Vogtle Early Site Permit Seismic Activities NRC Public Meeting April 14, 2006

Energy to Serve Your World™

Meeting Objectives

- Inform the NRC
- Obtain NRC feedback

Agenda

9:00	Introductions and Opening Remarks	NRC/SNC
9:10	ESP Site Location and Description	Tom McCallum SNC ESP Technical PM
9:20	Ground Motion Program Overview	Don Moore SNC Consulting Engineer
9:40	Geological and Seismological Investigations	Scott Lindvall William Lettis & Associates
10:00	Geophysical and Geotechnical Investigations	Jose Clemente Bechtel Corporation

Agenda (continued)

- 10:20 Summary of Seismic Hazard for Vogtle Site
- 10:40 Determination of SSE Ground Motion
- 11:10 Plans for AP1000 and Vogtle Site Assessment
- 11:30 Discussion

- Robin McGuire Risk Engineering, Inc
- Robin McGuire Risk Engineering, Inc
- **Don Moore** SNC Consulting Engineer
- **NRC and SNC**
- 11:50 Opportunity for Public Comment
- 12:00 Adjourn

ESP Site Location and Description

Tom McCallum ESP Technical Project Manager Southern Nuclear Operating Company

Southern Company Plan

- Two Units at VEGP Site
- Westinghouse AP-1000 Technology
- Decision to construct pending

Ground Motion Program Overview

Don Moore Consulting Engineer Southern Nuclear Operating Company

Seismic Program Organization

Ground Motion Review and Advisory Panel Reasons for Formation:

- Seismic hazard considerations are significant
- Approach to developing SSE is being updated
- Seismic ground motion issues are complex and require multi-disciplined effort
- Review by outside experts to ensure defensible approach

Seismic Program Overview

Ground Motion Review and Advisory Panel

Panel Members

<u>Member</u>	Area of Expertise
Dr. Martin Chapman	Southeastern US seismicity
Dr. Robert P. Kennedy	Seismic ground motion for design
Dr. Carl Stepp	Probabilistic Seismic Hazard Analysis (PSHA)
Dr. Robert Youngs	Site response to seismic input at rock

Seismic Program Overview

Ground Motion Review and Advisory Panel

Activities

- Two panel meetings have been held to review tasks and comment
- Provided ongoing review and comment on specific tasks, e.g., Charleston Update

Seismic Program Overview

Other Outside Assistance

Savannah River Site

- Provided technical staff support for seismic survey and other tasks
- Provided significant amount of data from SRS geotechnical investigations

Seismic Program Status

Activity	Schedule
Geological, seismological, and geotechnical investigations for ESP	Complete
Update of EPRI-SOG per RG 1.165 including update of Charleston Source	Complete
Rock hazard characterization	April 2006
Soil/rock profile development and site transfer function development	May 2006
Site-specific SSE	June 2006
Submit ESP application	August 2006
Interactions with Westinghouse on AP1000	COLA

Geological and Seismological Investigations

Scott Lindvall William Lettis & Associates, Inc

William Lettis & Associates, Inc.

Evaluation of Tectonic Features within 25 miles

- Literature review
- Contact local researchers
- Air photo interpretation
- Aerial reconnaissance
- Field reconnaissance
- Review of seismicity
- Seismic reflection profiles at Vogtle

Site Vicinity Tectonic Features and Seismicity (25-mile radius)

Summary of Geological and Seismological Investigations

- None of the Site Vicinity (25 miles) or Site Area (5 miles) Tectonic Features are Capable Tectonic Sources
- Non-tectonic deformation and related features mitigated by removal of strata overlying Blue Bluff marl

Pen Branch Fault

- Triassic Basin normal fault that separates Paleozoic crystalline basement from Triassic basin sediments
- Reactivated as a SE-side-up reverse fault in Cenozoic
- Youngest deformed unit is late Eocene
- Non-capable PBF associated with similar, noncapable faults of the Atlantic Coastal Plain that exhibit a lack of post-Miocene activity
- No geomorphic expression in Pleistocene Savannah River terraces or older landscape

Reasons for Seismic Reflection Survey

- Vogtle ESP geologic investigation indicated the location of the Pen Branch fault and basin boundary could be close to the ESP site
- The PBF is non-capable, but separates rocks of different velocities
- Seismic survey was performed to determine:

1. If PBF is close to the site, and

2. The geometry of the Dunbarton Basin boundary to help constrain velocity profile

Seismic Reflection Profiles

NW Section through Site

Results of Reflection Survey

- Non-Capable Pen Branch fault imaged
- Strikes N34E to N45E and dips 45SE
- Juxtaposes Triassic basin rocks against higher velocity Paleozoic crystalline rocks to NW
- Basement rocks vertically separated across fault (SE-side-up) and consistent with separations and sense of slip observed at SRS
- Triassic basin rock underlies two proposed units

Geophysical and Geotechnical Investigations

Jose Clemente Principal Geotechnical Engineer Bechtel Corporation

- 12 borings, including 1 to a depth of 1,338 ft (290 ft into rock)
- ▶ 11 CPTs, including 3 seismic CPTs
- ► Geophysical testing of 3 boreholes, including:
 - Suspension P-S Velocity Logging (p-wave and swave velocity measurements)
 - Caliper/Natural Gamma Measurements
 - Resistivity/Spontaneous Potential Measurements
 - Boring Deviation Measurements
- 15 new ground water observation wells (10 above and 5 below the Blue Bluff Marl)
- Laboratory testing

Coastal Plain Sediments

- Upper sand stratum-Barnwell Group:
 - ▶ Depth ranging from 78 to 154 ft-Average of 94 ft
 - Very loose to very dense
- Blue Bluff marl stratum Lisbon Formation:
 - Thickness ranging from 63 to 95 ft (3 boreholes)-About 76 ft average thickness
 - Very hard, slightly sandy, cemented, calcareous silt/clay
- Lower sand strata-Coastal Plain Deposits;
 - Dense sands
 - Thickness of 900 ft (at B-1003)
- Dunbarton Triassic Basin Bedrock (1,049 ft below grade at B-1003)
- Ground water elevation is 165 ft (55-60 ft below grade)

Construction Excavation

The upper sands - Barnwell Group:

- Have highly variable density along the depth and from borehole to borehole
- A shelly, very porous material was encountered at the bottom of the Barnwell Group/top of Blue Bluff Marl that caused severe drilling fluid losses
- These soils were completely removed and replaced with compacted granular fill for construction of existing Units 1 and 2.
- For these reasons, these soils will be removed

Preliminary Powerblock Excavation Plan

Summary of Seismic Hazard at Vogtle

Risk Engineering, Inc. Robin K. McGuire NRC Meeting, Rockville April 14, 2006

Steps taken to meet RG1.165

- Effect of additional seismicity, 1985 through mid-2005
- Update of EPRI-SOG seismic sources to account for new source information
- Update of EPRI-SOG ground motion models (using EPRI 2004)
- Update of EPRI 2004 ground motion standard deviations using EPRI Task G1.3 results

37

ENGI

Ν

EERING

Historical Earthquakes

Updated Charleston Seismic Source - Logic Tree -

Updated Charleston Seismic Source (UCSS)

ENGINEERING

Seismic hazard from Charleston, 1 Hz

42

ENG

NEERING

Deaggregation of 1Hz, 5E-5 hazard

Deaggregation of 10Hz, 5E-5 hazard

Mean rock UHS, 2006 results

Rock mean UHS, Vogtle

ENG

ΕK

Hazard comparison for Vogtle: 2006 results and EPRI-SOG

Comparison of mean rock UHS results

Calculation of soil hazard

- Develop soil profile with properties
- Determine soil amplitudes for multiple rock input amplitudes (frequencies from 100 Hz to 0.1 Hz) (1D SHAKE analysis) using **M** and R from deaggregation (high- and low-frequency spectra)
- Convolve rock hazard with site amplification (including uncertainties in input motion and soil properties) to obtain soil UHS for multiple annual frequencies (NUREG/CR-6728 Approach 2A)
- Develop vertical spectra using V/H ratios (NUREG/CR-6728)

Illustrative cross-section at location of new units

Shear-wave velocity measurements at Vogtle and SRS

B-1003: R1-R2

Determination of SSE Ground Motion

Risk Engineering, Inc. Robin K. McGuire NRC Meeting, Rockville April 14, 2006

Definition of SSE

- "SSE" is defined here as the site-specific, riskinformed, response spectrum that represents the ground motion that meets regulatory criteria.
- The SSE is a free-field ground motion defined at a specified control point.
- The SSE will subsequently be modified by structurespecific analyses (accounting for foundation size, etc) to define a "Design Response Spectrum" (DRS)

Method for calculating Vogtle SSE

- Risk (performance-goal) based approach is aimed at achieving a Seismic Core Damage Frequency (SCDF) less than a target SCDF goal.
- The target SCDF goal is the industry-proposed value of mean 5E-6/yr (Ref: NEI letter, Heymer to Imbro dated 3/30/06)
- Table 2.2 of NUREG 1742 summarizes existing plant seismic PRA results using EPRI-type hazard curves; overall results:

– Median value 1.2E-5/yr

– Mean value 2.5E-5/yr

- Target SCDF goal of 5E-6/yr provides additional margin compared to existing plants.
- SSE response spectrum will be defined to meet this target goal.

Control point for Vogtle ESP SSE

- Per SRP 3.7.1 and 3.7.2: "...for profiles consisting of one or more thin soil layers overlaying competent material, the control motion should be located at an outcrop...at the top of the competent material."
- Approximately 90' of existing soil above the Blue Bluff marl unit will be removed and replaced with engineered backfill.
- Therefore, the SSE will be specified at the top of the Blue Bluff marl unit.

Plans for AP1000 / Vogtle Site Assessment

Don Moore Consulting Engineer Southern Nuclear Operating Company

Plans for AP1000 Assessment

- Exchange of information started with Westinghouse
 - ► AP1000 soil site parameters
 - Vogtle site soil conditions
- Monitor Westinghouse/NRC interactions on soil technical report APP-GW-GLR-015, "Extension of Nuclear Island Seismic Analyses to Soil Sites"
- Perform evaluations to demonstrate Vogtle site compatibility with AP1000 design

Summary of Key Points

- Purpose of seismic survey was to identify rock type/profile below ESP site
- Using EPRI-SOG seismic hazard model with update of Charleston Seismic Source
- Using EPRI 2004 ground motion model incorporating EPRI Task G1.3 standard deviation
- Developing site transfer functions using NUREG/CR-6728 method 2A
- Developing SSE based on target performance goal of mean 5E-6 SCDF
- Defining control point of SSE at top of competent material (Blue Bluff Marl)

Discussion

Energy to Serve Your World™