

- Q

Gary R. Peterson Vice President **Duke Power** *Catawba Nuclear Station* 4800 Concord Road York, SC 29745 (803) 831-4251 OFFICE (803) 831-3426 FAX

March 27, 2000

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555-0001

Subject: Duke Energy Corporation Catawba Nuclear Station Units 1 and 2 Docket Nos. 50-413 and 50-414 Emergency Plan Implementing Procedures

Please find enclosed for NRC Staff use and review the following Emergency Plan Implementing Procedure:

SH/0/B/2005/001, Emergency Response Offsite Dose Projections (Rev. 001)

This revision is being submitted in accordance with 10CFR 50.54(q) and does not decrease the effectiveness of the Emergency Plan Implementing Procedures or the Emergency Plan.

By copy of this letter, two copies of the above documents are being provided to the NRC, Region II.

If there are any questions, please call Tom Beadle at 803-831-4027.

Very truly yours,

Gary R. Peterson

Attachments

AUF

U.S. Nuclear Regulatory Commission March 27, 2000 Page 2 xc (w/attachments): L. A. Reyes U.S. Nuclear Regulatory Commission Regional Administrator, Region II Atlanta Federal Center 61 Forsyth St., SW, Suite 23T85 Atlanta, GA 30303 (w/o attachments): C. P. Patel NRC Senior Project Manager (CNS) U.S. Nuclear Regulatory Commission Mail Stop 0-8 H12 Washington, DC 20555-0001 D. J. Roberts Senior Resident Inspector (CNS) U.S. Nuclear Regulatory Commission Catawba Nuclear Site

· ...

VOLUME I

PROCEDURE	TITLE
RP/0/A/5000/001	Classification of Emergency (Rev. 012)
RP/0/A/5000/002	Notification of Unusual Event (Rev. 033)
RP/0/A/5000/003	Alert (Rev. 035)
RP/0/A/5000/004	Site Area Emergency (Rev. 037)
RP/0/A/5000/005	General Emergency (Rev. 037)
RP/0/A/5000/06	Deleted
RP/0/A/5000/006 A	Notifications to States and Counties from the Control Room (Rev. 010)
RP/0/A/5000/006 B	Notifications to States and Counties from the Technical Support Center (Rev. 010)
RP/0/A/5000/006 C	Notifications to States and Counties from the Emergency Operations Facility (Rev. 010)
RP/0/A/5000/007	Natural Disaster and Earthquake (Rev. 017)
RP/0/A/5000/08	Deleted
RP/0/B/5000/008	Spill Response (Rev. 016)
RP/0/A/5000/009	Collision/Explosion (Rev. 005)
RP/0/A/5000/010	Conducting A Site Assembly or Preparing the Site for an Evacuation (Rev. 013)
RP/0/A/5000/11	Deleted
RP/0/B/5000/12	Deleted
RP/0/B/5000/013	NRC Notification Requirements (Rev. 023)
RP/0/B/5000/14	Deleted
RP/0/A/5000/015	Core Damage Assessment (Rev. 004)
RP/0/B/5000/016	Deleted
RP/0/B/5000/17	Deleted

VOLUME I

PROCEDURE	TITLE
RP/0/A/5000/018	Emergency Worker Dose Extension (1/15/96)
RP/0/B/5000/019	Deleted
RP/0/A/5000/020	Technical Support Center (TSC) Activation Procedure (Rev. 012)
RP/0/A/5000/021	Deleted
RP/0/B/5000/022	Evacuation Coordinator Procedure (Rev. 003)
RP/0/B/5000/023	Deleted
RP/0/A/5000/024	OSC Activation Procedure (Rev. 006)
RP/0/B/5000/025	Recovery and Reentry Procedure (Rev. 002)
RP/0/B/5000/026	Response to Bomb Threat (5/30/96)
RP/0/B/5000/028	Communications and Community Relations EnergyQuest Emergency Response Plan (Rev. 000)

VOLUME II

PROCEDURE	TITLE
HP/0/B/1000/006	Emergency Equipment Functional Check and Inventory (Rev. 053)
HP/0/B/1009/001	Radiation Protection Recovery Plan (Rev. 007)
HP/0/B/1009/003	Radiation Protection Response Following a Primary to Secondary Leak (Rev. 008)
HP/0/B/1009/004	Environmental Monitoring for Emergency Conditions Within the Ten-Mile Radius of CNS (Rev. 027)
HP/0/B/1009/005	Personnel/Vehicle Monitoring for Emergency Conditions (Rev. 016)
HP/0/B/1009/006	Alternative Method for Determining Dose Rate Within the Reactor Building (Rev. 008)
HP/0/B/1009/007	In-Plant Particulate and Iodine Monitoring Under Accident Conditions (Rev. 018)
HP/0/B/1009/008	Contamination Control During Transportation of Contaminated Injured Individuals (Rev. 014)
HP/0/B/1009/009	Guidelines for Accident and Emergency Response (Rev. 038)
HP/0/B/1009/014	Radiation Protection Actions Following an Uncontrolled Release of Radioactive Material (Rev. 008)
HP/0/B/1009/016	Distribution of Potassium Iodide Tablets in the Event of a Radioiodine Release (Rev. 010)
HP/0/B/1009/017	Deleted
HP/1/B/1009/017	Post-Accident Containment Air Sampling System (Rev. 001)
HP/2/B/1009/017	Post-Accident Containment Air Sampling System (Rev. 000)
HP/0/B/1009/018	Deleted
HP/0/B/1009/019	Emergency Radio System Operation, Maintenance and Communication (Rev. 010)
HP/0/B/1009/024	Implementing Procedure for Estimating Food Chain Doses Under Post- Accident Conditions (Rev. 002)

March 27, 2000

.

VOLUME II

PROCEDURE	TITLE
HP/0/B/1009/025	Deleted
HP/0/B/1009/026	On-Shift Offsite Dose Projections (Rev. 002)
SH/0/B/2005/001	Emergency Response Offsite Dose Projections (Rev. 001)
SH/0/B/2005/002	Protocol for the Field Monitoring Coordinator During Emergency Conditions (Rev. 000)
OP/0/A/6200/021	Operating Procedure for Post Accident Liquid Sampling System II+ (Rev. 031)
SR/0/B/2000/001	Standard Procedure for Public Affairs Response to the Emergency Response Facility (Rev. 001)
SR/0/B/2000/002	Standard Procedure for EOF Commodities and Facilities (Rev. 001)
SR/0/B/2000/003	Activation of the Emergency Operations Facility (Rev. 003)

(R06-97)

Duke Power Company PROCEDURE PROCESS RECORD FOR STANDARD PROCEDURES

(1) ID No. SH/0/B/2005/001

Revision No. 001

PRE	PARATION			
)	Procedure Title:	Emergency Respon	se Offsite Dose Projection	ons
(3)	Prepared By	Junkam T Johnson		Date_2-1-00
(4)	Applicable To:		🛛 MNS	🖾 CNS
(5)	Technical Advisor		Dary J. Derrel	Ne Whayinger
(6)	Requires 10CFR50.59	🗆 Yes 🔲 No	🗹 Yes 🗆 No	I⊉'Yes □ No
	Evaluation?	YES = New procedure or revision with major char		Revision with minor changes To incorporate previously approved changes
(7)	Review (QR)	Ву	By Opyi C. Cenele	By W Jallin
		Date	Date 2/23/00	Date 2128 12000
	Cross-Disciplinary	Ву	Ву	By GAMIMStehel.
	Review (QR)	NA Date	NA Date 3/1/00	NA Date z/z//2000
	Reactivity Mgmt.	Ву	Ву	Ву
	Review (QR)	NA Date	NA g Date J / 1 / 00	NA 644 Date 2/21/2000
(8)	Additional	Ву	By K.J. Muna Date 3-1-00	Ву
	Reviews	Date	Date	Date
		By	By M. Muertin	Ву
\smile		Date	Date 3 8 2000	Date
(9)	Approved	Ву	By Wellert. Bym	By Winhall of
		Date	Date 31812000	Date 2/29/00
(10)	Use Level	Level Reference Use		
PER	FORMANCE (Com	pare with Control Copy every 14	calendar days while work is be	ing performed.)
	Compared with Con		-	Date
	Compared with Con	trol Copy		Date
		trol Copy		
		·. ·		
	Work Order Number	r (WO#)		
CON	IPLETION			
	Procedure Completi	on Verification		
	□ Yes □ NA	Check lists and/or blanks in	nitialed, signed, dated, or filled in	NA, as appropriate?
	🗆 Yes 🛛 NA	Listed enclosures attached	?	
	🗆 Yes 🛛 🗆 NA	Data sheets attached, com	pleted, dated, and signed?	
	□ Yes □ NA	Charts, graphs, etc. attache	ed, dated, identified, and marked	d?
	□ Yes □ NA	Procedure requirements m	et?	
	Verified By			Date
(14)	Procedure Completi	on Approved		Date

(15) Remarks (Attach additional pages, if necessary.)

	Duke Power Company	Procedure No.
\smile	Catawba and McGuire Nuclear Stations	SH/ 0 /B/2005/001
		Revision No.
	Emergency Response Offsite Dose Projections	001
	Reference Use	Electronic Reference No.
		MP0070PF

SH**/0**/B/2005/001 Page 2 of 14

Emergency Response Offsite Dose Projections

1. Purpose

To provide instruction to Emergency Response Organization (ERO) dose assessors for determining source term and calculating the projected offsite dose to the public using Raddose 5 (Earth Tech TM Windows© based computer program); and to provide dose assessment guidance for completion of Emergency Notification form.

NOTE: This procedure is an Emergency Plan Implementing Procedure (EPIP) to be used for Catawba and McGuire Nuclear Stations. Emergency Planning must be notified of any changes to this procedure.

2. References

- 2.1 Earth Tech Raddose 5 Operator's Manual, Detailed Design Manual, System Design Specification, Verification and Validation Report Vol 1 and 2
- 2.2 Station specific procedures for alternate method of determining Reactor Building dose rate:

CNS - HP/0/B/1009/006	Alternative Method for Determining Dose Rate
	Within the Reactor Building
MNS - HP/0/B/1009/002	Alternative Method for Determining Dose Rate
	Within the Reactor Building

2.3 Station specific procedures for post accident gas sampling:

CNS - HP/0/B/1009/017	Post Accident Containment Air Sampling System
MNS - HP/1/B/1009/015	Nuclear Post-Accident Containment Air Sampling
(Unit 1)	System Operating Procedure
MNS - HP/2/B/1009/015	Nuclear-Post Accident Containment Air Sampling
(Unit 2)	System

2.4 Station specific procedure for abnormal unit vent sampling:

CNS - HP/0/B/1009/021	Abnormal Unit Vent Sampling
MNS - HP/0/B/1009/006	Procedure for Quantifying High Level Radioactivity
	Releases During Accident Conditions

- 2.5 EPA 400-R-92-001 Manual of Protective Action Guides and Protective Actions for Nuclear Incidents
- 2.6 Letter from F.G. Hudson, September 20, 1985, Re: Release Rate Information for McGuire and Catawba Nuclear Stations (File: GS-750.25, NUC-0306)
- 2.7 Letter from H.B. Tucker, November 30, 1989, Re: Follow-up on McGuire Alert (March 7 8, 1989) Critique Action Items
- 2.8 U.S. Nuclear Regulatory Commission Response Technical Manual (RTM-93)
- 2.9 Station specific procedures for classification of emergencies:

CNS - RP/0/A/5000/001	Classification of Emergency
MNS - RP/0/A/5700/000	Classification of Emergency

3. Limits and Precautions

- 3.1 Use this procedure during abnormal or emergency conditions (including exercises and drills).
- 3.2 This procedure may be performed in sections or parts, using steps in any sequential order, to evaluate and/or assess offsite radiological conditions.
- 3.3 Verify all data, both automatic and manual, prior to using in dose assessments.

4. Procedure

- 4.1 Use Raddose 5 program to calculate Total Effective Dose Equivalent (TEDE) exposure, Committed Dose Equivalent (CDE) Thyroid exposure, and Effective Dose Equivalent (EDE) exposure in ten mile Emergency Planning Zone (EPZ).
 - Provide information for offsite dose exposure and projected offsite dose rate results, from any radioactive material(s) released offsite, to ERO Management.
- 4.2 Access the Raddose 5 software.
 - 4.2.1 Click on the Raddose 5 icon.
 - 4.2.2 A dialog box will appear stating the "DAS Workstation configuration" (EOF or TSC). Click on "OK" to access the DAS (Dose Assessment Software) Desktop.

- 4.2.3 Change the DAS configuration if needed as follows:
 - At the DAS Desktop, click on FILE.
 - Click on DAS Configuration.
 - Click on appropriate Work Station Type (EOF or TSC) and Mode (Production or Training).
 - Restart Raddose 5 for changes to take affect.
- 4.2.4 Select the appropriate Station and Unit from the DAS Desktop.
- 4.2.5 Select Accident mode or Drill mode appropriate to ERO response.
 - Select Automatic mode for program query or fifteen minute average data from Operator Aided Computer (OAC).
 - Select Manual for keyboard entry of data.

NOTE: Use option **Begin New Incident** for initial program operation; or the option **Continue Previous Incident** may be selected for continuation of a program using previously entered data with previous dose assessment calculations.

- 4.2.6 Select **Begin New Incident** and enter information (e.g., reactor trip date, reactor trip time, release date and release time); or proceed to Step 4.2.7 if previous dose assessment files are to be used.
 - <u>IF</u> the reactor did not trip, and shutdown is in progress, <u>THEN</u> use current time in the blank for reactor trip time.
 - Release time (estimated or known).
 - Enter operator initials and use the mouse to accept and/or cancel.

NOTE: Option Continue Previous Incident may be selected where previously calculated data files from local computer hard drive and a local server are used; or the option Network Data may be selected to continue using network files from either Technical Support Center (TSC) or Emergency Operations Facility (EOF) server.

- 4.2.7 Select **Continue Previous Incident** if previous TSC or EOF files are valid.
 - Select Local Data to access and write results to local hard drive and server.
 - Select Network Data which provides pop up message and overwrites local drive with dose assessment files transferred from TSC or EOF.
 - Use single mouse click for OK or Cancel.
- 4.3 Select Enter/Edit Meteorological Data from program selection and input data for current meteorological conditions.
- **NOTE:** Use actual site meteorology for assessment of a release, until it is appropriate to use forecasted data provided by a meteorologist. <u>IF</u> site meteorology cannot be obtained from meteorological tower systems, refer to Enclosure 5.1 (Meteorology).
 - 4.3.1 Enter meteorological data, or **Requery** for automatic meteorological input.
 - 4.3.1.1 If manual meteorological data entries are required use Enclosure 5.1 (Meteorology) as necessary.
 - Enter wind speed in miles per hour (mph).
 - Enter wind direction; where wind direction is from North (N=0⁰).
 - Enter Delta temperature gradient (ΔT) in degrees centigrade ($\Delta T = C^{\circ}$).
 - Enter air temperature in degrees centigrade (Temperature in C°).
 - Enter precipitation occurring (inches per fifteen minute period).
 - Mean mixing height (in meters) is computer calculated using ΔT and air temperature.
 - Manually overwrite meteorological data or **Requery** for data that is acceptable.

- Refer to Enclosure 5.2 (Protective Action Zones Determination Table) for determination of affected downwind Protective Action Zones (PAZs).
- 4.3.2 Follow menu options; Accept data, by single mouse click for computer calculations of meteorological data; or Requery for automatic OAC data; or Add Time Step for additional time of release; or Cancel entry.
- 4.4 Select Enter/Edit Source Term Data for accident type selection and input of source term data for a time step and release path(s).
 - 4.4.1 Select accident type and corresponding noble gas monitor (NG method) for each selected path in a time step.

NOTE: Consult with ERO personnel (e.g., TSC Operations Engineering and/or EOF Accident Assessment) prior to using "gap release" or "core melt" accident types.

- LOCA Loss of coolant (normal coolant) leaks released into containment with those fission products normally found in coolant.
- LOCAG Loss of coolant gap release coolant leaks into containment of fission products in the fuel pin gap after fuel cladding has failed (e.g., core being uncovered, fuel pin heat up, and/or if mechanical fuel pin damage has occurred).
- LOCAM Loss of coolant core melt coolant leaks released into containment of fission products expected to be released from a core that is partially melted after being uncovered for some period of time.
- SGTR Steam generator tube rupture (normal coolant) steam generator release accidents with those fission products normally found in coolant.
- SGTRG Steam generator tube rupture gap release steam generator tube release accidents that release fission products in the fuel pin gap after fuel cladding has failed (e.g., core uncovery or fuel pin heat up and/or after mechanical fuel pin damage has occurred).
- SGTRM Steam generator tube rupture core melt steam generator tube release accidents that release fission products expected to be released from a core that is partially melted after being uncovered for some period of time.

		• LOCO - LOCA outside containment (normal coolant) - leaks released directly from containment to outside environment (e.g., Annulus or Auxiliary Building) with fission products normally found in reactor coolant.
		• LOCOG - LOCA outside containment gap release - leaks released directly from containment to outside environment (e.g., Annulus or Auxiliary Building) with fission products in the fuel pin gap after fuel cladding has failed (e.g., core uncovery or fuel pin heat up and/or after mechanical fuel pin damage has occurred).
		• LOCOM - LOCA outside containment core melt - leaks released directly from containment to outside environment (e.g., Annulus or Auxiliary Building) with fission products expected to be released from a core that is partially melted after being uncovered for some period of time.
		• FUEL - Fuel handling gap release - fuel pin fission products released from fuel during refueling, or Spent Fuel Pool accident.
NOTE:	step; cha	sistent Accident Type and identify release path(s) for each fifteen minute time nging Accident Type only when reactor and/or plant status indicate conditions g to a different accident.
	4.4.2	Use Enclosure 5.3 (Steam Source Term Release) and Raddose 5 for assessment of steamline power operated relief valve release, or steam line break accident.
	4.4.3	Use Enclosure 5.4 (Containment Source Term Release) and Raddose 5 for assessment of a containment accident release.
	4.4.4	Use Enclosure 5.5 (Unit Vent Source Term Release) and Raddose 5 for assessment of a unit vent release.
	4.4.5	Enter Monitor Reading , re-query OAC data, or manually edit EMF monitor values, used for source term calculations in each identified accident release pathway.
		• Normally OAC fifteen minute average readings are used for source term calculations; however, live time monitor readings are acceptable whenever queried data is suspect or user is manually entering data.
	4.4.6	Follow menu options to Accept data, by single mouse click for computer calculations of source term data; or Requery for automatic OAC data; or Add Time Step for additional time of release; or Cancel entry.

Γ

4.5 Select Emergency Classification from the Raddose 5 main menu.

- **NOTE:** This menu item is used to select the **Current** Emergency Classification in a drill or accident. <u>DO NOT</u> select a classification based on radiological conditions only.
 - 4.5.1 Select the current Emergency Classification (Unusual Event, Alert, site Area Emergency, General Emergency) from the menu.
 - 4.6 Select **Perform Calculations** to calculate **Real Time Mode** dose results displayed on ten mile map with Maximum Dose Rates and selectable receptor point display
 - 4.6.1 Select **Continue** from map display to return to **Real Time Mode Output** Menu.
 - 4.6.2 Select **Continue Calculations** if forecasted doses and an Emergency Notification Form is needed at this time. Other menu items may be selected as follows:
 - Display Grid Receptor Doses is used to go to the *real-time* Grid Point Receptor Menu.
 - **Display Plume Arrival Times** is used to display *real-time* plume arrival times.
 - **Display 2-Mile Map** is used to see *real-time* Plume EDE and Adult Thyroid dose rates within two miles of the site.
 - **Display 10-Mile Map** is used to see *real-time* Plume EDE and Adult Thyroid dose rates within ten miles of the site.
 - **Display Survey Point Receptors** is used to see *real-time* dose rates and accumulated doses for predetermined sample points.
 - **Display Point-of-Interest Doses** is used to see *real-time* dose rates at any point of interest. This choice may be used to display dose rates beyond the 10-mile radius of the site.
 - **Display 50-Mile Deposition Data** is used to go to the *real-time* 50-mile deposition menu.
 - Go To Report Menu is used if output of *real-time* is desired.

- 4.7 Select **Perform Forecast** to calculate TEDE and CDE dose rates (mrem/hr), and accumulated dose (mrem), for the release duration in **Forecast Mode**; based on predicted accident stop time or release termination.
 - 4.7.1 Select the appropriate Emergency Release Status (e.g., None, Potential, Is Occurring, Has Occurred).
 - 4.7.2 Select the appropriate Status of Projected Offsite Dose (e.g., New or Unchanged).
 - 4.7.3 Enter a Forecast Period (in hours).
 - 0.5 hours is the lower limit allowed as a forecast period.
 - 4.7.4 **Forecast mode** doses are calculated using the most current time step and are displayed on ten mile EPZ map.
 - 4.7.5 Select **GE PARs** to display the General Emergency Protective Action Recommendations. This option is only available if a General Emergency is selected.
 - 4.7.6 Select **Continue** from map display with pop up menu item for selection **Yes** or **No**, to save Forecasted dose in PAZs for determining evacuation.
 - 4.7.7 Select **Go To Report Menu** to go to the Forecast Mode Report Options Menu and access the Raddose 5 Emergency Notification Form.

NOTE: Refer to Step 4.5.2 for a description of the other choices on this menu. However, in forecast mode, the choices will display *forecasted* results instead of *real-time* results.

- 4.7.8 Select **Print Emerg Notification, Summary Report** to print the Emergency Notification Form (green sheet) and the Summary Report. Other menu items may be selected as follows:
 - **Display/Edit Green Form** is used to display the Emergency Notification Form and to make changes as needed.
 - Save Green Form Data to Ini File is used to automatically transfer the Raddose 5 data to a storage file that can be accessed by the Electronic Notification Form.
 - Return to Output Menu is used when done with Forecast Mode reports.

	4.7.9	Select Return to Output Menu and then select Continue Calculations to return to the main menu in <i>real-time</i> mode.
4.8	*	re forecasted doses on the Emergency Notification Form to the Protective Action PAG) limits as follows:
	4.8.1	The affected Protective Action Zones (PAZs) are determined by the wind speed and wind direction.
NOTE:	~ ~	ected TEDE and Thyroid CDE on the Emergency Notification form is calculated g the forecasted dose to the accumulated real-time dose.
	4.8.2	Recommend no protective action if EPZ projected dose for PAZs is < 1 rem TEDE or < 5 rem Adult Thyroid CDE.
	4.8.3	Recommend evacuation of the affected PAZs if the projected dose is ≥ 1 rem TEDE or ≥ 5 rem Adult Thyroid CDE; and recommend shelter in place for all other PAZs.
CAUTIO		enever a PAZ has been added to a list of affected zones, the PAZ should not be oved except under direction of Radiological Assessment Manager.
		Recheck meteorological and radiological conditions, as practical to further include any affected sectors or PAZs that may be added.
4.9		D Enclosure 5.6 (Radiological Emergency Action Levels) and evaluate the ency Action Levels (EALs) based on radiological conditions.
	4.9.1	Provide EAL radiological assessment classifications to ERO Management in the TSC and/or EOF.
4.10		

4.10 Raddose 5 calculates Effective Dose Equivalent (EDE) exposure and provides Self
 Reading Dosimeter (SRD) correction factor (SRD_{CF}), that can be obtained by printing
 Summary Report after Perform Calculations in Real-Time mode.

	SRD	$D_{CF} = \frac{TEDE}{EDE}$
SRD _{CF}	=	SRD correction factor
TEDE	=	Total Effective Dose Equivalent
EDE	=	Effective Dose Equivalent

- **NOTE:** The SRD_{CF} value is based on accident specific source term nuclide(s) and is a calculation of TEDE to EDE ratio at site boundary.
 - SRD_{CF} is provided to offsite Emergency Workers during an accident, after a declared General Emergency, and when a release is occurring.
 - SRD_{CF} is used as a multiplier of Emergency Worker SRD readings for EPA 400 Manual Of Protective Action Guides And Protective Actions For Nuclear Incidents, "Early Phase" Emergency Worker TEDE estimate.
 - 4.11 Provide Radiological Assessment Manager (RAM), Lead TSC Dose Assessor and/or ERO personnel completing Emergency Notification form the following information for each of the following Emergency Notification line items:
 - 4.11.1 Line # 1- Events status indicating status of notification
 - 4.11.2 Line # 2- Site and Unit
 - 4.11.3 Line # 7 Emergency Description remarks applicable to radiological conditions
 - 4.11.4 Line # 9 Reactor Status (Reactor status used for computer entries)
 - 4.11.5 Line # 10 Emergency Release(s); use the following guidelines:
 - 4.11.5.1 <u>None</u> no release of radioactivity generated by the event and no release expected.
 - 4.11.5.2 <u>Potential Release</u> radioactivity generated during an event that has potential to be released but is not currently being released.
 - Discretionary option for the Emergency Coordinator or the EOF Director.
 - 4.11.5.3 <u>Is Occurring</u> radioactivity generated during an event that is currently being released through any defined accident pathway, using any of the following indicators:
 - <u>Either</u> containment particulate, gaseous, iodine monitor readings indicate an increase in activity,

<u>OR</u>

Containment monitor readings indicate greater than 1.5 R/hr,

SH**/0**/B/2005/001 Page 12 of 14

<u>AND</u>

Either containment pressure is greater than 0.3 psig,

<u>OR</u>

An actual containment breach is known to exist.

- Unit vent particulate, gaseous, iodine monitor readings indicate an increase in activity.
- Condenser air ejector exhaust monitor or other alternate means indicate Steam Generator tube leakage.
- Confirmed activity in the environment reported by Field Monitoring Team(s).
- Knowledge of the event and the impact on systems operation and resultant release paths.
- 4.11.5.4 <u>Has Occurred</u> any radioactivity generated during an event that has been released previous to ERO activation that may require offsite agency notification.
- 4.11.6 Line # 11 Type of Release; check Ground Level release and record Airborne or Liquid release with start time and stop time; if known.
- 4.11.7 Line # 12 Release Magnitude in Ci/Sec released.
 - 4.11.7.1 Indicate Normal Operating Limits above or below site boundary limits where Technical Specification site boundary dose rate limit is; <5.0E-2 mrem/hr and/or Child Thyroid Dose limit is; <1.711E-1 mrem/hr, using the following guidelines.
 - <u>Release Below Normal Operating Limits</u> is radioactivity released at any time during an event and/or radioactivity that may have been previously released that <u>is not above</u> site boundary normal operating limits.
 - <u>Release Above Normal Operating Limits</u> is any radioactivity released during the event and/or any radioactivity previously released <u>that is above</u> normal site boundary operating limits.

- 4.11.7.2 Indicate each form of radioactive material released offsite.
 - Noble gases
 - Iodines
 - Particulates
 - Other
- 4.11.8 Line # 13 Record Estimate of Projected Offsite Dose as New or Unchanged, and record projection time of Forecast.
 - Include estimated duration of release (PRD_t) in hours, if release stop time or termination of release is determined.
 - Record integrated TEDE and CDE mrem dose at Site Boundary, 2 miles, 5 miles and at 10 miles.

NOTE: <u>IF</u> the release is below normal operating limits, enter "Not Required" in the TEDE and CDE fields on the Emergency Notification Form.

- 4.11.9 Line #14 Record meteorological data.
 - 4.11.9.1 Wind Direction from North where $N=0^{\circ}$
 - 4.11.9.2 Wind Speed (miles per hour)
 - 4.11.9.3 Stability Class
 - 4.11.9.4 Precipitation (type)
- 4.11.10 Line #15 Recommended PAZ protective actions are based on radiological Protective Action Guide (PAG) dose limits compared to projected dose calculations integrated with real time accumulated dose in affected PAZs.
 - Provide recommendations as determined in Step 4.8.
- 4.12 ERO Emergency Action Level Classification.
 - 4.12.1 Recommend Emergency Action Level (EAL) classification as determined in Step 4.9.

SH**/0**/B/2005/001 Page 14 of 14

- 4.13 Provide Raddose 5 printouts and summary reports to Federal, State and County agencies supporting ERO activation, with approval by lead TSC dose Assessor or EOF RAM.
- 4.14 Retain logs, computer printouts and computer generated dose assessment files, whenever ERO is activated.
 - Exercise and Drill records are retained for Emergency Planning disposition.

5. Enclosure

- 5.1 Meteorology
- 5.2 Protective Action Zones Determination Table
- 5.3 Steam Source Term Release
- 5.4 Containment Source Term Release
- 5.5 Unit Vent Source Term Release
- 5.6 Radiological Emergency Action Levels
- 5.7 Raddose 5 Green Form

Enclosure 5.1 Meteorology

- 5.1.1 Meteorological Tower OAC data is normally provided as 15 min. average.
 - Use lower tower wind speed (WS) in miles per hour
 - Use upper tower wind speed (WS) if lower tower wind speed is not available
 - Use upper tower wind direction; in degrees from North (N) = 0°
 - Use lower tower wind direction if upper tower wind direction is not available: in degrees from North (N) = 0°
- 5.1.2 IF Meteorological Tower is not available, obtain meteorological information from:
 - Duke meteorologist at 594-0341/0289
 - Unaffected plants control room:

CNS - 831-2338/2337

MNS - 875 4262/4263

- National Weather Service (NWS) at 1-800-268-7785
- Gastonia Automated Surface Observation System (ASOS) at 704-868-9034
- 5.1.3 If meteorological tower temperature gradient (ΔT°) is unknown, use the following default values:

	CNS		MNS	
	Δt	Stability Class	Δt	Stability Class
Between 1000-1600 hours:	-0.3	D	-0.3	D
Between 1600-1000 hours:	+1.3	F	+1.3	F

Enclosure 5.1 Meteorology

SH/**0**/B/2005/001 Page 2 of 2

5.1.4 Use the following tables to determine stability class when ΔT data is available:

	CNS	MNS	
Stability Class	(∆T in °C)	(∆T in °C)	
A - Extremely Unstable	ΔT ≤ -0.97	ΔT ≤ -0.95	
B - Moderately Unstable	$-0.97 < \Delta T \le -0.87$	$-0.95 < \Delta T \le -0.86$	
C - Slightly Unstable	$-0.87 < \Delta T \le -0.76$ $-0.85 < \Delta T \le -0.76$		
D - Neutral	$-0.76 < \Delta T \le -0.25$	$-0.75 < \Delta T \le -0.26$	
E - Slightly Stable	$-0.25 < \Delta T \le +0.76$	$-0.25 < \Delta T \le +0.74$	
F - Moderately Stable	$+0.76 < \Delta T \le +2.04$	$+0.75 < \Delta T \le +2.00$	
G - Extremely Stable	+2.04 < ΔT	$+2.00 < \Delta T$	

Protective Action Zones Determination Table

- 5.2.1 For **Catawba**, determine affected Emergency Planning Zone (EPZ) Protective Action Zones (PAZs) based on <u>direction wind is blowing from</u> (degrees from North $(N) = 0^{\circ}$) and <u>wind speed</u>.
 - For wind speed ≤ 5 mph, affected PAZs include all PAZs out to five miles; A0,A1,B1,C1,D1,E1,F1, and affected PAZs five to ten miles are shown in table below:
 - For wind speed > 5 mph, use table below to determine downwind affected PAZs

Wind direction (Degrees	Wind speed \geq 5 mph (PAZs)	Downwind Protective
From North)	2 miles around and 5 miles	Action Zones (PAZs)
North (N) = 0^0	downwind	distances 5 miles to 10 miles
348.75 - 11.25	A0, B1, C1, D1	B2, C2, D2
11.26 - 33.75	A0, C1, D1	C2, D2
33.76 - 56.25	A0, C1, D1, E1	C2, D2, E2
56.26 - 78.75	A0, C1, D1, E1, F1	C2, D2, E2, F2
78.76 - 101.25	A0, C1, D1, E1, F1	D2, E2, F2
101.26 - 123.75	A0, D1, E1, F1	D2, E2, F2, F3
123.76 - 146.25	A0, E1, F1	E2, F2, F3
146.26 - 168.75	A0, A1, E1, F1	A2, E2, F2, F3
168.76 - 191.25	A0, A1, E1, F1	A2, F2, F3
191.26 - 213.75	A0, A1, B1, E1, F1	A2, B2, F2, A3, F3
213.76 - 236.25	A0, A1, B1, F1	A2, B2, F2, A3, F3
236.26 - 258.75	A0, A1, B1, F1	A2, B2, A3, F3
258.76 - 281.25	A0, A1, B1, C1	A2.B2, C2, A3
281.26 - 303.75	A0, A1, B1, C1	A2, B2, C2, A3
303.76 - 326.25	A0, B1, C1	B2, C2, A3
326.26 - 348.74	A0, B1, C1, D1	B2, C2, D2

CATAWBA PAZS

Protective Action Zones Determination Table

- 5.2.2 For McGuire, determine affected Emergency Planning Zone (EPZ) Protective Action Zones (PAZs) based on <u>direction wind is blowing from</u> (degrees from North $(N) = 0^{0}$) and <u>wind speed</u>.
 - For wind speed ≤ 5 mph, affected PAZs include all PAZs out to five miles: L,B,M,C,N,A,D,O,R.
 - For wind speed > 5 mph, use table below to determine downwind affected PAZs:

Wind direction (Degrees	Wind speed \geq 5 mph (PAZs)	Downwind Protective
From North)	2 miles around and 5 miles	Action Zones (PAZs)
North (N) = 0^0	downwind	distances 5 miles to 10 miles
0 - 22.5	L,B,M,C,D,O,R	E,S,F
22.6 - 45.0	L,B,M,C,D,O,R	E,Q,S
45.1 - 67.5	L,B,M,C,D,O,R	E,Q,S
67.6 - 90.0	L,B,M,C,D,O,R,N	P,Q,S
90.1 - 112.5	L,B,M,C,O,R,N	K,P,Q,S
112.6 - 135.0	L,B,M,C,O,N,R,A	I,K,P,Q,S
135.1 - 157.5	L,B,M,C,O,A,N	I,K,P,Q
157.6 - 180.0	L,B,M,C,A,N	I,J,K,P
180.1 - 202.5	L,B,M,C,A,N	G,H,I,J,K,P
202.6 - 225.0	L,B,M,C,A,N,D	G,H,I,J,K,P
225.1 - 247.5	L,B,M,C,A,D	F,G,H,I,J
247.6 - 270.0	L,B,M,C,A,D	F,G,H,I,J
270.1 - 292.5	L,B,M,C,A,D	E,F,G,H,J
292.6 - 315.0	L,B,M,C,A,D	E,F,G
315.1 - 337.5	L,B,M,C,D,R	E,F,G
337.6 - 359.9	L,B,M,C,D,R	E,F,S

MCGUIRE PAZS

 $\overline{\ }$

Steam Source Term Release

- 5.3.1 Determine type of accident, source term release path and EMF monitor method.
- 5.3.2 Select an Accident Type for an affected release pathway:
 - SGTR steam generator tube rupture (normal coolant)
 - SGTRG steam generator tube rupture gap release
 - SGTRM steam generator tube rupture core melt
- 5.3.3 Select affected steamline EMF Noble Gas Method and corresponding monitor reading:
 - As necessary query OAC data or manually enter steamline EMF reading.
- 5.3.4 Select Steam Generator (SG) reduction factors; **Partitioned** (e.g., tube break below secondary side water level and SG is not overfilled) or **Not Partitioned** (e.g., break above secondary side water level or SG overfilled).
- 5.3.5 Use Raddose 5 to calculate source term assessment steam release in Ci/sec.
 - Ci/sec is distributed by isotope spectrum based on accident type and time after reactor shutdown
 - Raddose 5 calculates the steam source term as follows:

RR = EMF x CF x AJ x LR x $(0.41 \text{ft}^3/\text{lbm x } 28320 \text{ ml/ft}^3 \text{ x } 1\text{E-6 Ci/}\mu\text{Ci x } 1/3600/\text{hr/s})$

Where:

- RR = release rate activity in Ci/sec
- CF = steam line radiation monitor Correlation Factor
- EMF = radiation monitor reading in mR/hr (normally a 15 minute average reading)
- AJ = Adjustment Factor (unit-less) based on accident types (SGTR, SGTRG, SGTRM)

LR = Steam release rate from safety valve in pounds mass of steam released through each valve during valve open period (lbm/hr), where; default release rate = 2.094E5 lbm/hr

SH/O/B/2005/001 Page 2 of 3

Steam Source Term Release

5.3.6 If desired, use Raddose 5 to calculate source term - steam release using isotopic grab sample (GRABSL).

RR = $SL_g \times LR \times (0.41 \text{ft}^3/\text{lbm} \times 28320 \text{ ml/ft}^3 \times 1E-6 \text{ Ci/}\mu\text{Ci} \times 1/3600/\text{hr/s})$

Where:

- RR = release rate activity in Ci/sec
- Slg = secondary grab sample (μ Ci/ml)
- LR = steam release rate from safety valves pounds mass of steam released through the respective valves during the valve open period (lbm/hr) default release rate = 2.094E5 lbm/hr
- 5.3.7 If desired, use Raddose 5 to calculate source term steam release using back calculate method (BACKSL).

RR = Field Measurement Device Reading (mR/hr) x FM Device Correlation $(\mu Ci/cc)/(mR/hr)/X/Q(sec/m^3) \times (1E-6 Ci/\mu Ci \times 1E+6 cc/m^3=1)$

- 5.3.8 **For Catawba only**, use Step 5.3.9 source term assessment worksheet steam generator tube rupture coincident with loss of offsite power; when appropriate and due to the following:
 - Loss of offsite power and steamline radiation monitor is unavailable
 - Primary to secondary coolant leakage is occurring
 - Steam source term release is occurring
 - Steam generator sample cannot be obtained
 - Computer program for calculating steam release is not available

Enclosure 5.3 Steam Source Term Release	SH/O/B/2005/001 Page 3 of 3
5.3.9 (Catawba Only) Source term assessment worksheet with steam generation coincident with loss of offsite power for unavailable Steam Line Mor	erator tube rupture nitor EMF
Unit Dose Projection based on://: Time s mm dd yy hh mm	since trip:hours
EMF53 reading* Correction Factor** Lrps dT Lbsmr***	1/VOPEN
R/hr x <u>μCi/ml</u> xgal xmin xlbmr x R/hr min 2400 lbm *Note: If EMF53<5 R/hr, use 5 R/hr.	<u>1</u> x sec.
$\begin{array}{rcl} & \text{Activity}_{\text{noble Gas}} \\ x & 3.785\text{E-3} \underbrace{\text{Ci ml}}_{\mu\text{Ci gal}} x & = \underbrace{\text{Ci}}_{\text{sec}} \\ \end{array}$	
Activity noble Gas x Iodine Ratio LOCA Activity LOCA Iodine 131 Equivalent ————————————————————————————————————	
Activity noble Gas x Iodine Ratio core melt Activity Leore Melt Iodine 131 Equivalent	
Where:	
LRps = Primary to secondary leak rate in gal/min.	
dT = Time that primary to secondary leakage has lasted from the st of date that the projection is based on, in minutes.	art of the leak to the time
Lbsmr = Mass of steam released from the PORV and/or code safety va	lves, in lbm.
VOPEN = Time the valve(s) are open in hours.	
$3.785E-3 = 1E-6 \text{ Ci}/\mu\text{Ci} \times 3.785E3 \text{ ml/gal}$	
2400 = Mass of steam in the faulted steam generator; conservative va steam from S/G nozzle to MSIV)*** If Lbsmr > 2400 lbm; u	lve is 2400 lbm (mass of ise 2400 lbm.

Time since Rx Trip (hours)	EMF 53 Correction Factor **(CF)		Iodine Ratio Core Melt
≥0	7.74 E+3	1.52 E-3	4.23 E-3
≥2	9.82 E+3	1.95 E-3	1.46 E-3
≥4	9.96 E+3	2.24 E-3	2.21 E-2
≥ 8	1.28 E+4	2.63 E-3	409 E-2
≥ 24	2.15 E+4	3.00 E-3	1.14 E-1
≥ 48	3.69 E+4	3.05 E-3	1.78 E-1

Emergency I or Drill I Prepared by:

Containment Source Term Release

- 5.4.1 Determine type of accident source term release path and EMF monitor method.
- 5.4.2 Select an Accident Type for an affected release pathway:
 - LOCA-Loss of Coolant Accident (normal coolant)
 - LOCAG-Loss of Coolant Accident gap release
 - LOCAM-Loss of Coolant Accident core melt
- 5.4.3 Select affected containment EMF Noble gas method and corresponding monitor reading:
 - As necessary, query OAC data or manually enter containment EMF reading
 - CONL-EMF39L
 - CONH-EMF39H
 - CONHH-EMF53A/B or 51A/B
- 5.4.4 Select containment reduction factors for Ice Condenser pass through; Containment Hold Up Time, and Containment Spray status (on or off).
- 5.4.5 Use Raddose 5 to calculate source term assessment containment release in Ci/sec.
 - Ci/sec is distributed by isotope spectrum based on accident type and time after reactor shutdown

NOTE: Containment source term can be calculated using containment EMF readings, containment samples, or field team data. Reference 2.2 can be used if no other data is available.

• Raddose 5 calculates the containment source term as follows:

RR = EMF x CF x AJ x BY x Ci/ μ Ci x 1/3600 hr/sec

Where:

- RR = release rate activity in Ci/sec
- EMF = EMF39(L) count per minute (cpm) and EMF39(L) ≤ 1E+7 cpm; and containment sample line is not isolated and/or containment EMF sample pump is not tripped (CONL Method)

Containment Source Term Release

- EMF = EMF39(H) cpm whenever EMF39(L) reading is > 1E+7 cpm (offscale) and EMF39(H) cpm ≤ 1E+6 cpm and/or sample line is not isolated and sample pump is not tripped (CON-H Method)
- EMF = EMF53A/B CNS or EMF51A/B MNS R/hr reading whenever EMF39(H) is >1E+6 cpm (offscale) or EMF39 sample line is isolated, or EMF containment sample pump is tripped (CONHH Method)
- CF = Containment Noble Gas monitor Correlation Factor
- AJ = Adjustment Factors for Noble Gas; Iodine's and Particulates
- BY = Containment Bypass Fraction Fraction of containment leakage of gases from inside containment which bypasses the annulas and auxiliary building and passes directly to the environment where, (default value = 0.07)
- LR = Leak Rate of containment air to the annulus or environment (ml/hr) based on one of the following methods:
 - (a) Based on containment pressure and hole size corresponding to:
 - 1. Normal Leakage 0.3% per day at design pressure (15 psig)
 - 2. Small Hole 100% per day at design pressure (15 psig)
 - (b) Pre-defined Leak Rate corresponding to:
 - 1. Normal Leakage (0.3% per day)
 - 2. Small Hole (100% per day)
 - 3. Large Hole (100% per hour)
- 5.4.6 If desired, use Raddose 5 to calculate source term containment release using isotopic grab sample (GRABC), and Post Accident Containment Air Sampling System, Reference 2.3.

RR = $CON_g x BY x LR x (1E-6 Ci/\mu Ci x 1/3600/hr/sec)$

Where:

 $CON_g = Containment grab sample (\mu Ci/ml)$

• All other parameters as defined in previous Step 5.4.4

Unit Vent Source Term Release

- 5.5.1 Determine type of accident, source term release pathway, and EMF monitor method.
 - 5.5.2 Select and enter an accident type for affected release pathway.
 - LOCA Loss of Coolant Accident (normal coolant)
 - LOCAG Loss of Coolant Accident gap release
 - LOCAM Loss of Coolant Accident core melt
 - LOCO LOCA outside of containment (normal coolant)
 - LOCOG LOCA outside of containment gap release
 - LOCOM LOCA outside of containment core melt
 - SGTR Steam Generator Tube Rupture (normal coolant) with Condensate Stem Air Ejector(CSAE) pathway to unit vent
 - SGTRG Steam Generator Tube Rupture gap release Condensate Steam Air Ejector (CSAE) pathway to unit vent
 - SGTRM Steam Generator Tube Rupture core melt Condensate Steam Air Ejector (CSAE) pathway to unit vent
 - FUEL Fuel handling gas release
 - 5.5.3 Select affected unit and vent EMF Noble gas method.
 - UV1L Unit Vent 1EMF 36L UV2L Unit Vent 2EMF 36L
 - UV1H Unit Vent 1EMF 36H UV2H Unit Vent 2EMF 36H
 - UV1HH Unit Vent 1EMF 54 (CNS) 1EMF - 36HH (MNS) UV2HH - Unit Vent 2EMF - 54 (CNS) 2EMF - 36HH (MNS)
 - Select vent filtration reduction factors, (e.g., vent filter on or off)
 - Use on-scale EMF readings when vent EMF sample pump <u>is not</u> tripped or EMF package <u>is</u> <u>not</u> isolated; as a result loss of power and/or EMF54 - CNS or EMF36HH - MNS Trip-2
 - As necessary re-query EMF OAC data or manually enter vent EMF reading
 - 5.5.4 Verify or enter the unit vent flow rate (cfm).

Unit Vent Source Term Release

- 5.5.5 Evaluate vent release selecting monitoring for <u>each</u> of the affected unit vents.
 - 5.5.6 Use Raddose 5 to calculate source term assessment vent release in Ci/sec.
 - Ci/sec is distributed by isotope spectrum based on accident type and time after reactor shutdown.
 - Raddose 5 calculates unit vent source term as follows:

RR = EMF x CF x AJ x FR x 1E-6 Ci/ μ Ci x 1/60 min/sec x 28320 ml/ft³

Where:

RR = release rate activity in Ci/sec

- EMF = Use EMF36L counts per minute (cpm), if reading ≤ 1E+7 cpm and vent EMF sample pump is not tripped (UV1L, UV2L)
- EMF = Use EMF36H cpm reading if EMF36L is offscale and EMF36H ≤ 1E+6 cpm and sample pump is not tripped (UV1H, UV2H)
- EMF = Use EMF54 CNS, EMF36HH MNS (R/hr) reading if EMF36L and EMF36H are offscale, and/or vent EMF sample pump is tripped (UV1HH, UV2HH)
- CF = Unit Vent radiation monitor Noble Gas Correlation Factor
- AJ = Adjustment Factors for Noble Gas, Iodines and Particulates for accident types
- FR = Unit vent flow rate in ft³ per minute, (<u>No default rate</u>); vent flow rate is a manual Raddose 5 input if query data is unavailable
- 5.5.7 If desired, use Raddose 5 to calculate source term unit vent release using isotopic grab sample (GRABV1, GRABV2); obtain sample per Reference 2.4.

RR = $UV_g x FR x 1E-6 Ci/\mu Ci x 1/60 min/sec x 28320 ml/ft^3$

Where:

RR = release rate activity in Ci/sec.

 UV_g = unit vent grab sample (μ Ci/ml)

FR = Unit vent flow rate in ft³ per minute; (<u>No default rate</u>); vent flow rate is a manual Raddose 5 input if queried data is unavailable.

Unit Vent Source Term Release

SH/**0**/B/2005/001 Page 3 of 3

- 5.5.8 If desired, use Raddose 5 to calculate source term unit vent release using back calculate method (UV1-BACK, UV2-BACK).
 - RR = Field Measurement Device Reading (mR/hr) x FM Device Correlation (μCi/cc)/(mR/hr)/X/Q(sec/m³) x (1E-6 Ci/μCi x 1E+6 cc/m³=1)
 - 5.5.9 If desired, use Raddose 5 to calculate source term vent release using release (Ci/sec) direct entry (UVI-DRCT, UV2-DRCT).
 - Enter NG Release Rate(Ci/sec)
 - Enter Iodine Release Rate (Ci/sec)
 - Enter Particulate Release Rate(Ci/sec)

Radiological Emergency Action Levels

5.6.1 Evaluate the Emergency Action Levels (EALs) based on radiological conditions in the affected site's EAL procedure:

CNS - RP/0/A/5000/001 - Classification of Emergency

MNS - RP/0/A/5700/000 - Classification of Emergency

Raddose 5 Green Form

SH/**0**/B/2005/001 Page 1 of 1

EMERGENCY NOTIFICATION

1. A THIS IS A DRILL B ACTUAL EMERGENCY I INITIAL FOLLOW-UP MESSAGE NUMBER
2. SITE: Catawba UNIT: REPORTED BY:
3. TRANSMITTAL TIME/DATE: / _/ CONFIRMATION PHONE NUMBER:
(Eastern) mm/dd/yy
4. AUTHENTICATION (If Required):
(Number) (Codeword)
5. EMERGENCY CLASSIFICATION:
A NOTIFICATION OF UNUSUAL EVENT B ALERT C SITE AREA EMERGENCY D GENERAL EMERGENCY
6. A Emergency Declaration At: B Termination At: TIME/DATE: / (If B, go to item 16)
(Eastern) mm dd yy
7. EMERGENCY DESCRIPTIONS/REMARKS:
8. PLANT CONDITION: A IMPROVING B STABLE C DEGRADING
9. REACTOR STATUS: A SHUTDOWN: TIME/DATE: B% POWER
(Eastern) mm dd yy
10. EMERGENCY RELEASE(S):
A NONE (Go to Item 14) B POTENTIAL (Go to Item 14) C IS OCCURRING D HAS OCCURRED
**11. TYPE OF RELEASE: 🔲 ELEVATED 🔀 GROUND LEVEL
A AIRBORNE: STARTED: 00:00 STOPPED:
Time (Eastern) Date Time (Eastern) Date B LIQUID: STARTED:
B LIQUID: STARTED: // STOPPED: // Time (Eastern) Date Time (Eastern) Date
**12. RELEASE MAGNITUDE: Curies Per Sec Curies NORMAL OPERATING LIMITS: BELOW ABOVE
A NOBLE GASES 0.00E+00 B IODINES 0.00E+00
C PARTICULATES 0.00E+00 D OTHER
**13. ESTIMATE OF PROJECTED OFFSITE DOSE: 🗌 NEW 🗌 UNCHANGED PROJECTION TIME:
TEDE Thyroid CDE (Eastern)
mrem mrem ESTIMATED DURATION: 1 HRS. SITE BOUNDARY 0.00E+00 0.00E+00
SITE BOUNDARY 0.00E+00 0.00E+00 2 MILES 0.00E+00 0.00E+00
5 MILES 0.00E+00 0.00E+00
10 MILES 0.00E+00 0.00E+00
**14. METEOROLOGICAL DATA: A WIND DIRECTION (from) deg B SPEED (mph)
C STABILITY CLASS D PRECIPITATION (type)io/15 min
15. RECOMMENDED PROTECTIVE ACTIONS:
A NO RECOMMENDED PROTECTIVE ACTIONS
B EVACUATE C SHELTER IN-PLACE
D OTHER
16. APPROVED BY:
(Name) (Title) (Eastern) mm dd yy
* If Items 8-14 have not changed, only Items 1-7 and 15-16 are required to be completed

** information may not be available on initial notification