A Parallel. Plate Model of Fractured Permeable Media
By
David Tunison Snow
A.B. (Harvard University) 1951
M.A. (University of California) 1957

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY
in
Engineering Science
in the
GRADUaTE DIVISION
of the
UNIVERSITY OF CALIFORNIA, BERKELEY

Approved: n

Comilttee in Charge

Degree conferred...

PLEASE NOTE: Bot orizinal copy. Indistinct type on several pages. Filmed as.received.

UNIVERSITY HICROFILHS, INC.
LIST OF FIGURES Ni
LIST OF PUAES *sic
LIST OF TABLES x
ABSTRACT $z i$
SCOPE, OBJECTIVES AND METHODS OF STUDY 1
ACKYOWLEDGHENTS 4
CHAPTER 1 5
GENERAL DISCUSSION OF ANISOTROPIC PERMEABLE MEDIA 5
Force-flow relationships 5
Historical development 6
Directional Permeability. 8
Potential and stream functions 13
 17
STEADY ELON FROM CILINDRICAL CAVITIES IN SATURATED,INFINITE ANISOTRORIC MEDIA..17
Introduction. 17
 19
Three'hole pump test for anisotropic medie 35
CEAPTER 3 44
PLANAR GEOLOGIC STRUCTURES AND THE OCCURRENCE OF WATER IN ERACTURED ROCKS 44
Introduction. 44
Cleavage 45
Fluid Conductivity in cleavage 47
Joints 47

Origin of jointing. 55
Macroscopic features of joint surface. 58
Miscellaneous geometrical types of joints. 61
Evidence of iluid conductivity of joints and faults.. 65
Eydrologically significant features of faulting... 71
CHAFTER 4.. 89
theory of a girallel-plate model for aggregtes
OE INTERSECTING PLANAR CONDUCTORS 89
Introduction 89
Farallel-plate flow. 89 9
Superposition of flows 93 3
parallel-plate flow under a general field gradient 97
parallel jointed media. 100 0
Dispersed jointed media 103
Forosity estimation. 115 115
Combined dispersion of orientation and aperture... 120 220
Chafter 5 128
THE INELUENCE OF JOINT ORIENTATION ON DIRECTIONAL
PERMEABILITY 128 8
Introduction. 128
Orientation distribution 130
Orientation of principal axes and distribution of principal permeabilities for various joint systems 135
Estimating principal directions from field data 149
The effect of sample size. 170
CBAPTER 6 181

fracture frequencies and apertures suggested by

fracture frequencies and apertures suggested by gRESSURE TESTS IN CRYSTALLINE ROCR gRESSURE TESTS IN CRYSTALLINE ROCR 181 181
Introduction. 181
Evidence of the magnitude and variability of fractures in rock 181
Standardization of pressure-test data.................. 285
Implications of the observed discharge frequency curves. 1948
Frequency of zero-apertures 196
Irequency of conductors intersected by drill boles.. 198
Aperture distributions are obscured 201
Limitacion on the assumption of a homogeneous population... 203
Verification of model-predicted relationships 206
Condiusions from pressure-test data 207
Modeling pumping tests. 207
Speculations on the hydraulic and mechanical properties of fine fractures 210
Eleld discrimination of planar features. 213
Permeability near exposures and in undisturbed rock 214
Sample size required for acceptable anisotropy estimates 217
CBAPTER 7 220
ESTIMATION OF POROSITY EROM THE PERMEABILITY AND
GEOMETRY OE ERACTURED MEDIUM 220
Introduction. 220
Factors governing porosity 220
Computation of porosity with various aperture distributions 221
Porosity for normal, log-normal and exponential eperture distributionṣ. 225
Relative importance of frequency and aperture distribution. 233
CHAPTER 8 235
SKGEESTED APPLICATIONS TO ELOW AND POTENTIAL FROBLEHS. 235
Introduction 235
Geology problems 235
Fetroleum engineering problems 236
Ground water hydrology problems 237
Civil ensineering problems 238

CONCUSSIONS AND RECOHNENDATIONS 248 BLBLYOGRAFKY.. 252

APPENDIX A, CONPUTER FROGRARS.................................... 269
APPENDIX B, HYDRAULLCS OF ROUGK ERACTURES.................. 329
Figure lio. Page
1-1 Definition for Ferrandon's model 7
1-2 General flow directions in anisotrople nedia. 11
2-1 Packer pump tests and plezometers 22
2-2 Coordinate systems for packer tests 26
2-3 Directrix of transformed cylinder 30
2-4 Stereo-projection, 3 different orthogonal joint sets 41
31 Reorientation of joints across fold structures.... 49
3-2 Reorientation of joints alons regional structures. 51
3-3 Joints parallel to normal faults 52
3-4 Orthogonal joint system in dandstone 59
3-5 Joint orientations related to stresses 62
3-6. Feather fractures at loaded fault contacts 70
3-7 Fauit openings due to change of orientation with rock type. 75
4-1 Fluid flowine slowly between parallel plates 90
4-2́ Gradients on intersecting joints......................... 94
4-3. Projections of an arbirrary gradient onto a plane. 98
4.4 A parallel set of conduits 101
4-5 Permeability by joint conductors 106
4-6 Average inverse cosine of deviation, vi. dispersion. 112
4-7 Permeability ratios vs. dispersion 119
4-8 Reproduceability of computed principal per- meability distributions 12.3
4-9 Illustration of the Central Ilmit Theorem. 125
5-0 Vector strength vs. Fisher dispersion. 134
5-1 A single set dispersion of joints 140
S-2 Rot included
S.3 Liot Included

5-5 Geometric moan permeablilty vs. sample size, 3 sets of joints..
5-6 Dispersion of permeabilities vi. sample size....... 177
6-1 Tube anaiogy of fractures at a face.................. 182
6-2 100 random-uniform joint locations.................. 198
Plate no. Page

1. Anisotropy of a single dispersed set, sample size varying 150
2. Anisotropy of a single disporsed set, disper- sion varying 151
3. Anlsotropy of a single dispersed set, disper- sion varying 152
4. Anisotropy of © 2 equal orthogonal dispersed sets. 153
5. Anisotropy of 2 orthogonal sets, different dispersions 154
6. Anisotropy of 2 orthogonal sets, different spacings 155
7. Anisotropy of 2 equal nan-orthogonal sets 156
8. Arisotropy of 2 noneequal, non-orthogonal sets 157
9. Anisotropy of 3 equal, orthogonal sets 158
10. Anisotropy of 3 equal orthogonal sets, one dif- ferently spaced. 159
11. Anisotropy of 3 otthogonal sets, one Nifferent dispersion 160
12. Anisotropy of 3 orthogonal sets, all different dispersions. 161
13. Anisotropy of 3 orthogonal sets, all different spacings 162
14. Anisotropy of 2 orthogonal, 1 non-orthogonal, equal sets 163
15. Anisotropy of 3 non-orthogonal, equal sets 164
16. Stereonets of joint orientation data, Oroville damaite 165
17. Standardized pump tests; Oroville damsite. 188
18. Standardized pump tests, ferced damsites. 189
19. Standardized punp tests, Virginia Ranch damsite. 190
20. Standardized pump tests, Virginia Ranch damsite 191
21. Standardized pump tests, Folsom and Auburn damsite 192
22. Standardized pump tests, Sprins Creek Tunnel 193
23. Pump-tests resrouped according to depth and sample size, Oroville damsite 204
24. Pump testa regrouped according to dopth and sample size, Spring Creek Tunnel \qquad
25. Syndhetic pump tests, lare samples and small samples.. 203
26. Flanar conduits nt Oroville interpreted............. 216
27. Bormal and transposed normal eperture distribution 229
28. Lognormal aperture distributions....................... 230
29. Exponential aperture distributions..................... 231

LIST OF TABLES
2-1 Conversion factors, permeability-conductivity...... 23
3-1 Fault permeability due to irregular surfaces....... . 73
3-2. Influence of rock type on fracturing................... 77
5-1 Observations on joint sets, Orovilie damsite....... 167
6-1 Distribution of discharges vs. sample size and aperture.

7-1 Forosity computed from permeabilities................. 226

In eurrent practlce the permeablillty of fractured modla can be modelled adequatoly for two oxtreme casce celdom reallzed In gaturo: one, 2) when individual planar conductors, such as joints in rock, are so independent and infrequent that each way be aralyzed asseoparate channel, or, 2) when aggregates of frace tures, as in fault bracela, so zesemble sedimentary pores that the mediutin assumed to be a continumm. The object of this study is to andel a wide variety of fractured media, especially jointed rock, vhose geometry is betreen the above extremes. These media have planar conductors varying in frequency, dispersed in oriuntation, and distributed in aperture. Farallelplate openinge are used to simulate real fractures, With this ideelization, if there is $2 l o w$ along intersecting conductors, the discharge of each is proportionsi to the cube of its aperture and to the projection of a field gradient generally parallel to no conductor. For a given gradicat, one miy add discharge components of intersecting plane conductors or intergranular conductive bodies between them. The discharge of one planar conductor or any set can be reprosented by a second-rank tensori. A tensor therefore deseribes the permeabllity of a continuous medIum fivins the same discharge as fractured medium under the same hydraulic gradients in laminar, incompressible flow situations.

Special cases of one, two, and three joint sets are modelled. by applying tonate Cario sampling methods that palr Fleher distributions of orlentations and skered distributions of apertures. SHew statistics of the orlentation of principal axes and of principal permonblilities are developed. The model shove the causes of anisotropy and Lits variations.

A fiold method for measuring anlsotropic permeability is
proposed. It is derivod from a genoral solution to the dicharge from cyilndrical cavities arbitrarily oriented in saturatod, inflnite anisotrople media, utllizing pressure-discharge moasuree ments in drill holes colncidins with principal axes predetermined by analysis of joint orientetion data.

The statistles of pressurcetest data from eeven damsites on erystalline rock indicate thet the numbor of effective conductors intercepted at depth by a drill-hole is distributed as a poisson varlate, much smaller than the number that would be expected from surface exposures of foints. The mean and varlance of the number of conductors crossing a given lensth of drill hole can be estinated from the frequency of zero discharges encountercd. The computer model successfully Cuplicates the shape of fleld discharge froquency curves once the sampleaslze is made to vary as'a Foisson. Aperture distributions cannot be detempined from permeabllity date but evidence suggests log normal or exponene tial distributions to be most likely.

In spite of indeterminate apertures, fracture porosity can be determined from anisotropic permoability within a ranse of about 10 percent of the true value, once the mean frequency of conductors of each joint set has been detemined.

Huny flow and potential distributions in civil and petroLeum engineering or groundwater hydrolosy can be solved ultimateiy If fractured zoek is evaluated as an anisotrople permeable medium with beterogenelties reflected in statistically-distributed measures.

Thle investigation of basic aspects of fluid flow In fractured medla was prompted by the writer's inablilty to comprehend how geological structures influence seepage and uplift of dams on rock, or drainage to tunnols. In each case, the lack of quantitative tools to assess the influence of joint orientations. apertures, and spacings lod to the conclusion that conventional ground water hydrology could not advance our knowledse of the permeablility of fractured media until a model was devised to combine etatistically, the independent varlables goverming directional pertmeability.

The salient precursors to thls work were papers by Vereluys (1915) and childs (1957). Versluys proved that any number of caplllary tubes' of arbltrary orientation can be replaced by three mutually orthogonal tubes giving the same vectorial dise charge. In this thesis, the writer has replaced the tubes uith parallel plates and streamlined the mathematics uith tensorial notation. Childs investigated the directional permeability of uniform, parallel sets of fissures in noll. The present model fulfills the need for orientational generality, and provides flexiblilty to incluce other parameters.
slany unsolved aspects of this broad, elmost untouched subjeet of fractured modla have been ireated here only heuristice ally, in the hope of stimulating studies sequel to this thesis.

The object of this study is to develop an understanding of the role of some of the geonatricil variables controlling fluid flow in fractured media. The variables include dispersion of conduit orientations and apertures, the spacing of assregates of condults, and sample size. Since directional permeability
is an attribute of fractured media, the theory of flow in anisotrople continua is reviewed. When there is established a basis for determining the properties of a continuum having statisticar equivalence to a fractured discontinurm, then established methods of solving boundary problems can be applied to jointed rock, and the errors evaluated.

A method of measuring anisotropisn is required before boundary problems can be solved. The problem of steady discharge from an arbitrarily-oriented eyilndrical cavity in an infinite, anisotropic saturated medium is solved, and applied to pressure-testing of jointed rock to determine the three principal permeabilities.

The reason that anisotropy exists. in fractured media and an approach to its prediction are investigated with a mathematical model, evaluated by computer programs. The miodel describes directional permeability as a second-rank tensor, or by its equivalent prineipal axes and permeabilities. Individual condactors are like the openings between smooth parallel plates, uniforaly separated throughout thels infinite extent, but oriented in arbitrary sets dispersed at random about mean directions. Apertures are distributed according to various density functions. A parameter to deseribe spacing or fracture density is devised. Since water flow problems are the man interest, incompressible Poiseullie flor is assumed. Some aspects of random inhomogeneity are considered, but not the effects of systematic inhormogeneity. Some variablea not atudied include those of anisotropy or discontinulty of individual conductors, compressibility, non-innear friction, of malti-phase flow.

Ground-water, ensinoering; and mining literature is reviever for pertinent information deseribins the occurence of water in joints, faults, cleavage and schistosity, and to describe theis

8 cometry.
Permeablilty distributions in real jolnted rock media are fevestigated by reanalysis of prescure-test data obtalned lergely by others in exploratory drill-holes at seven damsites on crystalline rocks of California. The results indicated need for an additional varlable in the model; namely, a distribution of joint densities, and showed the dominating effect of small numbers of conductore.

On the basis of known average joint densities and known seometry: acceptable approximations to secondary porosity may be computed from ueasured principal permeablilties. It is shown to be Impossible to establlsh fyon permeablility data the distribu-. tion of apertures or a precise measure of porosity.

Applicability of theoretical and model study cesults to several practical problems in engineering is discussed.

The late Dr. Parker D. Trask encouraged this undertaking. The writer is spateful for the aupervision and counsel of Dr. Irving Fatt. Dr. Elizabeth Scott advised the writer on statistheal methods. The advice and assistance of many faculty members and colleagues at the University of California, especially Dr. Richard E. Goodman and hr. Wilson Blake, is acknowledged with appreciation.

Drs. John A. Verhoogen and Paul A. Witherspoon provided. consultation and eritical review of the manuscript. Miss. Gloria polatowsiki drafted all flgures except those produced by the cal-. Comp, computer-driven ploteg. The University of california furnished office and laboratory space, equipment; machine shop facilities and 20 hours of IBM 7090 computer time. Financial support for this work, spanning full- and part-time periods between 2961 and the present, is largely due to wy ulfe, Mancy. whose dovoted encouragement and patience made the rork possible. During 1961-62; the writer was supported by the Ford Foundation through the Special Pre-Doctoral Engineering Followship prosram, and during the Fall, 1964, through their loan jrosraw. The American Gyanamid Company is to be thanked for a generous grant in support of this work during 1964.

Chapter 1
geamral discussion of anisotropic permeable media
Since this investigation of seopase through fractured media wlll lead ultimately to means of solvins practical boundasy problems, a surver of pertinent literature on anisotropic continua will provide perspective to the succeeding chapters. Force-Elos Relationshipg

In the following treatuent, potential is defined as the work done-on a unit mass of iluid in movins it to its position and pressure from some referonce condition. Childs (1957, pp. 3944) discusses definitions. Darcy's law defines for isotropic madia the proportionality betrien a discharge vector and a parallel potential gradient vector,

$$
\begin{equation*}
q_{i}=\frac{-k}{k_{i}} \frac{\partial \phi}{d x_{i}} . \tag{1-1}
\end{equation*}
$$

The vectors repriesented in equation (2-1) are directional quentities having no directional distribution. As firnt order tensors, such vectors are invarient to rotation in the medium. In other words, when there existes the condition known as icotropy; the proportionazity coofficient, k, is a scaler, having the same value for all difrections.

More general equations have been derived for anisotropic medie, whereln the velocity and gradient vectors are mon-parallel. If a modium. has idirectional properties, the coefficient relating discharge to gradient varies oith orientation. A vector operator defining auch directional properties for all orientations of a medium is a second rank tensor. Examples of some properties that way be anisotrople are: therma, electrical or fluid conductivity, dielectric constants, elastic or thermal-expansion coefficients.

The general form of Darcy's law for fluid permoabllity

$$
\begin{equation*}
v_{i}=K_{c_{j}} \frac{\partial \phi}{\partial x_{j}} \quad \text { (Perrandon, 1948, p. 24) } \tag{1-2}
\end{equation*}
$$

degenerates to the famillar lsotrople form when
where

$$
K_{i j}=\frac{h}{\mu} \delta_{i j}
$$

Bistorical Derrelopmant

The notion of anistropy is old. Duhamel (1832) studied anisotropic tharmal conductivity by ateasuring the elliptic shape of the melting front around a small heat source imbedded in cryseals coated with paraffin. Munjal (1964) has racently applied the methad to rocks.

Versluys (1915) was first to explain anisotropic permeabil15y by modelilng the conductors as axbltrarily-ariented bundles of rubes. He proved that any four arbitrary sets may be replaced by three mutually orthogonal sots of conductivity K_{2}, K_{y}, K_{2}, such that the continuity equation leads tor the generalization :

$$
\begin{equation*}
K_{2} \frac{\partial^{2} \phi}{\partial x^{2}}+k_{y} \frac{\partial^{2} \phi}{\partial y^{2}}+K_{z} \frac{\partial^{2} \phi}{\partial z^{2}}=0 \tag{1-3}
\end{equation*}
$$

Yersluys showed that four sets may be reduced to three (by solve ing 6 simultanoous equations) so any mubor, taken four at a time, may be reduced to three. The coefficients, $X_{\text {, }}$ are the principal pesmaabilitios of the system, associated with the three mutually orthogogal peincipal axes.

Ferrandon (1948) derived the tensor form (Equation 1-2) from the bundle of tubes model. The following treatwant differs little from Ferrandon's and the sumnaries siven by Seheidegser (1954) and Childs (1957).

Whe contribution to the flow q_{n}, throush a unit area nosmal to n_{1}, die to tubes oriented alons whe is proportional to the
potential gradient along the tubes (Figure 1-1).

Figure ${ }^{5}$. . Definitions for Ferrandon's bundles of tubes model of anisotropic media.

The crossosectional area of tubes per unit area cutting across solid and fluid phases of a porous medium is equal to the solid angle div at unit distance from some arbitrary point times a proportionality coefficient, γ pertaining to that set of rubes. In the following discussion, subscripts i and g indicate 3 vector components, subscripts n_{n} and ${ }_{n 0}$ signify designated scalars. Reprated indexes signify summation.

When the gradient is arbitrary, the component along the tubes is

$$
\frac{\partial \phi}{\partial m}=\frac{\partial \phi}{\partial x_{j}} m_{j}
$$

The m-direction discharge of one bundle of tubes is
$\alpha_{\ell_{\infty}}=\frac{h}{\gamma} \frac{\lambda}{\lambda x_{j}} m_{j} \gamma d \omega$.
where $\}$ is conductivity coefficient and μ is the viscosity of the fluff. The component of this flow in the n_{i}-direction is proportional to the cosine of the angie $n_{1} m_{2}$, thus
$\left\langle\delta_{A}=\frac{h}{\mu} x_{i} m_{i} \frac{\partial \phi}{\partial x_{j}} m_{j} \gamma d \omega\right.$.
The discharge of an aggregate of dispersed tubes is obtained by sumption, each tube with its peculiar direction cosines mi, and coefficients k and γ depending on the tube diameters and frequency. We may define anew coefficient.

a second order symetric tensor that operates on the sradient vector to give the discharge per unit of area nomal to the veloctey.

$$
\begin{equation*}
q_{i}=\frac{\boldsymbol{L}_{i}}{\mu} \frac{\partial p}{\partial z_{j}}, \tag{1-2}
\end{equation*}
$$

or the discharge through an area normal to n_{1}.

$$
\begin{equation*}
8_{n}=m_{i} \frac{k_{i j}}{\mu} \frac{\partial \rho}{\partial x_{j}} . \tag{1-4}
\end{equation*}
$$

The dischargo coefficient of each tube or tubo-set is a symo metric tensor in an asbitrary coordinate syatem, and if all coefflcionts are geferred to the same system, the sum of symnetric tensors is another symmetric tensor.

pirectional permabililify

An incodiate consequance of the finding that permeability is a second rank tensor is that velocity is parailel to the gradient only along three mutually orthogonal axes, the prineipal axes of olgenvectors of the tensor, while elsowhere, velocity is nonparallel to the gredient. The elgenvalues of the tensor are the prinelpal permeabilities, $\boldsymbol{k}_{12}, k_{22}, k_{33}$.

The altermative dofinitions of directional permeabillty have boen offered by Scheldesger (1954). In ose case, seepage Is confined to a direction n, by euttins from the medium a thin, pencil-shaped, encased spectmon, wuch mose elongate than the drill-cores employed by Johnson and kughes (1948) and Johnson and Breston, (1951) to establish anisotropy of sandstones. With such boundazies, the gradient is unkorn, for equipotentials are generally obllque to the core axis and tio the princtpal planes of permeability.

The gradient along the axis 16

$$
\frac{d p}{\partial m}=m_{i} \frac{\partial p}{\partial x_{i}},
$$

but in this case it is the gradient that is dependent upon the velocity.

$$
\begin{aligned}
& \frac{\partial p}{\partial x_{j}}=\mu f_{i j}^{-1} \delta_{i} \\
& \frac{\partial p}{\partial n}=\mu N_{i} k_{i j}^{-1} \mu_{i} q_{n},
\end{aligned}
$$

where $k_{i j}{ }^{-1}$ is the inverse tensor $\left(G_{i j}{h_{j i}}^{-1}=\delta_{i k}\right)$.
-
The proportionality constant between the discharge and the grad-. Lent in the flow direction is Scheldeggeris first definition of directional permeability:

$$
\begin{equation*}
k_{a}=\mu_{B a} / \frac{\partial P}{\partial m}=1 / N_{j} k_{i j}^{-1} A_{i} . \tag{1-5}
\end{equation*}
$$

A second definition of directional permeability is derived for the fl N through a specimen that $i s$ very wide compared to its thickness, like a pancake, with constant potentials at the broad surfaces. the gradient is fixed, while the velocity is generally oblique to the equipotentials and inclined to the principal axes of permeability.

Designating ny the direction normal to the equipotential surfaces, and q_{a} the discharge (per unit area) through it, it is clear that the scalar discharge is

$$
8 n=\operatorname{sig}_{8} 8
$$

Where I_{l} is the vector discharge (per unit area) through the instertor of the specimen. Seheldegser (p. 77) applies equation (1-2) for q, which gives

$$
\begin{align*}
h_{n} & =\mu \mu_{i} \delta_{i} / \frac{\partial p}{\partial x_{m}} \\
& =\mu \mu_{i} \frac{h_{i j}}{\mu} \frac{\partial p}{\partial x_{j}} / \frac{\partial \rho}{\partial x_{n}} \tag{2-6}\\
& =m_{i} h_{i j} m_{j} .
\end{align*}
$$

Scheidogier concluded that the two definitions, 5) and 6) are identical, because

$$
m_{i} h_{i j} m_{j} m_{i} \psi_{i j}^{-1} n_{j}=m_{i} h_{i j} h_{i j}^{-1} n_{j}=m_{i} \delta_{i j} m_{j}=l .
$$

so

$$
m_{i} h_{i j} n_{j}=1 / n_{i} h_{i j}{ }^{-1} n_{j}
$$

implying that the extra path length across the flat specimen is compensated by decreased resistance. .

Marcus and Evanson (1961, 1962) Investigated the twodimensional aspects of anisotropy, concluding that the two dalialtions of scheidegger lead to different values of directional permeability.

When the direction of flow is known (at an angle δ), the directional permeability at a general angle ϕ is

$$
\begin{equation*}
K_{\phi}=\frac{\cos \delta \cos \phi+\sin \delta \sin \phi}{\frac{\cos \delta \cos \phi}{K_{\alpha}}+\frac{\sin \delta \sin \phi}{K_{j}}} \tag{1-7}
\end{equation*}
$$

where the angles are defined by figure mil 1 -

Figure f-2. General flow conditions in anisotropic porous media (after Marcus and Evanson,

When $\phi=\delta$, directional permeability K_{δ} is measured in the flow direction, as in the case of Scheldegser's pencil-shaped boundaries. The equation

$$
\begin{equation*}
\frac{1}{K_{\delta}}=\frac{\cos ^{2} \delta}{K_{A}}+\frac{\sin ^{2} \delta}{K_{J}}, \tag{1-8}
\end{equation*}
$$

is a centered ellipse with radius $\sqrt{X_{f}}$, and semi-axes $\sqrt{R_{X}}$ and $\sqrt{\text { K. }}$

When the direction of the gradient is known (at an angle α from the x -axis), the directional permeability at a general angle is

$$
\begin{equation*}
K_{\phi}=\frac{K_{x} \cos \alpha \cos \phi+K_{y} \sin \alpha \sin \phi}{\cos \alpha \cos \phi+\sin \alpha \sin \phi} . \tag{1-9}
\end{equation*}
$$

When $\phi=\alpha$, directional permeability K_{k} is measured in the direction of the gradient, as with Scheidegser's pancake boundaries,

$$
\begin{equation*}
K_{x}=K_{x} \cos ^{2} x+K_{y} \sin ^{2} \alpha, \tag{1-10}
\end{equation*}
$$

the equation of a centered ellipse with the radlus $1 / \sqrt{k_{k}}$, and seal-axes $I / \sqrt{R_{z}}$ and $1 / \sqrt{K_{y}}$.

Marcus and Evanson show that $R_{\sim} \geq R_{f}$. For the same gradient alons the axis of test specimens, there will be a greater discharge per unit area with the pancake boundaries than with the pencil-shaped boundarios. Flors takes the path of least resise tance in the fosmer case, some other in the latter. The dipference between directional permeabilities defined by the flow and gradient directions o:eceeds 20 percent if $\xi^{\prime} / K_{x}<0.5$, and If the flos or gradient is inclined greater than 15 degraes from a principal axis. Exross increase towards infinity for greater anisotropy.

Hoasurement exrors were reported for various ansles and anisotroples studied by electrical resistivity models having boundaries of various width-to-length ratio3 intermediate between the extrenses posed by Schoidegger. Such studies are appropriato because conventional permeability tests are performed on nearly equant samples. Fiow within the saiple interior is man-parallel. to the boundaries. It was concluded that the measurements of Johnson, et. al. (1948, 1951) were correct for the wrons reason: boundary conditions were ignored, but since the greatest anisotropy was $K_{y} / K_{3}=0.75$, the exrors were negiligible.

Marcus and Evanson's troodimensional expressions, and Schoidegser's tensor expressions should be consistant, since the two-dimensional equations correspond to flose along the principal plane $z=$ a constant. A pablished explasation of the discrepancy has not been found, nor is the reason readily apparent. The problem is most pertinent to analysis of laboratory test data, as influenced by rectangular sample boundaries. Resolution of the lnconsistancy will not be pursued further here because for field
problems, directional permeability may be considered synonymous with anisotrople permeability. Where the phrase is used in the text, it implies only that there exist in the medium three printclpal permeabilitios corresponding to three orthogonal pricielpal exes.

Potential and Stream functions.
All problems of slow, steady, Incompressible fluid flow in. previous media depend on the applicability of the laplace aquacion

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 \tag{1-11}
\end{equation*}
$$

where hydraulic potential

$$
\begin{equation*}
\phi=\left(k^{\prime} / g / \mu\right)(p / P g+z)=k i \tag{2-12}
\end{equation*}
$$

kl is the absolute permeability of the medicine, as used by Musket (1937),
μ is the viscosity of water,

- $/$ Ls les density.
g is the acceleration of gravity, and
f is the pressure at a point at
2 elevation, all in consistent units.
k and h are lumped variables dafleed in the brechetod coefficients. Solutions to the differential equation (1-11) form an -orthogonal metrist of curves
ϕ = a constant, with lines $\gamma=$ a constant that are solutions to

$$
\begin{equation*}
\frac{\partial^{2} \gamma}{\partial x \delta y}+\frac{\partial^{2} \gamma}{\partial y \partial x}=0 \tag{1-13}
\end{equation*}
$$

Stream potential of is related to ϕ by the Curchy-Bieman equations:

$$
\frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial y} \quad \text { and } \quad \frac{\partial \phi}{\partial y}=-\frac{\partial \psi}{\partial x} \text {. }
$$

The tuo typer of potentials were dovised to express for every position (x, y) the proportion ϕ of hydraulle potential lost in flowing to thet point ac woll as the proportion of the flus γ lying to one sido of the etream line passing through that point. The four veriables are combined in the complex plane $(z=x+i y)$, $(\omega=\phi+i y)$. The two orthogonal fainilios of lines constitute a flow net, a tool of groet utility for fisualizing and measuring the distribution and gradients of hydraulic potential, the quantities and directions of flow. Methods are avaliable for obtaining flow nets by analytical means (idescat, 1937; Collins, 2961; Long. 1961), by eraphical techniques (R1chardson, 1910; Forskelner, 1930; Samioe, 1931; Dachlex, 1936; Casagrende. 1937; 2velker, 1958), by analogue studies (Loe, 1943; Eanson, 1952; Opzal, 1955; Todd, 2954, 1959) and by relaxation (Chien, 1952; Uarren, Dougherty and Price, 1960; Dusinberre, 1961; Schenek, 1933), to mention a fair.

Computations of discharge depend on the validity of Darcy's law to establish the proportionality with the gradients obtained by solving the laplace equation. Darey's lav is applicable to water flos in most soils, but also mass air flow at low grade Lents (3uscat, 1937, p. 128, Carman, 1956). The simplest use of a flow net is to get total discharge.

$$
Q=h \Delta \phi\left(\frac{\text { nuaber of eloss ehamols }}{\text { number of equal potential drops }}\right)
$$

where k is hydraulic conductivity, ($L I^{-1}$), and
$\Delta \$$ is the total hoad drop (L) between boundaries and
Q is the rolume per unit slice width per unit time $\left(L^{3} \mathcal{L}^{-1} T^{-1}\right)$. For anizotropic media, the Laplace equation must be ree derived (porshelmer, 1930, Masland, 1957). Substitutins

$$
N_{a}=k_{k} \frac{\partial \phi}{\partial x}, \quad N_{y}=k_{j} \frac{\partial \phi}{\partial y}: \operatorname{and} v_{z}=k_{a} \frac{\partial \phi}{\partial z} .
$$

into the continuity equation for steady flow

$$
\frac{\partial N_{x}}{\partial x}+\frac{\partial v_{z}}{\partial y}+\frac{\partial v_{x}}{\partial z}=0
$$

gives

$$
\begin{equation*}
k_{2} \frac{\partial^{2} \phi}{\partial x^{2}}+k_{y} \frac{\partial^{2} \phi}{\partial y^{2}}+k_{E} \frac{\partial^{2} \phi}{\partial z^{2}}=0 \tag{2-3}
\end{equation*}
$$

This reduces to the Laplace equation upon substitution of

$$
x^{\prime}=\left(k_{0} / h_{d}\right)^{1 / 2} x, y^{\prime}=\left(k_{0} / k_{g}\right)^{1 / 2} y, \quad z^{\prime}=\left(k_{1} / h_{2}\right)^{1 / 2}=(1-14)
$$

(k_{0} is an arbitrary constant), giving

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{\prime 2}}+\frac{\partial^{2} \phi}{\partial y^{\prime 2}}+\frac{\partial^{2} \phi}{\partial x^{\circ 2}}=0 \tag{1-13}
\end{equation*}
$$

the Laplace equation for isotropic flor in transformed anisetrople media. It is necessary only to transform the geometry of problem boundaries by applying equations 141 whereupon the aet flour e can be created by en y of the available isotropic methods. The coordinate expansions or contractions must be made along the principal axes. Upon completing the flow net solution, the aet, as well es the boundaries, may be retransformed to the orishal symtom, thereby mapping the potentials throughout. In general, the Lines ease mon-orthogoanl solutions to (1-3).
the isotropic permeability used for computing discharge through transformed media is:

$$
k=\left(k_{x} h_{y} h_{z} / h_{0}\right)^{1 / 2}
$$

This version is leasiand's (1957) modification of findings by Samsioe (1931); Vreedenbirgh (1936); and Muscat (1937).

Application of the foregoing theory to fractured media was not
the intention of the authors exited, with the exception of Childe (1957). If Darcy's-Law coefficients my bo found that give the same macroscopic discharges as do aggregates of fractures, then the amorous methods of problem-soliving in common use for inters granular media may be applied also to fractured rock.

This thesis, therefore, attempts to determine how the geometrical parameters govern the orientation and magnitudes of primcipal permeabilities in fractured media. For a given field probe lem, principal axes may be estimated by the orientations of the planar conductors (Chapter 5), but the magnitude of principal permeabilities meat be measured.

STEADY FLON FROM CYLINDRICAL CAVITIES IN SATURATED. INFINITE ANISOTROPIC MEDIA

Intreduction

Development of a method of pressuro-testins jointed rock to determine its anisotropic permeablilty is the object of this chapter. Continuum fluid mechanice are used here to establish proporties of media that are distinctly discontinuous. Current practices of analyzing tests neglect anisotropy and heterogeneity. Solutions to boundary-value problems, to establish flow or prese sure distribution in jointed rock, have thus far been attempted by methods designed for isotropic, intersrenular, conductins medLa. Botable examples include Stuart's (1955) draw-down tests for predicting shaft drainage, Thayor's (1962) analysis of oroville prop-test data and Yokota's (1963) atudy of potential in the Rurobe IV damesite. No rational bacis of justifying the assumed 1sotropy has been advanced, though close correspondence between measured and theoretical potential or discharge values is sometimes found.

More commonly we observe anomalous uplift preseures beneath masonry dams (Richardson's 1948 report, p. 26, on Hoover dam, for instance), wildiy erratic pressure-test discharges (Lyon's 1962 seport of Orovilie tests), or sporadic tunnel infiltration (Wahlstrom and lbernback's 1962 report on the garold D. Roberts tunnel, Colorado). These are expressions of the heterogenelty characterlstic of jointed rock. As opposed to the systematic depthe varying Inhomogeneity demonstrated by Turk (1963), and epplied to water-rell design by Davis and Turik (1964), heterogeneous permeability encountered in jointed rock is belloved due to the proe-
cess of sampling a fow elenente out of a large population having greet disperian of conductivity. It is bettor to atteapt stae eistical interpretasion of jointed-rock permeability values than It is to accept the pessinism of Terzaghi. (1962), who sald:

> Hater lavels in observation wells located in jointed rock can vary over short distances by important amounts and the offect that fllling the feservolr bill have on the pore water prossures in the gougo seams cannot even be estimated in advance...the pattern of seepage lis likely to be errat1e...ione cannot tell which ones (joints) are continuous over a large area."

Pew fleld studies have demonstrated anisotropy for jointed rock, due to lack of methods to measure it. Interactions bee tween wells indicated a preferred direction (in plan only) of pormeability of the Spraborry oilfield (Elkins and Skov, 1960). Sweep officiency has been proposed as a means of determining anisotropy (Landrum and Crawford, 1960). Contours on a plezometric surface for water conducted in fractures of the crystaline basement at the Nevada Test Site indicate high pesmeability in the direction of streamline convergence (Davis, 1963).

Inproved resolution should prove anisotropy a general attribute of fractured cocks, by reason of the orientations of planar conductors. Dlamond-dsill explorations can be designed to facilitate measurement of principel permeabilities that can then be treated statistically to establish madians, means, and disporslons of the three heterogencous measures. For these purposes, dxill-holes sbould be oriented to nearly colncide with principal permeabllity axes, predetermined from study of joint orientations by methods given in Chapter 5.

To describe the orientation of three matually orthogonal axes requires three independent paramaters, and to describe the correspondins permeabilities, three additional. Since as many meisures as unknows are required for a unique solution, observe
able orientation data le relied upon for axial predictions, while three orthogonal drill-holes are employed to measure the principal permeablilities. throe orthogonal presiure-test boles can define the priselpal permeablilties because the discharge from each ions cylindrical cavity depends largely upon the permeabilltios in directions normal to the axis of the cavity, and but voakly upon the permeability parallel to the axis.
theoretical Development
Theory developed by Maasland (1957. pp. 218-284) for plezometer tests in anisotropic soil la amplified and generalized here for arbitrary packer testehole orientations in anisotropic media.

The three components of macroscopic velocity coinciding with the principal axes of an anisotropic medium may be expressed by Darcy's lev:

$$
v_{i}=-f_{i j} \frac{\partial \dot{i}}{\partial x_{j}} .
$$

Where the repeated index signifies summation and the $h_{i j}$ are the terms of the hydraulic conductivity tensor, ew/soc..
ϕ is the head, cr.. and
x_{i} are the coordinates.
When substituted into the contloulty equation, for steady state or uncoaprehensible flow.

$$
\frac{\partial \tau_{i}}{\partial x_{i}}=0,
$$

there results

$$
f_{i i} \frac{\partial^{2} \phi}{\partial x_{i}^{2}}=0 .
$$

mainland introduces an arbitrary constant. (0 . Into the equations transforming the origlsul Cartesian coordinates to a system Idontpeeled by primes:

$$
x_{i}^{\prime}=\left(f_{0} / h_{0 i}\right)^{k_{k}} x_{i} \quad \text { (after samsioe, 1931). (2-1) }
$$

Inis subatitution results in the Laplace oquation,

$$
\nabla^{2} \phi=0
$$

When boundary condlitions are expanded or contracted by equations (2-1) then potential theory for isotrople media applies. The hydraulic conductivity of this equivalent but fictitious transformed mediun,

$$
\begin{equation*}
k=\left(k_{11} k_{32} k_{33} / k_{0}\right)^{1 / 2} \tag{2-2}
\end{equation*}
$$

was derived by Vreedenburs (1936) and modified to the above form by faeciend. Kirkham (1945) gives a genaral equation for flow from caplities belon the water cable:

$$
\begin{equation*}
Q=k s y \tag{2-3}
\end{equation*}
$$

where Q is the flow rate, say in gallons per day,
k is the hydraulic conductivity, foet per day,
y is the net hydraulle head, feet, and
S is a coofficient of lensth units dopendent upon the $800-$ metry of the cavity, and the boundaries. Pisure 2-1 (b) 1dentifies the boundaries and variables.

Massland gives derivations and electric analogue results. leading to S-values for various shapes. Dachler (1936) called this corefficient the "Forafoktor"; Evorsler (1951), the "shepe factor"; and Zangor (1953) calls $5 / 2$ the "offective hemispherical radius". S is a constant for piezometers having unchanging boundaries, and a varlable for auger-boles because the boundaries change with the water-level. In plezometer testing of agricultural soils, the hole is cased to a cercaln lovel, leavins open - cyilindrical cavity of longth w below. In sock prapins tests, water is conducted through drill rods to a section of hole iso-
leted by packers. Thus, the cuscornary use of Sefactors derived for cased hoies whose valls above and belon the panping cavity are stremilines (0.8., Thayer, 1962, p. 6) is at best an approxiaation of the actual conditions. The plezometer test could be more falthfully duplicated if, at lesst, tests uere confined to the botton of the hole, ono packer only applled at various stages of completion of bole-drillins. Better still, the unneeded upper part of the hole might be grouted closed above a drillable obstructor. Heany dellling mud ulght suffice to flll the hole above the carity and around the drill rods.

Ho elgorous solution is known or expected for packer tests as they are currently practiced, bocause the hole above the cavity is either an equal-pressure surface if air-filled, equipotential if vater-fllied, or part one and part the other. luater levals within the hole ase not customanily measured during tests. In Fisure (2-1 (a), schematically Lliustrating these tests, potenticls 1 and 3 differ from the cavity potential 2, according to the length and conductivity of frecture pathe stort-elreulting the packers through the rock. The performance of testr sometlmes discloses leaking packers.

Figure 2-1 (b) portrays the assumed geocetry that is used to analyze packer tests. It corresponds to plezometer tests described in the ilterature. . The valis of the hole are noflos boundaries except at the cavity. It is further assumed that the quantitles of vater injocted are so small that the water-table remains unchanged.

The packer tost eurrently gives emplrical measures of dise charge, believed useful as eriteria for groutins soeds and grout take estidation (Talobre, 1957, p. 153; Grant, 1964; de Mollo, 2960. p. 703), but the test gives a low-confldence measure of

FIGURE 2-1. (a) COMMON CONDITIONS OF PACKER PUMP TESTS IN ROCK. (b) CONDITIONS OF PIEZOMETER ASSUMED IN ANALYSIS OF PACKER TESTS CONDUCTED IN DRILL HOLES.
persoobility. Inds is due, in part, to the assumptions discussed above, and in part, to the great variabillty of permeablilty found in most sock bodies. Improvement of methods and confldence is ode object of this work.

The dimenslonless variables describing the cavity geonetry and determining the shape factor are expreseod by:

$$
\begin{equation*}
5 / D=f(d / D, w / D, s / D) \tag{2-4}
\end{equation*}
$$

Provert and Klerkham (1948) have ostabllshod by oloctrical anaLogues that there is vary little offect of lovered uater table until d is less than one diameter, D_{0} from the top of the cavity. The depth to an impermeable barrier, 8 , is seldom ktown in exploration, but can asually be assumed large in comparison to D. S / D is an insensitive to s / D as it is to d / D (Childs, 1952, P . 533). mhus, plezometier or packer tests are best analyzod as though in an infinite medium, provided that they are located bea Low the rater table. In such eases.

$$
\begin{equation*}
S / D=E(W / D) . \tag{2-5}
\end{equation*}
$$

In particulir, if the cavity is lons (w/D>8)

$$
S / D=\frac{2 \pi w / D}{\ln (2 w / D)} \quad \begin{gather*}
\text { (Glover, seported by } \tag{2-6}\\
\text { 2anger, } \\
1946) .
\end{gather*}
$$

Since the derivations of Dachler, Samsioe and Glover assume a Line source, they fall to satisif the condition of uniform poseatlal over the surface of a crlinder. Masiland has providod, as alternative, the shape factore for olllpsolds.

Evans and Risthan (1950) polated out the analogy of the shape factor to the electrostatic eapacity about an ellipsold in an infintte medium:
rranger (1953) reports the derivation by Cormmell. but attributes the equation to R. E. Glover.

$$
s=4 \pi c
$$

Shy the (1939) shores that

$$
2 / C=\int_{0}^{\infty} d \theta /\left[\left(\alpha^{2}+\theta\right)\left(\beta^{2}+\theta\right)\left(\gamma^{2}+\theta\right)\right]^{1 / 2} .
$$

where θ is a variable of integration and α, β, and γ are the semi-axes of an ellipsoid. For the ellipsoid inscribed in the cavity of a packer cavity, $\alpha=\gamma$ and $\beta>\pi$, giving:

$$
S=8 \pi\left(\beta^{2}-\alpha^{2}\right)^{1 / 2} / \ln \left(\frac{\beta+\left(\beta^{2}-\alpha^{2}\right)^{1 / 2}}{\beta-\left(\beta^{2}-\alpha^{2}\right)^{1 / 2}}\right),
$$

which becomes

$$
S=4 \pi\left[(\omega / 0)^{2}-1\right]^{j / 2} / \ln \left(\frac{\omega / D+\left[(\omega / D)^{2}-1\right]^{1 / 2}}{\omega / 0-\left[(\omega / D)^{2}-1\right]^{1 / 2}}\right) \quad(2-7) \quad:
$$

upon substitution of

$$
\alpha=0 / 2, \beta=w / 2 .
$$

shape factors computed by equation $(2-7)$ differ by lass than 3 percent from those computed by equations $(2-6)$ if $\mathrm{W} / \mathrm{D}>3.0$. As Mass land has noted (p .273), nether of these equations are correct for a circular cylinder, though they are asymptotic to these valuses for large cavity lengths.

When a plezomater coincides with the extraordinary axis of a two-dinencional anisotropic medium (Masland, pp. 275-280), then

$$
k_{3}=k_{1}=k_{2} \quad \operatorname{and} \quad k_{r}=k_{3} .
$$

The transformation equations are

$$
x_{1}^{\prime}=x_{1}, x_{2}^{\prime}=x_{2}, x_{3}^{\prime}=m x_{3},
$$

m being $\left(h_{4} / h_{r}\right)^{/ / 2}$. Circular sections remain circular in the fictitious transformed medium, and the isotropic hydraulic conductivity is

$$
h=\left(h_{H} h_{r}\right)^{\prime / 2} .
$$

Thus, the discharge is:

$$
\begin{equation*}
0=\left(h_{4} h_{v}\right)^{1 / 2} s_{2} y \text {, } \tag{2-8}
\end{equation*}
$$

Sa is the anlsotropic shape factor,

$$
s_{\Delta} / D=f(\mathrm{~m} / \mathrm{D}) .
$$

found by equations (2-6) or (2-7)
Masiland roports equations for shapes other than the lons cyilndrical cavities considered here. It is notevorthy that the pirincipal conductifitios of a two-dimenslonal anisotrople $602 l$ can be found if the principal directions are known to colncide with the axes of two differently-shaped plezometers. The combination of a lons cylindrical cavity for one, and an openeended disk source (mo caplty) for the other, is efflclent for soll (inasland, p. 279) but is inadequate for rock because too fen joint conductors (too small a sample) would comminicate with the end of a drill bole. Child'c twourcll system does not readily lend itsell to rock testing because lazze potential differences cannot be introduced by graplty.

Macsiand also developed a means of analyzing three-dimensional anisotropg. His work served as a gulde to the folloring but is not repeated here because we do not assume the axis of the plezometer to colncide with a (vertical) principal axis of conductivity.

A sotation of the coordinate system is first necessary when the plezometer has an arbitrary orientation with respect to the prinelpal axes of conductivity. Assume a dellichole with orlentation B_{1}, the dicection coaines of les axis. with respect to a zight-handed seographic oysten (south a x_{2}, east $=x_{2}$, up $=x_{3}$). and throe principal axos of conductivity $\mathrm{O}_{2,}$, similarly referenced. Figure 2-2 ls a diagram of the unit vectori of three eoors dinate systens, two of them labelied with thelr direction cosines relative to the geographic axes x_{1}. In sepresenting these, the supersertpt ${ }^{\circ}$ alsalfies one of many posalble coordinate oystems

FIGURE 2* COORDINATE SYSTEMS FOR PACKER TESTS IN I ANISOTROPIC MEDIA.
-
having an axts aions the erilucorg it bat De $x \frac{9}{3}$ and x_{2}^{0} is in the x_{2}-plane. The x_{1} syatem colncidec with the principal cone ducelvity axes. ULJ, themelva belus diraction cosinea in the x_{1} syetea. the oxtsin is contered on the upper packer.

The equation of elghtectrcuing eylinder with axis lons the $x 3$ coordinate axis is:

$$
\begin{equation*}
x_{1}^{0^{2}}+{x_{2}^{2}}_{2}^{2}, r^{2}, r=D / 2 \tag{2-9}
\end{equation*}
$$

and the test coaction is limited to

$$
0 \geq x_{j}^{0} \geq-w .
$$

The equation for the cyilnder mat be rotated from the x_{i}^{0} system to the x_{1}^{\prime} system. Each position vector Le related, one system to the other, by a transformation

$$
\begin{equation*}
x_{i}^{\bullet}=a_{i j} x_{i} \tag{2-10}
\end{equation*}
$$

whose matrix is defined as

$$
a_{\dot{i}}=\left|\begin{array}{lll}
\cos \left(1^{\circ}, 1^{\circ}\right) & \cos \left(1^{\circ}, 2^{\circ}\right) & \cos \left(10^{\circ}\right) \\
\cos \left(3^{\circ}, 1^{\circ}\right) & \cos \left(2^{\circ} 2^{\circ}\right) & \cos \left(2^{\circ}, 3^{\circ}\right) \\
\cos \left(3^{\circ}, 1^{\circ}\right) & \cos \left(3^{\circ}, 2^{\circ}\right) & \cos \left(3^{\circ}, 3^{\circ}\right)
\end{array}\right|
$$

Inspection of Figure 202 will verify that the elements of the transformation are: $\quad \alpha_{8 j}=$

The matrix multiplication of equation (2-10) fives the original come poneats of a position rector in terms of the primed coordinates. Equation (2-9) for the cylinder in the coordinate system parallel. to prinelpol axes of the anisotropic medium becomes.

$$
\left(a_{11} x_{i}^{0}+a_{12} x_{2}^{\prime}+a_{13} x_{2}^{\prime}\right)^{2}+\left(a_{21} x_{1}^{0}+a_{22} x_{2}^{\prime}+a_{23} x_{3}^{\prime}\right)^{2}=r^{2} \quad(2-12)
$$

So replace the medium by an imaginary isotropic one, we mast transform linearly to a third coordinate system according to:

$$
\begin{align*}
& x_{1}^{\prime \prime}=\left(h_{0} / L_{N}\right)^{k_{2}} x_{1}^{\prime} \\
& x_{2}^{\prime \prime}=\left(L_{0} / h_{A N}\right)^{N_{2}} x_{3}^{\prime} \tag{2-13}\\
& x_{3}^{\prime \prime}=\left(L_{0} / L_{\Delta}\right)^{/_{2}} x_{3}^{\prime}
\end{align*}
$$

where agaln, $k_{0} 16$ an arblerary constant. The kil aro principal \mathbf{k}^{8} hydraulic conductivity coefflcients, proportional to the principal permeabilities K_{12}, and one of the factors listed in rable 2-1.
rable 2-1
CORVEREIOA PACTOPS, PEMADABILITY TO GYDRAULIG COIDUCTIVITY

To obtaln conductivity in: matiply absolute egs units

Ono possible deflatition of the arbitrayy constant is

$$
\begin{equation*}
h_{0}=\left(h_{10} h_{a 2}\right)^{1 / 2} . \tag{2-14}
\end{equation*}
$$

which matces

$$
\begin{align*}
& x_{0}^{\prime}=\left(h_{10} / h_{32}\right)^{\prime 2} x_{0}{ }^{n} \tag{2-15}\\
& x_{2}^{\prime}=\left(k_{22} / K_{N}\right)^{\prime \prime} X_{2}^{\prime \prime} \\
& z_{3}^{*}=\left[k_{33}^{y_{2}} /\left(k_{t t} h_{22}\right)^{k}\right] x_{3}^{*} .
\end{align*}
$$

To find how the length of the cavity $\{s$ changed by the transformation, identify the center of the distal and by the vector Ji: originally at

$$
y_{1}^{\prime}=y_{i}^{0}=0, y_{i}^{0}=-\infty .
$$

chen rotated to

$$
y_{1}^{\prime}=a_{31} y_{3}^{\prime}, y_{3}^{\prime \prime}=a_{32} y_{3}^{\prime}, y_{3}^{\prime}=a_{33} y_{3}^{\prime},
$$

and transformed to isotropy by substitution equations 2-15 and

$$
\begin{aligned}
& J_{3}^{\prime}=-w_{0} \\
& y_{1}^{N}=\left(k_{22} / k_{1}\right)^{1 / 4} a_{3,} w \\
& y_{3}^{\prime \prime}=\left(k_{N} / k_{28}\right)^{1 / 4} a_{32} w \\
& y_{3}^{\prime}=\left[\left(k_{11} k_{28}\right)^{1 / 4} / k_{3 s}{ }^{1 / 2}\right] a_{3 g} w
\end{aligned}
$$

The cavity length in the fictitious system is found from

$$
t^{2}=y_{i}^{\prime \prime} y_{i}^{\prime \prime}
$$

which gives:

$$
l=\left[\left(k_{21} / k_{N}\right)^{\frac{1}{2}} a_{31}^{2}+\left(k_{11} / h_{21}\right)^{1 / 2} a_{32}^{2}+\left[\left(k_{11} k_{21}\right)^{\frac{1}{2}} /_{13}\right\} a_{33}^{2}\right]^{1 / 2} w(2-16)
$$

Direction cosines of the axis of the cylinder ace:

$$
y_{i}=y_{i}^{\prime \prime} / L
$$

The general equation for the cigindricel cavity in the isotropic system 28 obtained by substituting equation 2-15 into 2-12,
changing it to an oblique elliptic cylinder:

$$
\begin{align*}
& {\left[\left(k_{n} / h_{22}\right)^{1 / 2} a_{21} x_{1}^{\prime \prime}+\left(k_{21} / h_{n}\right)^{1 / 1 /} a_{22} x_{2}^{11}+\left[h_{33}^{1 / 2} /\left(k_{11} h_{21}\right)^{1 / 9} a_{23} x_{3}^{\prime \prime}\right]^{2}=r^{2}\right.} \tag{2-17}
\end{align*}
$$

A cross-section normal to lite axis is also an ellipse, defining the aet cavity shape by its seai-axes. To find then, we first solve the oblique section, equation 2-27, for its seni-axes, then project them to the plane normal to the cylinder axis. The expanded form of $2-17$ is:

$$
\begin{aligned}
& +\frac{\left(f_{22} / h_{n}\right)^{1 / 2}\left(a_{12}^{2}+a_{21}^{2}\right)}{r^{2}} x_{2}^{n^{2}}+\frac{\left.2\left(h_{18} / h_{1}\right)^{2}\right)^{\prime}\left(a_{n} a_{18}+a_{22} a_{2 B}\right)}{r^{2}} x_{2}^{n} x_{s}^{\prime \prime} \\
& +\frac{\left\{f_{33} /\left(f_{11} f_{24} y^{4}\right\}\left(a_{n 3}^{2}+a_{21}^{2}\right)\right.}{r^{2}} x_{3}^{2}=1
\end{aligned}
$$

The coefficients of $x_{1} x_{j}$, as arranged here, define a eymetrie 30 matrix after first dividing off-diagonal (iffy) oleanes by 2. Dlagonalization trandeforma the equation of the oblique elliptic section to a coosdrate system parallel to the axis of that ellipse.

Figure 2-3. The originally circular directrix of a cylinder is an oblique ellipse after transformation. The true directrix is found by projection along the axis Y_{1}.

$$
\text { The diagonal matrix: }\left|\begin{array}{lll}
A & 0 & 0 \\
0 & B & 0 \\
0 & 0 & C
\end{array}\right|
$$

will contain only two non-2eso tarns, A and B, B and C, or A and. G; which are coefficients of the ellipse.

$$
A x_{1}^{\prime 2}+B x_{2}^{2}+C x_{i}^{*}=1 .
$$

The secil-axes are, then, two of the followings

$$
L_{1}=(1 / A)^{1 / 2}, L_{2}=(1 / B)^{1 / 2}, L_{3}=(1 / C)^{1 / 2} .
$$

The elgenvectors mast next be determined, to deline the oriensations of the above seol-axos of the obllque elliptic soction in terme of the transformed (isotrople) coordinate system. Call these axes i_{1}, m_{1}, and n_{1}, correoponding to the $A_{1} B_{1}$ and C. elgenvalues. Flgure 2-3 111 ustrates the simple projection of these elgenvalues to the plane nomal to the cylinder axics.

$$
\begin{aligned}
& \kappa=L_{1}\left[1-\left(Y_{i} l_{i}\right)^{2}\right]^{1 / 8} \\
& \beta=L_{\varepsilon}\left[1-\left(Y_{i} m_{i}\right)^{2}\right]^{1 / 2} \\
& \gamma=L_{g}\left[1-\left(Y_{i} \mu_{i}\right)^{2}\right]^{1 / 8},
\end{aligned}
$$

whichever tero are pertinent.
The greetest possible ellipticity would axise if the cireular section in the original anisotropic medium coincided with the plane of k_{12} and k_{33}. Then

$$
\alpha / B=\left(h_{3 B} / h_{11}\right)^{1 / 2} .
$$

We have described the elliptic cylinder in the fictitious isotropic medium by the lensth l and semi-axes, say $<$ and μ. cosresponding to the length w and the radius $D / 2$ of a right circular cylinder' test section in an anisotropic modium. The ends of the cylinder are noncorthogonal after transformation. This will influence' the shape factor when $k<D_{\text {, but may be noslectod }}$ for pumping tests where w is Inverlably many times D.

$$
\begin{align*}
& \text { The shape factor has been reduced to: } \tag{2-19}
\end{align*}
$$

Massland has studied the relation between ellipticity and the shape factor (1957. p. 244). Rather than evaluate the integral for electrostatic capaclity for $\langle\beta A \neq \gamma$, he employed electric asaLogues. Ee foum little influence, provided that $k / D>5$ and $2 / 3 \ll / \beta<3$. Thus.

$$
s_{z}=f(l / 0)
$$

alone. Sa is determirable by equation(2-6)with lees than 4 percent error.

The limitation that k_{11} / k_{33} be less than 9 is cerious only when a single, near-parallel joint cet is present of doralnant, because the orientation atudies have indlcated no cases of such strong anisotropy when more than one set of jolnts, in adequate samples, is presont in the mediun. The circular-cylinder form factor appro:imation is acceptable for two or three-set aystems, unless, for instance, one sot consists of large parallel faults, and the other conductors are tight joints. In some cases of strons anisotropy, problems may be solved by reducing to two dimersions on the plane of symiotry.
D. should be the diemeter of a circle having the same area as the elliptic section in the fictitious isotropic medium (imasland, p. 284).

$$
\begin{equation*}
0=2(\alpha \beta)^{1 / 2} \tag{2-20}
\end{equation*}
$$

The Glover-Cormell equation for the shape factor of lona cavities in an infinite madius is suitable for packer tests in reck, proyided that u is computed by oquation(2-16h and D by - equation(2-20l The conductioity mast be determined by equation (2-2) and (2-14) Then equation (2-3) for the discharge is

$$
\begin{equation*}
Q=\left[\left(k_{11} h_{32}\right)^{j / 1} / h_{3 B}\right]^{1 / 2} S_{\alpha} y \tag{2-21}
\end{equation*}
$$

A computation of discharge for one hypothetical packer test will exemplify the method. Suppose that the diagonalized permeabllity tensor is
$K_{i j}=\left|\begin{array}{ccc}27.9 & 0 & 0 \\ 0 & 7.1 & 0 \\ 0 & 0 & 4.6\end{array}\right|$
and the matrix of direction cosines of the principal axes is

$$
U_{j}=\left|\begin{array}{ccc}
.632 & .770 & .081 \\
.564 & .386 & -.730 \\
.631 & .507 & .678
\end{array}\right|
$$

Suppose a 200-foot IX (D in equation 3-6 $=0.25 \mathrm{ft}$) drill hole Is inclined 45 degrees east ($\mathrm{B}_{1}=0.0$, $.7071,0.7071$) with one packer set 50 feet from the bottom ($w=50$). The static water cable is 40 feet below ground and the temperature 60° \%. Gage pressure $2 \mathrm{c} 75 \mathrm{psi}(\boldsymbol{y}=40+75(2.31)=231 \mathrm{ft}$.$) .$
hydraulic conductivities ace obtained by applying a factor from Table 2-2.

$$
\begin{aligned}
& h_{i c}=K_{i i}\left(1.84 \times 10^{9} \cdot\right) \text { gallons } / \alpha_{\text {cay }} /{f t^{2}}^{2} \\
& k_{11}=5.15 \times 10^{\circ}, f_{32}=8.31 \times 10^{4}, h_{33}=0.84 \times 10^{\circ}
\end{aligned}
$$

Hent, we compute the transformation matrix (equation 2-12), that will rotate the drill bole B_{1} to coordinate a parallel to the principal conductipleles.

$$
a_{i j}=\left|\begin{array}{lll}
a_{01} & a_{12} & a_{13} \\
a_{31} & a_{12} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\left|\begin{array}{lll}
.478 & .243 & -.851 \\
-.632 & -.564 & -.531 \\
-.601 & .789 & -.121
\end{array}\right|
$$

The transformed test length has components

$$
y_{1}^{\prime \prime}=-\left(h_{2} / f_{n}\right)^{3 m_{a_{3}} w}=.504(.601) 50.0=21.7 \mathrm{ft} .
$$

and similarly

$$
y_{3}^{*}=-\left(k_{11} / f_{01}\right)^{t_{4}} a_{32} w=
$$

Direction cosines are

$$
y_{i}=.358,-.919, .175
$$

the test length in the isotropic medium is given by equation (2-16).

$$
\begin{aligned}
\langle= & {\left[(.254)^{1 / 2}(-.602)^{2}+(3.13)^{4}(.780)^{2}+\right.} \\
& {\left.\left[(5.15)^{1 / 2}(1.31)^{6 / 2} / 0.84\right](-.121)^{2}\right]^{1 / 2}(50.0)=60.5 \mathrm{ft} . }
\end{aligned}
$$

The matrix of the exoss-sectional ellipse is found by equation (2-18)

$$
64.0\left|\begin{array}{ccc}
1.263 & .475 & -.058 \\
.475 & .190 & .039 \\
-.058 & .039 & .391
\end{array}\right|
$$

Upon diagoralizotion (geo Long, 1961, p. 23), to slide-zule free elision,

$$
\left|\begin{array}{lll}
A & 0 & 0 \\
0 & B & 0 \\
0 & 0 & C
\end{array}\right|=\left|\begin{array}{lll}
0.0 & 0.0 & 0.0 \\
0.0 & 92.4 & 0.0 \\
0.0 & 0.0 & 21.1
\end{array}\right|
$$

The obliqua elliptic section has the equation,

$$
92.4 \bar{x}_{2}^{2}+21.1 \bar{x}_{3}^{2}=1
$$

wite seni-a:0s:

$$
\Sigma_{2}=.104, L_{3}=.218 \text { feat. }
$$

To project those semi-cxer to the plane normal to the axis of the cylinder, Y_{i}, the coefficient metric eigenvectors mast be determined. Those are the directions of L_{1}, I_{2}, and L_{3}, For each - eigenvalue, 3 and C, there are four sinuitancous equations to satisfy:

$$
\begin{aligned}
(1.263-A / 64.0) l_{1}+.475 l_{2}-.058 l_{3} & =0 \\
.475 l_{1}+(.190-A / 67) l_{2}+.039 l_{3} & =0 \\
-.058 l_{1}+\quad .039 l_{2}+(.391-A / 61) l_{3} & =0 \\
l_{1}^{2}+l_{2}^{2}+l_{3}^{2} & =1 .
\end{aligned}
$$

The solutions are direction cosines, the pertinent ones in this case bring

B:
G:

$$
\mathrm{mi}=.167, .354, .920
$$

$$
m_{i}=0.0,0.0, .999 .
$$

The cylinder axis X_{i} rakes angles with the semi -axes of the oblique -1lipse hevins cosines

$$
\begin{aligned}
\left.Y_{i} m_{i}=(.358)(.16 \pi)+(-0.0)(.354)+(.180) 1.920\right) & =-.105 \\
Y_{i} w_{i}=(.175)(.999) & =.175
\end{aligned}
$$

The projection of the cemi axis, L_{1} o onto the plane nomal to X_{1}, gives the semb-axes of the directrix of the transformed cylinder:

$$
\begin{aligned}
& s=.104\left(1-.105^{2}\right)^{1 / 2}=.103 \mathrm{ft} \\
& t=.218\left(1-.175^{-2}\right)^{1 / 2}=.215
\end{aligned}
$$

and $A / \delta=.478$. Were the test oriented to attain the maximum ellipticity, then it would have been

$$
A / r=\left(h_{13} / G_{11}\right)^{1 / 2}=.405 .
$$

Since $1 / 3<A / \delta<3$, a circular cylinder ulll.give a good approximation to the shape factor, if the circle diameter is taken to be:

$$
D=2(\beta \delta)^{1 / 2}=.298
$$

fow we apply Olover's formula (2-6) for the shape factor of a long cyllader:

$$
S_{a}=\frac{2 \pi l}{\ln (2 \ell / 0)}=\frac{2 \pi 60.5}{\ln [2(60.5) / .228]}=146 .
$$

The hydraulic conductivity of the fictitious isotropic medium is

$$
k=\left(k_{11} k_{22} k_{3} / h_{0}\right)^{1 / 2}=\left(h_{0} h_{a}\right)^{1 / 4} k_{33}^{1 / 2}=1.48 \times 10^{4} \mathrm{gal} . / \mathrm{d} . /++^{2}
$$

Then the discharge.

$$
\begin{aligned}
Q & =4 S_{\alpha} \mathrm{g} \\
& =1.48(146 .) 213 \\
& =45900 \mathrm{gal} / \mathrm{dag}
\end{aligned}
$$

$$
\text { or } \quad=32 \mathrm{gpm} \text {. }
$$

Thresehote purno test for anisotropic medie
If a plezometer or packer test hole is orlented parailel to one of the principal conductivity axes, the apecial case discussed by Yeasland (p. 283) leads to equation 2-21.
the sbape factor depends upon which axis is followed by the hole, and cannot be determined at the outset since the conductiviEles are unknown. Mesilend's method for determining the unknown.

Is adequate when the plase nomal to the axis of the hole is one of leotropy, the hole followlns the undque axis. A more general mehod is presented below, for the cese of three defferent principel conductivithes of known direction.

To seplace the real ankotropic syaten ulth a fictitious isoo cropic one, a linear transformation only is requited, since the hole already colncides with an axis. By equatloas stallar to (2-13) wo Eransform

$$
\begin{align*}
& x_{1}^{\prime}=\left(f_{0} / h_{10}\right)^{1 / 2} x_{1} \\
& x_{2}^{\prime}=\left(h_{0} / h_{12}\right)^{1 / 2} x_{2} \tag{2-22}\\
& x_{3}^{\prime}=\left(h_{0} / h_{33}\right)^{1 / 2} x_{3}
\end{align*}
$$

where the constant $k_{0}=\left(k_{11} k_{22}\right)^{1 / 2}$. The clrculas erosa-seetion becomes an ellipee with axial ratios

$$
\alpha / r=\left(h_{33} / h_{a}\right)^{k}, \alpha / y=\left(h_{33} / h_{n}\right)^{2} \text { or } \alpha / /=\left(h_{a 2} / L_{n}\right)^{1 / 2},
$$

depandins upon which axis coincides with the hole, 2, 2, or 3, respectivoly. Before: geacalizlos, let us actend to an ianis hole. Label this the zaaxis, with x and 5 mornil to the bole and $f_{0}=\left(t_{z} f_{y}\right)^{1 / 2}$. Then the semt-axes of the elliptic section in the transfommed medium are

$$
a=\left(h_{0} / h_{x}\right)^{1 / 2} D / 2 \quad \text { and } \quad 6=\left(h_{0} / L_{J}\right)^{1 / 2} D / 2
$$

The circulat section having the sime area as the olilpee has diameter

$$
\begin{equation*}
D^{\prime}=2(a 4)^{\prime 2}=0 \tag{2-23}
\end{equation*}
$$

The cavity length w' in the fletitious isotropic anditm is

$$
\begin{equation*}
w^{\prime}=\left(h_{0} / h_{s}\right)^{k} \omega=\left\{\left(h_{1} h_{3}\right)^{y_{y}} / h_{0}\right\} \omega \tag{2-24}
\end{equation*}
$$

The shape factor deflned by alover's equetlon for a logis gilno drical eavity sives a good epproxination to chat of an elliptical gilinder eavity if $1 / 3<a / b<3$.

$$
\begin{align*}
& S_{\Delta} / D^{\prime}=\frac{2 \pi \omega^{\prime} / D^{\circ}}{\ln \left(2 \omega^{\prime} / D^{\prime}\right)} \\
& S_{a} / D=\frac{2 \pi\left(k_{0} / h_{2}\right)^{\prime / 2} \omega / D}{\ln \left[\frac{\left.2\left[\left(k_{1} h_{1}\right)^{\prime \prime} / h_{0}\right] \omega^{\prime}\right]}{D}\right]} \tag{2-25}
\end{align*}
$$

$$
S_{2}=\frac{2 \pi w\left(k_{1} h_{y}\right)^{1 / 4} / h_{1}^{1 / 2}}{\ln \left[\frac{\left.2 \omega\left(h_{4} k_{y}\right)^{1 / 4} / h_{8}^{1 / 2}\right]}{D}\right.}
$$

The discharge of such a plezometer or packer test in an aniontriple medium under head y 18

$$
Q=\left(h_{x} f_{y} f_{z} / f_{0}\right)^{1 / 2} S_{a} y=\frac{2 \pi w y\left(k_{1} f_{y}\right)^{1 / 2}}{\ln \left[\frac{2 w}{D}\left(h_{x} f_{y}\right)^{1 / 4} l_{0}^{1 / 2}\right.}(2-26)
$$

Interpreting field date, one can only assume isotropy and compute an apparent conductivity, k_{a}, by

$$
Q=k_{e} \leqslant \gamma .
$$

Where the shape factor is given by equation (206! Thus

$$
\begin{equation*}
Q=k_{a} \frac{2 \pi \omega}{\ln (2 \omega / D)} y \tag{2-27}
\end{equation*}
$$

Equations 2-26 to 2-27.

$$
\begin{align*}
& k_{a} \frac{2 \pi \omega}{\ln (2 w / \sigma)^{y}}=\frac{2 \pi w y\left(h_{x} h_{y}\right)^{1 / 2}}{\ln \left[\frac{2 w}{D}\left(k_{x} k_{y}\right)^{1 / y} / k_{2}^{1 / 2}\right]} . \\
& \frac{\left(k_{n} l_{2}\right)^{1 / 2}}{h_{a}}=\frac{\ln (2 \omega / 0)+\ln \left[\left(h_{x} h_{y}\right)^{1 / r} / h_{2}^{1 / 2}\right]}{\ln (2 \omega / 0)} \tag{2-28}\\
& h_{e}(1+e)=\left(k_{x} h_{y}\right)^{1 / 2} ; c=\frac{\ln \left[\left(h_{x} h_{y}\right)^{1 / 2} / k_{x}^{1 / 2}\right]}{\ln (2 \omega / 0)} .
\end{align*}
$$

The error tern e tends to zero for such large u / D as apply to most packer tests in rock. Thus, an apparent conductivity, compouted on the assumption of isotropy, approximates the geometric mean of the principal conductivities in directions normal to the
nole. Reove and Kizkham (1951) have already observed that the apparent conductivity depende largely upon the conductivity normal to the piezometer.

Table 2-2 sives values of the error efor $10 \leq w / D \leq 500$, $1 \leq k_{x} / k_{y} \leq 10$, and $0.1 \leq k_{z} / k_{y} \leq 10$. Inspection shows that for all w/D, k_{a} underestimates $\left(k_{x} k_{y}\right)^{1 / 2}, 1,0$. $0>0$, if the hole is drilled along a minimen conductivity axis, and overestimates it $1 f$ drilled alons a maximum conductivity axis. if wo limit cono sidoration to media having $k_{x} / k_{y}<9$, then the olliptical cavities can be adequately analyzed es equivalent circular cylinders, and we will be within the sange of Table 2-2.

We can return to the notation of the x_{1} coordinate system, and label $k_{a 1}$, $k_{a 2}$, and $k_{a 3}$ the apparent hydraulle conductivitien determined by three orthogonal plezometers or packer tests, each drilled parallel to a principal axis, 1, 2,or 3. As a first approximation:

$$
h_{a 1}^{2}=h_{a 1} h_{33} \quad, h_{i 2}^{2}=h_{11} h_{33}, h_{a s}^{2}=h_{11} h_{12} .
$$

Solved simultaneousiy,

$$
h_{11}=h_{a i} h_{a s} / h_{a s}, h_{a 3}=h_{a r} h_{a s} / h_{a 2}, h_{13}=h_{a,} h_{a i} / h_{a s} .
$$

With these estimates, it is easy to find in fable 2-2 the exrors made in assuming $k_{a 1}, k_{a 2}$ or $k_{a 3}$ to equel the seometric means of conductivities nomml to eech test hole. Corrected values of k_{a} yield improved principal conductivities by equations (2-29). Iwo or three consecutive eorrections will converse on the zrue values.

A truly gencral linesitu plezometer test ls yet to be devised. The present methods, as well as those of Frevert and R1skham (1948), Luthin and Kirichan (1949), Reeve and Rirkham (1951), Childs (1952) and Measland (1957) require independent knowledse or assumptions of the principal directions of hydraulic conductivity. The assumed uniqueness of the horizontal plane is usually Juatifiable for
agricultural solla or certaln stratilied, unconcolidated deposits 30 (Ch11ds, 1952, p. 527; Maesland, 1957, p. 228), but even Child's two-ivell system requires trial fleld arransemante to find maximan and minlroum conductivity directions in the horizontal plane.

In the general case of anisotropy, there are aix Independent unknouns, three to define the orientation of axes, and three to deflne princlpal conductivities. A single determinative test for thesé variables would, in all likelihood, be too complox for practical use. It is thought better to continue use of other criterla for reeognition of principal axes before applying tests for the three conductivities. If discharge is all thet ic measured in a l low test, three tests are necessary to solve for the chree unkenowne.

Such a test is the three-hole acrangement described above, also tho tromell and short plezomoter combination of Childs (1952). In prectice, a test with three boles uniquely orfonted will often prove inconvendent because of terrain ilmitations. Purthermore, exploratory holes detlled primarliy for purposes other than phappotesting, oriented for conrenience or econous bee tween princlpal axes, would not be useful for analyses of this sort. Usually, some latitude of choice existe, because dlamonddrill explorations are somewhat arblerary in desisn, especially in prollminary stages. For purposes of permeability testing; chey could be better oxiented than is eustomary, coneurrently dise closing other geological unknowns. When seepage or potential dise tribution is the prime problem, the entlre layout should be orlente di aceordins to prodeteimedned conductivity directions.

The seometry of the system of joint sets, tauits, shears, follation and bedding determined from surface exposures provides the only initial indication of the orientation of principal direc-
sions. A stereonet plot of foint nomals offers tho bost tool for picuailzing the aymetry of systems, and for moasurins average directions. The orientation studies illustrated in plates 1 through 15 of Chapter 5 can be put to direct application in an Important qualitative way. Jodels of enses where there are one, two, or chree joint sets of equal or different proporties, ulll find their approximate counterparts in prototype altuations. Princifal ares follor intorsections of planes of orthogonal sysrema. A plane of isotropy lios nomal to sets of a conjugate systen, of the approximate ansle of a principal a:is between two . unequal setc ais be indicated by their relative specing, orientation disporision, surface texture or continulty. Progressive analysis of tests during the drilling program should nomelly sive lfoproved definition of axes to Enprove hole orientations.

As an exanple of anisotropic testing procedure, conalder a foundation rock whose surface expression of jointing reveals a pattern such as is displayed in the stereonet plot of normels, Plgure 2-4. Throe orthogonal but unequel sets are apparant. A plot of (-lineations (3illings, 1942, p. 336) measured on all surfaces sould yleld a similas pattern. IXX diamond-drill holes are then oriented 45 degrees northwest and southeast, and horizontally, IE - $5 \mathrm{~F}_{\text {, }}$ so that each colncides most faithfully with the centrel temdency of a joint set. Pumping testz with packers ase then performed as drilling progresses. For oech test, dise charge, static vater lovel and gage pressure ace measured, packers set at intervals of about 25 feet. Eydraulic conductivity is computed for each test, assuming isotropic conditions,'and the results for each orientation are averaged. Lot these be:

$$
h_{a,}=1.6 \times 10^{\circ} ; h_{a 2}=2.1 \times 10^{\circ} ; h_{a 3}=3.3110^{\circ} g 01.14 .1 f t^{2},
$$

where subseript 1 refers to boles trending lw, 2 for holes trend-

FICJRET: 24.
S IERE JCRAPHIC PARAF.ETION. URPER HEMISFHERE 3 ORKMA: .JINT E:TS WITH :AME SPACINC. DIFFERE:NT PISPERSIRNS $x_{f} \cdot \therefore$ DIP 45 DEG SE: $K_{f}=15$ DIP 45 SEC NW GRD $K_{6}=30$ DIP 90 DEG $S W$

Ins SE, and 3, horizontal. Aceordias to equations (2-29)

$$
h_{11}=h_{a 2} h_{a 3} / h_{a 1}=4.3 ; h_{22}=h_{a,} h_{a 3} / h_{42}=2.5 ; h_{23}=h_{a} h_{11} / h_{03}=1.0 \times 10^{\circ}
$$ clearly, the direction dipping 45 degrees ill 18 most conductive. as might be guessed from the large number of joints parallel to this direction, and the horizontal, KE-StI direction is least conductive, since fewest joints trend or intersect along this line.

sow, we can enter Table $2-2$ with w/D $=25 / 0.25=100$ and the above estimates.

$$
\begin{array}{ll}
\left(k_{2} / k_{y}\right)_{1}=2.5 / 1.0=2.5 ; & \left(k_{2} / k_{y}\right)_{2}=4.3 / 1.0=4.3 \\
\left(k_{1} / f_{7}\right)_{2}=4.3 / 2.0=4.3 ; & \left(k_{2} / k_{7}\right)_{2}=2.5 / 1.0=2.5 \\
\left(k_{3} / k_{7}\right)_{3}=4.3 / 2.5=1.7 ; & \left(k_{2} / k_{y}\right)_{3}=1.0 / 2.5=0.4
\end{array}
$$

The errors that apply to the equation

$$
\cdot k_{a}(2+a)=\left(k_{x} k_{y}\right)^{1 / 2}
$$

are obtained by interpolation:

$$
e_{1}=-.095 ; \quad e_{2}=-.026 ; \quad e_{3}=.109
$$

Thus corrected, harmonic means of conductivities normal to ouch hole alignment are:

$$
\begin{aligned}
& k_{a 1}^{\prime}=k_{a 1}\left(1+e_{1}\right)=1.6(1-.095)=1.40 \times 10^{4} \\
& k_{a 2}=k_{a 2}\left(1+e_{2}\right)=2.1(1-.016)=2.0 \times 10^{4} \\
& k_{a 3}=k_{a 3}\left(1+e_{3}\right)=3.3(1+.109)=3.6 \times 10^{4}
\end{aligned}
$$

and by equations (2-29)

$$
k_{11}=5.2 \times 10^{4} ; \quad k_{22}=2: 6 \times 10^{4} ; \quad k_{33}=0.82 \times 10^{4} .
$$

Again obtaining anisotrophles, errors, corrected geometric means, and principal conductivities, we find:

$$
k_{11}=5.5 \times 10^{4} ; \quad k_{22}=2.6 \times 10^{4} ; \quad k_{33}=0.77: \times 10^{4} .
$$

Another seostimate gives

$$
k_{11}=5.6 \times 10^{4} i \quad k_{22}=2.6 \times 10^{4} ; \quad k_{33}=0.75 \times 10^{4},
$$

which in adequate for most purposes, being close to the asymptotes

PLAMMR GEOLOIIC STRUCTURES ASD TTE OCCURREMCE OF HAIER IN FRACTUKED ROCRS

Infroduction

Chapter 1 roviowed theory for homogeneous, continuous anlsotropic perseable inedia, and Chapter 2 presented a mothod of measuring anisotropic permecbility in any nediun. Such idealized media are distinctly different from fractured rock uith its oce cagionel conductive openings. Before ve develop in Chapter 4 an analytical method of relating such discontivs to equivalent continuous media, it is desirable to serutinize the literature for dofinition of all types of plenar features of rock, to revien their geometrical cherseter and interrelationships, and particularly, to seek indications of their hydraulic conductivity.

Much work remains before we can define comprehensively the hydraulle characteristics of all types of planar structural elements of sedimentary, igneoug, and motemosphic rocks. In the analysis of data employed in Chapter 6, namely, water-pressure tests from damsites on crystalline (metamorphic and granitic) rocks, it has been found lapossible to discriminate between coexisting features, for instance follction, faulting and jointing in the sare rock body. Such features might be lumped under the heading of "'ryock defects", or simply called fractures, since their orisins are not clearly understood. (Terzaghi, 1946). Pull description of each fracture type awaits refined methods of isolating and measuring properties of coexisting atructural foatures.

Yet the observations in this chapter, treating all types and agsyegates of conductors, reveal certaln fundarental differences between types. then several are present; the large-scale proper-
ties of the medium reflect only the anjor opaninge. For instance, when goints having apertures of hundreds of microns cut folle havLag openings of tens of microns, the pormeability lia due to the jointing, aince, under a given potential gradient, the discharge of each depends on the cube of its aperture (Chepter 4). There is no ovidence for fluld flow in intact cleavage, foliation or, as will be shown in chapter 6, in most of the joints that are confinod by overburden loads. Faults and shear zones may be greater or lesser conductors than joints, depending on the lithology of the wall-rock or other factors. Lacking flow data to establish criterie that characterize faults as aquifers or aquicludes relative to their country rock; we can only infer fault characterise ties from such observations as mineralization. While for one sineering purposes a strons conductivity contrast between different types justifiee the neglect of all but the major openings in a rock body, the mechanical, chenical and electrical properties may depend upon the continuity of fluids filling all classes of openins.

Since there is interest in all types of planar fluid cone ductors in rosk, shether or not they exist as the only, or dominant type in a.given body, a clascification and sumary of the Literature on planar foatures is appropilate. Such texts as Billinss (1942) and de Sitter (1956) describe some aspects of all types.

Cleaysee

- Practure clearages are fine planes of disiocation, 1 to 10 per millineter, ortented essentially parallel to the axial planes of folds in metamorphic rock. Best developed in argillites, fracture cleavage is either absent, less close-spaced, or less continuous in arenaceous beds of the same sequence, or occasionally
present only at the axis of folde. When cleavage of the orientation is found to cut through beds of any ilthology, it is called slaty slearage. In both clasees, weak recrystallization devalops gmooth aice-covered surfaces. Whan coarser cryetals form and the bedding becomes indlstinct, it 18 called lori sleayage. de Sitter raports ($p, 98$) cleavages that extend groat distances in limes stones; sandstones and shales, but apaced several millemeters apart. Slaty cleavage is best developed in meta-shales. less perfectly in meta-sandstones, but $1 f$ pyroclasties, conglomarates, chert, msil, levas, tale or oven serpentine are present, they too may shor alaty cleavage. Sometimes there are two cets of fracture cleavage planea lntersecting at a small angle and parailel to fold axes. The above types are belleved formed always norml to the. major compressive strese, and accompanied by minute lateral dise placements, expressed as shear folds in the orisinal strate. Schigeogity is cleavage with clearly recrystallized micas and quartz, both along fracture planes and throughout the rock. The original bedding is usually obscured. Breakage planes extend across all rock types, Individual surfaces following and alternating between innumerable intercrystalline boundaries. The origin of schistosity is mechanical (Gogual, 1945), like cleavage but more intense, and augmented by growth of flat mineral grains. Gnelssie stzucture in granite socks may be of almilar compresslonal origin. goliafton la a descriptive rame thet avolds the distinction betriesn shear, cleavage and chlstosity. yost eleave age and schlstosity is nearwrertical in orleatation, though horizontal schistosity exists that way be gensticaliy telated to soecalled concentric ollp along beddingeplanes (de Sltter, p. 204). Concantric shear aurfaces, with mice, gouge or silckensides, are consequences of the bendins of successive lamine to

Fhuld sonductivity in sloayase

Cleavage does not conduct water in quantleles of ensineerins aignificance, but whether or under what circumstances does cleavage contain continuous fluid-filled openings capable of transmitting changes in hydraulic potential remains an important unknown. pressure teste in metamorphic rock at Orovilie damsite on the geather Rlver, and MeSwain damsite on the Morced River; Callfornia, have each demonstrated (Chapter 6) a sufficient proportion of zero-watoratake records that the ublquitious cleavage erossed by the drill holes cannot be significantly conductive when in fresh, hard rock under overburden load. On exposure, however, a few surfaces open, accosmodating strain.such as accompanies docomprescion around a tunnel. On prolonsed weathering, elays transported into or developed in the cleavages expand seasonally to extend and uiden the openings, or to initiate other fractures nearby. Innumerablo folla open in the zone of gravitational movesent, eapecialiy when there in creep. The surficial system of fractures, at least in erystalline rock, differs sreatly from the systen in buried, intact rock. Some foliation breaks in fresh rock at a tunnel headins are distinctly waterwet thoush not draining. This water probably does not exist there prior to stress relief, but rather, is imbibed by capiliarity in certain openings connected to other fractures havins sufficient storage capacity or transmisalbility. Jointes

Blilings (1942, p. 212) defines a joint as a divisional plane or surface that divides rocks; and alons which there has been no visible movement parallel to the plane or surface. de Sitter (1959, p. 222) susgests that all transitions exist, from shear

10lnti with no latersi movemant, through jointe ulth amall movoe ment, to amill and then lurge faults. It seens likoly that sone, pamely, the tension iofint2, fit the no-novenent catogory, while othesa have noved so minutely that referenco marks on oppocite oides seer undicturbed.

Gonetic elacsifications of joints heve been advinced but pone satisfictorily oxplain all comploxities found in noturc. It is usually assumed thit foints and faults are closely reluted by a comson orisin in formation by orogenic gtreases. Joints sometimes do, and other times don't, havo orlentations the sare as faults in the emme body. Another unsesolved aspect is the remarkably uniform specing often observod in joints. Tils has surgested tidal 3 trein (rolmes, 1964) or earthquakes is propagatias or triggering mecinantoms for fallure of a stressed erust.

Clessifications ire also possible on the besis of the ortentation of a joint with respect to other joints, and aith rojpoct to fold ares or fault planes. It is uldoly recognired that shecr joints zosetines conse in conjufato palys, the planes of a palr
 princlpil ztresses, and the bleector of the smallezt anzle bee tween tho palr purallel to the major streas. The angls formed by a pair varies from 15 to 90 desrees, qualleatively agreeling with sfohr's fallure theory, and depending, amons other things, on rock type. Placus (1951, p. 116) found no such vasiation between gnelss and sediment3. Slezel (1950, p. 617) thinks antsotropy of fabric explains the cournon absence of one set of a conjugate pair (C. Hager, persunal cocmuntection, 1956). Fliure 3-1, itaken from de Sitter (p. 124), interprets a 90 degree change in the orlentae tion of conjugate shear joints as a fesult of antlelinal tension and synclinal conpression across the axes, while the stress

Figure 3-1:. Plan and section of adjoining syncilnal and anticilnal folds, SE Alserta, bhoulng exChange of orteacitlon of major and minor etreses according to the eanse of floxural stresses (aftor de sLtter, 1956 p. 124

pasallel to the fold axes remained relatively unctianged from one posstion to another.
fielton (1929) and zincua (1951) meh found that the directions of joint nomals bear a more conslstent relationship to beddins than tol geosraphic axes. The directions of joints ase not ree Lated to follation (placus, 1951, p. 115). Ring (1948, p. 114) deserited an orthoional joint syetem in sedinonts of the Guadalupe movienins. One set strikes parallel to the nomal taults but cotates to raintain dips normil to the bedding. The set normal to the $=t r l k e$ remains essentially vertical, normal to the bedding. Ring found the frequency of joints to be greatest near the faulte.

In si:aply-folded reations, vary persistent geographic diractions are sozotinec maintained. Pisure 3-2, from jarkor's (1942) study of joints in ifer Yosk and Fenniglvania, ghows the strike of prifed shecr joints (Set, I) shifting slouly from liw to fine as one traces fold axas eastuard across the nap. The folnt directions change consistently bith a reorieatation of fold axes, but independent of loce 1 . fold orfontations.
de sitter (1956) eites cases from the literature demonstrating parallelinity of joints to feult systems (asik, 1937) as in Figure 3-3, and others where they are clearly uncelated (Rivantes, 1946). It is sometimes important co differentiate sets of conductors according to relative age, for jointing in some cases precoeds and porallels faulting in the same stress field, while subsequent jointing or faulting may be inconsistent with the eariler. Joints may be classifled in inderson's (1951) scheme of fault types: noridal, thruet and wrench, aceording to the.orientation of principal stresses. Meosiented stress fields between faults, as indicated by highermorder fault systens described by shody and

11
is
Fisure 3-3. ikp of the Fillar 118nte ileld near Cologne. Cozmany, showins joint atrike malotainins : pagallellativ to normal faults (after Wifis.
1937).

Hill (1956) are cause for the observed anitlpllelty and disper- 53 sion of joint sots, together with difforences in rock strength and changes of atress over geologle thme.

So-called tension jointe are orfented dither normal to the minor principal stress, or nornal to the direction that hes acted as major principal etress in forming shear foints. Tension joints are either vertical or horizontal, seldom incilned. Siegol (1950, p. 613) expressed the opinion that horizontal tension joints wore. impossible because the overburden would alvays insure vertical compresalon. If sheoting is not a tension phenowenon, it is caused by colum bending moments under compression tangential to the ground eurface. In Fisure 3-1 are tension joints disposed normal to the minor ctress, parallel to the anticlinal axis end notyal to the synclinal axis.

Hodeson's mork (29618) on jointing in gently folded sediments of the colorado plateau is so thorough that it warrants sumparization as a definition of the occurrence of joincs in sedimentary rocke. Prominent bedding-plane discontinuities between tabular rock bodies distinguish sediments from crystalline cocks. Shear joints are apparently absent in sediments. Hodsson!s analysis of sedimentazy joint structures must be translated to other anvironments only with care.

日is concept of a "structural rock unit" is important in vise uallzins boundazies of homogencous joint oystems: it is a mbody of cock behoving noarly uniformly throughout its extent under like stressn. It may be a formation or units of greater or lesser volune .
firs and established terminology applied by Bodsson is wholly descriptive. It ulll therefore require no modlfication when the genesis of jointing is ultinately established. A joint is a
ufrecture that traverses a rock and le not accompanied by any discernable displacement of one face of the feature relative to the ather" (p. 12).

Syitematic joints occur in sets, parallel or aubparaliol in plan but not necessarily showing almilar relatione in section. Systematic joints cross joints of other sets: They have atralght or gently sigmoidal esaces, a few inches to 400 feet in iensth. The traces become irregular at the ende, curving cowards a nelghboring joint, which it may join at right angles. These termini are non-aystematic (unoriented), often bifurcating. The surface area of a systematic joint may be few square inches, up to hundrede of square feet. Surfeces appear to be neerly equidimension$a 1$ in thick rock units, may be wholly contained in the unit, or - Longated if: the unit is thin, but many individual thin beds way be cut by a single joint. Some systematic foints crose boundaries between vary diffarent rock unite, such as massive candstone and thin-bedded shale, but the joint spacing changes at the boundary: wider in coapser, thicker bodies, eloser in ine-srained, thin bodies: parallelism depends on constancy of lithology, most perfectly developed in massive sandstones and some limestones. the orlentarions of planes are more dispersed in silestones or flagsy shales, increeasingly so in lenticular, coarse-grained, poorlybedded units. A systematic joint set occupies a demonstrably linited geographic ares of a few square miles, often overlapping areas occupied by other sets. Angles of intersection between sets are fairly constant when viewed in plen, but dip orientations may vary up to 25 degrees from the nomal to bedding, so that one set cannot be differentiated from another set if viewed in section. The writer believes that joints should be identified accordins to cots after ploting their poles in stereosraphic projection, not

In plen or sectioml vien. fodsson reporte no mutual interfar. 55 ence or diflocation at intersections of two cystecatic jolnte. Non-syetematic joints abut momal to eystematic jolnte, but hive vaslable ansles of intersoction $u 2$ th other monespetematle joints. They are curved in plen, and elther curvod or etralght in section, dopendins on the thickness of the rock unit they eut. Thoush they attaln sreat dimeasions in units, they are seldom observed in outcrop, for they woather and open by weathering less readily than syatematic folnts. Crossafolnts are a planar variety of mon-systematic joints, also terminating at bedding or aystematic joint surfaces. It might be inferred from Hodsson's description of monecystenatic joints, that they have imperfoct hydraulle contioulty since they are tighter. Yot they are mose roush and Isregular than systearic joints, 80 may provide important contimulty in alngie-set systems. A elgnificant continuity notion Ls the "joint rone". Seco in plan, pagallel systematic jolnts often occupy a matrow belt wherein indipidual joints aze slightly offeset from ond another (en echeion). . The frequency of intersuptions alons a zose is neerly a constant for a structural unit, Increasing uith the thickness of the unit. The individual joints terminate leregularly, sometimes hooked Into and nosmal to eech other. Joint rones are separated by a predominant apaelns charactertestic of the set.

Jolnt cets bave great aerial persistaince and regularity in plan and spacing. Op to six sets oceur at any one place. Where Bodsson studied then, systernetic joints extend verticaliy chrough: Prieozole and Mosozole formations. The sets are umrelated to fold ases except by rotation about those axes.
oristin of solntins
The seometry of acvesal co-existing sets camot be expleined
by compentional tectonle ohear or cenalonal orisin. Hodgson des ${ }^{6}$ seeted no silckensided shear surfaces. Ho cltes evidence that jolats form very early in the depoitional hlstory of a sediment: Jointing may oxist in youns unconsolidated soils, such as Lake Bonneville claybeds, met" Mocane claybede in Misyland, or 2ignite beds amons soft pands. His hypothesis le that joints are upward extensions of pro-existins frectures, formed as soon as the rock is sufflelently brittle to fall by tidal fatigue. plafker (1964) gives further evidence of the extension of joints meintaining basement orientations, propagated uprazds throush unconsolidated alluvium to control rectangular drainage and lake shores in eastern Bolivia.

The role of pore pressure a contributing cause of jointe ing has been neslected. The existence of high pore pressures epproaching the total overburden load at depth has 'been estabe 11shed from ollwell experience (fubbert and Ruby, 1959). While. pore pressures ire insufficient cause for jointing, isotropic excess fluid pressure (Terzaghi, 1925) results in low offective or intergranulaŕ rock pressures. Bore pressures are applied throughout lons periods of time, even in exyetalline rocks of pery low primary permesbility. Other stress sources, tectonic, tidal or thermal, can therefore more readily tris8er elther shear or tenaile falitre. Total strese mast be compressional in all directions, but need only fall below the pore pressure by an amount equal to the tensile strengeh for fallure to occus. Themers aquicludes shown in flguxe 3-l would promote high liuld pressures upder heavy overburden, maing the limestones sensitiva to llece tural reorientacion of princlpal seresses. The so-called tension foints oriented norms to the axis of greatest atrese are called selease, or extention joints. In 11 gure 3-2, the E-f jointe are
of thle Type, thought to orisinate upon olastic release of com- ${ }^{\mathbf{5 7}}$. pression. One cannot invoke lsotrople remanent pore presisures as thelr cause, because as the major stress doclines, tension would arlse in the direction of also-decilning minor stress. 0° The oriein of steep-dipping "extension" joints remains enignatic. Tension cracklng was modeled mathematically by Lachenbruch (1961, p. 4286), who concluded that the common physical properties of rock should preclude tension jolnts below deptha of about 900 feet. Yet, there is lield ouldence, cited in this chapter, to indicate openings to thousands of feet, or more if the brines described by Smith (2958) and thite, Anderson and Grubbs (1963) are indeed partly megmatic in orisin. Pore pressure is possibly the mechanism accounting for propagation and preservation of such openings to great depths.

When failure takes place, there would be an immediate drop In pore prossure along a fracture, thus an increase (not a release) of effective compression across a tension joint. Joint faces do not separate upon rupture, as they would if tension existed in the solld phase. With correspondingly low fracture conductivity, liuld pressure-drops would be slowiy transmitted alons a fracture. Adjacent rock masses would have unsltered neutral and effective stresses for some time, during which succeeding fractures form. Hodgson (1961) noted that the spacing of systematic jointe is uniform within a struetural unit end varies directly with coarcness of sediment grain-size. Spacing may logically be related to rock permeability, manifested by grain-size, for when intergramular permeability exceeds fracture conductivity in transmitting a fallure pressure-drop, the distance to adjacent joints may be governed by the transient. .. Fallure is unlikely in the region of relleved pore pressure, extending laterally at a
rate propostional to pormeablility and inversely to pososity.
The sugsested yole of pose pressure in foint formation has jet to be fuily explored, but its inclusion as a component of tectonic and gravitational forces may susseat a theory of joint: Ing consistent with such field ovidence as Hodsson (1961) has: collected.
ficrosconic fearymes of loing surfaces
Surface texture' can be used in some cases to distingulah tension from shear folnts. Then both types are present one can often, but pot invariably, show that the tension joints are rough and isregular pull-aparts, while shear joints have relatively smoorh, sontimes fluted and polished, tisht contacts. Chlorite, sezicite or epidote coatings are sometimes found on shear joints (Moye, 1959, p. 26; Lyons, 1960). The textural contrast may depend upon confinement at rupture, since many joints of shear orientation are rough and wholly lacking in ovidence of lateral movement (Rins, 1948). D. G. Moye (personal commaication, 1963, 1959, p. 26) has noted a hydraulic distinction between the two types, tension joints being the more conductive. Gramular debris is produced on both fracture types in labosetory roek tests, but the debris is coarser in tension breaks than shear breaks. The writer has observed that on roush surfaces of tension joints opened in the laboratory, there ase dislocated but attached grains as well as free particles. Thus the faces never reseat within less than one thousandth of an inch, as measured by micrometors attached bofore separation. Grisss, (2936, p. 355) envisions laboratory frace tures as an integration of minute shear and tensile fractures, thus having variable aperture. Brace (1963, pp, 2-38, 39) reports that oblique shpar failure of conflned specimens develops fisst a milkiness alons an oblique zone, then little en echelon

grain boundary cracke that coalesce to form the rupture eurface. 60 Fine pulverized grains can be brushed from the surfaces. The elze of such detrifis, of of dielocated gralns attached between the en achelon cracks, probably determines the minimum aportures. Greater apertures may result from wedge action on the surface irregularities. Pigure 3-4, taken in the western area of perker's map, shows the perfection and extensiveness of planar joints found in some rocks and the toxtural contrast beswean smooth shear and rough, feathered tension jolnts..

Plumose surface structures consist of low-relief joint markings similar to the pattern mede by two feethers in line, yith their butt ends joined. Woodworth (1897) called it feather frace ture, Parker (1942) ealled the features "plumes". Radiating features are described also, by Woodvorth (p. 166), Regsatt (1954) and Hodgson (1962A, 1961B, p. 20). The plume structures might be described as sharp, irresular ridges of amplitude and wave length. on the order of a fer grain diameters arranged in conjugate fame illes of hyperbolas havins a comnon directrix paraliol to, and superimposed on the long axis of elliptical, concoidal ridges of greater amplitude, longer wave length and smoother wave form. (See Hodgson; 1962B, Figure 25). The directrix of long central axis of the structure is usually parallel, but sometimes normal, to the boundaries (bedding) of a atructugal unit. Opposite frace ture faces ace tight-fiteing until disturbed, and show no ovidence of transcurrent inovernent. Sindlay tension and fatigue fallure surfaces have been observed in metalis. The extremities of the elliptic pattern are coarser textureid, terminating in: en echelon, obllque "terminel offact faces" (Hodsson, 1961B, p. 21). The seale of the texture is proportional to the size of the foint surface, and thus to the thickness of the structural unit. The
pattera is uaualiy, but not always, contered in the unit, for Jolnts nomal to the beddins. Hodgson does not substantiate the 1dee that the center of the strueture is the point where fallure began. The writer foels that the en echeion offsots at the periphery are consistent with Brace's (1963) observations on fallure, and that the plumes grou inward from the discontinuities. Biscellanopus seometrical fyoes of ioints

Jolnts with thrust fault orientations intersect bedding along Lines parallol to fold axes but at acute anglos to the bedding planes, since the major compressive stress tends to follow the dip of the beds. Moderate-dipping conjugate joint sets in granite rocks may also be of this sort, arising when the overburden pressure 18 the minor stress. Whether or not. they are actually shear jofats is questionable, for they are usually planar, rough and lackins lineation. de Sitter has plotted all the possible joint directions relative to a fold axis. His stereonet is reproduced here as Figure 3-5.

Short joints, normal to competent beds of a hard-soft alternatins sequence, are called motational joints, and are believed due to the beddins plame shear developed on the limbs of folds. formal faults and tension joints ace alco found at the necks of boudinaged competent beds.

Concentric stress systems developed around isolated intrusions are superlmposed on horizontal regional stress systems. the donfis process (Wisser, i960) resuits in radial and tansential tensile stresses, expressed in aplcal grabens; cane-sheets and radial fractures or dikes (BLilings, 1943; Andetson and Jeffreys, 1936) over plutons of salt domes (Banna, 1934). The detalls of sueh structures ase Important guldes to ores (ifichouse, 1942) because experience has shown that mineral velas often form

Figure 3-S. Stereographic projection of the norrals to joint-plane oriantations geneticaliy rob

notmal to tensile directions. An amiyale of donical itzuctures ${ }^{63}$ for thelf iunique arrangement of conductins frectures would help mineral explocation, elnce ores are fluid-borne. Work on this problem may be atimuleited soon by the need to englneer. the production of ateam and brine from aimilai structures.

Columar gentraction dolnte of reguler pattern are common in besaltic lava flows, and more crudely formed in breccla flows and velded tuffe (oilbert, 2938). The model of permeable jointed media (Chapter 6) is not designed for such disconcinuous conductors.

Sheeting is an important joint clase, dominating the occurrence of water in some areas. These are extensive, flat to gently curved or undulating seams of partings found in massive rocks, especially granita (Jahns, 2943), but also in quartelte, limee stone, and probably in some metamorphic rocks. Sheeting is mote conspicuously doveloped near the ground surface, conforming generally to fills and valleys allke (Oilbert, 1904). Prequency decreases with depth, for sheetins is seldom found below 300 feet. The lateral oxtent is generally hundreds of feet, where they abutt older steep jolnts or faults, or where they feather out as neighboring fractures converge. The fractures cut indiscriminately across all primety atructures, dikes, contacts, country zock, etc. the sheets of unjointed rock between soams are under compresilion paraliel to their extent, as ovidenced by "popping" (Terzaghl, 2946); or by sudden spliteing or lateral movement into quarry excavations. Wetson (1910. p. 24) has observed polished and striated joint surfaces in sranite, possibly due to translation upon arficial selease of atress. Whetever the deepaseated cause of stress, the sheot-atruetures are belleved the fesult of reliof from conflnement by erosion of overburden, as
susgested by Ollbort (1904), 淮thes (1930), and Jahns (1943). 64 Bending of cheots under column loading accounts for sheot joint openings of several inches (Hathes, 1930, p. 114). Some very deop horizontal cracks are permoablo, for mineralization has been seen on them (Famain, 1937, p. 626). Highly conductive, flat undulatory joints in slate, metavolcanic and a serpentine complex at the Merced River damsite, are probably of the same origin as the more obrious sheet structures in massive rocks. In the Southern Stetes cre oxtensive horizontal joints (Watson, 1910, p. 24) tarough granitic and motamophic rock, to vhich LoGrand, (1949) cttributes zoet of the fracturo permeability of the region.

Terzaghi (1946), has listed as guides some joint characteristics associated with different rock types. The more brittle rocks tend to have eloser joint spacins then ductile rocks. For example, yhyolite shows more frequent, irregular jointing than basalt. Massive rocks tend to have less continuous joints than tubular rocks. Sediments usually havo three sets: the bedding, and tro others nomml to the bedding. Joints in ilmestone and sendstone ase commonly soveral feet apart, shale much closer, dorn to fractions of an ineh. Rebound in shale produces slickensidins on minute, conchoidal frcetures. tio vater could be found below 500 feet in jointed Triassic shales of tiew Jersery (iers Jersey, date unianown).

Spacins of fractures has attracted little attention of field seologists. iling (1948) found that spacing is elosest for rocks of greatest deformation, but the more brittle rocks have eloser specing under like circunstences. Pincus (1951, p. 92) found no correlation uith degree of defomation in pre-Cambrian and paleozoic rocks of new Jersey. Kodgson's observations (1961B) are described above. Changes of spacing :ith depth have been sur-
mised by Tolman (1937), King (1948), Miller (1933), and Pincus (1951). The consensus ic that weatherins opens pre-existing weaknesses. King, (1948; p. 114) noted vertical joints extending as much as 1100 feet, in the vertical sense, down cliff faces. Appleby (1942) found thet the pattern of fractures on dynamited faces corresponds clocely to natural patterns. Ite writer's beLief, based on analysis of pump-test dats in chapter 6 , is that porosity increases towards any free face, both by increase of fracture apertures and frequencies. The rock around the drillhole is more akin to the undisturbed state than that exposed in mines, tunnels, or quarries.
Eyidence of fiuld conductivity of iointe and faults
Joints are the nost fmportant cless of conducting fractures. Thls is because one type or another, or several types at once, are present in practically all consolidated rock types. Faults are so infrequent within the boundaries of most problen areas thet they can seldom be treated statictically. Cleavage is confined to metamorphics.

Tolman (1937, pp. 251 to 313) differentiates desp-seated fractures (faults and some shecr foints) from superficial ones opened by vocthering. He belleved that the water table limits the zone of veathering. In Turki = (1963) study of vell gield variction with depth, a wenthered zone was assuraed to act as an infiltration and storage bed just as tolman suggested, but the continuously varying mell-discharge messures did not support the notion of a demarketion. Rather, a continuous variation of permeability with depth was shown. Lexis and Borgy (1964) conducted well-pumping tests in jointed phyllite. Flots of the drau down - log time relationship proved never to be ilnocr in the way indicated by theory and experience in unconsolldated aquifors. A continuous
decrease in permeability with depth is sugsested by the continuous curvature of their plots. The statistics of punp tests roported in Ghapter 6 hes proved that the preponderance of joints visible at the surface are insignificant as conductors at depth. The for conductors existing below the water table, Tolman considered largely unconnected. It is the writer's bellef, from some experience in dam-site exploration, that isolated water bodies are more likely in the weathered zone where elay deposits plus some parts of wide openinzs, and leave other parts'open. Drill holes at flefwain damsite, flerced River, Callfornia, penetrated mamy weathered joints, often filled with an inch or so of sed clay. Instantaneous bit advance, sudden loss of dilliling water, hizh prap test diceharge and erystal-covered joint surfaces on recovered core onds indicated large open joints, connected to the rest of the systea. In other joints, apparently unfllled, no water.flov developed, sugsesting localized clay fillings. .

There cre a fer cases described in the ilterature (Tornsend, 1962; Thayer, 1962; :bye, 1959; and Stewart, 1555), for example, where drawdotn af a line sink produced recognizable cones of depression, or other indieations of continulty. These cases support the assumption made in designing a mathematical model (Chapter 6) having wholly continuous intersecting plano conductors. A worthy topic of furthor research would be to ascertain at what length-tospacing ratio do discontinuities become important to the overall permeability of such a model.

The report of E. J. Daniel (1954) on the persian Guif oil flelds contalns some of the best avallable subsurface data on fractured limestone. The Ain zalah field produces wholly from fractures without solution enlargements, so contimuous and inter-
connected that a few rultably placed wells could draln the entife seservolx. $02 L$ roves $a s$ much 082 milos distant from well, and botto:nohole precsure recovery ic rapld upon shutin. There is hye draulle connaction botioen the First pay and Second pay, though soparated by 2000 foet of non-productive fine sediments (p. 778). Open fractures uithout solution enlargements must extend over 3000 feet in depth. Jointe and bedding-planes are infrequent but pleal condults, wost of tio production being in wicite-veined, highly frectured (6-12 per foot) bodies of rock. It is not known how much fracture permeublilty is duc to fractures that nere never rea crystalilzed, versus fractures reopened by recurrent tectonism. The inore brittle, cherty limestones are more intensely fractured. Sinllar velnaffequency, water perneability relationshlps are ree corded in inining districts (See below). The permeability in the Ain Zalah structure is not restricted to tension joint openings. for there liave becn observed oll films on halr-thin broaks, stylolites, slickensided fractures, and faces of calcite erystals. Sone undisturbed (2) joints cutting cores have openings of 0.1 to 0.2 mane. cascying oll films.

The Riricuk fleld produces from super-capillary openings so continuous that the entire fleld acts as a single pressure sink. The maximun water-edge rise is 25 miles aray. Permeability is so high that a single vell can produce 30,000 bbl. per day vith only 3 to 4 psi dratidorn. Caverns (up to 14 feet), residunl dolomite sand and solution-opened plames provide storage (up to 30 percent porosity), but joints and a fer faults provide the interconnece tLons. Even the tight, slickerisided faults have oll fllms. Jolnts are spaced L-1/2 to 3 feet, essentially orthogonal, with Mintact' (1) openings of 0.1 to 0.2 ma. Surface textures accard with graln cizo: zough in coarse rocies, smooth if porcelainous

Large joint openings at great depth are not pacullar to ilmestones, but may be encountered in isneous and metamorphie rocks also. T. Gross (personal commuleation, 1964) drilled horizontal holes for water in the pre-Cambrian cystaline complex west of Colorado Springs, attainins 50 gal . per minute discharge and almost instantaneous pressure recovory on shutin. Production may be from one or more large openings (1 mu. or so) of great extent (thousands of feet).

One of the pichest minc: of structural date pertinent to the oceurrence of sieter in consolidated rocks is !!swhouse's (1942) treatise on guides to ore. Intercelations of faults, folds, jolats and rock type have been investigated more thoroushly for veln deposits than rould ever be econonieally justlfied for vater occurrence. The preservation of struetural detall by maralization in opening: onco fluid-filied, is more advantageors for present purposes than sould over be a like Investigation of fluide filled opanings that cre sensitive to disturbance. Progressive opening of rineral veins upon successive refilling invelidatesamy quantitative measures that alght be made on then. "Book" quartz velns indierte progressive enlaygement. Yet the eontention that ores take great spens of time to form from dilute solutions is ree futed by the recent discovery of hot brine at ligland, Callfornia, containing up to 300,000 ppin total dissolved solids, ineluding remnrichble aetal concentrations (imite, Anderson and Grubb, 1963). An 8-inch well discherge pipo at the surface closed to 3 inches by encrustation in 3 months of free flow. Thus, velas coivid form quickly, as reckoned by seologic tho, and their thickness could resemble the fluid-filled apertures. Caution dictates the assuption that openings are formed progressively, no mater horz rapld.
for Newhouse. (1942), WLeser (1960), and other authorities have demonetrated that velns form concurrant with ozogenic aovement. Structural suldes to ore are veluable guldes to meteorle wator occurrence wiether or not minerallzation has takon place. Mine waters tend to follow paths of prior mineralization, as observed by the writer at Cerro de pasco, Peru. (D. T. Snow, private report, 1958) The best water well prospects in the Callfornia Mother Lode rocks, metamorphics of very low permeablility, are the quarti velns that have been refractured by post-mineralizetion defomations.

If veln deposits are qualitative indicators of water-conduit geometry, it aust be concluded that a model composed of uniforelyspaced, parallel-plate conductors only approximates the irregular, piriching and axellins, discontinuous features seen in mines. Fractured media must have extreme inhomogenelity if the conductors are as capricious an veln deposits.

Mineral valns indicate open condults at some time past. Bot springs.orith or nithout accompanying zones of hydrothermal alteration, ere the surface expressions of similar modern permeable structures. Since comunication to heat and mineral sources is aceidental, it is inferred that meteoric water occurs in innumerable resions of hish permeability just like the ore districts. Ore guides from kicihouse (1942) therefore conctitute pertinent guldes to groundrater, sumarized here for fractures and faults:

Veins form alons fractures where noma! compression is fow compared to other orfentations or positions. Those shouins no celative movement parallel to the plane of the break are conventionally called tension fractures. These may form part of a pattern, some of which ace fractures and some faults. Isolated tension fracture fillings prove that the shear breaks must also be
permeable to a lasabr degree, otherwlse the tension veina could not 1111. Tension fractures nay erose from one side of a fault to the other, extending lnte one or the other of the walls. "Feather" fractures are inclined to e faule plane, intersecting -a long a line nomal to the slip and making an acute angle pointing in the direction of relative motion (Billings, 1942, p. 124). Wisser (1939, p. 301, 318) says that tension fractures are located alons portions of a fault where the greatest, gather than the least compression acts nommal to the walls of the fault. Varying contact pressures result from the 111 fit upon dislocation. of irregular fault surfaces, high frietion there resulting in hish tensile stresses in a direction oblique to the fault. Figure 3-6 illustrates the location of feather fractures at fault deflections. Gouge is more apt to form than breccia on faults subject to high nornal stress. Thus feethers are often associated with gouge in fault zones.

Figure 3-6. Doviations on shear faults cause foather fractures at loaded contacts, Hos Mountain Mine, Alabama (after Wisser, 1939).

If a dip-silp fault changes dip with dip, feather fractures strike parallel to the favit. If a dip-silp fault changes atrike With dip, feather fractures strike parallel to the dip. They are more prevalent in the hansing vall, perthaps due to unsupported

- There are guides for locating changes in the orientation of faults, and therofore, permable wallorock, but these criterla are reserved for the parariaphs on fluid conductivity in faults. The importance of faults in predicting regions of high permoce billty has long been recosnized because joint frequency often increaber to:ards faults (Jerzaghi, 19946; Xing, 2948).

The parallelaplate model for fractured media was not intended for feult systons, solutioneonlarged joint systeare in 12mestone, or for prinary openings in lava3, but attempts to so apply it any be better than nothins. The seops of this su:merv does not include all envirosments, but of the three just nentioned, faulte : : ill be discussed further beczuse of thelr clode reLationsiilpe to jolnte.

Prodrolosically sirnificint foatures of faulting

Faules "ire oiton open to cegreater or less degroe....In fany instances where a fault sone is developed bith many subparallel and sometines brinching and anastomoing fissures, ese pecially in herder and uore brittle rocke, large quentities of water may be transmitted..." (Louderback, 1950, p. 129). :ie way look to :le.house (1942) for the more detailed criteric for detectins utare and that ficults rill be aquifers or aquicludes. Completely aineralised faulte are aquicludes but oven these are subject to reopening upon rerictivetion of tectonism.
itore often thin not, faults are tabular zones of crushed zock zether than distinct single breaks. If uniforn in character throughout thelr extent, they could be repleced by cingle openings that uould conduct the sane fluld dischargo at the same sub-critical gradient. Dovictions from unlformity are belleved more serlous in the case of faults than of joints, for the
granulerity or gouge-contont of faults is notably vaclable, the 72 main conducting fractures forming an anastomolng pattern vithin a zone of varlable thickness and gouse content. Faults aje best characterized as inhomogenoous-anisotrople plasar conductors, but in the absence of specific or seneral research on the properthes of faults, it can only be assumed that they are homogeneous and isotrapic.

Bortions offaulta locally deplate in orientation touards the plane of nafnimum compression, so certaln portions tend to open upon fault displacenent. In the case of deflected joints, they mey upen hider duo to fluid pressure acting against lesser rock pressuro. The cause of devictions is usually a contrast in rock deformibility. In geological parlance, one rock is more "conpetent" than another if its strensth or rigidity is greater, failing tore britele than ductile. Just as laboratory compression teste c: © 0 : fallure at anzles more acute to the applied deviator $=$ tress as the Yohr's fallurs envelope steepens, so too do foults reffact towards the normal upon passing fros ineompetent to competent rock. subsequent selativo movenents alonf the ill-fittinz surfaces result in load concentration on some arese, and voids elserihere. Plgures 1 to 14 of newhouse (1943) illuse trete general and spectific cases. If tho geometry of the fault surface and the net slip are known fron explocation, the open portions may be predicted. Table 3-1 lists the clrewnetances possible. Deflnitions of the terms may be found in the AOI slose sary (ibovell, 1960) of B1llings (1942).

Fault fermeubllity due to Relative foverent of incegular Surfaces (abstracted from tewhouse, 1943)

Chreumstancer

I. Din 54in TEuts
a. Chanse of anmle of dip alone tine line of dip.

1. ibmin faules
2. Reverse taultc
λ
b. Clinge of ancle of dip alons the lins of strike.
3. : :ogncl foults
4. Fevorue faults
c. Gluno of strike: lons
t.e line of dif.
5. 'brerl fault;
6. reverse fcules
d. Cinage of strike alons tie live of striks.
e. Co-blnetions of a., b.. ci: and $0_{\text {. }}$
II. Etrike ilite Feuldix
a. Chense of dip $=$ lons tise line of dip.
there ementoss form

Where fault steepens, competent formstions if ilat contacts; incompetent formations if steep contacts.

Where the fault flattons; Incompetent fornations if flat contacts; competent formations if steep contacts.

There feult flattens; incompetent formations if slat contacts; conpotant fometione if cteep contacts.

There changes tevorible to oponings, varlous possibllitier due to deflections torsards normil to contacte with more competent rocks, openinge on parts oriented nore normal to slip direction.
:\% tendency to produce openings.
lost common cases.
to tendency to produce openinga.

Clreumstanges

b. Crange of dip alons the line of utrika.
C. Change of atrika alons the line of dip.
d. Crisn3e of strike clons strike.

Phere apentine form
imore a portion of a foult ls out of tho gonaral plane of bearling surface: flatear dipping hangins wall moving over areep dipping footvall, of etoeper dipping hanging wall moving over flat footrall.
lhare a portion of a fault is dee flected out of the general plane of bearing surface: tearins fressure on portions mogt nombal to s11p direction, openinge on portlons parellel or swey from 3lip direction.

Same as C.: Eault crossing steep contact, openings in competent or Incompetent formations dapandine on angle of incidsnce, and if. right or left-lateral sil:.

Surfacs :rress of hifh and lo:- bearins pressure cen bo dise erdrinates on tine basis of subtle changes in falt attitude noer Figure $0-7$ illustrafes case $\boldsymbol{I} \alpha$. contacts, ind knoriledge of silir diroction. a Evidenco from mines favors opening on faulte of cnall displacesent, for if tinory is great, crens of mi:Ift conflumption are overjessod or sougefilled. Locding patterne clso localize subsidiary faulte, frace tures and trecciztion in e!ıo nill rock at positions of hifh stress, thus, trall sock perapability le apt to be high adjacent to fault cogments having lou permsability. Eseoptlons are found in positione :mase bridging is conducive to rell frecturing in tension. :iall rock fricturas assoclatod silth dip allp faults tand to be parcilel to the strike if the fault eiranges dip alone tho dip, and comversely, frcetures tend to be gagallel to the dip if the fault changes strilio donn the dip. As sill bo soon, (Chapter. 5) If frceture oriantations ero knom, principal axes of permes. billty nay be predletod.

Fault defection Seven Thirty Mine, Silver Plume District, Colorado. (a) Quartz monzonite porphyry; (b) granite. (Spurr. U.S.G.S. Prof. Paper 63. Fig. 48)

Couge in faults renders them relativoly lmpermeable: The 76 presence of aluninous rocka favors development of gouse, so fore cations bavins platy minerals, small grain elze, low atrangth or hish state of alteration tend to have celatively low fracture perveabillty. Couge is prevalent in faults developed under high domal compression, such as flat, nomal faults, steop reverse faults, of in faults of great displacement.

- There is a debatable ralationship betueen fracture permeebility, (or rather, ore occurrence) and position bith respect to folds. The blased deta of ore occurrence sugsest that anticilnes are mose broken and open than synclines. There is quite definitely sreater fracturing nent the crest of folds than near the tleaks. Fault deflections aro more prevalent noer. fold axes.

The rock trpe is an indicator of comparative fracture pare. mability. licking pemeepility measuros, one asy be guided by the ocerrrenco of vein ores (Table 3-2) in contrasting roek types. "Sororatlo" and minfaporable" rocks are oquated, respectively, to reletionly inizh and lowi parmeability in the tabulation. (Noubouse, 1943, Fr. 41~13). Pot the most part the favozable rocks are the competent enes, thus, the table is also a guide to fault dotlections.

The influarice of rocie type in locallaing voin doposite, an indicetor of comparative fracturo permeability.

3lice	$\begin{gathered} \text { suvorable } \\ \text {-iocls: } \end{gathered}$	$\begin{gathered} \text { infavorablo } \\ \text { nocks } \end{gathered}$	significant fortures remayked by contcibutass
Oation 6 Lathertric ELstricte. Arizori	325012tce Ancle:ite	Iruchyte	artitieness or abllity to chattor was important factor.
Goorgi= :oid Deposies	:ing britele rock.	Soft rocke	Ore shoots are in hard beitels rocks: the surrounding rocks aro doft and flow roadily without iracturing.
Lo:don .tn. Ara:, ralasado.	305?:per sill=, trittle linctenes quertilte	Shales	chales defomed plastically; othor rocks reere brittlo.
$\begin{aligned} & \text { Silver I• Lat, } \\ & \text { Ontario } \end{aligned}$	Y.:b= $=0$ or othar trittle rock:		
	Trittle sillcotsd bind: in 12nastono		The brittle eilicated bands in the limestone exers brecelatod durins flo:sage of tho ilmetone. fors ore choots releted to those bands.
$\begin{aligned} & \text { Eiseoc :1ms, } \\ & \text { Quakec } \end{aligned}$	issuctiorito	Tcinstose leva flous	Granodiorlta more beltetio and sonco 5050 frictured.
:e.frtor: :29, guebee	conilozerate ,	Elna gratned tuffis	Conslomerate unre competent and under stress ylelded by fracturing more than did the tuff.
Cadillac 2bi.nshi:suabec	5o:-petent socks	Soft schtits.	ore bodles.cre in perisistent fiscurce in tio competont streta edjojalng the min shear zone. The soft schists vere too incompotent to mafntain

place	Favorable Secke	Unfnyorablo cockt	significant fea= tures reanarked by contributars	r
			Large or persistent openings for voin fornstion. fiowovor at tho lapa Cadillac mine pidelike ors bodies contalning little quarte but much dissentinatod fulphide oceur in a wide zono of sclatst.	
Porcupire, Ontario	Compotert rocles baseivo endesita or tacite. Cor--ilo:marate ctilek borl sragracke \& porpixyry bod193	Incoupstont rocke. Nuffes. slates, sos stone, pillor: lavie, cillare 150 cirbonete sc:21sts	Teins in compotent meles. (is) sinsle valn fractures usually pinc! out whon tiney pasi rith diverzence of striko into an adfolnins inco:metast borizon. (D) ino malth.jle fracturo zones ay bo in a corapotent mantar botruen celativoly incompatent mec.bers: or in 2 comporent member $=d-$ joining an in:cose potont ratior.	
$\begin{aligned} & \text { Brietaniz, } \\ & \text { 3ritich } \\ & \text { columbin: } \end{aligned}$	Conpptent volecintes	Incouppotent : 1:. 5 ty tuffs	ane eonpotent voleanic rocks :rore brocclated and fruce enred sivins channelarays for solutions. The in. comperent slaty tuffs in tha foot wall wose a good lubricant and fue cllated brecciation in the conspetent solcanics.	
yother Lode, Callfornia	Cometent ot rizid rocks (greenstone, eragracko) In mansins ACO11, $=1$ th	Ehre	Ore tends to $3 s$ locallzed undor a hanging wall of the more comactont or Fisid rocizs where the foot wall	

(1) IToak beds
(2) Sonpe
tent beds feldspathle quartzite

Unfavorable Rocts:
slate foot syall

Astense or Cragwacies

Thunder iey. Onterto

Saneral 2π cace:

Rusctilte Colorado

Pront :ange. colozado
Ruartzite
Dospigity
porphyzy
Qrendte
Aplite

Slabase
Grasite orlth Layare of tho 2088 compe tent motumozphic zocks cranlte Aplite

Competent beds

Soak beds

Shales
-

Potphyzy Shale

Sehlat
porphyry
Coarse gralned Boulder Creek granite Boulder Creek granite
Large masses of grankto froe from schlet cemollths

Schist Schlst

SLenkflcant featweres remayikod by contributors
of the rela is of plastic and aisily iractured slate.

The scagracicas above and below the artoose vere gendered schlstose by shearing and offorad fower and loss continuous openlngs.

Fracturing mas take place in reak bods, more competent beds belng unfractured.
thder more eittreme conditions shear cones develop in competent beds and eones of echlstos$2 t y$ in weak beds. thunder Bay gold relns in this 8roup.

Ibre open Rissures in the relatively competent quertzlites and consequently ore deposits are in these zocks.

Competence of quarte ite much sreater than that of sehlsts and shales.

Place	Pavosublo pocks	Unfarorable Bocka	Signlficant foatures ramarked by sentrib butori
Guests. Ners biesico	Albite eranite	Schist and metamorphosod sedimantary rocks	The weak sehlat and sedimentary rocks could not maintain openinso.
fiot Sprifare, 3arite Die. trict, :orth carolira	:mesion rocks crenite furtiato		Barito in fracturo and brecela zones alons faults in massive zocies. The other rocks wore made schlct0日e.
Sheop Crest: Britist: col:mbi-	fucrt:itee and insd arsil1:cesus qurteito	Innostone, sehtst	The smaller frace tures disapper on approacilint the lioestone or sehist. Stress was teken up in these rocks by deformation (plow. ags) rathor thon by fracturing.
Tekressor 	Muff ind brocela	Shelo	Yolns pinch out in shalo whic!: overlios the tuff and sseceie.
:outiwross Arkanen: fulckilver	Eande tone	Stalo	Shales floved while the sandstones ware frectured and brecelated.
Gran=d: : ins Quebse	-2n?10:0rats	Syenits porpiyys	quaste voin in both pocke. Cold nezilgible ishere vein is the rore competent, porponyty due to lack of post quartz fracturing beforo gold introduction.
Copper :0:s:tain, Iritia: colurist.	Asclositic voleznic 3recel:	:nceive andesite or fincoscalnad ausite andosito	Fracturina; and seilestoulty in the volcanic braccia coase at the cortact ulth tho massive andestito or diorite.

Place	Favorable Rocte	Unfavorablo fieckn	SLentificant fosturas senariked by contributore.
Erongo Area: S. H. Africa Pegmatites	schist	Qucrizite and limestone	pagnatitos nurserous In sciluts but e.ce rare in the abundant quartzites and exyctalline limo. stones.
Asakatia s:1nc, Japan	Shale Tuff	$\begin{aligned} & \text { Liparite } \\ & \text { (Rhyolltic } \\ & \text { rock) } \end{aligned}$	Copper veins in faulte thin out in ilparite.
Beateon Mine. Alagka	iragroacke data, fline sock, cillorite schlet		Hoct rocks exerted little control. All coeks contain ore but slchor shipplng oro confined to chlorito schist.
Bolse 3nsin. Idatho	orarodiorito	clites of xhyollte porphyry	Ore in well defired and continuoue fls. sure lodes in gramodiorite. In rhyolite porehyry the lode breaks up Lato minor soams and strinfers conmereially worthless
	Dikec of stiyolito porphyry	Gresodiorite	Ore in obilqua iets of tencion fractursi; celated to horizontel checring stresses in eltyoilte porphyzy. Tile flssures are tigit where thoy pass into eranitic rock: \qquad genoralis so commarelal ore.
Bercerville. Biltift. Columbi=	Intorbedded quartaite and artillite 600 ft. thick	Tiscile calcarcous quartaite $1,000 \mathrm{ft}$. thick. imesive asjil12 te 800 ft . thick	Tho ore bearing menbor heterogencous and franzibla and ne:t to a unit thet floued, falled by thousands of short fractures.

Plase	$\begin{aligned} & \text { Pavorable } \\ & \text { Recks. } \end{aligned}$	Unferorable Rocks	SLenificant features reanatiod by contribestoosa
Cobale Ontario	Cobalt Serles, conslomarate, graywacke. artoose	Quaztzite, Reerratin- - Mostiy besalele lava flows, schlsts, a Liftle sray- vacke. slate cherty Lron formation	In places Volns plreh or values stop on golns from the Cobalt Sexies into the Leerratin bat good relne occur in Rovratia. Quarty lies unfarorable.
Boods Foint Australlia	Diorite dite	Slates	Prodactive volus courined to dike, they split and disperse in slate.
O.E. seren tala. Rossland. aritish Columbla	Altarad andositic $\&$ basic polcantes	Stoek of serpentine	Flasures La Folo canle socks elthes die out coar pletely on enterins the serpentine or continve as ghear zones of erushed rocis and gouge.
218by Quadrassle. fontane	$\begin{aligned} & \text { Sedimentary } \\ & \text { socks, } \\ & \text { sandstone, } \\ & \text { argilltte. } \\ & \text { shale. } \end{aligned}$	Hocadiorte dikes	The faults and veins are shorter metadiorite dikes than in the more bsittle sedimentayy rocks.
Gunar sine. Hantooba	Onstreared -llipsoidal anderite	$\begin{aligned} & \text { Coarse } \\ & \text { Bralned } \\ & \text { andesite } \end{aligned}$	Shear zones passing from ellipsoidal. 2lne gralned andesltes 80 massive coarse gralned andesites generally die out in the lata ter rock.
Sulphtie ree placenents in Uestera quaber	Permeable laves, tuffs. flow brecetao	Impermabible socks. diortito, andesite, syent to porphyry	paults are closely associated with most of the depore 2ts.

Place	Favorable Pocke	Unfarorable Rocks	SLeniflcant features remarked by contributoce
Chanarcilla cuile	Sure limestone	TUIf and ine para 11mestone	Veins narrow and with little aliver in tuff and impure limestone but widen in pure ilmestone and appreclable quantities of base metals and allver minerala appear.
Rennecott, Alacka	Tower 300 ft. of colonitic linectoms bods above basel lincetone		Fepozable tue to phycleal and chemleal properties. Fissures are the Cominant localizers within the favorable dolomite beds.
Uppor $11=5$. Palley 2abin Dopoeits	Cre la doloaites and Limestoncs melated to gut not in shaly layers	-	More fracturing of the dolomites and limestones roar the shely layers.
Tonsitenc, Arizon:	jompatent zocies	Incorpetont cocks	The Paleozolc lino stone and the "novaculiten or eilicified shale, whith conzlo:3arato and quartzite at the pece of the Bisboe group togethes uith tho Blue 1 imestone are competent zocks that fracturod tasdily to faclliteate the migration of ore bearing rolutlonis. The Incompetent sandstones, shales and Ilmeatones of the upper part of the Blebee eroup tended to elose openings.

Bickel picto
Beds of certain composition, impure 11mestones, esMine, Zedleg, Britigh

- Columbia furthor control.

The Laternections or Juncitlons of laulte ape often mentioned In the literrature as the locus of ore deposition, but there ase other cases where intersectlons are barren whlle ore is found -lsorhere on the fanlts. Stlll. a tendency to sreater brecelation and more openings due to deflaction of one of the intersectlag faults appacently favors these places as reglons of hleh icece ture permerbility.

Impermeable barriers are also studiod in minfus disericta. These include shalea, goune, and mfractured intzusivo.dikes. sills end plutons. Veln depoolts thenselves ace aquicludes if n Iurther fault movement bac occurred. Durting periods of tectonle quiescyne when no new fractures are formed, channelling may take place because hydrothermal alteration of the country coek probably closes small tractures, vhlle lasge condults are progressivoly enlarged.

Fron euch sources as drill 1088 and tunnel or mine records come meny reports of large natural openligs underground, but their Ldentity as jolnts or faults is seldom reported. Furthermore, the bead is seldon lenown, wheh less the transient decilne 1a head, so quancleative measures of fracture conductivity cannot be mide from study of the iliterature. only a for cases are mentlonod hore to indiente some extremo conditlons.

Tolmen (1937. p. 312) reports $\mathcal{\text { flows from mineralized fise }}$ sures ct the ofvela stio, Duranzo, Mosico. A steady pumped dice charge of 7500 gellons per minuto from a draloage tumel erosting sciveral lissures produced only 3 lnches of dravioura in 20 wnths. Yet the IIstures ase so ramotely later-compected. probably via the overlying alluvium, that the alne bas been stoped out oleven hundred feet belors the water table simply by folloulng only one Llssure at a time. pumping from the vorinings to an urused fissure.

The water table la so little offectod that onis 10 percent ls estlmated to return. Oignoux and Barbler (1955, p. 126) report vertical tension srottos at Caotilion dam, Franco; 20 motsrs high and up to 4 meters in eperture, oponed along the axial plane of a lisestono anticline. The surfacec are slickensided, not dissolved, sor is there evident any stratigraphic thror, P. H. Jones (locturo, University of California, 1362) photographed a 3 inch planar opening in gnoiss. The writer has deflled weithored flit joints in slate having openings of about ond inch. At Spitallema dan on glaciated granite (Gignoux and Barbler, 1955, p. 291), one grout hole took 11 poreent of the grout infected into 81 holes. Sinilac sheoting fractures plagued the construction of flamoth pool dam, Callfornia (E. Spollman, addres: to Assoclation of cris. Geol., 1963), whore openIncs up to 15 inches vere ancounterad (Terzaghi, 1952). Ground movement on :lopes 13 often the cause of large oponings such as tho sir-inch foints found in shalo as nuch as 100 feot sehind
 p: 23). Levelly, only the entram flous or openings are yee ported, distortinz espoctations. Unpablished dara accumulated by the Callfornia Dept. of Later Resourcos (R. C. Riehter, personal comanication, 1963) is one esception. Theg havo collectod many cesc historios of tunnols cutting faulta of high and lou water production. Other sources of information Includo many ensineering rorks: Stini (1950); Louderback (1950); Gisnour: and Barbler (1955); Callf. Dept. of :Jater Resources (1959), uith reforences to 99 tunsels; and (1962), a blbliozraphy on mothods of deternining tranamissibillty and storage capacity, ixynine and Jued (1957); Terzaghi (1946); Saņborn (1950); Talotre (1957); Lesgett. (1952); Richardson end fingo (1942); and Ries and :3nteon

Abstract

(1947). Pocthont ground water atudien lnelude Bryan (1919); ELLLs (1906); Yalnzer (1923), (1927); Johnion (1947); Rowe

 (1943); Santh (1958); plus Inntmorable leads ln a bost of U. S. " Ceolosical Surver Water Supply papers. There are seattered reports in the minfing literatune: Noubouse's references (1946), Stuart (1955), Mexiastry (1948, p. 520). An aecumatation of . publiched snd unpublished roports of water-beering faults or fisoures remaine an intoresting project only, until there is developed a unlforaly sound method of translating the observations into mencures of transmissibility.Since tho thickness of an opening, sheared rone, fault seam, brecela zone, etc., is soldon known, conductivity units like transmiseibility, Kb , indopendent of thickness, should be used, that relates the discharge per unit lensth to the gradient. The dischargo per unit crossosoctional area of a fracture, as used by Huskeat, (1937, p. 409) and Amox, Bess and Hhiting (1960, p. 85) does not help aesess the overall permeability of a volume cut by plenar condulte, slence what miters is the totol discharge of indifiduals end the 8 zoss cross-section transsected.

The conclusion reached on aven a cursory inspoction of the literature is that openings in excess of a mililmoter ave common foatures of eryataliline and some sedimentary cocks. These occur not onily in the veathered resion, but contraty to philosophical (Crosby, 1881) and theoretical treatmonts (Jachenbruch, 2961) of the maximut depth of fracturing, large openinga are also at depths to several thousand feet. Flous in such large chamels may exceed the limits of laminar flow near concentrated alniks or sources, such as in tumnel drainage applications or close to producing wells.

For basespent rock efrculation under iow satural gradients,
(a fou st. pot mile) Laminar flow le evil a good assumption, 88 oven with large openings.

There is clearly no explemation for enisotrople permoebility to be found in the iftereture describing fractured rook, thus it is desirable to show how anisotropy is dependent upon the orioncations, spacing and apertures of fractures. The mathematics of a model that comblods the effects of those three independent variables is found in the next chapter. Bow the additional, use evaluated variables, such as discontinuity, variable apertures and anisotropy of individual plane conductors effect the idealty of the model, must be left largely for future research.

THEORY OF A PARALLEL-RLATE TDDEL POR ACGRECATES OF IMTERSECTIIG PLAMP CONDUCTOBS

introduction

It is concelveble that all the geometrical aspects of real iracturad rock media may be describsd quantitatively, but to include all variables in some analyaic of tho dependent permeabllity of reai media lo an objoctive laprobable of success.

Inls chapter treats the problem of prodicting anlsotropy fron seoratry of conduits in a mediun, or conversely, of estiyatins condult geometry from mossured cnisotropy. Condults are essuad to have amooth perallel plene walls of indefinite exe tent, sith arbltrary orientatlons and variable apacing. The. aperture between conduit walls is also arbitrary. it is essumed that orlentations and apertures are distributed variablec. Before we proceed to the task of finding the comblnad lafluencs of .these ideallzed properties rith theilr distributed values, the conductiofty of a clagle parallol-picte opening aust be known. chen perallel setr, orlentation-dispersed sets uith the same apertures, and finaliy sete rilth dispersed ortentations and apertures. Appendix B contans excerpta frem the literature on rough fractures. parelitel-alate flost

The savier-Stokes equations (Lamb, 1932, p. 577, Suskat, 1937. P. 126) for slow, nonoturbulont flow of un incompresaible, Rectonian fiuld saturating a medium may be abbreviated uith indiclal notation (Jeffreys and Joffreys, 1956):

$$
g \mathrm{gad}(p+u)=2 \nabla^{2} \bar{\sim}
$$

where
P is the pressurie,
u is the gravitationsi potential.

Figure 4-1. Fluid flowing slowly between parallel plates. Section normal to boundaries and parallel to - streamlines.

- er is kinematic viscosity and
\bar{N} ie the velocity vector.
(4-1 Cont.)
By substituting the hydraulic potential, as defined in Chapter i. for the pregsure and gravitational potential

$$
\phi=p+u
$$

we reduce equation (4-1) to the three equations:

$$
\frac{\partial \phi}{\partial x_{R}}=2 \nabla^{2} \sim_{A}
$$

(4-2)

Expanding to matrix form, with subscripts referring to the Cartesian axes of Figure 4-1, we obtain

$$
\left|\begin{array}{l}
\frac{\partial \phi}{\partial x_{1}} \\
\frac{\partial \phi}{\partial x_{2}} \\
\frac{\partial \phi}{\partial x_{3}}
\end{array}\right|=\tau\left|\begin{array}{lll}
\frac{\partial^{2} v_{1}}{\partial x_{1}^{2}} & \frac{\partial^{2} N_{1}}{\partial x_{2}^{2}} & \frac{\partial^{2} v_{1}}{\partial x_{3}^{2}} \\
\frac{\partial^{2} v_{2}}{\partial x_{1}^{2}} & \frac{\partial^{2} w_{2}}{\partial x_{2}^{2}} & \frac{\partial^{2} v_{2}}{\partial x_{3}^{2}} \\
\frac{\partial^{2} v_{3}}{\partial x_{1}^{2}} & \frac{\partial^{2} v_{1}}{\partial x_{2}^{2}} & \frac{\partial^{2} v_{2}}{\partial x_{3}^{2}}
\end{array}\right|
$$

In the case of lamellar flow with coordinates as show in Figure 4-1.

$$
N_{1}=N_{3}=0
$$

and

$$
\frac{\dot{\partial} r_{2}}{\partial x_{2}}=0
$$

because of incompressible continuity. The x_{1} plane is a plane of armory, across which there can be no shear, so

$$
\frac{\partial N_{2}}{\partial x_{1}}=0
$$

The matrix: thus reduces to

$$
\left|\begin{array}{c}
\frac{\partial \phi}{\partial x_{1}} \\
\frac{\partial \phi}{\partial x_{2}} \\
\frac{\partial \phi}{\partial x_{3}}
\end{array}\right|=2\left|\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \frac{\partial^{2} N_{2}}{\partial x_{3}^{2}} \\
0 & 0 & 0
\end{array}\right| .
$$

Hydraulic potential is seen to be constant along lines normal to the flor, futile the gradient in the flow direction is proportional to the rate of change of shear; or the velocity gradient; as one moves romani, to the boundary.

$$
\begin{equation*}
\frac{\partial \phi}{\partial x_{2}}=\nu \frac{\partial^{2} \sqrt{2}}{\partial x_{3}^{2}} \tag{4-3}
\end{equation*}
$$

Since ϕ is independent of j_{1} and x_{3}, the left and Eisht-hand terms depend on different variables, and each must equal a nonzero constant. $-\Sigma$

$$
\cdots \quad \frac{\partial \phi}{\partial x_{2}}=-K
$$

and

$$
\frac{\partial^{2} N_{c}}{\partial x_{B}^{2}}=-\frac{K}{2}
$$

Two successive integrations of this last, with boundary conditions

$$
\frac{\partial N_{2}}{\partial x_{2}}=\text { when } x_{3}=0
$$

and $v_{2}=0$ when $x_{3}=6$
8170

$$
\begin{equation*}
r_{2}=\frac{K}{22}\left(b^{2}-x_{3}^{2}\right), \tag{4-4}
\end{equation*}
$$

showing that velocity distribution may be represented by a paraDole eqlindor chore generators are parallel to the boundaries and nominal to the flow. A third integration between boundaries given tire discharge per unit conduit width,

$$
q=\frac{2}{3} \frac{K}{2} b^{3},
$$

and the average velocity,

$$
\begin{equation*}
\overline{v_{E}}=\frac{1}{3} \frac{5}{2} b^{2} \tag{4-5}
\end{equation*}
$$

Is two-thirds the central velocity.
Substitutinit the potential gradient for - K and dropping the non uniccessaiy subscripts, we obtain

$$
\begin{equation*}
\bar{v}=-\frac{b^{2}}{3 x} \frac{\partial \phi}{\partial x}: \quad 8=-\frac{2}{3} \frac{b^{3}}{2} \frac{\partial f}{\partial x} \tag{4-6}
\end{equation*}
$$

per unit : id th along F_{1}.
These classic equations for parallol-plete flow are given in
 583; Ions, 1:61, pp. 135-137; 30r3, 1963, p. 246). It is doeffable to prat the hydraulic potential gradient into dimensionless for of en (fluid colum) per an by redefining the potential on a unit weight basis.

$$
\begin{aligned}
\text { anon } & =\frac{b^{2}}{3} \frac{2}{2} I \\
\text { and } \quad . \quad & =\frac{2}{3} b^{3} \frac{2}{2} I .
\end{aligned}
$$ amooth conduit

Superperition of flowis

It will be proved here that thero can be no autual interfarence of flows at the intersoction of two or more planar conduits, propided that they are not dislocated, interraptod, or otherwise cinaged at tise insersection. Even if therc is addftional friction at an iatersection, it seoms a good issurption that the locel energy losses cannot be anore than a for percent of the losses botween intersections. If there is no interference between conductore thon tie discharge co:aponents of ouch way be addec. Socondly, it :ill bo choran that the driving forco ecting on tise fluid ln joints of various orientetions may be represented isy a zradlent fiold voctor not recessarily lying aithin the cunduite but generally crosilns tho colid, whether or not there to continsous pore-fluid connection rithin the solld.

Fisure A-2a cho:s a uniforn isotropic conduit plane sith sormal n_{a} crossing an impervious solld sedicia. Thero is cssumed to be an arbitrasy gradient voctor I actins in the plane, and on another plane, nb, shown in Figurs 4-20, ε gradient vector I_{b}, senerally not parallel to I_{a}. There is e uilque vector I having I_{a} and I_{b} ce projections, elserise alons an intersection of the two planes, such ac in Fligure 4-2c, there trould to a different gradient on cach goint. The prismatic volume elenente are drain with thelr shortest axes parallel to 1 . The aldes of the eloneate are not boundaries.

On each condult, ve can draw evenily-spaced oquipotentlal IInes normal to the bradient vectors; I_{a} and Is. If th.e eloments ave ssefil csough, the oquipotentials fill be parallel and the

FIGURE 4-2 GRADIENTS ON INTERSECTING JOINTS THAT CUT A SOLID VOLUME.
sradiants constant. Corrosponding equipotential ilnes on tho tho condults, obown intorcecting in'rizure 4-2c, way be inegined connectod by surfaces crossing tho solld phase of the midiun. Theso will approsch planar shape cs the dimonsions of an element decresce and anst be nomal to tho vector I. The broad faces of tho olenents dremin in Figure 4-2, and all interocdiate planes paraliel to then, ixiy be considerod equipotentiale. I is the flold eradiont. If tho solld betroan jolnte wero pervious sranuler reck, the same gradient would ceuse intorgranular flor: In tis troodizenclomil modol of flesured 3011, Gillds (1957, p. 50) bus siadicriy treated gradicate as projections.
tha slement drawn in Fisuro 4-2c is but one of an infinite number of identical onos situited on the infinitely exten3ive intersoction of the tro planes. If thore is an increase or decrease of the jridionts at or adjecent to the interjection, by rasion of somo zuturl offect, then tho seme expension or contraction of equipotente: 1 eurfaces must apply throuphout the astent of t!e intersection. This ic maposeiblo, for then ouccessive oquipotiontinls "ould become lreroesinsly nonoplanar ind dissimilar.
ibr cen there ba a vertation of aradionts itthin any one elecont. The floc: lines on any irdividuel conductor ulli, in general, bo inelined to the ilno of intersection, as shorin in Figure 4-2c. Fio flor enters and laves the intercection via the chaded surfices, fiot lines reaninins orthogonsi to oquipotenthals if thoy ape isotrople. Suphose, for example, that the gridient were incrazsod on the portion of a conductor lyling upe strecm of the Lntersection. Elice potential sust ibo oqual at colncident points, so too must tho gradient increase on the upotream portion of the other conductor. Gradients must thon decroase on the domatrian.portions if the total droplacross the -loment ls to remaln unchenged. But this is imposesible because more' fluld would ontor the intorsection than would leave 15.

It is concluded that gradients remain unaltered, ofther in megnitude or direction, at intersections with other conductori; provided that the intersections are not obstructed or enlarged. Similar reasoning would show that no perturbations of gradients arise where three conduits intersect. If the conduits are anisotrople, flows ulill not generally parallel the gradients, but in the seme manner, we are assured by necessity of flow and potencial continuity that there is no perturbetion.

An lmaginary fiold gradient of arbitrary orientation may be imposed ecross any mass transected by arblerarily-oriented, uniform continuous conductors. Real gradients on the conductors may be computed as projections of the field gradient. The flow on each may then be computed accosding to its geomatry, and aince montual interference takes place, the total flow through the medium in the vector sum of the contributions of individual conductors. .

The foregoing does not say that the flow in a joint is independent of all others when boundary conditions are specified, for the eddition of a joint will alter the directional pasmeability of the medium, and therefore the local field gradient and the flov. Rather, it. says that if one is given e certain field gradient, on sach joint there will aet a projected sradient independent of gradients on its neighbors. To eatablish properties

- of a jointed roek medium, especially the property of directional permeability, one muat atart with oither force of flow to be the independent variable, then find the relation batween them to establish the unknown. Since in most applications the boundary porentiala are known, force has been chosen independent in this
vert, and velocity dependent, related through the threo-dimons ion' 97 al anfsotrople Darcy's Law:

$$
\begin{equation*}
\sigma_{j}=K_{i j} \frac{\partial}{2} I_{i} \tag{4-8}
\end{equation*}
$$

where I_{i} is the gradient vector, V_{j} the velocity vector, and $X_{1 j}$ is the linking coefficient, the directional permoeblity tensor. Versions of this formula have been published by Freedanburs (1936), Scheldesger (1954). Long (1960) and Childe (1957, p. 54).
paraliel-alase flow meter \& general field gradient
Figure 403 illustrates an arbltrarily-oriented plane conductor in a Cartesian coordinate system, x_{1}, x_{2}, x_{3}. The orioncation of the conductor is defined by its moroni, with direction cosine n_{1}, or by two unit vectors in the plane, g_{1} and 1_{1}, the latter bels the directions of greatest and least conductivity. An arbitrary bydfaulic gradient, represented by I_{1}, is imposed on the medium. Floss along the conductor is proportional to the projection of I onto the plane, either J_{j}, the normal projection, or the tiro orthogonal components $\left(I_{i} \delta_{i}\right) \delta_{j}$ and $\left(I_{i} L_{i}\right) I_{j}$, as shown. The argnitudes of these orthogonal components are given by- the dot-prodrcte, in parentheses, and directions by the unit axial vectors, 8_{j} and i_{j}. The indicia mentation of Jeffreys and Jeffreys (1956) is used here, wherein the repeated subscript indicates summation. For clarity we resort occasionally to matxix display (kyle. 1960. pp. 13-37 and Bors, 1963).

Discharge components are
: and

$$
\begin{array}{ll}
G_{j}=\bar{L}\left(I_{i} g_{c}\right) g_{j} \\
L_{j}=\underline{L}\left(I_{i} \ell_{i}\right) l_{j} \quad \text { per emit width. }
\end{array}
$$

The mexican and minimum discharge coefficients of the opealas are \dot{x} and y respectively. These may. differ from the value $2 b^{3} / 3$

derived above, by menton of directional roughness properties of 99 the surfaces. The resultant discharge is

$$
\begin{aligned}
& Q_{j}=G_{j}+L_{j} \\
& Q_{j}=\left[-L g_{i} g_{j}+\ell_{-} l_{i} l_{j}\right] I_{i}
\end{aligned}
$$

(4-9)

The bracketed term is a symmetric tensor of second rank, relateIng the discharge to the gradient. It defines the discharge per unit length, by components, for a unit gradient in any direction. The tensor may be abbreviated

$$
T_{i j}=K P_{i j}+\underline{L} \cdot Z_{i j}
$$

where

$$
P_{b_{j}}=g_{i} g_{j} \quad \text { and } \quad \varepsilon_{i j}=l_{i} l_{j}
$$

Represented in matrix form (Borg, 1963, p. 56), this is:

A simpler equation can be deduced for discharge of an isotropic conductor. if $k=\dot{k}=k$ in equation ($4-9$), then,

$$
\begin{equation*}
Q_{j}=l\left[\left(I_{i} g_{i}\right) g_{i}+\left(I_{i} \ell_{i}\right) l_{j}\right] \tag{4-10}
\end{equation*}
$$

Since the coefficient k is defined for all directions of an isotropic conduit, any pale of orthogonal projections, or their zee cultant, J_{j}, will determine the discharge. If the vectors acting in the plane containing n_{j}, I_{1}, and J_{j} are considered it becomes evident that J_{j} is the vector difference (Inset, Figure 4-3):

$$
J_{j}=I_{i} \delta_{\dot{j}}-\left(I_{i} x_{i}\right) x_{j}
$$

$\delta 13$ 18. the Rroneksp delta, vaniahlas when iffy and unity when 100 def. Velocity components are proportional to the gradient come ponents acting in the conductor plane,

$$
v_{j}=\frac{b^{2}}{3} \frac{g}{x} J_{j},
$$

according to the equation given on page . This expands to

$$
\left|\begin{array}{l}
v_{1} \tag{4-21}\\
v_{2} \\
v_{3}
\end{array}\right|=\frac{b^{2}}{3} \frac{g}{2}\left|\begin{array}{ccc}
\left(1-m_{11}\right) & -m_{12} & m_{12} \\
-m_{21} & \left(1-m_{22}\right) & -m_{22} \\
-m_{31} & -m_{32} & \left(1-m_{31}\right.
\end{array}\right|\left|\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right|
$$

where $m_{i j}=n_{i} n_{j}$.
The coefficient common to all terns of this matrix equation may be considered to be the hydraulic conductivity for a unit width of opening, but not for the jointed medium until it is modified by applying it to an area across which the conduit discharges. It 13 not useful to pursue the line of reasoning (iktskat, 1937, P. 246; Any, Bass and Whiting, 1960, p. 84) that the permedbillet of a fracture is the discharge divided by the aperture, for such a procedure neglects the influence of spacing between conductors.
Parallel Jointed Media
The permeability of a mon-conducting solid cut by smooth parallel openings is readily calculated. The discharge of each is

$$
g_{x_{1}}=-\frac{b^{2}}{3} \frac{g}{2} W(2 b) \frac{\partial \phi}{\partial x_{1}}
$$

The x_{2} component is similarly expressed, while fri vanishes. Figure 4-4 defines the dimensions.

The total discharge of Nequal joints is

$$
Q_{x 1}=-\frac{2}{3} b^{3} \frac{g}{2} N W \frac{\partial \phi}{\partial x_{1}},
$$

provided that the aperture 2 b , of each conductor, and the spacing between conductor planes are constanta throughout the medium. It aperture differs, joint to joint, but remains con--tent in all direction along each joint,

$$
\begin{equation*}
Q_{x 1}=-\frac{2}{3} \frac{d}{2} W \frac{\partial \phi}{\partial x_{1}} \sum b^{3} \tag{4-12}
\end{equation*}
$$

The lost through an equivalent continuous medium is given by Darcy's Lavs

$$
\begin{equation*}
\dot{Q}_{x_{1}}=-k \frac{g}{2} W^{2} \frac{\partial \phi}{\partial x_{1}} . \tag{4-13}
\end{equation*}
$$

Equating (4-12) and (4-13) gives

$$
K=\frac{2}{3} \frac{1}{W} \sum b^{3} .
$$

This coefficient is called the intrinsic permeability, to be consistent with the recommendations of the comititee on merino-. :

Figure 4-4. A solid volume of dimensions W cut by parallel plane conduits.

LOBy of the Soll scienca Soclety of Americe (Richarda, 1952). 102 When this variable is applied to a physical problen, intrinsic permeability units (cm^{2}) may be convorted to practical unite by multiplyins by one or another of the factors tabulated in Cuapter 2.

Intrinsic permeability, expressed by K_{i} f in equation ($4-8$) will be used in a mathomatical nodel for flow in jointed media, but with fall cognizance that thero is assumed no influence of the fluid properties other than that due to fiscosity. Childs (1957, p. 49) has pointed out the invalldity of this assumption for soils containing colloidal or organic matter, since the coll structure is atrongly influanced by elaywater chemistry. Clay coatinge and partial 11111 nss are common in weathered nearsurface joints. These are observed in fine as kell as largoaperture openinga in eryatallino rocks, or in any fractures ergillaceous rocks. Therafore, the sene objections to the use of intrinsic permeability apply to jointed media as to soils. Since interactions between the fluid and solld phases are not the aubject of investigation by the mathematical model developed here, intrinaic.permeability will be retained to describe a property of model media, keepins in mind that in applicasion to practical problems, corrections may be necessary, it may be advisabla for example, to perfosm pumping tests on dam abutments using reservole vater if it differs chemicelly from the sround water or local supply. There has been no known research done to assess the unsteady chemical processes that may eccompany conventional pump-in tests.

The simple parallel-conductor model of Figure 4-4 has other properties that wo can characterize. Porosity is

$$
\theta=\frac{w^{2} \sum 2 b}{w^{5}}
$$

and

$$
w=\frac{\sum 26}{\theta}
$$

In en

$$
\begin{equation*}
k=\frac{\theta}{3} \frac{\Sigma b^{3}}{\Sigma b} \tag{4-14}
\end{equation*}
$$

Under these special circumstances of tuo-dimensionally isotropic jointed media, a determination of permeability and the average spacing Δ yields a measure of the average aperture cubed, or viceoversa. If apertures were Identical, porosity would be

$$
\begin{equation*}
\theta=(3 K)^{1 / 3}\left(2^{2} / \Delta\right)^{3 / 3} \tag{4-15}
\end{equation*}
$$

It 1 e show later that permeability can be used as an indicator of porielty but not precisely, for there is $n 0$ method of determining $\sum b^{3} / \Sigma b$. Specific surface for this almple model is

$$
S=\frac{2 N W^{2}}{W^{3}}, W=\frac{2 N}{S}
$$

but the average spacing $\quad \Delta=H / M_{\mathrm{s}}$ so

$$
S=\frac{2}{\Delta}
$$

and

$$
W=N \Delta
$$

Aceordiasty,

$$
\begin{equation*}
K=\frac{2}{3} \frac{1}{\Delta} \frac{\sum b^{z}}{N} \tag{4-26}
\end{equation*}
$$

Dispersed jointed redis
The more general ease of joints dispersed in orientation and position, requires a different approach. Unlike parallel joints, which are characterized by a unique repetition unit, the average spacing, there is no obvious unit describing the frequency of dispersed joints. It is shown below how specific surface is a
frequency measure that serves the same purpose as does epacins ${ }^{1} 04$ for parallol eyetems.

Ore possible method of measuring foint oriontations and positions in the field would entall bore-hole photography (rade dock, 2931) throughout a length of hole D. Each joint may be aselaned to a sot ulth the ald of a atereonot plot of notala. Prefegably, a set would be included within a cone of 120° or less, and tho axls of the bore-hole inclined no nore than 30° from the central tendoncy of the "averafe" normal of any set. Otherwiso inadequate sampling may result. Samplins procedures and discussion of orientation parameters are in Chepter 5.

- A sample.hole orlented uithin the above limits may be inage iaed surfounded by a cylindrical polume of unit base area and much lerger aoight D. Then essentially ell joipt planes intersected vily slice eeross the voluno, eutting all genesators of the cylindar. me specific surface of the set of joints is

$$
S=\frac{2}{D} \sum_{i=1}^{\infty} \frac{1}{m_{i}}
$$

where n is the cosine of the angle betrieen the axis of the hole and the momal to cach of the mplanes. The coefficient 2 is used if both surfaces of folitis are counted, as is conventionally done for porous media. 5 has units of $1 / L$, and serves the same role describing density of jointy as does Δ for parallel joints.

Conversely: a joint sot chazacterized by lis specific surface and the orientations of all its merabers is associated with

$$
\begin{equation*}
0=\frac{2}{3} \sum_{i=1}^{\infty} \frac{1}{m_{i}} \tag{4-27}
\end{equation*}
$$

a length depending only upon the dispersion and size of sample. If a folnted rock mase is drilled to a depth D, and all joints crossed are included in the samplo, then logically the ropatit-

Ion unit is of dimensions almilar to the volume oceupled by the 105 sample. The best that can be sald about the unsampled rock beyond the tolo is that it has the eame distribution of joints as the part traversed.

Figure 4-5 shows a samplod conducting folnt and an identical, parallel joint (both shaded). The second is located at a distence, D_{1} as measured alons the line of the central cendency (D is not the spacins). If a uniform potential grodient fiold Ls given, the direction of fluid flow can be computed, Let each joint lie on the blsector of a euble element whose faces ere: parallel to the joint, parallel to v and nomal to v, respectively. The dimenolons of the cube element W depend upon C and the absolute value of the cosine of the angle between the central tendeacy and the nomal:

$$
W=D|m \cdot C T|
$$

The edses of the cuble element form a second coordinate system, designated below by primed variables. Coaponents of discherge from a joint are:

$$
\cdot\left|\begin{array}{l}
\varepsilon_{2}^{\prime} \\
\varepsilon_{2}^{\prime} \\
\varepsilon_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{l}
a_{1} V_{1}^{\prime} \\
a_{2} V_{2}^{\prime} \\
a_{2} V_{2}^{\prime}
\end{array}\right|
$$

where a is the area available for flon through each face. Since $a_{1}=a_{2}=26 W, a_{3}=0$ and $V_{3}^{\prime}=0$.

$$
\left|\begin{array}{l}
\varepsilon_{1}^{0} \\
8_{2}^{0} \\
8_{0}^{0}
\end{array}\right|=2 \text { s } \left.D|m \cdot c T| \begin{aligned}
& V_{1}^{0} \\
& V_{2}^{0} \\
& 0
\end{aligned} \right\rvert\, .
$$

The same polune elemeat can be evaluated as a continuras by Dare cy's law, usias the moat general fom of the coefflelent, the conductivity tenoor in the primed system:

Figure 4-5. A joint conductor with normal n_{i} and its lmage diatent $D_{\text {, }}$ the sampling lensth alons - Elxed semple line CT_{1}. Each conductor maket the onclosing eube a permeable modiun.

$$
\left|\begin{array}{l}
\varepsilon_{1}^{\prime} \\
\varepsilon_{1}^{\prime} \\
z_{1}^{\prime}
\end{array}\right|=W^{2} \frac{g}{v}\left|\begin{array}{lll}
k_{11}^{\prime} & K_{12}^{\prime} & K_{13}^{\prime} \\
k_{21}^{\prime} & K_{21}^{\prime} & K_{21}^{\prime} \\
K_{11}^{\prime} & K_{31}^{\prime} & K_{g 3}^{\prime}
\end{array}\right|\left|\begin{array}{l}
I_{0}^{\prime} \\
I_{2}^{\prime} \\
I_{3}^{\prime}
\end{array}\right| .
$$

If is the potential gradient in the primed system. The righthand.aldes of the above two equations may be equated, then transformed to the unprimed system, comm en to all joint conduits, A is a trenefondation matrix.

$$
\left|\begin{array}{l}
V_{1}^{\prime} \\
V_{2}^{\prime} \\
V_{3}^{\prime}
\end{array}\right|=\frac{[D|m \cdot C T|]^{2}}{26 D|m \cdot C T|} \frac{g}{2 r}\left|\begin{array}{lll}
K_{21}^{\prime} & K_{32}^{\prime} & K_{13}^{\prime} \\
K_{21}^{\prime} & K_{22}^{\prime} & K_{23}^{\prime} \\
K_{21}^{\prime} & K_{32}^{\prime} & K_{33}^{\prime}
\end{array}\right|\left|\begin{array}{l}
I_{1}^{\prime} \\
I_{2}^{\prime} \\
I_{3}^{\prime}
\end{array}\right|
$$

$$
\left|\begin{array}{l}
V_{1} \tag{4-18}\\
V_{2} \\
V_{3}
\end{array}\right|=\frac{D|n \cdot C T|}{26} \frac{g}{3}\left|\begin{array}{lll}
K_{11} & \dot{K}_{12} & K_{13} \\
K_{2} & K_{22} & K_{33} \\
K_{21} & K_{32} & K_{3}
\end{array}\right|\left|\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right|
$$

This matrix equation leads to an expression of directional parmeabllity more general than that derived by Gilds (2957). It
fives principal permeabilitios and axes for any arbitrary ayetea of dispersed planar conduits having apertures uniform over their areas. Ho can now aubstituto the velocity rector derived previously, namely,

$$
\begin{equation*}
V_{j}=\frac{1}{3} b^{2} \frac{g}{2}\left(\delta_{i j}-m_{i j}\right) I_{i} \tag{4-12}
\end{equation*}
$$

30 that
-. Clearly, the conductivity tensor for each joint is symmetric:

$$
\left|\begin{array}{lll}
f_{11} & h_{12} & h_{13} \tag{4-19}\\
h_{31} & k_{32} & h_{31} \\
h_{31} & h_{32} & h_{33}
\end{array}\right|=\frac{2 b^{3}}{3 D|n \cdot C T|}\left|\begin{array}{lll}
\left.k_{1} \cdot m_{11}\right) & -m_{12} & -m_{13} \\
-m_{21} & \left(1-0 m_{22}\right) & -m_{23} \\
-\omega_{21} & -\infty_{32} & \left(1-m_{33}\right)
\end{array}\right| \text {. }
$$

The facial area of the ropotition cube for a given joint, as 11 lustrated in Figure 4-5. i.111 differ from that of other Joints having different orientations, the dimensions boiling prop portional to the cosine of the angle defined. This poses no problem, since discharge has been translated into permeability, a property independent of the area of a cross-section through a continue. Thus the tensor permeability contributions of all joints may be added to find the total. Each one is weighted by $1 /|\mathrm{n} \cdot \mathrm{CT}|$, the absolute value of tho inverse cosine of their inelinations from the everage orientation. The unimportance of intersection of joints has already been established, and justifycation made for superposing flows. The location of any epecifle
member of a joint cet lo isnored for prosent purposes, the prooumption belne that Inhomogenelities ulthin the sample are dupllcated in successive samples and averaged out over the resion ulthin problem boundaries distant several D.

He may arrive ot equation (4-19) without assuning homogen-
 tion, no second oimilar cuble element may be drain. A eube of tho sa:se dironsion,

$$
W=D|N \cdot C T|
$$

may be drarn conteinlns the conductor perallel to a face at a position other then tio bizector. Ihis describen the erosssections 1 aroa, H^{2} to thich the conductor contributes.

More than one set of joints my exist in our model. He cannot consider all foints to crocs the came cylindrical rolumo about a single scmplins line $D_{\text {. Sather, separate lines } D_{1}, ~}^{D_{2}}$, etc., each within 30 dezrees of the oxpected contral tendency, should be drliled to obtaln adequate samples of all sets. A differont lensth sempilnc line for osch set ensures proportionately different nuibers of joint set neabers, compensated in equation (4-19) by the coofficiant 1/D. pesmeablilty contributions of indioldual: Joints of severcl sets, rolated to samplins lines of different lexsth and orlentotion, ann therefors be added to obtain the percenbility of the mediun.- It is comenient to use the central tendency of eich set as a sampling line, and to further aimplify the problem by using D the same for each set. The anmber of joints in eaciy combined for computation of directione al permabillty, unst then be proportioned according to the assigned specific aurface and orientation dispersion coofficiont (Fisher's Kf, seo Chapter 5).

$$
\begin{align*}
& D_{1}: D_{2}: D_{2}=\frac{2}{3} \sum_{i=1}^{m i} \frac{1}{\infty_{i}}: \frac{2}{3_{i}} \sum_{i=1}^{\infty+\frac{1}{\omega_{i}}}: \frac{2}{s_{3}} \sum_{i=0}^{\infty} \frac{1}{N_{i}} . \\
& \text { If } D_{1}=D_{2}=D_{3}, \quad \frac{2}{5_{1}} m_{1}\left(\frac{1}{m}\right)_{\text {ari }}=\frac{2}{s_{1}}\left(\frac{1}{m}\right)_{\text {are }}=\frac{2}{5_{3}}\left(\frac{1}{4}\right)_{\text {ars }} \text {. } \tag{4-20}
\end{align*}
$$

The bracketed coofilcient, average inverso cosine of the angles batieon norinals and central tendency, is jeedily computed for any given joint aet:

$$
c=\left(\frac{1}{n}\right)_{a_{j}}=\frac{1}{1 m} \sum_{i=1}^{m}(1 / \cos \theta)_{i} \text {. }
$$

Where ta is tho cotal flus: or number of jolnta in the j th sot, siven by flishor'o dispersion of errors on a aphers (1953).

$$
\begin{equation*}
m=-\frac{2 \pi}{K_{f}}\left(e^{K_{f}}-e^{-K_{p}}\right) \tag{4-21}
\end{equation*}
$$

In an elecent d (cos θ) about the central tendency, there are

$$
d F=-2 \pi e^{x_{f} \cos \theta} d(\cos \theta)
$$

nembers, so.

$$
\begin{align*}
& c=\frac{1}{\pi} \int_{0}^{\pi} d F \frac{1}{\cos \theta} \\
& c=\frac{-\int_{-1}^{0} 2 \pi e^{k_{i} \cos \theta} \frac{1}{\cos \theta} d(\cos \theta)}{-\frac{2 \pi}{k_{f}}\left(e^{N_{f}}-e^{-k_{f}}\right)} \tag{4-22}
\end{align*}
$$

or

Unlike the vectors of Fisher's distribution, the nosmils to planer in spece are mooherded. uithin the region $\frac{\pi}{2}<\theta<\pi$, we choose to represeat any vector by its regative, directed into the region $0<\theta<\frac{\pi}{2}$. If a_{i} significant portion of a pisher diateibue tion lies outside the heaisphore heving the central tondency do vertex, an sbnoman flum concentration mould lie neaz $\theta=\pi / 2$. Host natural foint gots are reasosably moneancrated (Fisher's $\mathrm{K}_{\mathrm{f}}>10$, ose slates 2 and 3 of Crypter 5), and if jolnesi lle outside of $\theta=\pi / 2$, they would be identified uith another set. The probability of a vector lying in the region $\theta>\pi / 2$ is only .00067 for difpersions of R Kew.0. If ue limit the dofinition
of a folnt set to members lying ulthin a 120 .degree cone ($\theta=\pi / 3$), ve fled a maximull probabllity of .006 that a vector genersted by Fheher's equation will lie outsldo those linits if $\boldsymbol{H}_{f}=5.0$ or geater.

Ine Improper integral given above can therefore be ovaluated over a practical range $i>\cos \theta>L / 2$ for all values of $K_{f}>5.0$:

$$
c=\frac{k_{f}}{e^{k_{f}}-e^{-k_{f}}}\left[\ln \cos \theta+\frac{k_{f} \cos \theta}{1}+\frac{k_{f}^{2} \cos ^{2} \theta}{2(2!)}+\frac{k_{f}^{2} \cos ^{2} \theta}{3(3!)}+\cdots \cdots\right]_{1 \gamma_{z}}^{\prime}
$$

The results of a short computer program to evaluate the integral are grajhed in rigure 4-6.

Oace D or the murber of elemants appropriate to a givan Joint set ic astablished, the tensor pormocbility contribution of aach cen be datamined by equation (4-19). Sindiar tensors for each of the other joints may be added tern by tem, since we - have already ascertalned that no mutual interferenco tates place. The accumicted tensors of all joint scts are then addad to doIfine the perwecbility tencor for the jointed rock mediun,

$$
\begin{equation*}
k_{i j}=\sum h_{i j}, . \tag{4-22A}
\end{equation*}
$$

Then exy boundary problem mis be treated ac a bomgencous enisotropic medium rith flort components given by

$$
\begin{equation*}
Q_{i}=K_{i j} A \frac{g}{2} I_{i} \tag{4-23}
\end{equation*}
$$

In sone cases inere boundary transformitions are inconvenlent, for ingtrace 12 two or more adjoiring regions have difforeat permoeblilty tensors; the fully expendod form may be required for each region, and the problem colved in its orisinal coordinate systea:

FISHER'S VECTOR DISPERSION COEFFICIENT, Kf
fig. 1-6 the average reciprocal of the cosine of angl between joint plane normals and their central TENDENCY, AS A FUNCTION OF DISPERSION. USED FOR proportioning size of sets and determining repetition IFNGTH: $m_{1}: m_{9}: m_{2}=\frac{s_{1}}{s_{1}}: \underline{s}_{2}: \frac{s_{3}}{2}$, DELTA $=2 / s(m) C$.

$$
\left.\left|\begin{array}{l}
Q_{1} \tag{4-24}\\
Q_{2} \\
Q_{3}
\end{array}\right|=A \frac{g}{2}\left|\begin{array}{lll}
K_{11} & K_{12} & K_{13} \\
K_{21} & K_{22} & K_{23} \\
K_{21} & K_{22} & K_{21}
\end{array}\right| \begin{aligned}
& I_{1} \\
& I_{2} \\
& I_{9}
\end{aligned} \right\rvert\, .
$$

All aine terws, alx of which are differerit, are required for referencs to an erbltrary coordinate aystom.

Comatuter celaziation prograns; such ac developed by llacren, Dougherty and exice (1960) to solve transient boundary problens in isotropie sodia, could be revised to eatisfy continulty of flor: through a cubleel, or sadiel volume element when each dischasge conponent is a function of all three sradient conponents, 1.e.

$$
Q_{1}=A \frac{g}{z}\left[K_{4} I_{1}+K_{12} I_{2}+K_{18} I_{3}\right]
$$

ete.

Itre comonig. problens are solved isotropically after transforming coordinetos. To obtaln the transformition factors and the offective conductivity of the fletitious mediun (discussed in Chapter 1), principal aies and permoabilities are re- . quired. it obtain these, it remalns oniy to diagosilize the sumany tensor of equation (4-24). finding the principal asec as elservectors, and pelincipal permeabilitles as elgeuvalues.

Equation (4-24) then becomes

$$
\left|\begin{array}{c}
Q_{1}^{0} \tag{4-25}\\
O_{2}^{0} \\
Q_{b}^{\prime}
\end{array}\right|=A \frac{g}{2}\left|\begin{array}{ccc}
K_{n}^{\prime} & 0 & -0 \\
0 & K_{22}^{\prime} & 0 \\
0 & 0 & K_{2}^{\prime}
\end{array}\right|\left[\left.\begin{array}{l}
I_{1}^{\prime} \\
I_{s}^{\prime} \\
I_{s}^{\prime}
\end{array} \right\rvert\,,\right.
$$

the prises slanitying reforence to a coordinate systen parallel
so the principal axes of the tensor. Equation (4-25) is equivalent to the familiar equations

$$
\begin{aligned}
& Q_{1}=A \frac{g}{\partial} K_{1} \frac{\partial \phi}{\partial x} \\
& Q_{y}=A \frac{g}{2} K_{3} \frac{\partial \phi}{\partial g} \\
& Q_{z}=A \frac{g}{2} K_{z} \frac{\partial \phi}{\partial z},
\end{aligned}
$$

siven by luciant (1927, p. 226), Childs (1957, p. 63), and others.
It has teon noted already that intargranular flow may be superposed upon model frecture flow, so that the permeability of folnted, granular-porous media mis be deterninat. If the solid of the medium has permocility R_{s}, this valuo may be added to each of the principal permeabilitias determined for the jolnt syaten. If the solid is itself anisotropic, described by

$$
V_{j}=\frac{g}{2} K_{i j} I_{i}
$$

then one may transform its tensor to the coordinete ofsten used to orient the joints, add each tern to the tencor for the joint bysten referred to the same coordinates, then diagonalize the tencor sum.

- It can be demonstrated that the tensor form reduces to the equation civen lor parallel joint sets. When all joints have the samo orientation n_{1},

$$
\left|\begin{array}{lll}
K_{11} & K_{12} & K_{13} \\
K_{21} & K_{22} & K_{23} \\
K_{31} & K_{32} & K_{32}
\end{array}\right|=\frac{2}{30} \Sigma b^{3}\left|\begin{array}{ccc}
\left(1-m_{11}\right) & -m_{12} & -m_{13} \\
-m_{21} & \left(1-m_{22}\right) & -m_{23} \\
-m_{31} & -m_{12} & \left(1-m_{33}\right)
\end{array}\right| \text {. }
$$

12 further, n_{i} is also a coordinate axis, say the 3-axis,

$$
x_{1}=N_{3}=0 \text { and } n_{3}=1 \text {, }
$$

so. $\left|\begin{array}{lll}K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33}\end{array}\right|=\frac{2}{30} \Sigma b^{3}\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right|$,
$0 r$

$$
K_{11}=K_{22}=\frac{2}{30} \Sigma 6^{3}, K_{33}=0
$$

es previousiy derived (p. 103).

Poreaster Estalmation

It is possible to worl in reverse, to obtaln from permeabillty and geometry measuremente, an approximate velue for pora osity that is better chan the flrat estimate shown on page because it includes the influence of orientation of the condulte. Fleld testc have been derreloped to establish for a gite the pelncipal permeabilities (Chapter 2) when princlpal axes havo been deternined from the geometry of the joint system (Chapter 5). These axec should be taken as a nes coordiante system. Joint orientations, obtained vith reference to geographical coordinater (or other), should be transformed to the ner ares. If apertures were alco known, the meacured directional permeablity could be compared to the valuas computed by the present nodel, thereby fustifying use of the model as a subotleute for testa.

Deternination of poreasize distribution from flow data obtained from intergranular porous media requiresassumptions of pore geonatry to interpret such tasts as the capillagy-pressure. water-seturation crrve. Bundles of tubes and networks (Eatt, 1956. pp. 152-153) have been assumed. The macroscople pature of fracturod media permits better deflaition of the geometry of its conductore, but there memalne aublguity because we earoot cur -
rently detereane olther the palring of aperturos and orionta- 1 tion, not the distribution of aperturos alone. We must be cone tent, at this time, to ossume all apertureo alike in magnitude. In a leter chapter the orrors of porosity ostimation, ande on the assuraption of average apertures throughout, are assessod by calculetion of porosity from disporsed model media contalning noral, los-normal and exponential aperture diatributions.

Let the pesmsability tensor for a jointed rock modius be known, is :rall as the orientation dispersion for, say, three sets of foirite, but assure no dispersions of aperturas. The $=$ unnary tentios $1=$ composed of sub-tencors arising from each cot (cuperscripts 1, 2, and 3):

Wo cannot iolve for the elghteen unknotns on tho fight (eech metri: is syasotric), sinco :se cen rrite but ois different simultaneous equationc from the above. Tho matricer must firct be cinplifled.

A sot of joints eymotrieally di=persed (eay by Theher's equation) about a centrel tondoncy can be replaced by a perallel set of plarar conduite plus a tubular sot parallel to the central tendency of joint normals. Tho ratio of permoablilty of the tube set to ths plane set dopends on the anisotropy characteriatic of the disperitin. It cill be chorin in Chapter 5 that the afisotropy of a diapersed det depends more strongly upon the orientstion dispersion than on the dispersion of apertures in the eet.

Further, it ulil be shown that the tensor for a single alsperced ${ }_{1}^{177}$ set bes negative uniaxial symmetry, that the extraordinary pere mablility, k min! 10 always leas than the ordinary permeability, k a lx (to borrow terudnolosy from petrography), the ordinary belays radially symmetric about the central tendency of the et. In other words, the geometrical interpretation of tho parmoabilqty tensor for single dispersed sets is an oblate spheroid. . Thus $k_{n a r:}$ and $k_{m i n}$ can be expressed es proportions of the permeability, kp_{p} of a parallel set of joints having the same specific surface and aperture dispersion:

$$
f_{\text {mar }}=c_{1} k_{p} \quad, \quad h_{\text {ain }}=c_{s} k_{p}
$$

A single joint or a set of parallel joints is mathematically equivalent to en isotropic contloum plus a tube with negative conductivity lying along the normal to the plane. This rect is employed 25. the first mint: on the right of the following equatetron, wert the isotropic $\left(\delta_{i j}\right)$ and normal ($m_{i j}$) components are resolved.

The unique sure sets arising from tine tho rupluconent steps are parallel, tons additive os simon below,

$$
\left|\begin{array}{lll}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23} \\
k_{31} & k_{32} & k_{33}
\end{array}\right|=\frac{2}{30} \sum b^{3}\left\{\left|\begin{array}{lll}
c_{1} & 0 & 0 \\
0 & c_{1} & 0 \\
0 & 0 & c_{1}
\end{array}\right|+\left(c_{2}-c_{1}\right)\left|\begin{array}{lll}
m_{11} & m_{12} & m_{43} \\
m_{21} & m_{21} & m_{33} \\
m_{31} & m_{32} & c_{31}
\end{array}\right|\right\} \text {. }
$$

In the equation, $n_{2 j}=n_{1} n_{j}$, where n_{2} is the central tendency of one of the sets. Since there is an equation of this sort for each joint sot, and their an is given by equation (4-27), we may $20 t$

$$
h_{p}^{l}=\frac{2}{30} \sum_{b^{3}}^{l} .
$$

Noe we are ready to sum components:

$$
\begin{aligned}
& k_{11}=\left[\dot{c}_{1}+\left(\dot{c}_{2}^{\prime}-\dot{c}_{1}\right) \dot{m}_{n}\right] \dot{k}_{p}^{\prime}+\left[\dot{c}_{1}^{2}+\left(c_{1}^{2}-\dot{c}_{1}^{2}\right) m_{n}^{2}\right] \hat{h}_{p}^{2}+\left[\dot{c}_{1}^{3}+\left(\dot{c}_{B}^{2}-\dot{c}_{1}\right) m_{n}^{3}\right] \dot{h}_{p} \\
& K_{22}=\left[\dot{c}_{1}+\left(\dot{c}_{2}-\dot{c}_{1}\right) m_{22}^{\prime}\right] \dot{b}_{p}^{\prime}+\left[\dot{c}_{1}^{2}+\left(c_{2}^{2}-\dot{c}_{1}^{2}\right) m_{22}^{2}\right] \dot{k}_{p}^{2}+\left[\dot{c}_{1}^{\prime}+\left(\dot{c}_{2}^{\prime}-\dot{c}_{1}^{3}\right) \dot{m}_{22}^{3}\right] \dot{k}_{p}^{3} \\
& k_{33}=\left[\dot{c}_{1}+\left(\dot{c}_{2}^{\prime}-\dot{c}_{1}\right) \dot{m}_{33}^{\prime}\right] \dot{k}_{p}^{\prime}+\left[\dot{c}_{1}^{2}+\left(c_{2}^{2}-\dot{c}_{1}^{2}\right) m_{33}\right] k_{p}^{2}+\left[\dot{c}_{1}+\left(\dot{c}_{2}-\dot{c}_{1}\right) m_{33}\right] \dot{k}_{p},
\end{aligned}
$$

these are three of the six possible equations in the three un-
 possible.

If should be clear after seeing in Chapter 5 how anisotropy varies with orientation dispersion, how the coefficients e_{1} and c_{2} can be determined. By computing numerous dispersions of both orientation and aperture, forming each time the ratios of $k_{\text {max }}$ and k_{ml} : respectively, to the permeability of a similar para-. 102 set, k_{p}, there wee obtained the relationships graphed in Figure 4-7.

If it is assumed that all conductors are identical is apes turbo, ib, then that aperture can be computed from ko, the poremobility of the parallel set. Porosity can be computed stoa the first, sinslervilued estimate, but such estimated porosity, Of any other derived porosity, ill differ from the tree values according to the actual distribution of apertures. the purpose of Chapter 7 is to ind the magnitude of these errors, by come parison of the identicainaparture value and certain distributed-

FIGURE 4-7 PERMEABILITY RATIOS AS A FUNCTION OF DISPERSION, $\dot{K}_{f}:$ ISOTROPIC PLANE, C1, AND CENTRAL AXIS, C_{2}, OF A DISPERSED SET, TO THAT OF A PARALLEL SET.
aporture values. Por all distribution of aporture,

$$
h_{p}=\frac{2}{30} \sum b^{3},
$$

While for a unique constant aperture b.,

$$
t_{p}=\frac{2 N}{3 D} b_{0}^{3},
$$

thus

$$
\begin{equation*}
b_{0}=\left(\frac{3 h_{p} D}{2 N}\right)^{1 / 2} \tag{4-29}
\end{equation*}
$$

An aparture estimate can be made for each set whose representative permeability k_{p} has boon deteminod. It is a function of the number of dispersed conductors travorsed by a sampling line of length D following the central tendencs (D is the same for each set of the system), and K_{p}. Secondary joint porosity in rock con se better estimated by equation (4-30) than by equation (4-25).

$$
\begin{equation*}
\theta=c\left(3 t_{P}\right)^{1 / 8}(2 N / D)^{3 / 2} . \tag{4-30}
\end{equation*}
$$

where

$$
c=\frac{1}{N} \sum \frac{1}{|n \cdot C T|},
$$

the constant dependent on the orientation dispersion of a set, graphed in Figure 4-6. The estinated totel porosity is the sum of the porosities of the sets.

Deadiend pore spece (fatt, 1961) is not included in equasion (4-30) since permeability does not refleet stagnant voids. Displaceable porosity is desired for such purposes as grouting, but oulssion of dead-end voline may be detrimental for electrice al conductivity studies of for flow of comprossible fluids. Combined dispersion of oftentation and apertume

By-letting both ofientations and epertures vary in their values, ve have introduced a complieating difficulty, for it is usually impossible to deternine anolytically the distribution of
a varlable dopendent upon two or arore diatributed varlables. Thare are many ensinearling probleme of this mort that can only be colved by iterative techniques, and most handily on computers.
Fatt (1952) raported a statistical analysis of multiple indee pendent variebles in electric los detemination of formation saturation. Later he determined saturation-ceplliasy pressure relationchips (1956) for diatributionsof pore radius in random network locations. Discrete pore-size distributions facilitated stepuilse computation of saturations corresponding to the extent of intuasion of a phase boundary upon increase of pressure. Dife ferent pairinss of pore elzes and pore locations gave negilgible diopercion of results. End the procedure ylelded significantly different results each time, a statiotical adalyals of the distributed results vould have been necessary. Warren and Price (1961) reported asmpling of varlous permeabllity distributions to charreterize individual volune elements occupying random positions in a heteroseneous permeable medium. From a finite nume ber of coaputer runs, the most likely ovarall permeability and moments of the distribution of permeabilitios were obtained. Other applientions have been described by Moyer (1956). like the epplications eited, the present model of jointed media employs a general technique called fonte-Carlo sampling (U. S. Mat. Bur. Standards, 1951). The proper method of obtainIns dependent distributed properties is to compute succossive solutions in batches, each rum in a batch having random input. deta sampled from large discrete or contimuous populations of independent varlables. Then batches are large in number of runs, the central linlt thoorem (Mood and Grajbill, 1963, pD. 149 and 403) Jubtifics the application of normel error statistica for analyzing the resulting dietributions of answers. The theorem
etaten that $1 f$ the sample size n (number of suns, in betch) is Increased without linit, the diatribution of sampling moans (average of a batch) approaches normel with mean equal to the population mean (aversge of an inflnitely lazge betch of runs), and with varlsnce (of batch avarages) equal to $1 / n$ then the population varlance. If, instead, a batch conslste of only one run (samples of size nal), the batch angret ls the one-zun anso wer and Monte Carlo sampling will generate a population that need not be normal, nor need the mean or varlance equal the population pararoeters sought. For thls reason, batchas of 49 suns have been emplayed in this study, s o that a betch may be necsiy eractly reproduced. In Flzrre 4-8 are graphie results of directionsi permesbility determinations (described more fully 1ater). In this figure, two separate batchea are superinposed, each of vhich is a full computation of principal permeabliteles from the saine populations of orlentstions, apertures, and apace ings, but rith data rearryanged to assure genermition of differe ont randon numbers. The batch median of each curve falls voll within the comprited 95 percent confldence range of the correse ponding reaxum curve. Thls ellminates the need for multiple batches, bince se can calculate the precision of measures of a ainglo batch, reducing computer runing time to reasonable values.

In the frequency plots of Chapter 5, (bottom row of plates 1-15), ecch run value has been represented by polnt on each eurve. These zuns are samples of $8120 \mathrm{n}=\mathrm{l}$ (as opposed to the arerage of more zuns than one). The curves regresent: the dee olred frequency distribution of a population of perpeobllities. More of less muns than 49 vill not greatly alter the distribution, but will effect the seliability.

FIGURE 4-8. PRINCIPAL PERMEABILITIES, $X 10^{9}$ CGS UNITS MEAN NUMBER OF $1 / 2$ JOINT ON SE SET, 1 ON NW SET
NORMAL APERTURE DISTRIBUTION, CENTEN=.005, STD=.001,DELTA-112 REPRODUCEABILITY IS SHOWN BY TRACES OF A DIFFERENTLY ORDERED BATCH OF SOLUTIONS HAVING THE SAME PARAMETERS.

However, the central limit theorem operstes on a lower level 124 herse also, for cach mun 1s procens of averaging the contribue tlone m.conductore make to the sample permoablity. If mere Infintity large, . 11 permeablilties computed from a population of ortentations, ete; would be the samb. If mis sall, only a fow random conductors are lacluded and the permeabilities are scattored. One object is to study parameters of this scatter as function of m, thus evaluating requirements of sample size for replacerant of discontinuous media by equivalent contime. The speed at vhich the distribution of means approaches normaley es m increases depends on the shape of the distribution of the population sampled. It approaches more rapldiy near the mean than neer the teils. Flgure $4-9$ is reproduced from lood and Craybill (1963, p. 152) to 1ilustrate the changes of the distribution of jeans as sample size increases. If a normal curve Is not demonstrated, normel error theory cannot be used to evalvate paramoters of the population. The permability eurves deo voloped by the model are estipates of the popriation of permeabllities, but the parent forn of the pogulation is unknown, approachlag nomal only in the lialt of large samples. the ree liabllity of the pazameters of a curve of untonom shape can only be lound by applying non-payametric mathods (Hood and Graybill, pp. 403-422). so called because with these methods the functional form of the parent distribution (described by the mean and variance) dees not occtr in the analysis. The basis of these methods 1s a property di ordered scatisticsi n values, ranked in ascending order of megnitude, divide the distribution into i/ (n+1) areas, which, on.the average, are equal. Thus, the 25th somilest solution, out of 49, estimates the median parmeability. Confldence intesvals on the madian can be calculated from the

Fisuse 4-9. Illustration of the central 1lmit theorem. ghowins the distribution of samplins means. (c) The means of atmples of size $n=118$ the pepulation aampled (orpohential in this cese) (b) Skemmese decroases for $a=3$ and (c) yorsaley is appreached for $n=10$. (Astor Hood and Graybill, 1963. p. 152).
bimomial distribution, elnee the probablilty of on observation falling above or below the median is $1 / 2$ in each cese. the nore mal approximation to the binomial la good for samples as large as 49. The Elayrard binomial esbles (Aitken, 1955) loente the 95 percent confidence interval about the median of 49 moasures within 7 observations to elther side, as does the normal approximation, $1.96 \sqrt{n} / 2$. If successive batehes of 49 runs are executed, and the 95 percent interval laid off about each median, 95 percent of these internals would include the median of the population of batehes.

If betches of suns are made with smaller and smaller numbers of conductors, their diatributions aze somethins closely rasemblins the distribution of apertures cubed. Aimost any distribution cubed is hishly skecrad to the sight, thus, amy distribution of means of cmall samples is also skerred. If the cample size differs, from batch to batch, every batch of 49 rune is an estimate of a separate population. Intuitively, the permeability of a 10-foot cube of jointed rocik should model the same es. a atstistically homogeneous 100-foot cube containing it, yet it is proven to be not 80. Changes in median valuea of directional permeability with chanse of sample size or volume are important aspects of this study, for they indicate the trend of values that should be applied to boundary problems of different dimensions.

The reader interested in the mechanics of the computer proe grame built to implement this model uill find a brief deacription eccompanying the pregrams in Appendix A. The ilret veraion of the compriter mecel listed there (soveral versione, not shoun, preceded this one) was meant solely to investigate anisotropy variations upod changes of the oizientation arid apacins parae meters. That is the subject of Chapter 5. Additional subrou-
then vert added to mike the second version Listed, a tool for
 Lavestigatins aperture distributions, pressure-tost discharges and porosity, the subjects of Chapter 6 and Chapter 7.
.here has: been shown a need for a model study that will guide the field vorkor to appropriate leantification of prineipal exes of any given geometrical system of joints, faults or other planar conductors. The three-hole presaure-test arrangesent proposed in Chapter 2 vac predicated on fore-knorledge of the principal axes, whebout which principal perneabilities cansot be measured. While the 14 model joint oysters reported in Chapter 5 may mot fit any rect system exactly, the variety of special cess covered should serve as guides to define, by come parison, the appro:bmite orientations of axes for nearly all cases.

The model results are significant evidence that fractured media are generally andsotrople, even more so if real conductors ere individuetly andsotrople.

THE INPLUENCE OF JOIRT ORIENTATIOM

ON DIREGTIOHL PERGEIBILITY

introduction

One of the more useful results to come from the parallelplate model is knor:ledse of tho influence on flow behavior of the apaci:us and orientation of conductor planes trancecting an impervieus solld.

Trio formula for the persecbllity tensor elements

$$
\begin{equation*}
K_{i j}=\frac{2}{3} \frac{b^{3}}{D \mid m \cdot C T}\left(\delta_{i j}-w_{i j}\right) \tag{4-19}
\end{equation*}
$$

for a alnsle unifors planar condult of aperture $2 b$ and orientation n_{i} can bo applied to 23 many conduits as one wishos to include in a zodel of intersecting elcmente. A celected sot of epertures, peitred with osiontations, may be onvizioned as a sample from =ore jointed rock mediun. The directional permenbility of tia sodol, or en approximation to tho diroctional permeability of a resi jolatod medium, ean be obtained by diagonalizint the tensor found of the sum of all 9 olements contributed by each plener conductor.

In t:io abstract, it is imatorial inhether the conductors ase facite, folnts, folletion, sand seans, of sav cuts. Let us call thes joints, since jolnts are the moot likoly condactors encounteref. In Chaptor 3, it vas pointed out that to assume a conductor to be unifona =ad izotrople throughout an infinito axtent is to dopert considerably from reality. Still, the model set up in Chepter 4, leading to equation (4-19) and the superposition of florjs, here finds utility in defining the principal permeability ases of e. modiun, in relation to the geometry of its joints. Though the assunptions need refinement, improve-
ments mode by future vorkers will probably not chanse the que 1^{129} Leative findings of this part of the etudy.

Hodels of planar conductors, each of uhlch is uniforn, isotroplc and continuous, may be characterized: (1) by parameters specifylng orientations, (2) by parameters spectifying the frequency of oceurrence in a volume, and (3) by parameters deseribling the varfation of the apertures of conductors. The desired insight into the propertlos of real fointed modia can be obtained throush study of these three classer of geometric varLables alone, before further complicatins parametere are introduced in tho future to describe continulty, moneuniformity or apisotropy of indioldual conductivity.

If zor every conductor, apacially defined in position and ordentation, there is acelgned a particular aporture, then there yould be for the aggregete of conductors one unique permocbility tensor. The addition of other conductors to the system would alter tho tensor in sagnitude and direction. An arbitrary gradient ic laplied in computing the directional permonbility of the model, and the fleld gradient is assumed uniform over the dinensions of the model (D in equation 4-19).

Only ono distributioa of apertures will be used in the follorins alccussion, but the effect of a variation in the distribution of apertures on porosity will be considered in Chaptor 7. It is essured that the aporture distributions are continuous for all rock types; within the range of apertures ropresented, any ziven velue may be found by lncreasing the sample size sufficiently.

Thoush it may be possible to monsure and assoclate an aperture with etch joint orientation observed in the flold, the practiecl diffieulties of attaining undisturbed conditions aus-.
geste that it will nover be done on a routine basis. zather, 130 apesture distributione will probably be approximated by indisect means anslogous to those used to estimato interszamular pore alze diatzibutlons (furcell, 1949; Burdine, at.al., 1950; Ritter and Drake, 1945).

orieptreion piefeibutians

- An ordorly natural groupins of rock folnt orlentations has been deconstrated by innumerable ileld geologists (see foferences In Chapter 3). One subparallel group is called a sot, and the several sets at a site, a system. Individuals of a set ace dispersed around a contral of Daverage" orientation. orieatation distribation is best onvisioned by first transiatins all planes of a set to intersect at a polnt in apace, then erect a rector nosrasl to cach plane. Lat the points where these vectors plerce a unit sphere represent the orientation distribution. The resulto ant of unit voctors representing a set of planes is the central tendency. Jolnt. normals are dispersed about the central tendency, as 1llustrated by gtereonet plots of real systems in plate 16, and for sypithetic syatems in Flsures 1 of Plates 1 to 15. The theory, techniques and applications of stereographic representstion of vectors in apece have bsen presented by Sinder (1948), Doan (1958) and Coodran (1963). Real systems commaly show lam perfect redial symotry about a central tendency, uhareas the computer-8ensrated synthotic systems are symotric.

The genercted syathetic vectorlal data are used as sets of planer conductors that may exist or be approximated in nature. Genoreted data has the advantage over natural diapersions for paranoter studies, because a vector frequency distribution cen be reproduced quitekly and consistently by essocistion oith a disperifion coofficient. Real joint orientations can be used in the samo mannor as synthetic ones, by randomizins the oloments in digital form, but the answers derived from them cannot be reiated to well-deflaed dispersion coofficiente.

A mathanatical formalation of vector dispercions devisod by Fisher (2953), has bean used to generate oynthotic joint sets. Other formsictions, with of without significance tests, have been publlshed by Asmold (2941), Greemrood and Durand (1955a and 1955b), Watson (1955c and 1956b), and "latson and lillliams,(1956), but these are not used here.

The froquancy at any point of a Fishor distribution is pro= portioncil to $e^{k_{f} \cos \theta}$, where K_{f} is called Fisher's coefficient, and θ !s the contrci angle betweon that point and the ceatral tendency. By veryian K_{f} from 0 to infinity, the dispersion may be chansed ifon uniform ovor the entlre sphore, to roncentrated at the contri: fendency. Synthetic joint sots with axial syanotcy can thersfare be generated as desired, olther dispersed or alignec in ortentation, by virying k_{f} and specifylng the orientation of the cantril tendency. A fins of width de at o from the contril terdency ineludes an arec of the unit sphere that is

$$
d A=-2 \pi d(\cos \theta)
$$

so the nurbor of vectors through tho ring is proportions to $d F=-2 \pi e^{k_{f} \cos \theta} d(\cos \theta)$.

The totel tirrough the ephere is proportional to

$$
F=-2 \pi \int_{-1}^{1} e^{x_{f} \cos \theta} d(\cos \theta)
$$

-

$$
\begin{align*}
F & =-2 \pi \frac{1}{R_{f}}\left(e^{k_{f}}-e^{-x_{f}}\right) \tag{5-1}\\
& =-\frac{4 \pi \sinh k_{f}}{k_{f}} .
\end{align*}
$$

$$
\begin{equation*}
d f=\frac{d F}{F}=\frac{K_{f}}{2 \sin h K_{f}} e^{K_{f} \cos \theta} d(\cos \theta) \tag{5-2}
\end{equation*}
$$

The flux eltrough a cone of half-argio θ about the central tendency is proportional to

$$
\begin{equation*}
-2 \pi \int_{c_{0, s}}^{1} e^{k_{p} \cos \theta} \cdot d(\cos \theta)=-\frac{2 \pi}{K_{f}}\left(e^{k_{f}}-e^{k_{f} \cos \theta}\right) \tag{5-3}
\end{equation*}
$$

Fisher's equetloat vero dasigned as an error law, for if the vectors ase refidom, the probabillty thet one liea within an angle θ is the retio of emprecitions (5-3) to (5-1):

$$
\begin{equation*}
P(\theta)=\frac{e^{k_{f}}-e^{k_{A} \cos \theta}}{e^{k_{t}}-e^{-k_{f}}} \tag{5-4}
\end{equation*}
$$

All the synthetic joint nomal dispersions shown in plates 1 to 15 :rese produced by taking probabilitios botroen 0 and 1 froa a rercom unifors nember generutor, equatod is in equation
 yecosin and inciox, that use this slgobse.

Roal joint dispersions can also be deseribed by a central tendency orientation, and the dispersion coefficient best flttins the set. 2ho enntroid of a set of pointa on a stereonot can be eacily obtined aljebraically if the set le mot eplit betueen

 to orientetions dispessed in theif orizinal roletivo positions, best aromid $=2$ astinctort central sendency, stilftod to the zanith
of the plot. The computed orientation e are indicated in
Mmes: Figures 1 through it of plate 16. Fisher dispersion ∞ efficient cen to estimated by comparing a plot directly to the sequence of aynthetic plots in Plates 2 and 3. If the set is irregular or assymertic, an approximate K_{f} can be obtained by calcalotinz the vector atrength (Arnold, 1941; Places, 1953) and entering a graph (Figure 5-0) relating K_{f} to the strength. Vector strength is defined as the average component of vectors taken in the direction of the central tendency:

$$
\begin{equation*}
(S T R)=\frac{1}{N} \sum_{j=1}^{N}(\cos \theta)_{j} . \tag{5-5}
\end{equation*}
$$

The relationship of vector strength to X_{f} was obtained as folloves The total number of elements in a Flower distribution is

$$
N=-\frac{2 \pi}{k_{f}}\left(e^{\alpha_{f}}-e^{-k_{f}}\right)
$$

and In an element $d(\cos \theta)$ there are

$$
d f=-2 \pi e^{x_{f} \cos \theta} d(\cos \theta)
$$

members. So

$$
\begin{aligned}
(5 \tau R) & =\frac{1}{N} \int d f \cos \theta \\
& =\frac{k_{f}}{e^{k_{f}}-e^{-k_{f}}} \int_{-1}^{0} e^{k_{f} \cos \theta} \cos \theta d(\cos \theta)
\end{aligned}
$$

Integration by parts gives

$$
\begin{aligned}
\text { (STA) } & =\frac{K_{f}}{e^{K_{f}}-e^{-K_{f}}\left[\frac{1}{K_{f}} \cos \theta e^{K_{f} \cos \theta}-\frac{1}{k_{f}^{2}} e^{k_{f} \cos \theta}\right]_{-1}^{1}} \\
& =\frac{\left(1-\frac{1}{x_{f}}\right) e^{k_{f}}+\left(1+\frac{1}{K_{f}}\right) e^{-K_{f}}}{e^{k_{f}}-e^{-K_{f}}}
\end{aligned}
$$

FIG.5-0.RELATIONSHIP BETWEEN VECTOR STRENGTH, $\frac{1}{m} \sum_{i=1}^{m} n_{i}$, AND FISHER'S VECTOR DISPERSION COEFFICIENT.

$$
\begin{equation*}
(S T R)=\frac{e^{K_{1}}+e^{-k_{f}}}{e^{k_{f}}-e^{-k_{f}}}-\frac{1}{K_{f}} \tag{5-6}
\end{equation*}
$$

the function graphed in :18uro 500. ortentation of arinctinal axon end fletribution of asincioch permeabilitice for gecious folot gjetema

Lacking indications that there is any rolationchip betreen joint aperture and its oriontation relative to the wholo set, it is asournd that the olements of an aporture distribution are ubolly indepenient of the elemente of the orientation dietributhon. File necessitates statietical eveluetion of a fer scrpic combinctions out of tha infinito possible combenations of tro ine dopendent continuous distributions.

- Ire conguter prosram dosigned to iniplement equations ($6-19$) and (4-22i) is in Appondi: A, toisether uith a descripeion. bre amples of srapiscal output sorvins to ebbreviato the voluninous results of couputctions are in Plates 1 to 15. once the teck of prograrening if coaplete, these machincomado plote seve enoush interpretetion tife to pernit inclusion of an additioncl dizonston in x.rameter studies. lbse nusorous configurations of epacing, orlantition cad aperture distribution have been studicd than were poseible by minusi procecaing of computor output. The plots reproduced here, but a portion of the total nuber e:ecuted, includo 2845 sopirate deteralnitions of directionil permonbility. Each conductor, munberins 20 to 2000 for ench solution, ranuires a colution of oguntion (4-19), as3rescting cbout 14,000. Each sample of 49 colutions, leadins to $=$ complete print-out of metrices and Cerived peremeters, ac illustratod in Appendir A, plus a pale of plote, requires ebout 2 minutes of IBy 7090 computer
time. Dovelopaent of the progrem required about 20 computer 136 bours in progresalve compliation and dobustins over a apan of a year.
plates 1 through 15 illustrate most of the special ceses of joint system geometries that might bo met or appriosched in sature The systass modeled includo up to threo aets. plate 1 shows the effect of sampla size for a single set with a given dispersion. Plates 2 and 3 shor in sequence the effect of deereasing orientation dicecraion, from Plahor': $R_{f}=6$ to 60. plate 4 treate tro equel, orthogomal sets, folloted in order by othor plates illustrating tro orthosomal sets of different digpersion, two orthogon:1 ssts of differont epacing, two mon-orthogonal (45 degrees tetraen central tendencies) sets of equal dispersion, two monesrt:ojonal, different sets, three orthogonal sets of equal dispession, three orthogonsl eets, one of uhich has different sipeing than the other two, three orthogonal sets, one of ublei the different dispersion, throe orthogonal sets, each with different dispersion, three orthogonal sets, each with different spacing, tro orthogomal sets and one non-orthogonal with equal dispersions, and last, plate 15, three non-orthogonal sets sith equal diefersion.

Comen to all compater solutions lilustrated here is a fixede parameter distribution of apertures. It was ebosen somenhat are bltrasily on the foorledge only that permeabilitter maserred in mang placos in a jointed mediun sive okerred distributions with frequencles :weh higher in the low sanges than in the high: later vork shossed this distribution' to be imperfect, a. finite ireiquancy at 2020 зpertures beins impossible. This is not a vieal error. The answers aso not seriously affected by the distribution of the small elements because perpeebillty contributions depend on the
cube of aperture, Figure 1 of plate 2 and Fisure 2 of all other ${ }^{139}$ plates descrtbe the assumed aperture distribution, ploteod as a density distribution for 2 micron clasies of hall apertures, and ce a cmoulativo percent eurve. The computed arithnetic, seomete ric, and hermonic moans are shomi also the median.

Fisure 1 of all but plate 2 is an upper healsphere storoographle projection of the notmals'to joints forming the populae tion sampled. Computer prosfams vECOER and STEREO (Appendix A) were used to pat a large number of these orientations fato digital forn, the direction cosines of indipldual elements of a Flcher dietribution of normal exrors on a ophere (1953) and to plot them as polnte on a stereogram. Samples of these populatione, usucliy emaller in mumber than represented on the stereonets were used to compute directional permoablilties. The caption of ech plot ldentifies the spatlal orientation of the central tendoncy of the vector distribution, obvious also by the center of grevity of the points. mis offlcient representation of vectors ic not only a great labor add apacing-cavias device, but also facilitates mental sresp of complicated asscogates of numberg. Ecch plot of 500 veetors required about 1 minute on the IB9 7090, aftor appropziate programing and debagsing, as ope posed to 10 hours hand-plottisg for 500 points. Such a study as this would heve been inpractical a fer years ago, since the enore uovs rolum of data handied could not be processed by one man in years. The sequence of plots, Flgures 3, 6 and 9 of Plate 2, and Figures 2, 4, 7 and 10 of plate 3, offerc a visual comparison tool for eatimating the dispersion coofficient of similarily dise played orientetion data obtalned in the rield. Any one of the Plgures 2 of plates 4 through 25 may be used as referesce approximations of patterns of field data lervolving one, two or three
sets. Frincipal parwaadillty axes may be ordented approximetely 38 Whth the cid of these ldeallzed solutions. the neod for thls wae demonstrated in Chapter 3, where a 3-hole puaping test was dee signed on the assunption that ayes could be predicted fsom joint data.

The eecond zois of figures on each plate displays in stereographie projection the principal axes corresponding to the 3iven orientation, disparsion, and spacing parameters. In each figure there appear orthogonal triplets of dlamonds, circles and crosses. costesponding to martmon, intermediate and minimen permeabillty axes. There are 49 such triplots, each a separate colution computed from an independent random sampling of the given population(s) of foint orientations and apertures. In this way the ganse of possible solutions can be portrayed, for each eamplins contalns dilferently orlented condults, palred with differant repertures. Hith 80 naty solutions plotted togethor, unique triplets canoot be Identified easily, but it is the riole sange and concentretion of solutions thet 18 of interest. Tho scetter of exial ortentations lndicsted by the model refloct the vaclations in grinelpal axes that would exist fron ono place to amother in a jolated modiun having geometrical distributions 11ke the model. Each sampling of conductors leads to the digectionsi permeability of a mediun having those specilic conduits, repested over and over throushout the intintte space. There is introduced a rendom ostror beeause in prorotype socks, adjacent volumes have different conduits, but the directlonal permeablifty error cecreases as a mean value la approached upon inerease of sample size or volume Since part of our interest is in the dispersion of the permeability statistics, our purpose. es vould be defcated by considering oniy mean vilues and large
camples. Coe of the perpposes of thls pasanoter study is to ase ${ }^{1} 99$ certaln the site of sample requised to set 800 representation of a modiung and to eatimate the orrore lavolvod $1 f$ amall sado ples are used.

To this end, prinelpal permeabilities are plotted in the bottom gros of figures. Agaln, ve use diamonde, clreles and crosees to malntaln correspondence of permeabilities and axes. The data generated by the computor progran is seen to consist of three princlpal axes and three pribelpal pormeabllities for each colution, the former piottod in atereonet form, the latter in distribution erries. Cumiative frequency is plotted on a probablilty scale, to bying out departures from mormalcy. Slace the permeablilty date for each axle mast be ganked before plotting, correspondence of ases and magnitudes is loat, but a atatistical - description of varlabie quantities is obteined. oniy one of the pripelpal permoabilitios could be plotted cumiatively if mutual identity betrieen direction and permoabillty were malntalned. If two princlpal conduetivities are nearly the same each time, then their axial orientations are sensitive to changes in the same ples. Ṣince cay two equal orthogenal vectors define a plede of Lsotropy: eeo expect and find in this ease that successive solutions ecatter orlentations throughout a sreat eirele of the stereonot. The equatorlal plase of Flgures 4, 6 and 8 of plate I Is an example. Ine éanith, nosmal to the plase of isotropy, is the only unique principal axis. aurves of prineipel conductivities on the latropic plane, for examplo, FLgures 5, 7 and 9 of LLate 1 , ebow slight soparations, indicatins that individual colutions are slightly anisotrople. While slight andsotropy exLets on the plane for each rample, the interainsling of diamonds and elreles on the giedie iodicates statisticel isotropy over a

2arge roluce. 'Subioution EDi3 (Hexvin, 2959) cophaeleoe exp 141 such bles. This progrea computes the elseavectore and elservel-
 sadnot, 3. Theoe labolc determine the une of damonds, circtes, of crossos plotted in the fligures. Inos, in cases of mancisotropy on a plano, the eurve of major permeabllitios for example, sbown by deamonde, is actrally a serfes of values for vertous exes on the plene, not for a urigue axis. The separation of the curves vaniches for larger samples.

Another consequence of cursulative plotting of three perseebilitios is lose of ldentity of particular colution triplots. A 1lse parellel to the abelssa does mot intorcept throo prinetpal permoabliltics of a slagle solution. So to preserve the individuni, relationshipa, there bes been plotted also the masimon saisotrop les. These data are recorded by cots ta the lover sos of figures, representins the zatio of mintruen permoablility to maxtrom pernocbility. As thls property varles with the mego aftudes cosyrutod, a cumalative dietribation is generated.

Defferent cample stzos or volumos bave been used to evalvate chrases in dispersion of principal axes and potwoiblilelos.
 net plot of cires and a cumulative froquency plot of permoabliltios desertiting all golutions for camples of a eize stated in the exptions to the frequency plots. The slze of eamples tocreases from left to sisht, sharpening the dofinition of ansvers. From left to right on each-plate, (excopt 2 and 3), there is alco shown a secreast of diaporaion as sample slee ineroases. Hose results are sumparized in Fisure 2 of plate 2 and Figurio 3 of plates 1 and 4 through 15. The baevy solid lino connects coaputed values of the median permoablilty for various
sample dimancione or condult numbers, and by lisht or daraed 142 Lisee, the 95 percent conildence zanges about the mediens.
plate 1 introducse the computation technique with the alm plest geometry, a stagie, sympertical dispersion of planar cone duits, (Figure 1). Apertures are dispersed according to the absoluts valus of a normal distribution uith mean, . 025 en, and standard deviation, . 035 em (Figure 2). By changing the sign of improper nezative apertures, a skowed distribution is formed with hisher arithnetic mean and modian, and lower geometric mean than pertains to the nonetranaposed nonisal distribution. The first problea solved (illustrated by solutions in Fisures 4 and 5) was to find the distzibution of possible orientations of principil exos of thic jointed mediun when only 25 conductors ase presgat in a 270-em cute, and to find the principal porseabillties thet correspond to these axes. The ibnte Carlo eampling methenisa involven the pairing of a random oriencation from the pozulntion of Figure 1, and a sandon aperture from pigure 2. Its conductive contribation 2 s stosed as 9 terms of a symetrife parneatillity sensor ceforred to the ases of Fisure 1. The sampe ling procseds rith the paizing and computins of tesms, oach timo adding then to the tensor. After 25 samplings, the genersl ten301 is esmplete easeept for a seale correction to account for foint gpecirg. The tensor is then dlagonalized to yield three sealar principel penaocbilities and three pectors as principal axes. these are stored for the mosent, while 25 more conductors are camplea gipins a ner tensos solution of permeabillties and ases, somemhet different than before since different foints are included in tho-second sample of 25 than were included in the first 25. In this nanner, 49 Ladependent solutions of 25 cone ductors each are generated and stored. Subroutine STEREO then computes, as instivetions to the cal-Comp ploter, the x-y coordinates of the poles of vectora (the princlpal axes) in stereosraphic projection, one axis at e thme le markod by appropriate ayabols. In one of the stereograns, Fisurt 4 , a concentration of x^{\prime} : lies at the center, orfenting the minimum principal permedbllity and dioplayins its diepersion. It is approximatoly similar to the plot of poles of conductor planes (Pigure i), slace only small flow components take the direction of the everage joint nosmal. The axes of intermediate and major permeabilities are plotted in turn, as cireles and diamonds, forming a girdle along the equator, dieporsed 20° to 15° to elther side. One orlentation on such a plane of atatistical lsotropy is as likely as another, thoush an individual solution possesces slight anisctropy. the same statement may apply to notural jointed media. sote that aberrant orientations are possible, es illustruted by the intermodiete axis (elrele) orlented 178° u, 30° from the verticel. Doe leste opening at an extreme orlentation within the population will dominate the diroctional pernacbillty juet ac an open or brocelatod fault will dominate the fiow in fointod rock.

For tho set of 49 colutione, there is produced also a free quency plot of prinelpal permeablilitios, pligure 5. The curve of snallest magoitude corresponds to the direction normal to the set of conduit plones. The skerness of this curve is so slight that ose may consider the interval marked between the 26 th and 84th percentiles to approximate two standard doviations from the mean permeablility. In genaral, however, the form of a permeablility distribution io unknown, therofore only son-parametric methods of interpretation are justified. The median velue of a ranked stitistic (the 25th out of 49 in this caso) is a usoful moasure bee. cause hall the time, values whll be greater, and half the tine,
emaller than this value. in offoct, what has been done is to sencrate 49 eolutiona to assess the entise sange of possible soo lutions under the given linput parametere. Only a flnf te mumber of solutions ase possible, even with a nodern compater. So a method of assessing the sellabillty is required. Confldence intervels about the modian have boen computed on the basls of the normal approximation to the binomlal distribution, justifiod for samplos of size 49 (rood and Gzaybill, 2963, p. 408), and Including 7 observations on alther alde of the median at the 95 porcont level. Under the caption to the correapondins atareonet plot (pligure 4), there has been printed the median principal permeabilitios and the confldance ranges for all axes.

The modian and lits range are ureful for predicting an indifiduel value, say the pemeabllity predietion for a sinsle test bole in a large fommetion. On the other band, the arletmotic moan, not ahovn in these figures, would be desirable for astimation of the most representative average permoablility that will be oncountored by individual drill holes in many parts of the formation. Moans are often inedequate for special purposes, for ine stancep whore extremes govorn design. Por oxample, dem foundation treatment is usually undertaken almply out of fear that local exosion and progressive detertoration may occur at places where - extrone permoabllleies oceur, oven thoush the rater loss is oconomically accoptable. If we had data of such quallty as in those syathatic modia, the extremes could be estimeted from the distribution curves, because the percentage polate of ranked statigties are thenselves estimates of the probabllity of obtaine lige a siven value. Figure 5 of plate 1 indicates a 2 percent chance of exceoding a principal permoablifity of $14.6 \times 10^{-6} \mathrm{cgs}$ units for a samplo of 25 conductore with tho siven paranoters. the bleoriel distribution.

Diepersion of princlpal permeablilities ls elso portrajed in Figure 5. thlle the mloor permeibllity has a emall absolute ranse, it has a larger percentege range than the major parmobll1ty. The surpricinsly large dispersions (3 < \mathbb{K} max < 14) observed are a consequence of the dopendence of flow upon the cube of aperture, a mechanicm clarifyling, qualitatively at thls time, the large observed variations in measured permeablility in jointed rocks.

The dispersion docreases for larger aamples, as the Central Liritt Theotem predicts (Food and Graybill, p. 149). Pigures 6 and 7. then 8 and 9 ace repetitions of the procedure usins 100 and 500 condults, reapectively. Increases of jamiple slze are ace companied by changes in slope of the frequency curver. fote also the change in plotting cenle used, a feature bailt into the come puter progran to take best advantage of the dimensions of the graph. The principal axes are also better defined for larger samplec concentrated utthin about 10 degrees of arc and 5 degrees of are for the 100 and 500-elenent eamples,respectively. The median value undorgoes a proscessive shift as sample size increases, as shown in the surmary pesmeability plot, Fisure 3. Io see why. Lmagine the distribution of one of the principal permeablifties, 21 the samples were of slze 2.0. It would reflect closely the assuned distribution of apertures cabed, boling even are akerfed than the aperture population, Figure 2. The aedian would lic far left of the mean. Now as samples of 2,3 or more are troated similarly, the skewness faile off rapldiy (Figure S). and for large csmples, (Flsure 9) asymptotically approaches normo al, no metter what the aperture distribution, whereupon the median
and man are 1dentical. Therefore, all permeabliltiee vill be amilot for ennll eamples than for large samples. Inspection of all such aumary plots indicates that the pasmeablilty of a model jointed modiun ia falyty woll defleod if 50 conductors are lap cluded in the sample, and resy well deflned for 100.
plate 2 and lis conifnuation, flate 3, illustrates the offoct of decreasing dispersion of a singlo set of dispersed jolnts Acrose the top fow of figures act the folnt popalations for Maher's $\mathrm{K}_{\mathrm{f}}=6$ to 60, and bolow ench, the represeataition of prinefpal pormoablilties for samples of size 92 to 106, vafyias eceording to equation (4-20) to maintain a sample dimension of 1035 en for a mase of invorse spectific aurface 10 en. As dispersion decreases, there is a progressive reduction of dispere cion of primelpal axes and permeablilties, dininution of the minor permability, batter approsch to mormal distribation, cone vergence $2 f$ the two highest pormeabilitles and a marked increase of anisotropy. Figure 2 summenzes the cosvargence of permeabilities, uhich change littie in magnitude after $\mathrm{K}_{\mathrm{g}}=30$. Iro regulasities ladicated for the permeabilities on the leotropic plage are due to the 'sample size, for when 500 conductors are ina cluded in cach, the trends ase emoothed (solutions are not sbown for 500). Elgure $2 A$ is a aumary plot of maximen anisotropies.. Dispersion coefficients last than K_{L} = 6 tive principal pernees bllities rapidiy approsehtirg isotropy, whecees above $K_{T}=20$, the andsotropies are quite larse. The plotted range eovers the uscel natural foint disperaions encouncereds the aheated granite exposice shora in Plgure 5-1 indicates that a ainsleeset model has a real eounterpart in nature; whether or mot apertures bave been voll represented reanins unknorn. The olmplest aysten of dispersed folntẹ conalats of two equil orthogenal cete, represented in Plete 4. Flsure $5-2$ ohorre a sock exposur that is eosentially a cwo-set orthososml syitem. The cholee of central tendencles dipping 45 degrees in and SE Is arbltrasy. The atereonet plots of princlpal axes indiente that the contrel tendencies of the two sots lie on the plane of lsotropy, evan for small camples. The unique major axie cone calas tho ceatral plane of each oet., in other words. lies parale Lel to the predominent direction of intersectlons. The problem of identifylus tro axes on a plano of lsotropg. discussed ebove.
 Ways 6 small anfsotropy on that plane. whereas the seatter suge gests that the two lossor permeabllitles converge to each other. A modive, cut by two orthogonal sots of wo dispersion (perallel). unst bo lsotropic on the plane motmal to both. with pecmoablilty axactig tulce that value in the difcetion of the intersection. plate 4 apmmaches that condition.

As $600 n$ es the two deta differ, as theg do in flgure 1 of plate 5, chree unique asos appear. one eal ${ }^{\circ}$ pasallel to esch ceatral tondency, the major axis agaln colnciding uith the direction of foint intersoction. The flest lnpression is of a. plave of isotropy for smal camples, but on closor inepection. It is geen that the efrcles and crosces are not eveniy intermine sled. At cample siza 200, the ases cre distant. A emall differe ence in prinelpal permeablitties elwass results in stroes dispere elon of cyinl directions along their comon plane. tote thet the minor ases follows the contral nomnl to the leset dispersed set, for flof components are least in that direction'.

A alnilay sesult can be obtalned by vasying the apacins of two orthogopal sets, at ahora on plate 6. The rim sot, Figure L, Is onif bale as Erequent as the SE set. the Lateracetion drece;
tion te still the major axie. the lesson to loam from thle plate is that of the two lesser axes, the atronger liee in the plane of the, more frequont sot.

Then two oqual sote are not orthogonal, as in Pigure 2 of plate 7, the princlipal axes coincide with the axes of sympetry of the system: major axis on the intorsection, interrodiato blsoctins the acute angle and the minoz blsecting the obtuse ensle betweon condult plaines (vice-versa the conduit nomals).

If one of the two noncorthogonal sots is less disporsod than the octiog, as in Mgure 1 of plate 8, ve get the gamo roe sules as in flote 7, except that the minor princtpal axis shifte closer to the more dispersed planeo, or lese dispersod pormis.

The mose cormon natural rock unit contains throo sets. Figure in illustrates a romarikably perfoct, porsistent, orthogonel cyster. itree equal sete dispozed orthogonally la a pseudo-cuble pattern, as shom in Flgure 1 of plate 9, cosult in isotrople permenbility for all sample slzos. the axes ase seattorod over all orfentations, and pernoablitities converge sleuly with sciple size torardse a alnsle ralue. The oignificint sapect here, as in other isotrople conditions, is the randorness of axial ortanention, even though wach solutian is elighely anisotrople.

If tro orthogonal sets are equal, tholy nosmald lio on a plane of lisatropy evan though a thisd orthogonal set exdate. If that third ses is veakor than the othor tio, for instance ofth groater dispursion, or greater spacing as in plate 10 , then the central tendoncy of the weaker set is the major asis. if the exeraordinary set is stronger, by soason of closer spacias or less dispercion, as in plate il, then that axis is the minor permas:- .. billty direction. in all such ofthogonal cases weak anfootropy
exists, so the axes are highly varlable, corverglas alouly with locreaslus sample alse towerds unique axes.

If all three orthosonal sete are different, by reason of different dispersions, as in Plate 22, or by different speciogs, es in plate 13., the principal ares are atill paraliol to the central tendencles of the sets, with major axes parallel to the pormels of the vakest conductors, and minor axds parallel to the nozmals of the etronsest. Comparicon of pletes 12 and 13 sbovs that spacing is more lmportant than orientation diepersion, for the ares converge to thelr unique orlentations for amaller sample sizea if it is spacing rather than orientation dispersion that rasies.

When the thated set is not ofthoganal to the other two orthogomil, equel sets, as in Plate 14, then the major axds lies Closest to the greatest praber of intersections. Inspection of Fisure 1 reveals an axis in the in quadrant contalning the cone tral plane of the voirticel sot and bisecting the central planes of the borisontal and 45 degree SE sat, $s 0$ thls is the mejor axds. The minoit axis is that having loast intersections, in this case blsectins the angle between the two closest nomals.

Three noncorthogonal but equal seta are disposed at the same angle from each other in Flisure 1 of Plate 15, appearling as though they belonged to a single, dispersed set. The resulting directional permeability has the symetry of a sinsle set, dee veloping a ploze of isotropy and a unique minor axis aymatrically cantered between the three mosmals.

Estirnting princinal dicections from field diata
A general case could casily be modeled, but to no adivantage. Abs flold data not fltting these spechal casos would serve as a general examplo. Figure 1 of Plote 26 (pege) is a etereonet

an: - 0 ,

-

Figuas 1.
8 PERESGRAPHIC PRDECTICN, GPDER MEMISPIERE

 $D_{8}=-09323,00819,03540$

$$
K_{1,}=130
$$

$$
x_{t_{1}}=120 \quad x_{f_{2}}=975
$$

ficure 3.
8 SEREOGRAPHIE MROLECTION. UPPER MEMISPHERE OR GROYJLLE, MATE 10, CHNNE NOINT PaItERN $P_{1}=0$ 2706, - $01093,09418, P_{8}=-03174,09186,0236$ $P_{3}=-09175,-03549,01790$

$$
K_{f_{1}}=110 \quad K_{12}=120 \quad K_{f j}=1175
$$

STEREOGPAFHIC PROECTION, UPPEA MEMISPHERE DR MAIE 6. LET-2 LEE. DOINT PATTERN $p_{1}-05000_{i} \cdot 02580$ 02635; $P_{2}=-02848$ 03856, 08780, $D_{3}=-09474,-02463,02070$

$$
K_{f_{1}}=123 \quad x_{f_{2}}=60 \quad K_{f_{3}}=73
$$

Frane 2.
STEREOCRNPHIC PROJECTION. UPPER MEMISPHERE on plaie 9. L. abut euterge, doint pattern $p_{1}=02314,-02033,0.9505 ; P_{8}=0.3918,09003,01760$ $P_{3}=-08460$, OSi2A 01470

OR jolat nomale roplotted from Ozoville Damolte exploration . data (Lgong, 2960) by Subroutine REPLII, with lte paramoters, namoly the central tendency of each set and the vector strensth, computed by Subroutine Jmit. These axas differ by soveral dee grees from the Fisuol estimatpe used by the designers of the oroville powcr cavern. The axee are marked and the equivilent dispossion cocfficients laboled. Figure $5-0$ was used to transe late vector atrengeh to fisher's cooffleient. The ansle between central tendencios are, in degrees:

Set $1 \times$ Set $2=72$
Set $1 \leqslant \operatorname{Sot} 3=80$
Sot $2<\operatorname{set} 3=71$
In this monorthogonal systen, thero is some symmetry, since set 2 Is alnost equidistant from sops 1 and 3, but it will be shown . that the zymetry does not help locate the principal axes. The relationchips ere sketched in phzure 2 of plate 26. Judging by the dispresions, (Fizuro 1) sot 1 is the strongest and sat 3 the weakest, but none of the sets are remarkably different. The model ε tudies, in particular plate 12, indicated a rather weak dependence of cres upon relative dispersion of the sots. A ree port on the jointing at the orovilio site (Isons, 2961) tabulates observed properties of the three sets from tunnol oxposuros:
sable S-2

Feature	Jolnt Set 2	Solnt Set 2	Soint Sot 3
Spacins, Ranse Average	$0.02-5.0$	$\begin{gathered} 0.05 \text { © } 5.0 \\ 1.2 \mathrm{ft} . \end{gathered}$	$\begin{array}{r} 0.05 \\ 1.0 \end{array} \mathrm{ft.0}^{4.0}$
Regulatity	Planar	Irregular \&or curved	Curred, less commonly reg. ulat
Rature of Surface	Smooth, less courmonly croush	Poush	Rough
HLCth Ranse Averago	$\begin{aligned} & 1 / 2 \\ & 1 / 32 \mathrm{in} . \end{aligned}$	$2 / \frac{1}{32} \mathrm{in}$.	3/32 in.
Tightress	Tight	Thist, a fer slightiy open	IKght, a fors slightly open
Stalning \& fillins	Quartz: calcite. some Lron oxide	Quarte, opidote calcite, rasely chlozite, pyyte, iron oxide	Quartz, calcite, less common izon oxdde, rare opldote. chloride. pyrite
150503	Locally woll developed	Pegallel ulth schistocity	Holl doveloped

Some quallitasive concilaslone can be drown froa these observations. The effoct of apactus ankes set 3 strongeat and 2 weake est. the factor of spacing is wore lafluantial in controlilng celativo, atrength of the sets than is the dispersion, factors which aro partly compeosating in this caso. All other factors equal, rore nlanar conductors are less reolstent to flow than ase irrogular ones, but the planar jointe are diagnosed as shear fallures cith broother, tishter-fitting surfaces. In this case, one mifht conclude from the table that the tighe, smooth set 1 Ls a poor conductor compared to sats 2 and 3. paveity of ironstainlns sould be indicative of little pereolation, bat all sets ajts sean allke in this aspoct. An observer canot obtaln a good meosure of aperture at the esposure. A shoar direction complifantasy to set 1 13.noterident, while the roughness, tightnese, epparent aperture and ixrogularity of sets 2 and 3 put then in the tension jolne category; probably several times as conductive es sot 1. Sot 3, besides, is better developed, meanias more contimuort. A reasosable estmate of the permoabli1ty ulth rospect to thece sets may be

$$
\text { Set } 1: \operatorname{Set} 2: \text { Set } 3=2: 5: 6
$$

Since it is not sots 1 and 3 that are alike, the orianta.. tion symetry doe3 not help. Sloce a minor axis lies closest to the nomsi of a strons conductive set, a falte estimation of the orientation of the meror axds when several sets art combined is the rosultant of nornals, welghted eccordins to their estimated conductivitio3. Thus the resuleat

$$
2(\vec{i})+5(\overrightarrow{2})+6(\overrightarrow{3})
$$

bac direction cosines e.676, .541,.503, .
the minor pormeability axds shorm in Figure 2 of plate 26. The other exes ase on the plose monnal to the nicor axis. The major axis Is nour to tho intersoction of the 2 end 3-planos, elfghtiy torande tho loplane, cs estimated in the lisuro. Ihis defines the interpodinte ortrogomal as woll.

These axes, deteminod solely fron the geornotry of jolnts and with quilitative guidance from tho mitue of the frectures, applies only to tise jolnted deconprossed zock noar the exponed surfnca. Somorbet different conditions nay exist in the umilsturboi coeic. If only surface obsorvations are avaliable, they muct be used an gulion to the undisturbod, denpor menilua. If pressure-tectins is boins desienned, as reconsented in Crapter 2. surface orlentetions give the best apalleblo indicetions of prinCipal nsec. Rorings usualis confim (lar the writor's exparience) the extransiotion of surface jolnt goonotry to dopth, bat study of tike enre,borochole photographs ant dxill-sater concurstion must bo zilntaingd for continuad re-sorilustion of tho surfacedata estirste.

- jprefor variss rapldiy with dopth in sang exyotniline rocks. Tho eost of conducting e cophisticated pressuro-test progrant is Littio .ore than the cost of conventional methode. . It scens adricable, in eases shere seopage or potentici distribution is exiticsi. to augnent presture tests rith deta obtainod by tools Liko the bors-?olo camega to deteruine jolat orientations, space lnge and measures of larze aportures.

Thare is evillatle (Cilif. Dopt. of 'fater Resources, 1963). for the provilie afte the gare sort of date necessary to estabish the rolative conductive importance of joint sets at depth. Pleure 3 of plate 26 presents in storeographic projection the reportec oriontations of 84 major planar features, 77 faulta, 1-25 fect tifos and 7 schistose zones up to 7 foet uide. A
alsalpicent elustering of orientations oceura in the direction of eet 2 of P1s. 1, PLate 26.

Insofar as 90 porcent of the pumping test discharges (Thayer, 1962). could be attributed to fion in shears instead of Joints, it is apparent that Fig. 3 more nearly indicates the andsotropy of the foundation as a wholo than does Fis. 2 uhleh is appropriate for near-surface (0.8 . the portphery of twnels) problens.

The sejfor conductors of Fi3. 3 fall nearly uithin a syme metrieal binfle-set dispersion of $\mathrm{K}_{\mathrm{f}} \cong 15$. Plates 2 and 3 were used to ostionte this disperalon. The axis of minimem permeabile. 15\% is inclined 23 degrees westwayd, having about 1/7th the permeabllity as exists on an leotrople plane that strikes nearly riss and dipa ateeply. E .

The effect of sample stre

One of the foundations oi gromd-water hydrology le the ase sumption that intergramiar porous media may be treated as continua within recognizable geologic boumaries.

The cverige volocity through a unit asee is the voctor surn of the discherses of a lesgo number of pore openings through the unite aroa (Day, i. R., Locture, University of Callfornla, Bov. 17. 1961). Though individual pore discharges are presurnabiy variable in magnitude and direction, the mean of a large sanple is the moen of the entise population, with small dispersion about the mean for euccessivo samples (see Chapter 6).

Slmilar ressoning applies to iractured media (Huskat, 1949, p. 267):
ming suci fracturos are of Limited extent and unformly distributed throush the pay, they vill sive a resuitant offect equivalent to that of a homogencous porous mode lum. forrever, when they are of axtonded leagth and linited in number, they may be considerod separately as Looar channols."

Sasde and jolnted rock do not quallity in detall as contimu: nelther setaln the same properties upon infinite subdivision. Host boundaries of interscanular flon problens Inciude auch large sumbers of conductors, hovever, thet the acsumption of continulty is accoptable. But since large mumbers of fractures cine not be assuned to lie within problem boundarles, an adequete anmber of condults (or adequate boundary dimenslons) sbould be specified to give the desired precision of answers.

Whether or not a discontinuous jolnted rock can be troated as a continutin dopepdi on arbitrary confldence lovels one nay. set. The roork of thic chapter, in part, is to indicate the same ple size required for acceptable procision in perneabllity prediction. Almost all flow problens lie in a gesion botwoen the extrenes indicated by Miskat, a ceglon where properties are evident only aftor statistical manipulation. The model proposed here is a 5001 for elmulating reture'c statistics of fractured medis.

Hors to doternins from test Vilues the best parmeebilloy to apply to a large-sento boundery problem in jointed rock is an lnportant end soseritat questionable probion. perrolem ensinears heve studied it, with the object of extrapolating laboratory per-- meability data obtalned from dxill cores, to rolumes having the dinensions of a reservoly. Hasren and price (1961) sumperized the Literature and presented computer model results based on the assumption that emall volumes of cock possess unform perwoablilty and that the shole mecs 20 composed of many such volumes bevies permeablifilig diatributed an the laboretory test values. Thls lod them (p. 160) to the conclusion that regardiass of the dise - tribution, the overall permoabillty is wall eatimited by the geioowns:metric mean of indifidusl mesgures. Jointed or frectured rock
does not fit thil ansumption of unsform discreto blocks of dife lerent permobility. Indiplduel planar conductors extend lafge distances. Some die out with distance, overlapping othest that commence at an intermediate 'position. The lmportant variable, continuity of conductors, therefore, urgentis requires fiold and fodel impostigation. Beedod is a procedure for estimating overall permeablility from sample permoebilities, ono that lies betroen the methods of Harren and price, and that of the writer.

It is felt that most folnted rock is more closely duplicated by the continuous-channol model than by the discrete-elament modoi. The influence of discontimitios dopends upon tho eceles ine volved. It could perhape be deconstrated that if folats extend many times tholz apacing, the discontinuities in the array will alter the permoablilty very litele. Hhen extent approaches apacing, perneobillty mey drop rapidiy. Finseller (1933) and fodgson (1961) have atterpted to obtain fisld data on spacing. Field examination is hampered by the need to study conduits in exposures, where they ire seen in only one dimension, much disturbed fron their intsct subsurface state.

Ons objactive fulfilled by the model is olucidation of the dependence of pesmeability on sample size, of for siven spacins, on volunt of aredia between boundazios. Inspection of Flgs. 3 of plateo 2 to 15 shou that with gowe geonetrical sracture syatems, all throo principal pesmabilities, minot, interpodiate, and mojor, increase with increasing sample size. Hose often one or -two lineraade rhile the other falls. Slace it in the goometric mean of the threo that serves as the isotropic permeability in discharze cosputations, it is logieni to luvestigate the offect of sampla zize upon this effective pormeability:

$$
K=\sqrt[1]{K_{1} K_{0} K_{*}} .
$$

Phgures 5-4 and 5-5 gumbarlze these relationshlpa betwoen the geometric mecn. (isotroplc) pompobllity and cample alze, from all computer batches, plates 1 to 15 . All model oybtem dicpley increacins permoablity with elze, usually bocoming assyaptotic to an infinlte samplo-size value at about 200 conductors, though a few eppenar to increase without limit. Uncortalnties within the range of the 95 percent confidence linite may explain some of the exceptions to asmptotic closure. The difference between infinite medium permeability and sall sample (20 to 30 conductors) perweablilty vcries from one system to another, and doubtlese deponde also on the parent distribution of aportures, farnsabllity chanses, from omall to large samples, are 5 to 25 percent of the infinite-sample values. It is concluded that Hhatever aperture distributions are found in naturo, the infrequency of large apertures (800 Chaptor 6) vill resuit in highly ckerjed aperturcecubed distributions. Consequently, there io a crend of Increasigu bulk permesblility with fncreasing problem dimonsions. If heterogenelty is as postulated by Warren and frico (1961), with the bulk composed of individusi-unifora, volume elements. larger asaples would give smaller permeablilty. Each of the 49 rums depletod in ecch frequency curve could be considered as the permoablilty of a volume olemont. The geometric mean of such a distribution, streved to the right, ic alvage less than the median or mean:- (See Pls, 2 of Plate 1)

Tho ucefulness of the median permoebility for predictins flow in c olnale installation, such as a drilichole in sn extensive modiur, bas been discussed. The median is readily obtained by cumulative plotting of perwecbllity mecoures (see Chapter 6).

FIGURE 5-4. INCREASE OF GEOMETRIC MEAN PERMEABILITY, $\sqrt[3]{K_{x} K_{0} K_{\theta}}$, WITH THE NUMBERS OF CONDUCTORS IN. THE MODEL. DATA DERIVED FROM ONE AND TWO-SET SYSTEMS, PLATES I AND.4-8.

FIGURE 5.5. INCREASE OF GEOMETRIC MEAN PERMEABILITY, $\sqrt[3]{K_{x} K_{0} K_{0}}$; WITH THE NUMBER OF CONDUCTORS IN THE MODEL. DATA DERIVED FROM TUTEE SET こJSTE:IS.

PLATES 9 - 15.

Other parameters must be determined froce the shape of the pars ${ }^{176}$ meablility distribution currea, samely the means and dispersion. All small-sample diytzibutions shown in plates 1 to 15 disciose considerable disperaion and skemmess. The skemess devoloped encouraged further modol sturfy because it resembles the skenness of foundetion prossureetest discharges moted by Inrk (1963). Dijperution and skerneas decrease for larger sample sizes in the model, sa siell $C Q$ in tho prototype (Chapter 6). Other aperture distributionc than tho someribat apblemazy one employed hese would indicate different rates of change of disporsion and akotio ness, but since littio is yet koom about actual distributions of aperfuras, furthès study of such sates is uryasmented.

Juat as the 50th percentite point is used to estimate the population median, so too may any other point of a son-payamatric diatribution be used as an estimate of a percentile point of a popalation. Then any interral selected may be used as a mocsure of the populstion dispersion. for a momel diatribution, the 16th and 84th percentile points enelose an interval oqusi to twico the atenderd deviation, centered about the mean. it is conveniont to use this interval even for skewed, mon-mormal distribue tions. The 16 th and 84th percentile points ase seored by hosizontal lines on the-frequency plots of plates 1 to 15. Flgure 5-6 dieplays these diaporsions expressed as a percentage of the median, veraus the gumber of conducter elements. ${ }^{\circ}$

The popuiation of permeablilties obtained by sampling 30 or Less at a theo has rery large diapersion, 68 percent of the mensures lyins uithln a region about the median that measures 60 to 140 percent of the median. The disperaion docreasee rapldiy to the range 30 to 60 perceat at size 100,20 to 40 percent at slze 200, but thereafter closes very slouly, the range belns 12 to 20

percent with ganples of 01ze 600. The miror axit has greater percentago dispersion then the major axie. it ls apparent that if reasonably accurate predictions are to be made from koom aperturs and goosetry distributions, samples of 100 or more should be wed.

Aey bousdery problem solution in eractured rock consists of two parts: obtalning a solution for the most likely properties, and evclunting the varlasions that may astee because the properties are not.sixed. For the conditions modeled, the curves of dispersion define one probablifty limit as a function of samplo aizo; withla which 68 percent of the trials ulll fall. for examplo, if r:e meesure permeabilities in drill boles with packers set to breckat 30 conductors, (small eamples) of 3 sets, we can dofine a distribution curve for that sample size. If a tumal section is to be loft unlinad in the same mediun, with a length that will cut 300 conductors, ve can use the sample permeability disperzion to estinate tho dispersion in the full-size inatallation. Fiset use the model curve, Pis. 5-5, to estimate tho increase of tic expected median according to the increase of sample size, froal 30 to 300. Then use the model curve, Fig. S-6, to lind the percentage dispersion change, from size 30 to 300, and $=p p l y$ that poreentage to the expected 300 median. take, for ensaple, Fig. 3 of plete 17, Chapter 6, displaylng pump test permeablilty data firm past of the oroullie' damalte, with median 5000 gallone/day and dispersion 230 percont of the median. A testing progran designed on the basle of Chapter 3 rould provide three such curves for the three prinelpal permeablilties, whose geometric monn, $\mathrm{X}=\sqrt[3]{K_{\mathrm{K}} K_{0} K_{\theta}}$, vould characterize the mediun. The oroville deta can oniy be interproted as 1sotrople. the averago precsure test-length at 0 roville was 60 ft. , which we
may assume to cut 30 conductors, on the average. Now, 12 sume 178 5-5 shors hout the medien changes in an orthogonal joint eyatem of three sete, not vory different from the oyston at oroolile. The geonotric mosn of medienc, or for thle isotrople example, the medirn, is noerly constant above 200 conductors. The median for 300 conciuctors 254.5 to 21 percent groater than at 30 con-. ductor cizs, deponding on tho cause of anfsotiopy. Thus, the expocted acile:y for tio tunnel section may bo takon as 5400 gallons/des, an E percont increase predictod. The dispersion of the modol :edilas at sire 30 ic about 100 percent, while at 300 it is 22 porcent. A proportionate doerease for the field data would be from 230 percent at 30 to 29 percent et 300 conductorc. Fhus, the esthnatod perisability to be used in tunnel discharge conputation is

$$
K=\frac{Q_{8}}{\delta y}=\frac{5400 \times 10^{-9}}{68.4(211 .) 1.844}=0.19 \times 10^{-9} \text { ess units } \begin{gathered}
\text { (see Appen- } \\
\text { (ix A } \\
\text { FKESII) }
\end{gathered}
$$

with probabllity 0.68 that the expertencod velue will fall vithin the ranze of .13 to $.24 \times 10^{-9}$ egs units. (

The astitrotic mean, or so-callod expected value, cannot be ostinated by monopcganetric methods. It always lies to the right of tho median for thece skosed dístributions. But the mode ol indicetos that for mumbers of conductors exceeding 100, the moen is riftiln 10 porcont of tho modian as distributions approach the symetzic normal.

The model-study results cennot be applied confldently to fleld problesw until they have been well tested by measurement of geometrios; srodiction of anisotropies, and vertification. Uo need erilijitionsd ascictance of all agencies equipped and financed for peimobllity etudios on damaltes, oll-flelds, tuncels,
leechlug sleldo, wasteadsposal or underground storese, testins 180 these mothoda la all posilble fractured foymentions. Somo sugsestions to method ase advanced in Chapter 8. The sort of rock permoobility data sow belns employed in eivil ensineerias prace tice is analyzod in Chepter 6.

Abstract

Chapter 6 FRAGZURE FREQUELICIES ARD APERTURES SUCGESTED EX PRESSURE TESIS IN GRYSTALIINE ROCX

181

intrestuction

At thio uriting, no date is avallablo to chock the validity of the relctionships between orientations, apacings, or apertures predicted by the modol, but there are almost unilmited sourced of in-altu rock ponoeablity date of varied quallty that can be used to aubstantiate at least the general shape of the perneabillty frequency curve, and thereby to check some of the aseumptionc cocployed in the model. This chapter undertakes an analgais of pressure-test discharges from seven damsites on erystalinne rock. It interprets the data in terms of the free quency of intorcected conductors, and fracture aperture distributions that ney account for the obcerved permeablilities. Eyddence of the misnitude and garfisblity of fracturer in reek

Fracture cpertures, deep ulthin a body of rock, are not as directly neosurable os exe plenar orientations. While oriente. tions percist from exposed exterior. to concealed Interior, fracture aportures, opened sy release of compression and weatherins near the ourface, are lergely closed at depth. This ic proved bolor by cmalyais of pressure tests in rock.

Still, exposures furnish qualitctive indications that apertures cre varlable, both alons the surface of a fracture, and from one individual to enother. Aerial varlations are indicated by fractures that pinch out at their extromities, though abuting fractures ars also comion (Epdgson, 1961). The dimensions of disturbed fractures st esposed icces In fresh rock (underground) ece. wuc!s tinet open ores and tiritt ones ang be distirguished. mint-tilis $L=$ rawl anc not Appirmit is suggosted by the obuervition
that water geeps out at only a fos apose on reck faces exeaveted below the vater table. the reason for this bellef is demonetrae ted by the following analogy:

Suppose ceplllary tubes of equal lengeh, but different dieme eter, flse above a closed reservoly and standplpe as shown, fig. b-l.

Initlally, (a) this equipotential aystem vill have poztions below atmospherle pressure, 'for thore ulll be capillary rise, dee pending invorsely upon the diameter. upon addition of water (b) at the standpipe, potential thsoughout pisea by dy at which time the finest capillary maniscus reaches the rop of tit tube. All the menicel retain theif rolative helghts and characteristic contact anglea, θ_{c}.

Adding mose water (c) gelaes the potenticl and colum halghte in all cepiliayies except the finest, because the latter cen only spill by reversins the curvature of its meniscus. Rather, the liyst maniseus besins to flatten, until, at the momant the second colum reedres the top, the flast bas a meniscus

0.

b.

c.

7hsure 6-2. A subular analogy of capillay fractures at a free face.
-whth the came curvature as the second. There 2 s now the sarne po. tentlal difforence acrose both menisel, flrst and second, because they bave equal radil and tholr' columi helghto are the aame. Purther filling of the standpipe ralses successive colume to the top, slorily decreasing the redius of all fillod caplilariee. then the ctandpipe head reaches the level of the tops of the tubes, all menisel are f lat and no tencion exlsts amphere in the fluid. Arrther filling revor3os the monleci, vhich riae with equal converity uprard. The largeat caplilacy therefore develops the highost mendscus. Whilo all mealoci decrease thelr madl of eurvature, that of the laggoat tubo obtoing a minifona, a hemisphere centered on the top. Therecfter, ites radius fust increasg stiving $=$ drop in prescure accoss the menlscuc. Flow from only the lorgest explliary therofore ensuas, cll others reanining saturated to thelr outlets.

At zock exposurec, the largest aporture aplile first, at Lts most open point. Furthernore, once the rough, exposed rock surface noer the largect openint is weited, tho roughness develops eaplllety tension in the ciater filn, further decrorslas the potential ct tive aperture. The uettins ary spread to the fictalty of other lesser caplilaries, inducing some to flow.

A prollalnary attempt to measure anisotzopic conductivity of singie fracturas, using yater ac fiund in a pernoameter, falled beocuse of cuch caplilery ixrogularity. Hater discharged at only a for points clong the periphery of the crack, se opposed to the expected continuous distribution.

In the rock bogond the decomprescion cone around an excavation (IElobre; 1957), thore ere probibly varintions of apertures akin to the vcrintionc ovident at the face, thoush onif pressuretests bave boen made to prove it so. Difect in-situ measurement

Ls not apoliy aceomplished, but if the fractures could firet be 184 preserved by grout improsnation, their innitu apertwres may be exposed bithout much disturbance. A lovaviscosity, non-particue lato grout, such as Ay-9 (Nnerican Cramamid ©0., undeted) could be introduced st such prossures as to cause neglisible wall moversent. Dicmond drill holes penetrating tho grouted rock ress would intsrsect the grout ifilings, whose thickness could bo deternitnod sileroscopleally on the core, or by scanalng the ralls aptically, of sor a redicactive tracor added to the grout.
illnexil voin doposits cennot substitute for grout as pree servers of linesitu apertures, because the time-pressure history of injection is unifnown. 5ook' quartz (Pewhouse, 1942; p. i3), a allction=ided, layor-upon-layer structure, indicates that somo, If not wote poine ara fllled in otuges consequent to repoated fault movarnt.

Soviot re:a3reh on fractured modia (Gostop Lonin, 1962) has cone to tec: :riter's attantion too lato 2 ore foviors in this thasis. it rellich group ia applying the fuastan method to oll reservols studie: (S. S. Hitherspoon, personal commaleation, 1964). On orthososil thlnosections cut from cores of oll-producing care bonsten, they seasure the lonsthe and aposturea of uileroscopic ($\sim 10 \rho$) exceles. Boso3ity ia a eomputed function of tho sum of lengthe, sxerturos and the area of the fiold of Niew. Fhey ind fracturs porosity to be 0.1 to 0.2 percent, seldom over 1 percent In socks :itoso total porosity is about 2 percent. The foles and Soviets find 0.1 mo the maximen fracture aperture in the sube surface. The calculated porooities correlato well with tho 1 gama-2075 los., which sugseats that they art moasuring clay lame inee, os ojenting dwe to cloy expanaion on unloading. Their positive corrgilation of fracture porosity with posmesbility of
the pay may be because alcro-ffacturing io more intense where enjor inceriras are frequant, sathne thin dircetly molated. standandizothon of pressime-Eatt pata

A method of determining apertures Lndiroctly has bean sought, since notresten data are avallable. The foper tas that $1 f$ all other geonetricul varlablos could be mensured. some information sbout the unkorn apartures sifght be derivod from mensures of promedbllity, Tho nott cbundant data, reflecting geomatricil fazlatlons at many sites, ace rocotds of puapetects and cell dizetcrges.

Turiz i1563) and Davio and Turk (1984) havo applled prapteat and reteranoll data to a search for syetematic inhorogenolty in fractured rock. Thoy establishod statictically that fractured rock: of diverse litholocy docreano logazithalecily In perpeiblifty as the Logazitho of depth increaces. Thelr histogri=s of cell gield and punp-toit diacharge all show a characteriatle shape, highly sterod to tio right. The water has ro-lotted the data collseted by Iurle, plus slailar date from otber dineltós.

Cumalatipa frequoncy distributlone of dicchasgo are used bee canse they arold the choleo of clacs intorvalc. Bafore plotting, tho scif duts is stenderieed on the acetmption that cach teyt; of different lengtio botroon pacirere, is in a mediun of uriform permecbllity. 12 all test lergthe and nat preosures vore the same, rint mould the discharge bof In the motation of chaptor 2.

$$
c=K S y
$$

relatirs disciarge to pernocbility, tho shape of the plezometers. and tho mer.d. respectivoly. A 25 -foot test langth of bix hole, with 100 pel hood acting, has boan selectad is standard, to kölch ell other tects uto soduced by
Q ctandard $=Q \frac{S_{\text {atandand }}{ }^{5} \text { atandand }}{5 y}$.
Whare Q is in $08 H_{4}$ and y is in feet, corrocted to the mad-soction 08 the test.

Fend coraputation is feasiblo for small tabulations, but for lasge aggrogates of deta, couputer bandiling is doelrablo. In all, tho srizisor analysed 311 pump teste, using a fev minutes of computer thio for a job that rould ordidarlly be budgeted for a total of cbout $\$ 100,000$ in labor. ibre rofined reculte ase obtained by Subrostines PTESTI, PTEST2A, PTEST3, and PIEST4 then Customazily enployod. Eich progrem ina written for somorthat differently recosdod liold data. mo output consists of penched carde contalniag tho rek and standerdized data, so that the roe sulta can be sorted by dopth zonoz, lengtha of test section, preosures, ote. Ench $30 t$ of deta is then fod to Subsouthne. DISGR3, which plota each euxulativo, standerdizod discharge eurve cad conputes payanoters of tho ewro for comparative prorposes. frief program doceriptionis and listings are is Appondix A.

The dite for plate 17 kias fumished the uriter by the californin Department of Hetor Resourcoo (Thayer, 1962). It ine cludes Ozoville, collfornit damsite tests from $\mathbb{E X}$ boles in the Fielaity of tho underground pocier civern. The entire foundation is amphibolite. In Figures 1, 2 and 3 of Plato 17, the tests are grouped in ranges of depth bolors ground surfece to the allddie of tbe tost length. In Meure 4 , all the data of Elgures 1 to 3. plua othor sorts outside theis depth ranises, are combined.
the shapo of each cumulativo plot in plate 17 io chacacters istic of all disehargo distributions from pump teots in crystal-

Ilse rock. These ic usually a finite rero-frequoncy, a high pers centage (about 70) below the moan, and a lons tall. For no krown reacon, the mana and standard doviation ace nearly equal. Io common distzibution function has this relationehlp, thoush the Chisesquare, inith two degrees of freedom. fles falriy woll.

The dizcherses are recordod in gallons per day under the atandard 100 pal. 25-foot teat length in ITX boles. The absolute permenbility corresponding to these discharges is labeled at the top in ess untts.

Date for plato 18 vere collected by the writer at two damaltes on the irerced Bivor, Callfornia under construction for the Mereed Irrhanetion District. Figure 1 records pressure testa in alate and zatcavoleanics in FK holos dellled 45 degroes to the steep slatey cloavage, through contacts and a prominent set of llat, opan and veathered joints. Flgure 2 records teste in simelar slate e:cspt for one high discharge obtalned in a quartzose fault sose. The data for Pigure 3 include teste in jointed slate, chlorite and tale ochist, serpentine and allica-corbonate rock. The terced data tiere furnished by Hoodward-Clydeoshorard and Ascociates, Inc., Cakland, Cellfornia.
plates 10 and 20 record uater tects conducted routinely for placement of a grout curtaln in the jointed diabace foundations of the Rirginia Ranch Dam, California. The data. was not collected by the cizter, but previousiy amilyzed by him for the designers, Woodrard-Clyde-Sherard and Acsoclates. Inc. All holes except the check holes completed after sroutins, Fisure 4 of plate 20, vere approximetoly 10-foot, vertical, air-driven holes. if frectures ase clossed by cuttlass, they do not soem to Influence the shape of the discharge curves. The short lensch of tested boles in high zeco-frequencies, in spite of an apparent foint apacins of

Floves stanmadized mup. IEst olschurce, qullonsjoar OR PUP TEET OATA. LEFT ABUTVENT. CROVILLE ONH OELOU MIIER TAREE. MLO-DSPTHS 200-400 FEET

 EELOU MAIER TABLE. HID-OSPTME 200-800 FEET

 [wi lim IESI IjAIA. IEFI AfHIMENT. CROVILLE ONM

 MERCLO TAR. DIEI.. RIONI MBUTMENF. CCBMAIN DAN PLP-TESTE CSNERTEO TO $25 \mathrm{FI}, 100 \mathrm{MBI}$, RAMEED OATA

 MRCED IRR. DIST. 1 LECT ASoITMENT. MCEVAIN OAM

Elave 1 stwonioizes one rect olcowece, gallows/oar

 151022 FCOT MIO-OEPTM, LEFT ABUTMEMT. GROUT CLATAIM VIAGINIA RANCH ONH, CALIF., MK, AlR-DRIVEN MOLES

 151025.3 FOOT MID-DESTH. CHWNEL EECTION, CROVT CLDIAIM vIRGINIA RANCH ONS, CALIF.. MOX. AIA-CRIVEN HOLES

FIGARE S. Standardited mup test discharice, chllowsfoar
 vIRCINIA RANCH DAN. CMIF.. NX. AIR-GRIVEN moles

FICURE 5 STANDARDIZED PUPP TEST OISCHARGE. GMLLOWSADAY 15 TO 25.5 FOOT MID-DEPTH. RIGHI ABUTFENT, GROUT CUPIAIN virginia manch dan, calif. . NX. AIR-DRIVEM moles

 51014.5 FFEI MID-FEPIM, RIGNI ABUTEENI. GROUT CURTAIM

 O 1026 FOOT MID-DEPTM. ALL SECTITNS. CNECK MOLES NETER GROUT virginia ranch gam, Calif.. nx. air-criven moles

 HID-DEPTMS OF TEST GECTIONS. 0 to 49.6 FEET FOLSOM OUS!ITE EXPLCRAISOUS, WX IEGT MALES

 MIO-OEPTHE OF REET EECTIONG, 0 10100 FEEI Mouan oansite exploantions, mx IEST moles

 HID-DEPIHS OF IESI SECIIONS. 5010141 FEET rolsom ounsile explorailows. mx IEsi moles
 MID-OEPTHS OF TEST SECTIONS. 100 TO 181 FEEY
ranmeanity ces umis

 MID-DEPTHA OF TEET EECTION: 0 TO 50 FEEI

Nemmeamify $c e s$ envis

FIGURE S GTANDARDIzED PUMP TEST OISCMARCE. GALLOMSHOAY HID-DEPTHS of TEST SECTIONS. 10010199 FEET sprime criek tunnel explorailows. nx iest males

FIGME 2 SIMADAROITED PUP IEST DISCHARCE. GALONSMOAY MID-DEPTHS OF IESI EECIIONS. 5010100 FEET SPRING CREEK TUNEL EXPLORAIIONS. MX TEST MOLES

 mIU-DEPTHS OF TEST SECTIONS. 20010 a7t FEEt SPRIMG CREEK TLNNEL EXPLORAIIONS. WX TEST MOLES
about two leot ct the curface. Such geandagdised proscure tosts sexve falely for abcessing the efliciency of frouting. In this case. tho chock-holo curve is hasdly diatingutshable from the pre-grout tosts, suggosting that the amall volunes of neat cem mant enplaced blociked sather than isiled the flne jotat conduce tors. Pornmodility vas nevor a problem ar thlo site.

Duca for Plates 21 and 22 soro assenbled by Turis (1963) from sources in tho U. S. Burcau of Roclametion and U. S. Corps - Of Ensinosrs, for three California altes on grano-diortte of the Slerra finvid foothills: Folcom and Aubutn dansites, and the Spstas Grack imnol.

The crimizetvo dischugsa skeved grapha genorallto the findlng of, distribution of permecblilty, and express what is common
 sures ars smill, bret unususily lagge ones can bo expected anywhere. Turit (1963) concludod fron dita standardized in a differs ent way thet under givan conditions, the moan gield of vells is about thres tiner tho medinn Ficid. plates $17-22$ confism that esprection of jisennecs for standardizod tests, rith means that are 2 to 4 ti:Jas tho medicn. mavis and Iurit (2964) applied theso fludings to the pracelcal problons of plaming woll eyso tens. Iney onncludod thet tha vothation of ylold decreasos at the sace logaritivilc rate ulth depth los all rock sypos, inelude Lng granlta, zinte, piyilite, scilst, amphibolite, quastzite. greenstono cad wotz-singollto.

Systanitia: 1ly-varyinz inhonogonoity is not consldered a factor in thls piper, sather, the varlable of depth in evolded uhon posisible by classlfying data aceording to depth sones. Varlations in the perionbility that aske whon diflorent eamples
ase taken from populatione of frocture ortentations and apers 198 tures azo.conslderod an emallor-5calo lahomogedolties than those treated by Dovic and Turk, or altorontively, ao masiations alons a surface of unform dopth bolori the ground errface. Such saspeling inhomojorielties anst also be troated atatisticallyi in faet. tho sampline problear should be underctood before eystemetic.vaziations are cesenced.

Oneo 2t 1: recognized thet permecbility is deteznined by values anspled frou dietributions of ofientations and apertures. both in the ficid and in the model, then there is hope of devisLas retionil utilization of tho depandent proportied. A given volum of rock contalac = diserste mabor of plagse liufd condyctors, but alnce all racsonable aperture values are possible, tise eative population it continwous. Thus, permeeblilty varies continuorisly also, end purpingotesta may be regerded as measures of coablinetlone of elenoatal conductors, famplod from the antire dietribution in juat the ving axployed in Chapter 5. Inhoongenolty is iscurpod dus only to the campling process. Furthormore; ve oun cecuro for tho moriont thit joint donolty in the mess is sufficiontly constant thet the numbor of condretors in a volume camplod is the same ar in any other lilio volume.

If the above cosumptions hold, then the ckernoss offors a clue to the diatribution of frscture aportures. it cee boris, fmesinc thet all fenctureis penctrated by a bole aso pazallol, and thet purgege indures filory in all of them. tho totnl discharge could be tho nean diucin:ryo of indifiducl frectures. times thefor
 senticily is equifotentifi. thus; the.discharge is proportional to the sain cube of aperturgs of ill the fracturec taken if ce o tice. Fanj c irsquancy plot of the discharges of many welle or
test-boles is proportionci to the diatribution of mean cubos of apartures sakan N at a tim. If H is knorm, then the moan asd varlance of the paront diotribution of cubes can be obtalned by the Central Linit Heorem. Unfortinately, it is inposilblo to obtaln tho distribution of apertures, b, from the cube root of

 some function

$$
Q=C \Sigma b^{J} .
$$

108

$$
b \neq(Q / C)^{1 / 3} .
$$

Ins Contral ilait incorom that operates to produce nornal distritition: in tho apdol (Chapter 5) also operates in aztural soct andi: to sito naso nomal curves of smaller and emalles dise persion 35 the samplo size incranses. If oxposures reveal the true jolat frequancy, then jrmantost eemples contain layge nume bors of corciuctore. An cvaraga test aection at the oroville dane site mas cbout 50 fect long (Thsyer, 1962, Table 6) and intere seeted =buut 150 jointe, according to the $1.5,1.2$ and 1.0 foot spaclas: roportod by Lsons (1360, Table 2). Yot the eurres ara not 502 xil , so the assuxptions, must be incorrect. Hther: 1) the sexigle aizo is actualiy sucill or, 2) the population of aperturos is so highly skefed thot samplen wust be of huge size to develop norswl diseributiona of means. If it can be estabe 1lshed that tie frequency of zero apertures unst be zero, then a cumilative dietribution of apertures (b), must be algmoldal in fore. is thile case, one mundrod or nose oleconts, as at oroVille, cantifuto : lezge samplo, uhose distribution of neans could the very nossly notent.

Prenuoncs of zore-Anoritusia

stody of intergranulor pore gize distributiono have Iod petroleum enslneers to the conclusion that as pore ele in resers Fole socke tends to seso in the limit, thois frequency mist vane Lah (Futt, Le, personal commulcation, 1964). Pubilshed experie mental evidence on this point is lnconclusive, as indieated by caplilay pressure-lmbibition tests. It a minlmumpore ilec exists in a porous material. there should be a definite limit to the emount of mercury that can be Lmbibed agelnst incressins eaplilary presture. A mininum pore alze is indicated by data of Ritter and Drake (1945), and Drake and Ritter (1945) for diatome aceous earth, fritted glase, porcelialn, porous inon and ilint quartz, but other materials, such at sillca-alunina gel, actle vated alumina or clay, Puller's earch, bauxite, and carbon all showed contimous imbibition to at least ten thousand pil (214 \%). Continuous pore-size distributions to zero size are Lmplied by Ritter and Draka's data, especially in such eases (stilca gel) where the pressureorolume curve is linear. Toster's. (2948) dete, obtalned from absorption isothermals for sels, are not interpretable of minimu size. Data of Purcell (1949). Burdlne, Gourpay and Relchertz (1950), and Engelhardt (1960, pp. 87-123) on reservolr zocks (sandstones, 1imestones) indicate, at most, a continuously decreasing pore volume. pore-size relationship. eussesting a zero asymptote in some size ranse beyond the experimental 1lmit. lo caplilag inbibition tests are known to have been pleformed on frectured material, nor is it feasible to separate primary from secondary porosity in the mierosizes (see Ritter and Draki. 1945, for definitions). The Griffith (1921) theory asstmes a crack to have an elliptical crosesection approaching zero eccentriclty (ratlo of minor to major axasi see i also Pucty. 1950. p. 378). Some especte of the cheory bave been vertited (Porkins and Rern, 1961) but it ls diffkeult to check
the acrumption of a rounded, elliptic creck extrendty. Savege 198 and Basegava (1964) meesured with an Interforomotar a mialmum aporture of 2 mierons for cracks in glass. the practical difficulties of meesuring the shape of crack extrecalties in opeque sollde susseats that that part of the Crifilth theory may never be confizwed, Observations of Crigss (1939), Brace (1963) and others already discusead, indicate laltial failure by a amititude of cracke that coallesce to form a single debphecovered break, - further indication of a mininom aperture. Hodsion (2961) noted that many parallel joints of a syotematic set doviate at thois extremities to abutz egainet each other like two cupped hands, fingertipe to palme, thus lacking fracture termini.

In any evant, the notion of a distribution of aperturea lime plies a sampling process, such as the cracks encountered alons a etraight line through the mediun. The probability of encountere ins an edge is very small. All things considered, it is concluded that the likelihood of finding a sere.frècture aporture is nil. Alternative 2) is therefore sejected in favor of the argument of small sample size.

The Frounnse of conduceors Inforsected by Drilli-lioles

In camples of equal delllehole lensth, L_{0} the number of cone ductors. H_{p} mast be Polason-diatributed 11 the conductors are randomuniform in spacial location and if the samples are vary amall compared to the alse of the popniation. the appropriatee sees oit thin conciveios is isiumerated by the foligutrs ocino

FIGURE 6-2. HYPOTHETICAL LOCATIONS OF", 笑: JOINTS CROSSING A LINE, DISTRIBUTED UNIFORMLY RANDOM. $T=100$ POINTS, $\eta L=5 / 3$.
diceaslonal plot of points, locating the intersection of a 1100 and all plane conductors cutting homsencous volume of trace tired material. For jointed rock, such a line must run essene tally parallel to the ground, or be an assembly of a number of lines crossing a homogeneous layer of limited thickness. This recognizes Turkic (1963) findings of systematic depth inhomogencity and the comparability of pumping yields for all places and formations at given depth.

Let I be the total number of intersection points. In the Length V. A fracture occupies no appreciable part of the line, so we can al that there is no crowding and the occurrence of ore has no effect on whether or not another occurs in any emil sample, L_{0} of the population. If the total number of conductors In V is I_{0} then the average density $?$ is T / V. The sample, L_{0} a drillehole length, for instance, may be moved along (or around) at will, including a different number of conductors, R, at various locations. The probability that N conductors (points) occur in L is given by the binomial density (Mood and Graybili, 1963, p. 71): .

$$
P(N)=\binom{T}{N}\left(\frac{L}{V}\right)^{N}\left(1-\frac{L}{T}\right)^{T-N}
$$

Let V and I become infinite while $\}$ I $T V$ remains constant. The binomial can be rewritten:

$$
\begin{aligned}
& P(N)=\frac{T(T-1)(T-2) \cdots(T-N+1)}{1 N \mid T^{N}}\left(\frac{T L}{V}\right)^{N}\left(1-\frac{T L}{T V}\right)^{T-N} \\
& P(N)=\frac{\left(1-\frac{1}{T}\right)\left(1-\frac{2}{T}\right) \cdots \cdot\left(1-\frac{N-1}{T}\right)}{N!}(3 L)^{N}\left(1-\frac{3 L}{T}\right)^{T-N} .
\end{aligned}
$$

As I becomes infinite, this approaches

$$
P(N)=\frac{e^{-7 L}(\geqslant L)^{N}}{N!}
$$

the poleson density. The expectation, or everage mumber, is 3L. $P(H)$ Is increacingly ekewed for . 3L decreasing bolow S, wherese $P(N)$ sapldiy approsches nosmal above 5 (Parzen, 1960, p. 246).

The observed skemess of pressure-test dischsrges can be accounted for if the usual sample length, L, is auch that the expectation 7 L, is small. It will be shown that if puap test samples contain large mumbers of conductors, distribution of yiold would always be normal.

Some of the poseible combinstions of aperture and munber dietributions are tabulated here for clarity, with explanation followins:

Table 6-1
Distributions of Discharges Under Various Sample and Aperture Condestans

Conduste in Sample

Large Numbers	Constant	Constant	Norma Norma	Normal Norma
Sma 11	skesed	Skewed	Skewed	Skewed
Aumbers	Polsson	Polsson	Skerred	Skewed

If the conduit density is hish, sample volumes will oither contain conductors that vary in number from one to another, of that have the same muber throughout. Rormal distribution is likely but not certain. Sample size could be Game-distributed, Beta; or any other, though the matter is imaterial. This is bee case large samples, however variable the number of eperture distribution, cannot produce the akewed discharge distributions, baving high zeso frequencies, that are apparent from fleld teste Las.

For Lllustration, let us asaume that the mumber of con- 201 ductore intersected by dellioholes of the aame lensth plercing the formation varies according to the Gausien distribution. if all apertures are alike (constant) the discharge is distributed accordins to the msmbers k :

$$
Q \times N b^{3}
$$

and if b^{3} if mosmal, so too is the discharge. If b^{3} is akeved (Chi-square would do), then closure to normalcy requires lerger rumbers, but the discharge vould never be like those observed. The same may be sald for large eamples of constant alze, reprecented in the upper row of the table. Discbarges would be constant, normal, or approaching nornal if apertures are constant, normal or skewed, respectivaly.

Aberture Phatributions ere Obsevired

If cample sizes ase emall, the homogenelty assumption loads inevitibly to a poisson distribution of aample aizes. If apertures are constant, the discharge distribution aust also be polsson. The ealient qeature of a polsson distribution is that it is defined by one parameter. The one parameter, $\lambda \therefore$ is ρ both mean and vaclence. The discharge plots, Plates 17 through 22. consistantly display a mean that is approximety equal to the standard deviation, instead of the variance. Accordingly, if numbers of canductors are Poisson-distributed, the aperturescubed must be elther normal or akewed. It seeas imposible to follow this reasoning further, for the apertures-cubed may be attributed to any one of many possible akewed distributions of apertures, b: skewed sormal, los normal, exponential, lincer, Beta, Gamm, Composite, otc. Distributions unbounded to the nesative are impossible, thus eliminating normalcy. Iruncated (at0) or transposed forms (such as used in Chapter 5), are unilkely
becauce elnite frequency at bwo te not expected. Munctions bounded in the lagger itsee, Inciuding lincar or Beta dietribue tions, seen not to be represented in natwe, where extran opene Ings. Like the $820 t t o s$ at Castilion Dam (Ghapter 3) ase occase Lonally reported. Logenorml exponantial or camen (c>0) dis* eributions of apertusesecubed, are most llkely, with los normi. 57 favored until better information la avallable because other natural distributions foliow this las (8reinesize, Intergranulat permeabl1icy).

Another vay of viowing the diecharge diatribution is as the sum of distributlons of many nagron clases of aperture, each caken small enough in range that less than one member, on the average, appears in any sample. The sotal discharge is

$$
Q=N_{i} b_{i}^{3}
$$

whereln each H_{1}-la distributed es Eolseon with expecestion λ_{1}. Such sum of Polseon's is also a Polseon with expectetion

$$
\lambda=\Sigma \lambda_{i} \quad \text { (Easean, 1960, i. 406). }
$$

λ mast be small, else the sum would be nosmally distributed. Uafortunately, there is 50 known way of findins the λ_{i} that would describe the entise aperture dietribution.

Description of real apesture distributions. in jointed rock or other modia, will depand, ultimately, upon direct measuree ment, perhaps down-theohole. the practical difficulthes demand, Elest, that othes methods be exhaveted. It might be possible to Identlfy which ones are conductors, thereby fixing the muber per length of hole. In Cupter 8, a mothod of cotermintis λ 1s suggested. Then the aperture-cubed mean and variance can te ascertalned, for the Central Limit Treoren (Mood and Graybill, 1963. pp. 149-152) seates that the sample means of ant distrifue tion with ilnite variance σ^{2}, and mean p ase appioximately
diatributed as normil varlates ulth varlance σ^{2} / h and man where II is the eample sice. Purthermore, the discharge ekerness requires that the apertureseubes are even more skeved. Cood representation of the diatribution of apertures, and therefore porosity, could be obtained if the general shape vere known and two parameters of ench cubed distribution were mensured.

One la not much better off dealing with some property of fractured modia that depende on lower powers of aperture, elece. trical conductivity, for instance. There ave as many poselble distributions of b that could give a cortain sum, Σb, as there are giving a surn Σb^{3}.

Wimitation br the Asgumption of a Bomoreneoue popriation
In application to field problems, care muat be teaken in dofining the geological linite of a jolnt popuitation, For these semelas reason to doubt that fractured sock in a siven dapth rage is homogeneous across formetion boundaries, fault zones, or other major atructures. inile the average joint donsity soems uniform'throughout most of a cock body, and Turk'a (1963) data sugsested no dependence of fracture permeabillty on 1ltholosy. the vicinity of a fault is often more highly fractured. The record of water flows into the Barold D. Roberta IJnnel, Colorado (Wahlstrom and Bornbeck, 1962). indicated,that 90% of the total Lagress came from about 1% of the 23 mile bore lensth. In auch a zone, expect a normil diecribution of pumpetest disecmeres, while in the country rock expect skeved distributions, slmply beceuse of the frequency contrast.

If the homogenelty assumption is cemoved, the amili-gample reasoning is changed bat littie. Suppose joints ave gregarioun, eIusterins about fault zones or characteristically bunched for some other reason. Compered to a homoseneous mediun, whose cone

 TEst getion of tingtm 20 ro se rtit Lits onevtul ar tists mio-achin 382 to tse EEET

 trat qucisens of tinging ig bi, "ff:

 Tet sectiont cricim so to t2 ccet

chant stmongizto nue test oisomater. chionsidip

 ductors ast distributed throusbout the apece in a uniformiy gean dow maner, expegt moncunfform dietributions to yield oven more skewed distributions of sample size A than predicted by the polison law los a siven average dansity, μ. As ahown in table 6-1, all aperture-cubed distributions, inciudins constant, would produce skewed discharge distributions for small samples.

Inetificastion of bodal-predicesed Relationshtipe

Plates 23 and 24 illustrate, by rescouping data from plates 17 and 22, the changes in dischasge distributions, first with depth, and second with sample size as measured by test leagthe. Hozizontal rows of figures rapresent mid-dipth intervals coneidered as statlstically homogeneous volumes: 34 to 197 foet, 210 to 329 feet , and 334 to 448 feat at the Oroville damaite. The left-hand of odd numbered fisures rapresent pressure teat discharges for short lengthe between peckers, and the slght hand figures for longer test lengthe at the sact depth.

As a test of the lasus (Chapter 5) of the trend of permoebillty with boundary dmensions ox sample size, this data fails, for in some cases the longer tests hovegreater mean and median parmeability, and in othere smaller permeability. To investigato this aspect more thoroughly, more extensive data than avallable should be employed, so that when ose depth zone at a ite is grouped according to length of test section, each sroup contains numerous meesures.

Dispersion, expressed oither by standard doviation as a pero centage of the mean, or the 84 to 16 percentile ranse as a perse centage of twice the median, decreases for the longer test longths (Figures 1, 2, 3, 4). In eceordance with the predicted effect of increased sample size (Chapter 5). But when sample slzes become very amall at depth, es opposed to large and constant, (such es
used In the model for plates 1 to (5), the percentage disperifon does not necescarliy decrease for lonser tost lonsthe (plate 23, Figures 5,6) because the median of meen tends to zero.

Prup test data from the Spring Creek Kunnel ilte are similero 1y srouped in plate 24. Diepersion decreeses with increasins test lengthe, in all depth ranses. Conchustons inom Pressure-test pata

It is concluded that the diatribution of aportures in ipace tured media, or porosity, for that mattor, cannot be obsained from permeability data alone. Except for direct moasuriment of the elements of an aperture population, the only promisins approach is to determine the muber of conductore. As will be shown In Chapter 7, porosity can be estimated erom the irequency of Eractures, together with permeablility statistics. Fressuree tests alone, as currently used, are Inefflelent for such uses as grout take prodiction. Grout take could oven rise with fale lins permeablility, so far as porosity governs it. Skewed discharge curves constitute a statistical substantiation of an oftesuspected property of fointed rock: the preponderance of the joints vialble at an exposure are closed at depth, or at least, a small proportion have elgniflcance as hydraulic conductozs.

Hodeling Puming Teste

To. substantlate the deductione from ileld praplas teste, the computer model was employed to find out under what conditions would the characteristic field curves be reproduced. For this purpose, Subroutines MAFBER, PIEZO and PLKPLI were added to the prosram (Appendix A).

NUMBER has the purpose of selecting sample size at random from preocomputed cables of the poleson distribation. the ex-

pant 1.
sperteciamic motecion. unet merisment chouctivity ares. itnele set of jeimis. Welo

siant 4.

siant 3. wincipm remanimiss. a 10° ces unis

 - a mem semple le called for, a gandom uniform number ie generstod as a probablility level. MBMBR searches the table to find the sample size closest to that probabllity.

PLEZO duplicetes the calculations deseribed in Chapter 3. for couputins the steady discharge of a cyllnder drill hole, oriented in a fixed direction (road in) in a caturated infinite medium bavins the directional permeability compated for the aample. Esch of 49 computed discharges is stored, to correspond with the 49 indopendent samplings of one or more siven jolat aperture and orientation distributions.

Subroutine pusply generates a cumulative frequency plot of the discharges, in a manner analogous to the oparation of ERPRPL. It also computes the sean and standard deviation of diseharge, marking their absisses on the graph.

When larse or moderate sample sizes were used, all pump-test distribution curves proved to be nomal, as prodicted. Figures 1. 2 and 3 of plate 25 display one of the masy exial solutions obtained under a variety of conditions. In this case, the 'sinulated dalli hole lay parallel to the central tendency of one dispersed set of conductors. The near-equality of the mana and median discharge, and the symetry of the cumulative curve generated indicate that if a drill hole intercepti 5 or aore condactors of any alze (and these apertures ware quite varled), the distribution of discharges will be nearly normil.

Shen small samples are used, some of the sanples have mo cenductors at all, many would have one or two, and ravely would there be as many as ifve. Figures 4.5 and 6 display a solution to a two-set system of conductors. . Instead of one bole, three ortiogomil ones have been.acrenged alons :prodicted -average peincipal
aces. Juat es one would proceed in deelgning andeotrople $1101 d$ sesting, as per Crapter 3. The expectation of jointe on one set wes mide 0.5 , the other 1.0 , totalins 1.3 por sample. All ibe discbarge euryea in this case (Figure 6) are skewed, and the seatistleal parametert shown on weh plot agree woll with the obsastation from field data that the mean and atandard deviation ase of like megnitude.

Sotable conflrmation of the andsotropic pump test anthods of chepter 3 is that the test-hole folloulais the axis ot least percoablilty (X-symbols) gives the hlghest diseharge, eloce it cuts ecross the densest set of conductors. The bole alons the =jor pesmeablift axis discharges loast because it lies nearly partilel with both sets of conductors.

The computer modol bes suceseded in prodictins discharge selationships sinilar to those in plate 25 for apesture distaibathone that ase sormal, truncated mormal, 208 mormal, and exponential, with a wide varietig of parameters for each (see Chapter 7 2or aperture distributions). One, two and three-set folat systecm bave been studled.
Spaciviations gh the Budrenile and rechanteal Broportios of

Prac structuras

The properties of fine frectures, mierojoints or fludd loe Clusione ase met disclosed by permosblilty teste. The mechanical properties of rock masees ase probably influenced stronsiy by such features, dopendins upon thois ability to tranait pressure Chenges. Elll: (1906) and Dale (1923) discussed rift and grein in exystalilne zocks, and identified auch plames of frecture with plases of aicroscopic flut inclunioas. Whse (1964) zecosnised that the secrofolnte he studied ace also resurrected planes of

of the flude of elther lsolated primery leclualons, or planes of secondary ones, are diseussed by Roodder (2962). Kise found mesojolnts in sranite, mismatite, gnolec, sehset, amphibolite, and basalt, but best developed in the most masive rocke. Thels presence may be an lemportant univarsal attribute of erystaiLine rocke.

Whec bolloves that common folnté developed later and "seaiLadependent ($p .296$) of the microjolnts. Ible acems unlikoly from Hodsson's obsecvations (1962) that joint sets have no mutual - ffoct upon intersection, and from. Miso's own indings: At a sivan site there may be found a mifcrojoint oxfeatation not repo reseated there in the common folnts. The munrepresented" set often appears as a common jolint set nearby. The lack of a monse ure of property of fine fractures to deflne a lover size light to common jolnte, or an upper limit to milerojolate, loaves room for apoculation that, mecojolnts and conmon jolats, ILuid inclugion planes, constitute a continuous, evolutionary species. The cormon . jolnte may be opened milerojolats, which, in turn, are predetermined by planes of fiuld inclusions which formed by cementation of carlier joint planes. Jolnts are probably transient conduetors throughout the geologic hsetory of a rock body, repeatediy opening and resceling during tectonic and quilescent pertods.

Analysis of transiont pressure tests may not sive ovidence of the nature of fine intereonnected frectures shen larger ones are present, because a moplng water table may mask any eblinges that could take place with time in a truis infinite mediun. Thoush the structure of water at cryptal interfaces is viro tually unknown (itertin, 1960), it behaves as an imporfoct solid (Rosenquist, lecture at पulversify of Callfornala, Sept. 28, 1960) capable of ereep by diolocationse.r.the strensth of water docreases
away frow eolld boundagtes, ebsorblist (influencing) up to 10 layert (53 R) distant grom ellicate manerele. thus, water in esecks opened lees than 100 \& is lafsely held water.

Continuous interconnocted liuld ille in fine iractures lagger than 1008 must come to bydraulic and phyalco-chemeal oquillbrium with noarty free sround water, if sufflelent time has elapsed during steady conditions. On the other hand, umopened joints, recognized by entrapped fluid incluaiona, cannot reslect the mobile hydraulic reglme. Roodder (1962), says that it is easy to spot by composition, the rage fluid inclusions that have leaked. Difforent planes of inclusions often have different, but uniform, pluid composition, ovidence that they formed at ilfforent elmes, and at different preseures.

Discrete Lnclusions and open Izacturis isolated by exystalilzation ase knom to contain slufds under high pressures, oven in thin sections. Roedder (1962) has verified 1000 psi pressure in some convaining CO_{2} and brine, by observing the gas expansion upon the release of pressure. Composition and pyt relationships can be dotemined by heating or freezing liuid inclusions containing two of three phaser, observins the changes under a niferoscope. Realdual sluld pressures result from seologic or oxcavation unloadins. Acroses the solid betidges of a plane of Eluld incluaione, there mat exiet high tenalle etresses. Furthermose, when rock in streined, the confined flulds must impose strese concentratione influencins the mochanical properties of the sock under static exterior loading, blast impact or drilling pressures. This promising line of rescarch seens not to bavo been exploited.

The mechanical fntluence of pose fluids cannot be discounted gren fos iporyioua cock sueh as sepdacones, for individual sreins
ace strossed by containod leclunions. Bydraulically closed frecturef extendins mose than a fow graln diamoters are unllkely In a sandstoin, but rahealed irectures, marked by planes of ine Cluslons, constitute planes of woakness. May this aceount for "amele ruptures bien atrain misht othervise be eccoumodated alons Mold" fractures?

To pressure testa have boen analysed from formations havins intergranular peameablilty as woll es fracture permoablilty. In Chepter 4. it was shown that intersramiar permeability is superposable on fracture permeability. Therefore, in jolnted sandstone, the cumalative dischage curves should shift to the risht of the zez0 abselssa, but the skewed shape should resecoble curves - from exystalline rocks.

Hold disentmination of planas ceatures
We connot always forecast which of the many planar features of a rock mass will prove to be hydraulic conductore. We must delli, and measure or pressure-test each folnt to charecterize it. The aposadic appearance of seeps at an exposed face aifht be aceounted for by non-conductivity as vell as capillasity. Cartain veathesed, vet joints can be identified deflnitely as conductors, but unveathered, apparentiy tight joints cannot be cellod mon-conductors upon inspoction alone. We only know that the denalty of conductors in a volume is amill complered to the density apparent at outcreps. Instead of one conductor par foot or so, the ovidence irom presaure tests indicates an expectation of one to flive per 100 foet. For example, it Oroville, the space Ins of effective conductors may be 20, 40, or more feet, Insterd of inches. Pumpotests of known shoars, fracture zones and schistose zones there sussested to the geologista (Thayer, 2962, p. 2) that the shears are the maln-contuetions and that oniy 10
percent of the pesmeability is contributed by jolnts. The emalisample statistles of prap teste would be consiatent with rejece thon of essentlally all jolnts at oroville ae conductors.

A seolosist .ehould discriminate carefulis the featuree observed on drill core 8 unless a sracture changes the drillamater elreulation, thoss atalring, decomposition, transported flilings or drualness, it is probably a machlmebreak of no orlstinal consequence as a conductor. Tor practicel foundation investigations, It is the directional and spacial statistica of the larger open-. lngs that neod attention, not the small openinge.

It followe that we should look for a wholly different modiun within the decompression zone surroundins an underground openias than exdats in the undieturbed rock maes. If the visible joints are eondactors, the decompression zone possesses selatively hish permeabilicy. Consequencly, low hydraulle sradients there favor stability of the opening beceuse the intersranular stresses are high. Loeman's observations (1958) Indicate that the zone of Isacturias ia 4 to 2.25 foet thick agound mine vorkings, the extent dependins upon the time elapsed since exceration and the depth below the ground surface. Inteh (2958) measured a 4 to 10 foot thickness of fractured wall sock under almilar conditions. In the Hitwetersciad mines. It is apterozthy thet asound shillow wosklags, the folat system reflects the rock fabsic, wheseas azound deop workings, "ying-sgress" and mslabbing" frecturee (Leanan, 1958) develop more promunentiy, in relation to the 8 cometry of the excavation. permeability axes would tend to have constant orlentation around shallow worklags, and radial symetry at depth. If the couputer model is given conductors distributed ts the observod-jolats, it abould serye woll for predicelss petmeablity
axes in the decompreised restons of hish fracture denslty. Por sindlar volumes, it iny 8 all in undieturbed rock because the boundaries encompese fow elsnificent conductors.

Fisure 1 of plate 26 ahove the attitudes of measured joints replotted from data collocted at the oroville damsite (fyons, 1960) and flsure 2 shove the axes of princlpel parmeabilities interpreted from it by the uriter's methods. this is an estimite of the directional charecter of rock peripheral to undergroumd openings such es the power cavarn under construction. Compere Chese with Figure 3, describing the major conductors of the entire foundation area (Callf. Dept. of Water Resources, 2963), a sterm, grephic plot of faulta, shears, and schletose zónes. Also on this fisure are the estimated permeability axes for the foundatlon as a whole, which may be usod to analyze potential distribue tion in the sock between the reservole and the Ficinity of the power cavern. Whereas the adalysis of exposed jolnt ortentetlons and observations of the apparent opecins, texture, contine ufty and openness sussested that sats 2 and 3 are nearly equally conductive, (Chapter 5) the analysis of the wejor shears throushout the site shows that set 2 dominates., Since .these shoars accounted for mast of the pump test discharges, set 2 at the outcrop may likewise control the arlsotropy around the openings. Intaspretins Plgure 3 of plate 26 as a almsle set with diapersion $K_{f} \cong 16$. leads to different anisotropy, stronsest on a pleme dipping steeply east, and about $/ 7 /$ th ae atrons nosmal to that plane of lsotropy.

The fractured some induced by explosives and decompression acound unlined tunnels seems to be of elidiar parmability in all hard zocks, es sussested by the decay or absosption of waterhammer (J. sascy cooke, lecture at university, of, cillifornin, inj

Figure i
STEREOGPAPNIC PGOLECIION. UPPER MEMISPMERE OLP OROYILLE, LET-1, PATE t. JOLMT PATTERM $P_{1}=04755_{3}-0$ 2994, $08278 \quad P_{8}=-02263,09637_{6} 01050$

$$
x_{f_{1}}=130 \quad x_{4}=120 \quad x_{6}=975
$$

geune a sremomer mop of monems to mh mato Munt spmerucs at oncynit surbite: to yent

> ata fion sount acometion, ongutce angite, 18t -1
22. 1961).

One of the objectives of the model study was to estluite the slze of cample aoeded to defline adequately the direetions of princlpal axes when only one sample of jolnte is obtalnod. plates 1 to 15 of Chapter 5 show unacceptable scatter of axes when 25 ot ferrer elemente ace in the model, and princlpal permeablilties are too dispersed to be conaldered acceptable approximations of an equivalent conthnum 12 there ace leas then 50. If several samples of joint oxtentations are made, and axes ace estimated from each, the dispersion of axes will gezror the fleld of uncectalaty. If the joint aystem is homogeaeorus, one may as well. combine sampliags into one sample of adequate size, say 100 joints per set.

The major planar structures at Ocoville (12gure 3 of plate .26) Lnclude about 20 shears from the vicinity of the porier cavern (Thayer. 1962). For assessing the anisotropy of the undigturbed rock between the reservolr and the cevern, it is better to assimilato shears from the entlre site into one sample characterizins a tectonically homogeneorrs mediun (Flsure 3), than to rely on a fou sandom shears neagby.

Ochentation of delli boles for anlsotyople pumpetestins : chorid also be bsed on adequate samples, otherwise on combined samplings from the entire aren. Coological bonndaztea and different joint systens may lndicate that distinct azeas should be tested and analyzed indindinaliy. In cases where an insufficient sample size is unavoldable, the for major conductors should bo tested separately, and the boundary problea solved for those specifle conductors, neslecting all minor lastures. Computer programs aveh as the man (Harren, Dougherty, and Price, 1960)
of others discused by Scheack (1963), eve avellable for colvins many complicated boundary probleme by relacation and sinltedifference equivaleate of the diffuaton or raplace equations. Conductor planes within the boundaries, representins epeciple 8eatures, can be buhlt into such models. The oroville power cavern site is a typleal situetion in ergatailine rock whose permeablility is governed by a fer shears. As an altermative to the statistical approaeh, solve for the potentlal distribution a long such confults, then apply theo as boundars conditions for small-scale problems, lyins wholly between major conductots. The pirincipal axes and perweablilities of jack bodies between majot conductors would be dotermined from folnt orientations and pressure teste. Both parta of the solution would be efo impore tant for design of drainage or rockwall atablility. The two. stage, mothod presupposes that major and minot conductors may be distinguished easly in the explosation. It recogaizes that the potential distribution and, thas, the flow, depends almost ene tiroly upon the largeat condurcors, but that the local potential diatribution, say in a tunnel wail, dependa also on the fine. structuro.

An indelinite sange of smalloberture fractures whll undergo prolonged transient adjustment to the potentiall on the major features. the 011 films observed on shear surfaces in the Aln 2alah field, persia (Daniel, 2954), indicate alou movecent in many fractures that contribate littio to permeability.

Since the offective conductors in cryatelilne sock are ine frequent, some randomiy-placed wolls will often lack comminication with the openings, 20 sivins insignificant giold. A dry 'rell might be made to produce by chooting or hydrofrecing, ese pecialig 12 the woll is oxfented pasellel to the predoainant
jolat aet. 8iadlarly, the differance betwon wot and dry tunnels in erystalline cock liea not in the peripharal conductivity, but in contlanaty whth preexdstins open jolnte nearby.

In this chapter, wo bave used the notions gainod by modelins fractured modla to 57 to understand why parmoability of isactured rock vaskes as it doss, and conversoly, we have comveged Interpsetations from discharge data to the model for its improvenent. Without more exitical ilield data, we may not be able to learn mach more. The measurement technique proposed in Chapter 2 should gield further aubstantlation of anfeotropy and the statistles of its varlations.

We have learnod littie about aperture distributions, and ause pect that we cannot do so without direct measureant, which would be difficult.

- In Chapter 4, there was preseated a possible determination of pososity, assumang all apertures allbe. So to see lif le le zoilly important to know the aperture distributions, Cbapter 7 has been waitten.

Chaptes 7
 ESTIMATION OF POROSITY FROM TES PERKRADILITY AND OBONETRY OF FRACTURED KEDIA

Intreduction

The noed for a method of esticatins the secondery porosity of frectured permeable media is clear from the many prectleal problems depending on porosity. Porosity is reflocted la storsge capacity, in density, neutron aboosption, thermil or oloctricel conductiolty, olasticity, compressibility and strensth. Civil asd potroloum enslineers could enploy knowledge of frecture porose ity in liuid displacemant probleme. mere is interest in the bulk volume lmprespated by a unit volume of dieplactng cheadeal grout; of la oll reservols water flooding. Prediction of the vector average particle volochty of flufds moving in fractured media depends on a krowledse of posesity and the average macroseopic or continusu velocity.

Eectors Goreming Porocity
Posobity in fractured media depends upon the spatial froe quency of conductors, their oxientations and the distzibution of thols apestures. Ortentation is the only readily accessible varlable, but it way be the least lmportant. The spatial froe quancy was found to be small and variable, as Indicafed in Chape ter 6 by amalyais of pressure teste. Even 12 the exact lrequancy is known in a given case, porosity cannet be detecmined precisely from permeablilty, because permeability depends upon the arm of cubes of aperture and the same sun could be obcalsed from any of many poseldie distribution functions.

In this chapter we have studied the influeace of three difforent apesture distribution functions, to see if by avesaging the divergent porosity values computed from meny eamples, an
accoptable procision can be obtalned.
In Chepter 6, a significent property of fractured sodia la establlehedi pempins test discharge values cen only be explalned $1 f$ the apatiol frequancy of conductors is amill comparad to free quancies disclosod in satural or excervation exposures. Somee theng like ose fracture in a hundred poténtial ones is effoctive as a water conductor in undisturbed rock. For purposes auch as displacement, it is only the large openings that matter, while cotal fracture poresity may bave a layse inaceesslble component. Ior a siven permeability, a small mumber of conductore leads to much smaller porosity than when maw oceur, alnce discharge dopeads on the thly power of aperture. It will be easlar to Idiane tify conductors in the field than it will be to devise metbods OR modsurins thelr apertures, so it will be more frultifl to mensure frequencles than apertures in future resoareh.

In Chapter 4 there was presented a set of simaltarieous equations (4-28) to determine the permeablity of fletictous sets of parallel conductors having the same aperture distributions as the actual ortentationodispersed sets. The porosity due to the pacallel sets and that of the mediun cut by dispersed sete can be estimated on the ascumption that all apertures ere equal. An ovaluation of the exrers introduced by the uniformity assumption, when aportires are actually distributed; fachlitates tramiation of permeabillty fate porosity.

An object of the computer model studes has boen to find out how important is the form of the distribution function that defleos the apertures, when ortentations and spatial frequencies ase bown. To ettaln this objoctive. .porosity is eomperted in two ways for any given set of geometrical variables. The flrst la by
sumbers the vold space per unit rolume as the aportures and orleatations are geaerated, so givins true porosity. The iccond method assumes unfformity, and computes an equivaleat porocity from the anisotrople permorbllity derived from sach speotife sample of the aperture and osientation distributions, the free quency of conductozs in the volume DERIN is eaken alvage to be the apecilled folsson expectation.

The resulte presented below indicate that quite acceptable eatimates of secondary (fraeture) porosity can be made from perm meablitit measures, provided that the average Irecture erequancy is vell known. Aceording to equation(4-3i) porosity depends on the mober of eonductors in the volume, taken to the two-thirds power.

A metbod of field deterrulnation of the frequency of effective Joint eonductors is sugsested in Chapter 8 , but since it remalns untested. the importance of this paramoter sussasts thet it be stren priarity in further rescereh on frectured media. It bas bean sugsested that preanplosation grouting be used to marir cone ductors. Alfermatively, one could use a statistical approach (Chapter 8). On the valls of tumpls or delll holes, of on rocovered cores, one may identify weathered, druey or opened freco tures as conductors, as opposed to fresh frectures of relatively unlikely conductiolty.

In the model, average folat frequeacy is specifiod, but oech sample has a different aumber for the same volume, the nembers eatisfylag a Foisson diatribution. When the aversige frequency is used to compate poresity from permeablilty (by the second method). larse sampling arrots are ancountered in the posoilty values, which art theaselves; polsson-distzibuted. pech of these porosity mearures is compared to the actull pososity of the acmplo, quane.
 thelf oxtentation (by the second method). Subroutline sopon, siven in Appendix A, coaputes the porosity from the senorated aseotropic permeability and constante of the orientation dieexibutions. then diseloses the ratio of computed to actual velves. The average ratio is close to one. The example belor follows the dovelopment of equations (4-27) to (4-31) somoshat simpliflod by use of only two sets of conductore with orthogonal cene trel tendencies, mot only two almaltaneous equations need be solved.

Exch joint, set bas a Fleher's dispersion coofficient, $y_{f}=20$. Woe bas a central tendency alons

$$
x_{6}^{\prime}=.5, .6, .7071,
$$

and the other

$$
\omega_{i}^{2}=-600,-388, .699 .
$$

The coefficients correspondins to disperaion $X_{f}=20$ (Vigure 4-7) are

$$
\begin{aligned}
& K_{\text {mas. }}=c_{1} K_{\text {perollel }}, c_{8}=.956 . \\
& K_{\text {mona. }}=c_{2} K_{\text {perollel }}, c_{2}=.800 .
\end{aligned}
$$

Hothing is trewn of the apertures or the nubler of elemente inciuded in a sample, but it is assumed that average frequencies bave been deduced by some means for the medium, as woll as orientetions. The first set in this example has reetprocal specifle surface of 2 seters, which amounts to a spacins of one conductor cach 224 centimeters alons the central tendoncy Line. The second sot bas rectprocal specific surface of one meter, or one per 112 centlmeters along its central tendency.

- Woe of the random samples of eonductors from these sets produces principal permeabllities, compiuted to be

$$
\begin{aligned}
& K_{11}=3.67 \times 10^{-9} \text { eos units } \\
& K_{82}=2.63 \times 10^{-9} \\
& K_{83}=.946 \times 10^{-9} .
\end{aligned}
$$

Were these data obtained in the field, principal axes would have to be approximated from the orientations of the entire joint system. Since the particular example sivan here is computergenerated, the direction cosines of the axes are known. The central tendencies must be rotated to a coordinate symtemp parallel to the principal axes; by applying the transformatenn

$$
N_{j}^{\prime}=q_{i j} x_{i}
$$

where $a_{i j}$ is the matrix of principal axes. The transformation ia:

$$
\left.\mu_{j}^{\prime}=\left|\begin{array}{ccc}
.462 & -731 & .611 \\
.688 & -.078 & -722 \\
.567 & .678 & .660
\end{array}\right| . \begin{aligned}
& .5 \\
& .5 \\
& .7071
\end{aligned} \right\rvert\, \text { or by }\left|\begin{array}{c}
-600 \\
-.688 \\
.699
\end{array}\right|
$$

for the first and second sets, respectively. These ares

$$
\begin{aligned}
& j_{j}^{\prime}=.222,-.206, .053 \\
& m_{j}^{2}=.370,-887,-.276 .
\end{aligned}
$$

Two of the possible straleaneous equations (4 -28) are:

$$
\begin{aligned}
& K_{n}=\left[\dot{c}_{1}+\left(\dot{c}_{2}^{\prime}-\dot{c}_{1}\right) \dot{m}_{1} \dot{m}_{1}\right] \dot{k}_{p}^{\prime}+\left[\dot{c}_{1}^{2}+\left(c_{2}^{2}-\dot{c}_{1}\right) \dot{m}_{1}^{2} \dot{n}_{1}^{2}\right] k_{p}^{2} \\
& K_{22}=\left[\dot{c}_{1}+\left(c_{2}^{\prime}-\dot{c}_{2}\right) \dot{n}_{2}^{\prime} \dot{n}_{2}^{\prime}\right] l_{p}^{\prime}+\left[c_{1}^{2}+\left(c_{2}^{2}-c_{1}^{2}\right) m_{2}^{2}{ }^{2} n_{2}\right] l_{p}^{2} \\
& 3.67=[.956-.856(.049)] R_{p}^{\prime}+[.956-.856(.137)] 4_{p}^{2} \\
& \cdot 2.63=[.956-.856(.041)] k_{p}^{\prime}+[.956-.856(.786)] K_{p}^{2} \\
& f_{p}^{2}=1.72 \times 10^{-9} \\
& f_{p}^{\prime}=2.32 \times 10^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& b=\sqrt[3]{3 L_{p} D / 2 N} \\
& b_{1}=[3(2.32) 112 . / 2(0.5)]^{1 / 3}=.009 \\
& b_{2}=\left[3(1.72112 . / 2(01)]^{1 / 3}=.006\right. \\
& \text { of } a \operatorname{set} 18 \\
& \theta=c\left(3 L_{p}\right)^{1 / 3}(2 \mathrm{~N} / D)^{2 / 3}
\end{aligned}
$$

porosity of a set is
where c is a correction for apecifléaurface given in flsure 4o6, relating the parallel case to the dispersed case.

$$
\begin{aligned}
& \theta_{1}=1.06 /\left[3(2.32) 10^{-9}\right]^{1 / 3}[2(0.5) / 112 .]^{2 / 3}=.000087 \\
& \theta_{2}=1.061\left[3(1.72) 10^{-9}\right]^{4 / 3}[2(1.0) / 112 .]^{2 / 3}=.000125
\end{aligned}
$$

The total pemmeability-equivalent porosity.

$$
\theta=.000212
$$

could not be verifled il the permeability data were obtalned in the fleld, but since every conductor of the sample model bas known aperture and ortentation, a precise porosity is known, in thls case:

$$
\theta_{\text {actwai }}=.000390 .
$$

The "equivelent" poroisty is . 544 of ghe trve. Other sample's sive a scattering of ratios, sreater or less than unity. Aonoility for pormel, log-rormal and exponential aperture dietributions.

The porosity ratlos generated by the model provide an opportunlty to lavestigate the importance of the varlous distribution functions that are likely deseziptions of joint aperture in real rock. Tablef 7-1 studios of 49 samples each, eaplojing absolute (or transposed) mormal: log-normal and exponenticl diatributions of apertures. but with all other parameters constant, sueh as cosductor frequency and orientation dispersion. The example celcalatod above is one of the samples. ine distribution functions deseriblng the
taple
71
computen bermantlities aid porositify with varying APERTURE DISIRIJUTION

1. 3. 3. 4. 5. 6. 7. 8. 9. 10.

$\begin{aligned} & \text { APERTLRE } \\ & \text { DISTO!E. } \end{aligned}$	PRINCIPAL PERISEA-			POROSITY				
	HILIT	$1 F .5 C$	GS UNITS	AVERAGE	FOUiv-			
	AvERA	GE OF	SAMPLES	true value	ALENT TO	7.16.	RA:10 FROM	SOEVIA:
μ	$\times 11$	K22	K33		PEKM.		Sispls	RA: 0 S

nesullete value ttransposedi nokmal olsiriouflvil

	- 8	- 7.38	-111	10^{-8}	09028	. 000025	. 887	. 921	. 583
$\because \because 73$	-0? 0 ! 31	. 116	. 017	1 C	. 20151	. 00132	.875	1.037	. 635
. 125	.:25 .141	-12?	. 020	10°	. 20769	. 00645	. 838	. 968	. 654
	.C!5 . 876	. 773	. 107	10^{-}	. 00060	. 00054	. 899	. 954	- 526
. 25	.076 . 173	. 135	. 020	10^{-1}	.cci361	. 00308	. 852	. 972	. 621
23	.375 .161	.143	. 019	10^{-2}	. 01660	. 01404	. 845	. 674	. 304
5	4	.173	. 022	10^{-6}	00172	. 00150	. 870	. 924	. 5.56
? 5	こ?	. .372	. 050	10^{-3}	. 01052	. 00898	. 853	-913	. 457
'25	$: 75.360$. 330	.041	$10^{\circ \prime}$. 04730	. 03962	.838	. 936	. 365
YFR	- $-: 7$ -						. 839	. 956	

E.YONF:OTIAL D:STIBUTION
in =.5. N2:1.0, DELTA=112

-.15 15	1.039	. 35
$\because 75$	1.091	-40
.179 .15	. 957	- 30
	1.079	. 15

N1:.5. N231.0, DELTA=112

\% 69	1.40	-73?	.2A8	88	10	. 00024	. 00020	.806	. 943	. 463
25	1.40	.437	. 347	. 466	10^{-}	. 00117	.00093	.797	1.031	-828
-125	1.40	.643	. 549	.100	10^{+}	.00680	.00503	. 735	1.059	. 776
. 205	2.73	. 116	. 102	.015	10^{-7}	00029	. 00028	. 960	1.091	1.037
. 625	2.70	.146	. 133	. 015	10^{-5}	. 05140	. 00133	. 952	902	. 354
. 125	7.70	.261	. 232	.029	10^{-3}	. 00844	. 00763	. 904	1.088	. 684
-005	4.16	. 644	. 593	. 032	10^{-7}	. 00040	. 00046	1.158	1.143	. 921
- 025	4.14	. 845	. 782	. U82	10^{-5}	. 00195	. 60230	1.179	. 979	. 406
-125	4.18	. 164	. 149	.015	10^{-2}	.01227	.21376	1.121	1.046	.450
-125	r.							-937	1.035	

TACLE
TACLE ICOid PINUEDI

aperture populations sampled are displayed in plates 27, 28 and 29. Warren and price; (1961, p. 158) cabulate properties of. eoveral other useful functions.

In the tables, the firat colum indicater the mean of apertures employed in the distributions, inciudins .005,..025 and . 125 centimeters. Standard deviatione ware selectod to include a range of 0.2 to 10 thmes the mean. In this wey, various deszees of skewnesis (the thled moment wee not computed) were developed, some with and some without appreciable near-zero frequencies. Subroutine APER, found in Appendix A, genezates the distribueions.
. The trinaposed normal distributions, of the type amployed in Chapter 5 and plates 1 to 15 thereln, are derived from Caughran's (1963) senerator of rendom nosmal doviates, RARDEP, (havins mean zero and atandard deviation 2), ardified by

$$
B=\mid \sigma(\text { RAN DEV })+\mu \mid
$$

where B is the hall aperture,
σ is the desired standard deviation, and
μ is the deaired mean. Absolute values are taken to maine valn positive apertures and to introduce skewness.

Los-nommal distributions (Aithehison and brown, 1957) were formed from the Caughran random nosmal doviates by $\ln \left(\frac{B}{\mu}\right)=\sqrt{2} \sigma$ (RANDEV).
Exponential diatributione employed a generator of randon deviates, UNIRAN, undfom between 0 and 1, modifled by

$$
\ln \left(\frac{B}{\mu}\right)=\frac{\sigma}{2}(2[\text { UNIRAN }]-1) .
$$

Tables 8-1, 2 and 3 list, in column order, the meen and dise persion measures (and σ, as deifined in the above equations). then the princlpal permeabilities averaged from the 49 samples. The true porosity is eomputed from the actual apertures included in all 49 samples. The next colum seports equivalent pososity,

5
computed in Subroutine PORPQ, by the same method employed in EQPOR and in the illuatrative oxample given in this chapter, but enploying the ayorase penmeablilites an a menare, and the central tendencies of the two joint sete as predicted principal exes. The tabulated fatios of equivelent to true porosity assess the rollabillty of using average permoablities to predict the true porosity.

Porosity computed from aversge permeablilites renses from 0.7 to 1.0 times the true porosity averaged over all samples from a normal distribution. The more akewed the aparture dise tribution, the higher becomes the ratio of computed to true pore osity. This is because permeabllity depends on the cube, and porosity on the first power of apertures and the mean of akewed dietributions increases faster for cubes when sample ilze ine creases. Hote in oach table the progressive increase of the reEio, as dispersion of apertures and akemese increases from top to bottom of column 8. The normal diatribution is least sensitive to such changes, susgestins that 15 porosity is computed from average permeablilities, and this distribution is proved to. represent jointed rock, then true porosity may be estimated by

$$
\theta=1.2 \text { (} \theta_{\text {cemputed }} \text { from average } k \text {) }
$$

porosify computed from average permeabilities ranges from .73 to 1.1 times the true porosity when exponential aperture distributions are assumed. A corsection fector of 1.05 may bo used to estimate erue porosity.

Forosity computed from average permeabilitien ranges from .85 to 2.9 times the true porosity when los-rosmal eperture dise tributions afe assuroed. The skewness is apparently more sisnificant for this type than for the normal or exponential, and proe sumably, even greater arrors might be made if skemnest axceods

Porosity estimetion from a serles of anisotropic permaebll15y measurements may be Lmproved by calculatins equivelent poros1ty for each permoablilty moasure, assuming a constant fracture frequency even thoush it is known to fary from test to test. The Ladividual porosity measures: Wlll be dispersed, but the averege of all porosity measures approaches the true porosity for the medium as a whole, with errors. of at most lox. The next to last colum of the tables reports the avarage porosity at a ratio to the true. The last colum shows the atandard doviation of the distribution of average porosity ratlos, senerally about 0.S. Belative impercence of prequency and Apecture pletcibution

A porosity estimate is no better than the estimate of frace ture frequency because $\theta \propto(N / D)^{2 / 2}$. Thisemphasizes the tme: portance of determining, elther for fleld or research problems, which fractures observed are conductors and which are not. Supe pose that a fractured rock is refractured so that a nes conductor Ls formed, equal and parellel to every orlsinal one. fiow halvo the apertures of all of them, so that poresity is as before. Under the same gradient, the fractures will transmit $\mathbf{1 / 8}$ th their original discharge. The permeability is thua $1 / 4$ the original value, while porosity is unchanged. The cesults of the model scudles of permeability-porosity relationships surgest that the exact form of the aperture distribution is not critical for these purposes. The insensitivity of porosity measurements to aperture distributions encourages investigation of more cruelal properties of fractured rock.

The above methods of computing porosicy from permeabllity data can, and should be. ifeld-cheeked. After prodictins porosity from punplins tests, seok conflemation by mesaurins srout impres-
metion. the volume of rock lmpregrated must occupy an levegular buiboriq gesion apound an injection point. . The extent of syout may be determined by a serles of check holes. Only chose conduce tors which are hydraulleally effective would be grout-filled. Ak-9 chemicel srout would bo ideal for these purposen because, it has aqueous properties, while noat cercent is a moneuniform iluid suspension.
porosity dotemainetion ts but one of the poselble applicatlons of the fractured-media model. Ite sole in definins permeabllity leads to useful appllcations where the flow of fluids of. the hydraulic potential distribution is needed. Chapter 8 cone calns a ferrsugsested areas of interest, and some susgeations regarding techniques of application.

SUGOESTED APPLICATIONS TO FLON AND POTENTLAL PROBLEHS

Intreduction

Khmerous imediate or eventually feasible applications may be anticipated, either as direct resulta of the theory and techniques advanced in the preceedins chapters, or consequent to logical sequels to thls thesls.

The applications may be grouped into categories that are geological, petroleum ensineering, civil engineering or ground water hydrologic in nature, with inevitable overlap of the catesorles.

Geolosy Problems

The origin of joints remalns just as obscure as was the origin of thrust faults prior to popularization of the notion that pore fluld pressures can account for the low apparent slldins resistance of rock on rock (kubbert and Ruby, 2959). The mechanics of rupture of materials contalining confined fluids vould be an even more significant contribution, not only because of its implications for initial and rejuvenated jointins, but for static and dynamic breakage in materiala engineering, excavation stabillty, explosive or dxilling technolosy. Dynamic aspecte of tectonle structures may also be clacified by analysis of fluld potentlal distribution adjacent to inltlal failure surfaces.

Recognition that Individual planar conduits may have anisotrople propertles by reason of textural lineation sussests applications to oreofinding. First of all, measurement of anisotropy of individuals could diseriminate faults from foints, or detect the direction of allp on faults. If conduit anisotropy proves significant, it is a further variable (with orientetions, spacins and apertures), controlling the overall anlsotropy of a fractured

Anlsotropy of a fractured modium may facilleate foconetzuce tion of the history of ore implacement from migrafins solutions, thereby pointing to undiscovered ore. Similarly, modern oreforming atructures that are potentlal producers of steam, brine and metaliferous juvenile fluids would be amemable to armiysis of the fracture systems characteristic of domal structures (Hisser, 1960). Indoed, the success of such beine well operations may depend upon analysis to losate productive aites that will promote flow of juvenile waters versus meteorle waters. Rnowe Ledge of the mechanics of the doming process by veritcal toctonics and fluid prossure distribution would be a by-produce of aingular importance to economic geology.

Mine drainage is an important ensineering problem in the mineral industry. Analysis of boundary problems on the basis of isotropy should be preceeded by testing for anisotrople permeability, leading so appropriate boundary transformations.

Grouting, blastins and tunnel support technology, discussed In lafer paragraphs, also have applications in mining.

The design of leaching projects to exploit low grade vein deposits by injection of water and withdrawal of solutions via wells of tunnels may be improved by better knowledge of statistical permeability properties of the open veln eystem. Leechingfleld design is a boundary problen similar to that of mine drainage. A rational prediction may. be made of flow paths and evailable surface area, and one might detect, by prapatest methods proposed in Chapter 2, foetures that diminish leaching offleiency by chanrellsg.

Parroleum Ensineering Broblems

Potroleun exploration may be guided in a manner analogous to ore exploration, by knowledge of the anisotropy and porosity. of frectured.media serving as conductore from source to raservoir, and as fracture permeabllity traps.

Though directional drilling for measurement of princlpal permeablilities is not feasible at great depthe, the theory of. Chapter 2 may be modified for short packer-teste conducted in the bottom of a vertical well as delillng progresses in fractured roek, thereby permittins statistical analysis of data ordinarily obscured by overall well behavior. Such tests were auggested by P. A. Witherspoon (persomal commuication, 2964). Tests should be complinnented by study of the orientation and spacing of joints to estimate principal axes. Knowledse of reservile anlsotropy would be valuable for plemning well flelds. Secondary porosity estimates (Chapter 7), based on fracture permeablility, would be equalis useful, to predict pield and optimm production zates. Pnowledge of reservole andsotropy and pososity could contribute to the design of cecondary recovery achemes, includins water apreading, and combustion drive. Nes interest in fractured media is emarging from the application of ground water hydrology for assessing the integrity of aquifers for underground gas storage purposes (MLtherspoon, skeller and Donovan, 1962). Eractured cap rocks will eventually be tested for permeablilty, possibly by methods akin to those proposed here, aldod by asalysis of fracture geometry.
Ground ilater lerdrolosy frobleme
The importance of planar conductors in governins the hydrology of a besin may not be limited to the exystallitie basement socks, but may contribute also ts the conductivity of unconsolldated basin sediments, where jointing is recognized (Plafker, 1964) but so fer not introduced into conventional aquifer amalysis.
fracture permeabllity, modiflod by solution enlargement, is cercainly dominant in cerbonate tomations. Undereseopegi chroush basement rocks is usually noglected though recognized as a limisation on caleulations of basin-aide water balance. In negative groundwater areas, underialn wholly by crystalline rocks and their weathering products, fracture permeability determines well yield. important for The atatistles of such media aze well planning (Davis and Murk, 1964). Regional flow analysis is belng employed tq prediet the distribution of radionuclides in spound water (Davis, 2963), move Ing paist atomic explosion sites. These often Lrvolve fractured basement rocks of unknown anisotropy that could bo estimazed by. the methods proposed here. Tests may establish the frequency of effective wator-bearing joints, and determine which set is cone ductive when more than one is present. Well hydyaulics in a discontinuous-anisotropicenonhomogeneous jolnted mediura yay be Improved upan consideration of the variables governing anisotropy. The importance of sample size (Chapter 6), and well orientation (Chapter 2) with respece to principal axes (Chapter 5), aray be included in a statistical analysis of gield based on media transe formed accordins to measured andsotropy. The woll-pumplng test resuits of Lowis and Burgy (1964) showing dzawdowntive curves concave uprasd instead of downserd, mose likely result from yestical inhomogenelty of the sock than from she sampling statistics treated here.

Givil Enstineerins Probloms

The assumption of isotropy customarily made in solving boundary problems in foundation engineering can be avoided if principal pesmeablifites ara determined and oriented in the manner sugsested In Crapter 2. Ihereas the anlsotropy of fractured rock may be weak, 8 vould be the case for three near-orthogonal and neare
equal sets, other situations may prove hishly anisotrople.
Such la the case of the apparent dominance of a alngle disa: persed set of faults cutting the oroville Dan foundation (Fisure 3 of Plate 26). Apparent permeability measured in unorlented drill-holes in this medium is considerably in error because the E-f principal permeability is about $1 / 7$ the other two. Furthermore, the distribution of liuld potentials obtained by the dee signers using an isotropic electrical analogue could be obtained more precisely àfter transformation. A natural-scale model was used, with contours on the raservolr bottom as one boundery and underground openings as the other, subnerged in a cank of electrolyte. Drainage holes in great numbers and of similar length have been designed to perforate the wall-rocks around the power cavern. It can be ceen, whthout graphic proof, that the transformed medIum expanded EoN by a factor of $\sqrt{7}$, will have the approximately circular cyilndrical opening of the machine hall expanded to an elliptic cylinder, with flow lines concentrated at the east and west walls end equipotentials crowded to these walls. Retransformed to the natural scale, the anisotropic flow net, no lonser equidinensional not orthogonal, would retain high gradients towards the rulls. Only by elongating the laterial dralnaholes may pore-precsure distribution be made radially sympetrical. to the opening. Longer horizontal drains than vertical would improve the stabllity of the excavation.

Slaliar analygis of anisotropic permeabillty can be used in other potentlal distribution problems in hydso-onglneerins, includins prediction of uplift distribution peneath masonary dams, and pressure distribution around penstocks or power caverns. Imperfect corcelation between prediction and observacion. would ree flect the random variations in perneability arising because the scale of the problea, the bese of the dew, for inatance, may be only a few tlmes the average conductor apacins. This condition of least prediceablility is unfortunately the condition most crite Leal for desisn, leading to the highest and mote erretic prese sures (Terzaghi; 1929).

The portions of unilned tunnels most semsitive to rock prope arties ase those with shallow cover, as in the approaches to portals. Leakage and landsliding are the hazards. Portal areas where Investment is concentrated (penstocks, powerhouse), are usually protected by steel ilnings. A more ratlonal approsch to potential distribution in these areas, made possible through ime proved exploserion, festing and analysis, but mose costly than eurrently employed, would lead to safer, more econonical installations.

Predictions of flow betwean complicated boundaries of anisotrople media must ordinarily be based on the potential distribution, 1.e. the flow net. Thus, the tranaformation methods dise cussed in Chapter 1 can be advantageously appiled to the predice tion of foundation leakage under dams of through reservolf rims, or to estinate water loss or water make to tuanels. The storage of Aulds in subterranean caverns poses analogous problems in leakage evaluation.
:- Undersround disposal of liquid wastes, be they industrial chemical wastes, atomic reflnery wastes, or undesirable fractions fro:a 800° thermal wells, may gain importance as fractured media become better understood. Dhrectional pesmoablilty and porosity are the most significant properties needed to design lnjection woll systeas and to predict displacement. In an aquifer. The entire subject of dispession of solutes in fractured media warrants study.
granslent preseures, not troated in thle thesis, are often very lmportant in ensineerlng as well as other fielde. Anlsotropy plays a ilsnificant role at all times of flow, such as during pressure teste. The subject needs more research, alons lines pursuod by Goodman, et. al.(1964).

The loading of foundation rocks during the construction of a dam is a translent condition if the foundation permeablility is so low that a serles of steady-state conditions do not exist. Such may have been the case of the Waco, Texas dam fallure, a foundation silde in shaie (n . Bean, Lecture at University of Callfornia, June 26, 1963), where 100% excess pore pressure, in other words, full construction load, had developed in underiging shale. Though other explanations have been advanced to explain the fallure, strons anlsotropy in the horizontal beds could also have contributed. The expectable hish lateral permeabllity compared to the vertical permeability would lead to low lateral gradients, oxtending the high pore pressures over a large sildeosurface area.

A more rapld pressure transient is water-hamer in pressure tunnels. Water-hamer has never caused rock falls, even thoush capid decilning presaure must result in tunnelvard gradients in the walle. A mariced increase in fracture permeablility in the disturbed decompression zone around the opening mas be the factor providing safety by mininizins gradients.

Gas flow in preexisting and induced fractures around explosives detonated in cock constitute more complex hydraulle phenomana than considered here, but Involve.the same medla. Appleby's (1940) observations that dynamited faces have the aame fracture patterns as natural faces lends strensth to the notion thet anisotropy estimated from orlentations and pump tests can also indicate the anlsotropy in the field of gas expansion near a tunnel or
quary face. If follows that moze efficient orientations of ohot holes, or more effective spacings or patterns might be devised. The influence of jolnting modifylng the radial aymotry"of an undorground nuclear. detonation mifhe be analyzed as woll.

The anisotropy of mechanleal proporties of fractured media may be shown ultimately to be correlative with anisotropy of fluid conductivity. Take, for instance, the possiblilty that a rough fracture, such as a tension jolnt, has high permeabllity compared to smooth shear joints, whlle its shear atrensth ${ }_{n}^{\prime \prime}$ eloarly in the inverse. Developed into a working theory of rock strensth, prese sure testing could serve as a tool to explore the directional strength properties of rock slopes or dam abutments. Pressure potential is also an important factor in the analysis of the atebility of slopes cut in fractured rock.

Foundation grouting is a subject that stands to lmprove by application of the proposed methods of testing, and by analysis of anisotropy and porosity. Current practices are largely ame pisical. The plight of the art is well volced in discusaions of dekiollo $s^{\prime \prime}(1960)$ paper and by similar complaints (Lambe, 1957):

MIt is seldom on any grouting job that one can obtain sufsleiont information on the soil or mock conditions involved to assure that the grouting work will be successful. In rock grouting, for exampla, it is almose liopossible to know in advance the degree of continuity between volds and cracks, oven if these voids and cracks were ofisinally found by core drilling at the site or by observations of seapage."

An easy answer to all rock grouting problems is not to be found in this thesis, but rather, a seemingly axduous scheme of measurement and calculation leading to anewers that have only statistical validity. But varlability is the woll-demonstrated characteristic of the medium, and any rational approach to dofinition of the means and vasiations of the properties ls more promising than rofined empirical techniques (e.8. Grant, 1964).

It aceas thet the design of a grou't eurtaln any take two alternative courses, the flret more practical, the second more - legants 2. If the scale of fracture opacing is on the ordor of a fraction of the curtain dopth or dimensions of a dam, then samples ${ }_{A}$ condisetors cuttins, a grout hole will inelude such a number that the rock say be sepleced by in equivalent continuous anisotrople medium. In this case, design should assume impregnation of all openings in certain volumes around each drill hole. Alternatively, 2 . Lif conductors are sparse, then exploration should deflne the location, continuity and aporture of each plane, with grouting designed to seal individual openings to form a water-barrler by comparmentation of the foundation, rather than by inpregnetion of a massive curtaln.

In practice, it will be rare that a suitably-located, fullyconnected Virginia fence of open condulits can be-designed with confldence. If effective conductors are so widely spaced that the volume of influence acound a drlll hole containe fover than one open conduit per 5 feet, then no alternative exists but to use the proposed statistical approach to Impregnation grouting, even thourh the sample size is inadequate to assure reasonable confidence in the statistical measures.

Reseerch on grouting should approach the simplest situation fleatibyestuaing lumbelble displacement of water by AM-9 Chemical Grout (1.2 centipolses). Miselble displacement in anisotropie fractured modia is apparently a dispersion probien entalins tensor relationshlps between the potential gredient and the movement of a diffuse front. The complications of unsaturated flon above the water-table, and the non-homogeneous fluid propertles of coment grout in saturated and non-saturated medie may be treated subsequently. .

A mose optimistic aspect of rock groutins is the tmplication Of a favosable moblilty ratio for grout in vater, fifiting the dovelopment of Viscous tingering.in ingle fractures if not the agsregate systen of fractures. Unlike injection into sand, horrever, there is a decided tendency for the majority of the grout to confine its travels to one or more major openings. Suppose, for example, that two parallel fractures are grouted at once through a delll-hole crossing them, and that one has twice the aparture of the other. The large one will convey 8 times the discharge of the smaller, filling it to tuice the radius. In general, the sadil to frontal positions under equal sradients will be nearly proportional to the apertures (in consequence of equation 4-6). If individual planar conduits are pressureotested by isolating them with pecters, the aceal distribution of individusi grout fililings may be estinated. Unifornity of aperture over the area of a single fracture should be studied. Such rolationships for a few prominent planar conduits lo a foundation would serve as the basis for design of a grout hole pattern for a compartmentation curtain.

In the usual situation, numerous conductors of unknown chare acter are encountered in a hole, and presaure test diecharges ree tlect theif variable apertures and numbers. Mass impregnazion grouting should then be the objective, for which effective porosity is the salient varlable needed to plan hole spacinss, injece tion polumes and gollation time.

Arerage fracture frequency mast be known to estimate poroaity. from numerous permeability measures by the methods outined in Chapter 7. To dezezaline the frequency, a method sugsested is to progressively shorten the separation between packers until a faif proportion of the pressure tests yleld no 1low. Accozding to the
reasoning developed in Chapter 6 for non-agsregatins jointe, the distribution of amall numbers of fractures in the uniform test lossth, occupyins many positions down the hole, should be polsson. One need only consult a table of the polsson distribution (Crow and Cardner, 1959, or abbreviated tables in any good text) to ascertain the expectation giving a frequency of eero measures equal to the sisesrved proportion of no-fiou tests. For example, 1f 14\% of a series of 10 -foot-long pressure tests sive no dis. charge, the mean number or expectation of conductors is 2.0 in ten feet. Inis would be the total expectation for all sets intersected by the hole, and nothing can substitute for bore-hole phatography, television, or at least core inspection to apportion the cotal irequency to the individual sets.

Lisht portable presaure-testing equipment should be deplsed for operation by a lone geologist without tyins up a drill ris. for such extensive testing as here proposed as routine will never be attractive at the cost of idif-time for conventional orilline riss.

Arerage porosities of the joint sets, computed as indicated. in Chapter 7, may then be utilized for estimating the rock volume grouted per unit volume of chemical grout (not cement).

The shape of a displacement front acound a point source, ideallzed as sharp rather than diffuse, would be a sphere in an isotropic madiun. In Chapter i, it was indicated that an anisotrople medium may be transformed to isotrople. The true front position is found by retransforming after ascertalning the isotropic conflguration. Thus, the front forms ath ellipsold of semi-axes:

$$
r_{1}: r_{2}: r_{3}=K_{1}^{1 / 2}: K_{22}^{y_{2}}: K_{33}^{y_{2}} .
$$

The volume of roek impregnated is found from:

$$
\frac{\text { Vol. Grout }}{\text { Perosi.ty }}=\frac{4}{3} \pi\left(\frac{K_{11}}{K_{12}}\right)^{1 / 2}\left(\frac{K_{12}}{K_{22}}\right)^{1 / 2} R_{2}^{3} \text {, }
$$

where R_{2} is the intormediate axis of the ellipsoldel front.

$$
\begin{aligned}
& R_{2}=\left(\frac{N_{3}}{\theta} \frac{3}{4 \pi}-\frac{K_{22}}{\left(K_{14} K_{23}\right)^{1 / 2}}\right)^{1 / 3} \\
& R_{1}=\left(\frac{K_{14}}{K_{22}}\right)^{1 / 2} R_{2} \\
& R_{3}=\left(\frac{K_{33}}{K_{22}}\right)^{1 / 2} R_{2}
\end{aligned}
$$

Equations (3-1) define the shape of a buib of grouted roale, in terms of les seni-axes alons the principal dizections, besed on the presumption that the front maintalins its smoothness as though all conduits had the same aperture. In actuality, the ollipsoidal bulb cannot be realized as it is in sand, because the number of conductors does not form an adequate statistical sample as do the numerous intergramiar pores of a sediment. Rather, some large openines will be fllied to several times the computed radius, while samiler ones will remain water-filled, but possibly isolatod by srouted openings. The shape of any siven displacement body is andon-dimensloned figuse that we can deflne only In average resms. The condults that extend begond the design front will, in some cases, truncate paths of ground-water movement not otherwise intersepted, but the unsealed iner openings may leave other pathe uninterrupted. It is sussested that 2 to 4 times the calculeted grout volume be praped in order to attain radil of 1.25 to 1.6 times the half-spacing between drill holes.

Unilinited Laprovisation is possible when andsocropy is properly dotergined. More efficient cutcoif can be provided if it is known which joints are effective as conductors. for example. the ocorille aystam of thsee sets would compentionally be treated ulth vertical grout holes. Yot the evidence on plate 26 euggests that set 2 is most aignificant. Since les members are nearvertical and trend up-and-dom-stream, it is ILkely that many condults ilill be missed by vertical holes. The most efflcient orLentation of holes would be inclined about 45° towards the vest. Longer inclined holes vould be required to attain design depth, but probably a lesser footage vould suffice. In other circurnstances, incilned curtains or novel patterns or allignmencs may be devised in accordance uith the detezmined anisotropy, analysed by transformed models.

CONGLUSIONS AND RECOHRENDA TIONS

There is a clear need for, and advantage in pursuing furthdy this inquity into the permeable properties of fracturnd modia. Chanjos in the thoory presented are expected upon reflnoment of etio assumptions.

It is concluded that:

1. The laminar discharge of parallel-plate openings is proportiomal to tho cube of aperturo.
2. Then roughness hoight exceeds the aperture, higher apparent friction must result fron increased fluid-particle path lengths and decreased apertures betieen erystal faces inclined to the frecture plane.
3. Individuri fine fractures are expected to have directional: permeability, becnuse surface textures reflect follation of rock fabric.
4. The raisotropic pormeability of intersecting agsregates of fine, rough fractures must differ fron that coaputed as though the fractures eore parallel plates.
5. When a mediun contains both coarso and fine openings, it is only the cocrse ones that influence anisotropy because of the discharioo, aperture-cubed relationshin.
6. If thero is flots on ouch of two (or more) intersecting paral-lel-plate openinss, there is a unique field gradient of hydraulic conductivity gencrally not lyins in either plane, whose projece thons on the planes cause the flow there and in the pores of an intergrenular-conduetins medium lying between the fractures.
7. One may sum the discharge components of intorsecting fracturos anci tiro solle: mectura.
8. The disciarge of sinile perillel-plate opening can be expressed in 3 i symmeric second-ppine tensor, and if the conduit is

Ltself anisotrople, the tensor has two symetric components. 9. The diccharge of any aggrogate of intersecting parallelplate openings la a symetric second-rank.tensor. 10. A mediun cut by parallel fractures hes infinito anisotropy. The permoablilty, parnilel to the conductors is proportional to the average of eubes of apertures and inversely to the average spacins betreen conductors.
11. Specific surface serves to dofine the spacing of plane con-, ductors dispersed in orientation.
12. The pericability of a dispersed set of plane conduits is a symnetric second-rank tensor, tho contributins terms from each individual conduit volshted according to the inverse cosine of its incilnation from the average direction.
13. If suveral sets of dispersed conductors exist, the frequency. of each must be weighted accordint to its spechfic surface and orientation dispersion.
14. The tensor-permeabllity of jointed, granular-porous media may be obtcined by superposition of components due to the fractures and due to the permeable solids; 1.e. prinary and secondary permeablility is cumulative if expressed censorially.

The assumption that each parallel plate conduit is uniform over its. Infinite extent is obviously incorrect for real fractured media, and an assessment of the Lmportance of discontinutles and aerlal uniformity is needed. yodels could be built to assess the influenco of extent-to-spacins ratios, or to model fractures that "lens out." concelvably a distribition of apertures, from one member to another, also may resemble a distribution of apertures over a sifisle fracture area.

On the assumption of infinite uniformity it is found that: 1) The anisotropy of a single dispersed set his the symnetry of anoblate spherold, flattoning as fracturc allgnment Laproves,
and with a plane of lisotropy parallol to tho average conductor plane.
2) Two orthogonal sers of equal propertios devolop anisotropy with the symmetry of a prolate spheroid, with a maximem parsilel to their intorsection having twice the permeability on an isotrople plane normal to both sets.
3) Three equal, orthogonal sets form an isotropic mediun.
4) Three unique principal axes occur in all cases of lower conduit-orientation symmetry, with the maximua alons the most frequent direction of intersections, the least tending to lie notral to the set of greatose conductivity.
5) The principal axes of any asblerary system of conductors can be approximated from inspection of a storconet plot of normale.

Field pressure-test data cannot define the distribution of fracture apartures at any given site, but other lines of roasonins suggest that they must be skened in shape. Direct aperture measurenonts, insitu, may be required oventualiy. The field data does indicate that:

1) The frequency of effective hydraulic conductors in undisturbed rock is much smaller than exposures of jointing would ine dicate, parhaps by a factor of 100.
2) The mabers of conductors per drill-hole length is distribue ted as a polsson.
3) The expectation of the polsson distribution at a site cen be estimated fron the proportion of zero-discharge pressure tests. - Current field practice does not produce measuros of principal penmeabilities, so a method has been devised, based on the findinz that:
4) The discharze of a long cylindricul cavity is largoly dependent upon the geomotiric mean of permeabllities notwal to the
cyilndot axis.
5) The throu princlpal puracablilelos can be goviucod sro: apa parent, nermonblilties obtalned by prescure testing ${ }_{a}^{\text {in }}$ three orthogonal delli-holes followins princlpal axos.

Whlie porosity wotid appear to be indoternite if apertures cannot be nsgessed, an approxination asouning 211 apertures allke can be made from innowledge of masured principal pezmedbllitiee, frequencics and the disporsion of crientations. The model studies show that:

1) If porosity is calculated fron . ein nensuro of principal permeabilities, the averate is kittin 10 percent of the trur porosity.
2) If porosity is computed fron sinsle values of frincirni perneabilities averaged from 211 measurcs. the ctror may be as much asi80 percont.

The properties of frcctured medlu, and perbnss linterernime lar porous media as well, are more cospletciy dafined by nimara ous tests oit smill volunes, with 3 tutiscicil cvaluntion jef rasults, chan by single large-polure tests that average and conceal the vaclacions.

ABUZIED. M. 1960, FIELD MEIHOD OF MEASURING SOIL HYORAULIC CUNOLCTIVITY. UNPUBL. M.S. THESIS, UNIV. UF GALIF., DAVIS.

AltKEN, H. Hos 1955, TABLES OF THE GUMULATIVE BINOMIAL PROBABILIIY DISTRIBUTION. HARVARD UNIV. PRESS. 503 PP.

AITHCHISON.J. ANO J.A. BRUWN, 1957. THL LOG-NORMAL DISTRIBUTIOV, UNIVERSITY PRESS. CAMBRIOGE. 176 PP.

AMERICAN CYANAMID CU., UNOATED, AM-F GHCMICAL GROUT, TECHNICAL DATA. BOUND GRUOK, VEH JERSEY, 60 PP.

AMYX, J.W., D. M. BASS AND R. L. WHITINḠ, 1960, PETROLEUM RESERVOIR ENGINEERING. MGGRAW-HILL BOOK CO.. N. Y. 610 PP.

ANOERSON, A. P., 1954, DEVELOPMENT OF PETROLEUM RESERVOIRS I: FRACTURED ROCRS OF THE MONTEREY FORYATION, GALIFORNIA. UNPUBL. PR. D. THESIS, STANFORD UNIV., 108 PP., 28 PL.: 2 MAPS.

ANDERSON, E. M., 1951, THE OYNAMICS OF FAULTING. OLIVER AND BOYD. ECINBURGH. 2ND ED. 206 PP.

ARDERSON, EAM. ANC H. JEFFRIES, 1936, THE DYNAMIGS OF THE FERMATION OF CONE-SHEETS, RING-DYKES AND GAULDRON SUBSIDENCE, WITH INDIE ON FPACTURE'. PROC. ROY. SOC. EDIVBURGH, YCL. 56. NO. 2, PP. 128-163.

APPLEBY, A. N., 1543, JOINT PATTERNS IN HIGHLY FOLDED AND CRYSTALLI:AE ROCKS OF THE YEW JERSEY HIGHLANDS, BULL. GEOL. SOC. APER.,VOL. 51.

ARNDLD, K. JO, l.941, GN SPHERIGAL PROBABILITY DISTRIBUTIONS. UNPLBL. PH.U. THESIS.MASS. INST. TECHN., EAMBRIDGE, MASS.

ARNOLD, M. D.: H. J. GONZALES AND P.B. CRAWFORD, 1962, ESTIMATION OF RESERVOIR ANISOTROPY FROM PRODUCTIVE DATA. JOUR. PETROL. TECHN., ALSUST . PP. 909-912.

GARFIELD, E.G., JOK. GOKOON, AVD W.D. MODRE, 1959, AN ANALYSIS OF LARGE-SGALE FLCODING IN THE FRAGTURED SPRABERRY TREND RESERYOIR. JOUR. PET. IECH. YOL. 11, NO. 4. P. 15.

BILLINGS. H. P., 1942. STRUCTURAL GEOLOGY. PRENTISS-HALL. INC.g 473 PP.

BILLINGS, M. P., 1943, RIVG-DIKES AND THEIR ORIGIN. TRANS. NEM YORK ACAD. SCIE, YOL. S. NO. 6. PP. 131-144.

BCRG; S. F., 19.3. MATRIX-TENSOR METHODS IN CONTINUUM MECHANICS. O. YAN NOSTRANO CO.: NEH YORK, 313 PP .

BRACE, W. F.. 1963, BRITTLE FRAGTURE OF RCCKS. INT'L CO:IF. ON STATE OF STRESS IN THE EARTH:S GRUST. THE RAND GORP, SANTA HCNIGA, PP. 2-1 TG 2-1:3.

BROOKS, C. S., ANC W. R. PURCELL, 19S2. SURFACE AREA MEASURFMENTS OA SEDIMENTARY ROCKS. TRANS. AMER. INST. MIN. ANO MET. ENG.. VCL. 195.: PP. 284-296.

BRYAN, K., 1919, CLASSIFICATION OF SPRIVGS. JOUR. GEOL.: VCL. 27. PP. 322-561.

BLRDINE, it. T., L. S. GOURNAY, AND P. P. REICHERTZ, 1950, PCRE SILE OISTRIBUIION OF PETROLEUM RESERVOIR ROCKS. TRANS. AMER. IAST. MIN. AND MET. ENG., VOL. 189. PP.195-204.

BLRWELL, E.B., ANC B. C. MONEYMAKER. 1950, GEOLOSY IN OAM CONSIRUCTION. IN APPLICATION OF GEOLOGY TO EVGINEERING PRACTICE (EERKELEY VUL.I. GEOL. SOC. AMER.. PP. 11-43.

CALIFORNIA DEPT. CF HATER RESOURCES: 1959: PROCEDURES FOR ESTIMATING COSTS OF TLNYEL CONSTRUCTION. APP. C.. BULL. 7B: IAVESTIGATION UF ALTERNATE AUUEOUCT SYSTEHS TO SERVE SO. CALIF.. 73 PP.

CALIF. DEPT. OF WATER RESOURCES, 1962. AYMOTATED BIBLIOGRAPHY THROUGH 1961 UH METHODS OF DETERMINATION OF COEFFICIENTS UF TRANSMISSIBILITY AVD STORAGE. UNPUBL. OFFICE REPT. SACRAMENTO. CALIF.

CALIF. OEPT. OF WATER RESOURCĖS, 1963, BASIC DATA COMPILATION FCR PENSTOCKS ANO IVTAKES, OROVILLE DAM-E GEOLOGIC EXPLORAIION HOLES 2I甘R-222R, FER. 4.

CAMBEFORT,H.,1463, ETANCHZMENT ET CONSOLIDATION DES ROCHES. FELSMECHANIK UNO IVGENIEURGEOLOGIE, VOL. 1. NO. $2, ~ P P .134-151$.

CARDHELL, W. T., AND R. L.•PARSONS: 1945. AVERAOE PERMEABILITY OF HETEROGENEUUS OIL SANDS. IRANS. AMER. INST. MIN. ANO MET. EAG. VOL. 16犬, PN. 34-42.

CARMAN, P.C.: 1956, FLUW OF GASES THROUGH POROUS MEDIA. ACADEMIC PRESS. N. Y.: 182 PP.

CARSLAW, H.S. AND J.C. JAEGER, I959: CONDUCTION OF HEAT IN SCLIDS, CLARENDUN PRESS: UXFORD, PP. 43-45.

CASAGRAND E, A., 1937. SEEPAGE THROUGH DANS. NEM ENGLAND WATER HCRKS ASSOC., VOL. 51. NO. 2. REPUBL. BY BOSTON SOC. CIV. ENG., CCNTRIB. TO SOIL NECH., 1925-1940. PP. 295-336.

CASAGRANDE A. 1961, CONTROL OF SEEPAGE THROUGH FOUNOATIONS ARO ABUTMENTS OF CAMS . GEOTECHNIQUE, VOL. LI: NO. $3:$ PP. 161-181.

CAUGHRAN, J., 1963. PSEUDORRANOOM NORMAL DEVIATE ROUTINE, GS BC DEVZ, UNIV. CALIF. COMPUTER CENTER; BERKELEY.

CFIEN,C-H.: 1952, RELAXATION TECHNIOUES FGR THREE-DIMENSIONAL FLOM NETS. TKANS. AMER. GEOPHYS. UNIOR: VCL. 33. NO. 1.

PP. 123-125.
CHILOS, E.C., AND V. C. GEORGE, 194B, INTEKACTION OF WATER AND PCROUS MATERIALS, SOIL GEOMETRY ANO SOIL-HATER EQUILIBRIUM. DISCUSSIO:AS OF THE FARADAY SOC.,NO. 3, PP. 78-85.

Crildos, e.c., ario n. C. GeORGe, 1950, the permeabitity of porous MATERIALS: PROC. KOYAL SOC., LOVOON, VOL. A. P. $2 J 1$.

Childos, E.E., 1952, THE MEASUREMEVT OF HYCRAULIC PERMEABILITY OF SATURATED SOIL IN SITU, I, PRINCIPLES OF A PROPOSED METHOD. PROC. RCYAL SOC. OF LONCON, VOL. 215, SEC. A.I PP. 525-535.

CrILOS, E.C., 1957, THE PIYSICS UF LAVD DRAINAGE, IN DRAIVAGE OF AGRICULTURAL LANOS. J.V. LUTHIN. ED.: AMER. SOC. AGKIC.: MADISOR, WISCONSIN, PP. 1-78.

ClEARY, J. M., 1959, hydraulic fracture theory, parts i. II AAD 1II. CIRCULARS 251, 252. 281. ILLINOIS GEOLOGICAL SURVEY, URBANA, ILL.

CCLEBROOK, C.F., 1939, TURBULENT FLON IN PIPES, WITH Particulat reference to the thansition rejion betheen the SYODTH AVD RUUCH PIPE LAHS. JOUR. INST. CIV. ENG. , LONDON, FEB., P. 133.

CCLLINS, K.E., 1961, FLOW OF FLUIOS THROUGH POROUS MATERIALS. REINHOLO PUHLISHIAG CO.. N. Y.: 270 PP.

CROH, E. L., AND R. S. GARDNER, 1959, CQNFIDENCE INTERVALS FOR THE EXPECTATION OF A POISSON VARIABLE. HICMETRIKA, VOL. 46, Pi. 441-453.

GRUSBY, H.O., 18BI: OH THE ABSENEE OF JOIVI STRUCTURE AT GREAT DEPTHS, AND ITS RELATIONS TO THE FORHS OF COARSELY CRYSTALLINE erruptive masses. gedl. mag. ldegaie2l. vcl. 8.

CROSBY. W.O., 1893: THL ORIGIN OF PARALLEL ANO IVTERSECTING JCINTS. AMER. GEOL. YUL. 12, PP. 368-375.

DACHLER,R., 1936, GRUNDHASSERSTRUMMUNGEN. SPRINGER, VIENVA.
DALE, T. K.: AND F. E: GREGORY, 1911, THE GRANITES OF CENNECTICUT. U. S. SEOL. SURYEY GULL. 484, 137 PP.

DALE, J. V.: ANO \%. E. GREGORY, 1923. THE COMMERGIAL GRANITES OF NEH ENGLAND. U. S. GEOL. SURYEY BULL. 738,488 PP.

DANIEL: E. J., 1954, FRACTURED RESERVOIRS OF THE MIDOLE EAST. BLLL. AMER. ASSIC. DETROL. GEOL., VOL. 38, PP. 774-815.

DAVIES, S. J., ANE G. M. HHITE, 1923. AN EXDERIMANTAL STUDY OF THE FLUM OF WATER IN PIPES OF RECTANGULAR SEGTION. PROC. ROY. SOC. LCNDON, YOL. 119. SER. A.: P. 92.

DAVIS: S. Me: ANO L. J. TURK, 1963A, SOME HYOROGEOLOGIC

CHARACTERISTICS OF CRYSTALLINE RUCKS. PRIVATE REPOKT. HAZLETUN NLCLEAR SCIENCE CCRP.: HNS-38.

OAVIS, S. N.: 1963B, HYDROLOGIC AND GEOLOGICIC EVALUATION. NEVADA TEST SITE, INTERIM KEPURT. HALLETON YUGLEAK SCIENCE CCKP.. PALO ALTO, CALIF.: 25 PP.

DAVIS, S. N., AND L. J. TURK, 1964, OPTIMUM DEPTH OF WELLS IN CRYSTALLI.VE ROCKS. GROUNDWATER. VOL. 2. NO. 2. PP. 6-11.

DE MELLO, V. F. B., 1960, SOME QUANTITATIVE INVESTIGATIONS ON CLRTAIN GRUUTING IN RUCK FOUNUATIUNS OF EARTH UAMS . PROC. IST PAN-AM. CUNF. ON SOIL MECH. AVD FOUNDATION ENG.

DE SITTER, L. U.: 1956, STRUCTURAL GEOLOGY. MCGRAW-HILL BUOK CC., NEW YORK, 552 PP.

DCNN: W. L.: 1958, SRAPHIC METHJDS IN STRUCTURAL GEOLOGY. APPLETON-CENTURY CROFTS, 180 PP.

DRAKE, L. C.: ANO H. L. RITTEK, 1945, MACROPORE-SILE DISTRIBUTIOVS IN SUME TYPICAL PDROUS SUBSTANCES. IND. ENG. ANO CHEM. ANAL. ED.: VJL. 17. PP. 787-791.

OUHAMEL, J.M.C.: 1832, SUR LES EJUATIONS GENERALES DE LA PROPAGATIUN DE LA CHALEUR DANS LE CORPS SCLIDES DONT LA CCVOUCTABILITE N'EST PAS LA MEME DANS TOUS LES SENS. JOUR. ECULE POLYT.. PARIS. VUL. 23. 800K 20, PP. 356-394.

OLSINBERRE, G.E.: 1961, HEAT TRANSFER CALCULATIONS BY FINITE DIFFERENCES. INTERINATIUNAL TEXTBUOK CU., SCRANTUN: PA.: 293 PP.

ELKINS, L. F. AND A. M. SKOV, 1960, ANISOTKOPIC SPREAD OF PRESSURE TRANSIENTS DELINEATES SPRABERRY FRACTURE ORIEVTATION. TRANS. AMER. INST. MIN. AND MET. ENG., VOL. 219. P. . 407.

ELLIS: E.E.: I996, OCCURENCE OF HATER IN CRYSTALLINE ROCKS: IN UNDERGROUND WATER PAPERS. U.S. GEOL. SURVEY. H.S. PAPER 160, PP. 19-29.

ELLIS: E.E.: 1909. GROUNO WATER IN THE CRYSTALLINE ROCKS OF CONNECTICUTT. L.S. GEOL. SURVEY. W.S. PAPER 232. PP. 54-103.

EAGLEHAROT: W. VON. 196C. OER PORENRAUM DER SEOIMENTE. SPRINGER, BERLIN. 2.57 PP.

ESMIOL, E.E.: 1957, SEEPAGE THRUUGH FUUNDATIONS CONTAINING DISCONTINUISIES. JOUR. SOIL MECH. AND FOUND. ENG.: AMER. SOC. CIV. ENG. VOL. 83, PROC. PAPER 1143, PP. 1-17.

EVANS: D. D., ANO D. KIRKHAM, 1950. MEASUREMENT OF AIR PERMEABILITY OF SOIL IV SITU. SUIL SCI. SOC. AMER.e PROC.E VCL. 14. PP. 65-73.

FARHIN: R.: 1Y37, HYPOGENE EXFOLIATION IA ROCK MASSES. JCUR. GEUL.. VOL. 45, PP. 625-635.

FATT, IO: 1952, STATISTICAL ANAGYSIS OF QUANTITATIVE INTERPRETATION OF THE ELECTRIC LUG. UNPUBL. REPT.. PROJ. 5215, CALIF. RESEARCH GORP., LA HABRA, NOV. 29, 6 PP.. 14 FIGS.

FATT, I., 1956, TRE NETHORK MODEL OF POROUS MEDIA. TRANS. AMER. INST. MIN. ANO MET. ENG., VOL. 2OT, PARTS I.II, AND III, PP. 144-141.
fatt, 1., 1961, INFLUENCE OF oEAD-ENO PORES ON RELATIVE PERMEARILITY UF PUKOLS MEDIA. SCIENCE, YOL. 134, PP. 1753-1751.

FELLER, K., 1960, AN INIRUDUCTION TO PROBABILITY THEORY AND ITS APPLICATIUN, 2NO ED., VOL. I, JOHN HILEY AND SONS,
NED YORK, 461 PP.
FERRANDON, J., 1948, LES LOIS DE L'ECOULEMENT DE FILTRATION. GENIE GIVIL, VOL. 125, PP. 24-28.

FERRANDON, J., 1954, MECHANIUUE DES TERRAINS PERMEABLES.
HCUILLE BLANCHE, VOL. 9. PP. 466-48J.
FISHER, R. A.O 1953, DISPERSION ON A SPHERE. PROG. ROYAL SOC.E LCNDON, SER. A., YOL. 217. PP. 295-306.

FCRSCHEIMER, P., 1930, HYDRAULIK,30. ED., TEUBNER, LEIOZIG AND BERLI
FCSTER, A.G.: 1948, PORE SILE AND PORE OISTRIGUTION. DISCUSSIONS OF THE FARADAY SOC.. NO. 3, PP. 4l-51.

FREVERT,R.K. AND C. KIRKHAM, 1948, A FIELO METHOD FOR MEASURING THE PERNEABILITY OF SOIL BELOW A WATER TABLE.PROC. HHY. RES. 80.. VOL. 28. PP. 433-442.

FRYERS, F. J.. ANE J. W. SHELDOV, 1962, THL USE AF A HISHSPEEO DIGITAL COMPUTER IN THE STUDY OF THE HYORODYNAMICS OF GEOLOGIC BASINS.. JOUR. GEOPHYS. RES., VOL. 67. PP. 2421-2431.

GIEFER, G. J., 1963, WATER WELLS, AN ANNOTATED BIBLIOGRAPHY. WATER RES. CTR. ARCHIVES, UNIV. OF CALIF., BERKELEY, 141 PP.

GIGNOUX, M. ANO R. BARBIER, 1955, GEOLOGIE DES BARRAGES ET DES AMENAGEMENTS HYORAULIQUES. MASSON ET GIE.. PARIS. 343 PP.

GILBERT. C.M., 1938. WELDED TUFF IN EASTERN GALIFORNIA. BLLL. GEOL. SOC. AMER., VOL. 49. PP. 1829-1861.

GILBERT, G. K. . 19.94 , DOMES AHD DOME STRUGTURE UF THÉ HIGH SIERRA. GEOL. SOC. AMER. BULL., VOL. 15. PP. 29-36.

GLOVER, R. E., 1953. FLON FROM A TEST-HOLE LOCATEU ABOVE GRUUNDWATER LEVEL. IN ZANGAR, C. N.: THEORY ANO PROBLEMS OF WATER PERGOLATION, ENG. MONO. NO. B, U.S. BUR. REGLAM., APP. B. pp. 69-71.

\qquad
\qquad

GCGUEL. J.: 1945: SUR L'URIGINE MECHAVIQUE OE LA SCHISTOSITE. 8OL. SUC. GEOL. FRANCE, VOL. 5. NO. 15. PP. S19-522.

GCUDMAN, R.E.A 1963 , THE RESULUTION UF STKESSES IN ROCK USING SIEREOGRAPHIC PROJECTION. INT. JOUR. ROCK YECH. MINING SCI.: VCL. 1. PP. 93-153.

GCOOMAN, R.E.: D.G. MOYE, A. VAN SCHALKWYK AND I JAVANDEL: 1964. GRUUNOWATER INFLUHS DURING TUNNEL DKIVING. IN PRESS. tre engineering geologist

GCSTOPTEKHILAT LEAIV, 1962, METOOICHĖSKOE POSOBIE PO ILUCHENIYU TRESHCHINUUATUSTI GORVYKH POROD I TRESCHCHINNYCH KDMEKTOROV NEFTI I GALA. VNIGRI VIPUSK 2.1.

GRANT: L. M., 1964, AN APPLICATIUN UF THE UVIT TAKE COVCEPT IN Evaluating izout hole drilling methoos. in press, the EAGINEERING GEOLOGIST.

GREENHOOO, J. A.. AYD C. DURAND, 1955A. THE DISTRIBUTIUN OF LENGTHS AVO CJMPONEVIS OF THE SUM OF Y RANDOM UNIT VECTORS. ANN. MATH. STAT.. VOL. 26. NO. 2. PP. 233-246.

GREENHOOD, J. A. AVO D. DURAND, 1955B, APPROXIMATION TO THE DISTRIBUTION OF THE SUM OF COSINES OF RANOOM ANGLES.PRELIMINARY REPORT REAO AT INST. OF MATHE: STAT.: ANN ARBOR, MICH.E SEPT. LO GRIFFITH. A.A.: 1921: PHENOMENA UF RUPTURE AND FLOW IN SOLIDS. PHILOSOPHICAL IRARS.: ROYAL SOC. LONDON. SER. A., VOL. 221. P. 163. G2IGGS. D.T.: 1936. DEFORMATIUN OF ROCKS LNDER HIGH CONFINING PRESSURE. JUUR. GEOL.. VOL. 44, PP. 541-577.

HADDOCR, MAH. 193L, DEEP BORE HOLE SURYEYS AND PROBLEMS. MCGRAN-HILL BOUK CO.: NEM YORK

HALL. H. A.. 1956. AN ANALYTICAL DERIVATION OF THE DARCY EGUATION. TRANS. AMER. GEUPHYS. UNION, VOL. 37. NO. 2. PP. 1851e8.

HANNA, M. A.. 1934. GEOLOGY OF THE GULF COAST SALT DJMES. IN PRUBLEMS OF PETR. GEOL.: AMER. ASSOC. PET. GEUL.: TULSA: OKLA.: PP. 629-678.

HANSEN. V.E.: 1952: COMPLICATED WELL PROBLEMS SOLVED BY THE MEMBRANE ANALOGY. TRANS. AMER. GEOPHYS. LNION. VOL. 33. PP.912-9L6

HAPPEL, J.: 1959, DISCUSSION OF A PAPER BY S. IKMAY. JOUR. GEOPHYS. RES., VOL. 64: NU. 4. PP.

HELE-SHAH, H.S., 1898, INVESTIGATION OF THE NATURE OF SURFACE RESISTANCE OF WATEK ANO OF STREAMLINE MOTION UADER CERTAIN EXPERIMENTAL COVDITIONS. TRANS. INST. NAVAL ARCHITECTS, VOL. 4C. PP. 21-46.

HILDEBRAND, F. B.: 1956, INTRODUCTION TO NUMERIGAL AVAGYSIS. MCGRAN-HILG BOUK CU., MEH YORK, 5II PP.

HCOGSON, K. AO, ISGIA, CLASSIFICAIION OF STRUCTURES ON JOINT SURFAGES. AMER. JOUR. SCI., VOL. 259, PP. 493-502.

HCDGSON, K. A., 1961B, RECIONAL STUOY OF JOINTING IN CUMB RIDGE, NAVAJO MOUNTAIN AREA, ARILGNA AND UTAH. AMER. ASSUC. PETROL. GEOL. BULL. VOL. 45. PP. 1-3d.

HCEL. P. GO. LY47. AN INTKOOUCTION TO MATHEMATICAL STATISTICS. JCHN WILEY ANO SONS, NEW YORK,331 PP.
hCLMES, C. O., 1963, TIDAL STRAIN AS A poSSIble cause of MIGROSEIMS AND ROCK JOINTING. HULL. GEUL. SOC. AMEN., VCL. 74, PP. 1411-1412.
hCHELL, J. Yo, 196C, GLUSSARY UF GEOLOGY AYD RELATED SCIENCES, AMER. GLUL. INST., WASHINGTUN, D.G., 72 PP.

HUITT, J.L., 1H56, FLUID FLOW IV SIMULATEO FRACTURES. JCUR. AICHE, VOL. 2. . 259.

HLBBERT, M. K., 1956, DARCYES LAH AND THE FIELD EQUATIONS OF THE FLUN OF UNDERGROUND FLUIDS. TRANS. AMER. INST. MI.V. MFT. AND PETROL. ENG. VOL. 207, PD. 222-239.

HGBBERT, H. K. AND D. G. HILLIS, 1957, MECHANICS OF HYDRAULIC FRAGTURING. FRAYS. AMER. INST. MIN. MET. ANO PETROL. ENG.. VCL. 210. PP. 153-

HLBRERT, M. K•• AND W. Ho RUBY, 1959, ROLE OF FLUID PRESSURE IN MEGHANICS OF OVERTHRUST FAULTING. GEOL. SOG. AMER. BULL.: VOL. 7E. PP. 115-166.

HYORSLEY. M. Je, 175i, TIME LAG ANO SOIL PERMEABILITY IV GROUNDHATER OBSERVATIONS. BULL. 36, WATERWAYS EXPER. STA.: CORPS ENG. U. S. ARMY, VICKSRURG, MISS.

IRMAY, S.D 1958. CN THE THEORETICAL OERIVATION OF DARGY AND FGRSCHIMER FORMULAS. TRAYS. AMER. GEOPHYS. UNION, VOL. 39. NC. 4.. PD.

JAEGER, J. G.D 196I. ROCK MECHANICS FOR HYOROPOWER ENGINEERING. MATER POWER, SEPT-OCT.E PP.

JAHNS, R. Ho, 1943, SHEET STRUGTUKE IN GRANITE, ITS ORIGIN AND USES AS A MEASURE OF GLACIAL EROSION IN NEH ENGLANO. JOUR. GEOL.g YCL. 5l. NO. 2. PP. 71-98.

JEFFRIES. H. ANO 日.S. JEFFRIES, 1956, METHODS DF NUMERIGAL PFYSIGS. GAMBRIDGE UNIY. PRESS. 679 PP. .

JCHN, K.H., 1962, AN APPROACH TO ROCK MECHANICS. JOUR. SOIL MECH. AND FOUND. ENG.: AMER. SOC. CIV.ENG., VOL. 88, PT. I,PP. 1-3U.

JCHNSON, E.E., 1947, GROUVO WATER. H.M. SNYIH PRINTING CO. MINNESUTA, $50 Y$ PP.

JCHNSON, W. E., ANII R. V. HUGHES, 1948, DIRFCTIOVAL PERMEABILITY MEASUREMENTS AND THEIR SIGNIFICANCE. PRODUCERIS MONTHLY, VUL. 13. PP. 17-25.

JCHNSON: W. E., ANO J. N. BRESTON, 1951: DIRECTIONAL PERMEASILITY MEASUREMENTS UN OIL SANDSTONES FROM VARIOUS STATES. PRONUCERS MCNTHLY, VOL. 14, PP. 10-19.

JCHNSTON: W. D.: AND E. CLOOS, 1934, STRUCTURAL HISTORY OF THE FRACTURE SYSTEMS AT GRASS VALLEY, CALIFORNIA. EC. GEUL.: VOL. 25. PP. 39-54.

JCNES, P.H.: 1963. THF VELOCITY OF GROUNDNATER FLOW IN BASALT ACUIFERS OF THE SNAKE RIVER PLAIN. IOAHU. ARSTR. IN PRUC. IATIL UNIUN GEUD. AND GEOPHYS. BERKELEY, CALIF. VOL. VIII. P. 140.

KING. P. B., 1448, GEOLOGY OF THE SUUTHERN GUADALUPE MOUNTAINS: TEXAS. U. S. GEUL. SURVEY PROF. PAPER NO. 215.

KIRKHAM, D., 1945, ARTIFICIAL ORAINAGE OF LAYD. STREAMLINE EXPERIMENTS, THE ARTESIAN BASIN, III. TRANS. AMER. GEOPHYS. UN., VCL. 26. PP. 393-406.

KRASNOW, E., 1960, FORTRAN PROGRAM TO GENERATE PSEUDO IVTEGERS IA RANDOM SEQUEACE, SHARE LISTING GS BC RANDY, EUMPUTER CENTER, BERKELEY, 4 PD.

KRAUSSE, H. F. ANC G. LUHRS, 1962, VOQLAUFIGE MITTEILUNG UBER STATISCHE AUSWERTUNG VOV GEFUGEDATEN MIT HILFE CLEKTRJNISCHE KECHELANLAGEN. BERSBAUMISSENSCHAFTEN, HCFT 8. S. $190-194$.

KRUMBEIN: W. C.: 1954 , APPLICATION OF STATISTICAL METHUSS TO SEDIMENTARY RUCKS. JOUR. AMER. STAT. ASSOC.: VOL. 49. PP. 51-66.

KRYNINE, D.P... ANO W. R. JUOO; 1957. PRIACIPLES OF ENGINEERIHG GEOLOGY AND GCOTECNICS - MCGRAW-HILL BGUK CO.: NEM YORK, 728 PP.

KIANTES, IN SAX, H. G. 1946 . THE TECTONICS OF THE SOUTH LIMBLRG COAL FIELO IABRIOGEO TRANSLATIONI. MED. GEOL. STICHTING (CI-1): VOL. 3 .

LACHENBRUCH, A. H. 1961 , DEPTH AND SPACIMG OF TENSION CRACKS. JCUR. GEOPHYS.RES.: VOL. 66. NO. 12. PP. 4273-4292.

LAMB, H.: 1932, HYOROOYNAMICS, SIXTH ED.: CAMBRIOGE UNIV. PRESS: 738 PP。

LAMBE, TOH.: 1957. CHEMICAL GROUTING: TASK COMMITTEE ON CHEMICAL SROUTING. JOUR. SOIL MECH. AND FUUVDATIDN EYG.: AMER. SCC. CIVIL ENG.: PAPEK 1426.106 PP.

LANDRUM, B. L. ANE P. B. CRAWFORD, 196C, EFFECT OF OIRECTIUVAL PERMEABILITY OY ShEEP EFFICIENCY AND PRODUCTION CAPACITY. TRANS. AMER. INST. YIN. ANO MET. ENG., VOL. 219. P. 301.

LAW , J.g 1944, STATISTICAL APPROACH TO THE INTERSTITIAL HETEROGENEITY OF SANO RESERVOIRS. TRANS. AMER. INST. OF MIN. ANU HET. ENG. VOL. 155, P. 202.

LEE, D.B., 1948, PUTENTIOMETRIC MODEL STUDIES UF FLUID FLOM IA PETROLEUM KESERYOIRS. TRANS. AMER. INSP. MIN. AYD MET. EYG. YCL. 174, PP. 41-E6.

LEEMAN, E. R.B 1958, SUME UNDERGROUND OBSERVATIOVS RELATING TO THE EXTENT OF THE FRAGTURE ZDNE AROUND EXGAVATIOVS IN SJME CENTRAL RAND MIVES. ASSOC. OF MINE MANAGERS, PP. 357-384.

LEGGETT, R.F., 1362, GEOLUGY AND ENGINEERIVG. MGGRAW-HILL BOOK CC., NEW YORK, 2NE EO., 844 PP.

LE GRAND, H.E., 1949. SHEET STRUCTURE, A MAJOR FACTOR IN THE OCGURRENCE UF GROLVD WATER IN THE GRANITES OF GEURGIA. EC. GEOL.: VOL. 44, NO. 2, PP. 110-118.

LEWIS, D. C., AND R. H. BURGY, l964, HYDRAULIC CHARACTERISTICS OF FKACTURED AIID JOINTED RUCK. GROUND WATER, VOL. 2, NO. 3. PP. 4-9.

LINKHITZ, ., $^{\text {1963, TERRESTRISCH-PHOTOGRAMMETRISCHE KLUFTMESSUNG. }}$ FELSMECHAYIK UNO INGENIEURGEOLOGIE, VOL. 1. NO. 2. PP. 152-159.

LCNG, R. R., 1961. MECHANICS GF SOLIDS AND FLUIDS. PREVTISSHALL, ENGLENOCD CLIFFS, N. J., 156 PP.

LCUDERBACR, G. D.: 1950, FAULTS AND ENGINEERING GEOLOGY, IY APHLICATION GF SECLQGY TO ENGIVEEKING PRACTICE IBERKELEY YCL.J. GEOL. SOG. AMER.: PP. 125-150.

LLTCH, N.AND M. E. SZEIVOREI, 1958, THE EXPERIMENTAL OETERMIIAtION OF THE EXTENI ANO OEGREE OF FRACTURE OF A ROCK face of means of sonic aino ultrasunic methoos. the assoc. of mine managezs, SC. AFRICA, PP. 4E5-489.

LLTHIN. J. N., 1961. METHOD OF MEASURING SOIL HYDRAULIC CEVDLETIVITY IN SITU. VATURE, VOL. 192, PP. 383-384.

LLIHIN, J. V., ANC D. KIRKHAM, 1949, A PIEZOMETRIC METHOD FOR MEASURIVG PERMEABILITY OF SOIL IN SITU BELOM A mATER TABLE. SOIL SCI.: VOL. 68, PP: 349-358.

LYOVS, M. S., 196C, PHASE IV, BASIC DATA COMPILATION, JIIYT STUOY, UNDERGROUNG POWER PLART, OROVILLE DAM SITE. CALIF. DEPT. OF HATER RESOURCES, UNPUBLISHED REPT.: 3 PP..I4 FIG.

MAASLAND, M., 1957, SOIL ANISOTROPY AND EAND DRAIIIAGE, IV DRAINAGE OF AGRIGLLTURAL LANDS IJ. N. LUTHIV, ED.. AMER. SOC. AGROYOMY, MADISCN, WIS., PP. 216-285.

MAASLAND. M.: AND D. KIRKHAM, 1955.. THEORY ANO MEASUREMENT OF AMISOTROPIC AIR DERMEAUILITY IN SOIL. PROC. SOIL SCI. SOC. AKER., PP. 395-40C.

MARCUS, H. AND.D.E. EVANSON; 196I, DIRECTIONAL PERMEABILITY IA ANISOTROPIC MECIA. HYO. LAB.! UNIV. CALIF.: BERKELEY, HATER RESUURCES CENTER CUNTRIB. NO. 31: $1 J 5$ PP.

MARCUS, H., 1962; THE PERMEABILITY OF A SAMPLE OF AN ANISOTROPIC MEOIUM. JUUR. GEOPHYS. RES.: VOL. 67. NO. 13. PP. 5215-5225.
matthes, f. E.f ly30, geologic history uf the yosimite valley. U. S. GEOL. SURVEY. PKOF. PAPER 160. 137 PP.

MEINZER, U.E.. 1923. THE OCCURRENCE OF GRCUND WATER IN THE US.. U.S. GEOL. SURVEY. W.S. PAPER 489, PP. 180-188.

MEIVZER, U.E.: 1927, LARGE SPRINGS IN THE US. U.S. GEOL. SLRVEY H.S. PAPER 557, 94 PP.

MCKIYSTRY, H. E.: 1948, MINING GEOLOGY. PRENTISS-HALL, INC.: NEN YORK, PH. 520-523.
melton, f. A., 1929, A RECONNAISSANCE OF THE JOINT SYSTEMS IN THE OUACHITA MCUNTAINS AND CENTRAL PLAINS OF OKLAHOMA. JCUR. GEOL.: YOLS. 31-38. PP. 729-746.

MERWIN: M.: 1Y59: 724 FQRTRAN II SUBPROGRAM FOR MATRIX diagonalilation. mit computation center and share listing fz MI HOI3. 2PP.. 186 SOURCE CAROS.

MEYER, H. A., ED., 1956, SYMPCSIUM ON MONTE-CARLO METHOOS. JCHN MILEY AND SONS. NEW YORK, 382 PP.

MIKKO. S. M. 1956 , STUDIES OF THE HYDRAULIC CONDUCTIVITY OF SCILS AND ITS MEASUREMENT.I CITED BY ABUZIED, INCOMPLETE REF.I

MILLER. E.E. ANC R. D. MILLER, 1956, PHYSICAL THEURY FUR CAPILLARY FLON PHENJMENA. JOUR. APPLIED PHYS. VUL. 27, NC. 4. PP. 324-332.

MCOD. A. M.: AND F. A. GRAYBILL. 1963, INTRODUCTIUN TO THE THEORY OF STATISTICS. MCÖRAN-HILL BOUK CO.: $2 N O$ EO.: NEM YORK, 443 PP.

MEODY. J. D.. AND M. J. HILL. 1956. WRENCH-FAULT TECTONICS. BLLL. GEOL. SOC. AMER., VOL. 67. PP. 1207-1246.

MCYE. D. G.. 1959, ROCK MECHANICS IN THE INVESTIGATION AND CONSIRUCTION OF T.I LNDERGROUND POHER STATION, SNOWY MOUNTAINS, GLSTRALIA. CASE HIST. IN ENG. GEOL., GEOL. SOC. AMER., VOL. 3. PP. 13-44.

HLLLERiL.: 1933. LNTERSUCHEN UBER STATISTISCHE KLUFTMESSUNG. GEOL. UND BAU.: JAHRG. 5 , HEFT. L. S.
mLLLER. L.. 1960́, CER EINFLUSS DES BERGHASSERS AUF DIE

STANDFESTIGKEIT DER FELSWIOERLAGER VON TALSPERREN. OESTERREICHISCHE WASSERWIRTSCHAFT, HEFT. 8.2 .9.

MLLLER, Le: AND J. W. KLAUS, 1963, RECENT DEVELOPMENT OF SIABILITY STUDIES OF STEEP ROCK SLOPES IV EURUPE, TRANS. APER. INST. MIN. AND MET. ENG.: PREPRINT NO. 63AO44.

MLSKAT, M., 1937, THE FLOW OF HJMOGENEOUS FLUIOS THROUGH PCROUS MEUIA. MCGRAW-HILL, NEW YORK, REPRINTED 1946, J.H. ECWARDS CU., ANN AKBOR, MICH.

MLSKAT, M-, l948, EFFECT OF PERMEABILITY STRATIFICATION IN CYCLING OPERATIOVS. TRANS. AMER. INST. OF MIN. AND MET. ENG.: VEL. 160, P. 34.

MLSKAT, M.: 1449 , PHYSICAL PRINCIPLES OF OIL PRODUCTION. MCGRAKHILL BOOK CO.. 922 PP.

NEWHOUSE, W. H., ED., 1942, ORE DEPNSITS AS RELATED ID STRUCTURAL FEATURES. PRINCETO:I UNIV. PRESS, PRINCETON, N. J., 28C PP.
new jersey toate u.ynnuwni, occurrence of mater in the TRIASSIC.... VEW JERSEY DIV. WATER POLICY AND SUPPLY, BULL. IU.

NIKURADSE, J., 1940, STROYMUNGSSESETLE IN RAUEN ROHREN.
TRANSLATION liy DETROL. ENG. VOL. 11, NU. 6: P. 164.
OPSAL,F.W-, 195S, ANALYSIS OF TWO- AND THREE-DIMENSIOVAL GROUNO WATER FLOH GY ELASTICITY ANALOGY. THE TRENT IN ENGINEERING AT THE UNIV. UF WASH., VUL. 7, NU. 2, PP. 15-20.

OSBORNE, E. F., AND G. K. LOWTHER, 1936, PETROTECTONICS AT SHAHINIGAN FALLS. GEOL. SUC. AMER. BULL., VOL. 47. PP. 1343-1370.

PAGE, F., W.H. CORCTRAV, W.G. SCHLINGER AND B.H. SAGE, 1952, IND. ENG. CHEM., VOL. 44. P. 419.

PARKER, J. M., ly42, REGIUNAL SYSTEMATIC JOINTIVG IN SLIGHTLY DEFORMED SEDIMENTARY ROCKS. GEDL. SOC. AMER. BULL.gVOL.
53. PP. 381-468.

PARZEN, E., 1960, MOOERN PROBABILITY THEORY AND ITS APPLICATIUNS. JCHN WILEY AND SOVS, NEW YOKK, 464 PP.

PERKINS, T. K.B ANO L. R. KERH, 1961, WIDTHS OF HYORAULIC FRACTURES. JOUR. PET. JEGH., SEPT., PP. 937-949.

PERRY, J. H.,ED., 1950, CHEM. ENG. HANDBCOK, 30. ED.-MCGRAW-HILL BOUK CO., NEW YORK, P. 378.

PINCUS, H. J., 1951, STATISTICAL METHODS APPLIED TO TḢE STUDY OF ROCK FRACTURES. BULL. GEOL. SOC. AMER., VOL. 62, PP. 81-130.

PINCUS, H. J., 1953, THE ANALYSIS OF AGGREGATES OF ORIEVTATION DATA IN THE EARTH SEIENCES. JOUR. GEOL.: VOL. 6L, NO. 6, PP. 482-509.

PINCUS, H. J.. 1956, SOME VECTORIAL ANO ARITHMETIC OPERATIONS ON THO-OIMENSIONAL ORIENTATIONAL VARIANIS, WITH APPLICATIOV TO GEOLOGICAL DATA. JOUR. GEOL.. VOL. 64. PP. 535-57

PLAFKER, G., 1964,URIENTER LAKES ANO LINEAMENTS OF NORTHFASTERN BCLIVIA.BULL. GEOL. SOC. AMER., VOL. 75. NO. 6. PP.503-522.

PCLUBARINUVA-KUCHINA, P. YA, 1962, THEORY OF GROUND WATER MNVEMENT. TRANS. OY J.M.R. OEWIEST, PRINCETON UNIV. PRESS: PRINCETON, V.J.. 613 PP.

PRICE, N.J., 1959. MECHANICS OF JOINTING IN ROCKS. GEOL. MAG.: VCL. 96. PP. 149-167.

PURCELL, W. R.: 1549 : CAPILLARY PRESSURES-THEIR MEASUREMENT USING MERCURY AND THE CALCULATION OF PERMEABILIIY
THEREFROM. TRANS. AYER. INST. MIN. AND MET. ENG.: VOL. 186. PP. 39-45.

RAGGATT. H.G.: 1954 . MARKINGS ON JOINT SURFACES IN ANGELSEA MEMBERS OF DEMUN'S BLUFF FORMATION, ANGELSEA, VICTORIA. APER. ASSOC. PETRCL. GEOL. BULL. VOL. 38. PP. 1808-1810.

REEVE, R.C. AND J.N. LUTHIN: 1957. METHOOS OF MEASURING SOIL PERMEABILITY, IN CRAINAGE OF AGRICULTURAL LANOS. J.N. LUTHIN. ED. AFER. SOC. AGRONOMY, MADISON. MISC., PP. 395-445.

REYNOLOS, D.: 1983, AN EXPERIMENTAL :YVESTIGATION DF THE CIRCLMSTANCES WHICH CETERMINE WHETHER THE MOTION OF WATER WILL UE OIRECT OR SINUOUS, AND THE LAW OF RESISTANCE IN PARALLEL CHANNELS. PHIL. TRANS. ROY. SOC. LONDON

RICHAROS, L. A. I L952,REPORT OF THE SU甘-COMMITTEE ON PERMEABILITY AND INFILIRATION. COMMITTEE OI TERMINOLUGY. PROC. SUIL SCI. SOC. AMER.. VOL. 16. PP. 85-88.

RICHARDSON, H. W., AND R. S. MAYO, 1941. PRACTICAL TUNNEL DRIVING. MCGRAH-HILL BCOK CO.. NEH YORK. 436 PP.

RICHAROSON. J. T.: 1948, SUMMARY OF UPLIFT PRESSURES AT BUREAU OF RECLAMATION NAHS. U.S. BUR. OF RECLAM. TECHN. MEMO. 636. P. 16.

RICHEY, J. E., 1963. GRANITE, PARTS III,IV.V.VI. WATER POWER, PP. 326-332. 378-382, 409-422, 475-481.

RIES. H.: ANO T. L. HAISON. 194T. ELEMENTS OF ENGINEERING GEOLOGY. JOHN WILEY AND SONS. NEM YURK. $2 N D E D .469$ PP.

RITTER, H. L., ANO L. C. ORAKE, 1945, PQRE-SILE DISTRIBUTION IA POROUS MATERIALS. IND. ENG. AND CHEM. ANAL. ED. . VOL. 17. PP. 782-786.

RIVERA, R. A.A 1964,FAULTS AS POSSIBLE SUPPLIERS OF GROUND HATER. UAPUBL. REPJRT, MINERAL ENG. 299, UNIV. OF CALIF.. BERKELEY

RCBERTS, J.C., 1981, FEATHER FRACTURE AND THE MECHANICS OF RGCK JOINTING. AMER. JOUR. SCI.: VOL. 259, PP. 481-492..
RCEDOER, EO 1962, ANCIENI FLUIOS IN CRYSPALS. SEIENTIFIC AMERICAN, OCTOUFR, PP. 2-11.

RCTHFUS, R. R.: D. H. ARCHER, I. C. KLIMAS, K. G. SIKCHI, 1957, SIMPLIFIED FLDW CALCULATIONS FOR TUBES ANO PARALLEL PLATES, AICHE JOUR., VOL. 3, P: 2 j8.

RCHE, R.I.: 1043, FAULTS AS A SOURCE OF HATER SUPPLY. BS THESIS IN IKRIG.: UNIV. CALIF. BERKELEY.

SAMSIOE, A. E., 1531, EINFLUSS VON ROHRBRUNNEN AUF DIE BEWEGUNG DES GRUNGWASSERS. LEITSCH. AVGEW. MATH. UND MECH.; HEFT. 11. S. 124-135.

SANBORN, J. F., 135, EITGINEERING GEOLUGY IN THE OESIGN ANO CONSIRUCTION UF TUNNELS, IN APPLICATIUN OF SEULOGY TO ENGIVEERING PRACTICE, IBEKKELEY VOLI, GEOL. SOC. AMER., PP. 45-82.

SANDER, B., lЭ43, EINFUHRUNG IN DIE GEFUGEKUNDE DER GEOLOGISCHEN KURPER, ERSTE TEIL. ALLGEMAIVE GEFLGEKUNOE UND ARBEITEN IM BEREICH HAMOSTUCK BIS PROFIL. SPRINGER-VERLAG, WEIA UND INNSHRGCH. GUSTRIA

SAVAGE, J. C. ANO H. S. HASEGANA, 1964, SLME PROPERTIES OF TENSILE FRACTUKES INFERRED FNOM ELASTIG WAVE RADIATIJN. JOUR. GEOPHYS. RES., VOL. 69, NO. 1ن. PP. 2'091-21NO.

SCHEIDEGGER, A. E., 1954, DIRECTIONAL PERMEABILITY OF POROUS MEDIA TO HOMOGEVECUS FLUIDS. GEDFISICA PUKA E APPLICATA, HILAN, VOL. 3. PD. 17-26.

SCHEIDEGGLR, H. E., 1958, PRINCIPLES OF GEUDYNAMICS. SPRINGERVEKLAG, BERLIN, $28 J$ PP.

SGHEIDEGGER, A. E., 1960. THE PHYSICS OF FLOH THROUGH POROUS hedia. The machillay cu.g nen york, 313 PP.

ShELDON, P. O. 1912, SOME OBSERVATIOVS ANO EXPERIMEVTS OUN JOIMT PLANES. JOUR. GEOL. V VOL. 20, PP. 64-19C.

SCHENCR,H.J., 1963, FORIRAN METHODS IN HEAT FLOW. THE RCNALD PRESS CC., NEW YORK, 285 PP.

SIEGEL, H. O., 1950,A THEORY OF FRAGTURE CF MATERIALS ANO ITS APPLIGATION TO GEOLOGY. AMER. GEOPHYS. UNION. TRANS., YOL. 31. PP. 611-619.

SIPLE, G.EE. 1946, PROGRESS REPOKT ON GROUND WATER INYESTIGATIONS IN SOUTH CAROLINA. SOIL CONS. RES., PLAYNINI AND DEV. BD.: STATE OF SO. GAROLINA, BULL. 15, 116 PP.

SMITH, B.L.O 1962, GEULOGY OF THE JERSEY GENPRAL POWER AND LIGHT CCMPANY YARD GREER STORAGE PROJEGT. NORTHERN VEN JERSEY. ABSTR. IV

GEUL. SOC. AMER. BULL., NUV. 14.
SHITH, J. D., 1958, PRODUCTION aNo UTILIZATION OF geothermal SIEAM. PAPER PRFSEVTED TO WELLIVGTON BR., NEW ZEALAND IAST. OF ENG., APRIL LÜ, 24 PP.i4 TABLES, 14 FIG.

SHYTHE, W. R., 1939, STATIC AND DYNAMIC ELECTRICITY. MCGRAWHILL BOOK CO., NEK YORK, 2ND. EO. PP.

SNOW, D.T., 1964, STEASY EOSTRFEM CYLINDRICAL CAVITIES IN SATURATED, infinite minisutroulc media. in press, the engineering GEOLOSIST, 28 PP.

SCmmerfeld , A., 1947,mechanics of deformable bodiés, translateo frjm 2nd ed. by g. kuerti. academic press, new york, 356 PP.

SPENCER, ̇̇. W., 1959, FRAETURL PATTERNS IV THE GEARTONTH MCUNTAINS, MONTANA ANO WYOMING. GEOL. SOC. AMER. BULL., VOL. 7S. NO.4. PP. 467-508.

Stewart. J. W., lis62,water-yielding potevilal of weathered crystalline rocks at the georgia nuelear laboratory. u. s. gedl. SLRVEY PROF. PAPER 450-9.

STINI, J., 195v.tLYNELBAUGEOLOGIE. SPRINGER, VIENVA, 366 PP.
STUART, W. T., 1955,pumpits test evaluates hater problem at ELREKA, NEV.. MIN. ENG.. VOL. 7, NO. 2, PP. 148-156.
talobre, J., 1957. LA mecyanique. Des roches. oundo. parisi 444 PP.
tausisky. U., and j. TODD, 1956.GEvERATION OF pSEUSO-RANOOM nlmbers, if meyer, symuosium in monte-carlo merhoos. john hiley avo SCNS. INC.. NEW YCRK.
terlaghi, K.. 1925, ERDRAUMECHAVIK AUF BODENPHYSICALISCHER GRUNDLAGE. DEUTECRE, LEIPZIG.
terzaght, K., t92g, the effect of minor geologic details on the SAFETY OF DAMS. AMER. INST. OF MIN. AND MET. ENG., TECH. PUB. 215, PP.

TERZAGHI, K., 194E.qOCK DEFECTS AND LOADS ON TU.NEL SUPPORTS, in rock tunneling mith steel suppurts. commerical shearing and SIAMPING CO., YCUNGSTOWV, OHIO, PP. 3-42.
terzaght.k. ANO R. pECK, 1961,SOIL MECHANICS AND ENGINEERING PRACTICE., JOIN WILEY AND SONS, NEM YURK, 566 PP.

TERZAGHI, K.. 1962, DOES DAM FOUNDATION ENGINEERING REALLY LAG.. ENG. NEWS-RECURD, FEB. 15, P. 58.
terzaght, K., 1962, oam foundation on sheeted granite. GEOTECHNINUE, VOL. 12, VO. 3. PP. 199-208.

IHAYER, D. P.. 1962,INTERIM REPORT, PERMEABILITY STUDY, UNDERGHOUND PUWER PLANT, ORCVILLE JAM. GALIF. DEPT. OF WATER RESCURCES, UNPUBLISHED REPORT, 14 P., 17 FIG. ANO TABLES.

THRUWER, P.H., 1963, 7090 FORIRAV II PLOT KNUTINE J6 BC XYPZ. -UAIV. CALIF., BERKELEY, 12 PP.

TCON. D.K.: 1954, UYSTEADY FLUW IN POROUS MEDIA BY MEANS OF A HELE-SHAN VISCOUS FLUID MODEL. TRAYS. AMER. GEOPHYS. UNION, VOL. 35. PP. 9.35-916.

ICDO, D.R., 1959, GROURDNATER HYDROLOGY, JUHN WILEY AND SCYS, NEW YORK, 336 PP.

TCLMAN, C. F., 1937.GROUNO WATER. MGGRAK-HILL BOOK CO. NEH YCRK, 593 PP.

TCHNSEND, J. R., 1963.GROU:YO HATER DEVELOPMENT GY HORIZONTAL DTILLING. CALIF. ASSOC. DF EVG. GEGL., STH ANN. MEETING, 1962, PP. 46-5iC.

TLRK, J. L., 1963.THE UCCURREILE OF GROUND NATER IN CRYSTALLINE RCEKS.STAYFORO UNIY., UYPUZL. M. S. REPT., 42 PP., 26 TABLES.

THELKER, V. H.g 1553, IVYESTIGATION OF SEEPAGE IV PERYINUS ABUTMENTS OF DAMS. UNPUS. PH.D. THESIS, HARYARD UNIV.: PP.
U. S. NAT. BUR. STAVOARNS, 195l, MONTE CARLO METHOD. APPLIED MATH. SER. 12, U. S. GOVI. PRIVIING OFF.:HASH. D. E.: 42 PP.

VERSLUYS, J., 1915, DE ONHEPAALDE VERJELIJKING DER PERMANENTE BEMEGING VAN HET GRONDMATER. VERK. EEUL.-NIJVBOUIA GENOOT. NED. EN KOLONIEV. GEOL. SERIE 1 S. 349-36i.

VERSTEEG, K., $1942, j 0 I: N T I G G$ li ThE GEVTRAL COAL BEOS OF OHIO. ECON. GEOL.: VUL. 37. P. 305.

VERSTEEG, K., 1944,SCME STRUCTURAL FEATURFS OF OHIO.
JCUR. GEOL., VOL. 52, PP. 131-133.
VCN ENGEL', O. D., 1961,THE FINGER LAKES REGION, ITS ORIGIN AAD NATURE. CORNELL UYIV. PRESS, ITHAGA, NEW YORK, 156 PP.

VREEDENBUNGH, G. G. F.. 1936.JN THE STEADY FLOW OF HATER PERCOLATIIG THROUGH SOILS WITH HOMOGENEOUS-ANISOTROPIC PERMEABILITY. PROC. INTN'L. GONF. SOIL MEGH. AYO FOUNDATIOV EAG. PP.222-225.

HAGER, L.R., 1931.JDINTING IN THE GREAT SCAR LIMESTONE OF CRAVEN ANO ITS RELATIOVS TO ThE TEGTONICS OF THE AREA. QuART. JCUR. GEOL. SOC., LONDUY, YUL. 87. PP. 392-420.
hager, L.R. AND H.A. DEER, 1938, A DYKE SnARM and GRUSTAL FLEXURE IA EAST GREEVLAND. GEOL. HAG.: VOL. 75. PP. 39-46.

WAHLSTROM, E-SE ANO V. Q. HORNBACK, $1962 . G E O L O G Y$ OF THE HAROLD
D. ROBERTS TUINFL, COLURAUD, WEST PORTAL TO STATION 468-49. BULL. GEOL. SOC. AMER.I VOL. 73. NO. 12. PP. 1477-1498.

KALKER, J. E.: G. A. MHAN, ANO R.R. RUTHFUS, 1957 , FLUIO FRICTION [A NON-CIKCULAR DLCIS. AIEHE JOUR., VOL. 3. P. 484.

MALTON: W. C. AVC J. C. VEILL, 1963,STATISTICAL ANALYSIS OF SPECIFIC CAHACITY DATA FOR A DOLOMITE ACQUIFER. JOUR. GEOHHYS. RES., VOL. 68. NO. H_{i} PP. 2251-2262.

HARREN: J.E.AE.L. DOUGHERTY AVO H.S. PRICE, 196J. RESERVOIR SIMULATION ON A DIGITAL COMPUIEN. THE DIFFERENTIAL EQUATION PROGRAM (IRANI. CALIF. RESEARCH CJRP.. LA HABRA, CALIF.. PROJ. 52.19.

WARREN, J. E.I ANC H. S. PRICE: 196I,FLOW IV HETEROGENEDUS PCROUS MEDIA. AMER. INST. MIN. AND MET. EJG.. VOL. 222. PP.153-169.

WARREN, J.E.: H.S. PRICE AND F.F. SKIBA, 19E2, MISCIBLE DISPLACEMENT. THE LIQUIO-LIQUIO CASE. ABSIR. SPE IIB, JJUR. PET. TECH., P. 883.

MATSON, G. S.: 1956., ANALYSIS OF DISPERSION UN A SPHERE. RCYAL ASTRON SUC.: YONTH. NOTICES, GEOPHYS. SUPPL.: VOL. 7 , NC. 4. PP. 153-159.

WATSON. G. S. 1956 , A TEST FUR RANDOMNESS OF DIRECTIONS. RCYAL ASTRON. SOC.: MUNTH NOTICES. GEOPHYS. SUPPL.: VNL. 7. NC. 4, PP. 16:-161.

MATSON, G. S.: ANC E. J. WILLIAMS, 1956.0世 THE CONSTRUCTIDN OF SIGNIFICANCE TESSS UN THE CIRCLE AVD THE SPHERE. ROYAL ASTRON. SOC., MONTHLY NCTIEES, SEOPHY, SUPPL.. VOL. 7. NC. 4: ALSO, BIONETRIKA, VOL. 43, PARIS 3 ANO 4, PP. 344-352.
 U. S. GEOL. SURVEY. BULL. 426. 282 PP.

WHITE, D. E.. E. T. ANDERSOY AND D. R. GRUBBS, 1963, GEOTHERMAL BNINE WELL, MILE-CEEP DRILL HOLE MAY TAN CRE-BEARING MAGMATIC WATER AND ROCK UNCERGCIYG METAMERPHISM - SCIENCE: VIL. 139. NO. 3558. PP. T19-922.

MILSON, C. W., $1934, A$ STUDY GF THE JOINTIVG IN THE FIVE SPRINGS CREEK AREA. EAST CF KONE. WYOMINE. JOUR. GEOL.. VOL. 42. PP. 498522.

HINGER, R. L.. 19E6; fiELO DETERMINATION CF HYORAULIC COVDUCIIVITY ABOVE A WATER TABLE.OFFICE DRAINAGE AND GRCUND WATER ENG. U. S. BLR. RECLAM.

WISE, D. U., 1964 ,MICROJDIVIING IN BASEMENT, MIDOLE RDCKY MCUNTAINS OF MONTAVA AND WYOMINS.BULL. GECL. SOC. AMER.: VCL. 75. PP. 257-306.

MISSER, E.: 1939,GEOLOGIC PARALLELS. HOG MSUNTAIN, ALABAMA, AND PARACOLES. PHILLIPINE ISLANOS. EC. GEOL., VOL. 34, NO. 3.

PP. 297-323.
WISSER, E.: 196C,RELATION OF ORE OEPOSITICN TO OOMINS IV THE NERTH AMERICAN CORDILLERA.GEOL. SOG. AMER., MEMOIR 77, 117 PP.

WITHERSPOUN, P.A.,T.O. MUELLEK AND R.W. DONOYAN, 1962, EYALUATIOY OF UNOERGROUNO GAS STORAGE CONOITIONS IN AOUIFERS TMROUGH IYVESIIGATIONS OF GROUNDWATER HYOROLOGY. JOUR. PET. TECH., MAY, PP. 555-561.

WOLK, E.: 1937, LLR KLUFTTEKTUNIK OES NIEDERRHEINISCHEN HAUPT-BRAUNKOHLENFLOLES. ZEITSCHR. DEUTSGH. GEOL. GES., HEFT. 91, 2. 2, S. 107.

HOOOWORTH, J. B. $1895, F E A T U R E S$ OF JOINTS. SCIENCE, VOL. 2, PP. 903-9」4.

HCUDHORTH, J. B., 1896, ON THE FRAGTURE SYSTEMS OF JOIVTS, WITH REMARKS O:i CERTAIM GREAT FRACTURES.BOSTON SOC. VAT. HIST. PROC., VOL. 27. PP. 163-184.

WYLIE, C. Re: JR., 196C,ADVANCED ENGINEERING MATHEMATICS. MCGRAH-HILL BOOK CO.: NEH YORK, 2ND ED.: 696 PP.

YA.VG, SHIH TE, 194B, ON THE PERMEABILITY OF homugeneous ANISOTROPIC SOILS. PROC. 2ND IVT. GONF. SOIL MECH. AND FCUYDATID:I ENG.: ROTTERDAM PP. 317-32J.

YEKOTA, J., 1963, EXPERIMEYTAL STUDIES ON THE DESIGN OF GROUTING CUKTAIN AIN DHAITAGE FON THE KUROBE NO. 4. DAM. FELSHECHANIK UND INIENIEURGEOLOSIE, VOL. 1 . NO. 2 PP. 104-119.

LAFRANI. I. AND D. K. TOOD, 1963,FLOW OF CLAY SUSPENSIONS THROUGH FRACTURES. HYDRAULIC LAB.: UNIY. OF CALIC.: BERKELEV. 25 PP.

2ANGAR, C. N., 1953,THEORY AND PROBLEMS OF HATER PERCOLATION. ENG. MONO: FRAPH B, U. S. SUR. RECLAIM, DENVER , COLO.:, 76 PP.

2ANGAR, C. H., ANC H. B. PHILLIPS: 1946, ELECTRIC BivALOGY CCNOUCTIVITY JESTS FOR PERCOLATIOV OUT OF WELLS. MEMO TO T. P. AHRENS, U. S. BUR. RECLAM.: DENVER, COLO.

2WART. H.J.. 1951. BREUREN UND DIAKLAZEN IN ROBIN'S HOOD BAY.

APPENDIX A

COHPUTER PROORAFS

- Brogram Used for oriencation studies, chater \mathcal{L}

The followins program models media, contalning inflnite, unlform isotropic conductors in one to live dispersed sets having different, or equal aperture distributions, but constant sample size for each set. Some further coments on the operation and results obtained by this program are contained in Chapters 4 and 5.

The following description of operations, together with comment statements in the several subroutines, explains the principal features of the prosram. MIN reads the basic Input data cards defining the (if) joint sets, and for each set, the number of elements, $M(i i)$, the three direction cosines apecifying the orientation of the central tendency CII (N), CI2 (N), CT3 (N), the orientation dispersion coofficient, AK (II), two parameters definins the aperture frequency distribution, STD '(N), CENTEN (N), and, lastly, the joint frequency is given by the sample dimension DELTA.

When cll parameters oi the joint sets are in otorage, MAIN executes a 49-cycie 100p, $L_{\text {, }}$ transferring to subroutine CNTROL, which computec and stores the perneability tensor. CNTROL calls two other brief subroutines, VECTOR and APER, described later, which furnish a pals of randon orientations and aperture values to describe a conductor. CATROL computes 9 tensor elements from them, os well es the median, mode, and the arlthmetic, geometric and harmonic neans of the aperture distribution generated for each set. As many as 5 sets may each have up to 500 joints. CNIROL 2100 furnishes a check on the orientation distribution by computing the vector strensth, (Plncus, 1953) a measure of dis-
peraion somotimes employed in geologleal atatistice and relate able, by fisure 5-0, to plaher's vector disperalon coeffleient Re. Once CMTROL has obtalned all the required members of a singla. joint sot and has comprsted and added the tensor contributions of 112 conduetors of the set, if repeate the procedure for other foint sets, each with distinct orientation and aperture dispersion parameters. Before sranaferring results to OUTPUT, CNIROL divides the sumary tonsor by DELTA, weightins the tensor according to the dimensions of the volume that would contaln the sample. UsIng DELIA the same for all sets requires that the muber of olements of each set be proportioned according to its specific sursace and orientation dispersions, as deseribed in Chapter 4.

OUTPIT utilizes ferwin's (1959) subprogram MI hDl3 for matrix diagonelization. wo resulting 3×3 attrices are stored, one, the diagonal natrix of eligenvalues, (the principal permeabilities) the other, the matrix of eigenvectors, (the principal exes). The raitio of minimun to maximun eigenvalues TINSQ is atored to record the marimum anisotropy.

Then all 49 independent solutions have been obtalned and stored, BHIL calls, In order, STEREO and FREQPL, subroutines designed to gonerate point coordinates for the Cal-Comp Plotter, which draws finished ink graphs with frames, scales, labels and captions.

Subroutine StEreo displays the principel axes of all solue tions on an 15 cin.s upper hemisphere, conformal stereographic projection. Details of the geometry and rechniques of zereographic projection of vectors may be found in Donn (1958), or Goodman (1963). A eircle with 10-degree ticks frames the plot. Goographic cardinals, two linea of caption, buile in, and one line of caption, sead in, are lettered before' data plotelns

Each solution furnishes 3 orthogonal vectors, Ldentifled by diamonde, circies, and crosses for the axes of maximm, intermediate and minimn permoablily, cespectively. The aimple trigonometry converting direction cobines to $x-y$ coordinates is in atatements 22 to 13 of STEREO. Should lower hemisphere plots be desired, change the signs of components by reorderins the transfors in the IF statement preceeding atatement 12.

Subroutine FREQPL displays the cumilative distribution of elgenvalues, the same diamonds, circles, and crosses applying to the major, intemodicte, and minor directional pemeabilities of cach solution. Similarly, maximum anlsotroples ace displaged with dots. To plot cumalatively, the 49 values of each varlable ere organized in ascending order of magnitude. The ordinate has the probability scale of eumulative percent, whose plot coordinates are read into the program at the boginning of MAIN. The abclissa varies from plot to plot, different scales selected to spread ovor most of the 8 raph the range from least minor permeabllity to greatest major permeabllity. Integral scale factors are used to retaln the usefulness of the 0.1 -lfich scale marks. frinted computcr output permits subsequent mansal labelling of the abcissa.
c maln cuntrol program, o.t. snum, oept. mineral pechmology gCmputation of oirectilinal pekmeability with different sets of ccnoueting joints having olstributed apertures anu orievtations. fifiy ccnsecutive ranjon samples of the data give the distribution of ayswers. cintinuous change uf the sample site is used to eyaluate the ccivityuum-ejulvalent valume uf rock. all results.are plotted. CCMPUTED SMALL-ELEMENT TENSORS STURED FOR POSSIBLE INCLUSIOY IN LARGER DIMENSIUN MTOT(5),0(3,3,50),CTI(5),CT2(5),CT3(5), AK(5),STO(5), LCENIEN(5),P(3,3),E(3,3),A(3),C(3), AVY(5),M(5),H(3,3),HH(3,5)), 2×(3), 1013), (3 , 3), UU(3,3,50), AA(15), 88(4), CC(10), D0112), FF(5), 3GG(12), IINSG(SC),V(4),W(B),HW(2),000(12),EE(2),YF(15),YV(49), sVAVH 5,50 , SUYCOS(5), COSSUM(5,5.j)
 1HH,U,UU,AA, $B B, C G, C D, F F, G G, T I N S O, V, W, W H, O D O, N M A X, E E, Y F, Y V, V A V H$, 2 SUMCOS,COSSLM
CALL FTMUP $(2,32767,606)$
REWIND 6
ccordinates of prcbability scalf read on.
REAU G6C,YF(1),YF(2),YF(3),YF(4),YF(5),YF(6),YF(7),YF(B)
READ 66(,YF(7),YF(10),YF(11),YF(12),YF(13),YF(14),YF(15)
660 FORMAT(BF9.3)
READ 661,YY(1),YV(2),YY(3),YY(4),YV(b),YY(6),YV(7)
READ 661,YV(8),YV(9),YY(10),YV(11),YV(12),YV(13),YY(14)
READ 661,YY(15),YY(16), YV(17),YV(18),YV(19),YV(2U),YV(21)
\therefore READ 661,YY(22),YY(23),YY(24),YY(25),YV(26),YV(27),YY(28)
READ 661,YV(27),YY(30),YY(31),YV(32),YV(33),YV(34),YY(35)
READ 661,YY(36),YV(37),YV(38),YV(39),YV(4U), YV(41),YY(42)
REAU 661,YY(43),YY(44),YV(45),YY(46),YY(47),YV(48),YY(49)
661 FURMATITF10.5)
clegar cumulating parameters.
20100210 iali.5
210 Mitor (iv)=c
$N=0$
DO 292 L=1.50
00262 1=1,3
002 C2 J=1,3
202 0(1,J,L)=E.E
00292 f: $=1,5$
COSSUM(N,L) $=0.0$
292 VAVB (iN:L) $=0.6$
$606 N=N+1$
READ 652,(M(N),CII(:T), CT2(N), CT3(N), AK(V),STD(V),CEVTEN(N), DELTA
PRINT'G72,M(V), C TI(N), CT2(N), GT3(N), AK(N),STO(N), CENTEN(N), DELTA
652 FORNATII3,F12.8,2F1․8.F5.2,3F10.51
672 FORMATII5,3F20.6,F5.2,3F15.5)
MTOT(N) $=$ MTOT(V) $\mathrm{M}(\mathrm{N})$
[FII-MINJ) 606.161.8
8 NMAX $=1 y^{-1}$
PRIVT 680,NMAX,MTMT(1),VAVB(1,1)
630 FQRMATS2110, F2.J.5)
00205 L=1.50
L=L
call cNTROL
cont inve
call stereo

CALL FRENPL $\mathrm{N}=\mathrm{O}$.
GO 10606
161 IFIOELPAI 2C1.2ili.162
162 CALL NDPLOT
ENDFILE 6
ENDFILE 6
CALL REmUNL 161
call exis
END

- LIST
- Label
- FORIRAN

Subroutine Civtrol
OIMENSICN MIOT(5),0(3,3,50),CTI(5),CT2(5),CT3(5), AK(5), STO(5).
LCENTEN(S), P(3,3),E(3,3), A(3), E(3), AVE(5),M(5), H(3,3),HH(3,5,):

3GG(12), TINS:(50),V(4),W(8),WW(2), DOD(12),EE(2),YF(15),YY(49):
\&VAVE(5.501.SUMCUS(5), COSSUM(5,5ú)
COMMOY OELTA,Y,CTI,CTZ,CT3:AK,STO,CENTENIL,P,H,AVB,MTOT,E,A,C:H, LHH, U, UU, AA, $B B, C C, C D, F F, G G, I I N S O, V, W, W H, D D D_{8} N M A X, E E, Y F, Y V, V A V B$, ZSUMCOS.CUSSLM
00220 IE1.3
00220 J=1.3
220 P(I:JIzOPI:J.LI
CCMPUTE MATRIX OF TRANSFORMATIUN BETWEEN LENITH A:ND
CENTRAL TENDE!NCY CF SET.
00 al3 tis lifmax
DENJMESURTF(I.O-CTZIN)-CTZ(N)I
E(1. H) CTI(A)ECTZ(NI/DENUM
E(1,21=-DEVCK
E(1,3)=CT2(4)-CT3(N)/DEINM
E(2.1)=CTI(A)
E(2,2)=CT2(A)
E(2,3)=CT3(M)
E(3,1)=CT3(NI/DENOM
E(3,3) $=-$ CTICVI/UENOM
CCMSTANTS OF BISPERSION COMPUTED.
FI=EXPF(AK(A)I)
GL=FL-EXPFI-AK(NII
AVBINI EVAYSIN,L)
SUMCOS (N) =CCSSUM (N,L)
CALL A UNIFURM RANDIM NUMBER GENERATOR TO DEFITE a PROBABILITY, THEN CCMPUTE COSINE THETA DEFINING A CIRCLE ABCUI THE CENTRAL TENUENCY AGCCRDIAG TO AK, FISHER'S COEFFICIENT OF DISPERSIOV OF VECTORS ON A SPHERE CALL AGAIN A RANDCM UNIFURM GENERATOR TO'PGSIIION THE VECTOR ON THE CIRCle.

MM:M(N)
DO Bl3 MTIMES=I.MM
HI =FI-RANDUM (X1):G1
COSTHaLUGF(HI)/AK(N)
SUMCOS(N) =SLMEOS (N) +COS TH
SINTH=SGRTF(1.O-COSTHECOSTH)
PHI = RANDOM (X1:-6.28318
AIIISINTHESIVF(PHI)

```
    A(2)=6OSTH
    - A(3)=SIVIH0GOSF(PHI)
    C(1)EE(1,1)&A(1)tE(2,1)EA(2)PE(3,1)-A(3)
    C(2)=E(1,2)*A(1)+E(2,2)-A(2)
    C(3)=E(1,3):A(1)+E(2,3)OA(2)+E(3,3)&A(3)
    {F(C(3)] 221,224,224
    221 00 222 J=1.3
    222 C(J)=-C(J:
CALL RANDUM YORMAL YUMBER GENERATOR AND MCDIFY IT ACCORDING TO THE
GELFCTED PARAMETERS OF THE SET.
    224 B=ABSF(SID(V)ORANDEV(XI)+CENTEN(N))
    AVB{N}=AVB(Y)*B
galculate permeability of each jointg ihev elements of teidSOR.
    PER4=666666.667-80:3
    EN=ARSF(COSTH)
    P(1,1)=P(1,1)tPERM={1,0-C(1)=C(1)|/EN
    P{1,2)=P(1,2)+PERMO(-C(1)=C(2)|/EN
    P(1,3)=P(1,3)+PERU-(-C(1)=C(3))/EN
    P(2,2)=P(2,2)+PENM+(1,0-C(2)-C(2))/EN
    P(2,3)=P(2,3)+PERM=(-C(2):C(3))/EN
        - P{3,3)=P{3,3)+PERMO(1.O-C(3)OC(3)I/EN
    8&3 COMTIVUE
    P{2,1)=P{1,2)
    P{3,1)=P(1,3)
    P(3,2)=P{2,31
CAUSE APERTURE mEAN, SAMPLE SIRE AND VECTUR STRLIN;TH TU BE PRINTED OUT.
    00 2C7 N=1.\44X
    BAVG=AYS(N)/FLCATF(MTOT(N))
    STRaSUMCOS(N)/FLOATF(MTOT(N))
    YAVB(.4,L)=Av&(N)
    COSSUM(%,L) =SUMCOS(v)
    207 PRIVT 657,Havi,MTOT(id),STR
    657 FORMATIF2U.d,IIUC,F20.81
    00 2:.4 1=1.3
    00 2G+ J=1,3
CARRY SAMHLE TEYSER TO NEN ARRAY FOR STORAGE.
    U(1,J,L)=P(1,J)
    204 H(I,J)=P(I,J)/DELTA
    CALl nUTPUT
    RETUR:I
    END
- LIST
- labzl
- FORTRAY
    SUBROUTINE STEREO
Calculates coordinates and plots the stereographic projection of m ve GIURS ON THE UPPEA HEMISPHERE OF AN 18 CM NET OVERLAY
DIMENSION पTOT(5), O(3,3,53),CTI(5), CT2(5), CT3(5), AKt5), STO(5), LCENTE'A\{3), P(3,3), E(3,3), A(3), C(3), AVB(5), M(5),H(3,3), HH(3,5,), 2x(3), 1 ( 3 (3), ( \((3,3), U \cup(3,3,50), A A(15), B B(4), C C(10), O D(12), F F(4)\), 3G61:2), 81YS(150), V(4),W(8), WW(2), ODO112),EE(2),YF(15),YV(49), 4YAYO (5,5i) COMMOV DELTA,H,CTL,CTZ,CT3,AK,STD,CENTEV,L,P,O,AVS,MTOT,E,A,C,H,
```

LHH, U, UU, AA, BB, CC, OD,FF, LGG, TINSQ, V,W,WH, OOD,NMAX, EE, YF, YV,VAVB VIII E3H!HN
V(2) =3HIHS
$V(3)$ 3HIHM
$V(4)=3 \mathrm{HlHE}$.
WH(1):GH9HFIIU
WW(2) =6HRE -
WIII = OH42HSTE
$W(2)=6 \mathrm{HREOERQA}$
W(3) =6HPHIC P
W(4) =6HROJECT
$W(S)=6 H I O N_{1} U$
H(6) =6HPPER H H(7) $=6$ HEMISPH W(8) =3HERF
11 CALL GRAPH (1).0.7.8.1.11
READ 7. (JDC(J), J=1,121
7 FORMATIL2A6I
CCORDINATES ANO LETTERING DONE.
CALL XLN 10.23.4.37.3:9.0.01
CALL XLN (3.8.4.C゚.3.9.8.01
CALL XLN 17.43.7.57.3.9.0.01
CALL YLN 10.23.2.37.3.9.0.01
CALL YLN (3.8.4.0.3.9.0.0)
CALL YLN 17.43.7.57.3.9.0.01
CALL LTK (0.12.3.80.2.1.V(1)1
CALL LIR (7.83.3.d.,2.1.V(2))
CALL LTR (4.E).2.02.2.1.V13)
CALL LTK (4.0),7.68,2,1.V(4) $)$
CALL LBR(8.2.joic.2.1.WW)
CALL LERIB.E.O.C.2.I.WI
CALL LTR 19.N.O.N.2.1.0U01
CALL CURVE 12.IU.J.C.-3.9.10.0.-3.9.10.0.11
THETA=0.U
15 PHI =THETA/57.295
$X X=3.53$ COSF\{PHI
YY=3.53-SINF(PHI)
CALL PLOTPTIXX,YYI
THETA ITHETA + 1.0
IF (THETA- 365.3115,15.999
999 DO 10 I=1.3
CHOSEN SYMBDLS ARE DIAMONDS FUR KII AXIS: CIRCLES FOR K22 AXIS, AND CROSSES FUR THE K33 AXIS.

IFII-21 16.19.2\%
 GO 1022
19 CALL CURVE 15,1.1.0.0.3.9.10.0.-3.9.10.0.11 GO 10 22
20 CALL CURVE 17,1.1,0,-3.9,10.0,-3.9.1C.0.11
220010 Lsi.5:
CCMPUTE X-Y COORDIVATES FROM DIRECTION COSINES.
R=3.53eSORTF(IL.C-UU(3.I.L)//CI.O+UU(3.1.LI)I
S=UU(2,t,L)/UU(L,I,L)
XX=R/SORTF(1.) THSES)
[fluUli.I.Lil 12.13.13
$12 \mathrm{xX}=-\mathrm{XX}$

- LIST
- LABEL
- FURTRAN

SUBRDUTINE FREUPL
Clmulative frequency curves plotted for each privcipal conougtivity CAPTIONS AND LABELS STORED.

DIMENSIUN MIOT(5), Q(3,3,50), CT1(5),CT2(5), CP3(5),AK(5),5TD(5), ICENTEN(5), P(3,3), E(3,3),A(3),C(3), AVB(5), M(5), H(3, 3), HH(3,5:), 2X(3), 10(3), U(3,3$), U U(3,3,50), A A(15), H H(4), C C(10), D D(12), F F(4)$. 3GG(12), IINS:(50), Y(4),W(8),WW(2), DOD(12),EE(2),YF(15),YY(49), 4YAVd(5,5C), SUMCUS(5), COSSUM(5,50)
GOMMOY DELTA,Y,CII,CTZ,CT3,AK,STD,GENTEN,L,P,U,AVB,MTOT,E,A,G,H,

IHH, U, UU, AA, BB, CC, CD,FF,GE, TINSQ, V,W,WW, UOD, iAMAX,EE,YF, YV,YAVZ, 2SUMCUS,CUSSLM
AAllla3HIHI
$A A(2)=3 H I H 2$
AA(3) $=3$ H1H5
$A A(4)=4 H 2 H I C$
AA(5) $=4 H 2 H 2 U$
AA(6) $=4 \mathrm{H}_{2} \mathrm{H}_{3} \mathrm{~S}$
$A A(7)=4 H 2 H 4:$
$A A(8)=4 H 2 H 5:$
AA(9) $=4 H 2 H 60$
AAI $101=4 H 2 H 7 U$
AA(11)=4H2HEO
AA(12)=4H2HS3
AA (13): 5 H2HS5
AA (L4)E4H2HSA
AA(15) =4H2HS9
BB(1)=6H18HCUM
BB(2) =6HULATIV
BB(3): 6 HE PERC
BB(4) a 3HENT
CC(1):3H55H
CC(2):6HFIGLKE
CC(3)=6H - D
CC(4)=6HRINCIO
CC(5)=6HAL CUV
CC(6):6HDUCIIV
CCITI:6HITIES.
$C C(8)=6 H \times 10$
CCIGIf6H CG3 U
CC(10): 4 HNIIS
EE(1)=4H2HIE
EE(2)=4H2H84
FF(1)=6HI8HMAX
FF(2): 6 HIMUN 4
FF(3):6HNISCTR
FF(4):3HUPY
CCURDINATLS AND LETTERIVG DONE: SCALES PLUTTEO.
26 CALL GRAPH(5.3.6.0.2.51
CALL FRAME(E.I.U.C)
CALL XLN(9.4.9.6.1.77.0)
CALL XLNIO.0.9.0.3..j2,0.51
CALL XLN(C.4.9.9.4.4.23.C)
CALL XLN(5.5.9.C.6.,.,0.5)
CALL XLN(9.C.0.0.0.0.-C.5
DO 310 J=1.15
310 CALL XLN(J.E.i.).l.YF(J).J)
$00311 \mathrm{~J}=1,15$
311 CALL XLN(8.S.9.0.YF(J).CI
DO $21 \mathrm{~J}=1 \mathrm{l}$ 15
YYayfiJl-0.: 5
21 CALL LTR(-0.3,YY,1, U,AA(J))
CALL LTR1-0.5,0.7,2,1,83)
CALL LTR(0.1.1.72.1.0.EE(1))
CALL LTK(C.1.4.18.1,0,EE(21)
CALL LT: (-1.3.-1.0. 2,0, CC)

CALL LPK(5,5,6.4,2,j,FF)
REAO 7,1GG(J),J=1,121
CALL L (K(4.).7,-1.4;2,0,6G1
REAO 7,(UD(J),J=1,12)
CALL LTR1-0.6,-1:8,2,0,001
7 FORMATI12A6)
CGNOUCTIVITIES ANC ANISOTROPIES ARRAN'JEO IN ASCENOING ORDER.
0032 1=1,3
0032 L=1,4s
LP1= $6+1$
DO 32 J=LP1,50
1F(HH(I,L)-MH(I,J)) 32.32,38
38 TEMP = HH(I,L)
HH(1,L)=HH(1,J)
HHI!,J) =IFMP
32 CONTIVUE
DU $39 \mathrm{~L}=1,45$
$L P:=L+1$
$0019 \mathrm{~J}=\mathrm{LP} 1,59$
IFITINSQ(L)-TINSQ(J)I 39,39,4U
40 TEMP = TINSOIL)
TINSU(L) a IINSM(J)
TINS(1) = TERP
39 CONI IINE
CCMPUTE FACTOR TO MAKE PERMEAGILITY CURVES FIT PLOT, POSITION CURVES.

61 HP=1.JE-C2
62 HSEXMIN:HO
IFIHS-1.C1 63,84,64
$63 \mathrm{HP}=\mathrm{HP}=1(\mathrm{CO}$
601062
$73 \mathrm{HP}=\mathrm{HP} / 10 . \mathrm{C}$
HS =XMIN:HP
64 XMAX=MAXIF(HA11,50 1,HH12,5: 1,HHI3,50 11
HL =XMAXeHP
IF(HL-HS-8.5) 65,65,73
65 IFIHL-HS-C. $8163,63,81$
81 (X=3. $\mathrm{O} /(\mathrm{HL}-\mathrm{HS})$
GO 10 ($69,69,303,69,69,306,306,69,329,691,1 X$
303 ix=2
601069
306 1 $x=5$
GO 1069
309 ix=8
$69 X I=1 x$
HP=HP=XI
PRITH 31,XMI:H,XMAX,IX
31 FORMATIIP2E2U.0,141
IXMINaXMIV=HP
XMIN=IXMIN
CCMPUTE FACTOR TO MAKE ANISOTRUPY CURVE FIT PLOT, PUSITION CURYE. TPajel
92 TOIFa\{Pe\{TINSD(50)-TINSU(1))
IFITOIF-0.21 93.74,94
93 TP=TPOIC.0
601092
94 TSEfiNSU(1)-Tp
101 ITS:IS
TSEITS
PRINT 31. TINSU(II, IINS.d(SO).ITS
CLRVE IDENTITY ESTAALISHEUANO STAVOARD UEVIATION CALCULATFD
42 DO 35 $1=1,3$
HACT =HHI 1,25101. DE-U6
OEVH: (HH(l,42)-HH(I,8)) 1 l.0E-06
PRINT 350.0EVH
35 PRINT 36.HP,HACT:I.TINSdI25I
DEVT=TINSO(42)-TINS2(8)
PRIVI 350. CEVT
36 FORMATIIP2E2:.8.14. E20.81
350 FORMATIF2C. 11
clmulative frequency curves plotitio
0018 1x1,3
CHOSEN SYMBOLS ARE DIAMCNDS FCR K1L: CIRCLES K22. CROSSES K33.
IFII-2l 9h, S9,1CL
96 CALL CURVEI3.1.1.だ..OC,9.0.0.0.6.0.11
GO 10284
99 CALL CURVEIS.1.1.si...On.4.U.0.0.6.0.11
GO 10289
100 CALL CURVE Ti,1,1,C.j.00.7.0.0.0.6.0.11
2890017 LELE4S
XV=HH(I,L) ©HP-XMI:I
17 CALL PLOTPTIXVIYY(LI)
18 CONTINUE
CALL CUKVE(1.1.1.0.0.0.0.9.0.0.0.0.6.0., 11
$00217 L=1.47$
XV=TINSHILIETP-TS*6.0
217 CALL PLUTPTIXXAYVILII
ENDFILE 6
ENOFILE
RETURV
END
 Of Borionliny

The following program includes revised editions of the abovedeseribed aubroutines with additional subroutines to vasy the size of samples, to compute the discharge of simulated pressure tests, to plot the resulting discharges, and to compute porosity by two methods from the geometry of joints and the computed anisotropy.
ifthin the portions of the prosram that model fointed media and compute an equivalent anisotropic-continum permeability, the principal innovation is Subroutine sunger. Upon firse eall from MAIN, RUMDER sets up a cable of probabilities of obtaining cartain small integral numbers ($0,1,2,3,4$, etc.) of conductors, calculated according to the folsson distribution with a specified expectation ($1 / 10$ of $M(N)$). A separate table serves each set, so that different frequency distributions are possible.

When MIIN exocutes the 49-cyele L-Loop, calls to JURSBER get a randon sample size fron the tables. To do so, sandon uniform numbers are generated as probabilities, which are then matched with the closest value in the probability table, so identifyins a sample size.

Subroutine VEGTOR sets up a coordinate transformation on the first call, and for each subsequent call furnishos a randonly oriented pector according to the read-in direction of the central tendency, and the Fisher dispersion. One reason for separating the vactor sampling froa the control routinc is to permit substitution of different vector subroutines. For instance, fleld Joint orlentation data could be read lnto storage and sampled at sandon, or in their entirety. This procedure was not used because there is not yet a fleld method for detemining lnositu apertures to pair with oach measured orientation.

Subroutine APER gonerates on each call a randow number to represent the aperture of a conductor. Alternative subroutinee APER Listed below include transposed' (absolute value) normal distributions, log-normal and exponential distributions. orher density function generators could be complled:

Corrosponding to each sampling of all the sets, there is computed the permeability tensor as described for the simpler version of the model. To test the model's abllity to duplicate field pressure-test data, there is computed in PIEZO the discharge that would occur under standard conditions for three holes of specifled orlentation (read in at MiN). The program duplicates the matriy manipulations derived in Chaptor 3 for cylinders of axbitrary ofientation in anisotropic media. Each call to PIEZO gives different results because successive samples produce medie of different anisotropy. The discharges are stored for plotting after coapletion of the 49 samplings.

Subroutine pUAPLT differs operationally from EREQPL only in that the ordinate is arithmetic instead of probablility secic, and the computed statistical parameters of the pmpodischarge distribution are marked on the plot.

Subroutine EQPOR was developed to learn whether or not ti:e everage of porosities, calculated from varying permeabllities and known spacing and orientation, does or does not approach the true porosity, based on the assumption that each sample contains the average number of conductore, and that they all have the came aperture. Since the samples have numbers deflned by the folsson distribution, and apertures and orientations defined by various dispersions, the sample porosities vasy by several hundred rercent fron the average. To compute porosity, EQPOR sets up a ner coordinate system parallel to the conputed (OUTPUT) principal axes,
following the procedure of Chapter 4 , then sets up afmaltaneous oquations (4-28) to doternine tho permeablilty of parallel sets, kp, that would develop the same anisotropic permeability, then by (4-31), with corrections for the orientation disparilon, it corne putes porosity and the ratio of computed to true porosity. unlike real media, the model porosity is procisely known because each aperture generated in APER is added in CNTROL. The prosram is specifically compiled for one system of joint orientations, developing the data of Table 7-1.

Subroutine pOREQ does the same servico of computing porosity, but doos so only once per job, using the average of all 49 permeabilities and prircipal axes predetermined for the specific - Joint sybten. Output fron POREQ is the gatio of conputed to true porosity.

```
D DECKS
- LA&EL
- LIST
- FORTRAN
C KIJ MAIN CONTROL PROGRAM: O.T. SNUW, DEPT. MINERAL TECHNOLOGY
CCMPUTATIUN OF .DIREGTIUNAL PERMEARILITY NITH OIFFERENT SETS. NUM&ERS JI
CCNDUCTING JOINTS HAVIVG DISTRIBUTED APERTURES SNU DRIEYTATIUNS. GY
CCINSECUTIVE RANDON SAMPLES OF TIHE DATA GIVE THE OISTRIBUTIOP OF A'ISNEI:
    OIMENSIUN M(S),CTI(5),CT2(5),CT3(S),AK(S).STD(S).GENTEN(S).
    1P(3,3),E(3,3),H(3,3),U(3,3),HM(3,SO), X(3),IU{31, UU(3,3,50):
    2TINSOI5CI,AVBIS),SUMCOS(5),HARM(S),GEOM(5):2(500),A(3):C(3).
```



```
    5TR(3,3),AX(3,3),Q4(50,3),GA(11),GA(121,0A1121,PR(50,51,RA111).
    GCP(4),ORHOL (3;3),FAI4),UC(15,3),YT(3),AL(3),CK(3),POKATISO)
        COMMON M,CTL,CTZ,CTB,AK,STU,CENTFN,AYO,SUMCUS,HARM,GEOM,OELIA.
    LL,P,E,A,C,H,HH,U,UU,AA,BB,CC,DD,EE,FF,GS,TINSO,V,H,WH,DOD,NMAX,YY
    2YY,N,YOIF,R,L&PP,COSINV,EN,HA,DIAM,HEAD,CUBE,MPTS,OR,CK,IR,AX,
    3GA,CA,GA,DA,MY,PR,RA,CP,FA,ORHOL,PORUS,PGRTOT,PORAT:
    4HIULT,H2ULT,H3ULT
        CALL FTMUPT (2,32767.606)
        REWINO }
CCORDINATES OF PRCBIBILITY SCALE KEAD IN
    REAO 66C:(YF(II,I=1,15)
    660 FORMATIGF9.11
    REAO 661:IYVIII, I=1.491
    661 FORMATITF10.51
```

CELECF HOLES IN OQDER, PARALLEL TO MINOR INTERMEDIATE AYD MAJOR
CCNOUCTIVITY AXES. CAN THEN SCALE PUMPPLT TO MAX DISCHARGE.
CESINES OF THMEE CRTHUGONAL TEST HOLES ANO TEST CONOITINNS READ I:.
00 1157 Mn: i. 3
1157 READ 661, 1ORHOLIMO,JOI,JJ=1.31:JA:DIAM,HEAD
- $201 \mathrm{~N}=0$
$606 N=N+1$
CCNSIUER MIYI AS IS TIMES THE EXPECTATION OF THE POISSQN OISTRIBUTION
CCNSIOERED AS THE SIRE OF SAMPLE
CI ARE THE DIRECTIUV COSINES OF THE CENTRAL TENDENCY OF SET VECTORS
CCEFFICIEII AK IS THE FISHER VECIOR DISPERSIOV DELTA SAMPLE LENSTH
CENTEN AND STO ARE PARAMETERS OF THE APERTURE DISTRIBUTIOV
REAU 652. MINI,CTIINI,CTZINI,CT3ICI,ARINI.STDCNI CENTENTNI,DELTA
PRINT 6T2,MINI,CTICNI,CTZ(NI,CTSINI,AK(NI,STOCNI,CENTENINI,DELTA
652 FORMATII 3.F12.8.2F10.8.F5.2.3F10.51
672 FORMATIIS.3F23.6.F5.2.3F15.51
CCUROING TO M YALUES READ. EIIHER COMPUTE PICR UP NEXT JOINT SET: OR
CAN EXAMIVE DELTA
IFIL-ACNII 6.56.161:8
6 NMAX $=N-1$
CALL FIRST PART OF SUBROUTINE NUMBER TO SET UP A PROBABILITY ARRAY
NON al
002100 N=1,NYAX
NaN
2100 CALL NUMBER
PORTOTEUC
HIULT=C.O
H2ULT=0.E
H3ULT=0.0
CYCLE THRUUGH 49 SEPARATE PERMEABILETY DETERMINATIONS
$002 C 5$ Le1.4.4
bl
cempute a fresh tensorial answer each ithe cntrul is calleo CALL CNPROL
CCMPUPE PIELOMETER DISCHARGE CORRESPOVDING TO TENSOR DEVELOPEO CALL PIF20
CCMPUTE PURUSITY FRUM PERMEABILITY CALL EQPUR
Clmulate principal oermeabilities
HIULTEHIULT*H(1,1)
H2ULTsH2ULT*H(2,2)
H3UL TaH3ULT+H(3,3)
205 CONTINUE
galculate averafe pqincipal permeabilities avd porosities HIULT=HIULT/43.0
H2ULTAH2ULT/49.O
H3ULTAH3ULT/43.0
PRIVT 2393,HIULT,H2ULT,H3ULT
2393 FORMATI49HS AVERA'JE PRIVCIPAL PERMEABILITIES X 10 E6 GGS $=3 L 20.51$ PORUS=PUKTOT/49.U
PRI:NT 2394, PORUS
2394 FORMATI25HO AVERAGE TRUE POROSITY: F15.5)
CCLLEGTED ANSWERS OISPLAYEO IN PLOTS
GALL STERED
CALL FREUPL
GALL PUMPLI
calculate average pure ratio, equivalent /fzue
10IPOR=0.0
002375 Lal.4.
2375 TOTPOR= TOTPCR +PORAT(L)
TOTPUR = TUTPEN/49.O
PRIVT 2395, TOTPUR
2395 FORMAT(24112 AVERAÜE PORE RATIO =F2U̇.5)
calculate standare deyiation uf pure ratio
DEVPUR=C. S
002376 L=1,47
2376 DEVPOR=DEVPCR + (TOT:OR-PORATILI)e•2
DEVP OR=SURTFIDEVHOR/49.ひ)
PRITHT 2346, DEVPUR
2396 FORMATI37HO SPANDARD DEVIATIOY. OF PORE RATID= F25.5I GALL PORED
6070251
GGORDING TO DELTA VALUĒ, PIGR UP NEW PROBLEM UR EXIT IF OUNE
161 IFIDELTAI 261.261.162
162 GALL NDPLOT
ENDFILE 6
ENDFILE 6
CALL KEMUNL (6)
CALL EXIT
ENO

```
L LISr
- lisi
- lagel
- FORTRAN
    SUBROUTINE CNIROL
    DIMENSIUN M(5),C[1(5),C12(5),CT3(5),AK(5),SIO(5),CENTEN(5),
    LP(3,3),E{3,3),H(3,3),U(3,3),HH(3,50),X(3),{(U(3),UU(3,3,30),
    2TINSO(5,),AVO(5),SUMCOS(5),HARM(5),GEOM(5), (15C)),A(3),C(3),
    3AA(15),38(4),CC(10),OD(12),EE(2),FF(4),SG(12),OND(12),V(4),W(8).
    4WW(2),YF(15),YY(44),PP(2),CUS(NV(5),UR(3),CUBE(5),MPTS(50,51,
    STR(3,31,AX(3,31,WA(30,3),CA(11),GA(121,DAl121,PR(SC,5),RAl11),
    GCP(4),ORHOL(3,3),FA(4),UC(3,3),YT(3),AL(3),CK(3)
        COMMON M,CTI,CTZ,CT3,AK,STO,CENTEN,AVG,SUMCUS,HARM,GEOM,DELTA,
    LL,P,E,A,C,H,HH,U,UU,AA,BG,CC,OD,LE,FF,GG,IINSO,V,W,WW,DOD,NMAX,YF
    ZYY,N,NON,H,Z,DP,COSINV,EN,WA,OIAM,HEAN, CUHE,MPTS,OR,CK,IR,AX,
    3OA,CA,GA,OA,NM,PR,RA,CP,FA,O2HOL,PORUS
    00 220 I=1.3
    00 220 J=1.3
220 P(I,J):u.i
    PORUS=C.i
    IF (1-L) 2912,2911,2911
2911 MUO=C
271200 295 M=1.NMAX
    NaN
    NON=O
call subruutine nlmber tu determine sample size mm for this solution
            CALL NUMEER
            IF (MM) 293.293.2111
    2111 CALL VECTOR
        AVB(NI=C.O
        CUBE(N)=U.S
        HARM(N)=i.O
        GEOM(NI=0.0
        SUMCOS(N)=0.3
        COSINV(NI=O.15
        ELEM=FLOATF(FM)
        DO 813 MTIMESEL, RM
        MTIMES=MTIMES
        CALL FOR A RANDOM JOINT ORIENTATION
            CALL VECIOR
CALL FOR A RANOUM ADERTURE TO PAIR MITH ORIENTATION
            CALL APGK
Clmulate yoid vollme fur ecNDuctors penetratise thrcugh th volume
CENTERED ABOUT THE DRILL HOLE
            PORUS=PRRUS+2.CEB/ABSF(CII)=CTI(N)+C(2)-CT2(N)+C(3)=CT3(NI)
CCNTINUE INCREMENIIYG STATISTICAL PARAMETERS
            AVB(NI=AVB(NIt8
            GEOM(N)=GEON(V)+LOGF(B)
            HARM(N)=HARM(VI+1.0/B
CCLLECT APERTUKES IV AKRAY L
    Z(MTIMESI=8
    B=B-43
    CUBE(NI=CUBEIVI&O
CALCULATE PERMEABILITY OF EACH JOINT. THEV ELEMEVIS OF TENSOK.
CCNSERVE SIGNIFICANCE BY RAISING GY FACTOR OF HILLION
    PERM=666666.667.0
```

```
    P{1,11=P(1,1)+PERM=11.C-C(1) C(1)//EN
    P{1,2)=P{1:2)+PEKMO{-C(1)=C(2)}/EN
    P{1,3)=P(1,3)+PERM*{-C(1)=C(3))/EN
    P(2,2)=P{2,2)+PERM.& (1.O-C(2)=C(2))/EN
    P(2,3)=P{2,3)+PLRMO(-C(2)OC(3)//EN
    P{3,3)=P{3,3)+PEKM={1,O-C{3)&C(3)|/EN
    813 CONTINUE
        P(2,1)=P(1,2)
        P{3,11=P{1,3)
        P{3,2}=P{2,31
    GALCULATE VECTOR STRENGTH, STATISTIGAL MEANS OF APERTURF DISIRIBUTIUN
        BAYG=AYBIN)/ELEM
        AYCURE=CUBE(N)/ELEM
        STR=SUMCOSINI/ELEM
        BGEOM=EXPF{GEOM{N//ELEM}
        BHARH=ELEM/HARMIN|
    CAUSE APERTURE ARNAY IO BE DROERED.
        MNaHM-1
        00 275 LL=1,MV
        LP1=LL+1
        00 275 J=LP1,MM
        1F{\{LL\-2\J\)275.275.274
    274 TEMP=2(LL)
        Z(LL)=2{J)
        2(J) = IEMP
    275 CONTINUE
GITE MEDIAN VALUE
    M2=MM/2
    1F(MM-20ML) 291,291,292
    291 BMED=(2(M2)+ ((ML+1))/2.)
    60 10 293
    292 BMED=21M2+1}
CCMPUTE MODE FROM ONDERED ARRAY AT CENTER OF DEVSEST OF 5: GLASSES
    293 1FIMUDI 231,230,230
    230 1F|1-Y) 231,2230,2230
CLASS INTIRYAL ESTIMATEO GY GGTTING EXTREMES OF A SAMPLE UF 2S APERTURE
    2230 BTOP=-1.UE2C
        4801= 1.CE2O
        MUO=-1
        002939 1=1.25
        GALL APER
        GTOP=AAXIF{UTOP;B)
    2909 BBOT=MIN1F{8GUT,B!
        BCLASS=(&TOP-580T1/56.C
    PRINT 2Y79, &GLASS,BTOP,BBOT,R
    2979 FORYAT1 11HE INTERYAL= 4EL2.51
CLASS FREWUENCIES LERUEO
    DO 232 N=1,MMAX
    00 232 LM=1,S)
    232 MPTS(LH,N)=C
    BSTOPaBBOT-BCLASS/2.0
CCUNT FREJUENCIES IN CLASSES AND ADO EACH SULUTIO:I
    231 BENO=HSIOP
        LM=1
        IF(MM1 2110.2110.2118
    2118 00 285 L6=1,M4
```

```
        IFILILLI-RENO I 280.281.281
    281
        LM=LM+1
        BENO=BEND+ACLASS
    280 MPTS(LM,NIENPTS(LM,N)+1
    285 CONTINUE
CLASSES AVO FREQUENCIES PRINTED OUT FUR LAST SAMPLE ONLY
        IF (L-44) 233,234,234
    234 EENO=3STUP
ClmulatIVE APERTURES DISTRIBUTION MODE FOUND .
        MAXDEV=C
        00 236. LM=1,5)
CENTER ABCISA ON MIDOLE OF INIERVAL
        ABCISA=BENO-HELASS/2.O
        PRIVT 2&ठ, ABCISA,MDTS(LM,N)
        288 FORMATIE2N.5.ILU)
        IF (MPTSILM,V) -MAXDEV) 236.237.237
        237 MAXDENEF:PTS(LM,IN)
        BMOUE=ABCISA
        <36 BENJ=UEND+BCLASS
        233 COSSUM=COSIVY(N)/ELEM
CCNSIDER SNLY G9IH PRINTING OF MJDE TO BE CORRECT
    2110 PRINT 658
        658 FORYATI37HS PROPERTIES UF APERTURE DISIKIBUTION I
            PRIVI 6ST,MN, STR,COSSUM,BAVE,BGEOM,BHARM, IMED,BMODE,AVCJBE
        657 FORMATI89HO ELEMEIIS, STRENGTH, II/CIAV,ARITH MEAN,GEOM MEANI,HARA
            I MEAN, MEDIAN, MODE, AVG BCUBE /IIO,7FIE.G.IPEI3.3!
        295 CONTIVUL
CCRRECTS TENSOR ELEYEYTS, WEIGHTING THEM ACCORDIVS TO JOINT DENSITY
            00 <C4 l=1.J
            00 <C4 J=1:3
        254 H(I,J)=P(I,JI/DOLTA
            CALL nUTHUT
CCMPUTE AVO PRIVT OUI POROSITY THIS SAMPLE, VOIO VCL/TOTAL VOL
            PORUS=PURUS/DELTA
            PRITI 25*9. PJRUS
2599 FORMATIZ3HS PAROSITY OF SAMPLE : FIC..5/II
    RETUR:S
    END
- LIST
- label
- FORTRAN
    SUBROUTINE NUYBEP.
    OIMEZNSION M(5),CTL(5),CT2(5),CT3(5),AK(5),STO(5),CENTEN(5):
        IP(3,3),E(3,3),H(3,3),U(3,3),HH(3,501,X(3),IU(3),UU(3,3,50),
        2[INSU(5:1,AVB(5),SUMCOS(5),HARM(5),GEOM(5), L(505),A(3),C(3).
        3AA(15), BS(4),CC(15),OU(12),EE(2),FF(4),Gİ(12),ONO(12),V(4),W(8).
        4KH(2),YF(15),YY(49),PP(2),COSINV(5),OR(3),CUBE(5),MPTS(50,5),
        STR{3,3),AX(3,3),UA(50,3), SA(11),GA(121,OA(12),PR(SO,5),RA(11).
        GCP(4), ORHOL(3,3),FA(4),UE(3,3),YT(3),AL(3),EK(3)
            COMYON M,CTI,CTZ,CTB,AK,STD,CENTEN,AVB,SUMCUS,HARM,GEOM,DELTA,
        IL,P,E,A,C,H,HH,U,LU,AA,BB,CC,DD,EE,FF,GG,TI ISO,V,W,WW,DDD,NMAX,YF,
        2YY,N,NOV,B, L,PP, COSINV,EN,WA,DIAM,HEAD, SUSE,MPTS,OK,CK,TR,AX,
        3OA,CA,GA,OA,FM,PR,RA,CP,FA,ORHOL,PORUS
```

IF (NONI 2062:2002,2000
GCIVSIDER M(N) AS IJ TIMES THE POISSON EXPECTATIDV FOR THE YTH SET calculate a sufficiently large table of probarilities of obtainine CERTAIN I:ATEGRAL AUYBERS OF JOIVTS IN A SAMPLE
¿COO $\operatorname{lmAX}=(30 \mathrm{M}(\mathrm{N}) / / / \mathrm{U}+5$
$U M=M(N)$
UM=UM/1心.E
PRIYT 231C.IMAX,UM
2310 FORMATI(40.F1J.5)
ClASS ZERU FREQUENEY IS SIVEY BY INOEX 1 , CUMULATIVE FREQUENCY 1 3y CLASS INDEX 2, 2 BY 3, ETC.

POIS =EXPF(-LM)
PR(1, N) =PaIS
DO 2001 1=2.1MAX
AI =1-1
POIS=POISEUN/AI
2021 PR(I, V)aPR(I-ION)+PUIS
RETURV
CALL A RA:HDOM UNIFORM iNUMBER LEVERATOR TO SET A PiROBABILITY LEVEL 20.22 PROd =UNIRAN(XI)

CloSest gumulative proaability iv table paligili dēfines sample size. I=1
DIFFI=PRCH
2101 DIFF2=AB5F(PRDB-HR(I,V))
IF IDIFF2-DIFF1) 24j0,2400,21U2
2400 DIFFI=DIFF2
$1=1+1$
G0 102101
$2102 M M=1-1$
RETURY
ENO

- LIST
- . layel
- FORTRAN

SUBROUTINE VECTOR
DIMENSICN M(5),Cア1(5),C(2(5),CT3(5),AK(5),STO(5),CENTEN(5). [P(3,3), E(3, 3),H(3,3),U(3,3), HH(3,50),X(3), $10(3)$, UU(3,3,50), 2TINSQ(5\%),AVB(5), SUMCOS(5), HAKM(5), GEUM(5), 2(500),A(3), C(3), 3AA(15),HB(4), CG(13), OD(12), EE(2),FF(4),GG(12), DDO(12),V(4), w(8): 4WH(2),YF(15), YY(49), PP(2), COSINV(5),0Q(3), CUBE(5), MP (S(50,5), STR(3,3), AX(3,3), QA(50,3), CA(111),GA(12), DA(12), PR(50,5), RA(11), 6CP(4), ORHUL $(3,3), F A(4), U C(3,3), Y((3), A(\{3), C K(3)$
COMMOY M,CT1,CT2,CT3,AK,STD,CENTEN, AVA, SUMCUS,HANY,GEOM, OELTA, IL, P, E, A, G, H, HH, U,UU, AA, BB, CC, DO, EE,FF, GS, TINSO,V,H,WH, DOD,NMAX,YF, 2YY, Y, YON, B, Z, PP, COSINV,EN, HA, DI AM,HEAC, CUAE, MPTS, DR,CR, TR,AX, 3OA,CA, GA, DA, MM, PR, RA, CP, FA, ORHOL, PURUS
IF (NOVI 46:.401.4.31
CCmpute matrix of traidsformation betmeen levith aiso
cevtral tendevgy cF SEf.
401 DENUM=SURTF(1.O-CT2(N)-CT2(N))
E(1,1)=CTI(N) ©CT2(N)/DENOM
$E(1,2)=-D E N C M$
EII.3i=6T2(N)=CT3(N)/DENOM

```
    E(2,1)=CTIIN:
    E(2,2)=CT2(N)
    E(2,3)=CT3(N)
    E(3:1)=CT3(N)/OENOM
    E(3,3)=-CTI.(V)/DENOM
CCNSTANTS OF DISPERSIUN CUMPUTEO.
    Fl=EXPF(AK(N))
    GI=FI-EXPF(-AK(NI)
    NON=NON-1
    RETURN
```

Call a uniform ranuom rumber generator to oefine a prooability. thev
CCMPUTE CJSINE THETA OLfinING A CIRCLE ABOUT THE CENTRAL TENOLNCY AC-
CERDING TO AK, FISHERIS CUEFFICIENT OF UISPERSIOV DF VECTORS UN A SPHERE
CALL AGAIN A RARDCM UNIFORM GENERATOR TO POSITIOV THE VECTOR ON THE
CIRCLE.
469 HI=FI-UNIRAN(XI)EGI
COSTH:LOGF(HIH/AK(N)
EN=ABSF(COSTH)
SUMCOS(N) =SUMCOS(N)+COSTH
COSINYINI=CCSINYINI+1.C/COSTH
SINTH=SURTF(1.O-COSTH:COSTH)
PHI =UVIRAN(X1):6.28318
AIII =SINTHESIVFIPHII
A(2) $=$ COSTH
A(3) $=S I N T H=C O S F(P H I)$
C(1)=E(l.1)EA(1)+E(2,1):A(2)+E(3,1):A(3)
$C(2)=E(1,2)=A(1)+E(2,2)=A(2)$
$C(3)=(\mathbb{C}(1,3) \in A(1)+E(2,3)=A(2)+E(3,3) \in A(3)$
IF(C13): 221.224.224
221 DO $222 \mathrm{~J}=1.3$
222 C(J) = C(J)
224 RETUR.V
END

- LIST
- label
- foriran
SUBROUTINE APER
DIMENSION M(5),CTI(5),CT2(5),CT3(5),AK(5),STO(S),CENTEN(S),
1P(3,3),E(3, 3),H(3,3),U(3,3),HH(3,50), X(3), IO(3), UU(3,3,5C).
2TINSQ(5Ui), AVA(5), SUMCOS(5), HAKM(5),GEOM(5), 2(500), A(3), C(3),

4WH(2),YF(15), YY(49), PP(2), COSIVV(5),OR(3),CUBE(5), MPTS(50,5),
STR(3,3),AXI2,3),QA(50,3),CA(11),GA112), OA(12),PR(50,51, KA111),
6CP (4), OKHOL (3,3),FA(4), UC (3,3), YT(3), AL(3), CK(3)
COMMUN M,CTI,CTZ,CT3,AK,STO,CENTEN, AVB, SUMCOS,HARM,GEOM, DELTA,
IL, P, E, A, C, H, HH, U,UU, AA, $88, C C, O D, E E, F F, G G, T I N S Q, V, H, W W, O O D, N Y A X, Y F$,
2YY, N, NON, B, L, PP, COSINY,EN, WA, DIAM,HEAD, CUOE,MPTS,OR,CK, TR,AX,
3QA, CA, GA, OA, MM, PR,RA, CP,FA,ORHOL, PORUS
CASE ONE, ABSCLUTE VALUE OF NURMAL DISTRIBUTION OF APERTURES
B=ABSF(STDIN) ERANDEV(XI) CCENTENINII
CALL RANDOM NURMAL NUMBER GENERATUR AVD MODIFY IT ACCORDING TO THE
Célecteo parametérs of thi set.

3VOL RETURN END

Gan substituti aliernative statements as follows

CASE TWO, LOGHORMAL DISTRIGUTION OF APERTURES BaCENTENIN) EEXPF\{1.414-STD(N)*RANDEV(XI))

```
CASE THREE, EXPCNENTIAL OISTRIBUTION OF APERTURES.
```


GASE FOUR, LINEAR OISTRIBUTIOY OF APERTURES. 3J00 B=3.0-CENTENIN)-11-J-SURTF(1-J-UNIRAN(X1)I) IF (B-1.6) 3JJI.3021.3CG0

- LiST
- label
- fortran

SUBRUUTINE PIE20
CCMPUTES THI DISCPARGE OF A PIETOMETER OF ORIENTATIOV ORIII, LENGTH WA. CITUATED GELOH THE GATER IAHLE OPERATIAG UNDER HEAD. ANSHER IN GALLONS GADA DAY. THE SHAPE FAGTOR IS OBTAINED FRGM THE PRINGIPAL AXES ANO THE CGIVOUGTIVITY UF THE FICIITIGUS ISJIROPIC MEDIUM DERIVED FROM THE SAMPLE.

DIMENSION M(5), Cil(5), (I2(5), CT3(5), AK(5), STD(5), CENTEN(5),
(P(3,3), $(\{3,3), H(3,3), U(3,31, H H(3,50), \times(3), 12(3)$, UU(3, 3, 50), 2TINSOI 5:), AYB(5), SUMCOS(5), HARM(5), GEUM(5), (1500), A131, C(3),
 4WH(2),YF(15), YY(49), PP(2), COSINY(5), OR(3), CUBE(5), MP (Si(50,5), STR(3,3), AX(3,3), UA(50,3), EA(11), GA(12), DA(12),PR(50,5),RA(11). . 6CP(4), DRHOL $(3,3), F A(4), U C(3,31, Y T(31, A L(3)$, CX(3)
GOMMOU M,GTL,CT2,GT3,AK,STD,CENTEN, AVS, SUMCOS,HARY,GEOM, DELTA, IL, P, E, A, $C, H, H H, U, U U, A A, B B, C C, D D, E E, F F, G G, T I N S U, V, A, W W, D D D, N Y A X, Y F$, ZYY, N, NON,, , Z, PP, COSINY,EN, WA, DI AM,HEAD, CUBE, MPIS, OR, CK, IR, AR, 3PA,GA, GA, DA, MM, PR, RA, CP,FA, ORHOL, PURUS
DO 1105 I=1,3

DO 1159 MO =1.3
IF (PORUSI 1172,1192,1193
1192 SA=U.
60101159
$1193^{\circ} 001158 \mathrm{JO=1.3}$

1158 URIJOI=URHOL(40.JO)
calculate elemevis mf ikansfinmation matrix
OENUMESQRIF(1.0-CR(2)-OR(21)

TR(1,2) =(U(1,2)-CR(1)+U(3,2)-OR(3))COR(2))DENCM-U(2,2)=DENOM
(R12,2)=(U(1,2)=CR(3)-U(3,2)=OR(1))/OENOM

$\operatorname{TR}(1,3)=(U(1,3)=O R(1)+U(3,3)=O R(3))=\operatorname{OR}(2) / \operatorname{DCNOM-U(2,3)\operatorname {CENOM}}$
TR(2,3)=(U\{1,3)=UR(3)-U(3,3)=OR(1))/DENOM
TR(3,3)=U(2,3) $\operatorname{COR(1)+U(2,3)\subset OR(2)+U(3,3)=UR(3)}$
CALCULATE CJMPUNENTS OF PACKER TEST LENSTH , FICTITIOUS ISOTROPIC MEOIU
YT(1) $=$ (CK(2)/CK(1))© 0.25 ©WAGAUSF(TR(3.1)
YT(2): (CK(1)/CK(2))EC.25eWA:ABSF(TK(3,2))

CCMPOSE RESULTAMT LENGTH

PRINI 75. WI
75 FORMATIF6C.SI
CCSINES OF THE CYLIVDRICAL AXIS ARE
YTHIEYTII/MI
YT(2)=YT(2)/WI
YT(3) =Yt(3)/4i
CCEfficieyt matrix jf eleiptic section is calculated
ARSN=10IAM/2.310:2

$A X(2,2)=(T R(1,2)=2+T R(2,2)=2) / A R S G=S O R T F(C K(2) / C K(1))$

CCEF̈fICIEVTS OF REIATiO ELLIPSE COMPUTEO
IEGEN=O ..
N=3
CALL HOIAGIAX,N,IEGEN,UCBNRI
PRINT Tu. (IARII: J), J=1,3), I=1,31

10 fORMATIGH: ELLIPSE IP9EI2.4I
DO 1106 LAE1.3
Clear axes uf the right sectiun ellipse
ALSLAI =L $-:$
CCMPUTE NJIA -LERO AXES, AL, OF OBLIJUE ELLIPSE
IF(AXILA,LAI-).0111106,1106,1104
1104 ALILAIESCRTFII.O/AXILA.LASI
CCMPUTE aXES UF CIRECTRIX. AL, PROJECTING OBLIUUE AXES TO A PLANE
CROSSING THE CYLINDER AT A RIGHT ANGLE
 LUC(3, LAIIEA2)
1166 CONTINUE
CCMPUTE DIAMETER CF CIRCLE OF EQUIVALENT AREA
001178 LK=1.2
$L P 1=L K+1$
001178 MK=LPI. 3
1F(ALCLK)-AL(MK) 11178.1:78.1177
1177 TEMP =ALILKI

```
    AL(LK)=AL(MK)
    AL(MK)=TEMP
    1178 CONTIVUE
    DISU:2.G-SOAIF(AL(2):AL(3))
GCRNHELL-GLOVER SHADE FAGTOR IS COMPUTED
    SA=6.28320Wl/LOGF(2.U-WI/OISO)
    PRINT 76,0ISU,SA
    76 FORMAT(2F30.5)
CCMPUTE DISCHARGE
    1159 OAIL,MO)=SA=HEAO=SORTF(CX(3)OSORTFICKI1)OCX(2)II
            PRINT 77, (GA(L,MOI,MU=1,31
        77 FORMAT(3F20.5)
            RETURV
            END
- lisT
- labEl
- FURIRAN
    SUBRDUTINE CUTPUT
    DIMENSIO:A Y(5),CII(5),CT2(5),CT3(5),AK(5),5\D(5),CEYTEM(5),
        {P(3,3),E(3,3),H(3,3),U(3,3),HH(3,50),X(3),10(3),UU(3,3,5)),
        2TINSQ(5C),AYA(5),SUMCOS(5),HARM(5),GEOM(5),2(500),A(3),C(3),
        3AA(15),B(14),CC(1U),OD(12),EE(2),FF(4),GG(12),000(12),V(4),N(B),
        4WW(2),YF(15),YY(49),PP(2),COSINV(5),OR(3),CUBE(5),MPTS(50,51,
        STR(3,3),AX(3,3),(UA(50,3),EA(11),GA(12),DA(12),PR(5C,5),RA(11),
        GCP(4),OKH\capL (3,3),FA(4),UC (3,3),YT(3), AL(3),CK(3)
    COMMOY M,GTI,CT2,CT3,AK,STD,CENTEN, AVG,SUMCOS,HARM,GEOM,DELTA,
    LL,P,E,A,C,H,HH,U,UU,AA,JB,CC,DD,EE,FF,GG,TINSO,V,H,WH,DOD,NYAX,YF,
    2YY,N,:UUN, P, L,PP,COSINV,EN,NA,DIAM,HEAD,CUBE,MPTS,OR,CK,TR,AX,
    3OA,GA,GA,OA, Y4, PR,RA,GP,FA,ORHOL,PORUS
    758 N=3
        IEGEN=C
CCNDUGTIVITY MATRIX.IS DIAGUNALILEO TU GET THE PRINCIPAL
CCNDUCTIVITIES AVE AXES OF THE SYSTEM CONCUCTIVITY TENSOR
    CALL HD{AT,(H,N,IEGE'J,U,NR)
    PR{\T 817,{(H{1,J},J=1,3),{=1,3)
    PRINT 8{7,({U{J,\},J=1,3l,{=1,3)
    017 FORMAT(1PGE12.4)
GCORDINATES OF AXES PUT O:% UPPEQ HEMISPHERE
    00 765 1=1,3
    IF{U(3,1I) 761,765,765
    760 00 762 J=1,3
    762 U(J,I)=-U(J,1)
    765 CONTINUE
GAUSE SOLUTION TO bE STORED FUR LATER PLOTTING.
    780 00 783 1=1,3
    HH(I,L)=H{!,I)
    00 783 J=1,3
    783 UU(J,I,\)=U(J,I)
    HMIN=M{N1F(HH{1,G),HH(2,L),HH(3,L))
    HMAX=MAXIF(HH{1,L),HH(2,LI,HH(3,L)
    TINSE゙(L)=HMIN/HMAX
    HETURN
    END
```

LBST
LABCL
FORTRAN
SUBRCUTINE STERFC
Calculates coupdinates and plots the stereugraphic projection of m ve CIURS ON THE UPPER HEMISPYERE UF AN IB CM NET OVEKLAY OIMENSION M(S),CTI(S),CT2(S),CT3(S), AK(S), STD(S), CENTEN(S): 1P(3,3), E(3,3),H(3,3),U(3,3), HH(3, 50), X(3), IU(3), UU(3,3,50), 2IINSQ(50), AVB(5),SUYCOS(5), -ARM(5), GFOM(5), ((500), A(3), C(3), 3AA(15), BB(4),CC(LU), OD(12),EE(2),FF(4),GG(12), DDO(12),V(4),W(8): 4WW(2),YF(15),YV(4y), PP(2),COS(NV(5),OR(3),CUBE(5), MPTS(5),5), STR(3,3), AX(3,31, UA(50.31, EA(11), SA(121, DA(12), PR(50.5),RA(11), 6CP(4), J? HOL (3, 3), FA(4), UC(3,3),YT(3),AL(3),CK(3)
COMMON N,CTI,CT2,CT3,AK,STO, CENTLN, AVB, SUMCUS,HARY,GLOM, DELTA, LL, P, E, A, C, H, IH, U, UU, AA, SE, CC, DD, EE,FF,GG, TINSN, V, W,WW, DOD, NYAX, YF, ZYV,iN,NO:; , H, L, PP, COSINV,Ē, HA, DIAM,HEAO, CUXE, MPTS,OR,CK, TR,AX, 3OA,CA, GA, DA, Y4, PR,RA,CP,FA, URHOL, PORUS
V(1) $=3$ HIH.
V(2) $=3$ HIHS
$V(3)=3 \mathrm{HIHM}$
$V(4)=3$ HIHE
WWIIIE 6 H.JHFIGU
WHI2)=6HRE
W(1) $=6$ H42HSTE
$W(2)=6$ HREOSRA
W(3) =6HPHIC P
M(4) =6HKOJECT
M(SIE6HICN. U
$W(6)=6 H P P E R H$
M(7) = GHEMISPH
W(8) = 3HEKE
11 CALL ERAPH (IN.C.7.J.I.11
READ 7. (OOC(J).J=1.121
7 formatil2a6l
CCORDINATES ANO LETTERIVG DONE.
CALL XLN (0.23.シ..37.3.9.ī. 31
CALL XLN 13.8.4.E.3.9.0.01
CALL XLH 17.43.7.57.3.9.0.21
CALL YLN 10.23.(1.37.3.9.3.931
CALL YLN (3.8.4.0i.3.9.0.0)
CALL YLN 17.43.7.57.3.9.0.01
CALL LTR 10.12.3.8C.2.1.V(11)
CALL LTR (7.83.3.80.2.1.V(21)
CALL LTR (4.03.E.02.2.1.V(31)
CALL LTR (4.Uग.7.68.2.1.V(4))
CALL LTR (8.2.j.0.2.1.WHi
CALL LTR(8,6, J. $\cdot, 2,1, M 1$
CALL LTR 19.j.0.i.e2.1.0001

```

```

THETA=0.2
CCMPUTE 30: OEGREE-POINTS ON AN L.8 CM CIRCLE: MARKING EYERY I:TH OEGREE 15 PHIa THETA/57.295

```
\(X X=3.53+\operatorname{COSF}(P H\{ )\)
YY=3.53:SINF\{PHI)
CALL PLOTPI(XX,YY)
THETA =THETA + 1.0
IF ITHETA- 363.نII5,15,199
9990010 121,3
CrUSEN SYMROLS ARE DIAMCNOS FUR KII AXIS, CIRCLES FOR K?2 AXIS: AVD CRUSSES FUR THE K33 AXIS.

1F(I-2) 16,19,2.J
16 CALL CURVE \(13,1,1,0,-3.9,10.0,-3.9,16,0,11\)
601022
19 CALL CURVE \(15,1,1,0,-3.9,10.0,-3,9,10,0,11\)
GO 1022
20 CALL CUKYE \(17,1,1,0,-3.9,10.0,-3.9,10.0,11\)
220010 Lal 4 s
CCMPUTE X-Y CUURDINATES FROM DIRECTIO.Y CUSIVES.
\(R=3.53=5\) GRTFi(1.0-UU(3.1.L))/(1.0.UU(3.1.Ll))
SaUU(2,1,LI/LU(1,i,b)
\(x X=R / S Q R T F(1, j+5 * S)\)
IF(UU(1,1.1)) 12.13.13
\(12 x X=-x x\)
13 YY=xXeS
10 CALL PLOTPT(XX,YY)
ENDF ILEG
ENDFILE6
RETUKV
END
- LIST
- label
- FORTRAN

SUBROUTINE EAPOR
DIMENSIUN M(5),CII(5),CT215), CT3(5), AX(5),STD(5), CENTEN(5), 1P(3, 3), ( 3,3\(), H(3,3), U(3,3), H H(3,50), X(3), 1,2(3), U U(3,3,50)\),
2TINSO(5,), AYE(5), SUYCOS(5), HARM(5), GEOM(5), (150C), A(3), (13), 3AA115), BS(4), CC(10), DO(12), EE(2),FF(4), GG(12'), OOD(12),V(4), N(3),
4HW(2), YF(15),YV(49), PP(2),COSINV(5),OR(3), СUBE(5), MPIS(50,5),

GCP(4), ORHOL (3,3), FA(4), UE (3, 3), YT(3), AL(3), CK(3), PORAT(50)
COMMO:Y M,CTI,CTL,CT3,AK,STD,CENTEN, AVB, SUMCOS,HARM, GEUM, DELTA,
IL, \(P, E, A, C, H, H H, U, U U, A A, B B, C C, D D, E E, F F, G G, T I N S Q, V, W, W H, D O D, N M A X, Y F\),
 3OA, CA, GA, DA, RH, PR,RA,CP,FA,ORHOL, POKUS, PORTOT, PORAT, 4HLULT,H2ULT,H3ULI
CCMPUTES PORUSITY FROM THE PERMEABILITY ASSUMING THAT THERE ARE
CCNOUGTORS OF EACH SET EUUAL IN NUMSER TO THE POISSON EXPECTATIOY
CCRRESPONDING TO MIHI/IO AND ALL WITH THE SAME APERTURE.
IF (PORUS) \(58.51,9801,98: 9\)
CCEFFICIENT RATIOS BUILT IN FUR SPEGIFIC DISPERSIUN KF= 2j
S809 CMAX1=0.9563
CMIN2=0.j973
COREF= 1.061
Central tendency uf one set at a time rotated tu coordinates along prs CIPAL AXES

CTN2 =U(1,2)=CT1(1)+U(2,2)-CT2(1)+U(3,?) ©CT3(1)
\(A 1 C 1=C\) MAXI \(+\{C\) MIN2-CMAXII \(=\) CTMI © CTNI
```

 AIC2=CMAXI+(CMIN2-CMAXI)=CTN2:CTN2
 CTNl=U(1,1)-CT1(2)+U(2,1)=CT2(2)+U(3,1)eCT3(2)
 CTN2=U(1,2)=CT1(2)+U(2,2)बCT2(2)+U(3,2)eCr3(2)
 A2CI=CMAXI+ICMIN2-CMAXIICETNI-CTNI
 A2C2=CMAXItICMIN2-CMAXIIEETN2-CTN2
 CCmpuTE PERMEABILITY OF AY EQUIVALEVT PARALLEL SET . KP.
P2K=(A2Cl:H(1,1)-AICl-H(2,2))/|A2Cl*A1C2-A1C1*A2C2)
P1K=(H(1,1)-AlC2-P2K)/A2Cl
PIK=1.OE-64PIK
P2K=1.OE-6\#P2K
CCMPUTE PUROSITY CF OISPERSED SETS HAVING UNIFORM APERTUKE.
GMN1=M(1)
GMN2=M(2)

```

```

 1 CUREF&(3.UEP2K)EEv.333-(0.2EGNN2 /OELTA)E&C.667
 PORATILIEPORE I/PORUS
 PRINT 9&L5,PDREU,PORATILI
 S8O5 FORMATISGHO PJROSITY EQUIVALENT TO PERM: RATIO TO TRUE PURUSITY =
 1 2F10.51
 PORTOTEPORTCT+PORUS
 S\&D1 RETURN
END

```
- LIST
- LABEL
- FORIRAN
    SUBROUTINE FREOPL
Clmulative friquency curves plotied for each principal conductiviry
CAPTIONS AND LABELS STORED.
OIMENSICN M(S),CTI(5),CT2(5),CT3(5),AK(5),STD(5),CEUTEN(5).
LP(3,3), E(3, 3), H(3,3), U(3, 3), HH(3,50), X(3), 1Q(3), UU(3, 3,50),
2TINSQ(5C), AvB(5), SUMCOS(5), HAKM(5), GEIJM(5), (1500), A(3), C(3).
3AA(15), BU(4):CC(12), OD(12), EE(2),FF(4):GG(12), DOO(12),V(4),W(8),
4WH(2), YF(15), YY(49), PP(2),COSINV(5), UR(3), CUBE(5), MPTS(50, 5),
5TR(3:3), AX(3; 3), (4A(50,3), EAllli,GA(12), DA(12), PR(50,5),RA(11),
6CP (4), ORHOL (3, 3), FA(4), UC (3, 3), YT(3), AL(3), CK(3)
    COMMON M,CTL,CTR,CTB,AK,STO,CENTEN,AVH,SUMEOS,HARM,GEOM,DELTA,
\(I L, P, E, A, C, H, H H, U, U U, A A, B A, C C, D D, E F, F F, G G, T I N S G, V, N, W H, D O D, N M A X, Y F\),
2YY, N, NON, B, L, PP, COSINV, EN, WA, DIAM,HEAD, CUBE, MPTS,OR,CK, TR,AK,
3QA,CA, GA, OA,MM, PK,KA,CP,FA, URHOL, PORUS
    AAC II=3H2HI
    AAC 2 : \(=3\) H1H2
    AA(3) \(=3\) HIH5
    AA(4) \(=4 H_{2} H_{1} \hat{\theta}\)
    \(A A(5)=4 H 2 H 2 C\)
    AA( \(61=4\) H2H3S
    AA(7)=4H2H4C
    AA(8)=4H2H5C
    AA(9) \(=4 H^{2 H} 62\)
    \(A A(10)=4 H 2 H 7 J\)
    AA(11)=4H2H8S
    AA(12)=4H2HSO
    AA(13):4H2HS5
```

 AA(14)=4H2HGB
 AA(15!=4H2HG)
 BB(1)=6H18HCUM
 BBI2I=6HULAIIV
 BB(3)=6HE PERC
 BB(4)=3HENT
 CC(1)=3HS5H
 CC(2)=6HFIGLRE
 CC(3)=6H
 CC(4)=6HKINCIP
 CC(5)=6HAL PER
 CC(6)=6HMEABIL
 CC(7)=6HITIES.
 CC(B)=6H X 1J
 CC(91:6H CGS U
 CC(10)z4HNITS
 FF(1)=6H11 BHMAX
 FF(2)=6HIMUN:A
 FF(3)=6HNISCTR
 FF(4)=3HUPY
 PP(1)=6H6HY5)
 PP(2)=2H/O
 CCORDINATES AND LETTERING DOARE, SGALES PLOTTEU.
26 GALL GRAPHI7.J.6.F.,2.5)
CALL FRAME!:.l,0.j)
CALL XLIN(C.4,7.J.2.57.0)
CALL XLN(C.C,8.5,3.-D,C.5)
CALL XL.V(i).4,7.3.3.43,01
CALL XLN15.5,9.U,6.C.0.5)
CALL XL:N(9.C,O.O,O.j,-0.5)
DO 31U J=1,15
310 CALG XLI(S.E,).1,YF(J),j)
00 311 J=1.15
311 CALL XLN(8,9,),U.YF(J),O)
00 21 J=1.15
YY=YF(J)-E.C5
21 CALL LTRI-0.3,YY,I,j,AA\JI)
CALL LTR(-0.5,0.7,2,1,BB)
CALL LTR(-1,3,-1,0,2,0,CC)
CALL LTR(5,5,h.4,2,J,FF)
CALL LTR(8.8,2.7.1,1,PP)
READ 7,(GG(J),J=1,12)
CALL LTR(-J.7,-1.4,2,0,G6)
READ 7,100(J),J=1,12)
CALL LTR(-0.6,-1.8,2,0,D0)
7 FORMAT(12AG)
CCNDUCTIVITIES AND ANISOTROPIES ARRANGED IN ASCENOINS ORDER.
00 32 1=1,3
00 32 L=1,48
LP1=L+1
00 32 J=LP1,49
{F(HHII,L)-HH!I,JII 32,32,33
38 TEMP=HH(I;L)
HH{I,L)=HH(I,J)
HH(1,J)= PEMP
32
CONTIVUE

```
```

 00 39 L=1.48
 LPI=L+1
 OO 39 JaLP1.4.
 IFITINSU(LI-TINSQIJI) 34.39.40
 40 IEMP=\INSCRLI
 TINSOILI=TINSA(J)
 TINSQ(JI= TENP
 39 CUNTIVUE
 CCMPUTE FACTUR TO MAKE PERMEAGILITY CURVES FIT HLOT. POSITION CURVES.
XMIN=MITIF(HH(1,1),HH(2,1),HH(3,1)!
61 HP=L.JE-is?
62 HS=XMIV:HP
IFCL.JE-38 -HSI 60,64,64
60 IF(HS-1.0) 63,64,64
63 HP=HP:1%.O
CO }106
73 HP=HP/IJ.C
HS =XMI:N"HP
64 XMAX=MAXIF(HH11,49),HH12.49 1,HH(3,49 1)
HL =XMAXEHO
{F(HL-HS-8.E) 65,65,73
65 IFPHL-HS-S.81 63,63,81
81 [X=d.O/(HL-HS)
GO 10 (69,69,303,69,69,306,306,69,3:9,691.,1x
303 1x=2
60 10 69
306 1x=5
60 10 69
309 1x=0
69 XI=1X
HP=HP=XI
PRINT 3L:XMIN,XMAX,IX
31 FORMAI(1P2EŻ..8.I4I
IXMLNEXMI|OHP
XMIN=IXMIY
CCMPUTE FACTON TU MAKE ANISOTKOPY CURVE FIT PLOT, POSITION CURVE.
TP=0.1
92 TOIF=IP\&(TINSO(49)-IINSU(1II
IFITOIF-U.21 93,94,94
73 TP=TP*1i.?
60 10 92
94 TS=IINSUC1I-TP
101 ITS=IS
TS=ITS
PRIVT 31. TIVSOCLI,TINSN(49).ITS
ClRVE IDEisTITY ESTABLISHEO
42 DO \$5 i=1.3
HACT =HH(I,25)=1.CEE-C6
CCMPUPE AVO PKIVT 95 PERCENT COVFIDENCE INTERVAL ON MEDIAN AND MAX ANISC
DEVH=(HH(1,32I-HH(I,171):1.0E-05/2.J
PRINT 350.DEVH
35 PRINT 36,HP,HACT,I,TINSCI251
DEVT=TINSD(321-TINSJI17)/2.J
PRINT 35u. DEVT
36 FORMATILP2E2U.8,I4, E20.81
350 FORMATIIPE2:.61

```
glmulative frfyuency curves plutted
\(00181=1,3\)
CRUSEN SYMBULS ARE DIAMCNOS FUR KII, GIRCLES K22. CROSSES K33. 1F(t-2) 96,93,100
96 CALL CUKVEI3,1,1,0,0.0C,9.0,0.0,6.0,11 GO 10 2४y
99 CALL CURVEIS.1,1,0,0.00.9.0.C.0.6.0.1
60 10 289
100 CALL CURVEI7,1,1,0,j.00,9.0,0.0.6.0.11
2890017 L=1.4s
XV=HHPIDLIOHP-XMIN
17 CALL PLOIPT(XV,YY(L)I
18 CONTIYUF
CALL CURVE(1,1,1,0,0.0,9,0,0.0,6.C.1)
00217 L21.47
\(X V=\) IIVSUILI:TP-55+6.0
2:7 CALL PLOTPT(XV,YY(L))
ENDFILE 6
ENDFILE 6
RETURN
END.
- LIST
- labcl
- FORTRAN

SUBROUTIIAE PUYPLT
DIMENSIUIV M(3), CT1(5), CT2(5),CT3(5), AK(5),STD:5),CEVTEN(5),
\((P(3,3), E(3,3), H(3,3), U(3,3), H H(3,5), x(3), 10(3), U U(3,3,5 i)\), 2TINSQ(5(j), AV甘(5), SUMCOS(5), HARM(5), SLOM(5), Z(500), A(3), C(3), 3AA(15), 8H(4),CC(1し), OU(12),EE(2),FF(4),GG(12), ODO(12),V(4),W(3), 4WH(2),YF(15),YY(49),PP(2), COSINY(5), O2(3), CUBE(5),MPT5(50,5), 5TR\{3,3),AX13,31, (UA(50,31, СA(11),GA1121,0A112),PR(5C,5),RA(11), 6CP(4), OKHOL (3,3), FA(4), UC(3,3), YT(3), AL (3), CK(3)
COMMOY M, CTI,CT2,CT3,AK,STO, CENTEI, AVH, SUMCOS,HARM,GEOM, DELTA, \(L L, P, E, A, G, H, H H, U, U U, A A, H B, C C, D D, E E, F F, G G, T I, Y S G, V, H, W W, O D O, N Y A X, Y F\), 2YV, N, VON, \(, 2, Z, P P, C O S I N V, E V, N A, O I A M, H E A D, C U B E, M P T S, J R, C K, T R, A X\), 30A,CA, GA, DA,MY, PK, RA, CP, FA, ORHOL, PORUS
GLMULATJYE DISJRIdUTION OF PUMP TEST DISCharges plotied
RA11]=3HIHO
RA(2) 3 4H2HI:
\(R A(3)=4 H 2 H 2 S\)
RA(4) \(=4\) H2H3:
\(R A(5)=4 H 2 H 4 O\)
RA(6) \(=4 H 2 H 5 E\)
RA(7) \(34 \mathrm{H}^{2 H} 6 \mathrm{C}\)
RA1 () \(=4\) H2H7C
RA(9) 3 4H2H8C
RA1101 \(=4 \mathrm{H} 2 \mathrm{HSC}\)
RA(11) \(=5 H_{3} 3 H_{100}\)
EE(1) \(=6 \mathrm{H} 4 \mathrm{H}-513\)
\(E E(2)=6 H 4 H+51 G\)
EE(3) \(=6 \mathrm{H} 4 \mathrm{HMEAI}\)
FA(1) \(=3 \mathrm{H} 16 \mathrm{H}\)
FAl2)=6H95 C/J
```

 FA(3)=6H CONFI
 FA(4)=1H-
 CP{1)=3H19H
 CP(2)=6H DENCE
 CP(3)=6H ON ME
 CP(4)=4110(AN
 CA(l)=3H53H
 CA(2)=6HFIGLRE
 CA(3)=6H ST
 CA(4)=6HANOARO
 CA(5)=6HILEC P
 CA(6):GHUMP TE
 CA(7)=GHST CIS
 CA(BI=6HCHARGE
 CA(9)=6H: GALL
 CA(LC)=6HONS/DA
 CAll1/EIHY
 CCUROINATES AND LETTERING, SCALES OONE
CALL GRAPH(צ.J.6.E.2.5)
CALL FRAMF(C.L:E.6)
CALL XL,N(0.5.8.5.5.50,0.5)
CALL XLN(9.C.J.J.C.O.-C.5)
CALL XLN (O.O゙.9.d.2.l6.C)
CALL KLN 10.0.9.C.3.84.0)
YY=-0.C5
00 21 J=1.11
CALL LTR(-0.3,YY,1,J,RA(J))
21 YY=YY+0.06
CALL LTK(-0.5,0.7,2,1,BB)
CALL LTR(-1,3,-1,0,2,0,CA)
CALL LTK (8.65,1.95.1.1,FA)
CALL LTR 18.85,1.85,1,1,CP1
READ T,IGAIJI,J=1.12)
CALL LTR(-0.7.-1.4,2,0.GA)
REAO T,lOA(JI,j=1,12)
CALL LTR(-0.6,-1.8,2,0,001
7 FORMATCl2461
00 1C17 MO=1,3
CCMPUTEO TEST DISCHARGES ORDEREO, ASCENDING
00 1239 L=1.48
LP1=L+1
00 1239 J=LP1,49
IF(OA(L,MOI-QAPJ,MOII 1239.1239.1240
1240 TEMP=QA(L,MCI
QA(L,MO)=OA(J,MO)
QAPJ.MOI=TENP
1239 CONTINUE
Clmulative curve fittec tu plot oimensiuns
IF(MO-1) 1061.1061,1176
1061 HP=1.0E-U2
LN62 HS=UA(1,MUIGHP
[F(1.0E-35-HS) {(60,1064,1064
1060 [F(HS-1.C) 1N63,1:64,1064
N66 HP=HPElL.O゙
GO 10 1062
LG73 HP=HP/10.0

```

HS = GA(1, MOI AMD
1064 HLEUA(4\%,MOIBHP
(F) HL-HS-8.C) 1065,1065,1073

1065 1F(HL-HS-G.8) 1663.1063.1081
1) 81 (X: \(8.0 /(H L-H S)\).

\(13031 x=2\)
60 TO li 69
1306 1x=5
\(1+69\) Xl=! \(X\)
HP=HP=XI
PRIVT 31, QAIL,MUI,TA(49,MO):IX
31 FORMATIIP2E2こ.8,14)
(XQaOA(1,MO)IAP
OMIV =IXO
GCMPUTE 95 PE:KCIVT CONFIOENCE INTERVAL UV MEOIAN O
1176 CON(J) (DA ( \(32, M 7\) )-UA(17, M(1))/2.1)
CEMPUTE MEAIS
UMEAN=OA(1, MJ)
\(001070 \times 32,47\)
1070 UMEAN=OMEANDHA(K,MO)
UMEAN二UMEAN/4G.1J
EEMPUTE STANOARD CEVIATION OF DISCHARGE
OEV: \(=0 .{ }^{\circ}\)
D0 \(2560 \quad K=1,43\)

DEVG=SORTF(EEVO/47.0).
PRINT 1633
1:233 FORMAI (55H CISCHARGE MEAN, MEDIAN 5 TO DEV, 95 PERCEIST ON YEOIA:! PRIYT 1:34, GMEAN, JAI 25, MUI,DEVE,CENJ
lU34 FURMATI//104E12.41
chmulativg freguency curves plottio
CROSEV AXES AKE DITYOVCS FOR KII AXIS HOLE.: EIRGLES FOR K2? AXIS HOLE,
GROSSES FJR KS3 AXIS HOLE
IFIMU-21 1171,1172,1173
1171 CALL CURVE \(17,1, E, 0,0,6,9,0,0.0,6.0 .11\)
60101174
1172 CALL CURVE (5,1,.,0,0.0.9.0,0.0,6.0,1)
GO TU 1174
1173 CALL CURVE \(13,1,0,0,0,0,9,0,0,0,6.0,11\)
1174 Y2=u. 12
\(001177 \mathrm{LE}, 49\)
XO:UAIL,MOIEHP-QMI.Y
CALL PLOTPT IXC,YZI
1177 YZ=YZ+C. 12
CROSSES, GIRCLES AND DIAMONDS MARKFD ON APPROPRIATE MEAV AND STO DEV LIN IF(MO-2) 1181,1182,1183
1181 CALL CUKVE(7,1,1,0,2.0,9.0,0.0,6.0,11
GO 101134
1182 CALL CURVE(5,1,1,0.0.0,4.0.0.0,6.0,11)
GO TO 1184
1183 CALL CURVE13,1,1,0,C.0,9.C,0.0,6.:.,11
1184 XMEAN=OMEANIHP-UMIN
XSIGMM = (OMEAV-DEVG) -HP-AIN
XSIGPM=(OMEAN+DEVO)=HP-GMIN
IF (XSIGMM) 2517.2517.2518

```

P1K=(HIULT - AlC2:P2K)/A2CL
P1K=1.0L-6:P1K
P2K=1.0%-60P2K
CCMPUPE POROSITY CF DISPERSED SETS HAVING UNIFURM APERTURE.
GMN1 =M(1)
GMN2=M(2)
POREU=CUREF\&(3.U.P1K)**i.333*(0.2*GMNN /DELTA)0.0.667*
1 SUREF=(3.U゙\&P2K)-\&U.333-(0.2-GMN2 /DELTA)-0.0.667
PORAT(5:) =PLIREG/PORUS
PRINT 8805,PUREU,POKAT(50)
EBOS FORMATISGHO PORCSITY EOUIV MEDIUM PERM, RATIO TO TRUE POROSITY =
1 2F10.5)
8801 RETURN
END

```

Auxiliary Brosran YECBEN, Generating Vector piepershens
Synthetic data are generated by vECOEN just as is done by
 VECTOR. First, VECGEN COMPutes elements of matrix to transform a vector from coordinates including the central tendency of a set as axis, to coordinates including the geographic vertical as axis. Coefficients depending upon the specified Fisher's \(K_{f}\) operate on a random uniform number to define a probability, then tho central angle corresponding to that probability and dispersion is come punted. The location on the circle of equal probability is speciefled by another random uniform number between zero and \(2 \pi\). The resulting vector is then transformed to geographic axes about the specified central tendency. Up to 500 vectors can be produced. stored, printed and punched for reuse or plotting by STE:50. Octenfaston Data

The wide variety of vectoral display used by other authors to represent joint orientations has necessitated several procrams to manlpulate punch-card data produced on the Gerbor Disitizer. Strike and dip data could also be prosramed for dizieizing ineo usoful fori., inhle onily conformal nots are used here, tho plottins. prosran could be modified to produce equal-azea ploss.

RESLI 1 zeads Gerber Disitizer punched cards of fixed-point \(X\) and \(Y\) coordinates relative to an orisin at the s!f of center, distant \(\sqrt{2}\) efmes the orizinal plot radius. The prosyem rescales the coordinetes to the desired sizo, and computes direction cosInes of the voctors represented. Each is assigned a unifora random number for later shuffiling. The direction cosines of the central tendoney are computed, also tho vector strensth and coefficient of specific surfaco, e.

Subroutine rapli-2 processed the Oroville data given in plate 20. . In addition to \(\operatorname{verber}\) coordinates on input cards, each point nay be identifiod by the set of joints to which it belonus. The radius and the computed anslos in the projection are then converted to diroction cosines, and punched on eards for manual sorting and decisions of uhleh vector belongs to what set. The readied decie of orientations can be resubmitted for analysis of parameters by Johzit.
```

 PACK
 LIST
 label
 FORPRAN
 C UNII VECTIRS IISPERSED UN A SPHERE ACCOROINS TU FISHERS EQUATIUV AR
CCMPUTEO, THEIK OENSITY HLING F=E TO THE K CUS THETA .THE PROGKAM GIVES
CCSINES OF EACH VECTOR. PRINTED AND PUNCHED DUT AFTER TRANSFORMATION IO TI
CENTRAL TENDENCY GIVEN IN THE INPUT.
DIMENSIUN A(3), B(3), C(3), E(3,3)
KEAD 54, AK,N
54 FORMAT (FlO.b,lld)
PRINT 5S,AK
55 FORMAT I2GHE DISPERSION CDEFFICIENT K /FIO.SI
REAU Sl.(B(l), [=1,3)
5L FORMAT (3FLi.5)
PRINT 57. (B(1), {=1.3)
57 FURMAT (4.JHL DIRECTION COSINES IJF CENTRAL TENDEVCY //3FIS.5)
DENUM=SGRTF(1.0-B(2)=8(2))
E(1,1)=B(1)=8(2)/DE-IOM
E(1,2)=-DENCM
E(1,3)=3(2):S(3)/DENUM
E(2,1)=0(1)
E(2,2)=[(2)
E(2,3)=4(3)
E(3,1)=R(3)/OENOM
E(3:3)=-4(1)/OENOM
PRINT 6E.((E{I,JI, {=1,3),J=1,3)
60 FORMAT [3IHS SRANSFURMATION FACTORS ElI,JI //(3F20.15II
PRINT }5
52 fORmATILUIMS DIRECTION COSINES DF PGLES OF MLANES DISPERSED ABOUT
18 ALIMUTH AND HADE EQUIYALENTS //I
F=EXPF(AK)
G=F-EXPF{-AK)
STR=0.0
nO 31 [EL.N
P=RANDOM(X)
H\&F-PEG
COSTH=LOGFIFI/AK
SINTH = SORIF(L.E- COSTHECOSTH)
PHI=RANDOM(XI*6.28318
STR=STR+COSTH
AIIIESINIHOSIVF(PHI)
A12I=COSTH
A(3)=SINTH-CUSF(PHI)
C(1)=E(1,1)CA(1)+E(2,1):A(2)+E(3,1)=A(3)
C(2)=E(1,2)AA(1)+E(2,2)-A(2)
C(3)=E(1,3)EA(1)+E(2,3)=A(2)+E(3,3)=A(3)
If IC:31: 21,24.24
21 00 22 J=1,3
22C(J)= C(J)
24 PUNCH 53.(C(J),J=1,31,1
S3 FORMAT(3F20.7.15x,151
ANGLE = ATAN2F(C(2),C(1)]
ALIM = 180.U -57.295 ANGLE
HADE = 57.255 AATANFISORPFII.J-C(3)-CI31)/CI31)
PRINT 58,iCIII, I=1.3), ALIM, HAOE
S8 FORMATI3F20.8. F23.5,F12.51

```

31 CONIIVUE ANaid
STR=SPR/AN
PRINT SI:STA
61 FORMATIITHO VECTRR STREJGTH // F10.6)
33 CALL EXIT
ENO
- LIST
- Label
- FORTRAV

SUBRUUTIVE REDLTI
CCNVERTS STERLOPLOTS TO DIGITAL FDRM, COMPUTES DISTRIBUTION PARAMETERS DIMENSIGN U(3,lujO) COMMOY U.M.MTOT
CCRREGT DATA---IHEMal IF UPPER, z-l IF LUMER HEMISPHERE PLOT MEASURED
CCRRECT SGALE-O- CIDIAMETER IV INCHES NET MEASUREJ, M=NUMUER DF PJIVTS
9 READ 1O. IHEM,D,M (F(M) 7:1,70,?
10 FORMATIt1Fif1.3.8.11:1
CENVERT GERBEK COCRDIVATES TO FLOATPOINT
7 Ml mator + 1
MM:MTOT \(+M\)
00 37, I=M1,MM
REAJ 1l,IY,IT
11 FORMAT(2110)
\(x=1 T\)
\(y=1 Y\)
gravge to scale of ven plotg urigin at center
\(x=(x / 10.0)-.C / \geq .0107 .05 / 0\)
\(Y=(Y / 10 C .3-C / 2 .(\dot{)}\) e7.05/0 IF(IHEM) 2,3,3
\(2 x=-x\)
\(Y=-Y\)
\(3 X S Q=x=X\)
YSQ=Y©Y
PSU=4.J= (XSG+YSH)//1000)
U(3.1)=(1.0-PSW)/11.0+P5コ1
if (x) \(25,35, ? 5\)

YOP=-Y
THETA=ATAN2F(X,YUP)
IF (THETA) \(32,35,31\)
\(32 U(2,1)=-U(2,1)\)
31 U(1,1) =YOPel(2,1)/X
GO IU 37
35 U(2,11 \(=0.0\)
U(1,1)=SGRTF(1,0-U(3,1) ©U(3,11)
[F (Y) 37,37,36
36 U(1,1)=-U(1,1)
37 CUNI INUE
00 1B, \(1=M 1, M M\)
KAND \(=\) RANDCM \((X)\)
IRAND \(=\) RANCO \(50^{\circ} \mathrm{j}\). 0
LeI-MTUT
38 PUNCH 12,IUIJ, \(11, J=1,31\), IRAND,L
12 FOKMAT(3F20.3.112.18)

CALCULATE DIRECTICN COSINES OF
CENTRAL TENDENCY
VIE．J．C
V2 \(=\) vid
V3＝』． 0
DO 5B，I＝M1，MM
CCYVERT EACH YECTCR EY OOUBLING ITS ANGLE WITH THE 3－AXIS， CENTERING THERE THE EXPANSIOY FROM HEMI－TO SUHEREICAL DISTRIBUTION CCMPOVENTS AODEN
\(V 1=V i+U 11, I I\)
\(V 2=v 2+U(2,11\)

Calculate average olrection cusines
\(A M=M\)
\(V I=V 1 / A M\)
\(V 2=V 2 / A M\)
V3 \(=\mathrm{V} 3 / 4 \mathrm{M}\)
CCNVERT DISTRIBUTIUV BACK TO HEMISPHERICAL OISTRIBUTION
V3＝SQRTF（11．0＋V3）／2．0）
CCMPUTE VECTOR SIREVGTH TO CORRELATE WITH FISHEKS K STR＝C． 3
CCEfficieyt determining siecific surface and oistance far the sample \(C=0.0\)
\(0068.1=M 1, \mathrm{~mm}\)

\(S T R=S T R+A\) YS
C＝C＋1．0／AVG
STRESTR／AM
68 C＝C／AM
PRIVT 13，V1，V2，V3，M，STR，C
13 FORMAT（3F15．5．15．2F15．8）
mTOT＝MTCTAM
GO 109
70 RETURV
END
－PACK
－LIST
－label
－FORIRAN
SUBROUTINE REPLTE
CCNVERTS DEPT WATER RESOURCES PULAR JUIVT PLOT TO NORMAL STEREUNET
DIMENSIJN U（3．1Eしい）
COMMOV U．M．MPOT，OIN
CCRRECTS SCALE，DIN：OUTER，DOUT＝OUTER DIAMFTER ，M N NUMBER OF POINTS
CCRRECT DATA－－－IHEMzI IF UPPER，\(=-1\) IF LUWER HEMISPHERE PLOT MEASURED
CCNVERT GERAER COCROINATES TO FLOATPOINT AND TRANSFURM TU NEW COURDIVATL CCLUMy 30 WILL CONTAIN 2 IF It IS DOUBTLESS WHICH SET A JMINT IS
CCNTAINED I：T，UR A 1，2，OR 3，ETC．IF ASSIGNED TO THAT SET E BUT
CCRRESPONDENCE IS UOUZTFUL
9 REAO 10．IHEM，DIN，OOUT，M
10 FORMATIILJ．2F10．5．110）
［F（M）7i． 70.7
1 MIEMTOT 1
MM：MTUT 4 M
OD 37 I＝MI，MM
REAU ILIIY，IX，IUUEST
11 ：ORMATE31101．
```

 XX=DUUT/2.0-FLOAIFIIY//100.0
 YY=-DOUT/2.E+FLOATF(IX)/IJJ.O
 ANGL=ATAN2F(YY,XX)
 R=SORTF(YY*YY XX=XX)-DIN/2.C
 PHI=3.14159*R/(OOUT-DIN)
 CalGULATE dIRfCTICN COSINES OF EACH VECTOR
U(3,1) = COSF(PHI)
Ul!=CUSF(ANGL)
RATIO=SIVF(ANGLI/UII

```

```

 IF(U1I) 99,59,99
 98 U(1,1)=-U(1,1)
 99 U(2,I)=U(1,I)|RATIO
 [F(IHEM) 101,1C1,102
 101 U(3,1)=-U(3,1)
 U(2,1)=-U(2,1)
 U(1, (1=-U(1,1)
 L.J2 PUNCH 12, (L(J,1),J=1,3),1,1OUEST
 CAN SORT FOR 1, 2, 3, ETC. TU REMCVE IUESTIONABLE CAROS AND REPLACE
GCRRECTGY IV SET ITOIGATED BY STERED.VET. M IS ALSO CHAYGED.
12 FORMAT(3F20.8,112,13)
37 CONIINUE
MTOT =MTOT\&M
Gu TU 9
70 RETURY
END

```
- Determinlos Central Tendenctor and Dheporsions of Eleld orisnsation pata

Subroutine jDita detomines paramaters of a vector disporsion. The disconforting nspect of many plots of dispersion ls that they are eplle between the upper and lower hemispheres, leaving anny of the two-hoeded vector orientations amblsuous. In this ease the centroid of the dispersion is obscuro. Jatia therofore transforms them all so that the estimated centrold is at the senith with all eloments arounc it. The resultant vector is retransformod to the original syston and reported as the central tendency. Using components of the vectors; the etrength (Chapter 4) and the coefficient of speciflc surface, c, are computed. Fisher'c dispersion 16 related to these paremeters by
 direction cosinesalso has a random number assigned by the pere mutator (rithout subscleutions) 3C RARDY (Krasnow, 196n), a subroutine initinlized by the input number kLiss.
- LIST
- label
- FORIRAN

CJOATA D I SNOH, DEPT OF MINL TECH MAY 1964
CCMPUTES GENTRAL TEVDENGY UF JOINT SETS, VECTOR STRENGTH AND SPACING CCEFFICIEMTS. RANOUMIZES SEOUENGE OF JOINTS IV OUTPUT DEGK IF OIRECTIJI CCSINES.

DIMENSICN U(3,1GOU),L1(1013), L2(1:2:1:1, A(3,3), B(3)
REAS 14, XLAST
14 FORMATIC15)
MTOT \(=\dot{u}\)
CCSINES OF ESTIMATED CLNTRAL TENOENCY ANO NUMBER OF JUINTS IN SEP READ
9 READ 10, M, fBlli,l=1,3)
10 FORMATII1C, JF20.7)
1F(4) 7心.70.7
7 MI зMIUT 1
MM \(=4\) TOT +4
Clmulatins paremalers zeroed
STR=C. 0
\(C=0.0\)
V1=j.心
\(V 2=5 \cdot 3\)
\(V 3=j .0\)
AM:FLOATF(M)
CALL SETRANILIDL2.MI
CALL GEVRAFIIM,M, ※OU,XLASTI
CCMPUTE TRAMSFURYATIOY MATRIX
DENUM=SGRTF(1.0-B12)=H(2))
A(1, 1) \(=\) B(3)/UENOM
A(1;3)=-H11)/OENOM
A(2,1)=8(1)E:A12)/DEVUM
A \(2,21=-\) DENCM
A(2,3)=त(2)=3(3)/DE:TOM
A(3,1)=3(1)
\(A(3,2)=8(2)\)
\(A(3,3)=8(3)\)
CESIVES OF VECTORS REAC
DO 37 IaML, MM
REAU 12, IU(J,1],J=1,3)
12 FORMATISF20.3)
CCNVERT EACH VECTGR TO COORDINATES HAYING B AT 3-AXIS

VT2=A(2,1)=(il, \(11+A(2,2)=U(2,1)+A(2,3)=U(3,1)\)
VT3=A(3,1)-6(1,1 \(1+4(3,2)=U(2,1)+A(3,3)=U(3,1)\)
CHOOSE ONLY UPPER HEMISPHERE ENOS
IF (VT3) 21.24.24
21 VTl=-VTI
VT2 \(=-V T 2\)
VT3=-VT3
clmulate conponents
24 Vi \(=V 1+V T_{1}\)
V2 = V2+VI2
\(V 3=v 3+V 13\)
37 CONTIVUE
Galculate directicn cosines of central tevoency. the resultant dinectiun VMAG=SUKIFIVI-V1+V2-V2+V3OV3)
VTlaV1/VMAS
VT2=V2/VMAG

VT3 =V3/VMAG
CCNVEKI CENTRAL IENDENCY BACK TO ORIGINAL- COOROTNATE SYSTEM
\[
V 1=A!1,1!\in V I 1+A(2,1)+V I 2+A(3,1)+V\{3
\]

V2=A 2,2 ieviz+Al3,2ievT3
V3=A(l, 3ieviltal2:3)=VT2+A13:3i=VT3
IF (VI3) 41,44,44
41 VTl=-VT1
VT2e-VT2
VT3=-VT3
CCMPUTE A.NGLES EACH VECTOR MAKES WITH THE CENIRAL TENDENCY, ALSO
CCEFFICIEIT DFTFRPIVING SPECIFIC SURFACE AND OISTANCE FDR THE SAMPLE
440058 IEMI, N:A
CALL RANOUM PERMUTATOR TO LABEL EACH CARO
\(K L=\{-M!+1\)
K=Ll(KL) +1
PUNCH 15, \(141 \mathrm{~J}, 1 \mathrm{l}, \mathrm{J}=1.31 .1, \mathrm{~K}\)
15 FORMATI3F20.8.112,181
STR=STR+ANG
\(58 \mathrm{C}=\mathrm{C}+2\). C/ANS

13 FORMATIB7HO

GO 109
70 PUNCH 14: XLAST END
DATA

Plating of Yoatorial Data
Subroutine Stereo has a Min program that rends in the data, produced by REPLT-1, JDSTL, VECGEST or others. Subroutine STEREO converts dircesion cosines from Cartesian coordinates by applying to each vector the transformation to a right-hand system having +2 upward.
\[
x=\frac{D \sqrt{\left(1-c_{3}\right)\left(1+c_{3}\right)}}{2 \sqrt{1+\left(c_{2} / c_{1}\right)^{2}}}, \quad y=\left(c_{1} / c_{1}\right) x^{\prime}
\]

D is the desired plot diameter, and \(C_{i}\) are the direction cosines of any vector. this makes a conformal net, the poles of vectors on the upper insphere projected to the horizontal plane along Ines to the lower pole of the spice. Bulletin functions of Subroutine iYaR, for the Cal-Comp Plotter (Thrower, 1963) are essential for all plotting routines used here.
```

- LIST
- lagtl
FORTRAN
MAIN CUNTROL PROCRAM
OIMENSINN U(3,ICGO).V(4),W(10). OOD(12)
COMMON U,M
REWINO6
21 REAU 5l.M
51 FORMAT(14)
IF(M) 11.11.22
$22007651=1, N$
READ 52. (UIJ.ll.jel.3i
52 FORMATISF20.71
If (Ul3.1) 160.765.765
$16000762 \mathrm{~J}=1,3$
162 U(J.11=-U(J.II
765 CONTINUE
CALL STEREO
GO 1021
11 CALL NOPLOT
ENDFILEG
CALL REWUNL 161
CALL EXIT
END
PACK
TAPE 85, REEL 1156, WRITE, PLUT
LIST
LA8EL
FORTRAN
SUBRUUTINF STEREU
C PLOTS THE ST:REOURAPHIC PROJECTIUN UF M VECTURS ON IHE UPPER

```C HEMISPHENE CF IV LO CM NET OVERLAY.
```

OIMENSIOX UIS,LOC:I,V(4),WIICI, ODO(12),WW(2)
COMMON U, M
VIII =3HIHN
V(2) $=3$ HIHS
$V(3)=3$ HiHM
V(4) =3HLHE
WWI 11: 6H14HFIGU
WH(2) $=6$ HKE -
M(I)=6H42HSTE
W(2) =6HREUGRA
H(3)=6HPHIC P
W(4) =6HROJECT
M(5) $=6 \mathrm{HION}: U$
W(6) 5 KHPPER H
W(7) $=6 \mathrm{HEM}$ ISPH
HC8I = 3HEKE
1 CALL GRAPH (1).U.7.8.1.11
READ 7. (DDC(J).J=1.12.)
7 FORMAT(12A6)
CALL XLS (2.23.0.37.3.9.0.0.
CALL XLN 13.8.4.0.3.9.C.0)
CALL XLN 17.43.1.57.3.9.0. U
CALL YLN 10.23.0.37.3.9.3.01
CALL YLN 13.8.4.ete3.9.C.01

```
    CALL YLN 17.43,7.57,3.9,0.01
    CALL LTK (0.12,3.85,2,1.V(1))
    CALL LTK (.7.83,3.80,2,1,V(21)
    CALL LTR (4.00,0.02,2,1,V(3)}
    CALL LTR (4,0.j;7.6d,2,1,V(41)
    CALL LTK(B.2,).C.,2,1,WWI
    CALG LTR|B,E,H,J,2,1,W\
    CALL LTR 19.J,O.G.2,1,0001
    CALL CURVE 12,1j,0,0,-3.9,10.0,-3.9,10.0.1)
    THETA=O.C
    5 PHI=THETA/57.295
    X=3.53. COSF(PHI)
    Y= 3.53 - SI.vF!PHII
    CALL PLUTPT (X,Y)
    THETA =THETA * 1.0
    IF (THETA- 36.J.J) 5,5,6
    6 CALL CURVE (1,1,1,0,-3.0.10.0,0-3.0,10.0,1)
    DO 1C 1=1,M
    R=3.53*SURTF(11.i-U(3,1))/(1.0+U(3,1)))
    SaU(2.11/U(1,1)
    X=R/SQRTF(1.j+S*S)
    IF(u(l,1)) 2,3,3
    2 x=-x
    3 Y=x+S
10 CALL PLOPPT(X,Y)
ENOFILEG
RETURV
END
```

Genoratien of Aperture Bowintiens
BKGEN produces munch cards of the elements of sample size N eccording to the two parameters read in. As shown, it is for nomal distributions, but has also been used for los nornal, exponentlal and lincar distributions. it computes the mean valuo of the generated numbers.

Plotinn Aberfince Mietributions
Sisbroutine FREQPL, a modification of the same-named program thet plots cmulativo pormeabilities, plots apertures or any othor aggregato of numbers. EREQPL ranks all the data in ascandlias stiler, fi:s tiso ermes to tive diannsions of tive frame, and plots pointc nad : Line beticen points to record the dis-


```
- pack
- LIST
- LABEL
- FORTHAN
CCMPUTE N RANOOM NIRMAL DEvIATES OF STANDARD DEVIATION STO AND MEAN
CENTEN BY APPLYING BC OEVB
    REAO 5I, N, STO, CEVIEN
    51 FORMAII\20. 2F23.5)
    PRINT }5
    52 FORMATISGHO NUMBER OF ELEMEHTS STANDARD OEVIATION MEAN
    1 1/)
        PRINT SL, N, STO, GENTEN
        PRINT 53
    53 FORMATIZOHO ELEMENTS OF DISTRIBUTION //I
    C=0.0
    OO lu Izi,N
    A=ABSF(STD*RAVDEV(X) +CENTEN)
    PRINY 54, A
    54 FORMAT(F2J.a)
    C=C+A
    10 PUNCH 55,A,!
    55 FORMAT(F2C.5,55X,15)
        BN=N
        AMEAN=C/HV
        PRINT 5G,AMEAN
    56 FORMATIIGHO SAMPLE MEAN /F2O.91
        GALL EXIT
        END
C MAIIV CO:ITROL PROURAY
    DIMENSION H(1)CO),AA(11),83(4),CC(1.j),EE(2),FF(9),GG(12),OD(12),
    1CCE(2)
        COMMON H:M
        REHINDG
    21 REAL 51,M
    51 FORMAT(I4)
        IF(M) 11,11,22
    22 DO 765 I=1,N
    765 READ 55,H(I)
    55 FORMATIF20.71
        CALL FREUPL
        GO PO 21
    11 CALL NDPLOT
        ENOFILEG
        CALL REWUNL(6)
        CALL EXIT
        ENO
```

- DECKS
- LIST
- label
- FORTRAN
DIMENSILV H(1.JOC),AA(11),B6(4),CC(1) IVEE(2),FF(9),GC(121,0D(12),
1CCC(2)
COMMOY H:M

```
        REHINOG
        HTOT=O.V
    21 REAU 51,M,STD,CENTEN
    51 FORMAT(I3,31X,2F10.51
        (F(H) 11.11.22
    22 DO 165 1=1,M
CASF THREE. EXPONEHTIAL DISTKIBUTION OF APERTURES
    H(I)=CENTENGEXPF(12.0.UNIRAN(XI)-L.U)ESTO/2.0)
    765 HTOT=HTUT+H(I)
        AMEM
        HTOT shTOT/AM
        PRINT 155, HTOT
    155 FORMAT(F25.6)
        CALL FREUML
        PRINT 9%,H(l),H(M)
    99 FORMAT(2F30.3)
    GO TO 21
    ll CALL NDPLOT
        ENDFILEG
        CALL REWUVL(6)
        CAlL EXIT
        END
        LISI
        label
        FORIRAN
        SUBROUTINE FREQPL
        DIMENSIIIN H(1,JOG),A2(11),SB(4),CC(12:,EE(2),FF(9),GO(12),OD(121.
        ICCC(2)
            COMmuN H.m
            PLOTS CUMULASIVL FREQUENCY CURVES FGR EACH PRINCIPAL CONOUCTIVIIY
            AAII I= 3HIHO
            AA(2)=4H2HI:
            AA(3)=4H2H2C
            AA(4)=4H2HSE
            AA(5)=4H2H4:
            AA(61=4H2H5O
            AAITI=4H2H6%
            AA(BI=4H2H7C
            AA(91=4H2H8E
            AAlivis4H?H&*
            AAILII=5H3HI:SN
            BB(1)=6HIAHEUM
            BB(2)=6HULATIV
            BB(3)=6HE PERC
            BB(4)=3HENT
            CC(1)=6HYHFIGU
            CC(2)=6HRE-
    EE(1)=4H2HIE
    EE(2):4H2H84
    FFILI=3HIHO
    FF(2):3H1H2
    FF(3):3H1H4
    FF(4)=3H2H6
```

```
    FF(S):3HIH8
    FF(6)=4H2HI.}
    FF(7)=4H2H!2
    FF|(B)=4H2H14
    FF{H1=4H2H16
    6 CALL GRAMH ( 0.U.5.G.3.5)
    CALL FRAME (U.1.J.51
CALL XLINO.E. 8.C.9.78,W)
CALL XLV 10.U. 8.0.2.50.0.51
CALL XLIT 10.J. 8.0.g.4.23.01
Y=-0.05
00 L J=1,11
CALL LTM {-C.B,Y,1,_,AA(J)\
& Y=Y+0.5
CALL LTR (-C.5,6.7,2,1,83)
CALL LTR 10.1,0.73,1,C,EE(1))
CALL LTK 10.1,4.17,1,0,EE(2))
CALL LTR (-i,0,-1,0,2,C,CC)
REAO 7,1GG1J1,J=1,121
7 FORMAIII246.)
CALL LTR 10.u,-1.4,2,0,GG1
REAO 7,10\cap(J),J=1,12)
CALL LTRI C.J.-1.8,2,0,001
x=-3.J5
00 2 I=1,3
CALL LTR (X,-D.2,l,U,FF(I)]
2 }x=x+1.
x=x+0.05
DO 3 1=6.?
CALL LTR (X,-0.2,1,J,FF(I])
3 X=X+1.0
4 CALL CUKVE (J,C,E,0,0.0,10.0,0.0,5.j,1)
MM=M-1
00 12 1=1,M%
|P|=|+1
0012 J=IPI,M
1F(H{I!-H{J)) 12,12,13
23 TEMP=H!II
H(I)=H(J)
H(J)=TEMP
12 CONTINUF
    HP=1.0E 3O
16 HT=H[1] HP
    IF{HP-2.0) 14,25,15
14 HP=10.0 HP
    60 10 16
15 HM=H(M)OHP
    IF{HM-8.j) 18.18.19
19 HD=HP/E.2
    GO 10 15
18 MEDaM/2
    PRIVT 11,HP,H(MED)
12 FORMAISIP2E2J.81
    AM:M
    YINC=5.i/AM
    Y=YINC
```


Stondardizine and Andizzinf Bresaure Tost Dhachateses
Subsoutine presil roads input cards contalning the anglo of Inclination of the drill holn, tive inclined depth to tho top and botton, tho diseliagise in GPM and tho prossuro in pal at the ande depth. It then computes the lensth, depth to mid-section, and the head, iscuidng saturation to the test depth only. The Glover-Cormsill, lons-plezonteter shapo factoz is obtained, and the standerdized discharge compused, l.e., tiat which would have occured under 100 psi. and lensti 25 feet of FX hole. The mide depth and discilarec of encil tost is printed in the output. this prosrain served to reduce the yiorced inver damsite tests, wherein the water table wres low.

Subroutinc jTE:T2A procnsses alscharges recorded in GPM, prossurs in nsi., and the inelined lenjets to the peckors. The depth to tio ioter table is used to establish the net head. Since the Oroville dansite data, for whith the routine was designed, often enployed a fixed lower paeieer, and a noving upper peciecr, accieional mensures are ottained by subtracting discharges and lengths of successive overlapping stajes (statement 101 and (folloring).

Subroutinc $\operatorname{TTSiT3}$ rezembles rTSSIL. In addition to the - collar-pressuro-discharge-data the frout taike data avallable was incorporated in tha prosran, preservinz it for possible future use.

Subroutine TTESt differs from FTEFIl only in that pressures vere recordad at tho collar, so had so be corrected to the milddepth and ceeoriing to the water tablic. Spring Greei, Folsom and Auburn camsite data wore eniculated by piesth.

- LIST
- label
- FORfRAN

CPTEST OAVID F. SNOW: DEPT. MING TECH, JUL 6G: STATISTICS PUMPTESTS DIMENSIUN OAISOC:I,DMIOISOUI,AAILII, BUI4),CAILII,EE(Z),GA(LZ): 10A1121
COMMOV MIUA
CCUNT OF CARDS READ REAO L:M
1 FORMAI(I3)
PRINT 4
4 FORMATI/3OH STO DISCHARGE MID-DEPTH //I
CARD FOR EACH PUMP TEST READ
00105 NaI N
READ 2.ANGLE, DINTOP,DINBOT, QO\&PRESS
2 FORMATI5FiO.3)
CALCULATE LENGTH MA OF TEST SLCTION: SHAPE FACTOR,HEAD IN FEET WA EUIVBCIT-DIVTOP
SO=6.283*WA/LOGF(B. \because ©WA)
HO:2.31 PRESS
CCMPUTE DISCHLKGE GAL/DAY THAT WUULS OCCUR IN 25 FT LENGTH UNDER $1 C O$ PS GA(V) $=15780 . j \in(9 O /(S U)=H C)=144 \mathrm{C} .0$
CCMPUTE MID-DEPTH OF IEST SECTIOV
DMIDIVI:(DIATJPHWA/2.0)ESINF\{ANGLEEC.OL7451
PRINI 3.GA(N), OMIDI:N)
3 FORMATIZF15.11
190 CONTINUF.
CALL DISCHB
CALL NUPLOT
ENDF ILEG
ENDFILE6
CALL REWUNL 6 6)
END

- LIST
- LABEL
- fortran

CEIESTR DAYIO T. SNOW, DEPT. MIVL TECH, JLL 64, STATISTICS PUMPTESTS

 2HTOEEP(SCCI
COMMON M, OA
CCUNT CF CARDS READ
5 READ I.M
1 FORMATII31
IF(M) $160.169 .15{ }^{\circ}$
150 PRINT 4
4 FORMATR 3CHS STD OISCHARGE MIO-DEPTH I I
CARO FOR EACH PUMP TEST REAO
$0010 \pm \mathrm{N}=1 . \mathrm{P}$
REAO 2:ANSLEINI, WTOEEPINI:DINTOPENI, DINBOTIXI, QTINI,PRESSINI
2 FORMATI6F10.31
100 CONTI'UU:
CALCULATE LENGTH mA OF TEST SECTION. SHAPE FACTOR,HEAD IN FEET

CALG. NET LENGTH ANO DISCHARGE WHEN UPPER PACKER 15 MOVED, LUWER FIXEU DO $200 \mathrm{~N}=1, \mu$
IF(PRESS(N)-PRESS(N+1)) 110,101,110
101 1F(U)NHOT(N)-DIVهOT(N+1)I 110.1J2,11C
102 WA=DINTOP(N+I)-DINTOP(N)
$00=(\mathrm{GT}(\mathrm{N})-Q \mathrm{~T}(\mathrm{~N}+1)$
GO TO 121
110 WA=DIN甘CT(NI-DINTOP(N)
GO:UTIN)
121 S0=6.2830WA/LOGF(8.2.WA)

- HO = 2.31. PRESS(N) THTDEEP (N)

CEMPUTE DISCHARGE GAL/DAY THAT WUULD OCCUR IV 25 FT LENGTH UNOER LUU PSI GA(N) =15780.J.CU/(SJ=HO):1440.0
CCMPUTE MID-DEPTH UF TEST SECTION
DMIO(Y)=(OINTIP(N) +NA/2.0)-SINF(AVGLE(N)-U.J1745)
PUNCH 3,UA(N), DMIOINI,WA,N
3 FORMAT(3F15.1,32x,13)
200 CONII.VUE
GO 105
160 MaM
END

- DATA
- LIST
- LABEL
- FORTRAIV

CPTEST3ADAYIO T. SNOW, DËPT. MIVL TECH, JLL 64, VIRG. R. DATA DIMENSION OA(5OU), OMID(jOJ), SACKS(5ji),WA(5NG)
CCUNT OF GARDS READ
5 READ L;M
1 FORMATII31
(FIM) 7,7,6
6 PRIITI 4
4 FORIATISUHS STD DISCHARGE MID-OEPTH SACKS GRUUT/FT //I
CARD FOR EACH PUMP TESI READ 00 1CS Nalip READ 2,ANGLE,DI:IIOP,DINBOT,JO,PRESS,TIME ,GROUT
2 FORMATITF10.3)
galculate lengit ma of test sectiung shape factur,head in feet WT =UIVBTT-DINTOP SO=6.283-NT/LOGF(8.U.HT) HO=2.31-PRESS
CGMPUTE DISCHAKJE GALJDAY THAT WOULD UCCUR IV 25 FT LENTITH UNDER IUJ PSI GA(N)=11800: S JeU(I/(SO=HO)=144).v
CEMPUTE MIU-DEPTH OF IEST SECTIDN
OHID(N)=(7INTJP+WT/2.O)=SIINF(ANGLE=う.01745)
SACKS(N)= RRCUT/WT
WAl: 1) zW I
PRINT 3:-A(N), OMID(N),SACKSIN), NA(N)
PUNCH 3,QA(N),OMIDINI,SACKS(NI,WA(N)
3 FORMAT(4F15.1)
lCO CONTIVUE
GO 105

1 MaM
END

- LIST
- label
- fortran

CPIEST4 OAVID T. SNDW, DEPT. MIVL TECH, JUL 64: STATISTICS PUMPTESTS OIMENSION QAIJCLI,DMID(SOJI
CCUNT OF CAROS READ
READ 1,M
1 formatilizi
IF(M) 16. 10.12
12 PRINT 4
4 FORMATI/3うH STD DISCHANGE MID-OEPIH //I
CARD FOR EACH PUMP TEST KEAD
00100 Nalir
READ Z,ANGLE, OINTUP,DINSUT,OG,PRESS
2 FORMAT(5F10.3)
CalCulate lengit ha of test sectiong shape faitorihfao in feet WA=UI.VBUT-OIVTOP
SO=6.283eHA/LOGF (B.O WA)
CCMPUTE MID-DEPTH UF REST SECTIUS

HO:2.31-PRESS+DMIO(N)
CCmpute discharge gal/day that hoult uccur in 25 ft lengit under lio psi

PRINT 3,UAISI,OMIOIAI
PUNCH 3.CACAI,DMID(V)
3. FORMAT (2F15.1)

100 contlinue
10 MzM
END

- DATA

Rlofiting Cumilacive Prossure-Toos Dhechargo guryea
Subroutine DISCIARGE, with its MAIN prozram for data input and repetitive calls for addicional plots, was usod to present the standardized discharges from PTE:T. Tho oporation and finlshed product diffors in some respece from that of FRgpl. The 95: confldence limite about the median are compated by the nornal epproximation to the binomial, and floted as horizoneal lines on thn graph. The moan and standard deviation of the discharges is emputed, printed, and also plorted as vertienl lines on the 3 raph. The aetual confidency rango intersected by the curnulative surve of discharzs is coinuten and printed out in the output. The entire surve, with all its points fitted to the plot, is then dram.

```
- PACK
- error oump
- LIST
- labll
- FORIKAN
    DIMENSION OA(50C),OYID(50G),AA(11),BE(4),CA(11),EE(3),GA(12),
        LDA(12),PPTS(5),PIS(b), FREM(100),FF(4),G%(4),NC(50)
        COMMUN M,OA,I
        5 \mp@code { K E A D ~ l , M }
        l FORMATII3I
        3 [F(M) 11,11:6
        6 \text { READ 2, COA(NI,NEL,MI}
        2 FOKMATIF15.5i
        CALL DISCHG
        GO 10 5
    11 CALL NDPLOT
        ENDFILEG
        ENDFILE6
        CALL RENUNL(6)
        CALL EXIf
        ENO
- LIST
- LABEL
- FORIRAN
    SUBRUUTINE EISCHG
    OIMENSION OA[SOUI,OMIDISOIT,AA(LII,BE(4),CA(Ll),EE(3),GA(I2I,
```



```
    COMMUN M,2A,T
Clmulative distrigution Of pump test discharges plotieo
    AA(1)=3HIHO
    AAT2I=4H2HI:
    AA(3)=4H2H2C
    AA(4)=4H2H3C
    AA(S)=4H2H4C
    4A(6)=4H2H5S
    AAPTI=4H2H6C
    AA(B)=4H2H7E
    AA191=4H2H8C
    AA(1O)=4H2HSこ
    AAC1LI=5H3H12O
    BB(I)=6HI BHCUY
    B8(2)=6HULAIIV
    8B(3)=6HE PERC
    BB(4)=3HENT
    CAl1|=3H58H
    CA(2)=6HFIGLNE
    CA(3).06H ST
    CA(4)=6HANDARD
    CA(5)=6HIZEC P
```

CA16):GHUMP TE
CAITIsGHST CIS
CAIBI=6HCHARGE
CA(9) $=6 \mathrm{H}, \mathrm{GALL}$
CA(10)=6HONSIOA.
CA111)=1HY
EEII: $=6 \mathrm{H} 4 \mathrm{H}-515$
$E E(2)=6 H_{4} H+S 15$
EE(3)=6H4HMEAY
FF(1):3H1EH
FFi2)=6H95 G/O
FF(3): 6 H COVFI
FF(4)=1H-
GG(1):3H19H
GG(2)=6H DENCE
GG(3)=6H CN ME
GG(4)=4HDIAN
CCNFIDENCE 195 PERCENTI IYTERVAL ABOUT MEDIAN, NON-PARAMETRIC METHOD
CCMPURED FROM NURMAL APPRUXIMATION TO THE BINOMIAL DISTRIBUTIUN $A M=: 4$
PEACH=ICC.O/AY
CONF=0.9J-SGRTF(AM)DPEACH
CCORDINATES OF ThESE LIMITS. ARE
CONFDV=3.U-ら.J6-CCVF
CONFUP=3. $\mathrm{G}+\mathrm{i}$.J6 CONF
cempute meay
T=04(1)
$001070 K=20.4$
1070 T=T+04(K)
OMEANFT/AM
cempute siavoard cevialiov of discharge
DEVU=O.:
DO $300 \mathrm{~K}=1, \mathrm{P}$
300 DEVU=DEVO+1GMEAM-OA(K) 1 -e?
DEVQ=SORIF(CEVG/AM)
CCORDINATES OF DEvIATIONS
SIGPLM=IMEAATDEVG
SIGMIM=OMEAR-JEVU
CCURDINATES AND LETTERING, SCALES OUNE
CALL GRAPH $9.3 .6 . \mathrm{C}, 2.5$)
CALL FRAME\{C.1.5.6)
CALL XLHI9.6,0.0,J.C.,-C.5)
CALL XLN $10,0,9$, Un, CUNFDN, $^{0} 1$
CALL XLN(C.e.8.5,3,80,C.5)
CALL XLN IO.J.g.v.CONFUP,OI
$Y=-3.05$
0021 Jal.11
CALL LTR(-0.3.Y ,I,E,AA(J))
$21 Y=Y+0.6$
CALL LTR $(-0.5,0.7,2,1,89)$
CALL LTR $1-1,3,-1,0,2,0,6 A 1$
CALL LTR $18.65,1.95,1,1, F F 1$
CALL LTR 18.85,1.85,1,1,GG1
READ 7, (GAIJ), J=i,12)
CALL LTR $1-0.7,-1,4,2,0, G A 1$
REAO 7, (OA1J),J=1,12)

CALL LTR1-0.7,-1,8,2,0,DA)
7 FORMATIL2A61
CCMPUTED TEST DISCHARGES ORDERED. ASCENUING
MIS $=\mathrm{M}-1$
OO 1239 Lel.MIS
LPL=L+l
OD $1239 \mathrm{~J}=(\mathrm{Pl}, \mathrm{M}$
[F(QAIL)-QA(J)) 1233.1239.1243
1240 TEMP=QA(L)
QA(L)=QA(J)
QA(J) = TEMP
1239 CONTIVUE
Clmulative curve fitteg to plut dimensiuns
$1061 \mathrm{HP}=1.0 \mathrm{E}-08$
1264 HL = JAYM 16HP
1F(ill-0.81 1J63,1:63,1081
1063 HP=HP:1\%.0
GO 101264
1081 IX=8.0/ HL

1303 ix $=2$
GO 1011169
13196 I $x=5$
$1069 \times 1=1 X$
HPanP:XI
PRINT 31, QA(ll.UAIM I.IX
31 FORMATILPLE2Ú.8.141
CCMPUTE M-IILES, PTSIIIzLOAER 95 COVF LIMIT, MEDIAN, UPPER CUNF LIMIT
PTSI $11=50.0-$ CONF
PISI2:=50.0
PTS(3)=5U.0+CONF
PNUM 2 - CCOL
DU $1150 \quad 1=1.3$
1099 PLUMEPEACHEPNUM
IF(PLUM-PTSIIII 110.j.llivi.llol
LICO MB4P=PNUM
PNUM $=P N U M+1$. 5
GO 101049
1101 MP =PNUM
CPTSIIIEQA(PP)-IPLUM-PTSIIII/PEACHE(OAIMPI-OATMB4PI)
1150 CONTINUE
PRINT 1149, SIGMIM, (JPTSIII.I=1,31,SIGPLM
1149 FORMATISOHO -OEVO LOW CONF MEOIAN UP CONF . +DEVO // 15F1u.2/1/1
CCMPUTE CUNFIDENCE RANGE ABOUT :AEDIAN
CONU=1QPTSI3I-QPTSII:1/2.')
PRINT 1033
1033 FORMATI55H CISCHARGF MEAN, MEDIAN. STO DEV. 95 PERCENT ON MEDIANI PRINT 1G34, GMEAN: APTSIZ: OEVQ,CONO
1034 FORMAT IP4El2.41
clmulative frequency curve plotted
CALL CUPVE $14,1,0,0,0.0,9.0,0.0 .6 .0 .11$
YINC =6.CI/AM
YVEYIVC
$001017 \mathrm{~L}=1, \mathrm{M}$ $X Q=J A(L)=H P$

CALL PLOTPY (XO,YY)
YV=YVFYINC
1017 CONIIVUE
XSIGMM=SIGMIMOHP
XMEAN SUMEANOHP
XSIGPM=SIGPLM=HP
(f(xSIGMM) 707,7U7,708
788 CALL YLN (0.0.5.3.XSIGMM,0)
XSIGMM =XSIGMM+0.05
CALL LTR (XSIGMM,5.35.1.1, EE(1))
707 CALL YLN $10.7,6.0, X 51 G P M, 01$
CALL YLN(0.7.6.O.XMEAN,O) XMEAN =XMEAN + 0.05
XSIGPM=XSIGPM+0.CS
CALL LTR (XS1GPM,0.20,1,1,EE(2)
CALL LTR(XMEAN, E. 20.1,1,EE(3))
ENDFILEG
ENDFILEG
RETURY
END
-

DATA

Nitural ef.ictirs. 1 In mock dupirt frou thu isuespelon of

 hauntlr.: si:: lmperint nubjact of tins hydraulici of a alaile frico

 sualla rla:

$$
Q=\frac{\Delta P g_{e} 6 W_{f}^{y}}{12 \mu l_{f}}
$$

z $2:$ che braditis

sni sic 2 : : ix.senforce contirilon Exctor, all of i.ilcit cra in ces whet:.
T. 2. 2 . raspett ta velocity in musi: plinur comiult., .rovided ti: it va-

 nus:jer :crve: E : : exiterions

$$
\begin{equation*}
R_{e}=\frac{2 W_{f} U}{\mu} U_{-} \tag{initt,p.259}
\end{equation*}
$$

 tise cbove deflerition of e_{0}). for instance, if:mtor at $50^{\circ} \mathrm{r}$ flors
 turas of lej. trinin 0.16 as .iporturs. iths model rasult: refortod

In tilly papor teny to conuldored applicuble to fracturas up to, say 5 ure, dependine. on boundisy conditioni. Conituncy of tho Faminß friction factors

$$
f=\frac{\Delta p}{l_{f}} g_{t} W_{U_{f}}^{2}
$$

st-s vilus

$$
f=2 \pi / R_{e}
$$

 alors the ilor, to tiou reloelty hanc par wite iperture. dibova critic: 1 velocity, $f:$ ancocicies : constent piluo for a given

 aparture, :rorsas :ilite found E'sit irietion is indorandont of sousinaia hatr:it in tho lnedare enns.
 In the frajert :tudy, tiaso =re meturul circtantencas, use\% $=3$ colutiou-anlexcon joint; in eirtorito rocki, or ln lutio frse-

 for rotigh ifecturoj = bout 1.5 tixas tionio for lipac fialkuridsa,

 Lretio iliz bution the frietion factor st :1git rognoldi nurbere and the roletsive roushnezs:

$$
f=0.04(x / r)^{0.314} .
$$

 considerzhis lat: tian urity. ibitt fomed has sousia comientes by cenantirg unforsly-grided inndi anto shallaced itesl surfares.

Bopf usod a variety of naturally-rough materiala for hid conduetor bourdarios. In no knorn study hac a true cait-inomold conflburation bsen used to make e/r araitly exeond 1 . Rock Jolnte, and most other iraetures fall to neot the neevesary conditione for poigecullis flow, which lem (1932) saye is valld providos thet $d W_{5} / d f_{f} 13$ mall, and if is 18 amall compered to the curvetura. The exitor's experknatal work on the conductivity ef thate fracturos has remined too inconflete for inciualon ifltil tice anifyticel rosulti presented hare, in splto of tro yearis effort: to obtiln velld razultc from an alf pemmametor. The roncon for contlnued ennesin for the aperfuroceonductifity
 of thn rome, of arcotor magnituds than the selativo elsplecoment of the bourdicies, then tise peth loneth grsatly a:cocds the over211 pirtlele transletion, ind ifrartures ere reduend eecording to tino inclinseion of inferofaces or the ifreguleritiac. Dircctioncil propertie: of the rouginass (te:tore) any sesult in anicotropy of Ladivifuril fricturas.

This is an authorized facsimile and was produced by microfilm-xerography in 1980 by UNIVERSITY MICROFILMS INTERNATIONAL

Ann Arbor, Michigan, U.S.A.
London, England

SNOW, David Tunison, 1930
A PARALLEL PLATE MODEL OF FRACTURED PERMEABLE MEDLA.

University of Calfornia, Berkeley, Ph.D., 1965 Engineering, hydraulic

University Microfilms, Inc., Ann Arbor, Michigan

Copyright by
DAVID TUUISON SHON
1965
8.3.:.2.3.1.7

- Dudley, W.W., Jr., and D.T. Dakley, 1988. Agreement between NNWS: Tennical Project Officer, Les Alamos National Laboratory, and NNWSI Technical Project Officer, United States Geological Survey, Regaraing the Cooperative Concuc: of Tracer Studies.
- Gelhar. L.W., 1582. "Analysis of Two-Well Tracer Tests with Pulse Inpu:," RHO-3W-CR-131 P, Rockwell Hanford Operations, Easalt Waste Isolation Project, Richland, WA.
- Kelley, V.A., J.P. Pickens, M. keeves, and R.L. Eeauneim, 1587. "Jouble-Porcsity Tracer-iest Analysis for Interpretacion of the Fraceure Cheracteristics of a Dolomite Formation," Solving Greund Water Practems with Models, proceedings of the National Water Well Association Conference, Feb. 10-!2, :S37, Denver, CJ.
- Dolzer, W.L., and H.R. Fuentes, 1987, "The Use of a Heterogeneiry-Eased Isotherm :a Insereret the Transiert of Reacsive Redionuclides in Volcaric Tuff Media," Los Aiamos National Laboratory Report LA-UR-g7-2e01, Los Alamos, NM.
- Rober:son, J.G. P.S. Huyskorn, T.D. Wadsworth, and J.E. Buckley, 1987. "Design anc Anaiysis of Deep Two-Well Tracer Tests," Hydrogeologic, ine., Herncen, VA.
- Zobinson, S.A., :9s7. "Predtet!ve Modeling of in Situ Retardation of
 Inves:igarions Milestone No. R487. Los Alamos National Laboratory.

2081
AGREEMENT BETWEEN
NWWSI Technical Project Otficar, los alamo national laboratory
AND
NNWSI Technical Project Officer, UNITED STATES GEOLOGICAL SURVEY REGARDING THE COOPERATIVE CONDUCT OF TRACER STUDIES
I. As participating agencies in the Nevada Nuclear waste Storage - Investigations, the Los Alamos National Laboratory (LANL) and the U. S. Geological Survey (USGS) are conducting mutually supportive tests at and near Yucca Mountain. Nevada. These tests, referred to as "tracer tests" contribute to meeting the following NNWSI programmatic responsibilities of the participants:
A. The USGS responsibilities under Work Breakdown structure (weBS) 2.2.3.3, Hydrology, to define the pathways, mechanisms, fluxes. particle velocities, and coefficients of dispersion of groundwater flow at and in the vicinity of Yucca Mountain:
B. the LANL responsibilities under WBS 2.2.3.4. Geochemistry, to define the potential for movement of radionucildes in various physical and chemical forms from the sites of potential nuclear-weste emplacement at Yucca Mountain to environs that might be accessible to man.
II. The Technical Project officer (TPO) of LANL and the TPO of the USGS agree that successful and timely completion of these investigations require: (a) the joint use of existing and future boreholes penetrating the saturated groundwater system at and in the vicinity of Yucca Mountain, particularly at the site designated UE25c: (b) cooperation in the planning and design of tests. including their sequence, to assure that the information required by both agencies can be acquired in as timely a fashion as possible: (c) that data and other information resulting from the tests be freely exchanged between LANL and USGS when needed as part of the technical basis for evaluation or development of plans.
III. In order to assure meeting of the program requirements stated in (II) above, the parties further agree to the following provisions:
A. The USGS is designated as the lead agency, and LANL as the supporting agency, for tests designed primarily to define hydrologic parameters, including hydraulic tests and the use of non-reactive (conservative) chemical or physical tracers to determine flow paths. particle velocities, and coefficients of dispersion.
8. LANL is degigneted as the lead agency, and USGS as the supporting egency, fer tests designed primarily to determine the rates of movement (or of retardation) of radionuclides; including the use of reactive (non-conservative) tracers. or to evaluate the retarding effect of such potential phenomena as matrix diffusion.
C. The responsibilities and rights of the lead egency include:

1. Assume full responsibility to plan, conduct, and anelyze tests for which it is responsible.
2. Assign and implement quality-assurence ($Q A$) levels that are comensurate with the requirements of the supporting agency and the joint USGS/LANL objectives and responsibilities.
3. Provide the supporting ageney the opportunity to review and coment on plans, inclucing $Q A$ level assignments and technical procedures.
4. Inform the supporting agency of changes of plans or delays that could effect the overall testing effort.
5. Make all data available to the supporting agency in a timely fashion. Data availability to the supporting agency will be scheduled es a Level-3-milestone by the originating agency.
6. Have first right to publish or otherwise release the data. analysis (including modeling), and interpretetions for tests for which it is responsible, subject to the conditions in Section III.E below.
7. Provide the supporting agency the opportunity to review and coment on all manuscripts pertaining to the tracer studies and intended for release or publication.
D. The responsibilities and rights of the supporting egency include:
8. Through ongoing dialogue and review of plans and previous results, provide to the lead agency ideas. concepts, or suggestions concerning plenned tests.
9. Review and comment on quality-level assignments and technical procedures for activities affecting the usefulness of test results that are important to other joint tests or analyses.
10. Kay observe tests and, if mutually agreed upon, may directiy support the lead agency's planning, testing, and enalyses.
11. Hay not release data nor publish analyses or results prior to the release and publication by the lead egency, except as is provided in section III.E below.
E. Publication or other release by the orisinating agency of information needed for reference by the other in its publications will be scheduled as a level 2 (NNWS project Kanager controlled) milestone. When the milestone is three or more months overdue, as referenced to the latest due date approved by the NNWSI Chenge Control Board, the usiag agency may use and present those unceleased deta, but not interpretations, that are necessery to support its own analyses and interpretations. Such data will be referenced to the unpublished files of the originating agency and to the: individual who provided the data. The orisinating agency or individuals are not obligated to reference the using agency in subsequent presentations or uses of the data.
IV. This agreement shall remain in effect until cancelled in writing by either of the parties hereto, their superiors, or their successors.

Nilliam W. Dudley, Jr.
NNWSI Technical Project Officer
U. S. Geologicel Survey

Date

Donald I. Oakley
NWWSI Techaical Eroject Officer Los Alamos National Laboratory

T: Ai $=2784$
CONSEIL INTERNATIONAL DE UNIONS SCIENTIFIQUES INTERNATIONAL COUNCIL OF SCIENTIFIC UNIONS UNION GÉODESIQUE ET GÉOPHYSIQUE INTERNATIONALE INTERNATIONAL UNION OF GEODESY AND GEOPHYSICS

Bulletin of the International Association of Scientific Hydrology

Bulletin de l'Association Internationale d'Hydrologie Scientifique XII ${ }^{\text {e }}$ Année $\mathrm{N}^{0} 1$

MARS 1967 MARCH 1967

the international association of scientific hydrology

DETERMIINATION OF THE VERTICAL AND HORIZONTAL PERMEABIIIITES OF FRACIURED WATER BEARING FORMATION

Dr. Eng. Kamal F. SAAD ${ }^{-}$
Desert Inslitute, Matarla, Catro, UAR

Resuad

On peut considtrer les formations aquiftera fracturtes comme des aquifzres anisotroper. Loraqu I'agit de fractures horizontaies, la permeabilite hortontale correspond aux propritits de transmberin ges fractures et la perméabilite vericale est celie de ha roche anere, Au contralre, forsquáa siapis fractures vericales, ia permbabilite vericale correspond sux proprities de transmissivite des fracur et is permeabilite horizontale caractérie la soche plere. Autrement dit, on considere que la roche met eat tsotrope. Le pritent travail vise a dterminer les permetabilites vericale et horizontale des roch fracturtes, aussi bien que keur capacite de reserve, par l'eivde des donntes des essals de pompage. I procede employe eat fonde sur ha methode de la double pente (Saad ef el., 1960). De plus, la magnitur dea permeabilite vericale et horizontale peut fournir des fodices sur les riseaux de fractures id it connait la facilite de l'cooukment dams chaque direction.

Astmuct

Fractured water bearing formation may be consldered as an enisotropic aquifer. That th the perm ablity through the fractures will be dificrent from that of the original parent formation. In the prese paper, the values of both the verical and horizonal permeabilities as well as the storgate coefincient ta been determined throush andyds of the pumping test data. The permeability in one of these two diroeiol represenss that of the fractures having the same difection, While the other characterizes the trasmitul property of the parens formation. The procedure of apalyls bs based on the double alope metho stad ef al. (1965) through unalyis of the modified colution of the nonsteady fiow roward a weil parial penctrating the frectured water bearing formation. It an also be conctuded that knowiedge of y magnitade of the permeabilities to both directions may tadicate the pattern and trend of the fractur

introduction

Anisotrople permeablity of water bearing formation is a result of many reasons. Among the are the presecoce of fractures, with a certain pattern, in previous aquifer such as timestor Consequently the permeability through the fractures is different and usually higher from that the parent formation. The fractures may have either a horfoontal or a vertical trend (Fis. 1)at thus they are represented hydraulically by the horizontal or the vertical permeability respectivel The permeability in the other direction represents the transmitting property of the pareat wat bearing formation.

A

8

Fig 1 - Cross section of fractured rock. A asd B: Verical fracture. C. Hiorizontal facture.

- UNESCO Expert to the Republic of Malli, "Direction de I"Hivdralique", Bamaka

Iprectioc, it frequently happens that the producing wells do not penetrate completely the Ered formation from which they are pumping. This is rather due to many tectnical reasons at these are the targe thickness of the fractured bed or the wide fracture openinge to both drilling operation may be either expensive or impractical for large depths for excessive Enof mud circulation and other difficulties. For this, producing wells drilled in fractured water mins formation, are usually partially penetrating the equifer.
STbe purpose of the presens paper is to determine the permeability of both the frectures and in parent formation. These parameters as well as the storage coefficient can be determined Wrinh analysis of the pumping test data, recorfes from a partially penetrating observation - where the pumped well itself does not reach the bottom of the fractured formation. It is Tred that the fractures are cither horizoatal or vertical and that the storage coefficient Hems constant in the whole resion.
Fixe procedure of analysis is based on the double slope method, Saad et of, (1965), and on the Fifed solution of the nonsteady flow toward a partially penetrating well, Hantush, 1961, Tecount for anisotropy, Muskat, 1937.

Fis 2 - Dia rammatic representation of a well tapplag fractured sock. A: Verical facture. B: Hortrontal ancture.

Qiation (1), can be modified, to account for anisotropic permeability resulting from the mist of fracturte, by multiplying the term ($/ 6$) by (Kd/K) ${ }^{\text {ma }}$, Muskat, (1937). Thus Equa(10), will reduce to:
ceturt
ta.

$$
\begin{equation*}
\text { (sin } n \pi d^{\prime} f(b) \tag{2}
\end{equation*}
$$

Equation (2) shows that the rate of changes of the average drawdown behaves at of radial toward a well fully peoctrating an aquifer.

For the determination of the hydraulic coefficients \boldsymbol{K}_{r} and $\mathbf{K}_{\boldsymbol{k}}$ the duoble slop Saad et al. (1965), can be used. The procedure of the mathematical analysis is outlu. follows:
i) differantiating (s) in Equation (2) with respect to $\log _{4}:$

$$
d s / d(\ln \delta)=\frac{2.30 Q}{4 \pi K, 6} e^{-a}=m
$$

ii) differantiating (m) in Equation (3) with respect to in t

$$
\begin{equation*}
d m / d(\ln t)=\frac{(2.30)^{2} Q}{4 \pi K_{p} b} u e^{-\pi}=m^{\prime} \tag{1}
\end{equation*}
$$

iii) the double slope function $f(w)=m^{0} / m$, can be found

$$
f(u)=n^{\prime} / m=2.30 u
$$

Equations (9), (3), and the relationship ($n=r^{2} S / 4 K_{r} b r$) and the data of pumping cent, $n-1$ crable determining K_{r} and $S_{\text {, }}$ as will be shown later. The value of (K_{s}), can also be found in in terms in the summation form appearing in Equation (2), can be evaluated. For this, Equatixali, can be put in the following forms:
$\cdot 1$

$$
A=\sum_{a=1}^{\infty}\left(l / n^{2}\right) K_{0}\left\{(n \pi r / b)\left(K_{d} / K_{0}\right)^{1 / 2}\right\}
$$

$(\sin n \pi d / b)\left(\sin n \pi d^{\prime} / b\right)$
Where

$$
\begin{equation*}
A=\left[\frac{s}{0 ; 4 \pi K_{p} b}-W(u)\right]\left(\pi^{2} d d^{1} / 4 b^{2}\right) \tag{is}
\end{equation*}
$$

Equation (6), ean be further reduced to the form of Fourrier series by multiplying both whe by $(\sin (x) d x)$, where $\left(x=\pi d^{\prime} / b\right)$, and iategrating between the limits 0 and π

$$
\left.\int_{0}^{\pi} A \sin (x) \mathrm{d} x=\int^{2} \sum_{\sin }^{\infty}\left(1 / n^{2}\right) K_{0} f(n \pi r / 6)\left(K_{z} / K_{p}\right)^{1 / 2}\right\}(\sin n x)(\sin x) \mathrm{d} x
$$

Using the following two identities:

$$
\int \sin (n x) \cdot \sin (n x) d x=\frac{\sin (n-m) x}{2(n-m)}-\frac{\sin (n+m) x}{2(n+m)}
$$

and

$$
\int\{\sin (n x)\}^{2} d x=(x / 2)-\frac{\sin (2 n x)}{4 n}
$$

It can be shown easlly that all the terms in the summation formin Equation (7) will tend wo wo except when $n=1$. Therefore Equation (1) will reduce finally to:

$$
\left.\int_{0}^{\pi} A \sin (x) d x=(x / 2) K_{0}\left[(x r / b) K_{d} / K_{f}\right)^{1 / 2}\right] \operatorname{sia}(x d / b):=2 A
$$

(1.2

24

8.3.1.2.3.1.7

- Dudley, W.W., Jr., and D.T. Dakley, 1988. Agreement between NNWSİ Technical Project Officer, Los Alamos National Laboratory, and NNWSI Technical Project Officer, United States Geological Survey, Regaraing the Cooperative Conduct of Tracer Studies.
- Gelhar. L.W., 1982. "Analysis of Two-Well Tracer Tests with Puise Input," RHO-EW-CR-131 P, Rockwell Hanford Operations, Easalt Waste Isolation Project, Richland, WA.

0 Kelley, V.A., J.?. Pickens, M. Keeves, and R.L. Beauneim, 1587. "Double-Porosity Tracer-iest Analysis for Interprezation of the Fracture theracteristics of a Dolomite Formation," Solving Greund Water Proctems with Models, procesdings of ine National Water Well Association Conference, Feb. 10-12, : $: 337$, Denver, C.

- Polzer, W.L., and H.R. Fuentes, 1987, "The Use of a Heterogeneiey-Eased Isotherm ea In:ercret the Transdort of Reactive Radionuclides in Volcaric Tuff Media," Los Alamos National Laboratory Report LA-UR-97-2901, Los Alamos, NM.
o Rober:son, J.B., P.S. Huyskorn, T.D. Wadsworth, and J.E. Buckley, 1987. "Desig̣ and Anaiysis of Deep Two-Well Tracer Tests," Hydrogeologic, Ine., Herneén, VA.
- Robinson. S.A., :997. "Predietive Modeling of in Situ Retardztion of
 Inves:igations Milestone No. R487, Los Alamos National Laboratory.

