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Abstract

This paper reviews current Sensitivity/Uncertainty (S/U) methodology as applied to code validation for
criticality safety and shows how the method may be used to analyze the correlation of a single parameter
through the application of suitable approximations.  S/U methodology based upon perturbation theory has
been used to develop special parameters called sensitivity coefficients which may be used to determine
the applicability of benchmarks.  Uncertainty analysis uses the sensitivity coefficients to determine the
propagated error in keff due to the experimental uncertainties in the underlying cross sections, which are
major contributors to the bias.  An overview of S/U methodology is provided to highlight the principle
assumptions and components of the method and show drawbacks of the method due to complexity.  An
analytical approximation is then developed for a single parameter, enrichment, to show how the method
may be used to demonstrate correlation when all but one parameter is constant.  The correlation
parameters determined for this special case are graphically displayed.  Enrichment was chosen as the
trending parameter because validation of criticality code calculations for enrichments >5wt% 235U is
currently of interest and because the effect on the combined cross section of changing the enrichment is
easily predicted and expressed in equation form.

Introduction

Sensitivity/Uncertainty (S/U) methodology has recently been applied to the problem of criticality code
validation, in particular to the rigorous determination of the area of applicability. These methods are
especially useful for establishing the applicability of benchmark experiments to particular situations. 
Draft NUREG/CR-5593, Vol.11, discusses the use of first-order perturbation theory to determine the
sensitivity of calculated keff’s to small changes or uncertainties in the underlying cross section data.  The
method allows the contributions of various cross section uncertainties in the bias to be evaluated,
providing a more rigorous understanding of trends in the bias and allowing for applicability
determinations of benchmarks to specific applications.  Following a brief review of S/U methodology, we
demonstrate an approximate analytical method of evaluating the area of applicability for cases differing
only in enrichment.

Overview of S/U Methodology

The S/U methods discussed in draft NUREG/CR-5593 are based on first-order perturbation theory to
derive an approximation to the change in keff due to a small change in the Boltzmann transport equation
linear operators.2345  The transport equation may be written in eigenvalue form {A- B}| �=0, where 
represents the neutron flux, A consists of the neutron transport, scattering, and absorption terms, and B
represents the neutron fission term.   is therefore keff

-1, the proportionality constant of the fission source
term.  There is a similar adjoint equation � *|{A* - B*}=0 that must be satisfied.  The perturbed operators,
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eigenvalue, and flux AN=A+ A, BN=B+ B, and N= +  and N may be substituted into this equation. 
This is an exact equation, and can in principle be solved for the new eigenvalue and eigenfunctions.  Due
to the practical difficulty in determining the modified flux distribution, we can make the standard
assumption in perturbation theory that N= .  Thus the goal becomes to estimate the effect of small
changes in the linear operators on the eigenvalue . 

The perturbed eigenvalue equation may be left-multiplied by the adjoint flux * and the adjoint equation
right-multiplied by the flux , and the results subtracted. 

� *| AN � - � *A*|  � - � *| NBN � + � * B*| � = 0. (Eq.1)

Substituting the values of AN, BN, and N, and making use of the adjoint properties � *|A � = � *A*| �
and � *|B � = � *B*| �, the terms in A,A* and B,B* cancel out.  Dropping the term in B , as a second-
order perturbation, the following expression is derived:

� *| A � - � *| { ( B) +( )B} � = 0. (Eq.2)

Rearranging terms to solve for  yields:

 = N-  = -(kN-k)/kkN = � *|( A- B) � ÷ � *| B � (Eq.3)

The sensitivity coefficient’s Sk are defined in terms of this expression.  Sk = / ÷ G/G, that is, the
fractional change in keff as a proportion to some corresponding fractional change in one of the underlying
cross sections.  A total sensitivity can be derived or a sensitivity profile for each energy group and
nuclear reaction (capture, absorption, fission) can be derived.  The expression above becomes:

Sk = G/  @  � *|(MA/MG -  MB/MG ) � / � *| B �. (Eq.4)

Evaluation of these sensitivity coefficients therefore requires that the forward and adjoint flux  and *

be determined.  In the sensitivity package at Oak Ridge National Laboratory, the SCALE module SEN1
(Draft NUREG/CR-5593) has been used to determine the neutron fluxes.  This information currently is
derived by SEN1 using a 1-D discrete ordinates approach (XSDRNPM deterministic code); the capability
to extend this method to generation of 2-D sensitivities is available, but has not been fully integrated into
the SCALE code package.  Once the Sk = Sij / Mki/M j (i = 1,...,I benchmark cases; j = 1,...,N cross
sections) are computed for each cross section, the uncertainties in the cross section data can be
propagated to produce an uncertainty matrix in keff. 

If C  is the NxN uncertainty matrix of cross section data, then these are propagated to the IxI uncertainty
matrix Ckk by the equation:

Ckk = SkC Sk
T. (Eq.5)

The diagonal elements Cii represent the total variance of the ith benchmark case, due to uncertainties in
the underlying cross section data.  The off-diagonal elements Cij represent the covariance between the ith

and jth benchmark cases, representing the degree to which they contain common variance due to shared
cross section contributions.  The uncertainty matrix is generally formed by normalizing the off-diagonal
elements by the square root of the corresponding diagonal element.  If this correlation coefficient Cij is
equal to zero, the two benchmarks are considered entirely uncorrelated; if Cij = 1, the benchmarks are
fully correlated; if Cij = -1, they are fully anti-correlated.  Experience in Draft NUREG/CR-5593
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demonstrates that two or more cases can be considered sufficiently correlated to be grouped together for
purposes of bias determination - that is, they can be expected to have biases produced by the same cross
section uncertainties and are thus in the same area of applicability - if the normalized off-diagonal
elements of Ckk are / 0.8. 

The above method is useful for determining the first-order sensitivity of keff to different underlying cross
section data.  Drawbacks of the method include that it requires the calculation of the forward and adjoint
flux and is limited to use with systems that can be reasonably represented by 1-D or 2-D models.  Later in
this paper, we will derive expressions that do not require the generation of this detailed flux information,
though these are more limited in scope.

Uncertainty analysis uses the sensitivity coefficients Sk to determine the propagated error of keff due to the
experimental uncertainties in the underlying cross sections, which are major contributors to the bias. This
technique also determines the degree of shared covariance (that is, correlation) between different sets of
benchmark experiments.  This is useful because the degree to which covariance is shared between two
benchmarks, or sets of benchmarks, provides information about the degree to which the behavior of the
bias can be expected to be related between the two cases.

Analytical Approximation 

The main disadvantage of the above method is the determination of the forward and adjoint flux for the
systems of interest, which are generally calculated using a 1-D or 2-D Discrete Ordinates Code such as
XSDRNPM.  This requires that the system be readily reduced to a simple geometrical model, and also
requires generation of a large amount of nuclear data from the calculations. 

Presented below is an analytical approximation to the sensitivity and uncertainty coefficients derived in
their general form in the previous section.  This type of analysis can be generalized to any parameter of
the system of which keff is a function.  Enrichment is chosen here for two reasons: (1) validation of
criticality code calculations for enrichments >5wt% 235U is currently of interest to the NRC and it’s
licensees, and (2) total cross section can be expressed easily as a function of the underlying 235U and 238U
cross sections in terms of the enrichment.

We express the total cross section of two systems in the following manner:

1
i = A

i 
1 + B

i (1- 1) (Eq.6)
2

i = A
i 

2 + B
i (1- 2),

where A
i, B

i are the ith  235U and 238U cross sections, where i can range over the set of energy groups of
the system and/or nuclear processes (capture, scattering, and fission).  This can be done using total cross
sections or, by setting up similar equations for each neutron energy group, as a profile. 1

i, 2
i are the

combined cross section for the first or second system, at enrichments 1 and 2 respectively.  The above
equation is not rigorously true, since  is defined in terms of weight-percent and not volume-fraction, but
is a reasonable approximation for our purposes.  The nuclear cross sections A

i, B
i have experimental

uncertainties associated with them, which we will denote A
i and B

i.  Through use of the standard error
propagation equation,

d 2 = (M /M A)2 d A
2 + (M /M B)2 d B

2 (Eq.7)
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we derive the expressions for the total error in :

1
2 = 1

2 A
2 + (1- 1)

2 B
2 (Eq.8)

2
2 = 2

2 A
2 + (1- 2)

2 B
2,

where the indices for nuclear reactions and energy group have been dropped for simplicity.

To derive the sensitivity coefficients, the functional dependence of keff on the cross section must be
determined.  Let us suppose that the difference in keff depends only on the total cross section, that is, that
everything about the two systems is identical except for the underlying nuclear cross sections and the
enrichment.  All the difference between the two systems is caused by this difference in the cross section
data.  Making a linear approximation, we write keff = k0 +  ( - 0) + O( 2).  A non-linear approximation
can be shown to produce a similar result due to weak dependence of correlation on the functional
relationship.  The sensitivity coefficients Sk are nothing more than the fraction change in keff produced by
a corresponding change in the cross section of interest. Sk = ( k/k)/( / ) = ( /k)(Mk/M ).  Substituting the
above expressions for k( ):

  SA1 = ( 1/k) 1.      SB1 = ( 1/k) (1- 1). (Eq.9)
SA2 = ( 2/k) 2.      SB1 = ( 2/k) (1- 2).

This gives us a 2x2 sensitivity matrix, in terms of the enrichments of the two systems.  Although these
appear to be linear equations in enrichment, note that the cross sections 1 and 2 are the total cross
sections, themselves functions of enrichment.  The advantage to the fact that the above equations are all
linear in  (assumed constant) is that  can be removed from the matrix as a common factor, and cancels
out when the ratio between the diagonal and off-diagonal elements is formed (Equation 11)  Because the
two cases are both benchmark critical experiments, we can further assume that k1 = k2 = 1, which also
cancels. 

The uncertainty matrix, Caa , in the notation of the previous section and draft NUREG/CR-5593, is a
diagonal 2x2 matrix with C11 = A

2, C22 = B
2.  The off-diagonal elements are assumed zero, since the

errors in the 235U and 238U cross sections are assumed to be uncorrelated.  Forming the product 
Ckk = SkCaaSk

T for the propagated uncertainty matrix yields the following terms:

( )
( )( )

( )

C

C C

C

A B

A B

A B

11 1
2

1
2 2

1
2

1

2 2

12 21 1 2 1 2
2

1 2 1 2
2

22 2
2

2
2 2

2
2

2

2 2

1

1 1

1

= + −
= = + − −

= + −

σ ε δ σ ε δ
σσ εε δ σσ ε ε δ

σ ε δ σ ε δ

(Eq.10a)

(Eq.10b)

(Eq.10c)

Note that the diagonal terms C11 and C22 are the same expressions for the combined variance Var( 1) and
Var( 2) as those we derived using the error propagation equation (Equation 7). The standard expression6

for the correlation coefficient is 12 = Cov( 1, 2)/%Var( 1)%Var( 2) = C12/%C11%C22.

            (Eq.11)
( )( ){ }

( ){ } ( ){ }
ρ
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σε δ σ ε δ σ ε δ σ ε δ
=

+ − −

+ − + −

1 2 1 2
2

1 2 1 2
2

1
2 2

1
2

1

2 2
2
2

2
2 2

2
2

2

2 2

1 1

1 1

A B

i A B A B

This expression may be simplified by defining the vector x1 = ( 1 1 A, 1(1- 1) B) and 
x2 = ( 2 2 A, 2(1- 2) B), corresponding to the two configurations being compared.  
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It can be shown that the correlation parameter  is the dot product between these two vectors.  That is,

 = (x1 @ x2)/|x1||x2|. (Eq.12)

Applications

We can make use of the above definition to demonstrate that this parameter  has all the properties that
make it suitable for use as a correlation coefficient as defined in the standard S/U methodology.  In order
to be of use it must be self-consistent; that is, when 1 = 2, it should be true that  = 1.  In addition, the
parameter must be bounded between the values of 0 and 1 inclusive.  That the first is the case can be
shown by substituting = 1= 2 into Equation 11  or by virtue of Equation 12  That the second is the case
can be seen readily by Equation 12.

Recall the underlying assumption, that the keff values of the two systems depend only on the magnitude of
the cross section, or keff = k( ).  This assumption implies that the two systems have identical moderation
(H/X), average neutron energy (energy corresponding to average lethargy causing fission, of ECALCF),
geometrical arrangement, materials, and all other parameters which influence keff except enrichment.  In
trending the behavior of the calculational bias as a function of enrichment, holding all other parameters
of the system constant would be the ideal situation.  The physical interpretation of the above “correlation
parameter” is therefore that it represents the maximum degree of correlation - the degree of shared
covariance - between two benchmark cases at different enrichments, that is, between two cases having
identical physical and neutronic parameters and differing only in the enrichment.  The actual correlation
between any two systems would be less than , in general, since the degree of shared covariance would
be decreased due to factors other than the enrichment.

Figure 1 demonstrates the calculated correlation parameter ( 1, 2) for two systems as a function of 2,
with 1 = 0.05 (5wt% 235U).  Here we have assumed for simplicity A = B = 1 (arbitrary units).  A more
sophisticated treatment would utilize the actual group-wise cross section data and develop a profile
( 1, 2;gij) as a function of the neutron energy group i for nuclear reaction j, i = 1,2,...,N and j = c,s,f

(capture, scattering, and fission.)  Varying the relative values of A, B, shows that in general the
correlation parameter is fairly insensitive to the ratio A/ B..  

Figure 2 graphs (0.5, 2) for A/ B = 100 (again, arbitrary units), to simulate the effect of having a highly
thermal as opposed to intermediate or fast system.  The 50wt% 235U condition is chosen just to illustrate
that the correlation curve is correctly normalized and well-behaved over the entire range.  A comparison
of Figures 1 and 2 shows that there is surprisingly little difference between the range for fast and thermal
systems.  Draft NUREG/CR-5593 derives the correlation coefficients Ckk for systems with 2, 3, 5, and
11wt% 235U enrichments, over a wide variety of neutron energies, and shows that the 11wt% data
available was only weakly coupled to the 5wt% data (-6%).  If we adopt the criteria that two
benchmarks can be considered correlated if  Ckk > 0.8, the two figures show a maximum range of
correlation of -40%.  These results show that the dominant source of differences between the
benchmark data can be attributed to factors other than the enrichment, and that it is in principle possible
to correlate cases with enrichments over a relatively wide range.  The practical matter, however, is that
other considerations may well restrict the area of applicability significantly.
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Possible Generalization 

As stated initially, the enrichment was chosen as the trending parameter partly because the effect on the
combined cross section of changing the enrichment is easily predicted and expressed in equation form. 
There is nothing unique about enrichment, however, and it is in principle possible to extend the technique
to explore the development of the correlation between benchmark cases as a function of other
parameters.  Typically, the neutron energy (ECALCF) and moderation level (H/X) will have a stronger
influence on the bias than the enrichment alone.  This may be done by generalizing the above equations.
Let keff be a function of N nuclear variables, thus: keff = k( 1, 2,..., N).  Linearizing, we approximate keff

for the ith benchmark by ki( 1, 2,..., N) = k0i + 1 i1 + 2 i2 + ... + N iN.  The Sij (i = ith benchmark case, j =
jth nuclear of physical parameter) can be defined as Sij = ( ij/ki)(Mki/M ij) = j ij/ki.  If these are all critical
experiments, we can make the further approximation that k1=k2=...=kN=1 and then Sij = j ij.  The C
matrix is a diagonal matrix consisting of the variances j

2.  We can then derive the propagated
uncertainty matrix in similar fashion by defining Ckk = SC ST.  Then ( 11, 12,..., 1N; 21, 22,..., 2N) can be
defined as C12/%C11%C22.  

In terms of the sensitivity vectors, we can show that x1 = ( 1 11 1, 2 12 2,..., N 1N N) and x2 =
( 1 21 1, 2 22 2,..., N 2N N).  Alternately, we can express these in terms of the sensitivity coefficients 
as x1 = (S11 1, S12 2,...,S1N N) and x2 = (S21 1, S22 2,...,S2N N).  We can see from Equation 9 that these
relations are also true for the specific solution when keff is expressed in terms of the enrichment .  Then
one can show by matrix multiplication that Equation 12 still holds; that is, that Var(ki)=|xi|

2 and that the
correlation parameter  = (x1@ x2)/|x1||x2|.  This is somewhat more difficult to solve than that for
enrichment, because multiple parameters may be involved and it is thus necessary to determine the i. 
But assuming that the behavior of keff can be parameterized in terms of the underlying parameters, this
technique can yield a semi-quantitative measure of the correlation between benchmarks which differ
according to these parameters.

Conclusion

This paper demonstrates that it is possible to derive a first-order correlation parameter expressing the
shared covariance between two benchmark cases, identical except for 235U enrichment, in the form of an
analytical equation which is simply the dot product between two sensitivity vectors.  Although this
method currently provides a bounding estimate of the degree of correlation between two systems which
differ only in enrichment, it also demonstrates that it is possible to estimate this correlation quantitatively
without the derivation of the forward and adjoint flux data required by the full S/U methodology.  Further
work is needed to extend this method to second-order terms in keff and a full linear treatment in multiple
parameters. 
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