| NRC FORM 658<br>(9-1999)                             |                                                  |                                                     | U.S. NUCLEAR REGULATORY COMMISSION                                                                                                                                            |  |  |  |
|------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                      |                                                  |                                                     | G HANDOUT MATERIALS FOR<br>IT IN THE PUBLIC DOMAIN                                                                                                                            |  |  |  |
| person who iss<br>materials, will t<br>circumstances | ued the meeting notice). The c                   | omplei<br>I Desk                                    | the person who announced the meeting (i.e., the<br>ted form, and the attached copy of meeting handout<br>on the same day of the meeting; under no<br>g day after the meeting. |  |  |  |
| DATE OF MEETING<br>03/10/2000                        | in the public domain as soon                     | as pos                                              | as/were handed out in this meeting, is/are to be placed<br>sible. The minutes of the meeting will be issued in the<br>rative details regarding this meeting:                  |  |  |  |
| <u></u>                                              | Docket Number(s)                                 | 28, 50-529, 50-530                                  |                                                                                                                                                                               |  |  |  |
|                                                      | Plant/Facility Name                              | Pal                                                 | Palo Verde Nucear Generating Station, Units 1, 2, and 3                                                                                                                       |  |  |  |
|                                                      | TAC Number(s) (if available)                     | N/A                                                 |                                                                                                                                                                               |  |  |  |
|                                                      | Reference Meeting Notice                         | Fel                                                 | February 28, 2000                                                                                                                                                             |  |  |  |
|                                                      | Purpose of Meeting<br>(copy from meeting notice) | To discuss the progress made by APS in developing   |                                                                                                                                                                               |  |  |  |
|                                                      |                                                  | in-house capability to conduct fuel reload analysis |                                                                                                                                                                               |  |  |  |
|                                                      |                                                  |                                                     |                                                                                                                                                                               |  |  |  |
| NAME OF PERSON WHO ISSUED MEETING NOTICE             |                                                  |                                                     | TITLE                                                                                                                                                                         |  |  |  |
| Mel Fields                                           |                                                  |                                                     | Project Manager                                                                                                                                                               |  |  |  |
| OFFICE<br>NRR                                        |                                                  |                                                     |                                                                                                                                                                               |  |  |  |
| DIVISION .                                           |                                                  |                                                     |                                                                                                                                                                               |  |  |  |
| DLPM                                                 |                                                  |                                                     |                                                                                                                                                                               |  |  |  |
| BRANCH<br>PD IV-2                                    |                                                  |                                                     |                                                                                                                                                                               |  |  |  |
| Distribution of this<br>Docket File/Centr<br>PUBLIC  | s form and attachments:<br>al File               |                                                     | Jrol                                                                                                                                                                          |  |  |  |

\_\_\_\_

# PVNGS Nuclear Fuel Management Update



March 9, 2000

1

### Purpose

### • Progress - 1999

- » Spent Fuel Storage
- » Models and Methods
- » Clad Testing
- » Unit 2 Steam Generator Replacement / Power Uprate
- » Fuel Performance

### Purpose

### Current and Future

- » Spent Fuel Storage
- » Models and Methods
- » Clad Testing
- » Unit 2 Steam Generator Replacement / Power Uprate
- » Fuel Performance

### Dry Spent Fuel Storage Update



March 9, 2000

## **Significant Milestones**

- Engineering Design Work for 2000
  - » ISFSI Design
  - » Site Interface Mods with ISFSI
  - » Transportation Route Modes and Equipment Spec
  - » Support Structure for Cask Loading Process
  - » 72.212 Documentation
- Site Work
  - » Crane Testing
  - » Modification of Unit 1 Load Pit Gate Seals

## Project Work

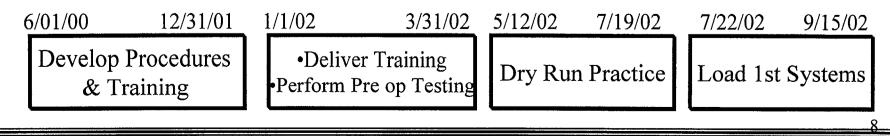
- Prepare for Canister Fabrication
  - » Develop 72.48 Program
  - » Develop QA & Engineering Fab Follow Program
  - » Select and Qualify Fabricator
- Development of PVNGS Load Process
  - » Test Crane for Reliability & Capability
  - » Develop Procedures
  - » Resolve Licensing Issues for PVNGS Process
  - » Evaluate Welding Processes & Equipment
  - » Develop Automated Weld Inspection Capability
- Develop Initial Training Program

### NAC Status

- UMS CoC in Rulemaking Process
  - » Public Comments due April 5th
  - » Final CoC Schedule for October,2000
- Maine Yankee Fabrication Starts April, 2000
- PVNGS Early Fabrication Start is December, 2000

» First Canister Delivery December, 2001

### **Schedule Overview**


#### CASK ACTIVITIES

| 1/15/00 10/1/00 | 12/1/00 | 12/15/01         | 5/1/01 | 5/1/02         |
|-----------------|---------|------------------|--------|----------------|
| UMS Lic         | ~       | lst UMS<br>ystem |        | 7 UMS<br>stems |

#### **ISFSI PREPARATION**

| 4/01/00 12/31/00  | 1/01/01 12/31/01    |
|-------------------|---------------------|
| •ISFSI Design     | •ISFSI Construction |
| •Plant MOD Design | •Plant MOD Install  |

#### LOADING PREPARATION



# **Models & Methods**

#### **Palo Verde Nuclear Generating Station**



March 9, 2000 Status

## Major Projects

- CASMO/SIMULATE Topical
- CENTS Implementation
- 1D Thermal Hydraulics
- Fuel Clad Performance

### CASMO/SIMULATE

### Replace

- » DIT & ROCS/MC with CASMO-4 & SIMULATE-3
- » Consistent Physics Codes in All Analyses
- » Implementation in PAC Underway
- Benchmark Completed September 1999
- Topical Submittal in Early June
  - » CASMO/SIMULATE Not Generically Approved
  - » Tech Spec Change to COLR References

### **CENTS** Implementation

- Replace CESEC with CENTS
  - » Code Generically Approved By NRC
  - » Using for U2 Steam Generator Replacement & Power Uprate Analyses
  - » 3876MW UFSAR Chapter 15 Reanalysis Nearly Complete
  - » Tech Spec Submittal late 2000

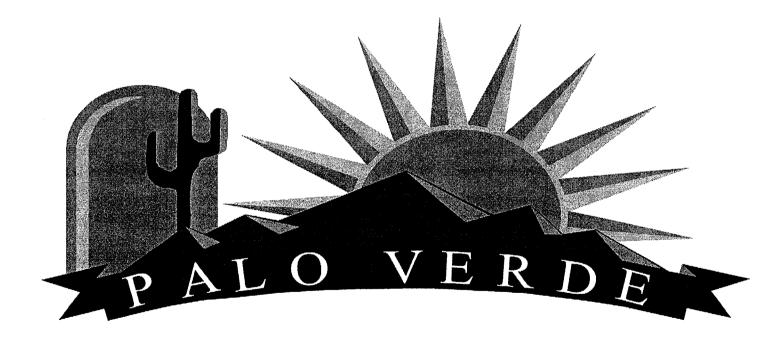
### • GL 83-11 Supplement 1 Program

- » Design Control Committee
- » Safety Analysis Basis Document
- » Technical Review Committee
- » 10CFR50.59 Program

### **Reload TH Process Map**



**Current Cycle Verification Analysis** 


### **1D Thermal Hydraulics**

- Same Method, More Adverse Results
  - » 10CFR21 -- Modern Flat Power Distributions
  - » More Screening Cases
  - » New MDNBR Limit
  - » Expanded Geometry Capability for 3D TORC

### **1D Thermal Hydraulics**

- New Bounding Analyses In Preparation
  - » U2 SG Replacement/Uprate Analyses
  - » U1/U3 @ 3876 MW
  - » Automation Tools
  - » Training in August Screening in September
  - » Tech Spec Submittal Early 2001

# **High Burnup Program**



March 9, 2000 Status

### **PVNGS/ABB Joint Program**

- OPTIN Clad Performance » High Burnup Extension Topical
- Advanced Alloy Test Program
   » Anikuloy
  - » Alloy A

### **OPTIN Clad Performance**

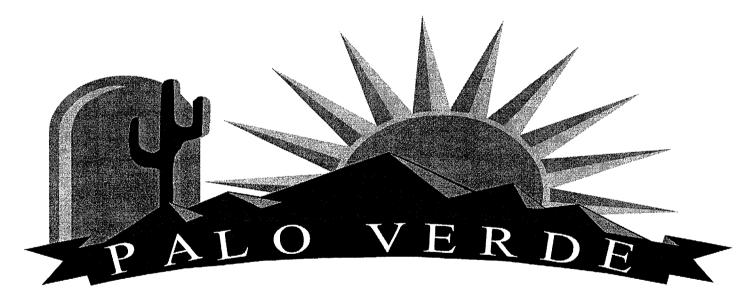
### OPTIN Test Rods

- » Burned to ~65 GWD/T in 4 Cycles
- » High Duty in U3C7

### Oxide Thickness

- » On Prediction, First 3 Cycles
- » Above Prediction, 4th Cycle
- » Little CRUD
- Spallation

### **ABB High Burnup Topical**


### OPTIN Topical in NRC Review

- » 62 GWD/T Maximum Rod Burnup
- » 100 µm Maximum Oxide Thickness
- Issue High Duty Fuel
  - » Corrosion Model Comparison to PV High Duty Fuel
  - » High Duty Fuel Observations at Other ABB/CE Plants
  - » 9-Pin Corrosion Model

### Advanced Alloy Test Program

- Current LTAs Under Irradiation
  - » Anikuloy & Alloy A LTAs in U3C8 (2nd Burn)
  - » Anikuloy & Alloy A Test Rods in U2C9 (3rd Burn)
- Anikuloy Status
  - » Dimensional Stability
  - » Corrosion Resistance
  - » All to Be Discharged at Next Refuelings
- Alloy A Status
  - » Corrosion Resistance
  - » Continue Irradiation & Measurements as Planned

# Palo Verde Fuel Clad Performance Strategy



Summary of Activities April 1999 - February 2000

### Background

- 1997 Switch from Checkerboard to Fresh-on-Fresh Loading Patterns
- 1998 High Duty Fuel Exams » CRUD Seen on Peripheral Fuel Rods
- 1998 Fuel Management Guidelines

   Decreased Number of Fresh-Fresh Interfaces
   Lowered Radial Peaking Targets

### Planned for 1999

- Continued Fuel Inspections
  - » Oxide Thickness Measurements
  - » Crud Sampling
- Clad Model Development
  - » Oxide Calculations into Fuel Management
  - » Chen Correlation into TORC

### **1999 Fuel Inspections**

- Qualitative Observations
  - » CRUD on High Duty Assemblies
  - » CRUD Correlates to Interface Power
- Unit 2 Quantitative Data
  - » Once Burned Assembly P2K410 from "Ring"
  - » CRUD/Oxide Measurements of 10 Rods
  - » CRUD Pattern Peripheral Rods Only
  - » Interior Rods of Same Power No CRUD
- Unit 1 Visuals Only (CRUD Scraping)

### **CRUD** Analysis Program

- Two CRUD Samples

   » U1R8 Once Burned Fuel Assembly
   » U2R8 Once Burned Rod from U2R8
- Chalk River Lab
  - » Same Tests as EPRI Robust Fuel Program
  - » Elements, Compounds, Morphology
  - » Samples Shipped February 8, 2000

### **Clad Oxide Model Development**

- U3 Four Cycle OPTIN Benchmark » Corrosion Model "Misses" 4th (High Duty) Cycle
- U2 Measurements on P2K410 Require Advanced Modeling
  - » CORETRAN Model
  - » 9-Pin Model
- Interim Guideline Interface Power

### **Steaming Rate Calculations**

- Obtained Steaming Rate Utility Code
- Modified to Palo Verde Geometry & TH
- Reviewed by ABB
- Enhancements Underway » Chen and Thom Correlations
  - » Quarter Assembly and Max Rod
- Screened U2C10 Core Design

### Plans for 2000

- Continued Visuals
- CRUD/Oxide Measurements (P3J321)
- U2R9
  - » CRUD Sample
  - » Visuals on Peripheral & Interior Rods

# Palo Verde Unit 2 Cycle 9 Power Distribution Anomaly



March 9, 2000

#### Core Average Axial Shape Index (AO)



Plet eterted at 15:15:46 on 03/01/2000

CECOR & COLSS - Measured Data ROCS & SIMULATE - Calculated

30

### **Preliminary Conclusions**

- U2C9 Behavior Similar To Mild AOA
  - » Azimuthal Variation Possibly Triggered by Initial Tilt
- Root Cause Likely Combination of Events
  - » Core Design (Steaming Rate)
  - » Initial Axial Offset (+4%)
  - » Unit 2 Specific TH (Flow and Temp)
  - » High Corrosion Products Mobile in Core

## Safety Impacts from AOA

- Shutdown Margin
  - » Excess HFP SDM ~ 1090 pcm
  - » Precipitated Boron Worth ~200 pcm Max
- Core Depletion History
  - » Wide Axial Shape Band in Safety Analyses
  - » Carry-over to Next Cycle Analyses
- LHR Margin (115 minimum POL during anomaly)
- Reactivity Transients
  - » Conservatisms Bound Small Reactivity Insertion

### **Operational Impacts from AOA**

- Core Depletes with Different History
  - » Axial Control When Power is Reduced
  - » Increased Uncertainty in ECPs
  - » Increased Uncertainty in 300 EFPD MTC
  - » Increased Uncertainty post RPCB
- Increased Co-58 Generation
- Possible Carry-over to Next Cycle » Fuel Isotopics, CRUD Inventory, Lower Threshold

### **Prior Palo Verde Actions**

- ABB Advanced Clad LTAs
- Enhanced Core Follow Detected U2C9
- Increased Fuel Assembly Inspections
  - » Continuing Visuals with Periodic ECT Measurements
  - » U1 CRUD Sample Taken for Chalk River Analysis
- Additional Core Design Guidelines
  - » Decreased Number of Fresh-to-Fresh Interfaces
  - » Lowered Radial Peaking Target
  - » Established "Interface Power" CRUD Indicator
- Benchmarked Oxide Model

### **Recent Palo Verde Actions**

- Modeling Core Behavior
  - » Built Empirical Core Physics Model
  - » Added Assembly Average Steaming Rate Calculation
  - » Initiated CORETRAN Coupled Physics-TH Study
  - » 9-pin Oxide Model Planned
- New Core Design Guideline
  - » Design within (less than) U2C9 Steaming Rates
- Chemistry
  - » Continue Clean-up Activities
  - » Investigate Recent Industry Practices
- CRUD Analysis
  - » Scrape U2 Once Burned Rod A5 (P2K410)

### **Potential Mitigation Strategies**

- Core Design
  - » Increase Feed Batch Size (U2C10)
  - » Modify Assembly Burnup Rate w/BA's (U2C10)
  - » Axially Offset Burnable Absorbers

#### • Chemistry

- » Nickel-Iron Chemistry Management (higher pH)
- » Enriched Boron

#### Operations

- » Increase RCS Cleanup
- » Increase RCS Pressure or Decrease T-inlet
- » Ultrasound Fuel Assembly Cleaning