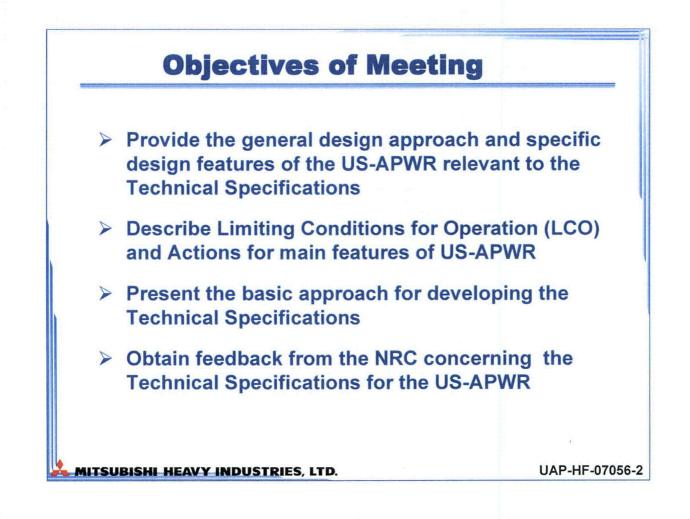
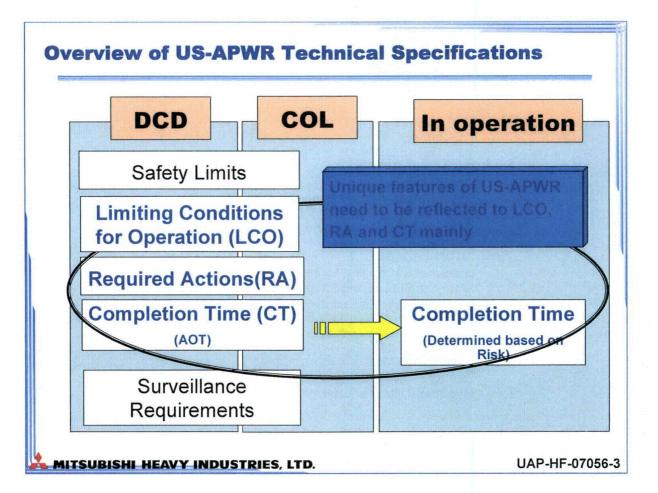
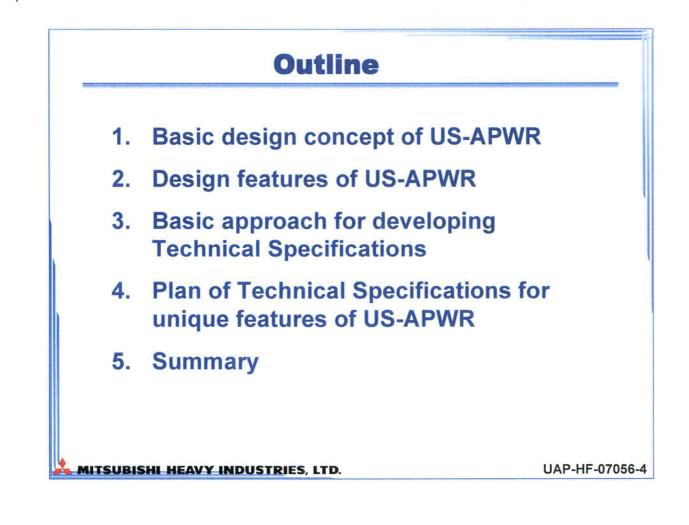
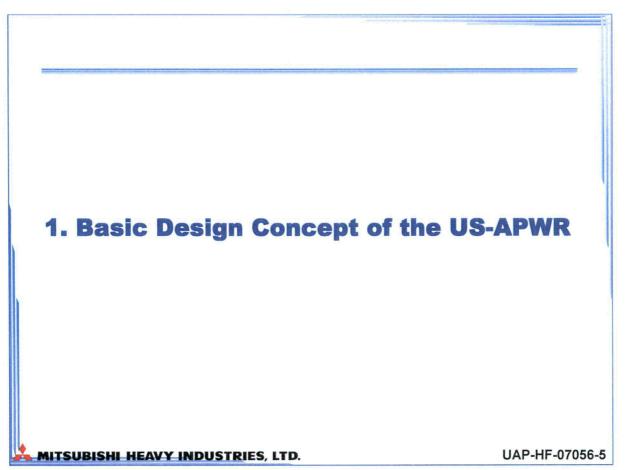
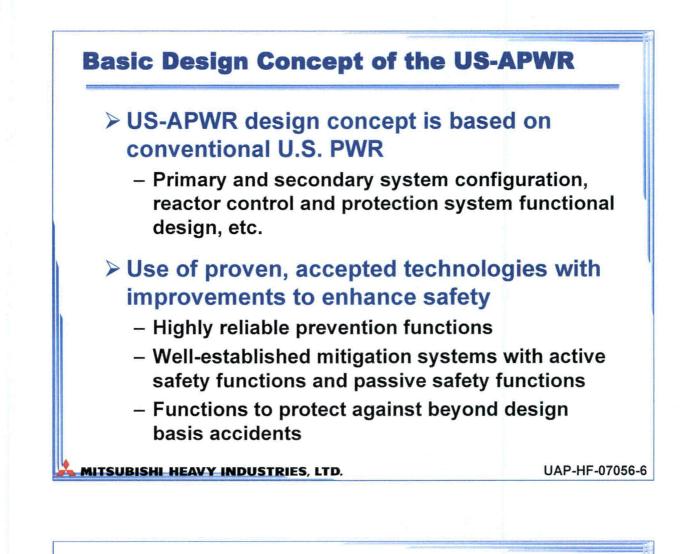

US-APWR


7th Pre-Application Review Meeting Technical Specifications for Unique Design Features

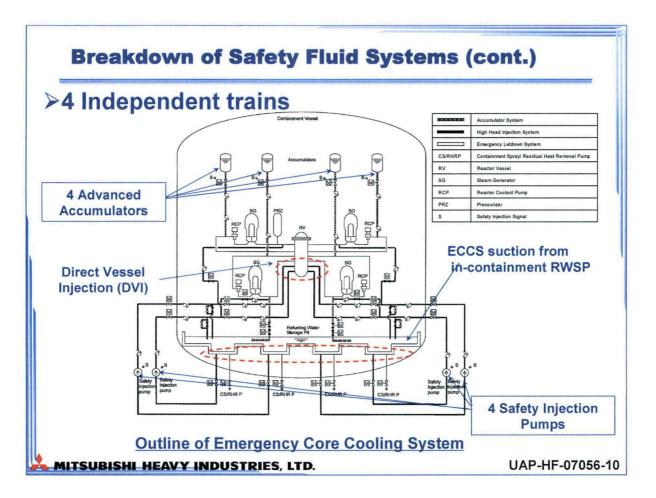

June 13, 2007 Mitsubishi Heavy Industries, Ltd.


MITSUBISHI HEAVY INDUSTRIES, LTD.


UAP-HF-07056



MITSUBISHI HEAVY INDUSTRIES, LTD.


Comparison of Plant Configuration

			Current 4 Loop Plant*	US-APWR
Safety Systems	Trains	Electrical	2 trains	4 trains
		Mechanical	2 trains	4 trains
	Systems	SIS	100% x 2	50% x 4 (Direct Vessel Injection)
		ACC	4	4 (Advanced ACC)
		HVAC	2	2 and 4
1&C	Safety I&C		Conventional	Full Digital
Severe	Accident M Features		-	Planned as part of design activities

Almost all other systems are similar to conventional 4 loop plant from the point of view of Technical Specifications.

MITSUBISHI HEAVY INDUSTRIES, LTD.

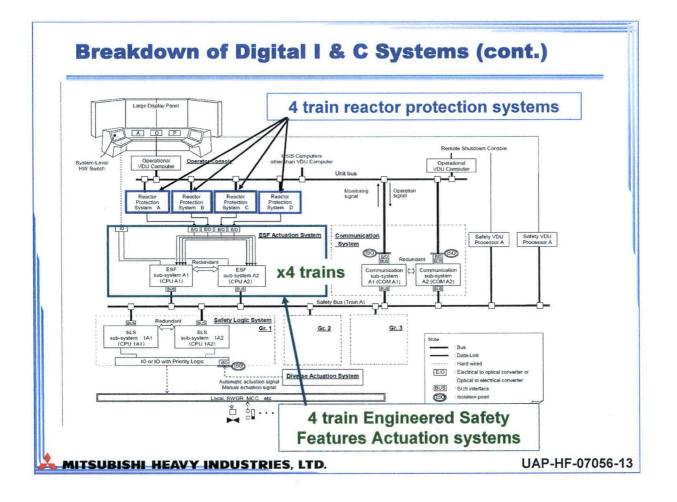
Breakdown operations, for On-Line	available	to meet singl	by number of t e failure criteric	bn, and a	quired for vailable
	Number of total trains	Minimum number of trains required for operation (N)	Train available to meet single failure criterion	Train lost due to Large Break LOCA	Train available for OLM
SIS (DVI), CSS/RHR, EFWS,ESWS	4	2	. 1	N/A	1
Advanced Accumulator	4	3	N/A (Passive Component)	1	N/A

Breakdown of Digital I & C Systems

Breakdown of Digital I & C systems by number of trains required for operations, available to meet single failure criterion, and available for OLM

	Number of total trains	Minimum number of trains required for operation (N)	Train available to meet single failure criterion	Train available for OLM
Reactor Protection Systems	4	2	1	1

MITSUBISHI HEAVY INDUSTRIES, LTD.

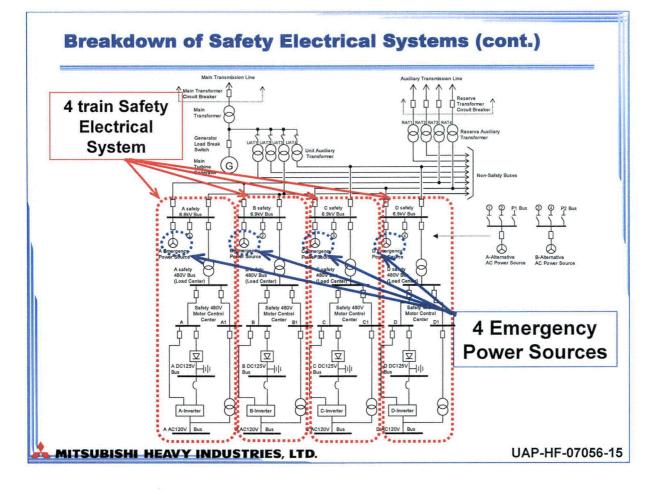

Breakdown of Digital I & C Systems (cont.)

Breakdown of Digital I &C systems by number of trains required for operations, available to meet single failure criterion, and available for OLM

[Engineered Safety Features Actuation Systems (ESFAS)]

Number of total actuated trains	Minimum number of trains required for operation (N)	Train available to meet single failure criterion	Notes	
4 (Ex. SIS)	2	1	No maintenance	
2 (Ex. Isolation Valve)	1	1	causes loss of function	

MITSUBISHI HEAVY INDUSTRIES, LTD.

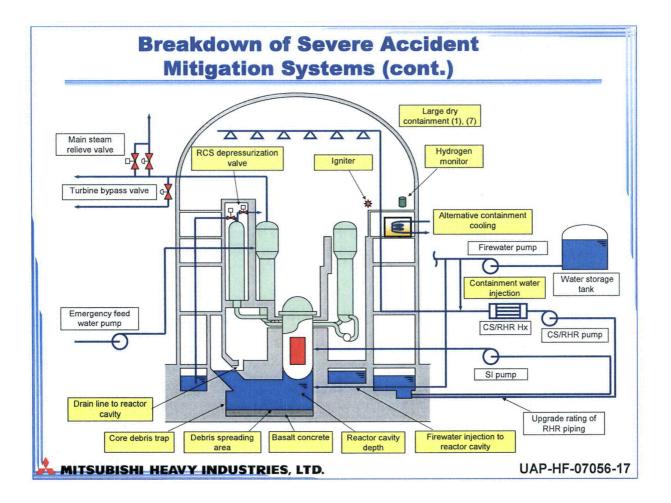


Breakdown of Safety Electrical Systems

Breakdown of safety electrical systems by number of trains required for operations, available to meet single failure criterion, and available for OLM

	Number of total trains	Minimum number of trains required for operation (N)	Train available to meet single failure criterion	Train available for OLM
Emergency Power Source	4	2	1	1
Safety Bus	4	2	1	1

MITSUBISHI HEAVY INDUSTRIES, LTD.


Breakdown of Severe Accident Mitigation Systems

Breakdown of Severe Accident Mitigation trains by number of trains required for operations, available to meet single failure criterion, and available for OLM

	Number of total trains	Minimum number of trains required for operation (N)	Train available to meet single failure criterion	Train available for OLM
Igniters	To be determined	To be determined	N/A	N/A
RCS depressurization valves	1 (2 valves)	1 (2 valves)	N/A	N/A
Fire Water Pumps	To be determined	To be determined	N/A	N/A

MITSUBISHI HEAVY INDUSTRIES, LTD.

. .

MITSUBISHI HEAVY INDUSTRIES, LTD.

UAP-HF-07056-18

Basic Approach for Developing Technical Specifications

Intended compliance with U.S. regulatory requirements and standards

- 10CFR50.36
- 10CFR50.65
- NUREG-0800 Chapter 16 Rev.2, 16.1 Rev.1
- Regulatory Guide 1.206 (DG-1145)
- Industry Standard Writer's Guide
 - TSTF-GG-05-01 Writer's Guide for Plant-Specific Improved Technical Specifications

Modeled after NUREG-1431 Rev. 3.1, "Standard Technical Specifications for Westinghouse Plants"

MITSUBISHI HEAVY INDUSTRIES, LTD.

(1) Technical Specifications for N+2 Train Safety Systems

Examples

- Safety Injection System, Containment Spray System, etc.

Detail of numbers of trains

- N is number of trains required for operation
- 1 train available to meet single failure criterion
- 1 train available for OLM
- > LCO
 - N+1 independent trains shall be operable in order to meet single failure criterion
- Allowed duration for out-of-service trains
 - AOT (Risk evaluated under CRMP)

CRMP: Configuration Risk Management Program, which manages the increase in risk that may result from maintenance work.

AOT: Allowed Outage Time

MITSUBISHI HEAVY INDUSTRIES, LTD.

(1) Technical Specifications for N+2 Train Safety Systems (cont.)

Limitation on out-of-service for safety <u>4 train</u> systems

Operable train	Reason for out-of- service	Action or Limitation for outage time	
4	-		
3	1 OLM or 1 Failure	No limitation (Note)	
2	[1 OLM and 1 Failure] or [2 Failures]	AOT (Note)	
1	[1 OLM and 2 Failure] or [3 Failures]	Immediately initiate mode reduction	

MITSUBISHI HEAVY INDUSTRIES, LTD.

UAP-HF-07056-22

(2) Technical Specifications for N Train Safety Passive System

➢ Example

- Advanced Accumulator
- Detail of numbers of trains
 - N is number of trains required operation

≻ LCO

- N trains are operable
- Allowed duration of out-of-service train

– AOT

MITSUBISHI HEAVY INDUSTRIES, LTD.

(2) Technical Specifications for N Train Safety Passive System (cont.)

Limitations on out-of-service for Advanced Accumulator

Operable train	Reason for out-of- service	Action or Limitation for outage time	
4	1.	-	
3	1 Out for Maintenance	AOT	
2	2 Out for Maintenance	Immediately initiate mode reduction	

MITSUBISHI HEAVY INDUSTRIES, LTD.

UAP-HF-07056-24

(3) Potential Technical Specifications for Severe Accident Mitigation Features

> Example

- Igniters, RCS depressurization valves

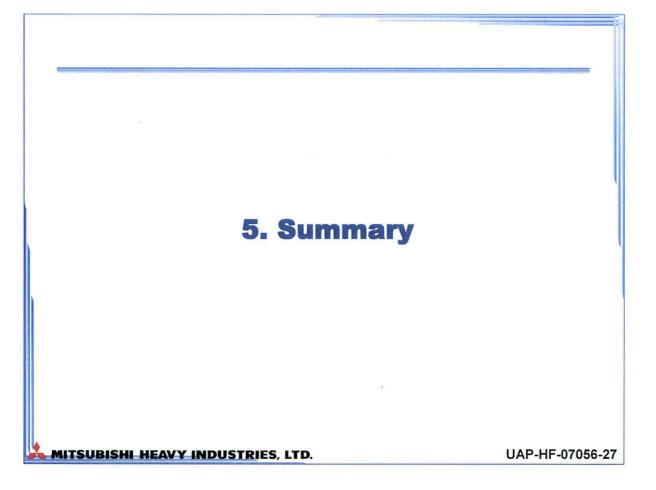
Detail of numbers of trains

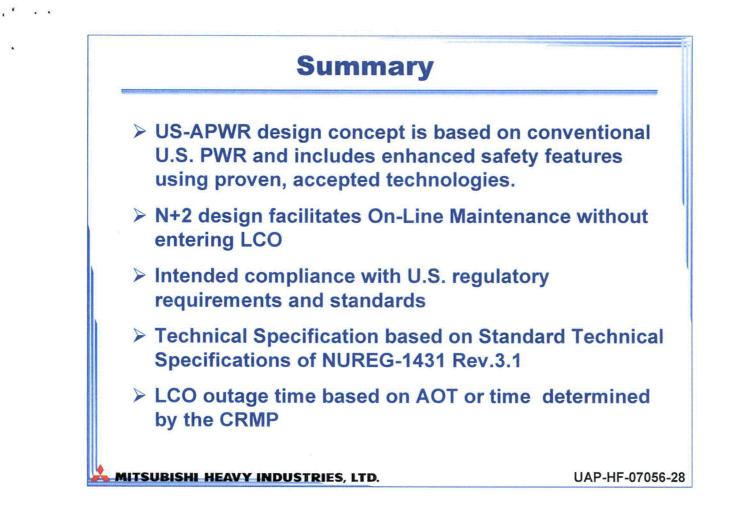
- N is number of trains required

> LCO

 N/A: Severe accident mitigation features are "Beyond the design basis". These are non-safety in the same way as for existing plants. If LCOs are required by criterion 4 of 10 CFR 50.36, Technical Specifications will include LCOs.

Duration of out-of-service


- To be determined by the CRMP


(3) Potential Technical Specifications for Severe Accident Mitigation Features (cont.)

Limitation on out-of-service for severe accident mitigation features

Operable train	Reason for out- of-service	Action or Limitation for outage time
N	- 1	-
N-1	1 OLM or 1 Failure	To be determined by the CRMP if LCO required by criterion 4 of 10 CFR 50.36

MITSUBISHI HEAVY INDUSTRIES, LTD.

