

US-APWR

7th Pre-Application Review Meeting

Electrical System Design

June 13, 2007 Mitsubishi Heavy Industries, LTD.

MITSUBISHI HEAVY INDUSTRIES, LTD.

UAP-HF-07054

(a) Offsite Power System

(b) Onsite AC Power System

(c) Onsite DC and I&C Power System

2(a) Offsite Power System (cont'd)

Design Features

✓ Two (2) sources of offsite power are provided:

- a) Main Transformer through Unit Auxiliary Transformers (UAT)
- b) Reserve Auxiliary Transformer (RAT)
- The two (2) offsite power supply circuits are independent and physically separated
- ✓ Both offsite power supply circuits have enough capacity to achieve their safety related function during a Design Basis Event (DBE) and meet the requirements of the applicable General Design Criteria (GDC)

MITSUBISHI HEAVY INDUSTRIES, LTD.

1.131, 1.137, 1.155, 1.204, 1.206

MITSUBISHI HEAVY INDUSTRIES, LTD.

2(b) Onsite AC Power System (cont'd) >Operation ✓ Plant Normal Operation The onsite power systems are energized from the Main Turbine Generator via the Unit Auxiliary Transformers (UAT) ✓ Main Turbine Generator is out of service (Startup/Shutdown etc.) The Generator Load Break Switch (GLBS) is opened and the onsite power distribution systems are energized through the Main Transformer and Unit Auxiliary Transformers (UAT) ✓ Both Main Turbine Generator and Main Transformer are not available The onsite power distribution system looses its main power source and it is automatically transferred to the Reserve Auxiliary Transformers (RAT) ✓ Loss of Offsite Power (LOOP) Stand-by, Class 1E EPS units provide back up power for Class 1E buses UAP-HF-07054-14 MITSUBISHI HEAVY INDUSTRIES, LTD.

2(b) Onsite AC Power System (cont'd)

System Design

- ✓ The Onsite AC Power system consists of four (4) class 1E power divisions and eight (8) non-class 1E power divisions
- ✓ Each division consists of AC medium voltage buses (13.8kV and 6.9kV) and 480V AC low voltage systems (Load Centers, Motor Control Centers)
- ✓ Each class 1E 6.9kV bus connects to a class 1E EPS
- ✓ There are two non-class 1E alternate AC power sources (AAC) each connected to one 6.9kV AC "permanent" bus. When LOOP occurs, the AACs provide power to the respective "permanent" buses

MITSUBISHI HEAVY INDUSTRIES, LTD.

2(c) Onsite DC Power and I&C Power System

System Design

✓ DC Power System

System	Four (4) Class 1E systems, four (4) Non-Class 1E systems				
Power	DC 125V				
Battery supply duration	2 hours (Class 1E system) 1 hours (Non-Class 1E system)				
Power Source Unit	Charger, Battery				

√I&C Power System

System	Four (4) Class 1E systems, five (5) Non-Class 1E systems					
Power	Single phase AC 120V					
Power Source Unit	Inverter Unit, UPS Unit, Transformer					

MITSUBISHI HEAVY INDUSTRIES, LTD.

3(a) Gas Turbine Generator as EPS

Why Mitsubishi selected Gas Turbine Generators for EPS

→ GT/G has significant merits

✓ Longer start time of GT/G is accommodated by the Advanced Accumulator design of US-APWR

	Gas Turbine Generator	Diesel Generator			
Space	Compact	Large			
Cooling Water	Not Required	Required			
Periodic Maintenance	Overhaul is done once or twice during plant life	Periodic Overhaul Required			
Reliability	Higher than DG	10 ⁻² (/d)			
Starting Time	40 sec	10 sec			

MITSUBISHI HEAVY INDUSTRIES, LTD.

MITSUBISHI HEAVY INDUSTRIES, LTD.

3(a) Gas Turbine Generator as EPS (cont'd)

>Class 1E Qualification Program of Gas-Turbine Generator

✓ Mitsubishi plans to start the Class 1E qualification of Gas-Turbine Generator soon and will complete it by 06/2009

Mitsubishi will perform the qualification program with two partner companies. One has many years of experience of supplying commercial grade GT/G. The other has extensive experiences of supplying Class 1E DGs to US conventional NPPs, as well as Commercial Grade Dedication per EPRI NP5652

Item Procedure							Tir	ne Ta	ble					
	Procedure	2007				2008						2009		
		05	07	09	11	01	03	05	07	09	11	01	03	05
1) Planning of Class1E Qualification	Plan and provide class 1E qualification													
2)Confirmation of Compliance with Standard	Confirm the requirement of standards and compliance with them.													
3) Evaluation of Reliability	Evaluate the reliability of same type existing GT/G													
4) Technical Report	 Documentation of Technical Report Submission of Technical Report 			1	T									
5)Manufacturing and Packaging	 ◆Manufacturing of GT and supporting systems. ◆Assemble the GT/G package. 													
6) Seismic Analysis	◆Develop detailed analysis procedure ◆Perform analysis													
7) Functional Tests	 ◆Develop detailed test procedures. (Type test, Functional test) ◆Perform tests. 													

Design Basis

- ✓ AACs of a different type (Starting System, Capacity etc.) and are provided to minimize the potential for common mode failure with either the offsite power or the EPS system
- ✓ The AAC is a non-class 1E gas turbine-generator package connected to a 6.9kV AC "Permanent" bus
- ✓ The AAC supplies power to loads on any class 1E bus through tie line circuits during SBO
- ✓ The AAC supplies power to loads for 8 hours during SBO

MITSUBISHI HEAVY INDUSTRIES, LTD.

3(b) Countermeasures against SBO (cont'd) (

Permanent Buses

✓ There are two buses for the exclusive use of each AAC

 In LOOP condition, required non-safety related loads are supplied via the "Permanent" bus from AAC

	Normal Operation	LOOP	SBO		
Class 1E Buses	UAT	an ann an an ann an ann an ann ann ann	AAC		
	or	EPS			
	RAT				
"Permanent" Buses	UAT		AAC		
	or	AAC	(Only Required Loads)		
	RAT				

MITSUBISHI HEAVY INDUSTRIES, LTD.

UAP-HF-07054-38

3(b) Countermeasures against SBO (cont'd)

Operation under the SBO Condition

When a SBO occurs, the AAC power source feeds the selected safety related (Class 1E) division in accordance with the following procedure:

1) Switching will be done manually to prevent starting loads on any other division

2) Loads that need to be stopped on the "permanent" bus will be tripped manually

- 3) The required breaker to the back-up division will be closed manually
- 4) Back-up bus will be energized and loaded as necessary for coping with SBO. The loads will be started manually

5) Interlocks will prevent the AAC and EPS operate in parallel on same Class 1E bus.

4. Conclusions

- MHI has presented an overview of the Electrical System design for US-APWR
- Comments and suggestions received from the NRC will be considered to improve the quality of the Design Control Document (DCD)
- Details of Electrical System will be provided in the DCD

MITSUBISHI HEAVY INDUSTRIES, LTD.