

.

,

MEOG Large Diameter (36") Nozzle Overlay Mockup Program

- Additional work underway to support design and welding of large diameter thick components (Including cast base material)
 - Overlay design
 - Optimized overlay design
 - · Full structural overlay design
 - Verification of Stress Profile
 - · XRD base line measurements prior to overlay
 - XRD and incremental hole drilling at HOLD 1 (preemptive)
 - XRD and incremental hole drilling at HOLD 2 (full structural)

20

- Dilution Measurements
 - Verification of Cr (%) (first 2 layers)
- Shrinkage Data (per weld layer)
 - Axial

© 2007 Electric Power Re

Circumferential

urch Institute, Inc. All rights re

Diametrical

WOL Function	WOL Type
Mitigation	Full Structural
(PWOL)	Optimized
Repair	Full Structural
(WOL)	Optimized

.

	Nozzle	WOL Thickness (in,)		Minimum
From		Optimized Structural	Full Structural	Length (in.)
Structural	Pressurizer Spray	0.21	0.292	4.28
Sizing	Pressurizer Surge	0.21	0.427	6.27
	RCS Hot Leg	0.48	1.05	11.30
Required for	Nozzle	WOL Thickness Wo (in.)		OL Length (in.)
	Pressurizer Spray	0.30		7.19
Required for		0.44		0.01
Resid. Stress &	Pressurizer Surge	0.44		9.81

Timeframe	Milestone
July 2007	Draft Responses for MRP Review and Comment
August 23, 2007	MRP/NRC Staff Meeting to Present and Discuss Draft RAI Responses
arly September, 2007	Finalize and Submit RAI Responses
November, 2007	Resubmit revised MRP-169 for SER
March, 2008	Request NRC SER on revised MRP-169 by this date to support Fall 2008 applications

MRP-169 RAIs – Significant Questions and Responses

- General Question #2: The treatment of pre-emptive full structural, design, and optimized weld overlays (WOLs) is confusing
- Response: Summary Table developed summarizing each overlay type with attendant design and inspection requirements from MRP-139/169 and Code Cases

34

0 2007 Electric Power Research Institute, Inc. All rights reserved

Milestone
Draft Responses for MRP Review and Comment
MRP/NRC Staff Meeting to Present and Discuss Draft RAI Responses
Finalize and Submit RAI Responses
Resubmit revised MRP-169 for SER
Request NRC SER on revised MRP-169 by this date to support Fall 2008 applications

Weld Overtay Type	Pre-WOL Inspection Completed?	Design Basis Flaw for WOL	Crack Growth Design Basis	Post-WOL Exam Volume (PSI and ISI)	Post-WOL In-service Inspection Schedule (MRP-139/169 vs. ASME Code Cases)
Repair – Full Structural	Yes	100% thru- wall, full circ.	Actual observed flaw shall not exceed design basis flaw size in next inspection interval	WOL + outer 25% of Code DMW Exam Volume	MRP-139/169; (Cat. F) Once in the next 5 years, and then if no growth 100% in subsequent 10 year interval <u>CC N-740-1</u> ; Once in the next two RFOs, and then if no growth a 25% sample population on a 10 year basis
Preemptive – Full Structural	No	100% thru- wall, full circ.	Assumed 75% flaw shall not exceed design basis flaw size in next inspection interval	WOL + outer 25% of Code DMW Exam Volume	MRP-139/169 (Cat. F) Once in the next 5 years, and then if no growth 100% in subsequent 10 year interval <u>CC N-740-1</u> : Once in the next two RFOs, and then if no growth a 25% sample population on a 10 year basis
Preemptive – Fall Structural	Yes	100% thru- wall, full circ.	Assumed 10% flaw shall not exceed design basis flaw size in next inspection interval	WOL + outer 25% of Code DMW Exam Volume	<u>MRP-139/169</u> (Cat. B) 100% every interval (10 years) <u>CC N-740-1</u> , A 25% sample population on a 10 year basis
Repair – Optimized	Yes	75% thru-wall, full circ.	Actual observed flaw shall not exceed design basis flaw size in next inspection interval	WOL + outer 50% of Code DMW Exam Volume	<u>MRP-139/169</u> : (Cat. F) Once in the next 5 years, and then if no growth 100% in subsequent 10 year interval <u>CC N-754</u> : Once in the next two RFOs, and then if no growth, a 25% sample population on a 10 year basis (outer 50%)
Preemptive – Optimized	No	75% thru-wall, full circ	Assumed 50% flaw shall not exceed design basis flaw size in next inspection interval	WOL + outer 50% of Code DMW Exam Volume	MRP-139/169, (Cat. F) Once in the next 5 years, and then if no growth 100% in subsequent 10 year interval <u>CC N-754</u> ; Once in the next two RFOs. and then if no growth, a 25% sample population on a 10 year basis
Preemptive - Optimized	Yes	75% thru-wall, full circ	Assumed 10% flaw shall not exceed design basis flaw size in next inspection interval	WOL + outer 50% of Code DMW Exam Volume	MRP-139/169; (Cat. B) 100% every interval (10 years) CC N-754; A 25% sample population on a 10 year basis
		* Ba	sed on Proposed M	IRP-139 Interi	m Guidance

MRP-169 RAIs – Significant Questions and **Responses**

- · General Question #3: Discuss inconsistencies between MRP-169 and MRP-139
- Response:
 - Classification of WOLs with clean pre-WOL inspections
 - MRP-139 → Cat B for FSWOLs, Cat C for "stress improvement"
 - MRP-169 → Cat B for FSWOLs and OWOLs
 - Classification of WOLs with no pre-WOL inspections (or inspected and found cracked)
 - MRP-139 \rightarrow Cat F for FSWOLs, Cat G for "stress improvement"
 - MRP-169 \rightarrow Cat F for FSWOLs and OWOLs
- Proposed Interim Guidance & Technical Justification to resolve this inconsistency follow

36

Current MRP-139 Categories & Inspection
Requirements

MRP-139 Inspection Category	Applies to:	Examination Extent and Schedule
В	Inspected, uncracked, Reinforced by FSWOL	Existing Code Examination Program or Approved Alternative
С	Inspected, uncracked, Mitigated by SI	50% within next 6 years; if clean, then Code program or approved alternative
F	Inspected, cracked, Reinforced by FSWOL	Once in next 5 years; if no new indications/growth, then Code program or approved alternative
G	Inspected, cracked, Mitigated by SI	100% at 2 RFO intervals. I no new indications/growth after 2 exams then Code program or approved atternative

Technical Justification for Proposed MRP-139 Interim Guidance

.

Notto	WOL Th (ir	Minimum		
NOZZIE	Optimized Structural	Full Structural	(in.)	
Pressurizer Spray	0.21	0.292	4.28	
Pressurizer Surge	0.21	0.427	6.27	
RCS Hot Leg	0.48	1.05	11.30	

39

de, Inc. All rights reserved

Overlay Designs from MRP-169

	PESEARCH	INSTITUT

Nozzle Type:	Case:	360° Flaw Depth (assumed)	Pm + Pb (at limit load)	Safety Factor on Pm + Pb	
RPV Hot Leg	FSWOL	2.33	36.44	3.01	
	OWOL	1.75	44.18	2.94	
	OWOL1	2.33	18.20	1.21	
PZR Surge	FSWOL	1.28	29.51	5.36	
Ũ	OWOL	0.96	41.54	6.45	
	OWOL1	1.28	14.14	2.19	
PZR Spray	FSWOL	0.875	31.57	4.35	
	OWOL	0.656	47.24	5.79	
	OWOL1	0.875	23.54	2.88	
FWOL:100%TW, OWOL: 75% TW OWOL1: 100% T	360° flaw, d , 360° flaw, d W, 360° flaw	esign basis esign basis , extreme con	dition not pe	ermitted	

MRP-169 RAIs – Significant Questions and Responses (cont'd)

 Inspection Question #2 - Please discuss what calculations need to be completed prior to startup or provide technical justification for any calculations not completed until after startup

• Response -

c Power Research Institute, Inc. All rights rea

- Structural sizing calculations sufficient to define WOL design for purposes of structural integrity and thus safety for plant startup
- Remaining calculations (residual stress, crack growth, and Section III fatigue) are only to substantiate the life of the design
- NRC regularly approves completion of these within one month after restart for repair overlays

42

