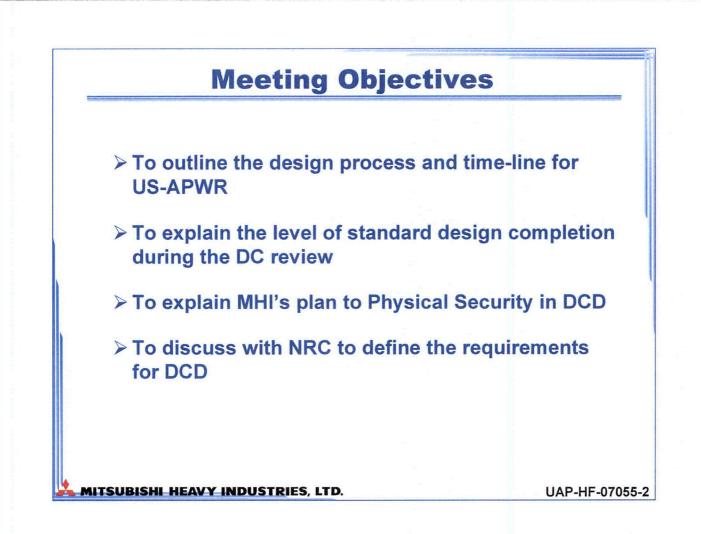

# **US-APWR**


# 7th Pre-Application Review Meeting Contents of Design Control Document

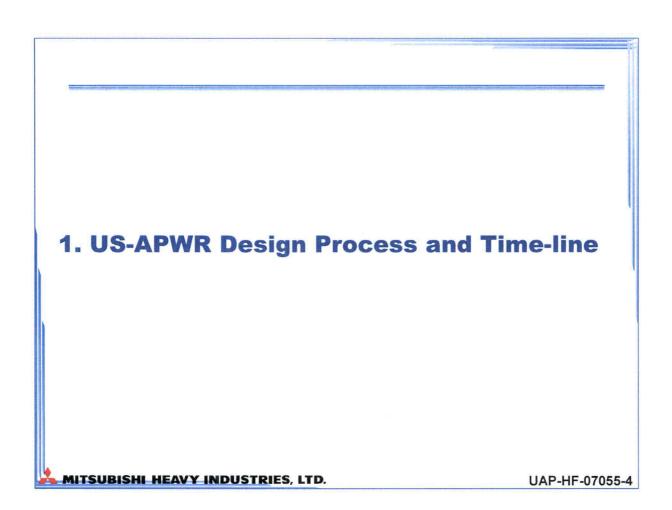
June 13, 2007 Mitsubishi Heavy Industries, LTD.

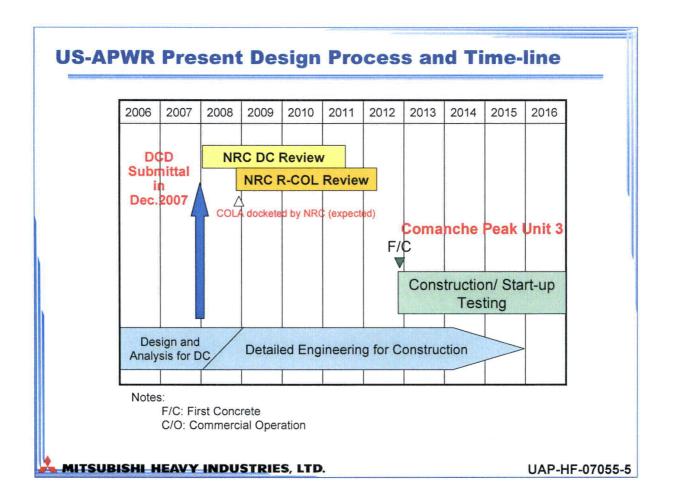
👗 MITSUBISHI HEAVY INDUSTRIES, LTD.

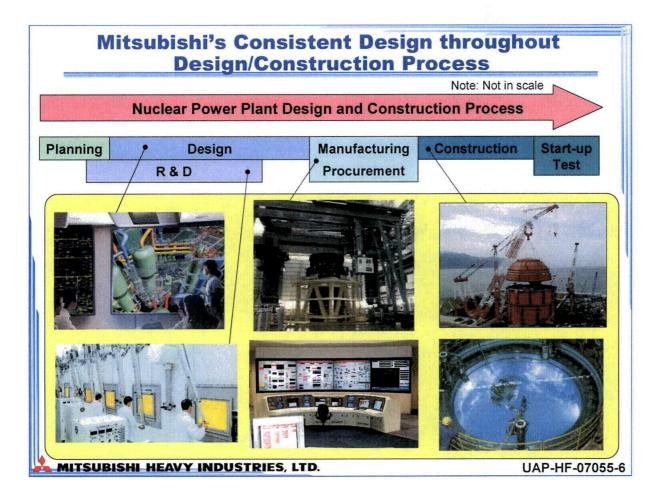
UAP-HF-07055

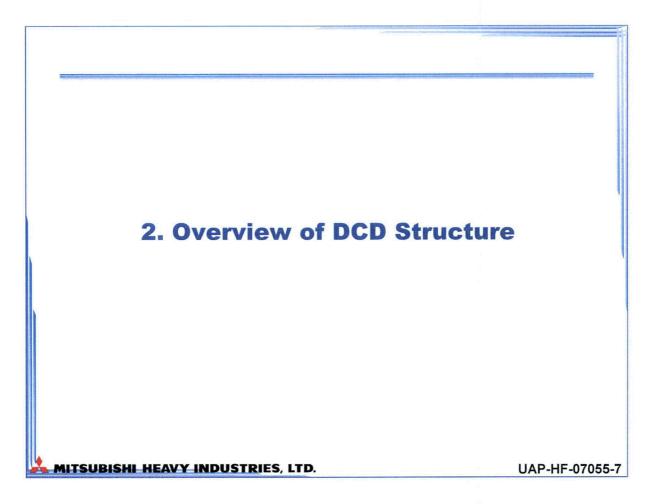





# **Meeting Outline**


- 1. US-APWR Design Process and Time-line
- 2. Overview of DCD Structure
- 3. Key Areas of DCD to be Discussed
  - 3.1 Level of Standard Design Completion
    - Systems, Structures, Components, Piping, Fuel Assemblies, I&C, HFE, Electrical Power
  - 3.2 Contents of Physical Security for DCD
- 4. Overall Plan of DCD/COLA and Report Submittal


#### 5. Others


- 6.1 Units used in DCD and Relevant Reports
- 6.2 ASME editions used in DCD and Relevant Reports

**MITSUBISHI HEAVY INDUSTRIES, LTD.** 





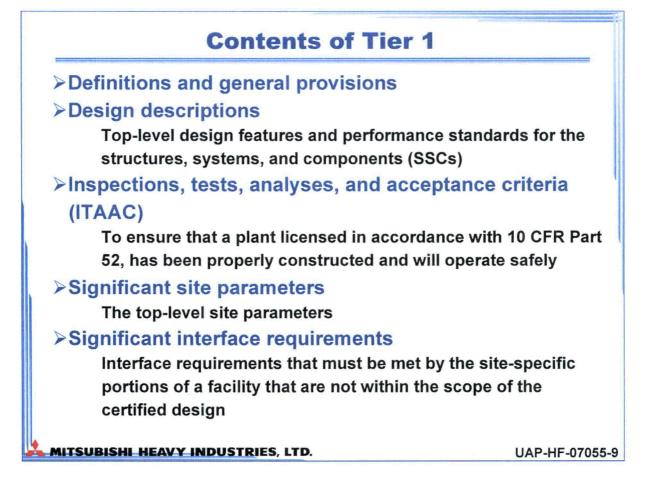


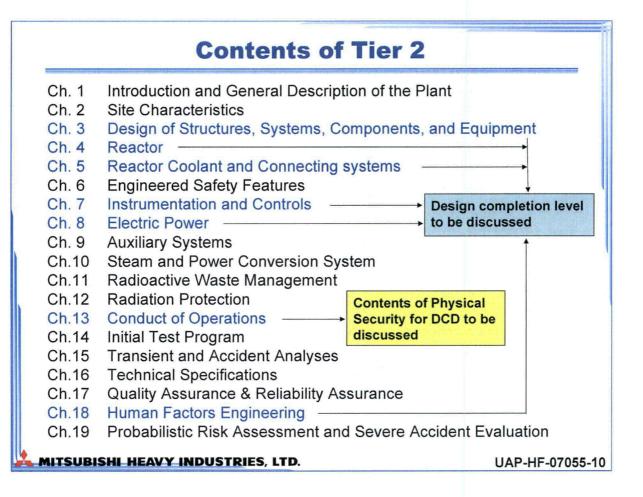


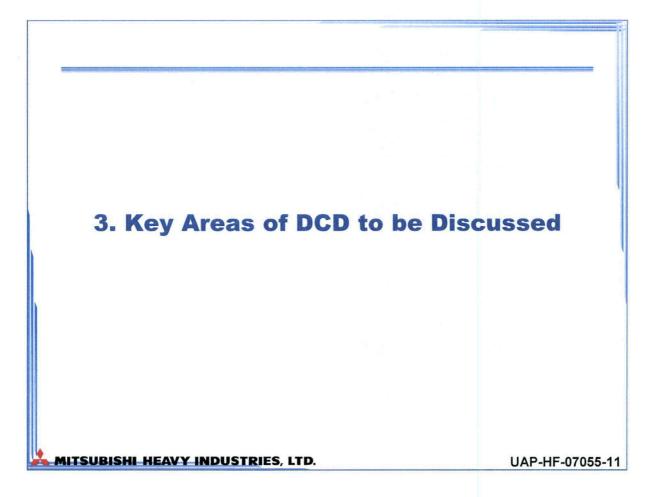
# **DCD Structure**

### >A two-tiered structure

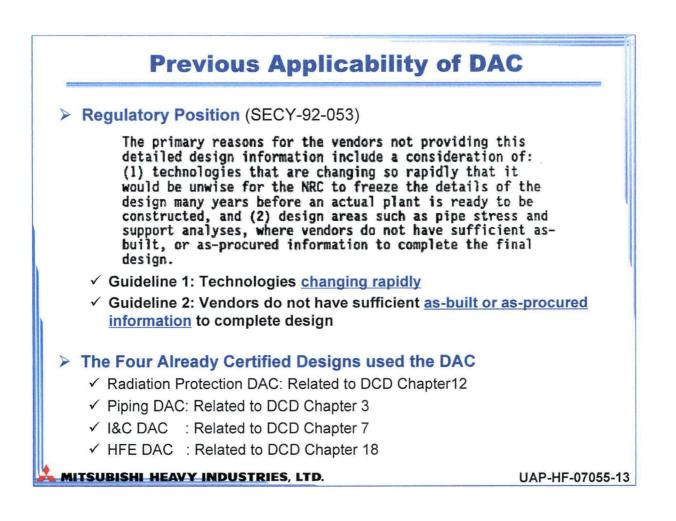
Based on the staff requirements memorandum (SRM), dated February 14, 1991, "Requirements for Design Certification Under 10 CFR Part 52," dated November 8, 1990


### ≻Tier 1

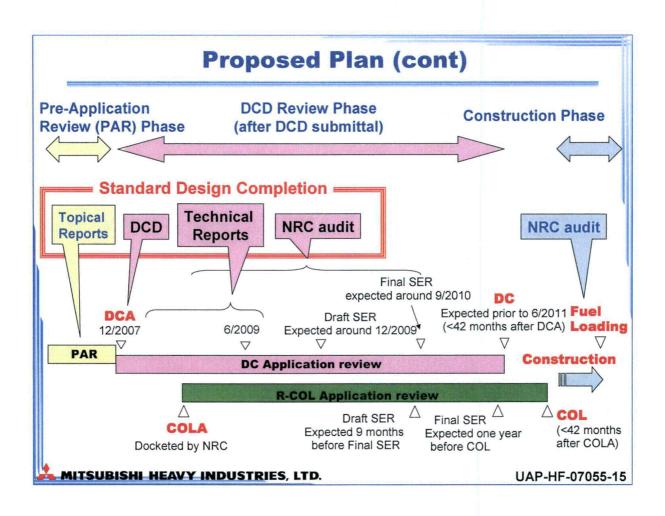

Tier 1 information is the portion of the design-related information contained in the generic Design Control Document (DCD) that is certified by NRC through rulemaking


### ≻Tier 2

Tier 2 is that portion of the design-related information in the generic DCD that is approved, but not certified by the design certification rule


#### MITSUBISHI HEAVY INDUSTRIES, LTD.















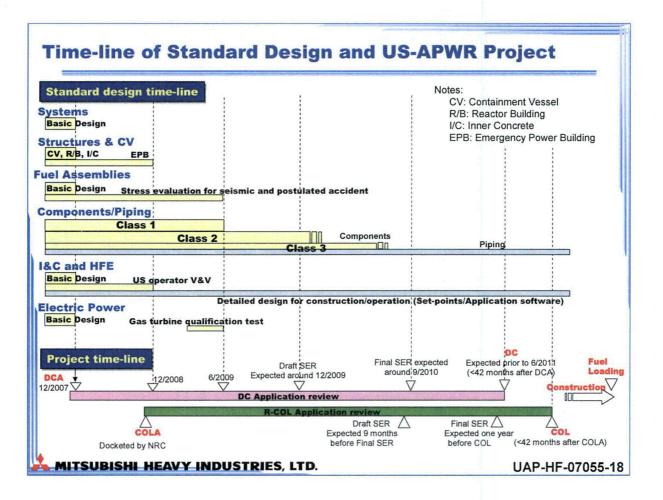

|                         | tal Plan of Topical Report<br>g Pre-application Review                           | S                                          |
|-------------------------|----------------------------------------------------------------------------------|--------------------------------------------|
| Category                | Topical Report to be referred in DCD                                             | Submittal Date                             |
| lity Assurance (Ch. 17) | Quality Assurance Program Description for Design<br>Certification of the US-APWR | January 2007<br>(Submitted)                |
| (Ch.6)                  | Advanced Accumulator                                                             | January 2007 (Rev.0)<br>March 2007 (Rev.1) |

| I & C (Ch. 7)              | Safety System Digital Platform -MELTAC-             | (Submitted)               |
|----------------------------|-----------------------------------------------------|---------------------------|
| I & C (Ch. 7)              | Safety I&C System Design Process and<br>Description | March 2007<br>(Submitted) |
| I & C (Ch. 7)              | Defense-in-Depth and Diversity                      | April 2007<br>(Submitted) |
| HFE (Ch. 18)               | HSI System Description and HFE Process              | April 2007<br>(Submitted) |
| Reactor (Ch. 4)            | Fuel System Design Criteria and Methodology         | May 2007<br>(Submitted)   |
| Reactor (Ch. 4)            | Thermal Design Methodology                          | May 2007<br>(Submitted)   |
| Accident Analyses (Ch. 15) | Safety Analysis Methodology (LBLOCA, SBLOCA)        | July 2007                 |
| Accident Analyses (Ch. 15) | Safety Analysis Methodology (Non-LOCA)              | July 2007                 |

MITSUBISHI HEAVY INDUSTRIES, LTD.

Quali

ESF


UAP-HF-07055-16

(Submitted)

# Level of Standard Design Completion for DCD

- > DCD: Most of the standard design
- > Standard design completion after the DCD submittal:
  - ✓ Stress evaluation:
    - Fuel Assemblies
    - · Components: ASME Class CS, 1, 2, and 3
    - Piping: ASME Class 1, 2, 3
    - Emergency Power Building
  - ✓ I & C Design and Human Factor Engineering (HFE) design
  - ✓ Electrical Power design (Gas turbine generator)
  - ✓ PRA Level 3 (as discussed in PRA Pre-Application Review meeting in Mar. 2007)

MITSUBISHI HEAVY INDUSTRIES, LTD.



# **Design Completion: Stress Evaluation**

|                                   |                                   | DCD App                                                                                                                                                                                                                                         | ication Review Phase                                                                                                                                                                                                                                           |                       |
|-----------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                   |                                   | DCD<br>(Submittal in Dec. 2007)                                                                                                                                                                                                                 | After DCD Submittal                                                                                                                                                                                                                                            | Construction<br>Phase |
| Structures<br>& CV<br>(Chapter 3) | Seismic<br>Category 1<br>[Note 1] | <ul> <li>✓ General</li> <li>Codes and standards</li> <li>Analysis methods</li> <li>Modeling techniques</li> <li>Stress analysis<br/>criteria</li> <li>✓ Stress summary:<br/>PCCV, R/B, I/C</li> </ul>                                           | <ul> <li>Stress summary (Technical Report):</li> <li>EPB in Dec. 2008</li> <li>Submittal approx. one year after<br/>the technical report on Gas<br/>Turbine Generator for Emergency<br/>Power Source (To be discussed in<br/>Electric Power Design)</li> </ul> | -                     |
| Fuel Assemb<br>(Chapter 4)        | blies                             | <ul> <li>✓ General         <ul> <li>Codes and standards</li> <li>Analysis methods</li> <li>Modeling techniques</li> <li>Stress analysis<br/>criteria</li> </ul> </li> <li>✓ Design evaluation<br/>summary<br/>Most of the evaluation</li> </ul> | <ul> <li>Design evaluation summary<br/>(Technical Report)</li> <li>Stress evaluation only for seismic and<br/>postulated accidents in June 2009</li> </ul>                                                                                                     | -                     |
| Note 2: PC<br>R/I<br>I/C          |                                   | ed Concrete Containment Vesse<br>ling<br>e                                                                                                                                                                                                      | ice Water System (site specific) will be submitte<br>I                                                                                                                                                                                                         | d in COLA             |

# **Design Completion: Stress Evaluation (cont)**

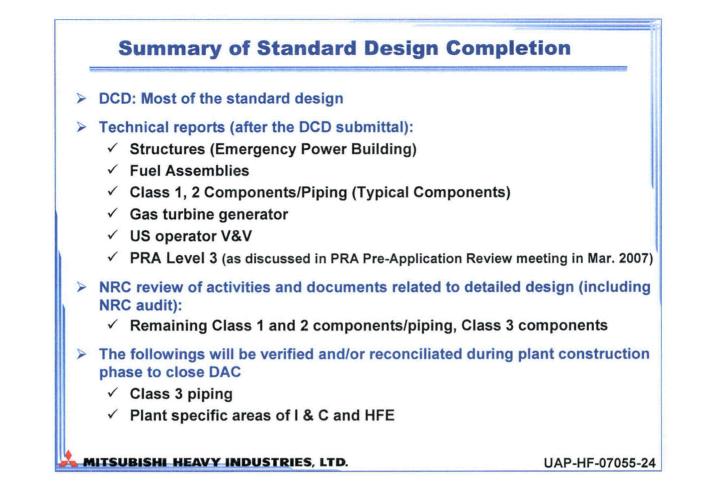
|                                  |                                                   | DCD Appl                                                                                                                                                                             | ication Review Phase                                                                                                                                                                               | Construction                                                                 |
|----------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                  |                                                   | DCD<br>(Submittal in Dec. 2007)                                                                                                                                                      | After DCD Submittal                                                                                                                                                                                | Phase                                                                        |
| Components<br>(Chapter 3<br>& 5) | ASME<br>Class CS<br>Class 1<br>Class 2<br>Class 3 | <ul> <li>✓ General</li> <li>Codes and standards</li> <li>Analysis methods</li> <li>Modeling techniques</li> <li>Stress analysis criteria</li> </ul>                                  | <ul> <li>✓ Stress summary (Technical Report):<br/>Typical Components (Reactor Vessel,<br/>Reactor Internal) in June 2009</li> <li>✓ Available for NRC's Audit:<br/>Remaining Components</li> </ul> | ASME Design<br>Reports<br>available prior<br>to fuel loading                 |
|                                  | ASME<br>Class 1                                   | <ul> <li>✓ General</li> <li>Codes and standards</li> <li>Analysis methods</li> <li>Modeling techniques</li> <li>Stress analysis criteria</li> <li>Support design criteria</li> </ul> | <ul> <li>✓ Stress summary (Technical Report):<br/>Typical Piping (Surge Line, Main<br/>Steam Line) in June 2009</li> <li>✓ Available for NRC's Audit:<br/>Remaining Piping</li> </ul>              | ASME Design<br>Reports<br>available prior<br>to fuel loading                 |
| Piping<br>(Chapter 3)            | Class 2                                           | LBB evaluation<br>methods                                                                                                                                                            | <ul> <li>✓ LBB evaluation results (Technical<br/>Report):<br/>Typical Piping (Surge Line, Main<br/>Steam Line) in June 2009</li> <li>✓ Available for NRC's Audit:<br/>Remaining Piping</li> </ul>  | -                                                                            |
|                                  | ASME<br>Class 3                                   | <ul> <li>✓ General</li> <li>Codes and standards</li> <li>Analysis methods</li> <li>Modeling techniques</li> <li>Stress analysis criteria</li> </ul>                                  |                                                                                                                                                                                                    | DAC Closure:<br>ASME Design<br>Reports<br>available prior<br>to fuel loading |

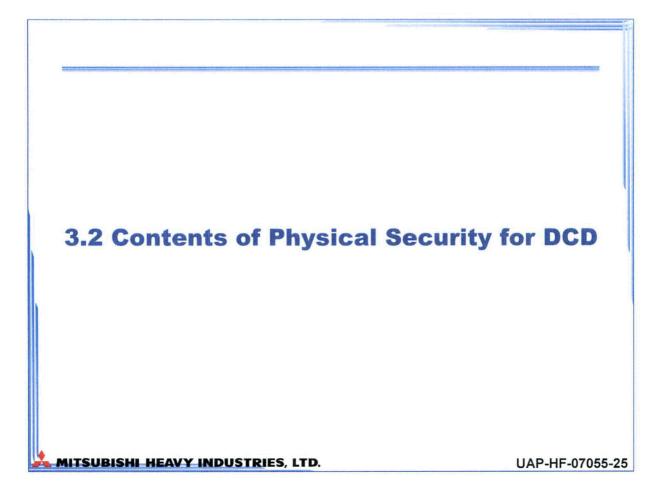
| Design of<br>examples | the components/piping will                                                            | be verified by the selected                                                                                        |
|-----------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| aspects               | of the examples is based on<br>IE Classification of Typical Co                        |                                                                                                                    |
|                       | Components<br>(Typical items)                                                         | Piping<br>(Typical items)                                                                                          |
| ASME<br>Class CS      | RI                                                                                    | N/A                                                                                                                |
| ASME<br>Class 1       | RV, Pressurizer (Pzr), SG,<br>RCP, CRDM,<br>Pzr Relief/Safety Valve                   | MCP, DVI line,<br>Pzr Surge/Spray/Relief line                                                                      |
| ASME<br>Class 2       | CS/RHR pump, Acc,<br>SI pump                                                          | MS line, FW line, SI line,<br>RHR/ECCS line                                                                        |
| ASME<br>Class 3       | CCW surge tank, CCW pump<br>Emergency feed water pump                                 | Component cooling water line<br>Emergency feed water line                                                          |
| CRDM: Cor             | or Coolant Pump<br>trol Rod Drive Mechanism<br>ontainment Spray/Residual Heat Removal | SI: Safety Injection<br>MCP: Main Coolant Pipe<br>DVI: Direct Vessel Injection<br>MS: Main Steam<br>FW: Feed water |

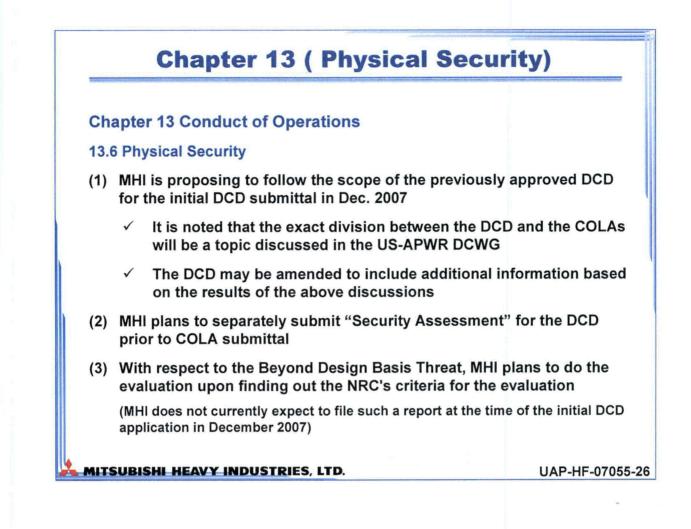
#### Selection of the Examples for Components and Piping (con't)

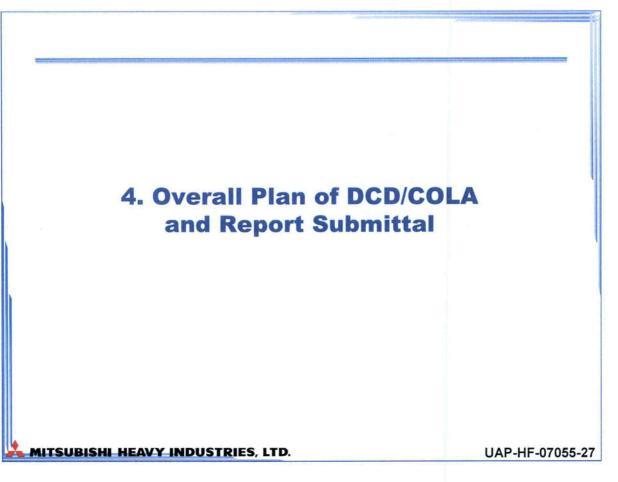
#### Components and piping have been selected for DCD assessment taking account of the technical aspects

| Component/Piping<br>Categories |                                    | Components          |                   | Piping        |                       |
|--------------------------------|------------------------------------|---------------------|-------------------|---------------|-----------------------|
|                                |                                    | Reactor<br>Internal | Reactor<br>Vessel | Surge<br>Line | Main<br>Steam<br>Line |
| Þ                              | Class CS                           | X                   |                   |               |                       |
| ASME                           | Class 1                            |                     | X                 | X             |                       |
| m                              | Class 2                            |                     |                   |               | X                     |
|                                | Irradiation effect                 | X                   | X                 | 1. A.         |                       |
| Technical Aspects              | Pressure retaining                 |                     | X                 | X             | X                     |
| hnic                           | Environmental fatigue effect       | X                   | X                 | X             |                       |
| cal /                          | Internal structure                 | X                   |                   |               |                       |
| Asp                            | Leak Before Break (LBB) evaluation |                     |                   | X             | X                     |
| ects                           | Water hummer effect                |                     |                   |               | X                     |
| 0                              | Thermal stratification effect      |                     |                   | X             |                       |


MITSUBISHI HEAVY INDUSTRIES, LTD.


UAP-HF-07055-22


### Design Completion: I&C, HFE, and Electric Power Design


|                                            | DCD Application R                                                                                                                                                                                                                   | leview Phase                                                                                           |                                                                                                                                                                                                                                                                                 |  |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                            | DCD<br>(Submittal in Dec. 2007)                                                                                                                                                                                                     | After DCD Submittal                                                                                    | Construction Phase                                                                                                                                                                                                                                                              |  |
| I & C design<br>(Chapter 7)                | <ul> <li>✓ FSAR Level Design Package</li> <li>✓ Detail Design Process for<br/>Set-point, Software and<br/>Qualification</li> </ul>                                                                                                  |                                                                                                        | DAC Closure:<br>The following detailed design documents<br>available prior to fuel loading<br>✓ Set-points calculations<br>✓ Application software documents<br>✓ Equipment qualification reports                                                                                |  |
| HFE design<br>(Chapter 18)                 | <ul> <li>✓ FSAR Level Design Package</li> <li>✓ Detail Design Process for<br/>Plant Specific HIS Detail<br/>Design, Final V&amp;V and<br/>Training Performance<br/>Monitoring</li> </ul>                                            | <ul> <li>✓ US Operator V &amp; V<br/>summary report<br/>(Technical Report) in<br/>Dec. 2008</li> </ul> | <ul> <li>DAC Closure:</li> <li>The following detailed design documents<br/>available prior to fuel loading         <ul> <li>✓ Display design</li> <li>✓ Design of computer based<br/>procedures</li> <li>✓ Training and Human Performance<br/>Monitoring</li> </ul> </li> </ul> |  |
| Electric<br>Power<br>design<br>(Chapter 8) | <ul> <li>FSAR Level Design Package</li> <li>Calculation method for<br/>Electrical Power System<br/>Design</li> <li>Gas Turbine Generator<br/>Design, Qualification and<br/>Test Plan (Technical Report)<br/>in Nov. 2007</li> </ul> | <ul> <li>✓ Available for NRC's<br/>Audit:<br/>Gas Turbine<br/>Generator Test<br/>results</li> </ul>    | -                                                                                                                                                                                                                                                                               |  |

MITSUBISHI HEAVY INDUSTRIES, LTD.









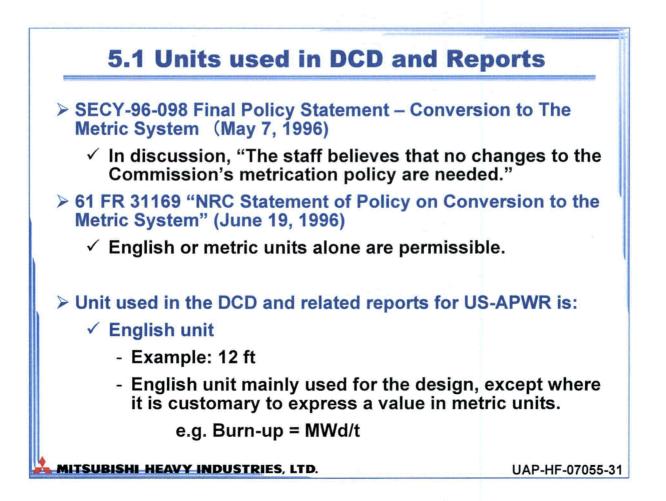
### Submittal Plan of Technical Reports during DCD Application Review

| Category                          | Technical Reports to be referred in DCD                                               | Submittal<br>Date |  |
|-----------------------------------|---------------------------------------------------------------------------------------|-------------------|--|
|                                   | Emergency Power Building design result                                                | Dec. 2008         |  |
| SSCs                              | Reactor Internal stress summary report                                                |                   |  |
| (Chapter3)                        | Pressurizer surge line stress summary report                                          |                   |  |
|                                   | MS line stress summary report                                                         |                   |  |
| Fuel<br>Assemblies<br>(Chapter 4) | Fuel Assemblies design evaluation summary report for seismic and postulated accidents | June 2009         |  |
| RV<br>(Chapter 3&5)               | Reactor Vessel stress summary report                                                  |                   |  |
| Electric Power<br>(Chapter 8)     | Gas turbine generator design, qualification and test plan report                      | Nov. 2007         |  |
| HFE<br>(Chapter18)                | US operator V&V summary report                                                        | Dec. 2008         |  |
| PRA<br>(Chapter19)                | PRA Level 3 result<br>(already discussed in 5 <sup>th</sup> PAR in Mar. 2007)         | Mar. 2008         |  |

UAP-HF-07055-28

💑 MITSUBISHI HEAVY INDUSTRIES, LTD.

**Overall Plan of DCD/COLA and Technical Report Submittal** DCA DCD Rev. X **Technical Reports (Typical)** (Final Version) Initial DCD Structures - Emergency Power Building Class 1, 2 Components/Piping - Examples SSC Design Criteria (TRs attached) SSC Design Criteria Fuel Assemblies DAC Closure Gas turbine generator
US operator V&V
Level 3 PRA DAC DAC ITAAC ITAAC DC Final SER expected Expected prior to 6/2011 around 9/2010 (<42 months after DCA) Draft SER Expected around 12/2009 (<42 months after DCA) Fuel DCA 6/2009 Loading  $\nabla$  $\nabla$ 12/2007 **DC** Application review  $\nabla$ Class 1 Construction Class 2 Class 3 DOC Piping Components **Design Time-Line (Comp** R-COL Application review Draft SER Final SER COL COLA Expected 9 months Expected one year before COL Docketed by NRC (<42 months before Final SER after COLA) COLA Rev. X **Initial COLA** (Final Version) Site Specific design ITAAC Site Specific design Closure Refer to Refer to Initial DCD **Revised DCD** FSAR FSAR SSC Design Criteria SSC Design Criteria (TRs attached) DAC DAC ITAAC ITAAC **MITSUBISHI HEAVY INDUSTRIES, LTD.** UAP-HF-07055-29

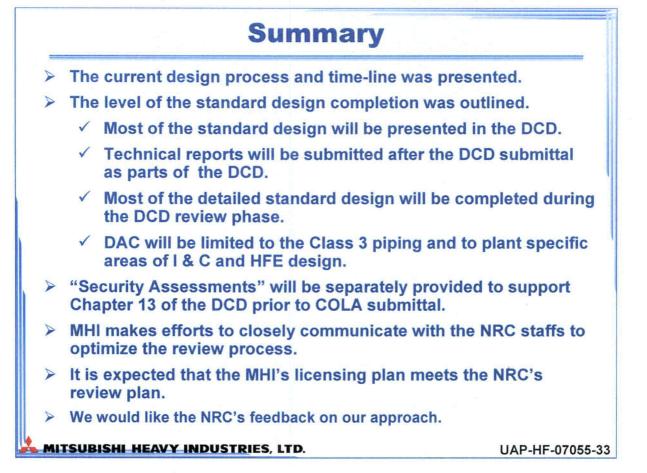

# **5. Others**

5.1 Units

## **5.2 ASME editions**

UAP-HF-07055-30

MITSUBISHI HEAVY INDUSTRIES, LTD.




### **5.2 ASME editions used in DCD and Reports**

The edition of ASME Boiler and Pressure Vessel Code that will be used in the DCD and related reports is:

- ✓ 2001 edition including 2003 addenda
  - Mainly used for the design of components and piping taking account of the requirements stipulated in 10 CFR 50.55a

MITSUBISHI HEAVY INDUSTRIES, LTD.

