Combustion Engineering Crosstraining Course (R-325C) Course Outline

<u>Day</u>	Title	Location	<u>Chapter</u>
1	Travel		
2	Course Introduction Introduction to CE Systems RCS, RCPs, SGs Simulator Introduction	Classroom Classroom Classroom Simulator	325-1 325-2.1,2.2,2.3
3	CEAs and CEDs Reactor Regulating System CVCS and Makeup System (NET Simulator Exercises	Classroom Classroom WS) Classroom Simulator	325-3 325-4 325-5
4	Pressurizer Level and Pressure Control Systems Steam Dump Bypass and Feedwater Control Syst Excore Nuclear Instrumentation Incore Nuclear Instrumentation Simulator Exercises	Classroom Classroom tems Classroom Classroom Simulator	325-6.1,6.2 325-7,8 325-9.1 325-9.2
5	Emergency Core Cooling Systems Containment Spray System Auxiliary Feedwater System Simulator Exercises	Classroom Classroom Classroom Simulator	325-11.1, 11.2, 11.3 325-11.4 325-11.5
6	Reactor Protection System Thermal Margin Low Pressure and Axial Shape Engineered Safety Features Actuation System Simulator Exercises	Classroom Classroom Index Classroom Simulator	325-10.1 325-10.2 325-10.3
7	CPC, CEAC, COLSS Power Distribution Limits Normal Operating Limits	Classroom Classroom Classroom Simulator	325-12.1,12.2, 12.3 325-13 325-14
8	CE Plant Differences (Selected Topics) RPCBS	Classroom	325-15

Classroom Examination

9

.

BEGIN SPLIT SHIFTS

Simulator

A-24

-

الغمية

	(Group A 8:00 AM -4:00 PM, Group B 2:00 PM - 10:00 PM)	Simulato Simulato
	Simulator Operation	
	Off-Normal Operations	Classroc
10	Simulator Technical Specifications	Classroc Simulato
	FOP Introduction	Simulato
	Standard Post Trin Actions	
	Power Maneuvering and Faults	
	Uncomplicated Reactor Trips	Classroc
	Oncomplicated Reactor Trips	Classroo
11		Simulato
11	LOCA Optimal Bacavery Procedure	Simulate
	CCTD Optimal Recovery Procedure	Dimanan
	SOTA Optimal Recovery Flocedure	
		Classroo
	SGIKS	Classroo
12		Simulat
12	FCDF Ontine 1 Becomer Broodure	Simulat
	ESDE Optimal Recovery Procedure	Omulai
	LUAF Optimal Recovery Procedule	Classroo
	Steam Line Breaks	Classroo
13	Loss of Feedwater Events	Simulat
	t OOD O stimul Deservery Deservery	Simulat
	LOOP Optimal Recovery Procedure	Simulat
	SBO Optimal Recovery Procedure	Simulat
	Walkdown Electrical Distribution System	Classrov
	Loss of Offsite Power/Forced Circulation	Simulat
14		Simulat
•••		Simulat
	Functional Recovery Procedure	Simulat
	LUCA + SGIK	Simulat
		Sinular
	LUAF + Iransier to FKP	
15	LUCA + ESDE	
10		

1

,

Lower Mode Operation/Mid Loop Review Simulator Examination

Simulator or om ١

.

m or ЭГ

om om or or

om om or or

om om or or OF

om or or lor tor or

UNITED STATES NUCLEAR REGULATORY COMMISSION TECHNICAL TRAINING CENTER

COMBUSTION ENGINEERING TECHNOLOGY CROSS TRAINING COURSE SYSTEMS MANUAL

LESSON PLANS

СС 325С СНАР)) 1	N ENGINEERING LESSON PLAN	N
Lesson No.305-/905	5-16 Title	:: CE Systems Introduction	
Written by: Larry Be	211	Approved by: Larry Bell	Date: 10/22/92° 9/96
	1.0 TRA	INING AIDS - NONE $\gamma \rho_s$ $1-1$ $\tau_{R} R \gamma$ $1-8$	
	2.0 REF	ERENCES	
	2.1 2.2	CE Systems Manual CE Technical Managers Manual	

*

.

Lesson No.305- /905-1	€ Titl	e: CE Systems Introduction	
Written by: Larry Bell	<u> </u>	Approved by: Larry Bell	Date: 10/22/92
3.0	Obje	ctives	
3.4 4.1	 Obje 3.1 3.2 3.3 3.4 PRE 4.1 4.2 	Identify the major components secondary cycles. Describe how reactor coolant sy secondary system pressure char State the function of Engineere Describe how heat from the pri components is rejected to the er SENTATION General Information 4.1.1 CE Plants can be arrang 4.1.1.2 133 Fuel Assembly Plat 4.1.1.2 133 Fuel Assembly Plat 4.1.1.3 217 Fuel Assembly Plat • Maine Yankee (• Calvert Cliffs 1 • Saint Lucie 1 & • Millstone 2 4.1.1.4 177 Fuel Assembly Plat Unit 2 4.1.1.5 217 Fuel Assembly Plat • San Onofre 2 & • Waterford 3 4.1.1.6 241 Fuel Assembly Plat 1, 2, & 3 4.1.2 Pressurized Water Desi 4.1.2.1 Primary Cycle 4.1.2.2 Secondary Cycle Plant Layout	included in the primary and ystem temperature and nge with load. d Safety Features. mary cycle and primary cycle nvironment. ged in to the following types: nts - Palisades ants - Fort Calhoun ants (3 Loops) & 2 2 ants - Arkansas Nuclear One - ants - 150 Inch Fuel : 3 ints - 150 Inch Fuel - Palo Verd ign
Page 1-#//		4.2.1.1 Seismic Structure 4.2.1.2 Houses the reactor and 4.2.1.3 Safety Injection Tanks 4.2.1.4 Chemical and Volume	l reactor coolant system s - ECCS equipment c Control System Regenerative

•

Lesson No.305- /905-	He Title: CE Systems Introduction	
Written by: Larry Bell	Approved by: Larry Bell	Date: 10/22/92
Written by: Larry Bell Figure 1-2 Page 1-14/3 Objective 1 TM - Incore In- struments pen- etratelower head on some designs. Figure 1-3 Page 1-15 Objective 1	Approved by: Larry Bell4.2.2Auxiliary Building4.2.2.1ECCS Systems4.2.2.2CVCS4.2.2.3Radioactive Waste Sys4.2.3Turbine Building4.2.3.1Turbine-Generator4.2.3.2Power Conversion Sys4.3 Reactor4.3.14.3.1Major Components4.3.1.1Upper Hemispherical I.Closure for Ves.CEDMs.Fixed Incore No4.3.1.2Right Circular Cylinda.Two 42 in. Out.Four 30 in. Inle.Snubber Assem.Core Stop - stat4.3.1.3Lower Head - Closure4.3.1.4Flow Skirt - mixes lood4.3.1.5Core Support Assemb4.3.1.6Core.217 Fuel Assem.2700 MW(t).77 CEAs - each4.3.1.7Upper Guide Structur.Hold down for.Guides CEAs4.4Reactor Coolant System4.4.1Two Heat Transport L4.4.1.2One Steam Generator4.4.1.3Two SG Outlets4.4.1.4Two RCPs4.4.2Steam Generators	Date: 10/22/92 stems stems the Components Head sel eutron Detectors er let (T-Hot) Legs the (T-Hot) Legs bly - prevents motion te purpose Assembly op flows ly nblies - 24 Month Core 1 CEA has five fingers e ce on fuel oops

(

C	OMBU	STION ENG	INEERING LESSON I	PLAN	
Lesson No.305-/9)5-1C	Title: CE Sy	stems Introduction		
Written by: Larry B	sell	Appro	wed by: Larry Bell		Date: 10/22/92
TM-ANO2 and later plants do not have PORVs Objective 1 Figure 1-6 Page 1-10 2 Figure 1-4 Page 1-10 /7 Objective 3	4.5	4.4.3 4.4.3 4.4.3. 4.4.3. 4.4.3. 4.4.3. 4.4.3. 4.4.3. 4.4.3. 4.4.3. 4.4.3. 4.4.4. 4.4.4. 4.4.4. 4.4.4. 4.4.4. 4.4.5. 4.4.5. 4.4.5. 4.4.5. 4.4.5. 4.5.1 4.5.2. 4.5.2. 4.5.2. 4.5.2. 4.5.2. 4.5.2. 4.5.3. 4.5.3. 4.5.3. 4.5.4.	Pressurizer 1 Purpose - normal press 2 1500 cubic feet capaci 3 Electical Heaters 4 Spray from discharge 5 Auxiliary Spray from 6 Surge Line connected 7 2 code safety valves 8 2 PORVs Major Penetrations 1CVCS Letdown - 12A 2 Charging - 11A and 12 3 ECCS Injections - disc 4 Loop drains - all four RCS Parameters 1 2250 psia 2 Tavg 532 to 572.5 3 Steam Pressure - 900 cy Core Cooling System Two active and one p HPSI 1 Three centrifugal pum 2 Shutoff head of approx 3 Active during the injections 2 200 psig nitrogen press 2 200 psig nitrogen press 3 passive system LPSI 4 Also used for decay I during plant cooldow $U = \frac{1}{100}$	sure 225 ity of both 1 CVCS to 11 ho RCP sure 2B RCP charges pump su to 850 n assive sy nps oximately ection an essure ps oximately alation p heat rem vns and i	0 psia oop 11 RCPs ot leg ction line discharges of all 4 RCPs action lines of all 4 RCPs action lines ystem y 1400 psia and recirculation phase

3250 -1	OMBU	STION	ENGINEERING LESSON PLAN	
Lesson No.305- /90	5-1C-	Title:	CE Systems Introduction	
Written by: Larry Bo	ell		Approved by: Larry Bell	Date: 10/22/92
 1740 psia or 2.8 psig 703 psia 2.8 psig 4.25 psig 30 inches 	4.6	En 4.6 4.6 4.6 4.6	gineered Safety Features Actuation Si 5.1 SIAS 4.6.1.1 Low Pressurizer pressure or h 4.6.1.2 Actuates ECCS - diesel gener 5.2 SGIS 4.6.2.1 Low SG pressure 4.6.2.2 Isolates faulted SG 5.3 CIS 4.6.3.1 High Containment pressure 4.6.3.2 Isolates non-vital penetration 5.4 CSAS 4.6.4.1 High-high containment press 4.6.4.2 Actuates containment spray 5.5 RAS 4.6.5.1 Low RWT level	gnals igh containment pressure ators - cooling water etc. s starts fan coolers ure
Figure 1-5 Page 1-11 /9 TM - CPC trips and no loss of load trip on ANO2 and newer.	4.7	4.**	 4.6.5.1 Low RWT level 4.6.5.2 Actions Opens sump valves Trips LPSI pumps eactor Protection System 7.1 General 7.1.1 Purposes Barrier protection during accies Assists the ESF systes shutdown during accies 4.7.1.2 Purpose is accomplished by a CEAs 4.7.1.3 RPS operates on 2 out of 4 c 7.2 Reactor Trips 4.7.2.1 High Start-up Rate 4.7.2.2 High linear power 4.7.2.3 Axial Power Distribution 4.7.2.5 High Pressurizer Pressure 4.7.2.7 Loss of Load 4.7.2.8 Low SG Level 	ing anticipated operational m by ensuring reactor is idents opening power supplies to oincidence logic
			4.7.2.10 High Containment Press	

C

3250-1	OMBUST	ION ENG	NEERING LESSON PLAN	
Lesson No.305-/9)5-1C T	itle: CE Sy	stems Introduction	
Written by: Larry B	Sell	Appro	ved by: Larry Bell	Date: 10/22/92
Figure 1-7 Page 1-23 Objective 1	4.8 4.9 4.10 4.11	Reactor C 4.8.1 4.8.1. 4.8.1. 4.8.1. 4.8.2 Instrumer 4.9.1 4.9.2 Plant Elec 4.10.1 4.10.2 4.11.1 4.11.2 4.11.1 4.11.2 4.11.1 4.11.2 4.11.1 4.11.2 4.11.1 4.11.2 4.11.1 4.11.2 4.11.1 4.11.2 4.11.1 4.1	Control Two methods available 1 CEAs 2 Soluable Poison Control is normally accompli- control. Intation Control and protection instru- separate. Failure of control instrument RPS. ctrical Systems Electrical Output - 880 MWe Onsite Voltages 2.1 13.8 kV - RCPs 2.2 Non - vital 4.16kV - large 2.3 Vital 4.16kV - ECCS - die From 12A RCP suction Regenerative heat exchanger Variable letdown flow Letdown heat exchanger Purification devices VCT 6.1 Collects letdown 6.2 Collects CBO 6.3 Interfaces with soluable cor Charging pumps 7.1 Three constant speed PD J 7.2 Number of running pumps 7.3 Started by SIAS signal Charging returns 8.1 RCPs 11A and 12B disch 8.2 Auxiliary Spray	ished by soluable poison mentation is completely will not directly affect e secondary plant loads sel generators r
Figure 1-4 Page 1-17 add SDC heat ex- changers. Objective 1	4.12	Shutdow 4.12.1 4.12.2	n Cooling System Uses LPSI and containment Trace flow path	t spray components

(

ι,

Lesson No.305- /905-1	E Titl	e: CE (Systems Introduction	n	
Written by: Larry Bell		Appi	roved by: Larry Bel	u	Date: 10/22/92
	4.13 (4	Cooling .13.1 4.13 4.13	Water Systems CCW .1.1 SDC heat exch .1.2 Letdown heat e	angers	
	4	4.13 4.13 .13.2 4.13	 .1.3 RCPs .1.4 Cooled by Salt Salt Water .2.1 Cools CCW 	Water	
Objective 4		4.13 4.13 4.13	 .2.2 Cools Service .2.3 Cools Diesels .2.4 Salt Water an sink 	water d Chesapeak	ce Bay - ultimate heat
Objective 4	4	.13.3 4.13 4.13 .13.4 4.13 4.13	Service Water 3.1 Cools containr 3.2 Cools power c Circulating Wate .4.1 Condenses low .4.2 Heat sink for s	nent fan cool onversion sys er 7 pressure turl econdary cyc	ers stem components bine exhaust steam le during normal
Figure 1-8 Page 1- 12 25 Objective 1	4.14 (4 4 4	Conden .14.1 .14.2 .14.3	operations. sate and FW System Trace flow path Bypass valve co FW reg valve co	ı ntrol ıntrol	

C

.

Lesson No:305-06/905-3C	Title:	REACTOR C	OOLANT SYSTE	EM
Written by: Loren F. Donat	ell	Approved by:	Larry Bell	Date: 11/2/92
1.0	TR 1.1 1.2	AINING AIDS Transparency	S/SPECIAL INST Package for 305-0 e for 305-06/905-	RUCTIONS 36/905-3C- 325C-2.1,2.1 3E -
2.0	RE 2.1 2.2 2.3 2.4	EFERENCES CE Systems M CCNPP System CCNPP System CCNPP System	Ianual, Chapter 3 m Description No m Description No m Description No	 5, Reactor Coolant System 17, Steam Generator 62, RCS Instrumentation

3

(

(

COMBU	STION 1	ENGI	NEERIN	NG LESSON PLAN	
Lesson No.305-06/905-3C	Title: F	EAC	TOR CC	OLANT SYSTEM	
Written by: Loren F. Donat	ell A	\pprov	ved by:	Larry Bell	Date: 11/2/92
3.0	PRE	SENT	TATION		
	3.1 I	Leami	ng Obje	ctives	
	3	3.1.1	Cover (Objectives in manual	
	3.21	Introd	uction		
	1	3.2.1	System	Purposes	
			a. Tran: to th	sfer the heat produced le steam generators	l in the reactor
			b. Prov esca	ide the second barrier pe of fission products	to prevent the to the public
	2	3.2.2	Genera	l Description	
2.1-)			3.2.2.1	Reactor Coolant Syst	em
Figure				a. 4 RCPs	ie
rage 3 .1-17				b. 2 Hot Legs, 42 " d	ıa. lia
Figure 9.1-2				d. 2. Steam Generator	 rs
Page 3 .1-19				e. Compact design	-
				1. Minimize (Containment Building
				pressure in	event of a LBLOCA
1				f. Carbon steel, clad	with SS internally
				g. 2500 psia design j	pressure
1				n. obu F design tem	perature ins subcooling
Show Trmical				1. FICSSUITZET Mainta 1. 1500 cubic	feet
RCS Support				j. 122 x 10 ⁶ lb/hr	
System -1.1-3.2				•	
M2	3.3 RC	S Per	netration	S	
Figure 3-1-4		_	-	_	
Page 3-1-23		3.3.1	Hot Le	eg Penetrations	lowe a flow noth
23			a. Surg	se Line (11 hot leg) al	and the RCS for
			Det	essure control and vol	umetric changes
			to	the reactor coolant	··· ··
				1. 12" ID	

- ---

Ĺ
Lesson No.305-06/
Written by: Loren

.

Lesson No.305-06	/905-3C	Title:	REAC	TOR CO	DOLANT SYSTEM			
Written by: Loren	F. Donat	ell	Approv	ved by:	Larry Bell	Date: 11/2/92		
Figure 2 .1-5	3.4 RCS Instrumentation							
Page 3 .1-25			3.4.1	Hot Le a. 5 RT	g Temperature Ds in each hot leg 1. 4 RTDs supply wi safety grade signa Delta T power ref used in the TMLF 2. 1 RTD supplies a (515-615 oF) con to RRS and a hig alarm in the mai 3. Other inputs to th Indication, Alarm Margin Monitor eg Temperature a. 3 RTDs in each co 1. 2 RTDs sup safety grad Delta T po used in the 2. 1 RTD sup signal to t and the PO MPT pro switch (lo	de range (0-700 °F lls to the RPS for: erence calculation ' trip circuitry narrow range trol grade signal h hot leg temp. n control room e Plant Computer, a and the Subcooled dl leg pply wide range (0-700°] le signals to the RPS for over reference calculation e TMLP trip circuitry pplies a control grade he RRS, CEDS (AWP), ORV control circuitry for ection through a selector op 11A or 11B)		
			3.4.3	Loop I a. Stea b. 4 de c. Sum	Flow m Generator D/P stectors per S.G. med with correspond	ling detector in		
				othe char d. RPS e. Indi	er loop resulting in found and sof coolant flow for loss of flow trip cation in the Main C	our independent ontrol Room		

.

C

(

Lesson No.305-06	/905-3C Titl	e: REAC	TOR CO	JOLANT SYST	EM		
Written by: Loren	F. Donatell	Appro	ved by:	Larry Bell	Date: 11/2/92		
Figure 3 .1-6 Page 3 .1-27	3.5 F	Pressurize	er				
		 3.5.1 Purpose a. Maintain RCS pressure at 22 b. Compensate for changes in t coolant volume due to load c 					
		3.5.2	Pressur a. Carb b. ~ 37 c. ~ 9 f d. supp its b e. 1500 f. Wate g. 600 base	 izer Design oon steel clad int feet high feet in dia. oorted by a cylin oottom head cubic feet er volume varies -800 cubic feet ed on: Maintaining Compensate volume durint total coolant kept as smather the capacity Contain suff draining the preclude a statistic or a statistic or the outsurge design load or or a 5%/ mint 	ernally with SS adrical skirt welded to a with program of water volume is RCS operating pressure for changes in coolant ag load changes. The volume changes are all as possible and within of the CVCS icient volume to prevent pressurizer and afety injection a result of a reactor of load event ater volume to minimize elease and resultant pressure during a overing of the heaters by of water following a decrease of a 10% step a. ramp		

•

(

(

COMBUS	TION ENGIN	EERING LESSON PL	AN				
Lesson No.305-06/905-3C Title: REACTOR COOLANT SYSTEM							
Written by: Loren F. Donate	ell Approve	ed by: Larry Bell	Date: 11/2/92				
		6. Provide suffici the insurge fol rejection with reaching the s PORV nozzles	ient volume to accept lowing a load out the water level afety valve and s				
	3.5.3	Pressurizer Heaters a. Purpose 1. Initially form 2. Increase pression operating press 3. Maintain norm b. 120 Heaters c. Rated at 480 VAC and d. Approximately 7' Ion e. Vertically mounted th f. Two groups 1. Proportional 2. Backup g. Proportional Group 1. Compensate for 2. 24 Heaters 3. Two 150 kW 3 4. Maximum por 5. Minimum por 5. Minimum por 6. Minimum por 1. Four Banks of 2. 96 Heaters to 3. 300 kW per b 4. On at 2200 ps 5. Off at 2225 p 6. Two banks por buses to assur for natural cirr ing a loss of or requirement f	the steam bubble ure to normal soure nal operating pressure d 12.5 kW each g rough the bottom head or losses to ambient Banks wer at 2225 psia wer at 2275 psia f 24 Heaters tal ank sia owered from emergency ine pressurizer control culation flow follow- off-site power - T. S. for 150 kW				

(

Lesson No.305-06/	905-3C Title	: REACI	OR CO	OLANT SYS	TEM	
Written by: Loren	F. Donatell	Approv	ed by:	Larry Bell		Date: 11/2/92
Figure 2 .1-7 Page 2 .1-29		3.5.4	Pressur a. Conr b. Ther c. Temj oper flow d. 12	izer Surge Lin hects 11 hot leg mal sleeve mi perature eleme ators to possib ID	e g to boti nimizes nt in su le loss o	tom of pressurizer thermal stress rge line alerts of spray bypass
		3.5.5	Pressui a. Fron b. 375 c. Cont Cont d. Oper e. Clos f. NSR	tizer Spray n discharge of gpm maximur trolled by the 1 trol System (P n at 2300 psia e at 2275 psia	11A and n flow 1 Pressuri PCS)	d/or 11B RCPs ate zer Pressure
		3.5.6	Pressu: a. In p b. 1.5 c. Prev d. Helj pres tion e. Terr spr los	rizer Spray By arallel with ea gpm / valve vent thermal sh p maintain bor ssurizer equal to uperature eleme ay line to warn s of spray bypa	vpass ch spray lock on to con conce to RCS ents inst n operat ass flow	v valve spray nozzle entration in the boron concentra talled in each ors of a possible
		3.5.7	Auxili a. Sup b. Use wh c. Use nat	ary Spray plied from the ed during start en the RCPs a d to control p ural circulation	e CVCS -up/shut re not n ressurize	charging pumps down periods inning er pressure during

(COMBUSTI	ON ENGINEERING LI	ESSON PLAN	
Lesson No.305-06/	/905-3C Tit	e: REACTOR COOLA	NT SYSTEM	
Written by: Loren	F. Donatell	Approved by: Larry	y Bell	Date: 11/2/92
PORV DESIGN BASES		3.5.8 Pressurizer C a. High Press 1. Sig b. If no High the PORVS Safety Va c. Power Ope 1. Set 2. Op 3. Bo 4. 153 5. Ref 5. Set to 4 6. Th to fro ind wi sp ha fro po ope pro d. Code Safe 1. Tv 2. Co 3. Se 4. Ca 3. Se	Overpressure Pre- sure Reactor Tri- mal opens the P- Pressure React s do not open ar lves provide ov- erated Relief Va- below the Cod- erate with a Hi- th have isolation 3,000 lbm/hr ca- lieve to Quench topoint can be ch 400 psia when - e PORVs have handle the maxim m a continuous cident starting f ithout letdown of ray operable, O ndle the maxim m a loss of load wer, with the pre- erable and a rea- essure ety Valves wo spring-loade ommon discharget apacity of 296,0 02,000 lbm/hr event exceeding pressure(ASME elieve to the Que	otection p at 2400 psia ORVs or Trip occurs and the Code erpressure protection alves e Safety Valves gh Pressure Trip in valves pacity each Tank anged for MPT <330 °F sufficient capacity imum steam surge a CEA withdrawal rom low power, or pressurizer R um steam surge l incident at full ressurizer spray ctor trip on high d, self actuated ge pipe with PORVs and 2565 psia 065 lbm/hr and g 110% of design requirement) ench Tank
		p 6. Re	pressure(ASME elieve to the Qu	requirement) ench Tank

1

Lesson No.305-0	06/905-3C Title	e: REACTOR CO	OLANT SYST	EM
Written by: Lore	n F. Donatell	Approved by:	Larry Bell	Date: 11/2/92
CODE SAFETY DESIGN BASES			7. Relief capacit loss of load w conservatism analysis: Loss of le trip until setpoint Pressure Initial rea thermal No credi Dump ar System (y based on 100% with the following in assumed for the oad without a reactor the first RPS trip is reached (Pressurizer High). actor power is at rated power. t was taken for Steam id Bypass Control SDBCS) actions.
		No credi operation The valv capacity setpoint tion). The valv 96% of (4% blo	it was taken for the n of the PORVs. ves reach maximum flow at 103% of design or less (3% accumula ves reseat at not less than the setpoint pressure wdown).	
			1% of s toleranc	etpoint pressure (setpoint e).

(

(

COMBUSTION	N ENGINEERI	NG LESSON PLAN	
905-3C Title:	REACTOR CO	OOLANT SYSTEM	
F. Donatell	Approved by:	Larry Bell	Date: 11/2/92
	3.5.9 Quench a. 217 d b. ~ 10 3 ps c. Relid d. Rupp e. Drai f. Dem inve g. The to re pre Cod con Los a co foll cor tha pov	n Tank cubic feet 0 cubic feet of water k ig nitrogen overpressu ef setpoint of 35 psig ture disk at 100 psig ns to the RDT by grav ineralized water suppl ntory Quench Tank water le educe the necessary tan ssure requirements to a e Safety Valve dischar secutive events: s of load from 10% po- ncurrent loss of load r owed by a discharge c utinuous CEA withdrav at occurs as the plant i	blanketed by a re vity ly to maintain wel is sufficient nk volume and accommodate the rge from two over without eactor trip aused by a val accident s returned to
-7 -29 9 133	3.5.10 Press a. Cod b. Pres	 urizer Instrumentation e Safeties and PORVs 1. Temperature elementischarge 2. Acoustic monitors cation ssurizer Level Instrum 1. Three transmitters 2. NSR 3. Two transmitters uare calibrated for (653 °F) 4. One transmitter is for start-ups and 	ents in combined for position indi ents used by the PLCS operating temperature density compensated shutdowns
	COMBUSTION 905-3C Title: F. Donatell -7 -29 -33	COMBUSTION ENGINEERI 905-3C Title: REACTOR CO F. Donatell Approved by: 3.5.9 Quench a. 217 d b. ~ 10 3 ps c. Relied d. Rupl e. Drain f. Dem inve g. The to re pre: Cod com Loss a co foll cor tha pov 3.5.10 Pressi a. Cod	COMBUSTION ENGINEERING LESSON PLAN '905-3C Title: REACTOR COOLANT SYSTEM F. Donatell Approved by: Larry Bell 3.5.9 Quench Tank a. 217 cubic feet b. ~ 100 cubic feet of water h a psig nitrogen overpressu c. Relief setpoint of 35 psig d. Rupture disk at 100 psig e. Drains to the RDT by graw f. Demineralized water suppliniventory g. The Quench Tank water letor reduce the necessary tan pressure requirements to a Code Safety Valve dischard consecutive events: Loss of load from 10% pc a concurrent loss of load r followed by a discharge c continuous CEA withdraw that occurs as the plant i power 3.5.10 Pressurizer Instrumentation a. Code Safeties and PORVs 1. Temperature elemendischarge 2. Acoustic monitors cation b. Pressurizer Level Instrumentation a. Code Safeties and PORVs 1. Three transmitters 2. NSR 3. Two transmitters u are calibrated for (653°F) 4. One transmitter is for start-ups and

•

(

C

Lesson No.305-06/ Written by: Loren
Written by: Loren
Figure 2 .1-8 Page 2 .1-31

CC	OMBU:	STION	IENGIN	IEERI	NG LE	SSON PLAN	
Lesson No.305-06/9	05-3C	Title:	REACT	OR CO	JOLAN	IT SYSTEM	
Written by: Loren F.	. Donat	ell	Approve	ed by:	Larry	Bell	Date: 11/2/92
			I	e. Unre 037:	3. Failt low- solved 1, 1978] 1. Proc	ire of the pressi- temperature ov Safety Issue A-) edual changes Disabling HPS shutdown Removing pow a minimum nu	ure vessel due to verpressure events 26 (NUREG- I pumps in cold ver from all but mber of heaters
						Allowing only pump during	one charging cold shutdown
					2. Equ	ipment modifie	cations
						Addition of lo setpoint reliefs system	w pressure s to the charging
						Addition of a PORV contro	low setpoint to 1 circuitry
						Addition of lo to the pressur	ow setpoint reliefs izer
			3.6.2	Calve: a. POl	rt Cliff RV low 1. Res 2. Wh 3. EN <40 ha	s setpoint and c set from 2400 p en T decreases ABLE light at 00 psia for ope ndswitches in 1	control circuitry osia to 400 psia to 330 °F 330 °F and rators to position ogic circuitry
	ł						

.

(

(

C	OMBU	STION	I ENGI	NEERI	NG LESSO	N PLAN	
Lesson No.305-06/	905-3C	Title:	REAC	TOR CO	DOLANT SY	STEM	
Written by: Loren F. Donatell			Approv	ved by:	Larry Bell		Date: 11/2/92
		3.7 TN	/II - 2 N	Aodifica	tions		
Figure 3 .1-11 Page 3 .1-37			3.7.1	Saturat a. Micr b. High c. Low d. Alar e. Redu	ion Monitor coprocessor v select temp select pressu m at 30°F su undant and v	s vith stearn erature (2 ure (0 - 40 ubcooling ital power	a tables in ROM 10 °F - 710 °F) 00 psia) red
Figure 3 .1-12 Page 3 .1-39			3.7.2	RCS H a. Insta from prom b. Red c. Orif stre d. Reli	ligh Point Ve alled to remo- n the reactor note natural uced valves ice to reduce cam breaks ieve to Quenc	ents ve non-co vessel and circulation flow in e ch Tank o	ndensable gases 1 pressurizer to 1 event of down r Containment
Figure 2 .1-13 Page 2 .1-41			3.7.3	Reacto a. Inac b. 11 s c. Hea d. Ves	or Vessel Level lequate core sensors 1. 2 in uppe 2. 3 in uppe 3. 6 in fuel ted and unhe 1. chromel- 2. As steam of the he relation to steam 3. Sensors due to d two pha ssel level sup	vel cooling m er head er guide st assemblie eated junc to the unlances eated junc to the unlanketin shielded to irect wate use condition	andification fructure ss tion thermocouples liquid, the temperature tion goes up in heated junction due ng to avoid overcooling r contact during ons he SPDS

(COMBU	STION	N ENGI	NEERI	NG LESSON PLA	N
Lesson No.305-06/	905-3C	Title:	REAC	TOR CO	OLANT SYSTE	M
Written by: Loren F. Donatell			Appro	ved by:	Larry Bell	Date: 11/2/92
		3.8 Re	eactor C	Coolant P	umps	
			3.8.1	Cover (Objectives in man	ıal
			3.8.2	Purpos a. Provi cool b. Impr react c. Provi amb mini to st	es ide forced circulat ant for the remova ove DNBR during tor coolant pump to ide energy to heat bient temperature t mum temperature cart up	ion of reactor I of core heat the loss of all motor power up the RCS from o greater than the for criticality prior
Figure 2.2 Page 2.2 Pump Operating Curve	l v		3.8.3	Genera a. vertic centr b. 81,2 c. Four d. Four	l Design cal shaft, single su ifugal pump 00 gpm (120,000 g pumps provide co pumps required t	ction, single stage, gpm single pump) ore with 122 x 10 ⁶ lbm/hr for critical operation
Figure 2.2 Page 2.2	-2 -13		3.8.4	Pump 3.8.4.1	Construction Pump Case Asser a. Forms the volu b. Wear ring inter	nbly te rfaces the impeller and case
				3.8.4.2	 Pump Cover a. Supports the he hydrostatic bea b. Two metallic " the case c. Telltale drain b RTD which a 	eat exchanger and the aring O" rings seal the cover to between "O" rings with an larms in the control room

(

Lesson No.305-06/905-3C	Title: R	le: REACTOR COOLANT SYSTEM							
Written by: Loren F. Donat	ell A	pproved by:	Larry Bell	Date: 11/2/92					
Figure 12 2.2-3 Page 23 5 2.2-5 Figure 12 2.2-4 Page 32 2 2.2-17	3	3.8.4.3 3.8.4.4 3.8.4.5 3.8.4.5 3.8.5.1 3.8.5.1 3.8.5.1	 Heat Exchanger Comprised of cond Tubes arranged co Reactor coolant in CCW in the outer Driver Mount Supports and align Rotating Element As Pump shaft Shaft bearing jour Impeller Auxiliary impelle Recirculating imp Pump half-coupling Thrust disc Motor half-coupling Thrust disc Motor half-coupling Concentric Tube Heat Recirculation impof reactor coolant in pof reactor coolant in p	centric tubes ncentric to pump shaft the inner tube tube s the motor sembly nal r eller g ng Assembly at Exchanger eller supplies ~ 40 gpm of through the inner tube ~ 45gpm to outer tubes to thermal barrier thought outer tubes so thermal barrier thought outer tubes					

(

(

COMBUSTION ENGINEERING LESSON PLAN								
Lesson No.305-06/905-3C Title:	Lesson No.305-06/905-3C Title: REACTOR COOLANT SYSTEM							
Written by: Loren F. Donatell	Approved by:	Larry Bell	Date: 11/2/92					
	3.8.6 RCP I 3.8.6.1	 e. Operation of seals Cooled by 1 Pressure breading pressure breading pressure (dp) Breakdown pressure (dp) Flow rate of area at 2250 99% of flow down device Flow collector to the VCT f. Seal failure Table 3.2-1 A seal failure Table 3.2-1 A seal failure Table 3.2-1 Flow Paths Reactor Coolant RCS flow from the to the eye of the involute and to the involute an	gpm of CBO akdown devices installed with seals devices set operating) to ~ 700 psid 1 gpm enters the seal psia y goes through the break es and 1% through seals ted in \cbo line and sent on Page3.2-5 re causes an increase in and an increase in the pressure across the re als Steam Generator npeller, through the RCS piping a the auxiliary impeller, ing, along the shaft, arrier to the seal cavity lation by the seal water her pipe of the heat ex- e seals and breakdown C (1 gpm) or the RCDT					

(

(

CO	OMBUSTIÒ	N ENGINEERI	NG LESSON PLAN	
Lesson No.305-06/90	05-3C Title	: REACTOR C	OOLANT SYSTEM	
Written by: Loren F.	Donatell	Approved by:	Larry Bell	Date: 11/2/92
Figure 27 7.2 - Page 12 2.2 -7	-5- 19	3.8.6.2 3.8.7 RCP Mc 3.8.7.1 3.8.7.2 3.8.7.2	Component Cooling V a. Divides into two str b. 17 gpm to the them c. 28 gpm to the integ otor Design a. Vertical, solid shaft induction motor b880-rpm ? ~ > & pm c. 6000 h.p.(cold), 450 d. 13.8 kVAC e. Air cooled f. CCW cools air (155 Bearings a. Radial bearing 1. Maintain ro 2. Oil lubricat reservoir a race b. Thrust bearing 1. Kingsbury 6 2. Compensate 3. With the pu ports the w pump 4. Oil lift pun (Stops afte b. Increases coastdow DNBR after a loss c. Safety Related	Water reams mal barrier ral heat exchanger r,3-phase,squirrel cage r,3 00 h.p. (hot) 6 gpm) otor alignment ed from self-contained nd rotation of bearing double acting es for hydraulic forces imp radial bearing , sup veight of the motor and np for starting r RCP is running) rotor vn time which improves of pumping power event

Lesson No.305-06/905-3C	Title:	REAC	TOR C	OOLANI	SYSTEM	
Written by: Loren F. Donat	ell	Appro	ved by:	Larry B	ell	Date: 11/2/92
Figure 2.2-6 Page 2.2-21		3.8.8	3.8.7.4 Instrum 3.8.8.1	Anti-Rev a. Minim 1. De cur b. Minim pump 1. Mo mentation Pump a. Seal p 1 2 3 4 b. Seal 1 2 c. CBO 1 2 3 d. CBO 1 2 3 e. Eccen 1 2	rerse Rotation izes motor st celeration-Ac ments izes reverse f ore core flow oressure . 3 detectors . Lower, mide (lower not i . Middle and . Table 3.2-1 indication area temperat . Outlet of pri- lower seal . Alarm in M flow . High and lov . 1.25 gpm hi . Indicates sea temperature . High temper . Indicates los tricity and vii . 2 probes on . Alarm in M	a Device arting torque celeration causes excer flow through an idle - DNBR improves dle and upper seal indicated in MCR) upper alarm in MCR for typical failure ure imary coolant from th CR w flow alarm in MCR gh (1.0 normal) al failure rature alarm in MCR al failure so of CCW bration each pump CR

COMBUSTION ENGINEERING LESSON PLAN					
Lesson No.305-06/905-3C Title:	REACTOR CO	OOLANT SYSTEM			
Written by: Loren F. Donatell	Approved by:	Larry Bell	Date: 11/2/92		
Lesson No.305-06/905-3C Title: Written by: Loren F. Donatell	REACTOR CO Approved by: 3.8.8.2 3.8.8.2	Larry Bell Motor a. Stator winding tem 1. Alarm in M b. Upper motor guide 1. Alarm in M c. Lower motor guide 1. Alarm in M d. Upper oil reservoir 1. Alarm in M e. Lower oil reservoir 1. Alarm in M f. Upper motor thrus 1. Alarm in M g. Lower motor thrus 1. Alarm in M g. Lower motor thrus 1. Alarm in M h. 2 motor vibration 1. Common A i. Lubricating oil coo 1. No alarm j. Lubricating oil coo 1. No alarm k. Oil lift system pre 1. Local indic 2. Pressure sy the RCP b 3. Low pressure	Date: 11/2/92 perature CR a bearing temperature CR bearing temperature ICR a level ICR a level ICR t bearing temperature ICR t bearing temperature ICR at bearing temperature ICR at bearing temperature ICR at bearing temperature ICR bearing temperature bearing temperature ICR bearing temperature bearing temperature ICR bearing temperature ICR bearing temperature bearing		
	3.8.9 RCP 3	Starting Circuitry 1 Oil Lift Pump a. Pressure switch of breaker closing ci b. Oil lift pump times 2 Semehanising Stiel	perates contact in RCP ircuit s out 30 seconds after star		
	3.8.9. 3.8.9.	 2 Synchronizing Stiel a. Must be inserted to 3 CCW Pressure a. Pressure switch on breaker closing compared 	co start a RCP perates contact in RCP ircuit		

COM	BUSTIO	N ENGINEERI	NG LESSON PLAN	
Lesson No.305-06/905-3	C Title	: REACTOR C	OOLANT SYSTEM	
Written by: Loren F. Do	natell	Approved by:	Larry Bell	Date: 11/2/92
	3.9	Steam Genera 3.9.1 Cover 3.9.2 Purpos	ntors Objectives in manual ses duce dry saturated stear	m for the turbine-genera
		tor b. Act abr c. Prov the	and its auxiliary system as a heat sink for the I normal, and emergency vide a barrier between non-radioactive second	ns RCS during normal, conditions the radioactive RCS and dary system
Figure: 3 2.3-1 Page 3 5 2.3-17		3.9.3 General 3.9.3.1	Description	ube heat exchanger
		3.9.3.1	 I Connections a. Main Feedwater b.Auxiliary Feedwater c. Main Steam d. Steam Generator H e. Instrumentation 1. Level 2. Pressure 3. RCS Flow f. 2 Primary Manway g. 2 Secondary Manway h. 2 Secondary Handi i. Support Skirt attace 	ter Blowdown ys vays holes thed to bottom
		3.9.3.	 2 Internal Structure a. Downcomer Regio 1. Circular ar per and the b. Evaporator Regio 1. Area inside extending top of the 	on ea between the tube wrap e outer shell n e of the tube wrapper from the tube sheet to the tube bundle

(

(

C

Lesson No.305-06/905-3C	Title: REAC	TOR C	UULANT SYSTEM	
Written by: Loren F. Dona	tell Appro-	ved by:	Larry Bell	Date: 11/2/92
	3.9.4	Flow H 3.9.4.1	 c. Riser Section Transition a Transition a Transition a c. Riser Drum Area inside t from the bot separator sugsitive Paths RCS a.Inlet nozzle to Inlet b. Divider plate separt c. Through tubes d. Outlet plenum e. Out through two outes Paths Secondary a.Main feedwater noz b. Feed ring c. Downcomer d. Over tube sheet e. Upward into evapor f. Riser section g. Steam Drum h. Steam separators i. Steam dryers j. Deflector plate k. Exit through the m 	rea from the evaporator of drum the upper shell extending tom of the steam pport plate to the Main t nozzle plenum ates inlet and outlet atlet nozzles
	3.9.5	Const	ruction	
		3.9.5.1	l General Information a. Vertical Class A vertical Class	essel

-

(

(

COMBUSTION ENGINEERING LESSON PLAN						
Lesson No.305-06/905-3C Title: REACTOR COOLANT SYSTEM						
Written by: Loren F. Dona	itell	Approved by:	Larry Bell	Date: 11/2/92		
			d. Dry weight of 1,00 e. Upper shell 239 3/4 f. Lower shell 165 inc	4,000 pounds inch O.D. (~ 20 ft.) h O.D. (13 3/4 ft.)		
		3.9.5.2	 Primary Side a. Lower Hemispheric 1. One 42" inlected with S 2. Two 30" ouclad with S 3. S.S. divider 4. Four instruction flow measures 5. Two 16" measures 5. Two 16" measures 5. Two 16" measures 6. Contains U c. U-Tubes 1. Inconel 	cal Head et nozzle, carbon steel .S. tlet nozzles, carbon steel S. plate to separate flows ment penetrations for trement low side dp anways ck flat disc forging inconel on primary side primary head and lower g circumference by a forged tube sheet linder between the center sheet and the primary orimary and secondary J-tube penetrations		
			2. 8,519 verti 3. 3/4" O.D. 4048" wall 5. Explosively	cal tubes thickness y expanded into tube sheet		
Figure 37 2.3 - 2 Page 3 - 19			6. Egg crate : 7. Top of bun support a	dle supported by Batwing ssembly		
Figure 2.3-3 Page 2.3-2.1						
Figure 24 2.3-4 Page 2.3-23						

COMBU	STION	N ENGINEERI	NG LESS	ON PLAN	
Lesson No.305-06/905-3C	Title:	REACTOR C	OOLANT	SYSTEM	
Written by: Loren F. Dona	ell	Approved by:	Larry Be	11	Date: 11/2/92
Figure 3 3 - 5 Page 3 2.3 - 25		3.9.5.3	Secondary a. Two 16 b. Two 6" c. One 18 1. ' d. Main fe 1. 2. 3. ' 4. 5. (e. One 4" 1. f. Auxilia: 1. 2. g. Downc 1. 2. h. Tube v 1. 2. i. Evapor 1. 2. 3. i. Evapor	Side manways i handholes fc Main Feed Top of Dow ed ring 12" torus Encircles all downcomer Capped on b "J" tubes mo Distributes f lowncomer Auxiliary F Located just feedwater f ry feed ring 4" pipe Encircles ~ region omer Feedwater f water Inside wall vessel shell wrapper Steel cylind Fully enclos separates th evaporator ator region Tube bundl Produces sa	into steam drum area or tube bundle inspection lwater Nozzle mcomer region I but three feet of the rannulus ooth ends ounted on top feedwater to the feedwater Nozzle t below the main nozzle 1/3 of the downcomer mixes with recirculating of the steam generator I and outside wall of tub ler ses the tube bundle ie downcomer and the regions e aturated steam

(

C

COMBU	COMBUSTION ENGINEERING LESSON PLAN					
Lesson No.305-06/905-3C	Lesson No.305-06/905-3C Title: REACTOR COOLANT SYSTEM					
Written by: Loren F. Dona	tell Approv	ved by: Larry Bell	Date: 11/2/92			
Figure 256 2.3-6 Page 25 2.3-27		j. Steam Drum 1. 166 c 2. 126 ch k. Steam separa 1. Perfor 2. Vanes 3. Impar 4. Moistr separ 5. Remo 6. Steam	centrifugal steam separators nevron steam dryers stors rated cylinders in lower section rts swirling motion ure drains through holes to the rator support plate sump oves the bulk of the moisture in exits through top center hole			
Figure 2.3-7 Page 3 2.3-29		 b. Steam c. Steam l. Support plate 1. Collect 2. Drain m. Steam dryers 1. Corru 2. Drain 3. Steam n. Steam deflect 1. Dp of 2. Limit o. Main steam 	a exits through top center hole a sump cts drainage s to downcomer region s igated metal baffle plates a to the support plate sump a exits at 99.8% quality ctor plate f flow t blowdown outlet nozzle			
Page 3	3.9.6	1. 34" I. Design Transients	.D.			
2.3-5,6		3.9.6.1 Reactor Plant C	Cyclic Transients			
		3.9.6.2 Abnormal Trar	nsients			
		3.9.6.3 Allowable Stre	ess Limits			
	3.9.7	Operating Characteris	stics			
Figure 34-8 2.3-8 Page 34-29 2.3-31		3.9.7.1 Heat Transfer a. Q=UA(T _{svg} - b. RCS temper	- T _{iri}) rature program			

(

(

C

COMBU	STION ENGI	NEERI	NG LESSON	PLAN	
Lesson No.305-06/905-3C	Title: REAC	TOR C	OOLANT SY	STEM	
Written by: Loren F. Donat	ell Approv	ved by:	Larry Bell		Date: 11/2/92
Written by: Loren F. Donat	ell Approv 3.9.7	steam 3.9.7.1	Larry Bell Shrink and Sv a. Explain b. Explain eff 1. Rec 2. Rec Internal Circu a. The quantit the moistu larger than feedwater b. Circulation c. Circulation thermal str d. Recirculati 1. C, = 2. Rat hea 3. Rat pre Generator Ch Purpose a. Ensure equ 1. Cra	well fects at le firculation firculation alation ty of wat me separa the volt keeps h preheat ress on Ratic eriser flu io affect at transfe io affect essure emistry	Date: 11/2/92 ow power in in breakdown ter to downcomer from ating equipment is much ume of incoming eat transfer surfaces wet is feedwater minimizing ow / exit steam flow ed by a change in rate of er ed by change in S.G. Control integrity nd Pitting
		3.9.7.2	b. Minimize c. Prevent mo d. Minimize 2 Specification a. Table 3 b. pH Confid	general : oisture c fouling (is i, Page 1 j, Page 1 b)	surface corrosion arryover of heat transfer surfaces 2.3-11 nimizes corrosion of stee
			and 2. Hig film 3. Co	iron gh pH h n ntrolled ydroxide	elps maintain Magnetite by adding ammonium to the condensate system

(

(

COMBU	ISTION EN	GINEERI	NG LESSON PLAN		
Lesson No.305-06/905-3C	Title: RE	ACTOR C	OOLANT SYSTEM		
Written by: Loren F. Dona	tell Apj	Approved by: Larry Bell Date: 11/2/92			
Figure 3 2.3-9 Page 3 2.3-33	3.9	9.8 Steam 3.9.8.1	 c. Oxygen Control Minimize p Necessary forsion Develops not product Deaerate condition Add hydrazi Oxygen speed d. Conductivity Prevent form S.G. tubes Impurities: and sodium e. Chlorides Chlorides Chloride stription Increase condition Increase condition Increase condition Increase condition Solids Control Increase condition Increase condition Solids Control Increase condition Solids Control Increase condition Mard scale Soft sludge Measure sil Generator Blowdown Provide indication of blowdown Provide indication of blowdown Provide indication of blowdown 	itting or chloride stress corro on-protective corrosion indensate ine to condensate cification on condensate nation of hard scale on calcium, magnesium, ess corrosion rosion eat transfer surface ica and Recovery System er chemistry limits by al of impurities through of a primary to secondary olowdown for econdary inventory by owdown and return to the l	

(

(
COMBU	STION ENGINEERI	NG LESSON PLAN	
Lesson No.305-06/905-3C	Title: REACTOR CO	OOLANT SYSTEM	
Written by: Loren F. Donat	ell Approved by:	Larry Bell	Date: 11/2/92
		System Description A. Bottom Blowdown 1. 2" line 2. Blowdown ri- on the tube s 3. Ring near the sheet support 5. Surface Blowdown 1. 1" line 2. Header abov 2. Blowdown lines 1. Separate 2. Isolate on C. 3. Blowdown Tank 1. 2,350 gal. 4. Blowdown rate is rr 1. 150 gpm 5. Radiation detection 1. Recirculation 2. Pump, cooler g. Normal operation 1. Head provid 2. Coolers reduces exchange 3. One cooler other cooled 4. Filtered for 5. Ion exchanger outle 1. Normally to 2. Circulating draining ac 3. Miscellaner automatical sensed on the	ing internally mounted sheet domed head of the tube ort cylinder e the feedwater ring IS anually set, normally n of 0.3 gpm er, radiation detector ed by the tank nee temperature for ion cooled by condensate, by service water insoluble impurities te for soluble impurities to the condenser water system during tivities ous Waste System (MWS) lly if high radiation is the ion exchanger outlet

 \bigcirc

COMBUSTIC	ON ENGINEERI	NG LESSON PLA	N	
Lesson No.305-06/905-3C Titl	e: REACTOR CO	OOLANT SYSTEM	1	
Written by: Loren F. Donatell	Approved by:	Larry Bell	Date: 11/2/92	
Figure 3 4 10 2.3-10 Page 3 4 5 2.3-10	3.9.9 Steam	Generator Instrume	entation	
	3.9.9.1	Steam Generator L	evel	
		b. 6 Narrow range	c sh	
		1. 0-100%	of 183.16" 15.20	
	1	2. Upper tap 3. Lower ta	n steam drum at 614 5/16	
	/	431 5/32	2" 35.93'	
		4. Four sup	ply RPS for low level	
	i	reactor t	rip and high level turbine	-
	ſ	trip 5 Two sur	ply FWCS	
		c. 4 Wide range		
		1. Tube she	eet to upper tap 486" 40 5'	
		2. Actuate	the Emergency Feedwater	
		System بن (۲۵ ' ۲۵'	at-170"(65% narrow range) low O control level	
	3.9.9.2	Steam Generator I	Pressure	
		a. 4 safety relate	d transmitters	
		1. connecte	d to upper level taps	
		b. ESF 1. SGIS at and the l	703 599 psia closes the MSIVs MFIVs	
		c. RPS	703	
		1. Reactor	trip at 500 psia for steam	
			ak protection	1
		2. Asymmetry for MS	IV closure at power	
	3.9.9.3	RCS Flow		
		a. 4 dp taps in S.	G. outlet plenum	
		b. Low side taps		
		c. RPS low flow t	rip	

.

ĺ

C	COMBUSTION ENGINEERING LESSON PLAN					
Lesson No.305-06/905-3C Title: REACTOR COOLANT SYSTEM						
Written by: Loren 1	Written by: Loren F. Donatell Approved by: Larry Bell Date: 11/2/92					
	3.10	System Opera	tions			
		3.10.1 Plant	Start-up			
		3.10.1 Plant \$ 3.10.1. 3.10.1.	 Start-up 1 Initial Conditions a. Reactor is shutdow 1. Shutdown M b. SDC in operation c. Rcs drained for maid d. RCS temperature < e. RCS is vented to at f. SGs are in wet layue 1. Hydrazine a ide for cherned 2 Major Steps a. Fill and Vent RCS 1. CVCS or SI b. Drain down the SCC c. Begin heatup of the d. Form bubble in prosure e. Establish automatice f. Increase RCS pressing in pressure 1. Proper seal 2. NPSH for F h. One RCP in each Ia 1. Sweeps the i. Final RCS vent j. Start three RCPs to 1. 6000 HP va assemblies 3. 3.2 MWth Ia 	n Margin of 3% intenance 200 °F mosphere p and Ammonium Hydrox nistry control DC is to operating level pressurizer to ~ 300 °F essurizer level with no decrease pressurizer level control ure with heater operation of 270 psia operation at 200 psia 2CPs at 266psia oop for 3-5 minutes S.G. begin heatup s. 4500 HP ater density may life fuel causing fretting / pump ealign		
			I Open SIT outlet v m. At 500°F start th	valves prior to 300 psia e forth RCP		

١

(

Lesson No.305-06/905-3C Title: REACTOR COOLANT SYSTEM			
Written by: Loren F. Donat	Approved by: Larry Bell	Date: 11/2/92	
Written by: Loren F. Donat	 Approved by: Larry Bell n. Place pressurin automatic o. Establish no li automatic p. Establish des q. Withdraw CH r. Escalate power 3.10.2 Plant Shutdown a. Shift generator load reactor power by bo b. Trip the turbine at - c. Secure Main Feedware for S.G. d. Shutdown the reactor e. Trip one RCP in each f. Cooldown by dumping g. Volume control by 6 h. Pressure control by 6 h. Pressure control by 6 k. Further pressure red 	Date: 11/2/92 izer pressure control load Tave with SDBCS in ideed boron concentration EAs to establish criticality er to grid while reducing bration -10% power ater and establish Auxiliary level control at ~ 3% power or by inserting CEAs th loop ng steam to condenser CVCS spray valve manual operation ion <300 °F and < 260 psia	

.

(

325C-3		
Lesson Title:	CEA Mechnical, Electrical, RPI	Date: 5/20/87 Rev: 0
Program:	<u>R-205P-9, 10</u>	Author: T. L. Bell
		Reviewed by Reviewed
	1.0 Special Instructions and Tr 1.1 R205-9,10 Viewgraph Pa	raining Aids

- 2.0 References
 - 2.1 CE Systems Manual Section Chapter 8
 - 2.2 ANO2 NSSS Lectures

doug plant DESC. #60

-

•

.

.

1

Note	S	L	esson	Plan (Cont	tinuation Sheet)
	3.0	Objec	tives		
OBSECTIVES TP		3.1	Cover	learning (objectives on page 8.1-1
Que lor TP	4.0	Prese	ntatio	n	
Reacted in		4.1	Mechan	nical Cons	truction
Fig 3.1.7			4.1.1	Mechanis	m may be divided into 3 parts
- 1G 3,1-2 +				4.1.1.1	Drive shaft assembly
				4.1.1.2	Pressure housing and drive unit
				4.1.1.2	Coil assemblies
FIGURE			4.1.2	Drive Sh	aft Assembly
8-1		Coule	TTP	4.1.2.1	Collet at bottom of extension
FG 8-19					shaft coupled to CEA
510 8-2 PC				4.1.2.2	Extension shaft contains grooves
FIGO - TO	10-21				that allow grippers to move rod
				4.1.2.3	Top extension shaft - allows
					coupling and uncoupling
				4.1.2.4	Magnet assembly actuates reed
					switches used in rod position
					indication.
FIG 8-3 PC	a 8-23		4.1.3	Pressure	e Housing and Drive Unit
				4.1.3.1	Bottom of unit threaded to CEA nozzle on vessel head-seal welded
				4 1 3 2	Upper part of unit sealed with a
					threaded cap and seal welded
				4.1.2.3	RCS pressure boundary
•		6		4.1.2.0	2 latches (grippers) move CEA via
		F			grooves in extension shaft
				F	IG 8-7 UPPER BRIPPER
				F	IG 8-8 WWEE GRIPPEE
FIG 8-4					
(BOTTOM OF D	pper				
Pressure Hou	ZINE)				
Fig 8-5					
(TOP OF UPPER	2				
Personer Hou	SAUG				
AND VENT)	ł				

.

Page 3 of 11

-

Notes	esson Plan (Continuation Sheet)
F1G8-6	4.1.3.5 "Necked down" shape concentrates magnetic lines of flux from electro-magnetic coils
FIG 9-9	4.1.4 Electromagnetic Coils 4.1.4.1 5 Coils o Lift Coil - used to move extension shaft
-19-2-1	o Upper Gripper - normal holding coil o Pull Down - repositions upper
40,749 (1000 40,749 (1000 1 500 (1000)	o Load Transfer - transfers load between upper and lower grippers during movement o Lower Gripper - holds CEA during
Fig 8-10	intermediate movement steps 4.1.4.2 CEA Withdrawal Sequence (a) CEA is moved in 3/4 inch steps (b) Initial condition - upper gripper energized holding CEA (c) Lift coil energized pulling CEA up 3/4" (d) Lower gripper energized to hol CEA in new position (e) Load transfer coil energized
	pulling lower gripper up 1/16" - positive engagement

-

Page 4 of 11

	an (Cont	inuation Sheet)
		(f) Upper gripper deenergized
		(g) Pull down coil pulls upper
		gripper down
		(h) Upper gripper engaged
		(i) Load transfer disengaged -
		xfers load to upper grippers
4.	.1.4.3	CEA Insertion
		(a) Initial conditions - upper gripper energized
		(b) Energize lower grippers
		<pre>(c) Load transfer coil energized positive lower gripper engage ment</pre>
		(d) Deenergize upper grippers
		<pre>(e) Lift coil energized - pulls gripper up 3/4".</pre>
		(f) Energize upper grippers
		(g) Load transfer deenergizes
		(h) Lower gripper deenergizes
		<pre>(i) Lift coil deenergizes - CEA drops 3/4"</pre>
4	.1.4.4	Withdrawal/insertion sequence
		controlled by CEDMCS
4.2 CEA Powe	r Suppli	es
4.2.1 G	eneral	
4	.2.1.1	Redundant MG sets
· 4	.2.1.2	Output breakers/control cabinet
1	0 7 0	Deather the strauth headlong
	4. 4.2 CEA Powe 4.2.1 G 4	4.1.4.3 4.1.4.3 4.1.4.4 4.2 CEA Power Suppli 4.2.1 General 4.2.1.1

(

Page 5 of 11

Notes	Lesson Plan (Continuation Sheet)
	4.2.2 MG sets
	4.2.2.1 Motor
	(a) 480 VAC-30-60 Hz induction motor
	(b) Non vital power
	(c) Drives generator and flywheel
	<pre>(d) Flywheel - maintains generator output during momentary losses of power (< 1 min)</pre>
	4.2.2.2 Generator
	(a) 240 VAC-3 f -60 hz output
	(b) Either generator is capable
	of supplying full load
	4.2.3 Control Cabinet
	4.2.3.1 Motor start/stop
	4.2.3.2 Synchroscope
	4.2.3.3 Output breakers
	4.2.4 Reactor Trip Circuit Breakers
	4.2.4.1 Circuit breakers #9 is <u>not</u> a RTCB
	(a) Maintains MG set synchroni- zation
	4.2.4.2 PPS controls opening of Bkrs 1-8
	4.2.4.3 Breakers operate in pairs
	(a) Allow on-line testing
	<pre>(b) Single failure will not cause trip</pre>
	(c) 1x2x2 logic
	(d) Plant computer input - CEA drop time
	4.2.4.4 or corrected turbine trip on re-
	(a) denerate tarbine trip on to

\mathbf{C}	Notes	Lesson Plan (Continuation Sheet)			
		4.2.4.5 Power supplied to 2 power busses ~			
		1/2 CEAs powered from each bus			
		4.3 Control Element Drive Mechanism Control System			
		4.3.1 General			
		4.3.1.1 Provides CEA control			
		4.3.1.2 Downstream RTCBs => cannot inter-			
		fere with PPS.			
		4.3.1.3 Coil power switches - supplies 5 coils			
		4.3.1.4 Logic controls power switch			
	FIG 8-13	4.3.2 Power Distribution			
		4.3.2.1 Block Diagram (Typical of 2 busses)			
		4.3.2.2 Distribution bus supply subgroups			
		(a) ~ 10 subgroups per bus			
		(b) Individual CEA breakers			
\cup		(c) Coil switch			
-		4.3.2.3 Hold Bus			
		(a) Rectified input (50 VDC)			
<u>. </u>		(b) Subgroup xfer for maintenance			
		(c) Supplies power to upper			
		grippers only			
	FIG 8-14	4.3.3 Coil Power Switch			
		4.3.3.1 Block Diagram			
		4.3.3.2 3 SCRS/Coil			
		4.3.3.3 Logic circuit controls coil			
		energization by controlling SCR			
		gate			
		4.3.3.4 High/low Logic			
		(a) High => initial coil energi-			
		zation => more energy			
		(b) Low => holding mode			
		(c) Controlled by logic			
\smile					

•

Page 7 of 11

\smile	Notes	Lesson Plan (Continuation Sheet)	
	FIG 8-15	4.4 CEDMCS Control Panel	
		4.4.1 Purpose-allows manual or automatic control	
		of CEAs	
		4.4.2 CEA Group Assignments Fig 3.1-21 CEA	m A l
		A & B - Shutdown Banks - no control	
		functions 1-6 - regulatory groups -	
		Control pwr/t _{ave}	
		P - Part lengths - axial power shape	
		4.4.3 Control Panel Lights	
		4.4.3.1 Group lights - energized when gp selected	
		4.4.3.2 In/Out arrows - Indicate commanded motion direction	
		4.4.3.3 Individual Lights	
		(a) Red - fully withdrawn (150")	
. ,		(b) White - control available	
\bigcirc		(c) Green - fully inserted (0")	
		4.4.4 Control Modes	
		4.4.4.1 Manual Individual	
		(a) Any of 81 CEAs may be	
		positioned	
		(b) CEA selected by TENS and UNITS switches	
		(c) Dropped rod recovery - testing	
		4.4.4.2 Automatic Sequential	
		(a) Groups 1-6 only	
		(b) CEAs positioned by RRS signal	
		(c) Sequence	
		• 90" withdrawal - next group	
		starts to move	
		• 60" insertion - previous	
		group starts to move	
\cup			
-			
		I	

Notes	Lesson Plan (Continuation Sheet)	
	4.4.4.3 Automatic Sequential Interlocks	
	(a) CWP	
	(b) AWP	
	(c) AMI	
	4.4.4.4 Manual Sequential	
	(a) Groups 1-6 only	
	(b) Sequenced as above	
	4.4.4.5 Manual Group	
	(a) All CEA groups	
	(b) Group determined by GROUP SELECT	
•	switch	
	(c) Normal control mode for shutdown	
	banks	
	4.4.4.6 P - Part Length	
	(a) Used to position Part Length CEAs	
	4.5 Operation and Logic Diagrams	
	4.5.1 Initial Conditions	
	(Use Reactor Startup and Power Escalation)	
	4.5.1.1 ECP calculated	
	4.5.1.2 Plant in condition to support reactor	
_	startup	
FIG 8-16	4.5.2 Shutdown Bank Withdrawal	
	4.5.2.1 Select MG	
	4.5.2.2 Select Shutdown Bank A	
	4.5.2.3 Withdraw CEAs to upper group stop	
	(145")	
FIG 8-17	4.5.2.4 Select MI and IENS-UNIIS to pull	
	each CEA to upper ejectrical limit	
	4.5.2.5 UEL - Stops LEA motion	
	4.5.2.6 kepeat 2-4 for Bank B	

Page 9 of 11

Notes	Lesson Plan (Continuation Sheet)
	4.5.3 Regulating Group Withdrawal
PIG 0-10	4.5.3.1 Select MS
	4.5.3.2 Groups 1-6 withdrawn in sequence 90
	4.5.3.3 UGS stops motion
	(a) MI withdrawal may be used
	4.5.3.4 Criticality/power escalation
	4.5.4 Auto Sequential
	4.5.4.1 \geq 15% - place in automatic
	4.5.4.2 RRS positions CEAs
	4.6 CED Inhibits/Prohibits
	4.6.1 Control Withdrawal Prohibits (CWP)
	. 4.6.1.1 PPS generated
	4.6.1.2 2/4 Hi pzr press, DNBR, LPD
	4.6.2 AWP
	4.6.2.1 RRS/SDBCS generated
-	4.6.2.2 Hi T _c , H, (T _{ave} -T _{ref}), any SDECS
	valve open
	4.6.3 AMI
	4.6.3.1 SDBCS generated
	4.6.3.2 Pwr < 15%, or AMI
	4.7 Rod Position Indication
	4.7.13 Two methods of position indication
	4.7.1.1 Actual rod position
	4.7.1.2 Demanded rod position
FIG 8-20	4.7.2 Actual Rod Position
	4.7.2.1 Safety system
	4.7.2.2 Reed switches activated by magnet or
	CEA shaft (switches 1.5" apart)
	 4.7.2.3 Cuts resistors in and out of voltage
	divider network
	4.7.2.4 2 RSPTS per CEA

Page 10 of 11

Notes	Lesson Plan (Continuation Sheet)
	4.7.2.5 RSPT outputs
	(a) CEAC inputs - every rod - rod
	misalignment
	(b) CPC - 20 CEAs/CPC - target
	rods - radial flux calc.
	(c) UEL & LEL - stops rod motion
	(d) computer input (LEL) - rod
	drop times (i.e., CKT BKR
	opening time LEL actuation
	time
	4.7.3 Demanded Rod Position
	4.7.3.1 Not safety related
	4.7.3.2 Computer counts pulses sent to coi
	4.7.3.3 Assumes CEA moves each time it is
	commanded to move
	4.7.3.4 Demanded position outputs
	(a) Indication - MI selection
	determines output on digital
	meters
	(b) Sequence interlocks -
	UGS-LGS
	(c) Computer generated PPDIL &
1	PDIL alarms
	(d) COLSS inputs
	5.0 Technical Specifications
	5.1 Position Indication
	5.1.1 Operable position indication required for:
	5.1.1.1 Compliance with rod position requ
1	ments
1	5.1.1.2 CPC/CEAC operability

-

Page 11 of 11

, .	Notes Lesson Plan (Continuation Sheet)		
•		5.1.2 CEA drop time (\leq 3 seconds)	
		5.1.2.1 Assumed drop time in Safety Analysis	
		5.1.3 PDIL	
		5.1.3.1 SDM	
		5.1.3.2 Ejected Rod	
		5.1.3.3 Peaking Factors	
		5.1.4 Alignment Requirements	
		5.1.4.1 Spec 3.1.3.1	
_			
	1		
		-	
-			

 Lesson Title:	Reactor Regulating System	Date: 10/8/8	5 Rev.: 0
Program:	R-205P-11 @ 325C-4	Author:	T. L. Bell
		Reviewed by:	T. L. Bell

- 1.0 Special Instructions and Training Aids
 - 1.1 Training Aids
 - 1.1.1 Viewgraphs package for R-205P-11
- 2.0 References

•

à

- 2.1 CE Systems Manual Section 11.3
- 2.2 CCSD

Loccon Plan (Continued)				
Notes	Lesson Plan (continued)			
	3.0 Objectives 3.1 Cover objectives on page 11.3-1			
PG 11.3-1	4.0 Presentation 4.1 Purposes of RRS 4.1.1 Control Tave from 15% to 100% 4.1.1.1 Steady State 4.1.1.2 5% ramp 4.1.1.3 10% step 4.1.2 Along with SDBCS, controls Tave during			
FIGURE 11.3-1 PQ :1.3-1 5	<pre>4.1.2 Along with SUBES, controls have during 4.1.2.1 Load rejection 4.1.2.2 Turbine trip 4.1.2.3 Turbine setbacks 4.1.3 Pzr Water Level Setpoint 4.1.4 2 RRS - Either may be selected 4.2 Basic Control Loop 4.2.1 Needs setpoint (first stage pressure) 4.2.2 Needs actual value - Tavg 4.3 RRS Inputs 4.3.1 Temperatures 4.3.1.1 Well mounted RTDs 4.3.1.2 Non safety related (i.e. control grade) 4.3.1.3 Hot Leg Temp (a) Narrow range - 525°F to 625°F (b) Selector switch 4.3.1.4 Cold Leg Temp (a) Narrow range - 525°F to 625°F (b) 2 RTDs to selector switch (c) Non-selected → wide range (d) Selecting loop 1 & 2 mini- mizes effect of RTD failure</pre>			
	(a) Selecting hop i a 2 minu mizes effect of RTD failure			

Page <u>3</u> of <u>6</u>

Notes	Lesson Plan (Continued)				
	549				
	(f) High Tc AWP - minimize - 552				
	approach to T _c T.S. limit				
	4.3.2 Tave Calculation				
	4.3.2.1 $(T_{H} + T_{c})/2$				
	4.3.2.2 Outputs				
	(a) Temperature error (Tave-Tref)				
	(b) Pzr level setpoint				
	4.3.3 Turbine First Stage Pressure				
	4.3.3.1 Turbine First Stage Pressure				
	Proportional to Plant (secondary				
	power)				
	4.3.3.2 Controlling Tave for turbine				
	efficiency				
	4.3.3.3 Converted to Tref signal				
4	(a) $0\% = 545^{\circ}F$				
	(b) $100\% = 583^{\circ}F$				
	(c) Temp setpoint				
	4.3.3.4 Power Mismatch				
	4.3.4 Control Channel Input				
	4.3.4.1 Compared with turbine power				
•	4.3.5 Pressurizer Pressure				
	4.3.5.1 Temp change = pzr level change =				
	pressure change				
	4.3.5.2 Not normally used				
	4.3.5.3 Control grade input				
	4.4 Circuitry				
	4.4.1 Temperature Summer				
	4.4.1.1 Tave - Tref				
k ,	•				
\smile					

Page <u>4</u> of <u>6</u>

	 4.4.1.2 Lead/Lag Circuit (a) signal delay (b) allows over and undershoots of reactor power to restore Tave = Tref 4.4.1.3 AWP on Hi Tave - Tref (5°F) 4.4.1.4 Temp Error Feeds Total Error
	Summer
	4.4.2 Power Error 4.4.2.1 Anticipates change in Tave caused by a difference in turbine and reactor power
	4.4.2.2 Looks at rate of change only
	4.4.2.3 Feeds total error circuit
(4.4.3 Total Error Summer
	4.4.3.1 Combines temperature and power errors
	4.4.3.2 Output used to determine CEA
FIGURE 11.3-2	A E CEA Motion/Speed
Page 11.3-13	4.5 CEA Motion Speed 4.5.1 Tave must deviate from Tref by 2°F to
	4.5.2 Bistable action causes slow CEA speed (3 inches/min)
	4.5.3 Errors >3°F cause high speed with- drawal (30 inches/min)
	5.0 Operations
	5.1 Power Escalation 5.1.1 Automatic Sequential must be selected
	•

Page <u>5</u> of <u>6</u>

Notes	Lesson Plan (Continued)
Notes	Lesson Plan (Continued) 5.1.2 Power >15% 5.1.3 PDIL prevents full escalation on CEAs 5.1.3 With Gp 6 @ 112" - not enough reactivity to overcome power defect. 5.1.3.2 CEAs and boron used to escalate power 5.1.4 Philosophy 5.1.4.1 CEA motion causes rapid local flux and temp changes 5.1.4.2 CE believes rapid local temp changes lead to fuel failures 5.1.4.3 Auto withdrawal removed at some units
Figure 11.3- Page 11.3	3 5.1.5 Ramp Decrease JS 5.1.5.1 Load change initiated at turbine G 5.1.5.1 Load change initiated at turbine G 5.1.5.1 Load change initiated at turbine G 5.1.5.2 Reduction in turbine power causes output from temp and power error 5.1.5.3 Immediate slow speed insertion 5.1.5.4 Reactor power < Turbine Power
Figure II. Page II.	5.1.6 Step Decrease 5.1.6.1 10% step shown 5.1.6.2 Tave > Tref - lack of heat removal 5.1.6.3 Tave > Tref - does not exceed deadband

Notes	Lesson Plan (Continued)					
	6.0 Indications and Interfaces 6.1.1 Indications - page 11.3-7 6.1.2 Interfaces - page 11.3-8					
	•					
	`					

COMBUSTION ENGINEERING LESSON PLAN				
Lesson No.305-07/905-802 Title: CHEMICAL AND VOLUME CONTROL SYSTEM				
Written by: Loren F.	Donatell	Approved by: Larry Bell	Date: 10/27/92	
]	1.0 TRAI 1.1 Tr 1.2 Le	NING AIDS/SPECIAL INSTRUCTI ansparency Package for 305-07/905-8 sson Module for 305-07/905-8C	ONS SC	
	2.0 REFE 2.1 CH 2.2 CO	RENCES E Systems Manual, Chapter 4 CNPP System Description No. 6		
			-	

COMBUSTION ENGINEERING LESSON PLAN								
Lesson No.305-07/	Lesson No.305-07/905-8C Title: CHEMICAL AND VOLUME CONTROL SYSTEM							
Written by: Loren	F .Donat	ell	Approv	Approved by: Larry Bell Date: 10/27/92				
	3.0	PRESI	RESENTATION					
		3.1 Le	3.1 Learning Objectives					
		3.1	1	Cover objectives in manual				
		3.2 Int	roducti	on				
		3.2	2.1	System Purposes				
			•	 a. Purification of the RCS b. Control of RCS boron correction. c. Control of RCS volume (d. Addition of corrosion inhomorphic controlled billet. f. Add boron to the RCS in the of an accident g. Supply Pressurizer Auxilianth. Continuous on-line measure boron concentration and i. Provides a means of testimeter and the second secon	Accentration Pressurizer Level) ibiting chemicals eed off the event iary spray urement of RCS RCS activity ig HPSI check valves			
Figure 4-1 Page 4-13		3.	2.2	Simplified System Diagram	1			
1 azu +-1J		3.3 CVCS System Description						
Figure 4-2 Page 4-15		3.	3.1	Letdown				
				3.3.1.1 RCS Interface a. From RCP 12A st	iction			
	•			 3.3.1.2 Letdown Stop Valve a. CV-515 b. Close on High Teoremative Con Regenerative Context outlet. (470 °F) 1. Protect 2. Ensure constanting 	emperature Heat Exchanger against loss of charging cooling to Hx. prior to g letdown			

7

	Title CUE		CONTROL SYSTEM		
Lesson No.305-07/905-8C		: CHEMICAL AND VOLUME CONTROL STSTEM			
Written by: Loren F .Dona	ell Appro	oved by: Larry Bell	Date: 10/27/92		
· · · · ·		c. Close on SIAS. 1. NSR penetration 2. Prevent loss of additional inventory 3.3.1.3 Letdown Containment Isolation Valve a. CV-516 b. Close on SIAS c. Redundant to CV-515 d. Close on CVCIS 1. Actuates on penetration room pressure 2. 2 detectors /room, 2 rooms, 2/4 logic at .5 psig 3.3.1.4 Regenerative Heat Exchanger			
• • •		. 1. letdo b. Initial coolin 1. Ion I c. Preheats cha 1. Mini 3.3.1.5 Excess Flow C a. downstream heat exchan b. Minimize co letdown lin c. Isolates who	wn in tubes, charging in shell ng of letdown Exchanger Operation urging imize thermal stress check Valve of the regenerative ger onsequences of a CVCS he rupture en letdown flow >210 gpm		

(

(

	COMBUSTION ENGINEERING LESSON PLAN								
``\ <u> </u>	Lesson No.305-07/	905-8C	Title:	CHEMICAL AND VOLUME CONTROL SYSTEM					
Ì	Written by: Loren I	F .Donat	e11	Approved by: Larry Bell	Date: 10/27/92				
				 3.3.1.6 Letdown Flow Contro a. CV-110P and CV-12 b. Controlled by Press c. Level above progravelye(s) open d. Level below progravelye(s) close to mile e. Maximum letdown in letdown from exceed f. Minimum letdown in preheat of charging g. Only one valve in set prevent thermal sh h. Two valves may be pressure (<1500 ps i. DP at normal flow i 3.3.1.7 High Pressure Relief a. 600 psig b. Piping design press c. Discharges to WMS 3.3.1.8 Letdown Heat Exchant a. Final reduction in t b. Cooled by CCW or c. Auto temperature c control valve 	l loQ purizer Level m - selected inimum is 128 gpm to prevent ling charging (132 gpm) s 29 gpm to maintain ervice >1500 psia to ock from high flow in service at low ia) s 1630 psid ure is 650 psig ser emperature a shell side ontrol via CCW				
(Max. expected Regen. Hx outlet temp. is 450°F withMax letdown and Min. charging .Corresponding Sat. Press. is 422 psig			 d. Approximately 263 3.3.1.9 Letdown Back Pressu a. CV-201P and CV-2 b. Maintain 460 psign to prevent flashing c. Auto controlled to 1 d. Normally one value with the other in st e. Can select either value 	re Regulators 01Q on the letdown stream letdown line pressure e selected for service andby live or both				
(

ſ	С	OMBU	STIÓN	I ENGINEERING L	ESSON PLAN	
F	Lesson No.305-07/9	905-8C	Title:	CHEMICAL AND	VOLUME CON	IROL SYSTEM
ľ	Written by: Loren H	F .Donat	ell	Approved by: Larry	Bell	Date: 10/27/92
	Figure 4-3 Page 4-17			3.3.1.10 Low a. Set b. Dis Rec 3.3.1.11 Orif a. Pro b. DP an 3.3.1.12 Bor a. Cor b. Co c. Or c. b. dd d. De be e. Flo f. Inst	v Pressure Relief at 205 psig scharges to the R ceiver Tank lice wides letdown fl causes flow thre d the radiation m onometer ntains a 1 curie F ntains 4 BF3 det utput is inversely oncentration due y the boron betw etector vice is temperatu isolated by CV-2 ow rate is 1/2 gpu	eactor Coolant Waste ow indication ough the boronometer nonitor PuBe neutron source tectors of proportional to boron to neutron absorption een the source and the the sensitive. Will 521 at 145°F m to - 2050 +/- 35 ppm
	•			3.3.1.13 Rad a. Na b. Mo c. Fai 3.3.1.14 Leto a. Wo b. 98 c. Re d. Pro	diation Monitor I scintillation de onitors Gross Ac iled fuel (I-135) a down Filters ound cartridge % retention for j moves insoluble events CRUD lo	tector tivity and I-135 Activity and CRUD (Gross) particles >3 microns particles ading of resin

c	OMBUSTIO	NENGINEERING	LESSON PLAN	
Lesson No.305-07/	905-8C Title:	CHEMICAL AND	VOLUME CON	TROL SYSTEM
Written by: Loren I	F.Donatell	Approved by: Larr	y Bell	Date: 10/27/92
<u>ANION (-)</u> exchange hydroxide ions for negatively charged impurities <u>CATION (+)</u> exchange hydrogen ions for metallic ions		3.3.1.15 Ion a. 2 b. A of c. M d. I 3.3.1.16 Le a. T -b. T 3.3.1.17 Th a. C b. N c. A	n Exchangers mixed bed, 1 deb automatic bypass of f 145 °F lixed Bed 1. Soluble ion 2. One in serve 3. Anion / Cat 4. Remove fis activity lim 5. Remove ch for corrosic Deborating 1. Anion 2. Reduce bor 30 ppm etdown Strainer Graps resin fines Fushed to an Aux nree-Way Valve CV-500 Normal flow to V Alternate flow to V 1. On VCT his	orating on high temperature removal ice; one in standby ion in 3:1 ratio sion products for its lorides, fluorides, etc. on control con concentration from <u>iliary-Bldg. floor-drain</u> CT WPS vacuum degasifier igh level of 88%
	3	3.2 Volume C 3.3.2.1 Pur a. (b. 1 c. 1 d. 1 e. 1 3.3.2.2 Le a. 1	ontrol Tank pose Collect Letdown a Provide for Hydro Interface to WPS Interface to Make Normal suction so pumps vel Program Heatup from cold 20 000 to 30 000	and Controlled Bleed off ogen Addition up System ource for the Charging shutdown results in gallons to WPS.

.

COMBUSTION ENGINEERING LESSON PLAN							
Lesson No.305-07/905-8C	Title:	CHEMICAL AND VOLUME CON	CHEMICAL AND VOLUME CONTROL SYSTEM				
Written by: Loren F .Dona	tell	Approved by: Larry Bell	Date: 10/27/92				
	3.	 b. Large Dilutions Lower RCS for criticalit Compensate as power is Compensate concentration 3.3.2.3 Gas Interface Hydrogen 20 -40 psig Nitrogen 20 -40 psig Nitrogen Cover gas f Removed for to the RCS Waste Gas System Remove Fis 3.3.2.4 Controlled Bleed Off 1 gpm per RCP Excess flow check Isolates on CHS'5/ Air operate Relief to Qu 3.3.2.5 VCT Outlet Valve Closes on VCT lov Closes on SIAS 3.3.1 Purpose Return purified co Add coolant to the 	boron concentration y for power coefficient increased to 100% for changes in Xenon on overpressure for Oxygen or maintenance purge r operation. If introduced it will form Nitric Acid sion gases valve AS d valves CV-505,506 hench Tank when isolated w-low level (5.6% olant to the RCS RCS during an accident				

(

(

(_____

Lesson No.305-07/905-8C	Title: CHEMICAL AND VOLUM	E CONTROL SYSTEM
Written by: Loren F .Donat	ell Approved by: Larry Bell	Date: 10/27/92
	3.3.3.2 Charging Pum	p Suction
	a. Normal from	m the VCT outlet
	b. RWT Supp	ly
	1. CV-	504 or Operated
	2. Mot 3. One	ns on VCT low-low level
	c. Gravity feed	d and boration supply
	d. Chemical fe	ed
	1. LiO	H for pH control
	2. N ₂ H	* for Oxygen control in cold
	Snut	luowii
	3.3.3.3 Charging Pun	nps
	a. Positive Di	splacement
	1.3 pt h 44 epm	ston; 2 1/0 ma., 3 shoke
	c. Powered fro	om 480 VAC vital buses
	d. Pump 13 m	ay be powered from either b
	(swing pur	ip)
	e. Automatic s	start on SLAS
	g. Protected b	y 2800 psig discharge relief
	h. Water lubr	icated packing
	1. Grav	vity fed from a small storage ta
	3.3.3.4 Charging Ret	um
	a Via Regener	rative Heat Exchanger
	b. Normally E	inea up to two loops
	c. Auxiliary S	pray when RCPs are not runn
	1. CV-	-517
	3.3.3.5 HPSI Check	Valve Testing
	a. HPSI disch	arge too low to open check
	valves dur	ing normal operation (1400 ps
	b. Line from (common charging header to
	HPSI Syste	umns chow valve onershilitu

	COMBUSTION ENGINEERING LESSON PLAN							
Lesson No.305-07	/905-8C	Title:	CHE	CHEMICAL AND VOLUME CONTROL SYSTEM				
Written by: Loren	F .Donat	ell	Appr	oved by: Larry Bell	Date: 10/27/92			
		3.4 M	akeup	System Description				
		3.4	.1	Boric Acid Makeup System				
				3.4.1.1 Two Boric Acid Make a. 9,500 gallons each t b. 12,700 ppm boron c. Ensure 1% SDM at and Xenon Free	eup Tanks ank EOL, Cold (<200°F)			
				3.4.1.2 Gravity Feed Valves a. CV-508,509 b. Direct to charging c. Open on SIAS	pump suction			
				 3.4.1.3 Boric Acid Pumps a. 143 gpm which is a of three charging p b. 10 gpm recirculation c. 480VAC vital bus d. SIAS 1. Both pump 	greater than the capacity pumps at 132 gpm on es s start			
				2. CV-514 op 3. Recirculatio CV-511 clo 4. Path is redu	ens on valves, CV-510 and se undant to gravity feed			
		3.4	4.2	Reactor Makeup Water				
				 3.4.2.1 Demineralized Water a. Demineralized Water 1. 350,000 gate 2. Filled from water system 3. Reservoir form 	r ter Tank llons a the demineralized em or Reactor Makeup Water			

 $\left\langle \right\rangle$

C	COMBU	STÍOÌ	IENGI	NEERI	NG LESSON PLAN	
Lesson No.305-07/	905-8C	Title:	CHEM	IICAL A	AND VOLUME CON	TROL SYSTEM
Written by: Loren	F.Donat	ell	Approv	ved by:	Larry Bell	Date: 10/27/92
		2	4.2	3.4.2.2	Reactor Coolant Mal a. RCMU Pumps b. Two single stage o c. NSR - 480 VAC n	ceup (RCMU) centrifugal on-vital
		5.4	+.2	3.4.3.1	Borate Mode a. Select addition rat b. Select batch size c. Open the Makeup 1. CV-512 d. Mode Selector Sv e. Boric Acid Pump f. CV-210Y controls g. When addition eq CV-210Y closes pump will stop	e Stop Valve vitch to "Borate" starts the addition rate uals the batch size and the boric acid
				3.4.3.2	 2 Dilute Mode a. Select addition ra b. Select batch size c. Open the Makeup 1. CV-512 d. Mode Selector Sie. RCMU Pump state f. CV-210X control g. When addition experimental stop 	te o Stop Valve witch to "Dilute" rts s the addition rate quals the batch size and the RCMU
				3.4.3.	2 Automatic Mode a. System controlle b. Automatic make 1. Blended CV-210Y 2. Concentr flow con	d by VCT level up between 72% and 86% makeup through 7, CV-210X, and CV-512 ation determined by ntroller settings

(

COMBU	STION	I ENGI	NEERING LESSON	PLAN	
Lesson No.305-07/905-8C	Title:	CHEM	IICAL AND VOLUM	E CON	IROL SYSTEM
Written by: Loren F .Donat	ell	Appro	ved by: Larry Bell		Date: 10/27/92
			3.4.3.3 Manual Mode a. Allows cont valve in sys	rol of a	ny control or control
	3.5 En	gineere	d Safety Features		
	3.5	5.1	Engineered Safety Fe a. Letdown is b. VCT outlet c. All Chargin d. Both Boric e. Gravity feed f. Boric acid d charging pu 1. CV- & g. No credit in h. Operator ac	atures A isolated valve c g Pump Acid Pu d addition lischargo mp suct 514 n Safety tion rec	Actuation (NSR) loses as start umps start on valve opens e opens directly to the ion Analysis puired to secure system
¥	78	0°10	FSAR assumes	80gr	om chy flow.

Page 1 of 4

	Lesson Title:	Pzr Level and Pressure	Date: 10/1/86 Rev.: 0
(-	Program:	R205P-8- 325C - 6.1. /. Z	Author: Gage
	11091000		Reviewed By: Bell

- 1.0 Special Instructions and Training Aids
 - 1.1 R2-5P-8 Viewgraph Package
- 2.0 References

ŧ

- 2.1 CE Manual Chapters 11.1 and 11.2
- 2.2 Waterford 3 Training Manual
- 2.3 ANO2 Training Manual

.

Page <u>2</u> of <u>4</u>

 3.0 Objectives - pp 11.2-1 and 11.2-1 4.0 Pzr Pressure 4.1 Purposes - pg 11.1-1 4.2 System Description 4.2.1 2 Groups of Heaters 4.2.1.1 2 Banks of proportional 150 km end. 4.2.1.2 4 g Banks of backup 300 km end. 4.2.2 Pressure Control Station 4.2.2.1 Manual/auto transfer capability 4.2.2.2 Setpoint Adjustment 4.2.3 Display (setpoint & pressure) 4.2.3 Pressure Indicator Controller Output (Pressure - setpoint) 4.2.3.1 Auto (setpoint - indicated
 4.0 Pzr Pressure 4.1 Purposes - pg 11.1-1 4.2 System Description 4.2.1 2 Groups of Heaters 4.2.1.1 2 Banks of proportional 150 FW. 4.2.1.2 4 Ø Banks of backup 300 KW each 4.2.2 Pressure Control Station 4.2.2.1 Manual/auto transfer capability 4.2.2.2 Setpoint Adjustment 4.2.2.3 Display (setpoint & pressrue) 4.2.3 Pressure Indicator Controller Output (Pressure - setpoint) 4.2.3.1 Auto (setpoint - indicated
 4.1 Purposes - pg 11.1-1 4.2 System Description 4.2.1 2 Groups of Heaters 4.2.1.1 2 Banks of proportional 4.2.1.2 4 % Banks of backup 300 KW code 4.2.2 Pressure Control Station 4.2.2.1 Manual/auto transfer capability 4.2.2.2 Setpoint Adjustment 4.2.2.3 Display (setpoint & pressrue) 4.2.3 Pressure Indicator Controller Output (Pressure - setpoint) 4.2.3.1 Auto (setpoint - indicated
 4.2 System Description 4.2.1 2 Groups of Heaters 4.2.1.1 2 Banks of proportional 150 FW exc. 4.2.1.2 4 Ø Banks of backup 300 KW exc. 4.2.2 Pressure Control Station 4.2.2.1 Manual/auto transfer capability 4.2.2.2 Setpoint Adjustment 4.2.2.3 Display (setpoint & pressrue) 4.2.3 Pressure Indicator Controller Output (pressure - setpoint) 4.2.3.1 Auto (setpoint - indicated
 4.2.1 2 Groups of Heaters 4.2.1.1 2 Banks of proportional 150 FW exc. 4.2.1.2 4 Ø Banks of backup 300 KW exc. 4.2.2 Pressure Control Station 4.2.2.1 Manual/auto transfer capability 4.2.2.2 Setpoint Adjustment 4.2.2.3 Display (setpoint & pressrue) 4.2.3.1 Auto (setpoint - indicated
 4.2.1.1 2 Banks of proportional 1000 4.2.1.2 4 & Banks of backup 300 Kus code 4.2.2 Pressure Control Station 4.2.2.1 Manual/auto transfer capability 4.2.2.2 Setpoint Adjustment 4.2.2.3 Display (setpoint & pressrue) 4.2.3 Pressure Indicator Controller Output (<i>Pressure - setpoint</i>) 4.2.3.1 Auto (setpoint - indicated
 4.2.1.2 4 Ø Banks of backup 300 KOS escal 4.2.2 Pressure Control Station 4.2.2.1 Manual/auto transfer capability 4.2.2.2 Setpoint Adjustment 4.2.2.3 Display (setpoint & pressrue) 4.2.3 Pressure Indicator Controller Output (pressure - setpoint) 4.2.3.1 Auto (setpoint - indicated
 4.2.2 Pressure Control Station 4.2.2.1 Manual/auto transfer capability 4.2.2.2 Setpoint Adjustment 4.2.2.3 Display (setpoint & pressrue) 4.2.3 Pressure Indicator Controller Output (<i>Pressure</i> - setpoint) 4.2.3.1 Auto (setpoint - indicated
 4.2.2.1 Manual/auto transfer capability 4.2.2.2 Setpoint Adjustment 4.2.2.3 Display (setpoint & pressrue) 4.2.3 Pressure Indicator Controller Output (Pressure - setpoint) 4.2.3.1 Auto (setpoint - indicated
4.2.2.2 Setpoint Adjustment 4.2.2.3 Display (setpoint & pressrue) 4.2.3 Pressure Indicator Controller Output (Pressure - setpoint) 4.2.3.1 Auto (setpoint - indicated
4.2.2.3 Display (setpoint & pressrue) 4.2.3 Pressure Indicator Controller Output (Pressure - setpoint) 4.2.3.1 Auto (setpoint - indicated
4.2.3 Pressure Indicator Controller Output (Pressure - setpoint) 4.2.3.1 Auto (setpoint - indicated
4.2.3.1 Auto (setpoint - indicated
pressure/
4.2.3.2 Manual (value set by operator)
4.2.4 Spray Valves
4.2.4.1 Both valves - 375 gpm
4.2.4.2 Bypass flow - 1.5 gpm (27KW loss)
maintain temperature of spray
piping
4.3 Normal Operations
4.3.1 controller setpoint = 2250 psia
Δ setpoint \rightarrow corresponding Δ heaters
∆ spray
4.3.2 Proportional controller
cannot hold pressure at setpoint
4.3.3 Equalize Boron Concentration
85 gpm spray → will have difference between
Pzr & RCS boron in 1 hour.

-

.

Page <u>3</u> of <u>4</u>

	Notes	\`		Lesson Pla	an (Continua	ation Sheet)
	NOLES		4.4	Protection 4.4.1 4.4.2 4.4.3 4.4.4	n Signals High Pzr P SI actuat Low Pzr Pr CPC input	ressure Rx Trip (2400-psia) אינק פרק: (ion (700-psia) יינק פרק: (essure Rx Trip (1600-psia) אינק פרק: ((DNBR)
	friommodele - de c' ;- LS volume	5.0	Pzr 5.1	Level Purpose – variable balanced	pg 11.2-1 letdown (as with number	a function of level error) of constant speed pumps.
			5.2	Level Pro 5.2.1 5.2.2	Setpoint (Setpoint) Setpoint :	(from RRS - Tavg) increased with power to match
				5.2.3	If No Pro 5.2.3.1 5.2.3.2	gram Close to safety valve (solid plant) RT Turbine unload (Pzr empty)
•			5.3	Signal P 5.3.1	Processing Limiter 5.3.1.1 5.3.1.2	Min. 29 gpm maintains preheat capability for charging flow Max. 128 gpm consistent for total charging pump
			5.4	Level B: 5.4.1 5.4.2 5.4.3	istables 29 <28% - h Hi/Low 1 Hi level 5.4.3.1 5.4.3.2 No react	capability eater protection (either channel) evel each channel 4.5% deviation (+13 above setpoint) Backup to stop standby pump Turn on B/U heaters (in auto) or trips!
J						

Page <u>4</u> of <u>4</u>

Notes	Lesson Plan (Continuation Sheet)					
Notes	Lesson Plan (Continuation Sheet) 5.5 Charging Pumps 5.4.1 44 gpm each 5.4.2 CCP #3 powered from either emergency bus 5.4.3 Auto operation 5.4.3.1 1 CCP running - 44 gpm 5.4.3.2 Letdown - 40 gpm					

-.
FUCS

325C-7.0

- I LearningObjectives:
 - 1. State the functions of the Feedwater Control System
 - 2. List the inputs used to control SG water level and how each input is used.
 - 3. List the override signal associated with the FWCS.
 - 4. Explain the two modes of automatic control for the feedwater control system (FWCS).
 - 5. Explain the difference between actual and indicated SG level following a plant cooldown.
 - 6. Describe the effect initial power level has on the magnitude of shrink and swell.
- II Introduction
 - 1. Each SG has independent 3-element and single element controllers.
 - 2. Auto control above 15% power/3- element controller.
 - 3. Auto control below 15% power / 1- element controller.
 - 4. Functions
 - Auto control >15% / 3-element
 - Reduce flow after turbine trip; shut main valve and position by-pass valve to supply 5% flow.
 Allows operator to manually control main and

by-pass valves. • Adjust speed of turbine driven main feed pumps.

- III Inputs
 - 1. SG Level
 - 2. Steam Flow

- 1. 2-leveldetectors/SG.
- 2. elbow tap-biased for 10% min. because of inaccuracies at low flow.
- calibrated for operation at 850 psia.

3. venturi flow nozzle-biased for 10% min. because of inaccuracies at low flow.

- 1.
- aux. feed used < 5% power, until MFP is placed inservice.
- single element controller < 15% power
- set point = 65% level
- proportional band is 22%. Valve is full open when level is 22% below 65%.
- Valve capacity is 15% of 100% feed flow or 2150 gpm
- Manual isolation valves upstream of MFRV normally closed during startup because of leakage.

- 3. Feed Flow
- **IV** NormalOperations
 - 1. Below 15% Power

- 2.
- 3-element controller combines two error signals to position MFRV
- lag circuits anticipate changes. Faster change rate produces larger error signal.
- PI controller can have an output when no input deviation exists. This is necessary because MFRV must be continuously opened as power increases.
- Flow error gain is twice level gain to compensate for shrink and swell.
- Because of inaccuracies inflow signal at low power, MFRVs are normally operated in manual and closed at low power.
- FRV AP controls MFP speed.
- 1.
- Decrease power 10%.
 - level shrinks
 - control system receives two opposing signals.
 - 10w level demands valve to open
 - higher feed flow demands valve to close.
- initially, flow error is dominate due to larger gain of flow error signal.
 - if valves were allowed to open, a large overshoot in level would result.
- as flow error is reduced, level error becomes dominate to restore level to setpoint.
- gains, resettime, and lag times are adjusted to minimize overshoots and oscillations
- 2. Turbine trip causes reactor trip \$15% power.
- MFRV closes
- FRV B/P valve positions to 33% open
 5% feed flow
- ramps to 5% feed flow within 60 seconds.
- turbine trip override can restore manual control of the FRV B/P valves.

2. Above 15% Power

IV TransientOperation

1. Step change in power

2. TurbineTrip

- 3.
- leak in reference leg reduces high side pressure.
 - high level output
- leak in △P diaphragm
 high level output
- Normaloperation
 - one transmitter is used for 3element controller and a level recorder.
 - one transmitter is used for 1element controller, levelalarms and levelindicators.
- During transmitter failure, a selector switch can be positioned to allow all functions to be controlled from one transmitter.

3. Leveltransmitterfailures

VI Summary

SDBCS

- I LearningObjectives:
 - 1. List the purposes of the SDBCS
 - 2. Briefly describe how each purpose is accomplished.
 - 3. List the input signals to the SDBCS.
 - 4. Describe how overpressurization of the condenser is prevented.
- II Introduction

1. SDBCS removes excess energy from the RCS by dumping steam to atmosphere and/or bypassing the turbine to the condenser.

- Load rejection or turbine trip
- Reactortrip
- Reactorstartup
- Plant cooldown
- III SDBCS Components
 - 1. Six valves two groups
 - 2. bypass group
 - 4 valves bypass steam flow around turbine to condenser
 - rated at 40% of total steam flow
 - connected to main steam header downstream of isolation valves
 - 3. Dumpvalves
 - 2 valves release directly to atmosphere
 - rated at 5% of rated steam flow
 - connected to main steam header upstream of isolation valves
 - 4. Controls steam pressure without requiring operation of safety valves.
 - 5. Valves designed to withstand maximum steam pressure of 1000 psig at 580 °F.
 - IV Operations
 - 1. LoadRejection

- 1. 40% change in electrical load.
 - turbine control valves close
 - steam flow decreases causing steam pressure to increase
 - bypass valves begin to open when pressure reaches 895 psia
 - CEAs are being driven to add negative eactivity
 - reduction in power reduces steam pressure
 - as pressure decreases, pressure error decreases and bypass valves start to close

- 2. Turbine trip causes signal to be sent to
- atmospheric dump valves.
- 8% power ~ 535 *F
- 63% power ~ 557 *F
- turbine control valves close
- signals sent to the SDBCS is proportional
 - steam flow decreases causing steam pressure to increase
 - bypass valves begin to open when pressure reaches 895 psia
 - CEAs are being driven to add negative eactivity
 - reduction in power reduces steam pressure
 - as pressure decreases, pressure error decreases and bypass valves start to close
- if power is >63% ~ 557 °F the RRS supplies a Quick Open signal to all 6 valves.
- 3. Reactortrip
- reactor trip causes turbine trip
- above action results, except CEAs fall
- when Tavg decreases to 548 °F the QO signal is removed
- when Tavg decreases to 535 °F the dump valves close
- 5 *F deadband allows bypass valves to control pressure at 900 psia
- 4. Startup
- RCS heat is removed as SG pressure increases above 900 psia
- As power increases, Tavg increases, and steam pressure increases until bypass valves open to maintain pressure at 900 psia
- As turbine is loaded, steam flow increases, and steam pressure decreases until bypass valves close.
- If condenser vacuum is lost, bypass valves close, turbine trip permissive causes atmospheric valves to open.
- 5. Plant cooldown
- manual control of the steam pressure controller

2. Turbinetrip

3. Reactortrip

4. Startup

- 5. Plant cooldown
- V Summary

C	COMBUS	TION	ENG	INEERING LESSON	I PLAN	
Lesson No. $905-20$	305	Title:	Exco	ore Nuclear Instruments	ation	
Written by: Gage	3		Appro	oved by:		Date: 10/27/92
	1.0	Spe	cial 1	Instructions and Tra Viewgraphs for less	ining Aid	-20 - 9. I
	2.0	Re	feren	ICes		
			2.1 2.2 2.3 2.4 2.5 2.6 2.7	CE systems manual Waterford training CE systems 80 (Pale ANO2 training mar Training article NS PPE manual - section Calvert Cliffs system	- section 9 manual o Verde) nual 3-4 on 16 ms descrip	9.1 otion - section 57
Page 2-1 9.1-1	3.0	Le	arnii	ng Objectives		

÷

١.

(

Lesson No. 905-20	C Title	: Excor	e Nuclear Instrumentatio	n	
Written by: Gage	l ?	Approv	ved by:	D	ate: 10/27/92
4. (- Page 2-1 4. (Figure 2-1	4.0 Pr 4.1	resentat Purpos 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 Instru 4.2.1 4.2.2 4.2.3	tion ses Monitor neutron flux (Provide indication (pow Provide signal to RRS Provide signals to RPS Provide information of mentation Range Design over a large ne (10 ⁻⁹ % to 2004 Control range (RRS at Safety range (cover al a. Log (WR shutdown b. Linear (power oper	(source le wer level (power le (power le n axial po sutron flux % full power l power le n, subpower rations, R	vel to 200% power) & rate of change) evel) evel & rate of change ower distribution (x range wer) ing heat to RCS) evels) er level, criticality) (PS)
9.1 Figure Z-2 9.1 Figure Z-3	4.3	Detec 4.3.1 4.3.2	Note: minimum overlated ov	n charged p charged p l = f(appli eactor ves ymmetry	indication during S/ articles particles for detection ied voltage) sel SAFETY

CON	ABUSTI	ON ENGIN	EERING LESSON PLAN	
Lesson No. 905-2C	Tit	le: Excore	Nuclear Instrumentation	
Written by: Gage		Approve	ed by:	Date: 10/27/92
۹.۱ Figure Z-4	4.4	Log Saf	fety Channel Proportional Detector a. neutron reaction $_0n^1 + _5B^{10} = _3Li^7 + _+$ the source level & low power c. secondary ionization in BF	$_{2}\alpha^{4} + 5 e^{-1}$ ++ ops $_{3}^{7}$ gas
			 a. large neg. charge conected e. γ reaction effects similar in (allows for removal in f. 2 assembly per channel g. 4 detectors per assembly h. enhances channel sensitivity 	but smaller magnitude in disciminator)
figure Z-5		4.4.2	Fission Chamber a. U_3O_8 coats inner surface to b. high energy charged fission ${}_0n^1 + {}_{92}U^{235} = X +$ c. ions collected as a small of d. γ also ionizes Ar or N gas e. pulse amplitude α # ion f. 1 per channel	(90% U-235) on fragments ionize gas Y + energy electrical charge pairs produced
9. Figure Z-6		4.4.3	Preamplifier a. located in containment b b. increases signal to noise	uilding ratio
		4.4.4	Pulse counting a. discriminator elliminates set min. voltage level fo b. audible count rate can be c. log cout rate amp convert	γ signal (1/6 magnitude) r filtration. divided by freq. select swa s _o n ¹ pulses into log signal
, ,		4.4.5	Campbelling a. power α RMS (of rando b. bandpass amp (10^{-2} % - 1 c. RMS amp (signal α pow d. log amp (output α log o	m signal) 150 %) ver) of input)

COMBUSTION ENGINEERING LESSON PLAN						
Lesson No. 905-2C	Title:	Excore	Excore Nuclear Instrumentation			
Written by: Gage		Approv	ed by:	Date: 10/27/92		
Written by: Gage	4.5	Approv 4.4.6 4.4.7 4.4.8 Linear 4.5.1	ed by: Summing amp (combines pu) Rate amp a. rate of change circuit b. pretrip & CWP @ 1.5 DPl c. high SUR trip @ 2.6 DPM Bistables Level 1 (de-energize when a. remove RPS zero power r. b. clear Δ T power block c. enable TMLP CWP Level 2 (de-energize when a. enable SUR trip Extended range (de-energi a. removes HV from B-10 µ b. shifts WR indication from Safety Channel Detector (Uncompensated I a. boron lined b. (n, α) reaction with B-10 c. γ produces reactions also d. γ compensation NOT rec $_{0}n^{1} >> \gamma$ signal $\gamma \alpha$ power (in the e. 2 detectors per channel	Date: $10/27/92$ lse count and campbell) M (no credit in analysis) $(10^4 \% < power < 15 \%)$ power > $10^4 \%$) node bypass power > $10^4 \%$) izes at 200-500 cps) proportional counter n cps to $\%$ mode on Chamber) as before quired power range)		
4.1 Figure 2-8		4.5.2	Linear Amp (increase sign a. power summer (U + L) b.deviation comparator (L c. subchannel comparator	al magnitude) supplies: -U)		

СОМ	BUSTION	ENGINEE	RING LESSON PLAN			
Lesson No. 905-2C	Title:	Excore Nuclear Instrumentation				
Written by: Gage		Approved b	y:	Date: 10/27/92		
61		4.5.3 Pow a. rc b. T c. a: d. V e. cd f. le note bala 4.5.4 Biss Rod Len HV	ter summer supplies: od drop bistable MLP trip calculator xial power distribution t VOPT circuitry omparator averager vel 1 bistable ($\phi > 15\%$) e: gain of summing amp addition tables d drop compares power with circuit (if difference vel 1 de-energizes > 15% inhibits high SUR to enables loss of load V decrease in HV or 1	rip circuitry djusted based on sec. heat n power after a time delay large enough AWP) rip & axial power dist. trip oss of low voltage supply		
Figure 2'-9	4.6	Linear Co	ntrol Channel	channel		
		4.6.1 Sur 4.6.2 Ch a. 1 b. 4.6.3 Po L)	annel outputs: RRS Recorder (control room) wer ratio calculator (sep provided to control room	arate control signals, U & m recorder.		
	5.0 P	WR Expe	riences			
	5.1	Davis Be	sse (April 85)			
	5.2	Millstone	2 (Jan 85)			

•

COMBUSTION ENGINEERING LESSON PLAN						
Lesson No. 325C	- 9,2 Title:	Incore	e Neutron De	etection	System	
Written by: Gage		Approv	ved by: Bell			Date: 3/23/93
p 9.2-1	1.0	OBJE	CTIVES			
p 9.2-1	2.0	FUNC	CTIONS			
	3.0	SELF	POWERE	D NEU	fron d	ETECTOR
Figure 9.2-1		3.1	Operation Rh Bet: Insu Cha Me:	- 103 re a emitte ilator irge defi asure ch	action wit d Al_2O_3 ciency pro arge flow	th a neutron oportional to neutron φ through ammeter
			note	e: Extern	al power o	connection NOT required
Figure 9.2-2		3.2	Decay Sch 939 7%	eme %	42 sec 4.4 mi	onds inutes
			Τ =	= 0.93 (42 sec) +	$0.07 (4.4 \text{ min}) \sim 1 \text{ min}$
Figure 9.2-3		3.3	Response ' apr ~ 5	Time oly step min to	change in reach equ	put neutron power nilibrium output
			not	e: slow i	response p	precludes use in RPS
Figure 9.2-6		3.4	Detector 4 4 F 1 C 1 F	Assembly Ch detec Cromel-A Backgrou con can	y Alumel T and cable tects for γ produce of Fissio Fissio	hemocouple y induced reactions which electrons: on γ's on Product decay γ's
			reg.	no	Rh	

`?

C

COMBUSTION ENGINEERING LESSON PLAN					
Lesson No.		Title:	Incore	e Neutron Detection System	
Written by: Gage	;		Appro	ved by: Bell	Date: 3/23/93
Figure 9.2-7			3.5	Detector Radial Location 45 Fuel Assemblies Inserted through : nozzles · guide tubes zircaloy thimb	oles (within FAs)
			26	note: refuel assemb guide tubes and lifted	lies withdrawn into their 1 out with UGS
Figure 9.2-5			2.0	4 elevational planes 20%, 40%, 60 Core bottom Thermocouple cor @ CEA guide ~ 1 foot abov note : under full RCS less than Th due to in NOT passed along th	within the core)%, and 80% reference height re outlet temperature tube exit re the active fuel height flow CETs read ~ 10-15°F fluence by water that has the fuel rods in the by forces
Figure 9.2-4		4.0	OUI	flow thru center	guide thimble."
			4.1	Thermocouple (CET) max temp range = 2 Three functions prov (1) Proper core ((2) Subcooling ((3) Core uncove (supe	300°F ~ 55 mv vided : cooling (nat. circ) margin (LOCA) ry (ICC) erheated indication)

(

Ĺ

o

しノ

COMBUSTION ENGINEERING LESSON PLAN					
Lesson No.	Title	Incore Neutron Detection S	System		
Written by: Gage	;	Approved by: Bell	Date: 3/23/93		
	96-	4.2 Neutron flux $\phi =$	I $-K_{x}K_{b}K_{c}$ Actor ent ctor sensitivity $x 10^{21} A/nv/cm$ ection correction gy change over core life correction (Rh - 103 = f(energy)) x of the following ratio : $\frac{1/4}{1}$ 101% 99% 96.5% 99% 3.875% 98.875 - 96.5) / 98.875 = 0.024 etric detectors are used		

•

C

Lesson No	Title: In	core Neutron Detection System	
Written hur Gage		proved by: Bell	Date: 3/23/93
Willien by: Gage			J
	4.4	Planar Radial Peaking Factor	r (F _{xy})
		defn = max of (peak/ horizontal planes (unrodded) factor excludes tilt	ave) power density of th
	4.:	5 Integrated Radial Peaking Fa	actor (F _r)
		defn = (peak pin pov (unrodded) factor excludes tilt	ver / ave pin power)
	4.	6 Total Peaking Factors	
		Planar Radial $PF =$	$F_{xy} \times (1 + T_q)$
		Integrated Radial PF	$F = F_r \times (1 + T_q)$
	-		

Lesson No. 390	Title	: Reac	tor Protection System	
Written by: Gag	ge	Appro	oved by: Rull	Date: 10/28/92
		<u> </u>	- Je	
	1.0 S	pecial]	Instructions and Training A	Aids
		1.1	Viewgraphs for lesson R90	5P-9C
		1.2	ANO2 control room slides	
		1.3	Calvert Cliffs simulator	
	2.0 R	eferen	ices	
		2.1	CE systems manual - section	on 10.1
		2.2	ANO2 PPS tech manual	
		2.3	Calvert Cliffs RPS tech ma	anual
		2.4	Calvert Cliffs system descr	nption - section 39
		2.5	10 CFR 50	
		2.6	IEEE - 279	
		2.7	Information Notice 91-52	
		2.8 2.9	10 CFR 50.62	
Page 5.1-1	3.0	Learnii	ng Objectives	
l				

COMBI	USTION	I ENGI	NEERING LESSON PLAN		
Lesson No. 905-9C	Title	React	or Protection System		
Written by: Gage	<u> </u>	Approv	ved by:	Date:	10/28/92
10.7-4 Pretrip Pg 10.1-7 100psia Fig 10.2-3 30es	.0 Pr 4.1	esentat Purpos 4.1.1 4.1.2 Design 4.2.1 4.2.2 4.2.3 4.2.4	 ion e = insure safety limits NOT Safety limits = DNBR, LHF AOO = condition expected to (10 CFR 50 app A) a features Single failure criterion (IEE "single failure within the priprevent proper protective a (single failure defin in 10 CFR de-energize to actuate! Redundancy (multiple chana Testibility (ensure reliability Trip logic a. 1/1 fail non-conservative b. 1/2 fail conservative unecessary trip & during testing, unrel c. 2/3 meets min. requirem note: some reliability place tested channel 1/2 limitation) d. 2/4 meets single failure a. 1/1 fail non-conservative 	violated c, RCS p to occur E - 279) otection ction" TR 50 ap nels) cy) e no tr iable 1 s nent of 1 y lost du trip con & pass)	during AOO pressure during plant life system shall not p A) ip when needed sensor problem failure pring testing dition, (ie back to
		4.2.5	1/2 limitation) d. 2/4 meets single failure 1 channel in test (by Separability (GDC 24)	& pass)	
Table 5.1 Figure 5.1-1 Figure 5.1-2	4.3 4.4	React Circu 4.4.1	or trips (include purposes of itry Bistable trip unit a. comparison of input par b. de-energize to actuate c. one for each trip in each	each) ameter t channel	o setpoint
			d. 7 relays 5 driven by trip co 3 used in 2/ 2 used for t 2 driven by pretrip	marator 4 logic n rip annue compar	natrices ciation ator

COMBUSTION ENGINEERING LESSON PLAN					
Lesson No. 905-9C	Title: Re	actor Protection System			
Written by: Gage	App	proved by:	Date: 10/28/92		
Figure 5.1-3	4.4	.2 Variable bistable trip a. high linear power b. sepoint = f(high selec c. min setpoint = 30 % d. max setpoint = 106.5 e. manual reset PB (one	unit t nuclear power and ∆T power) 5 % e for each channel)		
Figure 5.1-4	4.4	.3 Auxiliary trip unit a. axial power distribu b. loss of load	ition		
Figure 5.1-5	4.4	 .2 Logic matrices a. 6 matrices - 2/4 logi b. coincidence logic (s c. 4 matrix relays - 1 p 	c ame parameter) per trip path		
	4.4	 Logic matrix relays a. de-energize to actua b. actuate contacts in e relay 	te each trip circuit breaker control		
Figure 5.1-1	4.	 4.4 Trip circuit breaker co a. de-energize to actua b. 4 trip paths c. each trip path contr d. UV coil de-energize. shunt trip energize 	ontrol relay (trip path relay) tte rols two circuit breakers gize to trip ze to trip		
Figure 5.1-6	4.5 C. 4. 4. 4. 4. 4.	 EA power supplies 5.1 Non-vital powered M 5.2 8 breakers allows test 5.3 Trip breaker 9 a. does NOT receive 1 b. syncronization of N 5.4 2 "group" CEA power 5.5 UV coils a. RT to TT b. note: FWCS & SD 	G sets ing (without bypass) trip signal VIG buses er supplies BCS comes from a TT		
Figure 5.1-7	4.6 R 4 4	eactor trip circuit breakers 6.1 1 x 2 x 2 logic 6.2 Breaker operation (tu a. UV coil OFF or sh b. manual operation	rip) unt coil ON		

Lesson No. 905-9C	Title:	Reacto	or Protection System	·	
Written by: Gage		Approv	ved by:	Date:	10/28/92
Written by: Gage Figure 5.1-9 Note: trip bypass- ing is channelized (i.e. all automatic bypasses operate on a 3/4 logic)	4.7	Approv Bypass 4.7.1 4.7.2 4.7.2 4.7.3	ved by: Ses Trip channel inhibit a. removes a trip channel from b. maintenance or testing usa c. manually initiated d. key operated switches (related) e. 2/3 logic for effected trip of Automatic bypasses (power level trip of Automatic bypasses (power lexcore NI) a. <u>high SUR</u> effective when: WR log safety > 10 ⁴ linear safety < 15 % <i>note: below 10⁴</i> %p <i>while above 15% Nupower level trips provexcursion protection</i> b. <u>axial power distribution</u> bypassed until linear (Kw / ft limit can note powers with worst car of load bypassed until linear c. <u>loss of load</u> bypassed until linear permits turbine start Zero power mode bypass a. allow TMLP & low RCS (permits CEA operate b. manually actuated c. log power < 10 ⁴ % + key d. TMLP calculation is prever power (when in bypass net) e. automatic removal when a low SG pressure a. permits cooldown without b. manually actuated c. SG press < 550 psia + key	Date: Date:	10/28/92 re ontact operation pendent from <i>ntint statistics</i> ppler, and high quate reactivity channel > 15 % eeded at low channel > 15 % ips bypassed ing S/D or C/I vitch to bypass rom using ΔT ver > 10 ⁴ % or trip witch to bypass
			a. permits cooldown withou b. manually actuated c. SG press < 550 psia + key d. automatic removal when 785	y lock s SG pres	witch to bypa ss > 550 psia

Lesson No. 905	-9C Title:	Reacto	r Protection System	
Written by: Gag	e	Approv	ed by:	Date: 10/28/92
	4.8	RPS In	erfaces	
		4.8.1	CWP	
			a. high linear power	
			b. high SUR	
		4 8 9	c. IMLP premp	
		4.8.2	roky actuation a operated in conjunction w	ith high Pzr pressure
			b. 2/4 coincidence to actuate	; ;
Figure 5.1-8	5.0 Int	tegrated	Operation Scenarios	
	5.1	Demon	strate single failure design	
	5.2	Demon	strate 2/4 logic	
	5.3	Combi	nation or individually use for	ollowing examples:
		5.3.1	Reactor trip*	
		5.3.2	Manual trip	
		5.3.3	Loss of 120 vac bus"	ol relay (trin nath rel
		5.3.4 5.3.5	Trip circuit breaker failure	or roral (arb barr ror
		5.3.6	Information notice 91-52	
		* note:	included in the manual	
	6.0 R	PS Test	ing	
	6.1	Sensor	checks	
		6.1.1	Channel check	
		6.1.2	Calibrated known standard	S
	6.2	Trip b	istable test (channel functio	nal test)
		6.2.1	Place trip function in trip	channel inhibit
		6.2.2	Manually vary trip test cir	cuit input to compara
			a. digital voltmeter	
			D. Test selector switches	
		672	Verify trip by logic matrix	x lamps

Lesson No. 905-9C	Title:	Reacto	or Protection System		
Written by: Gage	<u>'</u>	Approv	ed by:	Date:	10/28/92
	6.3	Logic 1	matrix test (part of channel fu	nctional	test)
	6.4	Logic r 6.3.1 6.3.2 6.3.3 7rip pa 6.4.1 6.4.2 6.4.3 6.4.3 6.4.4 6.4.5 6.4.5	Actuate matrix relay hold PB a. applies test voltage to hold note: double coil matri b. maintains matrix relay ene Rotate channel trip select sw a. one for each logic matrix t b. operates contacts in matrix c. test voltage applied to B/S note: opposite polarit d. selected trip relay de-energ Trip action observation a. trip relay indications on fr b. loss of voltage to matrix r c. matrix relay hold lights re ath / circuit breaker test (part of Depress matrix hold PB Select trip pos on channel tr (opening the matrix) Select matrix relay on matri a. de-energizes 1/4 matrix re b. opens two RTCBs c. CEDMs remain energized Rotate matrix relay trip sele a. re-energize tested matrix b. allows manual reset of R' Test observations a. drop out lamps (matrix re b. trip path lamp (test status c. no current through RTCEB Repeat sequence of all trip	coils ix relay o be test under trip rel y to pri gizes font pan elay main Of of chann ip select x relay clays ct sw to relay CEs lay de-es s panel) s paths ar	el N (test voltage el functional te t sw trip select sw next pos. energized) ad matrices
	6.5	Manu 6.5.1 6.5.2	al trip test Depress 1/4 manual PB Observe two RTCBs open		
		6.5.3 6.5.4	Reset RTCBs Repeat process for each PB		

	CO	MBUSTION	ENGIN	EERING LESSON PLAN	
Lesson No.	905-90	Title:	Reactor	Protection System	
Written by:	Gage		Approve	d by:	Date: 10/28/92
		7.0 PR	A Insig	hts (Calvert Cliffs)	
		7.1	ATWS	statistics	ntion 33%
			7.1.1	Core ment frequency condition	
			7.1.2	Risk reduction factor 1	1.539
			7.1.3	RISK actineventient fueros in a	RPS failure
		5.0	Demine	note: sinua proof and	
		1.2		Transient (LOOP, LOFW, T	T, etc)
			7.2.1	Failure of RTCBs to open o	n valid Rx trip signal
			723	MFW pumps trip / runback	(low flow)
			72.4	RCS fails (overpressure)	
			7.2.5	Core melt	
		7.3	No cre	dit	
		,	7.3.1	Initiation of feed and bleed	core cooling
			7.3.2	Manual trip of reactor	
		7.4	ATWS	operator expected actions	
			7.4.1	Manually trip Rx	* A _
1			7.4.2	De-energize MG sets to CE	1AS
			7.4.3	Emergency borate	
		7.5	Metho	ds to reduce frequency or n	nitigate results
			7.5.1	Reduce # transferits	
			7.5.2	Improve RPS feliability	erability at high pressures
	1		7.5.3	Quality RCS and vare of	fail to reseat (> 3500 psia
				h SG tubes under high Δt	(rupture)
				c check valve operability	(CVCS, HPSI, etc)
			751	Improve analysis to show	peak pressure < predictio
Į			7.5.4	Change fuel load (ensure i	more neg. MTC)
			1.2.2	Charge race rate (
		7.7	10 CI	FR 50.62	
			7.7.1	Initiate AFW & 11.	
			7.7.2	Additional scialit system	e channels (> 2450 psia)
1				a. 2/4 picssuiter picssuit	DM MG sets
l.				D. mienupi output of CD	
1					

325C - 10.2

1.0 Training Aids

1

- 1.1 Transparency Package for TM/LP and ASI trips
- 1.2 Lesson Plan for TM/LP and ASI trips
- 2.0 References
 - 2.1 Calvert Cliffs System Description
 - 2.2 Calvert Cliffs Technical Specifications

- 3.0 Objectives
 - 3:1 State the purposes of the the Thermal Margin/Low Pressure and Axial Power Distribution trips.
 - 3.2 List the inputs to the TM/LP and ASI trips
 - 3.3 State the plant conditions used to determine when these trips are in effect.
- 4.0 Presentation
 - 4.1 General Introduction
 - 4.1.1 The TM/LP and ASI trips function that DNBR and kW/ft. limits are not exceeded.
 - 4.1.2 Maintenance of limits ensure that cladding integrity is maintained during anticipated operational occurrences.
 - 4.2 Trip Inputs
 - 4.2.1 TM/LP
 - 4.2.1.1 Cold Leg Temperature
 - 4.2.1.2 Hot Leg Temperature
 - 4.2.1.3 Linear Power Safety Channel
 - 4.2.1.4 Pressurizer Pressure
 - 4.2.1.5 Axial Shape Index
 - 4.2.1.6 RCS Flow
 - 4.2.1.7 SG Pressure
 - 4.2.1.8 General Operation the TM/LP trip unit combines the inputs into an allowable operating pressure (setpoint). If actual pressure equals setpoint, a trip signal is generated.
 - 4.2.2 ASI
 - 4.2.2.1 Upper and Lower Detector from linear safety channel.
 - 4.2.2.2 Plant power from TM/LP calculation
 - 4.2.2.3 General Operation The ASI trip unit calculates an allowable ASI as a function of power and compares the allowable ASI with actual ASI. If actual ASI equals or exceeds allowable ASI, a trip signal is generated.

- 4.3 Thermal Margin/Low Pressure Trip Unit
 - 4.3.1 TM/LP Functions
 - 4.3.1.1 To prevent DNBR
 - 4.3.1.2 To provide asymetric steam generator protection.
 - 4.3.2 DNBR Parameters
 - 4.3.2.1 Temperature
 - 4.3.2.2 Pressure
 - 4.3.2.3 RCS Flow
 - 4.3.2.4 Total Power
 - a. Axial component
 - b. Radial component.
 - 4.3.3 Power Calculations
 - 4.3.3.1 Excore Nuclear Power
 - 4.3.3.2 Delta T Power
 - 4.3.4 Delta T Power
 - 4.3.4.1 Delta T power is the product of mass flow rate, specific heat, and (TH-Tc).
 - 4.3.4.2 TH is the average of both loops.
 - 4.3.4.3 Tc is the maximum of both loop cold leg temperatures.
 - 4.3.4.4 The mass flow rate is a contant unity for four pumps and less than unity for less than four pumps.
 - 4.3.4.5 Calculator generates terms that are proportional to:
 - a. coolant density affects mass flow rate.
 - b. specific heat varies with temperatue
 - c. flow rate variations
 - d. rate of change of delta T power
 - 4.3.4.6 Delta T power is compared with excore power, and the higher of the two signals is sent to the pressure (setpont) calculator. The higher of the two signals
 - is called Q power. 4.3.5 Q'Power Modifications
 - 4.3.5.1 CEA Position provides radial flux component. Assumptions
 - a. Maximum CEA deviation
 - b. CEA sequencing
 - c. CEAs are at the transient
 - insertion limit.
 - d. The output of this modification is called QR1.

- 4.3.5.2 ASI a set of limiting ASIs that represent the minimum DNBR with all other factors held constant. This power correction is called QA.
- 4.3.5.3 The product of QR1 and QA is called QDNB and is used as the power input into the pressure setpoint calculation.
- 4.3.6 Cold Leg Input
 - 4.3.6.1 Compensated for differences in inputs in less than full RCS flow conditions called TCAL.
 - 4.3.6.2 Less than 4 RCP operation is not permitted.
- 4.3.7 Flow Dependent Setpoint
- 4.3.8 Cover Sample Setpoint Calculation PVAR.
- 4.3.9 Setpoint Selection
 - 4.3.9.1 Pvar.
 - 4.3.9.2 PMin
 - 4.3.9.3 Asymetric SG input
 - 4.3.9.4 1, 2, and 3 are supplied to a high
 - select unit.
- 4.3.10 PHIN ensures a reactor trip will occur even
- if Pvar calculates a lower setpoint. (PERHAPS A DNBR CORRELATION LIMIT)
- 4.3.11 Asymetric Steam Generator Input
 - 4.3.11.1 Flux tilt can occur because of incomplete mixing.
 - 4.3.11.2 Input of SG pressures
 - 4.3.11.3 Comparison
 - 4.3.11.4 135 psid limit
 - 4.3.11.5 Results in 2500 psia setpoint
- 4.3.12 PreTrip Functions
 - 4.3.12.1 Bias added to setpoint
 - 4.3.12.2 If pressure equals setpoint + bias,
 - a pretrip signal is generated.
 - 4.3.12.3 CWP on pretrip
 - 4.3.12.4 Disabled if in "Zero Mode Bypass" or
 - if wide range power is < 10^{-4} %.

4.3.13 Trip Functions

4.3.13.1 Input to matrix ladders

4.3.13.2 Disabled if in "Zero Mode Bypass" or

if wide range power is $< 10^{-4}$ %.

TM/LP Indications 4.3.14

4.3.14.1 Pressure Input

4.3.14.2 Setpoint

4.3.14.3 Q Power

4.4 Axial Shape Index

Purposes 4.4.1

4.4.1.1 Linear Heat Rate trip

4.4.1.2 High linear heat rates can be caused by:

a. Xenon oscillations

b. CEA mispositioning

Inputs 4.4.2

4.4.2.1 Power - Q power from TM/LP

4.4.2.2 ASI - from excore linear power (YE)

4.4.2.3 Fxy - amplifier gains

Shape Annealing 4.4.3

4.4.3.1 Corrects excore signal

4.4.3.2 Correction is least squares linear fit

from incore data.

4.4.3.3 YI=AYE+B

4.4.4 Power Signal Modifications

4.4.4.1 Modified by CEA position

4.4.4.2 Q(CEA position) is called QR2.

4.4.5 Trip and Pretrip Limits

4.4.5.1 Function Generators generate Y_P and Y_n .

4.4.5.2 Limits are compared to ASI

4.4.5.3 Trips and pretrip signals generated if limits are exceeded.

ASI Indications 4.4.6

4.4.6.1 Limits meters

4.4.6.2 ASI

4.4.7 Bypassed < 15% power

10.3 ESF Actuation Objectives - ----- ----10.3.1 Intro 5) S/G Level ... J. AFW 1) Par Press ? 2) Cont Press (6) 4160 Vac ESF U. Ityo 3 DG 3) Cont Rad (~~ ?) RWT Level 3 RAS 4) 5/6- Press) SIAS 5) CRS a) CSAS 6) 9G15 _ 3) CIS 2) AFAS 8) DG Syr. 5.7 4) RWS 10.3.2 System Description Table 10.3-1 4 sensor sub-gateme monitor redundant & independent process measurements 2 Redundant e Independent actuation subsystems (Fig 10.3-1 10.3.3.1 SIAS Fry 10.3-2. 1740psia - SI < 2.8.psig -> CIS, 1785prin = SI Black 13/ PCS2 Conf Pare /ECCS i) Stert 2 HPSI 1) Close Ltdn isol a) Osen 8 HPST Myslum 3) Open the UPSI anx had isolation when a Closes RCP CBO 3) Close REDT cont. so/ 4) start 2 LPSI 5) Dpen y LPSI inj volue 4) Close RCS 20-ple JUS (if the for the site of (if the set 14/ Cooling Why Sys Real grows 1) Starts I Service where for 1) Start 28A 2BA a) " 3 cla Papr 2) Igolater Su 4 Tub Rot 3) Open Growth feel e) Start 2 CCw Paps 4) - BA add of opens can Spill to SIOCLE 5) Start 2 Saltiets Paps S Energ. D.C. started 161 Open spray how iralation inlocs

10.3.3.2 CIS 2-8ps:4 $(F_{1}, 10.3-3)$ 1) ccw isol to RCPs ____ 2) Cont Pent Rom Unit. storts 3) Cont Indone Removal systems is placed in service 4) Cont Inst Air Supply is isolated Can resat by 'CIS RESET __pash button, equipment operated manually Dafter undition cleared (F: (10.3-4) 4.25ps; g 10.3.3.3 CSAS) sterts 2 CS pmps 2) Starts the conf. cooling fans 3) Opens service water outlets from the containment building casty fons ... A) Cloce MSIU, MEIV, trips secondary plant pumps SIAS will open isolation volvos in spray header 10.3.3.4 RAS (E10.2-5) LOW RWT 2/4 D Conf. surp suctions open 2) LPSI punps stopped 3) LPSI, HPSI, CS punp minimum (tow/recirculation values close 41 CCW HX Sattwhrelves Open 10.3.3.5 Cont. Radiation Signal 2/4 Isolato Cond. Purgo Linit peleaso of fissia products 10.3.3.6 SGIS (F:z 10.3-6) 203 ps: 5 767ps: 6 Blockable For 10,3-7 SGIS & C3AS spected equipment 10.3.3.7 DG Seguencity Signal 5 sec intervalt reenergine salected essential loads Source when Just when Just Air long w/SIAS include safety related pumps - HPST, LPST

(Fit 10.3-8) 10. 3. 3. 8. AFW AFAS 402 ce): de Ronge 2/4 - - - -· · · _. ______ . ___ . _. 10.3.3.9 Diverse Scrom Inputs ------ATWAS issue Diverse Scrow System DSS Calvert Cliffs ES F wide range perpress input for He Press ------10.3.4 ESFAS Design Basis IEEE 279 Criteria for Protection for Nuc Prw Concerting Stations 1) Single Failure - won't prevent ESFAS 2) Quality of components and modules - 40 ye design life ?) Channel independence - between redundant subsystems. Electrication Electrica (iso lation Physical separation -· · _ --- -----· · · · · · · · · · · · -----_____ _____

.

Lesson No.305-24- 32-57-1/1-5 Title: AUXILIARY FEEDWATER SYSTEM Written by: Loren F. Donatell Approved by: Larry Bell Date: 01/12/93 1.0 TRAINING AIDS/SPECIAL INSTRUCTIONS 1.1 Transparency Package for 305-24 1.2 Lesson Module for 305-24 2.0 REFERENCES 2.1 CE Systems Manual, Chapter 5.8 2.2 CCNPP System Description No. 34	COMBUSTION ENGINEERING LESSON PLAN							
Written by: Loren F. Donatell Approved by: Larry Bell Date: 01/12/93 1.0 TRAINING AIDS/SPECIAL INSTRUCTIONS 1.1 Transparency Package for 305-24 1.2 Lesson Module for 305-24 2.0 REFERENCES 2.1 CE Systems Manual, Chapter 5.8 2.2 CCNPP System Description No. 34	Lesson No. 305-24 Title: AUXILIARY FEEDWATER SYSTEM							
1.0 TRAINING AIDS/SPECIAL INSTRUCTIONS 1.1 Transparency Package for 305-24 1.2 Lesson Module for 305-24 2.0 REFERENCES 2.1 CE Systems Manual, Chapter 5.8 2.2 CCNPP System Description No. 34	Written by: Loren F. Dona	tell	Approved by: Larry Bell	Date: 01/12/93				
	Written by: Loren F. Dona	tell 1.1 Tr 1.2 La REFE 2.1 Cl 2.2 Cl	Approved by: Larry Bell NING AIDS/SPECIAL INSTRUCTIO ansparency Package for 305-24 esson Module for 305-24 ERENCES E Systems Manual, Chapter 5.8 CNPP System Description No. 34	Date: 01/12/93				

:

(COMBU	ŚŤÌON	I ENGI	NEERI	NG LESSON I	PLAN		
Lesson No. 305-24	1	Title:	AUXI	AUXILIARY FEEDWATER SYSTEM				
Written by: Loren F. Donatell			Appro	ved by:	Larry Bell		Date: 01/12/93	
Figure 5.8-1 Page 5.8-9 Figure 5.8-2 Page 5.8-11	3.0	PR 3.1 3.2 3.2	ESEN Learni 3.1.1 2 Introd 3.2.1 3 AFW 3.3.1	IATION ing Obje Cover luction System a. Ensu deca b. Coo c. Mai shu System Major 3.3.1.1	Condensate St a. Supply both b. 350,000 gal c. Class I cond d. Protected ag e. CSTs 11 an Condensate f. Minimum v 1. 150, 2. Mai hou atm of d	nanual is availa eration operatio plant i ls durin corage T h Unit-J llons crete str gainst te d 21 lir e Syster volume ,000 gal intain R urs whil nospher offsite j	able for removal of on such as SBLOCA f no MFW is available g plant start-ups and Cank (CST) 12 and Unit-2 ucture ornadoes and missiles ned up to their respective ns by T.S. llons CS in hot standby for six le dumping steam to the re with a concurrent loss power	

C	COMBUS	TIÓN	ENGINEERING LESSON PLAN			
Lesson No. 305-24 Title: AUXILIARY FEEDWATER SYSTEM						
Written by: Loren F. Donatell			Approved by: Larry Bell	Date: 01/12/93		
			3.3.1.2 Other AFW Supplies			
			a. From other Unit to discharge lines b. Plant fire main to s driven pump	motor driven pump suction of the motor		
Table 5.8-1			3.3.1.3 Electric Driven AFW	' Pump		
Page 5.8-6			a. Class 1E, 4.16 kVA b. Multistage, horizo c. 450 gpm design fle d. 140 gpm minimum 1. Controlled b valves e. Reserved for emerge	AC, 500 hp ntal, centrifugal owrate n for pump cooling by automatic recirculation gency use only		
Table 5.8-2			3.3.1.4 Turbine Driven AFV	V pump		
Page 5.8-7			 a. Terry Steam Turbi 1. Single stag 2. 600 hp at 3. Normal su 4. Can be sup 5. Steam supp Instrument b. Byron - Jackson p 1. Six stage, 2. 700 gpm 3. 80 gpm minorifice 	ine ge, non-condensing 3990 rpm pply from Main Steam oplied from Aux. Steam ply valves powered from it Air System pumps horizontal, centrifugal in. flow - controlled by a		
			3.3.1.5 Blocking Valves			
			a. Eight valves b. Each line has two c. Shut and isolate f d. Block signal com	, in series low to a ruptured S.G. les from AFAS		

COMBUSTION ENGINEERING LESSON PLAN								
Lesson No. 305-24	Title	AUXILIARY FEEDWATER SYST	ΈM					
Written by: Loren F. Don	atell	Approved by: Larry Bell	Date: 01/12/93					
		3.3.1.6 Flow Control Valves						
		a. Four valves b. Regulate AFW flo	ow to S.G.s					
		3.3.1.7 AFAS						
		a. Automatically star b. Identifies a ruptur to that S.G. c. Four sensor subs 1. Monitor re S.G. parar 2. Four chan 3. Four chan d. Two actuation su 1. Monitor th 2. Coinciden 3. 2/4 level 1 a START 4. 2/4 dp at BLOCK s e. AFAS Block 1. Prevents of tion to a 1 2. RCS coold ity	ts AFW on low S.G. leve ed S.G. and blocks flow ystems edundant and independen neters nels of W.R. level nels of S.G. pressure bsystems ne sensor subsystems ce logic ow (40% W.R.) generate signal 115 psid generates a signal continued feedwater addi uptured S.G. down adds positive reactiv					
		3. Continued S.G. add 4. Only the	d steaming from a rupture s energy to containment affected S.G. is blocked,					
		decay he	at removal					
		3.3.2 System Operation						
		3.3.2.1 Steam Generator L	evel Control					
		a. Start-ups to ~ 59 b. Shutdowns c. Cooldowns	% reactor power					

.

C	OMBU	STION	ENGINEERI	NG LESSON PLAN	
Lesson No. 305-24	······	Title:	AUXILIARY	FEEDWATER SYST	EM
Written by: Loren l	F. Donat	ell	Approved by:	Larry Bell	Date: 01/12/93
			3.3.2.2	Power Operation	
				a. Lined up to CST 12 b. Auto start on S.G.	2 low level of 40% W.R.
			3.3.2.3	3 Emergency Operation	1
				 a. Used with atmosph the plant followin b. Vital for core safet c. Cover basic scenar PRA Insights 	teric dumps to cooldow g a loss of offsite power by if a SBLOCA occurs io from section 5.8.5,
			-		

Lesson No. 905-100	Tit	le: CPC - CEAC - COLSS	
Written by: Larry I	Bell	Approved by: Larry Bell	Date: 10/23/92
	1.0 TR	AINING AIDS - NONE	
	2.0 REI	FERENCES	
	2.1 Tec 2.2 Wa	hnical Managers Manual - Sect terford Training Manual	ons 6.1, 6.2, and 6.3

١

3

C	OMBU	ISTION	ENGINEERING LESSON PLAN					
Lesson No.905-100]	Title:	Title: CPC - CEAC - COLSS					
Written by: Larry Bell		• <u></u>	Approved by: Larry Bell Date: 10/23/					
	3.0	OBJE 3.1 To 3.2 To	CTIVES aquaint the Technical Manager with d aquaint the Technical Manager with the PRESENTATION	igital protection systems he COLSS program.				
	4.0	4.1 CF fu 4.1 4.1	PC Purposes - to provide protection for el design limits during anticipated oper 1.1 Specified Fuel Design Limits 4.1.1.1 DNBR 4.1.1.2 kW/ft. 1.2 Anticipated Operational Occurrence to occur once in the forty year life	the specified acceptable rational occurrences. ce - an event that is likely of the plant.				
Figure 6.1-1	4.2 System Description							
Page 6.1-7		4.:	 2.1 Reactor Power 4.2.1.1 Raw inputs for each of 3 dete 4.2.1.2 Shape Annealing Corrections Corrects detector output fro Determined during testing oscillations. 	ctors o flux shape affects by inducing axial xenon				
Figure 6.1-2 Page 6.1-9		4.	 4.2.1.3 Rod Shadowing - target rods 4.2.1.4 Colder T_c - more moderation 2.2 3D Power Calculations 4.2.2.1 Target Rods 1/4 of total CEAs All CEAs in core quadrant 4.2.2.2 Radial Distribution Table Lookup Peaking Factors - function 4.2.2.3 Axial Peaking Calculations Three detector inputs correand rod shadowing Curve fit into 20 axial plan 4.2.2.4 Azimuthal Tilt Input Addressable constant Value is obtained from CO 	used. of CEA position. ected for shape annealing nes DLSS and manually input				
1

C	OMBU	STION ENGINEERING LESSON PLAN			
Lesson No.905-10C		Title: CPC - CEAC - COLSS			
Written by: Larry Bo	ell	Approved by: Larry Bell Date: 10/23/92			
Calculates qual- ity using enthal- pies. Figure 6.1-3 Page 6.1-11	4.3	 Local Power Density Calculation and Trip Generation 4.3.1 Local Power Density is a function of: 4.3.1.1 Hot Pin Power 4.3.2 Total Power 4.3.2 Calculated LPD is compared to LPD pre-trip and trip setpoints. 4.3.3 If either limit is exceeded, the appropriate signal is sent to thePPS 4.3.4 Two out of four CPCs calculating that LPD is at the trip setpoint will result in a reactor trip. DNBR Calculation and Trip Generation 4.4.1 DNBR is a function of: 4.4.1.2 Total Power 4.4.1.3 RCS Flow 4.4.1.4 Pressurizer Pressure 4.4.1.5 Temperature 4.4.2 Calculated DNBR is compared to DNBR pre-trip and trip setpoints. 4.3 If either limit is exceeded, the appropriate signal is sent to thePPS 4.4.4 Two out of four CPCs calculating that DNBR is at the trip setpoint will result in a reactor trip. 4.5.1 Temperature and pressure dependent 4.5.2 15% Limit 4.5.3 Generates DNBR trip 4.6.1 Normal DNBR calculation takes 50 milliseconds, the update program updates DNBR between calculations 4.6.4 RCS Flow - negative derivatives only. 4.6.5 Point out boundaries 			

1

COMBUSTION ENGINEERING LESSON PLAN				
Lesson No.905-10C Title:		CPC - CEAC - COLSS		
Written by: Larry Bell		Approved by	: Larry Bell	Date: 10/23/92
Lesson No.905-ToC Written by: Larry Bell . <t< td=""><td>4.5 Au 4.5 4.5 4.5 4.5 4.5 5.1 5.2 5.3</td><td>Approved by xiliary Trips 1 Normal C 4.5.1.1 4.5.1.2 4.5.1.3 4.5.1.4 4.5.1.5 4.5.1.6 4.5.1.7 5.2 If parameter trip will b 5.3 ΔT_c trip f assymetri ol Element As Purpose of C tion to the C CEAC Input 5.2.1 All C 5.2.2 Targ 5.2.3 Opti Software 5.3.1 CEA 5.3.2 Sign 5.3.3 Sen 5.3.4 CEA 5.3.5 Indi dete 5.3.6 5.69 5.3.7 Cas</td><td>: Larry Bell PC Operating Space $2 \le RCPs$ Operating \le $1750 \text{ psia} \le Pzr \text{ Press}$ $465^{\circ}F \le T_{c} \le 580^{\circ}F$ $1.28 \le \text{Radial Peaking}$ $-17^{\circ}F \le \Delta T_{c} \le 17^{\circ}F$ $0 \le \text{Quality}$ $-0.6 \le ASI \le 0.6$ ers are outside of the bounce generated. Function protects against c steam generators. Seembly Calculators CEACs - to supply CEA CPCs. ts CEAS provide a position get Rods to CPC and CEA ical Isolation ARSPT converted to a dinal converted to 0 to 1000 sor Failure A Reference Position - 100 vidual CEAs are compar- termine deviation. % deadband (8.4 inches) e Determination</td><td> Date: 10/23/92 ≤4 ≤ 2400 psia ≤ 4.28 daries above, an auxiliary large radial tilts due to misalignment informa- input to the CEACs AC gital signal % withdrawn signal west CEA in subgroup ed to reference position to </td></t<>	4.5 Au 4.5 4.5 4.5 4.5 4.5 5.1 5.2 5.3	Approved by xiliary Trips 1 Normal C 4.5.1.1 4.5.1.2 4.5.1.3 4.5.1.4 4.5.1.5 4.5.1.6 4.5.1.7 5.2 If parameter trip will b 5.3 ΔT_c trip f assymetri ol Element As Purpose of C tion to the C CEAC Input 5.2.1 All C 5.2.2 Targ 5.2.3 Opti Software 5.3.1 CEA 5.3.2 Sign 5.3.3 Sen 5.3.4 CEA 5.3.5 Indi dete 5.3.6 5.69 5.3.7 Cas	: Larry Bell PC Operating Space $2 \le RCPs$ Operating \le $1750 \text{ psia} \le Pzr \text{ Press}$ $465^{\circ}F \le T_{c} \le 580^{\circ}F$ $1.28 \le \text{Radial Peaking}$ $-17^{\circ}F \le \Delta T_{c} \le 17^{\circ}F$ $0 \le \text{Quality}$ $-0.6 \le ASI \le 0.6$ ers are outside of the bounce generated. Function protects against c steam generators. Seembly Calculators CEACs - to supply CEA CPCs. ts CEAS provide a position get Rods to CPC and CEA ical Isolation ARSPT converted to a dinal converted to 0 to 1000 sor Failure A Reference Position - 100 vidual CEAs are compar- termine deviation. % deadband (8.4 inches) e Determination	 Date: 10/23/92 ≤4 ≤ 2400 psia ≤ 4.28 daries above, an auxiliary large radial tilts due to misalignment informa- input to the CEACs AC gital signal % withdrawn signal west CEA in subgroup ed to reference position to
	5.4	Deviation (5.4.1 Cas 5.4. 5.4. 5.4. 5.4.	Cases e 1: 1.1 Deviation of 1 CEA 1.2 3 CEAs deviated 1.3 Uncontrolled CEA v	vithdrawal.

·

Lesson No.905-10C Title: Written by: Larry Bell		: CPC -	: CPC - CEAC - COLSS			
		Approved by: Larry Bell Date: 10/23/92				
			5.4.2	Case 2 - Deviation of 2 CE.	As	
			5.4.3	Case 3 - dropped CEA in a	4 CEA subgroup	
			5.4.4	Case 4 - Dropped CEA in a	5 CEA subgroup	
Figure 6.2-3		5.5	CEAC	Outputs		
Page 6.2-7			5.5.1	Penalty Factor to CPCs		
			5.5.2	CEA Position Indication		
	6.0	Core	Operatir	ng Limits Supervisory System	n	
		6.1	COLS	S Design Requirements - CO	LSS is designed to assist t	
			operat	or in implementing the follw	ing sections of technical	
			specif	ications:		
			6.1.1	Licensed Power LCO		
			6.1.2	DNBR LCO		
			6.1.3	LPD LCO		
			6.1.4	Azimuthal Tilt LCO		
			6.1.5	Axial Shape Index LCO		
Figure 6.3-1		6.2	COLS	S inputs	11765	
Page 6.3-17			0.2.1	6.2.1.1 Delta T power	iiiiics	
				6212 DNRR		
			622	Pressurizer Pressure		
			6.2.3	RCP Speed and delta P		
			ل، سد، ب	6.2.3.1 RCS Flow Calculat	ion	
				6.2.3.2 RCS Flow used in:		
				• Delta T Power		
				• DNBR		
			6.2.4	Incore Flux - power distrib	oution	
			6.2.5	CEA Position		
				6.2.5.1 From plant comput	er calculation of CEA	
				position	the of many a dismits and	
				6.2.5.2 Used in the calcula	tion of power distribution	
			6.2.6	FW Flow and Temperature	- Secondary Calorimetric	
			6.2.7	Steam now and pressure -	- Proportional to power	
			0.2.8	i urome nirst stage pressur	- 1 Toportional to power	
				•		

Ĩ(

. _____

Ĩ

Lesson No.905-10C Title:		: CPC -	CEAC - COLSS		
Written by: Larry Bel		Approv	ved by: Larry Bell		Date: 10/23/92
Figure 6.3-2 Page 6.3-19	6.36.46.5	6.2.7 6.2.8 COLSS 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.3.7 COLS 6.4.1 6.4.2 6.4.3 Secon 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5	Steam flow and pressur Turbine first stage press S Outputs Core Power DNBR Power Margin kW/Ft Power Margin 6.3.4.1 Margin to close 6.3.4.2 Limits are: Licensed Pow DNBR LPD Power Margin Alarm Azimuthal Tilt Alarm 6.3.6.1 CPC Tilt Allow 6.3.6.2 Technical Spec Axial Shape Index S Power Calculations Secondary Calorimetri Primary Delta T Power Turbine First Stage Pro- dary Calorimetric Power Heat Balance across th SG Power = Power ou 6.5.2.1 P _{out} = (mass flow 6.5.2.1 h _{out} is determin 6.5.3.1 h _{out} is determin 6.5.4.1 h _{in} is determin 6.5.4.2 mass flow rate flow Power In 6.5.4.2 mass flow rate Energy Gains 6.5.5.1 RCP Heat 6.5.5.2 Charging Flow 6.5.5.3 Pressurizer Heat 6.5.5.3 Pressurizer Heat 6.5.5.5 Pressurizer Heat Pressurizer Heat Pr	est limit ver vance a dificatio (c Powe r Calcu essure r be SG t - pow w rate) w rate) w rate) ad fron = feed ed by fe = feed	condary Calorimetric Proportional to power larm ons Limit er llation ver in) (h _{out}) (h _m) n steam pressure water flow - blowdow eedwater temperature lwater flow

COMBUSTION ENGINEERING LESSON PLAN				
Lesson No.905-10C Title:		CPC - CEAC - COLSS		
Written by: Larry Bell		Approved by: Larry Bell Date: 10/23/92		
	6.5. 6.5.	 6 Energy Losses 6.5.6.1 Letdown Flow 6.5.6.2 CBO 6.5.6.3 Heat losses to containment 7 Secondary Calorimetric Power is used for: 6.5.7.1 Selection of power 6.5.7.2 Calibration of ΔT power and turbine power 6.5.7.3 Secondary calorimetric power is calculated 		
6.0	5 Tur 6.6. 6.6.	every 30 seconds if plant power is 215%. the Power Calculation .1 Turbine First Stage Pressure 6.6.1.1 Proportional to load 6.6.1.2 Relatively fast changing indication of power when load is being changed. .2 Calculated once per second .3 Calibrated to secondary calorimetric power		
6.	7 ΔT 6.7 6.7	 Power .1 Q=mC_p(ΔT) .2 Mass flow rate derived from: 6.7.2.1 RCP Speed 6.7.2.2 RCP ΔP 6.7.2.3 Temperatures 		
	6.7 6.7 6.7	 Hot and cold leg RTDs provide required Δ1 input. ΔT power is calculated once per second ΔT is very accurate at steady state and the higher of ΔT power or turbine power is used below 15%. ΔT is calibrated by secondary calorimetric power. 		
Figure 6.3-3 6. Page 6.3-21	8 Po 6.8	 Wer Selection Power selection is the highest of: 6.8.1.1 Secondary Calorimetric Power 6.8.1.2 Calibrated Turbine Power 6.8.1.3 Calibrated △T Power 		
Figure 6.3-4 Page 6.3-23	6.8 6.8	 The selected power is sent to: 6.8.2.1 Comparison with lowest operating limit 6.8.2.2 PDIL Alarm generation Alternate Power Selections 6.8.3.1 If secondary calorimetric power is BAD or if power ≤ 15%, the higher of uncalibrated ΔT 	f or	
		turbine power is selected.		

(

.....

Page	9
------	---

Lesson No.905-10C	2	Title: CP	C - CEAC - COLSS	
Written by: Larry Bell		Apj	proved by: Larry Bell	Date: 10/23/92
Written by: Larry B Figure 6.3-5 Page 6.3-25 Detailed discus- sion can be found on page 6.3-13 Figure 6.3-6 Page 6.3-27	6.9 6.10	Apj Operatir 6.9.1 6.9.2 6.9.2 6.9.2	 6.8.3.2 If ΔT is BAD, the calorimetric power of the calorime	Date: 10/23/92 a higher of secondary er or turbine power is selected s BAD, the higher of netric or ΔT power is selected to the licensed power of the limiting of all power limits ure Incores table lookup and CEA position o time consuming used by COLSS is more CPC CEA position erature arribution
		6.10.2	 6.10.1.1 Calculated fro 6.10.1.2 Curve fit of a location. 6.10.1.3 Used for ASI Azimuthal Tilt 6.10.2.1 4 detectors (o symmetrical 6.10.2.2 CPC Az tilt a 6.10.2.3 Tech Spec As 	m incore detectors verage value of signals at one DNBR, and LPD ne in each quadrant) - 9 sets o detectors larm z tilt alarm

· 325C-15	
. 1 Plant Differences	74B. 2122/74
1.0 TRAINING MORE	
2.0 References	
2.1 USARS for CE Units	
2.2 Waterford 3 Training Manual (FWCS,	SDECS, RPCS)
2,3 CE Low Power Feeduretor Control	
3.0 Objectives	
No formal objectives are listed on the	<u> </u>
ever, this presentation is presented	
3.1 Provide a background for plant en	lents dis-
cussions.	
3.2 Discuss "System 80" Control System	5
3.3 Fulfill student feedback commer	nts
4.0 Presentation	
4.1 CE Plant Massifications	
4.1.1 Divided into 6 Categories b	ased on
fuel assembly configuration	* MW(t)
4.1.2 Category 1 - Palisades	
4.1.2.1 204 fuel assemblies	- 2530 MW (t)
4.1.2.2 15 X15 fuel assemblie	s
4.1.2.3 Cruciform CEAS-M.	otar Iriven
4.1.3 Category 2 - Fort Calhoun	
41.1.3.1 133 Fuel assemblies	-1500 mult)
4.1.3.2 14 XIA fuelascembl	100
4.1.3.3 motor driven CEAS	

Plant Differences

3

......

тLВ 2/22/94

- ---

	4.2.2 Thermal Shizids
	4.2.2.1 Minimizes radiation damage to
	Vessel
	1:500 4.2.2.2 Figure = 20-2
	4.2.2.3 Fort Calhoun and Maine Yankee
	4.2.2.4 Saint Lucie used to have therma
·	shields, but it failed and was
	removed
	4.3 Incore Instrumentation
	4.3.1 Detector Assemblies
	4.3.1.1 5 detectors (instead of 4) + C.E.T.
	4.3.1.2 10,30, 50, 70, 90 010 of active
6	core height
	4.3.1.3 Contains calibration tube for
	movable incore
	4.3.1.4 Applicable to 150" frel-categorin
	4,5, and 6.
ig we 30-3	4.3.2 movable Incore System
5	4.3.2.1 System consists of:
	(a) two drive machines
	(b) transfer machines (2)
	(c) Passive wye
	(d) Purge gas system
	(e) Leak detection system
	(f) Plant computer interface
	(q calibration tubes in Indore.
	Instrument Assembly

- 5	Plant Differences	TLB 2/23/94
	4.6 Rack-and-Pinion CEA Mechanicm	
	4.6.1 Installed @ Fort _slhours an	d Palisades
	4.6.1.1 Drives "conventional	" CEA
	ut Fort Calham	
	4.6.1.2 Drives cruciform C.E	A at
	Palisades	
	4.6.2 Drive Motor	
	4.6.2.1 120 Vac, 60 hz, sing	le phase
	4.6.2.2 Drives rack via bra	ke and
	magnetic clutch	
	4.6.3 Brake	
	4.6.3.1 -Functions to hold c	EA when
k	CEA isn't moving	
	4.63.2 De-energized when	the drive
······································	motor is energized	and visa
	versa	
	4.6.4 Magnetic Clutch	
	4.6.4.1 Controls the coup	ling of the
	CEA to the moto	<u>r</u>
	4.6.4.2 When de-energize	d, the CEA
	drops into the co	Dre.
:	4.6.5 Motor Drive Shaft	
	4.6.5.1 Extends from clutch	to drive
	<u>gear</u>	
	4.6.5.2 Positions "rack"	
	4.6.6 Rack	
	4.6.6.1 Connects to the C	EA via
. :	a bayonet coupling	

.

TLB Plant Differences 7 2123/94 4.7.4 Upper Guide Structure modificiations -figure 30-10 & contrast 30-11 4.7.5 CEA designs require = CEA mask on refueling machine IBURE 4.7.6 Pert-length CEAS 4,7,6,1 Pertial poison section - 16" of B₄C 4.7.6.2 Trippable 4.7.6.3 ANO2, Waterford 3, Songs, and Palo Verde 4.8 Power Operated Relief Valves 4.81 Not installed at ANDE, waterford 3, SONGS or Palo Verde 4.8.1.1 Larger steam dump capacity 4.8.1.2 No feed-bleed capability 4.3.1.3 ECCS vents @ ANO2 4.9 System 80 steam Generators 4.9.1 Two feed rings 4.4.1.1 Economizer - 14" lines - 2 nozzles 4.9.1.2 Downcomer-6"-similar to conventional design

- 4.9 SYSTEM 80 STEAM GENERATORS
 - 4.9.1 Two feed rings
 - 4.9.1.1 Economizer -14" -2 nozzles
 - 4.9.1.2 Downcomer 6" -similar to conventional design
 - 4.9.2 Define Economizer
 - 4.9.3 Flowpath in the economizer feedring, downward direction-flow distribution plate-up past the tubes -counter flow heat exchanger
 - 4.9.4 6 inch feedring
 - 4.9.4.1 Used during AFW operations - cold FW
 - 4.9.4.2 Used during low power operations (< 15%)

,

- 4.9.4.3 Used above 50% (provides 10% flow) to provide subcooling to recirculation water and to improve recirculation ratio.
- 4.10 RPS/ESFAS Interfaces
 - 4.10.1 Block Diagram
 - 4.10.1.1 Shared
 - transmitter input
 - 4.10.1.2 CPC Input
 - 4.10.2 Bistable Relay Card
 - 4.10.2.1 ESF + RPS relays
 - 4.10.2.2 Variable Setpoint
 - Generator

	4.10.2.3	Pzr and log pwr
		bypass
4.10.3	3 ESF	Matrix - explain
4.10.4 Varia		able setpoint for SG
	pres	s and pzr press
	4.10.4.1	Pzr bypass logic
	4.10.4.2	SG press
		actually goes to
		zero - no bypass
		needed
4.10.	5 Exc	ore input
	4.10.5.1	3 fission
		chambers per
		channel
	4.10.5.2	Power range
		(CPC) input
	4.10.5.3	log channel input
	4.10.5.4	log channel trip
		bypass
SIS	Difference	S
4.11	.1 HPS	SI
	4.11.1.1	3rd pump as a
		backup
	4.11.1.2	Explain that 3rd
		pump on category
		4-6 plants may
		be valved to
		either header
	4.11.1.3	Two pumps at
		Palo Verde
	4.11.1.4	Maine Yankee has
		Centrifugal
		charging pumps
		instead of HPSI
	4.11.1.5	Discharge
		pressures of
		1250 to 1600 psi
	4.11.1.6	flow rates vary
		from 150 to 700
		gpm

4.11

•

.

4.11.2 SITs

- 4.11.2.1 200 psig SITs category 1 thru 3 units
 - 4.11.2.2 600 psig SITs category 4-6 units
- 4.11.3 LPSI
 - 4.11.3.1 Split discharge headers at Palo Verde and Waterford.
- 4.12 Reactor Power Cutback System
 - 4.12.1 The RPCS functions to rapidly reduce reactor power by dropping CEAs during:
 - 4.12.1.1 Load Rejections
 - 4.12.1.2 Loss of MFP
 - 4.12.1.3 Restoration of heat generation and heat removal during load rejections prevents high pzr pressure trips
 - 4.12.1.3 Reduction of power during MFP trips prevents low SG IvI trips
 - 4.12.2 RPCS Inputs
 - 4.12.2.1 Feedpump control oil pressure switches (2/2 logic)
 4.12.2.2 Load Rejection signal from

SBDCS

- 4.12.2.3 Runback signal consisting of P_{TES} and P_{SG} biased by TAVE. This signal is used to runback the turbine at 200%/minute to avoid low steam generator pressures. 4.12.3 Arm Command 4.12.3.1 Generated by the plant computer when plant power is \geq 75%
 - 4.12.3.2 Calculation of negative reactivity required to reduce reactor power to ~75% based upon power and temperature.
 - 4.12.3.3 Chooses subgroups of CEAs to drop.
 - 4.12.3.4 Arm command is one of two signals required to drop CEAs
- 4.12.4 Drop Command
 - 4.12.4.1 Generated by loss of MFP or load rejection inputs
 - 4.12.4.2 Drop command is the <u>2nd of two</u> signals required

FWCS will cover event

event

- 4.12.7 RPCS actions 50% 75%
 - 4.12.7.1 Initiating event
 - 4.12.7.2 Drop signal is generated, <u>but</u> no arm signal is generated
 - 4.12.7.3 Turbine setback signal is generated
 - 4.12.7.4 If loss of MFP, RRS inserts CEAs to match 50% turbine power. FWCS maintains level.
 - 4.12.7.5 If load rejection, SDBCS + RRS will restore heat removal and heat generation balance and FWCS will maintain SG lvl.
- 4.12.8 RPCS actions \geq 75%
 - 4.12.8.1 Drop signal generated by initiating event
 - 4.12.8.2 Plant computer selects subgroups and initiates arm command
 - 4.12.8.3 Drop command + arm command allows CEAs to drop
 - 4.12.8.4 RRS + SDBCS restores heat

	Lesson Title	: COLSS	Date: 11/7/86 Rev.: 0
(-	Program:	R-205P-17	Author: T. L. Bell
			Reviewed By: T. L. Bell

- 1.0 Special Instructions and Training Aids
 - 1.1 R-205P-17 Viewgraph Package
 - 1.2 R-205P-17 Course Module
- 2.0 References
 - 2.1 CE Systems Manual Section 15.2
 - 2.2 Waterford 3 Training Manual
 - 2.3 ANO2 Procedure

Page <u>2</u> of <u>5</u>

Notes	Lesson Plan (Continuation Sheet)								
-	0. Objectives								
•	Declives								
	3.1 Cover objectives on page an								
	4.0 Presentation								
	4.1 Core operating limit supervisory system purposes								
	4.1.1 To accurately calculate plant operating								
	limits and to alert the operator if								
	these limits are exceeded.								
	4.1.2 Limits monitored								
	4.1.2.1 DNBR core power limit								
	4.1.2.2 Licensed power limit								
	4.1.2.3 Local power density core power								
	limit								
	4.1.2.4 Azimuthal tilt limits								
	4.1.3 General COLSS facts								
	4.1.3.1 COLSS is a computer (software)								
	program								
	4.1.3.2 COLSS is <u>not</u> safety related								
	4.1.3.3 If plant limits are less than								
	COLSS limits - plant within								
	initial conditions assumed in								
	Safety Analysis.								
	4.1.3.4 Within limits ensures								
	protection during Anticipated								
	Operational Occurrences								
	4.1.4 COLSS Inputs								
	4.1.4.1 Steam pressure								
	4.1.4.2 Feedwater flow								
	4.1.4.3 Feedwater temperature								
	4.2 COLSS Algorithms								
	4.2.1 Plant Power Calculations								
	4.2.1.1 Secondary power								

Page <u>3</u> of <u>5</u>

4.2.1.2 Heat Balance across SG
4.2.1.3 SG power = energy in - energy
out
4.2.1.4 Energy out
(a) steam pressure
(b) steam flow = feedwater
flow - blowdown flow
(c) steam flow signal is
noisy
4.2.1.5 Energy In
(a) feedwater flow
(b) feedwater temp
(c) blowdown flow
4.2.1.6 Losses/Gains
(a) pump heat
(b) letdown
(c) charging
(d) losses to containment
4.2.1.7 Calculated every 30 seconds
if >15%
4.2.2 Turbine power
4.2.2.1 Turbine first stage press
4.2.2.2 Calibrated during testing
4.2.2.3 Once per second
4.2.2.4 Calibrated to secondary power
4.2.2.5 Improves transient response
4.2.3 RCS volumetric flow
4.2.3.1 Pump speed
4.2.3.2 Pump Delta P
4.2.4 Delta T Power
4.2.4.1 Core power = (flow rate) x
specific
Spectra

Page <u>4</u> of <u>5</u>

Notes	Lesson Fian (Continuation Sheet)	
· · · · · · · · · · · · · · · · · · ·	the state the second labor 157	DOUGE
	4.2.4.2 Used primarily below 15%	hower
	4.2.4.3 Calculated once per secon	10
	4.2.4.4 Calibrated to secondary j	power
	4.2.5 Power Selection	
	4.2.5.1 Highest power selected	
	4.2.5.2 Compared with lowest lim	it
	4.2.5.3 Power margin = power lim	it -
	actual power	
	4.3 Power Limit Calculations	
	4.3.1 Licensed Power	
	4.3.1.1 Constant = 2815 MW(t)	
	4.3.1.2 Usually most limiting li	mit
	4.3.2 3-D power	
	4.3.2.1 Radial - from CEA positi	ion -
	table lookup	
	4.3.2.2 Axial - Incore	
	4.3.2.3 LPD	
	4.3.2.4 DNBR	
	4.3.3 LPD Limit	
	4.3.3.1 3D power and Az tilt	
	4.3.3.2 Heat Generation Limit	
	4.3.4 DNBR	
	4.3.4.1 Pzr press	
	4.3.4.2 RCS flow	
	4.3.4.3 3D power	
	4.3.4.4 Az tilt	
	4.3.5 Limit selection	
	4.3.5.1 Low select	
	4.3.5.2 Lowest limit	
	4.4 Auxiliary calculations	
	4.4.1 Az tilt	
	1. 1. 2 AST	

Page <u>5</u> of <u>5</u>

/	Notes	<u> </u>		Lesson	Plan	(Contin	nuatior	Sheet)	 <u> </u>	<u></u>
		5.0	Tech	Specs							
		6.0	Summ	ary Review	Objec	tives					
			0.1	VEATEM	00500						
									~		
÷											
(
\bigcirc											

Page <u>6</u> of <u>11</u>

`	Notes	Lesson Plan (Continued)								
		6.0 Core Protection Calculators								
		6.0 6.1	CPC Purp							
		0.1		Prevents	exceeding DNBR and LPD during					
			0.2.2	anticipat	ed operational occurrences					
		5.2	Inputs		•					
			6.2.1	Reactor F	ower					
			0.2.2	6.2.1.1	Raw input from each of 3					
					detectors					
				6.2.1.2	Shape annealing corrections					
					(a) Corrects detector output					
					for flux shape affects					
					(b) Determined during testing					
					by inducing axial xenon					
					oscillation					
					(c) incore data					
				6.2.1.3	Rod Shadowing					
					(a) target rods used					
				6.2.1.4						
					(a) colder ic - less moderación					
				6.2.1.5	fotal power to high select					
			6.2.2	SU Power	Tangat Pads					
				0.2.2.1	(a) 20 CEAs					
				6 2 2 2	Radial Distribution f(CEA)					
				U. L. L. L	(a) table lookup					
				6.2.2.3	Misalignment Information from					
				••••••	CEAC					
				6.2.2.4	Azmuthal Tilt					
					(a) constant input					
					(b) .l limit					
				6.2.2.5	6 Hot Pin Calculation					
					(a) DNBR - localized effect					
\checkmark					(b) Kw/Ft - localized					

.

Page <u>7</u> of <u>11</u>

	Notes	Lesson Plan (Continued)						
		6.2.3 RCS Flow						
		6.2.3.1 Calculated from pump speed						
	•	6.2.3.2 Supplied to:						
		(a) DNBR						
		(b) △T power calculation						
	`	6.2.4 Pressurizer Pressure						
		6.2.4.1 Supplied to DNBR						
		6.2.4.2 Quality Calculation						
		6.2.5 Temperature inputs						
		6.2.5.1 T _h and T _c						
		6.2.5.2 Delta T Power						
		(a) Very accurate during steady						
		state						
		(b) Hi selected with Excore						
(Power						
C		(c) Supplied to Kw/Ft and DNBR						
		6.2.5.3 Highest T to DNBR						
		6.2.5.4 Lowest T_ to temp shadowing						
		6.3 CPC Calculations						
		6.3.1 Kw/Ft						
		6.3.1.1 Hot Pin						
		6.3.1.2 Total Power						
		6.3.1.3 $1&2 = heat generation$						
		6.3.2 DNBR						
		6.3.2.1 Flow						
		6.3.2.2 Pressure						
		6,3.2.3 Power						
		6.3.2.4 Temperature						
		6.3.2.5. 3-D power						
\smile								
		· ·						

Page <u>8</u> of <u>11</u>

•

(<u> </u>							
<u> </u>	Notes	Lesson Plan (Continued)								
	•									
				6.3.3	Coolant C	luality				
					6.3.3.1	Temp and Press dependent				
					6.3.3.2	15% limit				
					6.3.3.3	DNBR calculations problems				
				6.3.4	DNBR Upda	ate				
					6.3.4.1	Normal DNBR calculation - 50 msec				
					6.3.4.2	Accounts for changes during "lag"				
					6.3.4.3	Flow - negative rates only				
					6.3.4.4	derivatives of inputs				
				6.3.5	Trip Out	put				
					6.3.5.1	Contact opens in Digital Bistable Cards				
				6.3.6	Aux Trip	s				
					6.3.6.1	Internal Processor Faults				
					6.3.6.2	<4 RCPs (>30%)				
•					6.3.6.3	Region 3 parameters				
					6.3.6.4	ΔT _c				
		7.0	Cont	rol Elemer	nt Assembl	y Calculators				
			7.1	Purpose						
				7.1.1	Supply m	isalignment information to CPCs				
			7.2	CEAC Inpu	uts					
				7.2.1	Dual RSF	PT/CEA				
•				7.2.2	20 CEA 1	Inputs to CPCs				
				7.2.3	Optical	Isolation to CEACs				
			7.3	Software						
				7.3.1	CEA Ref	erence Position - lowest CEA in				
					subgrou	p				
				7.3.2	5.6% dea	adband				
				7.3.3	Case co	nditions				
\smile		ĺ								

Page <u>9</u> of <u>11</u>

.

Notes		Lesson Plan (Continued)							
				7.3.3.1	Case 1 (a) deviation of 1 CEA (b) uncontrolled rod withdrawal (c) 3 CEAs deviated				
				7.3.3.2	Case 2 (a) 2 CEAs misaligned				
				7.3.3.3	Case 3 (a) Dropped CEA in 4 CEA subgroup				
				7.3.3.4	Case 4 (a) Dropped CEA in 5 CEA subgrou				
		7.4	CEAC Outp	outs					
			7.4.1	Penalty 1	factor to CPCs				
			7.4.2	CEA posit	tion indication				
	8.0	Engi	neered Sat	fety Featur	res				
		8.1	Purpose						
			8.1.1	To actua	te equipment to mitigate				
				conseque	nces of an accident				
		8.2	Systems						
			8.2.1	SIAS					
				8.2.1.1	LOCA				
				8.2.1.2	Low Pressurizer Pressure				
				8.2.1.3	High Containment Pressure				
				8.2.1.4	HPSI - LPSI - Chg., etc.				
			8.2.2	MSIS					
				8.2.2.1	Steambreak				
				8.2.2.2	Steam/feedwater isolation				
			8.2.3	CIS					
				8.2.3.1	Isolates non-safety related				
					containment penetrations				

•