *                                       | 10.4-5                                   | 0                                     |
|                                                                                                                 | 0                                     |                                         | 10.5-1                                   | 0                                     |
| 10.2-1                                                                                                          | 0                                     |                                         |                                          |                                       |
| 10.3-1                                                                                                          | 0                                     | ļ                                       |                                          |                                       |
| 10.3-2                                                                                                          | 0                                     |                                         |                                          | +                                     |
| 10.3-3                                                                                                          | 0                                     |                                         |                                          |                                       |
| 10.3-4                                                                                                          | 0                                     | ·                                       |                                          |                                       |
| 10.3-5                                                                                                          | 0                                     |                                         |                                          |                                       |
| 10.3-6                                                                                                          | 0                                     |                                         |                                          |                                       |
| 10.3-7                                                                                                          | 0                                     | ·                                       |                                          | +                                     |
| 10.3-8                                                                                                          | 0                                     | · -· +·                                 | en e |                                       |
| 10.3-9                                                                                                          | 0                                     |                                         | en e |                                       |
| 10.3-10                                                                                                         | o                                     |                                         |                                          |                                       |
| 10.3-11                                                                                                         | 0                                     | +.                                      |                                          |                                       |
| 10.3-12                                                                                                         | 0                                     | -                                       |                                          | · · · · · · · · · · · · · · · · · · · |
| 10.3-13                                                                                                         | 0                                     |                                         |                                          |                                       |
| 10.3-14                                                                                                         | 0                                     |                                         |                                          |                                       |
| 10.3-15                                                                                                         | 0                                     | •                                       | · · · · · · · · · · · · · · · · · · ·    | · · · · · · · · · · · · · · · · · · · |
| 10.3-16                                                                                                         | 0                                     |                                         |                                          |                                       |
| 10.3-17                                                                                                         | 0                                     |                                         |                                          |                                       |
| 10.3-18                                                                                                         | 0                                     |                                         | ····                                     |                                       |
| 10.3-19                                                                                                         |                                       |                                         |                                          | · · · · · · · · · · · · · · · · · · · |
| 10.3-20                                                                                                         | 0                                     | · · · ·                                 | · · · · · · · · · · · · · · · · · · ·    |                                       |
| 10.3-21                                                                                                         | 0                                     |                                         | · · · · · · · · · · · · · · · · · · ·    |                                       |
| 10.3-22                                                                                                         | 0                                     | · · · · · · · · · · · · · · · · · · ·   | · · · · · · · · · · · · · · · · · · ·    |                                       |
| 10.3-23                                                                                                         | 0                                     |                                         |                                          |                                       |
| 10.3-24                                                                                                         | 0                                     |                                         |                                          |                                       |
| 10.3-24                                                                                                         | 0                                     |                                         |                                          |                                       |
| the second se | 0                                     |                                         | ·····                                    |                                       |
| 10.3-26<br>10.3-27                                                                                              | . 0                                   |                                         |                                          |                                       |
| 10.3-27                                                                                                         | 0                                     |                                         |                                          | · · · · · · · · · · · · · · · · · · · |
|                                                                                                                 | 0                                     |                                         | · · · · · · · · · · · · · · · · · · ·    |                                       |
| 10.3-29                                                                                                         | 0                                     |                                         |                                          |                                       |
| 10.3-30                                                                                                         | 0                                     |                                         |                                          |                                       |
| 10.3-31                                                                                                         | 0                                     |                                         | · · · · · · · · · · · · · · · · · · ·    |                                       |
| 10.3-32                                                                                                         | 0                                     |                                         | · · · · · · · · · · · · · · · · · · ·    | ·                                     |
| 10.3-33                                                                                                         | 0                                     |                                         |                                          |                                       |
| 10.3-34                                                                                                         | Ō                                     |                                         |                                          |                                       |
| 10.3-35                                                                                                         | 0                                     | · · · · · · · · · · · · · · · · · · ·   |                                          |                                       |
| 10.3-36                                                                                                         | 0                                     | ·····                                   |                                          |                                       |
| 10.3-37                                                                                                         | 0                                     |                                         |                                          |                                       |
| 10.3-38                                                                                                         |                                       | • = • • • • • • • • • • • • • • • • • • | · · · · · · · · · · · · · · · · · · ·    |                                       |
| 10.3-39                                                                                                         | 0                                     |                                         |                                          |                                       |
| Fig. 10.3.1a                                                                                                    | · · · · · · · · · · · · · · · · · · · |                                         |                                          |                                       |
|                                                                                                                 | U                                     |                                         |                                          |                                       |
| Fig. 10.3.1b                                                                                                    | 0:                                    | 1                                       |                                          |                                       |

| Page    | Revision | Page        | Revision |
|---------|----------|-------------|----------|
| 11.1-1  | 0        | 11.2-36     | 0        |
| 11.1-2  | 0        | 11.2-37     | 0        |
| 11.1-3  | 0        | 11.2-38     | 0        |
| 11.1-4  | 0        | 11.2-39     | 0        |
| 11.1-5  | 0        | 11.2-40     | 0        |
| 11.1-6  | 0        | 11.2-41     | 0        |
| 11.1-7  | 0        | 11.2-42     | 0        |
| 11.1-8  | 0        | 11.2-43     | 0        |
| 11.1-9  | 0        | 11.2-44     | 0        |
| 11.1-10 | 0        | 11.2-45     | 0        |
| 11.1-11 | 0        | 11.2-46     | 0        |
| 11.1-12 | 0        | 11.2-47     | 0        |
| 11.1-13 | 0        | 11.2-48     | 0        |
| 11.1-14 | 0        | 11.2-49     | 0        |
| 11.1-15 | 0        | Fig. 11.2.1 | 0        |
| 11.1-16 | 0        |             |          |
| 11.2-1  | 0        | Fig. 11.2.2 | 0        |
| 11.2-2  | 0        | Fig. 11.2.3 | 0        |
| 11.2-2  | 0        | Fig. 11.2.4 | 0        |
| 11.2-4  |          | Fig. 11.2.5 | 0        |
| 11.2-5  | 0        | Fig. 11.2.6 | 0        |
| 11.2-6  | 0        | Fig. 11.2.7 | 0        |
| 11.2-7  | 0        | Fig. 11.2.8 | 0        |
| 11.2-8  | 0        | 11.3-1      | 0        |
| 11.2-9  | 0        |             |          |
|         | 0        |             |          |
| 11.2-10 | 0        |             |          |
| 11.2-11 | 0        |             |          |
| 11.2-12 | 0        |             |          |
| 11.2-13 | 0        |             |          |
| 11.2-14 | 0        |             |          |
| 11.2-15 | 0        |             |          |
| 11.2-16 | 0        |             |          |
| 11.2-17 | 0        |             |          |
| 11.2-18 | 0        |             |          |
| 11.2-19 | 0        |             |          |
| 11.2-20 | 0        |             |          |
| 11.2-21 | 0        |             |          |
| 11.2-22 | 0        |             |          |
| 11.2-23 | 0        |             |          |
| 11.2-24 | 0        |             |          |
| 11.2-25 | 0        |             |          |
| 11.2-26 | 0        |             |          |
| 11.2-27 | 0        |             |          |
| 11.2-28 | 0        |             |          |
| 11.2-29 | 0        |             |          |
| 11.2-30 | 0        |             |          |
| 11.2-31 | 0        |             |          |
| 11.2-32 | 0        |             |          |
| 11.2-33 | 0        |             |          |
| 11.2-34 | 0        |             |          |
| 11.2-35 | 0        |             |          |

1

| Page                       | Revision                               | Page                                  | <u> </u> |
|----------------------------|----------------------------------------|---------------------------------------|----------|
| 12.0-1                     |                                        | Page                                  | Revision |
| 12.1-1                     |                                        |                                       |          |
| 12.1-2                     | <u> </u>                               | · · · · · · · · · · · · · · · · · · · |          |
| 12.1-3                     |                                        |                                       |          |
| 12.2-1                     | 0                                      |                                       |          |
| 12.2-2                     | 0                                      |                                       |          |
| 12.2-3                     | 0                                      |                                       |          |
| 12.2-4                     | 0                                      |                                       |          |
| 12.2-5                     | 0                                      |                                       |          |
| 12.3-1                     | 0                                      |                                       |          |
| 12.4-1                     | 0                                      |                                       |          |
| 12.5-1                     | 0                                      |                                       |          |
| 12.A                       | NA                                     |                                       |          |
| TS Bases TOC               |                                        |                                       |          |
| B 3.0-1                    | 0                                      |                                       |          |
| B 3.0-2                    | 0                                      |                                       |          |
| B 3.0-3                    | 0                                      |                                       |          |
| B 3.0-4                    | 0                                      | <br>                                  | ······   |
| B 3.0-5                    | 0                                      |                                       |          |
| B 3.0-6                    | 0                                      |                                       |          |
| B 3.0-7                    | 0                                      |                                       |          |
| B 3.0-8                    | 0                                      |                                       |          |
| B 3.0-9                    |                                        |                                       |          |
| B 3.1.1-1                  | 0                                      |                                       |          |
| B 3.1.1-2                  | 0                                      |                                       |          |
| B 3.1.1-3                  | 0                                      | · · · · · · · · · · · · · · · · · · · |          |
| B 3.1.1-4                  |                                        | · · · · · · · · · · · · · · · · · · · |          |
| B 3.1.1-5                  | 0                                      | -                                     | ]        |
| B 3.1.1-6                  | 0                                      |                                       |          |
| B 3.1.2-1                  | 0                                      | · · · · · · · · · · · · · · · · · · · |          |
| B 3.1.2-2                  | 0                                      | ····                                  |          |
| B 3.1.2-3                  | 0                                      |                                       |          |
| B 3.1.2-4                  | 0                                      |                                       |          |
| B 3.1.2-5                  | 0                                      |                                       |          |
| B 3.1.2-6                  | 0                                      | ······                                |          |
| B 3.1.3-1                  | _ + · · · - + ·                        |                                       |          |
| B 3.1.3-2                  |                                        |                                       |          |
| B 3.1.3-3                  | ·····                                  |                                       |          |
| B 3.1.3-4                  | <u> </u>                               |                                       |          |
| B 3.1.3-5                  | 0                                      |                                       |          |
| B 3.2.1-1                  |                                        |                                       |          |
| B 3.2.1-2                  | 0                                      |                                       |          |
| B 3.2.1-3                  | 0                                      | ·····                                 |          |
| B 3.2.2-1                  |                                        |                                       |          |
| B 3.2.2-2                  | <b>U</b>                               |                                       |          |
| B 3.2.2-3                  | U                                      |                                       |          |
| B 3.2.3-1                  | 0                                      |                                       |          |
| B 3.2.3-2                  | 0                                      |                                       |          |
| B 3.2.3-2                  | 0                                      |                                       |          |
| Appendix 12.B Cover        | ···· · · · · · · · · · · · · · · · · · | Ţ.                                    |          |
|                            | 0                                      |                                       |          |
| Comment Resolution Letters | 21 Pages                               |                                       |          |

-----

\_\_\_\_\_

| Page    | Revision | Page | Revision                              |
|---------|----------|------|---------------------------------------|
| 13.0-1  | 0        |      |                                       |
| 13.1-1  | 0        |      |                                       |
| 13.1-2  | 0        |      |                                       |
| 13.2-1  | 0        |      |                                       |
| 13.3-1  | 0        | -    |                                       |
| 13.3-2  | 0        |      |                                       |
| 13.3-3  | 0        |      |                                       |
| 13.3-4  | 0        |      |                                       |
| 13.3-5  | 0        |      |                                       |
| 13.3-6  | 0        |      |                                       |
| 13.3-7  | 0        |      |                                       |
| 13.3-8  | 0        |      |                                       |
| 13.3-9  | 0        |      | · · · · · · · · · · · · · · · · · · · |
| 13.3-10 | 0        |      |                                       |
| 13.3-11 | 0        |      |                                       |
| 13.3-12 | 0        |      |                                       |
| 13.3-13 | 0        |      |                                       |
| 13.3-14 | 0        |      |                                       |
| 13.3-15 | 0        |      |                                       |
| 13.3-16 | 0        |      |                                       |
| 13.3-17 | 0        |      |                                       |
| 13.3-18 | 0        |      |                                       |
| 13.4-1  | 0        |      |                                       |
| 13.5-1  | 0        |      |                                       |
| 13.5-2  | 0        |      |                                       |
| 13.6-1  | 0        |      |                                       |
| 13.A    | 10 pages |      |                                       |
| 13.B-1  | 0        |      |                                       |
| 13.B-2  | 0        |      |                                       |
| 13.B-3  | 0        |      |                                       |

S.,...

\_\_\_\_\_

....

#### CHAPTER 1<sup>†</sup>: GENERAL DESCRIPTION

#### 1.0 GENERAL INFORMATION

This Final Safety Analysis Report (FSAR) for Holtec International's HI-STORM 100 System is a compilation of information and analyses to support a United States Nuclear Regulatory Commission (NRC) licensing review as a spent nuclear fuel (SNF) dry storage cask under requirements specified in 10CFR72 [1.0.1]. This application seeks NRC approval and issuance of a Certificate of Compliance (C of C) for storage under provisions of 10CFR72, Subpart L, for the HI-STORM 100 System to safely store spent nuclear fuel (SNF) at an Independent Spent Fuel Storage Installation (ISFSI). This report has been prepared in the format and content suggested in NRC Regulatory Guide 3.61 [1.0.2] and NUREG-1536 Standard Review Plan for Dry Cask Storage Systems [1.0.3] to facilitate the NRC review process.

The purpose of this chapter is to provide a general description of the design features and storage capabilities of the HI-STORM 100 System, drawings of the structures, systems, and components important to safety, and the qualifications of the applicant. This report is also suitable for incorporation into a site-specific Safety Analysis Report which may be submitted by an applicant for the license to store SNF at an ISFSI or a facility similar in objective and scope. Table 1.0.1 contains a listing of the terminology and notation used in this FSAR.

To aid NRC review, additional tables and references have been added to facilitate the location of information requested by NUREG-1536. Table 1.0.2 provides a matrix of the topics in NUREG-1536 and Regulatory Guide 3.61, the corresponding 10CFR72 requirements, and a reference to the applicable FSAR section that addresses each topic.

The HI-STORM 100 FSAR is in full compliance with the intent of all Regulatory Requirements listed in Section III of each chapter of NUREG-1536. However, an exhaustive review of the provisions in NUREG-1536, particularly Section IV (Acceptance Criteria) and Section V (Review Procedures) has identified certain deviations from a verbatim compliance to all requirements. A list of all such items, along with a discussion of their intent and Holtec International's approach for compliance with the underlying intent is presented in Table 1.0.3 herein. Table 1.0.3 also contains the justification for the alternative method for compliance adopted in this FSAR. The justification may be in the form of a supporting analysis, established industry practice, or other NRC guidance

<sup>&</sup>lt;sup>†</sup> This chapter has been prepared in the format and section organization set forth in Regulatory Guide 3.61. However, the material content of this chapter also fulfills the requirements of NUREG-1536. Pagination and numbering of sections, figures, and tables are consistent with the convention set down in Chapter 1, Section 1.0, herein. Finally, all terms-of-art used in this chapter are consistent with the terminology of the glossary (Table 1.0.1) and component nomenclature of the Bill-of-Materials (Section 1.5).

documents. Each chapter in this FSAR provides a clear statement with respect to the extent of compliance to the NUREG-1536 provisions.

Chapter 1 is in full compliance with NUREG-1536; no exceptions are taken.

The generic design basis and the corresponding safety analysis of the HI-STORM 100 System contained in this FSAR are intended to bound the SNF characteristics, design, conditions, and interfaces that exist in the vast majority of domestic power reactor sites and potential away-from-reactor storage sites in the contiguous United States. This FSAR also provides the basis for component fabrication and acceptance, and the requirements for safe operation and maintenance of the components, consistent with the design basis and safety analysis documented herein. In accordance with 10CFR72, Subpart K, site-specific implementation of the generically certified HI-STORM 100 System requires that the licensee perform a site-specific safety evaluation, as defined in 10CFR72.212. The HI-STORM 100 System FSAR identifies a limited number of conditions that are necessarily site-specific and are to be addressed in the licensee's 10CFR72.212 evaluation. These include:

- Siting of the ISFSI and design of the storage pad and security system. Site-specific demonstration of compliance with regulatory dose limits. Implementation of a site-specific ALARA program.
- An evaluation of site-specific hazards and design conditions that may exist at the ISFSI site or the transfer route between the plant's cask receiving bay and the ISFSI. These include, but are not limited to, explosion and fire hazards, flooding conditions, land slides, and lightning protection.
- Determination that the physical and nucleonic characteristics and the condition of the SNF assemblies to be dry stored meet the fuel acceptance requirements of the Certificate of Compliance.
- An evaluation of interface and design conditions that exist within the plant's fuel building in which canister fuel loading, canister closure, and canister transfer operations are to be conducted in accordance with the applicable 10CFR50 requirements and *technical specifications* for the plant.
- Detailed site-specific operating, maintenance, and inspection procedures prepared in accordance with the generic procedures and requirements provided in Chapters 8 and 9, and the *technical specifications* provided in the Certificate of Compliance.
- Performance of pre-operational testing.

- Implementation of a safeguards and accountability program in accordance with 10CFR73. Preparation of a physical security plan in accordance with 10CFR73.55.
- Review of the reactor emergency plan, quality assurance (QA) program, training program, and radiation protection program.

The generic safety analyses contained in the HI-STORM 100 FSAR may be used as input and for guidance by the licensee in performing a 10CFR72.212 evaluation.

Within this report, all figures, tables and references cited are identified by the double decimal system m.n.i, where m is the chapter number, n is the section number, and i is the sequential number. Thus, for example, Figure 1.2.3 is the third figure in Section 1.2 of Chapter 1.

This document is exactly the same as Revision 10 of the HI-STORM Topical Safety Analysis Report (TSAR) with the following clarifications:

- typographical errors have been corrected,
- pagination may be slightly different, and
- the term "TSAR" has been replaced with the term "FSAR" or "SAR" when referring to the HI-STORM document (references to the HI-STAR TSAR remain).

#### Table 1.0.1

#### TERMINOLOGY AND NOTATION

# ALARA is an acronym for As Low As Reasonably Achievable.

**Boral** is a generic term to denote an aluminum-boron carbide cermet manufactured in accordance with U.S. Patent No. 4027377. The individual material supplier may use another trade name to refer to the same product.

**Boral<sup>™</sup>** means Boral manufactured by AAR Advanced Structures.

**BWR** is an acronym for boiling water reactor.

C.G. is an acronym for center of gravity.

**Confinement Boundary** means the outline formed by the sealed, cylindrical enclosure of the Multi-Purpose Canister (MPC) shell welded to a solid baseplate, a lid welded around the top circumference of the shell wall, the port cover plates welded to the lid, and the closure ring welded to the lid and MPC shell providing the redundant sealing.

**Confinement System** means the Multi-Purpose Canister (MPC) which encloses and confines the spent nuclear fuel during storage.

**Controlled Area** means that area immediately surrounding an ISFSI for which the owner/user exercises authority over its use and within which operations are performed.

DBE means Design Basis Earthquake.

DCSS is an acronym for Dry Cask Storage System.

**Damaged Fuel Assembly** is a fuel assembly with known or suspected cladding defects, as determined by review of records, greater than pinhole leaks or hairline cracks, missing fuel rods that are not replaced with dummy fuel rods, or those that cannot be handled by normal means. A damaged fuel assembly's inability to be handled by normal means may be due to mechanical damage and must not be due to fuel cladding damage.

~

#### TERMINOLOGY AND NOTATION

**Damaged Fuel Container** means a specially designed enclosure for damaged fuel or fuel debris which permits gaseous and liquid media to escape while minimizing dispersal of gross particulates. The Damaged Fuel Container (DFC) features a lifting location which is suitable for remote handling of a loaded or unloaded DFC.

**Design Life** is the minimum duration for which the component is engineered to perform its intended function set forth in this FSAR, if operated and maintained in accordance with this FSAR.

**Design Report** is a document prepared, reviewed and QA validated in accordance with the provisions of 10CFR72 Subpart G. The Design Report shall demonstrate compliance with the requirements set forth in the Design Specification. A Design Report is mandatory for systems, structures, and components designated as Important to Safety.

**Design Specification** is a document prepared in accordance with the quality assurance requirements of 10CFR72 Subpart G to provide a complete set of design criteria and functional requirements for a system, structure, or component, designated as Important to Safety, intended to be used in the operation, implementation, or decommissioning of the HI-STORM 100 System.

**Enclosure Vessel** means the pressure vessel defined by the cylindrical shell, baseplate, port cover plates, lid, and closure ring which provides confinement for the helium gas contained within the MPC. The Enclosure Vessel (EV) and the fuel basket together constitute the multipurpose canister.

**Fracture Toughness** is a property which is a measure of the ability of a material to limit crack propagation under a suddenly applied load.

**Fuel Basket** means a honeycombed structural weldment with square openings which can accept a fuel assembly of the type for which it is designed.

**Fuel Debris** refers to ruptured fuel rods, severed rods, and loose fuel pellets with known or suspected defects which cannot be handled by normal means due to fuel cladding damage.

#### TERMINOLOGY AND NOTATION

HI-TRAC transfer cask or HI-TRAC means the transfer cask used to house the MPC during MPC fuel loading, unloading, drying, sealing, and on-site transfer operations to a HI-STORM storage overpack or HI-STAR storage/transportation overpack. The HI-TRAC shields the loaded MPC allowing loading operations to be performed while limiting radiation exposure to personnel. The HI-TRAC is equipped with a pair of lifting trunnions and pocket trunnions to lift and downend/upend the HI-TRAC with a loaded MPC. HI-TRAC is an acronym for Holtec International Transfer Cask. In this submittal there are two HI-TRAC transfer casks, the 125 ton HI-TRAC (HI-TRAC-125) and the 100 ton HI-TRAC (HI-TRAC-100). The 100 ton HI-TRAC is provided for use at sites with a maximum crane capacity of 100 tons. The term HI-TRAC is used as a generic term to refer to both the 125 ton and 100 ton HI-TRAC.

**HI-STORM 100 overpack** or storage overpack means the cask which receives and contains the sealed multi-purpose canisters containing spent nuclear fuel. It provides the gamma and neutron shielding, ventilation passages, missile protection, and protection against natural phenomena and accidents for the MPC.

HI-STORM 100 System consists of a loaded MPC placed within the HI-STORM 100 overpack.

Holtite<sup>™</sup> is a trade name denoting an approved neutron shield material for use in the HI-STORM 100 System. In this application, Holtite-A is the only approved neutron shield material.

**Holtite<sup>TM</sup>-A** is a commercially available neutron shield material developed by Bisco, Inc., and currently sold under the trade name NS-4-FR. The neutron shield material is specified with a minimum  $B_4C$  loading of 1 weight percent. An equivalent neutron shield material with equivalent neutron shielding properties and composition, but not sold under the trade name NS-4-FR, may be used.

**Important to Safety** (ITS) means a function or condition required to store spent nuclear fuel safely; to prevent damage to spent nuclear fuel during handling and storage, and to provide reasonable assurance that spent nuclear fuel can be received, handled, packaged, stored, and retrieved without undue risk to the health and safety of the public.

**Independent Spent Fuel Storage Installation (ISFSI)** means a facility designed, constructed, and licensed for the interim storage of spent nuclear fuel and other radioactive materials associated with spent fuel storage in accordance with 10CFR72.

#### TERMINOLOGY AND NOTATION

**Intact Fuel Assembly** is defined as a fuel assembly without known or suspected cladding defects greater than pinhole leaks and hairline cracks, and which can be handled by normal means. Partial fuel assemblies, that is fuel assemblies from which fuel rods are missing, shall not be classified as Intact Fuel Assemblies unless dummy fuel rods are used to displace an amount of water greater than or equal to that displaced by the original fuel rod(s).

**License Life** means the duration for which the system is authorized by virtue of its certification by the U.S. NRC.

Lowest Service Temperature (LST) is the minimum metal temperature of a part for the specified service condition.

**Maximum Reactivity** means the highest possible k-effective including bias, uncertainties, and calculational statistics evaluated for the worst-case combination of fuel basket manufacturing tolerances.

**METCON™** is a trade name for the HI-STORM 100 overpack. The trademark is derived from the **metal-con**crete composition of the HI-STORM 100 overpack.

MGDS is an acronym for Mined Geological Disposal System.

**Multi-Purpose Canister (MPC)** means the sealed canister which consists of a honeycombed fuel basket for spent nuclear fuel storage, contained in a cylindrical canister shell which is welded to a baseplate, lid with welded port cover plates, and closure ring. MPC is an acronym for multi-purpose canister. There are different MPCs with different fuel basket geometries for storing PWR or BWR fuel, but all MPCs have identical exterior dimensions. The MPC is the confinement boundary for storage conditions. The MPCs used as part of the HI-STORM 100 System are identical to the HI-STAR 100 MPCs evaluated in the HI-STAR 100 storage (Docket No. 72-1008) and transport (Docket No. 71-9261) applications.

**NDT** is an acronym for Nil Ductility Transition Temperature, which is defined as the temperature at which the fracture stress in a material with a small flaw is equal to the yield stress in the same material if it had no flaws.

**Neutron Shielding** means a material used to thermalize and capture neutrons emanating from the radioactive spent nuclear fuel.

# TERMINOLOGY AND NOTATION

**Planar-Average Initial Enrichment** is the average of the distributed fuel rod initial enrichments within a given axial plane of the assembly lattice.

PWR is an acronym for pressurized water reactor.

**Reactivity** is used synonymously with effective neutron multiplication factor or k-effective.

SAR is an acronym for Safety Analysis Report (10CFR71).

Service Life means the duration for which the component is reasonably expected to perform its intended function, if operated and maintained in accordance with the provisions of this FSAR. Service Life may be much longer than the Design Life because of the conservatism inherent in the codes, standards, and procedures used to design, fabricate, operate, and maintain the component.

**Single Failure Proof** means that the handling system is designed so that all directly loaded tension and compression members are engineered to satisfy the enhanced safety criteria of Paragraphs 5.1.6(1)(a) and (b) of NUREG-0612.

SNF is an acronym for spent nuclear fuel.

SSC is an acronym for Structures, Systems and Components.

STP is Standard Temperature and Pressure conditions.

TSAR is an acronym for Topical Safety Analysis Report (10CFR72).

**ZPA** is an acronym for zero period acceleration.

|     | gulatory Guide 3.61<br>ection and Content | Associated NUREG-<br>1536 Review Criteria                | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement | HI-STORM<br>FSAR |
|-----|-------------------------------------------|----------------------------------------------------------|----------------------------------------------------|------------------|
|     |                                           |                                                          |                                                    |                  |
| 1.1 | Introduction                              | 1.III.1 General Description<br>& Operational<br>Features | 10CFR72.24(b)                                      | 1.1              |
| 1.2 | General Description                       | 1.III.1 General Description<br>& Operational<br>Features | 10CFR72.24(b)                                      | 1.2              |
|     | 1.2.1 Cask<br>Characteristics             | 1.III.1 General Description<br>& Operational<br>Features | 10CFR72.24(b)                                      | 1.2.1            |
|     | 1.2.2 Operational<br>Features             | 1.III.1 General Description<br>& Operational<br>Features | 10CFR72.24(b)                                      | 1.2.2            |
|     | 1.2.3 Cask Contents                       | 1.III.3 DCSS Contents                                    | 10CFR72.2(a)(1)<br>10CFR72.236(a)                  | 1.2.3            |
| 1.3 | Identification of<br>Agents & Contractors | 1.III.4 Qualification of the Applicant                   | 10CFR72.24(j)<br>10CFR72.28(a)                     | 1.3              |
| 1.4 | Generic Cask Arrays                       | 1.III.1 General Description<br>& Operational<br>Features | 10CFR72.24(c)(3)                                   | 1.4              |
| 1.5 | Supplemental Data                         | 1.III.2 Drawings                                         | 10CFR72.24(c)(3)                                   | 1.5              |
|     | NA                                        | 1.III.6 Consideration of<br>Transport<br>Requirements    | 10CFR72.230(b)<br>10CFR72.236(m)                   | 1.1              |
|     | NA                                        | 1.III.5 Quality Assurance                                | 10CFR72.24(n)                                      | 1.3              |

#### HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS-REFERENCE MATRIX

|     | Regulatory Guide 3.61<br>Section and Content |                             | Associated NUREG-<br>1536 Review Criteria |                                                               | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement                                                             | HI-STORM<br>FSAR  |
|-----|----------------------------------------------|-----------------------------|-------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------|
|     |                                              | teria                       |                                           |                                                               |                                                                                                                |                   |
| 2.1 | Spent F<br>Stored                            | Fuel To Be                  | 2.III.2.a                                 | Spent Fuel<br>Specifications                                  | 10CFR72.2(a)(1)<br>10CFR72.236(a)                                                                              | 2.1               |
| 2.2 |                                              | Criteria for                | 2.III.2.b                                 | External                                                      | 10CFR72.122(b)                                                                                                 | 2.2               |
|     |                                              | nmental<br>ions and Natural | 2.III.3.b                                 | Conditions,<br>Structural,                                    | 10CFR72.122(c)                                                                                                 | 2.2.3.3, 2.2.3.10 |
|     | Phenon                                       | nena                        | 2.III.3.c                                 | Thermal                                                       | 10CFR72.122(b)(1)                                                                                              | 2.2               |
|     |                                              |                             |                                           |                                                               | 10CFR72.122(b)(2)                                                                                              | 2.2.3.11          |
|     |                                              |                             |                                           |                                                               | 10CFR72.122(h)(1)                                                                                              | 2.0               |
|     | 2.2.1                                        | Tornado and<br>Wind Loading | 2.Ш.2.Ь                                   | External Conditions                                           | 10CFR72.122(b)(2)                                                                                              | 2.2.3.5           |
|     | 2.2.2                                        | Water Level<br>(Flood)      |                                           | External Conditions<br>Structural                             | 10CFR72.122(b)(2)                                                                                              | 2.2.3.6           |
|     | 2.2.3                                        | Seismic                     | 2.III.3.b                                 | Structural                                                    | 10CFR72.102(f)<br>10CFR72.122(b)(2)                                                                            | 2.2.3.7           |
|     | 2.2.4                                        | Snow and Ice                |                                           | External Conditions<br>Structural                             | 10CFR72.122(b)                                                                                                 | 2.2.1.6           |
|     | 2.2.5                                        | Combined<br>Load            | 2.III.3.b                                 | Structural                                                    | 10CFR72.24(d)<br>10CFR72.122(b)(2)(ii)                                                                         | 2.2.7             |
|     | NA                                           |                             | 2.III.1                                   | Structures, Systems,<br>and Components<br>Important to Safety | 10CFR72.122(a)<br>10CFR72.24(c)(3)                                                                             | 2.2.4             |
|     | NA                                           |                             | 2.111.2                                   | Design Criteria for<br>Safety Protection<br>Systems           | 10CFR72.236(g)<br>10CFR72.24(c)(1)<br>10CFR72.24(c)(2)<br>10CFR72.24(c)(4)<br>10CFR72.120(a)<br>10CFR72.236(b) | 2.0, 2.2          |

\_۱\_

.

| Regulatory Guide 3.61<br>Section and Content |                  |                                                                       | Associated NUREG-<br>1536 Review Criteria                       | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement                          | HI-STORM<br>FSAR |
|----------------------------------------------|------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|------------------|
|                                              | NA               |                                                                       | 2.III.3.c Thermal                                               | 10CFR72.128(a)(4)                                                           | 2.3.2.2, 4.0     |
|                                              | N                | A                                                                     | 2.III.3.f Operating<br>Procedures                               | 10CFR72.24(f)<br>10CFR72.128(a)(5)                                          | 10.0, 8.0        |
|                                              |                  |                                                                       |                                                                 | 10CFR72.236(h)                                                              | 8.0              |
|                                              |                  |                                                                       |                                                                 | 10CFR72.24 (l)(2)                                                           | 1.2.1, 1.2.2     |
|                                              |                  |                                                                       |                                                                 | 10CFR72.236(l)                                                              | 2.3.2.1          |
|                                              |                  |                                                                       |                                                                 | 10CFR72.24(e)<br>10CFR72.104(b)                                             | 10.0, 8.0        |
|                                              |                  |                                                                       | 2.III.3.g Acceptance Tests &<br>Maintenance                     | 10CFR72.122 (l)<br>10CFR72.236 (g)<br>10CFR72.122 (f)<br>10CFR72.128 (a)(1) | 9.0              |
| 2.3                                          | Safety<br>System | Protection<br>s                                                       |                                                                 | -                                                                           | 2.3              |
|                                              | 2.3.1            | General                                                               |                                                                 |                                                                             | 2.3              |
|                                              | 2.3.2            | 2 Protection by<br>Multiple<br>Confinement<br>Barriers and<br>Systems | 2.III.3.b Structural                                            | 10CFR72.236(1)                                                              | 2.3.2.1          |
|                                              |                  |                                                                       | 2.III.3.c Thermal                                               | 10CFR72.236(f)                                                              | 2.3.2.2          |
|                                              |                  |                                                                       | 2.III.3.d Shielding/<br>Confinement/                            | 10CFR72.126(a)<br>10CFR72.128(a)(2)                                         | 2.3.5.2          |
|                                              |                  |                                                                       | Radiation<br>Protection                                         | 10CFR72.128(a)(3)                                                           | 2.3.2.1          |
|                                              |                  |                                                                       |                                                                 | 10CFR72.236(d)                                                              | 2.3.2.1, 2.3.5.2 |
|                                              |                  |                                                                       |                                                                 | 10CFR72.236(e)                                                              | 2.3.2.1          |
|                                              | 2.3.3            | Protection by<br>Equipment &<br>Instrument<br>Selection               | 2.III.3.d Shielding/<br>Confinement/<br>Radiation<br>Protection | 10CFR72.122(h)(4)<br>10CFR72.122(i)<br>10CFR72.128(a)(1)                    | 2.3.5            |

| Regulatory Guide 3.61<br>Section and Content |                                        |                                     | Associated NUREG-<br>1536 Review Criteria           | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement | HI-STORM<br>FSAR |
|----------------------------------------------|----------------------------------------|-------------------------------------|-----------------------------------------------------|----------------------------------------------------|------------------|
|                                              | 2.3.4 Nuclear<br>Criticality<br>Safety |                                     | 2.III.3.e Criticality                               | 10CFR72.124(a)<br>10CFR72.236(c)<br>10CFR72.124(b) | 2.3.4, 6.0       |
|                                              | 2.3.5 Radiological<br>Protection       |                                     | 2.III.3.d Shielding/<br>Confinement/<br>Radiation   | 10CFR72.24(d)<br>10CFR72.104(a)<br>10CFR72.236(d)  | 10.4.1           |
|                                              |                                        |                                     | Protection                                          | 10CFR72.24(d)<br>10CFR72.106(b)<br>10CFR72.236(d)  | 10.4.2           |
|                                              |                                        |                                     |                                                     | 10CFR72.24(m)                                      | 2.3.2.1          |
|                                              | 2.3.6                                  | Fire and<br>Explosion<br>Protection | 2.III.3.b Structural                                | 10CFR72.122(c)                                     | 2.3.6, 2.2.3.10  |
| 2.4                                          | 2.4 Decommissioning<br>Considerations  |                                     | 2.III.3.h Decommissioning                           | 10CFR72.24(f)<br>10CFR72.130<br>10CFR72.236 (h)    | 2.4              |
|                                              |                                        |                                     | 14.III.1 Design                                     | 10CFR72.130                                        | 2.4              |
|                                              |                                        |                                     | 14.III.2 Cask<br>Decontamination                    | 10CFR72.236(i)                                     | 2.4              |
|                                              |                                        |                                     | 14.III.3 Financial<br>Assurance &<br>Record Keeping | 10CFR72.30                                         | (1)              |
|                                              |                                        |                                     | 14.III.4 License<br>Termination                     | 10CFR72.54                                         | (1)              |
|                                              |                                        |                                     | 3. Structural Evalu                                 | ation                                              |                  |
| 3.1                                          | Structu                                | ıral Design                         | 3.III.1 SSC Important to<br>Safety                  | 10CFR72.24(c)(3)<br>10CFR72.24(c)(4)               | 3.1              |
|                                              |                                        |                                     | 3.111.6 Concrete Structures                         | 10CFR72.24(c)                                      | 3.1              |

#### HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS-REFERENCE MATRIX

----

| Re<br>Se | gulatory Guide 3.61<br>ection and Content   | Associated NUREG-<br>1536 Review Criteria                             | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement                                    | HI-STORM<br>FSAR                            |
|----------|---------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------|
| 3.2      | Weights and Centers of Gravity              | 3.V.1.b.2 Structural<br>Design Features                               |                                                                                       | 3.2                                         |
| 3.3      | Mechanical Properties<br>of Materials       | 3.V.1.c Structural Materials<br>3.V.2.c Structural Materials          | 10CFR72.24(c)(3)                                                                      | 3.3                                         |
|          | NA                                          | 3.III.2 Radiation<br>Shielding,<br>Confinement, and<br>Subcriticality | 10CFR72.24(d)<br>10CFR72.124(a)<br>10CFR72.236(c)<br>10CFR72.236(d)<br>10CFR72.236(l) | 3.4.4.3<br>3.4.7.3<br>3.4.10                |
|          | NA                                          | 3.III.3 Ready Retrieval                                               | 10CFR72.122(f)<br>10CFR72.122(h)<br>10CFR72.122(l)                                    | 3.4.4.3                                     |
|          | NA                                          | 3.111.4 Design-Basis<br>Earthquake                                    | 10CFR72.24(c)<br>10CFR72.102(f)                                                       | 3.4.7                                       |
|          | NA                                          | 3.III.5 20 Year Minimum<br>Design Length                              | 10CFR72.24(c)<br>10CFR72.236(g)                                                       | 3.4.11<br>3.4.12                            |
| 3.4      | General Standards for<br>Casks              |                                                                       |                                                                                       | 3.4                                         |
|          | 3.4.1 Chemical and<br>Galvanic<br>Reactions | 3.V.1.b.2 Structural<br>Design Features                               |                                                                                       | 3.4.1                                       |
|          | 3.4.2 Positive<br>Closure                   |                                                                       |                                                                                       | 3.4.2                                       |
|          | 3.4.3 Lifting<br>Devices                    | 3.V.1.ii(4)(a) Trunnions                                              |                                                                                       | 3.4.3,<br>Appendices 3.E,<br>3.AE, 3AC, 3.D |
|          | 3.4.4 Heat                                  | 3.V.1.d Structural Analysis                                           | 10CFR72.24(d)<br>10CFR72.122(b)                                                       | 3.4.4,<br>Appendices 3.I,<br>3.U, 3.V, 3.W  |

# HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS-REFERENCE MATRIX

| Regulatory Guide 3.61<br>Section and Content |                                                           | ulatory Guide 3.61 Associated NUREG-<br>tion and Content 1536 Review Criteria |                                                         | HI-STORM<br>FSAR |
|----------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------|------------------|
|                                              | 3.4.5 Cold                                                | 3.V.1.d Structural Analysis                                                   | 10CFR72.24(d)<br>10CFR72.122(b)                         | 3.4.5            |
| 3.5                                          | Fuel Rods                                                 |                                                                               | 10CFR72.122(h)(1)                                       | 3.5              |
|                                              | ·····                                                     | 4. Thermal Evaluat                                                            | tio <b>n</b>                                            |                  |
| 4.1                                          | Discussion                                                | 4.III Regulatory<br>Requirements                                              | 10CFR72.24(c)(3)<br>10CFR72.128(a)(4)<br>10CFR72.236(f) | 4.1              |
|                                              |                                                           |                                                                               | 10CFR72.236(h)                                          |                  |
| 4.2                                          | Summary of Thermal<br>Properties of Materials             | 4.V.4.b Material Properties                                                   |                                                         | 4.2              |
| 4.3                                          | Specifications for<br>Components                          | 4.IV Acceptance Criteria                                                      | 10CFR72.122(h)(1)                                       | 4.3              |
| 4.4                                          | Thermal Evaluation for<br>Normal Conditions of<br>Storage | 4.IV Acceptance Criteria                                                      | 10CFR72.24(d)<br>10CFR72.236(g)                         | 4.4, 4.5         |
| N/A                                          |                                                           | 4.IV Acceptance Criteria                                                      | 10CFR72.24(d)<br>10CFR72.122(c)                         | 11.1, 11.2       |
| 4.5                                          | Supplemental Data                                         | 4.V.6 Supplemental Info.                                                      |                                                         |                  |
|                                              |                                                           | 5. Shielding Evaluation                                                       | on                                                      | <u> </u>         |
| 5.1                                          | Discussion and Results                                    |                                                                               | 10CFR72.104(a)<br>10CFR72.106(b)                        | 5.1              |
| 5.2                                          | Source Specification                                      | 5.V.2 Radiation Source<br>Definition                                          |                                                         | 5.2              |
|                                              | 5.2.1 Gamma<br>Source                                     | 5.V.2.a Gamma Source                                                          |                                                         | 5.2.1, 5.2.3     |
|                                              | 5.2.2 Neutron<br>Source                                   | 5.V.2.b Neutron Source                                                        |                                                         | 5.2.2, 5.2.3     |

L ـــ

| HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANC | CE |
|-----------------------------------------------|----|
| CROSS-REFERENCE MATRIX                        |    |

| Regulatory Guide 3.61<br>Section and Content |          |                                                                              | Associated NUREG-<br>1536 Review Criteria |                                                 | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement                                       | HI-STOR <b>M</b><br>FSAR     |  |
|----------------------------------------------|----------|------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------|--|
| 5.3                                          | Model S  | pecification                                                                 | 5.V.3                                     | Shielding Model<br>Specification                |                                                                                          | 5.3                          |  |
|                                              | 5.3.1    | Description of<br>the Radial and<br>Axial<br>Shielding<br>Configuration<br>s | 5.V.3.a                                   | Configuration of<br>the Shielding and<br>Source | 10CFR72.24(c)(3)                                                                         | 5.3.1                        |  |
|                                              | 5.3.2    | Shield<br>Regional<br>Densities                                              | 5.V.3.b                                   | Material Properties                             | 10CFR72.24(c)(3)                                                                         | 5.3.2                        |  |
| 5.4                                          | Shieldir | ng Evaluation                                                                | 5.V.4                                     | Shielding Analysis                              | 10CFR72.24(d)<br>10CFR72.104(a)<br>10CFR72.106(b)<br>10CFR72.128(a)(2)<br>10CFR72.236(d) | 5.4                          |  |
| 5.5                                          | Suppler  | nental Data                                                                  | 5.V.5                                     | Supplemental Info.                              |                                                                                          | Appendices 5.A, 5.B, and 5.C |  |
|                                              |          |                                                                              |                                           | 6. Criticality Evaluat                          | tion                                                                                     |                              |  |
| 6.1                                          | Discuss  | sion and Results                                                             |                                           |                                                 |                                                                                          | 6.1                          |  |
| 6.2                                          | Spent F  | Fuel Loading                                                                 | 6.V.2                                     | Fuel Specification                              |                                                                                          | 6.1, 6.2                     |  |
| 6.3                                          | Model    | Specifications                                                               | 6.V.3                                     | Model<br>Specification                          |                                                                                          | 6.3                          |  |
|                                              | 6.3.1    | Description of<br>Calculational<br>Model                                     | 6.V.3.a                                   | Configuration                                   | <br>10CFR72.124(b)<br>10CFR72.24(c)(3)                                                   | 6.3.1                        |  |
|                                              | 6.3.2    | Cask Regional<br>Densities                                                   | 6.V.3.t                                   | Material Properties                             | 10CFR72.24(c)(3)<br>10CFR72.124(b)<br>10CFR72.236(g)                                     | 6.3.2                        |  |
| 6.4                                          | Critica  | lity Calculations                                                            | 6.V.4                                     | Criticality Analysis                            | 10CFR72.124                                                                              | 6.4                          |  |

| HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE |
|------------------------------------------------|
| CROSS-REFERENCE MATRIX                         |

| Regulatory Guide 3.61<br>Section and Content |                                      |                                                                 |         | ociated NUREG-<br>Review Criteria                                               | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement | HI-STORM<br>FSAR                |
|----------------------------------------------|--------------------------------------|-----------------------------------------------------------------|---------|---------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------|
|                                              | 6.4.1                                | Calculational<br>or<br>Experimental<br>Method                   | ł       | Computer Programs<br>and<br>Multiplication<br>Factor                            | 10CFR72.124                                        | 6.4.1                           |
|                                              | 6.4.2                                | Fuel Loading<br>or Other<br>Contents<br>Loading<br>Optimization | 6.V.3.a | Configuration                                                                   |                                                    | 6.4.2                           |
|                                              | 6.4.3                                | Criticality<br>Results                                          | 6.IV    | Acceptance Criteria                                                             | 10CFR72.24(d)<br>10CFR72.124<br>10CFR72.236(c)     | 6.1, 6.2, 6.3.1,<br>6.3.2       |
| 6.5                                          | .5 Critical Benchmark<br>Experiments |                                                                 | 6.V.4.c | Benchmark<br>Comparisons                                                        |                                                    | 6.5,<br>Appendix 6.A,<br>6.4.3  |
| 6.6                                          | Supple                               | mental Data                                                     | 6.V.5   | Supplemental Info.                                                              | -                                                  | Appendices 6.B,<br>6.C, and 6.D |
|                                              |                                      |                                                                 |         | 7. Confinement                                                                  |                                                    |                                 |
| 7.1                                          | Confin                               | ement Boundary                                                  | 7.III.1 | Description of<br>Structures, Systems,<br>and Components<br>Important to Safety | 10CFR72.24(c)(3)<br>10CFR72.24(l)                  | 7.0, 7.1                        |
|                                              | 7.1.1                                | Confinement<br>Vessel                                           | 7.111.2 | Protection of Spent<br>Fuel Cladding                                            | 10CFR72.122(h)(l)                                  | 7.1, 7.1.1, 7.2.2               |
|                                              | 7.1.2                                | Confinement<br>Penetrations                                     |         |                                                                                 |                                                    | 7.1.2                           |
|                                              | 7.1.3                                | Seals and<br>Welds                                              |         |                                                                                 |                                                    | 7.1.3                           |
|                                              | 7.1.4                                | Closure                                                         | 7.III.3 | Redundant Sealing                                                               | 10CFR72.236(e)                                     | 7.1.1, 7.1.4                    |

l

| Regulatory Guide 3.61<br>Section and Content |                                                       | y Guide 3.61 Associated NUREG-<br>nd Content 1536 Review Criteria |                                                | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement | HI-STOR <b>M</b><br>FSAR                          |       |
|----------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|---------------------------------------------------|-------|
| 7.2                                          | Requirements<br>Normal Cond<br>Storage                | s for<br>litions of                                               | 7.III.7 Evaluation of<br>Confinement<br>System |                                                    | 10CFR72.24(d)<br>10CFR72.236(l)                   | 7.2   |
|                                              | 7.2.1 Rele                                            | ease of ioactive                                                  | 7.III.6                                        | Release of Nuclides to the Environment             | 10CFR72.24(1)(1)                                  | 7.2.1 |
|                                              | Material                                              | erial                                                             | 7.III.4                                        | Monitoring of<br>Confinement<br>System             | 10CFR72.122(h)(4)<br>10CFR72.128(a)(l)            | 7.1.4 |
|                                              |                                                       |                                                                   | 7.111.5                                        | Instrumentation                                    | 10CFR72.24(l)<br>10CFR72.122(i)                   | 7.1.4 |
|                                              |                                                       |                                                                   | 7.III.8                                        | Annual Dose                                        | 10CFR72.104(a)                                    | 7.3.5 |
|                                              | of<br>Con                                             | ssurization<br>nfinement<br>ssel                                  |                                                |                                                    |                                                   | 7.2.2 |
| 7.3                                          | Confinemen<br>Requiremen<br>Hypothetica<br>Conditions | ts for                                                            | 7.111.7                                        | Evaluation of<br>Confinement<br>System             | 10CFR72.24(d)<br>10CFR72.122(b)<br>10CFR72.236(l) | 7.3   |
|                                              | 11011                                                 | ssion Gas<br>oducts                                               |                                                |                                                    |                                                   | 7.3.1 |
|                                              |                                                       | elease of ontents                                                 |                                                |                                                    |                                                   | 7.3.3 |
|                                              | NA                                                    |                                                                   |                                                |                                                    | 10CFR72.106(b)                                    | 7.3   |
| 7.4                                          | Supplemen                                             | tal Data                                                          | 7.V                                            | Supplemental Info.                                 |                                                   |       |

|     | gulatory Guide 3.61<br>ection and Content |         | ociated NUREG-<br>Review Criteria                    | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement | HI-STORM<br>FSAR    |
|-----|-------------------------------------------|---------|------------------------------------------------------|----------------------------------------------------|---------------------|
|     |                                           |         | 8. Operating Procedu                                 | ires                                               |                     |
| 8.1 | Procedures for Loading the Cask           | 8.III.1 | Develop Operating<br>Procedures                      | 10CFR72.40(a)(5)                                   | 8.1 to 8.5          |
|     |                                           | 8.III.2 | Operational<br>Restrictions for<br>ALARA             | 10CFR72.24(e)<br>10CFR72.104(b)                    | 8.1.5               |
|     |                                           | 8.111.3 | Radioactive<br>Effluent Control                      | 10CFR72.24(1)(2)                                   | 8.1.5, 8.5.2        |
| }   |                                           | 8.III.4 | Written Procedures                                   | 10CFR72.212(b)(9)                                  | 8.0                 |
|     |                                           | 8.111.5 | Establish Written<br>Procedures and<br>Tests         | 10CFR72.234(f)                                     | 8.0<br>Introduction |
|     |                                           | 8.111.6 | Wet or Dry Loading<br>and Unloading<br>Compatibility | 10CFR72.236(h)                                     | 8.0<br>Introduction |
|     |                                           | 8.III.7 | Cask Design to<br>Facilitate Decon                   | 10CFR72.236(i)                                     | 8.1, 8.3            |
| 8.2 | Procedures for<br>Unloading the Cask      | 8.III.1 | Develop Operating<br>Procedures                      | 10CFR72.40(a)(5)                                   | 8.3                 |
|     |                                           | 8.111.2 | Operational<br>Restrictions for<br>ALARA             | 10CFR72.24(e)<br>10CFR72.104(b)                    | 8.3                 |
|     |                                           | 8.111.3 | Radioactive<br>Effluent Control                      | 10CFR72.24(1)(2)                                   | 8.3.3               |
|     |                                           | 8.111.4 | Written Procedures                                   | 10CFR72.212(b)(9)                                  | 8.0                 |
|     |                                           | 8.III.5 | Establish Written<br>Procedures and<br>Tests         | 10CFR72.234(f)                                     | 8.0                 |

|     | gulatory Guide 3.61<br>ection and Content | Associated NUREG-<br>1536 Review Criteria                                      | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement | HI-STORM<br>FSAR          |
|-----|-------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------|---------------------------|
|     |                                           | 8.III.6 Wet or Dry Loading<br>and Unloading<br>Compatibility                   | 10CFR72.236(h)                                     | 8.0                       |
|     |                                           | 8.III.8 Ready Retrieval                                                        | 10CFR72.122(1)                                     | 8.3                       |
| 8.3 | Preparation of the Cask                   |                                                                                |                                                    | 8.3.2                     |
| 8.4 | Supplemental Data                         |                                                                                |                                                    | Tables 8.1.1 to<br>8.1.10 |
|     | NA                                        | 8.111.9 Design To<br>Minimize Radwaste                                         | 10CFR72.24(f)<br>10CFR72.128(a)(5)                 | 8.1, 8.3                  |
|     |                                           | 8.III.10 SSCs Permit<br>Inspection,<br>Maintenance, and<br>Testing             | 10CFR72.122(f)                                     | Table 8.1.6               |
|     | 9. A                                      | Acceptance Criteria and Mainte                                                 | enance Program                                     |                           |
| 9.1 | Acceptance Criteria                       | 9.111.1.a Preoperational<br>Testing & Initial<br>Operations                    | 10CFR72.24(p)                                      | 8.1, 9.1                  |
|     |                                           | 9.III.1.c SSCs Tested and<br>Maintained to<br>Appropriate Quality<br>Standards | 10CFR72.24(c)<br>10CFR72.122(a)                    | 9.1                       |
|     |                                           | 9.III.1.d Test Program                                                         | 10CFR72.162                                        | 9.1                       |
|     |                                           | 9.III.1.e Appropriate Tests                                                    | 10CFR72.236(1)                                     | 9.1                       |
|     |                                           | 9.III.1.f Inspection for<br>Cracks, Pinholes,<br>Voids and Defects             | 10CFR72.236(j)                                     | 9.1                       |
|     |                                           | 9.III.1.g Provisions that<br>Permit Commission<br>Tests                        | 10CFR72.232(b)                                     | 9.1 <sup>(2)</sup>        |

| r    |                                                                                              |                                                                                |                                                                   |                   |  |
|------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------|--|
|      | Regulatory Guide 3.61<br>Section and Content                                                 | Associated NUREG-<br>1536 Review Criteria                                      | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement                | HI-STORM<br>FSAR  |  |
| 9.2  | Maintenance Program                                                                          | 9.III.1.b Maintenance                                                          | 10CFR72.236(g)                                                    | 9.2               |  |
|      |                                                                                              | 9.III.1.c SSCs Tested and<br>Maintained to<br>Appropriate Quality<br>Standards | 10CFR72.122(f)<br>10CFR72.128(a)(l)                               | 9.2               |  |
|      |                                                                                              | 9.III.1.h Records of<br>Maintenance                                            | 10CFR72.212(b)(8)                                                 | 9.2               |  |
|      | NA                                                                                           | 9.III.2 Resolution of<br>Issues Concerning<br>Adequacy of<br>Reliability       | 10CFR72.24(i)                                                     | (3)               |  |
|      |                                                                                              | 9.III.1.d Submit Pre-Op Test<br>Results to NRC                                 | 10CFR72.82(e)                                                     | (4)               |  |
|      |                                                                                              | 9.111.1.i Casks<br>Conspicuously and<br>Durably Marked                         | 10CFR72.236(k)                                                    | 9.1.7, 9.1.1.(12) |  |
|      |                                                                                              | 9.III.3 Cask Identification                                                    | 1                                                                 |                   |  |
|      |                                                                                              | 10. Radiation Protect                                                          | ion                                                               |                   |  |
| 10.1 | Ensuring that<br>Occupational<br>Exposures Are As Low<br>As Reasonably<br>Achievable (ALARA) | 10.III.4 ALARA                                                                 | 10CFR20.1101<br>10CFR72.24(e)<br>10CCR72.104(b)<br>10CFR72.126(a) | 10.1              |  |
| 10.2 | Radiation Protection<br>Design Features                                                      | 10.V.1.b Design Features                                                       | 10CFR72.126(a)(6)                                                 | 10.2              |  |
| 10.3 | Estimated Onsite<br>Collective Dose<br>Assessment                                            | 10.III.2 Occupational<br>Exposures                                             | 10CFR20.1201<br>10CFR20.1207<br>10CFR20.1208<br>10CFR20.1301      | 10.3              |  |

| Regulatory Guide 3.61<br>Section and Content | Associated NUREG-<br>1536 Review Criteria  | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement | HI-STORM<br>FSAR |
|----------------------------------------------|--------------------------------------------|----------------------------------------------------|------------------|
| NA                                           | 10.III.3 Public Exposure                   | 10CFR72.104<br>10CFR72.106                         | 10.4             |
|                                              | 10.III.1 Effluents and<br>Direct Radiation | 10CFR72.104                                        | 10.4             |

| HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE |
|------------------------------------------------|
| COMPLIANCE COMPLIANCE                          |
| CROSS-REFERENCE MATRIX                         |

| Re<br>Se | gulatory Guide 3.61<br>action and Content | Associated NUREG-<br>1536 Review Criteria                             | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement                                             | HI-STORM<br>FSAR |
|----------|-------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------|
|          |                                           | 11. Accident Anal                                                     | yses                                                                                           |                  |
| 11.1     | Off-Normal Operations                     | 11.III.2 Meet Dose Limits<br>for Anticipated<br>Events                | 10CFR72.24(d)<br>10CFR72.104(a)<br>10CFR72.236(d)                                              | 11.1             |
|          |                                           | 11.III.4 Maintain<br>Subcritical<br>Condition                         | 10CFR72.124(a)<br>10CFR72.236(c)                                                               | 11.1             |
|          |                                           | 11.III.7 Instrumentation and<br>Control for Off-<br>Normal Condition  | 10CFR72.122(i)                                                                                 | 11.1             |
| 11.2     | Accidents                                 | 11.III.1 SSCs Important to<br>Safety Designed for<br>Accidents        | 10CFR72.24(d)(2)<br>10CFR72.122(b)(2)<br>10CFR72.122(b)(3)<br>10CFR72.122(d)<br>10CFR72.122(g) | 11.2             |
|          |                                           | 11.III.5 Maintain<br>Confinement for<br>Accident                      | 10CFR72.236(1)                                                                                 | 11.2             |
|          |                                           | 11.III.4 Maintain<br>Subcritical<br>Condition                         | 10CFR72.124(a)<br>10CFR72.236(c)                                                               | 11.2, 6.0        |
|          |                                           | 11.III.3 Meet Dose Limits<br>for Accidents                            | 10CFR72.24(d)(2)<br>10CFR72.24(m)<br>10CFR72.106(b)                                            | 11.2, 5.1.2, 7.3 |
|          |                                           | 11.III.6 Retrieval                                                    | 10CFR72.122(1)                                                                                 | 8.3              |
|          |                                           | 11.III.7 Instrumentation and<br>Control for<br>Accident<br>Conditions | 10CFR72.122(i)                                                                                 | (5)              |
|          | NA                                        | 11.III.8 Confinement<br>Monitoring                                    | 10CFR72.122(h)(4)                                                                              | 7.1.4            |

|      |         | Guide 3.61<br>d Content                                                                                     | Associated NUREG-<br>1536 Review Criteria                                                        | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement                                     | HI-STOR <b>M</b><br>FSAR |
|------|---------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------|
|      |         |                                                                                                             | 12. Operating Controls an                                                                        | d Limits                                                                               |                          |
| 12.1 |         | ed Operating                                                                                                |                                                                                                  | 10CFR72.44(c)                                                                          | 12.0                     |
|      | Control | s and Limits                                                                                                | 12.III.1.e Administrative<br>Controls                                                            | 10CFR72.44(c)(5)                                                                       | 12.0                     |
| 12.2 |         | pment of<br>ng Controls and                                                                                 | 12.III.1 General<br>Requirement for<br>Technical<br>Specifications                               | 10CFR72.24(g)<br>10CFR72.26<br>10CFR72.44(c)<br>10CFR72 Subpart E<br>10CFR72 Subpart F | 12.0                     |
|      | 12.2.1  | Functional and<br>Operating<br>Limits,<br>Monitoring<br>Instruments,<br>and Limiting<br>Control<br>Settings | 12.III.1.a Functional/<br>Operating Units,<br>Monitoring<br>Instruments and<br>Limiting Controls | 10CFR72.44(c)(l)                                                                       | Appendix 12.A            |
|      | 12.2.2  | Limiting                                                                                                    | 12.III.1.b Limiting Controls                                                                     | 10CFR72.44(c)(2)                                                                       | Appendix 12.A            |
|      |         | Conditions for<br>Operation                                                                                 | 12.III.2.a Type of Spent<br>Fuel                                                                 | 10CFR72.236(a)                                                                         | Appendix 12.A            |
|      |         |                                                                                                             | 12.III.2.b Enrichment                                                                            |                                                                                        |                          |
|      |         |                                                                                                             | 12.III.2.c Burnup                                                                                |                                                                                        |                          |
|      |         |                                                                                                             | 12.III.2.d Minimum<br>Acceptable Cooling<br>Time                                                 |                                                                                        |                          |
|      |         |                                                                                                             | 12.III.2.f Maximum<br>Spent Fuel<br>Loading Limit                                                |                                                                                        |                          |
|      |         |                                                                                                             |                                                                                                  |                                                                                        |                          |

|                                                                       | T                                                 |                                                    |                                 |
|-----------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|---------------------------------|
| Regulatory Guide 3.61<br>Section and Content                          | Associated NUREG-<br>1536 Review Criteria         | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement | HI-STORM<br>FSAR                |
|                                                                       | 12.III.2.g Weights and<br>Dimensions              |                                                    |                                 |
|                                                                       | 12.III.2.h Condition of<br>Spent Fuel             |                                                    |                                 |
|                                                                       | 12.III.2.e Maximum Heat<br>Dissipation            | 10CFR72.236(a)                                     | Appendix 12.A                   |
|                                                                       | 12.III.2.i Inerting<br>Atmosphere<br>Requirements | 10CFR72.236(a)                                     | Appendix 12.A                   |
| 12.2.3 Surveillance<br>Specifications                                 | 12.III.1.c Surveillance<br>Requirements           | 10CFR72.44(c)(3)                                   | Chapter 12                      |
| 12.2.4 Design<br>Features                                             | 12.III.1.d Design Features                        | 10CFR72.44(c)(4)                                   | Chapter 12                      |
| 12.2.5 Suggested<br>Format for<br>Operating<br>Controls and<br>Limits |                                                   |                                                    | Appendix 12.A                   |
| NA                                                                    | 12.III.2 SCC Design Bases<br>and Criteria         | 10CFR72.236(b)                                     | 2.0                             |
| NA                                                                    | 12.III.2 Criticality Control                      | 10CFR72.236(c)                                     | 2.3.4, 6.0                      |
| NA                                                                    | 12.III.2 Shielding and<br>Confinement             | 10CFR20<br>10CFR72.236(d)                          | 2.3.5, 7.0, 5.0,<br>10.0        |
| NA                                                                    | 12.III.2 Redundant Sealing                        | 10CFR72.236(e)                                     | 7.1, 2.3.2                      |
| NA                                                                    | 12.III.2 Passive Heat<br>Removal                  | 10CFR72.236(f)                                     | 2.3.2.2, 4.0                    |
| NA                                                                    | 12.III.2 20 Year Storage<br>and Maintenance       | 10CFR72.236(g)                                     | 1.2.1.5, 9.0,<br>3.4.10, 3.4.11 |
| NA                                                                    | 12.III.2 Decontamination                          | 10CFR72.236(i)                                     | 8.0, 10.1                       |

# HI-STORM 100 SYSTEM FSAR REGULATORY COMPLIANCE CROSS-REFERENCE MATRIX

HI-STORM FSAR REPORT HI-2002444

| Regulatory Guide 3.61<br>Section and Content | Associated NUREG-<br>1536 Review Criteria | Applicable<br>10CFR72<br>or 10CFR20<br>Requirement | HI-STORM<br>FSAR |
|----------------------------------------------|-------------------------------------------|----------------------------------------------------|------------------|
| NA                                           | 12.III.2 Wet or Dry Loading               | 10CFR72.236(h)                                     | 8.0              |
| NA                                           | 12.III.2 Confinement<br>Effectiveness     | 10CFR72.236(j)                                     | 9.0              |
| NA                                           | 12.III.2 Evaluation for<br>Confinement    | 10CFR72.236(l)                                     | 7.1, 7.2, 9.0    |
|                                              | 13. Quality Assuran                       | ice                                                |                  |
| 13.1 Quality Assurance                       | 13.III Regulatory<br>Requirements         | 10CFR72.24 (n)                                     | 13.0             |
|                                              | 13.IV Acceptance Criteria                 | 10CFR72, Subpart G                                 |                  |

Notes:

- <sup>(1)</sup> The stated requirement is the responsibility of the licensee (i.e., utility) as part of the ISFSI pad and is therefore not addressed in this application.
- (2) It is assumed that approval of the FSAR by the NRC is the basis for the Commission's acceptance of the tests defined in Chapter 9.
- <sup>(3)</sup> Not applicable to HI-STORM 100 System. The functional adequacy of all important to safety components is demonstrated by analyses.
- <sup>(4)</sup> The stated requirement is the responsibility of licensee (i.e., utility) as part of the ISFSI and is therefore not addressed in this application.
- <sup>(5)</sup> The stated requirement is not applicable to the HI-STORM 100 System. No monitoring is required for accident conditions.
- "--" There is no corresponding NUREG-1536 criteria, no applicable 10CFR72 or 10CFR20 regulatory requirement, or the item is not addressed in the FSAR.
- "NA" There is no Regulatory Guide 3.61 section that corresponds to the NUREG-1536, 10CFR72, or 10CFR20 requirement being addressed.

Table 1.0.3HI-STORM 100 SYSTEM FSAR CLARIFICATIONS AND EXCEPTIONS TO NUREG-1536

| NUREG-1536 Requirement                                                                                                                                                                         | Alternate Method to Meet NUREG-<br>1536 Intent                                                                                                                                                                           | Justification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.V.2.(b)(1) "The NRC accepts as the maximum<br>and minimum "normal" temperatures the highest<br>and lowest ambient temperatures recorded in each<br>year, averaged over the years of record." | Exception: Section 2.2.1.4 for<br>environmental temperatures utilizes an<br>upper bounding value of 80EF on the<br>annual average ambient temperatures for<br>the United States.                                         | The 80EF temperature set forth in Table 2.2.2 is greater<br>than the annual average ambient temperature at any<br>location in the continental United States. Inasmuch as the<br>primary effect of the environmental temperature is on the<br>computed fuel cladding temperature to establish long-term<br>fuel cladding integrity, the annual average ambient<br>temperature for each ISFSI site should be below 80EF. The<br>large thermal inertia of the HI-STORM 100 System<br>ensures that the daily fluctuations in temperatures do not<br>affect the temperature is combined with insolation in<br>accordance with 10CFR71.71 averaged over 24 hours. |
| 2.V.2.(b)(3)(f) "10CFR Part 72 identifies several<br>other natural phenomena events (including<br>seiche, tsunami, and hurricane) that should be<br>addressed for spent fuel storage."         | <u>Clarification:</u> A site-specific safety<br>analysis of the effects of seiche, tsunami,<br>and hurricane on the HI-STORM 100<br>System must be performed prior to use if<br>these events are applicable to the site. | In accordance with NUREG-1536, 2.V.(b)(3)(f), if seiche, tsunami, and hurricane are not addressed in the SAR and they prove to be applicable to the site, a safety analysis is required prior to approval for use of the DCSS under either a site specific, or general license.                                                                                                                                                                                                                                                                                                                                                                             |

| NUREG-1536 Requirement                                                                                                                                                                    | Alternate Method to Meet NUREG-<br>1536 Intent                                                                                                                                                                                                                                                                                                                                                                                                                              | Justification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.V.1.d.i.(2)(a), page 3-11, "Drops with the axis<br>generally vertical should be analyzed for both the<br>conditions of a flush impact and an initial impact<br>at a corner of the cask" | <u>Clarification</u> : As stated in NUREG-<br>1536, 3.V.(d), page 3-11, "Generally,<br>applicants establish the design basis in<br>terms of the maximum height to which<br>the cask is lifted outside the spent fuel<br>building, or the maximum deceleration<br>that the cask could experience in a<br>drop." The maximum deceleration for a<br>corner drop is specified as 45g's for the<br>HI-STORM overpack. No carry height<br>limit is specified for the corner drop. | In Chapter 3, the MPC and HI-STORM overpack are<br>evaluated under a 45g radial loading. A 45g axial loading<br>on the MPC is bounded by the analysis presented in the<br>HI-STAR TSAR, Docket 72-1008, under a 60g loading,<br>and is not repeated in this FSAR. In Chapter 3, the HI-<br>STORM overpack is evaluated under a 45g axial loading.<br>Therefore, the HI-STORM overpack and MPC are<br>qualified for a 45g loading as a result of a corner drop.<br>Depending on the type of rigging used, the administrative<br>vertical carry height limit, and the stiffness of the impacted<br>surface, site-specific analyses are required to demonstrate<br>that the deceleration limit of 45g's is not exceeded. |

# HI-STORM 100 SYSTEM FSAR CLARIFICATIONS AND EXCEPTIONS TO NUREG-1536

# HI-STORM 100 SYSTEM FSAR CLARIFICATIONS AND EXCEPTIONS TO NUREG-1536

| NUREG-1536 Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Alternate Method to Meet NUREG-<br>1536 Intent                                                                                                                                                                                                                                                                                                                                                                                | Justification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>3.V.2.b.i.(1), Page 3-19, Para. 1, "All concrete used in storage cask system ISFSIs, and subject to NRC review, should be reinforced"</li> <li>3.V.2.b.i.(2)(b), Page 3-20, Para. 1, "The NRC accepts the use of ACI 349 for the design, material selection and specification, and construction of all reinforced concrete structures that are not addressed within the scope of ACI 359".</li> <li>3.V.2.c.i, Page 3-22, Para. 3, "Materials and material properties used for the design and construction of reinforced concrete structures important to safety but not within the scope of ACI 359 should comply with the requirements of ACI 349".</li> </ul> | Exception: The HI-STORM overpack<br>concrete is not reinforced. However,<br>ACI 349 [1.0.4] is used for the material<br>selection and specification, and<br>construction of the plain concrete.<br>Appendix 1.D provides the relevant<br>sections of ACI 349 applicable to the<br>plain concrete in the overpack. ACI 318-<br>95 [1.0.5] is used for the calculation of<br>the compressive strength of the plain<br>concrete. | Concrete is provided in the HI-STORM overpack solely<br>for the purpose of radiation shielding during normal<br>operations. During lifting and handling operations and<br>under certain accident conditions, the compressive strength<br>of the concrete (which is not impaired by the absence of<br>reinforcement) is utilized. However, since the structural<br>reliance under loadings which produce section flexure and<br>tension is entirely on the steel structure of the overpack,<br>reinforcement in the concrete will serve no useful purpose.<br>To ensure the quality of the shielding concrete, all relevant<br>provisions of ACI 349 are imposed as specified in<br>Appendix 1.D. In addition, the temperature limits for<br>normal and off-normal condition from ACI 349 will be<br>imposed.<br>Finally, the Fort St. Vrain ISFSI (Docket No. 72-9) also<br>utilized plain concrete for shielding purposes which is<br>important to safety. |
| 3.V.3.b.i.(2), Page 3-29, Para. 1, "The NRC<br>accepts the use of ANSI/ANS-57.9 (together with<br>the codes and standards cited therein) as the basic<br>reference for ISFSI structures important to safety<br>that are not designed in accordance with Section<br>III of the ASME B&PV Code."                                                                                                                                                                                                                                                                                                                                                                            | <u>Clarification</u> : The HI-STORM overpack<br>steel structure is designed in accordance<br>with the ASME B&PV Code, Section<br>III, Subsection NF, Class 3. Any<br>exceptions to the Code are listed in<br>Table 2.2.15.                                                                                                                                                                                                    | The overpack structure is a steel weldment consisting of<br>"plate and shell type" members. As such, it is appropriate<br>to design the structure to Section III, Class 3 of Subsection<br>NF. The very same approach has been used in the<br>structural evaluation of the "intermediate shells" in the HI-<br>STAR 100 overpack (Docket Number 72-1008) previously<br>reviewed and approved by the USNRC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

i.

1

۱. .

| HI-STORM 100 SYSTEM FSAR CLARIFICATIONS AND EXCEPTIONS TO NUREG-1536 |  |
|----------------------------------------------------------------------|--|
|----------------------------------------------------------------------|--|

| NUREG-1536 Requirement                                                                                                                                                                                                                                                                                                                                                                                                     | Alternate Method to Meet NUREG-<br>1536 Intent                                                                                                                             | Justification                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>4.IV.5, Page 4-2 "for each fuel type proposed for storage, the DCSS should ensure a very low probability (e.g., 0.5 percent per fuel rod) of cladding breach during long-term storage."</li> <li>4.IV.1, Page 4-3, Para. 1 "the staff should verify that cladding temperatures for each fuel type proposed for storage will be below the expected damage thresholds for normal conditions of storage."</li> </ul> | <u>Clarification</u> : As described in Section<br>4.3, all fuel array types authorized for<br>storage have been evaluated for the peak<br>fuel cladding temperature limit. | As described in Section 4.3, all fuel array types authorized<br>for storage have been evaluated for the peak fuel cladding<br>temperature limit. All major variations in fuel parameters<br>are considered in the determination of the peak fuel<br>cladding temperature limits. Minor variations in fuel<br>parameters within an array type are bounded by the<br>conservative determination of the peak fuel cladding<br>temperature limit. |
| 4.IV.1, Page 4-3, Para. 2 "fuel cladding limits for<br>each fuel type should be defined in the SAR with<br>thermal restrictions in the DCSS technical<br>specifications."                                                                                                                                                                                                                                                  |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4.V.1, Page 4-3, Para. 4 "the applicant should<br>verify that these cladding temperature limits are<br>appropriate for all fuel types proposed for<br>storage, and that the fuel cladding temperatures<br>will remain below the limit for facility operations<br>(e.g., fuel transfer) and the worst-case credible<br>accident."                                                                                           |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                               |

ĺ

#### HI-STORM 100 SYSTEM FSAR CLARIFICATIONS AND EXCEPTIONS TO NUREG-1536

| NUREG-1536 Requirement                                                                                                                                                                                                                                              | Alternate Method to Meet NUREG-<br>1536 Intent                                                                                                                                                                                                                                                                                                                                         | Justification                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.V.4.a, Page 4-6, Para. 3 "applicants seeking<br>NRC approval of specific internal convection<br>models should propose, in the SAR, a<br>comprehensive test program to demonstrate the<br>adequacy of the cask design and validation of the<br>convection models." | Exception: The natural convection<br>model described in Subsection 4.4.1.1.5<br>is based on classical correlations for<br>natural convection in differentially<br>heated cavities which have been<br>validated by many experimental studies.<br>Therefore, no additional test program is<br>proposed.                                                                                  | Many experimental studies of this mechanism have been<br>performed by others and reported in open literature<br>sources. As discussed in Subsection 4.4.1.1.5, natural<br>convection has been limited to the relatively large MPC<br>basket to shell peripheral gaps. Subsection 4.4.1.1.5<br>provides sufficient references to experiments which<br>document the validity of the classical correlation used in<br>the analysis. |
| 4.V.4.a, Page 4-6, Para. 6 "the basket wall<br>temperature of the hottest assembly can then be<br>used to determine the peak rod temperature of the<br>hottest assembly using the Wooten-Epstein<br>correlation."                                                   | <u>Clarification:</u> As discussed in<br>Subsection 4.4.2, conservative maximum<br>fuel temperatures are obtained directly<br>from the cask thermal analysis. The peak<br>fuel cladding temperatures are then used<br>to determine the corresponding peak<br>basket wall temperatures using a finite-<br>element based update of Wooten-Epstein<br>(described in Subsection 4.4.1.1.2) | The finite-element based thermal conductivity is greater<br>than a Wooten-Epstein based value. This larger thermal<br>conductivity minimizes the fuel-to-basket temperature<br>difference. Since the basket temperature is less than the<br>fuel temperature, minimizing the temperature <i>difference</i><br>conservatively maximizes the basket wall temperature.                                                              |
| 4.V.4.b, Page 4-7, Para. 2 "if the thermal model is<br>axisymmetric or three-dimensional, the<br>longitudinal thermal conductivity should<br>generally be limited to the conductivity of the<br>cladding (weighted fractional area) within the<br>fuel assembly."   | <u>Clarification</u> : As described in<br>Subsection 4.4.1.1.4, the axial thermal<br>conductivity of the fuel basket is set<br>equal to the cross-sectional thermal<br>conductivity.                                                                                                                                                                                                   | Due to the large number of gaps in the cross-sectional heat<br>transfer paths, use of the fuel basket cross-sectional<br>thermal conductivity for the axial thermal conductivity<br>severely underpredicts the axial thermal conductivity of<br>the fuel basket region. This imposed axial thermal<br>conductivity restriction is even more limiting than that<br>imposed by this requirement of NUREG-1536.                     |

٠,

;

| NUREG-1536 Requirement                                                                                                                          | Alternate Method to Meet NUREG-<br>1536 Intent                                                                                                                                                                             | Justification                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.V.4.b, Page 4-7, Para. 2 "high burnup effects<br>should also be considered in determining the fuel<br>region effective thermal conductivity." | Exception: All calculations of fuel<br>assembly effective thermal<br>conductivities, described in Subsection<br>4.4.1.1.2, use nominal fuel design<br>dimensions, neglecting wall thinning<br>associated with high burnup. | Within Subsection 4.4.1.1.2, the calculated effective<br>thermal conductivities based on nominal design fuel<br>dimensions are compared with available literature values<br>and are demonstrated to be conservative by a substantial<br>margin.                                                                                                                                         |
| 4.V.4.c, Page 4-7, Para. 5 "a heat balance on the surface of the cask should be given and the results presented."                               | <u>Clarification:</u> No additional heat balance<br>is performed or provided.                                                                                                                                              | The FLUENT computational fluid dynamics program used<br>to perform evaluations of the HI-STORM Overpack and<br>HI-TRAC transfer cask, which uses a discretized<br>numerical solution algorithm, enforces an energy balance<br>on all discretized volumes throughout the computational<br>domain. This solution method, therefore, ensures a heat<br>balance at the surface of the cask. |
| 4.V.5.a, Page 4-8, Para. 2 "the SAR should include input and output file listings for the thermal evaluations."                                 | Exception: No input or output file listings are provided in Chapter 4.                                                                                                                                                     | A complete set of computer program input and output files<br>would be in excess of three hundred pages. All computer<br>files are considered proprietary because they provide<br>details of the design and analysis methods. In order to<br>minimize the amount of proprietary information in the<br>FSAR, computer files are provided in the proprietary<br>calculation packages.      |

# HI-STORM 100 SYSTEM FSAR CLARIFICATIONS AND EXCEPTIONS TO NUREG-1536

| NUREG-1536 Requirement                                                                                                                                                                                                                                                                                                                                                           | Alternate Method to Meet NUREG-<br>1536 Intent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Justification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.V.5.c, Page 4-10, Para. 3 "free volume<br>calculations should account for thermal<br>expansion of the cask internal components and<br>the fuel when subjected to accident temperatures.                                                                                                                                                                                        | Exception: All free volume calculations<br>use nominal confinement boundary<br>dimensions, but the volume occupied by<br>the MPC internals (i.e., fuel assemblies,<br>fuel basket, etc.) are calculated using<br>maximum weights and minimum<br>densities.                                                                                                                                                                                                                                                                                        | Calculating the volume occupied by the MPC internals<br>(i.e., fuel assemblies, fuel basket, etc.) using maximum<br>weights and minimum densities conservatively<br>overpredicts the volume occupied by the internal<br>components and correspondingly underpredicts the<br>remaining free volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7.V.4.c, Page 7-7, Para. 2 and 3 "Because the<br>leak is assumed to be instantaneous, the plume<br>meandering factor of Regulatory Guide 1.145 is<br>not typically applied." and "Note that for an<br>instantaneous release (and instantaneous<br>exposure), the time that an individual remains at<br>the controlled area boundary is not a factor in the<br>dose calculation." | Exception: As described in Section 7.3,<br>in lieu of an instantaneous release, the<br>assumed leakage rate is set equal to the<br>leakage rate acceptance criteria $(5x10^{-6}$<br>atm-cm <sup>3</sup> /s) plus 50% for conservatism,<br>which yields 7.5x10 <sup>-6</sup> atm-cm <sup>3</sup> /s.<br>Because the release is assumed to be a<br>leakage rate, the individual is assumed to<br>be at the controlled area boundary for<br>720 hours. Additionally, the atmospheric<br>dispersion factors of Regulatory Guide<br>1.145 are applied. | The MPC uses redundant closures to assure that there is no<br>release of radioactive materials under all credible<br>conditions. Analyses presented in Chapters 3 and 11<br>demonstrate that the confinement boundary does not<br>degrade under all normal, off-normal, and accident<br>conditions. Multiple inspection methods are used to verify<br>the integrity of the confinement boundary (e.g., helium<br>leakage, hydrostatic, and volumetric weld inspection).<br>The NRC letter to Holtec International dated 9/15/97,<br>Subject: Supplemental Request for Additional Information<br>- HI-STAR 100 Dual Purpose Cask System (TAC No.<br>L22019), RAI 7.3 states "use the verified confinement<br>boundary leakage rate in lieu of the assumption that the<br>confinement boundary fails." |

# HI-STORM 100 SYSTEM FSAR CLARIFICATIONS AND EXCEPTIONS TO NUREG-1536

| NUREG-1536 Requirement                                                                                                                                                                                             | Alternate Method to Meet NUREG-<br>1536 Intent                                                                                                                                                                                                                 | Justification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.V.1.a, Page 9-4, Para. 4 "Acceptance criteria<br>should be defined in accordance with NB/NC-<br>5330, "Ultrasonic Acceptance Standards"."                                                                        | <u>Clarification</u> : Section 9.1.1.1 and the<br>Design Drawings specify that the ASME<br>Code, Section III, Subsection NB,<br>Article NB-5332 will be used for the<br>acceptance criteria for the volumetric<br>examination of the MPC lid-to-shell<br>weld. | In accordance with the first line on page 9-4, the NRC<br>endorses the use of "appropriate acceptance criteria as<br>defined by either the ASME code, or an alternative<br>approach" The ASME Code, Section III, Subsection NB,<br>Paragraph NB-5332 is appropriate acceptance criteria for<br>pre-service examination.                                                                                                                                                                                                                                                                                                     |
| 9.V.1.d, Para. 1 "Tests of the effectiveness of<br>both the gamma and neutron shielding may be<br>required if, for example, the cask contains a<br>poured lead shield or a special neutron absorbing<br>material." | Exception: Subsection 9.1.5 describes<br>the control of special processes, such as<br>neutron shield material installation, to be<br>performed in lieu of scanning or probing<br>with neutron sources.                                                         | <ul> <li>The dimensional compliance of all shielding cavities is verified by inspection to Design Drawing requirements prior to shield installation.</li> <li>The Holtite-A shield material is installed in accordance with written, approved, and qualified special process procedures.</li> <li>The composition of the Holtite-A is confirmed by inspection and tests prior to first use.</li> <li>Following the first loading for the HI-TRAC transfer cask and each HI-STORM overpack, a shield effectiveness test is performed in accordance with written approved procedures, as specified in Section 9.1.</li> </ul> |

ł

#### 1.1 INTRODUCTION

HI-STORM 100 (acronym for <u>Holtec International Storage and Transfer Operation Reinforced</u> <u>Module</u>) is a spent nuclear fuel storage system designed to be in full compliance with the requirements of 10CFR72. The annex "100" is a model number designation which denotes a system weighing over 100 tons. The HI-STORM 100 System consists of a sealed metallic canister, herein abbreviated as the "MPC", contained within an overpack. Its design features are intended to simplify and reduce on-site SNF loading, handling, and monitoring operations, and to provide for radiological protection and maintenance of structural and thermal safety margins.

The HI-STORM 100 System is designed to accommodate a wide variety of spent nuclear fuel assemblies in a single overpack design by utilizing different MPCs. The external dimensions of all MPCs are identical to allow the use of a single overpack. Each of the MPCs has different internals (baskets) to accommodate distinct fuel characteristics. Each MPC is identified by the maximum quantity of fuel assemblies it is capable of receiving. The MPC-24 contains a maximum of 24 PWR fuel assemblies, and the MPC-68 contains a maximum of 68 BWR fuel assemblies.

The HI-STORM 100 overpack is constructed from a combination of steel and concrete, both of which are materials with long, proven histories of usage in nuclear applications. HI-STORM 100 incorporates and combines many desirable features of previously-approved concrete and metal module designs. In essence, the HI-STORM 100 overpack is a hybrid of metal and concrete systems, with the design objective of emulating the best features and dispensing with the drawbacks of both. The HI-STORM overpack is best referred to as a METCON<sup>™</sup> (metal/concrete composite) system.

Figure 1.1.1 shows HI-STORM 100 with two of its major constituents, the MPC and the storage overpack, in a cut-away view. The MPC, shown partially withdrawn from the storage overpack, is an integrally welded pressure vessel designed to meet stress limits of the ASME Boiler and Pressure Vessel Code, Section III, Subsection NB [1.1.1]. The MPC defines the confinement boundary for the stored spent nuclear fuel assemblies with respect to 10CFR72 requirements and attendant review considerations. The HI-STORM 100 storage overpack provides mechanical protection, cooling, and radiological shielding for the contained MPC.

In essence, the HI-STORM 100 System is the storage-only counterpart of the HI-STAR 100 System (Docket Numbers 72-1008 (Ref. [1.1.2]) and 71-9261 (Ref. [1.1.3])). Both HI-STORM and HI-STAR are engineered to house identical MPCs. Since the MPC is designed to meet the requirements of both 10CFR71 and 10CFR72 for transportation and storage, respectively, the HI-STORM 100 System allows rapid decommissioning of the ISFSI by simply transferring the loaded MPC's directly into HI-STAR 100 overpacks for off-site transport. This alleviates the additional fuel handling steps required by storage-only casks to unload the cask and repackage the fuel into a suitable transportation cask.

In contrast to the HI-STAR 100 overpack, which provides a containment boundary for the SNF during transport, the HI-STORM 100 storage overpack does not constitute a containment or confinement enclosure. The HI-STORM 100 overpack is equipped with large penetrations near its lower and upper extremities to permit natural circulation of air to provide for the passive cooling of the MPC and the contained radioactive material. The HI-STORM is engineered to be an effective barrier against the radiation emitted by the stored materials, and an efficiently configured metal/concrete composite to attenuate the loads transmitted to the MPC during a natural phenomena or hypothetical accident event. Other auxiliary functions of the HI-STORM 100 overpack include isolation of the SNF from abnormal environmental or man-made events, such as impact of a tornado borne missile. As the subsequent chapters of this FSAR demonstrate, the HI-STORM overpack is engineered with large margins of safety with respect to cooling, shielding, and mechanical/structural functions.

The HI-STORM 100 System is autonomous inasmuch as it provides SNF and radioactive material confinement, radiation shielding, criticality control and passive heat removal independent of any other facility, structures, or components. The surveillance and maintenance required by the plant's staff is minimized by the HI-STORM 100 System since it is completely passive and is composed of materials with long proven histories in the nuclear industry. The HI-STORM 100 System can be used either singly or as the basic storage module in an ISFSI. The site for an ISFSI can be located either at a reactor or away from a reactor.

The information presented in this report is intended to demonstrate the acceptability of the HI-STORM 100 System for use under the general license provisions of Subpart K by meeting the criteria set forth in 10CFR72.236.

The modularity of the HI-STORM 100 System accrues several advantages. Different MPCs, identical in exterior dimensions, manufacturing requirements, and handling features, but different in their SNF arrangement details, are designed to fit a common overpack. Even though the different MPCs have fundamentally identical design and manufacturing attributes, qualification of HI-STORM 100 requires consideration of the variations in the characteristics of the MPCs. In most cases, however, it is possible to identify the most limiting MPC geometry and the specific loading condition for the safety evaluation, and the detailed analyses are then carried out for that bounding condition. In those cases where this is not possible, multiple parallel analyses are performed.

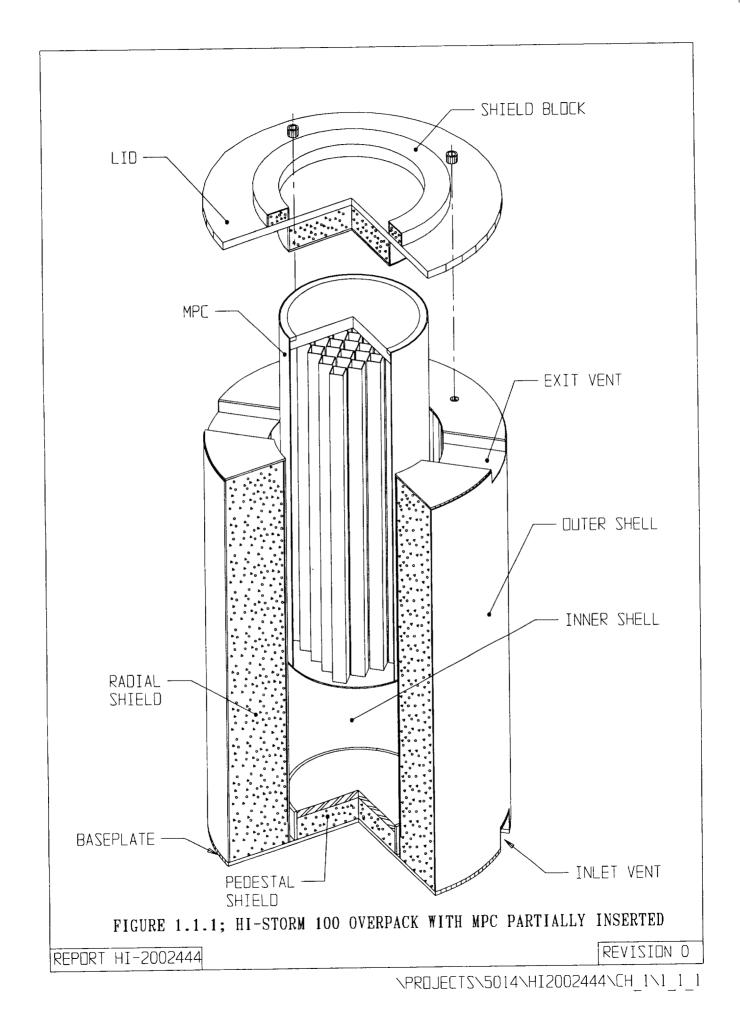
The HI-STORM overpack is not engineered for transport and, therefore, will not be submitted for 10CFR Part 71 certification. HI-STORM 100, however, is designed to possess certain key elements of flexibility.

#### For example:

- The HI-STORM 100 overpack is stored at the ISFSI pad in a vertical orientation which helps minimize the size of the ISFSI and leads to an effective natural convection cooling flow around the MPC.
- The HI-STORM 100 overpack can be loaded with a loaded MPC using the HI-TRAC transfer cask inside the 10CFR50 [1.1.4] facility, prepared for storage, transferred to the ISFSI, and stored in a vertical configuration, or directly loaded using the HI-TRAC transfer cask at the ISFSI storage pad.

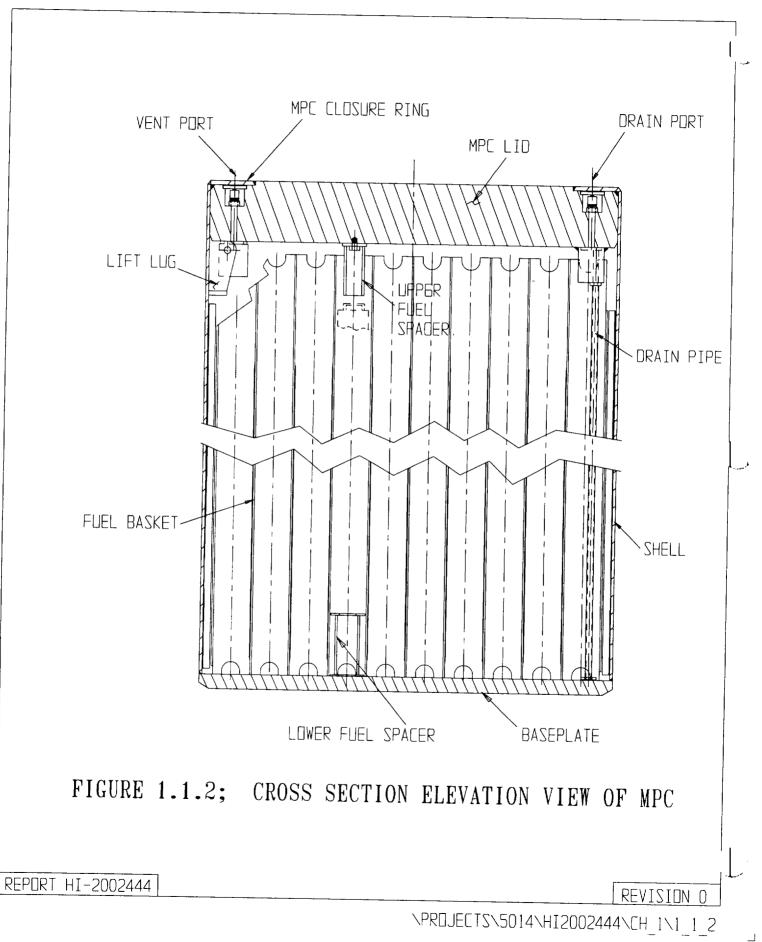
The MPC is a multi-purpose SNF storage device both with respect to the type of fuel assemblies and its versatility of use. The MPC is engineered as a cylindrical prismatic structure with square cross section storage cavities. The number of storage locations depends on the type of fuel. Regardless of the storage cell count, the construction of the MPC is fundamentally the same; it is built as a honeycomb of cellular elements positioned within a circumscribing cylindrical canister shell. The manner of cell-to-cell weld-up and cell-to-canister shell interface employed in the MPC imparts extremely high structural stiffness to the assemblage, which is an important attribute for mechanical accident events. Figure 1.1.2 shows an elevation cross section of a MPC.

The MPC is identical to those presented in References [1.1.2] and [1.1.3]. Referencing these submittals avoids repetition of information on the MPCs which is comprehensively set forth in the above-mentioned Holtec International applications docketed with the NRC. However, sufficient information and drawings are presented in this report to maintain clarity of exposition of technical data.


The HI-STORM 100 storage overpack is designed to provide the necessary neutron and gamma shielding to comply with the provisions of 10CFR72 for dry storage of SNF at an ISFSI. A cross sectional view of the HI-STORM 100 storage overpack is presented in Figure 1.1.3. A HI-TRAC transfer cask is required for loading of the MPC and movement of the loaded MPC from the cask loading area of a nuclear plant spent fuel pool to the storage overpack. The HI-TRAC is engineered to be emplaced with an empty MPC into the cask loading area of nuclear plant spent fuel pools for fuel loading (or unloading). The HI-TRAC/MPC assembly is designed to preclude intrusion of pool water into the narrow annular space between the HI-TRAC and the MPC while the assembly is submerged in the pool water. The HI-TRAC transfer cask also allows dry loading (or unloading) of SNF into the MPC.

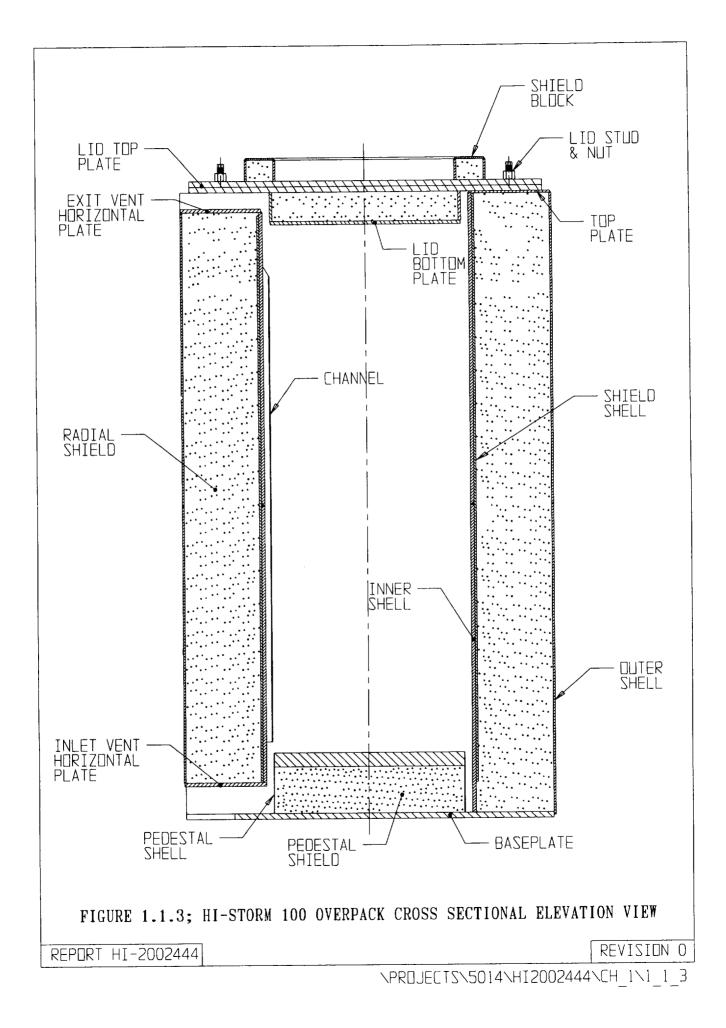
To summarize, the HI-STORM 100 System has been engineered to:

- minimize handling of the SNF;
- provide shielding and physical protection for the MPC;


- permit rapid and unencumbered decommissioning of the ISFSI;
- require minimal ongoing surveillance and maintenance by plant staff;
- minimize dose to operators during loading and handling;
- allow transfer of the loaded MPC to a HI-STAR overpack for transportation.

1




L

\_



Г

L



## 1.2 GENERAL DESCRIPTION OF HI-STORM 100 System

#### 1.2.1 System Characteristics

The basic HI-STORM 100 System consists of interchangeable MPCs providing a confinement boundary for BWR or PWR spent nuclear fuel, a storage overpack providing a structural and radiological boundary for long-term storage of the MPC placed inside it, and a transfer cask providing a structural and radiological boundary for transfer of a loaded MPC from a nuclear plant spent fuel storage pool to the storage overpack. Figure 1.2.1 provides a cross sectional view of the HI-STORM 100 System with an MPC inserted into a storage overpack. Each of these components is described below, including information with respect to component fabrication techniques and designed safety features. All structures, systems, and components of the HI-STORM 100 System which are identified as Important to Safety are specified in Table 2.2.6. This discussion is supplemented with a full set of detailed design drawings in Section 1.5.

The HI-STORM 100 System is comprised of three discrete components:

- i. multi-purpose canister (MPC)
- ii. storage overpack (HI-STORM)
- iii. transfer cask (HI-TRAC)

Necessary auxiliaries required to deploy the HI-STORM 100 System for storage are:

- i. vacuum drying system
- ii. helium (He) backfill system with leakage detector
- iii. lifting and handling systems
- iv welding equipment
- v. transfer vehicles/trailer

All MPCs have identical exterior dimensions which render them interchangeable. The outer diameter of the MPC is 68-3/8 inches and the overall length is 190-1/2 inches. See Section 1.5 for the detailed design drawings. Due to the differing storage contents of each MPC, the maximum loaded weight differs between MPCs. See Table 3.2.1 for each MPC weight. However, the maximum weight of a loaded MPC is approximately 44-1/2 tons. Tables 1.2.1 and 1.2.2 contain the key parameters for the MPCs.

A single HI-STORM overpack design is provided which is capable of storing each type of MPC. The overpack inner cavity is sized to accommodate the MPCs. The inner diameter of the overpack inner shell is 73-1/2 inches and the height of the cavity is 191-1/2 inches. The overpack inner shell is provided with channels distributed around the inner cavity to present an inside diameter of 69-1/2 inches. The channels are intended to offer a flexible medium to absorb some

of the impact during a non-mechanistic tip-over, while still allowing the cooling air flow through the ventilated overpack. The outer diameter of the overpack is 132-1/2 inches and the overall height is 239-1/2 inches. See Section 1.5 for the detailed design drawings. The weight of the overpack without an MPC is approximately 135 tons. See Table 3.2.1 for the detailed weights.

Before proceeding to present detailed physical data on the HI-STORM 100 System, it is of contextual importance to summarize the design attributes which enhance the performance and safety of the system. Some of the principal features of the HI-STORM 100 System which enhance its effectiveness as an SNF storage device and a safe SNF confinement structure are:

- the honeycomb design of the MPC fuel basket;
- the effective distribution of neutron and gamma shielding materials within the system;
- the high heat dissipation capability;
- engineered features to promote convective heat transfer;
- the structural robustness of the steel-concrete-steel overpack construction.

The honeycomb design of the MPC fuel baskets renders the basket into a multi-flange plate weldment where all structural elements (i.e., box walls) are arrayed in two orthogonal sets of plates. Consequently, the walls of the cells are either completely co-planar (i.e., no offset) or orthogonal with each other. There is complete edge-to-edge continuity between the contiguous cells.

Among the many benefits of the honeycomb construction is the uniform distribution of the metal mass of the basket over the entire length of the basket. Physical reasoning suggests that a uniformly distributed mass provides a more effective shielding barrier than can be obtained from a nonuniform basket. In other words, the honeycomb basket is a most effective radiation attenuation device. The complete cell-to-cell connectivity inherent in the honeycomb basket structure provides an uninterrupted heat transmission path, making the MPC an effective heat rejection device.

The composite shell construction in the overpack, steel-concrete-steel, allows ease of fabrication and eliminates the need for the sole reliance on the strength of concrete.

A description of each of the components is provided in the following sections, along with information with respect to its fabrication and safety features. This discussion is supplemented with the full set of Design Drawings and Bills-of-Material in Section 1.5.

i

#### 1.2.1.1 <u>Multi-Purpose Canisters</u>

The MPCs are welded cylindrical structures as shown in cross sectional views of Figures 1.2.2 and 1.2.4. The outer diameter and cylindrical height of each MPC are fixed. Each spent fuel MPC is an assembly consisting of a honeycombed fuel basket, a baseplate, canister shell, a lid, and a closure ring, as depicted in the MPC cross section elevation view, Figure 1.2.5. The number of spent nuclear fuel storage locations in each of the MPCs depends on the fuel assembly characteristics. There are three MPC models, distinguished by the type and number of fuel assemblies authorized for loading. The MPC-24 is designed to store up to 24 intact PWR fuel assemblies. The MPC-68 is designed to store up to 68 intact or damaged BWR fuel assemblies. The MPC-68F is designed to store up to 68 intact or damaged BWR fuel assemblies and up to four BWR fuel assemblies classified as fuel debris. Design Drawings for all of the MPCs are provided in Section 1.5.

The MPC provides the confinement boundary for the stored fuel. Figure 1.2.6 provides an elevation view of the MPC confinement boundary. The confinement boundary is defined by the MPC baseplate, shell, lid, port covers, and closure ring. The confinement boundary is a seal-welded enclosure of all stainless steel construction.

The construction features of the PWR MPC-24 and the BWR MPC-68 are similar. However, the PWR MPC-24 canister in Figure 1.2.4, which is designed for high-enriched PWR fuel, differs in construction from the MPC-68 in one important aspect: the fuel storage cells are physically separated from one another by a "flux trap", for criticality control. All MPC baskets are formed from an array of plates welded to each other, such that a honeycomb structure is created which resembles a multiflanged, closed-section beam in its structural characteristics.

The MPC fuel basket is positioned and supported within the MPC shell by a set of basket supports welded to the inside of the MPC shell. Between the periphery of the basket, the MPC shell, and the basket supports, heat conduction elements are installed. These heat conduction elements are fabricated from thin aluminum alloy 1100 in shapes which enable a snug fit in the confined spaces and ease of installation. The heat conduction elements are installed along the full length of the MPC basket to create a nonstructural thermal connection which facilitates heat transfer from the basket to shell. In their installed condition, the heat conduction elements contact the MPC shell and basket walls.

Lifting lugs attached to the inside surface of the MPC canister shell serve to permit placement of the empty MPC into the HI-TRAC transfer cask. The lifting lugs also serve to axially locate the MPC lid prior to welding. These internal lifting lugs are not used to handle a loaded MPC. Since the MPC lid is installed prior to any handling of a loaded MPC, there is no access to the lifting lugs once the MPC is loaded.

HI-STORM FSAR REPORT HI-2002444 Rev. 0

The top end of the MPC incorporates a redundant closure system. Figure 1.2.6 shows the MPC closure details. The MPC lid is a circular plate edge-welded to the MPC outer shell. This plate is equipped with vent and drain ports which are utilized to remove moisture and air from the MPC, and backfill the MPC with a specified mass of inert gas (helium). The vent and drain ports are covered and seal welded before the closure ring is installed. The closure ring is a circular ring edge-welded to the MPC shell and lid. The MPC lid provides sufficient rigidity to allow the entire MPC loaded with SNF to be lifted by threaded holes in the MPC lid.

To maintain a constant exterior axial length between the MPC-24 and MPC-68, the thickness of the MPC-24 lid is ½ inch thinner than the MPC-68 lid to accommodate the longest PWR fuel assembly which is approximately a ½ inch longer than the longest BWR fuel assembly. For fuel assemblies that are shorter than the design basis length, upper and lower fuel spacers (as appropriate) maintain the axial position of the fuel assembly within the MPC basket. The upper fuel spacers are threaded into the underside of the MPC lid as shown in Figure 1.2.5. The lower fuel spacers are placed in the bottom of each fuel basket cell. The upper and lower fuel spacers are designed to withstand normal, off-normal, and accident conditions of storage. An axial clearance of approximately 2 inches is provided to account for the irradiation and thermal growth of the fuel assemblies. The upper and lower fuel spacer lengths are listed in Tables 2.1.9 and 2.1.10 for each fuel assembly type.

The MPC is constructed entirely from stainless steel alloy materials (except for the neutron absorber and aluminum heat conduction elements). No carbon steel parts are permitted in the MPC. Concerns regarding interaction of coated carbon steel materials and various MPC operating environments [1.2.1] are not applicable to the MPC. All structural components in a MPC shall be made of Alloy X, a designation which warrants further explanation.

Alloy X is a material which is expected to be acceptable as a Mined Geological Disposal System (MGDS) waste package and which meets the thermophysical properties set forth in this document.

At this time, there is considerable uncertainty with respect to the material of construction for an MPC which would be acceptable as a waste package for the MGDS. Candidate materials being considered for acceptability by the DOE include:

- Type 316
- Type 316LN
- Type 304
- Type 304LN

HI-STORM FSAR REPORT HI-2002444 1

The DOE material selection process is primarily driven by corrosion resistance in the potential environment of the MGDS. As the decision regarding a suitable material to meet disposal requirements is not imminent, this application requests approval for use of any one of the four Alloy X materials.

For the MPC design and analysis, Alloy X (as defined in this application) may be one of the following materials (only a single alloy from the list of acceptable Alloy X materials may be used in the fabrication of a single MPC).

- Type 316
- Type 316LN
- Type 304
- Type 304LN

The Alloy X approach is accomplished by qualifying the MPC for all mechanical, structural, neutronic, radiological, and thermal conditions using material thermophysical properties which are the least favorable for the entire group for the analysis in question. For example, when calculating the rate of heat rejection to the outside environment, the value of thermal conductivity used is the lowest for the candidate material group. Similarly, the stress analysis calculations use the lowest value of the ASME Code allowable stress intensity for the entire group. Stated differently, we have defined a material, which is referred to as Alloy X, whose thermophysical properties, from the MPC design perspective, are the least favorable of the candidate materials.

The evaluation of the Alloy X constituents to determine the least favorable properties is provided in Appendix 1.A.

Other alloy materials which are identified to be more suitable by the DOE for the MGDS in the future and which are also bounded by the Alloy X properties set forth in Appendix 1.A can be used in the MPC after an amendment to this FSAR is approved.

The Alloy X approach is conservative because no matter which material is ultimately utilized in the MPC construction, the Alloy X approach guarantees that the performance of the MPC will exceed the analytical predictions contained in this document.

## 1.2.1.2 <u>Overpacks</u>

## 1.2.1.2.1 <u>HI-STORM 100 Overpack (Storage)</u>

The HI-STORM 100 overpack is a rugged, heavy-walled cylindrical vessel. Figures 1.2.7 and 1.2.8 provide cross sectional views of the HI-STORM 100 System. The main structural function of the storage overpack is provided by carbon steel, and the main shielding function is provided by plain concrete. The overpack plain concrete is enclosed by cylindrical steel shells, a thick steel baseplate, and a top plate. The overpack lid has appropriate concrete shielding attached to its underside and top to provide neutron and gamma attenuation in the vertical direction.

The storage overpack provides an internal cylindrical cavity of sufficient height and diameter for housing an MPC. The inner shell of the overpack has channels attached to its inner diameter. The channels provide guidance for MPC insertion and removal and a flexible medium to absorb impact loads during the non-mechanistic tip-over, while still allowing the cooling air flow to circulate through the overpack. Stainless steel shims are attached to channels to allow the proper inner diameter dimension to be obtained and to provide a guiding surface for MPC insertion and removal.

The storage overpack has air ducts to allow for passive natural convection cooling of the contained MPC. Four air inlets and four air outlets are located at the lower and upper extremities of the overpack, respectively. The air inlets and outlets are covered by a fine mesh screen to reduce the potential for blockage. Routine inspection of the screens (or, alternatively, temperature monitoring) ensures that blockage of the screens themselves will be detected and removed in a timely manner. Analysis, provided in this FSAR, evaluates the effects of partial and complete blockage of the air ducts.

The four air inlets and four air outlets are penetrations through the thick concrete shielding provided by the HI-STORM overpack. Within the air inlets and outlets, an array of gamma shield cross plates are installed. These gamma shield cross plates are designed to scatter any particles traveling through the ducts. The result of scattering the particles in the ducts is a significant decrease in the local dose rates around the four air inlets and four air outlets. The configuration of the gamma shield cross plates is such that the increase in the resistance to flow in the air inlets and outlets is minimized.

Four threaded anchor blocks at the top of the overpack are provided for lifting. The anchor blocks are integrally welded to the radial plates which in turn are full-length welded to the overpack inner shell, outer shell, and baseplate (see Figure 1.2.7). The four anchor blocks are located on 90E centers. The overpack may also be lifted from the bottom using specially-designed lifting transport devices, including hydraulic jacks, air pads, and Hilman rollers. Slings

or other suitable devices mate with lifting lugs which are inserted into threaded holes in the top surface of the overpack lid to allow lifting of the overpack lid. After the lid is bolted to the storage overpack main body, these lifting bolts shall be removed and replaced with flush plugs.

The plain concrete between the overpack inner and outer steel shells is specified to provide the necessary shielding properties and compressive strength. The concrete shall be in accordance with the requirements specified in Appendix 1.D.

The principal function of the concrete is to provide shielding against gamma and neutron radiation. However, in an implicit manner it helps enhance the performance of the HI-STORM overpack in other respects as well. For example, the massive bulk of concrete imparts a large thermal inertia to the HI-STORM overpack, allowing it to moderate the rise in temperature of the system under hypothetical conditions when all ventilation passages are assumed to be blocked. The case of a postulated fire accident at the ISFSI is another example where the high thermal inertia characteristics of the HI-STORM concrete control the temperature of the MPC. Although the annular concrete mass in the overpack shell is not a structural member, it does act as an elastic/plastic filler of the inter-shell space, such that, while its cracking and crushing under a tip-over accident is not of significant consequence, its deformation characteristics are germane to the analysis of the structural members.

Density and compressive strength are the key parameters which delineate the performance of concrete in the HI-STORM System. The density of concrete used in the inter-shell annulus, pedestal, and HI-STORM lid has been set as defined in Appendix 1.D. For evaluating the physical properties of concrete for completing the analytical models, conservative formulations of Reference [1.2.6] are used.

To ensure the stability of the concrete at temperature, the concrete composition has been specified in accordance with NUREG-1536, "Standard Review Plan for Dry Cask Storage Systems" [1.2.10]. Thermal analyses, presented in Chapter 4, show that the temperatures during normal storage conditions do not threaten the physical integrity of the HI-STORM overpack concrete.

## 1.2.1.2.2 HI-TRAC (Transfer Cask)

Like the storage overpack, the HI-TRAC transfer cask is a rugged, heavy-walled cylindrical vessel. The main structural function of the transfer cask is provided by carbon steel, and the main neutron and gamma shielding functions are provided by water and lead, respectively. The transfer cask is a steel, lead, steel layered cylinder with a water jacket attached to the exterior. Figure 1.2.9 provides a typical cross section of a HI-TRAC with the pool lid installed.

The transfer cask provides an internal cylindrical cavity of sufficient size for housing an MPC. The top lid has additional neutron shielding to provide neutron attenuation in the vertical direction (from SNF in the MPC below). The MPC access hole through the HI-TRAC top lid is provided to allow the lowering/raising of the MPC between the HI-TRAC transfer cask, and the HI-STORM or HI-STAR overpacks. The HI-TRAC is provided with two bottom lids, each used separately. The pool lid is bolted to the bottom flange of the HI-TRAC and is utilized during MPC fuel loading and sealing operations. In addition to providing shielding in the axial direction, the pool lid incorporates a seal which is designed to hold clean demineralized water in the HI-TRAC inner cavity, thereby preventing contamination of the exterior of the MPC by the contaminated fuel pool water. After the MPC has been drained, dried, and sealed, the pool lid is removed and the HI-TRAC transfer lid is attached. The transfer lid incorporates two sliding doors which allow the opening of the HI-TRAC bottom for the MPC to be raised/lowered. Figure 1.2.10 provides a cross section of the HI-TRAC with the transfer lid installed.

Trunnions are provided for lifting and rotating the transfer cask body between vertical and horizontal positions. The lifting trunnions are located just below the top flange and the pocket trunnions are located above the bottom flange. The two lifting trunnions are provided to lift and vertically handle the HI-TRAC, and the pocket trunnions provide a pivot point for the rotation of the HI-TRAC for downending or upending.

Two HI-TRAC transfer casks of different weights are provided to house the MPCs. The 125 ton HI-TRAC weight does not exceed 125 tons during any loading or transfer operation. The 100 ton HI-TRAC weight does not exceed 100 tons during any loading or transfer operation. The internal cylindrical cavities of the two HI-TRACs are identical. However, the external dimensions are different. The 100 ton HI-TRAC has a reduced thickness of lead and water shielding and consequently, the external dimensions are different. The structural steel thickness is identical in the two HI-TRACs. This allows most structural analyses of the 125 ton HI-TRAC to bound the 100 ton HI-TRAC design. Additionally, as the two HI-TRACs are identical except for a reduced thickness of lead and water, the 125 ton HI-TRAC has a larger thermal resistance than the smaller and lighter 100 ton HI-TRAC. Therefore, for normal conditions the 125 ton HI-TRAC thermal analysis bounds that of the 100 ton HI-TRAC. Separate shielding analyses are performed for each HI-TRAC since the shielding thicknesses are different between the two.

## 1.2.1.3 Shielding Materials

The HI-STORM 100 System is provided with shielding to ensure the radiation and exposure requirements in 10CFR72.104 and 10CFR72.106 are met. This shielding is an important factor in minimizing the personnel doses from the gamma and neutron sources in the SNF in the MPC for ALARA considerations during loading, handling, transfer, and storage. The fuel basket

structure of edge-welded composite boxes and Boral<sup>™</sup> neutron poison panels attached to the fuel storage cell vertical surfaces provide the initial attenuation of gamma and neutron radiation emitted by the radioactive spent fuel. The MPC shell, baseplate, lid and closure ring provide additional thicknesses of steel to further reduce the gamma flux at the outer canister surfaces.

In the HI-STORM 100 storage overpack, the primary shielding in the radial direction is provided by concrete and steel. In addition, the storage overpack has a thick circular concrete slab attached to the underside of the lid, and a thick circular concrete pedestal upon which the MPC rests. These slabs provide gamma and neutron attenuation in the axial direction. The thick overpack lid and concrete shield ring atop the lid provide additional gamma attenuation in the upward direction, reducing both direct radiation and skyshine. Several steel plate and shell elements provide additional gamma shielding as needed in specific areas, as well as incremental improvements in the overall shielding effectiveness.

In the HI-TRAC transfer cask radial direction, gamma and neutron shielding consists of steellead-steel and water, respectively. In the axial direction, shielding is provided by the top lid, and the pool or transfer lid. In the HI-TRAC pool lid, layers of steel-lead-steel provide an additional measure of gamma shielding to supplement the gamma shielding at the bottom of the MPC. In the transfer lid, layers of steel-lead-steel provide gamma attenuation. For the 125 ton HI-TRAC transfer lid, the neutron shield material, Holtite-A, is also provided. The 125 ton HI-TRAC top lid is composed of steel-neutron shield-steel, with the neutron shield material being Holtite-A. The 100 ton HI-TRAC top lid is composed of steel only providing gamma attenuation.

#### 1.2.1.3.1 Boral Neutron Absorber

Boral is a thermal neutron poison material composed of boron carbide and aluminum (aluminum powder and plate). Boron carbide is a compound having a high boron content in a physically stable and chemically inert form. The boron carbide contained in Boral is a fine granulated powder that conforms to ASTM C-750-80 nuclear grade Type III. The Boral cladding is made of alloy aluminum, a lightweight metal with high tensile strength which is protected from corrosion by a highly resistant oxide film. The two materials, boron carbide and aluminum, are chemically compatible and ideally suited for long-term use in the radiation, thermal, and chemical environment of a nuclear reactor, spent fuel pool, or dry cask.

The documented historical applications of Boral, in environments comparable to those in spent fuel pools and fuel storage casks, dates to the early 1950s (the U.S. Atomic Energy Commission's AE-6 Water-Boiler Reactor [1.2.2]). Technical data on the material was first printed in 1949, when the report "Boral: A New Thermal Neutron Shield" was published [1.2.3]. In 1956, the first edition of the Reactor Shielding Design Manual [1.2.4] was published and it contained a section on Boral and its properties.

In the research and test reactors built during the 1950s and 1960s, Boral was frequently the material of choice for control blades, thermal-column shutters, and other items requiring very good thermal-neutron absorption properties. It is in these reactors that Boral has seen its longest service in environments comparable to today's applications.

Boral found other uses in the 1960s, one of which was a neutron poison material in baskets used in the shipment of irradiated, enriched fuel rods from Canada's Chalk River laboratories to Savannah River. Use of Boral in shipping containers continues, with Boral serving as the poison in current British Nuclear Fuels Limited casks and the recently licensed Storable Transport Cask by Nuclear Assurance Corporation [1.2.5].

As indicated in Tables 1.2.3-1.2.5, Boral has been licensed by the NRC for use in numerous BWR and PWR spent fuel storage racks and has been extensively used in international nuclear installations.

Boral has been exclusively used in fuel storage applications in recent years. Its use in spent fuel pools as the neutron absorbing material can be attributed to its proven performance and several unique characteristics, such as:

- The content and placement of boron carbide provides a very high removal cross section for thermal neutrons.
- Boron carbide, in the form of fine particles, is homogeneously dispersed throughout the central layer of the Boral panels.
- The boron carbide and aluminum materials in Boral do not degrade as a result of long-term exposure to radiation.
- The neutron absorbing central layer of Boral is clad with permanently bonded surfaces of aluminum.
- Boral is stable, strong, durable, and corrosion resistant.

Boral absorbs thermal neutrons without physical change or degradation of any sort from the anticipated exposure to gamma radiation and heat. The material does not suffer loss of neutron attenuation capability when exposed to high levels of radiation dose.

Holtec International's QA Program ensures that Boral is manufactured under the control and surveillance of a Quality Assurance/Quality Control Program that conforms to the requirements of 10CFR72, Subpart G. Holtec International has procured over 200,000 panels of Boral from

AAR Advanced Structures in over 30 projects. Boral has always been purchased with a minimum <sup>10</sup>B loading requirement. Coupons extracted from production runs were tested using the wet chemistry procedure. The actual <sup>10</sup>B loading, out of thousands of coupons tested, has never been found to fall below the design specification. The size of this coupon database is sufficient to provide reasonable assurance that all future Boral procurements will continue to yield Boral with full compliance with the stipulated minimum loading. Furthermore, the surveillance, coupon testing, and material tracking processes which have so effectively controlled the quality of Boral are expected to continue to yield Boral of similar quality in the future. Nevertheless, to add another layer of insurance, only 75% <sup>10</sup>B credit of the fixed neutron absorber is assumed in the criticality analysis in compliance with Chapter 6.0, IV, 4.c of NUREG-1536, Standard Review Plan for Dry Cask Storage Systems.

#### 1.2.1.3.2 <u>Neutron Shielding</u>

The specification of the HI-STORM overpack and HI-TRAC transfer cask neutron shield material is predicated on functional performance criteria. These criteria are:

- Attenuation of neutron radiation to appropriate levels;
- Durability of the shielding material under normal conditions, in terms of thermal, chemical, mechanical, and radiation environments;
- Stability of the homogeneous nature of the shielding material matrix;
- Stability of the shielding material in mechanical or thermal accident conditions to the desired performance levels; and
- Predictability of the manufacturing process under adequate procedural control to yield an in-place neutron shield of desired function and uniformity.

Other aspects of a shielding material, such as ease of handling and prior nuclear industry use, are also considered, within the limitations of the main criteria. Final specification of a shield material is a result of optimizing the material properties with respect to the main criteria, along with the design of the shield system, to achieve the desired shielding results.

Neutron attenuation in the HI-STORM overpack is provided by the thick walls of concrete contained in the steel vessel, lid, and pedestal. Concrete is a shielding material with a long proven history in the nuclear industry. The concrete composition has been specified to ensure its continued integrity at the long term temperatures required for SNF storage.

The HI-TRAC transfer cask is equipped with a water jacket providing radial neutron shielding. Demineralized water will be utilized in the water jacket. To ensure operability for low temperature conditions, ethylene glycol (25% in solution) will be added to reduce the freezing point for low temperature operations (e.g., below  $32^{\circ}$ F) [1.2.7].

Neutron shielding in the 125 ton HI-TRAC transfer cask in the axial direction is provided by Holtite-A within the top lid and transfer lid. Holtite-A is a poured-in-place solid borated synthetic neutron-absorbing polymer commercially available under the trade name NS-4-FR (or equivalent) and will be specified with a minimum  $B_4C$  loading of 1 weight percent for the HI-STORM 100 System. Appendix 1.B provides the Holtite-A material properties. Holtec has performed confirmatory qualification tests on Holtite-A under the company's QA program.

In the following, a brief summary of the performance characteristics and properties of Holtite-A is provided.

## **Density**

The specific gravity of Holtite-A is  $1.68 \text{ g/cm}^3$  as specified in Appendix 1.B. To conservatively bound any potential weight loss at the design temperature and any inability to reach the theoretical density, the density is reduced by 4% to  $1.61 \text{ g/cm}^3$ . The density used for the shielding analysis is conservatively assumed to be  $1.61 \text{ g/cm}^3$  to underestimate the shielding capabilities of the neutron shield.

## Hydrogen

The weight concentration of hydrogen is 6.0%. However, all shielding analyses conservatively assume 5.9% hydrogen by weight in the calculations.

#### Boron Carbide

Boron carbide dispersed within Holtite-A in finely dispersed powder form is present in 1% (minimum) weight concentration. Holtite-A may be specified with a  $B_4C$  content of up to 6.5 weight percent. For the HI-STORM 100 System, Holtite-A is specified with a minimum  $B_4C$  weight percent of 1%.

#### Design Temperature

The design temperature of Holtite-A is set at 300EF. The maximum spatial temperature of Holtite-A under all normal operating conditions must be demonstrated to be below this design temperature.

I

#### Thermal Conductivity

Table 1.B.1 lists the thermal conductivity of Holtite-A specified by the manufacturer.

The Holtite-A neutron shielding material is stable below the design temperature for the long term and provides excellent shielding properties for neutrons. Technical papers provided in Appendix 1.B validate the neutron shield material's long-term stability within the design temperature and the material's ability to resist the effects of a fire accident. Holtite-A has been utilized in similar applications and has been licensed for use in a transportation cask under Docket No. 71-9235 and for storage in the HI-STAR 100 overpack under Docket No. 72-1008.

## 1.2.1.3.3 Gamma Shielding Material

For gamma shielding, the HI-STORM 100 storage overpack primarily relies on massive concrete sections contained in a robust steel vessel. A carbon steel plate, the shield shell, is located adjacent to the overpack inner shell to provide additional gamma shielding (Figure 1.2.7). Carbon steel supplements the concrete gamma shielding in most portions of the storage overpack, most notably the baseplate and the lid. To reduce the radiation streaming through the overpack air inlets and outlets, gamma shield cross plates are installed in the ducts (Figure 1.2.8) to scatter the radiation. This scattering acts to significantly reduce the local dose rates adjacent to the overpack air inlets and outlets.

In the HI-TRAC transfer cask, the primary gamma shielding is provided by lead. As in the storage overpack, carbon steel supplements the lead gamma shielding of the HI-TRAC transfer cask.

## 1.2.1.4 Lifting Devices

Lifting of the HI-STORM 100 System may be accomplished either by attachment at the top of the storage overpack ("top lift"), as would typically be done with a crane, or by attachment at the bottom ("bottom lift"), as would be effected by a number of lifting/handling devices.

For a top lift, the storage overpack is equipped with four threaded anchor blocks arranged circumferentially around the overpack. These anchor blocks are used for overpack lifting as well as securing the overpack lid to the overpack body. The anchor blocks are integrally welded to the overpack radial plates which in turn are full-length welded to the overpack inner shell, outer shell, and baseplate. Studs are threaded into the anchor blocks to secure the lid and provide for lifting. These four studs provide for direct attachment of lifting devices which, along with a specially-designed lift rig to ensure a vertical lift, allow lifting by a crane or similar equipment.

The lift rig shall be designed to lift a fully-loaded storage overpack with margins of safety specified in ANSI N14.6 [1.2.9].

A bottom lift of the HI-STORM 100 storage overpack is effected by the insertion of four hydraulic jacks underneath the inlet vent horizontal plates (Figure 1.2.1). A slot in the overpack baseplate allows the hydraulic jacks to be placed underneath the inlet vent horizontal plate. The hydraulic jacks lift the loaded overpack to a sufficient height to allow air pads to be placed or removed from under the overpack baseplate.

The HI-TRAC transfer cask is equipped with two lifting trunnions and two pocket trunnions. The lifting trunnions are positioned just below the top forging. The two pocket trunnions are located above the bottom forging and attached to the outer shell. The pocket trunnions are designed to allow rotation of the HI-TRAC. All trunnions are built from a high strength alloy with proven corrosion and non-galling characteristics. The lifting trunnions are designed in accordance with NUREG-0612 and ANSI N14.6. The lifting trunnions are installed by threading into tapped holes just below the top forging. The lifting trunnions feature a locking plate, which is placed onto the trunnion shaft and bolted to the HI-TRAC external surface to prevent the lifting trunnion from backing out.

The top of the MPC lid is equipped with four threaded holes that allow lifting of the loaded MPC. These holes allow the loaded MPC to be raised/lowered through the HI-TRAC transfer cask using lifting cleats. The threaded holes in the MPC lid are designed in accordance with NUREG-0612 and ANSI N14.6.

## 1.2.1.5 Design Life

The design life of the HI-STORM 100 System is 40 years. This is accomplished by using material of construction with a long proven history in the nuclear industry and specifying materials known to withstand their operating environments with little to no degradation. A maintenance program, as specified in Chapter 9, is also implemented to ensure the HI-STORM 100 System will exceed its design life of 40 years. The design considerations that assure the HI-STORM 100 System performs as designed throughout the service life include the following:

## HI-STORM Overpack and HI-TRAC Transfer Cask

- Exposure to Environmental Effects
- Material Degradation
- Maintenance and Inspection Provisions

1

#### <u>MPC</u>

- Corrosion
- Structural Fatigue Effects
- Maintenance of Helium Atmosphere
- Allowable Fuel Cladding Temperatures
- Neutron Absorber Boron Depletion

The adequacy of the HI-STORM 100 System for its design life is discussed in Sections 3.4.11 and 3.4.12.

- 1.2.2 <u>Operational Characteristics</u>
- 1.2.2.1 Design Features

The HI-STORM 100 System incorporates some unique design improvements. These design innovations have been developed to facilitate the safe long term storage of SNF. Some of the design originality is discussed in Subsection 1.2.1 and below.

The free volume of the MPCs is inerted with 99.995% pure helium gas during the spent nuclear fuel loading operations. Table 1.2.2 specifies the helium fill mass to be placed in the MPC internal cavity as a function of the free space. As the fill pressure is highly dependent on the MPC internal temperature, which increases because of the decay heat and the vacuum drying process, it is more accurate to measure the mass placed in the MPC internal cavity rather than pressure.

The HI-STORM overpack has been designed to synergistically combine the benefits of steel and concrete. The steel-concrete-steel construction of the HI-STORM overpack provides ease of fabrication, increased strength, and an optimal radiation shielding arrangement. The concrete is primarily provided for radiation shielding and the steel is primarily provided for structural functions.

The strength of concrete in tension and shear is conservatively neglected. Only the compressive strength of the concrete is accounted for in the analyses.

The criticality control features of the HI-STORM 100 are designed to maintain the neutron multiplication factor k-effective (including uncertainties and calculational bias) at less than 0.95 under all normal, off-normal, and accident conditions of storage as analyzed in Chapter 6. This level of conservatism and safety margins is maintained, while providing the highest storage capacity.

## 1.2.2.2 Sequence of Operations

Table 1.2.6 provides the basic sequence of operations necessary to defuel a spent fuel pool using the HI-STORM 100 System. The detailed sequence of steps for storage-related loading and handling operations is provided in Chapter 8 and is supported by the Design Drawings in Section 1.5. A summary of the loading and unloading operations is provided below. Figures 1.2.16 and 1.2.17 provide a pictorial view of typical loading and unloading operations, respectively.

## Loading Operations

At the start of loading operations, the HI-TRAC transfer cask is configured with the pool lid installed. The HI-TRAC water jacket is filled with demineralized water or a 25% ethylene glycol solution depending on the ambient temperature conditions. The lift yoke is used to position HI-TRAC in the designated preparation area or setdown area for HI-TRAC inspection and MPC insertion. The annulus is filled with plant demineralized water, and an inflatable annulus seal is installed. The inflatable seal prevents contact between spent fuel pool water and the MPC shell reducing the possibility of contaminating the outer surfaces of the MPC. The MPC is then filled with spent fuel pool water or plant demineralized water. HI-TRAC and the MPC are lowered into the spent fuel pool for fuel loading using the lift yoke. Pre-selected assemblies are loaded into the MPC and a visual verification of the assembly identification is performed.

While still underwater, a thick shielding lid (the MPC lid) is installed. The lift yoke is remotely engaged to the HI-TRAC lifting trunnions and is used to lift the HI-TRAC close to the spent fuel pool surface. As an ALARA measure, dose rates are measured on the top of the HI-TRAC and MPC prior to removal from the pool to check for activated debris on the top surface. The MPC lift bolts (securing the MPC lid to the lift yoke) are removed. As HI-TRAC is removed from the spent fuel pool, the lift yoke and HI-TRAC are sprayed with demineralized water to help remove contamination.

HI-TRAC is removed from the pool and placed in the designated preparation area. The top surfaces of the MPC lid and the upper flange of HI-TRAC are decontaminated. The inflatable annulus seal is removed, and an annulus shield is installed. The annulus shield provides additional personnel shielding at the top of the annulus and also prevents small items from being dropped into the annulus. Dose rates are measured at the MPC lid and around the mid-height circumference of HI-TRAC to ensure that the dose rates are within expected values. The Automated Welding System baseplate shield is installed to reduce dose rates around the top of the cask. The MPC water level is lowered slightly and the MPC lid is seal-welded using the Automated Welding System (AWS). Liquid penetrant examinations are performed on the root and final passes. A volumetric examination is also performed on the MPC lid-to-shell weld. The water level is raised to the top of the MPC and the weld is hydrostatically tested. Then a small

volume of the water is displaced with helium gas. The helium gas is used for leakage testing. A helium leakage rate test is performed on the MPC lid confinement weld (lid-to-shell) to verify weld integrity and to ensure that required leakage rates are within acceptance criteria. The water level is raised to the top of the MPC again and then the MPC water is displaced from the MPC by blowing pressurized helium or nitrogen gas into the vent port of the MPC, thus displacing the water through the drain line. The volume of water displaced from the MPC is measured to determine the free volume inside the MPC. This information is used to determine the helium backfill requirements for the MPC.

The Vacuum Drying System (VDS) is connected to the MPC and is used to remove all liquid water from the MPC in a stepped evacuation process. The stepped evacuation process is used to preclude the formation of ice in the MPC and Vacuum Drying System lines. The internal pressure is reduced and held for a duration to ensure that all liquid water has evaporated.

Following this dryness test, the VDS is disconnected and the Helium Backfill System (HBS) is attached and the MPC is backfilled with a predetermined amount of helium gas. The helium backfill ensures adequate heat transfer during storage, provides an inert atmosphere for long-term fuel integrity, and provides the means of future leakage rate testing of the MPC confinement boundary welds. Cover plates are installed and seal-welded over the MPC vent and drain ports with liquid penetrant examinations performed on the root and final passes. The cover plates are helium leakage tested to confirm that they meet the established leakage rate criteria.

The MPC closure ring is then placed on the MPC, aligned, tacked in place, and seal welded, providing redundant closure of the MPC lid and cover plates confinement closure welds. Tack welds are visually examined, and the root and final welds are inspected using the liquid penetrant examination technique to ensure weld integrity. The annulus shield is removed and the remaining water in the annulus is drained. The AWS Baseplate shield is removed. The MPC lid and accessible areas of the top of the MPC shell are smeared for removable contamination and HI-TRAC dose rates are measured. The HI-TRAC top lid is installed and the bolts are torqued. The MPC lift cleats are installed on the MPC lid. The MPC lift cleats are the primary lifting point of the MPC. Two cleats provide redundant support of the MPC when it is lifted or supported.

Two or four stays (depending on the site crane hook configuration) are installed between the MPC lift cleats and the lift yoke main pins. The stays secure the MPC within HI-TRAC while the pool lid is replaced with the transfer lid. The HI-TRAC is manipulated to replace the pool lid with the transfer lid. The MPC lift cleats and stays support the MPC during the transfer operations.

MPC transfer from the HI-TRAC transfer cask into the overpack may be performed inside or outside the fuel building. Similarly, HI-TRAC and HI-STORM may be transferred to the ISFSI

in several different ways. The loaded HI-TRAC may be handled in the vertical or horizontal orientation. The loaded HI-STORM can only be handled vertically.

For MPC transfers inside the fuel building, the empty HI-STORM overpack is inspected and positioned in the truck bay with the lid removed and the vent duct shield inserts installed. The loaded HI-TRAC is placed using the fuel building crane on top of HI-STORM. Alignment pins help guide HI-TRAC during this operation.

After the HI-TRAC is positioned atop the HI-STORM, the MPC is raised slightly. The transfer lid door locking pins are removed and the doors are opened. The MPC is lowered into HI-STORM. Following verification that the MPC is fully lowered, slings are disconnected and lowered onto the MPC lid. The doors are closed and the locking pins are installed. HI-TRAC is removed from on top of HI-STORM along with the vent shield inserts. The MPC lift cleats and slings are removed from atop the MPC. The HI-STORM lid is installed, and the upper vent screens and gamma shield cross plates are installed. The HI-STORM lid studs are installed and torqued.

For MPC transfers outside of the fuel building, the empty HI-STORM overpack is inspected and positioned in the cask transfer facility with the lid removed and the vent duct shield inserts installed. The loaded HI-TRAC is transported to the cask transfer facility in the vertical or horizontal orientation. A number of methods may be utilized as long as the handling limitations prescribed in the technical specifications are not exceeded.

To place the loaded HI-TRAC in a horizontal orientation a transport frame or "cradle" is utilized. The cradle is equipped with rotation trunnions which engage the HI-TRAC pocket trunnions. While the loaded HI-TRAC is lifted by the lifting trunnions, the HI-TRAC is lowered onto the cradle rotation trunnions. Then, the crane lowers and the HI-TRAC pivots around the pocket trunnions and is placed in the horizontal position in the cradle.

If the loaded HI-TRAC is transferred to the cask transfer facility in the horizontal orientation, the HI-TRAC and cradle are placed on a transport vehicle. The transport vehicle may be an air pad, railcar, heavy-haul trailer, dolly, etc. If the loaded HI-TRAC is transferred to the cask transfer facility in the vertical orientation, the HI-TRAC may be lifted by the lifting trunnions or seated on the transport vehicle. During the transport of the loaded HI-TRAC, standard plant heavy load handling practices shall be applied including administrative controls for the travel path and tie-down mechanisms.

1

After the loaded HI-TRAC arrives at the cask transfer facility, the HI-TRAC is upended by a crane if the HI-TRAC is in a horizontal orientation. The loaded HI-TRAC is then placed, using the crane located in the transfer area, on top of HI-STORM. Alignment pins help guide HI-TRAC during this operation.

After the HI-TRAC is positioned atop the HI-STORM, the MPC is raised slightly. The transfer lid door locking pins are removed and the doors are opened. The MPC is lowered into HI-STORM. Following verification that the MPC is fully lowered, slings are disconnected and lowered onto the MPC lid. The doors are closed and the locking pins are installed. HI-TRAC is removed from on top of HI-STORM along with the vent duct shield inserts. The MPC lift cleats and slings are removed from atop the MPC. The HI-STORM lid is installed, and the upper vent screens and gamma shield cross plates are installed. The HI-STORM lid studs are installed and torqued.

After the HI-STORM has been loaded either within the fuel building or at a dedicated cask transfer facility, the HI-STORM is then moved to its designated position on the ISFSI pad. The HI-STORM overpack may be moved using a number of methods as long as the handling limitations listed in the technical specifications are not exceeded. The loaded HI-STORM must be handled in the vertical orientation. However, the loaded overpack may be lifted from the top through the lid studs or from the bottom by the inlet vents. After the loaded HI-STORM is lifted, it may be placed on a transport mechanism or continue to be lifted by the lid studs and transported to the storage location. The transport mechanism may be an air pad, crawler, railcar, heavy-haul trailer, dolly, etc. During the transport of the loaded HI-STORM, standard plant heavy load handling practices shall be applied including administrative controls for the travel path and tie-down mechanisms. Once in position at the storage pad, vent operability testing is performed to ensure that the system is functioning within its design parameters.

#### **Unloading Operations**

The HI-STORM 100 System unloading procedures describe the general actions necessary to prepare the MPC for unloading, cool the stored fuel assemblies in the MPC, flood the MPC cavity, remove the lid welds, unload the spent fuel assemblies, and recover HI-TRAC and empty the MPC. Special precautions are outlined to ensure personnel safety during the unloading operations, and to prevent the risk of MPC overpressurization and thermal shock to the stored spent fuel assemblies.

The MPC is recovered from HI-STORM either at the cask transfer facility or the fuel building using any of the methodologies described in Section 8.1. The HI-STORM lid is removed, the vent duct shield inserts are installed, and the MPC lift cleats are attached to the MPC. The MPC lift slings are attached to the MPC lift cleats. HI-TRAC is raised and positioned on top of HI-

STORM. The MPC is raised into HI-TRAC. Once the MPC is raised into HI-TRAC, the HI-TRAC transfer lid doors are closed and the locking pins are installed. HI-TRAC is removed from on top of HI-STORM.

The HI-TRAC is brought into the fuel building and manipulated for bottom lid replacement. The transfer lid is replaced with the pool lid. The MPC lift cleats and stays support the MPC during the transfer operations.

HI-TRAC and its enclosed MPC are returned to the designated preparation area and the MPC stays, MPC lift cleats, and HI-TRAC top lid are removed. The annulus is filled with plant demineralized water. The annulus shield is installed to protect the annulus from debris produced

from the lid removal process. Similarly, HI-TRAC top surfaces are covered with a protective fire-retarding blanket.

The MPC closure ring and vent and drain port cover plates are core drilled. Local ventilation is established around the MPC ports. The RVOAs are attached to the vent and drain port. The RVOAs allow access to the inner cavity of the MPC, while providing a hermetic seal. The MPC is cooled using a closed-loop heat exchanger to reduce the MPC internal temperature to allow water flooding. Following the fuel cool-down, the MPC is flooded with water. The MPC lid-to-MPC shell weld is removed. Then, all weld removal equipment is removed with the MPC lid left in place.

The inflatable annulus seal is installed and pressurized. The MPC lid is rigged to the lift yoke and the lift yoke is engaged to HI-TRAC lifting trunnions. If weight limitations require, the neutron shield jacket is drained. HI-TRAC is placed in the spent fuel pool and the MPC lid is removed. All fuel assemblies are returned to the spent fuel storage racks and the MPC fuel cells are vacuumed to remove any assembly debris. HI-TRAC and MPC are returned to the designated preparation area where the MPC water is pumped back into the spent fuel pool. The annulus water is drained and the MPC and HI-TRAC are decontaminated in preparation for re-utilization.

# 1.2.2.3 Identification of Subjects for Safety and Reliability Analysis

## 1.2.2.3.1 Criticality Prevention

Criticality is controlled by geometry and neutron absorbing materials in the fuel basket. The MPC-24 and MPC-68 do not rely on soluble boron credit during loading or the assurance that water cannot enter the MPC during storage to meet the stipulated criticality limits.

The MPC-68 basket is equipped with Boral with a minimum <sup>10</sup>B areal density of 0.0372 g/cm<sup>2</sup>.

The MPC-24 basket is equipped with Boral with a minimum <sup>10</sup>B areal density of 0.0267 g/cm<sup>2</sup>. Due to the lower reactivity of the fuel to be stored in the MPC-68F as specified by the Technical Specifications in Chapter 12, the MPC-68F is equipped with Boral with a minimum <sup>10</sup>B areal density of 0.01 g/cm<sup>2</sup>.

#### 1.2.2.3.2 Chemical Safety

There are no chemical safety hazards associated with operations of the HI-STORM 100 dry storage system. A detailed evaluation is provided in Section 3.4.

## 1.2.2.3.3 Operation Shutdown Modes

The HI-STORM 100 System is totally passive and consequently, operation shutdown modes are unnecessary. Guidance is provided in Chapter 8, which outlines the HI-STORM 100 unloading procedures, and Chapter 11, which outlines the corrective course of action in the wake of postulated accidents.

#### 1.2.2.3.4 Instrumentation

As stated earlier, the HI-STORM 100 confinement boundary is the MPC, which is seal welded and leak tested. The HI-STORM 100 is a completely passive system with appropriate margins of safety; therefore, it is not necessary to deploy any instrumentation to monitor the cask in the storage mode. At the option of the user, a thermocouple may be utilized to monitor the air temperature of the HI-STORM overpack exit vent in lieu of routinely inspecting the ducts for blockage. See Subsection 2.3.3.2 and the Technical Specifications in Chapter 12 for additional details.

## 1.2.2.3.5 <u>Maintenance Technique</u>

Because of their passive nature, the HI-STORM 100 System requires minimal maintenance over its lifetime. No special maintenance program is required. Chapter 9 describes the acceptance criteria and maintenance program set forth for the HI-STORM 100.

## 1.2.3 <u>Cask Contents</u>

The HI-STORM 100 System is designed to house different types of MPCs. The MPCs are designed to store both BWR and PWR spent nuclear fuel assemblies. Tables 1.2.1 and 1.2.2 provide key design parameters for the MPCs. A description of acceptable fuel assemblies for storage in the MPCs is provided in Section 2.1 and the Technical Specifications.

At this time, failed fuel assemblies discharged from Dresden Unit 1 and Humboldt Bay reactors have been evaluated and this application requests approval of these two types of damaged fuel assemblies and fuel debris as contents for storage in the MPC-68. Damaged fuel assemblies and fuel debris shall be placed in damaged fuel containers prior to loading into the MPC to facilitate handling and contain loose components. Any combination of damaged fuel assemblies in damaged fuel containers and intact fuel assemblies, up to a total of 68, may be stored in the standard MPC-68. The MPC-68 design to store fuel debris is almost identical to the MPC-68 design to store intact or damaged fuel, the sole difference being the former requires a lower minimum B<sup>10</sup> areal density in the Boral. Therefore, an MPC-68 which is to store damaged fuel containers with fuel assemblies classified as fuel debris must be designated during fabrication to ensure the proper minimum B<sup>10</sup> areal density criteria is applied. To distinguish an MPC-68 which is fabricated to store damaged fuel containers with fuel assemblies classified as an "MPC-68F".

Up to 4 damaged fuel containers with fuel assemblies classified as fuel debris and meeting the requirements in the Technical Specifications may be stored within an MPC-68F. The quantity of damaged fuel containers with fuel debris is limited to meet the off-site transportation requirements of 10CFR71, specifically, 10CFR71.63(b).

## KEY SYSTEM DATA FOR HI-STORM 100 SYSTEM

| ITEM                                                        | QUANTITY | NOTES                                                                                                                                                                                                                                  |
|-------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Types of MPCs included in<br>this revision of the submittal | 3        | 1 for PWR<br>2 for BWR                                                                                                                                                                                                                 |
| MPC storage capacity:                                       | MPC-24   | Up to 24 intact zircaloy or<br>stainless steel clad PWR fuel<br>assemblies. Control<br>components and non-fuel<br>hardware are not authorized<br>for loading.                                                                          |
|                                                             | MPC-68   | Any combination of damaged<br>fuel assemblies in damaged<br>fuel containers and intact fuel<br>assemblies, up to a total of 68<br>in the MPC-68                                                                                        |
|                                                             | MPC-68F  | OR<br>Up to 4 damaged fuel<br>containers with zircaloy clad<br>BWR fuel debris and the<br>complement damaged<br>zircaloy clad BWR fuel<br>assemblies in damaged fuel<br>containers or intact fuel<br>assemblies within an MPC-<br>68F. |

|                                                                                                    | PWR                                       | BWR                                          |
|----------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|
| Pre-disposal service life (years)                                                                  | 40                                        | 40                                           |
| Design temperature, max./min. (°F)                                                                 | 725° <sup>†</sup> /-40° <sup>††</sup>     | 725°†/-40°††                                 |
| Design internal pressure (psig)                                                                    |                                           |                                              |
| Normal conditions<br>Off-normal conditions<br>Accident Conditions                                  | 100<br>100<br>125                         | 100<br>100<br>125                            |
| Total heat load, max. (kW)                                                                         | 20.88 (MPC-24)                            | 21.4 (MPC-68)                                |
| Maximum permissible peak fuel<br>cladding temperature:                                             |                                           |                                              |
| Normal (°F)                                                                                        | See Table 2.2.3                           | See Table 2.2.3                              |
| Short Term & Accident (°F)                                                                         | 1058°                                     | 1058°                                        |
| MPC internal environment                                                                           |                                           |                                              |
| Helium fill (g-moles/l of free space)                                                              | 0.1212 (MPC-24)                           | 0.1218<br>(MPC-68 & MPC-68F)                 |
| Maximum permissible multiplication actor (k <sub>eff</sub> ) including all uncertainties nd biases | <0.95                                     | <0.95                                        |
| Boral <sup>10</sup> B Areal Density (g/cm <sup>2</sup> )                                           | 0.0267 (MPC-24)                           | 0.0372 (MPC-68)<br>0.01 (MPC-68F)            |
| nd closure(s)                                                                                      | Welded                                    | Welded                                       |
| uel handling                                                                                       | Opening compatible with standard grapples | Opening compatible<br>with standard grapples |
| eat dissipation                                                                                    | Passive                                   | Passive                                      |

 Table 1.2.2

 KEY PARAMETERS FOR HI-STORM 100 MULTI-PURPOSE CANISTERS

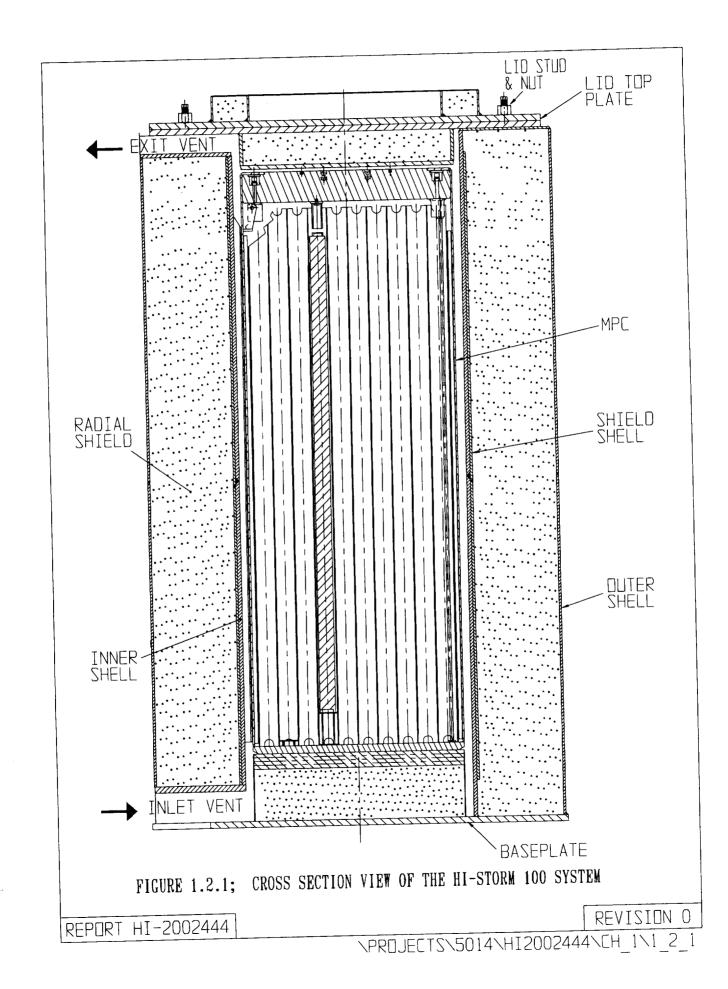
<sup>&</sup>lt;sup>†</sup> Maximum normal condition design temperatures for the MPC fuel basket. A complete listing of design temperatures for all components is provided in Table 2.2.3.

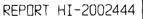
<sup>&</sup>lt;sup>††</sup> Temperature based on off-normal minimum environmental temperatures specified in Section 2.2.2.2 and no fuel decay heat load.

## BORAL EXPERIENCE LIST DOMESTIC PRESSURIZED WATER REACTORS

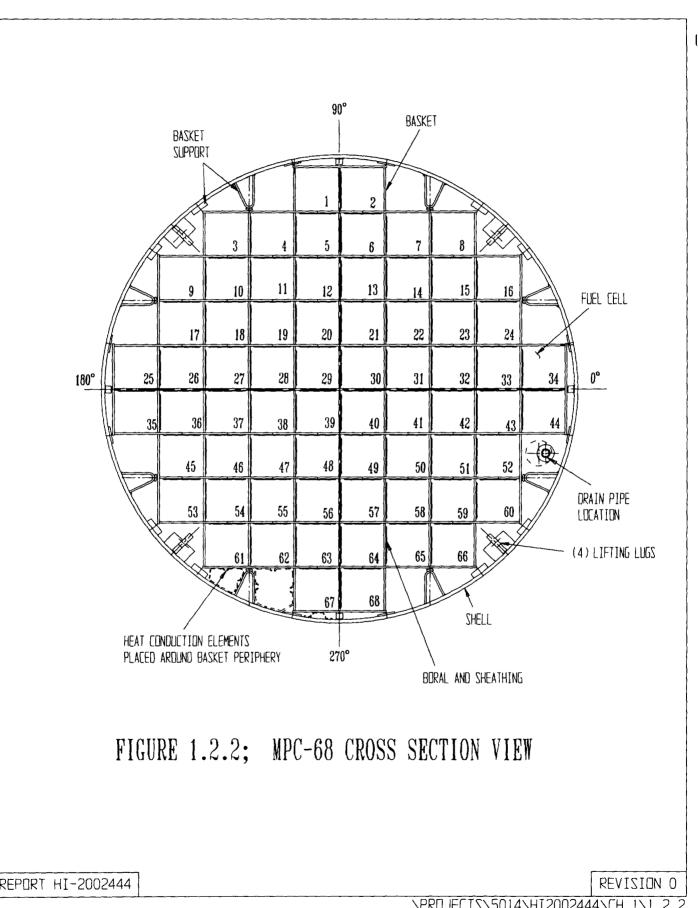
| Plant                      | Utility                               |
|----------------------------|---------------------------------------|
| Donald C. Cook             | American Electric Power               |
| Indian Point 3             | New York Power Authority              |
| Maine Yankee               | Maine Yankee Atomic Power             |
| Salem 1,2                  | Public Service Electric and Gas       |
| Sequoyah 1,2               | Tennessee Valley Authority            |
| Yankee Rowe                | Yankee Atomic Power                   |
| Zion 1,2                   | Commonwealth Edison Company           |
| Byron 1,2                  | Commonwealth Edison Company           |
| Braidwood 1,2              | Commonwealth Edison Company           |
| Three Mile Island I        | GPU Nuclear                           |
| Sequoyah (rerack)          | Tennessee Valley Authority            |
| D.C. Cook (rerack)         | American Electric Power               |
| Maine Yankee               | Maine Yankee Atomic Power Company     |
| Connecticut Yankee         | Northeast Utilities Service Company   |
| Salem Units 1 & 2 (rerack) | Public Service Electric & Gas Company |

#### BORAL EXPERIENCE LIST DOMESTIC BOILING WATER REACTORS

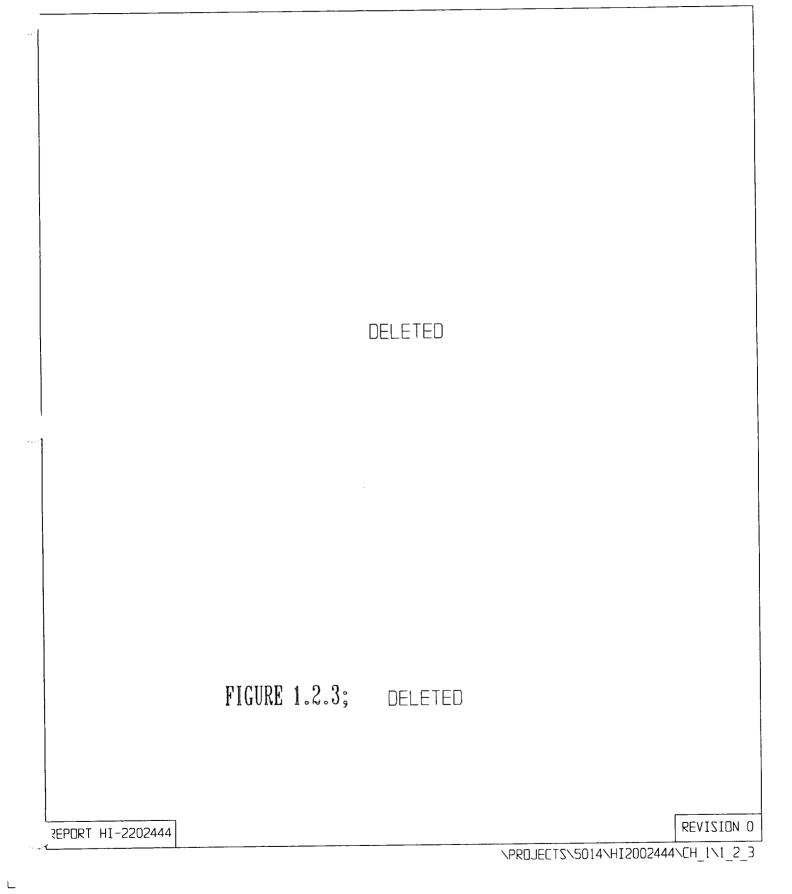

| Plant                      | Utility                                 |
|----------------------------|-----------------------------------------|
| Browns Ferry 1,2,3         | Tennessee Valley Authority              |
| Brunswick 1,2              | Carolina Power & Light                  |
| Clinton                    | Illinois Power                          |
| Dresden 2,3                | Commonwealth Edison Company             |
| Duane Arnold Energy Center | Iowa Electric Light and Power           |
| J.A. FitzPatrick           | New York Power Authority                |
| E.I. Hatch 1,2             | Georgia Power Company                   |
| Hope Creek                 | Public Service Electric and Gas         |
| Humboldt Bay               | Pacific Gas and Electric Company        |
| LaCrosse                   | Dairyland Power                         |
| Limerick 1,2               | Philadelphia Electric Company           |
| Monticello                 | Northern States Power                   |
| Peachbottom 2,3            | Philadelphia Electric Company           |
| Perry 1,2                  | Cleveland Electric Illuminating         |
| Pilgrim                    | Boston Edison Company                   |
| Susquehanna 1,2            | Pennsylvania Power & Light              |
| Vermont Yankee             | Vermont Yankee Atomic Power             |
| Hope Creek                 | Public Service Electric and Gas Company |
| Shearon Harris Pool B      | Carolina Power & Light Company          |
| Duane Arnold               | Iowa Electric Light and Power           |
| Pilgrim                    | Boston Edison Company                   |
| LaSalle Unit 1             | Commonwealth Edison Company             |
| Millstone Point Unit One   | Northeast Utilities Service Company     |


## BORAL EXPERIENCE LIST FOREIGN PLANTS

| INTERNATIONAL INSTALLATIONS USING BORAL |                        |  |
|-----------------------------------------|------------------------|--|
| COUNTRY                                 | PLANT(S)               |  |
| France                                  | 12 PWR Plants          |  |
| South Africa                            | Koeberg 1,2            |  |
| Switzerland                             | Beznau 1,2             |  |
|                                         | Gosgen                 |  |
| Taiwan                                  | Chin-Shan 1,2          |  |
|                                         | Kuosheng 1,2           |  |
| Mexico                                  | Laguna Verde Units 1,2 |  |
| Korea                                   | Ulchin Units 1, 2      |  |
| Brazil                                  | Angra 1                |  |
| United Kingdom                          | Sizewell B             |  |


# HI-STORM 100 OPERATIONS SEQUENCE

| Site-<br>own | specific handling and operations procedures will be prepared, reviewed, and approved by each er/user.                                                      |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1            | HI-TRAC and MPC lowered into the fuel pool without lids                                                                                                    |
| 2            | Fuel assemblies transferred into the MPC fuel basket                                                                                                       |
| 3            | MPC lid lowered onto the MPC                                                                                                                               |
| 4            | HI-TRAC/MPC assembly moved to the decon pit and MPC lid welded in place, volumetrically or multi-layer PTexamined, hydrostatically tested, and leak tested |
| 5            | MPC dewatered, vacuum dried, backfilled with helium, and the closure ring welded                                                                           |
| 6            | HI-TRAC annulus drained and external surfaces decontaminated                                                                                               |
| 7            | MPC lifting cleats installed and MPC weight supported by rigging                                                                                           |
| 8            | HI-TRAC pool lid removed and transfer lid attached                                                                                                         |
| 9            | MPC lowered and seated on HI-TRAC transfer lid                                                                                                             |
| 10           | HI-TRAC/MPC assembly transferred to atop HI-STORM overpack                                                                                                 |
| 11           | MPC weight supported by rigging and transfer lid doors opened                                                                                              |
| 12           | MPC lowered into HI-STORM overpack, HI-TRAC transfer lid doors closed, and HI-TRAC removed from atop HI-STORM overpack                                     |
| 13           | HI-STORM overpack lid installed and bolted in place                                                                                                        |
| 14           | HI-STORM overpack placed in storage at the ISFSI pad                                                                                                       |

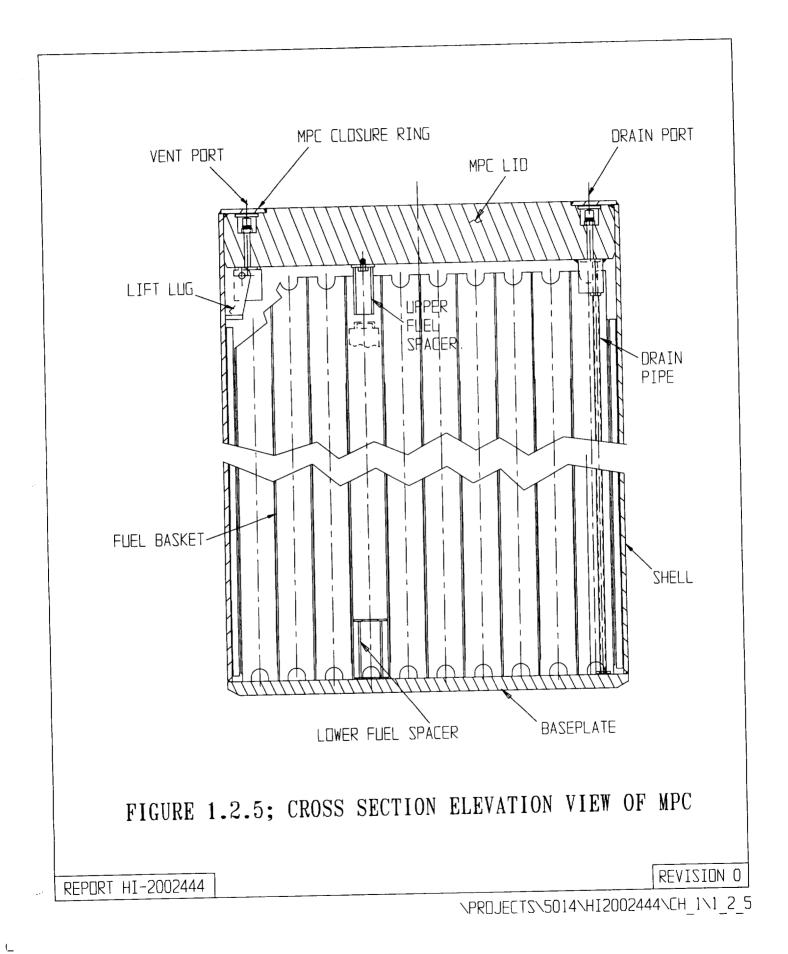




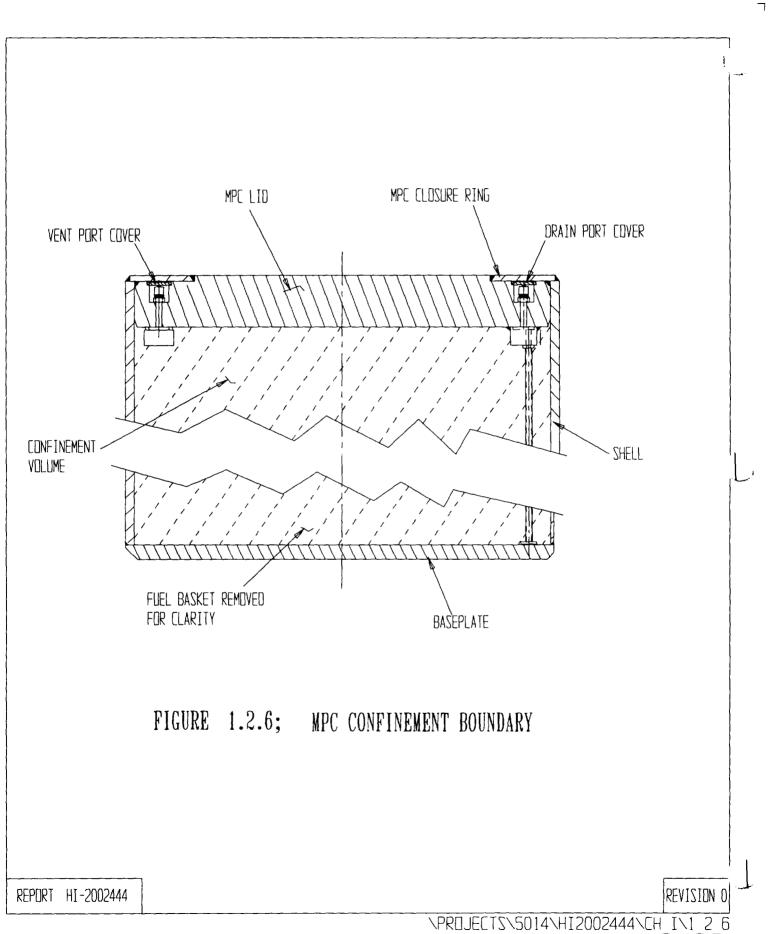

Γ



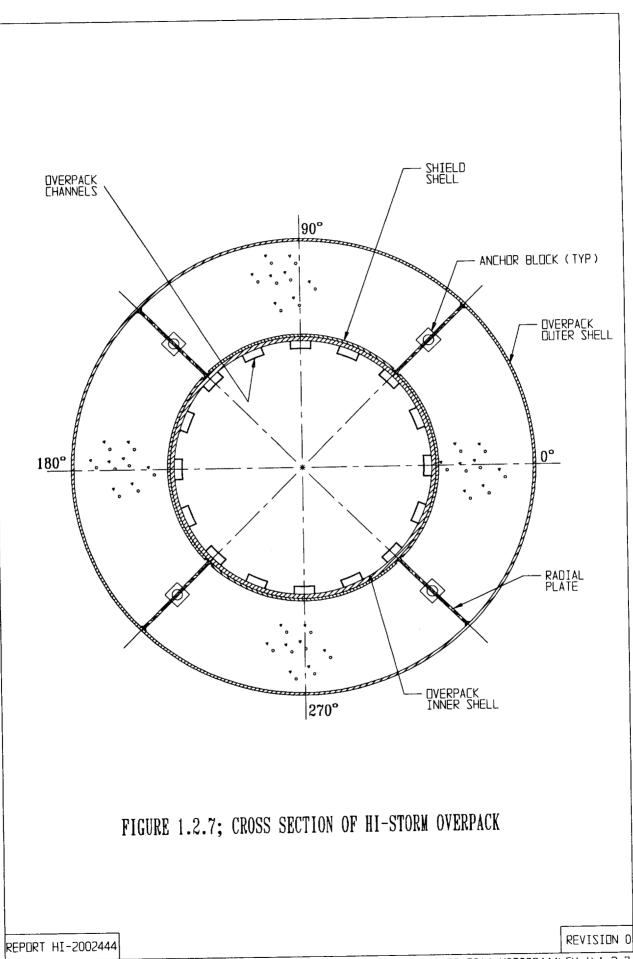
Г




∟


90° FLUX TRAP BASKET SUPPORTS (4) LIFTING LUGS Ħ 1 FUEL CELL 2 BASKET ۲ 3 5 6 4 7 8 9 12 10 11 180° n' 13 14 15 16 17 18 SHELL 19 20 21 22 9 HEAT CONDUCTION ELEMENTS PLACED 23 24 PERIPHERY BORAL AND SHEATHING DRAIN PIPE LOCATION 270° FIGURE 1.2.4; MPC-24 CROSS SECTION VIEW REPORT HI-2002444 REVISION O \PRDJECTS\5014\HI2002444\CH\_1\1\_2\_4

Г

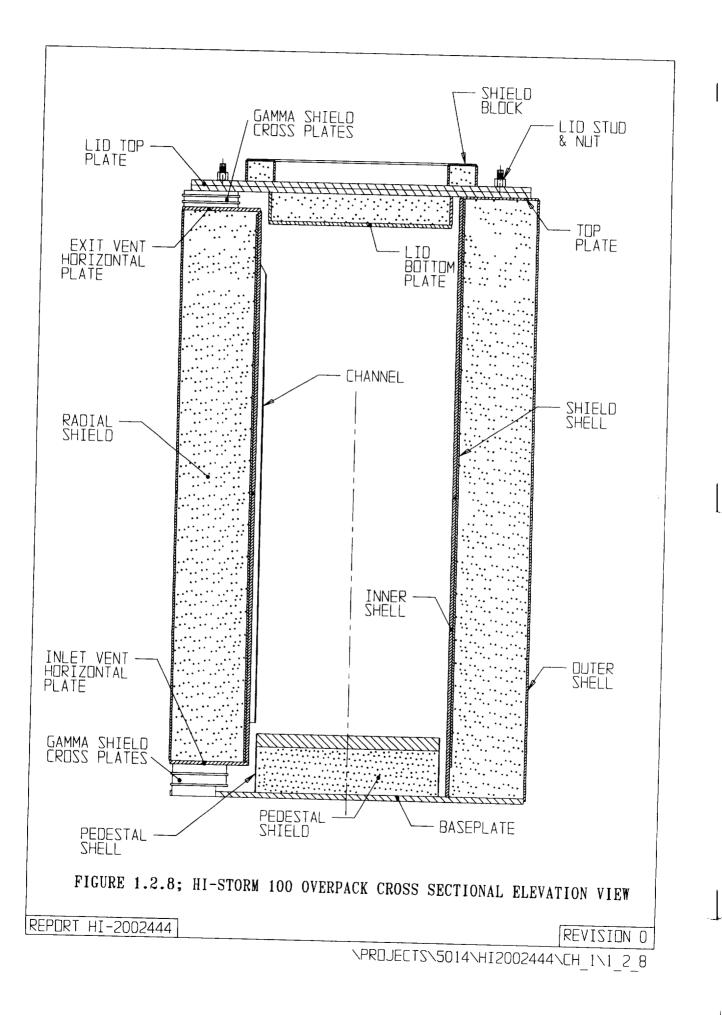

\_\_\_



\_\_\_\_\_



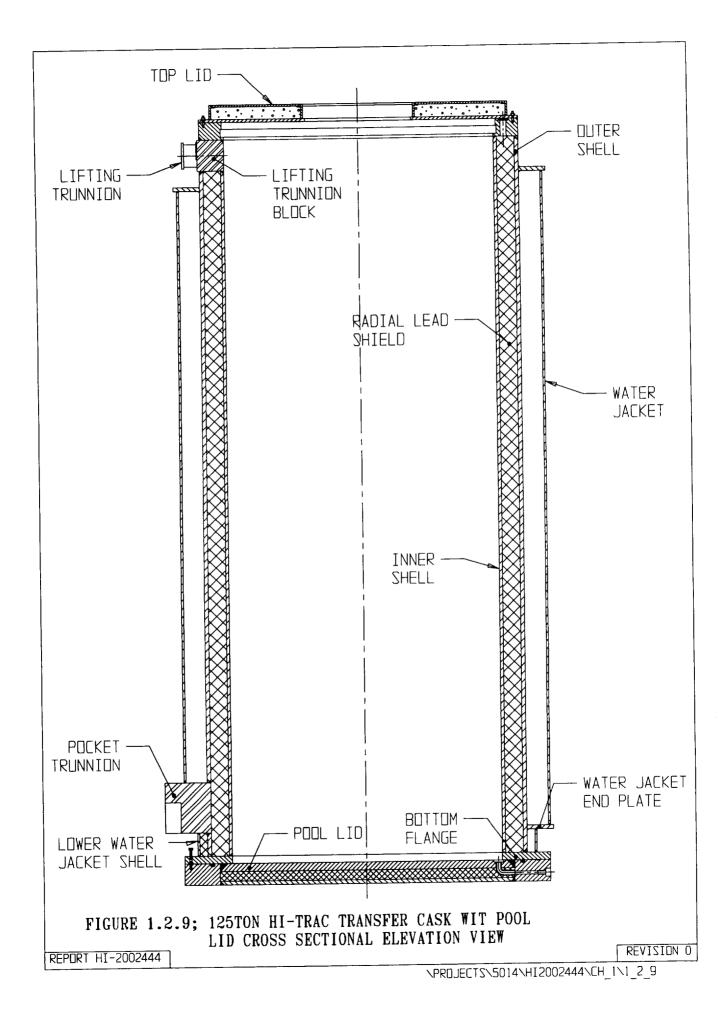
Γ

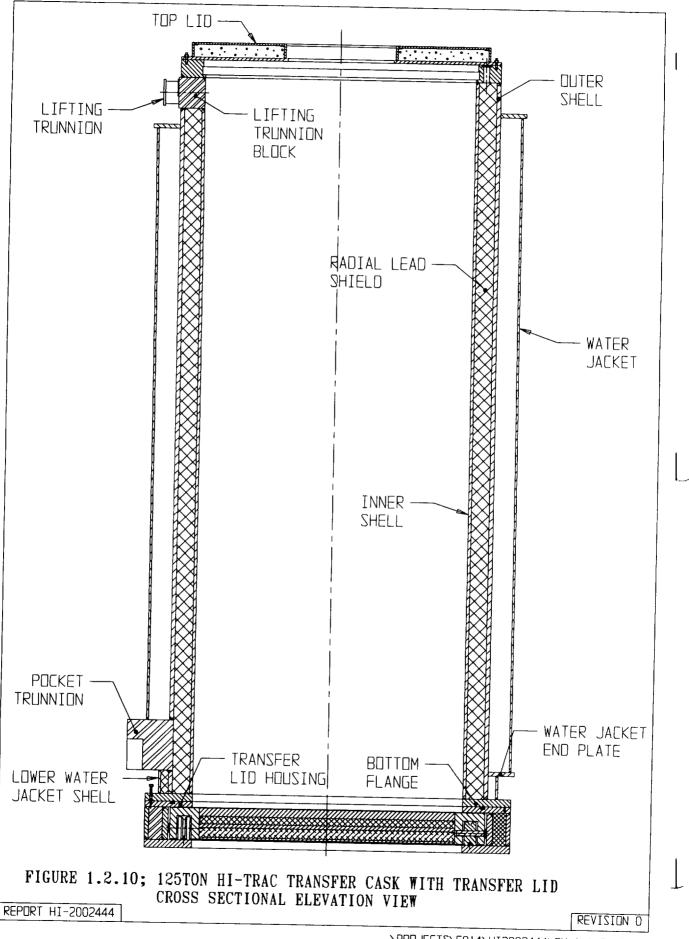



Г

L

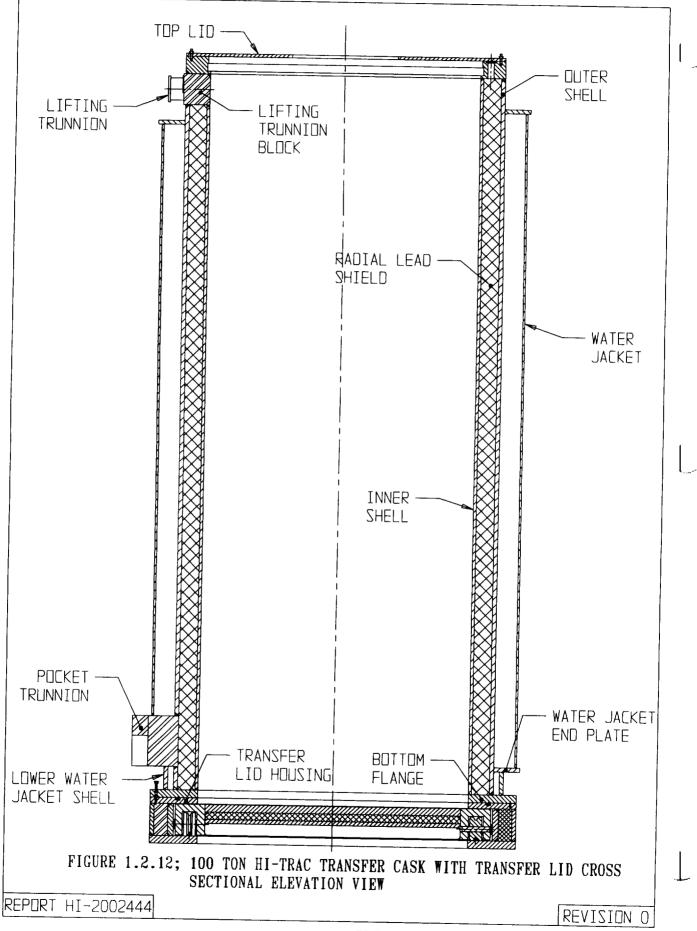
\PRDJECTS\5014\HI2002444\CH\_1\1\_2\_7


٦




٦


Г


L





\PRDJECTS\5014\HI2002444\CH\_1\1\_2\_10





| REPORT HI-2002444 |                        |  |
|-------------------|------------------------|--|
|                   | DELETED                |  |
| REVISION 0        | FIGURE 1.2.13; DELETED |  |

| REPORT H1-2002444 |                        |  |
|-------------------|------------------------|--|
| VPRDJECTSV501     | DELETED                |  |
| REVISION 0        | FIGURE 1.2.14; DELETED |  |

۲

1

| REPORT HI-2002444 |                |         |
|-------------------|----------------|---------|
| NPRDJECTSN5014    |                | DELETED |
| REVISION 0        | FIGURE 1.2.15; | DELETED |

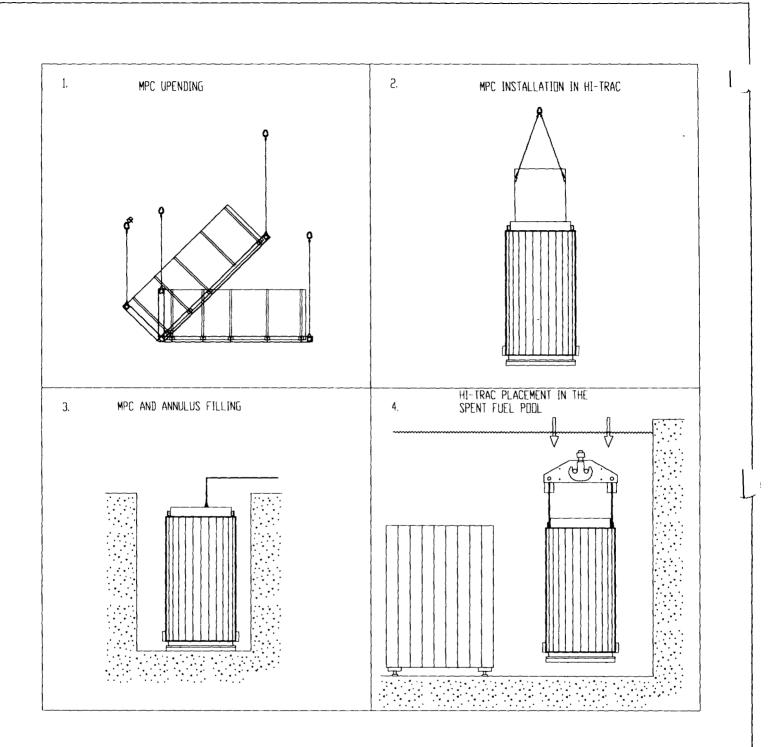



Figure 1.2.16a; Major HI-STORM 100 Loading Operations (Sheet 1 of 6)

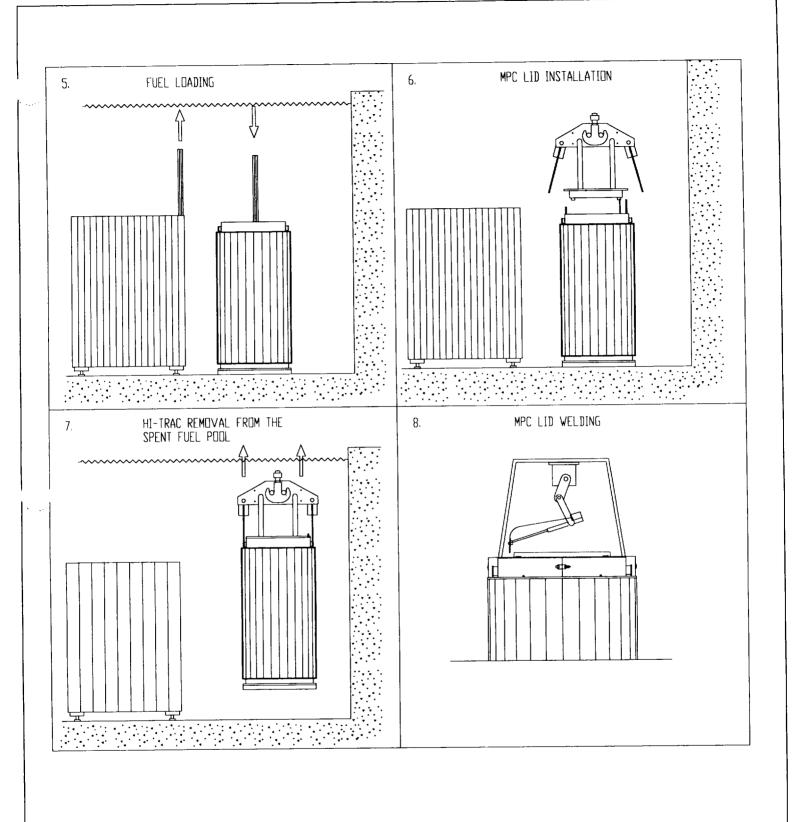
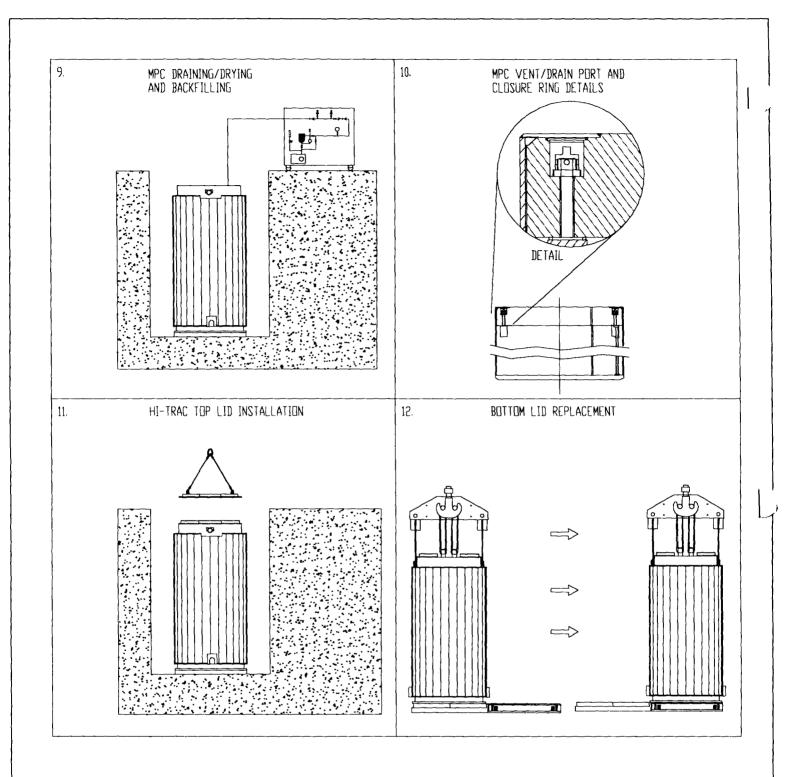
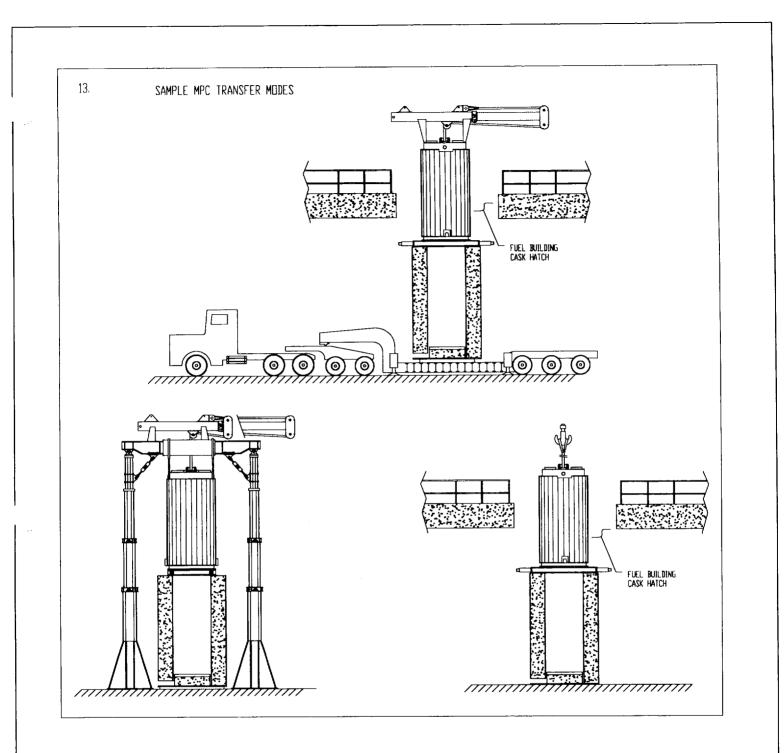




Figure 1.2.16b; Major HI-STORM 100 Loading Operations (Sheet 2 of 6)

---·


Rev. 0





Rev. 0

\_\_\_\_\_





Rev. 0

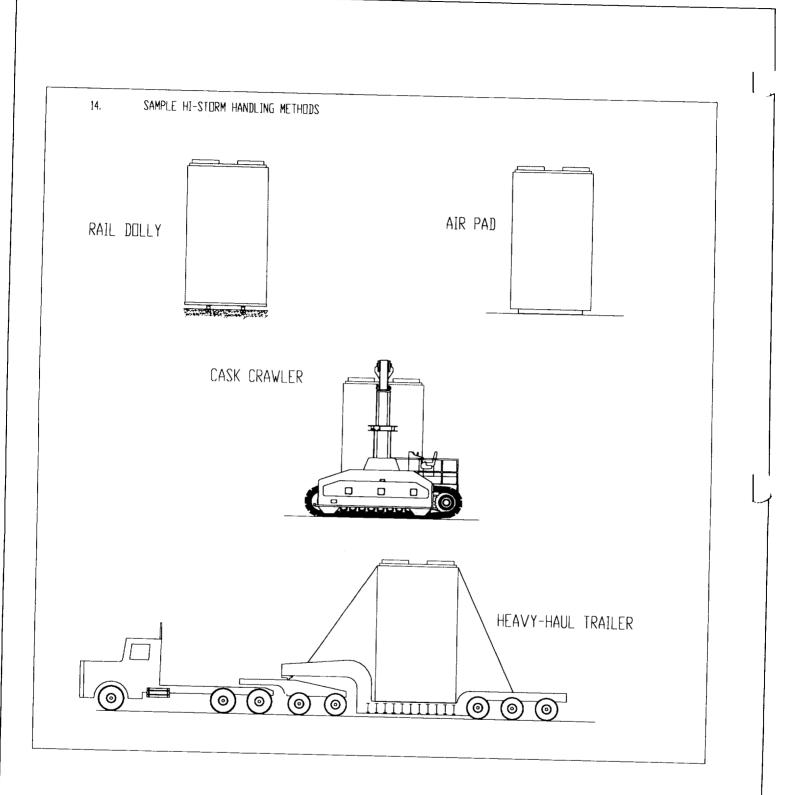
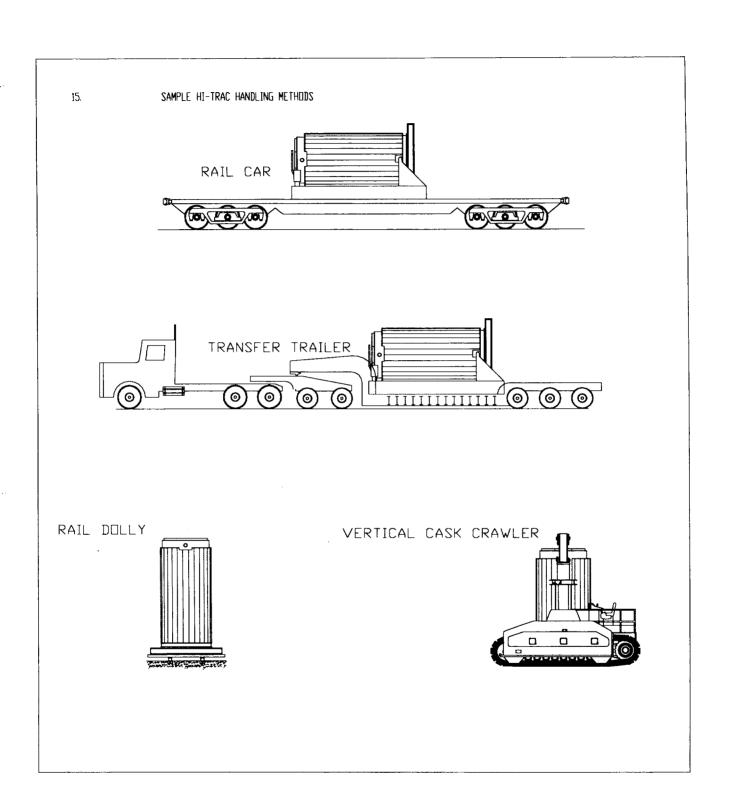




Figure 1.2.16e; Example of HI-STORM 100 Handling Options (Sheet 5 of 6)





Rev. 0

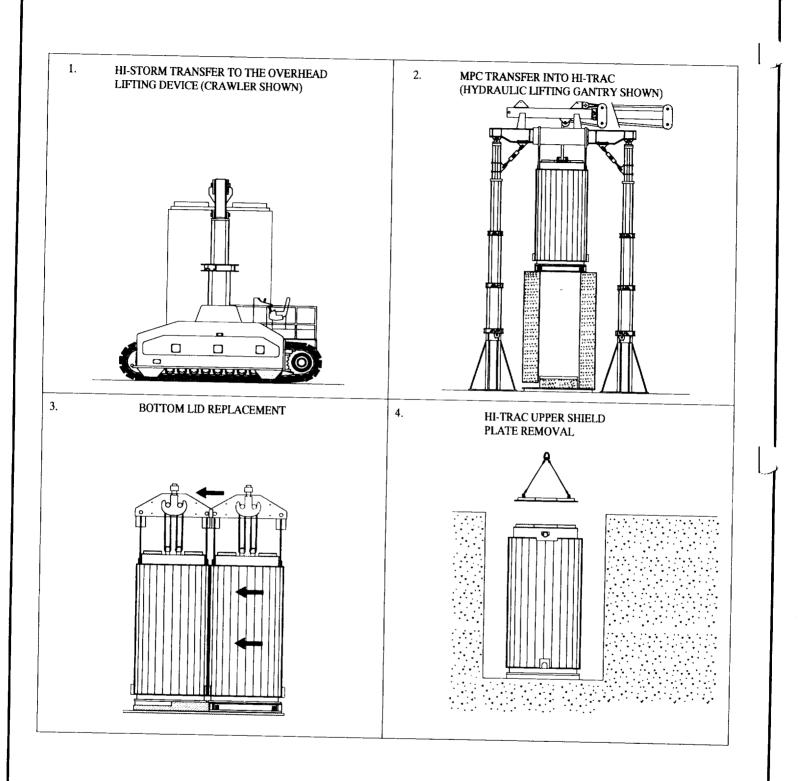
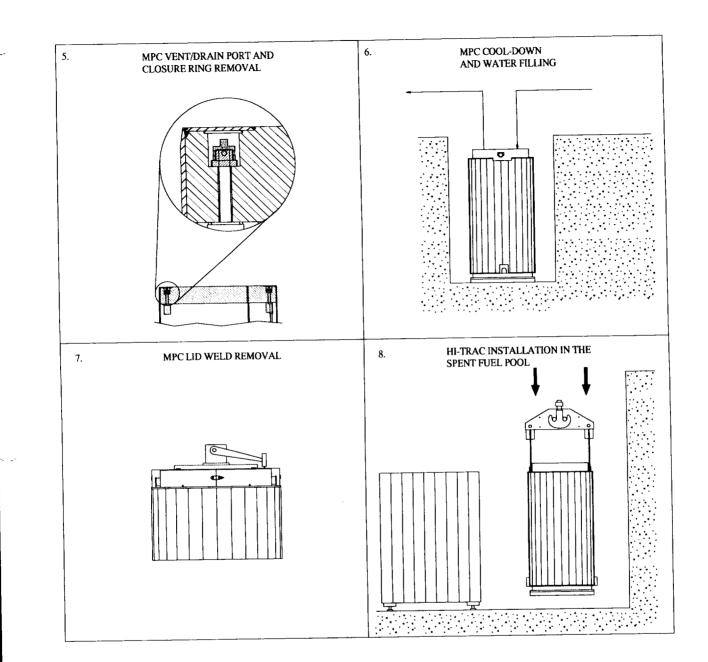
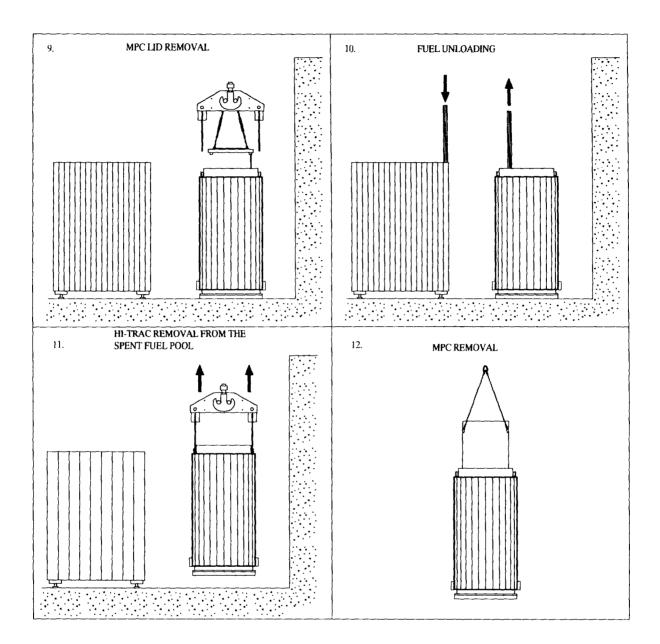
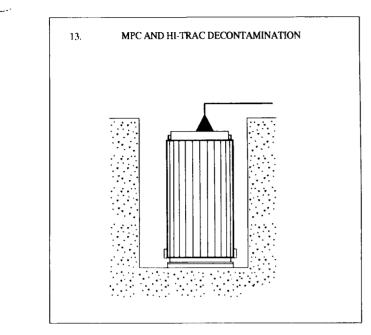





Figure 1.2.17a; Major HI-STORM 100 Unloading Operations (Sheet 1 of 4)










Rev. 0



## Figure 1.2.17d; Major HI-STORM 100 Unloading Operations (Sheet 4 of 4)

HI-STORM FSAR REPORT HI-2002444 Rev. 0

### 1.3 IDENTIFICATION OF AGENTS AND CONTRACTORS

Holtec International is a specialty engineering company with a principal focus on spent fuel storage technologies. Holtec has carried out turnkey wet storage capacity expansions (engineering, licensing, fabrication, removal of existing racks, performance of underwater modifications, volume reduction of the old racks and hardware, installation of new racks, and commissioning of the pool for increased storage capacity) in numerous plants around the world. Over 45 plants in the U.S., Britain, Brazil, Korea, and Taiwan have utilized Holtec's wet storage technology to extend their in-pool storage capacity.

Holtec's corporate engineering consists of experts with advanced degrees (Ph.D.'s) in every discipline germane to the fuel storage technologies, namely structural mechanics, heat transfer, computational fluid dynamics, and nuclear physics. All engineering analyses for Holtec's fuel storage projects (including HI-STORM 100) are carried out in-house.

Holtec International's quality assurance program was originally developed to meet NRC requirements delineated in 10CFR50, Appendix B, and was expanded to include provisions of 10CFR71, Subpart H, and 10CFR72, Subpart G, for structures, systems, and components designated as important to safety. A description of the quality assurance program and its method of satisfying all 18 criteria in 10CFR72, Subpart G, that apply to the design, fabrication, construction, testing, operation, modification, and decommissioning of structures, systems, and components important to safety is provided in Chapter 13.

It is currently planned that the HI-STORM 100 System will be fabricated by U.S. Tool & Die, Inc. (UST&D) of Pittsburgh, Pennsylvania. UST&D is an N-Stamp holder and a highly respected fabricator of nuclear components. UST&D is on Holtec's Approved Vendors List (AVL) and has a quality assurance program meeting 10CFR50 Appendix B criteria. Extensive prototypical fabrication of the MPCs has been carried out at the UST&D shop to resolve fixturing and tolerance issues. If another fabricator is to be used for the fabrication of any part of the HI-STORM 100 System, the proposed fabricator will be evaluated and audited in accordance with Holtec International's quality assurance program described in Chapter 13.

Construction, assembly, and operations on-site may be performed by Holtec or a licensee as the prime contractor. A licensee shall be suitably qualified and experienced to perform selected activities. Typical licensees are technically qualified and experienced in commercial nuclear power plant construction and operation activities under a quality assurance program meeting 10CFR50 Appendix B criteria.

HI-STORM FSAR REPORT HI-2002444

#### 1.4 GENERIC CASK ARRAYS

The HI-STORM 100 System is stored in a vertical configuration. The required center-to-center spacing between the modules (layout pitch) is guided by heat transfer considerations. Tables 1.4.1 and 1.4.2 provide the minimum pitch requirements, determined by heat transfer calculations in Chapter 4. The pitch values are minimums and may be increased to suit the user's specific needs. If MPC transfer operations between the HI-TRAC transfer cask and HI-STORM overpack are to be performed on the ISFSI pad, the minimum cask pitch values may not provide sufficient clearance to perform the transfer operations. An alternative to performing the MPC transfer operations on the ISFSI pad is to provide a separate MPC transfer area at the ISFSI.

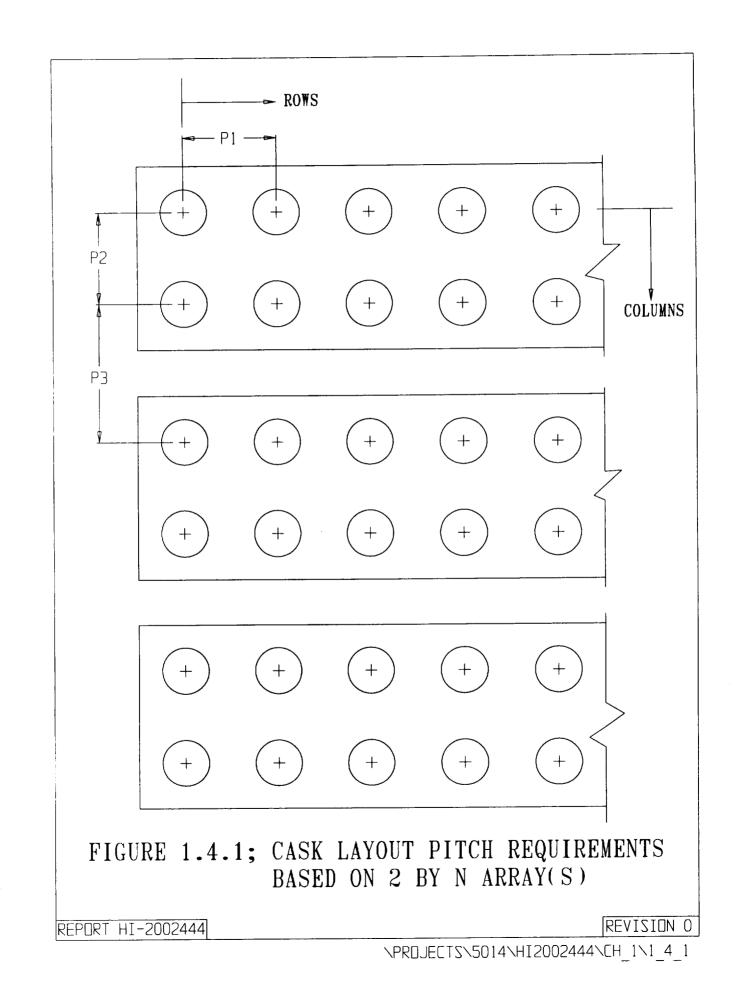
For array(s) of two by N casks, the pitch between adjacent rows of casks (P1) and between each adjacent column of casks (P2) shall be in accordance with Table 1.4.1. There may be an unlimited number of rows. The distance between adjacent arrays of two by N casks (P3) shall be as specified in Table 1.4.1. See Figure 1.4.1 for further clarification. The pattern of required pitches and distances may be repeated for an unlimited number of columns.

For a square array of casks the pitch between adjacent casks shall be in accordance with Table 1.4.2. See Figure 1.4.2 for further clarification. The total quantity of rows and columns is unlimited provided the minimum pitch specified in Table 1.4.2 is met.

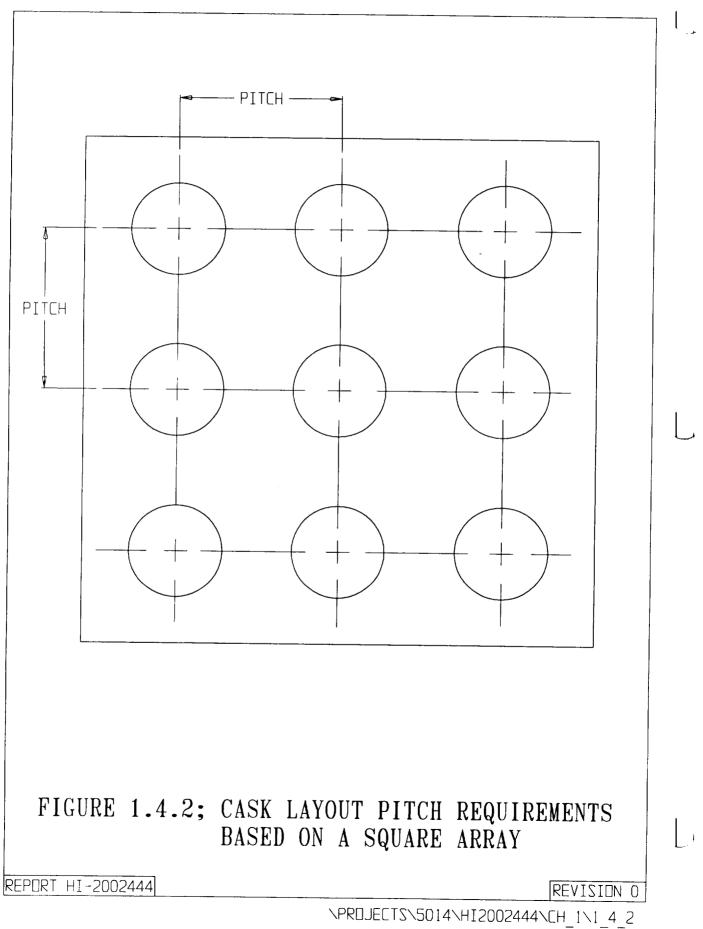
### Table 1.4.1

## CASK LAYOUT MINIMUM PITCH DATA FOR 2 BY N ARRAYS

| Orientation                                            | Minimum<br>Cask Pitch (ft.) |
|--------------------------------------------------------|-----------------------------|
| Between adjacent rows, P1,<br>and adjacent columns, P2 | 13.5                        |
| Between adjacent sets of two columns, P3               | 38                          |


#### Table 1.4.2

\_


\_

### CASK LAYOUT MINIMUM PITCH DATA FOR SQUARE ARRAYS

| Orientation            | Minimum<br>Cask Pitch (ft.) |
|------------------------|-----------------------------|
| Between adjacent casks | 18 - 8"                     |



L



### 1.5 GENERAL ARRANGEMENT DRAWINGS

The following HI-STORM 100 System design drawings and bills of materials are provided on subsequent pages in this subsection:

| Drawing<br>Number/Sheet | Description                     | Rev. |
|-------------------------|---------------------------------|------|
| 5014-1395 Sht 1/4       | HI-STAR 100 MPC-24 Construction | 10   |
| 5014-1395 Sht 2/4       | HI-STAR 100 MPC-24 Construction | 9    |
| 5014-1395 Sht 3/4       | HI-STAR 100 MPC-24 Construction | 9    |
| 5014-1395 Sht 4/4       | HI-STAR 100 MPC-24 Construction | 8    |
| 5014-1396 Sht 1/6       | HI-STAR 100 MPC-24 Construction | 12   |
| 5014-1396 Sht 2/6       | HI-STAR 100 MPC-24 Construction | 9    |
| 5014-1396 Sht 3/6       | HI-STAR 100 MPC-24 Construction | 9    |
| 5014-1396 Sht 4/6       | HI-STAR 100 MPC-24 Construction | 8    |
| 5014-1396 Sht 5/6       | HI-STAR 100 MPC-24 Construction | 8    |
| 5014-1396 Sht 6/6       | HI-STAR 100 MPC-24 Construction | 7    |
| 5014-1401 Sht 1/4       | HI-STAR 100 MPC-68 Construction | 11   |
| 5014-1401 Sht 2/4       | HI-STAR 100 MPC-68 Construction | 8    |
| 5014-1401 Sht 3/4       | HI-STAR 100 MPC-68 Construction | 9    |
| 5014-1401 Sht 4/4       | HI-STAR 100 MPC-68 Construction | 8    |
| 5014-1402 Sht 1/6       | HI-STAR 100 MPC-68 Construction | 13   |
| 5014-1402 Sht 2/6       | HI-STAR 100 MPC-68 Construction | 11   |
| 5014-1402 Sht 3/6       | HI-STAR 100 MPC-68 Construction | 11   |
| 5014-1402 Sht 4/6       | HI-STAR 100 MPC-68 Construction | 9    |
| 5014-1402 Sht 5/6       | HI-STAR 100 MPC-68 Construction | 9    |
| 5014-1402 Sht 6/6       | HI-STAR 100 MPC-68 Construction | 7    |
| 5014-1495 Sht 1/6       | HI-STORM 100 Assembly           | 8    |

| Drawing<br>Number/Sheet | Description                                            | Rev.  |
|-------------------------|--------------------------------------------------------|-------|
| 5014-1495 Sht 2/6       | Cross Section "Z" - "Z" View of HI-STORM               | 9     |
| 5014-1495 Sht 3/6       | Section "Y" - "Y" of HI-STORM                          | 7     |
| 5014-1495 Sht 4/6       | Section "X" -"X" of HI-STORM                           | 8     |
| 5014-1495 Sht 5/6       | Section "W" - "W" of HI-STORM                          | 9     |
| 5014-1495 Sht 6/6       | HI-STORM Outlet Vent Thermocouple Mounting Hardware    | 3     |
| 5014-1561 Sht 1/5       | View "A" - "A" of HI-STORM                             | 7     |
| 5014-1561 Sht 2/5       | Detail "B" of HI-STORM                                 | 7     |
| 5014-1561 Sht 3/5       | Detail of Air Inlet of HI-STORM                        | 7     |
| 5014-1561 Sht 4/5       | Detail of Air Outlet of HI-STORM                       | 7     |
| 5014-1561 Sht 5/5       | Miscellaneous Detail of HI-STORM                       | 7     |
| 5014-1783 Sht 1/1       | General Arrangement Damaged Fuel Container             | 2     |
| 5014-1784 Sht 1/1       | Damaged Fuel Container Details                         | 1     |
| 5014-1880 Sht 1/10      | 125 Ton HI-TRAC Outline with Pool Lid                  | 7     |
| 5014-1880 Sht 2/10      | 125 Ton HI-TRAC Body Sectioned Elevation               | 8     |
| 5014-1880 Sht 3/10      | 125 Ton HI-TRAC Body Sectioned Elevation "B" -<br>"B"  | 7     |
| 5014-1880 Sht 4/10      | 125 Ton Transfer Cask Detail of Bottom Flange          | 8     |
| 5014-1880 Sht 5/10      | 125 Ton Transfer Cask Detail of Pool Lid               | 8     |
| 5014-1880 Sht 6/10      | 125 Ton Transfer Cask Detail of Top Flange             |       |
| 5014-1880 Sht 7/10      | 125 Ton Transfer Cask Detail of Top Lid                | <br>7 |
| 5014-1880 Sht 8/10      | 125 Ton Transfer Cask View "Y" - "Y"                   | <br>7 |
| 5014-1880 Sht 9/10      | 125 Ton Transfer Cask Lifting Trunnion and Locking Pad | 5     |
| 5014-1880 Sht 10/10     | 125 Ton Transfer Cask View "Z" - "Z"                   | 7     |

| Drawing<br>Number/Sheet | Description                                                       | Rev. |
|-------------------------|-------------------------------------------------------------------|------|
| 5014-1928 Sht 1/2       | 125 Ton HI-TRAC Transfer Lid Housing Detail                       | 8    |
| 5014-1928 Sht 2/2       | 125 Ton HI-TRAC Transfer Lid Door Detail                          | 8    |
| 5014-2145 Sht 1/10      | 100 Ton HI-TRAC Outline with Pool Lid                             | 6    |
| 5014-2145 Sht 2/10      | 100 Ton HI-TRAC Body Sectioned Elevation                          | 6    |
| 5014-2145 Sht 3/10      | 100 Ton HI-TRAC Body Sectioned Elevation 'B-B'                    | 6    |
| 5014-2145 Sht 4/10      | 100 Ton HI-TRAC Detail of Bottom Flange                           | 5    |
| 5014-2145 Sht 5/10      | 100 Ton HI-TRAC Detail of Pool Lid                                | 4    |
| 5014-2145 Sht 6/10      | 100 Ton HI-TRAC Detail of Top Flange                              | 6    |
| 5014-2145 Sht 7/10      | 100 Ton HI-TRAC Detail of Top Lid                                 | 6    |
| 5014-2145 Sht 8/10      | 100 Ton HI-TRAC View Y-Y                                          | 6    |
| 5014-2145 Sht 9/10      | 100 Ton HI-TRAC Lifting Trunnions and Locking<br>Pad              | 4    |
| 5014-2145 Sht 10/10     | 100 Ton HI-TRAC View Z-Z                                          | 5    |
| 5014-2152 Sht 1/2       | 100 Ton HI-TRAC Transfer Lid Housing Detail                       | 6    |
| 5014-2152 Sht 2/2       | 100 Ton HI-TRAC Transfer Lid Door Detail                          | 6    |
| BM-1478, Sht 1/2        | Bills-of-Materials for 24-Assembly HI-STAR 100<br>PWR MPC         | 9    |
| BM-1478, Sht 2/2        | Bills of Material for 24-Assembly HI-STAR 100<br>PWR MPC          | 11   |
| BM-1479, Sht 1/2        | Bills-of-Material for 68-Assembly HI-STAR 100<br>BWR MPC          | 10   |
| BM-1479, Sht 2/2        | Bills-of-Material for 68-Assembly HI-STAR 100<br>BWR MPC          | 13   |
| BM-1575, Sht 1/2        | HI-STORM 100 Storage Overpack Bill of Materials                   | 8    |
| BM-1575, Sht 2/2        | HI-STORM 100 Storage Overpack Bill of Materials                   | 8    |
| BM-1819, Sht 1/1        | Bills-of-Materials for HI-STAR 100 System Failed<br>Fuel Canister | 1    |

.....

| Drawing          |                                                        |      |
|------------------|--------------------------------------------------------|------|
| Number/Sheet     | Description                                            | Rev. |
| BM-1880, Sht 1/2 | Bill of Material for 125 Ton HI-TRAC                   | 7    |
| BM-1880, Sht 2/2 | Bill of Material for 125 Ton HI-TRAC                   | 5    |
| BM-1928, Sht 1/1 | Bill of Material for 125 Ton HI-TRAC Transfer Lid      | 7    |
| BM-2145 Sht 1/2  | Bills-of-Materials for 100 Ton HI-TRAC                 | 4    |
| BM-2145 Sht 2/2  | Bills-of-Materials for 100 Ton HI-TRAC                 | 3    |
| BM-2152 Sht 1/1  | Bills-of-Materials for 100 Ton HI-TRAC Transfer<br>Lid | 5    |

Notes: 1. The HI-STAR 100 MPCs are identical to the MPCs used in the HI-STORM 100 System.



| REVIS              | ION                |                    |
|--------------------|--------------------|--------------------|
|                    | EQUIPMENT DE       | SIGN               |
| HOLTEC             | ANALYSIS           | ľ                  |
| INTERNATIONAL      | CONSULTING         |                    |
| DESCRIPTION        |                    |                    |
| HI-STAR 100        | MPC-24 CONSTRUCTIO | N                  |
| CLIENT N/A         |                    |                    |
| COMPANION DRAWINGS |                    | <b>REV .</b><br>10 |
| PROJECT No. 5014   | DRAWING No.        |                    |
| P.O. No. N/A       | 1395 SHT 1         | OF 4               |
|                    | 4                  |                    |

| REVIS              | ION                         |      |
|--------------------|-----------------------------|------|
|                    | EQUIPMENT DE                | SIGN |
| HOLTEC             | ANALYSIS                    |      |
| INTERNATIONAL      | CONSULTING                  | -    |
| DESCRIPTION        |                             |      |
| HI-STAR 100        | MPC-24 C <b>INSTRUC</b> TIO | N    |
|                    |                             |      |
| CLIENT N/A         |                             |      |
| COMPANION DRAWINGS |                             | REV. |
| COMPANION DRAWINGS | DRAWING No.                 |      |

|                    | BORIDUENT DE         |      |
|--------------------|----------------------|------|
|                    | EQUIPMENT DE         | SIGN |
| HOLTEC             | ANALYSIS             |      |
| INTERNATIONAL      | CONSULTING           |      |
| DESCRIPTION        |                      |      |
| HI-STAR (O         | 0 MPC-24 CONSTRUCTIO | N    |
| CLIENT N/A         |                      |      |
| COMPANION DRAWINGS | 5                    | REV. |
| PROJECT No. 5014   | DRAVING No.          | ·    |
| P.O. No. N/A       | 11795 SET 3          | OF 4 |



| REVISION                                 |                             |                |  |
|------------------------------------------|-----------------------------|----------------|--|
|                                          | EQUIPMENT DE                | SIGN           |  |
| HOLTEC                                   | ANALYSIS                    |                |  |
| INTERNATIONAL                            | CONSULTING                  |                |  |
| DESCRIPTION                              |                             |                |  |
|                                          |                             |                |  |
| M DOI RATZ-IH                            | 1PC-24 C <b>ONSTRUC</b> TIO | N              |  |
|                                          | 1PC-24 C <b>onstru</b> ctio | N<br>          |  |
|                                          | 4PC-24 C <b>ONSTRU</b> CTIO | N<br>REV.<br>8 |  |
| CLIENT N/A<br>COMPANION DRAWINGS<br>1396 | PC-24 CONSTRUCTIO           | REV.           |  |

| REVISION                  |                                 |  |
|---------------------------|---------------------------------|--|
|                           | EQUIPMENT DESIGN                |  |
| HOLTEC                    | ANALYSIS                        |  |
| INTERNATIONAL             | CONSULTING .                    |  |
| DESCRIPTION               |                                 |  |
| HI-STAR 1                 | 00 MPE-24 C <b>ONSTRU</b> CTION |  |
| CLIENT N/A                |                                 |  |
| COMPANION DRAWING<br>1395 | S <b>REV.</b><br>12             |  |
| PROJECT No. 5014          | DRAWING No.                     |  |
|                           | 1.300                           |  |

| REVISION                        |            |  |  |
|---------------------------------|------------|--|--|
| EQUIPMEN                        | T DESIGN   |  |  |
| HOLTEC ANALY                    | ANALYSIS   |  |  |
| INTERNATIONAL CONSUL            | CONSULTING |  |  |
| DESCRIPTION                     |            |  |  |
| HI-STAR 100 MPC-24 CONSTRUCTION |            |  |  |
| CLIENT N/A                      |            |  |  |
| COMPANION DRAWINGS<br>1395      | REV.<br>g  |  |  |
| PROJECT No. 5014 DRAWING        | No.        |  |  |
|                                 |            |  |  |



| REVISION<br>EQUIPMENT DE<br>HOLTEC ANALYSIS | SIGN      |
|---------------------------------------------|-----------|
|                                             | SIGN      |
| HOLTEC ANALYSIS                             |           |
|                                             |           |
| INTERNATIONAL CONSULTING                    |           |
| DESCRIPTION                                 |           |
| HI-STAR 100 MPE-24 C <b>UNSTRUCTI</b>       | א         |
| CLIENT N/A                                  |           |
| COMPANION DRAWINGS                          | REV.<br>g |
| PROJECT No. 5014 DRAWING No.                | •         |
| P.O. No. N/A 1306 SHT 3                     | 08 8      |

| REVISION                      |            |  |
|-------------------------------|------------|--|
| EQUIPMENT DI                  | SIGN       |  |
| HOLTEC ANALYSIS               |            |  |
| INTERNATIONAL CONSULTING      | ;          |  |
| DESCRIPTION                   |            |  |
| HI-STAR 100 MPC-24 CONSTRUCTI | <u>I</u> N |  |
| CLIENT N/A                    |            |  |
| COMPANION DRAWINGS            | REV.<br>8  |  |
| PROJECT No. 5014 DRAWING No.  | ·          |  |
| P.O. No. N/A IROF SHT A       | 00 B       |  |

|                    | <u> </u>              |          |
|--------------------|-----------------------|----------|
| REVISION           |                       |          |
|                    | EQUIPMENT DESI        | GN       |
| HOLTEC             | ANALYSIS              |          |
| INTERNATIONAL      | CONSULTING            |          |
| DESCRIPTION        |                       |          |
| HI-STAR IC         | 0 MPC-24 CONSTRUCTION |          |
| CLIENT N/A         |                       | ·•• ·· · |
| COMPANION DRAWINGS |                       | EV.<br>B |
| PROJECT No. 5014   | DRAWING No.           |          |
| -                  | -                     |          |

| BY:   BY:                    |           |  |
|------------------------------|-----------|--|
| REVISION                     |           |  |
|                              | ESIGN     |  |
| HOLTEC ANALYSIS              | F         |  |
| INTERNATIONAL CONSULTIN      | G _       |  |
| DESCRIPTION                  |           |  |
| HI-STAR 100 MPC-24 CONSTRUCT | ION       |  |
| CLIENT N/A                   |           |  |
| COMPANION DRAWINGS<br>1395   | REV.<br>7 |  |
| PROJECT No. 5014 DRAWING No. | •         |  |

| BY: BY:                       | ⊥{       |  |
|-------------------------------|----------|--|
| REVISION                      |          |  |
| EQUIPMENT DI                  | RSIGN    |  |
| HOLTEC ANALYSIS               |          |  |
| INTERNATIONAL CONSULTING      |          |  |
| DESCRIPTION                   |          |  |
| HI-STAR 100 MPC-68 CONSTRUCTI | DN       |  |
| CLIENT N/A                    |          |  |
| COMPANION DRAWINGS<br>1402    | REV.<br> |  |
| PROJECT No. 5014 DRAWING No.  |          |  |
| P.O. No. N/A 1401 SHT 1       | OF 4     |  |

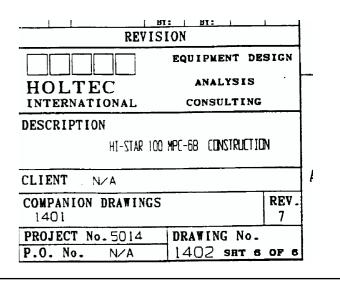
| REVIS                            |                       |  |
|----------------------------------|-----------------------|--|
|                                  | EQUIPMENT DESIGN      |  |
| HOLTEC                           | ANALYSIS              |  |
| INTERNATIONAL                    | CONSULTING            |  |
| DESCRIPTION                      |                       |  |
| HI-STAR 100 MPC-68 CONSTRUCTION  |                       |  |
| HI-STAR IN                       | NPC-68 CONSTRUCTION   |  |
| HI-STAR 10                       | ) MPC-68 CONSTRUCTION |  |
| HI-STAR 10                       | ) MPC-68 CONSTRUCTION |  |
| CLIENT N/A<br>COMPANION DRAWINGS |                       |  |
| CLIENT N/A                       |                       |  |
| CLIENT N/A<br>COMPANION DRAWINGS | REV                   |  |

<u>BY:</u> BY:

| REVI                                    | SION                   |
|-----------------------------------------|------------------------|
|                                         | EQUIPMENT DESIGN       |
| HOLTEC                                  | ANALYSIS               |
| INTERNATIONAL CONSULTING                |                        |
| DESCRIPTION                             |                        |
| HI-STAR 1                               | 00 MPC-68 CONSTRUCTION |
|                                         |                        |
| CLIENT N/A                              |                        |
| CLIENT N/A<br>COMPANION DRAWING<br>1402 |                        |
| COMPANION DRAWING                       | S REV.                 |

| 9 | 0 |
|---|---|
|---|---|

| REVISION                |                    |           |
|-------------------------|--------------------|-----------|
|                         | EQUIPMENT DE       | SIGN      |
| HOLTEC                  | ANALYSIS           | 1         |
| INTERNATIONAL           | CONSULTING         | •         |
| DESCRIPTION             |                    |           |
| HI-STAR 100             | MPC-68 CONSTRUCTIO | N         |
| CLIENT N/A              |                    |           |
| COMPANION DRAWINGS 1402 |                    | REV.<br>8 |
| PROJECT No. 5014        | DRAWING No.        |           |
| P.O. No. N/A            | 1401 SHT 4         | OF A      |


| REVISION           |                     |  |
|--------------------|---------------------|--|
|                    | EQUIPMENT DESIGN    |  |
| HOLTEC             | ANALYSIS            |  |
| INTERNATIONAL      | CONSULTING          |  |
| DESCRIPTION        |                     |  |
| HI-STAR 100        | mpc-68 construction |  |
| CLIENT NZA         |                     |  |
| COMPANION DRAWINGS | <b>REV</b> .<br> 3  |  |
| PROJECT No. 5014   | DRAWING No.         |  |
| P.O. No. N/A       | 1402 SHT 1 OF 6     |  |

| REVIS              | ION                         | <u> </u> |
|--------------------|-----------------------------|----------|
|                    | EQUIPMENT DE                | SIGN     |
| HOLTEC             | ANALYSIS                    | F        |
| INTERNATIONAL      | CONSULTING                  |          |
| DESCRIPTION        |                             |          |
| HI-STAR 100        | MPC-68 C <b>onstruct</b> io | N        |
| CLIENT N/A         |                             |          |
| COMPANION DRAWINGS |                             | REV.     |
| PROJECT No. 5014   | DRAWING No.                 |          |
| P.O. No. N/A       | 1402 SHT 2                  | OF B     |

| DATE RET. DESCRIPTION | BY: BY:                         |  |
|-----------------------|---------------------------------|--|
| REVISION              |                                 |  |
|                       | EQUIPMENT DESIGN                |  |
| HOLTEC                | ANALYSIS                        |  |
| INTERNATIONAL         | CONSULTING                      |  |
| DESCRIPTION           |                                 |  |
| HI-STAR (             | noit <b>turt2n</b> d) 88-794 00 |  |
| CLIENT N/A            |                                 |  |
| COMPANION DRAWING     | S <b>REV.</b>                   |  |
| PROJECT No. 5014      | DRAWING No.                     |  |
| P.O. No. N/A          | 1402 SHT 3 OF 6                 |  |
| <u> </u>              |                                 |  |

| REVI                                         | BY: BY:                        |
|----------------------------------------------|--------------------------------|
|                                              | EQUIPMENT DESIGN               |
| HOLTEC                                       | ANALYSIS                       |
| INTERNATIONAL                                | CONSULTING                     |
| RECORDENCE AND                               |                                |
| DESCRIPTION                                  |                                |
|                                              | oo mpe-68 c <b>onstruction</b> |
|                                              | 00 MPE-68 CONSTRUCTION         |
| HI-STAR 1                                    |                                |
| HI-STAR I<br>CLIENT N/A<br>COMPANION DRAWING | S REV.                         |

| REVISION           |                     |  |
|--------------------|---------------------|--|
|                    | EQUIPMENT DESIGN    |  |
| HOLTEC             | ANALYSIS            |  |
| INTERNATIONAL      | CONSULTING          |  |
| DESCRIPTION        |                     |  |
| DOI RATZ-IH        | NPC-68 CONSTRUCTION |  |
| CLIENT N/A         |                     |  |
| COMPANION DRAWINGS | REV.<br>9           |  |
| PROJECT No. 5014   | DRAWING No.         |  |
| P.O. No. N/A       | 1402 SHT 5 OF 6     |  |





| DESCRIPTION:       |                   |             | •              |
|--------------------|-------------------|-------------|----------------|
| H                  | I-STORM           | ASSEMBLY    |                |
| CLIET:             |                   |             |                |
|                    | N                 | Ά           |                |
| COMPARION DRA      | TIKS:             |             |                |
| FOULT 10.:<br>5014 | SCALE:<br>.05 = 1 | MATING No.: | 8              |
| P.O. Io.:          | N/A               | 1495        | SIRI:<br>Jof 5 |
| ···· ·             |                   |             |                |



| HOLTE<br>INTERNATION<br>CROSS SECTION<br>VIEW OF H                                                                                        | C AL CO |                       |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|
| CLIEFT:                                                                                                                                   | 4       |                       |
| COMPANIES MATIRES:<br>1551, B/H 1575<br>Phility Yo.: 151111:                                                                              |         |                       |
| $\begin{array}{c c} \textbf{S014} & \textbf{S014} \\ \textbf{S014} & \textbf{.0625} = 1 \\ \textbf{P.0. Sa.:} & \textbf{N/A} \end{array}$ | 1495    | 9<br>SIIST:<br>2 of 6 |



|                                      | EQUIPMENT DESIGN . |
|--------------------------------------|--------------------|
| HOLTEO                               | MALYSIS            |
| INTERNATIONA                         | - 4                |
|                                      |                    |
| SECTION "Y<br>OF HI-S                |                    |
| cluen:<br>N⁄A                        |                    |
| CORPANION MALINES:<br>1551, 8/N 1575 |                    |
|                                      | ATTR: To.: RT.:    |
| 5014 .09375 = 1<br>P.9. Se.: N/A     | 1495 3 of 6        |

|                                        | EQUIPMENT DESIGN |  |  |
|----------------------------------------|------------------|--|--|
| HOLTEC                                 | ANALYSIS         |  |  |
| INTERNATIONAL                          |                  |  |  |
| DESCRIPTION:                           |                  |  |  |
| SECTION "X" - "X"<br>OF HI-STORM       |                  |  |  |
| CLIBIT:                                |                  |  |  |
| N/A                                    |                  |  |  |
|                                        |                  |  |  |
| COMPANION DRAVINGS:<br>1561. B/M 1575  |                  |  |  |
|                                        | ING No.: REV.:   |  |  |
| $\frac{5014}{P.0. No.:} = 0.09375 = 1$ | 1495 BRAT:       |  |  |
|                                        |                  |  |  |



| HOLTE                                                 |                                                                                                                         |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| SECTION '                                             |                                                                                                                         |
| CLIET:                                                | 4                                                                                                                       |
| CONFIDENCE IN 1961 105:                               |                                                                                                                         |
| FEDERT To.: SCILL:<br>5014 .0525 = 1<br>T.O. To.: N/A | $\begin{array}{c} \begin{array}{c} \text{ Intermediate of } \mathbf{I}_{1495} \\  $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ |



| INTER<br>DESCRIPTION:             |      | DNAL<br>RM OUT<br>ATURE | equipment<br>analys<br>consult<br>flet ven<br>element<br>20ware | TING                           |
|-----------------------------------|------|-------------------------|-----------------------------------------------------------------|--------------------------------|
| CLIENT:                           | ٢    | V⁄A                     |                                                                 |                                |
| COMPANION DRAM<br>1561. B/I       | 1575 |                         |                                                                 |                                |
| PROJECT No.:<br>50/4<br>P.O. No.: | N/A  | · · ·                   | <b>1495</b><br>1.0.2835)                                        | RET.:<br>3<br>SHEET:<br>5 of 5 |

|                                    | EQCIPIENT DESIGN                       |
|------------------------------------|----------------------------------------|
|                                    | ANALYSIS -                             |
| HOLTEC                             | CONSULTING                             |
| SCLIPTION:                         | · · · · · · · · · · · · · · · · · · ·  |
| <b>VIEW "A"</b> -                  | - "A"                                  |
| OF HI-ST                           |                                        |
|                                    | ······································ |
| N⁄A                                |                                        |
| APANION MANINCS:<br>1495, B/H 1575 |                                        |
|                                    | E le.:  RT.:                           |
| 5014 .0525 = 1                     | 1 7                                    |
| 1495, B/N 1575                     | E le.:  ET.;                           |



| HOLTE                                 |                          | IT DESIGN                              |
|---------------------------------------|--------------------------|----------------------------------------|
| INTERNATION                           | <u>AL</u> CONST          | <b>DLTING</b>                          |
| DETAI<br>OF HI-                       | L '' <b>b''</b><br>Storm |                                        |
| CLIEN:<br>N/1                         | 4                        | ······································ |
| CONTINUE INALLINES:<br>1495, B/M 1575 |                          | -                                      |
| FEMILIT Je.: SCILE:<br>5014 .25 = 1   | MANUS Is.:               | 7                                      |
| P.O. 30.: N/A                         | 1561                     | Sist:<br>2 of 5                        |



|                                                  | EQUIPMENT DESIGN |  |  |  |
|--------------------------------------------------|------------------|--|--|--|
| HOLTE                                            |                  |  |  |  |
| INTERNATION                                      |                  |  |  |  |
| DETAIL OF AIR INLET<br>OF HI-STORM               |                  |  |  |  |
| CLI∎T:<br>N∕                                     | ′A               |  |  |  |
| CONFAULON DEATINGS:<br>1495, B/H 1575            |                  |  |  |  |
| PRUBLY No.: SCILE:<br>5014 NONE<br>P.O. Lo.: N/A | 1561 3 of 5      |  |  |  |
| · · · · · · · · · · · · · · · · · · ·            | 4                |  |  |  |



| DETAIL OF AIR OUTLET<br>OF HI-STORM<br>CLIEFT:<br>N/A<br>CONFINITOR MATHEMS:<br>1495, B/M 1575<br>PROVERT TO:: SCALE:<br>5014<br>NONE<br>1561<br>SUBT: | INTER                     |               |         | NT DESIGN |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|---------|-----------|
| 1495, B/M 1575<br>PROJECT To.: SCILE: MENTER To.: EXT.:<br>5014 NENE 1.5.6.1                                                                           |                           | OF H.         | I-STORM |           |
| N/A 4 of 5                                                                                                                                             | 1495, 8/1<br>PEULLT To .: | 1575<br>SCHE: | 1561    |           |

|                                                       | EQUIPLENT DESIGN -   |
|-------------------------------------------------------|----------------------|
| HOLTE                                                 | C                    |
| MISCELLANI<br>OF HI-S                                 | EOUS DETAIL<br>STORM |
| CLIEFT:<br>N/                                         | Ά                    |
| COMPANION MANINES:<br>8/M 1894                        |                      |
| PRUNET 10.: SCILLE:<br>5014 AS NOTED<br>7.0. II.: N/A | 1561 State: 5 of 5   |

| REVI                        | SION                         |        |
|-----------------------------|------------------------------|--------|
|                             | EQUIPMENT DES                | SIGN - |
| HOLTEC                      | ANALYSIS                     |        |
| INTERNATIONAL               | CONSULTIN                    | G -    |
| DESCRIPTION: GENERAL        | ARRANGEMENT<br>UEL CONTAINER |        |
| DAMAGED F                   | UEL CONTAINER                |        |
| CLIENT: LATER               |                              |        |
|                             |                              | 1      |
| COMPANION DRAWINGS:<br>1784 |                              |        |
| PROJECT No.: 5014           | DRAVING No.:                 | REV.:  |
| P.O. No .: LATER            | 1783                         | 2      |

|                   | EQUIPMENT DESIGN            |
|-------------------|-----------------------------|
| HOLTEC            | ANALYSIS _                  |
| INTERNATIONAL     | CONSULTING                  |
|                   |                             |
| UAMAGEU FUEL (    | CONTAINER DETAILS           |
|                   |                             |
| INT: LATER        |                             |
|                   |                             |
| IENT: LATER       | PREP. BY:<br>P.J.N. 8-12-96 |
| IPANION DELVINGS: |                             |

|                                                     | EQUIPHEN |                     |
|-----------------------------------------------------|----------|---------------------|
| HOLTE                                               | -        | LTING               |
| UNSCHIPTION:<br>125TON HI-T<br>WITH PO              |          | INE                 |
| CLIETT:<br>N/A                                      |          |                     |
| COMPANION DRAVINGS:<br>B/M 1880                     |          |                     |
| PRUNCT No.: SCALL:<br>5014 .04 = 1<br>P.O. No.: N/A | 1880     | 211.:<br>7<br>SECT: |



|                                                | EQUIPMENT DESIGN |
|------------------------------------------------|------------------|
| HOLTE                                          | ANALYSIS         |
| INTERNATIONA                                   | - 1.             |
| DESCRIPTION:                                   |                  |
| 125TON HI-T<br>Sectioned E                     |                  |
| CLIDIT: N/A                                    |                  |
| COMPANION ORATINGS:<br>8/N 1990                |                  |
|                                                | ATTAL No.:       |
| <b>5014</b> $10 = 1$<br><b>P.O. Se.:</b> $N/A$ | 1880 300 2 of 10 |

| HOLTEO<br>INTERNATIONA               | L. CONSULTING       |
|--------------------------------------|---------------------|
| 125TON HI-<br>SECTIONED ELEV         |                     |
|                                      |                     |
| COMPANION MATINES:<br>B/M 1880       |                     |
| FELLET No.: SCILL: D<br>5014 .08 = 1 | LTIK Ka.: 27.:<br>7 |
| P.O. Ye.:                            | 1880 3 of 10        |

|                                               | EQUIPHENT DESIGN  |
|-----------------------------------------------|-------------------|
| HOLTE                                         |                   |
| INTERNATION                                   | -                 |
| DISCRIPTION:<br>125TON TRAI                   | NGFED CICK        |
|                                               | OTTON FLANGE      |
| CLIDIT:                                       |                   |
|                                               |                   |
| B/H 1890<br>PRUNET Ne.: SCALE:<br>5014 08 = 1 | MANING No.: 207.: |
| P.0. Te.:                                     | 1880 STET: 10     |

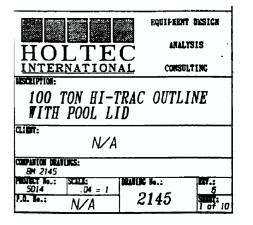


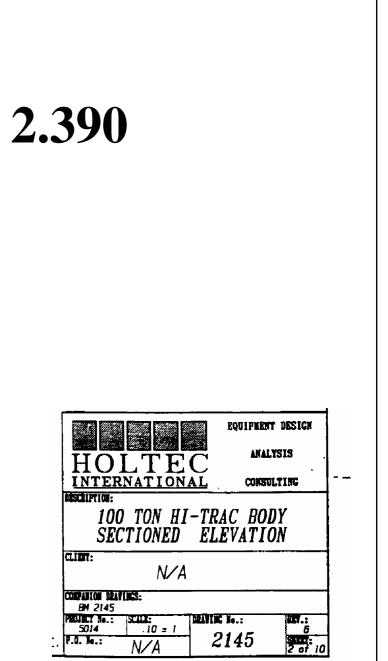
|                                           | EQUIPHENT DESIGN |
|-------------------------------------------|------------------|
| HOLTE                                     |                  |
| INTERNATIONA                              | <b>U</b>         |
| SCRIPTION:                                |                  |
| 125TON TRA                                | NSFER CASK       |
| DETAIL OF                                 | POOL LID         |
|                                           |                  |
|                                           |                  |
| LIDHT:<br>Companion dravings:<br>8/m 1880 |                  |

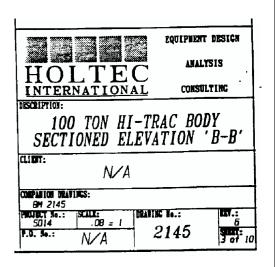
|                                 | BOUIPHENT DESIGN |
|---------------------------------|------------------|
| HOLTE                           |                  |
| INTERNATIONA                    |                  |
| DESCRIPTION:                    |                  |
| 125TON TRAN                     | SFER CASK        |
| DETAIL OF T                     |                  |
|                                 |                  |
|                                 |                  |
| CONPANION DRATINGS:<br>B/M 1880 |                  |
| SOLA 1.10 = 1                   | ATING No.: ET.:  |
| P.O. To .:                      | 1880             |
|                                 | 6 of 10          |

| HOLTE                   |                 |     |
|-------------------------|-----------------|-----|
| HOLI LY<br>INTERNATIONA |                 | ING |
| STRIPTICE:              |                 |     |
| 125TON TRA              | <b>NSFER</b> CA | SK  |
| DETAIL O                | F TOP LID       |     |
|                         |                 |     |
|                         |                 | 1   |
| COMPANION MATURES:      |                 |     |
| B/H 1990                |                 |     |
|                         |                 |     |
| 5014 .125 = 1           | 1880            | 7   |

ROUPERNT DESIGN


|    |                                       | EQUIPHENT    | DESICK  |
|----|---------------------------------------|--------------|---------|
|    | HOLTE                                 | - 1111)<br>  | SIS .   |
|    | INTERNATIONA                          |              | TING    |
|    | DESCRIPTION:                          |              |         |
|    | 125TONTRAN                            | SFER CASI    | r I     |
|    | VIEW "Y                               |              | -       |
|    | CLIEFT:<br>CORPANION DRAVINGS:        |              |         |
|    | B/M 1880                              |              |         |
| L  | FRUIELT No.: SCALE:<br>5014 .1875 = 1 | CATINC Be .: | ····    |
| 19 | P.O. 30.:                             | 1880         | STOT:   |
|    |                                       |              | 0 01 10 |


|                                                          | EQUIPMENT DESIGN |
|----------------------------------------------------------|------------------|
| HOLTE                                                    | C MALTSIS        |
| INTERNATION                                              |                  |
| SECLIPTION:                                              |                  |
| 125TON TRANSFER CASK LIFTING<br>TRUNNION AND LOCKING PAD |                  |
| CLIPT:                                                   |                  |
| Cooparion Datimes:<br>B/M 1980                           |                  |
| SO14 NONE                                                | MANINE Me.: HT.: |
| P.O. Io.:                                                | 1880 9 of 10     |


|                               | EQUIPHE      | T DESIGN          |
|-------------------------------|--------------|-------------------|
|                               |              | LYSIS             |
| HOLTE                         | -            | ULTING            |
| DESCRIPTION:                  |              |                   |
| 125TON TRA                    |              | SK                |
|                               |              |                   |
| VIEW "Z                       | '''-''Z''    |                   |
|                               | ''-''Z''     |                   |
|                               | '''-''Z''    |                   |
|                               | ···-''Z''    |                   |
| CLIENT:<br>Companier dratiks: | DELVIN: No.: | <b>127.:</b><br>7 |

|                                        | EQUIPHENT DESICH         |
|----------------------------------------|--------------------------|
|                                        |                          |
| HOLTEC                                 | <u> </u>                 |
| 125TON HI-TRA<br>HOUSING               | C TRANSFER LID<br>DETAIL |
|                                        |                          |
| CLINT:<br>N/A                          |                          |
|                                        |                          |
| N/A<br>CONPANION DRAVINGS:<br>B/M 1894 | EAVIE: No.: EX.:<br>1928 |

| EQUIPHENT DESIGN                                       |   |
|--------------------------------------------------------|---|
|                                                        |   |
| HOLTEC INTERNATIONAL CONSULTING                        | - |
| DESCRIPTION:                                           |   |
| 125TON HI-TRAC TRANSFER LI.<br>DOOR DETAIL             | D |
|                                                        | — |
| N/A                                                    |   |
|                                                        |   |
| CONDANION DRAVINGS:<br>B/M 1894                        |   |
| PROJECT No.: SCHE: DLATIE No.: MY.:<br>5014 0625 = 1 8 |   |
| P.O. No.: N/A 1928                                     | _ |
| I IVA 2 of                                             | 2 |







|                                | EQUIPHENT DESIGN  |
|--------------------------------|-------------------|
| HOLTE                          |                   |
| INTERNATION.                   |                   |
| DESCRIPTION:                   |                   |
| 100 TON                        | HI-TRAC           |
| DETAIL OF BO                   | TTOM FLANGE       |
| CLIDT:                         |                   |
| N/A                            |                   |
|                                |                   |
| CORPUTION MEATINGS:<br>BN 2145 |                   |
| SO14 .08 = 1                   | DRAVING No.: UN.: |
| P.O. No.: N/A                  | 2145              |
|                                | 4 01 10           |



| EQUIPMENT DESIGN                                        |   |
|---------------------------------------------------------|---|
| HOLTEC                                                  |   |
| INTERNATIONAL CONSULTING                                | - |
| DESCRIPTION:                                            | [ |
| 100 TON HI-TRAC                                         | Í |
| DETAIL OF POOL LID                                      |   |
| CLIEFT:                                                 | I |
| N∕A                                                     |   |
| CONPLITION NEAVINES:<br>BM 2145                         | t |
| PROJECT No.: SCALL: BRAVING No.: REV.:<br>5014 OB = 1 4 | Ī |
| F.O. No.: N/A 2145                                      |   |



|                                                                                | EQUIPMEN | T DESICE |
|--------------------------------------------------------------------------------|----------|----------|
|                                                                                |          | TSIS     |
| HOLTEC                                                                         | -        | LTING    |
| 100 TON HI-TR<br>DETAIL OF TOP                                                 |          |          |
| CLIBAT:<br>N∕A                                                                 |          | 1        |
| CONPANION MEATLINES:<br>BM 2145                                                |          |          |
| PEDIECT No.:         SCHLK:         DE $5014$ $10 = 1$ DE $P.0. 30.2$ $11 < 4$ | 2145     | 6        |



|                                | EQUIPHENT DESIGN |
|--------------------------------|------------------|
| HOLTE                          | ANALYSIS         |
| INTERNATIONA                   |                  |
| DISCRIPTION:                   |                  |
| 100 TON HI-TH<br>Detail of tol |                  |
| CLIET:<br>N/A                  |                  |
| CONFANION MATINES:<br>BN 2145  |                  |
| 5014 .125 = 1                  | ATTIC No.: MUT.: |
| F.O. No.: N/A                  | 2145             |



|                          |                |                  | AKALY  |                  |  |
|--------------------------|----------------|------------------|--------|------------------|--|
| INTE                     | LTE<br>RNATION |                  | CONSUL | .TING            |  |
| DESCRIPTION:             | 100 TON<br>VII | V HI-1<br>SW Y-1 |        |                  |  |
| CLIEFT:<br>Coupanion dr. | 11065: N/      | 4                |        |                  |  |
| COMPANION DE<br>BM 2145  | tus:           | <u> </u>         |        |                  |  |
| PROJECT No.:             | . 1875 = 1     | DRATING I        |        | <b>EN.:</b><br>6 |  |
|                          | N/A            | - 91             | 45     |                  |  |

|                                | BQUIPHENT DESIGN              |
|--------------------------------|-------------------------------|
| HOLTE                          |                               |
| INTERNATION                    | AL CONSULTING                 |
| DESCRIPTION:                   |                               |
|                                | TRAC LIFTING<br>D LOCKING PAD |
| CLINT:                         |                               |
| N/A                            |                               |
| COMPANION DRAVINGS:<br>BN 2145 |                               |
| SOIA NONE                      | DRAVING No.: PLST .:          |
| P.O. No.: N/A                  | 2145<br>(1.1.1. 3057) 9 of 10 |

|                                      | EQUIPMENT DESIGN |
|--------------------------------------|------------------|
| HOLTEC                               | ANALYSIS         |
| INTERNATIONAL                        | CONSULTING       |
| USCRIPTION:<br>100 TON HI<br>VIEW Z- |                  |
| N/A                                  |                  |
| CONFLUTION DELITINES:<br>BM 2145     |                  |
| 5014 .20 = 1                         |                  |
| P.O. Ke.: N/A                        | 2145 Stat:       |

|                                    | EQUIPMENT DESIGN |
|------------------------------------|------------------|
| HOLTEC                             | ANALYSIS         |
| INTERNATIONAL                      | CONSULTING       |
| NSCHITTION:                        |                  |
| 100 TON HI-TRAC<br>LID HOUSING DET |                  |
|                                    |                  |
| N⁄A                                |                  |
| COMPLATION DELATIONS:<br>BM 2152   |                  |
| SOI4 .0525 = 1                     | le.: 117.:       |
| <b>F.O. In.:</b> $N/A$ 2           | 152              |



| EQUIPMENT DESIGN                                        |   |
|---------------------------------------------------------|---|
| HOLTEC MALTSIS                                          |   |
| INTERNATIONAL CONSULTING                                | - |
| DISCRIPTION:                                            |   |
| 100 TON HI-TRAC TRANSFER<br>LID DOOR DETAIL             |   |
| CLIEFT: N/A                                             |   |
| COMPANION DELIVINES:<br>BM 2152                         |   |
| PROJECT No.: SCIUE: DEAFING No.: DEAF.: 6               |   |
| 5014 1.0025 = 1 2152 500 2<br>P.O. To.: N/A 2152 2 of 2 |   |

| BILL OF NATERIALS FOR 24-ASSEMBLY | HI-STAR 10 | OO PWR | MPC.(BN-1478) |
|-----------------------------------|------------|--------|---------------|
|-----------------------------------|------------|--------|---------------|

REF. DIG. 1395 & 1396.

SHEET 1 OF 2

| REV. NO. PREP. BY<br>k DATE<br>1.0.5-4-99 |                                              |                       | CHECKED BY                      | PROJ. NANAGER<br>& DATE                | QA. NANAGER<br>& DATE  |
|-------------------------------------------|----------------------------------------------|-----------------------|---------------------------------|----------------------------------------|------------------------|
| 9                                         | 1.L. 6-4-39<br>Dictorporated<br>DCR 5014-116 |                       | 6/5/98 6/5/98                   |                                        | N. M. pto<br>6-7-98    |
| ITEN NO.                                  | QTY.                                         | NATERIAL              | DESC                            | DESCRIPTION                            |                        |
| 14                                        | 2                                            | ALLOY "X" SEE NOTE 1. | PLATE 5/16" THK.X 63.20" REF    | 1. X 176 1/2" 16                       | BASKET CELL PLATE      |
| 18                                        | I                                            |                       | PLATE 5/16" THK X 60.57" REF V. | X 176 1/2°LG.                          | BASKET CELL PLATE      |
| 10                                        | 2                                            |                       | PLATE 5/16" THK X 43.42" REF V. | X 176 1/2°LG.                          | BASKET CELL PLATE      |
| 10                                        | 1                                            |                       | PLATE 5/16" THK X 20.402 " REF  | W. X 175 1/2°LG.                       | BASKET CELL PLATE      |
| IE                                        | 1                                            |                       | PLATE 5/16" THK X 7.7175" REF 1 | I. X 176 1/2°LG.                       | BASKET CELL PLATE      |
| IF                                        | 22                                           |                       | PLATE 5/16" THK X10.4625 " REF  | ¥. X 176 1/2°LG.                       | BASKET CELL PLATE      |
| IG                                        | 1                                            |                       | PLATE 5/16" THK X 9.7445 " REF  | W. X 175 1/2°LG.                       | BASKET CELL PLATE      |
| IH                                        | 2                                            |                       | PLATE 5/16" THK X 9.03 " REF W  | . x 176 1/2°LG.                        | BASKET CELL PLATE      |
| 2                                         | 24                                           | 4                     | PIPE 3"-SCH 80 LGTH AS REDD.    |                                        | UPPER FLEL SPACER PIPE |
| <u>34 (38)</u>                            | <del>94</del> (12)                           | EDRAL                 | .075"THK. X 7.5"W.(6 1/4") X 15 | 6" LG.PER DET.ONG. 1385. SEE NOTE 2    | NEUTRON ABSORGER       |
| 4A (4B)                                   | 84(12)                                       | ALLOY "X" SEE NOTE 1. | .06° THK. SHEATHING PER DET. D  | <b>G. 1395</b> .                       | SHEATHING              |
| SA                                        | 4                                            |                       | PLATE 5/16"THK X 3" W. X 176    | 1/2°LG.                                | BASKET CELL PLATE      |
| 58                                        | 4                                            |                       | PLATE 5/16"THK X 3 3/4" APPRO   | r. w. x 176 1/2°LG.                    | BASKET CELL PLATE      |
| Ŧ                                         | 4                                            |                       | PLATE E.S" APP. THK. X 3" V.    | PLATE I.5" APP. THK. X 3" V. X 108"LG. |                        |
| 50                                        | 4                                            |                       | 2 1/2"VIDE X 169"LG. THICKNES   | S AS REDD                              | BASKET SUPPORT         |
| Ŧ                                         | 4                                            |                       | 2 "WIDE X 168"LG. THIODRESS A   | S REDD.                                | BASKET SUPPORT         |
| 3                                         |                                              |                       | DELETED                         |                                        |                        |
| SL                                        | 4                                            |                       | 1 1/4" WIDE X 168" LG. THICKN   | ETT AS REDD.                           | BASKET SUPPORT SHIM    |
| SH                                        |                                              |                       | 08LE18)                         | ······································ |                        |
| δ                                         | 1                                            |                       | 1/2" THK X 68 3/8" D.D. X 197   | 5/8" LG. CYLINDER.                     | SAL                    |
| 7                                         | l                                            |                       | BASEPLATE 2 1/2" THK X 68 3/8   | • 0.0.                                 | BASEPLATE              |
| 84                                        | 22                                           |                       | 9/32"THK. MOLE X 175 1/2" LG.   | FROM PLATE PER DET. DIG. 1395.         | BASKET CELL ANGLE      |
| 88                                        | 2                                            |                       | 9/32"THK. CHINNEL X 176 1/2" LE | . FROM PLATE PER DET.ONG. 1385.        | BASKET CELL DHANNEL    |
| 94                                        | I                                            |                       | 5/16" THK.X 10" W. APP. X 18    | 8° LG. PER DET.                        | BASKET SLIPPERT        |
| 98                                        | 2                                            |                       | 5/16"THK. X 7 1/2" APP. Y. X    | 168° LG. PER 0E1.                      | BASKET SUPPORT         |
| a<br>A                                    | L                                            |                       | 5/16"THK. X 5" APP. N. X 168    | " LG. PER DET.                         | BASKET SLIPPORT        |
| 90                                        |                                              |                       | DELETED                         | · · · · · · · · · · · · · · · · · · ·  |                        |
| Œ                                         |                                              |                       | DELETED                         |                                        |                        |
| 9F                                        |                                              |                       | OELETED                         | <u></u>                                |                        |
| 9 <b>G</b>                                |                                              |                       | DELETED                         |                                        |                        |
| 9H                                        |                                              |                       | JELETED                         |                                        |                        |
| 10                                        | 4 7                                          |                       | PLATE 3/4" THK. X 3 1/2" VID    |                                        |                        |

◬



| REF. DIG | . 13 <b>9</b> 5     | k 1396.                                      |                             |                                      | SHEET 2 OF 2              |  |
|----------|---------------------|----------------------------------------------|-----------------------------|--------------------------------------|---------------------------|--|
| REV.NO.  |                     | PREP. BY<br>& DATE                           | CHECKED BY                  | PROJ. MANAGER<br>& DATE              | QA. MANAGER<br>& DATE     |  |
| 11       |                     | S.DEE 8-19-98<br>NCDRFDRATED<br>DDR SD14-121 | (elendolar<br>A.J. 8/19/98  | Clandolar NMR                        |                           |  |
| ITEN NO. | QTY.                | NATERIAL                                     | DESCRIPTION                 |                                      | NOMENCLATURE              |  |
| n        | 4                   | ALLON "X" SEE NOTE 1.                        | PLATE 3/4" THK. X 4" WIDE   | x 3° LG.                             | LIFT LUG BASEPLATE        |  |
| 12       | 1                   | ALLON "X" SEE NOTE 1.                        | BAR 3.75° DD. ¥ 5 7/8° LG.  |                                      | DRAIM SOELD BLOCK         |  |
| 134      | 2                   | 304 S/S. SLOFACE HNRSENER                    | BWR 2 11/15" TO X 6.75" 16  | , DINENGIDNG AS SHEWN DN DIG 1386 SH | 4 VENT NO DRAIN TLEE      |  |
| 138      | 2                   | 304 S/S. SURFACE HARDERE                     | BMP 2 1/4 00 X 2 1/4 LG. 0  | INENGIONG AS SHOWN ON DIG 1386 SH 4  | VENT NIC DRAIN THEE CAP   |  |
| 14       | 1                   | ALLOY "X" SEE NOTE 1.                        | PLATE 9 1/2" THK. X 67 1/4" | ° 0.0.                               | - NPC L10                 |  |
| 15       | 1                   | 1                                            | RING 3/8" THK.X 53" ID. X   | <b>57 7/8°</b> 0.0.                  | MPE CLOSLIRE RING         |  |
| 16       | AS REDD.            | ↓                                            | SHELL SHIM SIZE AS REED     |                                      | SHELL SHIM                |  |
| 17       |                     |                                              | DELETED                     |                                      |                           |  |
| 18       |                     |                                              | GELFIE)                     |                                      |                           |  |
| 19       | 2                   | ALLOY "X" SEE NOTE I                         | PLATE 3/8" THK. X 3 7/8"00  |                                      | PORT COMER PLATE          |  |
| 20       | 24                  | A-193-88 OR SIMILAR                          | 3/4"-10UNC X 1 3/8"LG. HEX  | BOLT WITH FULL THRD.                 | UPPER FLIEL SPINCER BOLT  |  |
| 21       |                     |                                              | CELFED                      |                                      |                           |  |
| 22       |                     |                                              | OBLETED                     |                                      |                           |  |
| 73       | 4                   | A-19 <del>3-00</del> 08 sinilar              | 1 3/4"-SINE X 2 3/4"LG SIE  | KEI VEI VIEN                         | LID LIFT HOLE PLUG        |  |
| N.       | 24                  | ALLOY "X" SEE HOTE 1.                        | PLATE 3/8" THK X 3 3/4" 00  |                                      | UPPER FLEL SPACER END PLA |  |
| ъ        | । इन                | ALLOY "X" SEE NOTE  .                        | LENGTH, VIOTH AND THICKNESS | OF SHING AS REALARED.                | LIO SHIM                  |  |
| 25       | 1                   | N                                            | Z' FEMILE X 1 1/4" HILE ST  | 1. 40, 5/5 <b>REDUCER</b>            | REALER                    |  |
| 7        |                     |                                              | ORLETED                     |                                      |                           |  |
| 28       | 1                   | ALLOY "X" SEE NOTE 1.                        | BAR 3.75" (0. × 5.5°(G.     |                                      | VENT QUICK OISTIDM. CPU   |  |
| 29       | 4                   | NLLOW "X" SEE NOTE 1.                        | 8NR 3/4" 00. X 1/2" 1G.     |                                      | VENT SHOELD BLOCK SPACE   |  |
| 30       | 1                   | ALLOY "X" SEE NOTE 1.                        | 2"-SIH 10 PIFE X 173 1/2" N | <b>TROX</b> . LG.                    | CIENTIN L'INE             |  |
| 31       |                     |                                              | DELETED                     |                                      |                           |  |
| 2        | 24                  |                                              | 6" 50. FLBING X 1/4" WILL   | LENGTH AS REP D.                     | LOVER RUE. SPACER CLUM    |  |
| T34      | 24                  |                                              | FLATE 3/8" THK X 8.5" 50.   | •                                    | LONER RUEL SPECIER BID RU |  |
| B        | 24                  |                                              | FLATE 3/8" THK X 8.5" SQL   |                                      | LONER FREE, SPCAER END FL |  |
| 34       | <b>KS 1999 1</b> 0. | 4                                            | SONS 3/8", 3/4" & 2 1/2" W  | ITE X IOUT LG. THICKNESS AS NEUTO.   | BASICET STORS             |  |
| 3        | AS REP 0.           | ALUI. ALLOY 1100                             | LAT THEOR IN 175 1/2" LE. A | un. Sheet                            | ZINGREE HOLTJUDICD TABI   |  |
| đ        | 2                   | ALUCIUM                                      | 0.085° THK 1.494 00, 0.250  | 'HQE                                 | ZAL WOR                   |  |
| 37       | 2                   | N                                            | 1/4" MA X 3/8" 16           |                                      | SEAL MORE RELT            |  |
| 30       | 2                   | ALLOY "X" SEE NOTE 1.                        | 1/8" X 10 1/2" X 9 1/2" SHE | Ţ                                    | BRADILDE                  |  |
| 39       | 8                   | NLLOV "X" SEE NORE 1.                        | 1/8" X 4" X 4 1/2" NETREX S |                                      | DRAINLINE                 |  |

1

L

.

6

)

 $\bigcirc$ 

4. ITHIS ST. SD.SE, SG 94,98,92,15,38 AND 35 INVI BE INDE FIDIN HORE THAN DIE PIELE. THE ENDS OF PIELES OD NOT HEED TO BE VELOED Toeffer Rut They must ne plush voth each orige webi installed.

### BILL OF NATERIALS FOR 68-ASSEMBLY HI-STAR 100 BWR MPC.(BM-1479)

-----

REF. DWGS. 1401 & 1402.

⚠

∕₼

SHEET 1 OF 2

| REV. NO.    | PR        | EP. BY & DATE                   | CHECKED BY DATE                                                                   | PROJ. NANAGER & DATE                     | QA. NANAGER & DATE       |
|-------------|-----------|---------------------------------|-----------------------------------------------------------------------------------|------------------------------------------|--------------------------|
| 10          |           | 2 20 99<br>Porated OCR 5014-130 | Bro Spitter<br>2/20/49                                                            | N/12<br>B.G.<br>2/20/99                  | 2-20-99                  |
| ITEN NO.    | QTY.      | WATERIAL                        | DESCR                                                                             | IPTION                                   | NONENCLATURE             |
| LA          | 3         | ALLDY "X" SEE NOTE 1.           | PLATE 1/4" THK. X 65.65"W. X                                                      | 176° LG PER DET. DNG. 1401               | BASKET CELL PLATE        |
| 18          | 4         |                                 | PLATE 1/4" THK. X 52.67"W. X                                                      | 176* LG PER DET. DWG. 1401.              | BASKET CELL PLATE        |
| IC          | 2         |                                 | PLATE 1/4" THK. X 39.69W. X                                                       | 176" LG PER DET. DWG.1401.               | BASKET CELL PLATE        |
| 10          | 2         |                                 | PLATE 1/4" THK: X 13.73"V. )                                                      | 176* LG PER DET. DNG. 1401.              | BASKET CELL PLATE        |
| IE          | 78        |                                 | PLATE 1/4" THK. X 6.24"V. X                                                       | 176° LG PER DET. DNG. 1401.              | BASKET CELL PLATE        |
| 2           | 68        | 4                               | 3*- SCH BO PIPE LGTH AS RED                                                       | ]                                        | LIPPER FLEL SPICER CLUMN |
| 34          | 116       | BORAL                           | .101°THK. X 4 3/4°W. X 156° LO                                                    | . PER DET. DNG. 1401. SEE NOTE 2.        | NEUTRON ABSORBER         |
| 48          | 116       | ALLOY "X" SEE NOTE I.           | .075" THK. SHEATHING PER DET.                                                     | DNG. 1401.                               | SHEATHING                |
| 5           | 8         |                                 | BAR 1" WIDE X 168.5" LG THICK                                                     | ess as red.                              | BASKET SUPPORT SHIM      |
| 6           | l         |                                 | 1/2" THK X 68 3/8" 0.0. X 10                                                      | 17 5/8° LG. CYLINDER.                    | SHELL                    |
| 7           | 1         |                                 | BASEPLATE 2 1/2" THK X 58 3                                                       | <b>∕8* 0</b> .D.                         | BASEPLATE                |
| 8           | 8         |                                 | PLATE 5/16"THK: X 10" APPROX.W.X                                                  | 168 1/2" LG. PER DET. DWG. 1401.         | BASKET SLIPPORT          |
| 9A          | 4         |                                 | BAR 1" W. X. 8" APPROX. THK. )                                                    | 168 1/2* i.G.                            | BASKET SLIPPORT          |
| <b>9</b> 8  | 8         |                                 | 2 1/2" W. X 168 1/2" LG. THICK                                                    | NESS AS REDD. ROLL TO SHELL J.D.         | BASKET SUPPORT           |
| 9C          | 8         |                                 | 2 1/2" WIDE X 168 1/2" LG. TH                                                     | ICKNESS AS REDD. ROLL TO SHELL 1.0.      | BASKET SUPPORT           |
| 90          |           |                                 | DELETED                                                                           | ······································   |                          |
| 10          | 4         |                                 | PLATE 3/4" THK. X 3 1/2" VIO                                                      | E X 8 3/4" LG.                           | LIFT LUG                 |
| 11          | 4         |                                 | PLATE 3/4" THK. X 2 1/2" WI                                                       | E X 4* LG.                               | LIFT LUG BASEPLATE       |
| 12          | 1         | 4                               | BAR 3.75°00. X 5 7/8° LG.                                                         | 5° / · · · · · · · · · · · · · · · · · · | ORAIN SHIELD BLOCK       |
| <b>KE</b> I | 2         | 304 5/5<br>- Surfate Hardened   | BAR 2 11/16" DD X 6 3/4" REF                                                      | LG, DIMENSION ON DNG 1402 SHT 4          | VENT AND DRAIN TLEE      |
| 138         | 2         | - SUAFACE HARDENED              | BAR 2 1/4" 00 X 2 1/4" REF LG, DIMENSION ON DNG 1402 SHT 4                        |                                          | VENT AND DRAIN TUBE CAP  |
| 14          | l         | ALLOY "X" SEE NOTE 1.           | PLATE 10° THK. X 67 1/4° D.D. (MPC-68)<br>PLATE 10° THK. X 66 1/4° D.D. (MPC-68F) |                                          | NPL LIU                  |
| 15          | 1         | ALLOY "X" SEE NOTE 1.           | RING 3/8" THK. X 53" 10. X<br>Ring 3/8" Thk. X 53" 10. X                          | NPC CLOSURE RING                         |                          |
| 16          | as redid. | ALLOY "X" SEE NOTE 1.           | SHELL SHING SIZES AS REDD                                                         | SHELL SHIN                               |                          |

### BILL OF NATERIALS FOR 68-ASSEMBLY HI-STAR 100 BWR MPC.(BM-1479)

REP. DVGS. 1401 & 1402.

SHEET 2 OF 2

| REV. NO.                                       | PF      | REP. BY & DATE                      | CHECKED BY DATE                     | PROJ. NANAGER & DATE                                                                     | QA. NANAGER & DATE          |  |
|------------------------------------------------|---------|-------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------|-----------------------------|--|
| 13 S. DEE 2-20-99<br>Incorporated OCR 5014-130 |         |                                     | Om futtin<br>2/20/99                | In futter 1 25<br>2/20/89 2/20/19                                                        |                             |  |
| ITEN NO.                                       | QTY.    | NATERIAL                            | DESCRIPTION                         |                                                                                          | NONENCLATURE                |  |
| 17                                             | 1       | ALLETY "X" SEE NETE I.              | L" THK X D8 3/8" 00 X 11 5/8" LG    | CILINDER (NPC-GBF)                                                                       | SHEL                        |  |
| 18                                             |         |                                     | OBLETED                             |                                                                                          |                             |  |
| 19                                             | 2       | ALLEY "X" SEE NOTE 1.               | PLATE 3/8" THK X 3 7/8" DD.         |                                                                                          | PORT COMER PLATE            |  |
| 20                                             | 66      | A-193-BO DR SINILAR                 | 3/4"-IQUNC X 1.375"LG. FULL THRD    | HEX. BOLT                                                                                | UPPER FLEL SPACER BOLT      |  |
| 21                                             |         |                                     | DELETED                             |                                                                                          |                             |  |
| 22                                             |         |                                     | DELETED                             |                                                                                          |                             |  |
| 23                                             | 4       | A-19 <del>3 BB</del> DR SINILAR     | 1 3/4"-9LNC X 2 3/4" LG. SDCKET (   | JET SOREV.                                                                               | LIFT HOLE PLUG              |  |
| 24                                             | 68      | ALLUY "X" VE NUIL I.                | HLAIE 3/8" IHK X 3 3/4" [1].        |                                                                                          | LIPPER FLIEL SPACER END PL/ |  |
| 25                                             | । 52म   | ALLOY "X" SEE NOTE                  | i fngth, vinth , thirkness and i    | BIANTITY AS PERIO                                                                        | LID SHIM                    |  |
|                                                | 1       | 222                                 | 2° FEMALE X   1/4° NALE SCH. 40     |                                                                                          | REDUCER                     |  |
| 27                                             |         |                                     | 08.6160                             |                                                                                          |                             |  |
| 28                                             | l       | ALLOY "X" SEE NOTE 1.               | BAR 3.75° 00. X 5.5° LG.            |                                                                                          | VENT SHIELD BLOCK           |  |
| 29                                             | 4       | ALLOY "X" SEE NOTE 1.               | BAR .75"00 X .5"LG.                 |                                                                                          | VENT SHIELD BLOCK SPACER    |  |
| 30                                             | l       | ALLOY "X" SEE NOTE 1.               | 2"-SCH 10 PIPE X 173" APPROX.LG     |                                                                                          | ORAIN LINE                  |  |
| 31                                             |         |                                     | DELETED                             |                                                                                          |                             |  |
| IJ                                             |         |                                     | DELETO                              |                                                                                          |                             |  |
| 33                                             | 68      | ALLOY "X" SEE NOTE 1.               | 4° SQ. TUBE X 1/4° WALL LENGTH      | AS REDD. (FOR SHORT FLEL DALY)                                                           | LOWER RUEL SPACER OLUMN     |  |
| 344                                            | 66      | ALLOY "X" SEE NOTE 1.               | 3/8" THK. X 5 3/4" SD. PLATE        |                                                                                          | LOVER FLEL SPACER BIO PLA   |  |
| 348                                            | 68      | ALLOY "X" SEE NOTE 1.               | 3/8" THK. X 5 3/4" SD. FLATE        | ( FOR SHORT FLEE, DNLY )                                                                 | LINER FLEL SPACER END PLAT  |  |
| đ                                              |         |                                     | 199.ELED                            |                                                                                          |                             |  |
| 36                                             | as redd | ALLOY "X" SEE NOTE 1.               | I" WIDE X 168" LG. THICKNESS AS     | EU.                                                                                      | BASKET SHIM                 |  |
| 37                                             | as redd | ALUM. ALLOY 1100                    | 1/8" THK. X 176" LG. ALLM. SHEE     | t                                                                                        | IEAT CONCLETION BLEVENTS    |  |
| 38                                             | 2       | ALUPENUH                            | .065° THK X 1.494 00, .250 HOLE     |                                                                                          | SEAL WASHER                 |  |
| <b>3</b> 9                                     | 2       | N                                   | 1/4" MA X 3/8 IG                    | I/4" DIA X T/R IG                                                                        |                             |  |
| 40                                             | 2       | ALLOY "X" SEE NOTE I                | 1/8" THK. 6" X 6" APPREX. SHEET     |                                                                                          | ORAIN LINE                  |  |
| 41                                             | 8       | ALLOY "X" SEE NOTE 1.               | 1/8" THK. X 6" X 6" MPTRDX. SHE     | 7                                                                                        | ORAIN LINE                  |  |
| NOTES: (FOR                                    | SHEET   | 2) 1. ALLEY X IS AN<br>The alley to | ee used shall be specified by the L | LESS STEEL ALLOYS: ASME TYPE 316, 31<br>Joensee<br>Pal Tojge passivated prior to install | ELN, 304, 304LN.            |  |

Ninnah Burk, DP to condita is 0.0372 gych<sup>2</sup>. Burk, PU be passivaled from to installation.
 For MPC-68F. Ninnah Bork, B-10 Londing is 0.01 gych<sup>2</sup>.
 All dimensions are attractivate dimensions.
 Itbes 5, B, 9A, 9B, 9C, 16, 36 and 37 hay be nade from NDRE than dne piece. The ends of pieces od not need to be veloed to be veloed to be related.

| $(\mathfrak{Z})$             |                                                  |                                                 |                                  |                                           |                                     |                                                 | 9                         |
|------------------------------|--------------------------------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------|-------------------------------------------------|---------------------------|
|                              | <u>BM-1575 (E.I.D.</u>                           |                                                 |                                  |                                           | RM (DWG. 14                         | 95, 1561) SHT                                   | 1 OF 2                    |
| REV. ND.                     | PREP BY                                          | CHECKED BY                                      | PROJ.                            | MANAGER                                   | DA. MA                              | NAGER                                           |                           |
| 8                            | S.GEE 2-1-2000<br>Incorporated ECD 5014-12       | Our Spith<br>2/1/00                             | - Our                            | Yuth                                      | M 1c<br>2/1/00                      | e                                               |                           |
| ITEM DTY.                    | SPECIFICATION   NO                               | IMENCLATURE                                     |                                  |                                           |                                     | ·                                               |                           |
|                              | SA 516 GR. 70 BASEPL                             | ATE 2                                           | THK X 133 7/8                    | DESCRIF<br>BØ BASEPLATE                   |                                     |                                                 |                           |
| 2 1                          | SA 516 GR 70 DUTER                               | SHELL 3                                         | 74 THK X 224                     | 12 16 X 132 1/2                           |                                     | MAY DE MADE IN SECT                             | IDNS, SEE DWG 1495 SHT 5) |
| 3 1                          | SA 516 GR. 70 INNER                              | SHELL                                           | 174 INK. A 224                   |                                           | D CYLINDER                          | THAT DE THADE IN SECT                           | 10N3, SEE DWU 1493 SHI 37 |
| 4 1                          | CONCRETE RADIAL                                  | SHIELD 28                                       | 6 3/4 THK, RADI                  | AL SHIELD                                 |                                     |                                                 |                           |
| 5 1                          | SA 516 GR. 70 PEDEST                             |                                                 |                                  | 18 D.D. X 21 5/8                          | LG CYLINDER                         |                                                 |                           |
|                              |                                                  | TTOM PLATE                                      | 1/4 THK X 69"                    |                                           |                                     |                                                 |                           |
|                              | SA 515 GR. 70 LID SH                             |                                                 |                                  | WIDE X 69 0.0.                            |                                     |                                                 |                           |
| 8 4                          | SA 516 GR. 70 EXIT V<br>SA 516 GR. 70 TOP PL     | ENT HORIZONTAL PLATE                            |                                  | E X 30 LG. PLATE (S                       |                                     |                                                 |                           |
|                              | SA-516-70 LID TO                                 |                                                 | 74 THK X 131 1<br>THK X 126 ØP   | <u>/2 0 0 X 81 1/2</u><br>LATE (MADE FROM | I D RING (CUT I<br>TWO 2" THICK PLA |                                                 |                           |
|                              |                                                  | ENT HORIZONTAL PLATE 2                          |                                  |                                           | E (SEE DET. DWG. 156                |                                                 |                           |
| 12 8                         | SA 516 GR. 70 EXIT VI                            | ENT VERTICAL PLATE 1/                           | 12 THK X 5 1/4                   |                                           |                                     | <u> 11 71 71 71 71 71 71 71 71 71 71 71 71 </u> |                           |
| 13 8                         | SA 516 GR. 70 INLET                              | VENT VERTICAL PLATE 3/                          | 4 THK X IO WI                    |                                           | RDX LG PLATE                        |                                                 |                           |
| 14 4                         | SA 516 GR. 70 RADIAL                             | PLATE 3/                                        |                                  | 2 WIDE X 224 1/2                          |                                     |                                                 |                           |
| 15 4                         | SA 193 2H TOP LI                                 |                                                 | 3 1/4 - 4 UNC H                  |                                           |                                     | ······································          |                           |
| 16 4                         | SA 564-630 AGE<br>HARDENED AT LID ST<br>1075°F   |                                                 | 3 - 4 UNC X 16                   | LG. (SEE DWG. 15                          | 61, SHT 2)                          |                                                 |                           |
| 17 4                         | SA 350 LF3<br>DR SA 203 E BDL1                   |                                                 | X 5 X 6 ANCHO                    | R BLOCK W/ 3 - 4                          | UNC X 5 LG HOLE                     | IN CENTER                                       |                           |
| 18                           | DELETER                                          |                                                 |                                  |                                           |                                     |                                                 |                           |
| 19 16                        | SA 516 GR. 70 CHANNEL                            |                                                 | <u>16 THK. X 6 WI</u>            | <u>DE X 170 7/8 LG.</u>                   | CHANNEL (SEE DE                     | TAIL 1495 SH. 5)                                |                           |
| 20 1                         |                                                  | BLOCK RING                                      |                                  | 2 I.D X 85 1/2<br>M MORE THAN I PI        | D.D.<br>ECE.)                       |                                                 |                           |
| 21 1                         |                                                  | NL SHIELD 17                                    | "THK PLATFOR                     |                                           |                                     |                                                 |                           |
| 22 1                         | CONCRETE LID SHI                                 |                                                 | ) 1/2 THK. TOP                   | SHIELD                                    |                                     |                                                 |                           |
| <u> </u>                     | DELETED                                          |                                                 |                                  |                                           |                                     |                                                 |                           |
|                              | SA 516 GR. 70 PEDEST                             |                                                 | SZEB THICKNESS                   | Ø PLATE (MAY USE<br>)                     | MULTIPLE PLATES                     | U⊦                                              |                           |
| 25 1                         | CONCRETE SHIELD                                  | BLDCK 8"                                        | THK.                             |                                           |                                     |                                                 |                           |
| 26 <u>1</u><br>27 <u>1</u>   | SA 516 GR. 70 SHIELD                             | BLUCK SHELL 1/                                  | 2 THK X 86 D.D                   |                                           |                                     |                                                 | PIECE )                   |
|                              | SA 516 GR. 70 SHIELD                             | BLUCK SHELL 17                                  | 2 THK X 64 0.0                   |                                           |                                     | DUT OF MORE THAN I P                            | PIECE )                   |
| 29 1                         | SA 516 GR. 70 SHIELD S<br>SA 240 304 STURAGE     |                                                 | 4 THK X 58 5 /                   | APPROX WIDE X 20                          | D5" LG. PLATE                       |                                                 |                           |
|                              |                                                  | MARKING NAME PLATE 14                           |                                  | IN. ) X 4 WIUE )                          | ULL SHEEL                           |                                                 |                           |
|                              | C/S DR S/S LID PLL                               | JGS I I                                         | 1/2"-6UNE X 2 1/2                | " OP BOLT                                 |                                     |                                                 |                           |
| DTE:<br>1) THE CON<br>DOCKET | NCRETE MATERIAL IS TO I<br>NUMBER 72-1014 (LATES | MEET THE REQUIREMENTS<br>T REVISION ).          | SPECIFIED IN A                   | PPENDIX 1.0 OF T                          | HE HI-STORM 100                     | TSAR                                            |                           |
| 2) ALL DIM<br>RAW MAT        | MENSIONS IDENTIFIED ON<br>FERIAL FORM MUST HAVE  | BM-1575 ARE APPROXIMA<br>TOLERANCES MEETING THE | TE DIMENSIONS I<br>APPLICABLE SP | EXCEPT THICKNESS                          | ES OF STEEL PLATE                   | ES WHICH IN THE                                 |                           |
| 3) ITEMS W                   | ITH A * CONSIDERED NO                            | TO BE NF CLASS 3 (NO                            | N STRUCTURAL)                    |                                           |                                     |                                                 |                           |
|                              |                                                  |                                                 |                                  |                                           |                                     |                                                 |                           |

eNDRAWINGSN5014N5014NHI-STORMNBM1575 1.R8

∕♪

|              |                       | BM-1575 (]                             | E.I.D. 2836) BILL        | OF MATERIAL FOR HI-STORM (DWG. 1495, 1561) SHT 2 OF 2                                                                                       |
|--------------|-----------------------|----------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|              | REV. ND.              | PREP BY                                | I CHECKED BY             | PROJ. MARAGER DA. MANAGER                                                                                                                   |
|              | 8                     | S. GEE L-13-2000<br>INCORPORATED ECD-5 | 5014-5 Bun fath          | ~ Butten MAC                                                                                                                                |
|              | ITEM DTY.             | SPECIFICATION                          |                          | DESCRIPTION                                                                                                                                 |
| *            | $\frac{31}{32}$ ${4}$ |                                        | DELETED                  |                                                                                                                                             |
| *            | $\frac{32}{33}$ 4     | SA 240 304<br>SA 240 304               | EXIT VENT SCREEN SHEET   | 16 GAGE ( 0.0595 THK. ) X 6 1/4 WIDE X 28 LG. SHEET                                                                                         |
|              | $\frac{33}{34}$       | COMMERCIAL                             | EXIT VENT SCREEN FRAME   | 16 GAGE ( 0.0595 THK )                                                                                                                      |
| *            |                       |                                        | JUKEEN                   | 16 WIDE X 212 LG 6 X 6 MESH 0.020 WIRE Ø 0.147 WIDTH OPEN FROM<br>MCMASTER-CARR 101 PAGE# 2521 ITEM# 9220167 CUT AS NECESSARY OR EQUIVALENT |
| *            | _ 35 4                | SA 240 304                             | INLET VENT SCREEN FRAME  | 16 GAGE ( 0 0595 THK )                                                                                                                      |
| <u>∕</u> ∎ ∗ | 36 2                  | COMMERCIAL                             |                          |                                                                                                                                             |
| <u> </u>     | Ľ                     |                                        | THERMOCOUPLE OR RTO      | 1/8 Ø SHEATH WITH TEMPERATURE ELEMENT (BY USER).                                                                                            |
| *            | 37 16                 | SA240-304                              | GAMMA SHIELD CROSS PLATE | 1/4 THK X 2.75 X 24                                                                                                                         |
| *            | 38 4                  | SA240-304                              | GAMMA SHIELD CROSS PLATE | 1/4 THK X 24 X 24 5/8                                                                                                                       |
| *            | 39 40                 | <u> </u>                               | CROSS PLATE TABS         | 075 THK X 1/4 X 2 1/2                                                                                                                       |
| ∽<br>★       | 40 8<br>41 16         | SA240-304                              | GAMMA SHIELD CROSS PLATE | 1/4 THK X 14 5/8 X 24                                                                                                                       |
| *            | 41 10                 | SA240-304                              | GAMMA SHIELD CROSS PLATE | 1/4 THK X 3.09 X 24                                                                                                                         |
|              | 43 8                  | C/S OR S/S<br>SA240-304                | DRAIN PIPE               | 10 X 1/4THK WALL X 11 1/2 LG                                                                                                                |
| *            | 44 2                  |                                        | GAMMA SHIELD CROSS PLATE | 1/4 THK X 5.09 X 17 1/4                                                                                                                     |
| *            | 45 2                  |                                        | PROTECTION HEAD          | 1/8" X 1/4 NPT MALE PASS THRU COMPRESSION FITTING (OPTIONAL)                                                                                |
| *            | 46 2                  |                                        | BUSHING                  | 1/2 NPT X 1/2 NPT (OPTIONAL)<br>1/4 X 1/2 NPT (OPTIONAL)                                                                                    |
| *            | 47 2                  |                                        | COUPLING                 |                                                                                                                                             |
| *            | 48 2                  |                                        | HEX NIPPLE               | 1/2 NPT COUPLING W/ MOUNTING STUD 1/2 DIA X 3" LG. (OPTIONAL)<br>1/2 X 1/2 NPT HEX NIPPLE (OPTIONAL)                                        |
| *            | 49 2                  |                                        | CONNECTION               | 1/2 NPT CONDUIT CONNECTION (OPTIONAL)                                                                                                       |
| *            | 50 3                  |                                        | SOLIARE TUBING           | 1/2" X 1/2" 16 GAUGE                                                                                                                        |
|              | 51 1                  |                                        | DUCT SHIELD INSERT       | 5 3/4 THK X 24 11/16 X 26 LG CONCRETE ACT 219 (146 LP/CULET MIN) 21 X 25 CD10 0C                                                            |
| ŀ            | 52 1                  | <u> </u>                               |                          | WWF 4 X 4 -W3 5 X W3 5                                                                                                                      |
| ŀ            | 57 2                  |                                        | EMBEDDED PLATE           | I.O. THK X & SU PLATE                                                                                                                       |
| L            |                       |                                        | NELSON STUD              | Ø 1/4 X 2 1/2 LONG                                                                                                                          |

.

Į.

.

**(**)

| REV.NO. PREP. BY & DATE |      |                              | CHECKED BY                  |                      |                          |  |
|-------------------------|------|------------------------------|-----------------------------|----------------------|--------------------------|--|
| 1                       | 12,  | 1197                         | (llandolen<br>A.S. 12/1 (97 | BGILLIGA-<br>12/1/97 | M. Charles               |  |
| ITEN NO.                | QTY. | WATERIAL                     | DESCRIPTION                 |                      | NOWENCLATURE             |  |
| 1                       | 1    | SA430-WP304                  | 3/4 X 1/2 CONCENTRIC R      | EDUCER SCH. 160      | LEAD IN                  |  |
| 2                       | 1    | SA479-304                    | ØØ 1 1/2 X 13/16 LG. R      | DLIND BAR            | LEAD IN COLLAR           |  |
| 3                       | 1    | SA479-304                    | 1010 3/8 X 2 LG. ROUND B.   | 4 <i>R</i>           | LOCK PIN                 |  |
| 4                       | 1    | SA240-304                    | 11 GA. X 1 1/2 X 2 5/       | B LG. SHEET _        | ENGAGEMENT PLATE         |  |
| 5                       | 2    | SA479-304                    | ØØ 3/16 X 13/16 LG. RD.     | UND BAR              | ENGAGEMENT PIN           |  |
| 6                       | 4    | 304 SST.                     | 250 X 250 ØØ.0016 W/.00     | 024 OPEVING X 2002   | WIRE MESH                |  |
| 7 '                     | 2    | 5A479-304 (or)<br>5A240-304  | 3/16 X 1/2 X 5 7/16 LG      | . EAR                | RIM BAR (LONG)           |  |
| 8                       | 2    | 5,479-304 (or)<br>5,2240-304 | 3/16 X 1/2 X 4 7/16 LG      | . EAR                | RIM BAR (SHERT)          |  |
| Э                       | 2    | 3,479-304 (or)<br>3,240-304  | 3/16 X 1 1/4 X 4 7/16 1     | LG BAR               | SICE (SHORT)             |  |
| 10                      | 2    | 54479-304 (or)<br>54240-304  | 3/16 X 1 1/4 X 4 13/16      | LJ. BAR              | SICE (LONG)              |  |
| 11                      | 2    | 5A479-304 (cr)<br>5A240-304  | 1/2 SQ. X 2 3/16 LG. B.     | 4 <i>F</i>           | LŪAD TAB                 |  |
| 12                      | 1    | SA479-304                    | ØØ I 1/2 X 3/4 LG. RDU      | ND BAR               | LOAD TAB HUB             |  |
| 13                      | 1    | SA479-304                    | 00 1 1/2 X 3 LG. ROUND      | 378                  | LECKING SHAFT            |  |
| [4                      | 1    | SA479-304                    | 00 1/8 X 9/16 LG. ROUN      | J 3AR                | LOCKING PIN              |  |
| 15                      | 1    | SA479-304                    | 00 3/8 X 1 7/8 LG. ROU      | VE BAR               | SHEAR PIN                |  |
| 16                      | 1    | 304 SST. (or)<br>316 SST.    | COMPRESSION SPRING 13/      |                      | LECKING SPRING           |  |
| 17                      | 1    | SA240-304                    | 3/16 X 4 13/16 SD. PLA      | TE                   | CLOSURE FRAME            |  |
| 18                      | 2    | 304 SST.                     | I/16 X 3/4 COTTER PIN       |                      | BASE PLATE               |  |
| 19                      | 1    | SA240-304                    | 3/8 X 4 13/16 SD. PLAT      |                      | FUEL SPACER<br>TOP PLATE |  |
| 20                      | 1    | <b>304</b> SST.              | 1/4 WALL X 4 SU. X 2 1      | /8 LG. TUBING        | FUEL SPACER TUBIN        |  |
| 21                      | 1    | 304 SST.                     | 250 X 250 ØØ.0016 W/.00     | D24 OPENING X 0002   | WIRE MESH                |  |
| 22                      | 2    | SA240-304                    | 11 GA. X 10 3/8 APP. X      | 138 1/4 LG. SHEET    | CANISTER SLEEVE          |  |
| 23                      | 1    | SA240-304                    | 11 GA. X 21 3/4 APP. X      | 2 LG. SHEET          | CANISTER COLLAR          |  |
| 24                      | 1    | SA240-304                    | 11 GA. X 4 15/16 SD. SI     |                      | CANISTER BOTTOM          |  |
| 25                      | 1    | SA240-304                    | 11 GA. X ØØ .61 PLUG        |                      | LEAD-IN CAP              |  |
| 26                      | 1    | SA240-304                    | 11 GA. X 4 1/2 0.0. X :     | 3 1/4 I.D. RING      | SCREEN RING              |  |
| 27                      | 4    | SA240-304                    | 11 GA. X I 15/16 D.D. 2     | K 1 9/16 1.0. RING   | SCREEN RING              |  |
| 28                      | 1    | SA312-304                    | 3/4 STD. PIPE SCH. 160      | X ! LG.              | LEAG-IN EXTENSION        |  |

. . .

;

 $\wedge$ 

¢.

`

| BM-1880 BILI                      | OF MATERIAL FOR 125 TO                          | DN HI-TRAC (DWG. 1880) SHT                        | 1 00 2                                |
|-----------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------|
| REV. ND. PREP.                    |                                                 |                                                   |                                       |
|                                   | Criterio U                                      |                                                   | DA MANAGER                            |
| 7 S. GEE 4                        | 1-30-99<br>DCR 5014-131 ST4/19                  | B. GILLIGAN 5/4/99                                | N. Umpto v. C.<br>5-4-99              |
| ILEM IJTY. SPECIFICAT             | IUN   NUMENCLATURE                              |                                                   |                                       |
| I I ASTM B 29                     | RADIAL LEAD SHIELD                              | 113 CU. FT. COMMON LEAD APP                       |                                       |
| 2 1 SA 516 GR.                    | 70 DUTER SHELL                                  | I TIK X 81.25 D.D. X 184.7                        |                                       |
| <u> 3   1   SA 516 GR.</u>        | 70 INNER SHELL                                  |                                                   | 4.75 LG. CYLINDER                     |
| 4 12 SA 516 GR.                   | 70 RADIAL CHANNEL                               |                                                   | 8.75 LG.                              |
| 4A     SA 516 GR.                 | 70 RADIAL CHANNEL                               |                                                   | 4.625 LG.                             |
| 4B 1 SA 516 GR.                   | 70 RADIAL CHANNEL                               | 0.5 THK. X 20 (APPRUX) X 15                       | 2.625 LG.                             |
| 5 10 SA 516 GR.<br>5A 4 SA 516 GR | 70 ENCLOSURE SHELL PANEL                        | 0.5 THK. X 11.72 WIDE X 168                       | .75 LG.                               |
|                                   | 70 ENCLUSURE SHELL PANELS                       |                                                   | .625_LG.                              |
|                                   | 70 WATER JALKET END PLATE                       | I (MAY BE MADE FROM MORE THAN                     | 5 I.D. RING<br>1 PIECE)               |
| - 7 1 SA 350 LF                   | 3 TUP ILANGE                                    | 4.5 IHK. X 81.25 D.D. X 68.                       | 75 I.D. RING                          |
| 8 SA 516 GR.                      | 70 LOWER WATER JACKET SHELL                     | . 10.5 THK. X 86.25 D.D. X 6 L                    | G. CYLINDER                           |
| <u>DR SA 350</u>                  |                                                 | 2 IHK, X 93 D.D. X 68,75 I.                       | Ŋ,                                    |
| 10   SA 350 LF                    | 3 POOL LID DUTER RING                           | 5.5 IHK. X 93 U.D. X 75 I.D                       | RING                                  |
| 11   SA 516 GR.                   | 70 POOL LID TOP PLATE                           | 2 TIK. X 75 Ø PLATE                               |                                       |
| 12   ASTM B 29                    | POOL LID LEAD SHIELD                            | 6.39 CU. FT. CUMMON LEAD AP                       |                                       |
|                                   | 70 TUP LID UNIER RING                           |                                                   | 75 LG. CYLINDER                       |
| 15 1 SA 516 GR                    | 70 TOP LID INNER RING                           | 0.5 THK X 29 D.D. X 3.75 L                        | S. CYLINDER                           |
|                                   | 70 TUP LID TUP PLATE<br>70 TUP LID BUTTUM PLATE | 0.5 1HK. X 74.875 D.D. X 29                       | I.D. RING                             |
| 17 1 HOLTITE                      | TOP LID SHIELDING                               |                                                   | L.D. RING                             |
| 18 8 SA 516 GR.                   | 70 FILL PURT CAPS                               | 5.41 CU. FT. APPRUX.<br>0.25 THK. X 2.375 Ø PLATE | · · · · · · · · · · · · · · · · · · · |
| 19 18 SA 193 H7                   |                                                 | 0.5-13 LINE X 2.75 LG. STUDS                      |                                       |
| 20   18   <u>54 193 211</u>       | TOP LID NUT                                     | 0.5 13 LINC HEAVY HEX                             |                                       |
| 21 1 ELASTEIMER                   | POOL LID GASKET                                 | 0.25 IHK. X 87.25 D.D. X 86.                      | 25 T.D. CLIMMERETAL                   |
| 22 36 SA 193 B7                   | PUDL LID BULT                                   | 1 8 LINC X 2,5 L.G. HEX. BOL                      | TS                                    |

NUTE: 1) ALL SA-350-LE3 MATERIAL MAY BE REPLACED BY SA-203-E.

2) ALL DIMENSIONS ARE FOR REFERENCE HNLY.

|   |                                    | BM-               | 1880 BILL OF                       | MATERIAL FOR 125 TON                         | HI-TRAC (DWG. 1880) SHT. 2 0                                           | F 2                                    |
|---|------------------------------------|-------------------|------------------------------------|----------------------------------------------|------------------------------------------------------------------------|----------------------------------------|
|   | REV.                               | NU.               | PREP. BY                           | CHECKED BY                                   | PROJ., MANAGER                                                         | DA. MANAGER                            |
|   | 5 S. GEE 4-30-99<br>INCHRPURATED D |                   | S. GEE 4-30-99<br>INCHRPTIRATED DC | R 5014-131 514/99                            | B. GILLIGAN 5/4/99                                                     | 2). Dupto<br>5-4-99                    |
|   | ITEM                               | NTY.              | SPECIFICATION                      | NIMENCLATURE                                 | DESCRIPT                                                               | ION                                    |
|   | 23                                 |                   |                                    | DELETED                                      |                                                                        |                                        |
| Δ | 24<br>25<br>26                     | 22                | SA 350 LF3<br>SA 516 GR. 70        | LIFTING TRUNNTON BUDCK                       | 7.75 (APPROX) X 8 X 10<br>0.25 11K. X 4.5 X 9.25 LG. PLATE             |                                        |
|   | $\frac{20}{27}$                    | <u>-</u> <u>2</u> | <u>SB 037 NU7718</u>               | LIFTING TRUNNION<br>LIFTING TRUNNION END CAP | 6.25 Ø X 7.75 LG. BAR<br>0.5 HK. X 6.75 Ø PLATE                        |                                        |
|   | 28<br>29                           | 4                 | SA 19 <u>3 B7</u>                  | IEND CAP BOITS<br>IPUCKET TRUNNIUN           | 0.5 - 13 UNC X 1.5 LG. WITH 1.25<br>12.375 X 13 X 12.5 BLUCK           | LG THREAD                              |
|   | 30                                 | Ī                 | SA 106                             | DRAIN PIPE                                   | I SHC. 80 X 7 (APPRIX.) LG. PIPE                                       |                                        |
|   | 31                                 |                   |                                    | DELETED                                      |                                                                        |                                        |
|   | <u>32</u><br>33                    | 4                 | SA 193 B7                          | DRAIN BOLT<br>TUP LID TUNGUE                 | 1 - BLINC X 1.75 LG. SDCKET CAP BL                                     |                                        |
|   | 34                                 |                   | SA 516 GR. 70                      | WATER JACKET END PLATE                       | 0.5 THK. X 0.5 WIDE X TO (APPRDX.<br>1 THK. X 6.6875 WIDE X 30 (APPRDX |                                        |
|   | 35                                 | 4                 | SA 193 B7                          | LIFTING TRUNNIUN PAD BOLT                    | 0.25 - 20 UNC X 1.25 LG. BULT                                          | V LU, PLATE                            |
|   | <u>36</u><br>37                    |                   | SA 516 GR. 70                      | POOL LID BOTTOM PLATE                        | I THK. X 75 Ø PLATE                                                    |                                        |
|   | -17                                |                   | CUMMERCIAL                         | VENT CUUPLING                                | 1 1/2-3000 Ib. SCREWED HALF COUPL                                      | ING                                    |
|   | <u>38</u><br>39                    |                   | COMMERCIAL<br>LUMMERCIAL           | VENT PLUG                                    | 1 1/2 3000 16. SEREWED HEXAGON HEAD                                    | PLUG                                   |
|   | 40                                 |                   |                                    | PRESSURE RELIEF CUUPLING                     | 1-3000 Ib. SCREWED HALF COUPLING                                       |                                        |
|   | 40                                 | 1                 | COMMERCIAL                         | PRESSURE RELIEF VALVE                        | MEDILIM PRESSURE BRONZE POP VALVE                                      |                                        |
|   | 41                                 | 1                 | SA 106                             | JACKET DRAIN PIPE                            | 1 1/2 SCH. 40 X 5 LG. PIPE                                             |                                        |
|   | 42                                 | 1                 | COMMERCIAL                         | JACKET DRAIN VALVE                           | 1 1/2 NONRISING STEM BRONZE GATE                                       | VALVE                                  |
|   | 43                                 | 4                 | C/S DR S/S                         | HOLE PLUGS                                   | N/A                                                                    |                                        |
|   | 44                                 | 4                 | SA 516 GR. 70                      | TOP LID LIFTING BLOCK                        | 1.5 SQ. X 3.25 LG. BLOCK                                               |                                        |
|   | 45                                 |                   | CUMMERCIAL                         | THERMAL EXPANSION FUM                        | 0.125 TIK.                                                             | ······································ |
|   | 46                                 | 1                 | SA 516 GR 70                       | GUSSET                                       | 0.75 THK X 1.0 WIDE X 3.75 LG PL                                       | ΔΤΕ                                    |

9.

+

•

|             |                                                                             |                                                                                                                                                                  | MATERIAL FOR 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FON III-TRAC TRANSFE                                | R LID (DWG. 1928)               |
|-------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------|
|             | REV NU                                                                      | PREP. BY                                                                                                                                                         | CHECKED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PROJ, MANAGER                                       | DA. MANAGER                     |
|             | 7                                                                           | S.GEE, 5-3-99<br>INCTRPORATED DCR 5014                                                                                                                           | 131 In gath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N.C. 5/4/95                                         | n. 20 mpto J.C.<br>5-4-99       |
|             | ITEM DT                                                                     | SPECIFICATION T                                                                                                                                                  | NOMENCI ATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DESCRIF                                             |                                 |
|             | 1 1                                                                         | SA 516 GR. 70 LIU                                                                                                                                                | TUP PLATE 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IIIK. X 93 WIDE X 128 LG. PLA                       |                                 |
| •           | 2 1                                                                         | SA 516 GR 70 LTD                                                                                                                                                 | BOTTEM PLATE 2 TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K. X 93 WIDE X 128 LG. PLATE                        |                                 |
| $\triangle$ | 3 2                                                                         | SA 516 GR. 70 LID                                                                                                                                                | INTERMEDIATE PLATE 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | THK. X 8.375 WIDE X 132 LG.                         | PLATE                           |
|             | 4 2                                                                         | SA 516 GR. 70 LEAD                                                                                                                                               | <u>I COVER PLATE</u> I TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K. X 8.375 WIDE X 78 LG. PLA                        | TF                              |
| $ \Delta $  | 5 8                                                                         |                                                                                                                                                                  | <u>CUVER SIDE PLAIL</u>  1  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K. X 4.5 WIDE X 8.375 LG. PL                        | AIE                             |
|             | $\begin{bmatrix} 6 \\ 7 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix}$ | ASTM B 29 STOF                                                                                                                                                   | TEAD SHIFLD 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (APPRUX.) LU. FI.                                   |                                 |
|             | $\frac{7}{8}$ $\frac{2}{2}$                                                 | <u>SA 36</u> WILL<br>SA 516 GR 70 DOOR                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>"5   HK - X   0, 75 X   0, 75 X   128 L</u>      | L. ANGLE                        |
|             | <u>ğ</u> ž                                                                  | ASTM B 29 DUUR                                                                                                                                                   | LITVD ZHITTD 5-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 THK. X 47 WIDE X 65 LG. PL<br>(APPRIX.) (1). I I. | ATE (LUT AS NELESSARY)          |
|             | 10 2                                                                        | SA 516 GR. 70 DODR                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THK X 47 WIDE X 65 LG. PLAT                         |                                 |
|             | 11 2                                                                        | HULTITE                                                                                                                                                          | SHILDING 3.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     | L (LDI AS NELESSARI)            |
|             | 12 2<br>13 1                                                                | SA 516 GR. 70 DOUR                                                                                                                                               | BUTTUM PLATE 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THK. X 47 WIDE X 65 LG. PLAT                        | E (FUT AS NECESSARY)            |
|             | 13   1                                                                      | SA 350 LF3, SA 203E DULLR                                                                                                                                        | WHEEL HEIDSING 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TUK X 8 WIDE X 25 LG. PLATE                         | (CUT 3.75 X 6 )                 |
|             |                                                                             | IR SA 516-70                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                                 |
|             | 14 2                                                                        | SA 516 GR. 70 DOUR                                                                                                                                               | INTERFACE PLATE   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K X 3 778 WIDE X 80 LG PL                           | ATE                             |
|             | 15 2                                                                        | SA 516 GR. 70 DOOR                                                                                                                                               | SIDE PLATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K. X 8 WIDE X 65 LG. PLATE                          |                                 |
| -           | 15A 4<br>16 4                                                               | SA 516 GR. 70 DUUR                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K. X & WIDE X 65 LG. PLATE                          |                                 |
| ł           | $\frac{16}{17}$ $\frac{4}{2}$                                               | SA 516 GR. 70 DOOR                                                                                                                                               | SIDE PLATE II IH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K. X 8 WIDE X 32.625 APPROX.                        | LG. PLATE                       |
| .<br> -     | 18 12                                                                       |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ø X 17.5 LG. BAR                                    |                                 |
|             |                                                                             |                                                                                                                                                                  | ŬR^LI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 V GRUUVE WHEFL FROM MCMASTER-C.<br>IUIVALENT      | ARR 101 PAGE# 481 ITEM# 2310119 |
|             | 1 <u>9</u> 12<br>20 12                                                      | SA 36 WHEEL                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ø X 6.875 LG. BAR                                   |                                 |
|             | 20 12<br>21 2                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THK. X 2.5 Ø PLATE                                  |                                 |
|             | $\begin{array}{c c} 21 & 2\\ 22 & 4 \end{array}$                            | SA 516 GR. 70 LID H<br>SA 193 B7 000R                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K. X 3.5 WIDE X 8.375 LG. PL/                       |                                 |
|             |                                                                             |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 - 4 UNC X 10.875" LG. HEX.<br>ND                  | BOLTS W/ 1.5 LG. THREADED       |
| ļ           | $\frac{23}{24}$ $\frac{4}{8}$                                               | SA 516 GR. 70 DULK                                                                                                                                               | STUP BLUCK 2 TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K. X 2 WIDE X 8 LG. BLOCK                           |                                 |
|             |                                                                             | SA         193         B7         DDDR           SA         516         GR.         70         DUUR           SA         516         GR.         70         LTF1 | STOP BLOCK BOLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BLINC X BLG. BOLT W/ 2.5 LG.                        | THREADED AT END                 |
|             | $\frac{25}{26}$ $\frac{2}{4}$                                               | SA SID LR. 70 DUUR                                                                                                                                               | END PLATE I III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <pre>&lt;: X 8 WIDE X 19 LG. PLATE</pre>            |                                 |
|             | $\frac{20}{27}$ 4                                                           | SA 516 GR. 70 [LIFT]                                                                                                                                             | $\frac{1N_{\rm U}}{1N_{\rm U}} = \frac{0.75}{1000}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TUK. X 3 WIDE X 3.5 LG. PLAT                        | E                               |
| L           | <u> </u>                                                                    | J SA JIU UK. /UILIFI.                                                                                                                                            | $\underline{D} \underline{U} \mathsf{$ | IHK X 5 SU. PLATE                                   |                                 |

۲. ...... 1

NUTE :

1) ALL DIMENSIUNS ARE APPRUXIMATE.

 $\bigcirc$ 

|            |                  | BM-            | -2145 BILL                            | OF MATE                | RIAL FOR 1         | 00 TON                                | I III-TRAC (                               | DWG. 2145              | ) SIIT. 1 (                           | )F 2              |
|------------|------------------|----------------|---------------------------------------|------------------------|--------------------|---------------------------------------|--------------------------------------------|------------------------|---------------------------------------|-------------------|
|            | REV.             | N[].           | PREP. BY                              |                        | CHECKED, B         | Y                                     | PROJ. M                                    | NNAGER                 | DA. MANAG                             | ER                |
|            | 1                |                | S. GEE 4-30-9<br>INCORPORATED D       | -                      | Jun 7 hut 4        | En Thatter                            |                                            | ~ 5/4/99               | n. Dompto                             | 5-4-99            |
|            | ITEM             | NTY.           | SPECIFICATION                         | NOMENCI                | ATURF              |                                       |                                            | DESCRIPTION            | <b>L</b>                              |                   |
|            | 1                | <u> </u>       | ASTM B 29                             | RADIAL LEAL            | <u>)</u> Shield    | 71.15 (                               | J. FT. CUMMON LE                           | AD APPROX.             | · ·                                   |                   |
|            | 2                | $\frac{1}{1}$  | SA 516 GR 70<br>SA 516 GR 70          | DITER SIELL            |                    | 1 THK. >                              | (78 D.D. X 184                             | 75 LG. CYLINDE         | R                                     |                   |
|            | $\frac{1}{4}$    | $\frac{1}{13}$ | <u>SA 516 GR. 70</u><br>SA 516 GR. 70 | INNER SHELL            |                    | <u>0.75 1H</u>                        | <u>X 68.75 1.0</u>                         | <u>X 184.75 LG. C</u>  | YLINDER                               |                   |
| ▲          | 44               | $\frac{1}{2}$  | SA 516 GR. 70                         | PANIAL CHAN            | N <u>NLL</u>       | <u>  375   </u><br>  <u>  175   </u>  | <u>( X 18.8 (APPR</u><br>K. X 18.8 (APPR   | <u>IX) X 168 75 LL</u> | <u>1.</u><br>1.C                      |                   |
| ▲          | _4B              |                | -                                     | DELETED                |                    |                                       | IN. A TU.U VALLE                           |                        |                                       |                   |
|            |                  | <u>  11</u>    | SA 516 GR. 70                         | ENCLUSURE S            | HELL PANELS        | 0.375 11                              | IK. X 9.7125 WI                            | UE X 168.75 LO         |                                       | · · · · · · ·     |
| ▲          | <u>5</u> ۸<br>6  | 4              | SA 516 GR. 70                         | ENCLUSURE              | SHELL PANELS       | 0.375 Ti                              | IK. X 9.7125 WIT                           | )E X 164.625 LG        |                                       |                   |
| <b>A</b> 7 | $\frac{0}{7}$    | 1              | SA 516 GR. 70<br>SA 350 LF3           | TOP FLANGE             | <u>ELENU PLATE</u> | I HK )                                | ( <u>91 0.0. x 78 1</u><br>x 78.00 (1.0. x | <u>.U. RING ()</u>     | <u>1AY BE MADE FROM MO</u>            | JRE THAN I PIELE) |
| ▲          |                  | <u>i</u> -     | 1 SA 516 GR. 70                       | ILTWER WATER           | 2 JACKEE SHELL     | 1.25 HK                               | <u>. x 83.00 0.0.</u>                      | X616 (YE1ND            |                                       | <u> </u>          |
|            | 9                | 1              | SA 350 LF3, UR<br> SA 516 GR. 70      | BOTTOM FLAN            | lif.               | 2 11K. X                              | (89 11.1). X 68.7                          | "5 1.D.                |                                       |                   |
| A          | _10              |                | SA350 LF3                             | POOL 1.1D DLI          | TER RING           | 10 TIK                                | X 89 LI.IJ. X 75                           | I.D. RING              |                                       | ·····             |
| A          | <u>  </u><br> 2  |                | SA 203-E                              | PUUL LID IU            | P PLAIE            |                                       | 75 Ø PLATE                                 |                        |                                       |                   |
| A<br>A     | 13               | <u> </u>       |                                       | POOL LID LC<br>DELETED | AU SHILLU          | 1.84 LU                               | FT APPROX COMM                             | IUN LEAD               |                                       |                   |
|            | 14               |                |                                       | DELETED                |                    | · · · · · · · · · · · · · · · · · · · | ······································     |                        | · · · · · · · · · · · · · · · · · · · |                   |
|            | 15               |                |                                       | DELETED                |                    |                                       |                                            |                        |                                       |                   |
|            | <u> <u> </u></u> | 1              | SA 516 GR. 70                         |                        |                    | I.O THK.                              | X 78.00 D.D. X                             | 27 I.D. RING           |                                       |                   |
|            | <u>17</u><br>18  | -1             | SA 516 GR 70                          | POOL LID BU            | ITUM PLATE         | 1.5 THK X                             | 75 Ø PLATE                                 |                        |                                       |                   |
|            | $\frac{10}{19}$  | 12             | SA 516 GR. 70<br>SA 193 B7            | TUP LID STU            |                    |                                       | . X 2.375 Ø PLA<br>NC X 2.75 LG. S         |                        |                                       |                   |
|            | 20               | 12             |                                       | TUP LID NUT            |                    |                                       | UNC HEAVY HEX                              | 1002                   |                                       |                   |
|            | _21              | 1              | ELASTUMER                             | POUL LID GA            | SKEI               | 0.25 THK                              | X 83.625 D.D.                              | X 82.625 I.D.          | COMMERCIAL                            |                   |
|            | 22               | 36             | SA 193 B7                             | POOL LID BO            | LT                 | <u>1 8 LIN</u>                        | CX25LG HEX                                 | BOLTS                  |                                       |                   |
|            | 53               |                |                                       | DELETED                |                    |                                       |                                            |                        |                                       |                   |
|            | 24               | 2              | SA 350 LF3                            | LIFTING TRU            | NNION BLOCK        | 6 (APPRU                              | <u>X) X 8 X 10</u>                         |                        |                                       |                   |
|            | 25               | 2              | SA 516 GR. 70                         | PAD                    | NNTIN LIICKING     | 10.25 THK                             | X 4.5 X 9.25 I                             | G PLATE                |                                       |                   |

~)

.

NITES: 1. ALL SA-350-LF3 MATERIAL MAY BE REPLACED BY SA-203-E.

2. ALL DIMENSIONS ARE FUR REFERENCE LINLY.



ag)

|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BM-  | -2145 BILL                                                                      | OF MATER                                                                                           | RIAL FOR 1                                                                        | 00 <sup>°</sup> TON                                                                                      | HI-TRAC (               | DWG. 214    | 5) SIIT. 2 OF 2         |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------|-------------|-------------------------|--|
|   | REV. NU.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | PREP. BY                                                                        |                                                                                                    | CHECKED BY                                                                        |                                                                                                          | PROJ. MANAGER           |             | DA. MANAGER             |  |
|   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | S. GEE 4-30-99<br>INCORPORATED DCR 5014-131                                     |                                                                                                    | On South 5/4/99                                                                   |                                                                                                          | B. GILLIGAN             | 5/4/99      | N. Ungto J.G.<br>5-4-99 |  |
|   | ITEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QTY. | SPECIFICATION                                                                   |                                                                                                    | NOMENCLATURE                                                                      |                                                                                                          | DESCRIPTION             |             |                         |  |
| Δ | 26         2         SB         637         N07718         LIFTING         IRUNNIE           27         2         SA         516         GR.         70         LIFTING         TRUNNIE           28         4         SA         193         87         END         CAP         BDL1S           29         2         SA         350         LF3         REMUVABLE         PULKE           30         6         SA         564-630         CH1100         DUWEL         PINS |      | INTON END CAP<br>S<br>ICKET TREINNTON<br>LIE<br>END PLATE<br>NTON PAD BOLT<br>G | 1 3/8" Ø<br>1 S[1  80<br>1 - 8LINC<br>0.5 THK<br>1 THK. X<br>0.25 20<br><br>1 1/2-300<br>1 1/2-300 | BAR<br>X 6 1 G APPROX<br>X 1 . 75 LG SULK<br>X 0.5 WIDE X 10<br>6 . 375 WIDE X 30 | (CUT TO SUIT<br>(EI CAP BULT<br>) (APPROX.) L<br>) (APPROX) LG<br>BOLT<br>ALF COUPLING<br>XAGON HEAD PLI | )<br>G. BAR<br>J. PLATE |             |                         |  |
|   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    | CUMMERCIAL                                                                      | PRESSURE REL                                                                                       | IEF VALVE                                                                         | MEDILIM PRESSURE BRONZE POP VALVE                                                                        |                         |             |                         |  |
|   | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    | SA 106                                                                          | JALKEI DRAIN                                                                                       | PIPE                                                                              | 1 1/5 2CF                                                                                                |                         |             |                         |  |
|   | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l    | LUMMERCIAL                                                                      | JACKET DRAIN VALVE                                                                                 |                                                                                   | 1 1/2 NONRISING STEM BRUNZE GATE VALVE                                                                   |                         |             |                         |  |
|   | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4    | CV2 DR 2V2                                                                      | HULE PLUGS                                                                                         |                                                                                   | NZA                                                                                                      |                         |             |                         |  |
| Δ | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                                                                 | DELETED                                                                                            |                                                                                   |                                                                                                          |                         |             |                         |  |
| ▲ | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                                                                                 | DELETED                                                                                            |                                                                                   |                                                                                                          |                         |             |                         |  |
|   | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2    | SA 516 GR. 70                                                                   |                                                                                                    |                                                                                   | . 375 X 1                                                                                                |                         |             |                         |  |
|   | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2    |                                                                                 | POCKET TRUNN                                                                                       |                                                                                   |                                                                                                          | X 12.375                |             |                         |  |
|   | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4    | SA564-630<br>(HI100)                                                            | POCKET TRUNN                                                                                       | ION BOLTS                                                                         |                                                                                                          | (6.25 WITH 2.31         |             | HREAD                   |  |
| Д | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1    | SA 516 GR 70                                                                    | GUSSET                                                                                             |                                                                                   | .75 THK X                                                                                                | (1.0 WIDE X 3.7         | '5 LG PLATE |                         |  |

-

.

۰.

|              | RN-2                         | DIS2 RUL OF                                        | WATERIAL FOR          | 100 TO         |                                       | TDANCHED                                                                                                       |                                        | 04503          |
|--------------|------------------------------|----------------------------------------------------|-----------------------|----------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|
|              | REV. ND.                     | PREP. BY                                           | MATERIAL FOR          |                | PRUJ. MA                              | the second s | LID (DWG.<br>DA. M/                    |                |
|              |                              | S CEE 4 20 0                                       |                       | .,,            |                                       |                                                                                                                |                                        |                |
|              | 5                            | INCORPORATED DCR 501                               | 19<br>14 131 Britter  | 5/4/89         | B.GILLIGAN                            | 5 4 99                                                                                                         | V. Umpto                               | J.G.<br>5-4-99 |
|              |                              | SPECIFICATION<br>SA 516 GR. 70 LII                 |                       |                | HK. X 89 WIDE                         |                                                                                                                | TION                                   |                |
| A            | 2 1                          | SA 516 GR. 70 LT                                   | D BOTTOM PLATE        |                | <u>THK X 89 WIC</u>                   |                                                                                                                |                                        |                |
|              | _3 2                         | SA 516 GR. 70 LI                                   | D INTERMEDIATE PLATE  | 1.51           | TIK. X 8.375 W                        |                                                                                                                | PLATE                                  |                |
| •            | 4 2                          | SA 516 GR. 70 LE                                   | AD CUVER PLATE        |                | . X 8.375 WIDE                        | X 78 LG. PLA                                                                                                   | TE                                     |                |
| ு            | 5 8                          | SA 516 GR. 70 LE                                   | AD CUVER SIDE PLATE   | 1 11 IK        | X 2.5  WIDE                           | (8.375 LG, PL                                                                                                  | ATE                                    |                |
|              | 6 1                          |                                                    | <u>DE LEAD SHIELD</u> | 1 136          | APPRUX CU. F                          | 1.                                                                                                             | ······································ |                |
| A            | <u>7</u> 2<br>8 2            | SA 36 WHE                                          | EEL IRALK             | 0.129          | 111K. X 0.75 )                        | (0.75 X 128 L                                                                                                  | G ANGLE                                |                |
|              | $-\frac{8}{9}$ $\frac{2}{2}$ | SA 516 GR 70 DD                                    | UR TUP PLATE          | 2.25           | IHK. X 44.5 WI                        | <u>DE X 65 LG. P</u>                                                                                           | LATE (CUT AS NEC                       | ESSARY)        |
| $\mathbb{A}$ |                              | ASTM B 29 DUI<br>DELETED                           | <u>UR LEAD SHIFTD</u> | 2.04           | APPRUX LU. FT.                        | · - · · · · · · · · · · · · · · · · · ·                                                                        |                                        |                |
| A            | 11                           | DELETED                                            |                       |                |                                       |                                                                                                                |                                        |                |
| Ā            | 12 2                         | SA 516 GR. 70 DUL                                  |                       |                |                                       |                                                                                                                | ATE (LUT AS NELE                       | 222 VIN 22     |
|              | 13 4                         | SA 516 GR 70, DOI<br>UR SA 350 LF3,<br>DR SA 203 E | OR WHEFL HOUSING      | 7.5 1          | HK: X 8 WIDE X                        | 25 LG. PLATE                                                                                                   | (CUT 3.75 X 6                          | )<br>)         |
|              | 14 2                         | SA 516 GR 70 000                                   | DR INTERFACE PLATE    |                | . X 3 7/8 WIDE                        |                                                                                                                |                                        |                |
|              | 15 2                         | SA 516 GR. 70 DUL                                  | DR STOP PLATE         |                |                                       | <u>, A OU LU, FLI</u>                                                                                          |                                        |                |
| A            | 15A 4                        | SA 516 GR 70 DOC                                   | DR SIDE PLATE         | I THK          | X 2 WIDE X 6                          | SIG PLATE                                                                                                      |                                        |                |
| A            | 16 4                         | SA 516 GR. 70 DOL                                  | DR SIDE PLATE         | I THK          | X 4.25 WIDE                           | X 29 APPRIX I                                                                                                  | G PLATE                                |                |
| <u> </u>     | 17 2                         |                                                    | DR HANDLE             | 0.5 0          | X 17.5 LG BA                          | R                                                                                                              |                                        |                |
|              | 18 12                        | LOMMERCIAL DOE                                     | DR WHEEL              | 6 X 3<br>1TEM# | V-GROOVE WHEEL F<br>2310719 UR EULITV | RUM MCMASTER-CAR<br>ALENT                                                                                      | R 101 PAGE# 481                        |                |
|              | 19 12                        | SA 36 WHF                                          | EL SHAFT              | 1.25           | ØX 6.875 LG.                          | NAP                                                                                                            |                                        |                |
|              | 20 12                        | SA 516 GR. 70 SHA                                  | AFT COVER PLATE       | 0.25           | THK. X 2.5 Ø P                        | LATE                                                                                                           |                                        |                |
|              | 21 2                         | <u>SA 516 GR. 70 LIC</u>                           | D HULISING STIFFENER  | I THK          | X 1.5 WIDE X                          | 8.375 LG. PLA                                                                                                  | ATE                                    |                |
|              | 22 4                         | SA 193 B7 DDD                                      | <u> IR LOCK BOLT</u>  | 2 7/8<br>AT EN | - 4 LINE X 10.                        | 875 LG. HEX. E                                                                                                 | BULTS W/ 1.5 LG.                       | THREADED       |
|              | 23 4                         | SA 516 GR. 70 DDD                                  | JR STOP BLOCK         | 2 THK          | X 2 WIDE X 8                          | IG BLOCK                                                                                                       |                                        |                |
|              | 24 8                         | SA 193 87 DUD                                      | JR STUP BLUCK BULT    | 1 8            |                                       |                                                                                                                | THREADED AT EN                         | 0              |
|              | 25 2<br>26 4                 | SA 516 GR. 70 DDD                                  | IR END PLATE          | 1 THK          | . X 6 WIDE X 2                        | 4 LG. PLATE                                                                                                    |                                        |                |
|              | $\frac{26}{27}$ 4            | SA 516 GR. 70 LIF                                  | TING LUG              | 0.75           | THK. X 3 WIDE                         | <u>X 3.5 LG. PLAT</u>                                                                                          | E                                      |                |
| L            | 27 4                         | SA 516 GR. 70 LIF                                  | <u>- LING LUG PAD</u> | 0.5 TI         | K X 5 SD PL                           | ATE                                                                                                            |                                        |                |

1 -1

 $\langle \cdot \rangle$ 

-

.

•

NOTES:

1) ALL DIMENSIONS ARE APPROXIMATE.



### 1.6 <u>REFERENCES</u>

- [1.0.1] 10CFR Part 72, "Licensing Requirements for the Storage of Spent Fuel in an Independent Spent Fuel Storage Installation", Title 10 of the Code of Federal Regulations, 1998 Edition, Office of the Federal Register, Washington, D.C.
- [1.0.2] Regulatory Guide 3.61 (Task CE306-4) "Standard Format for a Topical Safety Analysis Report for a Spent Fuel Storage Cask", USNRC, February 1989.
- [1.0.3] NUREG-1536, "Standard Review Plan for Dry Cask Storage Systems", U.S. Nuclear Regulatory Commission, January 1997.
- [1.0.4] American Concrete Institute, "Code Requirements for Nuclear Safety Related Concrete Structures", ACI 349-85, ACI, Detroit, Michigan
- [1.0.5] American Concrete Institute, "Building Code Requirements for Structural Concrete", ACI 318-95, ACI, Detroit, Michigan.
- [1.1.1] ASME Boiler & Pressure Vessel Code, Section III, Subsection NB, American Society of Mechanical Engineers, 1995 with Addenda through 1997.
- [1.1.2] USNRC Docket No. 72-1008, Topical Safety Analysis Report for the (<u>Holtec</u> International <u>Storage</u>, <u>Transport</u>, <u>and Repository</u>) HI-STAR System, Rev. 9, 1998.
- [1.1.3] USNRC Docket No. 71-9261, Safety Analysis Report for Packaging for the (<u>Holtec</u> International <u>Storage</u>, <u>Transport</u>, <u>and Repository</u>) HI-STAR System, Rev. 7, 1998.
- [1.1.4] 10CFR Part 50, "Domestic Licensing of Production and Utilization Facilities", Title 10 of the Code of Federal Regulations, 1998 Edition, Office of the Federal Register, Washington, D.C.
- [1.1.5] Deleted.
- [1.2.1] U.S. NRC Information Notice 96-34, "Hydrogen Gas Ignition During Closure Welding of a VSC-24 Multi-Assembly Sealed Basket".
- [1.2.2] Directory of Nuclear Reactors, Vol. II, Research, Test & Experimental Reactors, International Atomic Energy Agency, Vienna, 1959.
- [1.2.3] V.L. McKinney and T. Rockwell III, "Boral: A New Thermal-Neutron Shield", USAEC Report AECD-3625, August 29, 1949.

- [1.2.4] Reactor Shielding Design Manual, USAEC Report TID-7004, March 1956.
- [1.2.5] "Safety Analysis Report for the NAC Storable Transport Cask", Revision 8, September 1994, Nuclear Assurance Corporation (USNRC Docket No. 71-9235).
- [1.2.6] American Concrete Institute, "Building Code Requirements for Structural Concrete", ACI 318-95, ACI, Detroit, Michigan.
- [1.2.7] Materials Handbook, 13<sup>th</sup> Edition, Brady, G.S. and H.R. Clauser, McGraw-Hill, 1991, Page 310.
- [1.2.8] Deleted.
- [1.2.9] ANSI N14.6-1978, "American National Standard for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4500 kg) or More for Nuclear Materials," American National Standards Institute, February, 1978.
- [1.2.10] NUREG-1536, "Standard Review Plan for Dry Cask Storage Systems", January 1997.

### **APPENDIX 1.A: ALLOY X DESCRIPTION**

### 1.A <u>ALLOY X DESCRIPTION</u>

### 1.A.1 <u>Alloy X Introduction</u>

Alloy X is used within this licensing application to designate a group of stainless steel alloys. Alloy X can be any one of the following alloys:

- Type 316
- Type 316LN
- Type 304
- Type 304LN

Qualification of structures made of Alloy X is accomplished by using the least favorable mechanical and thermal properties of the entire group for all MPC mechanical, structural, neutronic, radiological, and thermal conditions. The Alloy X approach is conservative because no matter which material is ultimately utilized, the Alloy X approach guarantees that the performance of the MPC will meet or exceed the analytical predictions.

This appendix defines the least favorable material properties of Alloy X.

### 1.A.2 Alloy X Common Material Properties

Several material properties do not vary significantly from one Alloy X constituent to the next. These common material properties are as follows:

- density
- specific heat
- Young's Modulus (Modulus of Elasticity)
- Poisson's Ratio

The values utilized for this licensing application are provided in their appropriate chapters.

### 1.A.3 <u>Alloy X Least Favorable Material Properties</u>

The following material properties vary between the Alloy X constituents:

- Design Stress Intensity (S<sub>m</sub>)
- Tensile (Ultimate) Strength (S<sub>u</sub>)
- Yield Strength  $(S_y)$

- Coefficient of Thermal Expansion (á)
- Coefficient of Thermal Conductivity (k)

Each of these material properties are provided in the ASME Code Section II [1.A.1]. Tables 1.A.1 through 1.A.5 provide the ASME Code values for each constituent of Alloy X along with the least favorable value utilized in this licensing application. The ASME Code only provides values to  $-20^{\circ}$ F. The design temperature of the MPC is  $-40^{\circ}$ F to  $725^{\circ}$ F as stated in Table 1.2.3. Most of the above-mentioned properties become increasingly favorable as the temperature drops. Conservatively, the values at the lowest design temperature for the HI-STAR 100 System have been assumed to be equal to the lowest value stated in the ASME Code. The lone exception is the thermal conductivity. The thermal conductivity decreases with the decreasing temperature. The thermal conductivity value for  $-40^{\circ}$ F is linearly extrapolated from the  $70^{\circ}$ F value using the difference from  $70^{\circ}$ F to  $100^{\circ}$ F.

The Alloy X material properties are the minimum values of the group for the design stress intensity, tensile strength, yield strength, and coefficient of thermal conductivity. Using minimum values of design stress intensity is conservative because lower design stress intensities lead to lower allowables that are based on design stress intensity. Similarly, using minimum values of tensile strength and yield strength is conservative because lower values of tensile strength and yield strength lead to lower allowables that are based on tensile strength and yield strength. When compared to calculated values, these lower allowables result in factors of safety that are conservative for any of the constituent materials of Alloy X. Further discussion of the justification for using the minimum values are used for the coefficient of thermal expansion of Alloy X. The maximum and minimum coefficients of thermal expansion are used as appropriate in this submittal. Figures 1.A.1-1.A.5 provide a graphical representation of the varying material properties with temperature for the Alloy X materials.

- 1.A.4 <u>References</u>
  - [1.A.1] ASME Boiler & Pressure Vessel Code Section II, 1995 ed. with Addenda through 1997.

### ALLOY X AND CONSTITUENT DESIGN STRESS INTENSITY $(S_m)$ vs. TEMPERATURE

| Temp. (°F) | Туре 304 | Type 304LN | Туре 316 | Type 316LN | Alloy X<br>(minimum of<br>constituent<br>values) |
|------------|----------|------------|----------|------------|--------------------------------------------------|
| -40        | 20.0     | 20.0       | 20.0     | 20.0       | 20.0                                             |
| 100        | 20.0     | 20.0       | 20.0     | 20.0       | 20.0                                             |
| 200        | 20.0     | 20.0       | 20.0     | 20.0       | 20.0                                             |
| 300        | 20.0     | 20.0       | 20.0     | 20.0       | 20.0                                             |
| 400        | 18.7     | 18.7       | 19.3     | 18.9       | 18.7                                             |
| 500        | 17.5     | 17.5       | 18.0     | 17.5       | 17.5                                             |
| 600        | 16.4     | 16.4       | 17.0     | 16.5       | 16.4                                             |
| 650        | 16.2     | 16.2       | 16.7     | 16.0       | 16.0                                             |
| 700        | 16.0     | 16.0       | 16.3     | 15.6       | 15.6                                             |
| 750        | 15.6     | 15.6       | 16.1     | 15.2       | 15.2                                             |
| 800        | 15.2     | 15.2       | 15.9     | 14.9       | 14.9                                             |

Notes:

- 1. Source: Table 2A on pages 314, 318, 326, and 330 of [1.A.1].
- 2. Units of design stress intensity values are ksi.

### ALLOY X AND CONSTITUENT TENSILE STRENGTH (S<sub>u</sub>) vs. TEMPERATURE

| Temp. (°F) | Туре 304 | Type 304LN | Туре 316 | Type 316LN | Alloy X<br>(minimum of<br>constituent<br>values) |
|------------|----------|------------|----------|------------|--------------------------------------------------|
| -40        | 75.0     | 75.0       | 75.0     | 75.0       | 75.0                                             |
| 100        | 75.0     | 75.0       | 75.0     | 75.0       | 75.0                                             |
| 200        | 71.0     | 71.0       | 75.0     | 75.0       | 71.0                                             |
| 300        | 66.0     | 66.0       | 73.4     | 70.9       | 66.0                                             |
| 400        | 64.4     | 64.4       | 71.8     | 67.1       | 64.4                                             |
| 500        | 63.5     | 63.5       | 71.8     | 64.6       | 63.5                                             |
| 600        | 63.5     | 63.5       | 71.8     | 63.1       | 63.1                                             |
| 650        | 63.5     | 63.5       | 71.8     | 62.8       | 62.8                                             |
| 700        | 63.5     | 63.5       | 71.8     | 62.5       | 62.5                                             |
| 750        | 63.1     | 63.1       | 71.4     | 62.2       | 62.2                                             |
| 800        | 62.7     | 62.7       | 70.9     | 61.7       | 61.7                                             |

Notes:

- 1. Source: Table U on pages 437, 439, 441, and 443 of [1.A.1].
- 2. Units of tensile strength are ksi.

| Temp. (°F) | Туре 304 | Type 304LN | Туре 316 | Type 316LN | Alloy X<br>(minimum of<br>constituent<br>values) |
|------------|----------|------------|----------|------------|--------------------------------------------------|
| -40        | 30.0     | 30.0       | 30.0     | 30.0       | 30.0                                             |
| 100        | 30.0     | 30.0       | 30.0     | 30.0       | 30.0                                             |
| 200        | 25.0     | 25.0       | 25.8     | 25.5       | 25.0                                             |
| 300        | 22.5     | 22.5       | 23.3     | 22.9       | 22.5                                             |
| 400        | 20.7     | 20.7       | 21.4     | 21.0       | 20.7                                             |
| 500        | 19.4     | 19.4       | 19.9     | 19.4       | 19.4                                             |
| 600        | 18.2     | 18.2       | 18.8     | 18.3       | 18.2                                             |
| 650        | 17.9     | 17.9       | 18.5     | 17.8       | 17.8                                             |
| 700        | 17.7     | 17.7       | 18.1     | 17.3       | 17.3                                             |
| 750        | 17.3     | 17.3       | 17.8     | 16.9       | 16.9                                             |
| 800        | 16.8     | 16.8       | 17.6     | 16.6       | 16.6                                             |

### ALLOY X AND CONSTITUENT YIELD STRESSES (S<sub>y</sub>) vs. TEMPERATURE

Notes:

1. Source: Table Y-1 on pages 518, 519, 522, 523, 530, 531, 534, and 535 of [1.A.1].

2. Units of yield stress are ksi.

| Temp. (°F) | Type 304<br>and<br>Type 304LN | Type 316<br>and<br>Type 316LN | Alloy X<br>Maximum | Alloy X<br>Minimum |
|------------|-------------------------------|-------------------------------|--------------------|--------------------|
| -40        | 8.55                          | 8.54                          | 8.55               | 8.54               |
| 100        | 8.55                          | 8.54                          | 8.55               | 8.54               |
| 150        | 8.67                          | 8.64                          | 8.67               | 8.64               |
| 200        | 8.79                          | 8.76                          | 8.79               | 8.76               |
| 250        | 8.90                          | 8.88                          | 8.90               | 8.88               |
| 300        | 9.00                          | 8.97                          | 9.00               | 8.97               |
| 350        | 9.10                          | 9.11                          | 9.11               | 9.10               |
| 400        | 9.19                          | 9.21                          | 9.21               | 9.19               |
| 450        | 9.28                          | 9.32                          | 9.32               | 9.28               |
| 500        | 9.37                          | 9.42                          | 9.42               | 9.37               |
| 550        | 9.45                          | 9.50                          | 9.50               | 9.45               |
| 600        | 9.53                          | 9.60                          | 9.60               | 9.53               |
| 650        | 9.61                          | 9.69                          | 9.69               | 9.61               |
| 700        | 9.69                          | 9.76                          | 9.76               | 9.69               |
| 750        | 9.76                          | 9.81                          | 9.81               | 9.76               |
| 800        | 9.82                          | 9.90                          | 9.90               | 9.82               |

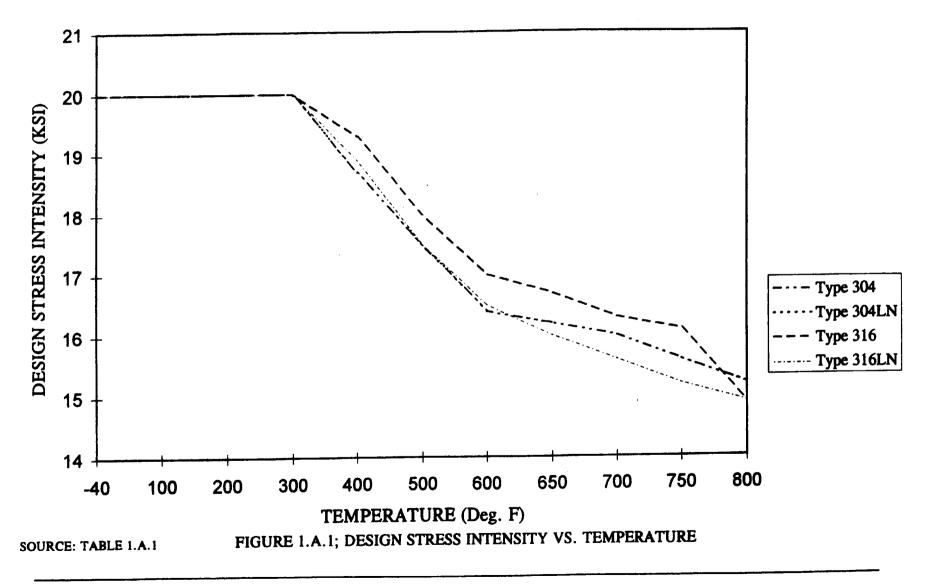
### ALLOY X AND CONSTITUENT COEFFICIENT OF THERMAL EXPANSION vs. TEMPERATURE

Notes:

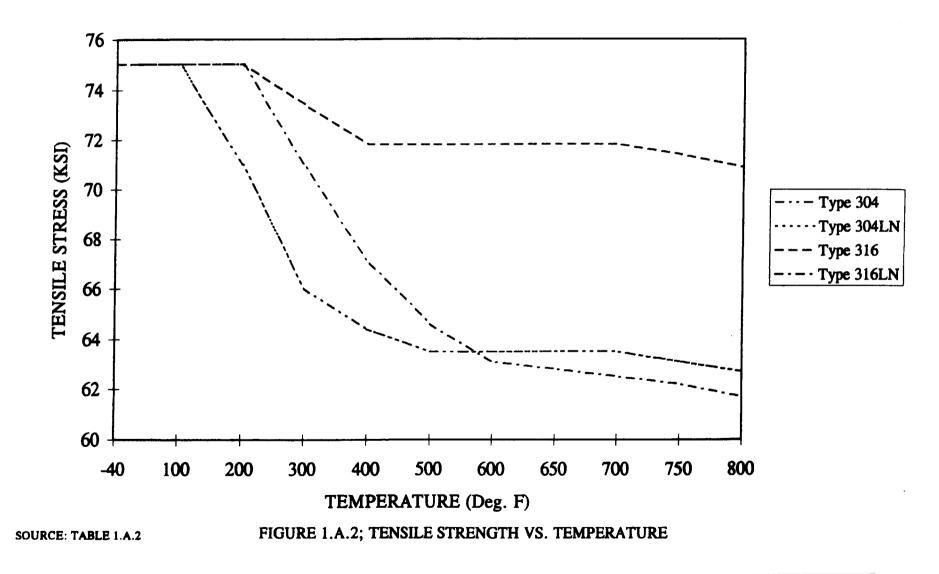
-----

- 1. Source: Table TE-1 on pages 590 and 591 of [1.A.1].
- 2. Units of coefficient of thermal expansion are in./in.- $^{\circ}$ F x 10<sup>-6</sup>.

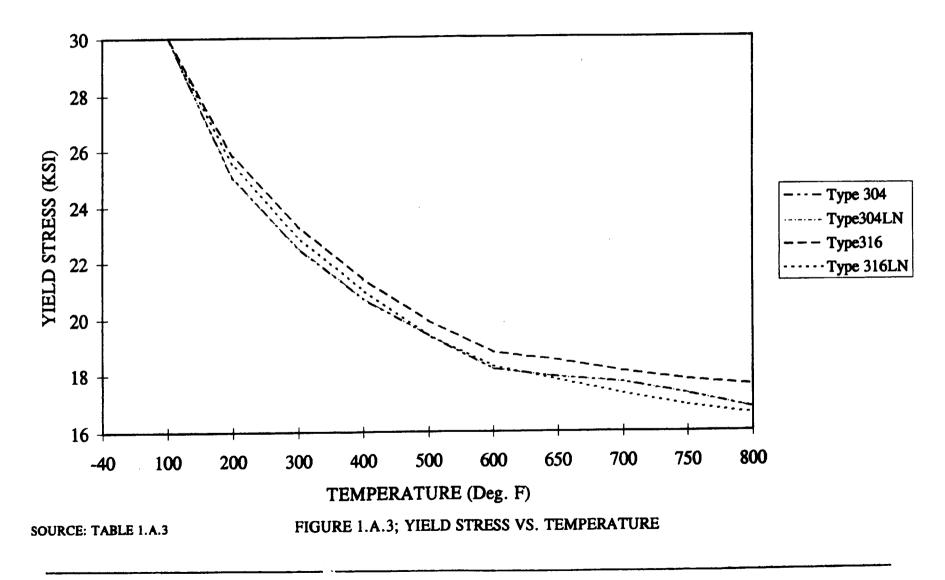
# Table 1.A.5


| Temp. (°F) | Type 304<br>and<br>Type 304LN | Type 316<br>and<br>Type 316LN | Alloy X<br>(minimum of<br>constituent<br>values) |
|------------|-------------------------------|-------------------------------|--------------------------------------------------|
| -40        | 8.23                          | 6.96                          | 6.96                                             |
| 70         | 8.6                           | 7.7                           | 7.7                                              |
| 100        | 8.7                           | 7.9                           | 7.9                                              |
| 150        | 9.0                           | 8.2                           | 8.2                                              |
| 200        | 9.3                           | 8.4                           | 8.4                                              |
| 250        | 9.6                           | 8.7                           | 8.7                                              |
| 300        | 9.8                           | 9.0                           | 9.0                                              |
| 350        | 10.1                          | 9.2                           | 9.2                                              |
| 400        | 10.4                          | 9.5                           | 9.5                                              |
| 450        | 10.6                          | 9.8                           | 9.8                                              |
| 500        | 10.9                          | 10.0                          | 10.0                                             |
| 550        | 11.1                          | 10.3                          | 10.3                                             |
| 600        | 11.3                          | 10.5                          | 10.5                                             |
| 650        | 11.6                          | 10.7                          | 10.7                                             |
| 700        | 11.8                          | 11.0                          | 11.0                                             |
| 750        | 12.0                          | 11.2                          | 11.2                                             |
| 800        | 12.2                          | 11.5                          | 11.5                                             |

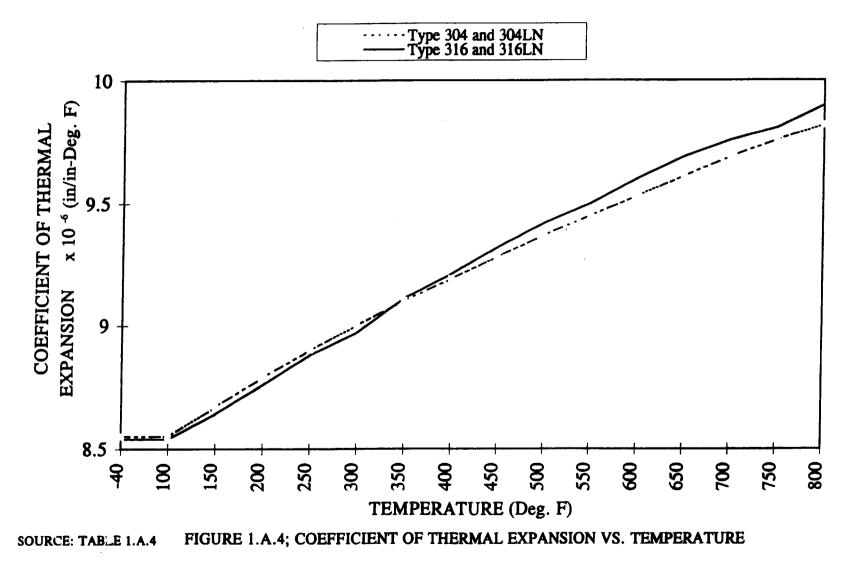
ALLOY X AND CONSTITUENT THERMAL CONDUCTIVITY vs. TEMPERATURE


Notes:

- 1. Source: Table TCD on page 606 of [1.A.1].
- 2. Units of thermal conductivity are Btu/hr-ft-°F.


# DESIGN STRESS INTENSITY VS. TEMPERATURE

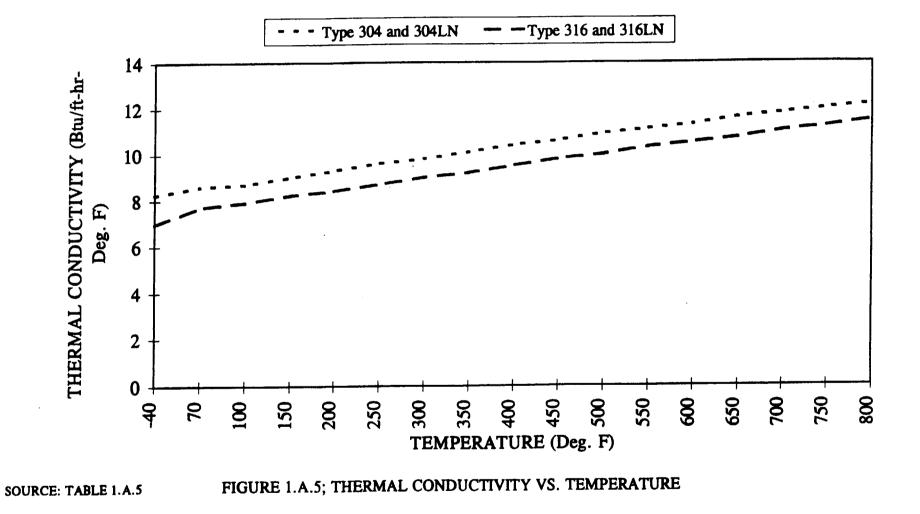



# TENSILE STRENGTH VS. TEMPERATURE



# YIELD STRESS VS. TEMPERATURE




# COEFFICIENT OF THERMAL EXPANSION VS. TEMPERATURE



· . . . .

REV. 0

# THERMAL CONDUCTIVITY VS. TEMPERATURE



### APPENDIX 1.B: HOLTITE <sup>™</sup> MATERIAL DATA (Total of 20 Pages Including This Page)

The information provided in this appendix describes the neutron absorber material, Holtite-A (also known commercially as NS-4-FR) for the purpose of confirming its suitability for use as a neutron shield material in spent fuel storage casks.

NS-4-FR contains aluminum hydroxide (Al(OH)<sub>3</sub>) in an epoxy resin binder. Aluminum hydroxide is also known by the industrial trade name of aluminum tri-hydrate or ATH. ATH is often used commercially as a fire-retardant, hence the "FR" designation in NS-4-FR. NS-4-FR is a generic name for the material which was originally developed by Bisco Inc. and used for many years as a shield material with  $B_4C$  or Pb added. NS-4-FR contains approximately 62% ATH supported in a typical 2-part epoxy resin as a binder. Holtite-A, the Holtec International version of NS-4-FR, contains 1% by weight  $B_4C$ , a chemically inert material added to enhance the neutron absorption property. Pertinent properties of Holtite-A are listed in Table 1.B.1.

The essential properties of Holtite-A are:

- 1. the hydrogen density (needed to thermalize neutrons),
- 2. thermal stability of the hydrogen density, and
- 3. the uniformity in distribution of  $B_4C$  needed to absorb the thermalized neutrons.

ATH and the resin binder contain nearly the same hydrogen density so that the hydrogen density of the mixture is not sensitive to the proportion of ATH and resin in the NS-4-FR mixture.  $B_4C$  is added (1% in Holtite-A) as a finely divided powder and does not settle out during the resin curing process. Once the resin is cured (polymerized), the ATH and  $B_4C$  are physically retained in the hardened resin. Analysis for  $B_4C$  throughout a column of Holtite-A has confirmed (Holtec International qualification tests) that the  $B_4C$  is uniformly distributed with no evidence of settling or non-uniformity. Furthermore, an excess of  $B_4C$  is specified in Holtite-A as a precaution to assure that the  $B_4C$  concentration is always adequate throughout the mixture.

NS-4-FR material has been extensively tested for thermal stability, as indicated in the following documents (copies of these documents are attached).

- Letter dated 4/20/87 from Mr. Larry Dietrick, Bisco Products to Mr. Tod Lesser, NAC International, "Weight loss of NS-4-FR under extreme temperature conditions"
- "Experimental Studies On Long-Term Thermal Degradation of Enclosed Neutron Shielding Resin", Asano, Ryoji and Nagao Niomura

• "Thermal Testing of Solid Neutron Shielding Materials", Boonstra, Richard H.

The specific gravity specified in Table 1.B.1 does not include an allowance for weight loss. The specific gravity specified in Chapter 1 includes a 4% reduction to conservatively account for potential weight loss at the design temperature of 300°F. However, the BISCO letter dated 4/20/87 provides information stating that samples had been exposed to a continuous temperature of 338°F for 146 days and a maximum of 3.15% weight loss had been experienced. Thus, there is a substantial level of conservatism in the Holtec allowance for weight loss.

Tests on the stability of Holtite-A were also performed by Holtec International. Results of these independent tests at 325°F on 15 samples gave an average weight loss in 97 days of 2.41% and a maximum weight loss of 2.72%. The observations are consistent with published tests on NS-4-FR.

The paper entitled "Experimental Studies on Long-Term Thermal Degradation of Enclosed Neutron Shielding Resin " provides information which corroborates the information provided in the BISCO letter dated 4/20/87. The paper suggests that enclosures of the NS-4-FR material can further decrease the percent weight reduction at elevated temperatures. The NS-4-FR is encapsulated in the HI-STAR 100 overpack and therefore should experience a very small weight reduction during the design life of the HI-STAR 100 System. It should be noted that the shielding analysis conservatively assumes 4% loss in density.

The paper entitled "Thermal Testing of Solid Neutron Shielding Materials" provides information regarding NS-4-FR material stability during a fire accident. Results of the study suggests that NS-4-FR could withstand a fire accident with minimal damage. This data is provided for information only, as the post-accident shielding analysis very conservatively assumes complete degradation of the neutron shield and replaces the neutron shield with a void.

The data and test results presented here confirm that

- 1. Holtite-A with 1% B<sub>4</sub>C has the same thermal stability and characteristics as the previously approved NS-4-FR material,
- 2. The hydrogen density meets or exceeds minimum NS-4-FR specifications (measured at  $0.105 \text{ gH}_2/\text{cc}$  compared to the NS-4-FR specification of  $0.096 \text{ gH}_2/\text{cc}$ ), and
- 3. The  $B_4C$  is uniformly distributed, with no evidence of settling or non-uniformity.

Based on the information described above, Holtite-A meets all of the requirements for an acceptable neutron shield material in the manner of NS-4-FR, which was licensed previously in Docket No. 71-9235 (NAC-STC).

# Table 1.B.1

| PHYSICAL PROPERTIES (Reference: NAC International Brochure) |                                                                     |  |  |
|-------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| % ATH                                                       | 62 maximum (confirmed by Holtec in independent analyses)            |  |  |
| Specific Gravity                                            | 1.68 g/cc maximum                                                   |  |  |
| Thermal Conductivity                                        | 0.373 Btu/hr/ft-°F                                                  |  |  |
| Max. Continuous Operating Temperature                       | 300°F                                                               |  |  |
| Specific Heat <sup>†</sup>                                  | 0.39 Btu/hr/ft-°F                                                   |  |  |
| Hydrogen Density                                            | 0.096 g/cc minimum (confirmed by<br>Holtec in independent analyses) |  |  |
| Radiation Resistance                                        | Excellent                                                           |  |  |
| Ultimate Tensile Strength                                   | 4,250 psi                                                           |  |  |
| Tensile elongation                                          | 0.65%                                                               |  |  |
| Ultimate Compression Strength                               | 10,500 psi                                                          |  |  |
| Compression Yield Strength                                  | 8,780 psi                                                           |  |  |
| Compression Modulus                                         | 561,000 psi                                                         |  |  |
| CHEMICAL PROPERTIES (Nominal)                               |                                                                     |  |  |
| wt% Aluminum                                                | 21.5 (confirmed by Holtec)                                          |  |  |
| wt% Hydrogen                                                | 6.0 (confirmed by Holtec)                                           |  |  |
| wt% Carbon                                                  | 27.7                                                                |  |  |
| wt% Oxygen                                                  | 42.8                                                                |  |  |
| wt% Nitrogen                                                | 2.0                                                                 |  |  |
| wt% B <sub>4</sub> C                                        | up to 6.5 (Holtite-A uses 1% B <sub>4</sub> C)                      |  |  |

### **PROPERTIES OF HOLTITE-A NEUTRON SHIELD**

Н

----

۰. میرون

BISCO Products Data from Docket M-55, NAC-STC TSAR.

gsperimental Studies on Long-term Thermal Degradation of gnclosed Neutron Shielding Resin

<sub>Ryoji</sub> ASANO<sup>1</sup>, Nagao NIOMURA<sup>2</sup>

1<sub>Hitachi</sub> Zosen Corporation, Japan 2<sub>Ocean</sub> Cask Lease Co.,Ltd, Japan

### INTRODUCTION

Resins which have high Hydrogen atom content are effective for Neutron shielding and are recently used for neutron shielding material of spent fuel shipping casks. As the resins themselves are easily burned at relatively low temperature, which could be the problem during the fire test condition, mixture of resin and fire retardant which main component is a hydroxide compound is usually used as shielding material. The fire retardant prevents resin from burning by decomposing of the hydroxide compound under fire test condition.

When these resins are used for neutron shielding material of cask, their temperature rises during the transportation by decay heat of spent fuel. Therefore, thermal degradation of resin (hereafter called as "heat weight loss") at the operating temperature should be paid attention.

Furthermore, when the resin is used for neutron shielding material, there are two cases. One is to put it on the outside surface of the cask and the other is to enclose it between two layers. In former case, the heat weight loss occurs in air of which study report can be obtained. On the other hand, the latter is the reaction in the enclosed envithe study of the heat weight loss in the enclosed envithe study of the heat weight loss in the enclosed environment time of the real cask .

TEST MATERIAL

Test material is NS-4-FR supplied by BISCO CO. LTD, U.S.A. Raw materials are epoxi resin, hardener and fire retardant. They are mixed together and hardened according to the manufacturing manual supplied by BISCO. NS-4-FR is the neutron shielding material which contains about 60% of aluminium hydroxide as fire retardant.

#### TEST

Tests were carried out in order of basic material test, open test, enclosed test and long term cyclic test which simulates the operation term of cask. The test results are explained as follows.

Basic material test TG tests which can be performed comparatively easily were carried out in order to study basic thermal characteristics of the test material. The test conditions are as follows.

| Condition                 | <u>Case 1</u>      | Case 2             |
|---------------------------|--------------------|--------------------|
| Atmospheric gas           | Air&N <sub>2</sub> | Air&N <sub>2</sub> |
| Gas Flow Rate(cc/min)     | 150                | 200                |
| Temp. Rising Rate(°C/min) | 3                  | 10                 |
| Max.Temperature(°C)       | 220                | 530                |

Heat weight loss could not be detected in the Case 1. The results of Case 2 are as follows.

- (1)The weight loss of the test specimen in nitrogen gas was much smaller than that in air between 300°C and 380°C which were shown in Fig 1. It indicates that the test materials are decomposed and loose its weight by oxygen in air and by heat within the temperature range.
- (2)Comparing the results between test material and NS-4- FR without fire retardant, the weight loss of latter is less than that of former until 360°C as shown in Fig. 2. It indicates that the weight loss of former is mainly due to the decomposition of aluminium hydroxide as fire retardant. This result means that the decomposition of aluminium hydroxide is important for the weight loss during low temperature. And it is necessary to select a suitable grade of aluminium hydroxide, as the decomposition temperature depends on the purity and grain size of aluminium hydroxide.

en tes as

S

е.

of

:i-

ιs

re

TG test results can not be used directly for long term degradation data because the test specimen was pulverized to very small size, and reaction and diffusion is very rapid, but they can be good reference information.

### Open test

Open tests were performed varying the shape of test specimen and temperature to study heat weight loss in air. The results are as follows.

### (1) Effect of shape of test specimen

To study the effect of the shape, cubic and cylindrical test specimens with nearly equal weight were tested. It was observed that the heat weight loss of latter which had larger surface area was always larger than that of the former. It indicates that effects of surface oxidation and surface diffusion are important factors for the heat weight loss.

### (2)Effect of temperature

The heat weight loss at 125°C, 150°C, 175°C and 200°C are shown in Fig.3 as a function of time. The increase of the heat weight loss is observed in 200°C test after 1000 hr. It is supposed that generation of continues crack inside of the test specimen makes it easy to diffuse the decomposed resin component and water.

### Enclosed test

Supposing that the neutron shielding material is filled in the enclosures tests were conducted to study the effects of enclosed condition to the heat weight loss. The tests were performed on test specimen in the sealed stainless steel container with Ar atmosphere.

(1) Sealed stainless steel container

Seal container is shown in Fig. 4, of which lid is welded to seal the cavity of the container perfectly. Enough height of container cavity is provided to avoid the effect of welding heat to the test specimen. Ar gas seal hole is seal-welded and cooled immediately by water after replacing air with Ar gas.

### (2) Test Condition

Continuous test and cyclic test of 110 hr heating and 58 hr cooling which simulated the actual operating condition of cask were performed at 125°C, 150°C and 175°C. The test duration was from 8 to 16 weeks.

(3)Test Results Test results are shown also in Fig.3. Main results are as follows. (a)Test Results at 125°C

The heat weight loss at 1512 hr continuous test and that at 1760 hr cyclic test were negligible. The heat weight loss at this temperature is regarded as insignificant.

(b)Test Results at 150°C

The heat weight losses at both 1224 hr continuous-tests, 990 hr cyclic test and 1760 hr cyclic test were almost 1/3 of that of open test.

(c)Test Results at 175°C

The heat weight losses at both 1600 hr continues test, 1210 hr cyclic test and 1760 hr cyclic test were almost half of that of open test.

(d)Due to the few test specimens and short test period, data scattering was observed in the test results . However, heat weight loss of enclosed test is clearly less than that of open test except those at 125°C when no heat weight loss was observed.

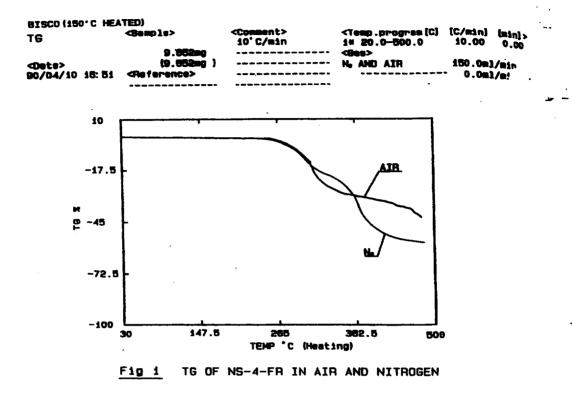
### Long term cyclic test at 150°C

In order to avoid scatter in test results and to estimate heat weight loss during long term use of cask, long term cyclic tests at 150°C were conducted, where temperature supposed was the maximum working temperature of neutron shielding material during transportation. The results are shown in Fig. 5. Total test specimens were 18 and maximum test period was 56 weeks. One cycle is composed of 110 hr heating and 58 hr cooling which is same as the enclosed test above. The heat weight loss for 56 weeks was about 1.1%.

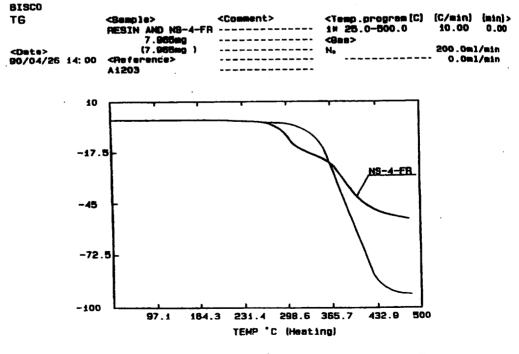
### DISCUSSION

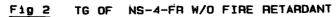
¢.

The relation between heat weight loss W(%) and test period D(day) is given from Fig. 5, as follow.

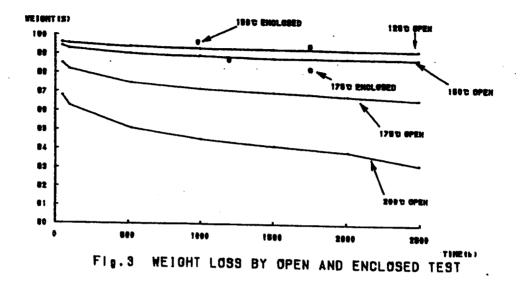

W=100.63-0.218xlog D

Using this equation the heat weight loss for 20 years  $W_{20}(%)$  can be estimated as follow.


 $W_{20} = 100.63 - 0.218 \times \log(20 \times 365)$ = 1.87(%) From the calculation above it is enough to have the cask design margins of 2.0% heat weight loss even if the scattering in the test results are taken into account.


Water drops were observed on inside surface of sealed container when the lid was cut off to open and to take out the test specimen from the container after test. It is considered that these drops prevented the temperature rise of test specimen by evaporating during the test and reduced the heat weight loss of the specimen.

From the results, it is concluded that NS-4-FR is effective as neutron shielding material of cask, especially when it is used in enclosed condition.




P





1.B-9



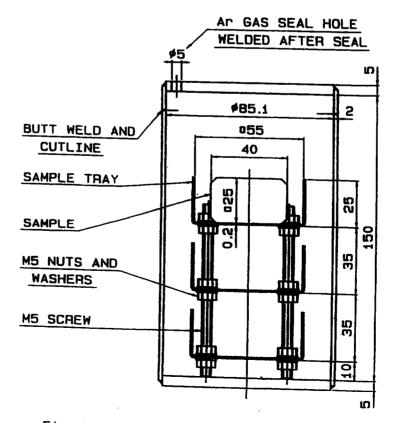
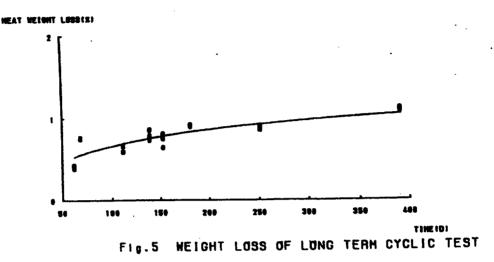




Fig 4 SEALED STAINLESS STEEL CONTAINER

1.**B-10** 



# Thermal Testing of Solid Neutron Shielding Materials\*

Richard H. Boonstra

te

ts. de

а.

Ę

General Atomics, San Diego, California

### INTRODUCTION

General Atomics (GA) is currently developing two legal-weight truck casks for the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM). These casks, the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71 the cask is subjected to an 800°C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents.

In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in *Thermal Testing of Solid Neutron Shielding Materials*, GA-A19897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280°F. Table 1 lists the neutron shield materials tested. The Envirotech and Bisco satisfactory polypropylene could not be found.

### TESTING SETUP AND PROCEDURE

#### Setup

Figure 1 shows a representative test article and thermocouple positions. Each test article consists of blocks of neutron shield contained in a box of dimensions 36 in. x 36 in. x 4.5 in. The box is 11-gage type 304 stainless steel with continuous welds along all seams and a 6-in. x 12-in. hole in the center of a 36-in. x 36-in. face. The hole simulates damage from the hypothetical drop and puncture events and extends 1.5 in. into the material. Six inches of mineral fiber insulation surround the box except for the face with the hole.

Six KNBS (Chromel-Alumel) 20-gage thermocouples (TCs) measure temperatures on the test article. The environment temperatures are determined using five TCs of the same type as on the test article, but shielded to prevent radiant heat loss to the test article surface. These TCs are positioned 6 in. away from the test article surface.

\* Work supported by the U.S. Department of Energy, Office of Civilian Radioactive Waste Management, under DOE Field Office, Idaho, Contract DE-AC07-88ID12698.

As shown in Fig. 2, a vertical exposure furnace heats the uninsulated face of the test article. The back wall of the furnace contains a bank of seven natural gas burners. A single globe valve regulates the overall gas pressure to control the test exposure to the temperature range of 800% to 900°C.

| TABLE 1<br>NEUTRON SHIELD MATERIALS IN THERMAL TESTS |                                                |  |  |
|------------------------------------------------------|------------------------------------------------|--|--|
| Supplier                                             | Material                                       |  |  |
| Kobe Steel, Ltd.                                     | PP-R01 polypropylene, 1% boron                 |  |  |
| Envirotech Molded Products, Inc.                     | High-density polyethylene (HDPE), 0.8% boron   |  |  |
| Bisco Products, Inc.                                 | Modified NS-4, 4.5% boron                      |  |  |
| Reactor Experiments, Inc.                            | High melt index polypropylene (HMPP), 1% boron |  |  |

#### Procedure

The completed test article is conditioned at room temperature for at least 24 hr, then moved imposition directly in front of the furnace. Recording of the TC data begins 5 minutes prior to A ignition of the burners. After ignition, the average furnace temperature (i.e., average of the five furnace TCs) is maintained between 800° and 900°C for 30 minutes. The burners are then all off and the test article is pulled away to cool in ambient air. When all temperatures have peaked the test article is again conditioned at room temperature for at least 24 hr and then disassemble for inspection.

576

. . **16** 

. shi

-24

÷.d

#### Material Acceptance Criterion

The neutron shield must not provide a source of thermal input to the cask sufficient to degradial containment integrity. More specifically, the material is acceptable if (1) temperatures on them back surface do not at any time exceed the maximum temperature of the thermal accident is environment and (2) it shows no evidence of prolonged combustion (i.e., combustion lasting for period of several hours) following the thermal accident.

### **OBSERVATIONS AND RESULTS**

Two of the materials, the modified NS-4 and the HMPP, passed the test and are acceptable for use as the neutron shielding. The results for the PP-RO1 and HDPE materials are inconclusive because the tests were stopped prematurely due to intense smoke combined with inadequate ventilation. Table 2 provides time-related observations for the four tests. Post-test inspection results and temperature plots are discussed below.

### Kobe PP-R01

Disassembly of the test article after cooling indicated that despite the observed combustion a relatively small amount of material had been lost. The polypropylene was heavily charred and broken into loose tiles on the front surface. Some individual blocks had fused together but, in contrary to expectations, there was little evidence of extensive melting. The total weight was 36.3 lb out of an initial 200.1 lb, or 18%.

Figure 3 gives the average environment temperature and the thermal response on the back "a surface of the test article, where the peak temperature is about 340°C. The responses endited abrupt increases within the first several minutes, a characteristic of all the tests. All temperatures on the back surface meet the acceptance criterion that they not exceed the accident environment temperature, but acceptability of the material cannot be established si the test was halted.

# Envirotech High-Density Polyethylene (HDPE)

The test article was opened to reveal that most of the material remained in the box. Charring was concentrated mostly on material near the hole and in the lower region beneath the hole. Here molten material had collected and resolidified as indicated by a layer of dark material. In the upper portion, above the hole, charring was confined mainly to the surface and virgin, white material in the form of individual blocks was still identifiable. There was very little loose material. The total weight loss was 27.0 lb from an initial weight of 199.6 lb, or about 14%.

The average environment temperature and back surface TC responses are shown in Fig. 4. The responses display the sudden rises seen in the preceding test, although the peak response is less than 150°C. In this respect the HDPE performed better than the PP-R01 and its temperatures also meet the acceptance criterion. However results are indecisive due to termination of the test.

# Risco Modified NS-4

This material is similar to the NS-4-FR tested in 1989 but has a slightly lower hydrogen content and a lower weight. In this test the heating phase successfully proceeded the full 30 minutes, and the material was deemed acceptable.

A post-test inspection indicated immediately that the majority of the material had been retained. This was confirmed by a weight loss of only 6%, 14.5 lb out of 244.6 lb. There was a fairly uniform, black char layer about 1/8 to 3/16 in. thick on the front surface. With the exception of this char layer, which was fragile and separated easily from the remainder of the material, all blocks appeared nearly intact. An average of 2-1/16 in. of undamaged material remained in the front layer of blocks. Some charring was also observed along the sides of blocks that joined at the locations of TCs 1 and 2 and TCs 4 and 5. The back layer of blocks revealed localized discoloration near the top corners and a black, oily material that had condensed on the block surfaces. Apart from this, very little damage was noticed on these blocks.

Figure 5 gives the average environment and back surface temperatures. The maximum back surface response is just less than 100°C. The initial peaking of TCs 4 and 6 before 50 minutes is followed by a gradual increase of these temperatures with subsequent maximums between 400 and 500 minutes. The later gradual increase is obviously due to conduction of heat through the material to the back surface; the initial peaks are therefore due to some other phenomenon.

### Reactor Experiments High-Melt Index Polypropylene (HMPP)

This material also went through the full 30 minutes of heating and post-test cooldown. It was subsequently judged acceptable for use in the cask.

After complete cooling in ambient air, the total material weight loss was determined to be 109 lb from the initial 194 lb, some 56%. Disassembly of the test article confirmed a significant absence of material. No obvious char layer was noted. The space above the bottom edge of the hole was empty except for a column of partially melted blocks along the left side of the box. In the lower section, beneath the bottom edge of the hole, the material had softened and fused into a solid mass, although gaps between individual blocks could still be seen. The thickness of the fused material at the center of its top edge was approximately 5 in., indicating that the front steel had bowed outward 0.5 in. and allowed additional material to flow down from the top portion. Melted and resolidified material could be seen as distinct layers on the exterior surfaces of the fused, bottom portion.

Temperatures of the average environment and on the back side of the test article are shown in Fig. 6. The maximum back face temperature, 211°C, occurs in TC 6 at about 6.5 minutes. The sudden increase in back face temperatures at the beginning of the test is again noted, particularly in TCs 4 and 6, which were located in the bottom portion of the test article.

# CONCLUSIONS

The Bisco modified NS-4 and Reactor Experiments HMPP are both acceptable materials from a thermal accident standpoint for use in the shipping cask. Tests of the Kobe PP-R01 and Envirotech HDPE were stopped for safety reasons, due to inability to deal with the heavy smoke, before completion of the 30-minute heating phase. However these materials may prove satisfactory if they could undergo the complete heating.

Table 3 compares key results for all four materials. The Bisco modified NS-4 is best in terms of survivability and back side temperatures. Despite the more intense combustion of the HMPP during the 30-minute heating phase, the test article did not sustain this combustion when moved away from the furnace. Had the molten material not become entrapped on the test article insulation (which is not a part of the actual cask), the combustion would have expired much earlier. The back side maximum temperature of 211 °C is well within the criterion of 800 °C. This material therefore is also acceptable. It is preferable to the Bisco modified NS-4 since it is about 20% lighter and at the same time has a hydrogen density 20% higher.

The tests of the PP-RO1 and HDPE materials were terminated for safety due to the extremely heavy smoke in the indoor test facility. The combustion of the materials without any external heat input led to the initial belief that they were unacceptable. However the HMPP test showed the same phenomenon, and combustion in the test article eventually ceased when it was moved from the furnace. This fact led to the conclusion that placing the test article against the well-insulated furnace formed an effective heat-retaining environment that kept the temperature high enough to support combustion. Neutron shield material became sufficient fuel in place of the gas burners. Moving the test article to cool in ambient air disrupted this process and the combustion ended. It is thus plausible that the PP-RO1 and HDPE would behave like the HMPP and prove acceptable if these tests could proceed the full duration. Note that backside temperatures (see Figs. 3(b) and 4(b)) remained well below the acceptance criterion of 800°C.

| TABLE 3<br>COMPARISON OF NEUTRON SHIELD THERMAL PERFORMANCE |                                         |                 |      |      |      |      |
|-------------------------------------------------------------|-----------------------------------------|-----------------|------|------|------|------|
| Peak back side temps (°C)                                   |                                         |                 |      | (°C) |      |      |
| Material                                                    | Time to End of<br>Flames (min.)         | Weight Loss (%) | TC 1 | TC 3 | TC 4 | TC 6 |
| PP-R01                                                      | Test terminated                         | 18              | 341  | 169  | 328  | 336  |
| HDPE                                                        | Test terminated                         | 14              | 83   | 140  | 146  | 78   |
| NS-4                                                        | 5                                       | 6               | 96   | 41   | 47   | 42   |
| НМРР                                                        | 11.5 <sup>(1)</sup> , 50 <sup>(2)</sup> | 56              | 127  | 203  | 152  | 211  |

(1) Material inside test article

<sup>(2)</sup> Material outside test article entrapped on insulation

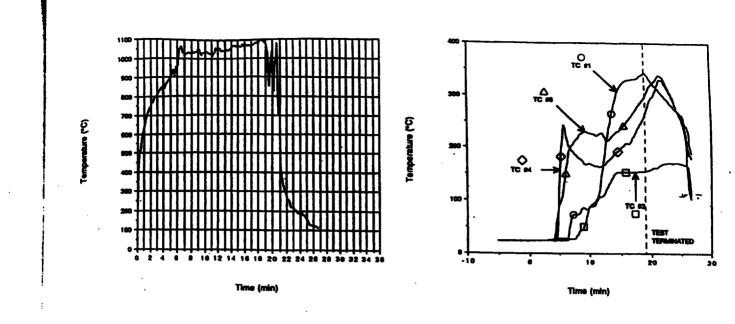
### ACKNOWLEDGMENT

The author would like to express his appreciation to Omega Point Laboratories (San Antonio, TX) for performing the tests.

#### REFERENCES

Boonstra, R.H., Thermal Testing of Solid Neutron Shielding Materials, GA-A19897, General Atomics (1990).

# FIGURE WITHHELD UNDER 10 CFR 2.390




# FIGURE WITHHELD UNDER 10 CFR 2.390

5 Fig. 2

Neutron shield test furnace

1.B-16



8 9

#10

#11

٦S

١S

15



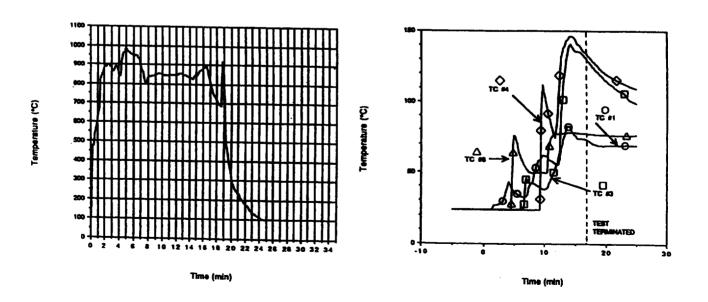



Fig. 4 Envirotech HDPE test temperatures: (a) average environment, (b) back side response.

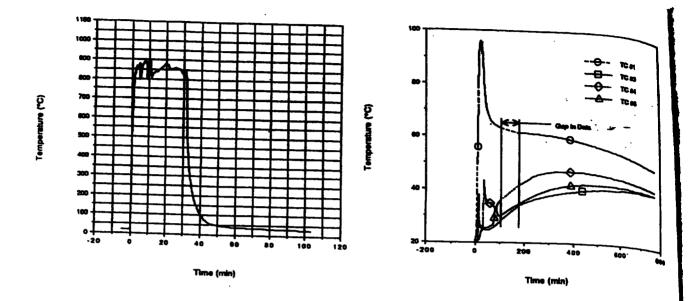



Fig. 5 Bisco Modified NS-4 test temperatures: (a) average environment, (b) back side response.

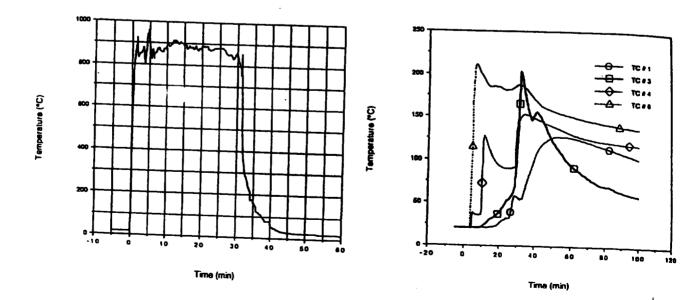



Fig. 6 Reactor Experiments HMPP test temperatures: (a) average environment, (b) back sites

| PP-R01 polypropylene,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | High-density polyethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Modified NS-4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | High melt index Polypropylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1% boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (HDPE), 0.8% boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5% boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (HMPP), 1% boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>3 min - Temp. = 800°C, slight smoking and flame from exhaust stack.</li> <li>5.5 min - Temp. &gt; 900°C, smoke and flames fill furnace interior. Furnace burners turned down, then shut off.</li> <li>6.5 min - Temp. &gt; 1000°C, extremely heavy smoke.</li> <li>18.5 min - Temp. = 1100°C, decision made to terminate test.</li> <li>19 min - Two failed attempts to extinguish flames with CO<sub>2</sub>. Test article moved from furnace and flames extinguished with water.</li> </ul> | <ul> <li>2 min - Temp. = 800°C</li> <li>2.5 min - material ignited</li> <li>4.5 min - Temp. &gt; 900°C,<br/>material flowing out of box<br/>front with vigorous flaming and<br/>smoking from exhaust port.<br/>Furnace burners turned down,<br/>then shut off.</li> <li>5 min - Temp. ~ 1000°C,<br/>exhaust port damping reduced<br/>temp. to within test range.</li> <li>17 min - Test terminated due<br/>to copious smoke production,<br/>flames visible along bottom of<br/>test article.</li> <li>Test article moved from<br/>furnace. Flames observed<br/>inside furnace indicating<br/>material had been discharged<br/>into furnace. Flames<br/>extinguished with water.</li> </ul> | Additional ventilating capability<br>supplied.<br>Environment achieved desired<br>test range and maintained<br>there for 30 min without<br>difficulty.<br>Some smoke was observed and<br>some flames could be seen<br>from the exhaust port, but<br>intensity of combustion was<br>less than in previous tests.<br><b>30 min</b> — Test article moved<br>from furnace. Flames<br>approximately 4 ft high issue<br>from hole in test article. After<br>about 5 min, the flames<br>diminish and self extinguish.<br>White smoke persists another<br>3.5 min. | <ul> <li>3 min - smoke begins issuing from exhaust port.</li> <li>5 - 6 min - 3-ft column of flame appears, burners adjusted to control temp to specified range.</li> <li>17 min - Furnace burners shut off. Internal combustion maintains temp. in test range. Molten material observed flowing into water-filled catch pan.</li> <li>30 min - Test article moved from furnace. Flames issuing from hole and from material that had flowed out of the hole and become trapped in the insulation. Flames from hole gradually diminish and self extinguish after 12 min. Flames from material in insulation self extinguish after another 38 min.</li> </ul> |

### TABLE 2 THERMAL TEST OBSERVATIONS

I.B-19



97 8 M

61000 products, inc. 1450 menospecto drug pate rays, finnes 6000 (213) 235-1350 name 35542 provi pro

April 20, 1987

Mr. Todd Lesser Nucleer Assurance Corporation 5720 Peachtree Pieze Norcross, GA 30092

SUBJECT: WEIGHT LOSS OF NS-4-FR UNDER EXTREME TEMPERATURE CONDITIONS.

Dear Todd,

As a follow-up to our telephone conversation last week, this letter will confirm the results of the temperature testing that has been performed on NS-4 FR to date.

TEST 1: Weight loss of NS-4-FR at -700F:

A sample of NS-4-FR was weighed at room temperature, and was then exposed to a law temperature of  $-170^{\circ}$  f for a period of time sufficient to bring the entire sample to a temperature below  $-70^{\circ}$  F. The sample was then weighed and allowed to gradually return to room temperature. A final weight measurement was then taken after the sample had reached room temperature. The beginning and ending weights were identical. The weight at  $-170^{\circ}$  F was slightly higher than the initial weight, probably due to concensation.

CONCLUSION: Since there is no weight loss when exposed to temperatures below -70 F, it can be concluded that there is also no hydrogen loss in the NS-4-FR at that temperature.

TEST 2: Weight loss of NS-4-FR at 3380 F (1700 C);

This is an update of the thormal aging test begun on November 20,1985. As of April 17, 1987, the two NS-4-FR samples have been exposed to a continuous temperature of 3380F for 146 straight days. The samples have been periodically pulled out and weighed.

CONCLUSION: The cumulative weight loss as of April 17,1987 183.035 and 3-105 for the two bricks. This test will be continued until such time that the additional weight loss is zero or negligible.

Please let me know if you require any additional information regarding BISCO.

Very truly yours,

Larry J. Dietrick Project Engineer LJD/hf

# APPENDIX 1.C: MISCELLANEOUS MATERIAL DATA (Total of 6 Pages Including This Page)

The information provided in this appendix specifies the thermal expansion foam (silicone sponge) and paint properties and demonstrates their suitability for use in spent nuclear fuel storage casks. The following is a listing of the information provided.

- HT-800 Series, Silicone Sponge, Bisco Products Technical Data Sheet
- Thermaline 450, Carboline, Product Data Sheet and Application Instructions
- Carboline 890, Carboline, Product Data Sheet and Application Instructions

HT-870 silicone sponge is specified as a thermal expansion foam to be placed in the HI-TRAC transfer cask top lid with the neutron shield. Due to differing thermal expansion of the neutron shield and the carbon steel, the silicone sponge is provided to compress and allow the neutron shield material to expand. The compression-deflection physical properties are provided for the silicone sponge.

Silicone has a long and proven history in the nuclear industry. Silicone is highly resistant to degradation as a result of radiation at the levels required for the HI-TRAC transfer cask. Silicone is inherently inert and stable and will not react with the metal surfaces or neutron shield material. Additionally, typical operating temperatures for silicone sponges range from -50°F to 400°F.

Thermaline 450 is specified to coat the inner cavity of the storage overpack and HI-TRAC transfer cask, and Carboline 890 is specified to coat the external surfaces of the storage overpack and HI-TRAC transfer cask. As can be seen from the product data sheets, the paints are suitable for the design temperatures (see Table 2.2.3) and environment.

# **Technical** Data

# **HT-800 SERIES**

Specification Grade Silicone Sponge

# **PHYSICAL PROPERTIES**

| -                                     | SPECIFICATION |             |                  |                                                       |
|---------------------------------------|---------------|-------------|------------------|-------------------------------------------------------|
| PROPERTY                              |               |             | HT-820<br>(Firm) | TEST METHOD                                           |
| Density 🚽                             | 12 - 24 pcf   | 16 - 28 pcf | 20 - 32 pcf      | ASTM D-3574                                           |
| Compression Force<br>@ 25% Deflection | 2 - 7 psi     | 6 - 14 psi  | 12 - 20 psi      | ASTM D-1056                                           |
| Compression Set<br>(Maximum)          | 10%           | 10%         | 10%              | ASTM D-1056<br>(Compressed 50%for<br>22 hrs. @ 100°C) |
| Water Absorption<br>(Maximum)         | 10%           | 5%          | 5%               | ASTM D-1056                                           |

# **Available Industry Specifications:**

AMS-3195 (HT-800) AMS-3196 (HT-820)

UL-94 (Limited to sponthe stansse, densities, thekensees and calors-

Date to heard in behaviory sets and should surfly used for origing specifications. Fact over dealed non-independent name to a other measural satisfields; for an independing specific application must be address and these currents without agreement and use the independent for modical device anytic strine or for pharmaccuricst ending.



Elk Grove Village, Illinois 60007-6120

×.

Toll Free: 800/237-206.8



## product data sheet

# **THERMALINE 450**

# VOG

### SELECTION DATA

GENERIC TYPE: A glass flake filled, phenolic modified, amine cured epoxy novalac.

GENERAL PROPERTIES: A dense cross-linked polymer which exhibits outstanding barrier protection against a variety of chemical exposures. Excellent resistance to wet/dry cycling conditions at elevated temperatures. Designed to coat the exterior of insulated piping. It is also suitable for coating non-insulated piping and equipment exposed to chemical attack. The glass flakes help provide excellent abrasion resistance, permeation resistance and internal reinforcement.

- Temperature resistance to 450°F
- Excellent abrasion resistance
- Excellent overall chemical resistance
- Excellent thermal shock resistance

**RECOMMENDED USES:** Typically used as a one cost system to coat pipes and tanks that will be insulated. May also be used to coat non-insulated pipe, structural steel, equipment or concrete that may be subjected to severe chemical attack, abrasion or other abuse typical of a chemical plant environment.

### TYPICAL CHEMICAL RESISTANCE:

1.1

| Exposure | Solash & Soillage | Eumes     |
|----------|-------------------|-----------|
| Acids    | Excellent         | Excellent |
| Alkalies | Excellent         | Excellent |
| Solvents | Excellent         | Excellent |
| Salt     | Excellent         | Excellent |
| Water    | Excellent         | Excellent |

TEMPERATURERESISTANCE(Under insulation):Continuous:425°F (218°C)Excursions to:450°F (232°C)

At 200°F (93°C) coating discoloration may be observed without loss of film integrity.

SUBSTRATES: Apply over properly prepared steel.

**COMPATIBLE COATINGS:** Normally applied directly to substrate. May be applied over epoxies and phenolics as recommended. May be topcoated with epoxies, polyurethanes or other finish coats as recommended.

July 96 Replaces September 95

### SPECIFICATION DATA

THEORETICAL SOLID'S CONTENT OF MIXED MATERIAL:

By Volume

### VOLATILE ORGANIC CONTENT (VOC):

THERMALINE 450

The following are nominal values: As supplied: 2.13 lbs./gal. (255 gm./liter).

|         | Fluid       | Pounds/ | Grams/ |
|---------|-------------|---------|--------|
| Thinner | Ounces/Gel. | Gallon  | Liter  |
| 213     | 13          | 2.56    | 307    |

### RECOMMENDED DRY FILM THICKNESS:

8-10 mils (200-250 microns) to be achieved in 1 or 2 coats.

### THEORETICAL COVERAGE PER MIXED GALLON:\*

1,117 mil sq. ft. (27.9 sq.m/l at 25 microns) 139 sq. ft at 8 mils (3.5 sq. m/l at 200 microns) 111 sq. ft at 10 mils (2.8 sq.m/l at 250 microns)

\*Mixing and application losses will vary and must be taken into consideration when estimating job requirements.

STORAGE CONDITIONS: Store indoors. Temperature: 40-110°F (4-43°C) Humidity: 0-90%

SHELF LIFE: 24 months when stored indoors at 75°F (24°C)

COLOR: Red (0500) and Gray (5742)

GLOSS: Low (Epoxies lose gloss, discolor and eventually chalk in sunlight exposure.)

### **ORDERING INFORMATION**

Prices may be obtained from your Carboline Sales Representative or Carboline Customer Service Department.

### APPROXIMATE SHIPPING WEIGHT:

| THERMALINE 450 | <u>1's</u><br>12 lbs. (5.5 kg) | <u>5's</u><br>58 ibs. (26.3 kg) |
|----------------|--------------------------------|---------------------------------|
| Thinner 213    | 8.4 lbs. (3.8 kg)              | 41 ibs. (18.6 kg)               |

### FLASH POINT: (Setaflash)

| THERMALINE 450 Part A:<br>THERMALINE 450 Part B:<br>Thinner 213 | <b>53°F</b><br>> 200°F | ( 12°C)<br>(>93°C) |
|-----------------------------------------------------------------|------------------------|--------------------|
|                                                                 | 22°F                   | {-6°C)             |

To the best of our brawledge the technical data centerinal herein are true and essurate at the date of issuance and are subject to sharpe without prior notice. User must center's Carbon's Campany to verify cerrectness before specifying ar ordering. No guarantee of essurate is given ar implied. We guarantee our products to carbon's center's entrol. We assume no responsibility for ecourage, performance or implies reacting from use. Liability, if any, is knited to repleasment of products to carbon's even's down, are adject to charge writeut prior notice. No OTHER WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY CARBOLINE, EXPRESS OR IMPLIED STATUTORY BY OPERATION OF LAW, OR OTHERWASE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

# APPLICATION INSTRUCTIONS

# **THERMALINE 450**

...... revenues are not meaning to show product recommandations for specific service. They are issued as an old in determining conset suff and application preserve. It is assumed that the proper product recommandations have been made. These instructions should be followed dec from the metersale. aly to alstain the measure and

SURFACE PREPARATION: Remove all oil or grease from surface to be coated with Thinner 2 or Surface Cleaner 3 (refer to Surface Cleaner 3 instructions) in accordance with SSPC-SP 1.

#### STEEL:

Not Insulated: Abrasive blast to a Commercial Finish in accordance with SSPC-SP 6 and obtain a 2-3 mil (50-75 micron) blast profile.

Under Insulation: Abrasive blast to a Near White Finish in accordance with SSPC-SP 10 and obtain a 2-3 (50-75 micron) blast profile.

MIXING: Power mix each component separately, then combine and power mix in the following proportions.

Allow 30 minutes induction time at 75°F (24°C) prior to use. . . . ...

|            |             | <u>1 Gel. Kit</u> | <u>5 Gal. Kit</u> |
|------------|-------------|-------------------|-------------------|
| THERMALINE | 450 Part A: | 0.8 gals.         | 4.0 gais.         |
| THERMALINE | 450 Part B: | 0.2 gals.         | 1.0 gals.         |

THINNING: May be thinned up to 13 oz/gal with Thinner 213.

Use of thinners other than those supplied or approved by Carboline may adversely affect product performance and void product warranty, whether express or implied.

POT LIFE: Three hours at 75°F (24°C) and less at higher temperatures. Pot life ends when coating loses body and begins to sag.

### APPLICATION CONDITIONS:

|         | Material    | <u>Burfaces</u> | Ambient      | Humidity |
|---------|-------------|-----------------|--------------|----------|
| Normal  | 65-85°F     | 65-85*F         | 65-85*F      | 30-60%   |
|         | (18-29°C)   | (18-29*C)       | (18-29°C)    |          |
| Minimum | 55°F (13°C) | 50°F (10°C)     | 50"F (10"C)  | 0%       |
| Maximum | 90°F (32°C) | 110°F (43°C)    | 100"F (38"C) | 85%      |

Do not apply when the surface temperature is less than 5°F or 3°C above the dew point.

Special thinning and application techniques may be required above or below normal conditions.

SPRAY: The following spray equipment has been found suitable and is available from manufacturers such as Binks, DeVilbiss and Graco,

Conventional: Pressure pot equipped with dual regulators, 1/2" I.D. minimum material hose, .110" I.D. fluid tip and appropriate air cap.

July 96 Replaces September 95

| Airless:       |                 |
|----------------|-----------------|
| Pump Ratio:    | 30:1 (min)*     |
| GPM Output:    | 3.0 (min)       |
| Material Hose: | 1/2" I.D. (min) |
| Tip Size:      | .035"041"       |
| Output psi:    | 2200-2500       |

\*Teflon packings are recommended and are available from the pump manufacturer.

BRUSH: For striping of welds, touch-up of small areas only. Use a natural bristle brush, applying full strokes Avoid rebrushing.

ROLLER: Not recommended.

DRYING TIMES: These times are based on a dry film thickness of 10 mils (250 microns). Higher film thickness, insufficient ventilation or cooler temperatures will require longer cure times and could result in solvent entrapment and premature failure.

#### Surface

| Temperature | Dry To Hendle | Dry to Toecoet | Final Cure |
|-------------|---------------|----------------|------------|
| 50°F (10°C) | 18 hours      | 48 hours       | 21 days    |
| 60°F (18°C) | 12 hours      | 32 hours       | 14 days    |
| 75°F (24°C) | 6 hours       | 16 hours       | 7 days     |
| 90°F (32°C) | 3 hours       | 8 hours        | 4 days     |

If the final cure time has been exceeded, the surface must be abraded by sweep blasting prior to the application of any additional coats.

EXCESSIVE HUMIDITY OR CONDENSATION ON THE SURFACE DURING CURING MAY RESULT IN A SUR FACE HAZE OR BLUSH; ANY HAZE OR BLUSH MUST BE REMOVED BY WATER WASHING BEFORE RE-COATING.

VENTILATION & SAFETY: WARNING: VAPORS MAY CAUSE EXPLOSION. When used in enclosed areas. thorough air circulation must be used during and after application until the coating is cured. The ventilation system should be capable of preventing the solvent vapor concentration from reaching the lower explosion limit for the solvents used. In addition to insuring proper ventilation, fresh air respirators or fresh air hoods must be used by all application personnel Where flammable solvents exist, explosion-proof lighting must be used. Hypersensitive persons should wear clean, protective clothing, gloves and/or protective cream on face, hands and all exposed areas.

CLEANUP: Use Thinner 2.

CAUTION: READ AND FOLLOW ALL CAUTION STATE-MENTS ON THIS PRODUCT DATA SHEET AND ON THE MATERIAL SAFETY DATA SHEET FOR THIS PRODUCT.

CAUTION: CONTAINS FLAMMABLE BOLVENTS. KEEP AWAY FROM SPARKS AND OPEN FLAMES. WORKMEN IN CONFINED AREAS MUST WEAR FRESH AIRLINE RESPIRATORS HYPERENBITIVE PERSONS SHOULD WEAR GLOVES OR USE PROTECTIVE CREAM. ALL ELECTRICAL EQUIPMENT AND INSTALLATIONS SHOULD BE MADE IN ACCORDANCE WITH THE NATIONAL ELECTRICAL CODE. IN AREAS WHERE EUPLOBON HAZARDS EXIST, WORKMEN SHOULD BE REQUIRED TO USE NONFERROUS TOOLS AND TO WEAR CONDUCTIVE AND





# CARBOLINE® 890



### SELECTION DATA

GENERIC TYPE: Cross-linked spoxy.

GENERAL PROPERTIES: CARBOLINE 890 is a self priming, high solids, high gloss, high build epoxy mastic. It can be applied by apray, brush, or roller over hand or power tool cleaned steel and is competible with most existing costings and tightly adhered rust. The oursed film provides a tough, cleanable surface and is available in a wide variety of colors.

- Single cost corrosion protection.
- Excellent chemical resistance.
- Good flexibility and lower stress upon curing then most spoxy costings.
- Excellent tolerance of damp (not wet) substrates.
- Very good abrasion resistance.
- Suitable replacement for Carbomestic 801.

RECOMMENDED USES: Recommended where a high performence, chemically resistant epoxy costing is desired. Offers outstanding protection for interior floors, walls, piping, equipment and structural steel or as an exterior coäting for reilcars, etructural steel and equipment in verious corrosive environments. Industrial environments include Chemical Processing, Offshore Oil end Gas, Food Processing, Pharmaceutical, Water and Waste Water Treatment, Pulp and Paper and Power Generation among others. May be used as a two cost system direct to metal or concrete for Water and Municipal Waste Water immersion. Acceptable for use in incidental food contact areas and as a lining for hopper cars carrying food grede plastic pellets when processed according to FDA criteria (ref: FDA 21 CFR 175.300). Consult Carboline Technical Service Department for other epecific uses.

NOT RECOMMENDED FOR: Strong acid or solvent exposures, immersion service other than water, exterior weathering where color retention is desired, such as a finish for tank exteriors or over chlorinated rubber and latex costings.

### TYPICAL CHEMICAL RESISTANCE:

Т

| Exposure<br>Acids<br>Alkelies<br>Solvents<br>Selt Solutions<br>Water | <u>İmmersion</u><br>NR<br>NR<br>Excellent<br>Excellent | Splech &<br><u>Spillage</u><br>Very Good<br>Excellent<br>Very Good<br>Excellent | Fumes<br>Very Good<br>Excellent<br>Excellent<br>Excellent |
|----------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                                                      | Excellent                                              | Excellent                                                                       | Excellent                                                 |

TEMPERATURE RESISTANCE: (Non-Immersion)

Continuous: 250°F (121°C) Non-continuous: 300°F (149°C)

At temperatures above 225°F, coating discoloration and loss of gloss can be abserved, without loss of film integrity.

SUBSTRATES: Apply over suitably prepared metal, concrete, or other surfaces as recommended.

COMPATIBLE COATINGS: May be applied directly over inorganic zincs, weathered galvanizing, epoxies, phenolics or other coatings as recommended. A test patch is recommended before use over existing costings. A mist cost of CARBOLINE 890 is required when applied over inorganic zincs to minimize bubbling. May be topcosted with polyurethanes or acrylics to upgrade weathering resistence. Not recommended over chlorinated rubber or latex costings. Consult Carboline Technical Service Department for specific recommendations.

### June 96 Replaces December 95

SPECIFICATION DATA

| THEORETICAL SOLID                        | S CONTENT | OF MIXED              |                              |
|------------------------------------------|-----------|-----------------------|------------------------------|
| CARBOLINE 890                            |           |                       | <u>8v Volume</u><br>75% ± 2% |
| VOLATILE ORGANIC<br>As Supplied: 1.78 Ib | CONTENT:* | greme <i>f</i> liter) |                              |
| Thinned:                                 | Fluid     | Pound                 | is/ Grams/                   |

|         | Fluid       | Pounds/ | Grams/ |
|---------|-------------|---------|--------|
| Thinner | Ounces/Gal. | Gallon  | Liter  |
| 2       | 8           | 2.08    | 250    |
| 2       | 13          | 2.26    | 271    |

| *Varies with color |    |  |
|--------------------|----|--|
| 23                 | 16 |  |

#### . .

### RECOMMENDED DRY FILM THICKNESS PER COAT

4-6 mils (100-150 microns).

6-8 mils (150-200 microns) DFT for a more uniform gloss over inorganic zincs, or for use over light rust.

2.38

In more severe environments a second coat of 4-6 mils (100-150 microns) is recommended.

Dry film thickness in excess of 10 mils (250 microns) per cost is not recommended. Excessive film thickness over inorganic zinc may increase damage during shipping or erection.

THEORETICAL COVERAGE PER MIXED GALLON:

1203 mil sq. ft. (30 sq. m/l at 25 microns) 241 sq. ft. at 5 mils (6.0 sq. m/l at 125 microns)

Mixing and application losses will vary and must be taken into consideration when estimating job requirements.

STORAGE CONDITIONS: Store Indoors Temperature: 40-110°F (4-43°C) Humidity, 0-100%

SHELF LIFE: 36 months when stored at 75°F (24°C).

COLORS: Available in Carboline Color Chart colors. Some colors may require two coats for adequate hiding.

GLOSS: High gloss (Epoxies lose gloss, discolor and eventually chalk in sunlight exposure).

### **ORDERING INFORMATION**

Prices may be obtained from your Carboline Sales Representative or Carboline Customer Service Department. APPROXIMATE SHIPPING WEIGHT:

| CARBOLINE 890                            | <u>2 Gel. Kit</u><br>29 lbs. (13 kg) | <u>10 Gal. Kit</u><br>145 Ibs. (66 kg) |
|------------------------------------------|--------------------------------------|----------------------------------------|
| THINNER #2                               | <u>1'e</u><br>8 ibs.                 | <u>5'e</u>                             |
| THINNER #33                              | 4 kg)<br>9 ibs.                      | 39 lbs.<br>(18 kg)                     |
|                                          | (4 kg)                               | 45 ibs.<br>(20 kg)                     |
| FLASH POINT: (Sete<br>CARBOLINE 890 Part | A .                                  | 89'F (32'C:                            |
| CARBOLINE 890 Part<br>THINNER #2         | 8                                    | 71"F (22"C)                            |
| THINNER #33                              |                                      | 24"F (-5"C)<br>89"F (32"C)             |

To the best of eucliverhidge the technical data centerned herein are true and accurate at the date of securics and are subject to change without prior notice. Use must center Carbonic Company to verify correctness before securing, no guarantee of accuracy is given ar implied. We guarantee ou products to conform to Carboning contract central We assume no responsibility for coverage, performance or must reaching from use. Liability, if any, is limited to replacement of products to conform to Carboning subtransition of a subject to change without private networks walkanty of GUARANTEE OF ANY KIND IS MADE BY CARBOLINE. EXPRESS OR IMPLIED STATUTOR data to BY OPERATION OF LAW, OR OTHERWISE, INCLUDING MERCHANTABILITY AND RITNESS FOR A PARTICULAR PURPOSE.

285

# CARBOLINE® 890

These instructions are not intended to show product recommendations for specific service. They are issued as an aid in determining correct surface properation, mixing instructions and application procedure. It is assumed that the proper product recommendations have been made. These instructions should be followed closely to obtain the maximum service from the materials.

SURFACE PREPARATION: Remove all oil or grasse from surface to be coated with Thinner #2 or Surface Cleaner #3 (refer to Surface Cleaner #3 instructions) in accordance with SSPC-SP 1.

Steel: For mild environments Hand Tool or Power Tool Clean in accordance with SSPC-SP 2, SSPC-SP 3 or SSPC-SP 11 to produce a rust-acale free surface.

For more severe environments, abresive blast to a Commercial Finish in accordance with SSPC-SP 6 and obtain a 1 ½ - 3 mit (40-75 micron) blast profile.

For immersion service, abrasive blast to a Near White Metal Finish in accordance with SSPC-SP10 and obtain a 1 ½ - 3 mil (40-75 micron) blast profile.

Concrete: Must be cured at least 28 days at 70°F (21°C) and 50% R.H. or equivalent time. Remove fins and other protrusions by stoning, sending or grinding. Abrasive blast to open all surface voids and remove all form oils, incompatible curing agents, hardeners, laitance and other foreign matter and produce a surface texture similar to that of a medium grit sendpaper. Voids in the concrete may require surfacing. Blow or vecuum off sand and dust.

MIXING: Power mix separately, then combine and power mix in the following proportions:

|                                              | <u>2 Gal. Kit</u>    | 10 Oct Mix                                   |
|----------------------------------------------|----------------------|----------------------------------------------|
| CARBOLINE 890 Part A<br>CARBOLINE 890 Part B | 1 gellon<br>1 gellon | <u>10 Gel, Kit</u><br>5 gellons<br>5 gellons |

THINNING: For spray applications, may be thinned up to 13 oz./gal. with Thinner #2. For hot and windy conditions, or for brush and roller application, may be thinned up to 16 oz./gal. with Thinner #33.

Use of thinners other than those supplied or approved by Carboline may adversally affect product performance and void product warranty, whether express or implied.

POT LIFE: Three hours at 75°F (24°C) and less at higher temperatures. Pot life ands when material loses film build.

#### APPLICATION CONDITIONS:

|         | Material            | -Burlaces                | _Amblent                 | <b>Humidity</b> |
|---------|---------------------|--------------------------|--------------------------|-----------------|
| Normal  | 80-85F<br>(16-29°C) | 80-85 4                  | 80-90"F                  | 0-80%           |
| Minimum | 50% (10°C)          | (16-29°C)<br>50°F (10°C) | (16-32°C)<br>50°F (10°C) | 0%              |
| Maximum | 90"F (32"C)         | 1257 (52°C)              | 110"F (43"C)             | 90%             |

Do not apply or cure the material when the surface temperature is less than 5°F or 3°C above the dew point.

Special thinning and application techniques may be required above or below normal conditions.

SPRAY: This is a high solids coating and may require slight adjustments in spray techniques. Wet film thicknesses are easily and quickly achieved. The following spray equipment has been found suitable and is available from manufacturers such as Binks, DeVilbiss and Graco.

Conventional: Pressure pot equipped with dual regulators, 3/8" I.D. minimum material hose, .070" I.D. fluid tip and appropriate air cap.

June 96 Replaces December 95

| Airiess:       |                  |
|----------------|------------------|
| Pump Ratio:    | 30:1 (min.)*     |
| GPM Output:    | 3.0 (min.)       |
| Material Hose: | 3/8° I.D. (min.) |
| Tip Size:      | .017021*         |
| Output psi:    | 2100-2300        |
| Filter Size:   | 60 mesh          |

\*Teflon packings are recommended and are available from the pump manufacturer. . . .

٠ş

 $\cdot$ 

BRUSH OR ROLLER: Use medium bristle brush, or good quality short nep roller. Avoid excessive rebrushing and rerolling. Two costs may be required to obtain desired appearance, hiding and recommended DFT. For best results, train within 10 minutes at 75°F (24°C).

DRVING TIMES: These times are based on a 5 mils (125 microns) dry film thickness. Higher film thicknesses, insufficient ventilation or cooler temperatures will require longer cure times and could result in solvent entrepment and premature failure.

Dry to Touch 2 1/2 hours at 75°F (24°C) Dry to Handle 6 1/2 hours at 75°F (24°C)

| Surface     | Receting    | Dry to              | Final Co.       |
|-------------|-------------|---------------------|-----------------|
| Temperature | With Iteelf | Tepcost             |                 |
| 50°F (10°C) | 12 hours    | 24 hours            | Final Cure      |
| 60°F (16°C) | 8 hours     |                     | 3 days          |
| 75°F (24°C) | 4 hours     | 16 hours<br>8 hours | 2 days<br>1 day |
| 90°F (32°C) | 2 hours     | 4 hours             | 16 hours        |

Excessive humidity or condensation on the surface during curing can interfere with the cure, can cause discoloration and may result in a surface haze or blush. Any haze or blush <u>must</u> be removed by water washing before recoating. During high humidity conditions, it is recommended that the application be done while temperatures are increasing. For best results over "demp" surfaces, apply by brush or roller.

Maximum Recoat or Topcoat Times at 75 °F (24 °C):

With Epoxies - 30 days

With Polyurethanes - 90 days

If the maximum receat time has been exceeded, surface must be sbraded by sweep blasting prior to the application of any additional coats.

Minimum cure time before immersion service is 5 days at 75°F (24°C) surface temperature. Cure at temperatures below 60°F (16°C) is not recommended for immersion service.

VENTILATION & SAFETY: WARNING: VAPORS MAY CAUSE EXPLOSION. When used as a tank lining or in enclosed areas thorough air circulation must be used during and after applice tion until the coating is cured. The ventilation system should be capable of preventing the solvent vapor concentration from reaching the lower explosion limit for the solvents used. In addition to ensuring proper ventilation, fresh eir respirators or fresh air hoods must be used by all application personnel Where flammable solvents exist, explosion-proof lighting must be used. Hypersensitive persons should wear clean, protective clothing, gloves and/or protective cream on face, hands and all exposed areas.

CLEANUP: Use Thinner # 2.

CAUTION: READ AND FOLLOW ALL CAUTION STATEMENTS ON THIS PRODUCT DATA SHEET AND ON THE MATERIAL SAFETY DATA SHEET FOR THIS PRODUCT.

CAUTION: CONTAINS FLAMMABLE SOLVENTS. KEEP AWAY FROM SPARKS AND OPEN FLAMES. IN CONFINED AREAS, WORKMEN MUST WEAR FRESH AIRLINE RESPIRATORS. HYPERSENSITIVE PERSONS SHOULD WEAR GLOVES OR USE PROTECTIVE CREAM ALL ELECTRIC EQUIPMENT AND INSTALLATIONS SHOULD BE MADE AND GROUNDED IN ACCORDANCE WITH THE NATIONAL ELECTRICAL CODE. IN AREAS WHERE EXPLOSION HAZARDS EXIST, WORKMEN SHOULD BE REQUIRED TO USE NONFERROUS TOOLS AND TO WEAR CONDUCTIVE AND NONSPARKING SHOES



an (PDT) company + 314-644-1000

Page 1.C-6

### **APPENDIX 1.D: Requirements on HI-STORM 100 Shielding Concrete**

### 1.D.1 Introduction

The HI-STORM 100 overpack utilizes plain concrete for neutron and gamma shielding. While most of the shielding concrete used in the HI-STORM 100 overpack is installed in the annulus between the concentric structural shells, smaller quantities of concrete are also present in the pedestal shield and the overpack lid. Because plain concrete has little ability to withstand tensile stresses, but is competent in withstanding compressive and bearing loads, the design of the HI-STORM 100 overpack places no reliance on the tension-competence of the shielding concrete. ACI 318-95 provides formulas for permissible compressive and bearing stresses in plain concrete which incorporate a penalty over the corresponding permissible values in reinforced concrete. The formulas for permissible compressive and bearing stresses set forth in ACI 318-95 are used in calculations supporting this FSAR in load cases involving compression or bearing loads on the overpack concrete. However, since ACI 318-95 is intended for commercial applications and the overpack concrete is designated as an ITS Category B material, it is necessary to invoke provisions of ACI 349 (85) (which is sanctioned by NUREG-1536) for all requirements except for the allowable stress formulas (which do not exist in ACI 349) and load combinations. This appendix provides a complete set of criteria applicable to the plain concrete in the HI-STORM 100 overpack.

### 1.D.2 Design Requirements

The primary function of the plain concrete is to provide neutron and gamma shielding. As plain concrete is a competent structural member in compression, the plain concrete's effect on the performance of the HI-STORM overpack is included. The formulas for permissible compressive and bearing stresses set forth in ACI 318-95 are used. However, as plain concrete has very limited capabilities in tension, no tensile strength is allotted to the concrete.

The steel structure of the HI-STORM overpack provides the strength to meet all load combinations specified in Chapters 2 and 3. Credit for the structural strength of the plain concrete is limited to the compressive load carrying capability of the concrete in calculations appropriate to handling and transfer operations, and to demonstrate that the HI-STORM 100 System continues to provide functional performance in a post-accident environment. Therefore, the load combinations provided in ACI 349 and NUREG-1536, Table 3-1 are not applied to the plain concrete.

The shielding performance of the plain concrete is maintained by ensuring that the allowable concrete temperature limits are not exceeded. The thermal analyses for normal and offnormal conditions demonstrate that the plain concrete does not exceed the allowable long term temperature limit provided in Table 1.D.1. Under accident conditions, the bulk of the plain concrete in the HI-STORM overpack does not exceed the allowable short term temperature limit provided in Table 1.D.1. Any portion of the plain concrete which exceeds the short term temperature limit under accident conditions is neglected in the post-accident shielding analysis and in any post-accident structural analysis.

### 1.D.3 Material Requirements

Table 1.D.1 provides the material limitations and requirements applicable to the overpack plain concrete. These requirements are drawn from ACI 349 (85) supplemented by the provisions of NUREG 1536 (page 3-21) and standard good practice.

### 1.D.4 Construction Requirements

The HI-STORM 100 overpack is composed of a steel structure which houses plain concrete. The steel structure acts as the framework for the pouring of the concrete. The steel structure defines the dimensions of the concrete which ensures that the required thickness of concrete is provided. The fabrication sequence for the HI-STORM 100 overpack as it pertains to the concrete is provided below. All item numbers are taken from Drawings 1495 and 1561 provided in Section 1.5. All nomenclature is taken from bill-of-material BM-1575 which is provided in Section 1.5.

The steel structure of the HI-STORM 100 overpack body is assembled at a qualified steel fabrication facility. However, the top plate (Item 9) is not welded to the overpack inner and outer shells (Items 3 and 2, respectively); likewise, the pedestal shell (Item 5) is welded to the baseplate (Item 1), but the pedestal platform (Item 24) is not welded to the pedestal shell. The steel structure of the overpack body is transported to the reactor site or a nearby concrete facility.

Once the steel structure of the body is received, the body will be inspected to ensure the steel structure meets the requirements of Sections 5.1 and 6.1 of ACI 349. The concrete shall be mixed, conveyed, and deposited in accordance with Sections 5.2 through 5.4 of ACI 349. Sufficient rigidity in the steel structure overpack body is provided such that all the concrete may be placed in a single pour into each of the four segments formed by the inner shell (Item 3), outer shell (Item 2), and radial plates (Item 14). If more than one pour is performed, the requirements of Section 6.4 of ACI 349 must be met for construction joints. The pedestal shell may require bracing and support in accordance with Section 6.1 of ACI 349 to maintain the proper position and shape.

Mixing and placing of the concrete shall follow the guidance of Sections 5.6 and 5.7 for cold and hot weather conditions, respectively. Consolidation of the plain concrete shall be performed in accordance with ACI 309-87. As no reinforcement is placed in the concrete, the possibility of voids is greatly diminished. Curing of the concrete shall be in accordance with Section 5.5 of ACI 349, except that accelerated curing in accordance with Section 5.5.3 is not permitted. The water curing method shall be utilized in accordance with ACI 308-92, Standard Practice for Curing Concrete.

After curing, non-shrink grout shall be applied as necessary to account for any shrinkage of the concrete elevation. Then, the top plate (Item 9) is welded to the overpack inner and outer shells (Items 3 and 2, respectively) and the pedestal shell (Item 5) is welded to the pedestal platform (Item 24).

To fabricate the overpack lid an identical process is followed. The lid shell (Item 7) is welded to the lid bottom plate (Item 6) and the inner and outer shield block shells (Items 27 and 26, respectively) are welded to the lid top plate (Item 10). The overpack lid is transported to the reactor site or a nearby concrete facility. The lid will be inspected to ensure the structure meets the requirements of Sections 5.1 and 6.1 of ACI 349. The concrete shall be mixed, conveyed, and deposited in accordance with Sections 5.2 through 5.4 of ACI 349. Sufficient rigidity in the overpack lid is provided such that all the concrete may be placed in a single pour. If bracing and support is required, it shall be provided in accordance with Section 6.1 of ACI 349 to maintain the proper position and shape. If more than one pour is performed, the requirements of Section 6.4 of ACI 349 must be met for construction joints.

Mixing and placing of the concrete for the lid shall follow the guidance of Sections 5.6 and 5.7 for cold and hot weather conditions, respectively. Curing of the concrete shall be in accordance with Section 5.5 of ACI 349, except that accelerated curing in accordance with Section 5.5.3 is not permitted. The water curing method shall be utilized in accordance with ACI 308-92, Standard Practice for Curing Concrete. After curing, the lid shell (Item 7) is welded to the lid top plate (Item 10) and the shield block ring (Item 20) is welded to the inner and outer shield block shells (Items 27 and 26, respectively).

Table 1.D.1 provides the construction limitations and requirements applicable to the overpack plain concrete. These requirements are drawn from ACI 349 (85).

### 1.D.5 Testing Requirements

Table 1.D.2 provides the testing requirements applicable to the overpack plain concrete. These requirements are drawn from ACI 349 (85).

| LE LIMIT OR REFERENCE<br>et)<br>3.2 (ASTM C 150 or ASTM C595)<br>uding ASTM C33( Note 2)) |
|-------------------------------------------------------------------------------------------|
| 3.2 (ASTM C 150 or ASTM C595)<br>uding ASTM C33( Note 2))                                 |
| uding ASTM C33( Note 2))                                                                  |
| uding ASTM C33( Note 2))                                                                  |
| uding ASTM C33( Note 2))                                                                  |
| )                                                                                         |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |
| weight of cement (Table 4.5.4)                                                            |
|                                                                                           |
| ACI 349                                                                                   |
| ACI 349                                                                                   |
|                                                                                           |
| ty Assurance Manual, 10 CFR Part                                                          |
| commitments                                                                               |
| e 3)                                                                                      |
|                                                                                           |
| (A, Subsection A.4.2)                                                                     |
| (1, 50050010111:4.2)                                                                      |
|                                                                                           |
| PF                                                                                        |
| 3.V.2.b.i.(2)(c)2.b)                                                                      |
|                                                                                           |

Notes:

1. All section and table references are to ACI 349 (85).

- 2. The coarse aggregate shall meet the requirements of ASTM C33 for class designation 1S from Table 3. However, if the requirements of ASTM C33 cannot be met, concrete that has been shown by special tests or actual service to produce concrete of adequate strength and durability meeting the requirements of Tables 1.D.1 and 1.D.2 is acceptable in accordance with ACI 349 Section 3.3.2.
- 3. The 200°F long term temperature limit is specified in accordance with Paragraph A.4.3 of ACI 349 for normal conditions. The 200°F long term temperature limit is based on (1) the use of Type II cement, specified aggregate criteria, and the specified compressive stress in Table 1.D.1, (2) the relatively small increase in long term temperature limit over the 150EF specified in Paragraph A.4.1, and (3) the very low maximum stresses calculated for normal and off-normal conditions in Section 3.4 of this FSAR.

<sup>1</sup> This limit is specified to accommodate severe exposure to freezing and thawing (Table 4.5.1).

<sup>2</sup> The following aggregate types are a priori acceptable: limestone, dolomite, marble, basalt, granite, gabbro, or rhyolite. The thermal expansion coefficient limit does not apply when these aggregates are used. Careful consideration shall be given to the potential of long-term degradation of concrete due to chemical reactions between the aggregate and cement selected for HI-STORM 100 overpack concrete.

| TEST                                                | SPECIFICATION                                                                                               |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Compression Test                                    | ASTM C31, ASTM C39, ASTM C192                                                                               |
| Air Content                                         | ASTM C231                                                                                                   |
| Unit Weight (Density)                               | ASTM C138                                                                                                   |
| Maximum Water Soluble<br>Chloride Ion Concentration | Federal Highway Administration Report FHWA-RD-77-85,<br>"Sampling and Testing for Chloride Ion in Concrete" |

Table 1.D.1: Requirements on Plain Concrete

\_\_\_\_

#### CHAPTER 2<sup>†</sup>: PRINCIPAL DESIGN CRITERIA

This chapter contains a compilation of design criteria applicable to the HI-STORM 100 System. The loadings and conditions prescribed herein for the MPC, particularly those pertaining to mechanical accidents, are far more severe in most cases than those required for 10CFR72 compliance. The MPC is designed to be in compliance with both 10CFR72 and 10CFR71 and therefore certain design criteria are overly conservative for storage. This chapter sets forth the loading conditions and relevant acceptance criteria; it does not provide results of any analyses. The analyses and results carried out to demonstrate compliance with the design criteria are presented in the subsequent chapters of this report.

This chapter is in full compliance with NUREG-1536, except for the exceptions and clarifications provided in Table 1.0.3. Table 1.0.3 provides the NUREG-1536 requirement, the justification for the exception or clarification, and the Holtec approach to meet the intent of the NUREG-1536 requirement.

#### 2.0 PRINCIPAL DESIGN CRITERIA

The design criteria for the MPC, HI-STORM 100 Overpack, and HI-TRAC Transfer Cask are summarized in Tables 2.0.1, 2.0.2, and 2.0.3, respectively, and described in the sections that follow.

#### 2.0.1 MPC Design Criteria

#### <u>General</u>

The MPC is designed for 40 years of service, while satisfying the requirements of 10CFR72. The adequacy of the MPC design for the design life is discussed in Section 3.4.12.

#### **Structural**

The MPC is classified as important to safety. The MPC structural components include the internal fuel basket and the enclosure vessel. The fuel basket is designed and fabricated as a core support structure, in accordance with the applicable requirements of Section III, Subsection NG of the ASME Code, to the maximum extent practicable, as discussed in Section 2.2.4. The enclosure vessel is designed and fabricated as a Class 1 component pressure vessel in accordance with Section III,

<sup>&</sup>lt;sup>†</sup> This chapter has been prepared in the format and section organization set forth in Regulatory Guide 3.61. However, the material content of this chapter also fulfills the requirements of NUREG-1536. Pagination and numbering of sections, figures, and tables are consistent with the convention set down in Chapter 1, Section 1.0, herein. Finally, all terms-of-art used in this chapter are consistent with the terminology of the glossary (Table 1.0.1) and component nomenclature of the Bill-of-Materials (Section 1.5).

Subsection NB of the ASME Code, to the maximum extent practicable, as discussed in Section 2.2.4. The principal exception is the MPC lid, vent and drain cover plates, and closure ring welds to the MPC lid and shell, as discussed in Section 2.2.4. In addition, the threaded holes in the MPC lid are designed in accordance with the requirements of ANSI N14.6 for critical lifts to facilitate vertical MPC transfer.

The MPC closure welds are partial penetration welds that are structurally qualified by analysis, as presented in Chapter 3. The MPC lid and closure ring welds are inspected by performing a liquid penetrant examination of the root pass and final weld surface, in accordance with the Design Drawings contained in Section 1.5. The integrity of the MPC lid weld is further verified by performing a volumetric examination, a hydrostatic pressure test and a helium leak test, in accordance with the Design Drawings and Technical Specification requirements contained in Chapter 12.

The structural analysis of the MPC, in conjunction with the redundant closures and nondestructive examination, hydrostatic pressure testing, and helium leak testing performed during MPC fabrication and MPC closure, provides assurance of canister closure integrity in lieu of the specific weld joint requirements of Section III, Subsection NB.

Compliance with the ASME Code as it is applied to the design and fabrication of the MPC and the associated justification are discussed in Section 2.2.4. Compliance with the ASME Code is fully consistent with that used by other canister-based dry storage systems previously approved by the NRC.

The MPC is designed for all design basis normal, off-normal, and postulated accident conditions, as defined in Section 2.2. These design loadings include postulated drop accidents while in the cavity of the HI-STORM 100 Overpack or the HI-TRAC Transfer Cask. The load combinations for which the MPC is designed are defined in Section 2.2.7. The maximum allowable weight and dimensions of a fuel assembly to be stored in the MPC are limited in accordance with Section 2.1.5.

#### **Thermal**

The allowable zircaloy fuel cladding temperature limits to prevent cladding failure during long-term dry storage conditions for the MPC are based on LLNL Report [2.2.14]. To provide additional conservatism, the permissible fuel cladding temperature limits, which are lower than those calculated with the LLNL methodology, have been calculated based on PNL Report [2.0.3]. Stainless steel cladding is demonstrated to withstand higher temperatures than that of zircaloy cladding in EPRI Report [2.2.13]. However, the zircaloy fuel cladding temperature limits are conservatively applied to the stainless steel fuel cladding. The allowable fuel cladding temperatures which correspond to varying cooling times for the SNF to be stored in the MPCs are provided in Table 2.2.3.

The short-term allowable fuel cladding temperature that is applicable to off-normal and accident conditions, as well as the fuel loading, canister closure, and canister transfer operations in the HI-TRAC transfer cask, is 570EC (1058EF) based on PNL-4835 [2.2.15]. The MPC is backfilled with 99.995% pure helium at a mass specified in Chapter 12 during canister sealing operations to promote heat transfer and prevent cladding degradation.

The design temperatures for the structural steel components of the MPC are based on the temperature limits provided in ASME Section II, Part D, tables referenced in ASME Section III, Subsection NB and NG, for those load conditions under which material properties are relied on for a structural load combination. The specific design temperatures for the components of the MPC are provided in Table 2.2.3.

The MPCs are designed for a bounding thermal source term, as described in Section 2.1.6. The maximum allowable fuel assembly heat load for each MPC is limited in accordance with the Technical Specifications contained in Chapter 12.

#### **Shielding**

The allowable doses for an ISFSI using the HI-STORM 100 System are delineated in 10CFR72.104 and 72.106. Compliance with this criteria is necessarily site-specific and is to be demonstrated by the licensee, as discussed in Chapters 5 and 12.

The MPC provides axial shielding at the top and bottom ends to maintain occupational exposures ALARA during canister closure and handling operations. The maximum allowable axial dose rates for the MPC are controlled in accordance with plant-specific procedures and ALARA requirements (discussed in Chapter 10).

The MPCs are designed for design basis fuel at the maximum burnup and minimum cooling times, as described in Sections 2.1.7 and 5.2. The radiological source term for the MPCs are limited based on the burnup and cooling times specified in the Technical Specifications contained in Chapter 12. Calculated dose rates for each MPC are provided in Section 5.1. These dose rates are used to perform an occupational exposure evaluation in accordance with 10CFR20, as discussed in Chapter 10.

#### **Criticality**

The MPCs provide criticality control for all design basis normal, off-normal, and postulated accident conditions, as discussed in Section 6.1. The effective neutron multiplication factor is limited to  $k_{eff}$  < 0.95 for fresh unirradiated intact fuel with optimum unborated water moderation and close reflection, including all biases, uncertainties, and MPC manufacturing tolerances.

Criticality control is maintained by the geometric spacing of the fuel assemblies and fixed borated neutron absorbing materials (Boral) incorporated into the fuel basket assembly. The minimum

specified boron concentration verified during Boral manufacture is further reduced by 25% for criticality analysis. No credit is taken for burnup. The maximum allowable initial enrichment for fuel assemblies to be stored in each MPC are limited in accordance with the Technical Specifications contained in Chapter 12.

#### **Confinement**

The MPC provides for confinement of all radioactive materials for all deign basis normal, offnormal, and postulated accident conditions, as discussed in Section 7.1. A non-mechanistic breach of the canister and subsequent release of available fission products in accordance with specified release fractions is considered, as discussed in Section 7.3. The confinement function of the MPC is verified through hydrostatic testing, helium leak testing and weld examinations performed in accordance with the acceptance test program in Chapter 9 and the Technical Specifications contained in Chapter 12.

#### **Operations**

There are no radioactive effluents that result from storage or transfer operations. Effluents generated during MPC loading are handled by the plant's radwaste system and procedures.

Generic operating procedures for the HI-STORM 100 System are provided in Chapter 8. Detailed operating procedures will be developed by the licensee based on site-specific requirements that comply with the 10CFR50 Technical Specifications for the plant and the 10CFR72 Technical Specifications for the HI-STORM 100 System contained in Chapter 12.

#### Acceptance Tests and Maintenance

The fabrication acceptance basis and maintenance program to be applied to the MPCs are described in Chapter 9. The operational controls and limits to be applied to the MPCs are contained in Chapter 12. Application of these requirements will assure that the MPC is fabricated, operated, and maintained in a manner that satisfies the design criteria defined in this chapter.

#### Decommissioning

The MPCs are designed to be transportable in the HI-STAR 100 Overpack and are not required to be unloaded prior to shipment off-site. Decommissioning of the HI-STORM 100 System is addressed in Section 2.4.

#### 2.0.2 HI-STORM 100 Overpack Design Criteria

#### General

The HI-STORM 100 Overpack is designed for 40 years of service, while satisfying the requirements of 10CFR72. The adequacy of the overpack design for the design life is discussed in Section 3.4.11.

#### **Structural**

The HI-STORM 100 Overpack includes both concrete and structural steel components that are classified as important to safety.

The concrete material is defined as important to safety because of its importance to the shielding analysis. The primary function of the HI-STORM 100 Overpack concrete is shielding of the gamma and neutron radiation emitted by the spent nuclear fuel.

Unlike other concrete storage casks, the HI-STORM 100 Overpack concrete is enclosed in steel inner and outer shells connected to each other by four radial ribs, and top and bottom plates. Where typical concrete storage casks are reinforced by rebar, the HI-STORM 100 Overpack is supported by the inner and outer shells connected by four ribs. As the HI-STORM 100 Overpack concrete is not reinforced, the structural analysis of the overpack only credits the compressive strength of the concrete. Providing further conservatism, the structural analyses for normal conditions demonstrate that the allowable stress limits of the structural steel are met even with no credit for the strength of the concrete. During accident conditions (e.g., tornado missile, tip-over, end drop, and earthquake), only the compressive strength of the concrete is accounted for in the analysis to provide an appropriate simulation of the accident condition. Where applicable, the compressive strength of the concrete is calculated in accordance with ACI-318-95 [2.0.1].

In recognition of the conservative assessment of the HI-STORM 100 Overpack concrete strength and the primary function of the concrete being shielding, the applicable requirements of ACI-349 [2.0.2] are invoked in the design and construction of the HI-STORM 100 Overpack concrete as specified in Appendix 1.D.

Steel components of the storage overpack are designed and fabricated in accordance with the requirements of ASME Code, Section III, Subsection NF for Class 3 plate and shell components. Compliance with the ASME Code is fully consistent with those used by other canister-based dry storage systems previously approved by the NRC.

The overpack is designed for all normal, off-normal, and design basis accident condition loadings, as defined in Section 2.2. At a minimum, the overpack must protect the MPC from deformation, provide continued adequate performance, and allow the retrieval of the MPC under all conditions. These design loadings include a postulated drop accident from the maximum allowable handling

height, consistent with the Technical Specification requirements contained in Chapter 12. The load combinations for which the overpack is designed are defined in Section 2.2.7. The physical characteristics of the MPCs for which the overpack is designed are defined in Chapter 1.

#### <u>Thermal</u>

The allowable long-term temperature limit for the overpack concrete is less than the limit in NUREG-1536, which limits the local concrete temperature to 300°F, if Type II cement is used and aggregates are selected which are acceptable for concrete in this temperature range. Appendix 1.D specifies the cement and aggregate requirements to allow the utilization of the 300°F temperature limit of NUREG-1536; however, a conservative long-term temperature limit of 200°F is applied to the concrete. For short term conditions the concrete temperature limit of 350°F is specified in accordance with Appendix A of ACI 349. The allowable temperatures for the structural steel components are based on the maximum temperature for which material properties and allowable stresses are provided in Section II of the ASME Code. The specific allowable temperatures for the structural steel components of the overpack are provided in Table 2.2.3.

The overpack is designed for extreme cold conditions, as discussed in Section 2.2.2.2. The structural steel materials used for the storage cask that are susceptible to brittle fracture are discussed in Section 3.1.2.3.

The overpack is designed for the maximum allowable heat load for steady-state normal conditions, in accordance with Section 2.1.6. The thermal characteristics of the MPCs for which the overpack is designed are defined in Chapter 4.

#### **Shielding**

The off-site dose for normal operating conditions at the site boundary is limited by 10CFR72.104(a) to a maximum of 25 mrem/year whole body, 75 mrem/year thyroid, and 25 mrem/year for other organs, including contributions from all nuclear fuel cycle operations. Since these limits are dependent on plant operations as well as site-specific conditions (e.g., the ISFSI design and proximity to the site boundary, and the number and arrangement of loaded storage casks on the ISFSI pad), the determination and comparison of ISFSI doses to this limit are necessarily site-specific. Dose rates for a typical ISFSI using the HI-STORM 100 System are provided in Chapters 5 and 10. The determination of site-specific ISFSI dose rates at the site boundary and demonstration of compliance with regulatory limits is to be performed by the licensee in accordance with 10CFR72.212.

The overpack is designed to limit the calculated surface dose rate at the cask midplane for all MPCs to 35 mrem/hr or less, as defined in Section 2.3.5. The overpack is also designed to maintain occupational exposures ALARA during MPC transfer operations, in accordance with 10CFR20. The calculated overpack dose rates are determined in Section 5.1. These dose rates are used to perform

a generic occupational exposure estimate for MPC transfer operations and a dose assessment for a typical ISFSI, as described in Chapter 10. In addition, overpack dose rates are limited in accordance with the Technical Specification provided in Chapter 12.

#### **Confinement**

The overpack does not perform any confinement function. Confinement during storage is provided by the MPC and is addressed in Chapter 7. The overpack provides physical protection and biological shielding for the MPC confinement boundary during MPC dry storage operations.

#### **Operations**

There are no radioactive effluents that result from MPC transfer or storage operations using the overpack. Effluents generated during MPC loading and closure operations are handled by the plant's radwaste system and procedures under the licensee's 10CFR50 license.

Generic operating procedures for the HI-STORM 100 System are provided in Chapter 8. The licensee is required to develop detailed operating procedures based on site-specific conditions and requirements that also comply with the applicable 10CFR50 Technical Specification requirements for the site and the 10CFR72 Technical Specifications for the HI-STORM 100 System contained in Chapter 12.

#### Acceptance Tests and Maintenance

The fabrication acceptance basis and maintenance program to be applied to the overpack are described in Chapter 9. The operational controls and limits to be applied to the overpack are contained in Chapter 12. Application of these requirements will assure that the overpack is fabricated, operated, and maintained in a manner that satisfies the design criteria defined in this chapter.

#### Decommissioning

Decommissioning considerations for the HI-STORM 100 System, including the overpack, are addressed in Section 2.4.

#### 2.0.3 HI-TRAC Transfer Cask Design Criteria

#### <u>General</u>

The HI-TRAC transfer cask is designed for 40 years of service, while satisfying the requirements of 10CFR72. The adequacy of the HI-TRAC design for the design life is discussed in Section 3.4.11.

#### Structural

The HI-TRAC Transfer Cask includes both structural and non-structural biological shielding components that are classified as important to safety. The structural steel components of the HI-TRAC, with the exception of the lifting trunnions, are designed and fabricated in accordance with the applicable requirements of Section III, Subsection NF, of the ASME Code, as discussed in Section 2.2.4. The lifting trunnions and associated attachments are designed in accordance with the requirements of NUREG-0612 and ANSI N14.6 for non-redundant lifting devices.

The HI-TRAC Transfer Cask is designed for all normal, off-normal, and design basis accident condition loadings, as defined in Section 2.2. At a minimum, the HI-TRAC transfer cask must protect the MPC from deformation, provide continued adequate performance, and allow the retrieval of the MPC under all conditions. These design loadings include a drop from the maximum allowable handling height, consistent with the Technical Specification contained in Chapter 12. The load combinations for which the HI-TRAC is designed are defined in Section 2.2.7. The physical characteristics of each MPC for which the HI-TRAC is designed are defined in Chapter 1.

#### **Thermal**

The allowable temperatures for the HI-TRAC Transfer Cask structural steel components are based on the maximum temperature for material properties and allowable stress values provided in Section II of the ASME Code. The top lid incorporates Holtite-A shielding material. This material has a maximum allowable temperature in accordance with the manufacturer's test data. The specific allowable temperatures for the structural steel and shielding components of the HI-TRAC are provided in Table 2.2.3. The HI-TRAC is designed for off-normal environmental cold conditions, as discussed in Section 2.2.2.2. The structural steel materials susceptible to brittle fracture are discussed in Section 3.1.2.3.

The HI-TRAC is designed for the maximum allowable heat load provided in the Technical Specification contained in Chapter 12. The HI-TRAC water jacket maximum allowable temperature is a function of the internal pressure. To preclude over pressurization of the water jacket due to boiling of the neutron shield liquid (water), the maximum temperature of the water is limited to less than the saturation temperature at the shell design pressure. In addition, the water is precluded from freezing during off-normal cold conditions by limiting the minimum allowable temperature and adding ethylene glycol. The corresponding Technical Specifications applicable to the HI-TRAC during hot and cold conditions is contained in Chapter 12. The thermal characteristics of the fuel for each MPC for which the transfer cask is designed are defined in Section 2.1.6.

#### **Shielding**

The HI-TRAC Transfer Cask provides shielding to maintain occupational exposures ALARA in accordance with 10CFR20, while also maintaining the maximum load on the plant's crane hook to

below either 125 tons or 100 tons, or less, depending on whether the 125-ton or 100-ton HI-TRAC Transfer Cask is utilized. The HI-TRAC calculated dose rates are reported in Section 5.1. These dose rates are used to perform a generic occupational exposure estimate for MPC loading, closure, and transfer operations, as described in Chapter 10. A postulated HI-TRAC accident condition, which includes the loss of the liquid neutron shield (water), is also evaluated in Section 5.1.2. In addition, HI-TRAC dose rates are controlled in accordance with plant-specific procedures and ALARA requirements (discussed in Chapter 10).

The 125 ton HI-TRAC provides better shielding than the 100 ton HI-TRAC. Provided the licensee is capable of utilizing the 125 ton HI-TRAC, ALARA considerations would dictate that the 125 ton HI-TRAC should be used. However, sites may not be capable of utilizing the 125 ton HI-TRAC due to crane capacity limitations, floor loading considerations, or space envelope limitations in the fuel pool or air lock. As with other dose reduction-based plant modifications, individual users who cannot accommodate the 125 ton HI-TRAC due to plant design limitations must perform a cost-benefit analysis of the modifications which would be necessary to use the 125 ton HI-TRAC. The cost of the modification(s) would be weighed against the value of the projected reduction in radiation exposure and a decision made based on each plant's particular ALARA implementation philosophy.

The HI-TRAC provides a means to isolate the annular area between the MPC outer surface and the HI-TRAC inner surface to minimize the potential for surface contamination of the MPC by spent fuel pool water during wet loading operations. The HI-TRAC surfaces expected to require decontamination are coated. The maximum permissible surface contamination for the HI-TRAC is in accordance with plant-specific procedures and ALARA requirements (discussed in Chapter 10).

#### **Confinement**

The HI-TRAC Transfer Cask does not perform any confinement function. Confinement during MPC transfer operations is provided by the MPC, and is addressed in Chapter 7. The HI-TRAC provides physical protection and biological shielding for the MPC confinement boundary during MPC closure and transfer operations.

#### **Operation**

There are no radioactive effluents that result from MPC transfer operations using HI-TRAC. Effluents generated during MPC loading and closure operations are handled by the plant's radwaste system and procedures.

Generic operating procedures for the HI-STORM 100 System are provided in Chapter 8. The licensee will develop detailed operating procedures based on plant-specific requirements and in accordance with site and HI-STORM 100 System Technical Specification requirements contained in Chapter 12.

#### Acceptance Tests and Maintenance

The fabrication acceptance basis and maintenance program to be applied to the HI-TRAC Transfer Cask are described in Chapter 9. The operational controls and limits to be applied to the HI-TRAC are contained in Chapter 12. Application of these requirements will assure that the HI-TRAC is fabricated, operated, and maintained in a manner that satisfies the design criteria defined in this chapter.

#### Decommissioning

Decommissioning considerations for the HI-STORM 100 Systems, including the HI-TRAC Transfer Cask, are addressed in Section 2.4.

### Table 2.0.1 MPC DESIGN CRITERIA SUMMARY

| Туре                        | Criteria                                   | Basis                               | FSAR Reference  |
|-----------------------------|--------------------------------------------|-------------------------------------|-----------------|
| Design Life:                |                                            |                                     |                 |
| Design                      | 40 yrs.                                    | _                                   | Table 1.2.2     |
| License                     | 20 yrs.                                    | 10CFR72.42(a) and<br>10CFR72.236(g) | -               |
| Structural:                 |                                            |                                     |                 |
| Design & Fabrication Codes: |                                            |                                     |                 |
| Enclosure Vessel            | ASME Code, Section III,<br>Subsection NB   | 10CFR72.24(c)(4)                    | Section 2.0.1   |
| Fuel Basket                 | ASME Code, Section III,<br>Subsection NG   | 10CFR72.24(c)(4)                    | Section 2.0.1   |
| MPC Lifting Points          | ANSI N14.6/NUREG-0612                      | 10CFR72.24(c)(4)                    | Section 1.2.1.4 |
| Design Dead Weights:        |                                            |                                     |                 |
| Max. Loaded Canister (dry)  | 79,987 lb. (MPC-24)<br>87,241 lb. (MPC-68) | R.G. 3.61                           | Table 3.2.1     |
| Empty Canister (dry)        | 39,667 lb. (MPC-24)<br>39,641 lb. (MPC-68) | R.G. 3.61                           | Table 3.2.1     |
|                             |                                            |                                     |                 |

| Туре                               | Criteria                                          | Basis                                  | FSAR Reference                |
|------------------------------------|---------------------------------------------------|----------------------------------------|-------------------------------|
| Design Cavity Pressures:           |                                                   |                                        |                               |
| Normal:                            | 100 psig                                          | ANSI/ANS 57.9                          | Section 2.2.1.3               |
| Off-Normal:                        | 100 psig                                          | ANSI/ANS 57.9                          | Section 2.2.2.1               |
| Accident (Internal)                | 125 psig                                          | ANSI/ANS 57.9                          | Section 2.2.3.8               |
| Accident (External)                | 60 psig                                           | ANSI/ANS 57.9                          | Sections 2.2.3.6 and 2.2.3.10 |
| Response and Degradation<br>Limits | SNF assemblies confined in dry, inert environment | 10CFR72.122(h)(l)                      | Section 2.0.1                 |
| hermal:                            |                                                   |                                        |                               |
| Maximum Design Temperatures:       |                                                   | ······································ |                               |
| Structural Materials:              |                                                   |                                        |                               |
| Stainless Steel (Normal)           | 725°F                                             | ASME Code<br>Section II, Part D        | Table 2.2.3                   |
| Stainless Steel (Accident)         | 950°F                                             | ASME Code<br>Section II, Part D        | Table 2.2.3                   |
| Neutron Poison:                    |                                                   |                                        |                               |
| Boral (normal)                     | 800°F                                             | See Section 4.3.1                      | Table 2.2.3                   |
| Boral (accident)                   | 950°F                                             | See Section 4.3.1                      | Table 2.2.3                   |
| PWR Fuel Cladding:                 |                                                   |                                        |                               |

| Туре                                              | Criteria                            | Basis    | FSAR Reference         |
|---------------------------------------------------|-------------------------------------|----------|------------------------|
| 5-year cooled                                     | 692°F                               | PNL-6189 | Section 4.3            |
| 6-year cooled                                     | 677°F                               | PNL-6189 | Section 4.3            |
| 7-year cooled                                     | 636°F                               | PNL-6189 | Section 4.3            |
| 10-year cooled                                    | 626°F                               | PNL-6189 | Section 4.3            |
| 15-year cooled                                    | 615°F                               | PNL-6189 | Section 4.3            |
| BWR Fuel Cladding:                                |                                     |          |                        |
| 5-year cooled                                     | 742°F                               | PNL-6189 | Section 4.3            |
| 6-year cooled                                     | 714°F                               | PNL-6189 | Section 4.3            |
| 7-year cooled                                     | 671°F                               | PNL-6189 | Section 4.3            |
| 10-year cooled                                    | 660°F                               | PNL-6189 | Section 4.3            |
| 15-year cooled                                    | 648°F                               | PNL-6189 | Section 4.3            |
| Canister Backfill Gas                             | Helium                              | -        | Section 12.3.3         |
| Canister Backfill Mass                            | Varies by MPC                       | -        | Section 12.3.3         |
| Short-Term Allowable Fuel<br>Cladding Temperature | 1058°F                              | PNL-4835 | Sections 2.0.1 and 4.3 |
| Insolation                                        | Protected by Overpack or<br>HI-TRAC | _        | Section 4.3            |

| Туре                                   | Criteria                                                                                                          | Basis                                           | FSAR Reference               |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------|
| Confinement:                           |                                                                                                                   | 10CFR72.128(a)(3) and<br>10CFR72.236(d) and (e) |                              |
| Closure Welds:                         |                                                                                                                   |                                                 |                              |
| Shell Seams and Shell-to-<br>Baseplate | Full Penetration                                                                                                  | -                                               | Section 1.5 and Table 9.1.4  |
| MPC Lid                                | Multi-pass Partial Penetration                                                                                    | 10CFR72.236(e)                                  | Section 1.5 and Table 9.1.4  |
| MPC Closure Ring                       | Multi-pass Partial Penetration                                                                                    |                                                 |                              |
| Port Covers                            | Full Penetration                                                                                                  |                                                 |                              |
| NDE:                                   |                                                                                                                   |                                                 |                              |
| Shell Seams and Shell-to-<br>Baseplate | 100% RT or UT                                                                                                     | -                                               | Table 9.1.4                  |
| MPC Lid                                | Root Pass and Final Surface<br>100% PT;<br>Volumetric Inspection or<br>100% Surface PT each 3/8" of<br>weld depth | -                                               | Chapter 8 and<br>Table 9.1.4 |
| Closure Ring                           | Root Pass and Final Surface<br>100% PT                                                                            | -                                               | Chapter 8 and<br>Table 9.1.4 |
| Port Covers                            | Root Pass and Final Surface<br>100% PT                                                                            | _                                               | Chapter 8 and<br>Table 9.1.4 |
| Leak Testing:                          |                                                                                                                   |                                                 |                              |

i

| Туре                         | Criteria                                                                             | Basis                           | FSAR Reference                           |
|------------------------------|--------------------------------------------------------------------------------------|---------------------------------|------------------------------------------|
| Welds Tested                 | Shell seams, shell-to-<br>baseplate, MPC lid-to-shell,<br>and port covers-to-MPC lid | -                               | Section 7.1 and Chapters 8,<br>9, and 12 |
| Medium                       | Helium                                                                               | -                               | Sections 7.2 and Chapter 12              |
| Max. Leak Rate               | 5x10 <sup>-6</sup> cm <sup>3</sup> /sec (helium)                                     | -                               | Chapter 8                                |
| Monitoring System            | None                                                                                 | 10CFR72.128(a)(1)               | Section 2.3.2.1                          |
| Hydrostatic Testing:         |                                                                                      |                                 |                                          |
| Test Pressure                | 125 psig (+3, -0 psig)                                                               | -                               | Chapters 8 and 9                         |
| Welds Tested                 | MPC Lid-to-Shell, MPC Shell<br>seams, MPC Shell-to-<br>Baseplate                     | -                               | Section 8.1 and 9.1                      |
| Medium                       | Water                                                                                | -                               | Section 8.1 and Chapter 9                |
| Retrievability:              |                                                                                      |                                 |                                          |
| Normal and Off-normal:       | No Encroachment on Fuel<br>Assemblies or Exceeding                                   | 10CFR72.122(f),(h)(1), &<br>(l) | Sections 3.4, 3.5, and 3.1.2             |
| Post (design basis) Accident | Fuel Assembly Deceleration<br>Limits                                                 |                                 |                                          |

| Туре                                                   | Criteria                                                                                                   | Basis                               | FSAR Reference              |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|
| Criticality:                                           |                                                                                                            | 10CFR72.124 & 10CFR72.236(c)        |                             |
| Method of Control                                      | Fixed Borated<br>Neutron Absorber &<br>Geometry                                                            | -                                   | Section 2.3.4               |
| Min. Boron Loading                                     | 0.0267 g/cm <sup>2</sup> (MPC-24)<br>0.0372 g/cm <sup>2</sup> (MPC-68)<br>0.01 g/cm <sup>2</sup> (MPC-68F) | -                                   | Section 2.1.8               |
| Max. k <sub>eff</sub>                                  | 0.95                                                                                                       | -                                   | Sections 6.1 and 2.3.4      |
| Min. Burnup                                            | 0.0 GWd/MTU (fresh fuel)                                                                                   | -                                   | Section 6.1                 |
| Radiation Protection/Shielding:                        |                                                                                                            | 10CFR72.126, &<br>10CFR72.128(a)(2) |                             |
| MPC:<br>(normal/off-normal/accident)                   |                                                                                                            |                                     |                             |
| MPC Closure                                            | ALARA                                                                                                      | 10CFR20                             | Sections 10.1, 10.2, & 10.3 |
| MPC Transfer                                           | ALARA                                                                                                      | 10CFR20                             | Sections 10.1, 10.2, & 10.3 |
| Exterior of Shielding:<br>(normal/off-normal/accident) |                                                                                                            |                                     |                             |
| Transfer Mode Position                                 | See Table 2.0.3                                                                                            | 10CFR20                             | Section 5.1.1               |
| Storage Mode Position                                  | See Table 2.0.2                                                                                            | 10CFR20                             | Section 5.1.1               |

t

| Туре                             | Criteria                               | Basis                        | FSAR Reference                         |
|----------------------------------|----------------------------------------|------------------------------|----------------------------------------|
| ISFSI Controlled Area Boundary   | See Table 2.0.2                        | 10CFR72.104 &<br>10CFR72.106 | Section 5.1.1 and Chapter 10           |
| Design Bases:                    |                                        | 10CFR72.236(a)               |                                        |
| Spent Fuel Specification:        |                                        |                              |                                        |
| Assemblies/Canister              | Up to 24 (MPC-24)<br>Up to 68 (MPC-68) | -                            | Table 1.2.1                            |
| Type of Cladding                 | Zircaloy                               | _                            | Table 2.1.6                            |
| Fuel Condition                   | Intact <sup>*</sup>                    | -                            | Section 2.1.2 & Table 2.1.6            |
| * Also designed to accommodate f | failed fuel, stainless clad fuel, and  | MOX fuel (Tables 2.1.7 and   | 2.1.8 and Chapter 12)                  |
| PWR Fuel Assemblies:             |                                        |                              |                                        |
| Type/Configuration               | Various**                              | _                            | Table 2.1.3                            |
| "No control components are perm  | nitted.                                |                              | ·••··································· |
| Max. Burnup                      | 44,700 MWD/MTU (MPC-<br>24)            | -                            | Figure 2.1.6                           |
| Max. Enrichment                  | Varies by fuel design                  | -                            | Table 2.1.3                            |

| Туре                                                    | Criteria                                                       | Basis | FSAR Reference            |
|---------------------------------------------------------|----------------------------------------------------------------|-------|---------------------------|
| Max. Decay Heat/Assembly:                               |                                                                |       |                           |
| 5-year cooled                                           | 870 W (MPC-24)                                                 | _     | Tables 4.4.20 and 2.2.3   |
| 6-year cooled                                           | 840.4 W (MPC-24)                                               | -     | Tables 4.4.20 and 2.2.3   |
| 7-year cooled                                           | 757.5 W (MPC-24)                                               | -     | Tables 4.4.20 and 2.2.3   |
| 10-year cooled                                          | 738.3 W (MPC-24)                                               | -     | Tables 4.4.20 and 2.2.3   |
| 15-year cooled                                          | 715.4 W (MPC-24)                                               | _     | Tables 4.4.20 and 2.2.3   |
| Minimum Cooling Time:                                   | 5 years (Intact Zr Clad Fuel)<br>8 years (Intact SS Clad Fuel) |       |                           |
| Max. Fuel Assembly<br>Weight:                           | 1,680 lb.                                                      | -     | Table 2.1.6               |
| Max. Fuel Assembly<br>Length:<br>(Unirradiated Nominal) | 176.8 in.                                                      | _     | Table 2.1.6               |
| Max. Fuel Assembly Width (Unirradiated Nominal)         | 8.54 in.                                                       | -     | Table 2.1.6               |
| Fuel Rod Fill Gas:                                      |                                                                |       |                           |
| Pressure (max.)                                         | 500 psig                                                       | -     | Section 4.3 & Table 4.3.2 |

| Туре                                             | Criteria                                                                                                                           | Basis                                  | FSAR Reference             |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|
| BWR Fuel Assemblies:                             |                                                                                                                                    |                                        |                            |
| Туре                                             | Various                                                                                                                            | -                                      | Table 2.1.4                |
| Max. Burnup                                      | 41,700 MWD/MTU                                                                                                                     | -                                      | Figure 2.1.6               |
| Max. Enrichment                                  | Varies by fuel design                                                                                                              | -                                      | Section 6.1 and Chapter 12 |
| Max. Decay Heat/Assy.:                           |                                                                                                                                    |                                        |                            |
| 5-year cooled                                    | 314.7 W (MPC-68)                                                                                                                   | -                                      | Tables 4.4.21 and 2.2.3    |
| 6-year cooled                                    | 298.7 W (MPC-68)                                                                                                                   | -                                      | Tables 4.4.21 and 2.2.3    |
| 7-year cooled                                    | 270.7 W (MPC-68)                                                                                                                   | -                                      | Tables 4.4.21 and 2.2.3    |
| 10-year cooled                                   | 264.0 W (MPC-68)                                                                                                                   | -                                      | Tables 4.4.21 and 2.2.3    |
| 15-year cooled                                   | 256.6 W (MPC-68)                                                                                                                   | -                                      | Tables 4.4.21 and 2.2.3    |
| Minimum Cooling Time:                            | 5 yrs (Intact Zr Clad Fuel)<br>18 yrs. (Damaged Zr Clad<br>Fuel)<br>18 yrs. (Zr Clad Fuel Debris)<br>10 yrs. (Intact SS Clad Fuel) |                                        |                            |
| Max. Fuel Assembly Weight:                       |                                                                                                                                    | ··· ·································· |                            |
| w/channels                                       | 700 lb.                                                                                                                            | -                                      | Table 2.1.6                |
| Max. Fuel Assembly Length (Unirradiated Nominal) | 176.2 in.                                                                                                                          | -                                      | Table 2.1.6                |

ţ

| Туре                                            | Criteria | Basis | FSAR Reference |
|-------------------------------------------------|----------|-------|----------------|
| Max. Fuel Assembly Width (Unirradiated Nominal) | 5.85 in. | -     | Table 2.1.6    |
| Fuel Rod Fill Gas:                              |          |       |                |
| End-of-Life Hot Standby<br>Pressure (max.)      | 147 psig | -     | Table 4.3.5    |

.

| Туре                                                  | Criteria                   | Basis                    | FSAR Reference  |
|-------------------------------------------------------|----------------------------|--------------------------|-----------------|
| Normal Design Event Conditions:                       |                            | 10CFR72.122(b)(1)        |                 |
| Ambient Temperatures                                  | See Tables 2.0.2 and 2.0.3 | ANSI/ANS 57.9            | Section 2.2.1.4 |
| Handling:                                             |                            |                          | Section 2.2.1.2 |
| Handling Loads                                        | 115% of Dead Weight        | CMAA #70                 | Section 2.2.1.2 |
| Lifting Attachment<br>Acceptance Criteria             | 1/10 Ultimate<br>1/6 Yield | NUREG-0612<br>ANSI N14.6 | Section 3.4.3   |
| Attachment/Component<br>Interface Acceptance Criteria | 1/3 Yield                  | Regulatory Guide 3.61    | Section 3.4.3   |
| Away from Attachment<br>Acceptance Criteria           | ASME Code<br>Level A       | ASME Code                | Section 3.4.3   |
| Wet/Dry Loading                                       | Wet or Dry                 | -                        | Section 1.2.2.2 |
| Transfer Orientation                                  | Vertical or Horizontal     | -                        | Section 1.2.2.2 |
| Storage Orientation                                   | Vertical                   | -                        | Section 1.2.2.2 |
| Fuel Rod Rupture Releases:                            |                            |                          |                 |
| Fuel Rod Failures                                     | 1%                         | NUREG-1536               | Section 2.2.1.3 |
| Fill Gases                                            | 100%                       | NUREG-1536               | Section 2.2.1.3 |
| Fission Gases                                         | 30%                        | NUREG-1536               | Section 2.2.1.3 |
| Snow and Ice                                          | Protected by Overpack      | ASCE 7-88                | Section 2.2.1.6 |
| Off-Normal Design Event<br>Conditions:                |                            | 10CFR72.122(b)(1)        |                 |

| Туре                                    | Criteria                     | Basis                            | FSAR Reference           |
|-----------------------------------------|------------------------------|----------------------------------|--------------------------|
| Ambient Temperature                     | See Tables 2.0.2 and 2.0.3   | ANSI/ANS 57.9                    | Section 2.2.2.2          |
| Leakage of One Seal                     | No Loss of Confinement       | ANSI/ANS 57.9                    | Section 2.2.2.4          |
| Partial Blockage of Overpack Air Inlets | Two Air Inlets Blocked       | -                                | Section 2.2.2.5          |
| Fuel Rod Rupture Releases:              |                              |                                  |                          |
| Fuel Rod Failures                       | 10%                          | NUREG-1536                       | Section 2.2.2.1          |
| Fill Gases                              | 100%                         | NUREG-1536                       | Section 2.2.2.1          |
| Fission Gases                           | 30%                          | NUREG-1536                       | Section 2.2.2.1          |
| Design-Basis (Postulated) Accident D    | esign Events and Conditions: | 10CFR72.24(d)(2) &<br>10CFR72.94 |                          |
| Tip Over                                | See Table 2.0.2              | -                                | Section 2.2.3.2          |
| End Drop                                | See Table 2.0.2              | -                                | Section 2.2.3.1          |
| Side Drop                               | See Table 2.0.3              | -                                | Section 2.2.3.1          |
| Fire                                    | See Tables 2.0.2 and 2.0.3   | 10CFR72.122(c)                   | Section 2.2.3.3          |
| Fuel Rod Rupture Releases:              |                              |                                  |                          |
| Fuel Rod Failures                       | 100%                         | NUREG-1536                       | Section 2.2.3.8          |
| Fill Gases                              | 100%                         | NUREG-1536                       | Section 2.2.3.8          |
| Fission Gases                           | 30%                          | NUREG-1536                       | Section 2.2.3.8          |
| Particulates & Volatiles                | See Table 7.3.1              | -                                | Sections 2.2.3.9 and 7.3 |

.

| Туре                                         | Criteria                                           | Basis                             | FSAR Reference           |
|----------------------------------------------|----------------------------------------------------|-----------------------------------|--------------------------|
| Confinement Boundary<br>Leakage              | $7.5 \times 10^{-6}$ cm <sup>3</sup> /sec (helium) | -                                 | Sections 2.2.3.9 and 7.3 |
| Explosive Overpressure                       | 60 psig (external)                                 | 10CFR72.122(c)                    | Section 2.2.3.10         |
| Airflow Blockage:                            |                                                    |                                   |                          |
| Vent Blockage                                | 100% of Overpack Air<br>Inlets Blocked             | 10CFR72.128(a)(4)                 | Section 2.2.3.13         |
| Design Basis Natural Phenomenon I            | Design Events and Conditions:                      | 10CFR72.92 &<br>10CFR72.122(b)(2) |                          |
| Flood Water Depth                            | 125 ft.                                            | ANSI/ANS 57.9                     | Section 2.2.3.6          |
| Seismic                                      | See Table 2.0.2                                    | 10CFR72.102(f)                    | Section 2.2.3.7          |
| Wind                                         | Protected by Overpack                              | ASCE-7-88                         | Section 2.2.3.5          |
| Tornado & Missiles                           | Protected by Overpack                              | RG 1.76 & NUREG-0800              | Section 2.2.3.5          |
| Burial Under Debris                          | Maximum Decay Heat Load                            | -                                 | Section 2.2.3.12         |
| Lightning                                    | See Table 2.0.2                                    | NFPA 78                           | Section 2.2.3.11         |
| Partial Blockage of MPC Basket<br>Vent Holes | Crud Depth<br>(Table 2.2.8)                        | ESEERCO Project<br>EP91-29        | Section 2.2.3.4          |
| Extreme Environmental<br>Temperature         | See Table 2.0.2                                    | -                                 | Section 2.2.3.14         |

| Туре                        | Criteria                                | Basis                                 | FSAR Reference                    |
|-----------------------------|-----------------------------------------|---------------------------------------|-----------------------------------|
| Design Life:                |                                         |                                       | ·····                             |
| Design                      | 40 yrs.                                 | <u> </u>                              | Section 2.0.2                     |
| License                     | 20 yrs.                                 | 10CFR72.42(a) &<br>10CFR72.236(g)     |                                   |
| Structural:                 |                                         |                                       |                                   |
| Design & Fabrication Codes: |                                         | · · · · · · · · · · · · · · · · · · · |                                   |
| Concrete                    |                                         |                                       |                                   |
| Design                      | ACI 349 as specified in<br>Appendix 1.D | 10CFR72.24(c)(4)                      | Section 2.0.2 and<br>Appendix 1.D |
| Fabrication                 | ACI 349 as specified in Appendix 1.D    | 10CFR72.24(c)(4)                      | Section 2.0.2 and<br>Appendix 1.D |
| Compressive Strength        | ACI 318-95 as specified in Appendix 1.D | 10CFR72.24(c)(4)                      | Section 2.0.2 and<br>Appendix 1.D |
| Structural Steel            |                                         |                                       |                                   |
| Design                      | ASME Code Section III,<br>Subsection NF | 10CFR72.24(c)(4)                      | Section 2.0.2                     |
| Fabrication                 | ASME Code Section III,<br>Subsection NF | 10CFR72.24(c)(4)                      | Section 2.0.2                     |

ł

| Туре                               | Criteria                                      | Basis                                       | FSAR Reference         |
|------------------------------------|-----------------------------------------------|---------------------------------------------|------------------------|
| Max. Empty Overpack:               |                                               |                                             |                        |
| Assembled with Top Cover           | 267,190 lb.                                   | R.G. 3.61                                   | Table 3.2.1            |
| Max. MPC/Overpack                  | 354,431 lb.                                   | R.G. 3.61                                   | Table 3.2.1            |
| Design Cavity Pressures            | N/A                                           | -                                           | Section 2.2.1.3        |
| Response and Degradation<br>Limits | Protect MPC from deformation                  | 10CFR72.122(b)<br>10CFR72.122(c)            | Sections 2.0.2 and 3.1 |
|                                    | Continued adequate<br>performance of overpack | 10CFR72.122(b)<br>10CFR72.122(c)            |                        |
|                                    | Retrieval of MPC                              | 10CFR72.122(l)                              |                        |
| Thermal:                           |                                               |                                             |                        |
| Maximum Design Temperatures:       |                                               |                                             |                        |
| Concrete                           |                                               |                                             |                        |
| Local Maximum (Normal)             | 200°F                                         | ACI 349 Appendix A                          | Table 2.2.3            |
| Local Maximum (Accident)           | 350°F                                         | ACI 349 Appendix A                          | Table 2.2.3            |
| Steel Structure                    | 350°F                                         | ASME Code<br>Section II, Part D             | Table 2.2.3            |
| Insolation:                        | Averaged Over 24 Hours                        | 10CFR71.71                                  | Section 4.4.1.1.8      |
| Confinement:                       | None                                          | 10CFR72.128(a)(3) &<br>10CFR72.236(d) & (e) | N/A                    |

| Туре                                                                             | Criteria                                                                        | Basis                                       | FSAR Reference                |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------|-------------------------------|
| Confinement:                                                                     | None                                                                            | 10CFR72.128(a)(3) &<br>10CFR72.236(d) & (e) | N/A                           |
| Retrievability:                                                                  |                                                                                 |                                             |                               |
| Normal and Off-normal                                                            | No damage which precludes<br>Retrieval of MPC or                                | 10CFR72.122(f),(h)(1), &<br>(l)             | Sections 3.5 and 3.4          |
| Accident                                                                         | Exceeding<br>Fuel Assembly Deceleration<br>Limits                               |                                             | Sections 3.5 and 3.4          |
| Criticality:                                                                     | Protection of MPC and Fuel<br>Assemblies                                        | 10CFR72.124 &<br>10CFR72.236(c)             | Section 6.1                   |
| Radiation Protection/Shielding:                                                  |                                                                                 | 10CFR72.126 &<br>10CFR72.128(a)(2)          |                               |
| Overpack<br>(Normal/Off-normal/Accident)                                         |                                                                                 |                                             |                               |
| Surface                                                                          | ALARA                                                                           | 10CFR20                                     | Chapters 5 and 10             |
| Position                                                                         | ALARA                                                                           | 10CFR20                                     | Chapters 5 and 10             |
| Beyond Controlled Area During<br>Normal Operation and<br>Anticipated Occurrences | 25 mrem/yr. to whole body<br>75 mrem/yr. to thyroid<br>25 mrem/yr. to any organ | 10CFR72.104                                 | Sections 5.1.1, 7.2, and 10.1 |
| On Controlled Area Boundary from Design Basis Accident                           | 5 rem to whole body<br>or to any organ                                          | 10CFR72.106                                 | Sections 5.1.2, 7.3, and 10.1 |
| Design Bases:                                                                    |                                                                                 |                                             |                               |
| Spent Fuel Specification                                                         | See Table 2.0.1                                                                 | 10CFR72.236(a)                              | Section 2.1                   |

.

i

| Туре                                                  | Criteria                                           | Basis                    | FSAR Reference                     |
|-------------------------------------------------------|----------------------------------------------------|--------------------------|------------------------------------|
| Normal Design Event Conditions:                       |                                                    | 10CFR72.122(b)(1)        |                                    |
| Ambient Outside Temperatures:                         |                                                    |                          |                                    |
| Max. Yearly Average                                   | 80°F                                               | ANSI/ANS 57.9            | Section 2.2.1.4                    |
| Live Load:                                            |                                                    | ANSI/ANS 57.9            | -                                  |
| Loaded Transfer Cask (max.)                           | 239,877 lb.<br>(125-ton HI-TRAC<br>w/transfer lid) | R.G. 3.61                | Table 3.2.2<br>Section 2.2.1.2     |
| Dry Loaded MPC (max.)                                 | 87,241 lb.                                         | R.G. 3.61                | Table 3.2.1 and<br>Section 2.2.1.2 |
| Handling:                                             |                                                    |                          | Section 2.2.1.2                    |
| Handling Loads                                        | 115% of Dead Weight                                | CMAA #70                 | Section 2.2.1.2                    |
| Lifting Attachment<br>Acceptance Criteria             | 1/10 Ultimate<br>1/6 Yield<br>ANSI N14.6           | NUREG-0612<br>ANSI N14.6 | Section 3.4.3                      |
| Attachment/Component<br>Interface Acceptance Criteria | 1/3 Yield                                          | Regulatory Guide 3.61    | Section 3.4.3                      |
| Away from Attachment<br>Acceptance Criteria           | ASME Code<br>Level A                               | ASME Code                | Section 3.4.3                      |
| Minimum Temperature<br>During Handling Operations     | 0°F                                                | ANSI/ANS 57.9            | Section 2.2.1.2                    |
| Snow and Ice Load                                     | 100 lb./ft <sup>2</sup>                            | ASCE 7-88                | Section 2.2.1.6                    |

| Туре                                          | Criteria                       | Basis             | FSAR Reference   |
|-----------------------------------------------|--------------------------------|-------------------|------------------|
| Wet/Dry Loading                               | Dry                            | _                 | Section 1.2.2.2  |
| Storage Orientation                           | Vertical                       | -                 | Section 1.2.2.2  |
| <b>Off-Normal Design Event</b><br>Conditions: |                                | 10CFR72.122(b)(1) |                  |
| Ambient Temperature                           |                                |                   |                  |
| Minimum                                       | -40°F                          | ANSI/ANS 57.9     | Section 2.2.2.2  |
| Maximum                                       | 100°F                          | ANSI/ANS 57.9     | Section 2.2.2.2  |
| Partial Blockage of Air Inlets                | Two Air Inlet<br>Ducts Blocked | -                 | Section 2.2.2.5  |
| Design-Basis (Postulated) Accident I          | Design Events and Conditions:  | 10CFR72.94        |                  |
| Drop Cases:                                   |                                |                   |                  |
| End                                           | 11 in.                         | -                 | Section 2.2.3.1  |
| Tip-Over                                      | Assumed (Non-mechanistic)      | -                 | Section 2.2.3.2  |
| Fire:                                         |                                |                   |                  |
| Duration                                      | 217 seconds                    | 10CFR72.122(c)    | Section 2.2.3.3  |
| Temperature                                   | 1475°F                         | 10CFR72.122(c)    | Section 2.2.3.3  |
| Fuel Rod Rupture                              | See Table 2.0.1                | -                 | Section 2.2.3.8  |
| Air Flow Blockage:                            |                                |                   |                  |
| Vent Blockage                                 | 100% of Air Inlets Blocked     | 10CFR72.128(a)(4) | Section 2.2.3.13 |

| Туре                                                                  | Criteria                            | Basis                             | FSAR Reference   |
|-----------------------------------------------------------------------|-------------------------------------|-----------------------------------|------------------|
| Ambient Temperature                                                   | 80°F                                | 10CFR72.128(a)(4)                 | Section 2.2.3.13 |
| Design-Basis Natural Phenomenon De                                    | sign Events and Conditions:         | 10CFR72.92 &<br>10CFR72.122(b)(2) |                  |
| Flood                                                                 |                                     |                                   |                  |
| Height                                                                | 125 ft.                             | RG 1.59                           | Section 2.2.3.6  |
| Velocity                                                              | 15 ft/sec.                          | RG 1.59                           | Section 2.2.3.6  |
| Seismic                                                               |                                     |                                   |                  |
| Resultant Max. ZPA<br>Horizontal Ground<br>(Max. ZPA Vertical Ground) | $G_{\rm H} + 0.53 G_{\rm V} = 0.53$ | 10CFR72.102(f)                    | Section 3.4.7.1  |
| Tornado                                                               |                                     | ······                            |                  |
| Wind                                                                  |                                     |                                   |                  |
| Max. Wind Speed                                                       | 360 mph                             | RG 1.76                           | Section 2.2.3.5  |
| Pressure Drop                                                         | 3.0 psi                             | RG 1.76                           | Section 2.2.3.5  |
| Missiles                                                              |                                     |                                   | Section 2.2.3.5  |
| Automobile                                                            |                                     |                                   |                  |
| Weight                                                                | 1,800 kg                            | NUREG-0800                        | Table 2.2.5      |
| Velocity                                                              | 126 mph                             | NUREG-0800                        | Table 2.2.5      |
| Rigid Solid Steel Cylinder                                            |                                     |                                   |                  |

| Туре                                 | Criteria                         | Basis                           | FSAR Reference   |
|--------------------------------------|----------------------------------|---------------------------------|------------------|
| Weight                               | 125 kg                           | NUREG-0800                      | Table 2.2.5      |
| Velocity                             | 126 mph                          | NUREG-0800                      | Table 2.2.5      |
| Diameter                             | 8 in.                            | NUREG-0800                      | Table 2.2.5      |
| Steel Sphere                         |                                  |                                 |                  |
| Weight                               | 0.22 kg                          | NUREG-0800                      | Table 2.2.5      |
| Velocity                             | 126 mph                          | NUREG-0800                      | Table 2.2.5      |
| Diameter                             | 1 in.                            | NUREG-0800                      | Table 2.2.5      |
| Burial Under Debris                  | Maximum Decay Heat Load          | -                               | Section 2.2.3.12 |
| Lightning                            | Resistance Heat-Up               | NFPA 70 & 78                    | Section 2.2.3.11 |
| Extreme Environmental<br>Temperature | 125°F                            | -                               | Section 2.2.3.14 |
| Load Combinations:                   | See Table 2.2.14 and Table 3.1.5 | ANSI/ANS 57.9 and<br>NUREG-1536 | Section 2.2.7    |

.

.

-

| Туре                        | Criteria                                                               | Basis                                 | FSAR Reference  |
|-----------------------------|------------------------------------------------------------------------|---------------------------------------|-----------------|
| Design Life:                |                                                                        |                                       |                 |
| Design                      | 40 yrs.                                                                | _                                     | Section 2.0.3   |
| License                     | 20 yrs.                                                                | 10CFR72.42(a) &<br>10CFR72.236(g)     |                 |
| Structural:                 |                                                                        | · · · · · · · · · · · · · · · · · · · |                 |
| Design & Fabrication Codes: |                                                                        | ·····                                 |                 |
| Structural Steel            | ASME Code, Section III,<br>Subsection NF                               | 10CFR72.24(c)(4)                      | Section 2.0.3   |
| Lifting Trunnions           | NUREG-0612 & ANSI N14.6                                                | 10CFR72.24(c)(4)                      | Section 1.2.1.4 |
| Design Weights:             |                                                                        | · · · · · · · · · · · · · · · · · · · |                 |
| Max. Empty Cask:            |                                                                        |                                       |                 |
| W/Pool Lid & No Top Lid     | 140,258 lb. (125-ton HI-<br>TRAC)<br>99,758 lb. (100-ton HI-<br>TRAC)  | R.G. 3.61                             | Table 3.2.2     |
| W/Top Lid & Transfer Lid    | 152,636 lb. (125-ton HI-<br>TRAC)<br>109,470 lb. (100-ton HI-<br>TRAC) | R.G. 3.61                             | Table 3.2.2     |

| Туре                                       | Criteria                                                      | Basis                            | FSAR Reference  |
|--------------------------------------------|---------------------------------------------------------------|----------------------------------|-----------------|
| Max. MPC/HI-TRAC with Yoke (in-pool lift): |                                                               |                                  |                 |
| Water Jacket Empty                         | 199,394 lb. (100-ton HI-<br>TRAC)                             | R.G. 3.61                        | Table 3.2.4     |
| Water Jacket Full                          | 248,105 lb. (125-ton HI-<br>TRAC)                             | R.G. 3.61                        | Table 3.2.4     |
| Design Cavity Pressures:                   |                                                               |                                  |                 |
| HI-TRAC Cavity                             | Hydrostatic                                                   | ANSI/ANS 57.9                    | Section 2.2.1.3 |
| Water Jacket Cavity                        | 60 psig (internal)                                            | ANSI/ANS 57.9                    | Section 2.2.1.3 |
| Response and Degradation<br>Limits         | Protect MPC from<br>deformation                               | 10CFR72.122(b)<br>10CFR72.122(c) | Section 2.0.3   |
|                                            | Continued adequate<br>performance of HI-TRAC<br>transfer cask | 10CFR72.122(b)<br>10CFR72.122(c) |                 |
|                                            | Retrieval of MPC                                              | 10CFR72.122(l)                   |                 |
| Thermal:                                   |                                                               |                                  |                 |
| Maximum Design Temperature                 |                                                               |                                  | ····            |
| Structural Materials                       | 400°F                                                         | ASME Code<br>Section II, Part D  | Table 2.2.3     |
| Shielding Materials                        |                                                               |                                  |                 |

| Туре                                          | Criteria                                       | Basis                                       | FSAR Reference                         |
|-----------------------------------------------|------------------------------------------------|---------------------------------------------|----------------------------------------|
| Lead                                          | 350°F (max.)                                   | -                                           | Table 2.2.3                            |
| Liquid Neutron Shield                         | 307°F (max.)                                   | -                                           | Table 2.2.3                            |
| Solid Neutron Shield                          | 300°F (max.)                                   | Manufacturer Data                           | Table 2.2.3                            |
| Insolation:                                   | Averaged Over 24 Hours                         | 10CFR71.71                                  | Section 4.5.1.1.3                      |
| Confinement:                                  | None                                           | 10CFR72.128(a)(3) &<br>10CFR72.236(d) & (e) | N/A                                    |
| Retrievability:                               |                                                |                                             | ······································ |
| Normal and Off-normal                         | No encroachment on MPC or                      | 10CFR72.122(f),(h)(1), &<br>(l)             | Sections 3.5 & 3.4                     |
| After Design-basis (Postulated)<br>Accident   | Exceeding Fuel Assembly<br>Deceleration Limits |                                             | Section 3.5 & 3.4                      |
| Criticality:                                  | Protection of MPC and<br>Fuel Assemblies       | 10CFR72.124 &<br>10CFR72.236(c)             | Section 6.1                            |
| <b>Radiation Protection/Shielding:</b>        |                                                | 10CFR72.126 &<br>10CFR72.128(a)(2)          |                                        |
| Transfer Cask<br>(Normal/Off-normal/Accident) |                                                |                                             |                                        |
| Surface                                       | ALARA                                          | 10CFR20                                     | Chapters 5 and 10                      |
| Position                                      | ALARA                                          | 10CFR20                                     | Chapters 5 and 10                      |
| Design Bases:                                 |                                                |                                             |                                        |

| Туре                                                  | Criteria                   | Basis                    | FSAR Reference  |
|-------------------------------------------------------|----------------------------|--------------------------|-----------------|
| Spent Fuel Specification                              | See Table 2.0.1            | 10CFR72.236(a)           | Section 2.1     |
| Normal Design Event Conditions:                       |                            | 10CFR72.122(b)(1)        |                 |
| Ambient Temperatures:                                 |                            |                          |                 |
| Lifetime Average                                      | 100°F                      | ANSI/ANS 57.9            | Section 2.2.1.4 |
| Live Load                                             |                            |                          |                 |
| Max. Loaded Canister                                  |                            |                          |                 |
| Dry                                                   | 87,241 lb.                 | R.G. 3.61                | Table 3.2.1     |
| Wet                                                   | 103,898 lb.                | R.G. 3.61                | Table 3.2.4     |
| Handling:                                             |                            |                          | Section 2.2.1.2 |
| Handling Loads                                        | 115% of Dead Weight        | CMAA #70                 | Section 2.2.1.2 |
| Lifting Attachment<br>Acceptance Criteria             | 1/10 Ultimate<br>1/6 Yield | NUREG-0612<br>ANSI N14.6 | Section 3.4.3   |
| Attachment/Component<br>Interface Acceptance Criteria | 1/3 Yield                  | Regulatory Guide 3.61    | Section 3.4.3   |
| Away from Attachment<br>Acceptance Criteria           | ASME Code<br>Level A       | ASME Code                | Section 3.4.3   |
| Minimum Temperature for<br>Handling Operations        | 0°F                        | ANSI/ANS 57.9            | Section 2.2.1.2 |
| Wet/Dry Loading                                       | Wet or Dry                 | -                        | Section 1.2.2.2 |
| Transfer Orientation                                  | Vertical or Horizontal     | -                        | Section 1.2.2.2 |

| Туре                                                             | Criteria                     | Basis                             | FSAR Reference  |
|------------------------------------------------------------------|------------------------------|-----------------------------------|-----------------|
| Test Loads:                                                      |                              |                                   | <u></u>         |
| Trunnions                                                        | 300% of vertical design load | NUREG-0612<br>& ANSI N14.6        | Section 9.1.2.1 |
| Off-Normal Design Event<br>Conditions:                           |                              | 10CFR72.122(b)(1)                 |                 |
| Ambient Temperature                                              |                              |                                   |                 |
| Minimum                                                          | 0°F                          | ANSI/ANS 57.9                     | Section 2.2.2.2 |
| Maximum                                                          | 100°F                        | ANSI/ANS 57.9                     | Section 2.2.2.2 |
| Design-Basis (Postulated) Accident Design Events and Conditions: |                              | 10CFR72.24(d)(2)<br>& 10CFR72.94  |                 |
| Side Drop                                                        | 42 in.                       | -                                 | Section 2.2.3.1 |
| Fire                                                             |                              |                                   |                 |
| Duration                                                         | 4.8 minutes                  | 10CFR72.122(c)                    | Section 2.2.3.3 |
| Temperature                                                      | 1,475°F                      | 10CFR72.122(c)                    | Section 2.2.3.3 |
| Fuel Rod Rupture                                                 | See Table 2.0.1              |                                   | Section 2.2.3.8 |
| Design-Basis Natural Phenomenon Design Events and Conditions:    |                              | 10CFR72.92<br>& 10CFR72.122(b)(2) |                 |
| Missiles                                                         |                              |                                   | Section 2.2.3.5 |
| Automobile                                                       |                              |                                   |                 |
| Weight                                                           | 1800 kg                      | NUREG-0800                        | Table 2.2.5     |

# Table 2.0.3 (continued) HI-TRAC TRANSFER CASK DESIGN CRITERIA SUMMARY

| Туре                       | Criteria                         | Basis                         | FSAR Reference |
|----------------------------|----------------------------------|-------------------------------|----------------|
| Velocity                   | 126 mph                          | NUREG-0800                    | Table 2.2.5    |
| Rigid Solid Steel Cylinder |                                  |                               |                |
| Weight                     | 125 kg                           | NUREG-0800                    | Table 2.2.5    |
| Velocity                   | 126 mph                          | NUREG-0800                    | Table 2.2.5    |
| Diameter                   | 8 in.                            | NUREG-0800                    | Table 2.2.5    |
| Steel Sphere               |                                  |                               |                |
| Weight                     | 0.22 kg                          | NUREG-0800                    | Table 2.2.5    |
| Velocity                   | 126 mph                          | NUREG-0800                    | Table 2.2.5    |
| Diameter                   | 1 in.                            | NUREG-0800                    | Table 2.2.5    |
| oad Combinations:          | See Table 2.2.14 and Table 3.1.5 | ANSI/ANS-57.9 &<br>NUREG-1536 | Section 2.2.7  |

•

# 2.1 SPENT FUEL TO BE STORED

# 2.1.1 Determination of The Design Basis Fuel

The HI-STORM 100 System is designed to store most types of fuel assemblies generated in the commercial U.S. nuclear industry. Boiling-water reactor (BWR) fuel assemblies have been supplied by The General Electric Company (GE), Siemens, Exxon Nuclear, ANF, UNC, ABB Combustion Engineering, and Gulf Atomic. Pressurized-water reactor (PWR) fuel assemblies are generally supplied by Westinghouse, Babcock & Wilcox, ANF, and ABB Combustion Engineering. ANF, Exxon, and Siemens are historically the same manufacturing company under different ownership. Within this report, SPC is used to designate fuel manufactured by ANF, Exxon, or Siemens. Publications such as Refs. [2.1.1] and [2.1.2] provide a comprehensive description of fuel discharged from U.S. reactors. A central object in the design of the HI-STORM 100 System is to ensure that a majority of SNF discharged from the U.S. reactors can be stored in one of the MPCs.

The cell openings and lengths in the fuel basket have been sized to accommodate the BWR and PWR assemblies listed in Refs. [2.1.1] and [2.1.2] except as noted below. Similarly, the cavity length of the multi-purpose canisters has been set at a dimension which permits storing most types of PWR fuel assemblies and BWR fuel assemblies with or without fuel channels. The exceptions are as follows:

i. The South Texas Units 1 & 2 SNF, and CE 16x16 System 80 SNF are too long to be accommodated in the available MPC cavity length.

In addition to satisfying the cross sectional and length compatibility, the active fuel region of the SNF must be enveloped in the axial direction by the neutron absorber located in the MPC fuel basket. Alignment of the neutron absorber with the active fuel region is ensured by the use of upper and lower fuel spacers suitably designed to support the bottom and restrain the top of the fuel assembly. The spacers axially position the SNF assembly such that its active fuel region is properly aligned with the neutron absorber in the fuel basket. Figure 2.1.5 provides a pictorial representation of the fuel spacers positioning the fuel assembly active fuel region. Both the upper and lower fuel spacers are designed to perform their function under normal, off-normal, and accident conditions of storage.

In summary, the geometric compatibility of the SNF with the MPC designs does not require the definition of a design basis fuel assembly. This, however, is not the case for structural, confinement, shielding, thermal-hydraulic, and criticality criteria. In fact, a particular fuel type in a category (PWR or BWR) may not control the cask design in all of the above-mentioned criteria. To ensure that no SNF listed in Refs. [2.1.1] and [2.1.2] which is geometrically

admissible in the MPC is precluded, it is necessary to determine the governing fuel specification for each analysis criteria. To make the necessary determinations, potential candidate fuel assemblies for each qualification criteria were considered. Table 2.1.1 lists the PWR fuel assemblies which were evaluated. These fuel assemblies were evaluated to define the governing design criteria for PWR fuel. The BWR fuel assembly designs evaluated are listed in Table 2.1.2. Tables 2.1.3 and 2.1.4 provide the fuel characteristics determined to be acceptable for storage in the HI-STORM 100 System. Any fuel assembly that has fuel characteristics within the range of Tables 2.1.3 and 2.1.4 is acceptable for storage in the HI-STORM 100 System. Table 2.1.5 lists the BWR and PWR fuel assembly designs which are found to govern for three qualification criteria, namely reactivity, shielding, and decay heat generation. Substantiating results of analyses for the governing assembly types are presented in the respective chapters dealing with the specific qualification topic. Additional information on the design basis fuel definition is presented in the following subsections.

# 2.1.2 Intact SNF Specifications

Intact fuel assemblies are defined as fuel assemblies without known or suspected cladding defects greater than pinhole leaks and hairline cracks, and which can be handled by normal means. The design payload for the HI-STORM 100 System is intact zircaloy clad fuel assemblies with the characteristics listed in Table 2.1.6 or intact stainless steel clad fuel assemblies with the characteristics listed in Table 2.1.8. The placement of a single stainless steel clad fuel assembly in a MPC necessitates that all fuel assemblies (stainless steel clad or zircaloy clad) stored in that MPC meet the maximum heat generation requirements for stainless steel clad fuel specified in Table 2.1.8. Intact BWR MOX fuel assemblies shall meet the requirements of Table 2.1.7.

Intact fuel assemblies with missing pins cannot be loaded into the HI-STORM 100 unless dummy fuel pins, which occupy a volume greater than or equal to the original fuel pins, replace the missing pins prior to loading. Any intact fuel assembly which falls within the geometric, thermal, and nuclear limits established for the design basis intact fuel assembly, as defined in the Technical Specifications of Chapter 12 can be safely stored in the HI-STORM 100 System.

The range of fuel characteristics specified in Tables 2.1.3 and 2.1.4 have been evaluated in this FSAR and are acceptable for storage in the HI-STORM 100 System.

# 2.1.3 Damaged SNF and Fuel Debris Specifications

Damaged fuel assemblies are defined as fuel assemblies with known or suspected cladding defects greater than pinhole leaks and hairline cracks or missing fuel rods that are not replaced with dummy fuel rods, and which may have mechanical damage which would not allow it to be

handled by normal means; however, there shall be no loose components. No loose fuel debris is allowed with the damaged fuel assembly.

Fuel debris is defined as fuel assemblies with known or suspected defects greater than pinhole leaks or hairline cracks such as ruptured fuel rods, severed fuel rods, or loose fuel pellets, and which cannot be handled by normal means.

To aid in loading and unloading, damaged fuel assemblies and fuel debris will be loaded into stainless steel damaged fuel containers (DFCs) provided with 250 x 250 fine mesh screens, prior to placement in the HI-STORM 100 System. This application requests approval of Dresden Unit 1 (UO2 rods and MOX fuel rods) and Humboldt Bay fuel arrays (Assembly Classes 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A) as damaged fuel assembly contents for storage in the MPC-68 and fuel debris as contents for storage in the MPC-68F. The design characteristics bounding Dresden Unit 1 and Humboldt Bay SNF are given in Table 2.1.7. The placement of a single damaged fuel assembly in an MPC-68 or a single fuel debris damaged fuel container in an MPC-68F necessitates that all fuel assemblies (intact, damaged, or debris) stored in that MPC meet the maximum heat generation requirements specified in Table 2.1.7. The fuel characteristics specified in Table 2.1.4 for Dresden 1 and Humboldt Bay fuel arrays have been evaluated in this FSAR and are acceptable for storage as damaged fuel or fuel debris in the HI-STORM 100 System. The DFC design is illustrated in Figure 2.1.1 and the Design Drawings are provided in Section 1.5. Because of the long cooling time, small size, and low weight of spent fuel assemblies qualified as damaged fuel or fuel debris, the DFC and its contents are bounded by the structural, thermal, and shielding analyses performed for the intact BWR design basis fuel. Separate criticality analysis of the bounding fuel assembly for the damaged fuel and fuel debris has been performed in Chapter 6.

### 2.1.4 Deleted

#### 2.1.5 <u>Structural Parameters for Design Basis SNF</u>

The main physical parameters of a SNF assembly applicable to the structural evaluation are the fuel assembly length, envelope (cross sectional dimensions), and weight. These parameters, which define the mechanical and structural design, are listed in Tables 2.1.6, 2.1.7, and 2.1.8. The centers of gravity reported in Section 3.2 are based on the maximum fuel assembly weight. Upper and lower fuel spacers (as appropriate) maintain the axial position of the fuel assembly within the MPC basket and, therefore, the location of the center of gravity. The upper and lower fuel spacers are designed to withstand normal, off-normal, and accident conditions of storage. An axial clearance of approximately 2 inches is provided to account for the irradiation and thermal growth of the fuel assemblies. The upper and lower fuel spacer lengths are listed in Tables 2.1.9 and 2.1.10. In order to qualify for storage in the MPC, the SNF must satisfy the physical parameters listed in Tables 2.1.6, 2.1.7, or 2.1.8.

# 2.1.6 Thermal Parameters for Design Basis SNF

The principal thermal design parameter for the stored fuel is the peak fuel cladding temperature, which is a function of the maximum heat generation rate per assembly, the allowable fuel cladding temperature based on cooling time, and the decay heat removal capabilities of the HI-STORM 100 System. The maximum heat generation rate per assembly for the design basis fuel assembly is based on the fuel assembly type with the highest decay heat for a given enrichment, burnup, and cooling time. This decay heat design basis fuel assembly is listed in Table 2.1.5. Section 5.2 describes the method used to determine the design basis fuel assembly type and calculate the decay heat load.

To ensure the allowable fuel cladding temperature limits are not exceeded, Table 2.0.1 specifies the allowable decay heat per assembly versus cooling time for zircaloy clad fuel in each MPC type. Tables 2.1.7 and 2.1.8 provide the maximum heat generation for damaged zircaloy clad fuel assemblies and stainless steel clad fuel assemblies, respectively. Due to the conservative thermal assessment and the long cooling time of the damaged and stainless steel clad fuel, a reduction in decay heat load is not required as the cooling time increases beyond the minimum specified.

The specified decay heat load can be attained by varying burnups and cooling times. Figure 2.1.6 provides the burnup and cooling time characteristics for intact zircaloy clad fuel to meet the thermal requirements for the MPC-24 and MPC-68. Any intact zircaloy clad fuel assembly with a burnup and cooling time which lies on or below the curve of Figure 2.1.6 is thermally acceptable for loading into the HI-STORM 100 System. Each point on the curve produces a decay heat equal to or below the value specified in Table 2.0.1.

Figure 2.1.6 does not extend beyond 15 years of cooling time. For fuel assemblies with cooling times greater than 15 years, the maximum allowed burnup will be limited to maximum burnup value specified for 15 years. As shown in Figure 2.1.6 the allowable burnup increases as the cooling time increases due to the decay of radioactivity over time. Therefore, limiting the maximum burnup for fuel assemblies with more than 15 years of cooling time to the corresponding burnup value for 15 years ensures that the decay heat load from these older fuel assemblies will be less than the values analyzed in this FSAR.

The fuel rod cladding temperature is also affected by other factors. A governing geometry which maximizes the impedance to the transmission of heat out of the fuel rods has been defined. The governing thermal parameters to ensure that the range of SNF discussed previously are bounded by the thermal analysis are discussed in detail and specified in Chapter 4. By utilizing these bounding thermal parameters, the calculated peak fuel rod cladding temperatures are conservative for actual spent fuel assemblies which have greater thermal conductivities.

Finally, the axial variation in the heat generation rate in the design basis fuel assembly is defined based on the axial burnup distribution. For this purpose, the data provided in Refs. [2.1.7] and [2.1.8] are utilized and summarized in Table 2.1.11 and Figures 2.1.3 and 2.1.4 for reference. These distributions are representative of fuel assemblies with the design basis burnup levels considered. These distributions are used for analyses only, and do not provide a criteria for fuel assembly acceptability for storage in the HI-STORM 100 System.

# 2.1.7 <u>Radiological Parameters for Design Basis SNF</u>

The principal radiological design criteria for the HI-STORM 100 System are the 10CFR72.104 site boundary dose rate limits and maintaining operational dose rates as low as reasonably achievable (ALARA). The radiation dose is directly affected by the gamma and neutron source terms of the SNF assembly.

The gamma and neutron sources are separate and are affected differently by enrichment, burnup, and cooling time. It is recognized that, at a given burnup, the radiological source terms increase monotonically as the initial enrichment is reduced. The shielding design basis fuel assembly, therefore, is evaluated at the maximum burnup, minimum cooling time, and a conservative enrichment corresponding to the burnup. The shielding design basis fuel assembly thus bounds all other fuel assemblies.

The design basis dose rates can be met by a variety of burnup levels and cooling times. Table 2.1.7 provides the burnup and cooling time values which meet the radiological source term requirements for damaged BWR fuel in the MPC-68 and fuel debris in the MPC-68F. Table 2.1.8 provides the burnup and cooling time values which meet the radiological source term requirements for intact stainless steel clad fuel. Figure 2.1.6 provides illustrative burnup and cooling time values which meet the radiological source term and cooling time values which meet the radiological source term requirements for intact stainless steel clad fuel. Figure 2.1.6 provides illustrative burnup and cooling time values which meet the radiological source term requirements for zircaloy clad fuel in each MPC type.

Table 2.1.11 and Figures 2.1.3 and 2.1.4 provide the axial distribution for the radiological source terms for PWR and BWR fuel assemblies based on the axial burnup distribution. The axial burnup distributions are representative of fuel assemblies with the design basis burnup levels considered. These distributions are used for analyses only, and do not provide a criteria for fuel assembly acceptability for storage in the HI-STORM 100 System.

# 2.1.8 Criticality Parameters for Design Basis SNF

As discussed earlier, the MPC-68 features a basket without flux traps. In the MPC-68 basket, there is one panel of neutron absorber between two adjacent fuel assemblies. The MPC-24 employs a construction wherein two neighboring fuel assemblies are separated by two panels of neutron absorber with a water gap between them (flux trap construction).

The MPC-24 Boral <sup>10</sup>B areal density is specified at a minimum loading of 0.0267 g/cm<sup>2</sup>. The MPC-68 Boral <sup>10</sup>B areal density is specified at a minimum loading of 0.0372 g/cm<sup>2</sup>. The MPC-68F Boral <sup>10</sup>B areal density is specified at a minimum loading of 0.01 g/cm<sup>2</sup>.

For all MPCs, the <sup>10</sup>B areal density used for analysis is conservatively established at 75% of the minimum <sup>10</sup>B areal density to demonstrate that the reactivity under the most adverse accumulation of tolerances and biases is less than 0.95. This complies with NUREG-1536 [2.1.5] which requires a 25% reduction in <sup>10</sup>B areal density credit. A large body of sampling data accumulated by Holtec from thousands of manufactured Boral panels indicates the average <sup>10</sup>B areal densities to be approximately 15% greater than the specified minimum.

# 2.1.9 <u>Summary of SNF Design Criteria</u>

An intact zircaloy clad fuel assembly is acceptable for storage in a HI-STORM 100 System if it fulfills the following criteria:

- a. It satisfies the physical characteristics listed in Tables 2.1.3 or 2.1.4, and 2.1.6.
- b. Its initial enrichment is less than that indicated by Table 2.1.6 for the fuel assembly and MPC type.
- c. The period from discharge is greater than or equal to the minimum cooling time listed in Table 2.1.6, and the decay heat is equal to or less than the maximum value stated in Table 2.0.1 for a given cooling time.
- d. The average burnup of the fuel assembly is less than or equal to the burnup specified in Figure 2.1.6 for a given cooling time.

A damaged fuel assembly shall meet the characteristics specified in Table 2.1.7 for storage in the MPC-68. A fuel assembly classified as fuel debris shall meet the characteristics specified in Table 2.1.7 for storage in the MPC-68F.

Stainless steel clad fuel assemblies shall meet the characteristics specified in Table 2.1.8 for storage in the MPC-24 and MPC-68.

MOX BWR fuel assemblies shall meet the requirements of Tables 2.1.6 and 2.1.7 for intact and damaged fuel/fuel debris, respectively.

No PWR control components are to be included with the fuel assembly.

# PWR FUEL ASSEMBLIES EVALUATED TO DETERMINE DESIGN BASIS SNF

| Assembly<br>Class                         | Array<br>Type |
|-------------------------------------------|---------------|
| B&W 15x15                                 | All           |
| B&W 17x17                                 | All           |
| CE 14x14                                  | All           |
| CE 16x16                                  | All           |
| WE 14x14                                  | All           |
| WE 15x15                                  | All           |
| WE 17x17                                  | All           |
| St. Lucie                                 | All           |
| Ft. Calhoun                               | All           |
| Haddam Neck<br>(Stainless Steel<br>Clad)  | All           |
| San Onofre 1<br>(Stainless Steel<br>Clad) | All           |

# BWR FUEL ASSEMBLIES EVALUATED TO DETERMINE DESIGN BASIS SNF

| Assembly Class                     |         | Array Type                               |            |           |  |  |
|------------------------------------|---------|------------------------------------------|------------|-----------|--|--|
| GE BWR/2-3                         | All 7x7 | All 8x8                                  | All<br>9x9 | All 10x10 |  |  |
| GE BWR/4-6                         | All 7x7 | All 8x8<br>(except<br>8x8 WE<br>(QUAD+)) | All<br>9x9 | All 10x10 |  |  |
| Humboldt Bay                       | All 6x6 | All 7x7<br>(Zircaloy<br>Clad)            |            |           |  |  |
| Dresden-1                          | All 6x6 | All 8x8                                  |            |           |  |  |
| LaCrosse<br>(Stainless Steel Clad) | All     |                                          |            |           |  |  |

| Fuel Assembly Array<br>and Class              | 14x14 A         | 14x14 B         | 14x14 C         | 14x14 D            | 15x15 A           |
|-----------------------------------------------|-----------------|-----------------|-----------------|--------------------|-------------------|
| Clad Material (Note 2)                        | Zr              | Zr              | Zr              | SS                 | Zr                |
| Design Initial U<br>(kg/assy.) (Note 4)       | <u>≤</u> 402    | ≤ 402           | <u>≤</u> 410    | <u>≤</u> 400       | <u>≤</u> 420      |
| Initial Enrichment<br>(wt % <sup>235</sup> U) | <u>≤</u> 4.6    | <u>≤</u> 4.6    | <u>≤</u> 4.6    | <u>≤</u> 4.0       | ≤ 4.1             |
| No. of Fuel Rods                              | 179             | 179             | 176             | 180                | 204               |
| Clad O.D. (in.)                               | <u>≥</u> 0.400  | ≥ 0.417         | <u>≥</u> 0.440  | <u>≥</u> 0.422     | <u>&gt;</u> 0.418 |
| Clad I.D. (in.)                               | <u>≤</u> 0.3514 | <u>≤</u> 0.3734 | ≤ 0.3840        | <u>&lt;</u> 0.3890 | <u>≤</u> 0.3660   |
| Pellet Dia. (in.)                             | <u>≤</u> 0.3444 | <u>≤</u> 0.3659 | <u>≤</u> 0.3770 | <u>&lt;</u> 0.3835 | <u>≤</u> 0.3580   |
| Fuel Rod Pitch (in.)                          | 0.556           | 0.556           | 0.580           | 0.556              | 0.550             |
| Active Fuel Length<br>(in.)                   | <u>≤</u> 150    | <u>≤</u> 150    | ≤ 150           | <u>≤</u> 144       | <u>≤</u> 150      |
| No. of Guide Tubes                            | 17              | 17              | 5 (see Note 3)  | 16                 | 21                |
| Guide Tube Thickness<br>(in.)                 | <u>≥</u> 0.017  | ≥ 0.017         | ≥ 0.040         | ≥ 0.0145           | <u>≥</u> 0.0165   |

 Table 2.1.3

 PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Notes: 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.

2. Zr designates cladding material made of Źirconium or Zirconium alloys.

3. Each guide tube replaces 4 fuel rods.

4. Design initial uranium weight is the nominal weight specified for each assembly by the fuel manufacturer or reactor user.

5. Description of the fuel assembly class designation is provided in Chapter 6.

| Fuel Assembly Array<br>and Class              | 15x15 B         | 15x15 C         | 15x15 D         | 15x15 E         | 15x15 F         |
|-----------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Clad Material (Note 2)                        | Zr              | Zr              | Zr              | Zr              | Zr              |
| Design Initial U<br>(kg/assy.) (Note 3)       | <u>&lt;</u> 464 | <u>≤</u> 464    | <u>≤</u> 475    | <u>&lt;</u> 475 | <u>≤</u> 475    |
| Initial Enrichment<br>(wt % <sup>235</sup> U) | <u>≤</u> 4.1    | ≤ 4.1           | <u>≤</u> 4.1    | <u>≤</u> 4.1    | <u>≤</u> 4.1    |
| No. of Fuel Rods                              | 204             | 204             | 208             | 208             | 208             |
| Clad O.D. (in.)                               | <u>≥</u> 0.420  | ≥ 0.417         | <u>≥</u> 0.430  | ≥ 0.428         | ≥ 0.428         |
| Clad I.D. (in.)                               | <u>≤</u> 0.3736 | <u>≤</u> 0.3640 | <u>≤</u> 0.3800 | <u>≤</u> 0.3790 | ≤ 0.3820        |
| Pellet Dia. (in.)                             | ≤ 0.3671        | <u>≤</u> 0.3570 | ≤ 0.3735        | ≤ 0.3707        | ≤ 0.3742        |
| Fuel Rod Pitch (in.)                          | 0.563           | 0.563           | 0.568           | 0.568           | 0.568           |
| Active Fuel Length (in.)                      | <u>≤</u> 150    | <u>≤</u> 150    | ≤ 150           | <u>≤</u> 150    | <u>&lt;</u> 150 |
| No. of Guide Tubes                            | 21              | 21              | 17              | 17              | 17              |
| Guide Tube Thickness<br>(in.)                 | <u>≥</u> 0.015  | ≥ 0.0165        | ≥ 0.0150        | <u>≥</u> 0.0140 | ≥ 0.0140        |

#### Table 2.1.3 (continued) PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Notes: 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.

2. Zr designates cladding material made of Zirconium or Zirconium alloys.

3. Design initial uranium weight is the nominal weight specified for each assembly by the fuel manufacturer or reactor user.

4. Description of the fuel assembly class designation is provided in Chapter 6.

2.1-10

| Fuel Assembly Array<br>and Class              | 15x15 G         | 16x16 A        | 17x17A          | 17x17 B         | 17x17 C        |
|-----------------------------------------------|-----------------|----------------|-----------------|-----------------|----------------|
| Clad Material (Note 2)                        | SS              | Zr             | Zr              | Zr              | Zr             |
| Design Initial U<br>(kg/assy.) (Note 4)       | <u>≤</u> 420    | <u>≤</u> 430   | <u>≤</u> 450    | <u>≤</u> 464    | <u>≤</u> 460   |
| Initial Enrichment<br>(wt % <sup>235</sup> U) | <u>≤</u> 4.0    | <u>≤</u> 4.6   | <u>≤</u> 4.0    | <u>≤</u> 4.0    | ≤ 4.0          |
| No. of Fuel Rods                              | 204             | 236            | 264             | 264             | 264            |
| Clad O.D. (in.)                               | <u>≥</u> 0.422  | ≥ 0.382        | <u>≥</u> 0.360  | ≥ 0.372         | <u>≥</u> 0.377 |
| Clad I.D. (in.)                               | <u>≤</u> 0.3890 | ≤ 0.3320       | <u>≤</u> 0.3150 | <u>≤</u> 0.3310 | ≤ 0.3330       |
| Pellet Dia. (in.)                             | <u>≤</u> 0.3825 | ≤ 0.3255       | <u>≤</u> 0.3088 | ≤ 0.3232        | ≤ 0.3252       |
| Fuel Rod Pitch (in.)                          | 0.563           | 0.506          | 0.496           | 0.496           | 0.502          |
| Active Fuel Length<br>(in.)                   | <u>&lt;</u> 144 | <u>≤</u> 150   | <u>≤</u> 150    | ≤ 150           | <u>≤</u> 150   |
| No. of Guide Tubes                            | 21              | 5 (see note 3) | 25              | 25              | 25             |
| Guide Tube Thickness<br>(in.)                 | <u>≥</u> 0.0145 | ≥ 0.0400       | <u>≥</u> 0.016  | ≥ 0.014         | ≥ 0.020        |

# Table 2.1.3 (continued) PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Notes: 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.

2. Zr designates cladding material made of Zirconium or Zirconium alloys.

3. Each guide tube replaces 4 fuel rods.

4. Design initial uranium weight is the nominal weight specified for each assembly by the fuel manufacturer or reactor user.

5. Description of the fuel assembly class designation is provided in Chapter 6.

| Fuel Assembly Array<br>and Class                                         | 6x6 A           | 6x6 B                                                                 | 6x6 C              | 7x7 A           | 7x7 B              | 8x8 A           |
|--------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------|--------------------|-----------------|--------------------|-----------------|
| Clad Material (Note 2)                                                   | Zr              | Zr                                                                    | Zr                 | Zr              | Zr                 | Zr              |
| Design Initial U<br>(kg/assy.) (Note 4)                                  | <u>&lt;</u> 108 | ≤ 108                                                                 | <u>≤</u> 108       | <u>≤</u> 100    | <u>&lt;</u> 195    | ≤ 120           |
| Maximum Planar-<br>Average Initial<br>Enrichment (wt.% <sup>235</sup> U) | ≤2.7            | $\leq 2.7$ for UO <sub>2</sub><br>rods.<br>See Note 3 for<br>MOX rods | <u>≤</u> 2.7       | ≤ 2.7           | ≤ 4.2              | ≤ 2.7           |
| Initial Maximum Rod<br>Enrichment (wt.% <sup>235</sup> U)                | <u>≤</u> 4.0    | <u>≤</u> 4.0                                                          | <u>≤</u> 4.0       | <u>≤</u> 4.0    | <u>≤</u> 5.0       | <u>≤</u> 4.0    |
| No. of Fuel Rods                                                         | 36              | 36 (up to 9<br>MOX rods)                                              | 36                 | 49              | 49                 | 64              |
| Clad O.D. (in.)                                                          | <u>≥</u> 0.5550 | <u>≥</u> 0.5625                                                       | <u>≥</u> 0.5630    | <u>≥</u> 0.4860 | ≥ 0.5630           | ≥ 0.4120        |
| Clad I.D. (in.)                                                          | <u>≤</u> 0.4945 | <u>≤</u> 0.4945                                                       | <u>≤</u> 0.4990    | <u>≤</u> 0.4200 | <u>&lt;</u> 0.4990 | <u>≤ 0.3620</u> |
| Pellet Dia. (in.)                                                        | ≤ 0.4940        | ≤ 0.4820                                                              | <u>&lt;</u> 0.4880 | ≤ 0.4110        | <u>≤</u> 0.4880    | <u>≤</u> 0.3580 |
| Fuel Rod Pitch (in.)                                                     | 0.694           | 0.694                                                                 | 0.740              | 0.631           | 0.738              | 0.523           |
| Active Fuel Length<br>(in.)                                              | <u>≤</u> 110    | <u>≤</u> 110                                                          | <u>≤</u> 77.5      | ≤ 79            | <u>≤</u> 150       | <u>≤</u> 110    |
| No. of Water Rods                                                        | 0               | 0                                                                     | 0                  | 0               | 0                  | 0               |
| Water Rod Thickness<br>(in.)                                             | N/A             | N/A                                                                   | N/A                | N/A             | N/A                | N/A             |
| Channel Thickness (in.)                                                  | <u>≤</u> 0.060  | <u>≤</u> 0.060                                                        | <u>≤ 0.060</u>     | ≤ 0.060         | ≤ 0.120            | ≤ 0.100         |

 Table 2.1.4

 BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Notes: 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.

- 2. Zr designates cladding material made of Zirconium or Zirconium alloys.
- 3.  $\leq 0.612$  wt. % <sup>235</sup>U and  $\leq 1.578$  wt. % total fissile plutonium (<sup>239</sup>Pu and <sup>241</sup>Pu).
- 4. Design initial uranium weight is the nominal weight specified for each assembly by the fuel manufacturer or reactor user.
- 5. Description of the fuel assembly class designation is provided in Chapter 6.

| Fuel Assembly Array<br>and Class                                         | 8x8 B           | 8x8 C           | 8x8 D                 | 8x8 E              | 9x9 A           | 9x9 B             |
|--------------------------------------------------------------------------|-----------------|-----------------|-----------------------|--------------------|-----------------|-------------------|
| Clad Material (Note 2)                                                   | Zr              | Zr              | Zr                    | Zr                 | Zr              | Zr                |
| Design Initial U<br>(kg/assy.) (Note 6)                                  | <u>≤</u> 185    | ≤ 185           | <u>≤</u> 185          | <u>≤</u> 180       | <u>≤</u> 173    | <u>≤</u> 173      |
| Maximum Planar-<br>Average Initial<br>Enrichment (wt.% <sup>235</sup> U) | <u>≤</u> 4.2    | <u>≤</u> 4.2    | <u>≤</u> 4.2          | <u>&lt;</u> 4.2    | <u>≤</u> 4.2    | <u>&lt;</u> 4.2   |
| Initial Maximum Rod<br>Enrichment (wt.% <sup>235</sup> U)                | <u>&lt;</u> 5.0 | <u>≤</u> 5.0    | <u>≤</u> 5.0          | <u>≤</u> 5.0       | ≤ 5.0           | <u>≤</u> 5.0      |
| No. of Fuel Rods                                                         | 63              | 62              | 60                    | 59                 | 74/66 (Note 3)  | 72                |
| Clad O.D. (in.)                                                          | <u>≥</u> 0.4840 | <u>≥</u> 0.4830 | <u>≥</u> 0.4830       | <u>&gt;</u> 0.4930 | <u>≥</u> 0.4400 | <u>≥</u> 0.4330   |
| Clad I.D. (in.)                                                          | <u>≤</u> 0.4250 | <u>≤</u> 0.4250 | <u>≤</u> 0.4190       | <u>≤</u> 0.4250    | <u>≤</u> 0.3840 | <u>≤</u> 0.3810   |
| Pellet Dia. (in.)                                                        | <u>≤</u> 0.4160 | <u>≤</u> 0.4160 | <u>≤</u> 0.4110       | <u>≤</u> 0.4160    | <u>≤</u> 0.3760 | <u>≤</u> 0.3740   |
| Fuel Rod Pitch (in.)                                                     | 0.636 - 0.641   | 0.636 - 0.641   | 0.640                 | 0.640              | 0.566           | 0.569             |
| Design Active Fuel<br>Length (in.)                                       | <u>&lt;</u> 150 | <u>≤</u> 150    | <u>≤</u> 150          | <u>≤</u> 150       | <u>≤</u> 150    | <u>≤</u> 150      |
| No. of Water Rods                                                        | 1               | 2               | 1 - 4<br>(see note 5) | 5                  | 2               | 1<br>(see note 4) |
| Water Rod Thickness (in.)                                                | <u>≥</u> 0.034  | ≥ 0.00          | <u>≥</u> 0.00         | ≥ 0.034            | ≥ 0.00          | ≥ 0.00            |
| Channel Thickness (in.)                                                  | <u>≤</u> 0.120  | <u>≤</u> 0.120  | <u>≤</u> 0.120        | <u>≤</u> 0.100     | <u>≤</u> 0.120  | ≤ 0.120           |

#### Table 2.1.4 (continued) BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Notes: 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.

- 2. Zr designates cladding material made of Zirconium or Zirconium alloys.
- 3. This assembly class contains 74 total rods; 66 full length rods and 8 partial length rods.
- 4. Square, replacing 9 fuel rods.
- 5. Variable.
- 6. Design initial uranium weight is the nominal weight specified for each assembly by the fuel manufacturer or reactor user.
- 7. Description of the fuel assembly class designation is provided in Chapter 6.

| Fuel Assembly Array<br>and Class                                         | 9x9 C           | 9x9 D              | 9x9 E           | 9x9 F           | 10x10 A         |
|--------------------------------------------------------------------------|-----------------|--------------------|-----------------|-----------------|-----------------|
| Clad Material (Note 2)                                                   | Zr              | Zr                 | Zr              | Zr              | Zr              |
| Design Initial U<br>(kg/assy.) (Note 4)                                  | <u>≤</u> 173    | <u>≤</u> 170       | <u>≤</u> 170    | <u>&lt;</u> 170 | <u>≤</u> 182    |
| Maximum Planar-<br>Average Initial<br>Enrichment (wt.% <sup>235</sup> U) | <u>≤</u> 4.2    | ≤ 4.2              | ≤ 4.2           | ≤ 4.2           | <u>≤</u> 4.2    |
| Initial Maximum Rod<br>Enrichment (wt.% <sup>235</sup> U)                | <u>≤</u> 5.0    | ≤ 5.0              | ≤ 5.0           | <u>≤</u> 5.0    | ≤ 5.0           |
| No. of Fuel Rods                                                         | 80              | 79                 | 76              | 76              | 92/78 (Note 3)  |
| Clad O.D. (in.)                                                          | ≥ 0.4230        | ≥ 0.4240           | ≥ 0.4170        | <u>≥</u> 0.4430 | ≥ 0.4040        |
| Clad I.D. (in.)                                                          | <u>≤</u> 0.3640 | <u>≤</u> 0.3640    | <u>≤</u> 0.3590 | <u>≤</u> 0.3810 | <u>≤</u> 0.3520 |
| Pellet Dia. (in.)                                                        | <u>≤</u> 0.3565 | <u>&lt;</u> 0.3565 | <u>≤</u> 0.3525 | <u>≤</u> 0.3745 | <u>≤</u> 0.3455 |
| Fuel Rod Pitch (in.)                                                     | 0.572           | 0.572              | 0.572           | 0.572           | 0.510           |
| Design Active Fuel<br>Length (in.)                                       | <u>≤</u> 150    | <u>≤</u> 150       | <u>≤</u> 150    | <u>≤</u> 150    | ≤ 150           |
| No. of Water Rods                                                        | 1               | 2                  | 5               | 5               | 2               |
| Water Rod Thickness<br>(in.)                                             | 0.020           | ≥ 0.0305           | ≥ 0.0305        | <u>≥</u> 0.0305 | ≥ 0.030         |
| Channel Thickness (in.)                                                  | ≤ 0.100         | <u>≤</u> 0.100     | ≤ 0.100         | ≤ 0.100         | <u>≤ 0.120</u>  |

Table 2.1.4 (continued) BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Notes: 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.

- 2. Zr designates cladding material made of Zirconium or Zirconium alloys.
- 3. This assembly class contains 92 total fuel rods; 78 full length rods and 14 partial length rods.
- 4. Design initial uranium weight is the nominal weight specified for each assembly by the fuel manufacturer or reactor user.
- 5. Description of the fuel assembly class designation is provided in Chapter 6.

| Fuel Assembly Array and<br>Class                                     | 10x10 B         | 10x10 C         | 10x10 D         | 10x10 E            |
|----------------------------------------------------------------------|-----------------|-----------------|-----------------|--------------------|
| Clad Material (Note 2)                                               | Zr              | Zr              | SS              | SS                 |
| Design Initial U (kg/assy.)<br>(Note 6)                              | <u>&lt;</u> 182 | <u>≤</u> 180    | <u>≤</u> 125    | <u>≤</u> 125       |
| Maximum Planar-Average<br>Initial Enrichment (wt.% <sup>235</sup> U) | <u>≤</u> 4.2    | <u>≤</u> 4.2    | <u>≤</u> 4.0    | <u>≤</u> 4.0       |
| Initial Maximum Rod<br>Enrichment (wt.% <sup>235</sup> U)            | <u>≤</u> 5.0    | <u>&lt;</u> 5.0 | ≤ 5.0           | <u>≤</u> 5.0       |
| No. of Fuel Rods                                                     | 91/83 (Note 3)  | 96              | 100             | 96                 |
| Clad O.D. (in.)                                                      | ≥ 0.3957        | ≥ 0.3790        | ≥ 0.3960        | <u>&gt;</u> 0.3940 |
| Clad I.D. (in.)                                                      | ≤ 0.3480        | ≤ 0.3294        | <u>≤</u> 0.3560 | <u>≤</u> 0.3500    |
| Pellet Dia. (in.)                                                    | <u>≤</u> 0.3420 | ≤ 0.3224        | <u>≤</u> 0.3500 | <u>≤</u> 0.3430    |
| Fuel Rod Pitch (in.)                                                 | 0.510           | 0.488           | 0.565           | 0.557              |
| Design Active Fuel Length (in.)                                      | <u>≤</u> 150    | <u>≤</u> 150    | <u>≤</u> 83     | <u>&lt; 83</u>     |
| No. of Water Rods                                                    | 1 (Note 4)      | 5 (Note 5)      | 0               | 4                  |
| Water Rod Thickness (in.)                                            | ≥ 0.00          | <u>≥</u> 0.034  | N/A             | <u>≥</u> 0.022     |
| Channel Thickness (in.)                                              | <u>≤</u> 0.120  | <u>≤</u> 0.055  | <u>≤</u> 0.080  | <u>≤</u> 0.080     |

#### Table 2.1.4 (continued) BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Notes: 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.

2. Zr designates cladding material made of Zirconium or Zirconium alloys.

3. This assembly class contains 91 total fuel rods; 83 full length rods and 8 partial length rods.

- 4. Square, replacing nine fuel rods.
- 5. One diamond-shaped water rod replacing the four center fuel rods and four rectangular water rods dividing the assembly into four quadrants.
- 6. Design initial uranium weight is the nominal weight specified for each assembly by the fuel manufacturer or reactor user.
- 7. Description of the fuel assembly class designation is provided in Chapter 6.

# DESIGN BASIS FUEL ASSEMBLY FOR EACH DESIGN CRITERION

| Criterion                   | MPC-68                                                      | MPC-24                      |
|-----------------------------|-------------------------------------------------------------|-----------------------------|
| Reactivity<br>(Criticality) | GE12/14 10x10 with<br>Partial Length Rods<br>(Class 10x10A) | B&W 15x15<br>(Class 15x15F) |
| Source Term                 | GE 7x7                                                      | B&W 15x15                   |
| (Shielding)                 | (Class 7x7B)                                                | (Class 15x15F)              |
| Decay Heat                  | GE 7x7                                                      | B&W 15x15                   |
| (Thermal-Hydraulic)         | (Class 7x7B)                                                | (Class 15x15F)              |

#### CHARACTERISTICS FOR DESIGN BASIS INTACT ZIRCALOY CLAD FUEL ASSEMBLIES

|                                                | MPC-68                                                                           | MPC-24              |  |  |  |  |  |
|------------------------------------------------|----------------------------------------------------------------------------------|---------------------|--|--|--|--|--|
| PHYSICAL PARAMETERS:                           |                                                                                  |                     |  |  |  |  |  |
| Max. assembly width <sup>†</sup> (in.)         | 5.85                                                                             | 8.54                |  |  |  |  |  |
| Max. assembly length <sup>†</sup> (in.)        | 176.2                                                                            | 176.8               |  |  |  |  |  |
| Max. assembly weight <sup>††</sup> (lb.)       | 700                                                                              | 1680                |  |  |  |  |  |
| Max. active fuel length <sup>†</sup> (in.)     | 150                                                                              | 150                 |  |  |  |  |  |
| Fuel rod clad material                         | zircaloy                                                                         | zircaloy            |  |  |  |  |  |
| RADIOLOGICAL AND THERMAL CHARACTERISTICS:      |                                                                                  |                     |  |  |  |  |  |
|                                                | MPC-68                                                                           | MPC-24              |  |  |  |  |  |
| Max. initial enrichment (wt% <sup>235</sup> U) | See Table 2.1.4                                                                  | See Table 2.1.3     |  |  |  |  |  |
| Max. heat generation (W)                       | Table 2.0.1                                                                      | Table 2.0.1         |  |  |  |  |  |
|                                                | 115 (Assembly Classes<br>6x6A, 6x6B, 6x6C,<br>7x7A, 8x8A)                        |                     |  |  |  |  |  |
| Max. average burnup<br>(MWD/MTU)               | See Figure 2.1.6<br>30,000 (Assembly<br>Classes 6x6A, 6x6B,<br>6x6C, 7x7A, 8x8A) | See Figure<br>2.1.6 |  |  |  |  |  |
| Min. cooling time (years)                      | See Figure 2.1.6<br>18 (Assembly Classes<br>6x6A, 6x6B, 6x6C,<br>7x7A, 8x8A)     | See Figure<br>2.1.6 |  |  |  |  |  |

<sup>†</sup> Unirradiated nominal design dimensions are shown.

<sup>††</sup> F

Fuel assembly weight including hardware based on DOE MPC DPS [2.1.6].

#### Table 2.1.7 DESIGN CHARACTERISTICS FOR DAMAGED ZIRCALOY CLAD FUEL ASSEMBLIES

|                                                                          | MPC-68<br>(Damaged Fuel)                                              | MPC-68F<br>(Fuel Debris)                                              |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
| PHYSICAL PARAMETERS:                                                     |                                                                       |                                                                       |
| Max. assembly width <sup>†</sup> (in.)                                   | 4.7                                                                   | 4.7                                                                   |
| Max. assembly length <sup>+</sup> (in.)                                  | 135                                                                   | 135                                                                   |
| Max. assembly weight <sup>††</sup> (lb.)                                 | 400                                                                   | 400                                                                   |
| Max. active fuel length <sup>+</sup> (in.)                               | 110                                                                   | 110                                                                   |
| Fuel rod clad material                                                   | zircaloy                                                              | zircaloy                                                              |
| RADIOLOGICAL AND THERMAL CHARACTER                                       | RISTICS:                                                              |                                                                       |
| Max. heat generation (W)                                                 | 115                                                                   | 115                                                                   |
| Min. cooling time (yr)                                                   | 18                                                                    | 18                                                                    |
| Max. initial enrichment (wt.% <sup>235</sup> U) for UO <sub>2</sub> rods | 2.7                                                                   | 2.7                                                                   |
| Max. initial enrichment for MOX rods                                     | 0.612 wt.% <sup>235</sup> U<br>1.578 wt. % Total<br>Fissile Plutonium | 0.612 wt.% <sup>235</sup> U<br>1.578 wt. % Total<br>Fissile Plutonium |
| Max. average burnup (MWD/MTU)                                            | 30,000                                                                | 30,000                                                                |

Note:

1. A maximum of four (4) damaged fuel containers with BWR zircaloy clad fuel debris may be stored in the MPC-68F with the remaining locations filled with undamaged or damaged fuel assemblies meeting the maximum heat generation specifications of this table.

Dimensions envelop unirradiated nominal dimensions of Array/Class 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A (Dresden Unit 1 and Humboldt Bay SNF)

t

<sup>&</sup>lt;sup>††</sup> Fuel assembly weight including hardware based on DOE MPC DPS [2.1.6]. Weight does not include damaged fuel container.

|                                                 | BWR<br>MPC-68 | PWR<br>MPC-24 |
|-------------------------------------------------|---------------|---------------|
| PHYSICAL PARAMETERS:                            |               |               |
| Max. assembly width <sup>†</sup> (in.)          | 5.62          | 8.42          |
| Max. assembly length <sup>†</sup> (in.)         | 102.5         | 138.8         |
| Max. assembly weight <sup>++</sup> (lb.)        | 400           | 1421          |
| Max. active fuel length <sup>†</sup> (in.)      | 83            | 122           |
| RADIOLOGICAL AND THERMAL CHAR                   | ACTERISTICS:  |               |
| Max. heat generation (W)                        | 95            | 710           |
| Min. cooling time (yr)                          | 10            | 8             |
| Max. initial enrichment (wt.% <sup>235</sup> U) | 4.0           | 4.0           |
| Max. average burnup (MWD/MTU)                   | 22,500        | 40,000        |

#### DESIGN CHARACTERISTICS FOR INTACT STAINLESS STEEL CLAD FUEL ASSEMBLIES

<sup>†</sup> Unirradiated nominal dimensions are shown.

<sup>††</sup> Fuel assembly weight including hardware based on DOE MPC DPS [2.1.6].

| Fuel Assembly<br>Type | Assembly<br>Length<br>w/o C.C. <sup>†</sup><br>(in.) | Location<br>of Active<br>Fuel from<br>Bottom<br>(in.) | Max.<br>Active<br>Fuel<br>Length<br>(in.) | Upper<br>Fuel<br>Spacer<br>Length<br>(in.) | Lower<br>Fuel<br>Spacer<br>Length<br>(in.) |
|-----------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|
| CE 14x14              | 157                                                  | 4.1                                                   | 137                                       | 9.5                                        | 10.0                                       |
| CE 16x16              | 176.8                                                | 4.7                                                   | 150                                       | 0                                          | 0                                          |
| BW 15x15              | 165.7                                                | 8.4                                                   | 141.8                                     | 6.7                                        | 4.1                                        |
| W 17x17 OFA           | 159.8                                                | 3.7                                                   | 144                                       | 8.2                                        | 8.5                                        |
| W 17x17 Std           | 159.8                                                | 3.7                                                   | 144                                       | 8.2                                        | 8.5                                        |
| W 17x17 V5H           | 160.1                                                | 3.7                                                   | 144                                       | 7.9                                        | 8.5                                        |
| W 15x15               | 159.8                                                | 3.7                                                   | 144                                       | 8.2                                        | 8.5                                        |
| W 14x14 Std           | 159.8                                                | 3.7                                                   | 145.2                                     | 9.2                                        | 7.5                                        |
| W 14x14 OFA           | 159.8                                                | 3.7                                                   | 144                                       | 8.2                                        | 8.5                                        |
| Ft. Calhoun           | 146                                                  | 6.6                                                   | 128                                       | 10.25                                      | 20.25                                      |
| St. Lucie 2           | 158.2                                                | 5.2                                                   | 136.7                                     | 10.25                                      | 8.05                                       |
| B&W 15x15 SS          | 137.1                                                | 3.873                                                 | 120.5                                     | 19.25                                      | 19.25                                      |
| W 15x15 SS            | 137.1                                                | 3.7                                                   | 122                                       | 19.25                                      | 19.25                                      |
| W 14x14 SS            | 137.1                                                | 3.7                                                   | 120                                       | 19.25                                      | 19.25                                      |

# PWR UPPER AND LOWER FUEL SPACER LENGTHS

ŧ

C.C. is an abbreviation for Control Components.

\_\_\_\_

#### BWR UPPER AND LOWER FUEL SPACER LENGTHS

| Fuel for Reactor<br>Type                       | Assembly<br>Length (in.) | Location of<br>Active Fuel<br>from Bottom<br>(in.) | Max. Active<br>Fuel Length<br>(in.) | Upper Fuel<br>Spacer<br>Length (in.) | Lower Fuel<br>Spacer<br>Length (in.) |
|------------------------------------------------|--------------------------|----------------------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|
| GE/2-3                                         | 171.2                    | 7.3                                                | 150                                 | 4.8                                  | 0                                    |
| GE/4-6                                         | 176.2                    | 7.3                                                | 150                                 | 0                                    | 0                                    |
| Dresden 1                                      | 134.4                    | 11.2                                               | 110                                 | 18.0                                 | 23.6                                 |
| Humboldt Bay                                   | 95.0                     | 8.0                                                | 79                                  | 40.5                                 | 40.5                                 |
| Dresden 1<br>Damaged Fuel or<br>Fuel Debris    | 144.5 <sup>†</sup>       | 11.2                                               | 110                                 | 17.0                                 | 14.5                                 |
| Humboldt Bay<br>Damaged Fuel or<br>Fuel Debris | 105.5 <sup>†</sup>       | 8.0                                                | 79                                  | 35.25                                | 35.25                                |
| LaCrosse                                       | 102.5                    | 10.5                                               | 83                                  | 37.0                                 | 37.5                                 |

†

Fuel assembly length includes the damaged fuel container.

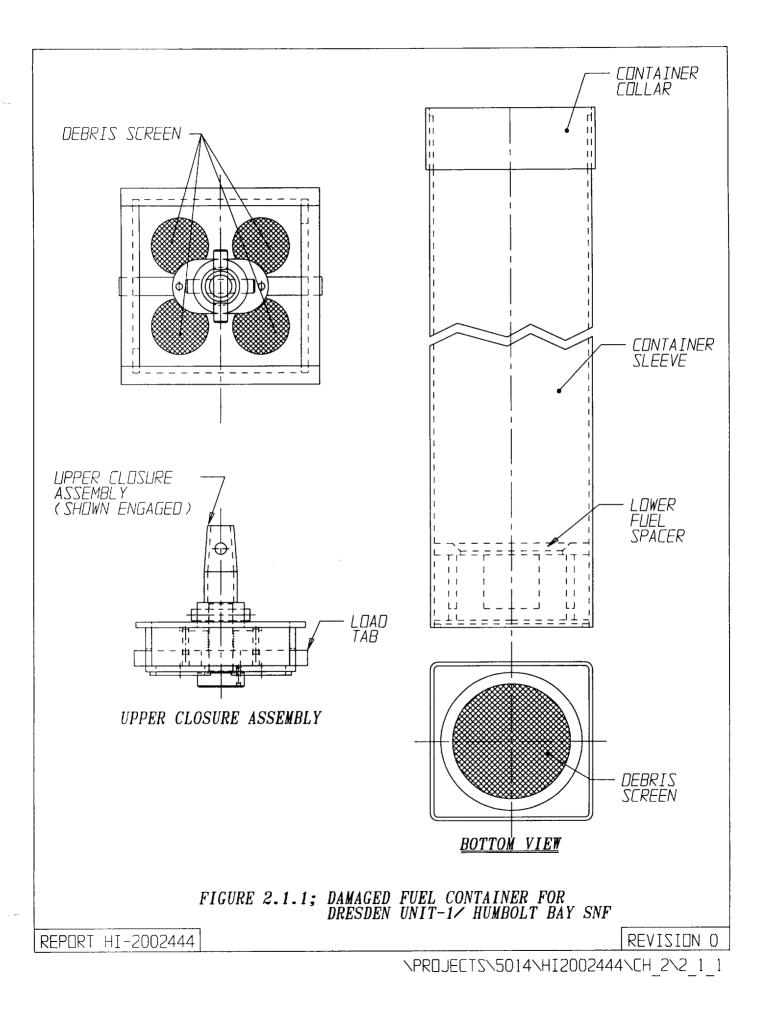
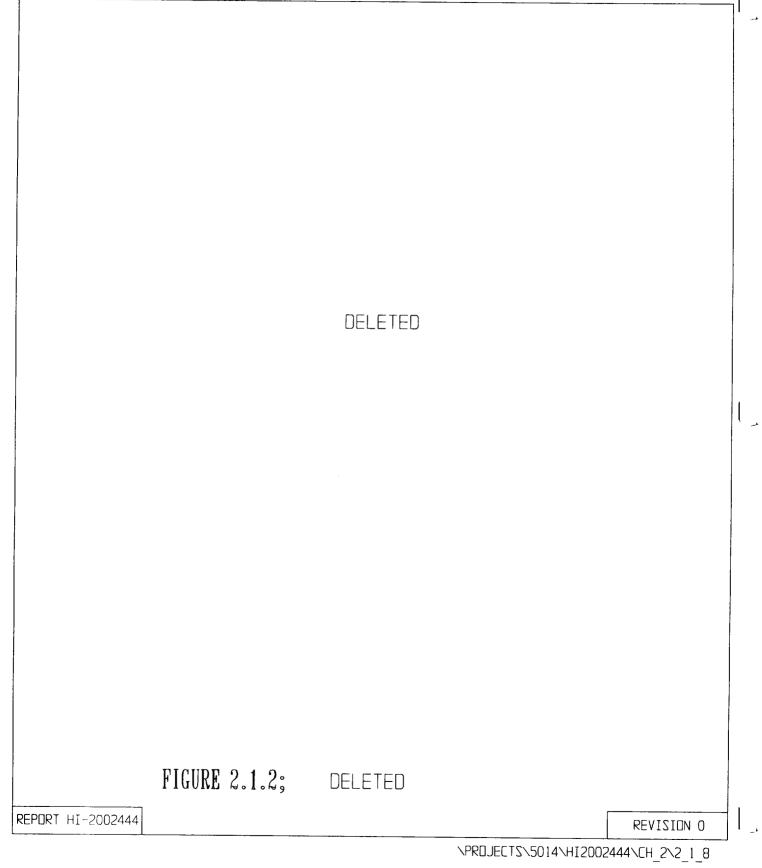

|          | PWR DISTRIBUTION                                                       | •                                 |  |
|----------|------------------------------------------------------------------------|-----------------------------------|--|
| Interval | Axial Distance From Bottom of Active Fuel<br>(% of Active Fuel Length) | tive Fuel Normalized Distribution |  |
| 1        | 0% to 4-1/6%                                                           | 0.5485                            |  |
| 2        | 4-1/6% to 8-1/3%                                                       | 0.8477                            |  |
| 3        | 8-1/3% to 16-2/3%                                                      | 1.0770                            |  |
| 4        | 16-2/3% to 33-1/3%                                                     | 1.1050                            |  |
| 5        | 33-1/3% to 50%                                                         | 1.0980                            |  |
| 6        | 50% to 66-2/3%                                                         | 1.0790                            |  |
| 7        | 66-2/3% to 83-1/3%                                                     | 1.0501                            |  |
| 8        | 83-1/3% to 91-2/3%                                                     | 0.9604                            |  |
| 9        | 91-2/3% to 95-5/6%                                                     | 0.7338                            |  |
| 10       | 95-5/6% to 100%                                                        | 0.4670                            |  |
|          | BWR DISTRIBUTION <sup>#</sup>                                          |                                   |  |
| Interval | Axial Distance From Bottom of Active Fuel<br>(% of Active Fuel Length) | Normalized Distribution           |  |
| 1        | 0% to 4-1/6%                                                           | 0.2200                            |  |
| 2        | 4-1/6% to 8-1/3%                                                       | 0.7600                            |  |
| 3        | 8-1/3% to 16-2/3%                                                      | 1.0350                            |  |
| 4        | 16-2/3% to 33-1/3%                                                     | 1.1675                            |  |
| 5        | 33-1/3% to 50%                                                         | 1.1950                            |  |
| 6        | 50% to 66-2/3%                                                         | 1.1625                            |  |
| 7        | 66-2/3% to 83-1/3%                                                     | 1.0725                            |  |
| 8        | 83-1/3% to 91-2/3%                                                     | 0.8650                            |  |
| 9        | 91-2/3% to 95-5/6%                                                     | 0.6200                            |  |
| 10       | 95-5/6% to 100%                                                        | 0.2200                            |  |

Table 2.1.11 NORMALIZED DISTRIBUTION BASED ON BURNUP PROFILE

<sup>†</sup> Reference 2.1.7

<sup>††</sup> Reference 2.1.8


I.



Г

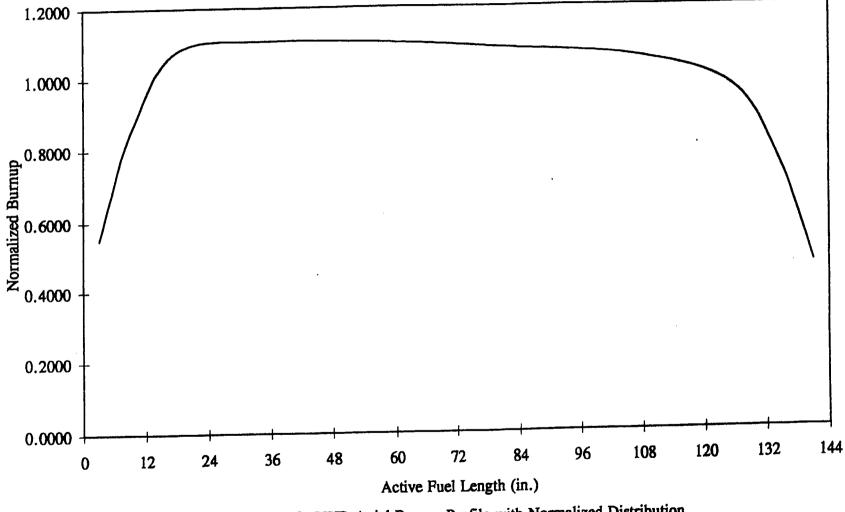
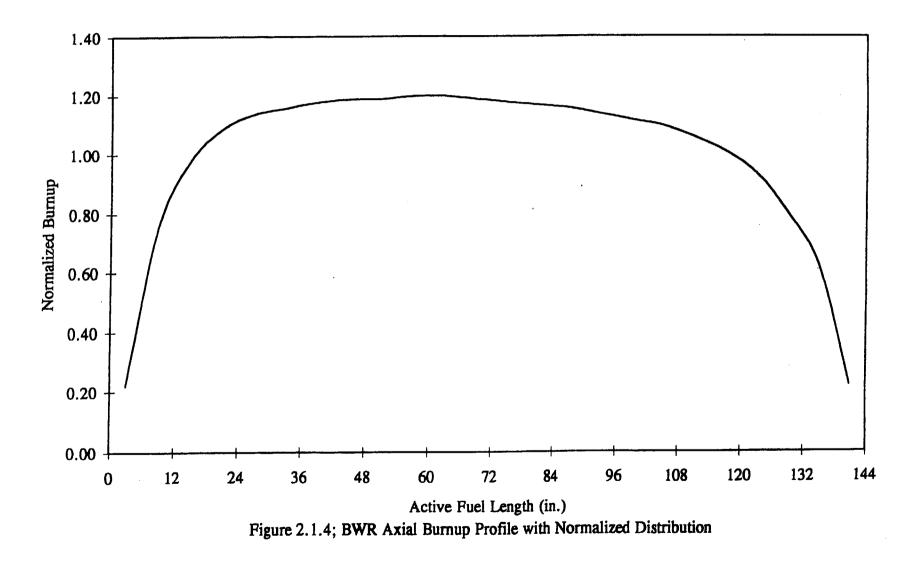
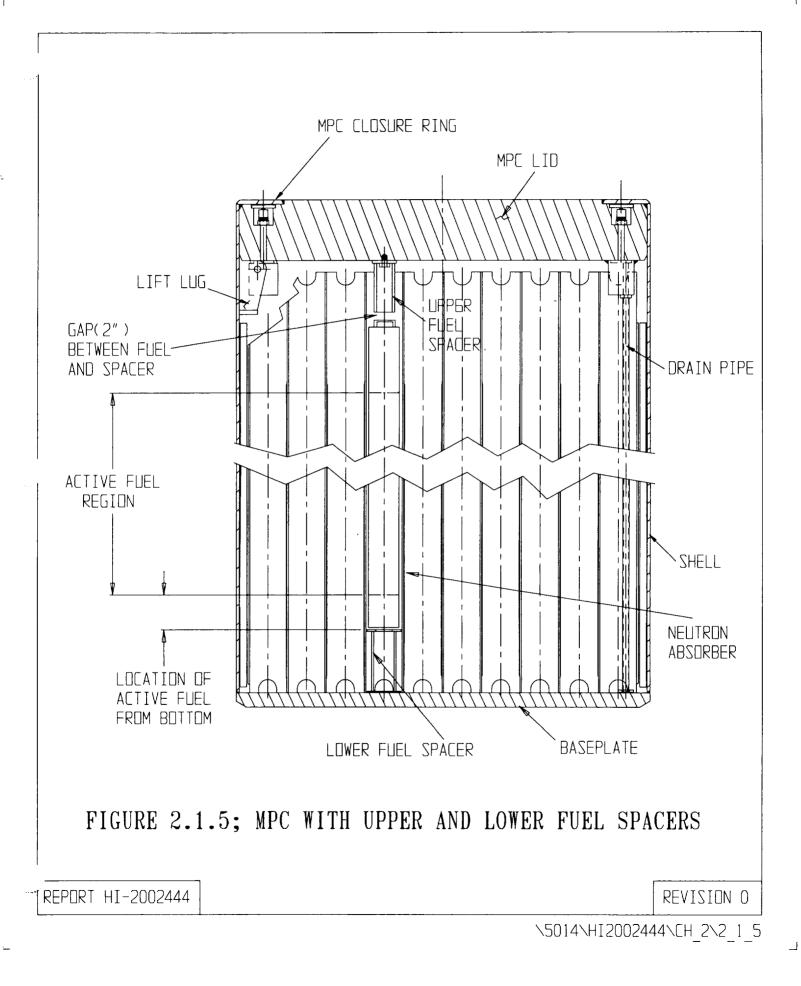
L

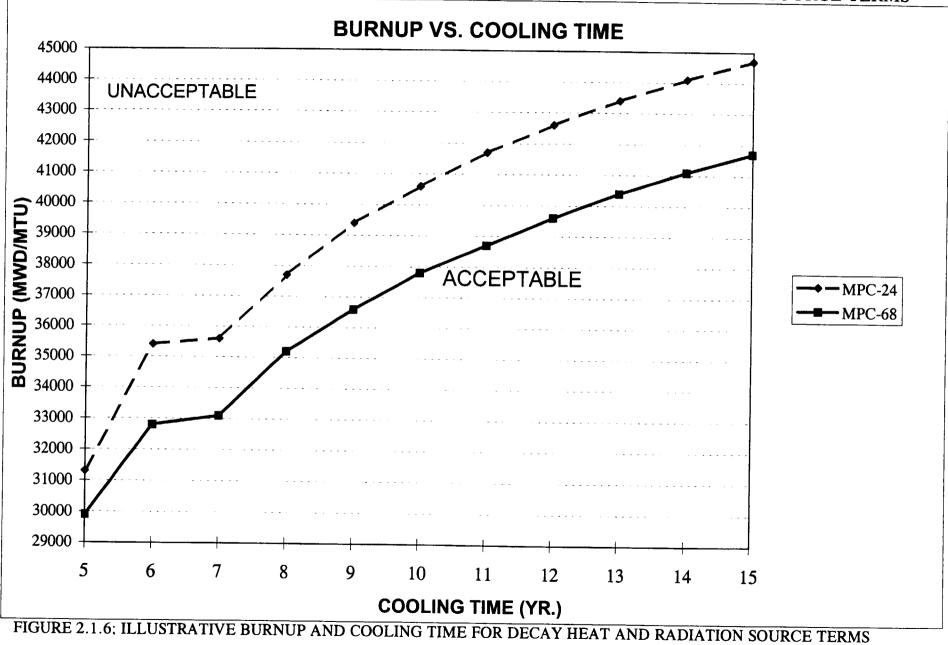
\_\_\_\_



Г

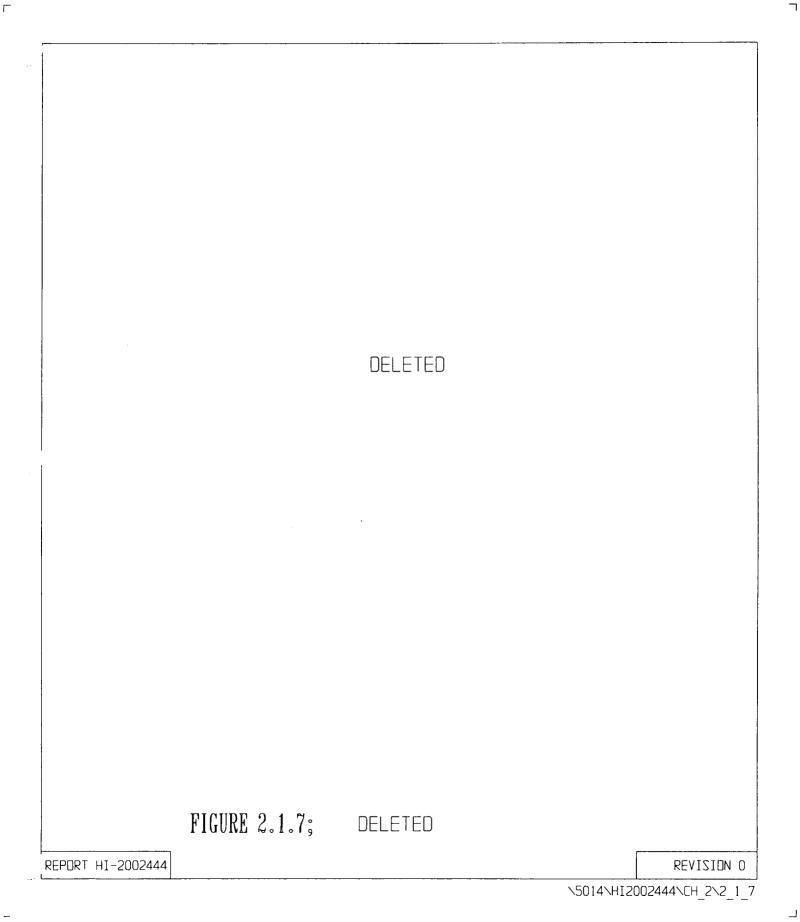
**PWR Axial Burnup Distribution** 

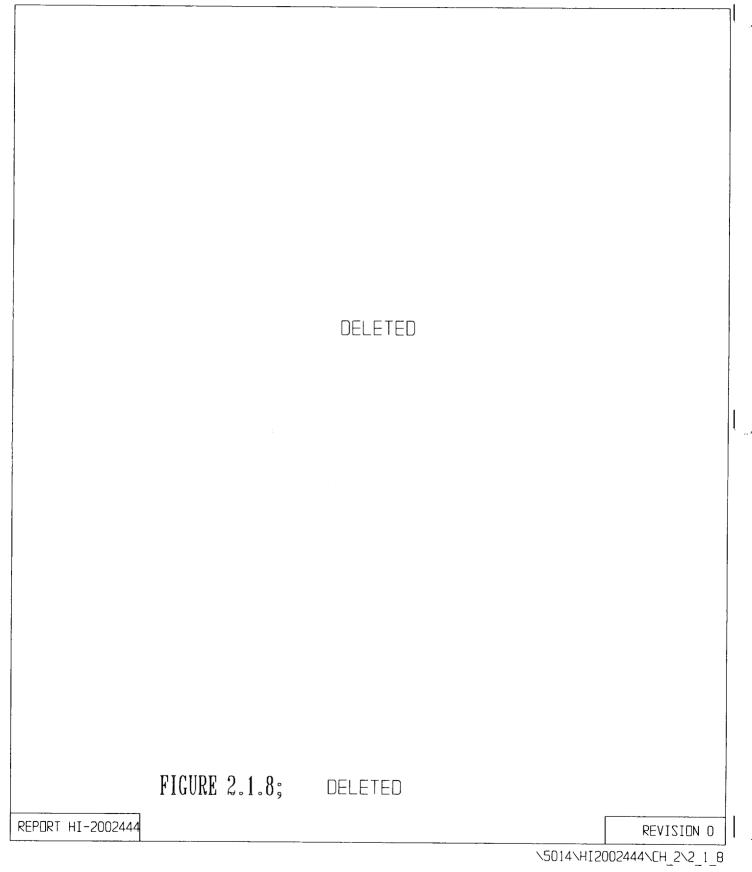






Figure 2.1.3; PWR Axial Burnup Profile with Normalized Distribution

**BWR Axial Burnup Distribution** 




REV. 0






# ILLUSTRATIVE BURNUP AND COOLING TIME FOR DECAY HEAT AND RADIATION SOURCE TERMS

HI-STORM FSAR





Γ

# 2.2 HI-STORM 100 DESIGN CRITERIA

The HI-STORM 100 System is engineered for unprotected outside storage for the duration of its design life. Accordingly, the cask system is designed to withstand normal, off-normal, and environmental phenomena and accident conditions of storage. Normal conditions include the conditions that are expected to occur regularly or frequently in the course of normal operation. Off-normal conditions include those infrequent events that could reasonably be expected to occur during the lifetime of the cask system. Environmental phenomena and accident conditions include events that are postulated because their consideration establishes a conservative design basis.

Normal condition loads act in combination with all other loads (off-normal or environmental phenomena/accident). Off-normal condition loads and environmental phenomena and accident condition loads are not applied in combination. However, loads which occur as a result of the same phenomena are applied simultaneously. For example, the tornado winds loads are applied in combination with the tornado missile loads.

In the following subsections, the design criteria are established for normal, off-normal, and accident conditions for storage. Loads that require consideration under each condition are identified and the design criteria discussed. Based on consideration of the applicable requirements of the system, the following loads are identified:

Normal Condition: Dead Weight, Handling, Pressure, Temperature, Snow

<u>Off-Normal Condition:</u> Pressure, Temperature, Leakage of One Seal, Partial Blockage of Air Inlets, Off-Normal Handling of HI-TRAC

Accident Condition: Handling Accident, Tip-Over, Fire, Partial Blockage of MPC Basket Vent Holes, Tornado, Flood, Earthquake, Fuel Rod Rupture, Confinement Boundary Leakage, Explosion, Lightning, Burial Under Debris, 100% Blockage of Air Inlets, Extreme Environmental Temperature

Each of these conditions and the applicable loads are identified with applicable design criteria established. Design criteria are deemed to be satisfied if the specified allowable limits are not exceeded.

- 2.2.1 <u>Normal Condition Design Criteria</u>
- 2.2.1.1 Dead Weight

The HI-STORM 100 System must withstand the static loads due to the weights of each of its components, including the weight of the HI-TRAC with the loaded MPC atop the storage overpack.

# 2.2.1.2 <u>Handling</u>

The HI-STORM 100 System must withstand loads experienced during routine handling. Normal handling includes:

- i. vertical lifting and transfer to the ISFSI of the HI-STORM 100 Overpack with loaded MPC
- ii. lifting, upending/downending, and transfer to the ISFSI of the HI-TRAC with loaded MPC in the vertical or horizontal position
- iii. lifting of the loaded MPC into and out of the HI-TRAC, HI-STORM, or HI-STAR Overpack

The loads shall be increased by 15% to include any dynamic effects from the lifting operations as directed by CMAA #70 [2.2.16].

Handling operations of the loaded HI-TRAC transfer cask or HI-STORM 100 Overpack is limited to ambient temperatures above 0EF. This limitation is specified to ensure that a sufficient safety margin exists before brittle fracture might occur during handling operations. Subsection 3.1.2.3 provides the demonstration of the adequacy of the HI-TRAC transfer cask and the HI-STORM 100 Overpack for use during handling operations at a minimum service temperature of 0° F.

Lifting attachments and devices shall meet the requirements of ANSI N14.6<sup>†</sup> [2.2.3].

# 2.2.1.3 <u>Pressure</u>

The MPC internal pressure is dependent on the initial volume of cover gas (helium), the volume of fill gas in the fuel rods, the fraction of fission gas released from the fuel matrix, the number of fuel rods assumed to have ruptured, and temperature.

The normal condition MPC internal design pressure bounds the cumulative effects of the maximum fill gas volume, normal environmental ambient temperatures, the maximum MPC heat load, and an assumed 1% of the fuel rods ruptured with 100% of the fill gas and 30% of the significant radioactive gases (e.g., H<sup>3</sup>, Kr, and Xe) released in accordance with NUREG-1536.

Table 2.2.1 provides the design pressures for the HI-STORM 100 System.

ŧ

Ĺ

Yield and ultimate strength values used in the stress compliance demonstration per ANSI N14.6 shall utilize confirmed material test data through either independent coupon testing or material suppliers' CMTR or COC, as appropriate. To ensure consistency between the design and fabrication of a lifting component, compliance with ANSI N14.6 in this FSAR implies that the guidelines of ASME Section III, Subsection NF for Class 3 structures are followed for material procurement and testing, fabrication, and for NDE during manufacturing.

For the storage of damaged Dresden Unit 1 or Humboldt Bay BWR fuel assemblies or fuel debris (Assembly Classes 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A) in a damaged fuel container, it is conservatively assumed that 100% of the fuel rods are ruptured with 100% of the rod fill gas and 30% of the significant radioactive gases (e.g.,  $H^3$ , Kr, and Xe) released for both normal and offnormal conditions. This condition is bounded by the pressure calculation for design basis intact fuel with 100% of the fuel rods ruptured in all 68 of the BWR fuel assemblies. It is shown in Chapter 4 that the normal condition design pressure is not exceeded with 100% of the fuel rods ruptured in all 68 of the design basis BWR fuel assemblies. Therefore, rupture of 100% of the fuel rods in the damaged fuel assemblies or fuel debris will not cause the MPC internal pressure to exceed the normal design pressure.

The MPC internal design pressure under accident conditions is discussed in Subsection 2.2.3.

The HI-STORM 100 Overpack and MPC external pressure is a function of environmental conditions which may produce a pressure loading. The normal and off-normal condition external design pressure is set at ambient standard pressure (1 atmosphere).

The HI-STORM 100 Overpack is not capable of retaining internal pressure due to its open design, and, therefore, no analysis is required or provided for the overpack internal pressure.

The HI-TRAC is not capable of retaining internal pressure due to its open design and, therefore, ambient and hydrostatic pressures are the only pressures experienced. Due to the thick steel walls of the HI-TRAC transfer cask, it is evident that the small hydrostatic pressure can be easily withstood; no analysis is required or provided for the HI-TRAC internal pressure. However, the HI-TRAC water jacket does experience internal pressure due to the heat-up of the water contained in the water jacket. Analysis is presented in Chapter 3 which demonstrates that the design pressure in Table 2.2.1 can be withstood by the water jacket and Chapter 4 demonstrates by analysis that the water jacket design pressure will not be exceeded. To provide an additional layer of safety, a pressure relief device set at the design pressure is provided, which ensures the pressure will not be exceeded.

### 2.2.1.4 Environmental Temperatures

To evaluate the long-term effects of ambient temperatures on the HI-STORM 100 System, an upper bound value on the annual average ambient temperatures for the continental United States is used. The normal temperature specified in Table 2.2.2 is bounding for all reactor sites in the contiguous United States. The "normal" temperature set forth in Table 2.2.2 is intended to ensure that it is greater than the annual average of ambient temperatures at any location in the continental United States. In the northern region of the U.S., the design basis "normal" temperature used in this FSAR will be exceeded only for brief periods, whereas in the southern U.S, it may be straddled daily in summer months. Inasmuch as the sole effect of the "normal" temperature is on the computed fuel cladding temperature to establish long-term fuel integrity, it should not lie below the time averaged yearly mean for the ISFSI site. Previously licensed cask systems have employed lower "normal" temperatures (viz. 75°F in Docket 72-1007) by utilizing national meteorological data. Likewise, within the thermal analysis, a conservatively assumed soil temperature of the value specified in Table 2.2.2 is utilized to bound the annual average soil temperatures for the continental United States. The 1987 ASHRAE Handbook (HVAC Systems and Applications) reports average earth temperatures, from 0 to 10 feet below grade, throughout the continental United States. The highest reported annual average value for the continental United States is 77°F for Key West, Florida. Therefore, this value is specified in Table 2.2.2 as the bounding soil temperature.

Confirmation of the site-specific annual average ambient temperature and soil temperature is to be performed by the licensee, in accordance with 10CFR72.212. The annual average temperature is combined with insolation in accordance with 10CFR71.71 averaged over 24 hours to establish the normal condition temperatures in the HI-STORM 100 System.

# 2.2.1.5 Design Temperatures

The ASME Boiler and Pressure Vessel Code (ASME Code) requires that the value of the vessel design temperature be established with appropriate consideration for the effect of heat generation internal or external to the vessel. The decay heat load from the spent nuclear fuel is the internal heat generation source for the HI-STORM 100 System. The ASME Code (Section III, Paragraph NCA-2142) requires the Design Temperature to be set at or above the maximum through thickness mean metal temperature of the pressure part under normal service (Level A) condition. Consistent with the terminology of NUREG-1536, we refer to this temperature as the "Design Temperature for Normal Conditions". Conservative calculations of the steady-state temperature field in the HI-STORM 100 System, under assumed environmental normal temperatures with the maximum decay heat load, result in HI-STORM 100 System defined in Table 2.2.3.

Maintaining fuel rod cladding integrity is also a design consideration. The maximum fuel rod cladding temperature limits for normal conditions are calculated by the DCCG (Diffusion Controlled Cavity Growth) methodology outlined in the LLNL report [2.2.14] in accordance with NUREG-1536. However, for conservatism, the PNL methodology outlined in PNL report [2.0.3] produces a lower fuel cladding temperature, which is used to establish the *permissible* fuel cladding temperature limits, which are used to determine the allowable fuel decay heat load. Maximum fuel rod stainless steel cladding temperature limits recommended in EPRI report [2.2.13] are greater than the long-term allowable zircaloy fuel cladding temperature limits. However, in this FSAR the long-term zircaloy fuel cladding temperature limits are conservatively applied to the stainless steel clad fuel. The short term temperature limits for zircaloy and stainless steel cladding are taken from references [2.2.15] and [2.2.13], respectively. A detailed description of the maximum fuel rod cladding temperature limits determination is provided in Section 4.3.

# 2.2.1.6 Snow and Ice

The HI-STORM 100 System must be capable of withstanding pressure loads due to snow and ice. ASCE 7-88 (formerly ANSI A58.1) [2.2.2] provides empirical formulas and tables to compute the

effective design pressure on the overpack due to the accumulation of snow for the contiguous U.S. and Alaska. Typical calculated values for heated structures such as the HI-STORM 100 System range from 50 to 70 pounds per square foot. For conservatism, the snow pressure loading is set at a level in Table 2.2.8 which bounds the ASCE 7-88 recommendation.

# 2.2.2 Off-Normal Conditions Design Criteria

As the HI-STORM 100 System is passive, loss of power and instrumentation failures are not defined as off-normal conditions. The off-normal condition design criteria are defined in the following subsections.

A discussion of the effects of each off-normal condition is provided in Section 11.1. Section 11.1 also provides the corrective action for each off-normal condition. The location of the detailed analysis for each event is referenced in Section 11.1.

# 2.2.2.1 <u>Pressure</u>

The HI-STORM 100 System must withstand loads due to off-normal pressure. The off-normal condition MPC internal design pressure bounds the cumulative effects of the maximum fill gas volume, off-normal environmental ambient temperatures, the maximum MPC heat load, and an assumed 10% of the fuel rods ruptured with 100% of the fill gas and 30% of the significant radioactive gases (e.g., H<sup>3</sup>, Kr, and Xe) released in accordance with NUREG-1536. For conservatism, the MPC normal internal design pressure bounds both normal and off-normal conditions. Therefore, the normal and off-normal condition MPC internal pressures are set equal for analysis purposes.

# 2.2.2.2 Environmental Temperatures

The HI-STORM 100 System must withstand off-normal environmental temperatures. The off-normal environmental temperatures are specified in Table 2.2.2. The lower bound temperature occurs with no solar loads and the upper bound temperature occurs with steady- state insolation. Each bounding temperature is assumed to persist for a duration sufficient to allow the system to reach steady-state temperatures.

Limits on the peaks in the time-varying ambient temperature at an ISFSI site is recognized in the FSAR in the specification of the off-normal temperatures. The lower bound off-normal temperature is defined as the minimum of the 72-hour average of the ambient temperature at an ISFSI site. Likewise, the upper bound off-normal temperature is defined by the maximum of 72-hour average of the ambient temperatures. The lower and upper bound off-normal temperatures listed in Table 2.2.2 are intended to cover all ISFSI sites in the continent U.S. The 72-hour average of temperature used in the definition of the off-normal temperature recognizes the considerable thermal inertia of the HI-

STORM 100 storage system which reduces the effect of undulations in instantaneous temperature on the internals of the multi-purpose canister.

# 2.2.2.3 Design Temperatures

In addition to the normal design temperature, we also define an "off-normal/accident condition temperature" pursuant to the provisions of NUREG-1536 and Regulatory Guide 3.61. This is, in effect, the short-term temperature which may exist during a transition state or a transient event (examples of such instances are short-term temperature excursion during canister vacuum drying and backfilling operations (transition state) and fire (transient event)). The off-normal/accident design temperatures of Table 2.2.3 are set down to bound the maximax (maximum in time and space) value of the thru-thickness average temperature of the structural or non-structural part, as applicable, during a short-term event. These enveloping values, therefore, will bound the maximum temperature reached anywhere in the part, excluding skin effects during or immediately after, a short-term event.

# 2.2.2.4 Leakage of One Seal

The HI-STORM 100 System must withstand leakage of one seal in the radioactive material confinement boundary.

The confinement boundary is defined by the MPC shell, baseplate, MPC lid, port cover plates, and closure ring. Most confinement boundary welds are inspected by radiography or ultrasonic examination. Field welds are examined by the liquid penetrant method on the root and final pass. In addition to liquid penetrant examination, the MPC lid-to-shell weld is leakage tested, hydrostatic tested, and volumetrically examined or multi-pass liquid penetrant examination. The vent and drain port cover plates are leakage tested in addition to the liquid penetrant examination. These inspection and testing techniques are performed to verify the integrity of the confinement boundary. Although leakage of one seal is not a credible accident, it is analyzed in Chapter 11.

# 2.2.2.5 Partial Blockage of Air Inlets

The HI-STORM 100 System must withstand the partial blockage of the overpack air inlets. This event is conservatively defined as a complete blockage of one-half (2) of the four air inlets. Because the overpack air inlets and outlets are covered by fine mesh steel screens, located 90E apart, and inspected routinely (or alternatively, exit vent air temperature monitored), it is unlikely that all vents could become blocked by blowing debris, animals, etc. during normal and off-normal operations. One-half of the air inlets are conservatively assumed to be completely blocked to demonstrate the inherent thermal stability of the HI-STORM 100 System.

# 2.2.2.6 Off-Normal HI-TRAC Handling

During upending and/or downending of the HI-TRAC transfer cask, the total lifted weight is distributed among both the upper lifting trunnions and the lower pocket trunnions. Each of the four

trunnions on the HI-TRAC therefore supports approximately one-quarter of the total weight. This even distribution of the load would continue during the entire rotation operation.

If the lifting device is allowed to "go slack", the total weight would be applied to the lower pocket trunnions only. Under this off-normal condition, the pocket trunnions would each be required to support one-half of the total weight, doubling the load per trunnion. This condition is analyzed to demonstrate that the pocket trunnions possess sufficient strength to support the increased load under this off-normal condition.

# 2.2.3 Environmental Phenomena and Accident Condition Design Criteria

Environmental phenomena and accident condition design criteria are defined in the following subsections.

The minimum acceptance criteria for the evaluation of the accident conditions are that the MPC confinement boundary maintains radioactive material confinement, the MPC fuel basket structure maintains the fuel contents subcritical, the stored SNF can be retrieved by normal means, and the system provides adequate shielding.

A discussion of the effects of each environmental phenomenon and accident condition is provided in Section 11.2. The consequences of each accident or environmental phenomenon are evaluated against the requirements of 10CFR72.106 and 10CFR20. Section 11.2 also provides the corrective action for each event. The location of the detailed analysis for each event is referenced in Section 11.2.

# 2.2.3.1 Handling Accident

The HI-STORM 100 System must withstand loads due to a handling accident. Even though the HI-STORM 100 System will be lifted in accordance with approved, written procedures and will use lifting equipment which complies with ANSI N14.6-1993 [2.2.3], certain drop events are considered herein to demonstrate the defense-in-depth features of the design.

The loaded HI-STORM 100 Overpack will be lifted so that the bottom of the cask is at a height less than the vertical lift limit (see Table 2.2.8) above the ground. For conservatism, the postulated drop event assumes that the loaded HI-STORM 100 Overpack falls freely from the vertical lift limit height before impacting a thick reinforced concrete pad. The deceleration of the MPC must be maintained below 60g's under axial loading to ensure the analysis performed in the HI-STAR Safety Analysis Reports [2.2.4 and 2.2.5] bounds the HI-STORM 100 Overpack vertical handling accident. Additionally, the overpack must continue to suitably shield the radiation emitted from the loaded MPC. The use of lifting equipment with redundant drop protection and lifting devices designed in accordance with the requirements specified in Section 2.3.3.1 to lift the loaded overpack will eliminate the lift height limit. The lift height limit is dependent on the characteristics of the impacting surface which are specified in Table 2.2.9. For site-specific conditions, which are not

encompassed by Table 2.2.9, the licensee shall evaluate the site-specific conditions to ensure that the drop accident loads do not exceed 45 g's. The methodology used in this alternative analysis shall be commensurate with the analyses in Appendix 3.A and shall be reviewed by the Certificate Holder.

The loaded HI-TRAC will be lifted so that the side of the cask is at a height less than the calculated horizontal lift height limit (see Table 2.2.8) above the ground, when lifted horizontally outside of the reactor facility. For conservatism, the postulated drop event assumes that the loaded HI-TRAC falls freely from the horizontal lift height limit before impact. Analysis is provided which demonstrates that the HI-TRAC continues to suitably shield the radiation emitted from the loaded MPC, and that the HI-TRAC end plates (top lid and transfer lid) remain attached. Furthermore, the HI-TRAC inner shell is demonstrated by analysis to not deform sufficiently to affect retrieval of the MPC. The horizontal lift height limit is dependent on the characteristics of the impacting surface which are specified in Table 2.2.9. For site-specific conditions, which are not encompassed by Table 2.2.9, the licensee shall evaluate the site-specific conditions to ensure that the drop accident loads do not exceed 45 g's. The methodology used in this alternative analysis shall be commensurate with the analyses in Appendix 3.AN and shall be reviewed by the Certificate Holder. The use, during horizontal lifting of the loaded HI-TRAC outside of the reactor facilities, of lifting equipment with redundant drop protection and lifting devices designed in accordance with the requirements specified in Section 2.3.3.1, will eliminate the need for a horizontal lift height limit.

The loaded HI-TRAC, when lifted in the vertical position outside of the reactor facility shall be lifted by lifting equipment with redundant drop protection features and lifting devices designed in accordance with ANSI N14.6. Therefore, a vertical drop or tip-over is not a credible accident for the HI-TRAC transfer cask and no vertical lift height limit is provided. Likewise, while the loaded HI-TRAC is positioned atop the HI-STORM 100 Overpack for transfer of the MPC into the overpack, the lifting equipment will remain engaged with the lifting trunnions of the HI-TRAC transfer cask or suitable restraints will be provided to secure the HI-TRAC. This ensures that a tip-over or drop from atop the HI-STORM 100 Overpack is not a credible accident for the HI-TRAC transfer cask. This condition of use for the MPC transfer operations from the HI-TRAC transfer cask to the HI-STORM 100 Overpack is specified in the Technical Specifications in Chapter 12 and Subsection 2.3.3.1, and is included in the operating procedures of Chapter 8.

The loaded MPC is lowered into the HI-STORM or HI-STAR Overpacks or raised from the overpacks using the HI-TRAC transfer cask and a MPC lifting system designed to be single failure proof and lifting devices designed in accordance with ANSI N14.6. Therefore, the possibility of a loaded MPC falling freely from its highest elevation during the MPC transfer operations into the HI-STORM or HI-STAR Overpacks is not credible.

The magnitude of loadings imparted to the HI-STORM 100 System due to drop events is heavily influenced by the compliance characteristics of the impacted surface. The concrete pad design for storing the HI-STORM 100 System shall comply with Table 2.2.9 and shall be reviewed by the Certificate Holder to ensure that impactive and impulsive loads under accident events such as cask

drop and non-mechanistic tip-over are less than those calculated by the dynamic models used in the structural qualifications.

# 2.2.3.2 <u>Tip-Over</u>

The HI-STORM 100 System is demonstrated by analysis to remain kinematically stable under the design basis environmental phenomena (tornado, earthquake, etc.). However, the HI-STORM 100 Overpack and MPC shall also withstand impacts due to a hypothetical tip-over event. The structural integrity of a loaded HI-STORM 100 System after a tip-over onto a reinforced concrete pad is demonstrated by analysis. The cask tip-over is not postulated as an outcome of any environmental phenomenon or accident condition. The cask tip-over is a non-mechanistic event.

The ISFSI pad requirements are specified in Table 2.2.9.

# 2.2.3.3 <u>Fire</u>

The possibility of a fire accident near an ISFSI site is considered to be extremely remote due to the absence of significant combustible materials. The only credible concern is related to a transport vehicle fuel tank fire engulfing the loaded HI-STORM 100 Overpack or HI-TRAC transfer cask while it is being moved to the ISFSI.

The HI-STORM 100 System must withstand temperatures due to a fire event. The HI-STORM 100 Overpack and HI-TRAC transfer cask fire accidents for storage are conservatively postulated to be the result of the spillage and ignition of 50 gallons of combustible transporter fuel. The HI-STORM 100 Overpack and HI-TRAC transfer cask surfaces are considered to receive an incident radiation and forced convection heat flux from the fire. Table 2.2.8 provides the fire durations for the HI-STORM 100 Overpack and HI-TRAC transfer cask based on the amount of flammable materials assumed. The temperature of fire is assumed to be 1475°F in accordance with 10CFR71.73.

The accident condition design temperatures for the HI-STORM 100 System, and the fuel rod cladding limits are specified in Table 2.2.3. The specified fuel cladding temperature limits are based on the short-term temperature limit specified in reports [2.2.13 and 2.2.15].

# 2.2.3.4 Partial Blockage of MPC Basket Vent Holes

The HI-STORM 100 System is designed to withstand reduction of flow area due to partial blockage of the MPC basket vent holes. As the MPC basket vent holes are internal to the confinement barrier, the only events that could partially block the vents are fuel cladding failure and debris associated with this failure, or the collection of crud at the base of the stored SNF assembly. The HI-STORM 100 System maintains the SNF in an inert environment with fuel rod cladding temperatures below accepted values (Table 2.2.3). Therefore, there is no credible mechanism for gross fuel cladding degradation during storage in the HI-STORM 100. For the storage of damaged BWR fuel assemblies or fuel debris, the assemblies and fuel debris will be placed in damaged fuel containers prior to

placement in the MPC. The damaged fuel container is equipped with fine mesh screens which ensure that the damaged fuel and fuel debris will not escape to block the MPC basket vent holes. In addition, each MPC will be loaded once for long-term storage and, therefore, buildup of crud in the MPC due to numerous loadings is precluded. Using crud quantities reported in an Empire State Electric Energy Research Corporation Report [2.2.6], a layer of crud of conservative depth is assumed to partially block the MPC basket vent holes. The crud depths for the different MPCs are listed in Table 2.2.8.

# 2.2.3.5 <u>Tornado</u>

The HI-STORM 100 System must withstand pressures, wind loads, and missiles generated by a tornado. The prescribed design basis tornado and wind loads for the HI-STORM 100 System are consistent with NRC Regulatory Guide 1.76 [2.2.7], ANSI 57.9 [2.2.8], and ASCE 7-88 [2.2.2]. Table 2.2.4 provides the wind speeds and pressure drops which the HI-STORM 100 Overpack must withstand while maintaining kinematic stability. The pressure drop is bounded by the accident condition MPC external design pressure.

The kinematic stability of the HI-STORM 100 Overpack, and continued integrity of the MPC confinement boundary, while within the storage overpack or HI-TRAC transfer cask, must be demonstrated under impact from tornado-generated missiles in conjunction with the wind loadings. Standard Review Plan (SRP) 3.5.1.4 of NUREG-0800 [2.2.9] stipulates that the postulated missiles include at least three objects: a massive high kinetic energy missile which deforms on impact (large missile); a rigid missile to test penetration resistance (penetrant missile); and a small rigid missile of a size sufficient to pass through any openings in the protective barriers (micro-missile). SRP 3.5.1.4 suggests an automobile for a large missile, a rigid solid steel cylinder for the penetrant missile, and a solid sphere for the small rigid missile, all impacting at 35% of the maximum horizontal wind speed of the design basis tornado. Table 2.2.5 provides the missile data used in the analysis, which is based on the above SRP guidelines. The effects of a large tornado missile are considered to bound the effects of a light general aviation airplane crashing on an ISFSI facility.

During horizontal handling of the loaded HI-TRAC transfer cask, tornado missile shields shall be placed at either end of the HI-TRAC to prevent tornado missiles from impacting either end of the HI-TRAC. The tornado missile shield shall be designed such that the large tornado missile cannot impact the bottom or top of the loaded HI-TRAC, while in the horizontal position. Also, the missile shield positioned to protect the top of the HI-TRAC shall be designed to preclude the penetrant missile and micro-missile from passing through the penetration in the HI-TRAC top lid, while in the horizontal position. With the tornado missile shields in place the impacting of a large tornado missile on either end of the loaded HI-TRAC or the penetrant missile or micro-missile entering the penetration of the top lid is not credible. Therefore, no analyses of these impacts are provided.

# 2.2.3.6 <u>Flood</u>

The HI-STORM 100 System must withstand pressure and water forces associated with a flood. Resultant loads on the HI-STORM 100 System consist of buoyancy effects, static pressure loads, and velocity pressure due to water velocity. The flood is assumed to deeply submerge the HI-STORM 100 System (see Table 2.2.8). The flood water depth is based on the hydrostatic pressure which is bounded by the MPC external pressure stated in Table 2.2.1.

It must be shown that the MPC does not collapse, buckle, or allow water in-leakage under the hydrostatic pressure from the flood.

The flood water is assumed to be nonstagnant. The maximum allowable flood water velocity is determined by calculating the equivalent pressure loading required to slide or tip over the HI-STORM 100 System. The design basis flood water velocity is stated in Table 2.2.8 and the resultant differential pressure on the overpack is stated in Table 2.2.1. Site-specific safety reviews by the licensee must confirm that flood parameters do not exceed the flood depth, slide, or tip-over forces.

If the flood water depth exceeds the elevation of the top of the HI-STORM 100 Overpack inlet vents, then the cooling air flow would be blocked. The flood water may also carry debris which may act to block the air inlets of the HI-STORM 100 Overpack. Blockage of the air inlets is addressed in Subsection 2.2.3.12.

Most reactor sites are hydrologically characterized as required by Paragraph 100.10(C) of 10CFR100 and further articulated in Reg. Guide 1.59, "Design Basis Floods for Nuclear Power Plants" and Reg. Guide 1.102, "Flood Protection for Nuclear Power Plants." It is assumed that a complete characterization of the ISFSI's hydrosphere including the effects of hurricanes, floods, seiches and tsunamis is available to enable a site-specific evaluation of the HI-STORM 100 System for kinematic stability. An evaluation for tsunamis<sup>†</sup> for certain coastal sites should also be performed to demonstrate that sliding or tip-over will not occur and that the maximum flood depth will not be exceeded.

Analysis for each site for such transient hydrological loadings must be made for that site. It is expected that the plant licensee will perform this evaluation under the provisions of 10CFR72.212.

# 2.2.3.7 <u>Seismic Design Loadings</u>

The HI-STORM 100 must withstand loads arising due to a seismic event and must be shown not to tip over during a seismic event. Subsection 3.4.7 contains calculations based on conservative static "incipient tipping" calculations which demonstrate static stability. The calculations in Section 3.4.7

<sup>&</sup>lt;sup>†</sup> A tsunami is an ocean wave from seismic or volcanic activity or from submarine landslides. A tsunami may be the result of nearby or distant events. A tsunami loading may exist in combination with wave splash and spray, storm surge and tides.

result in the values reported in Table 2.2.8, which provide the maximum horizontal zero period acceleration (ZPA) versus vertical acceleration multiplier above which static incipient tipping would occur. This conservatively assumes the peak acceleration values of each of the two horizontal earthquake components occur simultaneously. The maximum horizontal ZPA provided in Table 2.2.8 is the vector sum of two horizontal earthquakes.

# 2.2.3.8 <u>100% Fuel Rod Rupture</u>

The HI-STORM 100 System must withstand loads due to 100% fuel rod rupture. For conservatism, 100 percent of the fuel rods are assumed to rupture with 100 percent of the fill gas and 30% of the significant radioactive gases (e.g., H<sup>3</sup>, Kr, and Xe) released in accordance with NUREG-1536.

# 2.2.3.9 <u>Confinement Boundary Leakage</u>

No credible scenario has been identified that would cause failure of the confinement system. To demonstrate the overall safety of the HI-STORM 100 System, the largest test leakage rate for the confinement boundary plus 50% for conservatism is assumed as the maximum credible confinement boundary leakage rate and 100 percent of the fuel rods are assumed to have failed. Under this accident condition, doses to an individual located at the boundary of the controlled area are calculated.

# 2.2.3.10 <u>Explosion</u>

The HI-STORM 100 System must withstand loads due to an explosion. The accident condition MPC external pressure and overpack pressure differential specified in Table 2.2.1 bounds all credible external explosion events. There are no credible internal explosive events since all materials are compatible with the various operating environments, as discussed in Section 3.4.1. The MPC is composed of stainless steel, Boral, and aluminum alloy 1100, all of which have a long proven history of use in fuel pools at nuclear power plants. For these materials there is no credible cause for an internal explosive event.

# 2.2.3.11 Lightning

The HI-STORM 100 System must withstand loads due to lightning. The effect of lightning on the HI-STORM 100 System is evaluated in Chapter 11.

# 2.2.3.12 Burial Under Debris

The HI-STORM 100 System must withstand burial under debris. Such debris may result from floods, wind storms, or mud slides. Mud slides, blowing debris from a tornado, or debris in flood water may result in duct blockage, which is addressed in Subsection 2.2.3.13. The thermal effects of burial under debris on the HI-STORM 100 System is evaluated in Chapter 11. Siting of the ISFSI pad shall

1

ensure that the storage location is not located near shifting soil. Burial under debris is a highly unlikely accident, but is analyzed in this FSAR.

# 2.2.3.13 <u>100% Blockage of Air Inlets</u>

For conservatism, this accident is defined as a complete blockage of all four bottom air inlets. Such a blockage may be postulated to occur during accident events such as a flood or tornado with blowing debris. The HI-STORM 100 System must withstand the temperature rise as a result of 100% blockage of the air inlets and outlets. The fuel cladding temperature must be shown to remain below the short term temperature limit specified in Table 2.2.3.

# 2.2.3.14 Extreme Environmental Temperature

The HI-STORM 100 System must withstand extreme environmental temperatures. The extreme accident level temperature is specified in Table 2.2.2. The extreme accident level temperature occurs with steady-state insolation. This temperature is assumed to persist for a duration sufficient to allow the system to reach steady-state temperatures. The HI-STORM 100 Overpack and MPC have a large thermal inertia. Therefore, this temperature is assumed to persist over three days (3-day average).

# 2.2.4 <u>Applicability of Governing Documents</u>

The ASME Boiler and Pressure Vessel Code (ASME Code), 1995 Edition, with Addenda through 1997 [2.2.1], is the governing code for the structural design of the MPC, the metal structure of the HI-STORM 100 Overpack, and the HI-TRAC transfer cask. The MPC enclosure vessel and fuel basket are designed in accordance with Section III, Subsections NB Class 1 and NG Class 1, respectively. The metal structure of the overpack and the HI-TRAC transfer cask are designed in accordance with Section NF Class 3. The ASME Code is applied to each component consistent with the function of the component.

ACI 349 is the governing code for the plain concrete in the HI-STORM 100 Overpack. ACI 318-95 is the applicable code utilized to determine the allowable compressive strength of the plain concrete credited during structural analysis. Appendix 1.D provides the sections of ACI 349 and ACI 318-95 applicable to the plain concrete.

Table 2.2.6 provides a summary of each structure, system and component (SSC) of the HI-STORM 100 System which is identified as important to safety, along with its function and governing Code. Some components perform multiple functions and in those cases, the most restrictive Code is applied. In accordance with NUREG/CR-6407, "Classification of Transportation Packaging and Dry Spent Fuel Storage System Components", and according to importance to safety, components of the HI-STORM 100 System are classified as A, B, C, or NITS (not important to safety) in Table 2.2.6. Section 13.1 provides the criteria used to classify each item. The classification of necessary auxiliary equipment is provided in Table 8.1.6.

Table 2.2.7 lists the applicable governing Code for material procurement, design, fabrication and inspection of the components of the HI-STORM 100 System. The ASME Code section listed in the design column is the section used to define allowable stresses for structural analyses.

Table 2.2.15 lists the exceptions to the ASME Code for the HI-STORM 100 System and the justification for those exceptions.

The MPC utilized in the HI-STORM 100 System is identical to the MPC described in the applications for the HI-STAR 100 System for storage (Docket 72-1008) and transport (Docket 71-9261) certification. To avoid unnecessary repetition of the large numbers of stress analyses, attention is directed in this document to establish that the MPC loadings for storage in the HI-STORM 100 System do not exceed those computed in the referenced applications. Many of the loadings in the HI-STAR applications envelope the HI-STORM loadings on the MPC, and, therefore, a complete re-analysis of the MPC is not provided in the .

Table 2.2.16 provides a summary comparison between the loading elements. Table 2.2.16 shows that most of the loadings remain unchanged and several are less than the HI-STAR loading conditions. In addition to the magnitude of the loadings experienced by the MPC, the application of the loading must also be considered. Therefore, it is evident from Table 2.2.16 that the MPC stress limits can be ascertained to be qualified a priori if the HI-STAR analyses and the thermal loadings under HI-STORM storage are not more severe compared to previously analyzed HI-STAR conditions. In the analysis of each of the normal, off-normal, and accident conditions, the effect on the MPC is evaluated and compared to the corresponding condition analyzed in the HI-STAR 100 System SARs [2.2.4 and 2.2.5]. If the HI-STORM loading is greater than the HI-STAR loading or the loading is applied differently, the analysis of its effect on the MPC is evaluated in Chapter 3.

# 2.2.5 <u>Service Limits</u>

In the ASME Code, plant and system operating conditions are commonly referred to as normal, upset, emergency, and faulted. Consistent with the terminology in NRC documents, this FSAR utilizes the terms normal, off-normal, and accident conditions.

The ASME Code defines four service conditions in addition to the Design Limits for nuclear components. They are referred to as Level A, Level B, Level C, and Level D service limits, respectively. Their definitions are provided in Paragraph NCA-2142.4 of the ASME Code. The four levels are used in this FSAR as follows:

- a. Level A Service Limits: Level A Service Limits are used to establish allowables for normal condition load combinations.
- b. Level B Service Limits: Level B Service Limits are used to establish allowables for off-normal condition load combinations.

- c. Level C Service Limits: Level C Service Limits are not used.
- d. Level D Service Limits: Level D Service Limits are used to establish allowables for accident condition load combinations.

The ASME Code service limits are used in the structural analyses for definition of allowable stresses and allowable stress intensities. Allowable stresses and stress intensities for structural analyses are tabulated in Chapter 3. These service limits are matched with normal, off-normal, and accident condition loads combinations in the following subsections.

The MPC confinement boundary is required to meet Section III, Class 1, Subsection NB stress intensity limits. Table 2.2.10 lists the stress intensity limits for the Levels A, B, C, and D service limits for Class 1 structures extracted from the ASME Code (1995 Edition). The limits for the MPC fuel basket, required to meet the stress intensity limits of Subsection NG of the ASME Code, are listed in Table 2.2.11. Table 2.2.12 lists allowable stress limits for the stress limits of Subsection NF,

Class 3. Only service levels A, B, and D requirements, normal, off-normal, and accident conditions, are applicable.

# 2.2.6 <u>Loads</u>

Subsections 2.2.1, 2.2.2, and 2.2.3 describe the design criteria for normal, off-normal, and accident conditions, respectively. Table 2.2.13 identifies the notation for the individual loads that

require consideration. The individual loads listed in Table 2.2.13 are defined from the design criteria. Each load is assigned a symbol for subsequent use in the load combinations.

The loadings listed in Table 2.2.13 fall into two broad categories; namely, (i) those which primarily affect kinematic stability, and (ii) those which produce significant stresses. The loadings in the former category are principally applicable to the overpack. Wind (W), earthquake (E), tornado (WN, and tornado-borne missile (M) are essentially loadings which can destabilize a cask. Analyses reported in Chapter 3 show that the HI-STORM 100 Overpack structure will remain kinematically stable under these loadings. Additionally, for the missile impact case (M), analyses which demonstrate that the overpack structure remains unbreached by the postulated missiles are provided in Chapter 3.

Loadings in the second category produce global stresses which must be shown to comply with the stress intensity or stress limits, as applicable. The relevant loading combinations for the fuel basket, the MPC, the HI-TRAC and the HI-STORM 100 Overpack are different because of differences in their function. For example, the fuel basket does not experience a pressure loading because it is not a pressure vessel. The specific load combination for each component is specified in Subsection 2.2.7.

# 2.2.7 Load Combinations

To demonstrate compliance with the design requirements for normal, off-normal, and accident conditions of storage, the individual loads, identified in Table 2.2.13, are combined into load combinations. In the formation of the load combinations, it is recognized that the number of combinations requiring detailed analyses is reduced by defining bounding loads. Analyses performed using bounding loads serve to satisfy the requirements for analysis of a multitude of separately identified loads in combination.

For example, the values established for internal and external pressures ( $P_i$  and  $P_o$ ) are defined such that they bound other surface-intensive loads, namely snow (S), tornado wind (WN, flood (F), and explosion (E<sup>\*</sup>). Thus, evaluation of pressure in a load combination established for a given storage condition enables many individual load effects to be included in a single load combination.

Table 2.2.14 identifies the combinations of the loads that are required to be considered in order to ensure compliance with the design criteria set forth in this chapter. Table 2.2.14 presents the load combinations in terms of the loads that must be considered together. A number of load combinations are established for each ASME Service Level. Within each loading case, there may be more than one analysis that is required to demonstrate compliance. Since the breakdown into specific analyses is most applicable to the structural evaluation, the identification of individual analyses with the applicable loads for each load combination is found in Chapter 3. Table 3.1.3 through 3.1.5 define the particular evaluations of loadings that demonstrate compliance with the load combinations of Table 2.2.14.

For structural analysis purposes, Table 2.2.14 serves as an intermediate classification table between the definition of the loads (Table 2.2.13 and Section 2.2) and the detailed analysis combinations (Tables 3.1.3 through 3.1.5).

Finally, it should be noted that the load combinations identified in NUREG-1536 are considered as applicable to the HI-STORM 100 System. The majority of load combinations in NUREG-1536 are directed towards reinforced concrete structures. Those load combinations applicable to steel structures are directed towards frame structures. As stated in NUREG-1536, Page 3-35 of Table 3-1, "Table 3-1 does not apply to the analysis of confinement casks and other components designed in accordance with Section III of the ASME B&PV code." Since the HI-STORM 100 System is a metal shell structure, with concrete primarily employed as shielding, the load combinations of NUREG-1536 are interpreted within the confines and intent of the ASME Code.

# 2.2.8 <u>Allowable Stresses</u>

The stress intensity limits for the MPC confinement boundary for the design condition and the service conditions are provided in Table 2.2.10. The MPC confinement boundary stress intensity limits are obtained from ASME Code, Section III, Subsection NB. The stress intensity limits for the MPC fuel basket are presented in Table 2.2.11 (governed by Subsection NG of Section III). The steel

structure of the overpack and the HI-TRAC meet the stress limits of Subsection NF of ASME Code, Section III for plate and shell components. Limits for the Level D condition are obtained from Appendix F of ASME Code, Section III for the steel structure of the overpack. The ASME Code is not applicable to the HI-TRAC transfer cask for accident conditions, service level D conditions. The HI-TRAC transfer cask has been shown by analysis to not deform sufficiently to apply a load to the MPC, have any shell rupture, or have the top lid, pool lid, or transfer lid detach. The following definitions of terms apply to the tables on stress intensity limits; these definitions are the same as those used throughout the ASME Code:

- S<sub>m</sub>: Value of Design Stress Intensity listed in ASME Code Section II, Part D, Tables 2A, 2B and 4
- S<sub>y</sub>: Minimum yield strength at temperature
- S<sub>u</sub>: Minimum ultimate strength at temperature

# **DESIGN PRESSURES**

| Pressure Location          | Condition  | Pressure (psig)                                                                                                                 |
|----------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------|
| MPC Internal Pressure      | Normal     | 100                                                                                                                             |
|                            | Off-Normal | 100                                                                                                                             |
|                            | Accident   | 125                                                                                                                             |
| MPC External Pressure      | Normal     | (0) Ambient                                                                                                                     |
|                            | Off-Normal | (0) Ambient                                                                                                                     |
|                            | Accident   | 60                                                                                                                              |
| Overpack External Pressure | Normal     | (0) Ambient                                                                                                                     |
|                            | Off-Normal | (0) Ambient                                                                                                                     |
|                            | Accident   | 10 Differential Pressure for 1<br>second maximum or<br>5 Differential Pressure steady<br>state                                  |
| HI-TRAC Water Jacket       | Normal     | 60                                                                                                                              |
|                            | Off-normal | 60                                                                                                                              |
|                            | Accident   | N/A<br>(Under accident conditions, the<br>water jacket is assumed to<br>have lost all water thru the<br>pressure relief valves) |

L

Í

## ENVIRONMENTAL TEMPERATURES

| Condition                                               | Temperature (°F) | Comments                                                                                |
|---------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------|
|                                                         | HI-STORM 100 O   | verpack                                                                                 |
| Normal Ambient<br>(Bounding Annual<br>Average)          | 80°              |                                                                                         |
| Normal Soil Temperature<br>(Bounding Annual<br>Average) | 77°              |                                                                                         |
| Off-Normal Ambient<br>(3-Day Average)                   | -40° and 100°    | <ul> <li>-40° with no insolation</li> <li>100° with insolation</li> </ul>               |
| Extreme Accident Level<br>Ambient (3-Day Average)       | 125°             | • 125° with insolation starting at steady-state off-normal high environment temperature |
|                                                         | HI-TRAC Transfe  | er Cask                                                                                 |
| Normal (Bounding Annual<br>Average)                     | 100°             |                                                                                         |
| Off-Normal<br>(3-Day Average)                           | 0° and 100°      | <ul> <li>0° with no insolation</li> <li>100° with insolation</li> </ul>                 |

Note:

1. Handling operations with the loaded HI-STORM 100 Overpack and HI-TRAC transfer cask are limited to environmental temperatures greater than 0° F as specified in Subsection 2.2.1.2 and the Technical Specifications in Chapter 12.

# **DESIGN TEMPERATURES**

| HI-STORM 100 Component                 | Normal<br>Condition Design<br>Temp.<br>(Long-Term Events)<br>(°F) | Off-Normal and<br>Accident<br>Condition<br>Temp. <sup>1</sup> Limits<br>(Short-Term<br>Events)<br>(°F) |
|----------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| MPC shell                              | 450                                                               | 775                                                                                                    |
| MPC basket                             | 725                                                               | 950                                                                                                    |
| MPC Boral                              | 800                                                               | 950                                                                                                    |
| MPC lid                                | 550                                                               | 775                                                                                                    |
| MPC closure ring                       | 400                                                               | 775                                                                                                    |
| MPC baseplate                          | 400                                                               | 775                                                                                                    |
| MPC Heat Conduction Elements           | 725                                                               | 950                                                                                                    |
| HI-TRAC inner shell                    | 400                                                               | 600                                                                                                    |
| HI-TRAC pool lid/transfer lid          | 350                                                               | 700                                                                                                    |
| HI-TRAC top lid                        | 400                                                               | 700                                                                                                    |
| HI-TRAC top flange                     | 400                                                               | 700                                                                                                    |
| HI-TRAC pool lid seals                 | 350                                                               | N/A                                                                                                    |
| HI-TRAC bottom lid bolts               | 350                                                               | 700                                                                                                    |
| HI-TRAC bottom flange                  | 350                                                               | 700                                                                                                    |
| HI-TRAC top lid neutron shielding      | 300                                                               | 300                                                                                                    |
| HI-TRAC radial neutron shield          | 307                                                               | N/A                                                                                                    |
| HI-TRAC radial lead gamma shield       | 350                                                               | 600                                                                                                    |
| Remainder of HI-TRAC                   | 350                                                               | 700                                                                                                    |
| Zircaloy fuel cladding (5-year cooled) | 692 (PWR) 742 (BWR)                                               | 1058                                                                                                   |
| Zircaloy fuel cladding (6-year cooled) | 677 (PWR) 714 (BWR)                                               | 1058                                                                                                   |

ι.

1

# Table 2.2.3 (continued)

# DESIGN TEMPERATURES

| HI-STORM 100 Component                  | Normal<br>Condition Design<br>Temp.<br>(Long-Term Events)<br>(°F) | Off-Normal and<br>Accident<br>Condition<br>Temp. <sup>1</sup> Limits<br>(Short-Term<br>Events)<br>(°F) |
|-----------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Zircaloy fuel cladding (7-year cooled)  | 636 (PWR) 671 (BWR)                                               | 1058                                                                                                   |
| Zircaloy fuel cladding (10-year cooled) | 626 (PWR)<br>660(BWR)                                             | - 1058                                                                                                 |
| Zircaloy fuel cladding (15-year cooled) | 615(PWR) 648 (BWR)                                                | 1058                                                                                                   |
| Overpack outer shell                    | 350                                                               | 600                                                                                                    |
| Overpack concrete                       | 200                                                               | 350                                                                                                    |
| Overpack inner shell                    | 350                                                               | 400                                                                                                    |
| Overpack Lid Top Plate                  | 350                                                               | 550                                                                                                    |
| Remainder of overpack steel structure   | 350                                                               | 400                                                                                                    |

# TORNADO CHARACTERISTICS

| Condition                   | Value |
|-----------------------------|-------|
| Rotational wind speed (mph) | 290   |
| Translational speed (mph)   | 70    |
| Maximum wind speed (mph)    | 360   |
| Pressure drop (psi)         | 3.0   |

1 -

Í

# TORNADO-GENERATED MISSILES

| Missile Description                            | Mass (kg) | Velocity (mph) |
|------------------------------------------------|-----------|----------------|
| Automobile                                     | 1800      | 126            |
| Rigid solid steel cylinder<br>(8 in. diameter) | 125       | 126            |
| Solid sphere<br>(1 in. diameter)               | 0.22      | 126            |

### MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM

#### MPC<sup>(1,2)</sup>

| Primary Function    | Component <sup>(3)</sup>       | Safety               | Codes/Standards                    | Material                | Strength (ksi)   | Special Surface                    | Contact Matl.    |
|---------------------|--------------------------------|----------------------|------------------------------------|-------------------------|------------------|------------------------------------|------------------|
|                     |                                | Class <sup>(4)</sup> | (as applicable to component)       |                         |                  | Finish/Coating                     | ( if dissimilar) |
| Helium Retention    | Shell                          | A                    | ASME Section III;<br>Subsection NB | Alloy X <sup>(5)</sup>  | See Appendix 1.A | NA                                 | NA               |
| Helium Retention    | Baseplate                      | A                    | ASME Section III;<br>Subsection NB | Alloy X                 | See Appendix 1.A | NA                                 | NA               |
| Helium Retention    | Lid                            | A                    | ASME Section III;<br>Subsection NB | Alloy X                 | See Appendix 1.A | NA                                 | NA               |
| Helium Retention    | Closure Ring                   | A                    | ASME Section III;<br>Subsection NB | Alloy X                 | See Appendix 1.A | NA                                 | NA               |
| Helium Retention    | Port Cover Plates              | A                    | ASME Section III;<br>Subsection NB | Alloy X                 | See Appendix 1.A | NA                                 | NA               |
| Criticality Control | Basket Cell Plates             | A                    | ASME Section III;<br>Subsection NG | Alloy X                 | See Appendix 1.A | NA                                 | NA               |
| Criticality Control | Boral                          | A                    | Non-code                           | NA                      | NA               | NA                                 | Aluminum/SS      |
| Shielding           | Drain and Vent Shield<br>Block | С                    | Non-code                           | Alloy X                 | See Appendix 1.A | NA                                 | NA               |
| Shielding           | Plugs for Drilled Holes        | NITS                 | Non-code                           | Alloy X                 | See Appendix 1.A | NA                                 | NA               |
| Heat Transfer       | Heat Conduction Elements       | В                    | Non-code                           | Aluminum;<br>Alloy 1100 | NA               | Sandblast<br>Specified<br>Surfaces | Aluminum/SS      |

Notes: 1) There are no known residuals on finished component surfaces.

2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.

3) Component nomenclature taken from Bill of Materials in Chapter 1.

4) A,B and C denote important to safety classifications as described in Chapter 13. NITS stands for Not Important To Safety.

١

5) For details on Alloy X material, see Appendix 1.A.

### TABL\_ 2.2.6

#### MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM

#### MPC<sup>(1,2)</sup>

| Primary Function     | Component <sup>(3)</sup>         | Safety<br>Class <sup>(4)</sup> | Codes/Standards<br>(as applicable to<br>component)                   | Material | Strength (ksi)   | Special Surface<br>Finish/Coating | Contact Matl.<br>( if dissimilar) |
|----------------------|----------------------------------|--------------------------------|----------------------------------------------------------------------|----------|------------------|-----------------------------------|-----------------------------------|
| Structural Integrity | Upper Fuel Spacer Column         | В                              | ASME Section III;<br>Subsection NG<br>( only for stress<br>analysis) | Alloy X  | See Appendix 1.A | NA                                | NA                                |
| Structural Integrity | Sheathing                        | A                              | Non-code                                                             | Alloy X  | See Appendix 1.A | Aluminum/SS                       | NA                                |
| Structural Integrity | Shims                            | NITS                           | Non-code                                                             | Alloy X  | See Appendix 1.A | NA                                | NA                                |
| Structural Integrity | Basket Supports (Angled Plates)  | A                              | ASME Section III;<br>Subsection NG                                   | Alloy X  | See Appendix 1.A | NA                                | NA                                |
| Structural Integrity | Basket Supports (Flat<br>Plates) | В                              | ASME Section III;<br>Subsection NG                                   | Alloy X  | See Appendix 1.A | NA                                | NA                                |
| Structural Integrity | Lift Lug                         | C                              | Non-code                                                             | Alloy X  | See Appendix 1.A | NA                                | NA                                |
| Structural Integrity | Lift Lug Baseplate               | C                              | Non-code                                                             | Alloy X  | See Appendix 1.A | NA                                | NA                                |
| Structural Integrity | Upper Fuel Spacer Bolt           | NITS                           | Non-code                                                             | A193-B8  | Per ASME Section | NA                                | NA                                |
| Structural Integrity | Upper Fuel Spacer End<br>Plate   | В                              | Non-code                                                             | Alloy X  | See Appendix 1.A | NA                                | NA                                |
| Structural Integrity | Lower Fuel Spacer Column         | В                              | ASME Section III;<br>Subsection NG<br>( only for stress<br>analysis) | Alloy X  | See Appendix 1.A | NA                                | NA                                |
| Structural Integrity | Lower Fuel Spacer End<br>Plate   | В                              | Non-code                                                             | Alloy X  | See Appendix 1.A | NA                                | NA                                |

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A,B and C denote important to safety classifications as described in Chapter 13. NITS stands for Not Important To Safety.
- 5) For details on Alloy X material, see Appendix 1.A.

### MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM

#### MPC (1,2)

| Primary Function     | Component <sup>(3)</sup>             | Safety<br>Class <sup>(4)</sup> | Codes/Standards<br>(as applicable to<br>component) | Material             | Strength (ksi)   | Special Surface<br>Finish/Coating | Contact Matl.<br>( if dissimilar) |
|----------------------|--------------------------------------|--------------------------------|----------------------------------------------------|----------------------|------------------|-----------------------------------|-----------------------------------|
| Structural Integrity | Vent Shield Block Spacer             | C                              | Non-code                                           | Alloy X              | See Appendix 1.A | NA                                | NA                                |
| Operations           | Vent and Drain Tube                  | С                              | Non-code                                           | 304 S/S              | Per ASME Section | Thread area<br>surface hardened   | NA                                |
| Operations           | Vent & Drain Cap                     | C                              | Non-code                                           | 304 S/S              | Per ASME Section | NA                                | NA                                |
| Operations           | Vent & Drain Cap Seal<br>Washer      | NITS                           | Non-code                                           | Aluminum             | NA               | NA                                | Aluminum/SS                       |
| Operations           | Vent & Drain Cap Seal<br>Washer Bolt | NITS                           | Non-code                                           | Aluminum             | NA               | NA                                | NA                                |
| Operations           | Reducer                              | NITS                           | Non-code                                           | Alloy X              | See Appendix 1.A | NA                                | NA                                |
| Operations           | Drain Line                           | NITS                           | Non-code                                           | Alloy X              | See Appendix 1.A | NA                                | NA                                |
| Operations           | Damaged Fuel Container               | C                              | ASME Section III;<br>Subsection NG                 | Primarily<br>304 S/S | See Appendix 1.A | NA                                | NA                                |

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A,B and C denote important to safety classifications as described in Chapter 13. NITS stands for Not Important To Safety.
- 5) For details on Alloy X material, see Appendix 1.A.

#### TABL\_ 2.2.6

#### MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM

#### OVERPACK (1,2)

| Primary Function     | Component <sup>(3)</sup>            | Safety<br>Class <sup>(4)</sup> | Codes/Standards<br>( as applicable to<br>component) | Material  | Strength (ksi)  | Special Surface<br>Finish/Coating | Contact Matl.<br>( if dissimilar) |
|----------------------|-------------------------------------|--------------------------------|-----------------------------------------------------|-----------|-----------------|-----------------------------------|-----------------------------------|
| Shielding            | Radial Shield                       | В                              | ACI 349, App. 1-D                                   | Concrete  | 4               | NA                                | NA                                |
| Shielding            | Shield Block Ring & Shell           | В                              | See Note 6                                          | SA516-70  | See Table 3.3.2 | See Note 5                        | NA                                |
| Shielding            | Pedestal Shield                     | В                              | ACI 349, App. 1-D                                   | Concrete  | 4               | NA                                | NA                                |
| Shielding            | Lid Shield                          | В                              | ACI 349, App. 1-D                                   | Concrete  | 4               | NA                                | NA                                |
| Shielding            | Shield Shell                        | В                              | See Note 6                                          | SA516-70  | See Table 3.3.2 | NA                                | NA                                |
| Shielding            | Shield Block                        | В                              | ACI 349, App. 1-D                                   | Concrete  | 4               | NA                                | NA                                |
| Shielding            | Gamma Shield Cross<br>Plates & Tabs | C                              | Non-code                                            | SA240-304 | NA              | NA                                | NA                                |
| Structural Integrity | Baseplate                           | В                              | ASME Section III;<br>Subsection NF                  | SA516-70  | See Table 3.3.3 | See Note 5                        | NA                                |
| Structural Integrity | Outer Shell                         | В                              | ASME Section III;<br>Subsection NF                  | SA516-70  | See Table 3.3.2 | See Note 5                        | NA                                |
| Structural Integrity | Inner Shell                         | В                              | ASME Section III;<br>Subsection NF                  | SA516-70  | See Table 3.3.2 | See Note 5                        | NA                                |
| Concrete Form        | Pedestal Shell                      | В                              | See Note 6                                          | SA516-70  | See Table 3.3.2 | See Note 5                        | NA                                |
| Structural Integrity | Lid Bottom Plate                    | В                              | ASME Section III;<br>Subsection NF                  | SA516-70  | See Table 3.3.2 | See Note 5                        | NA                                |
| Structural Integrity | Lid Shell                           | В                              | ASME Section III;<br>Subsection NF                  | SA516-70  | See Table 3.3.2 | See Note 5                        | NA                                |
| Structural Integrity | Inlet Vent Vertical &               | В                              | ASME Section III;                                   | SA516-70  | See Table 3.3.2 | See Note 5                        | NA                                |

Notes: 1) There are no known residuals on finished component surfaces.

2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.

.

- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A,B and C denote important to safety classifications as described in Chapter 13. NITS stands for Not Important To Safety.
- 5) All exposed steel surfaces (except threaded holes) to be painted with Carboline 890.
- 6) Welds will meet AWS D1.1 requirements for prequalified welds, except that welder qualification and weld procedures of ASME Code Section IX may be substituted.

# MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM

#### OVERPACK (1,2)

| Primary Function     | Component <sup>(3)</sup>                  | Safety<br>Class <sup>(4)</sup> | Codes/Standards<br>( as applicable to<br>component) | Material               | Strength (ksi)  | Special Surface<br>Finish/Coating                   | Contact Matl.<br>( if dissimilar) |
|----------------------|-------------------------------------------|--------------------------------|-----------------------------------------------------|------------------------|-----------------|-----------------------------------------------------|-----------------------------------|
|                      | Horizontal Plates                         |                                | Subsection NF                                       |                        |                 |                                                     |                                   |
| Thermal              | Exit Vent Vertical &<br>Horizontal Plates | В                              | See Note 6                                          | SA516-70               | See Table 3.3.2 | See Note 5                                          |                                   |
| Structural Integrity | Top Plate                                 | В                              | ASME Section III;<br>Subsection NF                  | SA516-70               | See Table 3.3.2 | See Note 5                                          | NA                                |
| Structural Integrity | Lid Top Plate                             | В                              | ASME Section III;<br>Subsection NF                  | SA516-70               | See Table 3.3.2 | See Note 5                                          | NA                                |
| Structural Integrity | Radial Plate                              | В                              | ASME Section III;<br>Subsection NF                  | SA516-70               | See Table 3.3.2 | See Note 5                                          | NA                                |
| Structural Integrity | Lid Stud & Nut                            | В                              | ASME Section III;<br>Subsection NF                  | SA564-630              | See Table 3.3.4 | Threads to have<br>cadmium coating<br>( or similar) | NA                                |
| Structural Integrity | Bolt Anchor Block                         | A                              | ASME Section III;<br>Subsection NF<br>ANSI N14.6    | SA350-LF3<br>Or SA203E | See Table 3.3.3 | See Note 5                                          | NA                                |
| Structural Integrity | Channel                                   | В                              | ASME Section III;<br>Subsection NF                  | SA516-70               | See Table 3.3.2 | See Note 5                                          | NA                                |
| Structural Integrity | Pedestal Platform                         | В                              | ASME Section III;<br>Subsection NF                  | SA516-70               | See Table 3.3.2 | See Note 5                                          | NA                                |
| Operations           | Storage Marking                           | NITS                           | Non-code                                            | SA240-304              | NA              | NA                                                  | NA                                |

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A,B and C denote important to safety classifications as described in Chapter 13. NITS stands for Not Important To Safety.
- 5) All exposed steel surfaces (except threaded holes) to be painted with Carboline 890.
- 6) Welds will meet AWS D1.1 requirements for prequalified welds, except that welder qualification and weld procedures of ASME Code Section IX may be substituted.

### TABL: 2.2.6

#### MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM

#### OVERPACK<sup>(1,2)</sup>

| Primary Function | Component <sup>(3)</sup>                                         | Safety<br>Class <sup>(4)</sup> | Codes/Standards<br>( as applicable to<br>component) | Material         | Strength ( ksi) | Special Surface<br>Finish/Coating | Contact Matl.<br>( if dissimilar) |
|------------------|------------------------------------------------------------------|--------------------------------|-----------------------------------------------------|------------------|-----------------|-----------------------------------|-----------------------------------|
|                  | Nameplate                                                        |                                |                                                     |                  |                 |                                   | 1                                 |
| Operations       | Exit Vent Screen Sheet                                           | NITS                           | Non-code                                            | SA240-304        | NA              | NA                                | NA                                |
| Operations       | Drain Pipe                                                       | NITS                           | Non-code                                            | C/S or S/S       | NA              | See Note 5                        | NA                                |
| Operations       | Exit & Inlet Screen Frame                                        | NITS                           | Non-code                                            | SA240-304        | NA              | NA                                | NA                                |
| Operations       | Thermocouple &<br>Associated Temperature<br>Monitoring Equipment | В                              | Non-code                                            | NA               | NA              | NA                                | NA                                |
| Operations       | Screen                                                           | NITS                           | Non-code                                            | Mesh Wire        | NA              | NA                                | NA                                |
| Operations       | Paint                                                            | С                              | Non-code                                            | Carboline<br>890 | NA              | NA                                | NA                                |

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A,B and C denote important to safety classifications as described in Chapter 13. NITS stands for Not Important To Safety.
- 5) All exposed steel surfaces (except threaded holes) to be painted with Carboline 890.
- 6) Welds will meet AWS D1.1 requirements for prequalified welds, except that welder qualification and weld procedures of ASME Code Section IX may be substituted.

#### MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM HI-TRAC TRANSFER CASK<sup>(1,2)</sup>

| Primary Function     | Component <sup>(3)</sup> | Safety<br>Class <sup>(4)</sup> | Codes/Standards<br>( as applicable to<br>component) | Material                  | Strength (ksi)                    | Special Surface<br>Finish/Coating | Contact Matl.<br>( if dissimilar) |
|----------------------|--------------------------|--------------------------------|-----------------------------------------------------|---------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Shielding            | Radial Lead Shield       | В                              | Non-code                                            | Lead                      | NA                                | NA                                | NA                                |
| Shielding            | Pool Lid Lead Shield     | B                              | Non-code                                            | Lead                      | NA                                | NA                                | NA                                |
| Shielding            | Top Lid Shielding        | B                              | Non-code                                            | Holtite                   | NA                                | NA                                | NA                                |
| Shielding            | Plugs for Lifting Holes  | NITS                           | Non-code                                            | C/S                       | NA                                | NA                                |                                   |
| Structural Integrity | Outer Shell              | В                              | ASME Section III;<br>Subsection NF                  | SA516-70                  | See Table 3.3.2                   | See Note 5                        | NA                                |
| Structural Integrity | Inner Shell              | В                              | ASME Section III;<br>Subsection NF                  | SA516-70                  | See Table 3.3.2                   | See Note 5                        | NA                                |
| Structural Integrity | Radial Channels          | B                              | ASME Section III;<br>Subsection NF                  | SA516-70                  | See Table 3.3.2                   | See Note 5                        | NA                                |
| Structural Integrity | Enclosure Shell Panels   | В                              | ASME Section III;<br>Subsection NF                  | SA516-70                  | See Table 3.3.2                   | See Note 5                        | NA                                |
| Structural Integrity | Water Jacket End Plate   | В                              | ASME Section III;<br>Subsection NF                  | SA516-70                  | See Table 3.3.2                   | See Note 5                        | NA                                |
| Structural Integrity | Top Flange               | В                              | ASME Section III;<br>Subsection NF                  | SA350-LF3<br>(SA203E)     | See Table 3.3.3                   | See Note 5                        | NA                                |
| Structural Integrity | Lower Water Jacket Shell | В                              | ASME Section III;<br>Subsection NF                  | SA516-70                  | See Table 3.3.2                   | See Note 5                        | NA                                |
| Structural Integrity | Bottom Flange            | В                              | ASME Section III;<br>Subsection NF                  | ·SA350-LF3<br>(SA516-70)) | See Table 3.3.3<br>( Table 3.3.2) | See Note 5                        | NA                                |
| Structural Integrity | Pool Lid Outer Ring      | В                              | ASME Section III;<br>Subsection NF                  | SA350-LF3                 | See Table 3.3.3                   | See Note 5                        | NA                                |
| Structural Integrity | Pool Lid Top Plate       | В                              | ASME Section III;<br>Subsection NF                  | SA516-70                  | See Table 3.3.2                   | See Note 5                        | NA                                |

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A,B and C denote important to safety classifications as described in Chapter 13. NITS stands for Not Important To Safety.
- 5) All external surfaces to be painted with Carboline 890. Inside surface of overpack and to be painted with Thermaline 450.

#### MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM HI-TRAC TRANSFER CASK<sup>(1,2)</sup>

| Primary Function     | Component <sup>(3)</sup> | Safety<br>Class <sup>(4)</sup> | Codes/Standards<br>( as applicable to<br>component) | Material          | Strength (ksi)  | Special Surface<br>Finish/Coating | Contact Matl.<br>( if dissimilar) |
|----------------------|--------------------------|--------------------------------|-----------------------------------------------------|-------------------|-----------------|-----------------------------------|-----------------------------------|
| Structural Integrity | Top Lid Outer Ring       | В                              | ASME Section III;<br>Subsection NF                  | SA516-70          | See Table 3.3.2 | See Note 5                        | NA                                |
| Structural Integrity | Top Lid Inner Ring       | В                              | ASME Section III;<br>Subsection NF                  | SA516-70          | See Table 3.3.2 | See Note 5                        | NA                                |
| Structural Integrity | Top Lid top Plate        | В                              | ASME Section III;<br>Subsection NF                  | SA516-70          | See Table 3.3.2 | See Note 5                        | NA                                |
| Structural Integrity | Top Lid Bottom Plate     | В                              | ASME Section III;<br>Subsection NF                  | SA516-70          | See Table 3.3.2 | See Note 5                        | NA                                |
| Structural Integrity | Fill Port Caps           | С                              | ASME Section III;<br>Subsection NF                  | SA516-70          | See Table 3.3.2 | See Note 5                        | NA                                |
| Structural Integrity | Pool Lid Bolt            | В                              | ASME Section III;<br>Subsection NF                  | SA193-B7          | See Table 3.3.4 | NA                                | NA                                |
| Structural Integrity | Lifting Trunnion Block   | В                              | ASME Section III;<br>Subsection NF<br>ANSI 14.6     | SA350-LF3         | See Table 3.3.3 | See Note 5                        | NA                                |
| Structural Integrity | Lifting Trunnion         | A                              | ANSI N14.6                                          | SB637<br>(N07718) | See Table 3.3.4 | NA                                | NA                                |
| Structural Integrity | Pocket Trunnion          | В                              | ASME Section III;<br>Subsection NF<br>ANSI 14.6     | SA350-LF3         | See Table 3.3.3 | See Note 5                        | NA                                |
| Structural Integrity | Dowel Pins               | В                              | ASME Section III;<br>Subsection NF                  | SA564-630         | See Table 3.3.4 | NA                                | SA350-LF3                         |
| Structural Integrity | Water Jacket End Plate   | В                              | ASME Section III;<br>Subsection NF                  | SA516-70          | See Table 3.3.2 | See Note 5                        | NA                                |

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A,B and C denote important to safety classifications as described in Chapter 13. NITS stands for Not Important To Safety.
- 5) All external surfaces to be painted with Carboline 890. Inside surface of overpack and to be painted with Thermaline 450.

# MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM HI-TRAC TRANSFER CASK <sup>(1,2)</sup>

| Primary Function     | Component <sup>(3)</sup>           | Safety<br>Class <sup>(4)</sup> | Codes/Standards<br>( as applicable to<br>component) | Material            | Strength (ksi)  | Special Surface<br>Finish/Coating | Contact Matl.<br>( if dissimilar) |
|----------------------|------------------------------------|--------------------------------|-----------------------------------------------------|---------------------|-----------------|-----------------------------------|-----------------------------------|
| Structural Integrity | Pool Lid Bottom Plate              | В                              | ASME Section III;<br>Subsection NF                  | SA516-70            | See Table 3.3.2 | See Note 5                        | NA                                |
| Structural Integrity | Top Lid Lifting Block              | C                              | ASME Section III;<br>Subsection NF                  | SA516-70            | See Table 3.3.2 | See Note 5                        | NA                                |
| Structural Integrity | Thermal Expansion Foam             | NITS                           | Non-code                                            | Silicone or similar | NA              | NA                                | NA                                |
| Operations           | Top Lid Stud                       | В                              | ASME Section III;<br>Subsection NF                  | SA193-B7            | See Table 3.3.4 | NA                                | NA                                |
| Operations           | Top Lid Nut                        | В                              | ASME Section III;<br>Subsection NF                  | SA193-2H            | NA              | NA                                | NA                                |
| Operations           | Pool Lid Gasket                    | NITS                           | Non-code                                            | Elastomer           | NA              | NA                                | NA                                |
| Operations           | Pool Lid & Top Lid<br>Tongues      | В                              | ASME Section III;<br>Subsection NF                  | SA516-70            | See Table 3.3.2 | NA                                | NA                                |
| Operations           | Lifting Trunnion Locking<br>Pad    | С                              | Non-code                                            | SA516-70            | See Table 3.3.2 | See Note 5                        | NA                                |
| Operations           | Lifting Trunnion End Cap           | C                              | Non-code                                            | SA516-70            | See Table 3.3.2 | See Note 5                        | NA                                |
| Operations           | End Cap Bolts                      | NITS                           | Non-code                                            | SA193-B7            | See Table 3.3.4 | NA                                | NA NA                             |
| Operations           | Drain Pipes                        | NITS                           | Non-code                                            | SA106               | NA              | NA                                | NA                                |
| Operations           | Drain Bolt                         | NITS                           | Non-code                                            | SA193-B7            | See Table 3.3.4 | NA                                | NA                                |
| Operations           | Lifting Trunnion Pad Bolt          | NITS                           | Non-code                                            | SA193-B7            | See Table 3.3.4 | NA                                | NA                                |
| Operations           | Couplings, Valves and<br>Vent Plug | NITS                           | Non-code                                            | Steel or<br>Bronze  | NA              | NA                                | Bronze/Steel                      |

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A,B and C denote important to safety classifications as described in Chapter 13. NITS stands for Not Important To Safety.
- 5) All external surfaces to be painted with Carboline 890. Inside surface of overpack and to be painted with Thermaline 450.

### MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM

### HI-TRAC TRANSFER LID<sup>(1,2)</sup>

| Primary Function     | Component <sup>(3)</sup> | Safety               | Codes/Standards                    | Material                | Strength (ksi)                   | Special Surface | Contact Matl.    |
|----------------------|--------------------------|----------------------|------------------------------------|-------------------------|----------------------------------|-----------------|------------------|
|                      |                          | Class <sup>(4)</sup> | ( as applicable to                 |                         |                                  | Finish/Coating  | ( if dissimilar) |
|                      |                          |                      | component)                         |                         |                                  |                 |                  |
| Shielding            | Side Lead Shield         | B                    | Non-code                           | Lead                    | NA                               | NA              | NA               |
| Shielding            | Door Lead Shield         | B                    | Non-code                           | Lead                    | NA                               | NA              |                  |
| Shielding            | Door Shielding           | В                    | Non-code                           | Holtite                 | NA                               | NA              | NA               |
| Structural Integrity | Lid Top Plate            | В                    | ASME Section III;<br>Subsection NF | SA516-70                | See Table 3.3.2                  | See Note 5      | NA               |
| Structural Integrity | Lid Bottom Plate         | В                    | ASME Section III;<br>Subsection NF | SA516-70                | See Table 3.3.2                  | See Note 5      | NA               |
| Structural Integrity | Lid Intermediate Plate   | В                    | ASME Section III;<br>Subsection NF | SA516-70                | See Table 3.3.2                  | See Note 5      | NA               |
| Structural Integrity | Lead Cover Plate         | В                    | ASME Section III;<br>Subsection NF | SA516-70                | See Table 3.3.2                  | See Note 5      | NA               |
| Structural Integrity | Lead Cover Side Plate    | В                    | ASME Section III;<br>Subsection NF | SA516-70                | See Table 3.3.2                  | See Note 5      | NA               |
| Structural Integrity | Door Top Plate           | В                    | ASME Section III;<br>Subsection NF | SA516-70                | See Table 3.3.2                  | See Note 5      | NA               |
| Structural Integrity | Door Middle Plate        | B                    | ASME Section III;<br>Subsection NF | SA516-70                | See Table 3.3.2                  | See Note 5      | NA               |
| Structural Integrity | Door Bottom Plate        | В                    | ASME Section III;<br>Subsection NF | SA516-70                | See Table 3.3.2                  | See Note 5      | NA               |
| Structural Integrity | Door Wheel Housing       | В                    | ASME Section III;<br>Subsection NF | SA516-70<br>(SA350-LF3) | See Table 3.3.2<br>(Table 3.3.3) | See Note 5      | NA               |
| Structural Integrity | Door Interface Plate     | В                    | ASME Section III;<br>Subsection NF | SA516-70                | See Table 3.3.2                  | See Note 5      | NA               |

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A,B and C denote important to safety classifications as described in Chapter 13. NITS stands for Not Important To Safety.
- 5) All exterior surfaces to be painted with Carboline 890. Top surface of doors to be painted with Thermaline 450.

### MATERIALS AND COMPONENTS OF THE HI-STORM 100 SYSTEM

#### HI-TRAC TRANSFER LID<sup>(1,2)</sup>

| Primary Function     | Component <sup>(3)</sup> | Safety<br>Class <sup>(4)</sup> | Codes/Standards<br>( as applicable to<br>component) | Material     | Strength (ksi)  | Special Surface<br>Finish/Coating | Contact Matl.<br>( if dissimilar) |
|----------------------|--------------------------|--------------------------------|-----------------------------------------------------|--------------|-----------------|-----------------------------------|-----------------------------------|
| Structural Integrity | Door Side Plate          | В                              | ASME Section III;<br>Subsection NF                  | SA516-70     | See Table 3.3.2 | See Note 5                        | NA                                |
| Structural Integrity | Wheel Shaft              | С                              | ASME Section III;<br>Subsection NF                  | SA-36        | 36 ( yield)     | See Note 5                        | NA                                |
| Structural Integrity | Shaft Cover Plate        | С                              | Non-code                                            | SA516-70     | See Table 3.3.2 | See Note 5                        | NA                                |
| Structural Integrity | Lid Housing Stiffener    | В                              | ASME Section III;<br>Subsection NF                  | SA516-70     | See Table 3.3.2 | See Note 5                        | NA                                |
| Structural Integrity | Door Lock Bolt           | В                              | ASME Section III;<br>Subsection NB                  | SA193-B7     | See Table 3.3.4 | NA                                | NA                                |
| Structural Integrity | Door End Plate           | В                              | ASME Section III;<br>Subsection NF                  | SA516-70     | See Table 3.3.2 | See Note 5                        | NA                                |
| Structural Integrity | Lifting Lug and Pad      | В                              | ASME Section III;<br>Subsection NF                  | SA516-70     | See Table 3.3.2 | See Note 5                        | NA                                |
| Operations           | Wheel Track              | C                              | ASME Section III;<br>Subsection NF                  | SA-36        | 36 ( yield)     | See Note 5                        | NA                                |
| Operations           | Door Handle              | NITS                           | Non-code                                            | C/S          | NA              | See Note 5                        | NA                                |
| Operations           | Door Wheels              | NITS                           | Non-code                                            | Forged Steel | NA              | NA                                | NA                                |
| Operations           | Door Stop Block          | С                              | Non-code                                            | SA516-70     | See Table 3.3.2 | See Note 5                        | NA                                |
| Operations           | Door Stop Block Bolt     | C                              | Non-code                                            | SA193-B7     | See Table 3.3.4 | NA                                | NA                                |

- 2) All welding processes used in welding the components shall be qualified in accordance with the requirements of ASME Section IX. All welds shall be made using welders qualified in accordance with ASME Section IX. Weld material shall meet the requirements of ASME Section II and the applicable Subsection of ASME Section III.
- 3) Component nomenclature taken from Bill of Materials in Chapter 1.
- 4) A,B and C denote important to safety classifications as described in Chapter 13. NITS stands for Not Important To Safety.
- 5) All exterior surfaces to be painted with Carboline 890. Top surface of doors to be painted with Thermaline 450.

# HI-STORM 100 ASME BOILER AND PRESSURE VESSEL CODE APPLICABILITY

| HI-STORM 100<br>Component   | Material<br>Procurement                                  | Design                                                       | Fabrication                                | Inspection                                                              |
|-----------------------------|----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|
| Overpack steel<br>structure | Section II,<br>Section III,<br>Subsection NF,<br>NF-2000 | Section III,<br>Subsection NF,<br>NF-3200                    | Section III,<br>Subsection NF,<br>NF-4000  | Section III,<br>Subsection NF,<br>NF-5350, NF-<br>5360 and Section<br>V |
| MPC confinement<br>boundary | Section II,<br>Section III,<br>Subsection NB,<br>NB-2000 | Section III,<br>Subsection NB,<br>NB-3200                    | Section III,<br>Subsection NB,<br>NB-4000  | Section III,<br>Subsection NB,<br>NB-5000 and<br>Section V              |
| MPC fuel basket             | Section II,<br>Section III,<br>Subsection NG,<br>NG-2000 | Section III,<br>Subsection NG,<br>NG-3300 and<br>NG-3200     | Section III,<br>Subsection NG,<br>NG-4000  | Section III,<br>Subsection NG,<br>NG-5000 and<br>Section V              |
| HI-TRAC<br>Trunnions        | Section II,<br>Section III,<br>Subsection NF,<br>NF-2000 | ANSI 14.6                                                    | Section III,<br>Subsection NF,<br>NF-4000  | See Chapter 9                                                           |
| MPC basket<br>supports      | Section II,<br>Section III,<br>Subsection NG,<br>NG-2000 | Section III,<br>Subsection NG,<br>NG-3300 and<br>NG-3200     | Section III,<br>Subsection NG,<br>NG-4000  | Section III,<br>Subsection NG,<br>NG-5000 and<br>Section V              |
| HI-TRAC steel<br>structure  | Section II,<br>Section III,<br>Subsection NF,<br>NF-2000 | Section III,<br>Subsection NF,<br>NF-3300                    | Section III,<br>Subsection NF,<br>NF-4000  | Section III,<br>Subsection NF,<br>NF-5360 and<br>Section V              |
| Damaged fuel container      | Section II,<br>Section III,<br>Subsection NG,<br>NG-2000 | Section III,<br>Subsection NG,<br>NG-3300 and<br>NG-3200     | Section III,<br>Subsection NG,<br>NG-4000  | Section III,<br>Subsection NG,<br>NG-5000 and<br>Section V              |
| Overpack<br>concrete        | ACI 349 as<br>specified by<br>Appendix 1.D               | ACI 349 and ACI<br>318-95 as<br>specified by<br>Appendix 1.D | ACI 349 as<br>specified by<br>Appendix 1.D | ACI 349 as<br>specified by<br>Appendix 1.D                              |

# ADDITIONAL DESIGN INPUT DATA FOR NORMAL, OFF-NORMAL, AND ACCIDENT CONDITIONS

| Item                                                                                                          | Condition | Value                                                |
|---------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------|
| Snow Pressure Loading (lb./ft <sup>2</sup> )                                                                  | Normal    | 100                                                  |
| Constriction of MPC Basket Vent<br>Opening By Crud Settling (Depth of<br>Crud, in.)                           | Accident  | 0.85 (MPC-68)<br>0.36 (MPC-24)                       |
| Cask Environment During the Postulated<br>Fire Event (°F)                                                     | Accident  | 1475                                                 |
| HI-STORM 100 Overpack Fire Duration (seconds)                                                                 | Accident  | 217                                                  |
| HI-TRAC Transfer Cask Fire Duration (minutes)                                                                 | Accident  | 4.8                                                  |
| Maximum submergence depth due to flood (ft)                                                                   | Accident  | 125                                                  |
| Flood water velocity (ft/s)                                                                                   | Accident  | 15                                                   |
| Interaction Relation for Horizontal &<br>Vertical ZPA (Zero Period Acceleration)<br>for HI-STORM <sup>†</sup> | Accident  | $G_{\rm H} + 0.53 G_{\rm V} = 0.53^{\dagger\dagger}$ |
| HI-STORM 100 Overpack Vertical Lift<br>Height Limit (in.)                                                     | Accident  | 11                                                   |
| HI-TRAC Transfer Cask Horizontal Lift<br>Height Limit (in.)                                                   | Accident  | 42                                                   |

<sup>&</sup>lt;sup>†</sup> The maximum horizontal ZPA is specified as the vector sum of the ZPA g-loading in two orthogonal directions.

<sup>&</sup>lt;sup>††</sup> See Subsection 3.4.7.1 for definition of  $G_H$  and  $G_V$ . The coefficient 0.53 may be increased based on testing described in Subsection 3.4.7.1.

### CHARACTERISTICS OF REFERENCE ISFSI PAD<sup>+</sup>

| Concrete thickness                                             | ≤ 36 inches                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Concrete Compressive<br>Strength                               | ≤ 4,200 psi at 28 days                                                                                                                                                                                                                                           |
| Reinforcement Top and<br>Bottom (both directions)              | Reinforcing bar shall be<br>60 ksi Yield Strength<br>ASTM Material                                                                                                                                                                                               |
| Subgrade Soil Effective<br>Modulus of Elasticity <sup>††</sup> | ≤ 28,000 psi<br>(measured prior to ISFSI<br>pad installation)                                                                                                                                                                                                    |
| Top Concrete Surface                                           | A static coefficient of<br>friction of $\geq 0.53$ between<br>the ISFSI pad and the<br>bottom of the overpack<br>shall be verified by test.<br>The test procedure shall<br>follow the guidelines<br>included in the Sliding<br>Analysis in Subsection<br>3.4.7.1 |

<sup>&</sup>lt;sup>†</sup> The characteristics of this pad are identical to the pad considered by Lawrence Livermore Laboratory (see Appendix 3.A).

<sup>&</sup>lt;sup>††</sup> An acceptable method of defining the soil effective modulus of elasticity applicable to the drop and tipover analysis is provided in Table 13 of NUREG/CR-6608 with soil classification in accordance with ASTM-D2487 Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System USCS) and density determination in accordance with ASTM-D1586 Standard Test Method for Penetration Test and Split/Barrel Sampling of Soils.

| Table 2.2.10                                                                 |
|------------------------------------------------------------------------------|
| MPC CONFINEMENT BOUNDARY STRESS INTENSITY LIMITS                             |
| FOR DIFFERENT LOADING CONDITIONS (ELASTIC ANALYSIS PER NB-3220) <sup>†</sup> |

| STRESS CATEGORY                                 | DESIGN            | LEVELS<br>A & B    | LEVEL D <sup>++</sup>                        |
|-------------------------------------------------|-------------------|--------------------|----------------------------------------------|
| Primary Membrane, P <sub>m</sub>                | S <sub>m</sub>    | N/A <sup>†††</sup> | AMIN (2.4S <sub>m</sub> , .7S <sub>u</sub> ) |
| Local Membrane, P <sub>L</sub>                  | 1.5S <sub>m</sub> | N/A                | 150% of P <sub>m</sub> Limit                 |
| Membrane plus Primary Bending                   | 1.5S <sub>m</sub> | N/A                | 150% of P <sub>m</sub> Limit                 |
| Primary Membrane plus Primary<br>Bending        | 1.5S <sub>m</sub> | N/A                | 150% of P <sub>m</sub> Limit                 |
| Membrane plus Primary Bending<br>plus Secondary | N/A               | 3S <sub>m</sub>    | N/A                                          |
| Average Shear Stress <sup>††††</sup>            | 0.6S <sub>m</sub> | 0.6S <sub>m</sub>  | 0.42S <sub>u</sub>                           |

<sup>&</sup>lt;sup>†</sup> Stress combinations including F (peak stress) apply to fatigue evaluations only.

<sup>&</sup>lt;sup>††</sup> Governed by Appendix F, Paragraph F-1331 of the ASME Code, Section III.

<sup>&</sup>lt;sup>†††</sup> No specific stress intensity limit applicable.

 $<sup>^{\</sup>dagger\dagger\dagger\dagger}$  Governed by NB-3227.2 or F-1331.1(d).

# MPC BASKET STRESS INTENSITY LIMITS FOR DIFFERENT LOADING CONDITIONS (ELASTIC ANALYSIS PER NG-3220)

| STRESS CATEGORY                                         | DESIGN             | LEVELS A & B      | LEVEL D <sup>†</sup>                    |
|---------------------------------------------------------|--------------------|-------------------|-----------------------------------------|
| Primary Membrane, P <sub>m</sub>                        | S <sub>m</sub>     | S <sub>m</sub>    | AMIN $(2.4S_m, .7S_u)^{\dagger\dagger}$ |
| Primary Membrane plus Primary<br>Bending                | 1.5S <sub>m</sub>  | 1.5S <sub>m</sub> | 150% of P <sub>m</sub> Limit            |
| Primary Membrane plus Primary<br>Bending plus Secondary | N/A <sup>†††</sup> | 38 <sub>m</sub>   | N/A                                     |

<sup>†††</sup> No specific stress intensity limit applicable.

<sup>&</sup>lt;sup>†</sup> Governed by Appendix F, Paragraph F-1331 of the ASME Code, Section III.

<sup>&</sup>lt;sup>++</sup> Governed by NB-3227.2 or F-1331.1(d).

### Table 2.2.12 STRESS LIMITS FOR DIFFERENT LOADING CONDITIONS FOR THE STEEL STRUCTURE OF THE OVERPACK AND HI-TRAC (ELASTIC ANALYSIS PER NF-3260)

|                                                             |                  | SERVICE CONDITION |                                                                         |  |  |
|-------------------------------------------------------------|------------------|-------------------|-------------------------------------------------------------------------|--|--|
| STRESS CATEGORY                                             | DESIGN + LEVEL A | LEVEL B           | LEVEL D <sup>†</sup>                                                    |  |  |
| Primary Membrane, P <sub>m</sub>                            | S                | 1.338             | AMAX (1.2S <sub>y</sub> , 1.5S <sub>m</sub> )<br>but < .7S <sub>u</sub> |  |  |
| Primary Membrane, $P_m$ ,<br>plus Primary Bending,<br>$P_b$ | 1.5S             | 1.9958            | 150% of P <sub>m</sub>                                                  |  |  |
| Shear Stress<br>(Average)                                   | 0.6S             | 0.6S              | <0.42S <sub>u</sub>                                                     |  |  |

Definitions:

S = Allowable Stress Value for Table 1A, ASME Section II, Part D.

 $S_m$  = Allowable Stress Intensity Value from Table 2A, ASME Section II, Part D

 $S_u = Ultimate Strength$ 

Governed by Appendix F, Paragraph F-1332 of the ASME Code, Section III.

t

### NOTATION FOR DESIGN LOADINGS FOR NORMAL, OFF-NORMAL, AND ACCIDENT CONDITIONS

| NORMAL CONDITION                            |                |
|---------------------------------------------|----------------|
| LOADING                                     | NOTATION       |
| Dead Weight                                 | D              |
| Handling Loads                              | Н              |
| Design Pressure (Internal) <sup>†</sup>     | P <sub>i</sub> |
| Design Pressure (External) <sup>†</sup>     | Po             |
| Snow                                        | S              |
| Operating Temperature                       | Т              |
| OFF-NORMAL CONDITION                        |                |
| Loading                                     | Notation       |
| Off-Normal Pressure (Internal) <sup>†</sup> | P <sub>i</sub> |
| Off-Normal Pressure (External) <sup>†</sup> | Po             |
| Off-Normal Temperature                      | TN             |
| Off-Normal HI-TRAC Handling                 | HN             |

<sup>&</sup>lt;sup>†</sup> Internal Design Pressure  $P_i$  bounds the normal and off-normal condition internal pressures. External Design Pressure  $P_o$  bounds off-normal external pressures. Similarly, Accident pressures  $P_i^*$  and  $P_o^*$ , respectively, bound actual internal and external pressures under all postulated environment phenomena and accident events.

#### Table 2.2.13 (continued)

# NOTATION FOR DESIGN LOADINGS FOR NORMAL, OFF-NORMAL, AND ACCIDENT CONDITIONS

| ACCIDENT CONDITIONS          |                  |
|------------------------------|------------------|
| LOADING                      | NOTATION         |
| Handling Accident            | HN               |
| Earthquake                   | E                |
| Fire                         | T                |
| Tornado Missile              | М                |
| Tornado Wind                 | WN               |
| Flood                        | F                |
| Explosion                    | E <sup>*</sup>   |
| Accident Pressure (Internal) | P <sub>i</sub> * |
| Accident Pressure (External) | P <sub>o</sub> * |

.

 Table 2.2.14

 APPLICABLE LOAD CASES AND COMBINATIONS FOR EACH CONDITION AND COMPONENT<sup>1,††</sup>

| CONDITION                                 | LOADING CASE | МРС                                                     | OVERPACK                   | HI-TRAC                                                |
|-------------------------------------------|--------------|---------------------------------------------------------|----------------------------|--------------------------------------------------------|
| Design (ASME Code<br>Pressure Compliance) | 1            | P <sub>i</sub> , P <sub>o</sub>                         | N/A                        | N/A                                                    |
| Normal (Level A)                          | 1            | D,T,H,P <sub>i</sub>                                    | D, T, H                    | D, T <sup>+++</sup> , H, P <sub>i (water jacket)</sub> |
|                                           | 2            | D, T, H, P <sub>o</sub>                                 | N/A                        | N/A                                                    |
| Off-Normal (Level B)                      | 1            | D , T', H , P <sub>i</sub>                              | D , TN, H                  | N/A <sup>†††</sup> (HNpocket<br>trunnion)              |
|                                           | 2            | $D, T', H, P_o$                                         | N/A                        | N/A                                                    |
| Accident (Level D)                        | 1            | $D, T, P_i, HN$                                         | D, T, HN                   | D, T, HN                                               |
|                                           | 2            | D, T <sup>*</sup> , P <sub>i</sub> <sup>*</sup>         | N/A                        | N/A                                                    |
|                                           | 3            | $D, T, P_{o}^{\dagger \dagger \dagger \dagger \dagger}$ | D, T, P <sub>o</sub> ***** | $D, T, P_o^{\dagger \dagger \dagger \dagger \dagger}$  |
|                                           | 4            | N/A                                                     | D, T, (E, M, F, WN)*****   | D, T, (M, W') <sup>†††††</sup>                         |

<sup>†</sup> The loading notations are given in Table 2.2.13. Each symbol represents a loading type and may have different values for different components. The different loads are assumed to be additive and applied simultaneously.

<sup>&</sup>lt;sup>††</sup> N/A stands for "Not Applicable".

<sup>&</sup>lt;sup>†††</sup> T (normal condition) for the HI-TRAC is 100°F and Pi (water jacket) is 60 psig and, therefore, there is no off-normal temperature or load combination because Load Case 1, Normal (Level A), is identical to Load Case 1 Off-normal (Level B). Only the off-normal handling load on the pocket trunnion is analyzed separately.

 $P_o$  bounds the external pressure due to explosion.

<sup>(</sup>E, M, F, W) means loads are considered separately in combination with D, T. E and F not applicable to HI-TRAC.

#### Table 2.2.15

## LIST OF ASME CODE EXCEPTIONS FOR HI-STORM 100 SYSTEM

| Component                                             | Reference ASME Code<br>Section/Article | Code Requirement                                                                                     | Exception, Justification &<br>Compensatory Measures                                                                                                                                                                                                          |
|-------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MPC                                                   | NB-1100                                | Statement of requirements for Code stamping of components.                                           | MPC enclosure vessel is designed<br>and will be fabricated in accordance<br>with ASME Code, Section III,<br>Subsection NB to the maximum<br>practical extent, but Code stamping is<br>not required.                                                          |
| МРС                                                   | NB-2000                                | Requires materials to be supplied by ASME-<br>approved material supplier.                            | Materials will be supplied by Holtec<br>approved suppliers with Certified<br>Material Test Reports (CMTRs) in<br>accordance with NB-2000<br>requirements.                                                                                                    |
| MPC Lid and Closure Ring<br>Welds                     | NB-4243                                | Full penetration welds required for Category<br>C Joints (flat head to main shell per NB-<br>3352.3) | MPC lid and closure ring are not full<br>penetration welds. They are welded<br>independently to provide a redundant<br>seal. Additionally, a weld efficiency<br>factor of 0.45 has been applied to the<br>analyses of these welds.                           |
| MPC Closure Ring, Vent and<br>Drain Cover Plate Welds | NB-5230                                | Radiographic (RT) or ultrasonic (UT)<br>examination required.                                        | Root and final liquid penetrant<br>examination to be performed in<br>accordance with NB-5245. The MPC<br>vent and drain cover plate welds are<br>leak tested. The closure ring provides<br>independent redundant closure for<br>vent and drain cover plates. |

#### Table 2.2.15 (continued)

## LIST OF ASME CODE EXCEPTIONS FOR HI-STORM 100 SYSTEM

| Component                       | Reference ASME Code<br>Section/Article | Code Requirement                                                   | Exception, Justification &<br>Compensatory Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------|----------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MPC Lid Weld                    | NB-5230                                | Radiographic (RT) or ultrasonic (UT)<br>examination required.      | Only UT or multi-layer liquid<br>penetrant (PT) examination is<br>permitted. If PT examination alone<br>is used, at a minimum, it will<br>include the root and final weld<br>layers and each approx. 3/8" of<br>weld depth.                                                                                                                                                                                                                                                                                                                                    |
| MPC Enclosure Vessel and<br>Lid | NB-6111                                | All completed pressure retaining systems shall be pressure tested. | The MPC vessel is seal welded in<br>the field following fuel assembly<br>loading. The MPC vessel shall<br>then be hydrostatically tested as<br>defined in Chapter 8. Accessibility<br>for leakage inspections preclude a<br>Code compliant hydrostatic test.<br>All MPC vessel welds (except<br>closure ring and vent/drain cover<br>plate) are inspected by RT or UT.<br>The vent/drain cover plate welds<br>are confirmed by helium leakage<br>testing and liquid penetrant<br>examination and the closure ring<br>weld is confirmed by liquid<br>penetrant. |

٠

#### Table 2.2.15 (continued)

## LIST OF ASME CODE EXCEPTIONS FOR HI-STORM 100 SYSTEM

| Component            | Reference ASME Code<br>Section/Article | Code Requirement                                                          | Exception, Justification &<br>Compensatory Measures                                                                                                                                                                                                                                                                                     |
|----------------------|----------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MPC Enclosure Vessel | NB-7000                                | Vessels are required to have overpressure protection.                     | No overpressure protection is<br>provided. Function of MPC<br>enclosure vessel is to contain<br>radioactive contents under normal,<br>off-normal, and accident<br>conditions of storage. MPC vessel<br>is designed to withstand maximum<br>internal pressure considering<br>100% fuel rod failure and<br>maximum accident temperatures. |
| MPC Enclosure Vessel | NB-8000                                | States requirements for nameplates,<br>stamping and reports per NCA-8000. | HI-STORM 100 System to be<br>marked and identified in<br>accordance with 10CFR71 and<br>10CFR72 requirements. Code<br>stamping is not required. QA data<br>package to be in accordance with<br>Holtec approved QA program.                                                                                                              |
| MPC Basket Assembly  | NG-2000                                | Requires materials to be supplied by<br>ASME approved Material Supplier.  | Materials will be supplied by<br>Holtec approved supplier with<br>CMTRs in accordance with NG-<br>2000 requirements.                                                                                                                                                                                                                    |

£

#### Table 2.2.15 (continued)

### LIST OF ASME CODE EXCEPTIONS FOR HI-STORM 100 SYSTEM

| Component                | Reference ASME Code<br>Section/Article | Code Requirement                                                          | Exception, Justification &<br>Compensatory Measures                                                                                                                                                                                        |
|--------------------------|----------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MPC Basket Assembly      | NG-8000                                | States requirements for nameplates,<br>stamping and reports per NCA-8000. | The HI-STORM 100 System will<br>be marked and identified in<br>accordance with 10CFR71 and<br>10CFR72 requirements. No Code<br>stamping is required. The MPC<br>basket data package will be in<br>conformance with Holtec's QA<br>program. |
| Overpack Steel Structure | NF-2000                                | Requires materials to be supplied by ASME approved Material Supplier.     | Materials will be supplied by<br>Holtec approved supplier with<br>CMTRs in accordance with NF-<br>2000 requirements.                                                                                                                       |
| HI-TRAC Steel Structure  | NF-2000                                | Requires materials to be supplied by ASME approved Material Supplier.     | Materials will be supplied by<br>Holtec approved supplier with<br>CMTRs in accordance with NF-<br>2000 requirements.                                                                                                                       |

| Component                               | Reference ASME Code<br>Section/Article | Code Requirement                                                                                                                                                                      | Exception, Justification &<br>Compensatory Measures                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Overpack Baseplate and Lid<br>Top Plate | NF-4441                                | Requires special examinations or<br>requirements for welds where a primary<br>member thickness of 1" or greater is<br>loaded to transmit loads in the through<br>thickness direction. | The large margins of safety in<br>these welds under loads<br>experienced during lifting<br>operations or accident conditions<br>are quite large and warrant an<br>exemption. The overpack<br>baseplate welds to the inner shell,<br>pedestal shell, and radial plates are<br>only loaded during lifting<br>conditions and have a minimum<br>safety factor of greater than 12<br>during lifting. The top lid plate to<br>lid shell weld has a safety factor<br>greater than 6 under 45g's. |
| Overpack Steel Structure                | NF-3256                                | Provides requirements for welded joints.                                                                                                                                              | Welds for which no structural<br>credit is taken are identified as<br>"Non-NF" welds in the design<br>drawings by an "*". These non-<br>structural welds are specified in<br>accordance with the prequalified<br>welds of AWS D1.1. These welds<br>shall be made by welders and weld<br>procedures qualified in accordance<br>with AWS D1.1 or ASME Section<br>IX.                                                                                                                        |

.

-

#### Table 2.2.16

#### COMPARISON BETWEEN HI-STORM MPC LOADINGS WITH HI-STAR MPC LOADINGS<sup>†</sup>

| Loading Condition                                               | Difference Between MPC Loadings Under<br>HI-STAR and HI-STORM Conditions                                                                                                                                                      |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dead Load                                                       | Unchanged                                                                                                                                                                                                                     |
| Design Internal Pressure<br>(normal, off-normal, &<br>accident) | Unchanged                                                                                                                                                                                                                     |
| Design External Pressure<br>(normal, off-normal, &<br>accident) | HI-STORM normal and off-normal external pressure is ambient which<br>is less than the HI-STAR 40 psig. The accident external pressure is<br>unchanged.                                                                        |
| Thermal Gradient (normal, off-normal, & accident)               | Determined by analysis in Chapters 3 and 4                                                                                                                                                                                    |
| Handling Load (normal)                                          | Unchanged                                                                                                                                                                                                                     |
| Earthquake (accident)                                           | Inertial loading increased less than 0.1g's.                                                                                                                                                                                  |
| Handling Load (accident)                                        | HI-STORM vertical and horizontal deceleration loadings are less than<br>those in HI-STAR, but the HI-STORM cavity inner diameter is different<br>and therefore the horizontal loading on the MPC is analyzed in Chapter<br>3. |

HI-STAR MPC loadings are those specified in HI-STAR applications under Docket Numbers 71-9261 and 72-1008.

ŧ

#### 2.3 <u>SAFETY PROTECTION SYSTEMS</u>

#### 2.3.1 <u>General</u>

The HI-STORM 100 System is engineered to provide for the safe long-term storage of spent nuclear fuel (SNF). The HI-STORM 100 will withstand all normal, off-normal, and postulated accident conditions without any uncontrolled release of radioactive material or excessive radiation exposure to workers or members of the public. Special considerations in the design have been made to ensure long-term integrity and confinement of the stored SNF throughout all cask operating conditions. The design considerations which have been incorporated into the HI-STORM 100 System to ensure safe long-term fuel storage are:

- 1. The MPC confinement barrier is an enclosure vessel designed in accordance with the ASME Code, Subsection NB with confinement welds inspected by radiography (RT) or ultrasonic testing (UT). Where RT or UT is not possible, a redundant closure system is provided with field welds which are hydrostatically tested, helium leakage tested and inspected by the liquid penetrant method.
- 2. The MPC confinement barrier is surrounded by the HI-STORM overpack which provides for the physical protection of the MPC.
- 3. The HI-STORM 100 System is designed to meet the requirements of storage while maintaining the safety of the SNF.
- 4. The SNF once initially loaded in the MPC does not require opening of the canister for repackaging to transport the SNF.
- 5. The decay heat emitted by the SNF is rejected from the HI-STORM 100 System through passive means. No active cooling systems are employed.

It is recognized that a rugged design with large safety margins is essential, but that is not sufficient to ensure acceptable performance over the service life of any system. A carefully planned oversight and surveillance plan which does not diminish system integrity but provides reliable information on the effect of passage of time on the performance of the system is essential. Such a surveillance and performance assay program will be developed to be compatible with the specific conditions of the licensee's facility where the HI-STORM 100 System is installed. The general requirements for the acceptance testing and maintenance programs are provided in Chapter 9. Surveillance requirements are specified in Chapter 12.

The structures, systems, and components of the HI-STORM 100 System designated as important to safety are identified in Table 2.2.6. Similar categorization of structures, systems, and components,

HI-STORM FSAR REPORT HI-2002444 which are part of the ISFSI, but not part of the HI-STORM 100 System, will be the responsibility of the 10CFR72 licensee.

#### 2.3.2 <u>Protection by Multiple Confinement Barriers and Systems</u>

#### 2.3.2.1 <u>Confinement Barriers and Systems</u>

The radioactivity which the HI-STORM 100 System must confine originates from the spent fuel assemblies and, to a lesser extent, the contaminated water in the fuel pool. This radioactivity is confined by multiple confinement barriers.

Radioactivity from the fuel pool water is minimized by preventing contact, removing the contaminated water, and decontamination.

An inflatable seal in the annular gap between the MPC and HI-TRAC, and the elastomer seal in the HI-TRAC pool lid prevent the fuel pool water from contacting the exterior of the MPC and interior of the HI-TRAC while submerged for fuel loading. The fuel pool water is drained from the interior of the MPC and the MPC internals are dried. The exterior of the HI-TRAC has a painted surface which is decontaminated to acceptable levels. Any residual radioactivity deposited by the fuel pool water is confined by the MPC confinement boundary along with the spent nuclear fuel.

The HI-STORM 100 System is designed with several confinement barriers for the radioactive fuel contents. Intact fuel assemblies have cladding which provides the first boundary preventing release of the fission products. Fuel assemblies classified as damaged fuel or fuel debris are placed in a damaged fuel container which restricts the release of fuel debris. The MPC is a seal welded enclosure which provides the confinement boundary. The MPC confinement boundary is defined by the MPC baseplate, shell, lid, closure ring, and port cover plates.

The MPC confinement boundary has been designed to withstand any postulated off-normal operations, internal change, or external natural phenomena. The MPC is designed to endure normal, off-normal, and accident conditions of storage with the maximum decay heat loads without loss of confinement. Designed in accordance with the ASME Code, Section III, Subsection NB to the maximum extent practical, the MPC confinement boundary provides assurance that there will be no release of radioactive materials from the cask under all postulated loading conditions. Redundant closure of the MPC is provided by the MPC closure ring welds which provide a second barrier to the release of radioactive material from the MPC internal cavity. Therefore, no monitoring system for the confinement boundary is required.

Confinement is discussed further in Chapter 7. MPC field weld examinations, hydrostatic testing, and helium leak testing are performed to verify the confinement function in accordance with the Technical Specifications contained in Chapter 12. Fabrication inspections and tests are also performed, as discussed in Chapter 9, to verify the confinement boundary.

1

#### 2.3.2.2 Cask Cooling

To facilitate the passive heat removal capability of the HI-STORM 100, several thermal design criteria are established for normal and off-normal conditions. They are as follows:

- The heat rejection capacity of the HI-STORM 100 System is deliberately understated by conservatively determining the design basis fuel. The decay heat value in Table 2.1.6 is developed by computing the decay heat from the design basis fuel assembly which produces the highest heat generation rate for a given burnup. Additional margin is built into the calculated cask cooling rate by using a design basis fuel assembly which offers maximum resistance to the transmission of heat (minimum thermal conductivity).
- The MPC fuel basket is formed by a honeycomb structure of stainless steel plates with full-length edge-welded intersections, which allows the unimpaired conduction of heat.
- The MPC confinement boundary ensures that the helium atmosphere inside the MPC is maintained during normal, off-normal, and accident conditions of storage and transfer. The MPC confinement boundary maintains the helium confinement atmosphere below the design temperatures and pressures stated in Table 2.2.3 and Table 2.2.1, respectively.
- The MPC thermal design maintains the fuel rod cladding temperatures below the values stated in Chapter 4 such that fuel cladding is not degraded during the long term storage period.
- The HI-STORM is optimally designed with cooling vents and a MPC to overpack annulus which maximize air flow, while providing superior radiation shielding. The vents and annulus allow cooling air to circulate past the MPC removing the decay heat.

#### 2.3.3 <u>Protection by Equipment and Instrumentation Selection</u>

#### 2.3.3.1 Equipment

Design criteria for the HI-STORM 100 System are described in Section 2.2. The HI-STORM 100 System may include use of ancillary or support equipment for ISFSI implementation. Ancillary equipment and structures utilized outside of the reactor facility's 10CFR Part 50 structures may be broken down into two broad categories, namely Important to Safety (ITS) ancillary equipment and Not Important to Safety (NITS) ancillary equipment. NUREG/CR-6407, "Classification of Transportation Packaging and Dry Spent Fuel Storage System Components According to Importance to Safety", provides guidance for the determination of a component's safety classification. Certain ancillary equipment (such as trailers, rail cars, skids, portable cranes, transporters, or air pads) are not required to be designated as ITS for most ISFSI implementations, if the HI-STORM 100 is designed to withstand the failure of these components.

The listing and ITS designation of ancillary equipment in Table 8.1.6 follows NUREG/CR-6407. ITS ancillary equipment utilized in activities which occur outside the 10CFR Part 50 structure shall be engineered using a written specification which describes all functional, strength, service life, and operational safety requirements to ensure that the design and operation of the ancillary equipment is consistent with the intent of this Safety Analysis Report. The specification document shall contain the following information, as applicable:

- 1. Functions and boundaries of the ancillary equipment
- 2. The environmental conditions of the ISFSI site, including tornado-borne missile, tornado wind, seismic, fire, lightning, explosion, ambient humidity limits, flood, tsunami and any other environmental hazards unique to the site.
- 3. Material requirements including impact testing requirements
- 4. Applicable codes and standards
- 5. Acceptance testing requirements
- 6. Quality assurance requirements
- 7. Foundation type and permissible loading
- 8. Applicable loads and load combinations
- 9. Pre-service examination requirements

- 10. In-use inspection and maintenance requirements
- 11. Number and magnitude of repetitive loading significant to fatigue
- 12. Insulation and enclosure requirements (on electrical motors and machinery)
- 13. Applicable Reg. Guides and NUREGs.
- 14. Welding requirements
- 15. Painting, marking, and identification requirements
- 16. Design Report documentation requirements
- 17. Operational and Maintenance (O&M) Manual information requirements

All design documentation shall be subject to a review, evaluation, and safety assessment process in accordance with the provisions of the QA program described in Chapter 13.

Users may effectuate the inter-cask transfer of the MPC between the HI-TRAC transfer cask and either the HI-STORM 100 or the HI-STAR 100 overpack in a location of their choice, depending upon site-specific needs and capabilities. For those users choosing to perform the MPC inter-cask transfer outside of a facility governed by the regulations of 10 CFR Part 50 (e.g., fuel handling or reactor building), a Cask Transfer Facility (CTF) is required. The CTF is a stand-alone facility located on-site, near the ISFSI that incorporates or is compatible with lifting devices designed to lift a loaded or unloaded HI-TRAC transfer cask, place it atop the overpack, and transfer the loaded MPC to or from the overpack. The detailed design criteria which must be followed for the design and operation of the CTF are set down in Paragraphs A through R below.

The inter-cask transfer operations consist of the following potential scenarios of MPC transfer:

- Transfer between a HI-TRAC transfer cask and a HI-STORM 100 overpack
- Transfer between a HI-TRAC transfer cask and a HI-STAR 100 overpack

In both scenarios, HI-TRAC is mounted on top of the overpack (HI-STAR 100 or HI-STORM 100) and the MPC transfer is carried out by opening the transfer lid doors located at the bottom of the HI-TRAC transfer cask and by moving the MPC vertically to the cylindrical cavity of the recipient cask. However, the devices utilized to lift the HI-TRAC cask to place it on the overpack and to vertically transfer the MPC may be of stationary or mobile type.

The specific requirements for the CTF employing stationary and mobile lifting devices are somewhat different. The requirements provided in the following specification for the CTF apply to *both* types of lifting devices, unless explicitly differentiated in the text.

#### A. General Specifications:

- i. The cask handling functions which may be required of the Cask Transfer Facility include:
  - a. Upending and downending of a HI-STAR 100 overpack on a flatbed rail car or other transporter (see Figure 2.3.1 for an example).
  - b. Upending and downending of a HI-TRAC transfer cask on a heavyhaul transfer trailer or other transporter (see Figure 2.3.2 for an example)
  - c. Raising and placement of a HI-TRAC transfer cask on top of a HI-STORM 100 overpack for MPC transfer operations (see Figure 2.3.3).
  - d. Raising and placement of a HI-TRAC transfer cask on top of a HI-STAR 100 overpack for MPC transfer operations (see Figure 2.3.4).
  - e. MPC transfer between the HI-TRAC transfer cask and the HI-STORM 100 overpack.
  - f. MPC transfer between the HI-TRAC transfer cask and the HI-STAR 100 overpack.
- ii. Other Functional Requirements:

The CTF should possess facilities and capabilities to support cask operations such as :

- a. Devices and areas to support installation and removal of the HI-STORM 100 lid.
- b. Devices and areas to support installation and removal of the HI-STORM 100 shield block inserts.
- c. Devices and areas to support installation and removal of the HI-STAR 100 closure plate.
- d. Devices and areas to support installation and removal of the HI-STAR 100 transfer collar.

- e. Features to support positioning and alignment of the HI-STORM 100 overpack and the HI-TRAC transfer cask.
- f. Features to support positioning and alignment of the HI-STAR 100 overpack and the HI-TRAC transfer cask.
- g. Areas to support jacking of a loaded HI-STORM 100 overpack for insertion of a translocation device underneath.
- h. Devices and areas to support placement of an empty MPC in the HI-TRAC transfer cask or HI-STAR 100 overpack
- i. Devices and areas to support receipt inspection of the MPC, HI-TRAC transfer cask, HI-STORM overpack, and HI-STAR overpack.
- iii. Definitions:

The components of the CTF covered by this specification consist of all structural members, lifting devices, and foundations which bear all or a significant portion of the dead load of the transfer cask or the multi-purpose canister during MPC transfer operations. The definitions of key terms not defined elsewhere in this FSAR and used in this specification are provided below: following terms are used to define key components of the CTF.

- Connector Brackets: The mechanical part used in the load path which connects to the cask trunnions. A fabricated weldment, slings, and turnbuckles are typical examples of connector brackets.
- CTF structure: The CTF structure is the stationary, anchored portion of the CTF which provides the required structural function to support MPC transfer operations, including lateral stabilization of the HI-TRAC transfer cask and, if required, the overpack, to protect against seismic events. The MPC lifter, if used in the CTF design, is integrated into the CTF structure (see Lifter Mount).
- HI-TRAC lifter(s): The HI-TRAC lifter is the mechanical lifting device, typically consisting of jacks or hoists, that is utilized to lift

a loaded or unloaded HI-TRAC to the required elevation in the CTF so that it can be mounted on the overpack.<sup> $\dagger$ </sup>

- Lifter Mount: A beam-like structure (part of the CTF structure) that supports the HI-TRAC and MPC lifter(s).
- Lift Platform: The lift platform is the intermediate structure that transfers the vertical load of the HI-TRAC transfer cask to the HI-TRAC lifters.
- Mobile crane: A mobile crane is a device defined in ASME B30.5-1994, Mobile and Locomotive Cranes. A mobile crane may be used in lieu of the HI-TRAC lifter and/or an MPC lifter provided all requirements set forth in this subsection are satisfied.
- MPC lifter: The MPC lifter is a mechanical lifting device, typically consisting of jacks or hoists, that is utilized to vertically transfer the MPC between the HI-TRAC transfer cask and the overpack.
- Pier: The portion of the reinforced concrete foundation which projects above the concrete floor of the CTF.
- Single-Failure-Proof (SFP): A single-failure-proof handling device is one wherein all directly loaded tension and compression members are engineered to satisfy the enhanced safety criteria given in of NUREG-0612.
- Translocation Device: A low vertical profile device used to laterally position an overpack such that the bottom surface of the overpack is fully supported by the top surface of the device. Typical translocation devices are air pads and Hillman rollers.
- iv. Important to Safety Designation:

All components and structures which comprise the CTF shall be given an ITS category designation in accordance with a written procedure which is consistent with NUREG/CR-6407 and Chapter 13 of this FSAR.

<sup>&</sup>lt;sup>†</sup>The term overpack is used in this specification as a generic term for the HI-STAR 100 and HI-STORM 100 overpacks.

- B. Environmental and Design Conditions
  - i. Lowest Service Temperature (LST): The LST for the CTF is 100°F (consistent with the specification for the HI-TRAC transfer cask in Subsection 3.1.2.3).
  - Snow and Ice Load, S: The CTF structure shall be designed to withstand the dead weight of snow and ice for unheated structures as set forth in ASCE 7-88 [2.2.2] for the specific ISFSI site.
  - iii. Tornado Missile, M, and Wind,W': The tornado and tornado-generated missile data applicable to the HI-STORM 100 System (Tables 2.2.4 and 2.2.5) will be used in the design of the CTF structure unless existing site design basis data or a probabilistic risk assessment (PRA) for the CTF site with due consideration of short operation durations indicates that a less severe tornado missile impact or wind loading on the CTF structure can be postulated. The PRA analysis can be performed in the manner of the EPRI Report NP-2005, "Tornado Missile Simulation and Design Methodology Computer Code Manual". USNRC Reg. Guide 1.117 and Section 2.2.3 of NUREG-800 may be used for guidance in establishing the appropriate tornado missile and wind loading for the CTF structure.

The following additional clarifications apply to the large tornado missile (4,000 lb. automobile) in Tables 2.2.4 and 2.2.5 in the CTF structure analysis:

- The missile has a planform area of 20 sq. ft. and impact force characteristics set forth in Appendix 3.AN (Section 3.AN.3).
- The large missile can strike the CTF structure in any orientation up to an elevation of 15 feet.

If the site tornado missile data developed by the ISFSI owner suggests that tornado missiles of greater kinetic energies than that postulated in this FSAR (Table 2.2.4 and 2.2.5) should be postulated for CTF during its use, then the integrity analysis of the CTF structure shall be carried out under the site-specific tornado missiles. This situation would also require the HI-TRAC transfer cask and the overpack to be re-evaluated under the provisions of 10CFR72.212 and 72.48.

The wind speed specified in this FSAR (Tables 2.2.4 and 2.2.5), likewise, shall be evaluated for their applicability to the site. Lower or higher site-specific wind velocity, compared to the design basis values cited in this

FSAR shall be used if justified by appropriate analysis, which may include PRA.

Intermediate penetrant missile and small missiles postulated in this FSAR are not considered to be a credible threat to the functional integrity of the CTF structure and, therefore, need not be considered.

- iv. Flood: The CTF will be assumed to be flooded to the highest elevation for the CTF facility determined from the local meteorological data. The flood velocity shall be taken as the largest value defined for the ISFSI site.
- v. Lightning: Meteorological data for the region surrounding the ISFSI site shall be used to specify the applicable lightning input to the CTF structure for personnel safety evaluation purposes.
- vi. Water Waves (Tsunami, Y): Certain coastal CTF sites may be subject to sudden, short duration waves of water, denoted in the literature by various terms, such as tsunami. If the applicable meteorological data for the CTF site indicates the potential of such water-borne loadings on the CTF structure, then such a loading, with due consideration of the short duration of CTF operations, shall be defined for the CTF structure.
- vii. Design Basis Earthquake (DBE), E: The DBE event applicable to the CTF facility pursuant to 10CFR100, Appendix A, shall be specified. The DBE should be specified as a set of response spectra or acceleration time-histories for use in the CTF structural and impact consequence analyses.
- viii. Design Temperature: All material properties used in the stress analysis of the CTF structure shall utilize a reference design temperature of 150EF.
- C. Heavy Load Handling:
  - i. Apparent dead load, D\*: The dead load of all components being lifted shall be increased in the manner set forth in Subsection 3.4.3 to define the Apparent Dead Load, D\*.
  - ii. NUREG-0612 Conformance:

The Connector Bracket, HI-TRAC lifter, and MPC lifter shall comply with the guidance provided in NUREG-0612 (1980) for single failure proof devices. Where the geometry of the lifting device is different from the configurations contemplated by NUREG-0612, the following exceptions apply:

- a. Mobile cranes at the CTF shall conform to the guidelines of Section 5.1.1 of NUREG-0612 with the exception that mobile cranes shall meet the requirements of ANSI B30.5, "Mobile and Locomotive Cranes", in lieu of the requirements of ANSI B30.2, "Overhead and Gantry Cranes". The mobile crane used shall have a minimum safety factor of two over the allowable load table for the crane in accordance with Section 5.1.6(1)(a) of NUREG-0612, and shall be capable of stopping and holding the load during a DBE event.
- b. Section 5.1.6(2) of NUREG-0612 specifies that new cranes should be designed to meet the requirements of NUREG-0554. For mobile cranes, the guidance of Section 5.1.6(2) of NUREG-0612 does not apply.
- iii. Defense-in-Depth Measures:
  - a. The lift platform and the lifter mount shall be designed to ensure that the stresses produced under the apparent dead load, D\*, are less than the Level A (normal condition) stress limits for ASME Section III, Subsection NF, Class 3, linear structures.
  - b. The CTF structure shall be designed to ensure that the stresses produced in it under the apparent dead load, D\*, are less than the Level A (normal condition) stress limits for ASME Section III, Subsection NF, Class 3, linear structures.
  - c. Maximum deflection of the lift platform and the lifter mount under the apparent dead load shall comply with the limits set forth in CMAA-70.
  - d. When the HI-TRAC transfer cask is stacked on the overpack, HI-TRAC shall be either held by the lifting device or laterally restrained by the CTF structure. Furthermore, when the HI-TRAC transfer cask is placed atop the overpack, the overpack shall be laterally restrained from uncontrolled movement, if required by the analysis specified in Subsection 2.3.3.1.N.

- e. The design of the lifting system shall ensure that the lift platform (or lift frame) is held horizontal at all times and that the symmetrically situated axial members are symmetrically loaded.
- f. In order to minimize occupational radiation exposure to ISFSI personnel, design of the MPC lifting attachment (viz., sling) should not require any human activity inside the HI-TRAC cylindrical space.
- g. The HI-TRAC lifter and MPC lifter shall possess design features to avoid side-sway of the payload during lifting operations.
- h. The lifter (HI-TRAC and MPC) design shall ensure that any electrical malfunction in the motor or the power supply will not lead to an uncontrolled lowering of the load.
- i. The kinematic stability of HI-TRAC or HI-STORM standing upright in an unrestrained configuration (if such a condition exists during the use of the CTF) shall be analytically evaluated and ensured under all postulated extreme environmental phenomena loadings for the CTF facility.
- iv. Shielding Surety:

The design of the HI-TRAC and MPC lifters shall preclude the potential for the MPC to be removed, completely or partially, from the cylindrical space formed by the HI-TRAC and the underlying overpack.

v. Specific Requirements for Mobile Cranes:

A mobile crane, if used in the CTF in the role of the HI-TRAC lifter or MPC lifter is governed in part by ANSI/ASME N45.2.15 with technical requirements specified in ANSI B30.5 (1994).

When lifting the MPC from an overpack to the HI-TRAC transfer cask, limit switches or load limiters shall be set to ensure that the mobile crane is prevented from lifting loads in excess of 110% of the loaded MPC weight.

An analysis of the consequences of a potential MPC vertical drop which conforms to the guidelines of Appendix A to NUREG-0612 shall be performed. The analysis shall demonstrate that a postulated drop would not result in the MPC experiencing a deceleration in excess of its design basis deceleration specified in this FSAR.

1

- vi. Lift Height Limitation: The HI-TRAC lift heights shall be governed by the Technical Specifications.
- vii. Control of Side Sway: Procedures shall provide provisions to ensure that the load is lifted essentially vertically with positive control of the load. Key cask lifting and transfer procedures, as determined by the user, should be reviewed by the Certificate Holder before their use.
- D. Loads and Load Combinations for the CTF Structure

The applicable loadings for the CTF have been summarized in paragraph B in the preceding. A stress analysis of the CTF structure shall be performed to demonstrate compliance with the Subsection NF stress limits for Class 3 linear structures for the service condition germane to each load combination. Table 2.3.2 provides the load combinations (the symbols in Table 2.3.2 are defined in the preceding text and in Table 2.2.13).

- E. Materials and Failure Modes
  - i. Acceptable Materials and Material Properties: All materials used in the design of the CTF shall be ASTM approved or equal, consistent with the ITS category of the part. Reinforced concrete, if used, shall comply with the provisions of ACI 318 (89). The material property and allowable stress values for all steel structurals shall be taken from the ASME and B&PV Code, Section II, wherever such data is available; otherwise, the data provided in the ASTM standards shall be used.
  - ii. Brittle Fracture: All structural components in the CTF structure and the lift platform designated as primary load bearing shall have an NDTT equal to OEF or lower (consistent with the ductile fracture requirements for ASME Section III, Subsection NF, Class 3 structures).
  - iii. Fatigue: Fatigue failure modes of primary structural members in the CTF structure whose failure may result in uncontrolled lowering of the HI-TRAC transfer cask or the MPC (critical members) shall be evaluated. A minimum factor of safety of 2 on the number of permissible loading cycles on the critical members shall apply.
  - iv. Buckling: For all critical members in the CTF structure (defined above), potential failure modes through buckling under axial compression shall be considered. The margin of safety against buckling shall comply with the provisions of ASME Section III, Subsection NF, for Class 3 linear structures.

#### F. CTF Pad

A reinforced concrete pad in conformance with the specification for the ISFSI pad set forth in this FSAR (see Table 2.2.9) may be used in the region of the CTF where the overpack and HI-TRAC are stacked for MPC transfer. Alternatively, the pad may be designed using the guidelines of ACI-318(89).

G. Miscellaneous Components

Hoist rings, turnbuckles, slings, and other appurtenances which are in the load path during heavy load handling at the CTF shall be single-failure-proof.

H. Structural Welds

All primary structural welds in the CTF structure shall comply with the specifications of ASME Section III for Class 3 NF linear structures.

I. Foundation

The design of the CTF structure foundation and piers, including load combinations, shall be in accordance with ACI-318(89).

J. Rail Access

The rail lines that enter the Cask Transfer Facility shall be set at grade level with no exposed rail ties or hardware other than the rail itself.

- K. Vertical Cask Crawler/Translocation Device Access (If Required)
  - i. The cask handling bay in the CTF shall allow access of a vertical cask crawler or translocation device carrying a transfer cask or overpack. The building floor shall be equipped with a smooth transition to the cask travel route such that the vertical cask crawler tracks do not have to negotiate sharp lips or slope transitions and the translocation devices have a smooth transition. Grading of exterior aprons shall be no more than necessary to allow water drainage.
  - ii. If roll-up doors are used, the roll up doors shall have no raised threshold that could damage the vertical cask crawler tracks (if a crawler is used).

- iii. Exterior aprons shall be of a material that will not be damaged by the vertical cask crawler tracks, if a crawler is used.
- L. Facility Floor
  - i. The facility floor shall be sufficiently flat to allow optimum handling of casks with a translocation device.
  - ii. Any floor penetrations, in areas where translocation device operations may occur, shall be equipped with flush inserts.
  - iii. The rails, in areas where translocation device operations may occur shall be below the finish level of the floor. Flush inserts, if necessary, shall be sized for installation by hand.
- M. Cask Connector Brackets
  - i. Primary lifting attachments between the cask and the lifting platform are the cask connector brackets. The cask connector brackets may be lengthened or shortened to allow for differences in the vehicle deck height of the cask delivery vehicle and the various lifting operations. The connector brackets shall be designed to perform cask lifting, upending and downending functions. The brackets shall be designed in accordance with ANSI N14.6 [Reference 2.2.3] and load tested at 300% of the load applied to them during normal handling.
  - ii. The connector brackets shall be equipped with a positive engagement to ensure that the cask lifting attachments do not become inadvertently disconnected during a seismic event and during normal cask handling operations.
  - iii. The design of the connector brackets shall ensure that the HI-TRAC transfer cask is fully secured against slippage during MPC transfer operations.
- N. Cask Restraint System

A time-history analysis of the stacked overpack/HI-TRAC transfer cask assemblage under the postulated ISFSI Level D events in Table 2.3.2 shall be performed to demonstrate that a minimum margin of safety of 1.1 against overturning or kinematic instability exists and that the CTF structure complies with the applicable stress limits (Table 2.3.2) and that the maximum permissible deceleration loading specified in the FSAR is not exceeded. If required to meet the minimum margin of safety of 1.1, a cask restraining system shall be incorporated into the design of the Cask Transfer Facility to provide lateral restraint to the overpack (HI-STORM 100 or HI-STAR 100).

O. Design Life

The Cask Transfer Facility shall be constructed to have a minimum design life of 40 years.

P. Testing Requirements

In addition to testing recommended in NUREG-0612 (1980), a structural adequacy test of the CTF structure at 125% of its operating load prior to its first use in a cask loading campaign shall be performed. This test should be performed in accordance with the guidance provided in the CMAA Specification 70 [2.2.16].

Q. Quality Assurance Requirements

All components of the CTF shall be manufactured in full compliance with the quality assurance requirements applicable to the ITS category of the component as set forth in Chapter 13 of this FSAR.

- R. Documentation Requirements
  - i. O&M Manual: An Operations and Maintenance Manual shall be prepared which contains, at minimum, the following items of information:
    - Maintenance Drawings
      - **Operating Procedures**
  - ii. Design Report: A QA-validated design report documenting full compliance with the provisions of this specification shall be prepared and archived for future reference in accordance with the provisions of Chapter 13 of this FSAR.

#### 2.3.3.2 Instrumentation

As a consequence of the passive nature of the HI-STORM 100 System, instrumentation which is important to safety is not necessary. No instrumentation is required or provided for HI-STORM 100 storage operations, other than normal security service instruments and TLDs.

However, in lieu of performing the periodic inspection of the HI-STORM overpack vent screens, thermocouples may be installed in two of the overpack exit vents to continuously monitor the air temperature. If the thermocouples and associated temperature monitoring instrumentation are used, they shall be designated important to safety as specified in Table 2.2.6.

The thermocouples and associated temperature monitoring instrumentation provided to monitor the air outlet temperature shall be suitable for a temperature range of -40°F to 500°F. At a minimum, the thermocouple and associated temperature monitoring instrumentation shall be calibrated for the temperatures of 32°F(ice point), 212°F (boiling point), and 449°F (melting point of tin) with an accuracy of +/-4°F.

#### 2.3.4 <u>Nuclear Criticality Safety</u>

The criticality safety criteria stipulates that the effective neutron multiplication factor,  $k_{eff}$ , including statistical uncertainties and biases, is less than 0.95 for all postulated arrangements of fuel within the cask under all credible conditions.

#### 2.3.4.1 <u>Control Methods for Prevention of Criticality</u>

The control methods and design features used to prevent criticality for all MPC configurations are the following:

- a. Incorporation of permanent neutron absorbing material (Boral<sup>™</sup>) in the MPC fuel basket walls.
- b. Favorable geometry provided by the MPC fuel basket

Administrative controls specified as Technical Specifications are provided in Chapter 12 and shall be used to ensure that fuel placed in the HI-STORM 100 System meets the requirements described in Chapters 2 and 6. All appropriate criticality analyses are presented in Chapter 6.

#### 2.3.4.2 Error Contingency Criteria

Provision for error contingency is built into the criticality analyses performed in Chapter 6. Because biases and uncertainties are explicitly evaluated in the analysis, it is not necessary to introduce additional contingency for error.

#### 2.3.4.3 <u>Verification Analyses</u>

In Chapter 6, critical experiments are selected which reflect the design configurations. These critical experiments are evaluated using the same calculation methods, and a suitable bias is incorporated in the reactivity calculation.

#### 2.3.5 <u>Radiological Protection</u>

#### 2.3.5.1 <u>Access Control</u>

As required by 10CFR72, uncontrolled access to the ISFSI is prevented through physical protection means. A peripheral fence with an appropriate locking and monitoring system is a standard approach to limit access. The details of the access control systems and procedures, including division of the site into radiation protection areas, will be developed by the licensee (user) of the ISFSI utilizing the HI-STORM 100 System.

#### 2.3.5.2 Shielding

The shielding design is governed by 10CFR72.104 and 10CFR72.106 which provide radiation dose limits for any real individual located at or beyond the nearest boundary of the controlled area. The individual must not receive an annual dose equivalent greater than the values stated below for normal and off-normal conditions. Further, an individual located at the site boundary must not receive a dose to the whole body or any organ from any design basis accident greater than the values listed in Table 2.3.1.

The objective of shielding is to assure that radiation dose rates at key locations are below acceptable levels for those locations. Three locations are of particular interest in the storage mode:

- immediate vicinity of the cask
- restricted area boundary
- controlled area (site) boundary

Dose rates in the immediate vicinity of the loaded overpack are important in consideration of occupational exposure. A design objective for the maximum average radial surface dose rate has been established as 40 mrem/hr. Areas adjacent to the inlet and exit vents which pass through the radial shield are limited to 60 mrem/hr. The average dose rate at the top of the overpack is limited to below 10 mrem/hr. Chapter 5 of this FSAR presents the analyses and evaluations to establish HI-STORM 100 compliance with these design objectives.

Because of the passive nature of the HI-STORM 100, human activity related to the system is infrequent and of short duration. Personnel exposures due to operational and maintenance activities are discussed in Chapter 10. Chapter 10 also provides information concerning temporary shielding

which may be utilized to reduce the personnel dose during loading, unloading, transfer, and handling operations. The estimated occupational doses for personnel comply with the requirements of 10CFR20.

For the loading and unloading of the HI-STORM overpack with the MPC two transfer cask designs are provided (i.e.,125 ton HI-TRAC and 100 ton HI-TRAC). The 125 ton HI-TRAC provides better shielding than the 100 ton HI-TRAC due to the increased shielding thickness and corresponding greater weight. Provided the licensee is capable of utilizing the 125 ton HI-TRAC, ALARA considerations would dictate that the 125 ton HI-TRAC should be used. However, sites may not be capable of utilizing the 125 ton HI-TRAC due to crane capacity limitations, floor loading considerations, or space envelope limitations in the fuel pool or air lock. As with other dose reduction-based plant modifications, individual users who cannot accommodate the 125 ton HI-TRAC due to plant design limitations must perform a cost-benefit analysis of the modifications which would be necessary to use the 125 ton HI-TRAC. The cost of the modification(s) would be weighed against the value of the projected reduction in radiation exposure and a decision made based on each plant's particular ALARA implementation philosophy.

Dose rates at the restricted area and site boundaries shall be in accordance with applicable regulations. Licensees shall demonstrate compliance with 10CFR72.104 and 10CFR72.106 for the actual fuel being stored, the ISFSI storage array, and the controlled area boundary distances.

The analyses presented in Chapters 5, 10, and 11 demonstrate that the HI-STORM 100 System meets the above radiation dose limits and design objectives.

#### 2.3.5.3 Radiological Alarm System

There are no credible events which could result in release of radioactive materials or increases in direct radiation above the requirements of 10CFR72.106. In addition, the non-mechanistic release as the result of a hypothetical accident is described in Chapter 7, and results in a dose to an individual at the controlled area boundary of a very small magnitude. Therefore, radiological alarm systems are not necessary.

#### 2.3.6 <u>Fire and Explosion Protection</u>

There are no combustible or explosive materials associated with the HI-STORM 100 System. No such materials would be stored within an ISFSI. However, for conservatism we have analyzed a hypothetical fire accident as a bounding condition for HI-STORM 100. An evaluation of the HI-STORM 100 System in a fire accident is discussed in Chapter 11.

Small overpressures may result from accidents involving explosive materials which are stored or transported near the site. Explosion is an accident loading condition considered in Chapter 11.

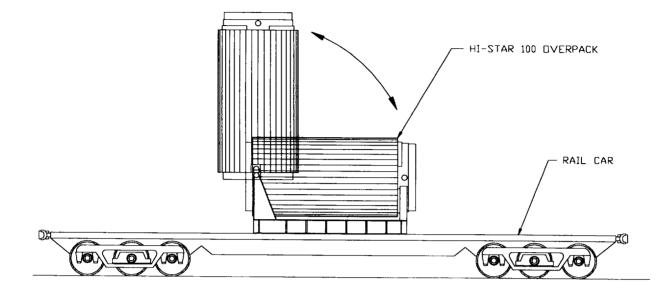
#### Table 2.3.1

## RADIOLOGICAL SITE BOUNDARY REQUIREMENTS

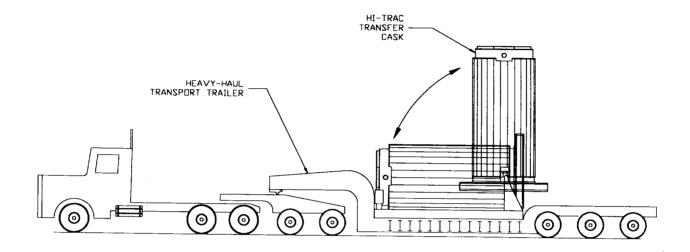
| BOUNDARY OF CONTROLLED AREA (m)<br>(minimum)                                                                | 100            |
|-------------------------------------------------------------------------------------------------------------|----------------|
| NORMAL AND OFF-NORMAL CONDITIONS:<br>Whole Body (mrem/yr)<br>Thyroid (mrem/yr)<br>Any Other Organ (mrem/yr) | 25<br>75<br>25 |
| DESIGN BASIS ACCIDENT:<br>Whole Body (rem)<br>Any Organ (rem)                                               | 5<br>5         |

L

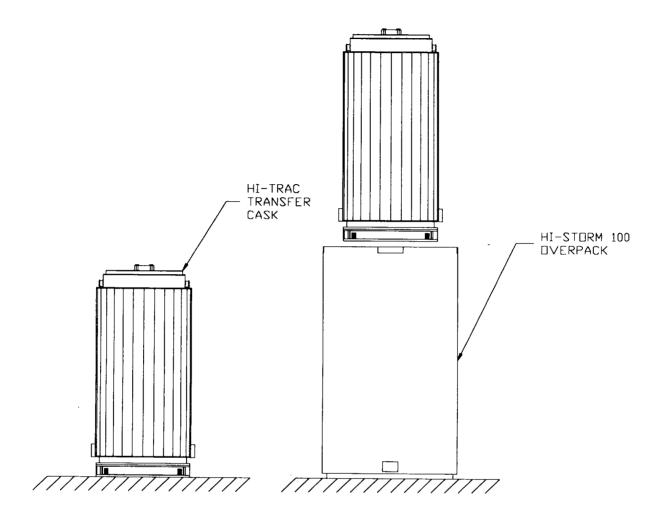
1


| Table 2.3.2 |
|-------------|
|-------------|

Load Combinations<sup>†</sup> and Service Condition Definitions for the CTF Structure

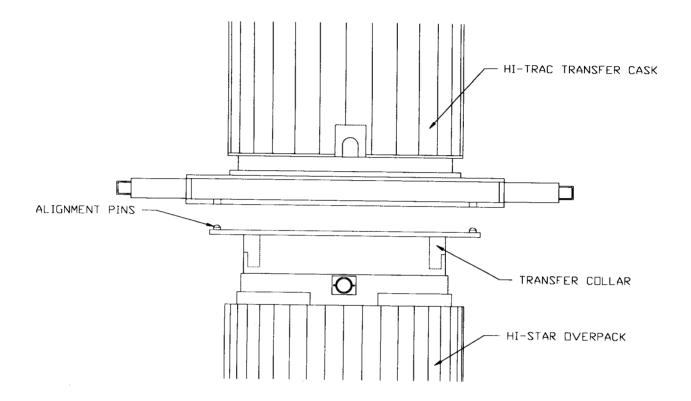

| Load Combination             | Service Condition for<br>Section III of the ASME<br>Code for Definition of<br>Allowable Stress | Comment                                                  |
|------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| D*                           | Level A                                                                                        | All primary load bearing<br>members must satisfy Level   |
| D+S                          | Level A                                                                                        | A stress limits.                                         |
| D+M <sup>††</sup> +W'<br>D+F | Level D                                                                                        | Factor of safety against overturning shall be $\geq 1.1$ |
| D+E<br>or<br>D+Y             | Level D                                                                                        |                                                          |

<sup>&</sup>lt;sup>†</sup>The reinforced concrete portion of the CTF structure shall also meet factored combinations of the above loads set forth in ACI-318(89).


<sup>&</sup>lt;sup>++</sup> This load may be reduced or eliminated based on a PRA for the CTF site.



## FIGURE 2.3.1; HI-STAR 100 UPENDING AND DOWNENDING ON A RAIL CAR




#### FIGURE 2.3.2; HI-TRAC UPENDING AND DOWNENDING ON A HEAVY-HAUL TRANSPORT TRAILER



\_\_\_\_

#### FIGURE 2.3.3; HI-TRAC PLACEMENT ON HI-STORM 100 FOR MPC TRANSFER OPERATIONS



## FIGURE 2.3.4; HI-TRAC PLACEMENT ON HI-STAR 100 FOR MPC TRANSFER OPERATIONS

#### 2.4 DECOMMISSIONING CONSIDERATIONS

Efficient decommissioning of the ISFSI is a paramount objective of the HI-STORM 100 System. The HI-STORM 100 System is ideally configured to facilitate rapid, safe, and economical decommissioning of the storage site.

The MPC is being licensed for transport off-site in the HI-STAR 100 dual-purpose cask system (Reference Docket No. 71-9261). No further handling of the SNF stored in the MPC is required prior to transport to a licensed centralized storage facility or licensed repository.

The MPC which holds the SNF assemblies is engineered to be suitable as a waste package for permanent internment in a deep Mined Geological Disposal System (MGDS). The materials of construction permitted for the MPC are known to be highly resistant to severe environmental conditions. No carbon steel, paint, or coatings are used or permitted in the MPC. Therefore, the SNF assemblies stored in the MPC should not need to be removed. However, to ensure a practical, feasible method to defuel the MPC, the top of the MPC is equipped with sufficient gamma shielding and markings locating the drain and vent locations to enable semiautomatic (or remotely actuated) boring of the MPC lid to provide access to the MPC vent and drain. The circumferential welds of the MPC lid closure ring can be removed by semiautomatic or remotely actuated means, providing access to the SNF.

Likewise, the overpack consists of steel and concrete rendering it suitable for permanent burial. Alternatively, the MPC can be removed from the overpack, and the latter reused for storage of other MPCs.

In either case, the overpack would be expected to have no interior or exterior radioactive surface contamination. Any neutron activation of the steel and concrete is expected to be extremely small, and the assembly would qualify as Class A waste in a stable form based on definitions and requirements in 10CFR61.55. As such, the material would be suitable for burial in a near-surface disposal site as Low Specific Activity (LSA) material.

If the MPC needs to be opened and separated from the SNF before the fuel is placed into the MGDS, the MPC interior metal surfaces will be decontaminated using existing mechanical or chemical methods. This will be facilitated by the MPC fuel basket and interior structures' smooth metal surfaces designed to minimize crud traps. After the surface contamination is removed, the MPC radioactivity will be diminished significantly, allowing near-surface burial or secondary applications at the licensee's facility.

It is also likely that both the overpack and MPC, or extensive portions of both, can be further decontaminated to allow recycle or reuse options. After decontamination, the only radiological hazard the HI-STORM 100 System may pose is slight activation of the HI-STORM 100 materials caused by irradiation over a 40-year storage period.

HI-STORM FSAR REPORT HI-2002444

Rev. 0

Due to the design of the HI-STORM 100 System, no residual contamination is expected to be left behind on the concrete ISFSI pad. The base pad, fence, and peripheral utility structures will require no decontamination or special handling after the last overpack is removed.

To evaluate the effects on the MPC and HI-STORM overpack caused by irradiation over a 40-year storage period, the following analysis is provided. Table 2.4.1 provides the conservatively determined quantities of the major nuclides after 40 years of irradiation. The calculation of the material activation is based on the following:

- Beyond design basis fuel assemblies (B&W 15x15, 3.7% enrichment, 47,500 MWD/MTU, and eight-year cooling time) stored for 40 years.
- Material quantities based on the Design Drawings in Section 1.5.
- A constant flux equal to the initial loading condition is conservatively assumed for the full 40 years.
- Material activation is based on MCNP-4A calculations.

As can be seen from the material activation results presented in Table 2.4.1, the MPC and HI-STORM overpack activation is very low, even including the very conservative assumption of a constant flux for 40 years. The results for the concrete in the HI-STORM overpack can be conservatively applied to the ISFSI pad. This is extremely conservative because the overpack shields most of the flux from the fuel and, therefore, the ISFSI pad will experience a minimal flux.

In any case, the HI-STORM 100 System would not impose any additional decommissioning requirements on the licensee of the ISFSI facility per 10CFR72.30, since the HI-STORM 100 System could eventually be shipped from the site.

#### Table 2.4.1

| Nuclide          | Activity After 40-Year Storage<br>(Ci/m <sup>3</sup> ) |  |
|------------------|--------------------------------------------------------|--|
| <sup>54</sup> Mn | 6.65e-4                                                |  |
| <sup>55</sup> Fe | 1.07e-3                                                |  |
| <sup>59</sup> Ni | 8.79e-7                                                |  |
| <sup>60</sup> Co | 9.39e-5                                                |  |
| <sup>63</sup> Ni | 2.98e-5                                                |  |
| Total            | 1.86e-3                                                |  |

#### MPC ACTIVATION

#### HI-STORM OVERPACK ACTIVATION

| Nuclide          | Activity After 40-Year Storage<br>(Ci/m <sup>3</sup> ) |
|------------------|--------------------------------------------------------|
|                  | Overpack Steel                                         |
| <sup>54</sup> Mn | 1.09e-4                                                |
| <sup>55</sup> Fe | 2.06e-3                                                |
| Total            | 2.17e-3                                                |
|                  | Overpack Concrete                                      |
| <sup>39</sup> Ar | 9.11e-7                                                |
| <sup>41</sup> Ca | 7.36e-8                                                |
| <sup>54</sup> Mn | 4.79e-7                                                |
| <sup>55</sup> Fe | 8.90e-6                                                |
| Total            | 1.04e-5                                                |

and the second second

#### 2.5 <u>REGULATORY COMPLIANCE</u>

Chapter 2 provides the principal design criteria related to structures, systems, and components important to safety. These criteria include specifications regarding the fuel, as well as, external conditions that may exist in the operating environment during normal and off-normal operations, accident conditions, and natural phenomena events. The chapter has been written to provide sufficient information to allow verification of compliance with 10CFR72, NUREG-1536, and Regulatory Guide 3.61. A more detailed evaluation of the design criteria and an assessment of compliance with those criteria is provided in Chapters 3 through 13.

#### 2.6 <u>REFERENCES</u>

- [2.0.1] American Concrete Institute, "Building Code Requirements for Structural Concrete", ACI 318-95, ACI, Detroit, Michigan.
- [2.0.2] American Concrete Institute, "Code Requirements for Nuclear Safety Related Concrete Structures", ACI 349-85, ACI, Detroit, Michigan
- [2.0.3] Levy, et al., "Recommended Temperature Limits for Dry Storage of Spent Light Water Reactor Zircaloy - Clad Fuel Rods in Inert Gas," Pacific Northwest Laboratory, PNL-6189, 1987.
- [2.1.1] ORNL/TM-10902, "Physical Characteristics of GE BWR Fuel Assemblies", by R.S. Moore and K.J. Notz, Martin Marietta (1989).
- [2.1.2] U.S. DOE SRC/CNEAF/96-01, Spent Nuclear Fuel Discharges from U.S. Reactors 1994, Feb. 1996.
- [2.1.3] Deleted.
- [2.1.4] Deleted.
- [2.1.5] NUREG-1536, SRP for Dry Cask Storage Systems, USNRC, Washington, DC, January 1997.
- [2.1.6] DOE Multi-Purpose Canister Subsystem Design Procurement Specification.
- [2.1.7] S.E. Turner, "Uncertainty Analysis Axial Burnup Distribution Effects," presented in "Proceedings of a Workshop on the Use of Burnup Credit in Spent Fuel Transport Casks", SAND-89-0018, Sandia National Laboratory, Oct., 1989.
- [2.1.8] Commonwealth Edison Company, Letter No. NFS-BND-95-083, Chicago, Illinois.
- [2.2.1] ASME Boiler & Pressure Vessel Code, American Society of Mechanical Engineers, 1995 with Addenda through 1997.

- [2.2.2] ASCE 7-88 (formerly ANSI A58.1), Minimum Design Loads for Buildings and Other Structures", American Society of Civil Engineers, New York, NY, 1990.
- [2.2.3] ANSI N14.6-1993, "Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4500 Kg) or More", June 1993.
- [2.2.4] Holtec Report HI-941184, "Topical Safety Analysis Report for the HI-STAR 100 Cask System", NRC Docket No. 72-1008, Revision 9, 1998.
- [2.2.5] Holtec Report HI-951251, "Safety Analysis Report for the HI-STAR 100 Cask System", NRC Docket No. 71-9261, Revision 7, 1998.
- [2.2.6] "Debris Collection System for Boiling Water Reactor Consolidation Equipment", EPRI Project 3100-02 and ESEERCO Project EP91-29, October 1995.
- [2.2.7] Design Basis Tornado for Nuclear Power Plants, Regulatory Guide 1.76, U.S. Nuclear Regulatory Commission, April 1974.
- [2.2.8] ANSI/ANS 57.9-1992, "Design Criteria for an Independent Spent Fuel Storage Installation (dry type)", American Nuclear Society, LaGrange Park, Illinois.
- [2.2.9] NUREG-0800, SRP 3.5.1.4, USNRC, Washington, DC.
- [2.2.10] Deleted.
- [2.2.11] Deleted.
- [2.2.12] Deleted.
- [2.2.13] Cunningham et als., "Evaluation of Expected Behavior of LWR Stainless Clad Fuel in Long-Term Dry Storage", EPRI TR-106440, April 1996.
- [2.2.14] M.W. Schwartz and M.C. Witte, Lawrence Livermore National Laboratory, "Spent Fuel Cladding Integrity During Dry Storage", UCID-21181, September 1987.

L

- [2.2.15] PNL-4835, "Technical Basis for Storage of Zircaloy-Clad Spent Fuel in Inert Gases", A.B. Johnson and E.R. Gilbert, Pacific Northwest Laboratories, September 1983.
- [2.2.16] Crane Manufacturer's Association of America (CMAA), Specification #70, 1988, Section 3.3.