Offsite Dose Calculation Manual # **OFFSITE DOSE CALCULATION MANUAL REVISION 10** 31003542 WOWO! # OFFSITE DOSE CALCULATION MANUAL (ODCM) Revision 10 ### **SOUTH TEXAS PROJECT** January 1, 2000 ### **PREFACE** The South Texas Project (STP) Offsite Dose Calculation Manual (ODCM) is divided into two parts: Part A, Radiological Effluent Monitoring Programs, which provides the in-plant radiological effluent monitoring program requirements for liquid and gas sampling and analysis, along with the Radiological Environmental Monitoring Program requirements; and Part B, Radiological Calculational Methods and Parameters, which provides approved methods to determine effluent monitor setpoint values and estimates of doses and radionuclide concentrations occurring beyond the boundaries of the station resulting from normal station operation. The sampling and analysis programs in Part A provide the inputs for the models of Part B in order to calculate offsite doses and radionuclide concentrations necessary to determine compliance with the dose and concentration requirements of Control 3/4.11 in Part A of the ODCM. The Radiological Environmental Monitoring Program required by Control 3/4.12 in Part A, and outlined within this manual provides the means to determine that measurable concentrations of radioactive materials released as a result of the operation of STPEGS are not significantly higher than expected. Changes to the ODCM shall be performed in accordance with Technical Specification $6.14\ [ITS\ 5.5.1]$ . | SECTION | | PAGE | |-----------------|---------------------------------------|--------| | REFERENCES | | 9 | | PART A: RADIO | OLOGICAL EFFLUENT MONITORING PROGRAMS | | | 1.0 DEFINITIONS | <u> </u> | | | 1.1 | ACTION | 3 | | 1.2 | ANALOG CHANNEL OPERATIONAL TEST | 3 | | 1.3 | CHANNEL CALIBRATION | 3 | | 1.4 | CHANNEL CHECK | | | 1.5 | DIGITAL CHANNEL OPERATIONAL TEST | 3<br>3 | | 1.6 | DOSE EQUIVALENT I-131 | 3 | | 1.7 | FREQUENCY NOTATION | 4 | | 1.8 | GASEOUS WASTE PROCESSING SYSTEM | 4 | | 1.9 | MEMBER(S) OF THE PUBLIC | 4 | | 1.10 | OFFSITE DOSE CALCULATION MANUAL | 4 | | 1.11 | OPERABLE - OPERABILITY | 4 | | 1.12 | OPERATIONAL MODE - MODE | 5 | | 1.13 | PURGE - PURGING | 5 | | 1.14 | RATED THERMAL POWER | 5 | | 1.15 | REPORTABLE EVENT | 5 | | 1.16 | SITE BOUNDARY | 5 | | 1.17 | SOLIDIFICATION | 5 | | 1.18 | SOURCE CHECK | 5 | | 1.19 | THERMAL POWER | 5 | | 1.20 | UNRESTRICTED AREA | 6 | | 1.21 | VENTING | 6 | | TABLE 1.1 | FREQUENCY NOTATION | 7 | | TABLE 1.2 | OPERATIONAL MODES | 8 | | SECTION | Pa | AGE | |------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------| | 2.0 RESPONSIBILIT | TIES FOR PART A OF THE ODCM | 10 | | 3.0 and 4.0 CONTRO | OLS AND SURVEILLANCE REQUIREMENTS | | | 3/4.0 APPLICA | ABILITY | 12 | | 3/4.3 INSTRU | MENTATION | | | 3/4.3.3 MONIT | TORING INSTRUMENTATION | | | 3/4.3.3.10<br>TABLE 3.3-12<br>TABLE 4.3-8 | Radioactive Liquid Effluent Monitoring Instrumentation RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION | 14<br>15 | | 3/4.3.3.11<br>TABLE 3.3-13 | SURVEILLANCE REQUIREMENTS Radioactive Gaseous Effluent Monitoring Instrumentation RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION | 17<br>19<br>20 | | TABLE 4.3-9 | RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS | 22 | | 3/4.11 RADIO | ACTIVE EFFLUENTS | | | 3/4.11.1 LIQU | ID EFFLUENTS | | | 3/4.11.1.1<br>TABLE A3-1<br>3/4.11.1.2<br>3/4.11.1.3 | Concentration RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM Dose Liquid Waste Processing System | 25<br>26<br>29<br>30 | | 3/4.11.2 GASE | EOUS EFFLUENTS | | | 3/4.11.2.1<br>TABLE A4-1<br>3/4.11.2.2 | Dose Rate RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM Dose - Noble Gases | 32<br>33<br>36 | | 3/4.11.2.3<br>3/4.11.2.4 | Dose - Iodine 131, 133, Tritium, and Radioactive Material in Particulate Form Gaseous Waste Processing System | 37<br>38 | | SEC | CTION | | PAGE | |-----|----------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------| | | | | | | | 3/4.11.4 TOT | <u>'AL DOSE</u> | 39 | | | 3/4.12 RADIO | OLOGICAL ENVIRONMENTAL MONITORING | | | | 3/4.12.1 MON | NITORING PROGRAM | 42 | | | TABLE A5-1 | SAMPLE ANALYSIS LOWER LIMIT OF DETECTION | 44 | | | TABLE A5-2 | REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES REPORTING LEVELS | 47 | | | 3/4.12.2 LAN | D USE CENSUS | 48 | | | 3/4.12.3 INTE | ERLABORATORY COMPARISON PROGRAM | 50 | | BAS | SES 3.0 and 4.0 | CONTROLS AND SURVEILLANCE REQUIREMENTS | | | | 3/4.3 INSTRU | <u>JMENTATION</u> | | | | 3/4.3.3 MONI | TORING INSTRUMENTATION | | | | 3/4.3.3.10<br>3/4.3.3.11 | Radioactive Liquid Effluent Monitoring Instrumentation Radioactive Gaseous Effluent Monitoring Instrumentation | 52<br>52 | | | 3/4.11 RADIO | DACTIVE EFFLUENTS | | | | 3/4.11.1 LIQU | JID EFFLUENTS | | | | 3/4.11.1.1<br>3/4.11.1.2<br>3/4.11.1.3 | Concentration Dose Liquid Waste Processing System | 53<br>53<br>54 | | | | EOUS EFFLUENTS | | | | 3/4.11.2.1<br>3/4.11.2.2 | Dose Rate Dose - Noble Gases | 54<br>55 | | | 3/4.11.2.3 | Dose - Iodine-131, Iodine-133, Tritium, and Radioactive Material in Particulate Form | 56 | | | 3/4.11.2.4 | Gaseous Waste Processing System | 57 | | | 3/4.11.4 TOTA | AL DOSE | 57 | | | | | | | SECTION | | PAGE | |-----------------|------------------------------------------------------------------------------------------------|----------| | 3/4.12 RADIO | DLOGICAL ENVIRONMENTAL MONITORING | | | 3/4.12.1 MON | NITORING PROGRAM | 58 | | 3/4.12.2 LAN | D USE CENSUS | 58 | | 3/4.12.3 INTE | ERLABORATORY COMPARISON PROGRAM | 59 | | 5.0 DESIGN FEAT | <u>URES</u> | | | 5.1.3 | Map Defining Unrestricted Areas and Site Boundary for Radioactive Gaseous and Liquid Effluents | 61 | | FIGURE 5.1-3 | RADIOACTIVE GASEOUS EFFLUENTS | 62 | | FIGURE 5.1-4 | UNRESTRICTED AREA AND SITE BOUNDARY FOR RADIOACTIVE LIQUID EFFLUENTS | 63 | | 6.0 ADMINISTRAT | TIVE CONTROLS | | | | nual Radiological Environmental Operating Report nual Radioactive Effluent Release Report | 65<br>66 | | 6.15.1 Ma | jor Changes to Liquid and Gaseous Radwaste Treatment Systems | 68 | | SF | $\alpha$ | ĽΤ | $\cap$ | NΤ | |----|----------|----|--------|----| <u>PAGE</u> | PART B: | RADIOLOGICAL | <u>CALCULATIONAL METHOR</u> | OS AND PARAMETERS | |---------|--------------|-----------------------------|-------------------| | | | | | | 1.0 | Introduct | <u>ion</u> | | |-----|------------|---------------------------------------------|-------| | | 1.1 | Purpose | B1-1 | | | 1.2 | General Site Description | B1-2 | | 2.0 | Summary | y of Release Points and Detector System | | | | 2.1 | Gaseous Release Points | B2-1 | | | 2.2 | Liquid Release Points | B2-2 | | | 2.3 | Detector System and Instrument Responses | B2-3 | | 3.0 | Alarm Se | etpoint Adjustments | | | | 3.1 | Liquid Effluents | B3-1 | | | 3.2 | Gaseous Effluents | B3-6 | | 4.0 | Off-Site I | Dose Calculations | | | | 4.1 | Liquid Releases | B4-1 | | | 4.2 | Liquid Exposure Dose Model | B4-1 | | | 4.3 | Gaseous Releases | B4-11 | | | 4.4 | Gaseous Dose Models and Dose Formulas | B4-13 | | | 4.5 | Control 3.11.1.3 | B4-18 | | | 4.6 | Control 3.11.2.4 | B4-19 | | | 4.7 | Control 3.11.4 Dose Calculations | B4-19 | | | 4.8 | 10CFR20.1301, Dose to MEMBERS OF THE PUBLIC | B4-20 | | | 4.9 | Population Dose Estimation | B4-22 | | 5.0 | Radiologi | ical Environmental Monitoring Program | | | | 5.1 | Program Summary | B5-1 | | | 5.2 | Sampling Program | B5-2 | | | 5.3 | Sampling Frequency | B5-4 | | | 5.4 | Sample Station Locations | B5-5 | | | 5.5 | Quality Control | B5-5 | | | 5.6 | Analytical Sensitivity | B5-5 | | | 5.7 | Data Presentation | B5-5 | | | 5.8 | Routine Reporting Requirements | B5-5 | # **LIST OF TABLES** # PART B | B3-1 | Liquid Release Detector, RD-53, Response to 1 uCi/ml of Each Nuclide | B3-13 | |----------------|-------------------------------------------------------------------------|--------| | B3-2 | Noble Gas Detector, RD-52, Response to 1 uCi/cc of Each Nuclide | B3-15 | | B3-3 | Noble Gas Detector, RD-52, Response to Single Nuclide | B3-19 | | B4-1 | Radionuclide Fractions, N(i) STPEGS Reaching Off-site Bodies of Water | B4-24 | | B4-2 | Liquid Dose Pathway Factor Description | B4-27 | | B4-3 | Liquid Parameter Values for Eq. 4.2g and 4.2h | B4-28 | | B4-4 | Pathways for Calculating Individual Doses from Liquid Effluent Releases | B4-29 | | B4-5 | Particle Depletion and Deposition Factors for Ground Level Releases | B4-30 | | B4-6 | Distances to Gaseous Dose Pathway Receptors for Individuals (meters) | B4-31 | | B4-7 | Pathway Dose Factors | B4-32 | | B4-8 | Liquid Parameter Values for Eq. 4.2g and 4.2h Population Dose Estimates | B4-141 | | B4-9 | Pathways for Calculating Population Doses from Liquid Effluents | B4-142 | | B4-10a | Population Distribution | B4-143 | | <b>B4-10</b> b | Vegetation Ingestion Pathway Population Distribution | B4-144 | | B4-10c | Beef Ingestion Pathway Population Distribution | B4-145 | | B4-11 | Population Dose Factors | B4-146 | | B5-1 | Minimum Operational Radiological Environmental Monitoring Program | B5-6 | | B5-2 | Sample Media Codes | B5-15 | | B5-3 | Sample Station Locations | B5-16 | # **LIST OF FIGURES** | Figure: | <u>s</u> | <u>Page</u> | |---------|------------------------------------------------------------------------------------------|-------------| | B2-1 | Gaseous Effluents | B2-5 | | B2-2 | Liquid Effluents | B2-6 | | B2-3 | Energy Response Curve for the RD-52 Offline Beta Detector Operating at 760 mm Hg and 25° | B2-7 | | B2-4 | RD-56 Particulate Detector Energy Response to Betas | B2-8 | | B2-5 | Detector Energy Response to Gamma Radiations for the RD-53 Offline Gamma Detector | B2-9 | | B4-1 | Lower Colorado River | B4-255 | | B4-2 | STP Site | B4-256 | ### <u>REFERENCES</u> - 1. Curie, L. A., "Limits for Quantitative Detection and Quantitative Determination-Application to Radiochemistry," Analytical Chem. 40, 1968. - 2.G. A. Technologies, "Calibration Report for Model RD-53 Offline Gamma Detector with 1.5-inch Diameter by 1-inch Thick Nai(TL) Crystal," G. A. Technologies Report E-115-904, June 1980. - 3.G. A. Technologies, "Calibration Report for Model RD-52 Offline Beta Detector," G. A. Technologies Report E-115-647, October 1984. - 4.G. A. Technologies, "Calibration Report For Model RD-56 Moving-Filter Particulate Detector," G. A. Technologies Report E-115-789, Sept. 1980. - 5.G. A. Technologies, "RM-21A Computational Models and Algorithms," G. A. Technologies Report E-115-1241, June 1984. - 6. Health and Safety Laboratory, "HASL Procedures Manual," HASL-300, National Technical Information Service. - 7. Houston Lighting and Power Company, "Updated Final Safety Analysis Report, South Texas Project, Units 1 and 2. - 8. Houston Lighting and Power Company, "Environmental Report Operating License Stage, South Texas Project, Units 1 and 2," Feb. 1979. - 9. Houston Lighting and Power Company, "Operating Technical Specifications for the South Texas Project Electric Generating Station,". - 10. Title 10 Code of Federal Regulations, Parts 20 and 50, Office of the Federal Register. - 11. U. S. Nuclear Regulatory Commission, "Calculation of Annual Doses to Man From Routine Releases of Reactor Effluents For the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," USNRC Regulatory Guide 1.109, Rev. 1, Oct. 1977. - 12. U. S. Nuclear Regulatory Commission, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," USNRC Regulatory Guide 1.111, Rev. 1, July 1977. - 13. U. S. Nuclear Regulatory Commission, "Calculations of Releases of Radioactive Material in Gaseous and Liquid Effluents from Light-Water-Cooled Power Reactors," USNRC Regulatory Guide 1.112, Rev. 0-R, April 1976. - 14. U. S. Nuclear Regulatory Commission, "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," USNRC Regulatory Guide 1.113, Rev. 1, April 1977. - 15. U. S. Nuclear Regulatory Commission, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents form Light-Water-Cooled Nuclear Power Reactors," USNRC Regulatory Guide 1.21, Rev. 1, June 1974. - 16. U. S. Nuclear Regulatory Commission, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants," USNRC NUREG-0133, Oct. 1978. - 17. U. S. Nuclear Regulatory Commission, "Standard Radiological Effluent Technical Specifications for Pressurized Water Reactors," USNRC NUREG-0472, Rev. 3, Jan. 1983. - 18. U. S. Nuclear Regulatory Commission, "User's Guide to GASPAR Code," USNRC NUREG-0597, June 1980. - 19. U. S. Nuclear Regulatory Commission "Implementation of Programmatic Controls for Radiological Effluent Technical Specifications in the Administrative Controls Section of the Technical Specifications and the Relocation of Procedural Details of RETS to the Offsite Dose Calculation Manual or to the Process Control Program (Generic Letter 89-01). - 20. U. S. Nuclear Regulatory Commission Branch Technical Position "An Acceptable Radiological Environmental Monitoring Program", Revision 1, November 1979. - 21. Wyle Laboratories, "Ingestion Pathway Data to Support Annual Dose Calculations for the South Texas Project Electric Generating Station," Wyle Research Report WR 84-34, July 1984. ### PART A ### RADIOLOGICAL EFFLUENT MONITORING PROGRAMS ### **INTRODUCTION** Part A of the Offsite Dose Calculation Manual (ODCM) describes the sampling and analysis programs conducted by STPEGS which provide input to the models in Part B of the ODCM for calculating liquid and gaseous effluent concentrations, monitor setpoints, and offsite doses. The results of Part B calculations are used to determine compliance with the concentration and dose requirements of Part A. The minimum required Radiological Environmental Monitoring Program (REMP) is described in Part A. The current sampling station locations, as well as the details of the current sampling program implementation and philosophy, appear in Part B. The information obtained from the REMP provides data which may allow evaluation of the relationship between quantities of radioactive materials released in effluents and resultant radiation doses to individuals from principal pathways of exposure. The data developed in the surveillance and monitoring programs described in Part A of the ODCM provide a means to confirm that measurable concentrations of radioactive materials released as a result of STPEGS operations are not significantly higher than expected based on the models in Part B. SECTION 1.0 **DEFINITIONS** ### 1.0 DEFINITIONS The defined terms of this section appear in capitalized type and are applicable throughout these Controls. ### <u>ACTION</u> 1.1 ACTION shall be that part of a Control that prescribes remedial measures required under designated conditions. ### ANALOG CHANNEL OPERATIONAL TEST 1.2 An ANALOG CHANNEL OPERATIONAL TEST shall be the injection of a simulated signal into the channel as close to the sensor as practicable to verify OPERABILITY of alarm, interlock, and/or trip functions. The ANALOG CHANNEL OPERATIONAL TEST shall include adjustments, as necessary, of the alarm, interlock, and/or Trip Setpoints so that the Setpoints are within the required range and accuracy. ### CHANNEL CALIBRATION 1.3 A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel so that it responds within the required range and accuracy to known values of input. The CHANNEL CALIBRATION shall encompass the entire channel including the sensors and alarm, interlock, and/or trip functions, and may be performed by any series of sequential, overlapping, or total channel steps so that the entire channel is calibrated. ### **CHANNEL CHECK** 1.4 A CHANNEL CHECK shall be the qualitative assessment of channel behavior during operation by observation. This determination shall include, where possible, comparison of the channel indication and/or status with other indications and/or status derived from independent instrument channels measuring the same parameter. ### DIGITAL CHANNEL OPERATIONAL TEST 1.5 A DIGITAL CHANNEL OPERATIONAL TEST shall consist of injecting simulated process data, where available, or exercising the digital computer hardware using data base manipulation to verify OPERABILITY of alarm, interlock, and/or trip functions. ### DOSE EQUIVALENT I-131 1.6 DOSE EQUIVALENT I-131 shall be that concentration of I-131 (µCi/gram) which alone would produce the same thyroid dose as the quantity and isotopic mixture of I-131, I-132, I-133, I-134, and I-135 actually present. The thyroid dose conversion factors used for this calculation shall be those listed in Table E-7 of NRC Regulatory Guide 1.109, Revision 1, October 1977. ODCM Rev. 10 ### 1.0 DEFINITIONS (Continued) ### **FREQUENCY NOTATION** 1.7 The FREQUENCY NOTATION specified for the performance of Surveillance Requirements shall correspond to the intervals defined in Table 1.1. ### GASEOUS WASTE PROCESSING SYSTEM 1.8 A GASEOUS WASTE PROCESSING SYSTEM shall be any system designed and installed to reduce radioactive gaseous effluents by collecting Reactor Coolant System offgases from the Reactor Coolant System and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment. ### MEMBER(S) OF THE PUBLIC 1.9 MEMBER(S) OF THE PUBLIC means an individual in a controlled area or UNRESTRICTED AREA. However, an individual is not a member of the public during any period in which the individual receives an occupational dose. [ITS - Deleted - the standard definition of 10CFR20.1003 will become effective] ### OFFSITE DOSE CALCULATION MANUAL 1.10 The OFFSITE DOSE CALCULATION MANUAL (ODCM) contains the methodology and parameters used in: the calculation of offsite doses due to radioactive gaseous and liquid effluents, the calculation of gaseous and liquid effluent monitoring Alarm/Trip Setpoints, and the conduct of the Radiological Environmental Monitoring Program. The ODCM shall also contain: the Radioactive Effluent Controls and Radiological Environmental Monitoring Programs required by Technical Specification 6.8.3 [ITS 5.5.4], and descriptions of the information that should be included in the Annual Radiological Environmental Operating Report and Annual Radioactive Effluent Release Report. ### **OPERABLE - OPERABILITY** 1.11 A system, subsystem, train, component, or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified function(s), and when all necessary attendant instrumentation, controls, electrical power, cooling or seal water, lubrication or other auxiliary equipment that are required for the system, subsystem, train, component, or device to perform its function(s) are also capable of performing their related support function(s). ### 1.0 DEFINITIONS (Continued) ### **OPERATIONAL MODE - MODE** 1.12 An OPERATIONAL MODE (i.e., MODE) shall correspond to any one inclusive combination of core reactivity condition, power level, and average reactor coolant temperature specified in Table 1.2. ### **PURGE - PURGING** 1.13 PURGE or PURGING shall be any controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration or other operating condition, in such a manner that replacement air or gas is required to purify the confinement. ### RATED THERMAL POWER 1.14 RATED THERMAL POWER shall be a total reactor core heat transfer rate to the reactor coolant of $3800 \text{ MW}_t$ . ### REPORTABLE EVENT 1.15 A REPORTABLE EVENT shall be any of those conditions specified in Section 50.73 of 10 CFR Part 50. ### SITE BOUNDARY 1.16 The SITE BOUNDARY means that line beyond which the land or property is not owned, leased, or otherwise controlled by the licensee. ### **SOLIDIFICATION** 1.17 SOLIDIFICATION shall be the conversion of wet wastes into a form that meets shipping and burial ground requirements. ### SOURCE CHECK 1.18 A SOURCE CHECK shall be the qualitative assessment of channel response when the channel sensor is exposed to a source of increased radioactivity. ### THERMAL POWER 1.19 THERMAL POWER shall be the total reactor core heat transfer rate to the reactor coolant. ### 1.0 DEFINITIONS (Continued) # **UNRESTRICTED AREA** 1.20 An UNRESTRICTED AREA shall be any area at or beyond the SITE BOUNDARY access to which is not controlled by the licensee for purposes of protection of individuals from exposure to radiation and radioactive materials, or any area within the SITE BOUNDARY used for residential quarters or for industrial, commercial, institutional, and /or recreational purposes. ### **VENTING** 1.21 VENTING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration, or other operating condition, in such a manner that replacement air or gas is not provided or required during VENTING. Vent, used in system names, does not imply a VENTING process. # <u>TABLE 1.1</u> # **FREQUENCY NOTATION** | <u>NOTATION</u> | FREQUENCY | |-----------------|---------------------------------| | S | At least once per 12 hours | | D | At least once per 24 hours | | W | At least once per 7 days | | M | At least once per 31 days | | Q | At least once per 92 days | | SA | At least once per 184 days | | R | At least once per 18 months | | S/U | Prior to each reactor startup | | N.A. | Not applicable | | P | Completed prior to each release | # **TABLE 1.2** # **OPERATIONAL MODES** | | MODE | REACTIVITY CONDITION, $K_{eff}$ | % RATED<br>THERMAL POWER* | AVG COOLANT<br>TEMPERATURE | |----|-----------------|---------------------------------|---------------------------|-------------------------------------------| | 1. | POWER OPERATION | > 0.99 | > 5% | ≥ 350°F | | 2. | STARTUP | _<br>≥ 0.99 | ≤ 5% | $\geq 350^{\circ} F$ | | 3. | HOT STANDBY | < 0.99 | 0 | $\geq 350^{\circ} F$ | | 4. | HOT SHUTDOWN | < 0.99 | 0 | $350^{\circ} F > T_{avg} > 200^{\circ} F$ | | 5. | COLD SHUTDOWN | < 0.99 | 0 | ≤ 200°F | | 6. | REFUELING** | ≤ 0.95 | 0 | ≤ 140°F | Excluding decay heat. <sup>\*\*</sup> Fuel in the reactor vessel with the vessel head closure bolts less than fully tensioned or with the head removed. # SECTION 2.0 RESPONSIBILITIES FOR PART A OF THE ODCM # 2.0 RESPONSIBILITIES FOR PART A OF THE ODCM All changes to Part A of the ODCM shall conform to the requirements of Technical Specification 6.14 [ITS 5.5.1] . # SECTIONS 3.0 and 4.0 CONTROLS AND SURVEILLANCE REQUIREMENTS ### 3/4 CONTROLS AND SURVEILLANCE REQUIREMENTS ### 3/4.0 APPLICABILITY #### CONTROLS - 3.0.1 Compliance with the Controls contained in the succeeding controls is required during the OPERATIONAL MODES or other conditions specified therein; except that upon failure to meet the Control, the associated ACTION requirements shall be met. - 3.0.2 Noncompliance with a control shall exist when the requirements of the Control and associated ACTION requirements are not met within the specified time intervals. If the Control is restored prior to expiration of the specified time intervals, completion of the ACTION requirements is not required. - 3.0.3 When a Control is not met, except as provided in the associated ACTION requirements, within 1 hour action shall be initiated to place the unit in a MODE in which the control does not apply by placing it, as applicable, in: - a. At least HOT STANDBY within the next 6 hours, - b. At least HOT SHUTDOWN within the following 6 hours, and - c. At least COLD SHUTDOWN within the subsequent 24 hours. Where corrective measures are completed that permit operation under the ACTION requirements, the action may be taken in accordance with the specified time limits as measured from the time of failure to meet the Control. Exceptions to these requirements are stated in the individual controls. This control is not applicable in MODE 5 or 6. 3.0.4 Entry into an OPERATIONAL MODE or other specified condition shall not be made when the conditions for the Control are <u>not</u> met and the associated ACTION requires a shutdown if they are not met within a specified time interval. Entry into an OPERATIONAL MODE or specified condition may be made in accordance with ACTION requirements when conformance to them permits continued operation of the facility for an unlimited period of time. This provision shall not prevent passage through or to OPERATIONAL MODES as required to comply with ACTION requirements. Exceptions to these requirements are stated in the individual controls. ### 3/4 CONTROLS AND SURVEILLANCE REQUIREMENTS ### 3/4.0 APPLICABILITY (Continued) ### SURVEILLANCE REQUIREMENTS - 4.0.1 Surveillance Requirements shall be met during the OPERATIONAL MODES or other conditions specified for individual Controls unless otherwise stated in an individual Surveillance Requirement. - 4.0.2 Each Surveillance Requirement shall be performed within the specified surveillance interval with a maximum allowable extension not to exceed 25 percent of the specified surveillance interval. - 4.0.3 Failure to perform a Surveillance Requirement within the allowed surveillance interval, defined by Control 4.0.2, shall constitute a failure to meet the OPERABILITY requirements for a Control. The time limits of the ACTION requirements are applicable at the time it is identified that a Surveillance Requirement has not been performed. The ACTION requirements may be delayed for up to 24 hours to permit the completion of the surveillance when the allowed outage time limits of the ACTION requirements are less than 24 hours. Surveillance Requirements do not have to be performed on inoperable equipment. - 4.0.4 Entry into an OPERATIONAL MODE or other specified condition shall not be made unless the Surveillance Requirement(s) associated with the Control has been performed within the stated surveillance interval or as otherwise specified. This provision shall not prevent passage through or to OPERATIONAL MODES as required to comply with ACTION requirements. ### 3/4.3 INSTRUMENTATION ### 3/4.3.3 MONITORING INSTRUMENTATION # 3/4,3.3.10 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION ### **CONTROLS** 3.3.3.10 The radioactive liquid effluent monitoring instrumentation channels shown in Table 3.3-12 shall be OPERABLE with their Alarm/Trip Setpoints set to ensure that the limits of Control 3.11.1.1 are not exceeded. The Alarm/Trip Setpoints of these channels shall be determined and adjusted in accordance with the methodology and parameters in this manual. APPLICABILITY: At all times. ### ACTION: - a. With a radioactive liquid effluent monitoring instrumentation channel Alarm/Trip Setpoint less conservative than required by the above control, immediately suspend the release of radioactive liquid effluents monitored by the affected channel, or declare the channel inoperable. - b. With less than the minimum number of radioactive liquid effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 3.3-12. Restore the inoperable instrumentation to OPERABLE status within the time specified in the ACTION, or explain in the next Annual Radioactive Effluent Release Report pursuant to Control 6.9.1.4 why this inoperability was not corrected within the time specified. - c. The provisions of Control 3.0.3 are not applicable. ### SURVEILLANCE REQUIREMENTS 4.3.3.10 Each radioactive liquid effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, and DIGITAL CHANNEL OPERATIONAL TEST at the frequencies shown in Table 4.3-8. # **TABLE 3.3-12** # RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION | | INSTRUMENT | MINIMUM<br>CHANNELS<br>OPERABLE | <u>ACTION</u> | |----|-----------------------------------------------------------------------------|---------------------------------|---------------| | 1. | Radioactivity Monitors Providing Alarm and Automatic Termination of Release | | | | | Liquid Waste Processing Discharge Monitor (N1RA-RT-8038 or N2RA-RT-8038) | 1 | 43 | | 2. | Flow Rate Measurement Devices | | | | | Liquid Waste Processing Discharge Line (N1WL-FT-4078 or N2WL-FT-4078) | 1 | 46 | ### TABLE 3.3-12 (Continued) ### **ACTION STATEMENTS** - ACTION 43 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 14 days provided that prior to initiating a release: - a. At least two independent samples are analyzed in accordance with Control 4.11.1.1.1, and - b. At least two technically qualified members of the facility staff independently verify the release rate calculations and discharge line valving. Otherwise, suspend release of radioactive effluents via this pathway. ACTION 44 - (Not used) ACTION 45 - (Not used) ACTION 46 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided the flow rate is estimated at least once per 4 hours during actual releases. Pump performance curves generated in place may be used to estimate flow. TABLE 4.3-8 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS | | <u>INSTRUMENT</u> | CHANNEL<br><u>CHECK</u> | SOURCE<br>CHECK | CHANNEL<br>CALIBRATION | DIGITAL CHANNEL OPERATIONAL TEST | |----|-----------------------------------------------------------------------------|-------------------------|-----------------|------------------------|----------------------------------| | 1. | Radioactivity Monitors Providing Alarm and Automatic Termination of Release | | | | | | | Liquid Waste Processing Discharge Monitor (N1RA-RT-8038 or N2RA-RT-8038) | D | P | R <sup>(3)</sup> | Q <sup>(1)</sup> | | 2. | Flow Rate Measurement Devices | | | | | | | Liquid Waste Processing Discharge Line (N1WL-FT-4078 or N2WL-FT-4078) | D <sup>(4)</sup> | N.A. | R | N.A. | ### TABLE 4.3-8 (Continued) ### TABLE NOTATIONS - (1) The DIGITAL CHANNEL OPERATIONAL TEST shall also demonstrate that automatic isolation or this pathway and control room alarm annunciation occur if any of the following conditions exists: - a. Instrument indicates measured levels above the Alarm/Trip Setpoint, or - b. Monitor failure. - (2) (Not used) - (3) The initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards certified by the National Institute of Standards and Technology (NIST) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NIST. These standards shall permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration shall be used. - (4) CHANNEL CHECK shall consist of verifying indication of flow during periods of release. CHANNEL CHECK shall be made at least once per 24 hours on days on which continuous, periodic, or batch releases are made. ### 3/4.3 INSTRUMENTATION ### 3/4.3.3 MONITORING INSTRUMENTATION ### 3/4.3.3.11 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION ### **CONTROLS** 3.3.3.11 The radioactive gaseous effluent monitoring instrumentation channels shown in Table 3.3-13 shall be OPERABLE with their Alarm/Trip Setpoints set to ensure that the limits of Control 3.11.2.1 and Technical Specification 3.11.2.5 [ITS 5.5.12a] are not exceeded. The Alarm/Trip Setpoints of these channels meeting Control 3.11.2.1 shall be determined and adjusted in accordance with the methodology and parameters in this manual. APPLICABILITY: As shown in Table 3.3-13 ### **ACTION**: - a. With a radioactive gaseous effluent monitoring instrumentation channel Alarm/Trip Setpoint less conservative than required by the above control, immediately suspend the release of radioactive gaseous effluents monitored by the affected channel, or declare the channel inoperable. - b. With the number of OPERABLE radioactive gaseous effluent monitoring instrumentation channels less than the Minimum Channels OPERABLE, take the ACTION shown in Table 3.3-13. Restore the inoperable instrumentation to OPERABLE status within the time specified in the ACTION, or explain in the next Annual Radioactive Effluent Release Report pursuant to Control 6.9.1.4 why this inoperability was not corrected within the time specified. - c. The provisions of Control 3.0.3 are not applicable. ### SURVEILLANCE REQUIREMENTS 4.3.3.11 Each radioactive gaseous effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, and ANALOG CHANNEL OPERATIONAL TEST or DIGITAL CHANNEL OPERATIONAL TEST, as applicable, at the frequencies shown in Table 4.3-9. ### TABLE 3.3-13 # RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION | | | | MINIMUM CHANNELS | | | | | |----|----------------|---------------------------------------------------------------------------------------------------------------|------------------|----------------------|---------------|--|--| | | <u>INS'</u> | TRUMENT | OPERABLE | <u>APPLICABILITY</u> | <u>ACTION</u> | | | | | | | | | | | | | 1. | (Not | t used) | | | | | | | 2. | (Not | t used) | | | | | | | | a.<br>b.<br>c. | (Not used) (Not used) (Not used) | | | | | | | 3. | Unit | t Vent | | | | | | | | a. | Noble Gas Activity Monitor (N1(2)RA-RT-8010B) | 1 | * | 49 | | | | | b. | Iodine Monitor (N1(2)RA-RT-8010A) or Iodine Sampler (N1(2)RA-RT-8010B) | 1 . | * | 53 | | | | | c. | Particulate Monitor (N1(2)RA-RT-8010A) or Particulate Sampl (N1(2)RA-RT-8010B) | er 1 | * | 53 | | | | | d. | Flow Rate Monitor (normal N1(2)RA-RT-8010F) or (accident N1(2)RA-RT-8010G) | 1 | * | 48 | | | | | e. | Sample Flow Rate Monitor (normal N1(2)RA-FT-8010H) or (accident N1(2)RA-FT-8010L) or N1(2)RA-FT-8010A for RT- | 1<br>8010A) | * | 48 | | | ### TABLE 3.3-13 (Continued) ### **TABLE NOTATIONS** \* At all times ### **ACTION STATEMENTS** ACTION 47 - (Not used) - ACTION 48 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided the flow rate is estimated at least once per 4 hours. - ACTION 49 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue for up to 30 days provided grab samples are taken at least once per 12 hours and these samples are analyzed for radioactivity within 24 hours. ACTION 50 - (Not used) ACTION 51 - (Not used) ACTION 52 - (Not used) ACTION 53 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via the affected pathway may continue for up to 30 days provided samples are continuously collected with auxiliary sampling equipment as required in this manual. TABLE 4.3-9 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS | | | <u>INSTRUMENT</u> | CHANNEL<br>CHECK | SOURCE<br>CHECK | CHANNEL<br>CALIBRATION | DIGITAL CHANNEL OPERATIONAL TEST | MODES FOR WHICH<br>SURVEILLANCE<br>IS REQUIRED | |----------------|-----|------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|------------------------|----------------------------------|------------------------------------------------| | 1.<br>2.<br>3. | (No | t used)<br>t used)<br>t Vent | | | | | | | | a. | Noble Gas Activity Monitor (N1(2)RA-RT-8010B) | D | M | R <sup>(3)</sup> | Q <sup>(2)</sup> | * | | | b. | Iodine Monitor (N1(2)RA-RT-8010A) | D | M | R <sup>(3)</sup> | $Q^{(2)}$ | * | | | 0. | or Iodine Sampler (N1(2)RA-RT-8010B) | W | N.A. | N.A. | N.A. | | | | c. | Particulate Monitor (N1(2)RA-RT-8010A) | D | M | R <sup>(3)</sup> | Q <sup>(2)</sup> | * | | | | or Particulate Sampler (N1(2)RA-RT-8010B) | W | N.A. | N.A. | N.A. | | | | d. | Flow Rate Monitor (normal N1(2)RA-RT-8010F) or (accident N1(2)RA-RT-8010G) | D | N.A. | R | N.A. | * | | | e. | Sampler Flow Rate Monitor (normal N1(2)RA-FT-8010H) or (accident N1(2)RA-FT-8010L) or (N1(2)RA-FT-8010A) for RT-8010A) | • | N.A. | R | Q | * | ### TABLE 4.3-9 (Continued) ### TABLE NOTATIONS - \* At all times - (1) (Not used) - (2) The DIGITAL CHANNEL OPERATIONAL TEST shall also demonstrate that control room alarm annunciation occurs if any of the following conditions exists: - a. Instrument indicates measured levels above the Alarm Setpoint, or - b. Monitor failure. - (3) The initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards certified by the National Institute of Standards and Technology (NIST) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NIST. These standards shall permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration shall be used. ### 3/4.11 RADIOACTIVE EFFLUENTS ### 3/4.11.1 LIQUID EFFLUENTS ### LIQUID EFFLUENT SAMPLING AND ANALYSIS PROGRAM Radioactive liquid wastes shall be sampled and analyzed in accordance with the program specified in Table A3-1 for STPEGS. The results of the radioactive analysis shall be used as appropriate with the methodology of Part B of the ODCM to assure that the concentrations of liquid effluents from the cooling reservoir are maintained within the limits of Control 3.11.1.1. Radioactive effluent information for liquids obtained from sampling and analysis programs shall also be used in conjunction with the methodologies in Part B to demonstrate compliance with the dose objectives and surveillance requirements of Controls 3/4.11.1.2 and 3/4.11.1.3, and Technical Specification 3/4.11.1.4 [ITS 5.5.12c]. #### 3/4.11.1 LIQUID EFFLUENTS #### <u>3/4.11.1.1 CONCENTRATION</u> #### **CONTROLS** 3.11.1.1 The concentration of radioactive material released in liquid effluents to UNRESTRICTED AREAS (See Figure 5.1-4) shall be limited to 10 times the concentrations specified in 10 CFR Part 20, Appendix B, Table 2, Column 2 for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the concentration shall be limited to $2 \times 10^{-4} \,\mu\text{Ci/ml}$ total activity. APPLICABILITY: At all times. #### ACTION: With the concentration of radioactive material released in liquid effluents to UNRESTRICTED AREAS exceeding the above limits, immediately restore the concentration to within the above limits. #### **SURVEILLANCE REQUIREMENTS** - 4.11.1.1.1 Radioactive liquid wastes shall be sampled and analyzed according to the sampling and analysis program specified in Table A3-1. - 4.11.1.1.2 The results of the radioactivity analyses shall be used in accordance with the methodology and parameters in this manual to assure that the concentrations at the point of release are maintained within the limits of Control 3.11.1.1. 01/01/2000 # TABLE A3-1 # RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM | | - | ID RELEASE<br>(PE | SAMPLI<br>FREQUI | | MINIMU<br>ANALYS<br>FREQUE | SIS | TYPE OF<br>ACTIVITY<br>ANALYSIS | LOWER LIMIT OF DETECTION (LLD) <sup>(1)</sup> (µCi/ml) | |----|---------------------------------------------------|------------------------------------------------------------|------------------|------|----------------------------|------------------------------------------------------|---------------------------------|--------------------------------------------------------| | 1. | 1. Batch Waste<br>Release<br>Tanks <sup>(2)</sup> | | | | | | | | | | | Waste<br>Monitor<br>Tanks | P<br>Each Batch | Eacl | P<br>n Batch | Principa<br>Emitters | al Gamma<br>s <sup>(3)</sup> | 5x10 <sup>-7</sup> | | | Т | | | | I-131 | | 1x10 <sup>-6</sup> | | | | a:<br>S | aundry<br>nd Hot<br>hower<br>`ank | P<br>One Bate | ch/M | M | Dissolved and<br>Entrained Gases<br>(Gamma Emitters) | | 1x10 <sup>-5</sup> | | | E | Vaste<br>Evaporator<br>Condensate | P<br>Each Batch | Com | M<br>posite <sup>(4)</sup> | H-3 | | 1x10 <sup>-5</sup> | | | Т | Tanks | | | | Gross Alpha | | 1x10 <sup>-7</sup> | | | ta | Any other tanks which discharge liquid wastes past RT-8038 | P | | Q | Sr-89, S | | 5x10 <sup>-8</sup> | | | li<br>v | | Each Batch | Co | mposite <sup>(4)</sup> | Fe-55 | | 1x10 <sup>-6</sup> | #### TABLE A3-1 (Continued) #### TABLE NOTATIONS (1) The LLD is defined, for purposes of these controls, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal. For a particular measurement system, which may include radiochemical separation: Where: LLD =the "a priori" lower limit of detection (microCurie per unit mass or volume), s<sub>b</sub> = the standard deviation of the background counting rate or of the counting rate of a blank sample, as appropriate (counts per minute), K = the value should be set to 2.71; the value may be set to 0.0 if the background contains 25 or more counts, E = the counting efficiency (counts per disintegration), V = the sample size (units of mass or volume), $2.22 \times 10^6$ = the number of disintegrations per minute per microCurie, Y = the fractional radiochemical yield, when applicable, $\lambda$ = the radioactive decay constant for the particular radionuclide (s<sup>-1</sup>), and $\Delta t$ = the elapsed time between the midpoint of sample collection and the time of counting(s). Typical values of E, V, Y, and $\Delta t$ should be used in the calculation. It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement. (2) A batch release is the discharge of liquid wastes of a discrete volume. Prior to sampling for analyses, each batch shall be isolated, and then thoroughly mixed by methods described in plant operating procedures to assure representative sampling. #### TABLE A3-1 (Continued) #### TABLE NOTATIONS (Continued) - (3) The principal gamma emitters for which the LLD specification applies include the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141, and Ce-144. This list does not mean that only these nuclides are to be considered. Other gamma peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radioactive Effluent Release Report pursuant to Control 6.9.1.4 as outlined in Regulatory Guide 1.21, Appendix B, Revision 1, June 1974. - (4) A composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and in which the method of sampling employed results in a specimen that is representative of the liquids released. #### 3/4.11.1 LIQUID EFFLUENTS #### 3/4.11.1.2 DOSE #### **CONTROLS** - 3.11.1.2 The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released, from each unit, to UNRESTRICTED AREAS (see Figure 5.1-4) shall be limited: - a. During any calendar quarter to less than or equal to 1.5 mrems to the whole body and to less than or equal to 5 mrems to any organ, and - b. During any calendar year to less than or equal to 3 mrems to the whole body and to less than or equal to 10 mrems to any organ. #### APPLICABILITY: At all times. #### **ACTION**: - a. With the calculated dose from the release of radioactive materials in liquid effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2 [ITS deleted pursuant to 10CFR50.4], a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits. This Special Report shall also include: (1) the results of radiological analyses of the drinking water source, and (2) the radiological impact on finished drinking water supplies with regard to the requirements of 40 CFR Part 141, Safe Drinking Water Act.\* - b. The provisions of Control 3.0.3 are not applicable. #### SURVEILLANCE REQUIREMENTS 4.11.1.2 Cumulative dose contributions from liquid effluents for the current calendar quarter and the current calendar year shall be determined in accordance with the methodology and parameters in this manual at least once per 31 days. The requirements of ACTION a.(1) and (2) are applicable only if drinking water supply is taken from the receiving water body within 3 miles of the plant discharge. In the case of river-sited plants, this is 3 miles downstream only. #### 3/4.11.1 LIQUID EFFLUENTS #### 3/4.11.1.3 LIQUID WASTE PROCESSING SYSTEM #### **CONTROLS** 3.11.1.3 The Liquid Waste Processing System shall be OPERABLE and appropriate portions of the system shall be used to reduce releases of radioactivity when the projected doses due to the liquid effluent, from each unit, to UNRESTRICTED AREAS (see Figure 5.1-4) would exceed 0.06 mrem to the whole body or 0.2 mrem to any organ in a 31-day period. APPLICABILITY: At all times. #### **ACTION:** - a. With radioactive liquid waste being discharged without treatment and in excess of the above limits and any portion of the Liquid Waste Processing System not in operation, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2 [ITS deleted pursuant to 10CFR50.4], a Special Report that includes the following information: - 1. Explanation of why liquid radwaste was being discharged without treatment, identification of any inoperable equipment or subsystems, and the reason for the inoperability, - 2. Action(s) taken to restore the inoperable equipment to OPERABLE status, and - 3. Summary description of action(s) taken to prevent a recurrence. - b. The provisions of Control 3.0.3 are not applicable. #### **SURVEILLANCE REQUIREMENTS** - 4.11.1.3.1 Doses due to liquid releases from each unit to UNRESTRICTED AREAS shall be projected at least once per 31 days in accordance with the methodology and parameters in this manual when Liquid Waste Processing Systems are not being fully utilized. - 4.11.1.3.2 The installed Liquid Waste Processing System shall be considered OPERABLE by meeting Controls 3.11.1.1 and 3.11.1.2. #### 3/4.11.2 GASEOUS EFFLUENTS #### GASEOUS EFFLUENT SAMPLING AND ANALYSIS PROGRAM Radioactive gaseous wastes shall be sampled and analyzed in accordance with the program specified in Table A4-1 for STPEGS. The results of the radioactive analyses shall be used as appropriate with the methodologies of Part B of the ODCM to assure that the dose rates due to radioactive materials released in gaseous effluents from the site to areas at and beyond the site boundary are within the limits of Control 3.11.2.1. Radioactive effluent information for gaseous wastes obtained from sampling and analysis programs shall also be used in conjunction with the methodologies in Part B to demonstrate compliance with the dose objectives and surveillance requirements of Controls 3/4.11.2.1, 3/4.11.2.2, 3/4.11.2.3, 3/4.11.2.4, and 3/4.11.4. #### 3/4.11.2 GASEOUS EFFLUENTS #### 3/4.11.2.1 DOSE RATE #### **CONTROLS** - 3.11.2.1 The dose rate due to radioactive materials released in gaseous effluents from the site to areas at and beyond the SITE BOUNDARY (see Figure 5.1-3) shall be limited to the following: - a. For noble gases: Less than or equal to 500 mrems/yr to the whole body and less than or equal to 3000 mrems/yr to the skin, and - b. For Iodine-131, for Iodine-133, for tritium, and for all radionuclides in particulate form with half-lives greater than 8 days: Less than or equal to 1500 mrems/yr to any organ. APPLICABILITY: At all times. #### **ACTION**: With the dose rate(s) exceeding the above limits, immediately restore the release rate to within the above limit(s). #### **SURVEILLANCE REQUIREMENTS** - 4.11.2.1.1 The dose rate due to noble gases in gaseous effluents shall be determined to be within the above limits in accordance with the methodology and parameters in this manual. - 4.11.2.1.2 The dose rate due to Iodine-131, Iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents shall be determined to be within the above limits in accordance with the methodology and parameters in this manual by obtaining representative samples and performing analyses in accordance with the sampling and analysis program specified in Table A4-1. 01/01/2000 # TABLE A4-1 # RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM | | | GASEOUS RELEASE TYPE | SAMPLING<br>FREQUENCY | MINIMUM<br>ANALYSIS<br><u>FREQUENCY</u> | TYPE OF ACTIVITY ANALYSIS | LOWER LIMIT OF<br>DETECTION<br>(LLD) <sup>(1)</sup> (µCi/ml) | |----|-----------------------------|----------------------|---------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------------------| | 1. | Unit Vent | | M <sup>(3)(4)</sup> | | Principal Gamma Emitters <sup>(2)</sup> | 1x10 <sup>-4</sup> | | | Omt vent | | Grab Sample | M | H-3 (oxide) | 1x10 <sup>-6</sup> | | 2, | All Release Tylisted above. | ypes as | Continuous <sup>(6)</sup> | W <sup>(7)</sup><br>Charcoal | I-131 | 1x10 <sup>-12</sup> | | | nated above. | | | Sample | I-133 | 1x10 <sup>-10</sup> | | | | | Continuous <sup>(6)</sup> | | (2) | | | | | | | Particulate<br>Sample | Principal Gamma Emitters <sup>(2)</sup> | 1x10 <sup>-11</sup> | | | | | Continuous (6) | | | | | | | | | Composite Particulate | Gross Alpha | 1x10 <sup>-11</sup> | | | | | | Sample | | | | | | | Continuous <sup>(6)</sup> | Q<br>Composite<br>Particulate<br>Sample | Sr-89, Sr-90 | 1x10 <sup>-11</sup> | #### TABLE A4-1 (Continued) #### TABLE NOTATIONS (1) The LLD is defined, for purposes of these specifications, as the smallest concentration of radioactive—material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal. For a particular measurement system, which may include radiochemical separation: $$LLD = \frac{4.65s_b + K}{E * V * 2.22 \times 10^6 * Y * e^{(-\lambda \Delta t)}}$$ Where: LLD=the "a priori" lower limit of detection (microCurie per unit mass or volume), s<sub>b</sub> = the standard deviation of the background counting rate or of the counting rate of a blank sample, as appropriate (counts per minute), K = the value should be set to 2.71; the value may be set to 0.0 if the background contains 25 or more counts, E = the counting efficiency (counts per disintegration), V = the sample size (units of mass or volume), $2.22 \times 10^6$ = the number of disintegrations per minute per microCurie, Y = the fractional radiochemical yield, when applicable, $\lambda$ = the radioactive decay constant for the particular radionuclide (s<sup>-1</sup>), and $\Delta t$ = the elapsed time between the midpoint of sample collection and the time of counting(s). Typical values of E, V, Y, and $\Delta t$ should be used in the calculation. It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement. # TABLE A4-1 (Continued) #### **TABLE NOTATIONS** (Continued) - The principal gamma emitters for which the LLD specification applies include the following radionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135, and Xe-138 in noble gas releases; and Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, I-131, Cs-134, Cs-137, Ce-141, and Ce-144 in Iodine and particulate releases. This list does not mean that only these nuclides are to be considered. Other gamma peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radioactive Effluent Release Report pursuant to Control 6.9.1.4 as outlined in Regulatory Guide 1.21, Appendix B, Revision I, June 1974. - (3) Sampling and analysis shall also be performed following shutdown, startup, or a THERMAL POWER change exceeding 15% of RATED THERMAL POWER within a 1-hour period. - (4) Tritium grab samples shall be taken at least once per week when the primary coolant or the Refueling Water Storage Tank contains water with tritium concentrations in excess of 5 uCi/gm as determined by routine sampling or process knowledge. - (5) (Not used) - (6) The ratio of the sample flow rate to the sampled stream flow rate shall be known for the time period covered by each dose or dose rate calculation made in accordance with Controls 3.11.2.1, 3.11.2.2, and 3.11.2.3. - (7) Samples shall be changed at least once per 7 days and analyses shall be completed within 48 hours after changing, or after removal from sampler. Sampling shall also be performed at least once per 24 hours for at least 7 days following each shutdown, startup, or THERMAL POWER change exceeding 15% of RATED THERMAL POWER within a 1-hour period and analyses shall be completed within 48 hours of changing. When samples collected for 24 hours are analyzed, the corresponding LLDs may be increased by a factor of 10. This requirement does not apply if: (1) analysis shows that the DOSE EQUIVALENT I-131 concentration in the reactor coolant has not increased more than a factor of 3; and (2) the noble gas monitor shows that effluent activity has not increased more than a factor of 3. Amendment 1 #### 3/4.11.2 GASEOUS EFFLUENTS #### 3/4.11.2.2 DOSE - NOBLE GASES #### **CONTROLS** - 3.11.2.2 The air dose due to noble gases released in gaseous effluents, from each unit, to areas at and beyond the SITE BOUNDARY (see Figure 5.1-3) shall be limited to the following: - a. During any calendar quarter: Less than or equal to 5 mrads for gamma radiation and less than or equal to 10 mrads for beta radiation, and - b. During any calendar year: Less than or equal to 10 mrads for gamma radiation and less than or equal to 20 mrads for beta radiation. ### APPLICABILITY: At all times. #### **ACTION** - a. With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2 [ITS deleted pursuant to 10CFR50.4], a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits. - b. The provisions of Control 3.0.3 are not applicable. #### SURVEILLANCE REQUIREMENTS 4.11.2.2 Cumulative dose contributions for the current calendar quarter and current calendar year for noble gases shall be determined in accordance with the methodology and parameters in this manual at least once per 31 days. #### 3/4.11.2 GASEOUS EFFLUENTS # 3/4.11.2.3 DOSE - IODINE-131, IODINE-133, TRITIUM, AND RADIOACTIVE MATERIAL IN PARTICULATE FORM #### **CONTROLS** - 3.11.2.3 The dose to a MEMBER OF THE PUBLIC from Iodine-131, Iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released, from each unit, to areas at and beyond the SITE BOUNDARY (see Figure 5.1-3) shall be limited to the following: - a. During any calendar quarter: Less than or equal to 7.5 mrems to any organ, and - b. During any calendar year: Less than or equal to 15 mrems to any organ. #### APPLICABILITY: At all times. #### **ACTION:** - a. With the calculated dose from release of Iodine-131, Iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days, in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2 [ITS deleted pursuant to 10CFR50.4], a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits. - b. The provisions of Control 3.0.3 are not applicable. #### SURVEILLANCE REQUIREMENTS 4.11.2.3 Cumulative dose contributions for the current calendar quarter and current calendar year for Iodine-131, Iodine-133, tritium and radionuclides in particulate form with half-lives greater than 8 days shall be determined in accordance with the methodology and parameters in this manual at least once per 31 days. #### 3/4.11.2 GASEOUS EFFLUENTS #### 3/4.11.2.4 GASEOUS WASTE PROCESSING SYSTEM #### **CONTROLS** - 3.11.2.4 The GASEOUS WASTE PROCESSING SYSTEM shall be OPERABLE and appropriate portions of this system shall be used to reduce releases of radioactivity when the projected doses in 31 days due to gaseous effluent releases, from each unit, to areas at and beyond the SITE BOUNDARY (see Figure 5.1-3) would exceed: - a. 0.2 mrad to air from gamma radiation, or - b. 0.4 mrad to air from beta radiation, or - c. 0.3 mrem to any organ of a MEMBER OF THE PUBLIC. #### APPLICABILITY: At all times. #### ACTION: - a. With radioactive gaseous waste being discharged without treatment and in excess of the above limits, prepare and submit to the Commission within 30 days, pursuant to Technical Specificati 6.9.2 [ITS deleted pursuant to 10CFR50.4], a Special Report that includes the following information: - 1. Identification of any inoperable equipment or subsystems, and the reason for the inoperability, - 2. Action(s) taken to restore the inoperable equipment to OPERABLE status, and - 3. Summary description of action(s) taken to prevent a recurrence. - b. The provisions of Control 3.0.3 are not applicable. #### **SURVEILLANCE REQUIREMENTS** - 4.11.2.4.1 Doses due to gaseous releases from each unit to areas at and beyond the SITE BOUNDARY shall be projected at least once per 31 days in accordance with the methodology and parameters in this manual when the GASEOUS WASTE PROCESS SYSTEM is not being fully utilized. - 4.11.2.4.2 The installed GASEOUS WASTE PROCESSING SYSTEM shall be considered OPERABLE by meeting Controls 3.11.2.1, and either 3.11.2.2 or 3.11.2.3. ### 3/4.11.4 TOTAL DOSE #### **CONTROLS** 3.11.4 The annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrems to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems. APPLICABILITY: At all times. #### **ACTION**: - With the calculated doses from the release of radioactive materials in liquid or gaseous effluents exceeding twice the limits of Controls 3.11.1.2a, 3.11.1.2b, 3.11.2.2a, 3.11.2.2b, 3.11.2.3a, or 3.11.2.3b, calculations shall be made including direct radiation contributions from the units and from outside storage tanks to determine whether the above limits of Control 3.11.4 have been exceeded. If such is the case, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2 [ITS - deleted - pursuant to 10CFR50.4], a Special Report that defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule for achieving conformance with the above limits. This Special Report, as defined in 10 CFR Part 20.2203(b), shall include an analysis that estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report. It shall also describe levels of radiation and concentrations of radioactive material involved, and the cause of the exposure levels or concentrations. If the estimated dose(s) exceeds the above limits, and if the release condition resulting in violation of 40 CFR Part 190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40 CFR Part 190. Submittal of the report is considered a timely request, and a variance is granted until staff action on the request is complete. - b. The provisions of Control 3.0.3 are not applicable. # 3/4.11.4 TOTAL DOSE (Continued) #### **SURVEILLANCE REQUIREMENTS** - 4.11.4.1 Cumulative dose contributions from liquid and gaseous effluents shall be determined in accordance with Controls 4.11.1.2, 4.11.2.2, and 4.11.2.3, and in accordance with the methodology and parameters in this manual. - 4.11.4.2 Cumulative dose contributions from direct radiation from the units and from radwaste storage tanks shall be determined in accordance with the methodology and parameters in this manual. This requirement is applicable only under conditions set forth in ACTION a. of Control 3.11.4. #### SAMPLING AND ANALYSIS PROGRAM The Radiological Environmental Monitoring Program (REMP) provides representative measurements of radiation and radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposure of MEMBERS OF THE PUBLIC resulting from station operation. This monitoring program is required by Control 3.12.1. The monitoring program implements Section IV.B.2 of Appendix I to 10 CFR Part 50, and thereby supplements the radiological effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of effluent measurements and the modeling of the environmental exposure pathways which have been incorporated into Part B of the ODCM. The monitoring program as specified at fuel load shall remain in effect for at least the first three years of commercial operation. Following this period, program changes may be initiated based on operational experience. In accordance with Control Surveillance Requirement 4.12.1, a sampling and analysis program shall be conducted. The implemented Radiological Environmental Monitoring Program, as described in Section 5.0 of Part B of the ODCM, shall as a minimum satisfy the requirements of Table B5-1. Detection capability requirements and reporting levels for radioactivity concentrations in environmental samples are shown in Tables A5-1 and A5-2, respectively. #### 3/4.12.1 MONITORING PROGRAM | CONTROLS | | | |----------|--|--| | | | | 3.12.1 The Radiological Environmental Monitoring Program (REMP) shall be conducted as specified in Table B5-1 and Table A5-2. APPLICABILITY: At all times. #### **ACTION:** - a. With the Radiological Environmental Monitoring Program not being conducted as specified, prepare and submit to the Commission, in the Annual Radiological Environmental Operating Report required by Control 6.9.1.3, a description of the reasons for not conducting the program as required and the plans for preventing a recurrence. - b. With the level of radioactivity as the result of plant effluents in an environmental sampling medium at a specified location exceeding the reporting levels of the REMP when averaged over any calendar quarter, prepare and submit to the Commission within 30 days, pursuant to Technical Specification 6.9.2 [ITS deleted pursuant to 10CFR50.4], a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose\* to a MEMBER OF THE PUBLIC is less than the calendar year limits of Controls 3.11.1.2, 3.11.2.2, or 3.11.2.3. When more than one of the radionuclides in the REMP are detected in the sampling medium, this report shall be submitted if: concentration (1) concentration (2) $$+ \cdots + \cdots + \cdots + \cdots + \cdots + \cdots \geq 1.0$$ reporting level (1) reporting level (2) When radionuclides other than those listed in the REMP are detected and are the result of plant effluents, this report shall be submitted if the potential annual dose\* to a MEMBER OF THE PUBLIC from all radionuclides is equal to or greater than the calendar year limits of Controls 3.11.1.2, 3.11.2.2 or 3.11.2.3. This report is not required if the measured level of radioactivity was not the result of plant effluents; however, in such an event, the condition shall be reported and described in the Annual Radiological Environmental Operating Report required by Control 6.9.1.3 01/01/2000 ODCM Rev. 10 The methodology and parameters used to estimate the potential annual dose to a MEMBER OF T<sup>\*</sup> PUBLIC shall be indicated in this report. # 3/4.12.1 MONITORING PROGRAM (Continued) #### ACTION: (Continued) - c. With milk or fresh leafy vegetable samples unavailable from one or more of the sample locations required by the REMP, identify specific locations for obtaining replacement samples and add them within 30 days to the Radiological Environmental Monitoring Program given in this manual. The specific locations from which samples were unavailable may then be deleted from the monitoring program. Pursuant to Technical Specification 6.14 [ITS 5.5.1], submit with the next Annual Radioactive Effluent Release Report documentation for a change to this manual including a revised figure(s) and table to Part B of this manual reflecting the new location(s) with supporting information identifying the cause of the unavailability of samples and justifying the selection of the new location(s) for obtaining samples. - d. The provisions of Control 3.0.3 are not applicable. #### SURVEILLANCE REQUIREMENTS 4.12.1 The radiological environmental monitoring samples shall be collected pursuant to the REMP from the specific locations given in the Table B5-1 and figure(s) in this manual, and shall be analyzed pursuant to the requirements of and the detection capabilities required by the REMP. TABLE A5-1 DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS<sup>(1),(2)</sup> LOWER LIMIT OF DETECTION<sup>(3)</sup> | ANALYSIS | WATER<br>(pCi/l) | AIRBORNE PARTICULATE<br>OR GASES (pCi/m³) | FISH (pCi/kg, wet) | MILK<br>(pCi/l) | FOOD PRODUCTS (pCi/kg, wet) | SEDIMENT (pCi/kg, dry) | |------------|------------------|-------------------------------------------|--------------------|-----------------|-----------------------------|------------------------| | Gross Beta | 4 | 0.01 | | | | | | H-3 | 3000 | | | | | | | Mn-54 | 15 | | 130 | | | | | Fe-59 | 30 | | 260 | | | | | Co-58,60 | 15 | | 130 | | | | | Zn-65 | 30 | | 260 | | | | | Zr-Nb-95 | 15 | | | | | | | I-131 | 1 <sup>(4)</sup> | 0.07 | | 1 | 60 | | | Cs-134 | 15 | 0.05 | 130 | 15 | 60 | 150 | | Cs-137 | 18 | 0.06 | 150 | 18 | 60 | 180 | | Ba-La-140 | 15 | | | 15 | | | # TABLE A5-1 (Continued) #### TABLE NOTATIONS - (1) This list does not mean that only these nuclides are to be considered. Other peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radiological Environmental Operating Report pursuant to Control 6.9.1.3. - (2) Required detection capabilities for thermoluminescent dosimeters used for environmental measurements shall be in accordance with the recommendations of Regulatory Guide 4.13. - (3) The LLD is defined, for purposes of these specifications, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal. For a particular measurement system, which may include radiochemical separation: $$LLD = \frac{4.65s_b + K}{E * V * 2.22 * Y * e^{(-\lambda \Delta t)}}$$ Where: LLD = the "a priori" lower limit of detection (picoCuries per unit mass or volume), sb = the standard deviation of the background counting rate or of the counting rate of a blank sample, as appropriate (counts per minute), K = the value should be set to 2.71; the value may be set to 0.0 if the background contains 25 or more counts, E = the counting efficiency (counts per disintegration), V = the sample size (units of mass or volume), 2.22 = the number of disintegrations per minute per picoCurie, Y = the fractional radiochemical yield, when applicable, $\lambda$ = the radioactive decay constant for the particular radionuclide (s<sup>-1</sup>), and $\Delta t$ = the elapsed time between environmental collection, or end of the sample collecting period, and time of counting(s). Typical values of E, V, Y, and $\Delta t$ should be used in the calculation. #### TABLE A5-1 (Continued) #### **TABLE NOTATIONS** (Continued) It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement. Analyses shall be performed in such a manner that the stated LLDs will be achieved under routine conditions. Occasionally, background fluctuations, unavoidable small sample sizes, the presence of interfering nuclides, or other uncontrollable circumstances may render these LLDs unachievable. In such cases, the contributing factors shall be identified and described in the Annual Radiological Environmental Operating Report pursuant to Control 6.9.1.3. (4) LLD for drinking water samples. If no drinking water pathway exists, the LLD of gamma isotopic analysis may be used. TABLE A5-2 REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES REPORTING LEVELS | ANALYSIS | WATER<br>(pCi/l) | AIRBORNE PARTICULATE<br>OR GASES (pCi/m³) | FISH<br>(pCi/kg, wet) | MILK<br>(pCi/l) | FOOD PRODUCTS (pCi/kg, wet) | |-----------|------------------|-------------------------------------------|-----------------------|---------------------|-----------------------------| | H-3 | 30,000 | | | | | | Mn-54 | 1,000 | | 30,000 | 1000 <sup>(1)</sup> | 30,000 <sup>(1)</sup> | | Fe-59 | 400 | | 10,000 | 400 <sup>(1)</sup> | 10,000 <sup>(1)</sup> | | Co-58 | 1,000 | | 30,000 | 1000 <sup>(1)</sup> | 30,000 <sup>(1)</sup> | | Co-60 | 300 | | 10,000 | 300 <sup>(1)</sup> | 10,000 <sup>(1)</sup> | | Zn-65 | 300 | | 20,000 | 300 <sup>(1)</sup> | 20,000(1) | | Zr-Nb-95 | 400 | | 10,000 <sup>(1)</sup> | 400 <sup>(1)</sup> | 10,000 <sup>(1)</sup> | | I-131 | 2 | 0.9 | 50 <sup>(1)</sup> | 3 | 100 | | Cs-134 | 30 | 10 | 1,000 | 60 | 1,000 | | Cs-137 | 50 | 20 | 2,000 | 70 | 2,000 | | Ba-La-140 | 200 | | 5,000 <sup>(1)</sup> | 300 | 5,000 <sup>(1)</sup> | <sup>(1)</sup> SUGGESTED reporting levels added to the required values in proportion to comparable media. These added values are not required reporting levels but serve as guidance for when it is appropriate to give the Nuclear Regulatory Commission Regional IV Office a courtesy call. Fish = 25 \* Water values; Milk = Water values; Food Products = Fish values. #### 3/4.12.2 LAND USE CENSUS As part of the Radiological Environmental Monitoring Program, Control 3/4.12.2 requires that a land use census be conducted annually during the growing season to identify within a distance of 8 km (5 miles) the location in each of the 16 meteorological sectors of the nearest milk animal, the nearest residence, and the nearest garden of greater than 50 m<sup>2</sup> (500 ft<sup>2</sup>) producing broadleaf vegetation. The land use census ensures that changes in the use of area beyond the SITE BOUNDARY are identified, and appropriate modifications to the monitoring program and dose assessment models are made, if necessary. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50. For the purpose of conducting the land use census as required by Control Surveillance Requirement 4.12.2, station personnel should determine what survey methods will provide the necessary results considering the type of information to be collected and its use. For example, land use census results shall be obtained by using a survey method, or combination of methods, which may include, but are not limited to, door-to-door surveys (i.e., roadside identification of locations), aerial surveys, or by consulting local agricultural authorities. Control 3.12.2.b requires that new locations identified from the census that yield a calculated dose or dose commitment 20% greater than at a location from which samples are currently being obtained be added within 30 days to the REMP. These new locations shall be added to the sampling program only if reliable sampling of the affected pathway(s) can be devised. #### 3/4.12.2 LAND USE CENSUS #### **CONTROLS** 3.12.2 A Land Use Census shall be conducted and shall identify within a distance of 8 km (5 miles) the location in each of the 16 meteorological sectors of the nearest milk animal, the nearest residence, and the nearest garden\* of greater than 50 m² (500 ft²) producing broad leaf vegetation. APPLICABILITY: At all times. #### ACTION: - a. With a Land Use Census identifying a location(s) that yields a calculated dose or dose commitment greater than the values currently being calculated in Control 4.11.2.3, pursuant to Control 6.9.1.4, identify the new location(s) in the next Annual Radioactive Effluent Release Report. - b. With a Land Use Census identifying a location(s) that yields a calculated dose or dose commitment (via the same exposure pathway) 20% greater than at a location from which samples are currently being obtained in accordance with Control 3.12.1, add the new location(s) within 30 days to the Radiological Environmental Monitoring Program given in Part B of this manual. The sampling location(s) excluding the control station location, having the lowest calculated dose or dose commitment(s), via the same exposure pathway, may be deleted from this monitoring program after October 31 of the year in which this Land Use Census was conducted. Pursuant to Technical Specification 6.14 [ITS 5.5.1], submit in the next Annual Radioactive Effluent Release Report documentation for a change to this manual including a revised figure(s) and table(s) for Part B of this manual reflecting the new location(s) with information supporting the change in sampling locations. - c. The provisions of Control 3.0.3 are not applicable. #### SURVEILLANCE REQUIREMENTS 4.12.2 The Land Use Census shall be conducted at least once per 12 months using that information that will provide the best results, such as by a door-to-door survey, aerial survey, or by consulting local agriculture authorities, as described in this manual. The results of the Land Use Census shall be included in the Annual Radiological Environmental Operating Report pursuant to Control 6.9.1.3. Broad leaf vegetation sampling of at least three different kinds of vegetation may be performed at the SITE BOUNDARY in each of two different direction sectors with the highest predicted D/Qs in lieu of the garden census. Controls for broad leaf vegetation sampling in the REMP shall be followed, including analysis of control samples. #### 3/4.12.3 INTERLABORATORY COMPARISON PROGRAM #### **CONTROLS** 3.12.3 The Interlaboratory Comparison Program shall be maintained to ensure that independent checks on the precision and accuracy of the measurements of radioactive materials in environmental sample matrices are performed as part of the quality assurance program for environmental monitoring. The program shall demonstrate the ability to measure low levels of relevant radionuclides in sample matrices corresponding to samples required by the REMP. The intercomparison program shall maintain traceability to National Institute of Standards and Technology (NIST), or an equivalent type of traceability. APPLICABILITY: At all times. #### **ACTION**: - a. With the Interlaboratory Comparison Program not being performed as required above, report the corrective actions taken to prevent a recurrence to the Commission in the Annual Radiological Environmental Operating Report pursuant to Control 6.9.1.3. - b. The provisions of Control 3.0.3 are not applicable. #### **SURVEILLANCE REQUIREMENTS** 4.11.3 The Interlaboratory Comparison Program is described in this manual. A summary of the results obtained as part of the above required Interlaboratory Comparison Program shall be included in the Annual Radiological Environmental Operating Report pursuant to Control 6.9.1.3. # BASES FOR SECTIONS 3.0 and 4.0 # CONTROLS AND SURVEILLANCE REQUIREMENTS # **NOTE** The BASES contained in the succeeding pages summarizes the reasons for the Controls in Section 3.0 and 4.0, but are not part of these Controls. **BASES** #### 3/4.3.3 MONITORING INSTRUMENTATION #### 3/4.3.3.10 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION The radioactive liquid effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in liquid effluents during actual or potential releases of liquid effluents. The Alarm/Trip Setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in this manual to ensure that the alarm/trip will occur prior to exceeding the limits of Technical Specification 6.8.3g.2 [ITS 5.5.4b] or 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63, and 64 of Appendix A to 10 CFR Part 50. #### 3/4.3.3.11 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluent during actual or potential releases of gaseous effluents. The Alarm/Trip Setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in this manual to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63, and 64 of Appendix A to 10 CFR Part 50. The sensitivity of any noble gas activity monitors used to show compliance with the gaseous effluent release requirements of Control 3.11.2.2 shall be such that concentrations as low as 1 x 10<sup>-6</sup> µCi/cc are measurable. **BASES** #### 3/4.11.1 LIQUID EFFLUENTS #### <u>3/4.11.1.1 CONCENTRATION</u> This control is provided to ensure that the concentration of radioactive materials released in liquid waste effluents to UNRESTRICTED AREAS will be less than ten times the concentration levels specified in 10 CFR Part 20, Appendix B, Table 2, Column 2. This limitation provides additional assurance that the levels of radioactive materials in bodies of water in UNRESTRICTED AREAS will result in exposures within the Section II.A design objectives of Appendix I, 10 CFR Part 50, to a MEMBER OF THE PUBLIC. The concentration limit for dissolved or entrained noble gases is based upon the assumption that Xe-135 is the controlling radioisotope. This control applies to the release of radioactive materials in liquid effluents from all units at the site. The required detection capabilities for radioactive materials in liquid waste samples are tabulated in terms of the lower limits of detection (LLDs). Detailed discussion of the LLD, and other detection limits, can be found in HASL Procedures Manual, <u>HASL-300</u> (revised annually); Currie, L. A., "Limits for Qualitative Detection and Quantitative Determination - Application to Radioannustry," <u>Anal. Chem. 40</u>, 586-93 (1968); and Hartwell, J. K., "Detection Limits for Radioannustrical Counting Techniques," Atlantic Richfield Hanford Company Report <u>ARH-SA-215</u> (June 1975). #### 3/4.11.1.2 DOSE This control is provided to implement the requirements of Sections II.A, III.A, and IV.A of Appendix I, 10 CFR Part 50. The Control implements the guides set forth in Section II.A of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A. of Appendix I to assure that the releases of radioactive material in liquid effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable." The dose calculation methodology and parameters in the ODCM implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The equations specified in this manual for calculating the doses due to the actual release rates of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977; and Regulatory Guide 1.113, "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," April 1977. #### **BASES** #### 3/4.11.1.2 DOSE (Continued) This control applies to the release of radioactive materials in liquid effluents from each unit at the site. #### 3/4.11.1.3 LIQUID WASTE PROCESSING SYSTEM The OPERABILITY of the Liquid Waste Processing System ensures that this system will be available for use whenever liquid effluents require treatment prior to release to the environment. The requirement that the appropriate portions of this system be used when specified provides assurance that the releases of radioactive materials in liquid effluents will be kept "as low as is reasonably achievable." This control implements the requirements of 10 CFR Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50, and the design objective given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the Liquid Waste Processing System were specified as a suitable fraction of the dose design objectives set forth in Section II.A of Appendix I, 10 CFR Part 50, for liquid effluents. This control applies to the release of radioactive materials in liquid effluents from each unit at the site. #### 3/4.11.2 GASEOUS EFFLUENTS #### 3/4.11.2.1 DOSE RATE This control is provided to ensure that the dose at any time at and beyond the SITE BOUNDARY from gaseous effluents from all units on the site will be within the annual dose limits of 10 CFR Part 20 to UNRESTRICTED AREAS. These limits provide reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of a MEMBER OF THE PUBLIC to annual average concentrations exceeding ten times the limits specified in Appendix B, Table 2 of 10 CFR Part 20. For MEMBERS OF THE PUBLIC who may at times be within the SITE BOUNDARY, the occupancy of that MEMBER OF THE PUBLIC will usually be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the SITE BOUNDARY. Examples of calculations for such MEMBERS OF THE PUBLIC, with the appropriate occupancy factors, shall be given in this manual. The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY to less than or equal to 500 mrems/year to the whole body or to less than or equal to 3000 mrems/year to the skin. These release rate limits also restrict, at all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to less than or equal to 1500 mrems/year. #### **BASES** # 3/4.11.2.1 DOSE RATE (Continued) This control applies to the release of radioactive materials in gaseous effluents from all units at the site. The required detection capabilities for radioactive materials in gaseous waste samples are tabulated in terms of the lower limits of detection (LLDs). Detailed discussion of the LLD, and other detection limits can be found in HASL Procedures Manual, <u>HASL-300</u> (revised annually); Currie, L. A., "Limits for Qualitative Detection and Quantitative Determination - Application to Radiochemistry," <u>Anal. Chem. 40</u>, 586-93 (1968); and Hartwell, J. K., "Detection Limits for Radioanalytical Counting Techniques," Atlantic Richfield Hanford Company Report <u>ARH-SA-215</u> (June 1975). #### 3/4.11.2.2 DOSE - NOBLE GASES This control is provided to implement the requirements of Sections II.B, III.A and IV.A of Appendix I, 10 CFR Part 50. The Control implements the guides set forth in Section II.B of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable." The Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The dose calculation methodology and parameters established in this manual for calculating the doses due to the actual release rates of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977; and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1, July 1977. The ODCM equations provided for determining the air doses at and beyond the SITE BOUNDARY are based upon the historical average atmospheric conditions. This control applies to the release of radioactive materials in gaseous effluents from each unit at the site. BASES # 3/4.11.2.3 DOSE - IODINE-131, IODINE-133, TRITIUM, AND RADIOACTIVE MATERIAL IN PARTICULATE FORM This control is provided to implement the requirements of Sections II.C, III.A and IV.A of Appendix I, 10 CFR Part 50. The Controls are the guides set forth in Section II.C of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive materials in gaseous effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable." The calculational methods specified in the Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The calculational methodology and parameters for calculating the doses due to the actual release rates of the subject materials are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977; and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1, July 1977. These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate controls for Iodine-131, Iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days, are dependent upon the existing radionuclide pathways to man, in the areas at and beyond the SITE BOUNDARY. The pathways that were examined in the development of these calculations were: (1) individual inhalation of airborne radionuclides, (2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, (3) deposition onto grassy areas where milk animals and meat producing animals graze with consumption of the milk and meat by man, and (4) deposition on the ground with subsequent exposure to man. This control applies to the release of radioactive materials in gaseous effluents from each unit at the site. #### 3/4.11.2.4 GASEOUS WASTE PROCESSING SYSTEM The OPERABILITY of the GASEOUS WASTE PROCESSING SYSTEM ensures that the systems will be available for use whenever gaseous effluents require treatment prior to release to the environment. The requirement that the appropriate portions of the systems be used, when specified, provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept "as low as is reasonably achievable." This control implements the requirements of 10 CFR Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50, and the design objective given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the system were specified as a suitable fraction of the dose design objectives set forth in Section II.B and II.C of Appendix I, 10 CFR Part 50, for gaseous effluents. #### **BASES** #### 3/4.11.2.4 GASEOUS WASTE PROCESSING SYSTEM This Control applies to the release of radioactive material in gaseous effluents from each unit at the site. #### 3/4.11.4 TOTAL DOSE This control is provided to meet the dose limitation of 40 CFR Part 190 that has been incorporated into 10 CFR Part 20.2203. The control requires the preparation and submittal of a Special Report whenever the calculated doses due to releases of radioactivity and to radiation from uranium fuel cycle sources exceed 25 mrems to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems. For sites containing up to four reactors, it is highly unlikely that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR Part 190 if the individual reactors remain within twice the dose design objectives of Appendix I, and if direct radiation doses from the reactor units and outside storage tanks are kept small. The Special Report will describe a course of action that should result in the limitation of the annual dose to a MEMBER OF THE PUBLIC to within the 40 CFR Part 190 limits. For the purposes of the Special Report, it may be assumed that the dose commitment to the MEMBER OF THE PUBLIC from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 8 km must be considered. If the dose to any MEMBER OF THE PUBLIC is estimated to exceed the requirements of 40 CFR Part 190, the Special Report with a request for a variance (provided the release conditions resulting in violation of 40 CFR Part 190 have not already been corrected), in accordance with the provisions of 40 CFR Part 190.11 and 10 CFR Part 20.2203, is considered to be a timely request and fulfills the requirements of 40 CFR Part 190 until NRC staff action is completed. The variance only relates to the limits of 40 CFR Part 190 and does not apply in any way to the other requirements for dose limitation of 10 CFR Part 20, as addressed in Controls 3.11.1.1 and 3.11.2.1. An individual is not considered a MEMBER OF THE PUBLIC during any period in which the individual receives an occupational dose.. #### **BASES** #### 3/4.12.1 MONITORING PROGRAM The Radiological Environmental Monitoring Program required by this control provides representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposure of MEMBERS OF THE PUBLIC resulting from the plant operation. This monitoring program implements Section IV.B.2 of Appendix I to 10 CFR Part 50 and thereby supplements the Radiological Effluent Monitoring Program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways. Guidance for this monitoring program is provided by the Radiological Assessment Branch Technical Position on Environmental Monitoring. The initially specified monitoring program will be effective for at least the first 3 years of commercial operation. Following this period, program changes may be initiated based on operational experience. The required detection capabilities for environmental sample analyses are tabulated in terms of the lower limits of detection (LLDs). The LLDs required by this manual are considered optimum for routine environmental measurements industrial laboratories. It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement. Detailed discussion of the LLD, and other detection limits, can be found in HASL Procedures Manual, <u>HASL-300</u> (revised annually); Currie, L. A., "Limits for Qualitative Detection and Quantitative Determination - Application to Radiochemistry," <u>Anal.Chem. 40</u>, 586-93 (1968); and Hartwell, J. K., "Detection Limits for Radioanalytical Counting Techniques," Atlantic Richfield Hanford Company Report ARH-SA-215 (June 1975). #### 3/4.12.2 LAND USE CENSUS This control is provided to ensure that changes in the use of areas at and beyond the SITE BOUNDARY are identified and that modifications to the Radiological Environmental Monitoring Program given in the ODCM are made if required by the results of this census. The best information from the door-to-door survey, from aerial survey or from consulting with local agricultural authorities shall be used. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50. Restricting the census to gardens of greater than 50 m² provides assurance that significant exposure pathways via leafy vegetables will be identified and monitored since a garden of this size is the minimum required to produce the quantity (26 kg/year) of leafy vegetables assumed in Regulatory Guide 1.109 for consumption by a child. To determine this minimum garden size, the following assumptions were made: (1) 20% of the garden was used for growing broad leaf vegetation (i.e, similar to lettuce and cabbage), and (2) a vegetation yield of 2 kg/m². **BASES** # 3/4.12.3 INTERLABORATORY COMPARISON PROGRAM The requirement for participation in an Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurement of radioactive materials in environmental sample matrices are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10 CFR Part 50. SECTION 5.0 **DESIGN FEATURES** #### 5.0 DESIGN FEATURES #### 5.1 SITE ## 5.1.3 MAP DEFINING UNRESTRICTED AREAS AND SITE BOUNDARY FOR RADIOACTIVE GASEOUS AND LIQUID EFFLUENTS 5.1.3 Information regarding radioactive gaseous and liquid effluents, which will allow identification of structures and release points as well as definition of UNRESTRICTED AREAS within the SITE BOUNDARY that are accessible to MEMBERS OF THE PUBLIC, shall be as shown in Figures 5.1-3 and 5.1-4. The UNRESTRICTED AREA boundary may coincide with the Exclusion (fenced) Area boundary, as defined in 10 CFR Part 100.3(a), but the UNRESTRICTED AREA does not include areas over water bodies. The concept of UNRESTRICTED AREAS, established at or beyond the SITE BOUNDARY, is utilized in the Controls to keep levels of radioactive materials in liquid and gaseous effluents as low as is reasonably achievable, pursuant to 10 CFR Part 50.36a. FIGURE 5.1-3 UNRESTRICTED AREA\* AND SITE BOUNDARY FOR RADIOACTIVE GASEOUS EFFLUENTS (SEE ALSO FIGURE 5.1-4) E-0009.DWG REV 2 FIGURE 5.1-4 UNRESTRICTED AREA\* AND SITE BOUNDARY FOR RADIOACTIVE LIQUID EFFLUENTS STP E-0006 REV 1 # SECTION 6.0 ADMINISTRATIVE CONTROLS ### 6.9.1.3 ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT\* 6.9.1.3 Routine Annual Radiological Environmental Operating Reports covering the operation of the unit during the previous calendar year shall be submitted prior to May 1 of each year. The initial report shall be submitted prior to May 1 of the year following initial criticality. The Annual Radiological Environmental Operating Reports shall include summaries, interpretations, and an analysis of trends of the results of the radiological environmental surveillance activities for the report period, including a comparison with preoperational studies, with operational controls, as appropriate, and with previous environmental surveillance reports, and an assessment of the observed impacts of the plant operation on the environment. The reports shall also include the results of the Land Use Census required by Control 3.12.2. The Annual Radiological Environmental Operating Reports shall include summarized and tabulated results of radiological environmental samples and environmental radiation measurements in the format of the table in the Radiological Assessment Branch Technical Position, Revision 1, November 1979 for samples taken during the period at the locations specified in the Table B5-1 and Figures B4-1 and B4-2 in this manual. In the event that some individual results are not available for inclusion with the report, the report shall be submitted noting and explaining the reasons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report. The reports shall also include the following: a summary description of the Radiological Environmental Monitoring Program; at least two legible maps \*\* covering all sampling locations keyed to a table giving distances and directions from the centerline of one reactor; the results of licensee participation in the Interlaboratory Comparison Program and the corrective action taken if the specified program is not being performed as required by Control 3.12.3; reason for not conducting the Radiological Environmental Monitoring Program as required by Control 3.12.1, and discussion of all deviations from the sampling schedule; discussion of environmental sample measurements that exceed the reporting levels but are not the result of plant effluents, pursuant to ACTION b. of Control 3.12.1; and discussion of all analyses in which the LLD required was not achievable. ODCM Rev. 10 A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station. One map shall cover stations near the SITE BOUNDARY; a second shall include the more distant stations. #### 6.9.1.4 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT\* 6.9.1.4 Routine Annual Radioactive Effluent Release Reports covering the operation of the unit during the previous 12 months of operation shall be submitted within 60 days after January 1 of each year. The period of the first report shall begin with the date of initial criticality. The Annual Radioactive Effluent Release Reports shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit as outlined in Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," Revision 1, June 1974, with data summarized on a quarterly basis following the format of Appendix B thereof. For solid wastes, the format for Table 3 in Appendix B shall be supplemented with three additional categories: class of solid wastes (as defined by 10 CFR Part 61), type of container (e.g., LSA, Type A, Type B, Large Quantity) and SOLIDIFICATION agent or absorbent (e.g., cement, urea formaldehyde). The Annual Radioactive Effluent Release Report to be submitted within 60 days after January 1 of each year shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability, and precipitation (if measured), or in the form of joint frequency distributions of wind speed, wind direction, and atmospheric stability.\*\* This same report shall include an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year. This same report shall also include an assessment of the radiation doses from radioactive liquid and gaseous effluents to MEMBERS OF THE PUBLIC due to their activities inside the SITE BOUNDARY (Figures 5.1-3 and 5.1-4) during the report period. All assumptions used in making these assessments, i.e., specific activity, exposure time, and location, shall be included in these reports. The meteorological conditions concurrent with the time of release of radioactive materials in gaseous effluents, as determined by sampling frequency and measurement, shall be used for determining the gaseous pathway doses. The assessment of radiation doses shall be performed in accordance with the methodology and parameters in this manual. 01/01/2000 <sup>\*</sup> A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station; however, for units with separate radwaste systems, the submittal shall specify the releases of radioactive material from each unit. In lieu of submission with the Annual Radioactive Effluent Release Report, the licensee has the option of retaining this summary of required meteorological data on site in a file that shall be provided to the NRC upon request. #### 6.9.1.4 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT (Continued) The Annual Radioactive Effluent Release Report to be submitted within 60 days after January 1 of each year shall also include an assessment of radiation doses to the likely most exposed MEMBER OF THE PUBLIC from reactor releases and other nearby uranium fuel cycle sources, including doses from primary effluent pathways and direct radiation, for the previous calendar year to show conformance with 40 CFR Part 190, "Environmental Radiation Protection Standards for Nuclear Power Operation." Acceptable methods for calculating the dose contribution from liquid and gaseous effluents are given in Regulatory Guide 1.109, Rev. 1, October 1977. The Annual Radioactive Effluent Release Reports shall include a list and description of unplanned releases from the site to UNRESTRICTED AREAS of radioactive materials in gaseous and liquid effluents made during the reporting period. The Annual Radioactive Effluent Release Reports shall include any changes made during the reporting period to the PROCESS CONTROL PROGRAM and to the ODCM, pursuant to Technical Specifications 6.13 and 6.14 [ITS 5.5.1], respectively, as well as any major change to Liquid and Gaseous Radwaste Treatment Systems pursuant to Control 6.15. It shall also include a listing of new locations for dose calculations and/or environmental monitoring identified by the Land Use Census pursuant to Control 3.12.2. The Annual Radioactive Effluent Release Reports shall also include the following: an explanation as to why the inoperability of liquid or gaseous effluent monitoring instrumentation was not corrected within the time specified in Control 3.3.3.10 or 3.3.3.11, respectively; and description of the events leading to liquid holdup tanks or gas storage tanks exceeding the limits of Technical Specification 3.11.2.6 [ITS 5.5.12b], respectively. 01/01/2000 ## $\underline{6.15}$ MAJOR CHANGES TO LIQUID AND GASEOUS RADWASTE TREATMENT $\underline{\text{SYSTEMS}}^*$ - 6.15.1 Licensee-initiated major changes to the Radwaste Treatment Systems (liquid and gaseous): - a. Shall be reported to the Commission in the Annual Radioactive Effluent Release Report for the period in which the evaluation was reviewed by the PORC. The discussion of each change shall contain: - 1. A summary of the evaluation that led to the determination that the change could be made in accordance with 10 CFR Part 50.59; - 2. Sufficient detailed information to totally support the reason for the change without benefit of additional or supplemental information; - 3. A detailed description of the equipment, components, and processes involved and the interfaces with other plant systems; - 4. An evaluation of the change, which shows the predicted releases of radioactive materials in liquid and gaseous effluents that differ from those previously predicted in the License application and amendments thereto; - 5. An evaluation of the change, which shows the expected maximum exposures to a MEMBER OF THE PUBLIC in the UNRESTRICTED AREA and to the general population that differ from those previously estimated in the License application and amendments thereto; - 6. A comparison of the predicted releases of radioactive materials, in liquid and gaseous effluents, to the actual releases for the period prior to when the change is to be made; - 7. An estimate of the exposure to plant operating personnel as a result of the change; and - 8. Documentation of the fact that the change was reviewed and found acceptable by the PORC. - b. Shall become effective upon review and acceptance by the PORC. <sup>\*</sup> Licensees may choose to submit the information called for in this Control as part of an FSAR update. #### STP ODCM #### PART B RADIOLOGICAL CALCULATIONAL METHODS AND PARAMETERS ### Notation Conventions Common throughout Part B to the ODCM | Symbols | Notation Description | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--| | V-money-political desirable and a second sec | | | | | AF | Allocation Factor | | | | DF | Dilution Factor | | | | Dfi | Dose factor for nuclide "i" | | | | Dr | Dose rate | | | | D/Q | Ground deposition factor for airborne particles | | | | EC | Effluent Concentration from 10CFR20, Appendix B, Table 2, column 2 | | | | FHB | Fuel-Handling Building | | | | GWPS | Gaseous Waste Processing System | | | | LC | Limiting Concentration for a liquid or gaseous effluent stream | | | | MAB | Mechanical Auxiliary Building | | | | MCR | Main Cooling Reservoir | | | | ODCM | Offsite Dose Calculation Manual | | | | Qi | Release rate for nuclide "i" | | | | RCB | Reactor Containment Building | | | | $S_{\mathrm{f}}$ | Shielding factor | | | | SF | Safety Factor | | | | SGBS | Steam Generator Blowdown System | | | | STP | South Texas Project | | | | TGB | Turbine-Generator Building | | | | UFSAR | Updated Final Safety Analysis Report | | | | X(a,i,j) | Matrix values with dimensions of age "a", nuclide "i", and organ "j" | | | | X/Q | Atmospheric dispersion factor for noble gas, tritium, and <sup>14</sup> C | | | | X/Q <sub>depl</sub> | Atmospheric dispersion factors with depletion for particles and iodine | | | | $\sum_{\mathbf{i}}$ | Summation over all applicable nuclides | | | | $\Sigma_{ m path}$ | Summation over all applicable environmental pathways to man | | | | | | | | #### 1.0 Introduction #### 1.1 Purpose Part B of the Off-site Dose Calculation Manual (ODCM) provides the methods and parameters used to calculate off-site doses due to routine radioactive liquid and gaseous effluent releases. This ODCM is a supporting document to the Technical Specifications for the South Texas Project (STP) and meets the following identified needs: - a. Section 3.1 of this ODCM describes the methods approved for setting alarm points on liquid monitors to ensure that the concentrations of radioactive liquid effluents released to the UNRESTRICTED AREA are limited to ten times the effluent concentration limits of 10CFR20, Appendix B, Table 2; - b. Section 3.2 describes the methods approved for setting alarm points on gaseous monitors to ensure that the dose rate from radioactive noble gas effluents released to the UNRESTRICTED AREA do not exceed the values specified in Part A, Control 3/4.11.2.1 of this ODCM; - c. Sections 4.1 to 4.4 describe the methods approved for calculating doses and dose rates to the maximum exposed MEMBER OF THE PUBLIC in the UNRESTRICTED AREA for comparison with the Control limits of Part A of the ODCM; - d. Sections 4.5 and 4.6 describe the conditions under which the liquid and gaseous waste processing systems are to be operated. - e. Section 4.7 describes the methods approved for calculating the total dose from the uranium fuel cycle to the maximum exposed MEMBER OF THE PUBLIC for comparison with the limits of 40CFR190; - f. Section 4.8 describes the method approved for calculating doses to MEMBERS OF THE PUBLIC who may visit STP or travel within the site boundary for comparison with the limits of 10CFR20.1301; - g. Section 4.9 outlines how population doses are to be calculated for the Regulatory Guide 1.121 report. - h. Section 5.0 describes the Radiological Environmental Monitoring Program (REMP) including the minimum sampling program and sample locations. The models used in this ODCM are consistent with "Calculation of Annual Doses to Man From Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance With 10CFR50, Appendix I" (Regulatory Guide 1.109). Changes to the methods contained in this document are reviewed and approved by the Plant Operations Review Committee (PORC) as required by Technical Specification 6.14 [ITS 5.5.1] and revisions are forwarded to the NRC with the Annual Radioactive Effluent Release Report. However, the general methods presented should accommodate operational flexibility. #### 1.2 General Site Description The South Texas Project (STP) consists of two pressurized water reactor units situated on a 19-square mile site. The units are similar in design and operate independently with a minimum of shared systems. Each unit has its own liquid radioactive waste treatment system and its own ventilation system. Each unit consists of a reactor containment building, an attached fuel-handling and storage building, an attached mechanical electrical auxiliary building, and a detached turbine generator building. The most notable common system is the cooling reservoir into which liquid radioactive effluents are discharged from both units. Also, the systems which monitor radioactive releases for each unit report their results to a common computer for the purposes of report generation and off-site dose calculation. The site is relatively remote with the nearest resident over two miles from either unit and with the nearest community about four miles distant. The closest site boundary is nearly a mile from either unit. The terrain is coastal plain with farm land and range predominating. The land rises slowly from sea level 10 miles south of the plant to an elevation of 45 feet 10 miles to the north. The only topographical relief consists of plant associated structures and shallow gullies. The methods discussed in this document for calculating off-site doses due to atmospheric releases were evaluated against this relatively simple terrain. Dose calculations for liquid effluent releases include considerations for dilution and radioactive decay in the large cooling reservoir into which releases from both units are made. These dose estimates are based on off-site discharges from the reservoir to the Colorado River and the Little Robbins Slough area as a consequence of initial radioactive effluent releases into the reservoir. #### 2.0 Summary of Release Points and Detector System #### 2.1 Gaseous Release Points (UFSAR Section 11.3) The sources of routine releases for each unit at STP are: - 1) Turbine-Generator Building (TGB); - 2) Reactor Containment Building (RCB); - 3) Mechanical Auxiliary Building (MAB); - 4) Fuel-Handling Building (FHB); - 5) Gaseous Waste Processing System (GWPS); The gaseous effluents from the RCB, MAB, and FHB ventilation systems, the GWPS, and the TGB process vents (for deaerator and condenser vacuum pump vents) are routed to a common exhaust pipe located on the roof of each unit's Mechanical and Electrical Auxiliary Buildings. The effluent is monitored for noble gas, sampled for particulates and iodines by the detectors of RT-8010B at each unit, and then exhausted 22 meters above local grade (local grade is 7 meters above mean sea level) at an average flow rate of 5660 cubic meters per minute. Figure B2-1 summarizes the system installed at each unit. Occasionally other atmospheric release points may be important, such as the main steam line atmospheric dumps, off-normal releases, auxiliary feed pump turbine exhaust, gland steam condenser vents, and other secondary system steam leaks. An estimate will be made of any such unmonitored effluent releases prior to off-site dose calculation. These release estimates will be based on the mass of secondary coolant lost and the nuclide concentrations in the secondary coolant. Releases to the atmosphere may be classified into two categories: continuous, and batch releases. Most releases from STP are continuous with minor variations which are intermittent in nature and usually of relatively short duration (minutes to hours). These releases are considered "continuous" in the sense that they occur frequently, may be overlapping, and do not usually involve a significant fraction of the total activity released in a calendar quarter during any given hour. An example of such a release is the venting of containment to equalize pressure. However, those plant evolutions leading to a one-hour release exceeding approximately ten times the average one-hour release are considered a batch. An example of a batch release is the operation of the purge fans for a few hours to remove noble gases from containment for personnel protection reasons. Meteorological data associated with these infrequent periods of high release shall be reported separately as provided by Regulatory Guide 1.21, Rev. 1, section C.1. #### 2.2 Liquid Discharge Points (UFSAR Section 11.2) The sources of liquid radioactive discharges are the Liquid Waste Processing System, the TGB drains, and the Condensate Polishing System regenerates. All liquid effluents are eventually discharged to the main cooling reservoir (MCR). Some are routed to the liquid radwaste processing system of each unit for treatment, and some contain such a low concentration of radioactive material that they require no treatment before discharge. Instrumentation is located as indicated in Figure B2-2 Radioactive liquids exceeding the discharge limits are routed to the Liquid Waste Processing System (LWPS) for treatment and batch discharge to the MCR. Prior to discharge, the liquid in the tank to be discharged is sampled, analyzed, and approved for discharge if the constraints of the ODCM are met. Batches are monitored during the discharge using a scintillation detector (RT-8038) mounted off-line from the discharge pipe. The liquid effluent enters the Open Loop Auxiliary Cooling Water System, then the Circulating Water System, and finally the MCR. Upon initiation of a high radiation or monitor failure alarm, the monitor automatically terminates the discharge to the Open Loop Auxiliary Cooling Water System by diverting the flow back to the waste tanks. Regenerative liquid waste from the Condensate Polishing system in each TGB can also be a source of radioactive waste. Condensate Polishing system detector (RT-8042) is located on the discharge of the system to the MCR via the neutralization basin. Upon detection of higher radiation or an instrument failure, a signal automatically secures the discharge to the neutralization basin. After sampling and analyzing the tank contents, flow may be diverted to the LWPS of the appropriate unit, processed through the neutralization basin, or discharged directly to the main cooling reservoir. Liquid effluents from TGB floor drains consisting of leakage from the condensate pump, the low pressure heater drip pump, the moisture separator drip pump seal leakoff, and other secondary system leaks are monitored continuously by the TGB drain detector (RT-8041). Upon detection of high radiation level or detector failure, the detector automatically stops the sump pumps and initiates alarms. Following sampling and analysis, the contaminated liquid effluent may be routed to the neutralization basin or radioactive waste processing system as appropriate prior to discharge into the main cooling reservoir. The Steam Generator Blowdown System (SGBS) is monitored for control of plant processes. Under normal conditions there are no discharges from the SGBS, but a process control instrument (RT-8043) is installed to help identify primary to secondary system leakage. In the event radioactivity above the high alarm set point is detected or the instrument fails, the detector initiates the automatic termination of the SGBS discharge to the neutralization basin. Provided sampling and analysis confirms that the activity is below discharge limits, the SGBS effluent may be discharged to the main cooling reservoir via the neutralization basin. Most liquid effluent discharges are by batch and are sampled and analyzed prior to discharge. However, discharges not monitored by RT-8038 are not sampled prior to discharge unless a process detector alarms. Trace levels of activity that may be discharged by such routes are estimated based on routine sampling of the secondary system water and the estimated mass of secondary coolant lost. These discharges are considered continuous for tracking purposes. Liquid radioactive releases from STP originate in the MCR and leave the site to the uncontrolled environments of the Colorado River, the West Branch of the Colorado, and the Little Robbins Slough drainage area. Under normal circumstances all radioactive liquid effluents are diluted into the 150,000 acre-foot (average fill height) reservoir prior to release from the site. From time-to-time controlled releases may be made to the Colorado River through blowdown facilities. However, some releases are uncontrollable such as flow from the hydraulic relief wells surrounding the reservoir or seepage from the spillway gates. Because of the large capacity of the reservoir, the radionuclide concentrations in these releases (controlled and uncontrolled) are expected to be a small fraction of the concentration limits listed in Table 2, Appendix B of the 10CFR20. The nuclide concentrations in waters released from the reservoir are estimated based on discharges to the MCR, deposition in the MCR, and radioactive decay. A monitoring program for the MCR and relief well discharges is used as the basis for confirming that radionuclide concentrations released to the off-site environment are not larger than predicted by the liquid effluent model described in Part B of the ODCM, Section 4.1. Release of contaminated secondary coolant directly to the storm drainage system at STP is possible. Should such a release occur, an estimate of the off-site dose consequences shall be made and the release shall be documented. #### 2.3 Detector System and Instrument Responses Three types of detectors are used in association with effluent monitors. All are sensitive to gamma rays; however, some are primarily sensitive to beta radiation. Those sensitive primarily to beta include the air particulate and noble gas detectors. Those sensitive primarily to gamma rays include the iodine in air detectors and the liquid discharge detectors. The noble gas (normal range) detectors consist of plastic scintillators which respond primarily to beta particles. The response of these detectors is a function of beta energy as can be seen from Figure B2-3. These detectors are calibrated in uCi/cc for gases with beta emission spectra similar to that of Xe-133. The air particulate detectors also consist of plastic scintillators which respond primarily to beta decay from particulates deposited on a filter paper. These detectors are calibrated in uCi/ml relative to Cs-137 betas with an overall response similar to that shown in Figure B2-4. The iodine air channel detectors are NaI(Tl) scintillators in conjunction with a single channe analyzer adjusted to monitor the 364 keV gamma of I-131. The iodine window of this detector is set ±5% about the 364 keV peak to minimize response to interfering radiation. The detectors are calibrated in uCi/cc of I-131 based on a Ba-133 calibration source. The liquid effluent detectors are NaI(Tl) scintillators which are sized (1.5 by 1 inch) to be sensitive to a broad range of gamma emitters. These detectors are calibrated in uCi/ml relative to Cs-137 but have general gamma detection ability similar to that shown in Figure B2-5. The lower level discriminators for these detectors are set at about 100 keV to eliminate detection of x-rays, low energy gammas as from Xe-133, and electronics noise in order to minimize the detector background count rates. The following systems are duplicated for Units 1 and 2 independently. Figure B2-1: Gaseous Effluents The following systems are duplicated for both units except for the components in the shaded area. Figure B2-2: Liquid Effluents Figure B2-3: Energy Response Curve for the RD-52 Off-line Beta Detector Operating at 760 mm Hg and 25° C (assuming one beta per disintegration. Curve shape from ODCM Rev. 3 but shifted by 1.18 to correspond to STP primary calibration measurements of 1989.) B2-7 01/01/2000 Figure B2-4: RD-56 Particulate Detector Energy Response to Betas (assuming one beta pedisintegration. Copied from G. A. Technologies report EL-3296.) AGR01003B Figure B2-5: Detector Energy Response to Gamma Radiation for the RD-53 Off-line Gamma Detector (Revised to reflect 1989 primary calibration.) #### 3.0 Alarm Set point Adjustments #### 3.1 Liquid Effluents #### 3.1.1 Control Requirements Control 3/4.11.1.1 of Part A of the ODCM requires that the concentration of radioactive material released at any time from the South Texas Project (STP) to unrestricted areas be limited to ten times the Effluent Concentration (ECs) in water. The ECs are as indicated in 10CFR20, Appendix B, Table 2, Column 2 for nuclides other than dissolved or entrained noble gases. Noble gas concentrations must be limited to 2.0E-04 uCi/ml. #### 3.1.2 Interpretation Liquid effluent discharges from STP are diluted by a 7000-acre reservoir. Plant discharges are all routed into the cooling reservoir where substantial dilution and radioactive decay may occur before ultimate release from the site. The reservoir lies totally within the confines of the site and the use of its water is restricted to plant operation. Recreational use of the reservoir is limited to occasional catch and release fishing tournaments for employees and their families. This recreational use is closely controlled to prevent ingestion of radioactive effluents. Liquid effluents diluted into the cooling reservoir may be released during: - a) scheduled blowdown operations to the Colorado River, - b) passive hydraulic relief well flow, - c) dilution into the shallow ground water aquifer, or - d) spillway releases. The blowdown releases will be planned; however, the other releases are not controlled by the operations staff. To assure that the provisions of Part A, Control 3/4.11.1.1 are satisfied, the concentrations of radionuclides in the reservoir shall be maintained at levels less than ten times the limits of 10CFR20, Appendix B, Table 2, Column 2. Hence, STP shall apply controls on the concentration of liquid effluents as they are discharged into the reservoir to assure that any releases to uncontrolled areas from the reservoir meet the requirements of Control 3/4.11.1.1. #### 3.1.3 Implementation Concentrations of radionuclides in the cooling reservoir will be controlled such that the sum of their ratios to the ECs, A, remains less than ten as indicated in Equation 3.1a below: $$A = \underline{C_1} + \underline{C_2} + \dots + \underline{C_i} < 10$$ Eq. 3.1a where $C_1, C_2,..., C_i$ are the measured nuclide concentrations of a representative sample of reservoir water (uCi/ml); EC<sub>1</sub>, EC<sub>2</sub>,..., EC<sub>i</sub> are the associated effluent concentrations of those nuclides which collectively contribute at least 90% to the total dose. As long as "A" from equation 3.1a above is less than ten, releases from the reservoir to the off-site environment will meet the requirements of Control 3/4.11.1. In order to assure that A never exceeds ten, the dilution afforded by the circulating coolant and auxiliary cooling water flows must be estimated. The dilution of liquid radioactive waste discharges into the circulating coolant from each unit is calculated as indicated below: $$A = [DF_r * A_r] + [DF_c * A_c]$$ Eq. 3.1b $DF_r = F_r$ Eq. 3.1c $F_c + F_r$ Eq. 3.1d $F_c = F_c$ Eq. 3.1d where: A = the sum of the effluent concentrations in the circulating coolant as it reenters the reservoir divided by their ECs; A < 10. $DF_r$ = dilution factor for a radioactive waste A<sub>r</sub> = number of ECs permitted in the radioactive waste flow from the waste monitor tank, unitless factor; DF<sub>c</sub> = dilution factor for circulating coolant A<sub>c</sub> = number of ECs in the circulating coolant before addition of the radioactive waste stream as measured periodically for the reservoir, unitless factor; F<sub>r</sub> = average flow rate of radioactive waste as determined by the rated pump capacity of the radioactive waste discharge, gal/min; F<sub>c</sub> = flow rate of circulating coolant and the open loop auxiliary cooling water, normally 4.5E5 gal/min (4.5E5 is 1/2 the normal circulating coolant flow of each unit since liquid radioactive waste is discharged into only one of two 138" lines). F<sub>c</sub> may be determined by multiplying the number of circulating coolant pumps operating by the rated pump capacity; Since liquid effluents are released as batches, the very large dilution factor afforded by the reservoir would not be fully used even if high concentrations of liquid radioactive waste were infrequently discharged from the plant. As an operational rule, liquid effluents should not be discharged to the reservoir if the value of **A**, as described by Eq. 3.1a and as calculated by Eq. 3.1b, exceeds "ten". From practical experience, limiting liquid effluent discharges such that $A \le 10$ maintains the measured reservoir concentrations within the limits of 10CFR20, Table 2, column 2. If the value of "A" in equation 3.1b is set to its limiting value of 10, the terms in Eq. 3.1b above can be rearranged as shown below: $$A_r = [F_c * (10 - A_c)] + 10$$ Eq. 3.1e An estimate of $A_r$ appropriate for limiting routine batch discharges to the reservoir can be made assuming that the radioactive waste stream flow is at its nominal value, the flow of dilution water is at its minimum, and that the reservoir is virtually unpolluted. In this case the values for each variable above become: $F_c = 113,000 \text{ gpm (one circulating coolant water pump)}$ $F_r = 250 \text{ gpm (nominal flow rate limit for radioactive waste discharge pump)};$ $A_c = 0$ (reflecting good radioactive discharge management) Hence, Eq. 3.1e can be solved for $A_r$ as: $$A_r = [113,000/250 * (10-0)] + 10 = 4530$$ This suggests that for normal operation with a "clean" reservoir, the administrative limit for discharges should limit discharge concentrations to no more than about 4530 times the effective EC of the radioactive waste stream. The radioactive waste stream itself is characterized by a mixture of radionuclides at concentrations $C_1$ , $C_2$ , ..., $C_j$ . The effective EC of this waste stream can be estimated from the radiochemical analysis of the waste monitor tank prior to a batch discharge using the following formula for effective EC: $$EC_{eff} = \frac{\sum C_{j}}{\sum (C_{j}/EC_{j})}$$ Eq. 3.1f where C<sub>i</sub> = concentrations of individual radionuclides, "j", in the mixture, uCi/ml $\sum C_j$ = sum of the concentrations in the waste monitor tank, uCi/ml EC<sub>j</sub> = effluent concentrations listed in 10CFR20, Appendix B, Table 2, column 2, for each radionuclide, "j", uCi/ml $EC_{eff}$ = effective EC for a mixture of radionuclides, uCi/ml The limiting concentration, LC, may be estimated by multiplying the value of $EC_{eff}$ from Eq. 3.1f by the factor $A_r$ from Eq. 3.1e. $$LC = A_r * EC_{eff}$$ Eq. 3.1g This limiting concentration could be used as the basis for setting the liquid effluent monitor, RT-8038, if the instrument could detect these nuclides. However, the model RD-53 detector used in the RT-8038 monitor is sensitive to only gamma emitting nuclides, and its sensitivity to individual gamma emitters is not the same. The alarm set point must be based on the response of the RD-53 detector in counts per minute, cpm, to a nuclide mix in a particular discharge corresponding to an LC. The count rate corresponding to the effective effluent concentration, CR, can be calculated in a manner similar to the methods of equation 3.1f. $$\begin{array}{ll} CR & = & \sum \underline{(C_j * Er_j)} & Eq. \ 3.1h \\ & & \sum \underline{(C_j/EC_j)} \\ \text{where} & \\ CR & = count \ rate, \ cpm, \ associated \ with \ one \ EC_{eff} \\ & Er_i & = RD-53 \ response \ to \ nuclide \ "j", \ (cpm)/(uCi/ml) \end{array}$$ The limiting count rate, LCR, may be estimated as was the limiting concentration in equation 3.1g. $$LCR = A_r * CR$$ Eq. 3.1i The following example uses the average mixture of radionuclides measured in the liquid effluent released during August 1988 to calculate the limiting concentration and corresponding limiting count rate for the RT-8038 monitor: | Nuclide | Concentration | EC | Concentration/ | Er | C * Er | |---------|---------------|----------|----------------|----------------|----------| | | C | (uCi/ml) | EC | (cpm)/(uCi/ml) | (cpm) | | | (uCi/ml) | | (C/EC) | | | | H-3 | 1.74E-02 | 1E-03 | 1.7E+01 | 0 | 0 | | Cr-51 | 4.22E-08 | 5E-04 | 8.4E-05 | 1.45E+07 | 6.12E-01 | | Mn-54 | 2.80E-08 | 3E-05 | 9.3E-04 | 1.40E+08 | 5.91E+00 | | Co-58 | 1.01E-06 | 2E-05 | 5.1E-02 | 1.83E+08 | 1.85E+02 | | Zr-95 | 3.41E-08 | 2E-05 | 1.7E-03 | 1.40E+08 | 4.77E+00 | | Nb-95 | 3.41E-08 | 3E-05 | 1.1E-03 | 1.40E+08 | 4.77E+00 | | Co-60 | 2.20E-08 | 3E-06 | 7.3E-03 | 2.65E+08 | 5.83E+00 | | Xe-133 | 3.96E-05 | 2E-04 | 2.0E-01 | 0 | 0 | | Xe-135 | 2.48E-07 | 2E-04 | <u>1.2E-03</u> | 1.31E+08 | 3.25E+01 | | | 1.74E-02 | | 1.7E+01 | | 2.39E+02 | $$\begin{split} EC_{eff} &= (\sum C_j) \, / \, (\sum (C_j/EC_j)) \\ &= (1.74\text{E}-02 \, u\text{Ci/ml}) / \, 1.7\text{E}+01 \\ &= 1.0\text{E}-03 \, u\text{Ci/ml} \end{split}$$ $$CR &= (\sum (C_j * \text{Er}_j)) \, / \, (\sum (C_j/EC_j)) \\ &= (2.39\text{E}+02 \, \text{cpm}) / \, 1.7\text{E}+01 \\ &= 1.4\text{E}+01 \, \text{cpm} \end{split}$$ The limiting discharge concentration in this example can be estimated using Eq. 3.1g as shown below: $$LC = 4530 * 1.0E-03 uCi/ml = 4.5 uCi/ml$$ Note that radionuclides were included in the calculation which could not be detected by the model RD-53 detector. Examples of such nuclides include H-3, C-14, Fe-55, Tc-99, and Sr-90. The alarm set point must be calculated based on the count rate RT-8038 would indicate if this limiting concentration were present. This count rate can be estimated using Eq. 3.1i as shown below: $$LCR = 4530 * 14 \text{ cpm} = 63,000 \text{ cpm}$$ Note that no provision was made for the detector background, uncertainty in instrument response, or any safety factor in this calculation. Plant implementing procedures shall provide instructions for inclusion of background in the set point estimation and shall have provisions for cleaning the detector if the background becomes large enough to interfere with measurements. The limiting count rate calculated in Eq. 3.1i above should include these final adjustments as shown below to yield the alarm set point: alarm set point $$= (LCR) * SF + bkg$$ Eq. 3.1j where SF = safety factor which includes the error margin calculated for this monitor. The effluent monitors are assumed to be accurate to 25%. An appropriate safety factor therefore should be set at 0.75 to reasonably assure an alarm and automatic discharge termination at or before exceeding the limiting concentration. The reader should note that the limiting concentration is calculated at the monitor, before the vast dilution provided by the reservoir. Hence, even if the LC were substantially exceeded for discharges into the reservoir, little chance exists to exceed an EC in unrestricted areas. bkg = detector background in cpm For the example chosen above and assuming bkg = 0, this calculation would look like: alarm set point= 63,000 cpm \* 0.75 + 0 cpm= 47,000 cpm The detector response function is not as precisely known as this example would suggest; hence, 20-30% differences between estimated alarm set points are not significant. It may be convenient for this alarm set point to be expressed in units of uCi/ml or uCi/sec based on the appropriate uCi/cpm conversion factor. The RT-8038 alarm may be set to a default value if the default does not exceed the value calculated in Eq. 3.1j above. The alarm set point and calibration factors for liquid effluent monitor RT-8038 are applied to batch discharges and are adjusted for each discharge if the nuclide mix is sufficiently different to change either the discharge limit or calibration factor from the previous setting by more than 25%. If the alarm set point is exceeded during a batch discharge, the discharge is automatically terminated until the batch discharge activity is confirmed. Discharges from two or more waste monitor tanks from a single unit simultaneously are prohibited. Hence, this ODCM does not provide instructions for simultaneous discharges from the radioactive waste monitoring system. RT-8038 is the only liquid effluent monitor for each unit. Gamma detection instrumentation is installed for other systems (RT-8041 and RT-8042) as shown in Figure B2-2. These process control instruments have alarm set points at 1.0E-06 uCi/ml or less (one EC for Cs-137) above background and act to identify rather than to quantify activity in systems during a discharge. If activity is identified, it is sampled and discharged (if treatment is not required to meet the limiting concentration of equation 3.1g) or is routed to the liquid waste processing system for treatment and discharge as a routine liquid effluent. #### 3.2 Gaseous Effluents #### 3.2.1 Control Requirements Control 3/4.11.2.1 of Part A of the ODCM requires that the dose rates at the site boundary and beyond from noble gases be no greater than 500 mrem/year total body and 3000 mrem/year to the skin. Furthermore, dose rates due to I-131, I-133, H-3, and all radionuclides in particulate form with half-lives greater than eight days shall be less than or equal to 1500 mrem/year to any organ. #### 3.2.2 Interpretation In order to help ensure that these limits are not exceeded, the alarm set points for the MAB/RCB common exhaust noble gas monitors are to be calculated such that the nearest offsite receptor would not be exposed to noble gas concentrations likely to produce a dose rate greater than Control 3/4.11.2.1 from the combined releases from Units 1 and 2. Iodines, tritium, and all other radionuclides contributing to organ doses are not considered for purposes of setting alarm points since they are sampled and not monitored. #### 3.2.3 Implementation The nearest site boundary is about a mile from either unit; hence, a factor to relate the release to the concentration at the site boundary is necessary. UFSAR Tables 2.3-25 and 2.3-27 contain 2-hour and annual average X/Q values at the site boundary in each of 16 sectors. Logarithmic interpolation provides an estimate of 5.3E-06(sec/m³) for the 500 hour X/Q in the NNW sector. This value of X/Q shall be used to provide estimates of dilution for the purpose of setting alarm points for routine releases. The most prevalent radioactive gas present in the effluent may be used to control emissions when the noble gas effluent is dominated by a single nuclide. If no single nuclide dominates, then release alarm set points should be based on the average mixture found. The dose rate to individuals at the site boundary may be estimated using the equations of section B4.4.2 (Eq. 4.4d for whole body dose rate and Eq. 4.4e for skin dose rate). Therefore, the limits of Control 3/4.11.2.1 may be expressed in terms of the following equations for each noble gas: whole body dose rate = $$Dr_{gamma}$$ \* 8760 < 0.5 rem/yr Eq. 3.2a skin dose rate = $Dr_{skin}$ \* 8760 < 3 rem/yr Eq. 3.2b where 8760 = units conversion factor (hr/yr) $$Dr_{gamma} = \text{whole body dose rate, rem/hr}$$ $$Dr_{skin} = \text{skin dose rate, rem/hr}$$ $$Dr_{gamma} = 0.114 * X/Q * \sum_{i} (Qi * Dfi_{gamma}) * S_{f} \qquad \text{(rem/hr)}$$ $$Dr_{skin} = 1.11 * S_{f} * Dr_{gamma(air)} + Dr_{beta(skin)} \qquad \text{(rem/h)}$$ and where $$Dr_{gamma(air)} = 0.114 * X/Q * \sum_{i} Qi * Dfi_{gamma(air)} \qquad \text{(rad/h)}$$ $$Dr_{beta(skin)} = 0.114 * X/Q * \sum_{i} Qi * Dfi_{beta(skin)} \qquad \text{(rem/h)}$$ $$Dfi_{gamma} = \text{gamma dose to tissue conversion factor by nuclide from Table B-1,}$$ 01/01/2000 B3-7 Rev. 10 Regulatory Guide 1.109 (mrem-m³/pCi-yr), Dfi<sub>gamma(air)</sub>= gamma dose to air conversion factor by nuclide from Table B-1, Regulatory Guide 1.109 (mrad-m³/pCi-yr), Dfi<sub>beta(skin)</sub> = beta dose to tissue conversion factor by nuclide from Table B-1, Regulatory Guide 1.109 (mrem-m³/pCi-yr), 1.11 = ratio of the mass stopping powers for electrons in air to tissue. 0.114 = conversion factor from (mrem-m³)/(pCi-yr) to (rem-m³)/(uCi-hr) Oi = isotope "i" release rate (uCi/sec) from monitors RT-8010B $X/O = 5.3E-06 (sec/m^3);$ S<sub>f</sub> = 1.0 (a shielding factor set to one since it is not applicable for instantaneous dose rate calculations); Hence, there exist release rates, $Q_j$ , for each noble gas which would correspond to the whole body (500 mrem/yr) and skin (3000 mrem/yr) limits of Eqs. 3.2a and 3.2b. Furthermore, if the release rate is divided by the unit vent flow rate, the limiting stack concentration may be estimated for each noble gas as indicated below and as listed in Table B3-3: (limiting stack concentrations) $_{wb} = LC_{wb} = Q_j / F$ $= \frac{0.5}{Dr_{gamma} * 8760 * F} (uCi/cc)$ Eq. 3.2c (limiting stack concentrations)<sub>skin</sub> = $LC_{skin} = Q_j / F$ $= \underbrace{3.0}_{Dr_{skin} * 8760 * F} (uCi/cc)$ Eq. 3.2d where F = unit vent flow rate (200,000 scfm = 9.4E+07 cc/sec) 0.5 = whole body dose rate limit, rem/yr 3.0 = skin dose rate limit, rem/yr As for the liquid monitor, a safety factor should be included to afford operators an opportunity to take corrective action should a release threaten to exceed the Control limit. However, an allocation factor is also necessary to assure that the off-site dose rate due to effluents from other potential release points do not combine to exceed the Control limit. Errors associated with the effluent monitoring must also be considered in estimating the set point. Lastly, the detector background should be included in the alarm set point calculation. The set point calculation should therefore resemble Eq. 3.2e as shown below: alarm set point = [(LC) \* SF \* AF] + bkg Eq. 3.2e where LC = either the whole body or skin limiting stack concentration, whichever is less, uCi/cc SF = safety factor which includes a margin for monitor error for this monitor (Bechtel calculation 9ZC6008 documents the RD-52 detector statistical accuracy to be about 40%. Hence, the safety factor is estimated as: 1 - 0.4 = 0.6). Measurements of grab samples taken during noble gas releases has demonstrated that the RD-52 detector is more accurate than the engineering calculation suggests. Thus the safety factor of 0.6 is conservative. AF = allocation factor (ex: 0.5 or half for each unit) bkg = detector background, uCi/cc #### **EXAMPLE CALCULATION** The routine release point alarm setting should be limited to the value listed for Xe-133 in Table B3-3. However, a calculation for a release with several noble gases could be made as shown below if a very precise estimate of the limit were necessary. #### Given: | Nuclide | Measured Concentration, C (uCi/cc) | Limiting<br>Concentration, LC<br>(uCi/cc) | | C/ | LC | |---------|------------------------------------|-------------------------------------------|----------|---------------|----------| | | | Whole<br>Body | Skin | Whole<br>Body | Skin | | Ar-41 | 1.0E-06 | 1.14E-04 | 4.63E-04 | 8.77E-03 | 2.16E-03 | | Kr-85 | 1.0E-06 | 6.24E-02 | 4.44E-03 | 1.6E-05 | 2.25E-04 | | Xe-133 | 4.0E-05 | 3.42E-03 | 8.64E-03 | 1.17E-02 | 4.63E-03 | | | | | | 2.05E-02 | 7.02E-03 | The fraction of the limiting concentration for both whole body and skin exposures is estimated as the sum of the ratios of the measured release concentrations divided by the corresponding limiting concentrations from Table B3-3. These values are listed in the table above under the column "C/LC." In this example, the sum for the whole body exposure is more limiting than for the skin (normal result). This sum represents the fraction of the limiting concentration for the current release. The limiting concentration for each nuclide in the mixture could be increased by the factor listed in the column "C/ $\Sigma$ (C/LC)" below: | C/∑ (C/LC) | Rei | (C/∑ (C/LC))*Re <sub>i</sub> | |-----------------|-----|------------------------------| | 4.88E-05 | 2.6 | 1.26E-04 | | 4.88E-05 | 2.4 | 1.17E-04 | | <u>1.95E-03</u> | 1.0 | <u>1.95E-03</u> | | 2.04E-03 | | $LC_{eff} = 2.19E-03$ | Since the monitor does not respond to all radionuclides the same, the product of value " $C/\Sigma(C/LC)$ " and " $Re_i$ " (the relative response from Table B3-2) yields the monitor response to each nuclide in the mixture at their respective maximum concentrations, column " $C/\Sigma(C/LC)$ \* $Re_i$ ". The sum of these concentrations, $LC_{eff}$ , is the effective limiting concentration indicated at the monitor when the whole body or skin dose rate at the site boundary equals 500 mrem/yr or 3000 mrem/yr, respectively. $$LC_{eff} = \sum_{i} ((C_i / (C_i / LC_i)) * Re_i)$$ Eq. 3.2f The alarm set point would be estimated in accordance with Equation 3.2e as shown below where LC<sub>eff</sub> is used in place of LC: alarm set point= $$[2.19\text{E}-03 \text{ uCi/cc} * 0.5 * 0.6] + 0 \text{ uCi/cc}$$ = $6.6\text{E}-05 \text{ uCi/cc}$ or $67,000 \text{ uCi/sec}$ (at a vent flow rate of $200,000 \text{ cfm}$ ) The alert set point may be chosen at any value, but typically might be set at about 80% of the alarm limit. Note that the limiting release concentration (2.04E-03 uCi/cc) is about 93% of the indicated limiting concentration (2.18E-03 uCi/cc) in this example because <sup>41</sup>Ar and <sup>85</sup>Kr do not have the same monitor response as <sup>133</sup>Xe to which the detector is calibrated. If the alarm set point calculated using this method is too conservative to permit a short term release, the set point may be recalculated using the anticipated X/Q during the release period using the best available forecast data and Equation 4.4d of Section B4.4. If no concurrent release from Unit 2 is projected, the allocation factor in Equation 3.2e could be increased to unity if the release were closely monitored. Equation 4.4d used to calculate the sector average X/Q would not provide conservative X/Q estimates and, hence, the release would require close monitoring to assure compliance with the Control limit. Some process control monitors exist within the plant which are used to limit the effluent from particular parts of the plant should they threaten to cause the unit vent monitor to exceed its alarm set point. Although these process monitor set points are not required to be set in accordance with the ODCM, these alarm set points could be related to the unit vent alarm set point based on their contribution to the unit vent exhaust rate. For example, the containment supplemental purge line could have its set point calculated as: ``` (alarm)<sub>purge</sub> = unit vent flow * (Unit Vent alarm setting) * AF' Eq. 3.2g supp. purge flow ``` ``` where unit vent flow rate = 200,000 scfm = 94 m<sup>3</sup>/sec supp. purge flow = 5,000 scfm = 2.4 m<sup>3</sup>/sec Unit Vent alarm setting = current unit vent alarm set point AF' = additional allocation factor (note: the sum of all allocation factors shall be 1.0) ``` For example: 0.2 for supplemental purge 0.2 for purge line 0.2 for fuel handling building0.2 for waste gas process system 0.2 for remainder of plant Although Control 3/4.11.2.1 requires periodic confirmation that the off-site dose rates calculated for particulates, tritium, and iodine do not exceed 1500 mrem/year to any organ, alarm/trip set points are not practicable to apply when considering instantaneous iodine and particulate dose rates. NUREG-0133 acknowledges that for practical reasons such alarm set points could not be set unambiguously. Although the above method is suitable for the common MAB/RCB exhaust system, two other monitored atmospheric exhausts are not addressed. The condenser vacuum pumps may exhaust to the roof of TGB or to the unit vent. This alarm set point is dictated by plant safety considerations and is more conservative than off-site dose criteria. The flow (dry gas) through this exhaust is only about 2 (cubic meters/minute) and hence would not contribute significantly to the off-site dose unless the concentration of noble gas was exceedingly high, higher in fact than levels STP would permit to be exhausted onto the top level of the turbine building. The set point for this detector is adjusted to assure the safety of plant personnel if exhaust is to the TGB roof. Any releases from this exhaust whether routed to the unit vent or not will be included in monthly off-site dose calculations and will be reported in conformance with Regulatory Guide 1.21. The other potential release is through the main atmospheric steam dumps which may release activity contained in the secondary coolant following turbine trips at greater than 50% power. These events are not frequent and the radiation monitoring system is not capable of accurately measuring this type of release. The Annual Effluent Release Report will contain estimates for such releases based on the measured nuclide concentrations in the secondary coolant and the estimated mass of coolant vented. For example: release of nuclide "i" = Flowrate \* Time \* Concentration<sub>i</sub> where Flowrate = estimated steam vent rate, lbs/sec Time = duration of release, sec Concentration<sub>i</sub> = concentration of nuclide "i", uCi/lbs. Plant operation with the RT-8010B alarm set using the methods of this section and with the 500 hour X/Q shall demonstrate that the off-site dose rate does not exceed the Control 3/4.11.2.1 limits. If an unusual operating situation arises such that the release rate approaches or exceeds the RT-8010B alarm set point, the actual dose rate shall be calculated using actual meteorological and release data with the methods of ODCM Part B, Section 4.3. The real time dose rate may be used to demonstrate compliance with Control 3.11.2.1. Table B3-1: Liquid Release Detector, RD-53, Response to 1 uCi/ml of Each Nuclide #### **Count Rate** | | uni Naic | |----------|----------------| | Nuclide | Response (Er) | | (uCi/ml) | (cpm)/(uCi/ml) | | Be-7 | 1.50E+07 | | Sc-46 | 2.74E+08 | | Cr-51 | 1.45E+07 | | Mn-54 | 1.40E+08 | | Co-57 | 9.78E+07 | | Co-58 | 1.83E+08 | | Fe-59 | 1.38E+08 | | Co-60 | 2.65E+08 | | Zn-65 | 7.26E+07 | | Kr-85 | 6.24E+07 | | Kr-85m | 1.07E+08 | | Rb-86 | 1.18E+07 | | Kr-87 | 8.86E+07 | | Kr-88 | 8.49E+07 | | Sr-91 | 1.90E+08 | | Zr-95 | 1.40E+08 | | Nb-95 | 1.40E+08 | | Zr-97 | 1.64E+08 | | Nb-97 | 1.42E+08 | | Mo-99 | 2.74E+08 | | Tc-99m | 9.82E+07 | | Ag-110m | | | Sn-113 | 9.86E+07 | | Sb-122 | 1.09E+08 | | Sb-124 | 2.49E+08 | | Sb-125 | 1.21E+08 | | Te-129m | | | I-130 | 4.72E+08 | | Xe-131m | | | I-131 | 1.43E+08 | | Te-131m | | | Te-132 | 1.19E+08 | | Xe-133 | 0 | | Xe-133m | | | I-133 | 1.45E+08 | | Cs-134 | 3.17E+08 | | Xe-135 | 1.31E+08 | | Xe-135m | | | I-135 | 1.79E+08 | | Cs-136 | 3.90E+08 | | Cs-137 | 1.21E+08 | | Xe-138 | 1.24E+08 | | Ba-140 | 4.65E+07 | | La-140 | 2.74E+08 | | Ce-144 | 1.13E+07 | | Hf-181 | 2.00E+08 | | W-187 | 1.11E+08 | | | | # Table B3-1: Liquid Release Detector, RD-53, Response to 1 uCi/ml of Each Nuclide (Continued) The response of the RD-53 detectors to different radionuclides can be estimated using the gamma emissions from each radionuclide and the monitor's most recent calibration data (detection efficiencies used in this example are from Figure B2-5). The estimated response values listed above were estimated as shown below: Er = $$\underline{\text{detected cpm}}$$ = $\underline{\text{Eff}_1 * n_1 + \text{Eff}_2 * n_2 + ... + \text{Eff}_i * n_i}$ uCi/ml of nuclide where Eff<sub>i</sub> = gamma detection efficiency for each gamma of energy class "i" from Figure B2-5 (cpm)/(uCi/ml)), $n_i$ = frequency of gamma energy class "i" emission per decay. Pure beta emitters and alpha emitters produce zero response on this instrument. Gamma emitters with energies less than 100 keV should produce little or no response on this monitor. #### Example Calculations for Entrained Noble Gases | Nuclide | Detection | | Gamma<br>Fraction | Er<br>(cpm)/(uCi/ml) | |---------|--------------------------|------------------------------|-------------------|----------------------| | | Gamma<br>Energy<br>(keV) | Efficiency<br>(cpm)/(uCi/ml) | | | | Kr-85m | 151 | 1.15 x 10 <sup>8</sup> | 0.755 | 8.68E+07 | | | 304 | 1.46 x 10 <sup>8</sup> | 0.140 | <u>2.04E+07</u> | | | | | | Total =1.07E+06 | | Xe-131m | 164 | 1.20 x 10 <sup>8</sup> | 0.0196 | 2.35E+06 | | Xe-133 | 81 | 0 | 0.371 | 0 | | Xe-133m | 233 | 1.37 x 10 <sup>8</sup> | 0.103 | 1.41E+07 | | Xe-135 | 250 | 1.40 x 10 <sup>8</sup> | 0.903 | 1.264E+08 | | | 608 | 1.44 x 10 <sup>8</sup> | 0.0291 | <u>4.2E+06</u> | | | | Total =1.31E+08 | | | | Xe-135m | 527 | 1.45 x 10 <sup>8</sup> | 0.800 | 1.16E+08 | Rev. 10 B3-14 Table B3-2: Noble Gas Detector, RD-52, Response to 1 uCi/cc of Each Nuclide | Nuclide | Count Rate<br>Response (E)<br>cpm<br>uCi/cc | Indicated Response (Re <sub>i</sub> ) <u>uCi/cc (Xe-133</u> <u>Equivalent)</u> uCi/cc | |---------|---------------------------------------------|---------------------------------------------------------------------------------------| | Ar-41 | 9.4E+07 | 2.6 | | Kr-85m | 6.9E+07 | 1.9 | | Kr-85 | 8.55E+07 | 2.4 | | Kr-87 | 9.9E+07 | 2.8 | | Kr-88 | 8.3E+07 | 2.3 | | Kr-89 | 1.0E+08 | 2.8 | | Kr-90 | 1.0E+08 | 2.8 | | Xe-131m | 5.5E+05 | 0.015 | | Xe-133m | 4.8E+05 | 0.14 | | Xe-133 | 3.55E+07 | 1.0 | | Xe-135m | 1.5E+07 | 0.042 | | Xe-135 | 8.9E+07 | 2.5 | | Xe-137 | 1.0E+08 | 2.8 | | Xe-138 | 1.0E+08 | 2.8 | The RD-52 beta radiation detectors are used in the RT-8010B gaseous radioactive effluent discharge monitor. The response of the detector to different radionuclides can be estimated using the beta emissions from each radionuclide and the monitor's most recent calibration (beta detection efficiencies used in this example are from Figure B2-3). The response values in the column labeled "Count Rate Response (E)" were calculated as shown below: E = detector cpm/(uCi/cc) = $$Eff_1 * n_1 + Eff_2 + n_2 + ... + Eff_i * n_i$$ where Eff<sub>i</sub> = beta detection efficiency each beta of energy class "i" from Figure B2-3 (cpm per uCi/cc), $n_i$ = frequency of beta energy class "i" emission per decay. The efficiency of detection factor relative to Xe-133, Re<sub>i</sub>, may be calculated from the above efficiency as follows: $Re_i = E / \underline{cpm}$ of reference nuclide uCi/cc The reference nuclide is the radionuclide with which the detector was calibrated and the one for which 1 uCi/cc indicated by the monitor actually corresponds to 1 uCi/cc in the sample line. Most other radionuclides will only approximately reflect a 1 uCi/cc monitor response when 1 uCi/cc is in the sample line. Thus, the "Indicated Detector Response (Re<sub>i</sub>)" column shows how well the RT-8010B monitor estimates the concentrations of each radionuclide potentially in the gaseous effluent stream. ## Example Calculations for Noble Gas Releases | Nuclide | Beta Energy<br>max (keV) | Detection<br>Efficiency<br>(cpm)/(uCi/ml) | Beta Fraction | E<br>(cpm)/(uCi/cc) | | | |---------|--------------------------|-------------------------------------------|----------------------|-------------------------------------------------|--|--| | Ar-41 | 1200 | 9.4E+07 | 1.00 | 9.4E+07 | | | | Kr-85m | 820 | 8.8E+07 | 0.78 | 6.9E+07 | | | | Kr-85 | 670 | 8.55E+07 | 1.00 | 8.55E+07 | | | | Kr-87 | 3800<br>1300 | 1.0E+08<br>9.6E+07 | 0.73<br>0.27 | 7.3E+07<br><u>2.6E+07</u><br>9.9E+07 | | | | Kr-88 | 2800<br>900<br>520 | 1.0E+08<br>9.0E+07<br>7.6E+07 | 0.20<br>0.12<br>0.68 | 2.0E+07<br>1.1E+07<br><u>5.2E+07</u><br>8.3E+07 | | | | Kr-89 | 4000 | 1.0E+08 | 1.00 | 1.0E+08 | | | | Kr-90 | 2800 | 1.0E+08 | 1.00 | 1.0E+08 | | | | Xe-131m | 130<br>160 | 0.0E+00<br>1.3E+06 | 0.58<br>0.42 | 0.0E+08<br><u>5.5E+05</u><br>5.5E+05 | | | | Xe-133m | 200<br>230 | 4.2E+06<br>7.8E+06 | 0.62<br>0.28 | 2.6E+06<br><u>2.2E+06</u><br>4.8E+06 | | | | Xe-133 | 350 | 3.55E+07 | 1.00 | 3.55E+07 | | | | Xe-135m | 500 | 7.3E+07 | 0.20 | 1.5E+07 | | | | Xe-135 | 910<br>550 | 9.0E+07<br>7.8E+07 | 0.97<br>0.03 | 8.73E+07<br><u>2.3E+06</u><br>8.9E+06 | | | | Xe-137 | 4000<br>3600 | 1.0E+08<br>1.0E+08 | 0.67<br>0.33 | 6.7E+07<br><u>3.3E+07</u><br>1.0E+08 | | | | Xe-138 | 2400 | 1.0E+08 | 1.00 | 1.0E+08 | | | # Example Calculations for Noble Gas Releases | Nuclide | Detection<br>Efficiency<br>(cpm)/(uCi/cc) | Reference<br>Nuclide<br>(cpm)/uCi/cc) | Re <sub>i</sub><br>uCi/cc Xe-133/cpm<br>uCi/cc/cpm | |---------|-------------------------------------------|---------------------------------------|----------------------------------------------------| | Ar-41 | 9.4E+07 | 3.55E+07 | 2.6 | | Kr-85m | 6.9E+07 | 3.55E+07 | 1.9 | | Kr-85 | 8.55E+07 | 3.55E+07 | 2.4 | | Kr-87 | 9.9E+07 | 3.55E+07 | 2.8 | | Kr-88 | 8.3E+07 | 3.55E+07 | 2.3 | | Kr-89 | 1.0E+08 | 3.55E+07 | 2.8 | | Kr-90 | 1.0E+08 | 3.55E+07 | 2.8 | | Xe-131m | 5.5E+05 | 3.55E+07 | 0.015 | | Xe-133m | 4.8E+06 | 3.55E+07 | 0.14 | | Xe-133 | 3.55E+07 | 3.55E+07 | 1.0 | | Xe-135m | 1.5E+07 | 3.55E+07 | 0.42 | | Xe-135 | 8.9E+07 | 3.55E+07 | 2.5 | | Xe-137 | 1.0E+08 | 3.55E+07 | 2.8 | | Xe-138 | 1.0E+08 | 3.55E+07 | 2.8 | Table B3-3: Noble Gas Detector, RD-52, Response to Single Nuclide | Nuclide | Limiting Stack Whole Body (uCi/cc) | Concentration<br>Skin<br>(uCi/cc) | Limiting<br>Count Rate<br>(cpm) | Indicated<br>Response<br>(uCi/cc Xe-133) | |---------|------------------------------------|-----------------------------------|---------------------------------|------------------------------------------| | Ar-41 | 1.14E-04 | 4.63E-04 | 1.1E+04 | 3.0E-04 | | Kr-85m | 8.59E-04 | 2.13E-03 | 5.9E+04 | 1.7E-03 | | Kr-85 | 6.24E-02 | 4.44E-03 | 3.8E+05 | 1.1E-02 | | Kr-87 | 1.70E-04 | 3.64E-04 | 1.7E+04 | 4.7E-04 | | Kr-88 | 6.84E-05 | 3.13E-04 | 5.7E+03 | 1.6E-04 | | Kr-89 | 6.05E-05 | 2.06E-04 | 6.1E+03 | 1.7E-04 | | Kr-90 | 6.44E-05 | 2.38E-04 | 6.4E+03 | 1.8E-04 | | Xe-131m | 1.10E-02 | 9.29E-03 | 5.1E+03 | 1.4E-04 | | Xe-133m | 4.00E-03 | 4.44E-03 | 1.9E+04 | 5.6E-04 | | Xe-133 | 3.42E-03 | 8.64E-03 | 1.2E+05 | 3.4E-03 | | Xe-135m | 3.22E-04 | 1.36E-03 | 4.8E+03 | 1.4E-04 | | Xe-135 | 5.55E-04 | 1.51E-03 | 4.9E+04 | 1.4E-03 | | Xe-137 | 7.08E-04 | 4.35E-04 | 4.4E+04 | 1.2E-03 | | Xe-138 | 1.14E-04 | 4.20E-04 | 1.1E+04 | 3.2E-04 | NOTE: The limiting stack concentrations for whole body and skin listed above were calculated using Equations 3.2c and 3.2d. The limiting count rate and indicated response are calculated using the more restrictive limiting stack concentration as shown below: Limiting Count Rate= Stack Concentration \* E Indicated Response = Stack Concentration \* Re<sub>i</sub> B3-19 #### 4.0 Off-site Dose Calculations ## 4.1 Liquid Releases ## 4.1.1 Control Requirements Control 3.11.1.2 of Part A of the ODCM requires that cumulative dose contribution estimates be calculated once every 31 days. The cumulative dose contributions should consider the dose or dose commitment to a MEMBER OF THE PUBLIC at or beyond the site boundary from radionuclides in liquid effluent releases. Such releases are limited to ensure that projected doses from each unit are: - a. less than or equal to 1.5 mrems to the total body and less than or equal to 5 mrems to any organ during any calendar quarter, and; - b. less than or equal to 3 mrems to the total body and less than or equal to 10 mrems to any organ during any calendar year. If the above dose guides are not met, a report must be filed with the NRC Region IV office as required by 10CFR50, Appendix I. ## 4.1.2 <u>Implementation of Control 3.11.1.2</u> In order to satisfy the requirements of Control 3.11.1.2, the individuals who suffer the maximum total body and organ doses due to liquid effluent releases are identified. The appropriate total body and organ doses, Dose(a,j), are calculated once a month for fish ingestion and shoreline exposure for each potentially exposed individual (Little Robbins area, Colorado River, and Matagorda Bay/Gulf). These doses are summed for both pathways at each location and compared with the limits of Control 3.11.1.2. Dose(a,j) = $$\sum_{i} \sum_{j=1}^{n} Q(i) * R(a,i,j)_{pathway}$$ (mrem) Eq. 4.1a where Q(i) and R(a,i,j) are described in Table B4-2 and where the values for R(a,i,j) are taken from Table B4-7a. The applicable pathways for doses due to liquid effluents are listed in Table B4-4. #### 4.2 Liquid Exposure Dose Model ### 4.2.1 Pathways for Radionuclide Ingestion by Man Radionuclides which have been released from either unit, mix with the water of the reservoir. These nuclides are expected to be further diluted into the Colorado River with blowdown operations or releases via the spillway overflow (following unusually heavy rains). Water containing trace amounts of radionuclides may diffuse through the bottom of the reservoir and become mixed with shallow ground water. Hydraulic relief wells about the reservoir perimeter may include in their discharge some of this diluted radionuclide-bearing water. These discharges enter the Colorado River, the West Branch Colorado River, and Little Robbins Slough (composed of both branches of Little Robbins Slough; sometimes called West Little Robbins Slough and East Fork Little Robbins Slough). These streams discharge into Matagorda Bay. 4.2.1.1 <u>Colorado River Environment</u> The Colorado River is used primarily for sport fishing and occasionally for barge traffic. No municipal water supplies lie downstream from the plant discharge structure and none are likely to be developed because of the high salt content of the river in this area. A few water use permits allow irrigation of crop land with water taken downstream from the plant, but these permits are seldom (if ever) exercised. STP possesses Environmental Protection Agency and Texas Department of Water Resources permits which allow the plant to discharge cooling reservoir water only if the river flow exceeds 800 cfs. The average flow rate of the Colorado is about 600 cfs which means blowdown can only occur in rainy periods when river flow is higher than 800 cfs (about 40% of the time). Because such planned discharges and any unplanned spillway releases are likely to occur only during rainy periods, no irrigation is likely with water bearing plant-released radionuclides even if the other water use permits were active. Therefore, no individual or population dose estimates are made on the basis of irrigation with surface water containing radionuclides originating from STP reservoir releases. The only credible pathway available for internal exposure is the consumption of sea trout, red drum, flounder, catfish, crabs, and shrimp taken from the river by sports fishermen. Since two small communities are built on the river, one near the discharge facility (Selkirk Island) and the other about seven miles downstream (Matagorda), external exposure is also possible due to shoreline deposits. A number of recreational cabins and trailers also line the east shore of the river south of Matagorda to the Gulf of Mexico (see Figures B4-1 and B4-2). - 4.2.1.2 <u>Little Robbins Slough Environment</u> Little Robbins Slough drains through a marsh accessible to local land owners only. Freshwater fish are taken from ponds in this area for sport. However, the annual take is normally small and limited to a few families. Also, some cattle graze in areas where water from Little Robbins Slough might be ingested; however, water for cattle in the area is typically supplied by wells rather than surface water. Hence, no meat ingestion pathways are considered for liquid effluents. - 4.2.1.3 <u>Matagorda Bay and the Gulf of Mexico</u> The Colorado River, West Branch Colorado, Little Robbins Slough, and the East Fork Little Robbins Slough all discharge into Matagorda Bay which connects to the Gulf of Mexico as shown in Figure B4-1. Because these bodies of water are connected by natural and man-made channels and the resulting circulation patterns are unknown, no mixing models are available to predict concentrations. However, the average flows of these discharges into Matagorda Bay are small compared with the volume of Matagorda Bay moved to the Gulf of Mexico by tide action. The Matagorda Bay concentration determines the doses due to saltwater pathways and may be assumed to be determined by the ratio of the activity reaching the bay each day and the volume of water moved by tide action (193,820 acre-ft/day). Internal dose from nuclides reaching Matagorda Bay or the Gulf of Mexico is due to the consumption of sea trout, red drum, and flounder by sports fishermen, and crabs, shrimp, and oysters taken both commercially and by sportsmen. Since the town of Palacios is built on the shores of Matagorda Bay, external exposure due to shoreline deposits is possible. ## 4.2.2 Model for Reservoir Related Radionuclide Decay and Release Off-site A generally conservative calculation of the off-site dose is accomplished using off-site liquid effluent releases estimated according to the method described in this section. Table B4-1 lists fractions as calculated by this method for each radionuclide anticipated to be discharged from the plant to the reservoir. These fractions represent the portion of a particular liquid effluent discharge from the plant which will eventually leave the site. These fractions are different for each release route from the reservoir and consist of the product of the variable "Floss" and one or more of the variables "fc, fwc, flrs, and felrs" as described below. # 4.2.2.1 <u>Model of the Annual Average Liquid Off-site Release Estimates Based on Plant Discharges to the Reservoir</u> Radioactive materials released from STP into the main cooling reservoir do not expose members of the public because the reservoir use is restricted. The water is not used for irrigation or drinking and fishing is controlled to prevent ingestion by members of the public. However, a fraction of radioactive material released into the reservoir may eventually leave the reservoir from blowdown activities, overflow, or seepage. The variable "Floss" developed in this section represents the fraction of the activity for a given nuclide which may eventually escape the reservoir through these three mechanisms. The mathematical derivation of the Floss variable follows. ## Assumptions: 1. Activity released to the reservoir is not available for release off-site for two weeks, during which time it becomes mixed with previous releases. The mass flow of the reservoir water is such that it should take about two weeks for water to work its way around to the spillway. After one complete circuit of the reservoir (about three weeks), a given release should have mixed into a much larger volume of water than was the original batch release. - 2. Batch releases of liquid effluents to the reservoir are made every day or two and are about the same magnitude. Consequently, they approximate a constant discharge rate (Ci/yr). This assumption along with the travel time of assumption #1 above helps assure that the radionuclides in the reservoir are fairly uniformly mixed. - 3. The releases due to seepage and blowdown are constant and continuous (any release over the spillway is small and considered to be part of the routine blowdown activity). This assumption is accurate for the seepage, but is only accurate for blowdown if large averaging times are considered. The model is based on annual averages which helps to smooth the discrete blowdown operations each year to approximate a continuous activity. - 4. The rate that radioactivity is lost from the reservoir is proportional to the amount of activity in the reservoir at any time. This assumption allows all losses from the reservoir to be treated mathematically the same way as radioactive decay. This assumption is accurate insofar as long averaging times allow discrete discharges to the reservoir and discrete releases from the reservoir off-site to approximate continuous processes. - 5. Evaporation from the reservoir offers a release method for tritium and noble gases, but does not affect any other radionuclides. Hence, the release rate constant for tritium will be different than for non-volatile radionuclides. - 6. The volume of the reservoir remains constant. A steady state assumption to simplify the model. - 7. Five (5) percent of the radioactive material (100% of tritium) discharged from the plant to the reservoir remains in solution and available for release from the reservoir to the off-site environment per <u>EPRI STPEGS MCR Bottom Sediment Characterization Study</u>, 1991, by Richard E. Lockwood (STP) and David R. Blankinship (Texas A&M University). #### Estimation of Remaining Batch Discharge as a Function of Time The remaining radioactivity, A(t), for a given radionuclide as a function of time after a single discharge of plant effluent mixes into the reservoir is related to the fully mixed discharge activity, A<sub>0</sub>, as described below: $$A(t) = A_o * e^{[-(Y+Yr)*t]}$$ Eq.4.2a where: Y = release rate constant for water from the reservoir, per day; Yr = the radioactive decay rate for the given nuclide, per day; (Y+Yr)= total loss rate (release rate and radioactive decay rate) from the reservoir, per day; t = time since mixing in reservoir is complete (14 days after discharge) in days; $A_o$ = activity available for release from the reservoir following a discharge of activity, $A_i$ , from the plant to the reservoir including a mixing delay of 14 days, Ci; A(t) = current activity following mixing of a radionuclide from a plant discharge to the reservoir, Ci. #### Release Rate From the Reservoir The rate of release for a given nuclide from the reservoir is a function of time since discharge from the plant to the reservoir as shown below: release rate = (activity in the reservoir) \* (release rate constant) since Y = release rate constant (per day) and A(t) = amount of activity in the reservoir at time "t" then release rate = A(t) \* Y and substituting for A(t) from Equation Eq. 4.2a release rate = $$Y * A_o * e^{[-(Y + Y_r) * t]}$$ Eq. 4.2b ## Integrated Release From the Reservoir The total release during any period of time can be estimated by integrating the release rate of Equation Eq. 4.2b above and evaluating it for that time period. ## Example Release Calculation Examples of how one would expect activity to leave STP following a discharge to the reservoir from the plant follow. Three radionuclides are illustrated: a long-lived nuclide such as Cs-137; a nuclide of moderate half-life such as Co-60; and a short-lived nuclide such as Fe-59. Value of integral from year "T<sub>i</sub>" to year "T<sub>f</sub>" using Equation 4.2c with three values of Yr. | $\underline{T_{i}}$ | T | Yr=6.3E-5 per day | Yr=3.4E-4 per day | Yr=2.3E-2 per day | |---------------------|---------|-------------------|-------------------|-------------------------| | | | | | | | 0 | 1 | $0.0024 \; A_o$ | $0.0023 \; A_o$ | 2.92E-04 A <sub>o</sub> | | 1 | 2 | $0.0023 \; A_o$ | $0.0020 \; A_o$ | $0.000 \; A_o$ | | 2. | 3 | $0.0023 \; A_{o}$ | $0.0018 \; A_{o}$ | 0.00 | | 3 | 4 | $0.0022 \; A_o$ | $0.0016~A_{o}$ | 0.00 | | ••• | ••• | ••• | ••• | ••• | | ••• | ••• | *** | *** | ••• | | ••• | ••• | ••• | ••• | ••• | | 19 | 20 | $0.0015 \; A_{o}$ | $0.0000 \; A_o$ | 0.00 | | ••• | ••• | ••• | ••• | ••• | | ••• | ••• | ••• | ••• | *** | | ••• | ••• | ••• | ••• | ••• | | | | $0.0000 A_{o}$ | $0.0000 A_{o}$ | 0.000 A <sub>o</sub> | | | Total = | $0.0950 A_{o}$ | $0.0190 \; A_o$ | 2.92E-04 A <sub>o</sub> | #### Discussion Note from the table above that the release (and hence the off-site dose) following a plant discharge to the reservoir is spread out in time, particularly for the longer-lived nuclides. If we assume that all of a given nuclide which is destined to leave STP does so in the first year, we would assign the dose associated with the release indicated in the last line of the table in the first year and omit the releases listed for subsequent years. This method is generally conservative since for nuclides with half-lives greater than a couple of years, the dose estimate corresponding to the integrated release is several times larger than the true dose corresponding to the actual release in the first year. The only instance where the method might not be conservative is if in a given year a long-lived nuclide accounted for a large fraction of the 3-mrem limit. If in the following year a short-lived nuclide accounted for the dose, the dose estimate in that second year might be only about 90% of the dose actually delivered that year. This is because the long-lived nuclide from the previous year would still be delivering off-site dose the second year even though the model assigned all that dose the first year. In turn, the short-lived nuclide would deliver virtually all its off-site dose in the year it was actually released to the reservoir. #### Conclusion Considering the uncertainties in estimating off-site flow rates, the possibility of making a 10% error in the off-site doses in consecutive years seems unimportant. Therefore, the ODCM will assign all dose related to the integrated release from the reservoir for a given discharge into the reservoir in the year of the discharge to the reservoir. This integrated release is simply total release = $$A_o * Y (e^{[-(Y+Yr)*Ti]} - e^{[-(Y+Yr)*Tf]})$$ evaluated with $T_f = \text{infinity (years)}$ and $T_i = 0 \text{ (years)}.$ total release = $A_o * Y Y + Yr$ This total release from the reservoir assumes that "Ti" above is measured from the time a radionuclide becomes available for release from the reservoir. Since 14 days must elapse before liquid effluents mix throughout the reservoir, a radioactive decay term, EXP[-Yr\*14], should be applied to be strictly correct mathematically. An additional correction factor may be added to account for permanent radionuclide deposition in the reservoir bottom sediments. Five (5) percent of the radioactive material (100% of tritium) released to the reservoir remains in solution. Hence the fraction, Floss, from a given initial plant discharge into the reservoir, A<sub>i</sub>, which eventually leaves the reservoir to the uncontrolled off-site environment is Floss = $$\underline{\text{total release from site}}$$ = $\underline{A_0 * Y / (Y+Yr)}$ Eq. 4.2e initial release to reservoir where $A_0 = A_i * EXP[-Yr*14] * 0.05$ following 14 days of decay and 95% sedimentation. The fractional loss, Floss, value can be calculated by substituting for the variable $A_0$ in Equation 4.2e. Floss = $$\frac{Y / (Y+Yr)* A_i * EXP[-Yr*14]}{A_i} = \frac{Y}{Y+Yr} * EXP[-Yr*14] * 0.05Eq. 4.2f$$ Equation 4.2f is used in section B4.2.2.2 to estimate the fraction of an initial plant discharge into the reservoir which eventually leaves the reservoir to the off-site environment. Eq. 4.2d # 4.2.2.2 <u>Liquid Off-site Effluent Release Estimates for Nonvolatile Radionuclides</u> (Evaporation of Tritium and Water Omitted) The fractions of nuclide "i" from a plant discharge to the reservoir which may eventually reach the off-site environment, $N_c(i)$ , $N_m(i)$ , $N_{lr}(i)$ , are calculated for the three bodies of water into which nuclides might concentrate as below: Colorado River: $N_c(i) = fc * Floss$ Matagorda Bay: $N_m(i) = (fc + fwc + flrs + felrs) * Floss$ Little Robbins Slough: $N_{lr}(i) = (flrs + felrs) * Floss$ where Floss = fraction of activity which eventually leaves STP following release to the reservoir from Equation 4.2f $= Y * EXP[-Yr_i*14] *0.05$ Y = loss rate due to blowdown and seepage from the nominal reservoir volume = (annual blowdown flow rate + seepage)/reservoir volume) = (3400 AF/y + 5700 AF/y) per 150,000 AF = 6.067E-2 per year = 1.662E-4 per day Yr<sub>i</sub> = loss rate due to radioactive decay = 0.693/(nuclide half-life in days) fc = fraction of water loss reaching the Colorado River (blowdown plus relief well flow) = (1027 AF/y + 3400 AF/y) per 9100 AF/y = 0.486 fwc = fraction of water loss reaching the W. Branch Colorado (relief well flow) = 174 AF/y per 9100 AF/y = 0.019 flrs = fraction of water loss reaching the Little Robbins Slough (relief well flow) = 2210 AF/y per 9100 AF/y = 0.243 felrs = fraction of water loss reaching the E. Fork of Little Robbins Slough (relief well flow) = 494 AF/y per 9100 AF/y = 0.054 #### Reservoir Volume and Flow Data 1. The reservoir volume is fixed at 150,000 AF (nominal volume). 2. The seepage rate is 5700 AF/y to the shallow aquifer (approximately 1800 AF/y remain in the shallow aquifer). - 3. The evaporation rate is 38,592 AF/y. - 4. The blowdown rate is 3400 AF/y to the Colorado River (anticipated maximum value). - 5. Relief well flow to the Colorado River is 1027 AF/y (best estimate). - 6. Relief well flow to the W. Branch Colorado River is 174 AF/y (best estimate). - 7. Relief well flow to the Little Robbins Slough is 2210 AF/y (best estimate). - 8. Relief well flow to E. Fork Little Robbins Slough is 494 AF/y (best estimate). For example, the fraction of Co-60 reaching the Colorado River, $N_c$ (Co-60), that appears in Table B4-1 is calculated as follows: ``` Floss = Y/(Y + Yr_i) * EXP[-Yr*14] *0.05 = 1.662E-4 / (1.662E-4 + 0.693/1.93E3) * EXP[-0.693/1.93E3*14] * 0.05 = 0.016 N_c(Co-60) = fc * Floss = 0.486 * 0.016 = 7.64E-3 ``` This values of N(i) are used in the equations of sections B4.2.3 to calculate dose to Members of the Public off-site. ### 4.2.2.3 Tritium Off-site Releases in Liquid Effluents (Evaporative Losses Included) The fractions of <sup>3</sup>H from a plant discharge to the reservoir which may eventually reach the off-site environment must be calculated differently than for the non-volatile nuclides described in section B4.2.2.2. The values of Floss, fc, fwc, flrs, and felrs all have different values because evaporative loses contribute to the reduction of <sup>3</sup>H in the reservoir before it can migrate off-site. $N_c(^3H)$ , $N_m(^3H)$ , $N_{lr}(^3H)$ = calculated as previously described in section B4.2.2.2 ``` Floss = 8.712E-04/(8.712E-04 + 1.54E-04) = 0.8498 ``` Y = 47,690 AF/y per 150,000 AF = 0.3180 per year = 8.712E-04 per day $Yr_{H3} = 0.693/(4506 \text{ days}) = 1.54E-04 \text{ per day}$ fc = $$(1027 \text{ AF/y} + 3400 \text{ AF/y}) \text{ per } 47,690 \text{ AF/y} = 9.283E-2$$ fwc = 174 AF/y per 47,690 AF/y = 3.649E-3 flrs = 2210 AF/y per 47,690 AF/y = 4.634E-2 felrs = 494 AF/y per 47,690 AF/y = 1.036E-2 ## 4.2.3 Off-site Doses from Liquid Effluents Liquid pathway doses are calculated using the total integrated nuclide releases from the reservoir to the off-site environment. These releases are diluted into the annual average flow of the receiving body of water. Resulting doses will generally overestimate the true off-site values since the activity would normally leave STP over several years and hence would be diluted by substantially more than one year's flow volume once off-site. For example, 50% of the activity contained in the reservoir water is released approximately every 11 years (evaporation excluded); hence, no more than 5.9% of a very long-lived nuclide would leave the site via liquid pathways in any one year. Nevertheless, the projected dose for each release is estimated based upon the assumption that all the activity destined to leave the reservoir does so in the current year. These doses are summed to calculate the month's contribution to the committed dose to the MEMBER OF THE PUBLIC at or beyond the site boundary receiving the greatest dose due to liquid releases. This individual's dose is determined by the consumption of fish and marine invertebrates plus shoreline exposure along the Colorado River, Matagorda Bay or the Little Robbins Slough as calculated below. 4.2.3.1 Fish Ingestion Pathway The pathway dose factors for an individual who ingests saltwater fish, crabs, and shrimp from the Colorado River, Matagorda Bay, or freshwater fish from the Little Robbins Slough area are calculated using Equation 4.2g where the parameter descriptions are in Table B4-2 and the parameter values are as listed in Table B4-3. The resulting pathway dose factors are tabulated in Table B4-7a by organ and age. The dose commitment age as described in Regulatory Guide 1.109 was used in the tabulation of dose factors in Table B4-7a. $$R(a,i,j)_{pathway} = 1000 * U * \sum_{i} N(i)*B(i) * D(a,i,j) * EXP [-Y(i)*T]$$ (mrem/Ci) Eq. 4.2g Equation 4.2g is equivalent to Regulatory Guide 1.109 Equation A-3 methods. It is restated as used in the computer program used to calculate the pathway dose factors at STP and includes a factor, N(i), to account for radioactive decay and sedimentation before leaving the reservoir. 4.2.3.2 Shoreline Deposition Pathway Individuals who live in the area could be exposed to accumulations of contaminated silt deposited along the Colorado River bank, along Little Robbins Slough, or on the shores of Matagorda Bay. The pathway dose factors from these potential shoreline deposits are calculated using Equation 4.2h with the parameters described in Table B4-2 and with values as listed in Table B4-3. The resulting pathway dose factors are compiled in Table B4-7a by organ and age. The dose commitment age as described in Regulatory Guide 1.109 was used in the tabulation of dose factors in Table B4-7a. $$R(a,i,j)_{shore \; exposure} = 110,000 * \underbrace{Ub*W}_{M*F} * \sum_{i} N(i) * T(i) * D(a,i,j) * EXP[-Y(i)*T]$$ $$* (1 - EXP[-Y(i)*Tb]) \; (mrem/Ci)$$ Eq. 4.2h Equation 4.2h is equivalent to Regulatory Guide 1.109 Equation A-7 methods. It is restated as used in the computer program used to calculate the pathway dose factors at STP and includes a factor, N(i), to account for radioactive decay and sedimentation before leaving the reservoir. #### 4.3 Gaseous Releases ## 4.3.1 Control Requirements Control 3.11.2.1 of Part A of the ODCM requires that the dose rate at or beyond the site boundary due to radioactive materials released in gaseous effluents from the site be limited to the following values: - a. The dose rate limit for noble gases must be less than 500 mrem/yr to the total body and less than 3000 mrem/yr to the skin, and - b. The dose rate limit for all radionuclides other than noble gases with half-lives greater than 8 days be less than 1500 mrem/yr to any organ. These requirements stem from the NRC desire for nuclear power plants to operate at a small fraction of the radiological protection limits of 10CFR20. Control 3.11.2.2 of Part A of the ODCM also requires that the air dose in areas at or beyond the site boundary due to noble gases released in gaseous effluents shall be limited to the following: - a. During any calendar quarter to less than or equal to 5 mrads for gamma radiation and 10 mrads for beta radiation, and - b. During any calendar year to less than or equal to 10 mrads for gamma radiation and 20 mrads for beta radiation. Control 3.11.2.3 further limits the dose to a MEMBER OF THE PUBLIC from I-131, I-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released to areas at or beyond the site boundary as follows: - a. During any calendar quarter to less than or equal to 7.5 mrems to any organ, and - b. During any calendar year to less than or equal to 15 mrems to any organ. These last two requirements stem from STP's commitment to operate STP within the guidelines described in 10CFR50, Appendix I, for maintaining doses to the public as low as reasonably achievable. ## 4.3.2 Implementation of Control 3.11.2.1 4.3.2.1 <u>Noble Gases</u> All gaseous effluent releases from STP are assumed to be ground level due to the proximity of each unit's vent to the roof. For the purpose of demonstrating that off-site dose rates have not exceeded the dose rate limits of this Control, the atmospheric dispersion factor, X/Q, may be assumed to be 5.3E-06 sec/cubic meter. This represents the 500 hour average X/Q at the site boundary and occurs in the NNW sector. When possible, actual hourly X/Q values coupled with hourly release data are used in place of composite release data and historical average X/Qs. The hourly average dose rates to the whole body and to the skin due to noble gas releases may be estimated using Equations 4.4d and 4.4e of this section provided the shielding factor, Sf, equals 1.0 for the purpose of determining compliance with Control 3.11.2.1. 4.3.2.2 <u>Iodine and Particulates</u> The maximum dose rate to an organ, j, in a given age group, a, due to particulate releases may be estimated as follows: Dose rate(a,j) = X/Q \* $$\sum$$ R(a,i,j)<sub>inhalation</sub> \* Q(i) + D/Q \* $\sum$ $\sum$ ( R(a,i,j)<sub>pathway</sub>) \* Q(i) (mrem/hr) i path i Eq. 4.3a where $$Q(i) = \text{release rate of nuclide "i" (Ci/hr),}$$ $$X/Q = 5.3E-06 \text{ (sec/m}^3\text{) (or actual estimate of X/Q for H3 and C14 or depleted X/Q for particulates and iodines at the time of release),}$$ $$D/Q = 8.4E-09 \text{ (1/m}^2\text{) (or actual estimate of D/Q at the exposure location),}$$ $$= \text{pathway dose factors from Table B4-7b (units as described in notes to Table B4-7).}$$ The highest organ dose so calculated may be used for demonstrating compliance with Control 3.11.2.1. However, only pathways confirmed by the land use census need be considered (e.g. cow-milk-infant pathway need not be considered in the absence of the cow). #### 4.3.3 Implementation of Control 3.11.2.2 NUREG-0133 allows STP to use the highest calculated annual average X/Q in calculating doses for comparison with the quarterly and annual dose limits. However, NUREG-0133 recommends the use of the highest 500-hour average X/Q for doses due to short-term releases. STP normally has available hourly average X/Q values for each sector plus time-dated release information. When possible, these hourly X/Q values coupled with hourly release data are used in place of composite release data and historical average X/Qs. The historical dispersion values which may be used for calculations in place of historical averages are: annual average releases = 1.1E-06 (seconds per cubic meter) 500 hour or shorter releases = 5.3E-06 (seconds per cubic meter) 4.3.3.1 <u>Noble Gases</u> The noble gas releases averaged over a calendar quarter or a calendar year result in a dose to air at the site boundary as calculated using Equations 4.4f for gamma radiation and Equation 4.4h for beta radiation. ## 4.3.4 Implementation of Control 3.11.2.3 - 4.3.4.1 <u>Iodines, Tritium, and Particulates</u> The dose to a MEMBER OF THE PUBLIC stationed at or beyond the site boundary (Table B4-6) due to radioiodine and particulate releases is estimated using Equation 4.4k and the appropriate pathway dose factor from Table B4-7b. The historical dispersion values (X/Q and depleted X/Q) may be used in place of actual data if necessary as described in part 4.3.3 above. - 4.4 Gaseous Dose Models and Dose Formulas ## 4.4.1 <u>Dispersion Calculation Methods</u> If current meteorological data are used to estimate dispersion, X/Q, in place of the historical values, calculations for routine releases use the sector-average version of the equations for atmospheric relative concentration. These calculations are made in accordance with the methodology in NRC Regulatory Guide 1.111 and are all based on ground level releases. 4.4.1.1 X/Q Calculation The sector average X/Q for a given hour is calculated using: $$X/Q = \frac{2.03}{Umn * Dxqc} (sec/m^3)$$ Eq. 4.4a where $$Smn = [sz^2 + (Hcon^2/2*\pi)]^{1/2}$$ or Smn = $sz * (3)^{1/2}$ ; whichever is less; and Hoon = building height (meters), sz = vertical dispersion coefficient (meters), Smn = dispersion coefficient with building wake factor included (meters) Dxqc = downwind distance to the receptor (meters), Umn = hourly average wind speed (meters/second), 2.03 = $(2/\Xi)^{1/2}$ divided by the sector width in radians, $(2*\Xi/16)$ . $\pi = 3.14$ 4.4.1.2 <u>Depleted X/Q Calculation</u> X/Q values are used in conjunction with tritium and noble gases released. However, the downwind concentrations for particulates and radioiodines will be affected by ground deposition. X/Q values used for calculating inhalation doses from particulates and radioiodines must be modified by the ground depletion factors of Table B4-4 (from Figure 2 of NRC Regulatory Guide 1.111). $$(X/Q)_{depl} = (X/Q) * (ground depletion factor) (sec/m3)$$ Eq. 4.4b 4.4.1.3 <u>Ground Deposition</u> Ground deposition is calculated using the deposition factors of Table B4-5 (also from Regulatory Guide 1.111, Figures 6-9). $$(D/Q) = \underbrace{\text{(deposition factor)}}_{\text{Dxqc}} \qquad (1/\text{m}^2)$$ Eq. 4.4c where 0.3927 = radians in one sector or $(2\pi)/16$ , Dxqc = down wind distance (meters). Deposition calculated by multiplying this term, D/Q, by the release rate, Q, will yield values independent of atmospheric stability as indicated in NRC Regulatory Guide 1.111. #### 4.4.2 <u>Submersion Dose From Noble Gases</u> The methods used to estimate doses due to noble gases are those of Regulatory Guide 1.109. The whole body and skin doses from submersion in a cloud of noble gas may be calculated by multiplying the appropriate dose factor for the plume pathway from Table B4-7b by the dispersion, X/Q, and by the release rate, Q. An equivalent calculation can be accomplished using the formulas described in the following three subsections: ## 4.4.2.1 Whole Body Dose Rate $$Dr_{gamma} = 0.114 * X/Q * \sum_{i} (Q(i) * Dfi_{gamma}) * S_f$$ (rem/hr) Eq. 4.4d where 0.114 = conversion factor from (mrem-m<sup>3</sup>)/(pCi-yr) to (rem-m<sup>3</sup>)/(uCi-hr) X/Q = from Equation 4.4a (sec/m<sup>3</sup>) Q(i) = isotope "i" release rate (uCi/sec) from monitor RT-8010B Dfigamma = gamma dose to tissue conversion factor for nuclide gamma "i" from Table B-1 of Regulatory Guide 1.109 (mrem-m³/pCi-yr) $S_f$ = 0.7, shielding factor from Regulatory Guide 1.109 = 1.0 when determining compliance with Control 3.11.2.1 $Dr_{gamma}$ of Equation 4.4d is equivalent to $D^{T}_{\infty}(r,\theta)$ of Equation B-8 in Regulatory Guide 1.109. Equation 4.4d is expressed as rem/hr whereas Equation B-8 is expressed in units of rem/yr. Equation 4.4d contains factors which exist in the Regulatory Guide as the combination of Equations B-8 and C-3. 4.4.2.2 <u>Skin Dose Rate from Noble Gases</u> Skin dose rate is calculated based on both the beta emissions and gammas coming from the noble gas cloud surrounding the receptor. Equation 4.4e is equivalent to Equation B-9 in combination with Equation C-3 of Regulatory Guide 1.109. Equations 4.4f and 4.4g were extracted from Equation 4.4e to simplify its expression. The conversion constant was adjusted to provide rem per hour rather than rem per year as found in the Regulatory Guide. Equation 4.4f is also equivalent to Equation B-5 combined with Equation B-4 of Regulatory Guide 1.109. = isotope "i" release rate (uCi/sec) from monitor RT-8010B Regulatory Guide 1.109 Equation B-9. The gamma dose rate to air is calculated here as an intermediate step in calculating the total dose rate to skin from noble gases. However, this gamma dose rate to air value, Dr gamma(air) from Equation 4.4f is used to demonstrate compliance with the first part of Control 3.11.2.2 if multiplied by the release duration in hours as described in Section B4.4.2.3. 4.4.2.3 <u>Dose to Air from Noble Gases</u> The dose to air at the site boundary is a required dose calculation in Control 3.11.2.2. The first step is to calculate the beta dose rate to air for noble gases as indicated below: $$Dr_{beta(air)} = 0.114 * X/Q * \sum_{i} Q(i) * Dfi_{beta(air)}$$ (rad/h) Eq. 4.4h where Dfi<sub>beta(air)</sub> = beta dose to air conversion factor from Table B-1, Regulatory Guide 1.109 (mrad-m³/pCi-yr), 0.114 = conversion factor from (mrad-m<sup>3</sup>/pCi-yr) to (rad-m<sup>3</sup>/uCi-hr), X/Q = from Equation 4.4a (sec/m<sup>3</sup>), Q(i) Q(i) = isotope "i" release rate (uCi/sec) from monitors RT-8010B. Equation 4.4h contains the elements of Equations B-4 and B-5 of Regulatory Guide 1.109. The dose rates of Equations 4.4f and 4.4h may be multiplied by the release duration to give the dose to air from gamma and beta radiation as shown below: ## 4.4.3 Dose Due to Airborne Radionuclides The dose delivered to the individual with the highest exposure due to airborne radioactive particles and gases is calculated as the sum of pathway doses for all nuclides present. Dose<sub>air</sub> (a,j)= (dispersion) \* $$\sum \sum Q(i) * R(a,i,j)$$ (mrem) Eq. 4.4k path i where dispersion= ground deposition, D/Q $(1/m^2)$ , for ingestion and deposition pathways, or $(X/Q)_{depl}$ (sec/m<sup>3</sup>), for particle inhalation pathways, or (X/Q) (sec/m<sup>3</sup>), for noble gas, H-3, and C-14 all pathways Q(i) = integrated release of nuclide "i" stored by plant computer from monitors RT-8010B (Ci), R(a,i,j) = age, nuclide, and organ specific dose factor for a given pathway as listed in Table B4-7b (units as described in notes to Table B4-7). For ingestion pathways involving particles, the ground deposition as calculated from Equation 4.4c is used for the dispersion in Equation 4.4k. For inhalation of particles, the depleted X/Q from Equation 4.4b is used for the dispersion in Equation 4.4k. For both ingestion and inhalation of H-3 and C-14, the X/Q from Equation 4.4a is substituted for dispersion in Equation 4.4k. For plume immersion dose to noble gases, the X/Q from Equation 4.4a is substituted for dispersion in Equation 4.4k. Although in practice these calculations are performed at the distances and directions listed in Table B4-6, only the distance and direction giving the largest organ dose is used in Equation 4.4k above. The exposure pathway dependent dose factors, R(a,i,j), of Table B4-7b were generated using a code similar to NRC's GASPAR routine as described in NUREG-0597. The pathways for radionuclides released to the atmosphere which may expose the local population do not include the milk pathway. No milk cows or goats have been identified within five miles of the plant, and no commercial dairies exist within fifty miles of the plant. Since a milk cow or goat could be introduced in the future, Table B4-7b contains dose factors for those pathways even though they are not used at this time. These dose factors of Table B4-7b were calculated for the pathways, organs, and age groups as described below: | Pathways | Pathway Description | |-----------------------------|---------------------------------------------------------------------------------------| | Plume Immersion | Whole body and skin exposure to noble gas | | Ground | Whole body and skin exposure to particulates deposited on ground | | <b>Vegetation Ingestion</b> | Organ doses to particles, <sup>3</sup> H, and <sup>14</sup> C deposited on vegetation | | Meat Ingestion | Organ doses to particles, <sup>3</sup> H, and <sup>14</sup> C in meat products | | Cow Milk | Not currently an active pathway | | Goat Milk | Not currently an active pathway | | Inhalation | Organ doses to inhaled particles, <sup>3</sup> H, and <sup>14</sup> C | | Age Group | Years of age (yr) | Dose Commitment<br>Age (yr) | Fraction of population in each age group | |-----------|-------------------|-----------------------------|------------------------------------------| | Infant | 0 - 1 | 0 | 0.0 | | Child | 1-11 | 4 | 0.18 | | Teen | 11 - 17 | 14 | 0.11 | | Adult | $17 \rightarrow$ | 17 | 0.71 | | | | | | | | | | *** | | | ), | _ | | | | | | | × | | | Ċ | | | ě | | |--|--|--|--|--|--|----|--|-----|---|---|--------------|---|---|----|---|---|---|--|---|--|--|---|--|-----|---|--| | | | | | | | d. | | | | ٠ | I. | ŗ | Ι | 'n | a | | | | | | | | | | | | | | | | | | | | | j | | ) | B<br>L<br>Si | i | V | e | r | | | | | | | | | 101 | | | | | | | | | | | | | 1 | Γ | h<br>L | y | T | ·c | i | d | l | | | | | | | | | | | | | | | | | | | | | | S | | | | _ | | | | | | | | | | | | The version of GASPAR used to calculate the dose factors for ingestion employed the methods of Regulatory Guide 1.109 Equation C-13. Default parameter values as contained in the Regulatory Guide were used in conjunction with Equation C-13 and its supporting equations, except for <sup>3</sup>H where the site specific humidity value was set to 13 g/m<sup>3</sup>. Equation C-13 contains concentration expressions for meat, milk, produce, and leafy vegetables. Each pathway dose factor of Table B4-7b was calculated by setting the other pathway concentration expressions to zero and solving the equation for each organ and age group. The airborne concentration (Q(T) \* $\chi$ /Q) or ground deposition (d<sub>i</sub>(r, $\theta$ )) was extracted from the components of Equation C-13 (Equations C-5, C-8, C-9, C-10, C-11, and C-12) to render the pathway dose factors of Table B4-7b independent of the release rate and atmospheric diffusion/deposition. As required by the Regulatory Guide, <sup>14</sup>C and <sup>3</sup>H concentrations in vegetation were calculated using special equations (C-8 and C-9). The inhalation dose factors of Table B4-7b were calculated by GASPAR using the methods of Equation C-4 with the airborne concentration factor of Equation C-3 extracted to render dose factors independent of release rate and atmospheric dispersion. The ground shine dose factors of Table B4-7b were calculated by GASPAR using the methods of Equation C-2 with the deposition factor $(\delta_i(r,\theta) * Q(i))$ of Equation C-1 extracted to render dose factors independent of release rate and location. The dose commitment age as described in Regulatory Guide 1.109 was used in the tabulation of dose factors in Table B4-7b. #### 4.5 Control 3.11.1.3 The liquid waste processing system shall be operable and appropriate portions of the system shall be used to reduce releases of radioactivity when the projected doses due to the liquid effluent, from each unit, to unrestricted areas would exceed 0.06 mrem to the whole body or 0.2 mrem to any organ in a 31-day period. Doses due to liquid effluent releases shall be estimated prior to release of each batch from the radioactive waste monitor tanks. The 31-day dose projection shall be calculated as shown below: 31-day dose projection = $$31$$ \* (accumulated dose) + SF (mrem) Eq. 4.5a days where 31 = days in the averaging period days = integer number of days into the quarter (greater than or equal to 1 but less than or equal to 92) accumulated dose = sum of doses from releases in the current quarter (mrem) and the projected release SF = safety factor, (projected dose limit) \* 0.05, i.e. 5% of limit Since this operating condition is applied to each unit separately, concurrent releases from both units need not be considered. #### 4.6 Control 3.11.2.4 The gaseous waste processing system shall be operable and appropriate portions of this system shall be used to reduce releases of radioactivity when the projected doses in 31 days due to gaseous effluent releases from each unit to areas at or beyond the site boundary would exceed: - 0.2 mrad to air from gamma radiation, or - 0.4 mrad to air from beta radiation, or - 0.3 mrem to any organ of a MEMBER OF THE PUBLIC. Unit vent air samples are analyzed weekly for each unit. The average concentrations of the radionuclides so measured may be used to calculate the unit specific doses from releases that week. These average weekly doses plus doses from any special or batch releases during the week may be used in Eq. 4.5a to project the doses of Control 3.11.2.4 over the subsequent 31-day period. If an unusually large release is planned, add this projected dose to the average 31-day doses to confirm that the operating constraints of Control 3.11.2.4 are satisfied. These constraints pertain to each unit separately, and the dose projections from the two units need not be summed when determining operating constraints imposed by this Control. #### 4.7 Control 3.11.4 Dose Calculations If the annual dose or dose commitment to a MEMBER OF THE PUBLIC at or beyond the site boundary due to releases of liquid or gaseous effluents exceeds twice the limits of Controls 3.11.1.2.a, 3.11.1.2.b, 3.11.2.2.a, 3.11.2.2.b, 3.11.2.3.a, or 3.11.2.3.b, Control 3.11.4 requires that the total dose from the uranium fuel cycle be calculated. Since no mining, milling, or waste disposal activities exist within 50 miles of STP, only direct radiation from plant structures need be added to that calculated for effluents to obtain the total dose. Direct radiation from the plant and plant structures is estimated based on ambient radiation measurements made in the proximity of each potential source within a direct line of sight to the critical receptor location. TLD measurements at the protected area fence may provide the estimate of direct radiation following background subtraction. This measured dose rate may be adjusted to compensate for distance to the critical receptor location. The direct radiation dose shall be added to the doses previously calculated for radioactive effluents for comparison with the limits of 40CFR Part 190 as shown below: Total Dose= MAXIMUM {Dose $_{liquid}(a,j) + Dose_{air}(a,j) + Dose_{direct}$ } from age groups, a, and organs, j where $Dose_{liquid}(a,j)$ from Equation 4.1a $Dose_{air}(a,j)$ from Equation 4.4k $Dose_{direct}$ = TLD \* (PA)<sup>2</sup> / (RD)<sup>2</sup> TLD = net measured exposure @ protected area fence, rem PA = containment to protected area fence distance where TLD located, meters RD = distance from containment to critical receptor, meters #### 4.8 10CFR20.1301 Dose to MEMBERS OF THE PUBLIC In addition to meeting the requirements of the controls in Part A of the ODCM and 40CFR190, STP is required to meet the dose limits of 10CFR20.1301 in accordance with the methods of 10CFR20.1302. As provided in 10CFR20.1302(b)(1), the calculated dose to a Member of the Public must not exceed 100 mrem in a year. For the purpose of 10CFR20.1301 dose calculations, a Member of the Public is an individual inside or outside the owner controlled area except when that individual receives an occupational dose. Occupational dose at STP is associated with individuals whose work may involve exposure to radiation in excess of 100 mrem in a year. All such individuals are given one or more levels of training as required by 10CFR19 for occupational exposed workers. All STP employees and contractors with unescorted access to the protected area (the security fence surrounding the nuclear two units) have been identified as receiving occupational dose and meet the training requirements of 10CFR19. Vendors or working visitors (temporary contractors) who are likely to receive 100 mrem in a year are briefed on the hazards of ionizing radiation, are assigned a dosimeter, and their exposure is controlled to occupational limits. STP employees and contractors whose dose is not occupational are considered Members of the Public and do not take any radiation worker training courses (General Employee Training Classes). In addition, some visitors who enter the protected area but are not expected to receive occupational exposure are considered Members of the Public. They are not trained or issued a radiation dosimeter. The dose to a Member of the Public as described here is not part of the offsite dose calculated to demonstrate compliance with 40CFR190 or the controls of Part A. To demonstrate compliance with 10CFR20.1301, dose to Members of the Public from inhalation of particles, iodines, and tritium is added to dose from exposure to external sources and noble gases. No dose is estimated for liquid effluents since no pathway exists for Members of the Public to ingest contaminated water while at STP. The sum of these two components must not exceed 100 mrem in a year. The annual inhalation and noble gas dose components are calculated as the sum (for both units) of the annual average concentrations of particles, iodines, and noble gases in the highest X/Q sector at 200 meters divided by the corresponding concentrations in Appendix B, Table 2, column 1, and multiplied by 50 mrem/year. inhalation dose = $$50 * T * X/Q_{200} \sum_{\text{nuclide } i} (Q(i) / EC_i)$$ Equation 4.8a where Q(i) = annual average release rate of nuclide i, Ci/sec $EC_i$ = effluent concentration of nuclide i, uCi/cm<sup>3</sup> in air $X/Q_{200}$ = maximum diffusion constant at 200 meters, sec/m<sup>3</sup> = mrem for exposure to 1 EC for a year, mrem/yr = exposure duration, yr The external dose rate component (above natural background) may be measured using TLDs within the owner-controlled area. An example for a visiting Member of the Public to the protected area follows: The visitor makes four entries into the protected area during the year to service equipment. Each visit is assumed to involve a 10 hour work day for a total exposure time of 40 hours over the course of the year. While inside the protected area fence, he is exposed to airborne Xe-133, I-131, and Co-60. The annual average X/Q at 200 meters is 2.4E-5 m³/sec and the annual average release rates summed for both units are 1.0E-6, 2E-15, and 8E-13 Ci/sec respectively. The maximum external dose rate measured by TLDs is 100 mrem/yr. (Note: The external dose rate alone is limited by 10CFR20.1301 to 2 mrem in an hour.) ``` inhalation/immersion dose = 50 * 40 \text{ hr} / 8760 \text{ (hr/yr)} * 2.4\text{E-}5 * £ (1.0\text{E-}6)/(5.0\text{E-}7) + (2\text{E-}15)/(2\text{E-}10) + (8\text{E-}13)/(5\text{E-}11) \times = 1\text{E-}5 \text{ mrem} external dose = 100 \text{ mrem/yr} * 40 \text{ hr} / 8760 \text{ (hr/yr)} = 0.5 \text{ mrem} ``` total dose = 0.5 mrem in a year for a visiting Member of Public within the protected area for comparison with 10CFR20.1301 annual dose limits. An example of an employee Member of the Public located outside the protected area follows: The employee works 2000 hours while not exposed to occupational dose during the year. The work location is in an office building near the protected area fence where he is exposed to airborne Xe-133, I-131, and Co-60. The annual average X/Q at 200 meters is 2.4E-5 m³/sec and the annual average release rates summed for both units are 1.0E-6, 2E-15, and 8E-13 Ci/sec respectively. The maximum external dose rate measured by TLDs at the protected area fence is less than 20 mrem/yr. ``` inhalation/immersion dose rate = 50 * 40 \text{ hr} / 8760 \text{ (hr/yr)} * 2.4\text{E-}5 * £ (1.0\text{E-}6)/(5.0\text{E-}7) + (2\text{E-}15)/(2\text{E-}10) + (8\text{E-}13)/(5\text{E-}11) \times = 1\text{E-}5 \text{ mrem} external dose < 20 \text{ mrem/yr} * 2000 \text{ hr} / 8760 \text{ (hr/yr)} < 5 \text{ mrem} ``` total dose < 5 mrem in a year for an employee Member of Public located outside the protected area for comparison with 10CFR20.1301 annual dose limits. #### 4.9 Population Dose Estimation Doses to the population are calculated in a manner similar to that described for individuals with two exceptions. The dose factors are taken from Table B4-11, and the doses calculated for each population group are summed. The R(all,i,j) age-adjusted dose factors for atmospheric pathways of Table B4-11 were calculated using the equations of Regulatory Guide 1.109 in the GASPAR code along with default consumption/use factors. The values for R(all,i,j) appearing in Table B4-11 for liquid releases are the age adjusted dose factors for the general population calculated as [0.71 \* R(adult,i,j) + 0.11 \* R(teen,i,j) + 0.18 \* R(child,i,j)]. R(a,j,i) are calculated from Eq. 4.2g and Eq. 4.2h using data from Table B4-8. Population doses due to liquid effluents are calculated in the manner of Equation 4.9a for each member of the population. The resulting doses are then multiplied by the number of individuals residing within 50 miles of STP. If sufficient quantities of a particular food are produced within 50 miles of STP to feed the 300,000 inhabitants of this region, the population for that pathway is reduced to the number who could consume the average amount of that food without exhausting the locally produced supply. For example, since only about 220,000 Kg of saltwater sport fish are taken in Matagorda Bay and the Colorado River each year, only 37,000 individuals may be assumed to consume 5.9 Kg = (0.71 \* 6.9 + 0.11 \* 5.2 + 0.18 \* 2.2) per year of fish each to account for this mass. In order to account for recreation on both the Colorado River and Matagorda Bay, half the population is assumed to use each of these waters. All crustaceans (8.9 E+06 Kg) per year are assumed to be taken from Matagorda Bay. pop. $$dose_{liq}$$ = $\sum population_p \sum Q(i) * R(all,i)$ Equation 4.9a path=p nuclide=i where population<sub>p</sub> = population within 50 miles exposed to each pathway, P Q(i) = release by nuclide, i (Ci) R(all,i) = are taken from Table B4-11 for the whole body Population doses due to gaseous effluents are calculated in a two step process. The population within 50 miles of STP is listed by sector and distance in Table B4-10. The population dose is calculated by first calculating the X/Q, depleted X/Q, and D/Q for each distance and sector. The product of the dose factors from Table B4-11 and X/Q (for the plume pathway), depleted X/Q (for the particulate and iodine inhalation pathway), or D/Q (for the ingestion pathways) for a given distance/sector group gives the dose to each member of that group. The product of these doses by the number of individuals in the group gives the dose to each group. The sum over all groups within 50 miles gives the total population dose. ## Equation 4.9b: where T = time period covered by the calculation (hours) pop(s) = number of people in distance/sector group "s" from Table B4-10 X/Q(s) = X/Q for distance/sector "s" per Eq. 4.4a (sec/m<sup>3</sup>) $X/Q_d(s)$ = depleted X/Q for distance/sector "s" per Eq. 4.4b (sec/m<sup>3</sup>) Note: X/Q(s) substituted for $X/Q_d(s)$ for H-3 and C-14 R(all,j) = dose factors from Table B4-11 for the whole body for each pathway (units as described in notes to Table B4-7) Q(i) = release rate of nuclide "i" (Ci/sec) D/Q(s) = deposition for distance/sector "s" per Eq. 4.4c $(1/m^2)$ Table B4-1: Radionuclide Fractions, N(i), Reaching Off-site Bodies of Water | Nuclide | Half-life<br>(days) | Colorado<br><u>River</u> | Matagorda<br><u>Bay</u> | Little Robbins Slough Area | |---------|---------------------|--------------------------|-------------------------|----------------------------| | Н3 | 4.51E+03 | 7.87E-02 | 1.30E-01 | 4.81E-02 | | BE7 | 5.34E+01 | 2.56E-04 | 4.23E-04 | 1.57E-04 | | C14 | 2.09E+06 | 2.43E-02 | 4.01E-02 | 1.48E-02 | | NA24 | 6.25E-01 | 6.61E-13 | 1.09E-12 | 4.04E-13 | | P32 | 1.43E+01 | 4.22E-05 | 6.96E-05 | 2.57E-05 | | SC46 | 8.40E+01 | 4.27E-04 | 7.04E-04 | 2.61E-04 | | CR51 | 2.78E+01 | 1.13E-04 | 1.87E-04 | 6.93E-05 | | MN54 | 3.13E+02 | 1.64E-03 | 2.71E-03 | 1.00E-03 | | MN56 | 1.07E-01 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | FE55 | 9.86E+02 | 4.60E-03 | 7.60E-03 | 2.81E-03 | | FE59 | 4.46E+01 | 2.07E-04 | 3.42E-04 | 1.27E-04 | | CO57 | 2.71E+02 | 1.43E-03 | 2.36E-03 | 8.75E-04 | | CO58 | 7.08E+01 | 3.54E-04 | 5.84E-04 | 2.16E-04 | | CO60 | 1.93E+03 | 7.64E-03 | 1.26E-02 | 4.67E-03 | | NI63 | 3.50E+04 | 2.17E-02 | 3.59E-02 | 1.33E-02 | | NI65 | 1.05E-01 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CU64 | 5.29E-01 | 3.33E-14 | 5.49E-14 | 2.03E-14 | | ZN65 | 2.45E+02 | 1.30E-03 | 2.14E-03 | 7.92E-04 | | ZN69 | 3.96E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | ZN69M | 5.74E-01 | 1.49E-13 | 2.46E-13 | 9.11E-14 | | BR82 | 1.47E+00 | 1.17E-08 | 1.93E-08 | 7.14E-09 | | BR83 | 9.96E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | BR84 | 2.20E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | BR85 | 1.99E-03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | RB86 | 1.86E+01 | 6.43E-05 | 1.06E-04 | 3.93E-05 | | RB88 | 1.23E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | RB89 | 1.05E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | SR89 | 5.06E+01 | 2.41E-04 | 3.97E-04 | 1.47E-04 | | SR90 | 1.04E+04 | 1.74E-02 | 2.86E-02 | 1.06E-02 | | SR91 | 3.96E-01 | 5.14E-17 | 8.48E-17 | 3.14E-17 | | SR92 | 1.13E-01 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | Y90 | 2.67E+00 | 4.14E-07 | 6.83E-07 | 2.53E-07 | | Y91M | 3.45E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | Y91 | 5.85E+01 | 2.85E-04 | 4.70E-04 | 1.74E-04 | | Y92 | 1.47E-01 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | Y93 | 4.21E-01 | 2.40E-16 | 3.96E-16 | 1.46E-16 | | ZR95 | 6.40E+01 | 3.16E-04 | 5.22E-04 | 1.93E-04 | | ZR97 | 7.04E-01 | 4.27E-12 | 7.05E-12 | 2.61E-12 | Table B4-1: Radionuclide Fractions, N(i), Reaching Off-site Bodies of Water (cont'd) | 1.4 | Half-life | Colorado | Matagorda | Little Robbins | |---------|---------------|----------|------------|----------------| | Nuclide | <u>(days)</u> | River | <u>Bay</u> | Slough Area | | NB95 | 3.51E+01 | 1.54E-04 | 2.54E-04 | 9.42E-05 | | NB97 | 5.01E-02 | 2.95E-04 | 4.86E-04 | 1.80E-04 | | MO99 | 2.75E+00 | 4.71E-07 | 7.77E-07 | 2.88E-07 | | TC99M | 2.51E-01 | 2.42E-23 | 4.00E-23 | 1.48E-23 | | TC101 | 9.86E-03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | RU103 | 3.93E+01 | 1.78E-04 | 2.93E-04 | 1.09E-04 | | RU105 | 1.85E-01 | 1.86E-29 | 2.99E-29 | 1.14E-29 | | RU106 | 3.68E+02 | 1.92E-03 | 3.17E-03 | 1.17E-03 | | AG110M | 2.51E+02 | 1.33E-03 | 2.19E-03 | 8.12E-04 | | SN113 | 1.15E+02 | 6.00E-04 | 9.91E-04 | 3.67E-04 | | SB124 | 6.02E+01 | 2.95E-04 | 4.86E-04 | 1.80E-04 | | SB125 | 1.01E+03 | 4.71E-03 | 7.76E-03 | 2.87E-03 | | TE125M | 5.80E+01 | 2.82E-04 | 4.66E-04 | 1.72E-04 | | TE127M | 1.09E+02 | 5.67E-04 | 9.35E-04 | 3.46E-04 | | TE127 | 3.90E-01 | 3.50E-17 | 5.77E-17 | 2.14E-17 | | TE129M | 3.36E+01 | 1.46E-04 | 2.40E-04 | 8.89E-05 | | TE129 | 4.84E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TE131M | 1.25E+00 | 3.10E-09 | 5.12E-09 | 1.90E-09 | | TE131 | 1.74E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TE132 | 3.26E+00 | 9.68E-07 | 1.60E-06 | 5.91E-07 | | I130 | 5.15E-01 | 1.96E-14 | 3.23E-14 | 1.19E-14 | | I131 | 8.04E+00 | 1.40E-05 | 2.31E-05 | 8.56E-06 | | I132 | 9.60E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | I133 | 8.67E-01 | 6.99E-11 | 1.15E-10 | 4.27E-11 | | I134 | 3.66E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | I135 | 2.75E-01 | 7.64E-22 | 1.26E-21 | 4.67E-22 | | CS134 | 7.52E+02 | 3.67E-03 | 3.67E-03 | 0.00E+00 | | CS135 | 1.39E+01 | 4.02E-05 | 6.63E-05 | 0.00E+00 | | CS136 | 1.31E+01 | 3.64E-05 | 3.64E-05 | 0.00E+00 | | CS137 | 1.10E+04 | 1.76E-02 | 1.76E-02 | 0.00E+00 | | CS138 | 2.24E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | BA139 | 5.74E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | BA140 | 1.28E+01 | 3.48E-05 | 5.74E-05 | 2.12E-05 | | BA141 | 1.27E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | BA142 | 7.42E-03 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | LA140 | 1.68E+00 | 3.03E-08 | 4.99E-08 | 1.85E-08 | | LA142 | 6.43E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CE141 | 3.25E+01 | 1.39E-04 | 2.30E-04 | 8.52E-05 | Table B4-1: Radionuclide Fractions, N(i), Reaching Off-site Bodies of Water (cont'd) | Nuclide | Half-life<br>(days) | Colorado<br><u>River</u> | Matagorda<br><u>Bay</u> | Little Robbins Slough Area | |---------|---------------------|--------------------------|-------------------------|----------------------------| | CE143 | 1.38E+00 | 6.91E-09 | 1.14E-08 | 4.22E-09 | | CE144 | 2.83E+02 | 1.49E-03 | 2.47E-03 | 9.13E-04 | | PR143 | 1.36E+01 | 3.85E-05 | 6.36E-05 | 2.35E-05 | | PR144 | 1.20E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | ND147 | 1.11E+01 | 2.68E-05 | 4.42E-05 | 1.64E-05 | | W187 | 9.96E-01 | 3.41E-10 | 5.62E-10 | 2.08E-10 | | NP239 | 2.35E+00 | 2.20E-07 | 3.62E-07 | 1.34E-07 | | Other | 1.00E+09 | 2.43E-02 | 4.01E-02 | 1.49E-02 | \*Note: Cesium isotopes diffusing through the soil to enter the Little Robbins Slough area are assumed to be trapped in the soil. All other calculations were made according to the methods of Section B4.2.2 where the above listed pathway values correspond to the following: Colorado River = $N_c(i)$ = fc \* Floss Matagorda Bay = $N_m(i)$ = (fc + fwc + flrs + felrs) \* Floss Little Robins Slough = $N_{lr}(i)$ = (flrs + felrs) \* Floss Values less than 1.00E-30 are rounded to 0.00E+00 since such small fractions do not contribute to off-site doses significantly. Table B4-2: Liquid Dose Pathway Factor Description | U | = | annual intake of fish, kg/y (note 1) | |----------|---|-------------------------------------------------------------------------------| | Ub | = | annual use factor for shoreline exposure, hr/y | | M | = | dilution factor; all flow rates are normalized to that of the Colorado River | | F | = | flow rate of the Colorado River, cfs (note 2) | | Q(i) | = | release of nuclide "i" from the reservoir, Ci | | N(i) | = | fractional release of nuclide "i" from the reservoir to a given pathway as | | | | listed in Table B4-1 | | B(i) | = | bioaccumulation factor for nuclide "i" to a given pathway, [pCi in fish/kg | | | | of fish]/[pCi in water/kg of water] (note 3) | | D(a,i,j) | = | dose factor for nuclide "i", organ "j", age "a", mrem/pCi or mrem/hr per | | | | pCi/m <sup>2</sup> (note 4) | | Y(i) | = | decay constant for nuclide "i", 1/hour | | T(i) | = | half-life of nuclide "i", days | | T | = | average transit time from release to ingestion of fish by man; or to | | | | deposition in sediment, hr (note 5) | | Tb | = | time period during which sediment is exposed to contaminated water, hr. | | W | = | shoreline width factor | | R(a,i,j) | = | dose to organ "j" for a particular release from nuclide "i" and age group "a" | | _ | | (units as described in notes to Table B4-7) | - Note 1: Little Robbins Slough area is assumed to contain freshwater fish only while the Colorado River and Matagorda Bay/Gulf of Mexico are assumed to yield saltwater fish and invertebrates as per Regulatory Guide 1.109. - Note 2: The minimum flow rate of the Colorado River during which blow down is permitted. - Note 3:Bioaccumulation factors for saltwater fish and invertebrates are taken from Table A-1 of Regulatory Guide 1.109; saltwater values are used with the Colorado River, Matagorda Bay/Gulf of Mexico, and fresh water values for the lakes along Little Robbins Slough. - Note 4:The dose factors for Equation 4.2g are taken from Table E-11 of Regulatory Guide 1.109 whereas the dose factors for Equation 4.2h come from Table E-6 of Regulatory Guide 1.109. - Note 5:The average time between nuclide release to the unrestricted aquatic environment and fish consumption comes from Table D-1 of Regulatory Guide 1.109. No delay is assumed between release and contamination of sediment for Equation 4.2h because the delay between release and soil exposure is likely to be short compared to the half-lives of the nuclides. Table B4-3: Liquid Parameter Values for Eq. 4.2g and 4.2h | Parameter | | P | arameter Va | alue | <del></del> | |----------------------------------------------------------------|-------------------------|------------------------|------------------------|-----------------------|----------------------------------------------------| | U<br>Colorado River | Adult<br>21<br>5 | Teen<br>16<br>3.8 | Child<br>6.9<br>1.7 | Infant<br>0<br>0 | kg/y saltwater fish kg/y saltwater invertebrate | | Matagorda Bay | 21<br>5 | 16<br>3.8 | 6.9<br>1.7 | 0 | kg/y saltwater fish<br>kg/y saltwater invertebrate | | Little Robbins area | 21 | 16 | 6.9 | 0 | kg/y freshwater fish | | Ub<br>Colorado River<br>Matagorda Bay<br>Little Robbins area | Adult<br>12<br>12<br>12 | Teen<br>67<br>67<br>67 | Child<br>1<br>14<br>14 | Infant<br>0<br>0<br>0 | hr/y<br>hr/y<br>hr/y | | M<br>Colorado River<br>Matagorda Bay<br>Little Robbins area | 1.00<br>163<br>0.0305 | | | | | | F | 600 cfs | | | | | | N(i)<br>Colorado River<br>Matagorda Bay<br>Little Robbins area | values by Table B4-1 | | and pathwa | y from | | | T fish ingestion shoreline exposure | 24 hr<br>0 hr | | | | | | Tb | 1.31E+05 | hr | | | | | W<br>Colorado River<br>Matagorda Bay<br>Little Robbins area | 0.2<br>0.5<br>0.2 | | | | | | B(i) | nuclide sp | ecific from | Table A-1, | Regulatory | y Guide 1.109 | | D(a,i,j) | nuclide sp | ecific from | Table E-11 | or E-6, Re | egulatory Guide 1.109 | TableB4-4: Pathways for Calculating Individual Doses from Liquid Effluent Releases | PATHWAYS | RECEPTOR LOCATIONS Colorado Matagorda Little | | | |-----------------------------------|----------------------------------------------|-------------------|---------| | | River | Bay | Robbins | | Shore Exposure | X | X | X | | Salt Water Fish Ingestion | X | $\mathbf{X}^{-1}$ | | | Salt Water Invertebrate Ingestion | X | X | | | Fresh Water Fish Ingestion | | | X | | Potable Water | | | | | Irrigated Crops | | | | | Animal Products | | | | Table B4-5: Particle Depletion and Deposition Factors for Ground Level Releases | Distance (meters) | Depletion | Deposition (1/meter) | |-------------------|-----------|----------------------| | 200 | 0.970 | 1.2E-04 | | 500 | 0.936 | 8.0E-05 | | 1000 | 0.900 | 5.4E-05 | | 2000 | 0.860 | 3.2E-05 | | 3000 | 0.832 | 2.6E-05 | | 6000 | 0.770 | 1.5E-05 | | 10,000 | 0.714 | 9.9E-06 | | 30,000 | 0.590 | 4.5E-06 | | 50,000 | 0.517 | 3.0E-06 | | 80,000 | 0.440 | 2.0E-06 | The depletion fractions of this table were estimated from Figure 2 of Regulatory Guide 1.111 and are used in Equation 4.4b in section B4.4.1.2. The deposition factors of this table were calculated using Equation 4.4c of section B4.4.1.3. The ingestion pathways use the deposition to calculate dose factors. Both depletion and deposition factors at distances between the tabulated values may be estimated by linear interpolation. Table B4-6: Distances to Gaseous Dose Pathway Receptors for Individuals (meters) **RECEPTOR PATHWAYS MILK** VEGETATION MEAT DIRECTION Site Boundary N Nearest Person\* Site Boundary **NNE** Nearest Person Site Boundary **NE** Nearest Person Site Boundary **ENE** Nearest Person Site Boundary Ε Nearest Person Site Boundary **ESE** Nearest Person Site Boundary SE Nearest Person Site Boundary **SSE** Nearest Person Site Boundary S Nearest Person Site Boundary SSW Nearest Person Site Boundary SW Nearest Person Site Boundary **WSW** Nearest Person Site Boundary W Nearest Person Site Boundary **WNW** Nearest Person Site Boundary NW Nearest Person Site Boundary **NNW** Nearest Person <sup>\*</sup> Nearest person may be changed for purposes of dose calculations without changing this table. If the distance to the nearest person was greater than 8000 meters, 8000 meters was used as a default value. Table B4-7: Pathway Dose Factors #### NOTES: ## Liquid Pathway Dose Factors - Table B4-7a This table consists of two sections. The first is a listing of pathway dose factors by nuclide and pathway for liquid effluents. These factors were calculated using the equations and methods of Part B, Section 4.2 of the ODCM. The product of a particular factor and a quantity of activity (Ci) released to the reservoir will yield the dose (mrem) to an individual at each of the locations and for each of the pathways specified. The liquid dose factors for cesium isotopes were set to zero for pathways associated with relief well discharges into the Little Robbins Slough area in order to conform with the assumptions made in the UFSAR, Appendix 11.A, regarding the transportability of cesium in soil. The units for all liquid dose factors are (mrem/Ci). The factors used by the computer codes which perform these calculations may differ by a few percent due to round-off errors. Moreover, nuclides with vanishing small factors (less than 1.0E-20 mrem/Ci) have no impact on the dose calculations and are set to zero. Some nuclides may have zeros for all pathways because Regulatory Guide 1.109 data result in zero valued factors. #### Gaseous Pathway Dose Factors - Table B4-7b The second section of this table consists of a listing by nuclide of the gaseous pathway dose factors. These factors were calculated using a code similar to GASPAR and are based on the methods of Regulatory Guide 1.109. The units used for noble gases, tritium, and all nuclides for the inhalation pathway are (mrem-m³/Ci-sec). The product of this pathway dose factor, the release (Ci), and the appropriate depleted X/Q (sec/m³) or X/Q (for noble gases, tritium and carbon 14) yields the dose in (mrem). The units used for all other nuclides in all other pathways are (mrem-m<sup>2</sup>/Ci). The product of this pathway dose factor, the release (Ci), and the appropriate D/Q yields the dose (mrem) over the release period. Some nuclides may have zeros for all pathways because Regulatory Guide 1.109 data result in zero valued factors. # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : H3 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 5.73E-06 5.73E-06 0.00E+00 5.73E-06 5.73E-06 5.73E-06 5.73E-06 5.73E-06 5.73E-06 TEEN: 4.41E-06 4.41E-06 0.00E+00 4.41E-06 4.41E-06 4.41E-06 4.41E-06 CHILD: 3.64E-06 3.64E-06 0.00E+00 3.64E-06 3.64E-06 3.64E-06 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` ### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 2.86E-07 | 2.86E-07 | 0.00E+00 | 2.86E-07 | 2.86E-07 | 2.86E-07 | 2.86E-07 | | TEEN: | 2.20E-07 | 2.20E-07 | 0.00E+00 | 2.20E-07 | 2.20E-07 | 2.20E-07 | 2.20E-07 | | CHILD: | 1.82E-07 | 1.82E-07 | 0.00E+00 | 1.82E-07 | 1.82E-07 | 1.82E-07 | 1.82E-07 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 2.90E-09 | 2.90E-09 | 0.00E+00 | 2.90E-09 | 2.90E-09 | 2.90E-09 | 2.90E-09 | | TEEN: | 2.23E-09 | 2.23E-09 | 0.00E+00 | 2.23E-09 | 2.23E-09 | 2.23E-09 | 2.23E-09 | | CHILD: | 1.84E-09 | 1.84E-09 | 0.00E+00 | 1.84E-09 | 1.84E-09 | 1.84E-09 | 1.84E-09 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 7.04E-08 | 7.04E-08 | 0.00E+00 | 7.04E-08 | 7.04E-08 | 7.04E-08 | 7.04E-08 | | TEEN: | 5.41E-08 | 5.41E-08 | 0.00E+00 | 5.41E-08 | 5.41E-08 | 5.41E-08 | 5.41E-08 | | CHILD: | 4.63E-08 | 4.63E-08 | 0.00E+00 | 4.63E-08 | 4.63E-08 | 4.63E-08 | 4.63E-08 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 7.13E-10 | 7.13E-10 | 0.00E+00 | 7.13E-10 | 7.13E-10 | 7.13E-10 | 7.13E-10 | | TEEN: | 5.47E-10 | 5.47E-10 | 0.00E+00 | 5.47E-10 | 5.47E-10 | 5.47E-10 | 5.47E-10 | | CHILD: | 4.69E-10 | 4.69E-10 | 0.00E+00 | 4.69E-10 | 4.69E-10 | 4.69E-10 | 4.69E-10 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | | 0.00E+00 | | | | | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : C14 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH | ADULT:<br>TEEN: | 4.89E-02<br>5.33E-02 | 5.33E-02 | 2.45E-01<br>2.66E-01 | 5.33E-02 | 4.89E-02<br>5.33E-02 | 5.33E-02 | 4.89E-02<br>5.33E-02 | |-----------------|----------------------|----------|----------------------|----------|----------------------|----------|----------------------| | CHILD: | 6.85E-02 | 6.85E-02 | 3.42E-01 | 6.85E-02 | 6.85E-02 | 6.85E-02 | | FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 9.56E-04 9.56E-04 4.78E-03 9.56E-04 9.56E-04 9.56E-04 9.56E-04 9.56E-04 1.04E-03 1.04E-03 1.04E-03 1.04E-03 1.04E-03 1.04E-03 1.04E-03 1.34E-03 1.34E-03 1.34E-03 1.34E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 9.67E-06 9.67E-06 4.84E-05 9.67E-06 9.67E-06 9.67E-06 9.67E-06 9.67E-06 1.05E-05 1.05E-05 1.05E-05 1.05E-05 1.05E-05 1.05E-05 1.05E-05 1.35E-05 1.35E-05 1.35E-05 1.35E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.77E-04 1.77E-04 8.85E-04 1.77E-04 1.77E-04 1.77E-04 1.77E-04 TEEN: 1.92E-04 1.92E-04 9.61E-04 1.92E-04 1.92E-04 1.92E-04 1.92E-04 CHILD: 2.56E-04 2.56E-04 1.28E-03 2.56E-04 2.56E-04 2.56E-04 2.56E-04 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.79E-06 1.79E-06 8.96E-06 1.79E-06 1.79E-06 1.79E-06 1.79E-06 TEEN: 1.95E-06 1.95E-06 9.73E-06 1.95E-06 1.95E-06 1.95E-06 CHILD: 2.59E-06 2.59E-06 1.30E-05 2.59E-06 2.59E-06 2.59E-06 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : NA24 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.86E-14 2.95E-14 ``` #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 9.56E-19 | TEEN: | 9.86E-19 | CHILD: | | | | | 1.07E-18 | | | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | | | | | | 0.00E+00 | | | TEEN: | 0.00E+00 | CHILD: | | | | | | 1.09E-20 | | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 6.46E-19 | TEEN: | 6.64E-19 | CHILD: | | | 7.49E-19 | | | | | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 # FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 9.10E-17 | 1.06E-16 | | TEEN: | 5.08E-16 | 5.89E-16 | | CHILD: | 1.06E-16 | 1.23E-16 | | TNFANT: | 0.00E+00 | 0.00E+00 | ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |------------|-----------|-----------------------| | | | | | ADULT: | 4.54E-18 | 5.27E-18 | | | | | | TEEN: | 2.54E-17 | 2 94E-17 | | T 171714 • | 2.J#D 11 | 2.7 <del>4</del> 4 +1 | | CHITT D. | E 20th 10 | 6.15E-18 | | CHILD: | 3.305-10 | 0.105-10 | | T37D337D | 0 000.00 | 0 000.00 | | TNFANT: | U.UUE+UU | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 1.15E-19 | 1.33E-19 | | TEEN: | 6.42E-19 | 7.45E-19 | | CHILD: | 1.34E-19 | 1.56E-19 | | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : P32 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 2.31E-02 6.72E-02 5.98E-01 3.72E-02 0.00E+00 0.00E+00 0.00E+00 TEEN: 2.52E-02 5.47E-02 6.51E-01 4.03E-02 0.00E+00 0.00E+00 0.00E+00 CHILD: 3.24E-02 2.32E-02 8.39E-01 3.93E-02 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 3.35E-04 9.73E-04 8.65E-03 5.38E-04 0.00E+00 0.00E+00 0.00E+00 TEEN: 3.66E-04 7.93E-04 9.43E-03 5.84E-04 0.00E+00 0.00E+00 0.00E+00 CHILD: 4.69E-04 3.36E-04 1.22E-02 5.69E-04 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 3.39E-06 9.85E-06 8.76E-05 5.45E-06 0.00E+00 0.00E+00 0.00E+00 TEEN: 3.70E-06 8.02E-06 9.55E-05 5.91E-06 0.00E+00 0.00E+00 0.00E+00 CHILD: 4.74E-06 3.40E-06 1.23E-04 5.76E-06 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 8.24E-05 2.40E-04 2.13E-03 1.33E-04 0.00E+00 0.00E+00 0.00E+00 TEEN: 8.98E-05 1.95E-04 2.32E-03 1.44E-04 0.00E+00 0.00E+00 0.00E+00 CHILD: 1.19E-04 8.56E-05 3.10E-03 1.45E-04 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 8.34E-07 2.43E-06 2.16E-05 1.34E-06 0.00E+00 0.00E+00 0.00E+00 TEEN: 9.09E-07 1.97E-06 2.35E-05 1.45E-06 0.00E+00 0.00E+00 0.00E+00 CHILD: 1.21E-06 8.67E-07 3.14E-05 1.47E-06 0.00E+00 0.00E+00 0.00E+00 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CR51 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 4.54E-08 1.14E-05 0.00E+00 0.00E+00 1.00E-08 2.71E-08 6.02E-08 TEEN: 4.68E-08 7.86E-06 0.00E+00 0.00E+00 1.03E-08 2.60E-08 6.68E-08 CHILD: 4.99E-08 2.65E-06 0.00E+00 0.00E+00 7.57E-09 2.77E-08 5.06E-08 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` ### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | | GI-TRACT | | LIVER | | THYROID | | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 4.53E-09 | 1.14E-06 | 0.00E+00 | 0.00E+00 | 9.99E-10 | 2.71E-09 | 6.02E-09 | | TEEN: | 4.67E-09 | 7.85E-07 | 0.00E+00 | 0.00E+00 | 1.02E-09 | 2.60E-09 | 6.67E-09 | | CHILD: | 4.98E-09 | 2.64E-07 | 0.00E+00 | 0.00E+00 | 7.56E-10 | 2.77E-09 | 5.05E-09 | | INFANT: | | | | | | | 0.00E+00 | #### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 4.59E-11 | 1.15E-08 | 0.00E+00 | 0.00E+00 | 1.01E-11 | 2.74E-11 | 6.09E-11 | | TEEN: | 4.73E-11 | 7.95E-09 | 0.00E+00 | 0.00E+00 | 1.04E-11 | 2.63E-11 | 6.76E-11 | | CHILD: | 5.04E-11 | | | | | | | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 5.40E-09 | 1.36E-06 | 0.00E+00 | 0.00E+00 | 1.19E-09 | 3.23E-09 | 7.16E-09 | | TEEN: | 5.55E-09 | 9.33E-07 | 0.00E+00 | 0.00E+00 | 1.22E-09 | 3.08E-09 | 7.92E-09 | | CHILD: | 6.14E-09 | 3.26E-07 | 0.00E+00 | 0.00E+00 | 9.31E-10 | 3.41E-09 | 6.22E-09 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 5.46E-11 | 1.37E-08 | 0.00E+00 | 0.00E+00 | 1.20E-11 | 3.27E-11 | 7.25E-11 | | TEEN: | 5.62E-11 | 9.44E-09 | 0.00E+00 | 0.00E+00 | 1.23E-11 | 3.12E-11 | 8.02E-11 | | CHILD: | 6.21E-11 | 3.30E-09 | 0.00E+00 | 0.00E+00 | 9.43E-12 | 3.45E-11 | 6.30E-11 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 6.11E-09 | 7.22E-09 | | TEEN: | 3.41E-08 | 4.03E-08 | | CHILD: | 7.12E-09 | 8.42E-09 | | INFANT: | 0.00E+00 | 0.00E+00 | ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 3.05E-10 | 3.60E-10 | | TEEN: | 1.70E-09 | 2.01E-09 | | CHILD: | 3.56E-10 | 4.20E-10 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 7.72E-12 | 9.12E-12 | | TEEN: | 4.31E-11 | 5.09E-11 | | CHILD: | 9.00E-12 | 1.06E-11 | | INFANT: | 0.00E+00 | 0.00E+00 | INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : MN54 #### FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 4.41E-04 7.08E-03 0.00E+00 2.31E-03 6.88E-04 0.00E+00 0.00E+00 TEEN: 4.51E-04 4.66E-03 0.00E+00 2.27E-03 6.78E-04 0.00E+00 0.00E+00 CHILD: 4.74E-04 1.49E-03 0.00E+00 1.78E-03 4.99E-04 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 3.03E-05 4.86E-04 0.00E+00 1.59E-04 4.72E-05 0.00E+00 0.00E+00 TEEN: 3.10E-05 3.20E-04 0.00E+00 1.56E-04 4.66E-05 0.00E+00 0.00E+00 CHILD: 3.25E-05 1.02E-04 0.00E+00 1.22E-04 3.42E-05 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 3.07E-07 4.92E-06 0.00E+00 1.61E-06 4.78E-07 0.00E+00 0.00E+00 TEEN: 3.13E-07 3.24E-06 0.00E+00 1.58E-06 4.72E-07 0.00E+00 0.00E+00 CHILD: 3.29E-07 1.04E-06 0.00E+00 1.24E-06 3.47E-07 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 5.24E-06 8.42E-05 0.00E+00 2.75E-05 8.18E-06 0.00E+00 0.00E+00 TEEN: 5.35E-06 5.53E-05 0.00E+00 2.70E-05 8.05E-06 0.00E+00 0.00E+00 CHILD: 5.83E-06 1.84E-05 0.00E+00 2.19E-05 6.14E-06 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG S.31E-08 8.52E-07 0.00E+00 2.78E-07 8.28E-08 0.00E+00 0.00E+00 TEEN: 5.41E-08 5.60E-07 0.00E+00 2.73E-07 8.14E-08 0.00E+00 0.00E+00 CHILD: 5.90E-08 1.86E-07 0.00E+00 2.22E-07 6.21E-08 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 2.63E-05 3.08E-05 TEEN: 1.47E-04 1.72E-04 CHILD: 3.06E-05 3.59E-05 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 1.31E-06 1.54E-06 TEEN: 7.32E-06 8.58E-06 CHILD: 1.53E-06 1.79E-06 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 3.32E-08 3.89E-08 TEEN: 1.85E-07 2.17E-07 CHILD: 3.87E-08 4.54E-08 INFANT: 0.00E+00 0.00E+00 INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : MN56 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | TNFANT: | 0.00E+00 # FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | т. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | | | | | | 0.00E+00 | | | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | ADULT:<br>TEEN:<br>CHILD: | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | THYROID<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | |---------------------------|----------------------|----------|----------------------|----------|----------------------|---------------------------------------------|----------------------| | CIIIID. | | | | | | | | | INFANT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | U.UUE+UU | 0.005+00 | 0.00E+00 | 0.005+00 | #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | | | | | | 0.00E+00 | | | CHILD: | | | | | | 0.00E+00 | | | INFANT: | | | | | | 0.00E+00 | | ### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | | | | ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | | | | | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : FE55 #### FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.57E-04 3.87E-04 9.76E-04 6.74E-04 0.00E+00 0.00E+00 3.76E-04 TEEN: 1.69E-04 3.14E-04 1.02E-03 7.24E-04 0.00E+00 0.00E+00 4.59E-04 CHILD: 2.20E-04 1.32E-04 1.34E-03 7.11E-04 0.00E+00 0.00E+00 4.02E-04 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 2.35E-04 5.79E-04 1.46E-03 1.01E-03 0.00E+00 0.00E+00 5.63E-04 TEEN: 2.53E-04 4.70E-04 1.53E-03 1.09E-03 0.00E+00 0.00E+00 6.88E-04 CHILD: 3.30E-04 1.97E-04 2.01E-03 1.07E-03 0.00E+00 0.00E+00 6.02E-04 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 2.38E-06 5.86E-06 1.48E-05 1.02E-05 0.00E+00 0.00E+00 5.70E-06 TEEN: 2.56E-06 4.75E-06 1.55E-05 1.10E-05 0.00E+00 0.00E+00 6.97E-06 CHILD: 3.34E-06 2.00E-06 2.03E-05 1.08E-05 0.00E+00 0.00E+00 6.10E-06 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 3.74E-04 9.19E-04 2.32E-03 1.60E-03 0.00E+00 0.00E+00 8.94E-04 TEEN: 4.01E-04 7.44E-04 2.42E-03 1.72E-03 0.00E+00 0.00E+00 1.09E-03 CHILD: 5.42E-04 3.24E-04 3.30E-03 1.75E-03 0.00E+00 0.00E+00 9.89E-04 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 3.78E-06 9.31E-06 2.35E-05 1.62E-05 0.00E+00 0.00E+00 9.05E-06 TEEN: 4.06E-06 7.53E-06 2.45E-05 1.74E-05 0.00E+00 0.00E+00 1.10E-05 CHILD: 5.49E-06 3.28E-06 3.34E-05 1.77E-05 0.00E+00 0.00E+00 1.00E-05 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : FE59 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 6.15E-05 5.35E-04 6.83E-05 1.60E-04 0.00E+00 0.00E+00 4.48E-05 TEEN: 6.34E-05 3.88E-04 7.04E-05 1.64E-04 0.00E+00 0.00E+00 5.18E-05 CHILD: 6.88E-05 1.44E-04 8.53E-05 1.38E-04 0.00E+00 0.00E+00 4.00E-05 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 9.22E-05 | 8.01E-04 | 1.02E-04 | 2.40E-04 | 0.00E+00 | 0.00E+00 | 6.72E-05 | | TEEN: | 9.50E-05 | 5.82E-04 | 1.05E-04 | 2.46E-04 | 0.00E+00 | 0.00E+00 | 7.76E-05 | | CHILD: | 1.03E-04 | 2.15E-04 | 1.28E-04 | 2.07E-04 | 0.00E+00 | 0.00E+00 | 5.99E-05 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 9.33E-07 | 8.11E-06 | 1.04E-06 | 2.43E-06 | 0.00E+00 | 0.00E+00 | 6.80E-07 | | TEEN: | 9.62E-07 | 5.89E-06 | 1.07E-06 | 2.49E-06 | 0.00E+00 | 0.00E+00 | 7.85E-07 | | CHILD: | 1.04E-06 | 2.18E-06 | 1.29E-06 | 2.09E-06 | 0.00E+00 | 0.00E+00 | 6.07E-07 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.46E-04 | 1.27E-03 | 1.62E-04 | 3.82E-04 | 0.00E+00 | 0.00E+00 | 1.07E-04 | | TEEN: | 1.50E-04 | 9.21E-04 | 1.67E-04 | 3.90E-04 | 0.00E+00 | 0.00E+00 | 1.23E-04 | | CHILD: | 1.69E-04 | 3.54E-04 | 2.10E-04 | 3.40E-04 | 0.00E+00 | 0.00E+00 | 9.85E-05 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.48E-06 | 1.29E-05 | 1.64E-06 | 3.86E-06 | 0.00E+00 | 0.00E+00 | 1.08E-06 | | TEEN: | 1.52E-06 | 9.33E-06 | 1.69E-06 | 3.94E-06 | 0.00E+00 | 0.00E+00 | 1.24E-06 | | CHILD: | 1.71E-06 | 3.58E-06 | 2.12E-06 | 3.44E-06 | 0.00E+00 | 0.00E+00 | 9.97E-07 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 6.52E-07 7.66E-07 TEEN: 3.64E-06 4.28E-06 CHILD: 7.61E-07 8.94E-07 INFANT: 0.00E+00 0.00E+00 ``` ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | | I. DODI | シビエバ | | ADULT: | 3.26E-08 | 3.83E-08 | | TEEN: | 1.82E-07 | 2.14E-07 | | CHILD: | 3.80E-08 | 4.46E-08 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 8.24E-10 | 9.68E-10 | | TEEN: | 4.60E-09 | 5.41E-09 | | CHILD: | 9.62E-10 | 1.13E-09 | | INFANT: | 0.00E+00 | 0.00E+00 | | | | | ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CO58 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.26E-05 2.04E-04 0.00E+00 1.01E-05 0.00E+00 0.00E+00 0.00E+00 TEEN: 2.31E-05 1.38E-04 0.00E+00 1.00E-05 0.00E+00 0.00E+00 0.00E+00 CHILD: 2.45E-05 4.66E-05 0.00E+00 7.99E-06 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.25E-06 2.04E-05 0.00E+00 1.01E-06 0.00E+00 0.00E+00 0.00E+00 TEEN: 2.30E-06 1.38E-05 0.00E+00 9.99E-07 0.00E+00 0.00E+00 0.00E+00 CHILD: 2.44E-06 4.66E-06 0.00E+00 7.98E-07 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.28E-08 2.06E-07 0.00E+00 1.02E-08 0.00E+00 0.00E+00 0.00E+00 TEEN: 2.33E-08 1.39E-07 0.00E+00 1.01E-08 0.00E+00 0.00E+00 0.00E+00 CHILD: 2.47E-08 4.71E-08 0.00E+00 8.08E-09 0.00E+00 0.00E+00 0.00E+00 1.01E-08 0.00E+00 0.00E FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 5.37E-06 4.85E-05 0.00E+00 2.39E-06 0.00E+00 0.00E+00 0.00E+00 TEEN: 5.47E-06 3.27E-05 0.00E+00 2.37E-06 0.00E+00 0.00E+00 0.00E+00 CHILD: 6.02E-06 1.15E-05 0.00E+00 1.97E-06 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 5.43E-08 4.91E-07 0.00E+00 2.42E-08 0.00E+00 0.00E+00 0.00E+00 TEEN: 5.54E-08 3.31E-07 0.00E+00 2.40E-08 0.00E+00 0.00E+00 0.00E+00 CHILD: 6.09E-08 1.16E-07 0.00E+00 1.99E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 1.55E-06 1.81E-06 TEEN: 8.63E-06 1.01E-05 CHILD: 1.80E-06 2.11E-06 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 7.72E-08 9.04E-08 TEEN: 4.31E-07 5.05E-07 CHILD: 9.00E-08 1.05E-07 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 1.95E-09 2.29E-09 TEEN: 1.09E-08 1.28E-08 CHILD: 2.28E-09 2.67E-09 INFANT: 0.00E+00 0.00E+00 INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CO60 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.39E-03 1.18E-02 0.00E+00 6.30E-04 0.00E+00 0.00E+00 0.00E+00 TEEN: 1.42E-03 8.21E-03 0.00E+00 6.31E-04 0.00E+00 0.00E+00 0.00E+00 CHILD: 1.51E-03 2.84E-03 0.00E+00 5.12E-04 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.39E-04 | 1.18E-03 | 0.00E+00 | 6.30E-05 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.42E-04 | 8.20E-04 | 0.00E+00 | 6.30E-05 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.51E-04 | 2.83E-04 | 0.00E+00 | 5.11E-05 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.41E-06 | 1.20E-05 | 0.00E+00 | 6.37E-07 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.44E-06 | 8.30E-06 | 0.00E+00 | 6.38E-07 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.53E-06 | 2.87E-06 | 0.00E+00 | 5.18E-07 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 3.31E-04 | 2.82E-03 | 0.00E+00 | 1.50E-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 3.37E-04 | 1.95E-03 | 0.00E+00 | 1.50E-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 3.72E-04 | 6.98E-04 | 0.00E+00 | 1.26E-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|-----------|----------|----------|----------|----------|----------|----------| | ADULT: | 3.35E-06 | 2.85E-05 | 0.00E+00 | 1.52E-06 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 3.41E-06 | 1.97E-05 | 0.00E+00 | 1.51E-06 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | .3.76E-06 | 7.06E-06 | 0.00E+00 | 1.28E-06 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 1.90E-03 2.23E-03 TEEN: 1.06E-02 1.25E-02 CHILD: 2.21E-03 2.60E-03 INFANT: 0.00E+00 0.00E+00 ``` ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 9.48E-05 | 1.11E-04 | | TEEN: | 5.29E-04 | 6.22E-04 | | CHILD: | 1.11E-04 | 1.30E-04 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 2.40E-06 | 2.82E-06 | | TEEN: | 1.34E-05 | 1.58E-05 | | CHILD: | 2.80E-06 | 3.29E-06 | | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : N163 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 7.31E-03 | 3.15E-03 | 2.18E-01 | 1.51E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 7.66E-03 | 2.54E-03 | 2.26E-01 | 1.60E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.01E-02 | 1.07E-03 | 2.96E-01 | 1.59E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 3.65E-04 | 1.57E-04 | 1.09E-02 | 7.54E-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 3.82E-04 | 1.27E-04 | 1.13E-02 | 7.97E-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 5.03E-04 | 5.33E-05 | 1.48E-02 | 7.92E-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 3.69E-06 | 1.59E-06 | 1.10E-04 | 7.63E-06 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 3.87E-06 | 1.28E-06 | 1.14E-04 | 8.07E-06 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 5.09E-06 | 5.40E-07 | 1.50E-04 | 8.01E-06 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 2.17E-04 | 9.36E-05 | 6.47E-03 | 4.49E-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 2.27E-04 | 7.53E-05 | 6.70E-03 | 4.73E-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 3.10E-04 | 3.28E-05 | 9.11E-03 | 4.88E-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 2.20E-06 | 9.48E-07 | 6.55E-05 | 4.54E-06 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 2.30E-06 | 7.62E-07 | 6.78E-05 | 4.79E-06 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 3.14E-06 | 3.33E-07 | 9.22E-05 | 4.94E-06 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | ADULT:<br>TEEN: | 0.00E+00 | 0.00E+00<br>0.00E+00 | |-------------------|----------|----------------------| | CHILD:<br>INFANT: | | 0.00E+00<br>0.00E+00 | ### INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : N165 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CU64 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` | | T. BODY C | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|------------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.35E-17 2 | 2.45E-15 | 0.00E+00 | 2.88E-17 | 7.26E-17 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.43E-17 2 | 2.35E-15 | 0.00E+00 | 3.03E-17 | 7.67E-17 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.68E-17 1 | 1.31E-15 | 0.00E+00 | 2.78E-17 | 6.73E-17 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ( | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 9.05E-18 | 1.64E-15 | 0.00E+00 | 1.93E-17 | 4.86E-17 | 0.00E+00 | 0.00E+00 | | TEEN: | 9.54E-18 | 1.57E-15 | 0.00E+00 | 2.03E-17 | 5.13E-17 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.12E-17 | 8.74E-16 | 0.00E+00 | 1.86E-17 | 4.50E-17 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 9.16E-20 | 1.66E-17 | 0.00E+00 | 1.95E-19 | 4.92E-19 | 0.00E+00 | 0.00E+00 | | TEEN: | 9.65E-20 | 1.59E-17 | 0.00E+00 | 2.05E-19 | 5.19E-19 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.14E-19 | 8.85E-18 | 0.00E+00 | 1.89E-19 | 4.56E-19 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 5.46E-18 9.92E-16 0.00E+00 1.16E-17 2.93E-17 0.00E+00 0.00E+00 5.75E-18 9.47E-16 0.00E+00 1.22E-17 3.09E-17 0.00E+00 0.00E+00 7.03E-18 5.46E-16 0.00E+00 1.16E-17 2.81E-17 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ADULT: TEEN: CHILD: INFANT: ``` FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 5.53E-20 1.00E-17 0.00E+00 1.18E-19 2.97E-19 0.00E+00 0.00E+00 5.82E-20 9.59E-18 0.00E+00 1.24E-19 3.13E-19 0.00E+00 0.00E+00 7.12E-20 5.53E-18 0.00E+00 1.18E-19 2.85E-19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 KIDNEY THYROID ADULT: TEEN: CHILD: INFANT: ``` FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 2.32E-19 2.63E-19 1.30E-18 1.47E-18 2.71E-19 3.07E-19 0.00E+00 0.00E+00 ADULT: TEEN: CHILD: TNFANT: FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 1.16E-20 1.32E-20 6.48E-20 7.35E-20 1.35E-20 1.53E-20 0.00E+00 0.00E+00 ADULT: TEEN: CHILD: INFANT: FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ADULT: TEEN: CHILD: INFANT: 01/01/2000 INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : ZN65 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.39E-02 1.93E-02 9.64E-03 3.07E-02 2.05E-02 0.00E+00 0.00E+00 TEEN: 1.42E-02 1.29E-02 8.75E-03 3.04E-02 1.94E-02 0.00E+00 0.00E+00 CHILD: 1.49E-02 4.20E-03 8.97E-03 2.39E-02 1.51E-02 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 6.93E-04 9.65E-04 4.82E-04 1.53E-03 1.02E-03 0.00E+00 0.00E+00 TEEN: 7.07E-04 6.42E-04 4.37E-04 1.52E-03 9.70E-04 0.00E+00 0.00E+00 CHILD: 7.42E-04 2.10E-04 4.48E-04 1.19E-03 7.52E-04 0.00E+00 0.00E+00 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 7.01E-06 9.77E-06 4.88E-06 1.55E-05 1.04E-05 0.00E+00 0.00E+00 TEEN: 7.16E-06 6.50E-06 4.42E-06 1.53E-05 9.82E-06 0.00E+00 0.00E+00 CHILD: 7.51E-06 2.12E-06 4.53E-06 1.21E-05 7.61E-06 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 4.12E-03 5.75E-03 2.87E-03 9.12E-03 6.10E-03 0.00E+00 0.00E+00 TEEN: 4.20E-03 3.81E-03 2.59E-03 9.00E-03 5.76E-03 0.00E+00 0.00E+00 CHILD: 4.57E-03 1.29E-03 2.76E-03 7.35E-03 4.63E-03 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 4.17E-05 5.82E-05 2.90E-05 9.23E-05 6.18E-05 0.00E+00 0.00E+00 TEEN: 4.25E-05 3.86E-05 2.62E-05 9.11E-05 5.83E-05 0.00E+00 0.00E+00 CHILD: 4.63E-05 1.31E-05 2.79E-05 7.44E-05 4.69E-05 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 1.12E-05 1.29E-05 TEEN: 6.24E-05 7.18E-05 CHILD: 1.30E-05 1.50E-05 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 5.58E-07 6.42E-07 TEEN: 3.12E-06 3.58E-06 CHILD: 6.51E-07 7.49E-07 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 1.41E-08 1.62E-08 TEEN: 7.89E-08 9.07E-08 CHILD: 1.65E-08 1.90E-08 INFANT: 0.00E+00 0.00E+00 # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : ZN69 ### FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|------------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E + 00 | 0.00E+00 | 0.00E+00 | ### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | ADULT:<br>TEEN:<br>CHILD: | 0.00E+00<br>0.00E+00 | SKIN<br>0.00E+00<br>0.00E+00<br>0.00E+00 | |---------------------------|----------------------|------------------------------------------| | INFANT: | | 0.00E+00<br>0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : BR83 #### FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER #### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00L+00 0.00E+00 #### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 #### FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ### INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : BR84 #### FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ADIII.T. TEEN: CHILD: INFANT: FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ADULT: TEEN: CHILD. INFANT: FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ADULT: TEEN: CHILD: FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ADULT: TEEN: CHILD: INFANT: FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ADULT: TEEN: CHILD: INFANT: FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD. TNFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ADULT: TEEN: CHILD: INFANT: 0.00E+00 0.00E+00 INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : BR85 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ADULT: TEEN: CHILD: INFANT: FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ADULT: TEEN: CHILD: INFANT: FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ADULT: TEEN: CHILD: INFANT: FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ADULT: TEEN: CHILD: INFANT: FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ADULT: TEFN: CHILD: INFANT: FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T.BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : RB86 # FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 9.39E-04 3.97E-04 0.00E+00 2.01E-03 0.00E+00 0.00E+00 0.00E+00 1.02E-03 3.21E-04 0.00E+00 2.17E-03 0.00E+00 0.00E+00 0.00E+00 CHILD: 1.29E-03 1.35E-04 0.00E+00 2.10E-03 0.00E+00 0.00E+00 0.00E+00 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` # FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ## FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.97E-09 8.33E-10 0.00E+00 4.23E-09 0.00E+00 0.00E+00 0.00E+00 TEEN: 2.14E-09 6.73E-10 0.00E+00 4.55E-09 0.00E+00 0.00E+00 0.00E+00 CHILD: 2.71E-09 2.84E-10 0.00E+00 4.41E-09 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` # FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | ADULT:<br>TEEN:<br>CHILD:<br>INFANT: | T. BODY<br>9.49E-08<br>1.03E-07<br>1.35E-07<br>0.00E+00 | 1.41E-08 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 2.19E-07<br>2.20E-07 | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | |--------------------------------------|---------------------------------------------------------|----------|----------------------------------|----------------------|----------------------|----------|----------------------| |--------------------------------------|---------------------------------------------------------|----------|----------------------------------|----------------------|----------------------|----------|----------------------| # FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 9.60E-10 4.06E-10 0.00E+00 2.06E-09 0.00E+00 0.00E+00 0.00E+00 1.04E-09 3.27E-10 0.00E+00 2.21E-09 0.00E+00 0.00E+00 0.00E+00 1.37E-09 1.43E-10 0.00E+00 2.23E-09 0.00E+00 ``` # FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 6.65E-09 7.60E-09 TEEN: 3.71E-08 4.24E-08 CHILD: 7.76E-09 8.86E-09 INFANT: 0.00E+00 0.00E+00 ``` # FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | ADULT:<br>TEEN:<br>CHILD:<br>INFANT: | T. BODY 3.32E-10 1.85E-09 3.87E-10 | 3.79E-10<br>2.12E-09<br>4.43E-10 | |--------------------------------------|------------------------------------|----------------------------------| | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 8.40E-12 | 9.60E-12 | | TEEN: | 4.69E-11 | 5.36E-11 | | CHILD: | | 1.12E-11 | | INFANT: | | 0.00E+00 | INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : RB88 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` | TEEN: | T. BODY<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |-------|---------------------------------------------------------|----------|----------------------|----------|----------------------------------|----------|----------------------------------| |-------|---------------------------------------------------------|----------|----------------------|----------|----------------------------------|----------|----------------------------------| # FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.0 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.0 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.0 TNFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.0 | 0.00E+00 | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------| |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------| # FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | TEEN: | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00 | KIDNEY<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00 | |-------|----------------------|----------|----------------------|----------|--------------------------------------------------------|----------------------------------|----------| |-------|----------------------|----------|----------------------|----------|--------------------------------------------------------|----------------------------------|----------| # FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | TEEN: | T. BODY 0.00E+00 0.00E+00 0.00E+00 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |-------|---------------------------------------------|----------|----------|----------|----------------------|----------|----------------------------------| |-------|---------------------------------------------|----------|----------|----------|----------------------|----------|----------------------------------| # FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | TEEN: | T. BODY<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |-------|---------------------------------------------------------|----------|----------------------|----------------------|----------|----------------------------------|----------------------------------| |-------|---------------------------------------------------------|----------|----------------------|----------------------|----------|----------------------------------|----------------------------------| # FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` # FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | ADULT:<br>TEEN:<br>CHILD: | T. BODY 0.00E+00 0.00E+00 0.00E+00 | 0.00E+00 | |---------------------------|------------------------------------|----------| | INFANT: | 0.00E+00 | 0.00E+00 | # FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY | ADULT:<br>TEEN: | T. BODY<br>0.00E+00<br>0.00E+00 | 0.00E+00 | |-----------------|---------------------------------|----------| | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | U.UUE+UU | 0.00E+00 | T TINTO INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : RB89 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` # FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` # FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | CHILD: | 0.00E+00<br>0.00E+00<br>0.00E+00 | GI-TRACT<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | |--------|----------------------------------|----------------------------------------------------------|----------------------------------|----------|----------------------|----------|----------------------| |--------|----------------------------------|----------------------------------------------------------|----------------------------------|----------|----------------------|----------|----------------------| # FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | CHILD: | T. BODY<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | |--------|---------------------------------------------------------|----------|----------------------------------|----------|----------------------|----------|----------------------| |--------|---------------------------------------------------------|----------|----------------------------------|----------|----------------------|----------|----------------------| # FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | CHILDD. | T. BODY<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | |---------|---------------------------------------------------------|----------|----------------------------------|----------|----------------------|----------|----------------------| |---------|---------------------------------------------------------|----------|----------------------------------|----------|----------------------|----------|----------------------| # FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` # FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | ADULT:<br>TEEN:<br>CHILD:<br>INFANT: | 0.00E+00<br>0.00E+00 | SKIN<br>0.00E+00<br>0.00E+00<br>0.00E+00 | |--------------------------------------|----------------------|------------------------------------------| | TNFANT: | 0.00E+00 | 0.00E+00 | | ADULT:<br>TEEN:<br>CHILD:<br>INFANT: | 0.00E+00<br>0.00E+00 | 0.00E+00 | |--------------------------------------|----------------------|----------| | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : SR89 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 4.85E-05 2.71E-04 1.69E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 5.27E-05 2.19E-04 1.84E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 6.80E-05 9.22E-05 2.38E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.62E-07 9.03E-07 5.63E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 1.75E-07 7.30E-07 6.13E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 2.26E-07 3.07E-07 7.93E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.64E-09 9.14E-09 5.70E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 1.78E-09 7.39E-09 6.20E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 2.29E-09 3.11E-09 8.02E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 3.85E-07 2.15E-06 1.34E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 4.17E-07 1.73E-06 1.45E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 5.58E-07 7.56E-07 1.95E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 3.89E-09 2.18E-08 1.36E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 4.22E-09 1.75E-08 1.47E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 5.65E-09 7.65E-09 1.98E-07 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 6.00E-11 6.97E-11 TEEN: 3.35E-10 3.89E-10 CHILD: 7.01E-11 8.13E-11 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 3.00E-12 3.48E-12 TEEN: 1.67E-11 1.94E-11 CHILD: 3.50E-12 4.06E-12 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 7.59E-14 8.81E-14 TEEN: 4.24E-13 4.92E-13 CHILD: 8.85E-14 1.03E-13 INFANT: 0.00E+00 0.00E+00 # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : SR90 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` | | T. BODY G | | | LIVER | | THYROTD | LUNG | |---------|------------|----------|----------|----------|----------|----------------|----------| | ADULT: | 7.47E-01 8 | 8.79E-02 | 3.04E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 6.27E-01 7 | 7.13E-02 | 2.54E+00 | 0.00E+00 | 0.00E+00 | $0.00E \pm 00$ | 0.00E+00 | | CHILD: | 5.69E-01 3 | 3.02E-02 | 2.24E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 C | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | # FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROTD | LUNG | |-----------|--------------|----------|----------|----------|----------|----------|----------| | ADULT: 2 | .49E-03 | 2.93E-04 | 1.01E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0 00E+00 | | TEEN: 2 | .09E-03 | 2.37E-04 | 8.45E-03 | 0.00E+00 | 0 00E+00 | 0.00E+00 | 0.005100 | | CHILD: 1 | .89E-03 | 1.01E-04 | 7.47E-03 | 0 00E+00 | 0.00E+00 | 0.00E+00 | 0.005+00 | | INFANT: 0 | $00E \pm 00$ | 0.00E+00 | 0.000.00 | 0.000.00 | 0.000000 | 0.000 | 0.005 | ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROTO | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 2.52E-05 | 2.96E-06 | 1.03E-04 | 0.00E+00 | | | | | TEEN: | 2.11E-05 | 2.40E-06 | 8.56E-05 | 0 00E+00 | 0.001.00 | 0.005.00 | 0.005+00 | | CHILD: | 1.92E-05 | 1.02E-06 | 7 56E-05 | 0.005+00 | 0.005.00 | 0.005+00 | 0.005+00 | | INFANT: | 0.00E+00 | 0 00E+00 | 0.005+00 | 0.005100 | 0.005+00 | 0.005+00 | 0.00E+00 | | | 0.000100 | 0.001100 | 0.005+00 | 0.005+00 | 0.005+00 | 0.00E+00 | U.UUE+00 | # FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROTD | LUNG | |---------|----------|----------|----------|---------------|----------|----------|----------------| | ADULT: | 5.92E-03 | 6 97E-04 | 2 418-02 | $0.00E\pm0.0$ | | | | | TEEN: | 1 000 | 5.575 | 2.411 | 0.00E+00 | O.OOETOU | 0.005+00 | U.UUE+UU | | | 4.96E-03 | 5.63E-04 | 2.01E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | $0.00E \pm 00$ | | CHILD: | 4.66E-03 | 2.48E-04 | 1.84E-02 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 # FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROTD | LUNG | |---------------------------------------|----------|-----------|-----------|----------|------------|------------|-----------| | ADULT: | 5.99E-05 | 7.05E-06 | 2 44E-04 | 0 008+00 | 0 005700 | 0 005100 | O OUE LOG | | TEEN: | 5 02F-05 | 5 70 - 06 | 2 03 5 04 | 0.005.00 | 0.005+00 | 0.005+00 | 0.00E+00 | | CHILD: | 4 70F 0F | 3.70E-00 | 2.035-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | · · · · · · · · · · · · · · · · · · · | 4.72E-05 | 2.51E-06 | 1.86E-04 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | U.UUE+00 | 0.00E+00 | 0.00E+00 | 0.00E + 00 | 0.00E + 00 | 0.00E±00 | # FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | # FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | | 0.00E+00 | | TEEN: | | 0.00E+00 | | | | | | CHILD: | | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | T. BODY | SKIN | |----------|----------------------------------| | 0.00E+00 | 0.00E+00 | | | 0.00E+00<br>0.00E+00<br>0.00E+00 | INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : SR91 # FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ADULT: T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 4.72E-20 5.56E-18 1.17E-18 0.00E+00 0. ## FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ADULT: T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 1.85E-20 0.00E+00 0. ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ADULT: T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 0. # FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ADULT: TEEN: 0.00E+00 4.41E-20 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ## FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 # FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : SR92 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` # FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | ADULT:<br>TEEN:<br>CHILD:<br>INFANT: | T. BODY<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | |--------------------------------------|---------------------------------------------------------|----------------------|----------------------------------|----------------------|----------------------|----------|----------------------| |--------------------------------------|---------------------------------------------------------|----------------------|----------------------------------|----------------------|----------------------|----------|----------------------| ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | | GI-TRACT | | LIVER | | THYROTD | LUNG | |-----------|----------|------------|----------|----------|----------|----------|-----------------| | ADULT: | 0.00E+00 | 0.00E+00 | 0 008+00 | 0 005+00 | 0 005100 | 0.005.00 | 5/101 | | TEEN: | 0 0000 | 0.000 | 0.005,00 | 0.005700 | 0.005+00 | 0.00E+00 | U.UUE+UU | | , , | 0.00E+00 | 0.00E+00 | U.0UE+00 | U.00E+00 | 0.00E+00 | 0.00E+00 | $0.00E \pm 0.0$ | | CHILD: | 0.00E+00 | 0.00E + 00 | 0.00E+00 | 0 00E+00 | 0 005+00 | 0.000.00 | 0.005.00 | | INFANT: | 0 005.00 | 0 000 | 0.000.00 | 0.000 | 0.005+00 | 0.00E+00 | 0.005+00 | | THE MILL. | 0.00E+00 | 0.005+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | # FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | CHILD: | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | |---------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------|----------|----------------------| | INFANT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0 00E+00 | 0.005+00 | # FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` # FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | | 0.00E+00 | | CHILD: | 0.00E+00 | | | INFANT: | | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : Y90 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.59E-12 6.28E-07 5.92E-11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 1.73E-12 5.30E-07 6.42E-11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 2.22E-12 2.37E-07 8.31E-11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` # FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 7.93E-14 3.13E-08 2.96E-12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 1.11E-13 1.18E-08 4.15E-12 0.00E+00 0. ``` ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | ADULT: 8 TEEN: 8 CHILD: 1 | .03E-16<br>.75E-16 | 2.68E-10<br>1 20E-10 | 2.99E-14<br>3.25E-14<br>4.20E-14 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |---------------------------|--------------------|----------------------|----------------------------------|----------------------|----------------------------------------------|----------------------|----------------------------------| |---------------------------|--------------------|----------------------|----------------------------------|----------------------|----------------------------------------------|----------------------|----------------------------------| ### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 7 55E-13 | 2 99E-07 | 2.82E-11 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 8 21E-13 | 2.51E-07 | 3.05E-11 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 1 09E-12 | 1 16E-07 | 4.09E-11 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TNFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | | THYROID | | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 7.64E-15 | 3.02E-09 | 2.85E-13 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 8 31E-15 | 2.54E-09 | 3.09E-13 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 1 11E-14 | 1.18E-09 | 4.14E-13 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 2.15E-14 | 2.54E-14 | | TEEN: | 1.20E-13 | 1.42E-13 | | CHILD: | 2.50E-14 | 2.96E-14 | | INFANT: | 0.00E+00 | 0.00E+00 | ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 1.07E-15 | 1.27E-15 | | TEEN: | 5.98E-15 | 7.07E-15 | | CHILD: | 1.25E-15 | 1.48E-15 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 2.71E-17 | 3.20E-17 | | TEEN: | 1.51E-16 | 1.79E-16 | | CHILD: | 3.16E-17 | 3.74E-17 | | INFANT: | 0.00E+00 | 0.00E+00 | | | | | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : Y91M ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROTD | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0 00E+00 | 0 005+00 | 0 005700 | | TEEN: | 0.00E+00 | 0 00E+00 | 0 005+00 | 0.005+00 | 0.00000 | 0.005+00 | 0.005+00 | | CHTLD: | 0.00E+00 | 0.005.00 | 0.000000 | 0.005+00 | 0.005 | 0.005+00 | 0.00E+00 | | J , | 0.005700 | 0.005+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | U.UUE+0U | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | ### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KTDNEY | THYROTO | LUNG | |-------------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0 005+00 | 0 008700 | 0 005+00 | | TEEN: | 0.00E+00 | 0 00E+00 | 0 005+00 | 0.005+00 | 0.005.00 | 0.005+00 | 0.000000 | | CHILD: | 0.005.00 | 0.00000 | 0.002+00 | 0.005+00 | 0.005+00 | 0.00E+00 | 0.00E+00 | | · · · · · · | 0.00E+00 | 0.005+00 | 0.005+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | U.UUE+00 | 0.00E+0U | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | ADULT:<br>TEEN:<br>CHILD:<br>INFANT: | T. BODY<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | |--------------------------------------|---------------------------------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|----------|----------------------| |--------------------------------------|---------------------------------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|----------|----------------------| ### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROTD | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | | | | TEEN: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0 00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0 00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 # FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROTD | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | | 0 00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.005+00 | 0.005+00 | | CHILD: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0 00E+00 | 0.00E+00 | 0.001100 | | INFANT: | 0.00E+00 # FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | ## FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : Y91 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 2.05E-08 4.21E-04 7.65E-07 0.00E+00 0. ``` #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.02E-09 | 2.10E-05 | 3.82E-08 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.11E-09 | 1.70E-05 | 4.15E-08 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.43E-09 | 7.14E-06 | 5.36E-08 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.03E-11 2.13E-07 3.87E-10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 1.13E-11 1.72E-07 4.20E-10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 1.45E-11 7.23E-08 5.43E-10 0.00E+00 ``` #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 9.73E-09 | 2.00E-04 | 3.64E-07 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.06E-08 | 1.62E-04 | 3.94E-07 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.41E-08 | 7.04E-05 | 5.28E-07 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |----------|----------------------------------|-------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 9.85E-11 | 2.03E-06 | 3.68E-09 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | 1.07E-10 | 1.64E-06 | 3.99E-09 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | 1.43E-10 | 7.12E-07 | 5.35E-09 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | 0.00E+00 | | 9.85E-11<br>1.07E-10<br>1.43E-10 | 9.85E-11 2.03E-06<br>1.07E-10 1.64E-06<br>1.43E-10 7.12E-07 | 1.07E-10 1.64E-06 3.99E-09 1.43E-10 7.12E-07 5.35E-09 | 9.85E-11 2.03E-06 3.68E-09 0.00E+00 1.07E-10 1.64E-06 3.99E-09 0.00E+00 1.43E-10 7.12E-07 5.35E-09 0.00E+00 | 9.85E-11 2.03E-06 3.68E-09 0.00E+00 0.00E+00 1.07E-10 1.64E-06 3.99E-09 0.00E+00 0.00E+00 1.43E-10 7.12E-07 5.35E-09 0.00E+00 0.00E+00 | T. BODY GI-TRACT BONE LIVER KIDNEY THYROID 9.85E-11 2.03E-06 3.68E-09 0.00E+00 0.00E+00 0.00E+00 1.07E-10 1.64E-06 3.99E-09 0.00E+00 0.00E+00 0.00E+00 1.43E-10 7.12E-07 5.35E-09 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 | ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 3.52E-09 3.96E-09 TEEN: 1.97E-08 2.21E-08 CHILD: 4.11E-09 4.62E-09 INFANT: 0.00E+00 0.00E+00 ``` #### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 1.76E-10 | 1.98E-10 | | TEEN: | 9.82E-10 | 1.10E-09 | | CHILD: | 2.05E-10 | 2.31E-10 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 4.45E-12 | 5.01E-12 | | TEEN: | 2.48E-11 | 2.80E-11 | | CHILD: | 5.19E-12 | 5.84E-12 | | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : Y92 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : Y93 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 7.57E-17 0.00E+00 ``` # FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | ADULT:<br>TEEN: | 0.00E+00<br>0.00E+00 | 3.96E-18 | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | |-------------------|----------------------|----------|----------------------|----------|----------------------|----------|----------------------| | CHILD:<br>INFANT: | 0.00E+00 | 2.48E-18 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | 3.83E-20 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 4.01E-20 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 2.52E-20 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | • | r. BODY | GT-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |-----------|---------|----------|----------|----------|----------|----------|----------| | ADULT: 0 | 00E+00 | 3.60E-17 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: 0 | 005+00 | 3 77E-17 | 0 00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: 0 | 005+00 | 2 45E-17 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TNFANT: 0 | .005.00 | 0.005700 | 0.00E+00 | 0 008+00 | 0 00E+00 | 0.00E+00 | 0.00E+00 | ## FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |----------|----------|----------|----------|----------|----------|----------|----------| | ADIII.T: | 0.00E+00 | 3.65E-19 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 3 81E-19 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 2 48E-19 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : ZR95 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 5.25E-09 2.46E-05 2.42E-08 7.76E-09 1.22E-08 0.00E+00 0.00E+00 TEEN: 5.42E-09 1.82E-05 2.50E-08 7.88E-09 1.16E-08 0.00E+00 0.00E+00 CHILD: 5.93E-09 6.95E-06 3.03E-08 6.67E-09 9.54E-09 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | | GI-TRACT | | LIVER | | THYROID | | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.59E-08 | 7.44E-05 | 7.32E-08 | 2.35E-08 | 3.68E-08 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.64E-08 | 5.50E-05 | 7.56E-08 | 2.38E-08 | 3.50E-08 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.80E-08 | 2.10E-05 | 9.18E-08 | 2.02E-08 | 2.89E-08 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 # FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | | GI-TRACT | | | KIDNEY | | | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.61E-10 | 7.53E-07 | 7.41E-10 | 2.38E-10 | 3.73E-10 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.66E-10 | 5.57E-07 | 7.65E-10 | 2,41E-10 | 3.55E-10 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.82E-10 | 2.13E-07 | 9.29E-10 | 2.04E-10 | 2.92E-10 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROTD | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.51E-09 | 7.09E-06 | 6.97E-09 | 2.24E-09 | 3.51E-09 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.56E-09 | 5.23E-06 | 7.18E-09 | 2.27E-09 | 3.33E-09 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.77E-09 | 2.07E-06 | 9.04E-09 | 1.99E-09 | 2.85E-09 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROTD | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.53E-11 | 7.17E-08 | 7.06E-11 | 2.26E-11 | 3.55E-11 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.58E-11 | 5.29E-08 | 7.27E-11 | 2.29E-11 | 3.37E-11 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.79E-11 | 2.10E-08 | 9.16E-11 | 2.01E-11 | 2.88E-11 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 8.92E-07 | | | ADULI: | 0.926-07 | T.02F-00 | | TEEN: | 4.98E-06 | 5.78E-06 | | CHILD: | 1.04E-06 | 1.21E-06 | | INFANT: | 0.00E+00 | 0.00E+00 | ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 4.45E-08 | 5.17E-08 | | TEEN: | 2.49E-07 | 2.88E-07 | | CHILD: | 5.20E-08 | 6.03E-08 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | | | | | ADULT: | 1.13E-09 | 1.31E-09 | | TEEN: | 6.29E-09 | 7.30E-09 | | CHILD: | 1.31E-09 | 1.53E-09 | | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : ZR97 #### FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 6.30E-19 4.27E-13 6.83E-18 1.38E-18 2.08E-18 0.00E+00 0.00E+00 TEEN: 6.69E-19 3.93E-13 7.34E-18 1.45E-18 2.20E-18 0.00E+00 0.00E+00 CHILD: 7.96E-19 2.04E-13 9.33E-18 1.35E-18 1.94E-18 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.91E-18 | 1.29E-12 | 2.07E-17 | 4.17E-18 | 6.30E-18 | 0.00E+00 | 0.00E+00 | | TEEN: | 2.02E-18 | 1.19E-12 | 2.22E-17 | 4.40E-18 | 6.66E-18 | 0.00E+00 | 0.00E+00 | | CHILD: | 2.41E-18 | 6.18E-13 | 2.82E-17 | 4.08E-18 | 5.86E-18 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.93E-20 | 1.31E-14 | 2.09E-19 | 4.22E-20 | 6.38E-20 | 0.00E+00 | 0.00E+00 | | TEEN: | 2.05E-20 | 1.20E-14 | 2.25E-19 | 4.45E-20 | 6.75E-20 | 0.00E+00 | 0.00E+00 | | CHILD: | 2.44E-20 | 6.26E-15 | 2.86E-19 | 4.13E-20 | 5.93E-20 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.82E-19 | 1.23E-13 | 1.97E-18 | 3.97E-19 | 6.00E-19 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.92E-19 | 1.13E-13 | 2.11E-18 | 4.18E-19 | 6.33E-19 | 0.00E+00 | 0.00E+00 | | CHILD: | 2.37E-19 | 6.09E-14 | 2.78E-18 | 4.02E-19 | 5.78E-19 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | 1.25E-15 | 1.99E-20 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 1.14E-15 | 2.14E-20 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 6.17E-16 | 2.82E-20 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 1.46E-16 | 1.70E-16 | | TEEN: | 8.15E-16 | 9.48E-16 | | CHILD: | 1.70E-16 | 1.98E-16 | | TNFANT. | 0.00E+00 | 0.00E+00 | #### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 7.28E-18 | 8.48E-18 | | TEEN: | 4.07E-17 | 4.73E-17 | | CHILD: | 8.50E-18 | 9.89E-18 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 1.84E-19 | 2.15E-19 | | TEEN: | 1.03E-18 | 1.20E-18 | | CHILD: | 2.15E-19 | 2.50E-19 | | INFANT: | 0.00E+00 | 0.00E+00 | ### INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : NB95 INDIVIDUAL DOSE FACTORS FOR EIGOTS FOR ISOTOFE . RESS #### FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 6.50E-06 7.34E-02 2.17E-05 1.21E-05 1.20E-05 0.00E+00 0.00E+00 TEEN: 6.69E-06 5.19E-02 2.19E-05 1.21E-05 1.18E-05 0.00E+00 0.00E+00 CHILD: 7.19E-06 1.86E-02 2.58E-05 1.01E-05 9.45E-06 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 3.25E-07 3.67E-03 1.09E-06 6.04E-07 5.97E-07 0.00E+00 0.00E+00 TEEN: 3.34E-07 2.59E-03 1.09E-06 6.07E-07 5.88E-07 0.00E+00 0.00E+00 CHILD: 3.59E-07 9.29E-04 1.29E-06 5.03E-07 4.72E-07 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 3.29E-09 3.71E-05 1.10E-08 6.12E-09 6.04E-09 0.00E+00 0.00E+00 TEEN: 3.38E-09 2.63E-05 1.11E-08 6.14E-09 5.95E-09 0.00E+00 0.00E+00 CHILD: 3.64E-09 9.41E-06 1.31E-08 5.09E-09 4.78E-09 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.58E-10 2.91E-06 8.62E-10 4.79E-10 4.74E-10 0.00E+00 0.00E+00 TEEN: 2.64E-10 2.05E-06 8.66E-10 4.80E-10 4.65E-10 0.00E+00 0.00E+00 CHILD: 2.95E-10 7.63E-07 1.06E-09 4.13E-10 3.88E-10 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 2.61E-12 2.95E-08 8.72E-12 4.85E-12 4.80E-12 0.00E+00 0.00E+00 TEEN: 2.68E-12 2.08E-08 8.76E-12 4.86E-12 4.71E-12 0.00E+00 0.00E+00 CHILD: 2.99E-12 7.73E-09 1.07E-11 4.18E-12 3.92E-12 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 #### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 2.43E-07 2.86E-07 TEEN: 1.36E-06 1.60E-06 CHILD: 2.84E-07 3.34E-07 INFANT: 0.00E+00 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 1.22E-08 1.43E-08 TEEN: 6.79E-08 7.98E-08 CHILD: 1.42E-08 1.67E-08 INFANT: 0.00E+00 0.00E+00 #### FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 3.08E-10 3.62E-10 TEEN: 1.72E-09 2.02E-09 CHILD: 3.59E-10 4.22E-10 INFANT: 0.00E+00 0.00E+00 # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : MO99 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.31E-09 2.82E-08 0.00E+00 1.22E-08 2.75E-08 0.00E+00 0.00E+00 TEEN: 2.47E-09 2.32E-08 0.00E+00 1.30E-08 2.97E-08 0.00E+00 0.00E+00 CHILD: 3.05E-09 1.02E-08 0.00E+00 1.23E-08 2.63E-08 0.00E+00 0.00E+00 1.23E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.16E-10 | 1.41E-09 | 0.00E+00 | 6.07E-10 | 1.37E-09 | 0.00E+00 | 0.00E+00 | | TEEN: | 1 23E-10 | 1.16E-09 | 0.00E+00 | 6.47E-10 | 1.48E-09 | 0.00E+00 | 0.00E+00 | | CHILD: | 1 52E-10 | 5.09E-10 | 0.00E+00 | 6.16E-10 | 1.31E-09 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | ADULT:<br>TEEN:<br>CHILD: | 1.17E-12<br>1.25E-12<br>1.54E-12 | 1.17E-11<br>5.15E-12 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 6.55E-12<br>6.23E-12 | KIDNEY<br>1.39E-11<br>1.50E-11<br>1.33E-11<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |---------------------------|----------------------------------|----------------------|----------------------------------|----------------------|--------------------------------------------------------|----------------------|----------------------------------| | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | | THYROID | | |---------|----------|----------|----------|----------|----------|----------|----------------| | ADULT: | 2.75E-11 | 3 35E-10 | 0.00E+00 | 1.45E-10 | 3.27E-10 | 0.00E+00 | 0.00E+00 | | TEEN: | 2.93E-11 | 2 75E-10 | 0 00E+00 | 1.54E-10 | 3.52E-10 | 0.00E+00 | 0.00E+00 | | CHILD: | 3.75E-11 | 1 258-10 | 0.00E+00 | 1 52E-10 | 3.24E-10 | 0.00E+00 | 0.00E+00 | | · | 2.125-11 | 7.225.10 | 0.005+00 | U UUE+UU | 0.00E+00 | 0 00E+00 | $0.00E \pm 00$ | | INFANT: | 0.005+00 | 0.005700 | 0.000 | 0.000100 | 0.000.00 | 0.000 | | #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | | THYROID | | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 2.78E-13 | 3.39E-12 | 0.00E+00 | 1.46E-12 | 3.31E-12 | 0.00E+00 | 0.00E+00 | | TEEN: | 2.97E-13 | 2.79E-12 | 0.00E+00 | 1.56E-12 | 3.56E-12 | 0.00E+00 | 0.00E+00 | | CHILD: | 3.80E-13 | 1 27E-12 | 0 00E+00 | 1.54E-12 | 3.28E-12 | 0.00E+00 | 0.00E+00 | | TNFANT: | 0.00E+00 # FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 2.17E-11 | 2.51E-11 | | TEEN: | 1.21E-10 | 1.40E-10 | | CHILD: | 2.53E-11 | 2.93E-11 | | INFANT: | 0.00E+00 | 0.00E+00 | ## FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 1.08E-12 | 1.25E-12 | | TEEN: | 6.04E-12 | 7.00E-12 | | CHILD: | 1.26E-12 | 1.46E-12 | | TNFANT: | 0.00E+00 | 0.00E+00 | | T. BODY | SKIN | |----------|---------------------------------------------------------| | 2.74E-14 | 3.17E-14 | | 1.53E-13 | 1.77E-13 | | | | | 0.00E+00 | 0.00E+00 | | | T. BODY<br>2.74E-14<br>1.53E-13<br>3.20E-14<br>0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TC99M ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | | | | | 0.00E+00 | | | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | ADULT:<br>TEEN:<br>CHILD: | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |---------------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|----------------------------------|----------------------------------| | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | | 0.00E+00 | | | | | | ### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 | | | | | | | ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TC101 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T.BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : RU103 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.07E-07 | 2.91E-05 | 2.49E-07 | 0.00E+00 | 9.50E-07 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.12E-07 | 2.18E-05 | 2.61E-07 | 0.00E+00 | 9.22E-07 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.24E-07 | 8.36E-06 | 3.23E-07 | 0.00E+00 | 8.14E-07 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.61E-09 | 4.35E-07 | 3.73E-09 | 0.00E+00 | 1.42E-08 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.67E-09 | 3.27E-07 | 3.92E-09 | 0.00E+00 | 1.38E-08 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.86E-09 | 1.25E-07 | 4.84E-09 | 0.00E+00 | 1.22E-08 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.63E-11 | 4.41E-09 | 3.78E-11 | 0.00E+00 | 1.44E-10 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.69E-11 | 3.31E-09 | 3.97E-11 | 0.00E+00 | 1.40E-10 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.88E-11 | 1.27E-09 | 4.90E-11 | 0.00E+00 | 1.23E-10 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.28E-07 | 3.46E-05 | 2.96E-07 | 0.00E+00 | 1.13E-06 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.33E-07 | 2.59E-05 | 3.10E-07 | 0.00E+00 | 1.09E-06 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.53E-07 | 1.03E-05 | 3.98E-07 | 0.00E+00 | 1.00E-06 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.29E-09 | 3.50E-07 | 3.00E-09 | 0.00E+00 | 1.14E-08 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.34E-09 | 2.62E-07 | 3.14E-09 | 0.00E+00 | 1.11E-08 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.55E-09 | 1.04E-07 | 4.03E-09 | 0.00E+00 | 1.01E-08 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 2.22E-07 | 2.59E-07 | | TEEN: | 1.24E-06 | 1.44E-06 | | CHILD: | 2.59E-07 | 3.02E-07 | | INFANT: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 1.11E-08 | 1.29E-08 | | TEEN: | 6.18E-08 | 7.21E-08 | | CHILD: | 1.29E-08 | 1.51E-08 | | INFANT: | 0.00E+00 | 0.00E+00 | | T. BODY | SKIN | |----------|---------------------------------------------------------| | 2.80E-10 | 3.27E-10 | | 1.56E-09 | 1.83E-09 | | 3.27E-10 | 3.81E-10 | | 0.00E+00 | 0.00E+00 | | | T. BODY<br>2.80E-10<br>1.56E-09<br>3.27E-10<br>0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : RU105 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` | | T BODY | GI-TRACT | BONE | LIVER | | THYROID | | |-----------|-----------------|-----------------|----------|----------|----------|----------|----------| | ADIII.TT: | 0.008+00 | 0 00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | $0.00E \pm 0.0$ | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | $0.00E \pm 0.0$ | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | ADULT:<br>TEEN:<br>CHILD:<br>INFANT: | T. BODY<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |--------------------------------------|---------------------------------------------------------|----------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------| |--------------------------------------|---------------------------------------------------------|----------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------| ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | TEEN: | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |---------|----------------------|----------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------| | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ``` ### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | TEEN: | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |---------|----------------------|----------|----------------------|----------------------|----------------------------------|----------------------|----------------------------------| | INFANT: | 0.00E+00 ## FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : RU106 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` | | | GI-TRACT | | LIVER | | THYROTD | LUNG | |---------|----------|----------|----------|----------|----------|----------------|----------| | ADULT: | 5.15E-06 | 2.63E-03 | 4.07E-05 | 0.00E+00 | 7.86E-05 | 0.00E+00 | 0.00E+00 | | TEEN: | 5.57E-06 | 2.12E-03 | 4.42E-05 | 0.00E+00 | 8.52E-05 | 0.00E+00 | 0.00E+00 | | CHILD: | 7.10E-06 | 8.85E-04 | 5.69E-05 | 0.00E+00 | 7.68E-05 | $0.00E \pm 00$ | 0.00E±00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 7.71E-08 3.95E-05 6.10E-07 0.00E+00 1.18E-06 0.00E+00 0.00E+00 TEEN: 8.34E-08 3.18E-05 6.62E-07 0.00E+00 1.28E-06 0.00E+00 0.00E+00 CHILD: 1.06E-07 1.33E-05 8.52E-07 0.00E+00 1.15E-06 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | ADULT:<br>TEEN:<br>CHILD:<br>INFANT: | T. BODY<br>7.81E-10<br>8.45E-10<br>1.08E-09<br>0.00E+00 | 3.21E-07<br>1.34E-07 | 6.17E-09<br>6.70E-09<br>8.63E-09 | 0.00E+00<br>0.00E+00 | 1.19E-08<br>1.29E-08<br>1.16E-08 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | |--------------------------------------|---------------------------------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------| |--------------------------------------|---------------------------------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------| ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROTD | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 6.12E-06 | 3.13E-03 | 4.84E-05 | 0.00E+00 | 9.34E-05 | 0.00E+00 | 0.00E+00 | | TEEN: | 6.61E-06 | 2.51E-03 | 5.24E-05 | 0.00E+00 | 1.01E-04 | 0.00E+00 | 0.00E+00 | | CHILD: | 8.73E-06 | 1.09E-03 | 7.00E-05 | 0.00E+00 | 9.45E-05 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 6.20E-08 | 3.17E~05 | 4.90E-07 | 0.00E+00 | | | | | TEEN: | 6.69E-08 | 2.54E-05 | 5.31E-07 | 0.00E+00 | 1.02E-06 | 0 00E+00 | 0.005+00 | | CHILD: | 8.84E-08 | 1.10E-05 | 7.08E-07 | 0.00E+00 | 9.57E-07 | 0 00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ## FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 9.36E-06 1.12E-05 TEEN: 5.23E-05 6.27E-05 CHILD: 1.09E-05 1.31E-05 INFANT: 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 4.67E-07 | 5.61E-07 | | TEEN: | 2.61E-06 | 3.13E-06 | | CHILD: | 5.45E-07 | 6.54E~07 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 1.18E-08 | 1.42E-08 | | TEEN: | 6.61E-08 | 7.93E-08 | | CHILD: | 1.38E-08 | 1.66E-08 | | INFANT: | 0.00E+00 | 0.00E+00 | ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : AG110M ### FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ADULT: TEEN: CHILD: INFANT: #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ADULT: TEEN: CHILD: INFANT: #### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ADULT: TEEN: CHILD: INFANT: #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ADULT: TEEN: CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ADULT: TEEN: CHILD: INFANT. ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 5.29E-05 6.18E-05 2.96E-04 3.45E-04 6.18E-05 7.21E-05 0.00E+00 0.00E+00 TEEN: CHILD: INFANT: ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 2.64E-06 3.08E-06 1.48E-05 1.72E-05 3.08E-06 3.60E-06 0.00E+00 0.00E+00 ADULT: TEEN: CHILD: INFANT: ### FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 6.69E-08 7.81E-08 3.74E-07 4.36E-07 ADULT: TEEN: 7.81E-08 9.11E-08 0.00E+00 0.00E+00 CHILD: TNFANT: INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE125M ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 3.09E-05 9.20E-04 2.30E-04 8.35E-05 9.37E-04 6.93E-05 0.00E+00 TEEN: 3.35E-05 7.40E-04 2.51E-04 9.04E-05 0.00E+00 7.01E-05 0.00E+00 CHILD: 4.29E-05 3.11E-04 3.22E-04 8.73E-05 0.00E+00 9.04E-05 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 3.85E-08 1.15E-06 2.88E-07 1.04E-07 1.17E-06 8.65E-08 0.00E+00 TEEN: 4.19E-08 9.24E-07 3.13E-07 1.13E-07 0.00E+00 8.75E-08 0.00E+00 CHILD: 5.36E-08 3.88E-07 4.02E-07 1.09E-07 0.00E+00 1.13E-07 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 3.90E-10 1.16E-08 2.91E-09 1.06E-09 1.18E-08 8.76E-10 0.00E+00 TEEN: 4.24E-10 9.36E-09 3.17E-09 1.14E-09 0.00E+00 8.86E-10 0.00E+00 CHILD: 5.43E-10 3.93E-09 4.07E-09 1.10E-09 0.00E+00 1.14E-09 0.00E+00 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 9.18E-08 2.74E-06 6.85E-07 2.48E-07 2.79E-06 2.06E-07 0.00E+00 TEEN: 9.95E-08 2.20E-06 7.44E-07 2.68E-07 0.00E+00 2.08E-07 0.00E+00 CHILD: 1.32E-07 9.56E-07 9.91E-07 2.69E-07 0.00E+00 2.78E-07 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 9.29E-10 2.77E-08 6.93E-09 2.51E-09 2.82E-08 2.09E-09 0.00E+00 TEEN: 1.01E-09 2.22E-08 7.53E-09 2.71E-09 0.00E+00 2.10E-09 0.00E+00 CHILD: 1.34E-09 9.68E-09 1.00E-08 2.72E-09 0.00E+00 2.82E-09 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 5.05E-09 6.92E-09 TEEN: 2.82E-08 3.86E-08 CHILD: 5.89E-09 8.08E-09 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 2.52E-10 3.46E-10 TEEN: 1.41E-09 1.93E-09 CHILD: 2.94E-10 4.03E-10 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 6.38E-12 8.75E-12 TEEN: 3.56E-11 4.88E-11 CHILD: 7.44E-12 1.02E-11 INFANT: 0.00E+00 0.00E+00 ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE127M #### FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.43E-04 3.94E-03 1.18E-03 4.20E-04 4.78E-03 3.00E-04 0.00E+00 1.52E-04 3.19E-03 1.28E-03 4.54E-04 5.19E-03 3.04E-04 0.00E+00 1.96E-04 1.34E-03 1.65E-03 4.44E-04 4.70E-03 3.94E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ADULT: TEEN: CHILD: INFANT: #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.79E-07 4.92E-06 1.47E-06 5.25E-07 5.96E-06 3.75E-07 0.00E+00 1.90E-07 3.98E-06 1.60E-06 5.67E-07 6.47E-06 3.80E-07 0.00E+00 2.44E-07 1.67E-06 2.06E-06 5.54E-07 5.87E-06 4.92E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ADIII.T: TEEN: CHILD: INFANT: #### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.81E-09 4.98E-08 1.49E-08 5.31E-09 6.04E-08 3.80E-09 0.00E+00 1.92E-09 4.03E-08 1.62E-08 5.74E-09 6.55E-08 3.85E-09 0.00E+00 2.47E-09 1.69E-08 2.08E-08 5.61E-09 5.94E-08 4.98E-09 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ADULT: TEEN: CHILD: INFANT: #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 4.26E-07 1.17E-05 3.49E-06 1.25E-06 1.42E-05 8.93E-07 0.00E+00 4.51E-07 9.45E-06 3.79E-06 1.35E-06 1.54E-05 9.02E-07 0.00E+00 6.02E-07 4.11E-06 5.07E-06 1.37E-06 1.45E-05 1.21E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ADULT: TEEN: CHILD: INFANT: #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 4.31E-09 1.19E-07 3.54E-08 1.26E-08 1.44E-07 9.04E-09 0.00E+00 4.57E-09 9.57E-08 3.84E-08 1.36E-08 1.56E-07 9.13E-09 0.00E+00 6.09E-09 4.16E-08 5.13E-08 1.38E-08 1.46E-07 1.23E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ADULT: TEEN: CHILD: INFANT: #### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 5.99E-10 7.07E-10 ADULT: 3.34E-09 3.95E-09 6.98E-10 8.25E-10 TFEN: CHILD: 0.00E+00 0.00E+00 TNFANT: ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER BODY SKIN 2.99E-11 3.53E-11 ADIII.T. 1.67E-10 1.97E-10 3.49E-11 4.12E-11 0.00E+00 0.00E+00 TEEN: CHILD: INFANT: ### FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 7.57E-13 8.94E-13 SKIN ADULT: 4.22E-12 4.99E-12 8.83E-13 1.04E-12 0.00E+00 0.00E+00 CHILD: INFANT: INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE127 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 4.34E-20 1.58E-17 2.00E-19 7.20E-20 8.16E-19 1.48E-19 0.00E+00 TEEN: 4.72E-20 1.69E-17 2.19E-19 7.77E-20 8.88E-19 1.51E-19 0.00E+00 CHILD: 6.05E-20 1.10E-17 2.82E-19 7.60E-20 8.02E-19 1.95E-19 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 1.97E-20 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 4.70E-20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 5.02E-20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 3.39E-20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE129M ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 8.00E-05 2.55E-03 5.06E-04 1.89E-04 2.11E-03 1.74E-04 0.00E+00 TEEN: 8.64E-05 2.05E-03 5.46E-04 2.03E-04 2.28E-03 1.76E-04 0.00E+00 CHILD: 1.09E-04 8.58E-04 7.04E-04 1.96E-04 2.07E-03 2.27E-04 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 9.99E-08 | 3.18E-06 | 6.31E-07 | 2.35E-07 | 2.63E-06 | 2.17E-07 | 0.00E+00 | | TEEN: | 1.08E-07 | 2.56E-06 | 6.82E-07 | 2.53E-07 | 2.85E-06 | 2.20E-07 | 0.00E+00 | | CHILD: | 1 36E-07 | 1.07E-06 | 8.78E-07 | 2.45E-07 | 2.58E-06 | 2.83E-07 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | ADULT: 1.03 TEEN: 1.03 CHILD: 1.38 | BODY GI-TRACT<br>E-09 3.22E-08<br>E-09 2.59E-08<br>BE-09 1.08E-08<br>E+00 0.00E+00 | 6.39E-09<br>6.90E-09<br>8.89E-09 | 2.56E-09<br>2.48E-09 | 2.67E-08<br>2.89E-08<br>2.61E-08 | 2.23E-09<br>2.87E-09 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |------------------------------------|------------------------------------------------------------------------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------| |------------------------------------|------------------------------------------------------------------------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------| ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |----------|----------|----------|----------|----------|----------|----------|-------------| | ADULT: | 2 38E-07 | 7 57E-06 | 1.50E-06 | 5.61E-07 | 6.27E-06 | 5.16E-07 | 0.00E+00 | | TEEN: | 2.50E 07 | 6 08E-06 | 1 62E-06 | 6 01E-07 | 6.77E-06 | 5.22E-07 | 0.00E+00 | | CHILD: | 3.36E-07 | 2 64F-06 | 2 16E-06 | 6 04E-07 | 6.35E-06 | 6.98E-07 | 0.00E+00 | | TNFANT: | 2.305-07 | 0.000 | V UUETUU | 0.005+00 | 0.00E+00 | 0 00E+00 | 0.00E+00 | | TML WMI: | U.UUETUU | 0.005+00 | 0.00000 | 0.000.00 | 0.001.00 | 0.002.00 | • • • • • • | #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | | THYROID | | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 2.41E-09 | 7.66E-08 | 1.52E-08 | 5.68E-09 | 6.35E-08 | 5.23E-09 | 0.00E+00 | | TEEN: | 2.59E-09 | 6.15E-08 | 1.64E-08 | 6.08E-09 | 6.86E-08 | 5.29E-09 | 0.00E+00 | | CHILD: | 3.40E-09 | 2.67E-08 | 2.19E-08 | 6.12E-09 | 6.43E-08 | 7.06E-09 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 3.32E-08 | 3.88E-08 | | TEEN: | 1.85E-07 | 2.16E-07 | | CHILD: | 3.87E-08 | 4.52E-08 | | INFANT: | 0.00E+00 | 0.00E+00 | ## FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 1.66E-09 | 1.94E-09 | | TEEN: | 9.25E-09 | 1.08E-08 | | CHILD: | 1.93E-09 | 2.26E-09 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 4.19E-11 | 4.90E-11 | | TEEN: | 2.34E-10 | 2.73E-10 | | CHILD: | 4.89E-11 | 5.71E-11 | | INFANT: | 0.00E+00 | 0.00E+00 | INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE129 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` | TEEN:<br>CHILD: | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |-----------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------| | INFANT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0 00E+00 | ## FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROTD | LUNG | |---------|----------|----------------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | $0.00E \pm 00$ | 0 00E+00 | 0 008+00 | 0 005+00 | 0.005+00 | 0.002.00 | | TEEN: | 0 005+00 | 0.0000.00 | 0.000000 | 0.000000 | 0.005+00 | 0.005 | 0.005+00 | | | 0.00E+00 | 0.005+00 | 0.00E+00 | 0.005+00 | U.UUE+UU | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROTD | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | | GI-TRACT | | LIVER | | THYROID | | |---------|----------|----------|------------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0 00E±00 | | TEEN: | 0.00E+00 | 0.00E+00 | 0.00E + 00 | 0.00E+00 | 0.00E+00 | 0 00E+00 | 0.005+00 | | CHILD: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0 00E+00 | 0.00E+00 | 0.005.00 | 0.002,00 | | INFANT: | 0.00E+00 | 0.00E+00 | 0 00E+00 | 0.005+00 | 0.000 | 0.005+00 | 0.005+00 | | | | | 0.000 | 0.000 | 0.005100 | 0.005700 | 0.005700 | ### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | | GI-TRACT | | LIVER | | THYROID | | |---------|----------|----------|----------|----------|----------|------------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E + 00 | 0 00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0 00E+00 | 0.005+00 | | CHILD: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.005+00 | | INFANT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0 00E+00 | 0.005+00 | ## FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE131M ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ADULT: T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 3.88E-10 4.62E-08 9.51E-10 4.65E-10 4.71E-09 7.37E-10 0.00E+00 TEEN: 4.09E-10 3.93E-08 1.02E-09 4.90E-10 5.11E-09 7.37E-10 0.00E+00 CHILD: 4.79E-10 1.82E-08 1.30E-09 4.50E-10 4.35E-09 9.25E-10 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ADULT: T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 4.84E-13 5.77E-11 1.19E-12 5.81E-13 5.88E-12 9.20E-13 0.00E+00 TEEN: 5.10E-13 4.91E-11 1.28E-12 6.12E-13 6.38E-12 9.20E-13 0.00E+00 CHILD: 5.98E-13 2.28E-11 1.62E-12 5.62E-13 5.44E-12 1.15E-12 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ADULT: T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 4.90E-15 5.84E-13 1.20E-14 5.88E-15 5.96E-14 9.31E-15 0.00E+00 CHILD: 5.17E-15 4.97E-13 1.29E-14 6.19E-15 6.46E-14 9.32E-15 0.00E+00 CHILD: 6.05E-15 2.31E-13 1.64E-14 5.69E-15 5.50E-14 1.17E-14 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.15E-12 1.37E-10 2.83E-12 1.38E-12 1.40E-11 2.19E-12 0.00E+00 TEEN: 1.21E-12 1.17E-10 3.03E-12 1.45E-12 1.52E-11 2.19E-12 0.00E+00 CHILD: 1.47E-12 5.61E-11 4.00E-12 1.38E-12 1.34E-11 2.85E-12 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.17E-14 1.39E-12 2.86E-14 1.40E-14 1.42E-13 2.22E-14 0.00E+00 TEEN: 1.23E-14 1.18E-12 3.07E-14 1.47E-14 1.53E-13 2.21E-14 0.00E+00 CHILD: 1.49E-14 5.68E-13 4.05E-14 1.40E-14 1.36E-13 2.88E-14 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 2.87E-13 3.39E-13 TEEN: 1.60E-12 1.89E-12 CHILD: 3.35E-13 3.95E-13 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 1.43E-14 1.69E-14 TEEN: 8.01E-14 9.44E-14 CHILD: 1.67E-14 1.97E-14 TNFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 3.63E-16 4.28E-16 TEEN: 2.03E-15 2.39E-15 CHILD: 4.23E-16 4.99E-16 INFANT: 0.00E+00 0.00E+00 # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE131 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROTD | LUNG | |--------------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0 00E+00 | 0 00E+00 | 0 005700 | | TEEN: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.002+00 | 0.000100 | 0.005+00 | 0.005700 | | CHILD: | 0.00E+00 | 0 00E+00 | 0.005.00 | 0.005.00 | 0.005+00 | 0.005+00 | 0.005+00 | | | 0.00E+00 | 0.005.00 | 0.005.00 | 0.005700 | 0.005+00 | 0.00E+00 | 0.00E+00 | | TIAL LIATAL. | 0.005+00 | 0.005+00 | 0.005+00 | U.UUE+UU | U.UUE+UU | U.00E+00 | 0.00E+00 | ### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | TEEN:<br>CHILD: | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |-----------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------| | INFANT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00 | ## FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | TEEN:<br>CHILD: | 0.00E+00<br>0.00E+00<br>0.00E+00 | GI-TRACT<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | |-----------------|----------------------------------|----------------------------------------------------------|----------------------------------|----------------------|----------------------------------|----------|----------------------| |-----------------|----------------------------------|----------------------------------------------------------|----------------------------------|----------------------|----------------------------------|----------|----------------------| ## FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | ADULT: 0 TEEN: 0 CHILD: 0 | .00E+00<br>.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | KIDNEY<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | |---------------------------|--------------------|----------------------|----------------------------------|----------------------|--------------------------------------------------------|----------|----------------------| |---------------------------|--------------------|----------------------|----------------------------------|----------------------|--------------------------------------------------------|----------|----------------------| ## FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | | | | | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE132 ## FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 3.69E-07 | 1.86E-05 | 6.08E-07 | 3.93E-07 | 3.79E-06 | 4.34E-07 | 0.00E+00 | | TEEN: | 3.82E-07 | 1.29E-05 | 6.42E-07 | 4.06E-07 | 3.90E-06 | 4.28E-07 | 0.00E+00 | | CHILD: | 4.28E-07 | 3.57E-06 | 8.01E-07 | 3.54E-07 | 3.29E-06 | 5.16E-07 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 4.61E-10 | 2.32E-08 | 7.59E-10 | 4.91E-10 | 4.73E-09 | 5.42E-10 | 0.00E+00 | | TEEN: | 4.77E-10 | 1.61E-08 | 8.01E-10 | 5.07E-10 | 4.87E-09 | 5.35E-10 | 0.00E+00 | | CHILD: | 5.34E-10 | 4.45E-09 | 1.00E-09 | 4.42E-10 | 4.11E-09 | 6.44E-10 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 4.67E-12 | 2.35E-10 | 7.68E-12 | 4.97E-12 | 4.79E-11 | 5.49E-12 | 0.00E+00 | | TEEN: | 4.83E-12 | 1.63E-10 | 8.11E-12 | 5.13E-12 | 4.93E-11 | 5.41E-12 | 0.00E+00 | | CHILD: | 5.41E-12 | 4.51E-11 | 1.01E-11 | 4.48E-12 | 4.16E-11 | 6.52E-12 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.10E-09 | 5.53E-08 | 1.81E-09 | 1.17E-09 | 1.13E-08 | 1.29E-09 | 0.00E+00 | | TEEN: | 1.13E-09 | 3.82E-08 | 1.90E-09 | 1.20E-09 | 1.16E-08 | 1.27E-09 | 0.00E+00 | | CHILD: | 1.32E-09 | 1.10E-08 | 2.46E-09 | 1.09E-09 | 1.01E-08 | 1.59E-09 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.11E-11 | 5.60E-10 | 1.83E-11 | 1.18E-11 | 1.14E-10 | 1.31E-11 | 0.00E+00 | | TEEN: | 1.15E-11 | 3.86E-10 | 1.93E-11 | 1.22E-11 | 1.17E-10 | 1.29E-11 | 0.00E+00 | | CHILD: | 1.33E-11 | 1.11E-10 | 2.49E-11 | 1.10E-11 | 1.02E-10 | 1.61E-11 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 4.73E-11 | 5.56E-11 | | TEEN: | 2.64E-10 | 3.10E-10 | | CHILD: | 5.51E-11 | 6.49E-11 | | INFANT: | 0.00E+00 | 0.00E+00 | ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 2.36E-12 | 2.78E-12 | | TEEN: | 1.32E-11 | 1.55E-11 | | CHILD: | 2.75E-12 | 3.24E-12 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 5.97E-14 | 7.03E-14 | | TEEN: | 3.33E-13 | 3.92E-13 | | CHILD: | 6.97E-14 | 8.20E-14 | | INFANT: | 0.00E+00 | 0.00E+00 | | | | | ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : I130 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 5.18E-17 1.13E-16 4.45E-17 1.31E-16 2.05E-16 1.11E-14 0.00E+00 TEEN: 5.33E-17 1.03E-16 4.62E-17 1.34E-16 2.06E-16 1.09E-14 0.00E+00 CHILD: 5.88E-17 5.33E-17 5.64E-17 1.14E-16 1.70E-16 1.26E-14 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.72E-18 | 3.76E-18 | 1.48E-18 | 4.37E-18 | 6.82E-18 | 3.70E-16 | 0.00E+00 | | TEEN: | 1.78E-18 | 3.42E-18 | 1.54E-18 | 4.45E-18 | 6.85E-18 | 3.63E-16 | 0.00E+00 | | CHILD: | 1.96E-18 | 1.78E-18 | 1.88E-18 | 3.80E-18 | 5.68E-18 | 4.18E-16 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.74E-20 | 3.81E-20 | 1.50E-20 | 4.42E-20 | 6.90E-20 | 3.75E-18 | 0.00E+00 | | TEEN: | 1.80E-20 | 3.46E-20 | 1.56E-20 | 4.50E-20 | 6.93E-20 | 3.67E-18 | 0.00E+00 | | CHILD: | 1.98E-20 | 1.80E-20 | 1.90E-20 | 3.84E-20 | 5.75E-20 | 4.23E-18 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 2.05E-18 | 4.48E-18 | 1.76E-18 | 5.20E-18 | 8.11E-18 | 4.41E-16 | 0.00E+00 | | TEEN: | 2.11E-18 | 4.06E-18 | 1.82E-18 | 5.28E-18 | 8.13E-18 | 4.31E-16 | 0.00E+00 | | CHILD: | 2.41E-18 | 2.19E-18 | 2.31E-18 | 4.68E-18 | 6.99E-18 | 5.15E-16 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 2.08E-20 | 4.53E-20 | 1.78E-20 | 5.26E-20 | 8.21E-20 | 4.46E-18 | 0.00E+00 | | TEEN: | 2.13E-20 | 4.11E-20 | 1.85E-20 | 5.35E-20 | 8.23E-20 | 4.36E-18 | 0.00E+00 | | CHILD: | 2.44E-20 | 2.21E-20 | 2.34E-20 | 4.73E-20 | 7.08E-20 | 5.22E-18 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 1.24E-18 | 1.51E-18 | | TEEN: | 6.93E-18 | 8.42E-18 | | CHILD: | 1.45E-18 | 1.76E-18 | | INFANT: | 0.00E+00 | 0.00E+00 | #### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | E 505!! | G***** | |---------|----------|----------| | | T. BODY | SKIN | | ADULT: | 6.20E-20 | 7.53E-20 | | TEEN: | 3.46E-19 | 4.20E-19 | | CHILD: | 7.23E-20 | 8.78E-20 | | INFANT: | 0.00E+00 | 0.00E+00 | #### FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY | ADULT:<br>TEEN:<br>CHILD: | 0.00E+00 | 1.06E-20<br>0.00E+00 | |---------------------------|----------|----------------------| | INFANT: | 0.00E+00 | 0.00E+00 | 01/01/2000 ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : I131 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 5.07E-07 2.34E-07 6.19E-07 8.85E-07 1.52E-06 2.90E-04 0.00E+00 TEEN: 4.99E-07 1.84E-07 6.63E-07 9.28E-07 1.60E-06 2.71E-04 0.00E+00 CHILD: 4.80E-07 7.53E-08 8.41E-07 8.45E-07 1.39E-06 2.80E-04 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.69E-08 7.77E-09 2.06E-08 2.95E-08 5.05E-08 9.65E-06 0.00E+00 TEEN: 1.66E-08 6.11E-09 2.21E-08 3.09E-08 5.32E-08 9.02E-06 0.00E+00 CHILD: 1.60E-08 2.51E-09 2.80E-08 2.81E-08 4.62E-08 9.31E-06 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.71E-10 7.87E-11 2.09E-10 2.98E-10 5.11E-10 9.77E-08 0.00E+00 TEEN: 1.68E-10 6.19E-11 2.23E-10 3.13E-10 5.38E-10 9.13E-08 0.00E+00 CHILD: 1.62E-10 2.54E-11 2.83E-10 2.85E-10 4.68E-10 9.42E-08 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.01E-08 9.25E-09 2.45E-08 3.51E-08 6.01E-08 1.15E-05 0.00E+00 TEEN: 1.97E-08 7.26E-09 2.62E-08 3.67E-08 6.32E-08 1.07E-05 0.00E+00 CHILD: 1.97E-08 3.09E-09 3.45E-08 3.47E-08 5.69E-08 1.15E-05 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 2.03E-10 9.37E-11 2.48E-10 3.55E-10 6.09E-10 1.16E-07 0.00E+00 TEEN: 2.00E-10 7.35E-11 2.65E-10 3.71E-10 6.39E-10 1.08E-07 0.00E+00 CHILD: 1.99E-10 3.12E-11 3.49E-10 3.51E-10 5.76E-10 1.16E-07 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 2.78E-09 3.38E-09 TEEN: 1.55E-08 1.89E-08 CHILD: 3.25E-09 3.94E-09 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 1.39E-10 1.69E-10 TEEN: 7.76E-10 9.42E-10 CHILD: 1.62E-10 1.97E-10 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY B4-83 T. BODY SKIN ADULT: 3.52E-12 4.27E-12 TEEN: 1.96E-11 2.38E-11 CHILD: 4.10E-12 4.98E-12 INFANT: 0.00E+00 0.00E+00 INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : I132 #### FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | | | 0.00E+00 | | | | | | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | INFANT: $0.00E+00.00E+0$ | ADULT:<br>TEEN:<br>CHILD:<br>INFANT: | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | |--------------------------|--------------------------------------|----------------------------------|----------------------| |--------------------------|--------------------------------------|----------------------------------|----------------------| ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : 1133 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.74E-13 8.07E-13 5.16E-13 8.98E-13 1.57E-12 1.32E-10 0.00E+00 TEEN: 2.88E-13 7.15E-13 5.57E-13 9.45E-13 1.66E-12 1.32E-10 0.00E+00 CHILD: 3.31E-13 3.53E-13 7.07E-13 8.75E-13 1.46E-12 1.63E-10 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 9.12E-15 2.69E-14 1.72E-14 2.99E-14 5.22E-14 4.40E-12 0.00E+00 TEEN: 9.59E-15 2.38E-14 1.85E-14 3.15E-14 5.52E-14 4.39E-12 0.00E+00 CHILD: 1.10E-14 1.17E-14 2.36E-14 2.91E-14 4.85E-14 5.41E-12 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 9.23E-17 2.72E-16 1.74E-16 3.03E-16 5.28E-16 4.45E-14 0.00E+00 TEEN: 9.71E-17 2.41E-16 1.88E-16 3.18E-16 5.58E-16 4.45E-14 0.00E+00 CHILD: 1.12E-16 1.19E-16 2.38E-16 2.95E-16 4.91E-16 5.48E-14 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.09E-14 3.20E-14 2.05E-14 3.56E-14 6.21E-14 5.23E-12 0.00E+00 TEEN: 1.14E-14 2.83E-14 2.20E-14 3.74E-14 6.55E-14 5.21E-12 0.00E+00 CHILD: 1.36E-14 1.45E-14 2.90E-14 3.59E-14 5.98E-14 6.67E-12 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.10E-16 3.24E-16 2.07E-16 3.60E-16 6.29E-16 5.30E-14 0.00E+00 TEEN: 1.15E-16 2.86E-16 2.23E-16 3.78E-16 6.63E-16 5.28E-14 0.00E+00 CHILD: 1.37E-16 1.46E-16 2.94E-16 3.63E-16 6.05E-16 6.75E-14 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN 1.98E-15 2.41E-15 TEEN: 1.10E-14 1.34E-14 CHILD: 2.31E-15 2.81E-15 INFANT: 0.00E+00 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 9.87E-17 | 1.20E-16 | | TEEN: | | 6.71E-16 | | CHILD: | | 1.40E-16 | | INFANT: | | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 2.50E-18 | 3.04E-18 | | TEEN: | 1.40E-17 | 1.70E-17 | | CHILD: | 2.92E-18 | 3.55E-18 | | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : I134 ## FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH | т | BODY GI- | TRACT BON | E LIVER | KIDNEY | THYROID | LUNG | |-------------|-----------|---------------|------------|----------|----------|----------| | ADULT: 0.0 | 0E+00 0.0 | 0E+00 0.00E+0 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: 0.0 | 0E+00 0 0 | 0E+00 0.00E+0 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: 0.0 | 0E+00 0 0 | 0E+00 0.00E+0 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: 0.0 | 000,00 | 0E+00 0.00E+0 | 0 0 00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | ## FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T RODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |----------|----------|----------|----------|------------|----------|----------|----------| | ADIII.T: | 0.00E+00 | 0 00E+00 | 0.00E+00 | 0.00E + 00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.000.00 | 0 00E+00 | 0 00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | | 0.00E+00 | 0.000.00 | 0.005+00 | 0 00E+00 | 0 00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 0.005+00 | 0.005+00 | 0.00000 | 0.005+00 | 0.005+00 | 0 00E+00 | 0.00E+00 | | INFANT: | U.UUE+UU | 0.005+00 | 0.005+00 | 0.005400 | 0.000,00 | 0.000.00 | 0.002.00 | ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | TEEN: 0.0 | 00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00 | |-----------|--------|----------------------|----------------------|----------------------|----------------------------------------------|----------------------|----------| |-----------|--------|----------------------|----------------------|----------------------|----------------------------------------------|----------------------|----------| ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | ADULT:<br>TEEN:<br>CHILD:<br>INFANT: | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |--------------------------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------|----------------------|----------------------------------| | INFANT: | 0.00E+00 | 0.005+00 | U.UUE+UU | 0.005+00 | 0.005700 | 0.005700 | 0.001.00 | ## FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |----------|----------|----------|----------|----------|----------|----------|----------| | ADIII.T: | 0.00E+00 | TEEN: | 0.00E+00 | 0 00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0 00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ## FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T.BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | $\mathtt{T}$ . $\mathtt{BODY}$ | SKIN | |---------|--------------------------------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : 1135 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | | | | | 0.00E+00 | | | | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CS134 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | | | | | 0.00E+00 | | | | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |----------|----------|----------|----------|----------|----------|----------|----------| | ADIII.T: | 6 83E-04 | 1.46E-05 | 3.51E-04 | 8.35E-04 | 2.70E-04 | 0.00E+00 | 8.97E-05 | | TEEN: | 3 93E-04 | 1.05E-05 | 3.60E-04 | 8.47E-04 | 2.69E-04 | 0.00E+00 | 1.03E-04 | | CHILD: | 1 50E-04 | 3.84E-06 | 4.34E-04 | 7.12E-04 | 2.21E-04 | 0.00E+00 | 7.92E-05 | | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | T. BODY GI-TRACT BONE LIVER KIDNEY THYROID | LUNG | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | ADULT: 4.19E-06 8.97E-08 2.15E-06 5.13E-06 1.66E-06 0.00E+00 5.5 | 1E-07 | | TEEN: 2.41E-06 6.46E-08 2.21E-06 5.20E-06 1.65E-06 0.00E+00 6.3 | 1E-07 | | CHILD: 9.22E-07 2.36E-08 2.66E-06 4.37E-06 1.35E-06 0.00E+00 4.8 | 6E-07 | | INFANT: 0.00E+00 0.00 | 0E+00 | #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.02E-04 | 2.18E-06 | 5.22E-05 | 1.24E-04 | 4.02E-05 | 0.00E+00 | 1.34E-05 | | TEEN: | 5.83E-05 | 1.56E-06 | 5.34E-05 | 1.26E-04 | 4.00E-05 | 0.00E+00 | 1.53E-05 | | CHILD: | 2.31E-05 | 5.91E-07 | 6.68E-05 | 1.10E-04 | 3.40E-05 | 0.00E+00 | 1.22E-05 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | | THYROID | | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 6.24E-07 | 1.33E-08 | 3.21E-07 | 7.63E-07 | 2.47E-07 | 0.00E+00 | 8.19E-08 | | TEEN: | 3.58E-07 | 9.60E-09 | 3.28E-07 | 7.72E-07 | 2.45E-07 | 0.00E+00 | 9.36E-08 | | CHILD: | 1.42E-07 | 3.63E-09 | 4.10E-07 | 6.73E-07 | 2.09E-07 | 0.00E+00 | 7.48E-08 | | INFANT: | 0.00E+00 ## FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 1.45E-05 | 1.69E-05 | | TEEN: | 8.08E-05 | 9.43E-05 | | CHILD: | 1.69E-05 | 1.97E-05 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 2.22E-07 | 2.59E-07 | | TEEN: | 1.24E-06 | 1.45E-06 | | CHILD: | 2.59E-07 | 3.02E-07 | | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CS136 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` ADULT: TEEN: 0.00E+00 ``` ## FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | TEEN: | 9.85E-07<br>9.21E-07 | 1.10E-07 | 3.47E-07<br>3.48E-07<br>4.11E-07 | 1.37E-06<br>1.37E-06<br>1.13E-06 | KIDNEY<br>7.61E-07<br>7.46E-07<br>6.02E-07<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 1.04E-07<br>1.18E-07<br>8.97E-08 | |---------|----------------------|----------|----------------------------------|----------------------------------|--------------------------------------------------------|----------------------------------|----------------------------------| | INFANT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.005+00 | 0.00E+00 | 0.005700 | 0.000100 | ## FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | meen. | 6.04E-09 | 6 77E-10 | 2.13E-09<br>2.14E-09 | 8.39E-09<br>8.41E-09 | 4.58E-09 | 0.00E+00<br>0.00E+00 | 6.40E-10<br>7.22E-10 | |---------|----------------------|----------|----------------------|----------------------|----------|----------------------|----------------------| | CUIT D. | 4.49E-09<br>0.00E+00 | 2.44E-10 | 2 52E-09 | 6.93E-09 | 3.69E-09 | 0.00E+00 | 5.51E-10 | ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T BODY | GI-TRACT | BONE | LIVER | | THYROID | | |--------------|----------|----------|-----------|----------|----------|----------|----------| | ADULT: | 1 47F-07 | 2 31E-08 | 5.16E-08 | 2.04E-07 | 1.13E-07 | 0.00E+00 | 1.55E-08 | | TEEN: | 1.37E-07 | 1 64E-08 | 5.17E-08 | 2.04E-07 | 1.11E-07 | 0.00E+00 | 1.75E-08 | | CHILD: | 1 138-07 | 6 11E-09 | 6.33E-08 | 1.74E-07 | 9.27E-08 | 0.00E+00 | T.38E-08 | | INFANT: | 0.00E+00 | 0 00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TIAT CITAT . | 0.000.00 | 0.00-00 | • • • • • | | | | | ## FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | ADULT:<br>TEEN:<br>CHILD:<br>INFANT: | T. BODY<br>8.99E-10<br>8.39E-10<br>6.91E-10<br>0.00E+00 | 1.00E-10<br>3 75E-11 | 3.16E-10<br>3.17E-10<br>3.88E-10 | 1.25E-09<br>1.07E-09 | 6.95E-10<br>6.80E-10<br>5.68E-10 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 1.07E-10<br>8.48E-11 | |--------------------------------------|---------------------------------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|----------------------------------|----------------------| | INFANT: | 0.00E+00 | 0.00E+00 | 0.005+00 | 0.005+00 | 0.001.00 | 0.002.00 | 0.00- | ## FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 3.16E-09 | 3.58E-09 | | TEEN: | 1.76E-08 | 2.00E-08 | | CHILD: | 3.68E-09 | 4.18E-09 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 4.84E-11 | 5.49E-11 | | TEEN: | 2.70E-10 | 3.06E-10 | | CHILD: | 5.65E-11 | 6.40E-11 | | INFANT: | 0.00E+00 | 0.00E+00 | ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CS137 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.94E-03 5.73E-05 2.16E-03 2.96E-03 1.00E-03 0.00E+00 3.34E-04 TEEN: 1.07E-03 4.39E-05 2.32E-03 3.08E-03 1.05E-03 0.00E+00 4.08E-04 CHILD: 4.12E-04 1.75E-05 2.92E-03 2.79E-03 9.10E-04 0.00E+00 3.27E-04 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.19E-05 3.51E-07 1.33E-05 1.82E-05 6.16E-06 0.00E+00 2.05E-06 TEEN: 6.59E-06 2.69E-07 1.42E-05 1.89E-05 6.43E-06 0.00E+00 2.50E-06 CHILD: 2.53E-06 1.07E-07 1.79E-05 1.71E-05 5.58E-06 0.00E+00 2.01E-06 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.88E-04 8.53E-06 3.22E-04 4.40E-04 1.49E-04 0.00E+00 4.97E-05 1.59E-04 6.51E-06 3.44E-04 4.58E-04 1.56E-04 0.00E+00 6.05E-05 CHILD: 6.35E-05 2.69E-06 4.49E-04 4.30E-04 1.40E-04 0.00E+00 5.04E-05 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.77E-06 5.23E-08 1.98E-06 2.70E-06 9.17E-07 0.00E+00 3.05E-07 TEEN: 9.78E-07 3.99E-08 2.11E-06 2.81E-06 9.55E-07 0.00E+00 3.71E-07 CHILD: 3.89E-07 1.65E-08 2.76E-06 2.64E-06 8.60E-07 0.00E+00 3.09E-07 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 1.05E-04 | 1.22E-04 | | TEEN: | 5.84E-04 | 6.81E-04 | | CHILD: | 1.22E-04 | | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | | 1.87E-06 | | | | | | TEEN: | 8.96E-06 | 1.05E-05 | | CHILD: | 1.87E-06 | 2.18E-06 | | INFANT: | 0.00E+00 | 0.00E+00 | INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CS138 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ADULT: T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 0. FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ADULT: DODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 0.00E FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ADULT: TEEN: 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ADULT: T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 0. FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY ADULT: DODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 0.00E FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T.BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T.BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : BA139 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY ``` ADULT: 0.00E+00 0.00E ``` FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : BA140 ### FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.35E-07 4.25E-06 2.06E-06 2.59E-09 8.81E-10 0.00E+00 1.48E-09 TEEN: 1.42E-07 3.39E-06 2.20E-06 2.69E-09 9.13E-10 0.00E+00 1.81E-09 CHILD: 1.62E-07 1.41E-06 2.77E-06 2.43E-09 7.91E-10 0.00E+00 1.45E-09 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` ### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.69E-08 5.30E-07 2.57E-07 3.23E-10 1.10E-10 0.00E+00 1.85E-10 TEEN: 1.77E-08 4.23E-07 2.74E-07 3.36E-10 1.14E-10 0.00E+00 2.26E-10 CHILD: 2.02E-08 1.75E-07 3.46E-07 3.03E-10 9.87E-11 0.00E+00 1.81E-10 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` #### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | | GI-TRACT | | LIVER | | THYROID | | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 4.02E-08 | 1.26E-06 | 6.13E-07 | 7.70E-10 | 2.62E-10 | 0.00E+00 | 4.41E-10 | | TEEN: | 4.20E-08 | 1.01E-06 | 6.52E-07 | 7.99E-10 | 2.71E-10 | 0.00E+00 | 5.37E-10 | | CHILD: | 4.98E-08 | 4.32E-07 | 8.53E-07 | 7.47E-10 | 2.43E-10 | 0.00E+00 | 4.46E-10 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |-------------------|----------|----------|----------|----------|----------|----------|----------| | $\mathtt{ADULT}:$ | 4.07E-10 | 1.28E-08 | 6.20E-09 | 7.79E-12 | 2.65E-12 | 0.00E+00 | 4.46E-12 | | TEEN: | 4.25E-10 | 1.02E-08 | 6.60E-09 | 8.08E-12 | 2.74E-12 | 0.00E+00 | 5.44E-12 | | CHILD: | 5.04E-10 | 4.37E-09 | 8.64E-09 | 7.57E-12 | 2.46E-12 | 0.00E+00 | 4.51E-12 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 8.22E-09 | 9.40E-09 | | TEEN: | 4.59E-08 | 5.25E-08 | | CHILD: | 9.59E-09 | 1.10E-08 | | INFANT: | 0.00E+00 | 0.00E+00 | ## FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 4.11E-10 | 4.69E-10 | | TEEN: | 2.29E-09 | 2.62E-09 | | CHILD: | 4.79E-10 | 5.47E-10 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 1.04E-11 | 1.19E-11 | | TEEN: | 5.80E-11 | 6.63E-11 | | CHILD: | 1.21E-11 | 1.39E-11 | | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : BA141 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | 0 00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ``` ADULT: TEEN: 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : BA142 ## FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 ``` ## FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T RODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |----------|----------|----------|----------|----------|----------|----------|----------| | ADIII.T: | 0.00E+00 | 0 00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 0.005.00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 0.005+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.005.00 | 0.005+00 | 0.002+00 | 0 00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TMC-MIT: | 0.005700 | 0.000100 | 0.000100 | 0.001100 | 0.000 | | | ## FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | TEEN: | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | KIDNEY<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |-------|----------------------|----------|----------------------------------|----------------------|--------------------------------------------------------|----------------------|----------------------------------| |-------|----------------------|----------|----------------------------------|----------------------|--------------------------------------------------------|----------------------|----------------------------------| ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | | | | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0 00E+00 | 0 00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 0.001.00 | 0.005+00 | 0.00E+00 | 0 00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | ADULT:<br>TEEN:<br>CHILD: | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |---------------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------| | TNFANT: | 0.00E+00 ## FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T.BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | m | CITTAT | |---------|----------|----------| | | T. BODY | SKIN | | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : LA140 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.29E-13 3.57E-08 9.65E-13 4.86E-13 0.00E+00 0.00E+00 0.00E+00 TEEN: 1.34E-13 2.89E-08 1.02E-12 5.03E-13 0.00E+00 0.00E+00 0.00E+00 CHILD: 1.51E-13 1.25E-08 1.28E-12 4.48E-13 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 6.42E-15 1.78E-09 4.82E-14 2.43E-14 0.00E+00 0.00E+00 0.00E+00 TEEN: 6.68E-15 1.44E-09 5.11E-14 2.51E-14 0.00E+00 0.00E+00 0.00E+00 CHILD: 7.54E-15 6.23E-10 6.40E-14 2.24E-14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 6.50E-17 1.80E-11 4.88E-16 2.46E-16 0.00E+00 0.00E+00 0.00E+00 TEEN: 6.76E-17 1.46E-11 5.17E-16 2.54E-16 0.00E+00 0.00E+00 0.00E+00 CHILD: 7.63E-17 6.31E-12 6.48E-16 2.26E-16 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 6.11E-14 1.70E-08 4.59E-13 2.31E-13 0.00E+00 0.00E+00 0.00E+00 TEEN: 6.35E-14 1.37E-08 4.86E-13 2.39E-13 0.00E+00 0.00E+00 0.00E+00 CHILD: 7.43E-14 6.14E-09 6.30E-13 2.20E-13 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 6.72E-12 7.61E-12 TEEN: 3.75E-11 4.25E-11 CHILD: 7.84E-12 8.88E-12 INFANT: 0.00E+00 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T RODY | SKIN | |---------|----------|----------| | | | | | ADULT: | 3.35E-13 | 3.80E-13 | | TEEN: | 1.87E-12 | 2.12E-12 | | CHILD: | 3.91E-13 | 4.43E-13 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 8.49E-15 | 9.62E-15 | | TEEN: | 4.74E-14 | 5.37E-14 | | CHILD: | 9.90E-15 | 1.12E-14 | | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : LA142 ## FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ADULT: T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 0. ``` ## FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | TEEN: | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | KIDNEY<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |-------|----------------------|----------|----------------------|----------------------|--------------------------------------------------------|----------------------|----------------------------------| |-------|----------------------|----------|----------------------|----------------------|--------------------------------------------------------|----------------------|----------------------------------| ## FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | ADULT:<br>TEEN:<br>CHILD:<br>INFANT: | T. BODY<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |--------------------------------------|---------------------------------------------------------|----------|----------------------|----------|----------------------------------|----------------------|----------------------------------| |--------------------------------------|---------------------------------------------------------|----------|----------------------|----------|----------------------------------|----------------------|----------------------------------| ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | TEEN: | 0.00E+00<br>0.00E+00 | GI-TRACT<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |---------|----------------------|----------------------------------------------|----------------------|----------------------|----------------------------------|----------------------|----------------------------------| | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | TEEN: | 0.00E+00<br>0.00E+00 | 0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | THYROID<br>0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00<br>0.00E+00 | |---------|----------------------|----------|----------------------|----------------------|----------------------------------|---------------------------------------------|----------------------------------| | TNEANT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.005+00 | ## FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | | 0.00E+00 | | CHILD: | | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CE141 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 7.56E-11 2.55E-06 9.85E-10 6.66E-10 3.09E-10 0.00E+00 0.00E+00 TEEN: 8.18E-11 2.04E-06 1.07E-09 7.12E-10 3.35E-10 0.00E+00 0.00E+00 CHILD: 1.02E-10 8.54E-07 1.37E-09 6.85E-10 3.00E-10 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` ### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROTO | LUNG | |---------|----------|----------|----------|----------|----------|------------|------------| | ADULT: | 3.77E-11 | 1 27E-06 | 4 928-10 | 3 332 10 | 1 550 10 | 0 000.00 | 0 000.00 | | WHEN. | 3.7.2 | 1.270 00 | 3.725-10 | 5.535-10 | T.22E-TO | 0.005+00 | 0.00E+00 | | TEEN: | 4.08E-11 | 1.02E-06 | 5.33E-10 | 3.56E-10 | 1.67E-10 | 0.00E + 00 | 0.00E + 00 | | CHILD: | 5.08E-11 | 4.27E-07 | 6.86E-10 | 3.42E-10 | 1.50E-10 | 0.00E+00 | 0 00E+00 | | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | TEEN:<br>CHILD: | 3.82E-13<br>4.14E-13<br>5.14E-13 | 1.03E-08<br>4.32E-09 | 4.98E-12<br>5.39E-12<br>6.94E-12 | 3.60E-12<br>3.46E-12 | 1.56E-12<br>1.69E-12<br>1.52E-12 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | |-----------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------| | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | TEEN:<br>CHILD: | 5.39E-10<br>5.82E-10<br>7.51E-10 | 1.45E-05<br>6.31E-06 | 7.03E-09<br>7.59E-09<br>1.01E-08 | 5.07E-09<br>5.05E-09 | 2.21E-09<br>2.39E-09<br>2.22E-09 | 0.00E+00 | 0.00E+00<br>0.00E+00 | |-----------------|----------------------------------|----------------------|----------------------------------|----------------------|----------------------------------|----------|----------------------| | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | ADULT:<br>TEEN: | T. BODY<br>5.46E-12<br>5.89E-12 | GI-TRACT<br>1.84E-07<br>1.47E-07 | 7.11E-11 | 4.81E-11 | KIDNEY<br>2.23E-11<br>2.41E-11 | 0.00E+00 | 0.00E+00 | |-----------------|---------------------------------|----------------------------------|----------|----------|--------------------------------|----------|----------| | CHILD: | 7.60E-12 | 6.38E-08 | 1.03E-10 | 5.12E-11 | 2.24E-11 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ## FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 2.20E-08 2.48E-08 TEEN: 1.23E-07 1.38E-07 CHILD: 2.56E-08 2.89E-08 INFANT: 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | ADULT:<br>TEEN: | 1.10E-09<br>6.12E-09 | SKIN<br>1.24E-09<br>6.90E-09 | |-------------------|----------------------|------------------------------| | CHILD:<br>INFANT: | 1.28E-09 | 1.44E-09 | | TIME WINT: | 0.005+00 | 0.00E+00 | | | | SKIN | |---------|----------|----------| | ADULT: | 2.77E-11 | 3.13E-11 | | TEEN: | 1.55E-10 | 1.75E-10 | | CHILD: | 3.24E-11 | 3.65E-11 | | INFANT: | | 0.00E+00 | # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CE143 ## FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH | | | GI-TRACT | | | | THYROID | LUNG | |---------|-------------|-----------------|-----------|------------|------------|-----------------|--------------| | ADULT: | 4.35E-16 | 1.47E-10 | 5 31 m_15 | 3 03 1 1 2 | 1 720 15 | 0 005.00 | 0 000.00 | | | 1.335 | T. T. T. | 2.211-13 | 3.335-14 | T. / 2E-T3 | 0.005+00 | 0.005+00 | | TEEN: | 4.69E-16 | 1.26E-10 | 5.77E-15 | 4.20E-12 | 1.88E-15 | $0.00E \pm 0.0$ | $0.00E\pm00$ | | CHILD: | 5 01 to 1 6 | E 07D 11 | 7 400 10 | 1 015 10 | 1.000 45 | 0.001.00 | 0.001.00 | | · · | 5.81E-16 | 2.0/F-TT | 7.4UE-IS | 4.016-12 | 1.68E-15 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | $0.00E \pm 0.0$ | ሀ ሀሀጀተሀሀ | ሀ ሀህፎቸሀሀ | 0 008:00 | 0.000.00 | 0.000.00 | | | 0.000.00 | 0.001.00 | 0.000 | 0.005700 | 0.005700 | U.UUE+UU | 0.00E+00 | #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 2.17E-16 7.33E-11 2.65E-15 1.96E-12 8.64E-16 0.00E+00 0.00E+00 TEEN: 2.34E-16 6.30E-11 2.88E-15 2.10E-12 9.40E-16 0.00E+00 0.00E+00 CHILD: 2.90E-16 2.93E-11 3.69E-15 2.00E-12 8.40E-16 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | ADULT:<br>TEEN:<br>CHILD:<br>INFANT: | T. BODY<br>2.20E-18<br>2.37E-18<br>2.94E-18<br>0.00E+00 | 6.37E-13<br>2.97E-13 | 2.69E-17<br>2.91E-17<br>3.74E-17 | 1.99E-14<br>2.12E-14<br>2.03E-14 | 9.51E-18<br>8.50E-18 | 0.00E+00<br>0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | |--------------------------------------|---------------------------------------------------------|----------------------|----------------------------------|----------------------------------|----------------------|----------------------------------|----------------------| |--------------------------------------|---------------------------------------------------------|----------------------|----------------------------------|----------------------------------|----------------------|----------------------------------|----------------------| ## FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | ADULT: | | GI-TRACT | | LIVER | | THYROID | LUNG | |-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | TEEN: | 3.10E-15<br>3.33E-15 | 8.97E-10 | 4.10E-14 | 2.99E-11 | 1.34E-14 | 0.00E + 00 | 0.00E+00 | | CHILD:<br>INFANT: | 4.29E-15<br>0.00E+00 | 4.33E-10<br>0.00E+00 | 5.46E-14<br>0.00E+00 | 2.96E-11<br>0.00E+00 | 1.24E-14<br>0.00E+00 | 0.00E+00<br>0.00E+00 | 0.00E+00<br>0.00E+00 | ## FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|-----------|----------|----------|----------|--------------|----------| | ADULT: | 3 1/0 17 | 1 0617 11 | 2 040 16 | 2 045 12 | 1 05- 16 | 11111010 | HOMG | | ADODI. | 3.14E-17 | T.00F-TT | 3.84E-16 | 2.84E-13 | 1.25E-16 | 0.00E+00 | 0.00E+00 | | TEEN: | 3.38E-17 | 9.08E-12 | 4.15E-16 | 3.02E-13 | 1 36E-16 | $0.00E\pm00$ | 0.008+00 | | CHILD: | / 2/ሮ 17 | 4 20E 10 | E E2D 10 | 3.025 13 | 1.000 | 0.00E100 | 0.005+00 | | · | 4.34E-17 | 4.396-17 | 3.33E-10 | 3.00E-13 | 1.26E-16 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ## FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 1.84E-13 2.09E-13 TEEN: 1.03E-12 1.17E-12 CHILD: 2.15E-13 2.44E-13 INFANT: 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | ADULT:<br>TEEN:<br>CHILD: | | 1.05E-14<br>5.84E-14 | |---------------------------|----------|----------------------| | CHILD: | 1.07E-14 | 1.22E-14 | | INFANT: | 0.00E+00 | 0.00E+00 | | ADULT:<br>TEEN:<br>CHILD:<br>INFANT: | 2.33E-16<br>1.30E-15<br>2.72E-16 | SKIN<br>2.65E-16<br>1.48E-15<br>3.09E-16<br>0.00E+00 | |--------------------------------------|----------------------------------|------------------------------------------------------| |--------------------------------------|----------------------------------|------------------------------------------------------| # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CE144 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 3.01E-08 1.90E-04 5.61E-07 2.34E-07 1.39E-07 0.00E+00 0.00E+00 TEEN: 3.28E-08 1.53E-04 6.09E-07 2.52E-07 1.51E-07 0.00E+00 0.00E+00 CHILD: 4.19E-08 6.42E-05 7.85E-07 2.46E-07 1.36E-07 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.50E-08 9.47E-05 2.80E-07 1.17E-07 6.94E-08 0.00E+00 0.00E+00 TEEN: 1.64E-08 7.65E-05 3.04E-07 1.26E-07 7.52E-08 0.00E+00 0.00E+00 CHILD: 2.09E-08 3.21E-05 3.92E-07 1.23E-07 6.81E-08 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.52E-10 9.59E-07 2.84E-09 1.19E-09 7.03E-10 0.00E+00 0.00E+00 TEEN: 1.66E-10 7.75E-07 3.08E-09 1.27E-09 7.61E-10 0.00E+00 0.00E+00 CHILD: 2.12E-10 3.25E-07 3.97E-09 1.24E-09 6.89E-10 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.15E-07 1.35E-03 4.00E-06 1.67E-06 9.92E-07 0.00E+00 0.00E+00 TEEN: 2.33E-07 1.09E-03 4.34E-06 1.79E-06 1.07E-06 0.00E+00 0.00E+00 CHILD: 3.09E-07 4.74E-04 5.80E-06 1.82E-06 1.01E-06 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.17E-09 1.37E-05 4.05E-08 1.69E-08 1.00E-08 0.00E+00 0.00E+00 TEEN: 2.36E-09 1.10E-05 4.39E-08 1.82E-08 1.08E-08 0.00E+00 0.00E+00 CHILD: 3.13E-09 4.80E-06 5.87E-08 1.84E-08 1.02E-08 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ADULT: 1.19E-06 1.38E-06 TEEN: 6.66E-06 7.70E-06 CHILD: 1.39E-06 1.61E-06 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 5.96E-08 6.89E-08 TEEN: 3.33E-07 3.85E-07 CHILD: 6.95E-08 8.04E-08 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 1.51E-09 1.74E-09 TEEN: 8.42E-09 9.73E-09 CHILD: 1.76E-09 2.03E-09 INFANT: 0.00E+00 0.00E+00 ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : PR143 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |----------|----------|----------|----------|----------|----------|----------|----------| | ADIII/T: | 3.22E-10 | 2.84E-05 | 6.49E-09 | 2.60E-09 | 1.50E-09 | 0.00E+00 | 0.00E+00 | | TEEN: | | | | | 1.63E-09 | | | | CHILD: | | | | | 1.48E-09 | | | | INFANT: | 0.00E+00 ### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.61E-11 | 1.42E-06 | 3.24E-10 | 1.30E-10 | 7.51E-11 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.75E-11 | 1.16E-06 | 3.52E-10 | 1.40E-10 | 8.16E-11 | 0.00E+00 | 0.00E+00 | | CHILD: | 2.26E-11 | 4.91E-07 | 4.55E-10 | 1.37E-10 | 7.40E-11 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.63E-13 1.44E-08 3.28E-12 1.32E-12 7.60E-13 0.00E+00 0.00E+00 TEEN: 1.77E-13 1.17E-08 3.56E-12 1.42E-12 8.26E-13 0.00E+00 0.00E+00 CHILD: 2.29E-13 4.97E-09 4.61E-12 1.38E-12 7.49E-13 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.53E-10 | 1.35E-05 | 3.09E-09 | 1.24E-09 | 7.15E-10 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.66E-10 | 1.10E-05 | 3.34E-09 | 1.33E-09 | 7.75E-10 | 0.00E+00 | 0.00E+00 | | CHILD: | 2.23E-10 | 4.84E-06 | 4.48E-09 | 1.35E-09 | 7.29E-10 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 1.55E-12 | 1.37E-07 | 3.13E-11 | 1.25E-11 | 7.24E-12 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.68E-12 | 1.11E-07 | 3.38E-11 | 1.35E-11 | 7.85E-12 | 0.00E+00 | 0.00E+00 | | CHILD: | 2.25E-12 | 4.90E-08 | 4.54E-11 | 1.36E-11 | 7.38E-12 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | #### FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | • | | | 01/01/2000 ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : PR144 #### FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|------------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E + 00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | ### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LTVER | KIDNEY | THYROTD | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | 0.00E+00 | | | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 0.00E+00 | TEEN: | 0.00E+00 | CHILD: | 0.00E+00 | INFANT: | 0.00E+00 ### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 0.00E+00 0.00E+00 TEEN: 0.00E+00 0.00E+00 CHILD: 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 ``` ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 0.00E+00 | 0.00E+00 | | TEEN: | 0.00E+00 | 0.00E+00 | | CHILD: | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 | 0.00E+00 | ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : ND147 #### FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.11E-10 1.69E-05 3.05E-09 3.52E-09 2.06E-09 0.00E+00 0.00E+00 2.26E-10 1.36E-05 3.47E-09 3.77E-09 2.21E-09 0.00E+00 0.00E+00 2.79E-10 5.70E-06 4.44E-09 3.60E-09 1.98E-09 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ADULT: TEEN: CHILD: INFANT: #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.05E-11 8.45E-07 1.52E-10 1.76E-10 1.03E-10 0.00E+00 0.00E+00 1.13E-11 6.79E-07 1.73E-10 1.88E-10 1.10E-10 0.00E+00 0.00E+00 1.39E-11 2.85E-07 2.22E-10 1.80E-10 9.86E-11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ADIII.T: TEEN: CHILD: INFANT: #### FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.07E-13 8.55E-09 1.54E-12 1.78E-12 1.04E-12 0.00E+00 0.00E+00 1.14E-13 6.87E-09 1.75E-12 1.90E-12 1.12E-12 0.00E+00 0.00E+00 1.41E-13 2.88E-09 2.25E-12 1.82E-12 9.99E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ADULT: TEEN: CHILD. INFANT: #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.00E-10 8.05E-06 1.45E-09 1.68E-09 9.80E-10 0.00E+00 0.00E+00 1.07E-10 6.45E-06 1.64E-09 1.79E-09 1.05E-09 0.00E+00 0.00E+00 1.37E-10 2.81E-06 2.19E-09 1.77E-09 9.72E-10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ADULT: TEEN: CHILD: INFANT: #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.02E-12 8.15E-08 1.47E-11 1.70E-11 9.92E-12 0.00E+00 0.00E+00 1.08E-12 6.53E-08 1.66E-11 1.81E-11 1.06E-11 0.00E+00 0.00E+00 1.39E-12 2.84E-08 2.21E-11 1.79E-11 9.84E-12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ADULT: TEEN: CHILD: INFANT: #### FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 2.61E-09 3.13E-09 ADULT: 1.46E-08 1.75E-08 3.05E-09 3.66E-09 0.00E+00 0.00E+00 TEEN: CHILD: INFANT: ### FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 1.30E-10 1.56E-10 ADULT: 7.28E-10 8.74E-10 TEEN: 1.52E-10 1.83E-10 0.00E+00 0.00E+00 CHILD: INFANT: ### FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 3.30E-12 3.96E-12 1.84E-11 2.21E-11 3.85E-12 4.62E-12 ADULT: CHILD: INFANT: 0.00E+00 0.00E+00 ## INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : W187 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 4.73E-12 4.43E-09 1.62E-11 1.35E-11 0.00E+00 0.00E+00 0.00E+00 TEEN: 4.99E-12 3.85E-09 1.75E-11 1.42E-11 0.00E+00 0.00E+00 0.00E+00 CHILD: 5.88E-12 1.84E-09 2.21E-11 1.31E-11 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 5.90E-15 | 5.53E-12 | 2.02E-14 | 1.69E-14 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | TEEN: | 6.23E-15 | 4.81E-12 | 2.18E-14 | 1.78E-14 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | CHILD: | 7.35E-15 | 2.30E-12 | 2.76E-14 | 1.64E-14 | 0.00E+00 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 5.98E-17 5.60E-14 2.04E-16 1.71E-16 0.00E+00 0.00E+00 0.00E+00 TEEN: 6.31E-17 4.87E-14 2.21E-16 1.80E-16 0.00E+00 0.00E+00 0.00E+00 CHILD: 7.44E-17 2.33E-14 2.80E-16 1.66E-16 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.41E-15 1.32E-12 4.81E-15 4.02E-15 0.00E+00 0.00E+00 0.00E+00 TEEN: 1.48E-15 1.14E-12 5.18E-15 4.22E-15 0.00E+00 0.00E+00 0.00E+00 CHILD: 1.81E-15 5.67E-13 6.81E-15 4.03E-15 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY ``` T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ADULT: 1.42E-17 1.33E-14 4.87E-17 4.07E-17 0.00E+00 0.00E+00 0.00E+00 TEEN: 1.50E-17 1.16E-14 5.24E-17 4.28E-17 0.00E+00 0.00E+00 0.00E+00 CHILD: 1.83E-17 5.74E-15 6.89E-17 4.08E-17 0.00E+00 0.00E+00 0.00E+00 INFANT: 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ``` FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 9.26E-15 1.08E-14 TEEN: 5.17E-14 6.01E-14 CHILD: 1.08E-14 1.26E-14 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ADULT: 4.63E-16 5.37E-16 TEEN: 2.58E-15 3.00E-15 CHILD: 5.40E-16 6.27E-16 INFANT: 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ADULT: 1.17E-17 1.36E-17 TEEN: 6.54E-17 7.59E-17 CHILD: 1.37E-17 1.59E-17 INFANT: 0.00E+00 0.00E+00 ## Table B4-7a Continued # INDIVIDUAL DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : NP239 ``` FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH ``` | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 8.13E-14 | 3.02E-08 | 1.50E-12 | 1.47E-13 | 4.60E-13 | 0.00E+00 | 0.00E+00 | | TEEN: | 8.85E-14 | 2.56E-08 | 1.69E-12 | 1.59E-13 | 5.00E-13 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.10E-13 | 1.15E-08 | 2.17E-12 | 1.56E-13 | 4.51E-13 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER FISH - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 4.06E-15 | 1.51E-09 | 7.49E-14 | 7.36E-15 | 2.30E-14 | 0.00E+00 | 0.00E+00 | | TEEN: | 4.42E-15 | 1.28E-09 | 8.44E-14 | 7.96E-15 | 2.50E-14 | 0.00E+00 | 0.00E+00 | | CHILD: | 5.48E-15 | 5.77E-10 | 1.09E-13 | 7.79E-15 | 2.25E-14 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 ## FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 4.11E-17 | 1.53E-11 | 7.58E-16 | 7.45E-17 | 2.32E-16 | 0.00E+00 | 0.00E+00 | | TEEN: | 4.47E-17 | 1.30E-11 | 8.54E-16 | 8.05E-17 | 2.53E-16 | 0.00E+00 | 0.00E+00 | | CHILD: | 5.55E-17 | 5.84E-12 | 1.10E-15 | 7.89E-17 | 2.28E-16 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER | | T. BODY | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|----------|----------|----------|----------|----------|----------|----------| | ADULT: | 9.66E-16 | 3.59E-10 | 1.78E-14 | 1.75E-15 | 5.47E-15 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.05E-15 | 3.04E-10 | 2.00E-14 | 1.89E-15 | 5.93E-15 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.35E-15 | 1.42E-10 | 2.67E-14 | 1.92E-15 | 5.55E-15 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 #### FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY | | T. BODY G | GI-TRACT | BONE | LIVER | KIDNEY | THYROID | LUNG | |---------|------------|----------|----------|----------|----------|----------|----------| | ADULT: | 9.78E-18 3 | 3.64E-12 | 1.80E-16 | 1.77E-17 | 5.53E-17 | 0.00E+00 | 0.00E+00 | | TEEN: | 1.06E-17 3 | 3.08E-12 | 2.03E-16 | 1.91E-17 | 6.00E-17 | 0.00E+00 | 0.00E+00 | | CHILD: | 1.37E-17 1 | L.44E-12 | 2.71E-16 | 1.94E-17 | 5.62E-17 | 0.00E+00 | 0.00E+00 | | INFANT: | 0.00E+00 0 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | ## FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH ``` T. BODY SKIN ADULT: 4.31E-12 5.00E-12 TEEN: 2.41E-11 2.79E-11 CHILD: 5.03E-12 5.83E-12 INFANT: 0.00E+00 0.00E+00 ``` ## FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 2.15E-13 | 2.49E-13 | | TEEN: | 1.20E-12 | 1.39E-12 | | CHILD: | 2.51E-13 | 2.91E-13 | | INFANT: | 0.00E+00 | 0.00E+00 | ## FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY | | T. BODY | SKIN | |---------|----------|----------| | ADULT: | 5.45E-15 | 6.31E-15 | | TEEN: | 3.04E-14 | 3.53E-14 | | CHILD: | 6.36E-15 | 7.37E-15 | | INFANT: | 0.00E+00 | 0.00E+00 | | | | | | | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | |---------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|---------------------------------|----------------------------------|-------------------------------------------------------------|--------------------------------|--------------------------------| | PATHWAY: GROUND T. BODY ADULT 0.000E+00 TEEN 0.000E+00 | GI | BONE<br>0.000E+00<br>0.000E+00 | LIVER<br>0.000E+00<br>0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00 | THYROID | LUNG<br>0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00 | | INFANT 0.000E+00 | 0.000E+00 | | | | | | | | TEEN 4.780E+01 | GI<br>4.180E+01<br>4.780E+01<br>7.410E+01 | 0.000E+00<br>0.000E+00 | 4.780E+01<br>7.410E+01 | 4.780E+01<br>7.410E+01 | THYROID<br>4.180E+01<br>4.780E+01<br>7.410E+01<br>0.000E+00 | 4.780E+01<br>7.410E+01 | 0.000E+00<br>0.000E+00 | | PATHWAY: MEAT T. BODY ADULT 6.040E+00 TEEN 3.600E+00 CHILD 4.350E+00 INFANT 0.000E+00 | 3.600E+00<br>4.350E+00 | 0.000E+00<br>0.000E+00 | 3.600E+00<br>4.350E+00 | 3.600E+00<br>4.350E+00 | THYROID<br>6.040E+00<br>3.600E+00<br>4.350E+00<br>0.000E+00 | 3.600E+00<br>4.350E+00 | 0.000E+00<br>0.000E+00 | | TEEN 1.850E+01 | GI<br>1.420E+01<br>1.850E+01<br>2.930E+01 | 0.000E+00<br>0.000E+00 | 1.850E+01<br>2.930E+01 | 1.850E+01<br>2.930E+01 | THYROID<br>1.420E+01<br>1.850E+01<br>2.930E+01<br>4.440E+01 | 1.850E+01<br>2.930E+01 | 0.000E+00<br>0.000E+00 | | TEEN 3.780E+01 | GI<br>2.900E+01<br>3.780E+01<br>5.970E+01 | 0.000E+00<br>0.000E+00 | 3.780E+01<br>5.970E+01 | 3.780E+01<br>5.970E+01 | THYROID<br>2.900E+01<br>3.780E+01<br>5.970E+01<br>9.060E+01 | 3.780E+01<br>5.970E+01 | 0.000E+00<br>0.000E+00 | | TEEN 4.030E+01 | GI<br>4.010E+01<br>4.030E+01<br>3.570E+01 | 0.000E+00<br>0.000E+00 | 4.030E+01<br>3.570E+01 | 4.030E+01<br>3.570E+01 | THYROID<br>4.010E+01<br>4.030E+01<br>3.570E+01<br>2.050E+01 | 4.030E+01<br>3.570E+01 | 0.000E+00<br>0.000E+00 | 01/01/2000 B4-106 Rev. 10 ## Table B4-7b Continued | TEEN 0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | |---------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------| | TEEN 0.000E+00<br>CHILD 0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | TEEN 9.220E+03 | GI<br>5.680E+03<br>9.220E+03<br>2.220E+04 | 4.610E+04<br>1.110E+05 | 9.220E+03<br>2.220E+04 | 9.220E+03<br>2.220E+04 | 2.220E+04 | 9.220E+03<br>2.220E+04 | 0.000E+00 | | PATHWAY: MEAT T. BODY ADULT 2.110E+03 TEEN 1.780E+03 CHILD 3.350E+03 INFANT 0.000E+00 | 1.780E+03<br>3.350E+03 | 8.910E+03<br>1.680E+04 | 1.780E+03<br>3.350E+03 | 1.780E+03<br>3.350E+03 | 3.350E+03 | 1.780E+03<br>3.350E+03 | 0.000E+00<br>0.000E+00 | | ΓΕΕΝ 4.250E+03<br>CHILD 1.040E+04 | GI<br>2.300E+03<br>4.250E+03<br>1.040E+04<br>2.180E+04 | 2.120E+04<br>5.220E+04 | 4.250E+03<br>1.040E+04 | 4.250E+03<br>1.040E+04 | 4.250E+03<br>1.040E+04 | 4.250E+03<br>1.040E+04 | 0.000E+00<br>0.000E+00 | | TEEN 4.250E+03 | GI<br>2.300E+03<br>4.250E+03<br>1.040E+04 | 2.120E+04<br>5.220E+04 | 4.250E+03<br>1.040E+04 | 4.250E+03<br>1.040E+04 | 4.250E+03<br>1.040E+04 | 4.250E+03<br>1.040E+04 | 0.000E+00 | | TEEN 1.540E+02<br>CHILD 2.130E+02 | GI<br>1.080E+02<br>1.540E+02<br>2.130E+02<br>1.680E+02 | 8.240E+02<br>1.140E+03 | 1.540E+02<br>2.130E+02 | 1.540E+02<br>2.130E+02 | 1.540E+02<br>2.130E+02 | 1.540E+02<br>2.130E+02 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | PATHWAY: PLUME | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------| | T. BODY GI BONE LIVER KIDNEY THYROID LUNG SKIN | | | ADULT 1.960E+02 1.960E+02 1.960E+02 1.960E+02 1.960E+02 1.960E+02 1.960E+02 3.140E+03 | 2 | | TEEN 1.960E+02 1.960E+02 1.960E+02 1.960E+02 1.960E+02 1.960E+02 1.960E+02 3.140E+02 CHILD 1.960E+02 1.960E+02 1.960E+02 1.960E+02 1.960E+02 1.960E+02 3.140E+02 | ረ<br>ን | | CHILD 1.960E+02 1.960E+02 1.960E+02 1.960E+02 1.960E+02 1.960E+02 1.960E+02 1.960E+02 3.140E+02 1.960E+02 1.960E+02 1.960E+02 1.960E+02 1.960E+02 3.140E+02 | 2 | | INFANT 1.900E+02 1.900E+02 1.900E+02 1.900E+02 1.900E+02 1.900E+02 1.900E+02 3.110E+02 | - | | PATHWAY: GROUND | | | T. BODY GI BONE LIVER KIDNEY THYROID LUNG SKIN | ^ | | ADULT 0.000E+00 | | | TEEN 0.000E+00 0 | | | INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | | | | | | PATHWAY: VEGETABLE | | | T. BODY GI BONE LIVER KIDNEY THYROID LUNG SKIN ADULT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | n | | ADULT 0.000E+00 | | | CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | Ö | | INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | О | | | | | PATHWAY: MEAT T RODY GT BONE LIVER KIDNEY THYROID LUNG SKIN | | | 1. 6051 | n | | ADULT 0.000E+00 | | | CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0 | | INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0 | | DATE OF THE PARTY | | | PATHWAY: COW MILK T. BODY GI BONE LIVER KIDNEY THYROID LUNG SKIN | | | ADULT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0 | | TEEN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0 | | CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | | | INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+0 | 0 | | PATHWAY: GOAT MILK | | | T. BODY GI BONE LIVER KIDNEY THYROID LUNG SKIN | | | ADULT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+0 | 0 | | TEEN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+0 | | | CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | | | INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+0 | J | | PATHWAY: INHALATION | | | T. BODY GI BONE LIVER KIDNEY THYROID LUNG SKIN | | | ADULT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+0 | | | TEEN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | | | CHILD 0.000E+00 | | | INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+0 | U | 01/01/2000 B4-108 Rev. 10 ``` T. BODY GI BONE LIVER KIDNEY THYROID LUNG SKIN ADULT 1.680E-03 1.6 PATHWAY: PLUME INFANT 1.680E-03 1.680E-03 1.680E-03 1.680E-03 1.680E-03 1.680E-03 9.390E-02 4.750E-01 PATHWAY: GROUND T. BODY GI BONE LIVER KIDNEY THYROID LUNG 0.000E+00 ADULT CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 PATHWAY: VEGETABLE T. BODY GI BONE LIVER KIDNEY THYROID LUNG 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 ADULT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 PATHWAY: MEAT SKIN LIVER KIDNEY LUNG BONE THYROID GI T. BODY 0.000E+00 CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 PATHWAY: COW MILK LIVER KIDNEY THYROID T. BODY GI BONE ADULT 0.000E+00 CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 PATHWAY: GOAT MILK T. BODY GI BONE LIVER KIDNEY THYROID LUNG 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 TEEN 0.000E+00 0 PATHWAY: INHALATION T. BODY GI BONE LIVER KIDNEY THYROID LUNG SKIN ADULT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 TEEN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 ``` | PATHWAY: PLUME | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------| | T. BODY GI BONE LIVER KIDNEY | THYROID LUNG SKIN | | ADULT 2.600E+01 2.600E+01 2.600E+01 2.600E+01 2.600E+01 7EEN 2.600E+01 2.600 | 11 2 600E+01 2 660E 01 E 660E 01 | | | \1 | | CHILD 2.600E+01 2.600E+01 2.600E+01 2.600E+01 2.600E+01 INFANT 2.600E+01 2.6 | | | 2.000E+01 2.000E+01 2.000E+01 2.000E+01 | 1 2.600E+01 2.660E+01 7.660E+01 | | PATHWAY: GROUND | | | T. BODY GI BONE LIVER KIDNEY ADULT 0.000E+00 0 | THYROID LUNG SKIN | | ADULT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+0 TEEN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0 0.000E+00 0.000E+00 0.000E+00 | | CHILD $0.000E+00$ $0.000E+00$ $0.000E+00$ $0.000E+00$ $0.00E+00$ | | | INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+0 | 0.000E+00 0.000E+00 0.000E+00 | | | 0.0002+00 0.0002+00 0.0002+00 | | PATHWAY: VEGETABLE T. BODY GI BONE LIVER KIDNEY | | | DOME DIVER KIDNEY | THYROID LUNG SKIN | | TEEN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0 0 0000 0 0 0000 0 0 0000 | | CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+0 | 0 0 00000.00 0 00000 00 0 0000 | | INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+0 | 0 0.000E+00 0.000E+00 0.000E+00 | | PATHWAY: MEAT | ************************************** | | m popy at | | | ADULT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | THYROID LUNG SKIN | | TEEN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.00E+00 | 0 0000000000000000000000000000000000000 | | $\sim$ CTILD 0.000E+00 0.000E+00 0 000E+00 0 000E+00 0 000E+0 | 0 0 0007,00 | | INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+0 | 0.000E+00 0.000E+00 0.000E+00 | | PATHWAY: COW MILK | | | T. BODY GI BONE LIVER KIDNEY | THYROID LUNG SKIN | | ADULT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0 0000000000000000000000000000000000000 | | TEEN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+0 | 0.000E+00 0.000E+00 0.000E+00 | | - 9************************************ | ) 0 00000.00 0 0000 00 0 0 00 | | INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 0.000E+00 | | PATHWAY: GOAT MILK | | | T. BODY GI BONE LIVER KIDNEY | THYROID LUNG SKIN | | ADULT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 TEEN 0.000E+00 0.000 | 0 0000.00 0 0000 00 0 0000 | | | ) O 000H:00 0 000H 00 0 0 0 0 0 0 0 0 0 0 0 | | CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | | | | 0.000E+00 0.000E+00 0.000E+00 | | PATHWAY: INHALATION | | | T. BODY GI BONE LIVER KIDNEY ADULT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | THYROID LUNG SKIN | | | 0.000E+00 0.000E+00 0.000E+00 | | CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0 0000.00 0 0000.00 0 0000 | | INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 0.000E+00 | | 11 17100 0.000EPQC | 0.000E+00 0.000E+00 0.000E+00 | ``` ADULT 3.570E-01 4.290E+01 INFANT 3.570E-01 3.570E-01 3.570E-01 3.570E-01 3.570E-01 3.570E-01 4.290E+01 PATHWAY: GROUND THYROID LUNG KIDNEY LIVER BONE 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 T. BODY GI 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 TITITA CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 PATHWAY: VEGETABLE LIVER KIDNEY THYROID LUNG BONE 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 т. вору GI 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 ADULT CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 PATHWAY: MEAT LUNG KIDNEY THYROID BONE LIVER T. BODY GΙ 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 PATHWAY: COW MILK KIDNEY THYROID LUNG BONE LIVER 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 GI 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 ADULT CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 PATHWAY: GOAT MILK THYROID T. BODY GI BONE LIVER KIDNEY 0.000E+00 CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 PATHWAY: INHALATION T. BODY GI KIDNEY THYROID LUNG LIVER BONE 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 ADULT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 ``` | PATHWA<br>ADULT<br>TEEN<br>CHILD<br>INFANT | T. BODY<br>1.310E+02<br>1.310E+02<br>1.310E+02 | GI<br>2 1.310E+02<br>2 1.310E+02<br>2 1.310E+02<br>3 1.310E+02 | 1.310E+02 | 1.310E+02 | 1.310E+02 | 1.310E+02 | 1.350E+02 | 4.600E+02 | |--------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------|------------------------|------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------| | PATHWA | Y: GROUND | ) | | | | _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1.3301102 | 4.000E+02 | | ADULT<br>TEEN<br>CHILD<br>INFANT | T. BODY 0.000E+00 0.000E+00 0.000E+00 | | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | | PATHWA | | BLE | | | | | | | | ADULT<br>TEEN<br>CHILD<br>INFANT | 0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | 0 000#+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | PATHWA | _ | | | | | | | | | ADULT<br>TEEN<br>CHILD<br>INFANT | T. BODY 0.000E+00 0.000E+00 0.000E+00 | | 0.000E+00 | 0.000E+00 | 0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | Λ ΛΛΛΠ,ΛΛ | 0.000E+00 | | PATHWA | | | | | | | | | | ADULT<br>TEEN<br>CHILD<br>INFANT | T. BODY 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 | $0.000 \pm 00$ | 0.000E+00<br>0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | | PATHWAY | : GOAT M | CLK | | | | | | | | ADULT<br>TEEN<br>CHILD<br>INFANT | T. BODY<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | PATHWAY | | | | | | | | | | CHILD | 0.000E+00<br>0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | TEEN 3.260E+0 | | 3.260E+02<br>3.260E+02 | 3.260E+02<br>3.260E+02 | 3.260E+02<br>3.260E+02 | 3.260E+02<br>3.260E+02 | 3.270E+02 | 4.500E+02<br>4.500E+02 | |---------------------------------|----------------------------------------------------|------------------------|------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------| | TEEN 0.000E+0 | GI<br>00 0.000E+00<br>00 0.000E+00<br>00 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | TEEN 0.000E+0<br>CHILD 0.000E+0 | | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | TEEN 0.000E+0 | 00 0.000E+00<br>00 0.000E+00<br>00 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | 0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | TEEN 0.000E+0 | | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | TEEN 0.000E+0 | GI<br>00 0.000E+00<br>00 0.000E+00<br>00 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | T. BODY<br>ADULT 0.000E+( | 00 0.000E+00<br>00 0.000E+00<br>00 0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | PATHWAY | Y: PLUME<br>T. BODY | GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | |-----------------|---------------------|------------------------|-------------------|------------------------|------------------------|----------------------|------------------------|-------------------| | ADULT | 3.680E+02 | 3.680E+02 | 3.680E+02 | 3.680E+02 | 3.680E+02 | 3.680E+02 | 3.720E+02 | 7.460E+02 | | TEEN | | | | | | | 3.720E+02 | | | CHILD<br>INFANT | | | | | | | 3.720E+02<br>3.720E+02 | | | TIAL WIAT | 3.000E+02 | J.000E+02 | J.000E+02 | J.000E+02 | J.000E+02 | J.000E+02 | J./20E+02 | 7.400E+02 | | PATHWA | | ~ | - 0. · · · | | | | | ~~~~~~ | | ADULT | T. BODY | GI<br>0.000E+00 | BONE<br>0.000E+00 | LIVER<br>0.000E+00 | KIDNEY | THYROID<br>0.000E+00 | LUNG<br>0.000E+00 | SKIN<br>0 000F+00 | | TEEN | 0.000E+00 | | 0.000E+00 | | | 0.000E+00 | | | | CHILD | | 0.000E+00 | | | | 0.000E+00 | | | | INFANT | 0.000E+00 | PATHWA: | Y: VEGETAI | BLE | | | | | | | | | T. BODY | GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT | | 0.000E+00 | 0.000E+00 | 0.000E+00 | | | 0.000E+00 | | | TEEN<br>CHILD | | 0.000E+00<br>0.000E+00 | | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | | | INFANT | | 0.000E+00 | | | | | 0.000E+00 | | | D 3 (D) 17:13 1 | | | | | | | | | | PATHWAY | Y: MEAT T. BODY | GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT | | 0.000E+00 | 0.000E+00 | 0.000E+00 | | 0.000E+00 | | | | TEEN | | 0.000E+00 | | | | 0.000E+00 | 0.000E+00 | | | CHILD | | 0.000E+00 | | 0.000E+00 | 0.000E+00 | | 0.000E+00 | | | INFANT | 0.000E+00 | PATHWA | | | | | | | | | | | T. BODY | GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT<br>TEEN | | 0.000E+00<br>0.000E+00 | | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | | | CHILD | | 0.000E+00 | | 0.000E+00 | 0.000E+00 | | 0.000E+00 | | | INFANT | | 0.000E+00 | | 0.000E+00 | 0.000E+00 | | 0.000E+00 | | | PATHWAY | Y: GOAT M | TTV | | | | | | | | PAIRWA. | T. BODY | GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT | 0.000E+00 | 0.000E+00 | | 0.000E+00 | | 0.000E+00 | 0.000E+00 | 0.000E+00 | | TEEN | | 0.000E+00 | | | | | 0.000E+00 | | | CHILD | | 0.000E+00 | | | | | 0.000E+00<br>0.000E+00 | | | INFANT | 0.000E+00 0.0006+00 | | PATHWA | | | | | | | | | | | T. BODY | GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT<br>TEEN | | 0.000E+00<br>0.000E+00 | | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | | CHILD | | 0.000E+00 | | | 0.000E+00 | | 0.000E+00 | | | INFANT | | 0.000E+00 | | | 0.000E+00 | | 0.000E+00 | | 01/01/2000 B4-114 Rev. 10 | TEEN 3 | T. BODY<br>3.460E+02<br>3.460E+02 | 3.460E+02 | BONE<br>3.460E+02<br>3.460E+02<br>3.460E+02<br>3.460E+02 | 3.460E+02 | KIDNEY<br>3.460E+02<br>3.460E+02<br>3.460E+02<br>3.460E+02 | 3.460E+02<br>3.460E+02 | 3.490E+02 | SKIN<br>6.330E+02<br>6.330E+02<br>6.330E+02<br>6.330E+02 | |------------|------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------| | TEEN ( | T. BODY<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | BONE<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LIVER<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | | TEEN ( | T. BODY<br>0.000E+00<br>0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | BONE<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LIVER<br>0.000E+00<br>0.000E+00<br>0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | TEEN ( | T. BODY<br>0.000E+00<br>0.000E+00 | | BONE<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | reen ( | : COW MI<br>T. BODY<br>0.000E+00<br>0.000E+00<br>0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00 | BONE<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | 0.000E+00<br>0.000E+00 | | TEEN CHILD | T. BODY<br>0.000E+00<br>0.000E+00<br>0.000E+00 | GI | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | TEEN | T. BODY 0.000E+00 0.000E+00 | TION GI 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | PATHWAY: PLUME | | | | | |---------------------------------------------------------------------------|--------------------------------------------|------------------------|------------------------|-------------| | T. BODY GI BONE | LIVER KIDNEY | THYROID | LUNG | SKIN | | ADULT 2.030E+00 2.030E+00 2.030E+00<br>TEEN 2.030E+00 2.030E+00 2.030E+00 | 2.030E+00 2.030E+0<br>2.030E+00 2.030E+0 | 0 2.030E+00 | 2.380E+00 | 1.890E+01 | | CDILD 2.030E+00 2.030E+00 2.030E+00 | 2 O30E+OO 2 O30E+O | ገ ጋ በጋበቱ፣ለለ | 2 2005.00 | 1 0000 - 01 | | INFANT 2.030E+00 2.030E+00 2.030E+00 | 2.030E+00 2.030E+0 | 0 2.030E+00 | 2.380E+00 | 1.890E+01 | | PATHWAY: GROUND | | | | | | T. BODY GI BONE<br>ADULT 0.000E+00 0.000E+00 0.000E+00 | LIVER KIDNEY | THYROID | LUNG | SKIN | | TEEN 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+0<br>0.000E+00 0.000E+0 | | 0.000E+00<br>0.000E+00 | 0.000E+00 | | CHILD 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+0 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | INFANT 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+0 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | PATHWAY: VEGETABLE | | | | | | T. BODY GI BONE ADULT 0.000E+00 0.000E+00 | LIVER KIDNEY | THYROID | LUNG | SKIN | | ADULT 0.000E+00 0.000E+00 0.000E+00 TEEN 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | CHILD 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00.0.000E+00 | 1 0 000 0 100 | 0 0005.00 | 0.000 | | INFANT 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | PATHWAY: MEAT | | | | | | T. BODY GI BONE | LIVER KIDNEY | THYROID | LUNG | SKIN | | ADULT 0.000E+00 0.000E+00 0.000E+00 TEEN 0.000E+00 0.000E+00 0.000E+00 | | 0.000E+00 | 0.000E+00 | 0.000E+00 | | CHILD 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | በ በበበቱ፣በለ | 0.000 = .00 | Λ 000π.00 | | INFANT 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | PATHWAY: COW MILK | | | | | | T. BODY GI BONE | LIVER KIDNEY | THYROID | LUNG | SKIN | | ADULT 0.000E+00 0.000E+00 0.000E+00<br>TEEN 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | | 0.000E+00 | 0.000E+00 | | CHTPD = 0.000E+00 = 0.000E+00 = 0.00E+00 | $0.000$ $\pm 00.0$ $0.00$ $\pm 00$ | 0 0000.00 | 0.000E+00 | | | INFANT 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | PATHWAY: GOAT MILK | | | | | | T. BODY GI BONE | LIVER KIDNEY | THYROID | LUNG | SKIN | | ADULT 0.000E+00 0.000E+00 0.000E+00 TEEN 0.000E+00 0.000E+00 0.000E+00 | | 0.000E+00 | 0.000E+00 | 0.000E+00 | | CHILD 0.000E+00 0.000E+00 0.000E+00 | | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00 | | INFANT 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00 | | PATHWAY: INHALATION | | | | | | T. BODY GI BONE | LIVER KIDNEY | THYROID | LUNG | SKIN | | ADULT 0.000E+00 0.000E+00 0.000E+00 TEEN 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00 | 0.000E+00 | | | TEEN 0.000E+00 0.000E+00 0.000E+00 CHILD 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | | 0.000E+00 | | | INFANT 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | | | 0.000Er00 | O.OUGETUU | 0.0005+00 | | ٠٠٠٠ | PATHWAY<br>ADULT<br>TEEN<br>CHILD<br>INFANT | T. BODY<br>5.570E+00<br>5.570E+00<br>5.570E+00 | 5.570E+00 | | 5.570E+00<br>5.570E+00 | KIDNEY<br>5.570E+00<br>5.570E+00<br>5.570E+00<br>5.570E+00 | 5.570E+00 | LUNG<br>6.030E+00<br>6.030E+00<br>6.030E+00 | 3.960E+01 | |------------|---------------------------------------------|------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------| | | PATHWAY ADULT TEEN CHILD INFANT | T. BODY<br>0.000E+00<br>0.000E+00<br>0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | LIVER 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | | | PATHWAY ADULT TEEN CHILD INFANT | T. BODY<br>0.000E+00<br>0.000E+00<br>0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | | | PATHWAY ADULT TEEN CHILD INFANT | T. BODY<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | BONE<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LIVER<br>0.000E+00<br>0.000E+00<br>0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | No. of the | PATHWA<br>ADULT<br>FEEN<br>CHILD<br>INFANT | T. BODY<br>0.000E+00<br>0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | LIVER<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | | PATHWA<br>ADULT<br>TEEN<br>CHILD<br>INFANT | T. BODY 0.000E+00 0.000E+00 0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | | PATHWA ADULT TEEN CHILD INFANT | T. BODY 0.000E+00 0.000E+00 | GI<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | TEEN 6.520E+00 6<br>CHILD 6.520E+00 6 | GI BONE<br>6.520E+00 6.520E+0<br>6.520E+00 6.520E+0<br>6.520E+00 6.520E+0<br>6.520E+00 6.520E+0 | 0 6.520E+00<br>0 6.520E+00 | 6.520E+00<br>6.520E+00 | 6.520E+00<br>6.520E+00 | 6.860E+00<br>6.860E+00 | SKIN<br>1.840E+01<br>1.840E+01<br>1.840E+01<br>1.840E+01 | |---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------| | TEEN 0.000E+00 0<br>CHILD 0.000E+00 0 | GI BONE 0.000E+00 0.000E+0 0.000E+00 0.000E+0 0.000E+00 0.000E+0 0.000E+00 0.000E+0 | 0 0.000E+00<br>0 0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | | PATHWAY: VEGETABL<br>T. BODY | | T TITE | *** | | | | | ADULT 0.000E+00 0<br>TEEN 0.000E+00 0<br>CHILD 0.000E+00 0 | GI BONE<br>0.000E+00 0.000E+0<br>0.000E+00 0.000E+0<br>0.000E+00 0.000E+0<br>0.000E+00 0.000E+0 | 0 0.000E+00<br>0 0.000E+00 | 0.000E+00 | 0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | | PATHWAY: MEAT | | | | | | | | TEEN 0.000E+00 0<br>CHILD 0.000E+00 0 | GI BONE<br>0.000E+00 0.000E+0<br>0.000E+00 0.000E+0<br>0.000E+00 0.000E+0<br>0.000E+00 0.000E+0 | 0 0.000E+00<br>0 0.000E+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | PATHWAY: COW MILK | | | | | | | | T. BODY ADULT 0.000E+00 0 TEEN 0.000E+00 0 CHILD 0.000E+00 0 INFANT 0.000E+00 0 | .000E+00 0.000E+0 .000E+0 0.000E+0 | 0 0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | | PATHWAY: GOAT MILI | <del></del> | | | | | | | TEEN 0.000E+00 0<br>CHILD 0.000E+00 0 | GI BONE<br>.000E+00 0.000E+0<br>.000E+00 0.000E+0<br>.000E+00 0.000E+0 | 0.000E+00 | 0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | $0.000E\pm00$ | | PATHWAY: INHALATIO | | | | | | | | TEEN 0.000E+00 0.<br>CHILD 0.000E+00 0. | GI BONE<br>.000E+00 0.000E+0<br>.000E+00 0.000E+0<br>.000E+00 0.000E+0 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | TEEN 6.920E+01 6.9 | | 6.920E+01<br>6.920E+01 | 6.920E+01<br>6.920E+01 | 6.920E+01<br>6.920E+01 | 6.950E+01<br>6.950E+01 | SKIN<br>1.050E+02<br>1.050E+02<br>1.050E+02<br>1.050E+02 | |-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------| | PATHWAY: GROUND T. BODY ADULT 0.000E+00 0.0 TEEN 0.000E+00 0.0 CHILD 0.000E+00 0.0 INFANT 0.000E+00 0.0 | 0.00E+00 0.000E+00 0.000E+00 0.000E+00 | LIVER<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | | 0.000E+00 | | TEEN 0.000E+00 0.0<br>CHILD 0.000E+00 0.0 | GI BONE<br>000E+00 0.000E+00<br>000E+00 0.000E+00<br>000E+00 0.000E+00<br>000E+00 0.000E+00 | 0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | TEEN 0.000E+00 0.0<br>CHILD 0.000E+00 0.0 | GI BONE<br>000E+00 0.000E+00<br>000E+00 0.000E+00<br>000E+00 0.000E+00<br>000E+00 0.000E+00 | 0.000E+00<br>0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | PATHWAY: COW MILK T. BODY ADULT 0.000E+00 0.0 FEEN 0.000E+00 0.0 CHILD 0.000E+00 0.0 INFANT 0.000E+00 0.0 | 000E+00 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | | TEEN 0.000E+00 0.0<br>CHILD 0.000E+00 0.0 | GI BONE<br>000E+00 0.000E+00<br>000E+00 0.000E+00 | 0.000E+00<br>0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | TEEN 0.000E+00 0.0 | GI BONE<br>000E+00 0.000E+00 | 0.000E+00<br>0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | TEEN 4.020E+01 4.020E+<br>CHILD 4.020E+01 4.020E+ | BONE LIVER 01 4.020E+01 4.020E+03 01 4.020E+01 4.020E+03 01 4.020E+01 4.020E+03 01 4.020E+01 4.020E+03 | l 4.020E+01 4.020E+01<br>l 4.020E+01 4.020E+01 | 4.090E+01 1.060E+02<br>4.090E+01 1.060E+02 | |--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------| | CHILD 0.000E+00 0.000E+ | BONE LIVER 00 0.000E+00 0.000E+00 00 0.000E+00 0.000E+00 00 0.000E+00 0.000E+00 00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | | TEEN 0.000E+00 0.000E+ | BONE LIVER 00 0.000E+00 0.000E+00 00 0.000E+00 0.000E+00 00 0.000E+00 0.000E+00 00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | | PATHWAY: MEAT T. BODY GI ADULT 0.000E+00 0.000E+ TEEN 0.000E+00 0.000E+ CHILD 0.000E+00 0.000E+ INFANT 0.000E+00 0.000E+ | 00 0.000E+00 0.000E+00<br>00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | | PATHWAY: COW MILK T. BODY GI ADULT 0.000E+00 0.000E+ TEEN 0.000E+00 0.000E+ CHILD 0.000E+00 0.000E+ INFANT 0.000E+00 0.000E+ | 00 0.000E+00 0.000E+00<br>00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | LUNG SKIN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 | | PATHWAY: GOAT MILK T. BODY GI ADULT 0.000E+00 0.000E+ TEEN 0.000E+00 0.000E+ CHILD 0.000E+00 0.000E+ INFANT 0.000E+00 0.000E+ | 00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | | PATHWAY: INHALATION T. BODY GI ADULT 0.000E+00 0.000E+ TEEN 0.000E+00 0.000E+ CHILD 0.000E+00 0.000E+ INFANT 0.000E+00 0.000E+ | 00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | ``` PATHWAY: PLUME SKIN THYROID LIVER KIDNEY BONE 3.150E+01 3.150E+01 3.150E+01 3.150E+01 3.150E+01 3.150E+01 3.540E+01 4.240E+02 TEEN 3.150E+01 3.150E+01 3.150E+01 3.150E+01 3.150E+01 3.150E+01 3.150E+01 3.540E+01 4.240E+02 CHILD 3.150E+01 3.150 PATHWAY: GROUND KIDNEY THYROID LUNG LIVER BONE 0.000E+00 ADULT CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 PATHWAY: VEGETABLE THYROID LUNG LIVER KIDNEY BONE 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 GI 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 ADULT CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 PATHWAY: MEAT SKIN THYROID LUNG KIDNEY LIVER BONE 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 T. BODY GI 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 ADULT CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 PATHWAY: COW MILK LUNG THYROID LIVER KIDNEY BONE 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 GI 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 ADULT CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 PATHWAY: GOAT MILK LUNG KIDNEY THYROID BONE LIVER 0.000E+00 ADULT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 PATHWAY: INHALATION LUNG THYROID KIDNEY LIVER BONE ADULT 0.000E+00 CHILD 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 ``` | PATHWA | Y: PLUME | <b>;</b> | | | | | | | |----------------------------------|---------------------------------------|----------------------------------------|------------------------------------------------------------------|------------------------|------------------------------------------------------------|-------------|----------------------------------------------------------|----------------------------------------------------------| | ADULT<br>TEEN<br>CHILD<br>INFANT | 1.960E+0 | 2 1.960E+0<br>2 1.960E+0<br>2 1.960E+0 | BONE<br>2 1.960E+02<br>2 1.960E+02<br>2 1.960E+02<br>2 1.960E+02 | 1 0605+02 | 1.960E+02 | 1.960E+02 | ! 1.980E+02 | 3.580E+02 | | PATHWA | Y: GROUN | D | | | | . 1.9001102 | 1.900E+02 | 3.5805+02 | | ADULT<br>TEEN<br>CHILD<br>INFANT | | 0 0.000E+00<br>0 0.000E+00 | BONE<br>0 0.000E+00<br>0 0.000E+00<br>0 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | | PATHWA | | | | | | | | | | ADULT<br>TEEN<br>CHILD<br>INFANT | 0.000E+00 | ) 0.000E+00 | BONE<br>0 0.000E+00<br>0 0.000E+00<br>0 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | | PATHWA | Y: MEAT | | | | | | | | | ADULT<br>TEEN<br>CHILD<br>INFANT | T. BODY 0.000E+00 0.000E+00 0.000E+00 | 0.000E+00 | BONE<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | | PATHWAY | : COW MI | | | | | | | 0.0001700 | | | 0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | | PATHWAY | GOAT M T. BODY | ILK<br>GI | DOME | T 711000 | | | | | | CHILD | 0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | BONE<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | PATHWAY | : INHALA | rion | | | | | | - | | CHILD | 0.000E+00 | 0.000E+00 | BONE<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00 ( | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | | | | | | | | | | | CHILD 0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | |-----------------------------------|---------------------------------------------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------------|------------------------|----------------------------------------------------------| | TEEN 1.430E+05 | GI<br>1.430E+05<br>1.430E+05<br>1.430E+05 | 1.430E+05<br>1.430E+05 | 1.430E+05<br>1.430E+05 | 1.430E+05<br>1.430E+05 | 1.430E+05 | 1.430E+05 | 1.690E+05 | | TEEN 1.850E+03<br>CHILD 3.510E+03 | BLE<br>GI<br>3.500E+05<br>3.100E+05<br>1.860E+05<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 4.050E+02<br>5.320E+02 | 1.950E+03 | 2.640E+03<br>3.560E+03 | 0.000E+00<br>0.000E+00 | | TEEN 1.530E+02 | GI<br>4.810E+04<br>2.570E+04<br>1.260E+04<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 3.610E+01 | 8.490E+01<br>1.320E+02 | 2.180E+02<br>2.420E+02 | 0.000E+00 | | TEEN 1.350E+03 | GI<br>1.950E+05<br>2.270E+05<br>1.460E+05 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 4.180E+02 | 7.510E+02<br>1.530E+03 | 1.930E+03 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | TEEN 1.620E+02 | GI<br>2.330E+04<br>2.720E+04<br>1.750E+04 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 3.550E+01<br>5.020E+01 | 9.010E+01<br>1.840E+02 | 2.310E+02<br>3.350E+02 | 0.005+00 | | TEEN 4.290E+00 | GI<br>1.050E+02<br>9.510E+01<br>3.440E+01 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 9.740E-01<br>7.710E-01 | 2.380E+00<br>2.710E+00 | 6.640E+02<br>5.380E+02 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | CHILD 0 000E+00 0 000E+00 | BONE<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | |---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|----------------------------------------------------------| | PATHWAY: GROUND<br>T. BODY GI<br>ADULT 4.230E+07 4.230E+07<br>TEEN 4.230E+07 4.230E+07<br>CHILD 4.230E+07 4.230E+07<br>INFANT 4.230E+07 4.230E+07 | BONE<br>4.230E+07<br>4.230E+07<br>4.230E+07<br>4.230E+07 | 4.230E+07 | 4.230E+07<br>4.230E+07 | 4.230E+07<br>4.230E+07 | 4.230E+07<br>4.230E+07 | 4.960E+07<br>4.960E+07 | | PATHWAY: VEGETABLE T. BODY GI ADULT 1.770E+06 2.840E+07 TEEN 2.670E+06 2.760E+07 CHILD 5.240E+06 1.650E+07 INFANT 0.000E+00 0.000E+00 | 0.000E+00<br>0.000E+00 | 1.350E+07<br>1.970E+07 | 4.010E+06<br>5.520E+06 | 0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | PATHWAY: MEAT T. BODY GI ADULT 4.230E+04 6.790E+05 TEEN 3.350E+04 3.470E+05 CHILD 5.150E+04 1.620E+05 INFANT 0.000E+00 0.000E+00 | 0.000E+00 | 1.690E+05 | 5.040E+04<br>5.420E+04 | 0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | PATHWAY: COW MILK T. BODY GI ADULT 3.880E+04 6.220E+05 TEEN 6.710E+04 6.940E+05 CHILD 1.350E+05 4.250E+05 INFANT 2.130E+05 3.460E+05 | 0.000E+00 | 3.380E+05<br>5.060E+05 | 1.010E+05<br>1.420E+05 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | PATHWAY: GOAT MILK T. BODY GI ADULT 4.650E+03 7.470E+04 TEEN 8.050E+03 8.330E+04 CHILD 1.620E+04 5.100E+04 INFANT 2.560E+04 4.150E+04 | 0.000E+00 | 4.060E+04<br>6.080E+04 | 1.210E+04<br>1.700E+04 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | PATHWAY: INHALATION T. BODY GI ADULT 2.000E+02 2.450E+03 TEEN 2.660E+02 2.120E+03 CHILD 3.010E+02 7.260E+02 INFANT 1.580E+02 2.240E+02 | 0.000E+00 | 1.620E+03 | 4.030E+02<br>3.180E+02 | 0.000E+00<br>0.000E+00 | LUNG<br>4.440E+04<br>6.290E+04<br>5.000E+04<br>3.170E+04 | 0.000E+00<br>0.000E+00 | | PATHWA | | | | | | | | | |-----------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------| | ADULT | T. BODY 0.000E+00 | | BONE<br>0.000E+00 | LIVER<br>0.000E+00 | KIDNEY 0.000E+00 | THYROID 0.000E+00 | LUNG<br>0.000E+00 | SKIN<br>0.000E+00 | | TEEN<br>CHILD | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00 | | | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | 0.000E+00<br>0.000E+00 | | PATHWA | Y: GROUND | | | | | | | | | ADULT | T. BODY<br>8.340E+06 | GI<br>8.340E+06 | BONE<br>8 340E+06 | LIVER<br>8 340E+06 | KIDNEY | THYROID<br>8.340E+06 | LUNG | SKIN | | TEEN | 8.340E+06 9.800E+06 | | CHILD<br>INFANT | 8.340E+06<br>8.340E+06 9.800E+06<br>9.800E+06 | | PATHWA | Y: VEGETAI | BLE | | | | | | | | ADULT | T. BODY | GI<br>2.920E+07 | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | TEEN | 4.780E+06 | 2.930E+07 | 5.300E+06 | 1.240E+07 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 3.900E+06 | 0.000E+00 | | CHILD | 9.470E+06<br>0.000E+00 | 1.980E+07 | 1.170E+07 | 1.900E+07 | 0.000E+00 | 0.000E+00 | 5.510E+06 | 0 000E+00 | | | | 0.0005+00 | 0.000 | 0.000E+00 | 0.0002+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | PATHWA | Y: MEAT<br>T. BODY | GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT | 6.220E+06 | 5.410E+07 | 6.900E+06 | 1.620E+07 | 0.000E+00 | 0.000E+00 | 4.530E+06 | 0.000E+00 | | TEEN<br>CHILD | 4.970E+06 | 3.040E+07 | 5.510E+06 | 1.290E+07 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 4.060E+06 | 0.000E+00 | | | 0.000E+00 | PATHWA | Y: COW MII | LK . | | | | | | | | ADULT | T. BODY | GI<br>6 040E+06 | BONE | LIVER | KIDNEY | THYROID<br>0.000E+00 | LUNG | SKIN | | reen | 1.210E+06 | 7.430E+06 | 1.350E+06 | 3.140E+06 | 0.000E+00 | 0.000E+00 | 9.910E+05 | 0 000E+00 | | CHILD | 2.520E+06<br>4.010E+06 | 5.260E+06 | 3.120E+06 | 5.050E+06 | 0.000E+00 | 0.000E+00 | 1.460E+06 | 0 000E+00 | | | | | J.050E+00 | 1.0205+07 | 0.0001 | 0.000E+00 | 3.0102+06 | U.UUUE+UU | | PATHWAY | T. BODY | GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT<br>TEEN | 9.040E+03 | 7.860E+04 | 1.000E+04 | 2.360E+04 | 0.000E+00 | 0.000E+00 | 6.590E+03 | 0.000E+00 | | CHILD | 3.270E+04 | 6.840E+04 | 4.060E+04 | 6.570E+04 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 1.900E+04 | 0.000000 | | INFANT | 5.220E+04 | 6.320E+04 | 7.580E+04 | 1.320E+05 | 0.000E+00 | 0.000E+00 | 3.910E+04 | 0.000E+00 | | PATHWAY | | | | | | | | | | ADULT | T. BODY 3.350E+02 | GI<br>5.960E+03 | BONE<br>3.730E+02 | LIVER<br>8 800E+02 | KIDNEY | THYROID<br>0.000E+00 | LUNG | SKIN | | TEEN | 4.540E+02 | 5.660E+03 | 5.050E+02 | 1.170E+03 | 0.000E+00 | 0.000E+00 | 4 840E+04 | 0 000E±00 | | CHILD<br>INFANT | 5.290E+02<br>3.000E+02 | 2.240E+03<br>7.860E+02 | 6.560E+02<br>4.300E+02 | 1.060E+03 | 0.000E+00 | 0.000E+00 | 4.020E+04 | 0.000E+00 | | | | | | 1001102 | J. 000E.00 | J. VVVETVU | J.220ET04 | U.UUUETUU | | PATHWAY | T. BODY | GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | |---------------|----------------------|------------------------|-------------------|------------------------|-----------|------------------------|------------------------|------------------------| | ADULT | 0.000E+00 | 0.000E+00<br>0.000E+00 | | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | TEEN<br>CHILD | | 0.000E+00 | | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | INFANT | 0.000E+00 | 0.000E+00 | | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | PATHWAY | | | DOME | T TI (TID | KIDNEY | THYROID | LUNG | SKIN | | ADULT | T. BODY<br>1.160E+07 | GI<br>1 160E+07 | BONE<br>1.160E+07 | LIVER<br>1.160E+07 | 1.160E+07 | 1.160E+07 | 1.160E+07 | 1.360E+07 | | TEEN | 1.160E+07 | 1 160E+07 | 1.160E+07 | 1.160E+07 | 1.160E+07 | 1.160E+07 | 1.160E+07 | 1.360E+07 | | CHILD | 1.160E+07 1.360E+07 | | INFANT | 1.160E+U7 | 1.160E+07 | 1.160E+07 | 1.1005+07 | 1.1605+07 | 1.1005+07 | 1.1000+07 | 1.300E+07 | | PATHWAY | | | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT | T. BODY | GI<br>1.830E+07 | | | 0.000E+00 | 0.000E+00 | | 0.000E+00 | | TEEN | 2.950E+06 | 1.760E+07 | 0.000E+00 | 1.280E+06 | | 0.000E+00 | | 0.000E+00 | | CHILD | 5.780E+06 | 1.100E+07 | | 1.890E+06 | | 0.000E+00<br>0.000E+00 | | 0.000E+00<br>0.000E+00 | | INFANT | 0.000E+00 | 0.000E+00 | 0.000E+00 | U.UUUE+UU | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000100 | | PATHWAY | | O.T. | DONE | מימונד ז | KIDNEY | THYROID | LUNG | SKIN | | ADULT | T. BODY<br>1.030E+06 | GI<br>9 300E+06 | BONE<br>0.000E+00 | LIVER<br>4.590E+05 | | 0.000E+00 | | | | TEEN | 8.160E+05 | 4.880E+06 | 0.000E+00 | 3.540E+05 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | CHILD | 1.270E+06 | 2.410E+06 | 0.000E+00 | 4.130E+05 | 0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | | INFANT | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.0002+00 | 0.000E100 | | PATHWA | | | D 0378 | * ***** | I/TONIDA | MUVDOTD. | LUNG | SKIN | | ADULT | T. BODY 2.660E+05 | GI<br>2 410F+06 | BONE<br>0.000E+00 | LIVER<br>1 190E+05 | KIDNEY | THYROID<br>0.000E+00 | | | | TEEN | 4.610E+05 | 2.750E+06 | 0.000E+00 | 2.000E+05 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | CHILD | | 1.780E+06 | | | 0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | | | INFANT | 1.520E+06 | 1.520E+06 | 0.000E+00 | 6.110E+05 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.0004 | | PATHWA | | | DOME | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT | T. BODY 3.190E+04 | GI<br>2.890E+05 | BONE<br>0.000E+00 | 1.420E+04 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | TEEN | 5.530E+04 | 3.310E+05 | 0.000E+00 | 2.400E+04 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | CHILD | 1.120E+05 | 2.140E+05<br>1.830E+05 | 0.000E+00 | 3.660E+04 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | INFANT | 1.830E+05 | 1.830E+05 | 0.000E+00 | 7.330E+04 | 0.000E+00 | 0.000±+00 | 0.000400 | 0.000100 | | PATHWA | | | DOME | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT | T. BODY<br>6 570E+01 | GI<br>3.370E+03 | BONE<br>0.000E+00 | | | | | | | TEEN | | 3.020E+03 | 0.000E+00 | 6.570E+01 | 0.000E+00 | 0.000E+00 | 4.260E+04 | | | CHILD | | 1.090E+03 | 0.000E+00 | 5.620E+01 | 0.000E+00 | 0.000E+00 | 3.510E+04<br>2.460E+04 | | | INFANT | 5.//UE+0I | 3.530E+02 | U.UUUE+UU | 3.0/UE+UI | U.UUUE+UU | 0.0005+00 | 2.400ETU4 | 0.000100 | # Table B4-7b Continued | | 0.000E+00 0<br>0.000E+00 0 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | |------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------|-----------------------------------------------------------|------------------------|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------| | PATHWAY: GROUND T. BODY ADULT 6.580E+08 6 TEEN 6.580E+08 6 CHILD 6.580E+08 6 INFANT 6.580E+08 6 | 5.580E+08 6<br>5.580E+08 6 | 5.580E+08<br>5.580E+08 | LIVER<br>6.580E+08<br>6.580E+08<br>6.580E+08<br>6.580E+08 | 6.580E+08<br>6.580E+08 | THYROID<br>6.580E+08<br>6.580E+08<br>6.580E+08<br>6.580E+08 | 6.580E+08<br>6.580E+08 | 7.740E+08 | | PATHWAY: VEGETABL<br>T. BODY<br>ADULT 1.110E+07 9<br>TEEN 1.680E+07 9<br>CHILD 3.350E+07 6<br>INFANT 0.000E+00 0 | GI<br>9.420E+07 0<br>9.720E+07 0<br>5.290E+07 0 | 0.000E+00<br>0.000E+00 | 7.460E+06<br>1.140E+07 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | PATHWAY: MEAT<br>T. BODY<br>ADULT 3.980E+06 3<br>TEEN 3.150E+06 1<br>CHILD 4.900E+06 9<br>INFANT 0.000E+00 0 | L.820E+07 0<br>9.200E+06 0 | 0.000E+00<br>0.000E+00 | 1.400E+06<br>1.660E+06 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | PATHWAY: COW MILK<br>T. BODY<br>ADULT 8.680E+05 7<br>FEEN 1.500E+06 8<br>CHILD 3.050E+06 5<br>INFANT 4.990E+06 5 | GI<br>7.390E+06 0<br>8.680E+06 0<br>5.730E+06 0 | 0.000E+00<br>0.000E+00 | 6.660E+05<br>1.030E+06 | 0.000E+00 | 0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | PATHWAY: GOAT MIL<br>T. BODY<br>ADULT 1.040E+05 8<br>TEEN 1.800E+05 1<br>CHILD 3.660E+05 6<br>INFANT 5.990E+05 6 | GI<br>3.870E+05 0<br>.040E+06 0<br>5.880E+05 0 | 0.000E+00<br>0.000E+00 | 8.000E+04<br>1.240E+05 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | | TEEN 6.290E+02 8 | GI<br>0.030E+03 0<br>3.220E+03 0<br>0.050E+03 0 | .000E+00 | 4.790E+02<br>4.160E+02 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 2.760E+05<br>2.240E+05 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | TEEN 0.000E+00<br>CHILD 0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00 | | |---------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------|---------------------------------------------| | TEEN 2.290E+07 | 2.290E+07 | 2.290E+07<br>2.290E+07 | 2.290E+07<br>2.290E+07 | 2.290E+07<br>2.290E+07 | 2.290E+07<br>2.290E+07 | LUNG<br>2.290E+07<br>2.290E+07<br>2.290E+07<br>2.290E+07 | 2.630E+07<br>2.630E+07 | | PATHWAY: VEGETAB T. BODY ADULT 1.740E+07 TEEN 2.620E+07 CHILD 5.150E+07 INFANT 0.000E+00 | GI<br>2.430E+07<br>2.380E+07<br>1.450E+07 | 1.620E+07<br>3.110E+07 | 5.630E+07<br>8.280E+07 | 3.600E+07<br>5.220E+07 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | | | 1.000E+07<br>4.790E+06 | BONE<br>9.700E+06<br>6.820E+06<br>1.020E+07<br>0.000E+00 | 2.370E+07<br>2.730E+07 | 1.520E+07<br>1.720E+07 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | | PATHWAY: COW MIL<br>T. BODY<br>ADULT 5.380E+07<br>TEEN 9.300E+07<br>CHILD 1.870E+08<br>INFANT 2.390E+08 | GI<br>7.490E+07<br>8.440E+07<br>5.270E+07 | 5.740E+07<br>1.130E+08 | 1.990E+08<br>3.000E+08 | 1.280E+08<br>1.890E+08 | | 0.000E+00<br>0.000E+00 | 0.000E+00 | | PATHWAY: GOAT MI<br>T. BODY<br>ADULT 6.450E+06<br>TEEN 1.120E+07<br>CHILD 2.240E+07<br>INFANT 2.870E+07 | GI<br>8.990E+06<br>1.010E+07<br>6.330E+06 | 6.890E+06<br>1.350E+07 | 2.390E+07<br>3.600E+07 | 2.270E+07 | 0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | TEEN 1.980E+03 | GI<br>1.690E+03<br>1.480E+03<br>5.170E+02 | 1.350E+03 | 4.240E+03<br>3.590E+03 | 2.740E+03<br>2.260E+03 | 0.000E+00<br>0.000E+00 | LUNG<br>2.740E+04<br>3.930E+04<br>3.160E+04<br>2.050E+04 | 0.000E+00<br>0.000E+00 | ## Table B4-7b Continued | PATHWAY: PLUME T. BODY ADULT 0.000E+00 TEEN 0.000E+00 CHILD 0.000E+00 INFANT 0.000E+00 | | 0 0.000E+00<br>0 0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | |----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------|------------------------|-------------------------------------------------------------|------------------------|----------------------------------------------------------| | TEEN 6.620E+02<br>CHILD 6.620E+02 | GI BONE 6.620E+02 6.620E+0 6.620E+02 6.620E+0 6.620E+02 6.620E+0 6.620E+02 6.620E+0 | 2 6.620E+02<br>2 6.620E+02 | 6.620E+02<br>6.620E+02 | 6.620E+02<br>6.620E+02 | 6.620E+02<br>6.620E+02 | SKIN<br>7.680E+02<br>7.680E+02<br>7.680E+02<br>7.680E+02 | | TEEN 1.330E+07<br>CHILD 3.150E+07 | BLE GI BONE 4.900E+07 3.060E+09 5.530E+07 4.640E+09 4.270E+07 1.100E+09 0.0000E+00 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | TEEN 2.030E+05<br>CHILD 3.820E+05 | GI BONE 1.340E+06 8.380E+06 8.430E+05 7.080E+06 5.180E+05 1.340E+07 0.000E+00 0.000E+06 | 5 0.000E+00<br>7 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | | reen 2.130E+06<br>CHILD 5.250E+06 | GI BONE 6.470E+06 4.030E+0 8.850E+06 7.430E+0 7.120E+06 1.840E+08 7.190E+06 3.500E+08 | 7 0.000E+00<br>3 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | TEEN 4.470E+06<br>CHILD 1.100E+07 | GI BONE 1.360E+07 8.470E+07 1.860E+07 1.560E+08 1.500E+07 3.860E+08 1.510E+07 7.340E+08 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | | TEEN 3.960E+02<br>CHILD 5.470E+02 | GI BONE<br>1.110E+04 9.640E+03<br>1.180E+04 1.380E+04<br>5.300E+03 1.900E+04<br>2.030E+03 1.260E+04 | 0.000E+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 7.660E+04<br>6.840E+04 | 0.000E+00<br>0.000E+00 | | PATHWAY | | O.T. | DONE | TTUED | עלווארו דע | THYROID | LUNG | SKIN | |-----------------|------------------------|------------------------|-------------------|------------------------|------------------------|------------------------|------------------------|------------------------| | ADULT | T. BODY 0.000E+00 | GI<br>0.000E+00 | BONE<br>0.000E+00 | LIVER<br>0.000E+00 | KIDNEY<br>0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | TEEN | 0.000E+00 | | 0.000E+00 | | | 0.000E+00 | | 0.000E+00 | | CHILD | 0.000E+00 | | 0.000E+00 | | | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | INFANT | 0.000E+00 | PATHWA | | | | | | _ | = = | | | 3 DITT (1) | T. BODY | GI<br>0.000E+00 | BONE | LIVER<br>0.000E+00 | KIDNEY<br>0.000E+00 | THYROID<br>0.000E+00 | LUNG<br>0.000E+00 | SKIN<br>0.000E+00 | | ADULT<br>TEEN | 0.000E+00<br>0.000E+00 | | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | | CHILD | | 0.000E+00 | | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | INFANT | 0.000E+00 | PATHWAY | Y: VEGETAI | RT.E | | | | | | | | 1.2121177111 | T. BODY | GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT | | 1.510E+09 | | 0.000E+00 | | 0.000E+00 | 0.000E+00 | | | TEEN | | 1.820E+09<br>1.450E+09 | | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | | CHILD<br>INFANT | | 0.000E+00 | | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | | 11111111 | 0.0001 | 0.0002.00 | | | | | | | | PATHWAY | | O.T. | DONE | I IIIDD | TAT DATES | muynoth | LUNG | SKIN | | ADULT | T. BODY | GI<br>4.480E+07 | BONE<br>1 550F±09 | LIVER<br>0.000E+00 | KIDNEY | THYROID<br>0.000E+00 | 0.000E+00 | | | TEEN | | 2.820E+07 | | 0.000E+00 | 0.000E+00 | | 0.000E+00 | | | CHILD | 3.290E+08 | 1.750E+07 | | 0.000E+00 | 0.000E+00 | 0.000E+00 | | | | INFANT | 0.000E+00 | PATHWA | Y: COW MI | LK | | | | | | | | | T. BODY | GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT | | | 5.840E+09 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | | | TEEN<br>CHILD | | 2.320E+08<br>1.880E+08 | | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | 0.000E+00 | | | INFANT | | 1.890E+08 | | 0.000E+00 | 0.000E+00 | • • • • • • | 0.000E+00 | | | | | | | | | | | | | PATHWA | Y: GOAT M<br>T. BODY | ILK<br>GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT | | 3.540E+08 | 1.230E+10 | 0.000E+00 | 0.000E+00 | | | 0.000E+00 | | TEEN | | | 1.730E+10 | 0.000E+00 | | 0.000E+00 | 0.000E+00 | | | CHILD | | 3.940E+08 | | 0.000E+00 | | 0.000E+00 | 0.000E+00 | | | INFANT | 8.110E+09 | 3.980E+08 | 3.190E+10 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | PATHWA | | | | | | | | | | | T. BODY | GI | BONE | LIVER | KIDNEY | THYROID 0.000E+00 | LUNG | SKIN | | ADULT<br>TEEN | | 2.290E+04<br>2.420E+04 | | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 5.040E+05 | 0.000E+00 | | CHILD | | 1.090E+04 | | | | 0.000E+00 | | | | INFANT | | 4.150E+03 | | | 0.000E+00 | 0.000E+00 | 3.560E+05 | 0.000E+00 | | PATHWAY: PLUME | | | | |----------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------| | T. BODY GI ADULT 0.000E+00 0.000E+0 | BONE LIVER<br>0 0.000E+00 0.000E+00 | KIDNEY THYROID | LUNG SKIN<br>0.000E+00 0.000E+00 | | | 0 0.000E+00 0.000E+00 | | | | | 0 0.000E+00 0.000E+00 | | | | INFANT 0.000E+00 0.000E+0 | 0 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | | PATHWAY: GROUND | , T. | | TIME CUTY | | T. BODY GI<br>ADULT 7.480E+06 7.480E+0 | BONE LIVER<br>6 7.480E+06 7.480E+06 | KIDNEY THYROID<br>7.480E+06 7.480E+06 | LUNG SKIN<br>7.480E+06 8.670E+06 | | TEEN 7.480E+06 7.480E+0 | 6 7.480E+06 7.480E+06 | 7.480E+06 7.480E+06 | 7.480E+06 8.670E+06 | | | 6 7.480E+06 7.480E+06 | | | | INFANT 7.480E+06 7.480E+0 | 6 7.480E+06 7.480E+06 | 7.480E+06 7.480E+06 | 7.480E+06 8.670E+06 | | PATHWAY: VEGETABLE | | | | | T. BODY GI<br>ADULT 7.480E+03 3.500E+0 | BONE LIVER<br>7 3.450E+04 1.110E+04 | KIDNEY THYROID | LUNG SKIN<br>0.000E+00 0.000E+00 | | | 7 5.050E+04 1.110E+04 | | | | CHILD 2.210E+04 2.600E+0 | 7 1.130E+05 2.490E+04 | 3.560E+04 0.000E+00 | 0.000E+00 0.000E+00 | | INFANT 0.000E+00 0.000E+0 | 0 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00 | | PATHWAY: MEAT | | | | | T. BODY GI | BONE LIVER<br>7 4.740E+04 1.520E+04 | KIDNEY THYROID | LUNG SKIN<br>0.000E+00 0.000E+00 | | | 7 3.800E+04 1.320E+04<br>7 3.800E+04 1.200E+04 | | | | | 7 6.740E+04 1.480E+04 | | | | | 0 0.000E+00 0.000E+00 | | | | PATHWAY: COW MILK | | | | | T. BODY GI | BONE LIVER | KIDNEY THYROID | LUNG SKIN | | | 4 2.390E+01 7.660E+00<br>4 4.180E+01 1.320E+01 | | | | | 4 9.700E+01 2.130E+01 | | | | INFANT 2.980E+01 2.090E+0 | | | | | PATHWAY: GOAT MILK | | | | | T. BODY GI | BONE LIVER | KIDNEY THYROID | LUNG SKIN | | | 3 2.870E+00 9.190E-01 | | | | | 3 5.010E+00 1.580E+00<br>3 1.160E+01 2.560E+00 | | | | INFANT 3.570E+00 2.510E+0 | | | | | | | | | | PATHWAY: INHALATION T. BODY GI | BONE LIVER | KIDNEY THYROID | LUNG SKIN | | ADULT 7.380E+02 4.770E+0 | | | 5.600E+04 0.000E+00 | | TEEN 9.990E+02 4.720E+0 | 3 4.620E+03 1.450E+03 | 2.140E+03 0.000E+00 | 8.520E+04 0.000E+00 | | | 3 6.020E+03 1.330E+03 | | 7.070E+04 0.000E+00 | | INFANT 6.440E+02 6.880E+0 | 2 3.660E+03 8.830E+02 | 9.850E+02 0.000E+00 | 5.550E+04 0.000E+00 | | PATHWAY: PLUME T. BODY ADULT 0.000E+00 TEEN 0.000E+00 CHILD 0.000E+00 INFANT 0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | BONE<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LIVER<br>0.000E+00<br>0.000E+00<br>0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | 0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | |----------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------| | TEEN 0.000E+00<br>CHILD 0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00 | BONE<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LIVER<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | 0.000E+00 | 0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | TEEN 0.000E+00<br>CHILD 0.000E+00 | GI<br>0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00 | | 0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00 | | PATHWAY: MEAT T. BODY ADULT 0.000E+00 TEEN 0.000E+00 CHILD 0.000E+00 INFANT 0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | BONE<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LIVER<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | TEEN 0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00 | BONE<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | 0.000E+00<br>0.000E+00 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | | TEEN 0.000E+00<br>CHILD 0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | CHILD 0.000E+00 | GI<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | KIDNEY<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | 0.000E+00<br>0.000E+00 | 01/01/2000 B4-132 Rev. 10 | er. | PATHWAY ADULT TEEN CHILD INFANT | T. BODY<br>0.000E+00<br>0.000E+00<br>0.000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | LUNG<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | |-----|---------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------------------------|----------------------------------------------------------|---------------------------------------------| | | PATHWAY<br>ADULT<br>TEEN<br>CHILD | T. BODY<br>2.090E+08<br>2.090E+08<br>2.090E+08 | GI<br>2.090E+08<br>2.090E+08<br>2.090E+08 | 2.090E+08<br>2.090E+08 | 2.090E+08<br>2.090E+08 | 2.090E+08<br>2.090E+08 | 2.090E+08<br>2.090E+08 | 2.090E+08<br>2.090E+08 | 2.440E+08<br>2.440E+08 | | | PATHWAY ADULT TEEN CHILD | T: VEGETAI<br>T. BODY<br>2.730E+08<br>2.330E+08<br>1.670E+08 | 2.090E+08 BLE GI 5.830E+06 6.240E+06 4.260E+06 0.000E+00 | BONE<br>1.400E+08<br>2.130E+08<br>4.810E+08 | LIVER<br>3.330E+08<br>5.020E+08<br>7.900E+08 | KIDNEY<br>1.080E+08<br>1.590E+08<br>2.450E+08 | THYROID<br>0.000E+00<br>0.000E+00<br>0.000E+00 | LUNG | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | | PATHWAY<br>ADULT<br>TEEN<br>CHILD<br>INFANT | T. BODY<br>3.080E+07<br>1.370E+07<br>7.680E+06 | GI<br>6.590E+05<br>3.680E+05<br>1.960E+05<br>0.000E+00 | 1.260E+07<br>2.220E+07 | 2.960E+07<br>3.640E+07 | 9.410E+06<br>1.130E+07 | 0.000E+00<br>0.000E+00 | LUNG<br>4.050E+06<br>3.590E+06<br>4.050E+06<br>0.000E+00 | 0.000E+00<br>0.000E+00 | | | PATHWAY ADULT TEEN CHILD INFANT | T. BODY<br>2.650E+08<br>2.580E+08<br>1.890E+08 | GI<br>5.670E+06<br>6.920E+06<br>4.820E+06<br>4.450E+06 | 2.360E+08<br>5.450E+08 | 5.560E+08<br>8.940E+08 | 1.770E+08<br>2.770E+08 | 0.000E+00<br>0.000E+00 | LUNG<br>3.480E+07<br>6.750E+07<br>9.940E+07<br>1.730E+08 | 0.000E+00<br>0.000E+00 | | | PATHWAY<br>ADULT<br>TEEN<br>CHILD<br>INFANT | T. BODY<br>7.940E+08<br>7.740E+08<br>5.660E+08 | GI<br>1.700E+07<br>2.070E+07<br>1.450E+07<br>1.330E+07 | 7.090E+08<br>1.630E+09 | 1.670E+09<br>2.680E+09 | 5.300E+08<br>8.310E+08 | 0.000E+00<br>0.000E+00 | LUNG<br>1.040E+08<br>2.020E+08<br>2.980E+08<br>5.180E+08 | 0.000E+00<br>0.000E+00 | | | PATHWAY ADULT TEEN CHILD INFANT | T. BODY<br>2.310E+04<br>1.740E+04<br>7.120E+03 | GI<br>3.300E+02<br>3.090E+02<br>1.220E+02<br>4.230E+01 | 1.590E+04<br>2.060E+04 | 3.580E+04<br>3.210E+04 | 1.190E+04<br>1.050E+04 | 0.000E+00<br>0.000E+00 | 4.640E+03<br>3.840E+03 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | | .000E+00 0.000E+00 .000E+00 0.000E+00 | 0.000E+00 0<br>0.000E+00 0 | 0.000E+00 0<br>0.000E+00 0 | 0.000E+00 | 0.000E+00<br>0.000E+00 | |-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|----------------------------|------------------------|------------------------| | PATHWAY: GROUND T. BODY GI ADULT 4.600E+06 4.600E+06 4. TEEN 4.600E+06 4.600E+06 4. CHILD 4.600E+06 4.600E+06 4. INFANT 4.600E+06 4.600E+06 4. | .600E+06 4.600E+06<br>.600E+06 4.600E+06<br>.600E+06 4.600E+06 | 4.600E+06 4<br>4.600E+06 4<br>4.600E+06 4 | 1.600E+06 4<br>1.600E+06 4 | 1.600E+06<br>1.600E+06 | 5.210E+06<br>5.210E+06 | | PATHWAY: VEGETABLE T. BODY GI ADULT 3.660E+06 5.770E+05 1. TEEN 3.480E+06 4.170E+05 1. CHILD 4.410E+06 2.400E+05 2. INFANT 0.000E+00 0.000E+00 0. | .290E+06 5.080E+06<br>.320E+06 5.190E+06<br>.480E+06 6.820E+06 | 2.830E+06 0<br>2.820E+06 0<br>3.630E+06 0 | ).000E+00 4<br>).000E+00 5 | 1.450E+05<br>5.420E+05 | 0.000E+00 | | PATHWAY: MEAT T. BODY GI ADULT 9.890E+05 1.560E+05 3. TEEN 7.170E+05 8.590E+04 2. CHILD 8.330E+05 4.520E+04 4. INFANT 0.000E+00 0.000E+00 0. | .480E+05 1.370E+06<br>.710E+05 1.070E+06<br>.680E+05 1.290E+06 | 7.640E+05 0<br>5.810E+05 0<br>6.850E+05 0 | 0.000E+00 9<br>0.000E+00 1 | 0.160E+04<br>L.020E+05 | 0.000E+00 | | | .610E+06 3.000E+07<br>.300E+07 5.100E+07<br>.920E+07 8.040E+07 | 1.670E+07 0<br>2.770E+07 0<br>4.280E+07 0 | 0.000E+00 4<br>0.000E+00 6 | 1.370E+06<br>5.380E+06 | 0.000E+00<br>0.000E+00 | | PATHWAY: GOAT MILK T. BODY GI ADULT 6.490E+07 1.020E+07 2. TEEN 1.030E+08 1.230E+07 3. CHILD 1.560E+08 8.470E+06 8. INFANT 1.880E+08 7.650E+06 1. | .280E+07 9.010E+07<br>.890E+07 1.530E+08<br>.770E+07 2.410E+08 | 5.010E+07 0<br>8.320E+07 0<br>1.280E+08 0 | 0.000E+00 1 | 310E+07<br>910E+07 | 0.000E+00<br>0.000E+00 | | PATHWAY: INHALATION T. BODY GI ADULT 3.500E+03 3.700E+02 1. TEEN 4.340E+03 3.450E+02 1. CHILD 3.680E+03 1.330E+02 2. INFANT 1.680E+03 4.530E+01 1. | .240E+03 4.640E+03<br>.630E+03 6.140E+03<br>.060E+03 5.420E+03 | 2.710E+03 0<br>3.500E+03 0<br>3.030E+03 0 | 0.000E+00 5<br>0.000E+00 4 | 6.630E+02<br>4.610E+02 | 0.000E+00<br>0.000E+00 | # Table B4-7b Continued | _ ~ | ADULT 0.<br>TEEN 0.<br>CHILD 0. | 000E+00<br>000E+00 | GI<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | |-----|---------------------------------|--------------------|--------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------| | | ADULT 3.<br>TEEN 3.<br>CHILD 3. | 150E+08<br>150E+08 | GI<br>3.150E+08<br>3.150E+08<br>3.150E+08<br>3.150E+08 | 3.150E+08<br>3.150E+08 | 3.150E+08<br>3.150E+08 | 3.150E+08<br>3.150E+08 | 3.150E+08<br>3.150E+08 | 3.150E+08<br>3.150E+08 | 3.670E+08<br>3.670E+08 | | | ADULT 1. TEEN 1. CHILD 1. | 620E+08<br>160E+08 | GI<br>5.790E+06<br>6.600E+06<br>4.930E+06<br>0.000E+00 | 3.490E+08<br>8.230E+08 | 4.640E+08<br>7.880E+08 | 1.580E+08<br>2.570E+08 | 0.000E+00<br>0.000E+00 | 6.130E+07<br>9.240E+07 | 0.000E+00<br>0.000E+00 | | | ADULT 1.<br>TEEN 8.<br>CHILD 4. | 540E+06<br>800E+06 | GI<br>5.880E+05<br>3.490E+05<br>2.030E+05<br>0.000E+00 | 1.840E+07<br>3.390E+07 | 2.450E+07<br>3.250E+07 | 8.350E+06<br>1.060E+07 | 0.000E+00<br>0.000E+00 | 3.240E+06<br>3.810E+06 | 0.000E+00<br>0.000E+00 | | | ADULT 1. reen 1. CHILD 1. | 580E+08<br>160E+08 | GI<br>4.970E+06<br>6.450E+06<br>4.920E+06<br>4.790E+06 | 3.410E+08<br>8.210E+08 | 4.530E+08<br>7.860E+08 | 1.540E+08<br>2.560E+08 | 0.000E+00<br>0.000E+00 | 5.990E+07<br>9.210E+07 | 0.000E+00<br>0.000E+00 | | | ADULT 5.<br>TEEN 4.<br>CHILD 3. | 740E+08<br>480E+08 | GI<br>1.490E+07<br>1.930E+07<br>1.480E+07<br>1.440E+07 | 1.020E+09<br>2.460E+09 | 1.360E+09<br>2.360E+09 | 4.630E+08<br>7.680E+08 | 0.000E+00<br>0.000E+00 | 1.800E+08<br>2.760E+08 | 0.000E+00<br>0.000E+00 | | | ADULT 1.<br>TEEN 9.<br>CHILD 4. | 870E+03<br>070E+03 | GI<br>2.660E+02<br>2.690E+02<br>1.150E+02<br>4.230E+01 | 2.130E+04<br>2.870E+04 | 2.690E+04<br>2.620E+04 | 9.640E+03<br>8.950E+03 | 0.000E+00<br>0.000E+00 | 3.830E+03 | 0.000E+00<br>0.000E+00 | | PATHWAY: PLUME T. BODY ADULT 0.000E+00 TEEN 0.000E+00 CHILD 0.000E+00 INFANT 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00 | |----------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|----------------------------------------------------------| | TEEN 6.270E+05 | 6.270E+05 | 6.270E+05<br>6.270E+05 | 6.270E+05<br>6.270E+05 | 6.270E+05<br>6.270E+05 | 6.270E+05<br>6.270E+05 | 6.270E+05<br>6.270E+05 | 7.160E+05<br>7.160E+05 | | TEEN 2.690E+05 | GI<br>7.990E+06<br>6.430E+06<br>4.230E+06 | 4.170E+06<br>8.350E+06 | 5.110E+03<br>7.310E+03 | 2.380E+03 | 0.000E+00<br>0.000E+00 | 3.430E+03<br>4.360E+03 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | TEEN 4.440E+04 | GI<br>1.710E+06<br>1.060E+06<br>6.440E+05<br>0.000E+00 | 6.880E+05<br>1.270E+06 | 8.440E+02<br>1.110E+03 | 2.860E+02<br>3.620E+02 | 0.000E+00<br>0.000E+00 | 5.670E+02<br>6.640E+02 | 0.000E+00<br>0.000E+00 | | TEEN 9.060E+04 | GI<br>1.600E+06<br>2.170E+06<br>1.720E+06 | 1.410E+06<br>3.390E+06 | 1.720E+03<br>2.970E+03 | 5.840E+02<br>9.680E+02 | 0.000E+00<br>0.000E+00 | 1.160E+03<br>1.770E+03 | SKIN<br>0.000E+00<br>0.000E+00<br>0.000E+00<br>0.000E+00 | | TEEN 1.090E+04 | GI<br>1.920E+05<br>2.600E+05<br>2.060E+05 | 1.690E+05<br>4.070E+05 | 2.070E+02<br>3.570E+02 | 7.010E+01<br>1.160E+02 | 0.000E+00<br>0.000E+00 | 1.390E+02<br>2.130E+02 | 0.000E+00<br>0.000E+00 | | TEEN 1.120E+02 | GI<br>6.920E+03<br>7.250E+03<br>3.230E+03 | 1.730E+03<br>2.350E+03 | 2.130E+00<br>2.050E+00 | 6.700E-01 | 0.000E+00<br>0.000E+00 | 6.440E+04<br>5.520E+04 | 0.000E+00<br>0.000E+00 | | PATHWAY: PLUME | | | | | | | |-----------------------------------------|------------------------------------------|--------------------|------------------------|----------------|-------------------|-------------------| | T. BODY | GI BONE<br>.000E+00 0.000E+00 | LIVER | KIDNEY<br>0.000E+00 | THYROID | LUNG | SKIN<br>0.000E+00 | | | 000E+00 0.000E+00 | | | | | | | CHILD 0.000E+00 0. | 000E+00 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | INFANT 0.000E+00 0. | 000E+00 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | PATHWAY: GROUND | | | | | | | | T. BODY | GI BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT 4.170E+05 4.<br>TEEN 4.170E+05 4. | 170E+05 4.170E+05<br>170E+05 4.170E+05 | 4.170E+05 | 4.170E+05<br>4.170E+05 | 4.170E+05 | 4.170E+05 | 4.700E+05 | | CHILD 4.170E+05 4. | 170E+05 4.170E+05 | 4.170E+05 | 4.170E+05 | 4.170E+05 | 4.170E+05 | 4.700E+05 | | INFANT 4.170E+05 4. | 170E+05 4.170E+05 | 4.170E+05 | 4.170E+05 | 4.170E+05 | 4.170E+05 | 4.700E+05 | | PATHWAY: VEGETABLE | 7 | | | | | | | T. BODY | GI BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | | 520E+07 5.860E+03<br>610E+07 8.410E+03 | | | | | | | | .210E+07 1.950E+04 | | | | | | | INFANT 0.000E+00 0. | .000E+00 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | PATHWAY: MEAT | | | | | | | | T. BODY | GI BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT 2.870E+01 9. | .690E+05 3.750E+02 | 2.530E+02 | 1.180E+02 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | | .010E+05 3.150E+02<br>.690E+05 5.920E+02 | | | | | | | INFANT 0.000E+00 0. | | | | | | | | | | | | | | | | PATHWAY: COW MILK T. BODY | GI BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT 9.910E+00 3. | 340E+05 1.290E+02 | 8.740E+01 | 4.060E+01 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | | .520E+05 2.370E+02 | | | | | | | CHILD 4.320E+01 3. INFANT 8.300E+01 3. | .630E+05 5.830E+02 | 2.910E+02 | 1.280E+02 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | INPAN 0.300E+01 3. | .040E+05 1.100E+05 | 7.0501102 | 2.1701.02 | 0.000100 | 0.0001.00 | 0.0002.00 | | PATHWAY: GOAT MILK | | | | ministro e T D | TIDIO | CULTA | | T. BODY<br>ADULT 1.190E+00 4. | GI BONE<br>.010E+04 1.550E+01 | LIVER<br>1 050E+01 | KIDNEY 4 870E+00 | THYROID | LUNG<br>0 000E+00 | SKIN<br>0 000E+00 | | TEEN 2.180E+00 5. | 430E+04 2.840E+01 | 1.900E+01 | 8.930E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | CHILD 5.180E+00 4. | 360E+04 7.000E+01 | 3.490E+01 | 1.530E+01 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | INFANT 9.960E+00 4. | .370E+04 1.390E+02 | 8.460E+01 | 2.610E+01 | 0.000E+00 | 0.000E+00 | 0.000E+00 | | PATHWAY: INHALATIO | ON | | | | | | | T. BODY | GI BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT 4.840E+01 3. | .800E+03 6.310E+02<br>.010E+03 9.000E+02 | 4.290E+02 | 1.990E+02 | U.000E+00 | 1.150E+04 | 0.000E+00 | | | .790E+03 9.000E+02 | | | | | | | | .830E+02 8.790E+02 | | | | | | | PATHWAY: PLUME T. BODY GI ADULT 0.000E+00 0.000E+ TEEN 0.000E+00 0.000E+ CHILD 0.000E+00 0.000E+ INFANT 0.000E+00 0.000E+ | 00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | |---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------| | TEEN 2.120E+06 2.120E+ | BONE LIVER 06 2.120E+06 2.120E+06 06 2.120E+06 2.120E+06 06 2.120E+06 2.120E+06 06 2.120E+06 2.120E+06 | 5 2.120E+06 2.120E+06<br>5 2.120E+06 2.120E+06 | 2.120E+06 2.450E+06 | | TEEN 8.170E+04 3.820E+ | BONE LIVER 08 9.480E+05 3.960E+05 08 1.520E+06 6.290E+05 08 3.660E+06 1.150E+06 00 0.000E+00 0.000E+00 | 3.760E+05 0.000E+00<br>6.360E+05 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | | TEEN 1.580E+03 7.380E+ | BONE LIVER 07 3.480E+04 1.460E+04 06 2.940E+04 1.210E+04 06 5.530E+04 1.740E+04 00 0.000E+00 0.000E+00 | 1 7.260E+03 0.000E+00<br>1 9.610E+03 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | | | 06 1.570E+04 6.510E+03<br>06 3.880E+04 1.220E+04 | 3 3.890E+03 0.000E+00<br>4 6.730E+03 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | | TEEN 1.010E+02 4.750E+ | BONE LIVER 05 1.030E+03 4.290E+02 05 1.890E+03 7.810E+02 05 4.660E+03 1.460E+03 05 6.670E+03 2.730E+03 | 2 4.670E+02 0.000E+00<br>3 8.080E+02 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | | TEEN 8.320E+03 2.740E+<br>CHILD 1.150E+04 1.230E+ | BONE LIVER 04 1.090E+05 4.540E+04 04 1.550E+05 6.420E+04 04 2.150E+05 6.710E+04 03 1.010E+05 3.840E+04 | 1 3.830E+04 0.000E+00<br>1 3.720E+04 0.000E+00 | 4.240E+05 0.000E+00<br>3.790E+05 0.000E+00 | | PATHWAY: PLUME T. BODY GI ADULT 0.000E+00 0.000E+00 TEEN 0.000E+00 0.000E+00 CHILD 0.000E+00 0.000E+00 INFANT 0.000E+00 0.000E+00 | 0.000E+00 0.000E+<br>0.000E+00 0.000E+ | 00 0.000E+00 0.000E+00<br>00 0.000E+00 0.000E+00 | | |--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------| | TEEN 2.630E+05 2.630E+05 | 2.630E+05 2.630E+<br>2.630E+05 2.630E+ | KIDNEY THYROID 05 2.630E+05 2.630E+05 05 2.630E+05 2.630E+05 05 2.630E+05 2.630E+05 | 2.630E+05 3.190E+05<br>2.630E+05 3.190E+05 | | TEEN 8.770E+05 3.230E+05 | 1.170E+06 1.630E+<br>2.170E+06 2.180E+ | KIDNEY THYROID 06 3.010E+06 5.750E+08 06 2.810E+06 4.770E+08 06 3.580E+06 7.220E+08 00 0.000E+00 0.000E+00 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | | TEEN 1.010E+05 3.700E+04 | 1.340E+05 1.870E+<br>2.480E+05 2.490E+ | 05 4.090E+05 8.240E+07 | ' 0.000E+00 0.000E+00<br>' 0.000E+00 0.000E+00 | | PATHWAY: COW MILK T. BODY GI ADULT 3.630E+06 1.670E+06 FEEN 6.040E+06 2.220E+06 CHILD 1.110E+07 1.740E+06 INFANT 2.100E+07 1.710E+06 | 8.020E+06 1.120E+<br>1.950E+07 1.960E+ | 07 1.930E+07 3.280E+09 07 3.210E+07 6.470E+09 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | | TEEN 7.240E+06 2.670E+06 | 9.630E+06 1.350E+<br>2.340E+07 2.350E+ | KIDNEY THYROID 06 1.300E+07 2.490E+09 07 2.320E+07 3.930E+09 07 3.860E+07 7.770E+09 07 6.710E+07 1.890E+10 | 0.000E+00 0.000E+00<br>0.000E+00 0.000E+00 | | TEEN 8.370E+02 2.060E+02 | 1.120E+03 1.560E+<br>1.520E+03 1.520E+ | KIDNEY THYROID 03 1.940E+03 3.780E+05 03 2.660E+03 4.640E+05 03 2.500E+03 5.150E+05 03 1.640E+03 4.700E+05 | 5 0.000E+00 0.000E+00<br>5 0.000E+00 0.000E+00 | | PATHWA | Y: PLUME | | | | | | | | |-------------------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|--------------------|------------------------|------------------------|-----------|-----------| | ADULT | T. BODY 0.000E+00 | GI<br>0.000E+00 | BONE | LIVER<br>0.000E+00 | KIDNEY | THYROID | LUNG | SKIN | | TEEN | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00<br>0.000E+00 | 0.000E+00 | 0.000E+00 | | CHILD | 0.000E+00 0 000E+00 | | TMFANT | 0.000E+00 | PATHWA | | | | | | | | | | ADULT | T. BODY | GI<br>3.750E+04 | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | TEEN | 3.750E+04 4.560E+04 | | CHILD | 3.750E+04 4.560E+04 | | TNFANT | 3.750E+04 4.560E+04 | | PATHWA | | | | | | | | | | ADULT | T. BODY | GI<br>4 DEOTHO4 | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | TEEN | 1.530E+04 | 4.960E+04<br>3.790E+04 | 2.950E+04 | 5.000E+04 | 9.640E+04<br>8.780E+04 | 8.120E+06 | 0.000E+00 | 0.000E+00 | | CHILD | 2.520E+04 | 2.680E+04 | 5.380E+04 | 6.650E+04 | 1.110E+05 | 1.240E+07 | 0.000E+00 | 0.000E+00 | | INFANT | 0.000E+00 | PATHWA | | | | | | | | | | ADULT | T. BODY | GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | TEEN | 2.490E-03 | 8.990E-03<br>6.170E-03 | 4.810E-03 | 8 160E-02 | 1./40E-02<br>1.430E-02 | 1.4/UE+UU<br>1 1/0F+00 | 0.000E+00 | 0.000E+00 | | CHILD | 4.180E-03 | 4.450E-03 | 8.930E-03 | 1.100E-02 | 1.840E-02 | 2.050E+00 | 0.000E+00 | 0.000E+00 | | INFANT | 0.000E+00 | PATHWA | | LK. | | | | | | | | ADULT | T. BODY | GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | TEEN | 5.600E+04 | 9.270E+04<br>1.390E+05 | 5.930E+04<br>1.080E+05 | 1.030E+05 | 1.800E+05 | 1.520E+07 | 0.000E+00 | 0.000E+00 | | CHILD | 1.230E+05 | 1.310E+05 | 2.630E+05 | 3.250E+05 | 5.420E+05 | 6.040E+07 | 0.000E+00 | 0.000E+00 | | INFANT | 2.370E+05 | 1.370E+05 | 5.550E+05 | 8.090E+05 | 9.510E+05 | 1.470E+08 | 0.000E+00 | 0.000E+00 | | PATHWAY: GOAT MILK | | | | | | | | | | | T. BODY | GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT<br>TEEN | 3.770E+04 | 1.110E+05 | 7.110E+04 | 1.240E+05 | 2.160E+05 | 1.820E+07 | 0.000E+00 | 0.000E+00 | | CHILD | 1 480E+05 | 1.670E+05<br>1.570E+05 | 1.300E+05 | 2.200E+05 | 3.8/UE+U5 | 3.080E+07<br>7.250E+07 | 0.000E+00 | 0.000E+00 | | | 2.840E+05 | 1.640E+05 | 6.670E+05 | 9.710E+05 | 1.140E+06 | 1.770E+08 | 0.000E+00 | 0.000E+00 | | INFANT 2.840E+05 1.640E+05 6.670E+05 9.710E+05 1.140E+06 1.770E+08 0.000E+00 0.000E+00 PATHWAY: INHALATION | | | | | | | | | | | T. BODY | GI | BONE | LIVER | KIDNEY | THYROID | LUNG | SKIN | | ADULT | 1.430E+02 | 2.810E+02 | 2.740E+02 | 4.690E+02 | 8.190E+02 | 6.820E+04 | 0.000E+00 | 0.000E+00 | | TEEN | 1.970E+02 | 3.270E+02 | 3.850E+02 | 6.490E+02 | 1.140E+03 | 9.260E+04 | 0.000E+00 | 0.000E+00 | | CHILD<br>INFANT | 2.440E+02<br>1.780E+02 | 1.740E+02<br>6.830E+01 | 5.250E+02<br>4.200F+02 | 6.440E+02 | 1.070E+03 | 1.220E+05 | 0.000E+00 | 0.000E+00 | | | | | | 0.000ET02 | , . I O O E T O Z | T.TOUE+00 | O.UUL+UU | 0.0005+00 | Table B4-8: Liquid Parameter Values for Eq. 4.2g and 4.2h Population Dose Estimates | Parameter | Parameter Value | | | | | | | | |----------------------------------------------------------|--------------------------|------------------------|-------------------------------------|----------------------------|------------------------------------------------------------------------------------------------|-------|--|--| | U<br>Colorado River<br>Matagorda Bay | Adult<br>6.9<br>1<br>6.9 | Teen 5.2 0.75 5.2 0.75 | Child<br>2.2<br>0.33<br>2.2<br>0.33 | Infant<br>0<br>0<br>0<br>0 | kg/y saltwater fish kg/y salt water vertebrate kg/y saltwater fish kg/y saltwater invertebrate | | | | | Ub<br>Colorado River | Teen<br>8.3 | Child<br>47 | Infant<br>9.5 | 0 | hr/y | Adult | | | | Matagorda Bay | 8.3 | 47 | 9.5 | 0 | hr/y | | | | | M<br>Colorado River<br>Matagorda Bay | 1.00<br>163 | | | | | | | | | F<br>Colorado River | 600 cfs | S | | | | | | | | N(i)<br>Colorado River<br>Matagorda Bay | values | by nuclid | e "i" and <sub>l</sub> | pathway f | from Table B4-1 | | | | | T fish ingestion shell fish ingestion shoreline exposure | 168 hr<br>240 hr<br>0 hr | | | | | | | | | Tb | 1.31E+ | -05 hr | | | | | | | | W<br>Colorado River<br>Matagorda Bay | 0.2<br>0.5 | | | | | | | | | B(i) | nuclide | e specific | from Tab | le A-1, R | egulatory Guide 1.109 | | | | | D(a,i,j) | nuclide | e specific | from Tab | le E-11 o | r E-6, Regulatory Guide | | | | Table B4-9: Pathways for Calculating Population Doses from Liquid Effluents | <u>PATHWAYS</u> | NUMBER OF RECEPTORS AT LOCATIONS | | | | | |--------------------------------|----------------------------------|-----------|---------|--|--| | | Colorado | Matagorda | Little | | | | | River | Bay | Robbins | | | | Shore Exposure | 151,500 | 151,500 | 0 | | | | Salt Water Fish Ingestion | 18,500 | 18,500 | 0 | | | | Salt Water Invertebrate Ingest | tion 0 | 303,000 | 0 | | | | Fresh Water Fish Ingestion | 0 | 0 | 0 | | | | Potable Water | 0 | 0 | 0 | | | | Irrigated Crops | 0 | 0 | 0 | | | | Animal Products | 0 | 0 | 0 | | | Table B4-10a: Population Distribution ### Distance (miles) | Direction | 1 - 2 | 2 - 3 | 3 - 4 | 4 - 5 | 5 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | |-----------|-------|-------|-------|-------|--------|---------|---------|---------|---------| | N | 0. | 4. | 0. | 0. | 30. | 2,982. | 1,867. | 14,992. | 5,947. | | NNE | 0. | 0. | 0. | 0. | 90. | 22,707. | 2,298. | 6,893. | 7,719. | | NE | 0. | 0. | 0. | 0. | 37. | 2,810. | 7,937. | 21,189. | 16,726. | | ENE | 0. | 0. | 0. | 3. | 482. | 1,889. | 3,509. | 21,856. | 67,308. | | Е | 0. | 0. | 2. | 0. | 47. | 864. | 1,067 | .0. | 407. | | ESE | 0. | 0. | 112. | 82. | 64. | 233. | 0. | 0. | 0. | | SE | 0. | 0. | 51. | 59. | 461. | 0. | 0. | 0. | 0. | | SSE | 0. | 0. | 0. | 4. | 149. | 45. | 0. | 0. | 0. | | S | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | | SSW | 0. | 0. | 0. | 2. | 7. | 171. | 0. | 0. | 0. | | SW | 0. | 0. | 0. | 13. | 64. | 220. | 0. | 2,027. | 1,453. | | WSW | 0. | 6. | 2. | 21. | 120. | 5,334. | 1,592. | 14,096. | 8,797. | | W | 0. | 0. | 0. | 12. | 127. | 642. | 845. | 1,922. | 4,672. | | WNW | 0. | 0. | 0. | 32. | 404. | 732. | 1,515. | 8,805. | 2,611. | | NW | 0. | 25. | 0. | 20. | 245. | 819. | 1,430. | 1,751. | 2,579. | | NNW | 0. | 0. | 12. | 11. | 7. | 941. | 4,967. | 13,907. | 3,592. | The population distribution of this table reflects the estimated 1990 population within 50 miles of STP from the UFSAR, Rev. 0, and is applicable for the plume, ground and inhalation pathways. Table B4-10b: Vegetation Ingestion Pathway Population Distribution ### Distance (miles) | Direction | 1 - 2 | 2 - 3 | 3 - 4 | 4 - 5 | 5 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | |-----------|-------|-------|-------|-------|--------|---------|---------|---------|---------| | N | 124. | 207. | 289. | 372. | 3,141. | 6,778. | 11,656. | 3,472. | 5,621. | | NNE | 124. | 207. | 289. | 322. | 3,141. | 7,109. | 10,912. | 7,522. | 9,010. | | NE | 124. | 207. | 289. | 372. | 3,141. | 7,109. | 4,877. | 9,341. | 11,656. | | ENE | 107. | 182. | 256. | 198. | 2,067. | 1,157. | 1,405. | 0. | 0. | | E | 107. | 182. | 256. | 198. | 2,067. | 992. | 1,323. | 83. | 0. | | ESE | 107. | 182. | 256. | 198. | 2,067. | 248. | 0. | 0. | 0. | | SE | 0. | 0. | 0. | 198. | 2,067. | 0. | 0. | 0. | 0. | | SSE | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | | S | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. | | SSW | 0. | 0. | 0. | 0. | 0. | 827. | 0. | 0. | 0. | | SW | 0. | 0. | 0. | 99. | 827. | 827. | 0. | 4,133. | 7,109. | | WSW | 41. | 66. | 99. | 99. | 827. | 3,555. | 0. | 149. | 9,010. | | W | 41. | 66. | 99. | 99. | 827. | 2,811. | 0. | 413. | 3,224. | | WNW | 41. | 66. | 99. | 99. | 827. | 3,224. | 0. | 0. | 248. | | NW | 41. | 66. | 99. | 100. | 827. | 5,621. | 12,730. | 17,277. | 18,351. | | NNW | 124. | 207. | 289. | 372. | 3,141. | 6,778. | 16,863. | 23,229. | 28,106. | The population distribution of this table has been normalized to reflect the non-leafy vegetable (rice) production within 50 miles of STP (Wyle Research Report WR 84-34, Table 13(a)). Table B4-10c: Beef Ingestion Pathway Population Distribution ### Distance (miles) | Direction | 1 - 2 | 2 - 3 | 3 - 4 | 4 - 5 | 5 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | |-----------|-------|-------|-------|-------|--------|---------|---------|---------|---------| | N | 36. | 57. | 83. | 108. | 877. | 3,353. | 6,344. | 9,594. | 13,669. | | NNE | 36. | 57. | 83. | 108. | 877. | 4,539. | 6,551. | 6,809. | 18,930. | | NE | 36. | 57. | 83. | 108. | 877. | 4,539. | 6,344. | 7,376. | 9,594. | | ENE | 62. | 103. | 144. | 139. | 1,186. | 5,364. | 7,273. | 7,376. | 8,872. | | Е | 62. | 103. | 144. | 139. | 1,186. | 4,849. | 6,344. | 1,805. | 206. | | ESE | 62. | 103. | 144. | 139. | 1,186. | 1,135. | 0. | 0. | 0. | | SE | 0. | 0. | 0. | 139. | 1,186. | 0. | 0. | 0. | 0. | | SSE | 0. | 0. | 0. | 103. | 928. | 0. | 0. | 0. | 0. | | S | 0. | 0. | 0. | 103. | 928. | 0. | 0. | 0. | 0. | | SSW | 0. | 0. | 0. | 103. | 928. | 1,032. | 0. | 0. | 0. | | SW | 0. | 0. | 0. | 103. | 928. | 464. | 258. | 4,745. | 10,058. | | WSW | 21. | 36. | 52. | 67. | 567. | 2,115. | 4,849. | 2,631. | 5,261. | | W | 21. | 36. | 52. | 67. | 567. | 2,218. | 5,261. | 6,912. | 7,170. | | WNW | 21. | 36. | 52. | 67. | 567. | 2,424. | 5,261. | 7,376. | 8,872. | | NW | 21. | 36. | 52. | 67. | 567. | 2,218. | 6,344. | 8,872. | 12,637. | | NNW | 36. | 57. | 83. | 108. | 877. | 3,456. | 6,757. | 9,594. | 13,823. | The population distribution of this table has been normalized to reflect the Beef production within 50 miles of STP (Wyle Research Report WR 84-34, Table 12(h)). #### Table B4-11: Population Dose Factors #### NOTES: ### Liquid Pathway Dose Factors - Table B4-11a This table consists of two sections. The first is a listing of pathway dose factors by nuclide and pathway for liquid effluents. The product of a particular factor and a quantity of activity (Ci) released to the reservoir will yield the dose (mrem) to an individual. The product of the pathway dose and the number of people exposed via the pathway determines the population dose from the pathway (man-mrem). The units for all liquid dose factors are (mrem/Ci). The factors used by the computer codes that perform these calculations may differ by a few percent due to round-off errors. Moreover, nuclides with vanishing small factors (less than 1.0E-20 mrem/Ci) have no impact on the dose calculations and are set to zero. Some nuclides may have zeros for all pathways because Regulatory Guide 1.109 data result in zero valued factors. #### Gaseous Pathway Dose Factors - Table B4-11b The second section of this table consists of a listing by nuclide of the gaseous pathway dose factors. These factors were calculated using a code similar to GASPAR and are based on the methods of Regulatory Guide 1.109. The units used for noble gases, tritium, and all nuclides for the inhalation pathway are (mrem-m³/Ci-sec). The product of this pathway dose factor, the release (Ci), and the appropriate depleted X/Q (sec/m³) or X/Q (for noble gases, tritium and carbon 14) yields the dose in (mrem) to a member of the general population at a given location. The units used for all other nuclides in all other pathways are (mrem-m<sup>2</sup>/Ci). The product of this pathway dose factor, the release (Ci), and the appropriate D/Q yields the dose (mrem) to an individual at a given location. Some nuclides may have zeros for all pathways because Regulatory Guide 1.109 data result in zero valued factors. # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : H3 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.70E-06 1.70E-06 0.00E+00 1.70E-06 1.70E-06 1.70E-06 1.70E-06 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 8.50E-08 8.50E-08 0.00E+00 8.50E-08 8.50E-08 8.50E-08 8.50E-08 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 8.61E-10 8.61E-10 0.00E+00 8.61E-10 8.61E-10 8.61E-10 8.61E-10 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.28E-08 1.28E-08 0.00E+00 1.28E-08 1.28E-08 1.28E-08 1.28E-08 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.29E-10 1.29E-10 0.00E+00 1.29E-10 1.29E-10 1.29E-10 1.29E-10 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : C14 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.72E-02 1.72E-02 8.62E-02 1.72E-02 1.72E-02 1.72E-02 1.72E-02 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.37E-04 3.37E-04 1.68E-03 3.37E-04 3.37E-04 3.37E-04 3.37E-04 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.41E-06 3.41E-06 1.71E-05 3.41E-06 3.41E-06 3.41E-06 3.41E-06 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.83E-05 3.83E-05 1.91E-04 3.83E-05 3.83E-05 3.83E-05 3.83E-05 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.87E-07 3.87E-07 1.94E-06 3.87E-07 3.87E-07 3.87E-07 3.87E-07 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : NA24 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.23E-17 1.23E-17 1.23E-17 1.23E-17 1.23E-17 1.23E-17 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 9.69E-17 1.12E-16 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 4.84E-18 5.61E-18 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 1.22E-19 1.42E-19 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : P32 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 6.09E-03 1.42E-02 1.58E-01 9.24E-03 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 8.82E-05 2.05E-04 2.28E-03 1.34E-04 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 8.93E-07 2.08E-06 2.31E-05 1.36E-06 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.15E-05 2.67E-05 2.98E-04 1.75E-05 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.17E-07 2.70E-07 3.02E-06 1.77E-07 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CR51 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.30E-08 2.67E-06 0.00E+00 0.00E+00 2.70E-09 7.62E-09 1.67E-08 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.30E-09 2.66E-07 0.00E+00 0.00E+00 2.69E-10 7.61E-10 1.66E-09 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.32E-11 2.69E-09 0.00E+00 0.00E+00 2.73E-12 7.70E-12 1.68E-11 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 8.80E-10 1.79E-07 0.00E+00 0.00E+00 1.82E-10 5.14E-10 1.12E-09 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 8.90E-12 1.81E-09 0.00E+00 0.00E+00 1.84E-12 5.21E-12 1.14E-11 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 6.50E-09 7.68E-09 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 3.25E-10 3.84E-10 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 8.22E-12 9.71E-12 ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : MN54 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.44E-04 1.88E-03 0.00E+00 7.13E-04 2.11E-04 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 9.91E-06 1.29E-04 0.00E+00 4.90E-05 1.45E-05 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.00E-07 1.31E-06 0.00E+00 4.96E-07 1.46E-07 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.04E-06 1.35E-05 0.00E+00 5.15E-06 1.52E-06 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.06E-08 1.37E-07 0.00E+00 5.21E-08 1.54E-08 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 2.80E-05 3.28E-05 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 1.40E-06 1.64E-06 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 3.53E-08 4.14E-08 ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : MN56 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 0.00E+00 0.00E+00 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : FE55 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 5.51E-05 1.09E-04 3.40E-04 2.23E-04 0.00E+00 0.00E+00 1.27E-04 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 8.26E-05 1.63E-04 5.09E-04 3.34E-04 0.00E+00 0.00E+00 1.90E-04 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 8.36E-07 1.65E-06 5.15E-06 3.38E-06 0.00E+00 0.00E+00 1.92E-06 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 8.02E-05 1.57E-04 4.94E-04 3.24E-04 0.00E+00 0.00E+00 1.84E-04 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 8.12E-07 1.59E-06 5.00E-06 3.28E-06 0.00E+00 0.00E+00 1.86E-06 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : FE59 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.87E-05 1.34E-04 2.13E-05 4.67E-05 0.00E+00 0.00E+00 1.33E-05 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 2.81E-05 2.01E-04 3.19E-05 6.99E-05 0.00E+00 0.00E+00 1.99E-05 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.84E-07 2.03E-06 3.22E-07 7.08E-07 0.00E+00 0.00E+00 2.02E-07 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 2.60E-05 1.85E-04 2.96E-05 6.48E-05 0.00E+00 0.00E+00 1.85E-05 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 2.64E-07 1.87E-06 2.99E-07 6.56E-07 0.00E+00 0.00E+00 1.87E-07 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 6.94E-07 8.16E-07 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 3.47E-08 4.07E-08 ALL FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 8.77E-10 1.03E-09 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CO58 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 7.07E-06 5.21E-05 0.00E+00 2.98E-06 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 7.06E-07 5.20E-06 0.00E+00 2.98E-07 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 7.14E-09 5.26E-08 0.00E+00 3.02E-09 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 9.99E-07 7.33E-06 0.00E+00 4.21E-07 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.01E-08 7.42E-08 0.00E+00 4.27E-09 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 1.64E-06 1.93E-06 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 8.21E-08 9.62E-08 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 2.08E-09 2.44E-09 ## POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CO60 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 4.61E-04 3.21E-03 0.00E+00 1.99E-04 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.60E-05 3.21E-04 0.00E+00 1.98E-05 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.66E-07 3.25E-06 0.00E+00 2.01E-07 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 6.70E-05 4.65E-04 0.00E+00 2.88E-05 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 6.79E-07 4.71E-06 0.00E+00 2.92E-07 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 2.02E-03 2.38E-03 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 1.01E-04 1.19E-04 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 2.55E-06 3.00E-06 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : N163 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 2.56E-03 8.87E-04 7.59E-02 5.00E-03 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.28E-04 4.43E-05 3.79E-03 2.50E-04 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.29E-06 4.48E-07 3.84E-05 2.53E-06 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 4.66E-05 1.61E-05 1.38E-03 9.10E-05 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.72E-07 1.63E-07 1.40E-05 9.21E-07 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 0.00E+00 0.00E+00 ## POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : N165 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 0.00E+00 0.00E+00 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CU64 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 2.82E-19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 1.88E-19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 2.47E-19 2.80E-19 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 5.00E-21 7.54E-21 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : ZN65 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.52E-03 5.12E-03 3.03E-03 9.45E-03 6.24E-03 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.26E-04 2.56E-04 1.51E-04 4.72E-04 3.12E-04 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 2.28E-06 2.59E-06 1.53E-06 4.78E-06 3.15E-06 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 8.15E-04 9.20E-04 5.46E-04 1.70E-03 1.12E-03 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 8.25E-06 9.31E-06 5.52E-06 1.72E-05 1.14E-05 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 1.19E-05 1.37E-05 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 5.94E-07 6.83E-07 ALL FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 1.50E-08 1.73E-08 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : ZN69 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 0.00E+00 0.00E+00 POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : BR83 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : BR84 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 0.00E+00 0.00E+00 ALL ALL ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : BR85 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 ALL FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : RB86 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 2.64E-04 8.95E-05 0.00E+00 5.34E-04 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 5.46E-08 1.85E-08 0.00E+00 1.11E-07 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 5.53E-10 1.88E-10 0.00E+00 1.12E-09 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.46E-08 4.93E-09 0.00E+00 2.96E-08 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.48E-10 5.00E-11 0.00E+00 2.99E-10 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 7.08E-09 8.09E-09 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 3.53E-10 4.04E-10 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 8.94E-12 1.02E-11 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : RB88 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : RB89 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : SR89 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.58E-05 7.04E-05 5.50E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 5.24E-08 2.34E-07 1.83E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 5.31E-10 2.37E-09 1.85E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 7.35E-08 3.26E-07 2.56E-06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 7.44E-10 3.30E-09 2.60E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 6.39E-11 7.42E-11 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 3.19E-12 3.70E-12 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 8.08E-14 9.38E-14 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : SR90 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 2.29E-01 2.48E-02 9.29E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 7.63E-04 8.25E-05 3.09E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 7.72E-06 8.35E-07 3.13E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.11E-03 1.20E-04 4.50E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.12E-05 1.21E-06 4.56E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : SR91 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 0.00E+00 0.00E+00 ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : SR92 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ## POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : Y90 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.18E-13 3.78E-08 4.41E-12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 5.90E-15 1.89E-09 2.20E-13 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 5.98E-17 1.91E-11 2.23E-15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.58E-14 5.04E-09 5.91E-13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.60E-16 5.10E-11 5.98E-15 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 2.28E-14 2.70E-14 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 1.14E-15 1.35E-15 ALL FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 2.89E-17 3.41E-17 ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : Y91M FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : Y91 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 6.72E-09 1.10E-04 2.51E-07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.36E-10 5.52E-06 1.25E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 3.40E-12 5.58E-08 1.27E-10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.89E-09 3.09E-05 7.07E-08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.91E-11 3.13E-07 7.16E-10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 3.75E-09 4.22E-09 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 1.87E-10 2.11E-10 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 4.74E-12 5.33E-12 ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : Y92 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : Y93 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 0.00E+00 0.00E+00 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : ZR95 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.65E-09 6.36E-06 7.76E-09 2.32E-09 3.56E-09 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.99E-09 1.92E-05 2.35E-08 7.02E-09 1.08E-08 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 5.05E-11 1.95E-07 2.38E-10 7.10E-11 1.09E-10 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.82E-10 1.08E-06 1.33E-09 3.96E-10 6.08E-10 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 2.85E-12 1.09E-08 1.34E-11 4.01E-12 6.15E-12 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 9.49E-07 1.10E-06 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 4.74E-08 5.50E-08 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 1.20E-09 1.39E-09 ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : ZR97 \_\_\_\_\_ FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 3.42E-16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 1.03E-15 1.97E-20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 1.05E-17 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 3.14E-18 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 3.18E-20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 1.55E-16 1.81E-16 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 7.75E-18 9.02E-18 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 1.96E-19 2.28E-19 ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : NB95 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.93E-06 1.78E-02 6.52E-06 3.41E-06 3.33E-06 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 9.62E-08 8.90E-04 3.26E-07 1.70E-07 1.66E-07 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 9.74E-10 9.01E-06 3.30E-09 1.72E-09 1.69E-09 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.41E-11 4.06E-07 1.49E-10 7.78E-11 7.61E-11 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.46E-13 4.11E-09 1.51E-12 7.88E-13 7.71E-13 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 2.59E-07 3.05E-07 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 1.29E-08 1.52E-08 ALL FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 3.27E-10 3.85E-10 POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : MO99 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.77E-10 1.76E-09 0.00E+00 8.83E-10 1.98E-09 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 8.84E-12 8.80E-11 0.00E+00 4.41E-11 9.90E-11 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 8.95E-14 8.90E-13 0.00E+00 4.47E-13 1.00E-12 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 6.06E-13 6.00E-12 0.00E+00 3.02E-12 6.77E-12 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 6.13E-15 6.07E-14 0.00E+00 3.06E-14 6.86E-14 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 2.31E-11 2.67E-11 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 1.15E-12 1.33E-12 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 2.92E-14 3.38E-14 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TC99M FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TC101 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 0.00E+00 0.00E+00 ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : RU103 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.25E-08 7.24E-06 7.74E-08 0.00E+00 2.71E-07 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 4.87E-10 1.08E-07 1.16E-09 0.00E+00 4.06E-09 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.93E-12 1.10E-09 1.17E-11 0.00E+00 4.11E-11 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 2.25E-08 4.97E-06 5.35E-08 0.00E+00 1.87E-07 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.27E-10 5.04E-08 5.41E-10 0.00E+00 1.89E-09 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 2.36E-07 2.75E-07 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 1.18E-08 1.38E-08 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 2.98E-10 3.48E-10 ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : RU105 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : RU106 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.79E-06 7.33E-04 1.42E-05 0.00E+00 2.55E-05 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.68E-08 1.10E-05 2.12E-07 0.00E+00 3.82E-07 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.71E-10 1.11E-07 2.15E-09 0.00E+00 3.87E-09 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.30E-06 5.28E-04 1.03E-05 0.00E+00 1.84E-05 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.31E-08 5.35E-06 1.04E-07 0.00E+00 1.87E-07 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 9.97E-06 1.20E-05 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 4.98E-07 5.97E-07 ALL FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 1.26E-08 1.51E-08 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : AG110M FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 5.64E-05 6.57E-05 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 2.81E-06 3.28E-06 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 7.12E-08 8.31E-08 ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE125M FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.01E-05 2.41E-04 7.56E-05 2.58E-05 2.04E-04 2.22E-05 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.26E-08 3.01E-07 9.44E-08 3.22E-08 2.54E-07 2.77E-08 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.28E-10 3.05E-09 9.55E-10 3.26E-10 2.57E-09 2.81E-10 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.78E-08 4.22E-07 1.33E-07 4.53E-08 3.55E-07 3.91E-08 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.80E-10 4.27E-09 1.35E-09 4.59E-10 3.60E-09 3.95E-10 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 5.37E-09 7.37E-09 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 2.68E-10 3.68E-10 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 6.79E-12 9.31E-12 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE127M FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.82E-05 1.07E-03 3.99E-04 1.35E-04 1.51E-03 9.97E-05 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 6.02E-08 1.33E-06 4.98E-07 1.68E-07 1.89E-06 1.24E-07 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 6.09E-10 1.35E-08 5.04E-09 1.70E-09 1.91E-08 1.26E-09 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 8.62E-08 1.90E-06 7.14E-07 2.40E-07 2.70E-06 1.78E-07 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 8.73E-10 1.92E-08 7.23E-09 2.43E-09 2.73E-08 1.80E-09 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 6.37E-10 7.53E-10 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 3.18E-11 3.76E-11 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 8.05E-13 9.52E-13 ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE127 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE129M FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER 'KIDNEY THYROID LUNG ALL 2.48E-05 6.33E-04 1.57E-04 5.52E-05 6.12E-04 5.29E-05 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.09E-08 7.90E-07 1.96E-07 6.90E-08 7.64E-07 6.60E-08 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.13E-10 8.00E-09 1.99E-09 6.98E-10 7.73E-09 6.68E-10 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.24E-08 1.08E-06 2.69E-07 9.45E-08 1.05E-06 9.05E-08 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.29E-10 1.09E-08 2.73E-09 9.56E-10 1.06E-08 9.17E-10 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 3.53E-08 4.13E-08 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 1.76E-09 2.06E-09 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 4.46E-11 5.21E-11 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE129 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE131M FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.76E-12 4.75E-10 1.20E-11 5.46E-12 5.50E-11 9.03E-12 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 5.94E-15 5.93E-13 1.49E-14 6.81E-15 6.87E-14 1.13E-14 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 6.02E-17 6.01E-15 1.51E-16 6.89E-17 6.95E-16 1.14E-16 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.64E-15 1.63E-13 4.13E-15 1.88E-15 1.90E-14 3.12E-15 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.66E-17 1.65E-15 4.18E-17 1.90E-17 1.92E-16 3.16E-17 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 3.06E-13 3.60E-13 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 1.53E-14 1.80E-14 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 3.86E-16 4.55E-16 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE131 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 0.00E+00 0.00E+00 . .1 POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : TE132 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.47E-08 1.40E-06 5.88E-08 3.54E-08 3.38E-07 4.08E-08 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.33E-11 1.74E-09 7.35E-11 4.41E-11 4.22E-10 5.10E-11 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.39E-13 1.77E-11 7.44E-13 4.47E-13 4.28E-12 5.16E-13 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.34E-11 1.34E-09 5.67E-11 3.40E-11 3.25E-10 3.93E-11 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.38E-13 1.35E-11 5.74E-13 3.44E-13 3.29E-12 3.98E-13 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 5.03E-11 5.92E-11 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 2.51E-12 2.96E-12 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 6.36E-14 7.48E-14 ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : 1130 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 9.31E-21 0.00E+00 1.30E-20 2.01E-20 1.15E-18 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 0.00E+00 0.00E+00 3.82E-20 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 1.32E-18 1.60E-18 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 6.60E-20 8.01E-20 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : I131 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 9.76E-08 3.90E-08 1.29E-07 1.72E-07 2.93E-07 5.57E-05 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.25E-09 1.30E-09 4.29E-09 5.72E-09 9.74E-09 1.85E-06 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.29E-11 1.31E-11 4.35E-11 5.79E-11 9.86E-11 1.88E-08 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.83E-09 7.27E-10 2.42E-09 3.22E-09 5.48E-09 1.04E-06 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.85E-11 7.36E-12 2.45E-11 3.26E-11 5.55E-11 1.06E-08 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 2.96E-09 3.60E-09 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 1.48E-10 1.80E-10 ALL FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 3.74E-12 4.54E-12 ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : I132 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : 1133 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 7.71E-16 1.94E-15 1.50E-15 2.43E-15 4.21E-15 3.71E-13 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.57E-17 6.45E-17 4.98E-17 8.08E-17 1.40E-16 1.23E-14 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.60E-19 6.53E-19 5.04E-19 8.18E-19 1.42E-18 1.25E-16 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.70E-18 4.26E-18 3.31E-18 5.35E-18 9.27E-18 8.19E-16 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.72E-20 4.31E-20 3.35E-20 5.42E-20 9.39E-20 8.29E-18 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 2.10E-15 2.56E-15 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 1.05E-16 1.28E-16 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 2.66E-18 3.24E-18 ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : I134 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T, BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : 1135 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 ALL FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CS134 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.81E-04 3.99E-06 1.19E-04 2.65E-04 8.49E-05 0.00E+00 2.90E-05 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.11E-06 2.45E-08 7.30E-07 1.62E-06 5.21E-07 0.00E+00 1.78E-07 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.64E-05 3.61E-07 1.08E-05 2.40E-05 7.70E-06 0.00E+00 2.63E-06 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.00E-07 2.21E-09 6.64E-08 1.47E-07 4.73E-08 0.00E+00 1.61E-08 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 1.54E-05 1.80E-05 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 2.36E-07 2.76E-07 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CS136 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.22E-07 3.10E-08 8.52E-08 3.15E-07 1.74E-07 0.00E+00 2.45E-08 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.36E-09 1.90E-10 5.22E-10 1.94E-09 1.07E-09 0.00E+00 1.51E-10 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.72E-08 2.40E-09 6.63E-09 2.45E-08 1.35E-08 0.00E+00 1.91E-09 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.06E-10 1.47E-11 4.07E-11 1.50E-10 8.29E-11 0.00E+00 1.17E-11 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 3.36E-09 3.81E-09 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 5.16E-11 5.84E-11 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CS137 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 5.14E-04 1.59E-05 7.55E-04 9.60E-04 3.24E-04 0.00E+00 1.11E-04 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.15E-06 9.77E-08 4.63E-06 5.89E-06 1.99E-06 0.00E+00 6.82E-07 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.66E-05 1.45E-06 6.89E-05 8.74E-05 2.95E-05 0.00E+00 1.01E-05 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.86E-07 8.87E-09 4.22E-07 5.36E-07 1.81E-07 0.00E+00 6.21E-08 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 1.11E-04 1.30E-04 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 1.71E-06 1.99E-06 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CS138 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : BA139 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 0.00E+00 0.00E+00 ALL ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : BA140 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 3.31E-08 8.61E-07 5.19E-07 6.07E-10 2.05E-10 0.00E+00 3.57E-10 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.14E-09 1.07E-07 6.48E-08 7.57E-11 2.56E-11 0.00E+00 4.45E-11 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.19E-11 1.09E-09 6.56E-10 7.67E-13 2.59E-13 0.00E+00 4.51E-13 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 5.13E-09 1.33E-07 8.04E-08 9.38E-11 3.16E-11 0.00E+00 5.51E-11 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 5.19E-11 1.34E-09 8.14E-10 9.49E-13 3.20E-13 0.00E+00 5.58E-13 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 8.75E-09 1.00E-08 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 4.37E-10 4.99E-10 ALL FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 1.11E-11 1.26E-11 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : BA141 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ## POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : BA142 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : LA140 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.65E-15 8.47E-10 2.82E-14 1.32E-14 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.82E-16 4.23E-11 1.41E-15 6.59E-16 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.84E-18 4.28E-13 1.42E-17 6.67E-18 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.08E-16 7.12E-11 2.38E-15 1.11E-15 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.12E-18 7.21E-13 2.41E-17 1.13E-17 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 7.15E-12 8.10E-12 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 3.57E-13 4.05E-13 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 9.03E-15 1.02E-14 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : LA142 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CE141 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.32E-11 6.30E-07 3.05E-10 1.94E-10 8.92E-11 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.16E-11 3.15E-07 1.52E-10 9.67E-11 4.46E-11 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 1.17E-13 3.18E-09 1.54E-12 9.79E-13 4.51E-13 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 9.53E-11 2.57E-06 1.25E-09 7.94E-10 3.65E-10 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 9.64E-13 2.60E-08 1.27E-11 8.03E-12 3.70E-12 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 2.34E-08 2.63E-08 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 1.17E-09 1.32E-09 ALL FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 2.95E-11 3.33E-11 ### POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CE143 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 7.36E-18 2.05E-12 9.09E-17 6.30E-14 2.76E-17 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.68E-18 1.02E-12 4.54E-17 3.15E-14 1.38E-17 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 3.72E-20 1.04E-14 4.60E-19 3.19E-16 1.39E-19 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 7.10E-18 1.97E-12 8.77E-17 6.07E-14 2.65E-17 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 7.19E-20 1.99E-14 8.87E-19 6.14E-16 2.69E-19 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN 1.96E-13 2.23E-13 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 9.80E-15 1.11E-14 $\mathtt{ALL}$ FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 2.48E-16 2.82E-16 ## POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : CE144 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.04E-08 5.26E-05 1.95E-07 7.67E-08 4.50E-08 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 5.22E-09 2.63E-05 9.73E-08 3.83E-08 2.25E-08 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 5.28E-11 2.66E-07 9.85E-10 3.88E-10 2.27E-10 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.54E-08 2.27E-04 8.46E-07 3.33E-07 1.95E-07 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.59E-10 2.30E-06 8.56E-09 3.37E-09 1.97E-09 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 1.27E-06 1.47E-06 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 6.34E-08 7.33E-08 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 1.60E-09 1.86E-09 POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : PR143 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 8.36E-11 5.91E-06 1.68E-09 6.37E-10 3.64E-10 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.17E-12 2.95E-07 8.41E-11 3.18E-11 1.82E-11 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.22E-14 2.99E-09 8.52E-13 3.22E-13 1.84E-13 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 2.09E-11 1.47E-06 4.21E-10 1.59E-10 9.08E-11 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 2.12E-13 1.49E-08 4.27E-12 1.61E-12 9.19E-13 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 0.00E+00 0.00E+00 ## POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : PR144 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG O.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 0.00E+00 0.00E+00 ## POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : ND147 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 5.03E-11 3.27E-06 7.49E-10 7.99E-10 4.62E-10 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 2.51E-12 1.63E-07 3.74E-11 3.99E-11 2.31E-11 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 2.54E-14 1.65E-09 3.79E-13 4.04E-13 2.34E-13 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.22E-11 7.86E-07 1.81E-10 1.93E-10 1.11E-10 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.23E-13 7.95E-09 1.83E-12 1.95E-12 1.13E-12 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 2.78E-09 3.34E-09 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 1.39E-10 1.67E-10 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 3.51E-12 4.21E-12 ## POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : W187 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 2.49E-14 1.96E-11 8.71E-14 6.78E-14 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 3.10E-17 2.45E-14 1.09E-16 8.47E-17 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG 3.14E-19 2.48E-16 1.10E-18 8.57E-19 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 5.61E-19 4.41E-16 1.97E-18 1.53E-18 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 0.00E+00 4.46E-18 1.99E-20 1.55E-20 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 9.86E-15 1.15E-14 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 4.92E-16 5.72E-16 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN ALL 1.25E-17 1.45E-17 # POPULATION DOSE FACTORS FOR LIQUID EFFLUENTS -- FOR ISOTOPE : NP239 FOR PATHWAY: FRESHWATER FISH - LITTLE ROBBINS SLOUGH T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 4.83E-15 1.47E-09 9.10E-14 8.34E-15 2.57E-14 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 2.41E-16 7.33E-11 4.54E-15 4.17E-16 1.28E-15 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER FISH - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 2.44E-18 7.42E-13 4.60E-17 4.22E-18 1.30E-17 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - COLORADO RIVER T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.45E-17 4.39E-12 2.74E-16 2.50E-17 7.71E-17 0.00E+00 0.00E+00 FOR PATHWAY: SALTWATER INVERTABRATES - MATAGORDA BAY T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG ALL 1.47E-19 4.45E-14 2.77E-18 2.54E-19 7.81E-19 0.00E+00 0.00E+00 FOR PATHWAY: SHORELINE EXPOSURE - LITTLE ROBBINS SLOUGH T. BODY SKIN ALL 4.59E-12 5.32E-12 FOR PATHWAY: SHORELINE EXPOSURE - COLORADO RIVER T. BODY SKIN ALL 2.29E-13 2.66E-13 FOR PATHWAY: SHORELINE EXPOSURE - MATAGORDA BAY T. BODY SKIN 5.80E-15 6.72E-15 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : H3 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.05E+01 2.05E+01 0.00E+00 2.05E+01 2.05E+01 2.05E+01 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 4.69E+00 4.69E+00 0.00E+00 4.69E+00 4.69E+00 4.69E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 7.01E+00 7.01E+00 0.00E+00 7.01E+00 7.01E+00 7.01E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.90E+01 3.90E+01 0.00E+00 3.90E+01 3.90E+01 3.90E+01 0.00E+00 Table B4-11b Continued POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : C14 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.82E+03 3.82E+03 1.91E+04 3.82E+03 3.82E+03 3.82E+03 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.96E+03 1.96E+03 9.78E+03 1.96E+03 1.96E+03 1.96E+03 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.67E+03 1.67E+03 1.67E+03 1.67E+03 1.67E+03 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.31E+02 1.31E+02 6.98E+02 1.31E+02 1.31E+02 1.31E+02 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : AR41 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.40E+02 1.40 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : KR83M FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.20E-03 1.20E-03 1.20E-03 1.20E-03 1.20E-03 1.20E-03 3.39E-01 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : KR85M FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 1.85E+01 6.79E+01 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : KR85 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.55E-01 2.55E-01 2.55E-01 2.55E-01 2.55E-01 8.48E-01 4.28E+01 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : KR87 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 9.35E+01 9.35E+01 9.35E+01 9.35E+01 9.35E+01 9.35E+01 4.16E+02 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : KR88 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.33E+02 2.33E+02 2.33E+02 2.33E+02 2.33E+02 2.34E+02 3.43E+02 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : KR89 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.63E+02 2.63E+02 2.63E+02 2.63E+02 2.63E+02 2.63E+02 2.67E+02 6.24E+02 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : KR90 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.47E+02 2.47E+02 2.47E+02 2.47E+02 2.47E+02 2.47E+02 2.47E+02 5.18E+02 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : XE131M FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.45E+00 1.45E+00 1.45E+00 1.45E+00 1.45E+00 1.45E+01 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : XE133M FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.98E+00 3.98E+00 3.98E+00 3.98E+00 3.73E+01 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : XE133 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 4.66E+00 4.66E+00 4.66E+00 4.66E+00 4.66E+00 4.66E+00 5.00E+00 1.59E+01 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : XE135M FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 4.94E+01 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : XE135 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.87E+01 2.87E+01 2.87E+01 2.87E+01 2.87E+01 2.87E+01 2.94E+01 9.25E+01 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : XE137 ### FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.25E+01 2.25E+01 2.25E+01 2.25E+01 2.25E+01 2.25E+01 2.64E+01 4.13E+02 #### FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ### FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ### FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ### FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ### FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 ### FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : XE138 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.40E+02 1.40E+02 1.40E+02 1.40E+02 1.40E+02 1.40E+02 2.93E+02 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : CR51 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.02E+05 1.02E+05 1.02E+05 1.02E+05 1.02E+05 1.02E+05 1.02E+05 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.80E+03 2.96E+05 0.00E+00 0.00E+00 3.50E+02 1.04E+03 2.20E+03 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.67E+02 3.39E+04 0.00E+00 0.00E+00 3.44E+01 9.76E+01 2.12E+02 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 4.72E+02 7.00E+04 0.00E+00 0.00E+00 8.91E+01 2.70E+02 5.66E+02 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.56E+00 9.09E+01 0.00E+00 0.00E+00 7.52E-01 2.07E+00 4.91E+02 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : MN54 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.02E+07 3.02E+07 3.02E+07 3.02E+07 3.02E+07 3.55E+07 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.15E+06 1.20E+07 0.00E+00 5.35E+06 1.56E+06 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.67E+04 4.74E+05 0.00E+00 1.81E+05 5.33E+04 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.45E+04 2.29E+05 0.00E+00 1.11E+05 3.23E+04 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.22E+02 2.09E+03 0.00E+00 1.30E+03 3.20E+02 0.00E+00 4.71E+04 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : FE59 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 5.96E+06 5.96E+06 5.96E+06 5.96E+06 5.96E+06 5.96E+06 7.00E+06 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.45E+06 2.00E+07 4.01E+06 8.19E+06 0.00E+00 0.00E+00 2.36E+06 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 5.45E+06 3.86E+07 6.19E+06 1.35E+07 0.00E+00 0.00E+00 3.85E+06 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 4.36E+05 2.29E+06 5.10E+05 1.01E+06 0.00E+00 0.00E+00 2.94E+05 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.78E+02 5.23E+03 4.34E+02 9.38E+02 0.00E+00 0.00E+00 3.53E+04 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : CO58 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 8.27E+06 8.27E+06 8.27E+06 8.27E+06 8.27E+06 8.27E+06 9.68E+06 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.72E+06 1.02E+07 0.00E+00 6.85E+05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 8.95E+05 6.54E+06 0.00E+00 3.77E+05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.66E+05 8.87E+05 0.00E+00 6.48E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 7.35E+01 2.91E+03 0.00E+00 5.26E+01 0.00E+00 0.00E+00 3.17E+04 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : CO60 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 4.70E+08 4.70E+08 4.70E+08 4.70E+08 4.70E+08 4.70E+08 5.53E+08 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 6.74E+06 3.79E+07 0.00E+00 2.75E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.46E+06 2.39E+07 0.00E+00 1.48E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 5.52E+05 2.81E+06 0.00E+00 2.21E+05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 5.25E+02 7.82E+03 0.00E+00 3.84E+02 0.00E+00 0.00E+00 2.03E+05 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : ZN65 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.63E+07 1.63E+07 1.63E+07 1.63E+07 1.63E+07 1.63E+07 1.63E+07 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.16E+07 1.05E+07 7.54E+06 2.29E+07 1.49E+07 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.21E+07 1.36E+07 8.11E+06 2.52E+07 1.67E+07 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.39E+07 2.77E+07 2.17E+07 6.53E+07 4.24E+07 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.64E+03 1.48E+03 1.09E+03 3.40E+03 2.24E+03 0.00E+00 2.92E+04 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : SR89 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 4.73E+02 4.73E+02 4.73E+02 4.73E+02 4.73E+02 5.48E+02 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 9.45E+06 3.35E+07 3.30E+08 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.23E+05 9.84E+05 7.78E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 8.19E+05 2.63E+06 2.86E+07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.34E+02 1.01E+04 1.16E+04 0.00E+00 0.00E+00 0.00E+00 5.22E+04 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : SR90 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 6.67E+09 6.48E+08 2.69E+10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.06E+08 3.28E+07 1.24E+09 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 7.64E+08 7.07E+07 3.07E+09 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.95E+05 2.07E+04 3.15E+06 0.00E+00 0.00E+00 0.00E+00 3.56E+05 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : ZR95 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 5.34E+06 5.34E+06 5.34E+06 5.34E+06 5.34E+06 5.34E+06 6.20E+06 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 6.69E+03 2.10E+07 3.21E+04 8.94E+03 1.35E+04 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 9.04E+03 3.45E+07 4.26E+04 1.27E+04 1.95E+04 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.30E+00 9.41E+03 1.60E+01 4.32E+00 6.47E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 8.34E+02 4.23E+03 3.96E+03 1.16E+03 1.78E+03 0.00E+00 6.16E+04 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : SB124 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : CS134 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.50E+08 1.50E+08 1.50E+08 1.50E+08 1.75E+08 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.08E+08 2.44E+06 9.19E+07 1.90E+08 6.05E+07 0.00E+00 2.10E+07 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.14E+07 4.69E+05 1.42E+07 3.13E+07 1.00E+07 0.00E+00 3.42E+06 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 9.62E+07 2.20E+06 9.20E+07 1.86E+08 5.88E+07 0.00E+00 2.06E+07 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.95E+04 2.88E+02 1.37E+04 2.86E+04 9.57E+03 0.00E+00 3.37E+03 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : CS136 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.29E+06 3.29E+06 3.29E+06 3.29E+06 3.29E+06 3.29E+06 3.72E+06 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 5.41E+06 6.57E+05 2.27E+06 7.85E+06 4.29E+06 0.00E+00 6.17E+05 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 7.98E+05 1.11E+05 3.08E+05 1.13E+06 6.25E+05 0.00E+00 8.81E+04 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.05E+07 1.19E+06 4.53E+06 1.53E+07 8.33E+06 0.00E+00 1.21E+06 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.58E+03 3.23E+02 1.42E+03 4.92E+03 2.83E+03 0.00E+00 4.13E+02 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : CS137 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.25E+08 2.25E+08 2.25E+08 2.25E+08 2.25E+08 2.25E+08 2.25E+08 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 7.48E+07 2.42E+06 1.45E+08 1.72E+08 5.75E+07 0.00E+00 2.01E+07 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.37E+07 4.25E+05 2.04E+07 2.58E+07 8.68E+06 0.00E+00 2.97E+06 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 6.06E+07 2.01E+06 1.34E+08 1.54E+08 5.16E+07 0.00E+00 1.82E+07 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.14E+04 2.38E+02 1.81E+04 2.15E+04 7.61E+03 0.00E+00 2.69E+03 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : BA140 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 4.48E+05 4.48E+05 4.48E+05 4.48E+05 4.48E+05 4.48E+05 5.12E+05 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 4.51E+05 9.60E+06 7.25E+06 7.88E+03 2.64E+03 0.00E+00 4.69E+03 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 4.86E+04 1.25E+06 7.63E+05 8.86E+02 2.99E+02 0.00E+00 5.20E+02 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.07E+04 5.97E+05 4.96E+05 5.26E+02 1.76E+02 0.00E+00 3.15E+02 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 9.39E+01 6.25E+03 1.48E+03 1.70E+00 5.71E-01 0.00E+00 4.56E+04 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : CE141 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.98E+05 2.98E+05 2.98E+05 2.98E+05 2.98E+05 3.36E+05 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 5.87E+02 1.27E+07 7.77E+03 4.64E+03 2.11E+03 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.64E+01 7.07E+05 3.47E+02 2.19E+02 1.01E+02 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 6.76E+00 1.33E+05 8.97E+01 5.24E+01 2.38E+01 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 5.79E+01 3.44E+03 7.64E+02 4.80E+02 2.19E+02 0.00E+00 1.34E+04 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : CE144 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.51E+06 1.51E+06 1.51E+06 1.51E+06 1.51E+06 1.51E+06 1.75E+06 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.74E+04 1.50E+08 6.99E+05 2.60E+05 1.50E+05 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.73E+03 8.61E+06 3.23E+04 1.26E+04 7.41E+03 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 3.31E+02 1.20E+06 6.19E+03 2.25E+03 1.30E+03 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 7.00E+03 2.34E+04 1.31E+05 5.08E+04 2.96E+04 0.00E+00 2.88E+05 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : I131 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.88E+05 1.88E+05 1.88E+05 1.88E+05 1.88E+05 1.88E+05 2.28E+05 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.29E+06 4.40E+05 1.83E+06 2.27E+06 3.84E+06 7.37E+08 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.11E+05 4.41E+04 1.48E+05 1.96E+05 3.33E+05 6.36E+07 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.82E+06 5.78E+05 2.66E+06 3.22E+06 5.42E+06 1.04E+09 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 7.04E+02 1.79E+02 9.59E+02 1.25E+03 2.10E+03 4.11E+05 0.00E+00 0.00E+00 POPULATION DOSE FACTORS FOR GASEOUS EFFLUENTS -- FOR ISOTOPE : 1133 FOR PATHWAY: PLUME T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: GROUND T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.68E+04 2.68E+04 2.68E+04 2.68E+04 2.68E+04 2.68E+04 3.26E+04 FOR PATHWAY: VEGETABLE T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.34E+00 4.96E+00 4.66E+00 7.06E+00 1.21E+01 1.13E+03 0.00E+00 0.00E+00 FOR PATHWAY: MEAT T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 2.72E-03 6.77E-03 5.29E-03 8.54E-03 1.48E-02 1.31E+00 0.00E+00 0.00E+00 FOR PATHWAY: COW MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 4.28E+03 8.45E+03 8.61E+03 1.27E+04 2.18E+04 2.06E+06 0.00E+00 0.00E+00 FOR PATHWAY: GOAT MILK T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 FOR PATHWAY: INHALATION T. BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN ALL AGES 1.66E+02 2.65E+02 3.29E+02 5.20E+02 8.92E+02 8.04E+04 0.00E+00 0.00E+00 ## 5.0 Radiological Environmental Monitoring Program The emphasis of the operational Radiological Environmental Monitoring Program is to verify source control at the plant. In meeting this objective, certain findings have been considered in formulating the operational Radiological Environmental Monitoring Program. Among these the most important in relation to critical exposure paths and population groups are the following: As of the most recent land use census no commercial dairy exists within ten (10) miles of the plant nor any individual cows or goats within five (5) miles whose milk is consumed by humans; however, there are ranches with beef cattle within a 10-mile radius as indicated in Table B4-10c. There are extensive commercial crops grown, mainly rice, soybeans, grain sorghum, and cotton in the region immediately surrounding the plant. The major portion of irrigation in this region is from the canal and levee systems with water controlled by the Lower Colorado River Authority in Bay City. Alternate irrigation comes from deep water wells 300 ft. or greater in depth. Although three irrigation permits have been issued by the Lower Colorado River Authority for irrigation with Colorado River water taken downstream from the plant, these permits have not been exercised due to the brackish quality of the river in this area. Local towns derive their drinking water from ground-water wells; there is no population consumption of water from the Colorado River below the plant. There is substantial commercial harvesting of shellfish in Matagorda Bay, with the potential of harvesting fin fish as well depending on state controls. The Colorado River estuary is limited to sport fishing for human consumption and commercial fishing for bait species. Prevailing winds are from the south to east-south-east. #### 5.1 Program Summary The design and implementation of the Radiological Environmental Monitoring Program, related surveillance activities, sample analysis, and reporting is performed by STP. The monitoring program is a tiered system in which the level of surveillance is in part determined by effluent releases. The minimum program is outlined in the following sections and in Table B5-1. The program is modeled after the minimum Radiological Environmental Monitoring Program described in the 1979 Nuclear Regulatory Commission Branch Technical Position. This program was originally negotiated with the Nuclear Regulatory commission and was included in the Technical Specifications for each unit at the South Texas Project. Subsequently, the Nuclear Regulatory Commission requested that the minimum program approved for the South Texas Project be removed from the Technical Specifications and be placed in Part A of this document. With Revision 9 to the ODCM, the minimum program was removed from Part A and combined with Table B5-1 of Part B. The **bold faced type** appearing in Table B5-1 highlights the requirements of the minimum Radiological Environmental Monitoring Program acceptable to the Nuclear Regulatory Commission for the South Texas Project. Although the format is different, the content remains unchanged from the original Technical Specifications. The results of this program are routinely reported in the Annual Radiological Environmental Operating Report as indicated in Control 6.9.1.3. In support of this report, a land use census will be conducted annually. In the event plant releases result in environmental measurements exceeding Table A5-2 values or the results of an analysis indicate unexpected concentrations of radionuclides in the environment, a more vigorous sampling program may be instituted. In the event of an incident involving large releases of activity from STP, an intensive sampling program would be initiated. This program would include special studies as appropriate for the particular incident and might include special reporting. The following paragraphs describe the general program instituted including the types of samples, the collection frequency, and the analysis to be accomplished on each sample type. # 5.2 Sampling Program Description ### 5.2.1 Airborne Iodine and Particulates Airborne iodine and particulates are sampled by continuous low volume air samplers (approximately 2.0 cfm) fitted with charcoal canisters. The air sampling network will consist of 5 stations. Three stations are located at the exclusion zone boundary, one each in the N, NNW, and NW sectors. Since all releases will be at ground level or from roof vents, the highest calculated off-site ground level concentration of airborne releases occurs at the site boundary regardless of wind direction. An air sampling system is located in the community of Bay City. A control station is located at least ten (10) miles WSW of the site in a minimal wind direction. The filters are changed weekly and analyzed. # 5.2.2 <u>Sediment Sampling</u> A sediment sample shall be collected semiannually at locations upstream (control) and downstream of the MCR spillway on the Colorado River. A sample will also be collected from within the Main Cooling reservoir to help identify buildup of radioactive materials from liquid effluents released to the reservoir even though these materials remain on STP property. This sample is a part of the mandatory monitoring program required by the NRC at the time STP was licensed even though it is not used to characterize off site environmental pathways. # 5.2.3 Ambient Radiation Measurements Background ionizing radiation levels are measured by a network of approximately forty TLD stations. Two dosimeters are placed at each station and are collected and analyzed quarterly. The TLD stations are located adjacent to air monitoring stations and in generally concentric rings about the plant at one and five mile ranges in sixteen sectors. The balance of the stations are placed in special interest areas and control locations ten to eighteen miles from the site. ### 5.2.4 Surface Water Sampling Each unit discharges its liquid radioactive waste into the cooling reservoir. The radionuclides in the reservoir are assumed to mix uniformly and subsequent blowdown releases to the Colorado River may contain these radionuclides. The Colorado River is sampled continuously both above and below the plant discharge structure. In order to help affirm the liquid effluent pathway dose model, STP also samples the reservoir near the spillway structure. Results of these samples may be compared with off-site measurements to help assess the adequacy of dose projection models. These composite samples are analyzed for gamma isotopes monthly and for tritium quarterly. Radionuclides may also diffuse through the bottom of the reservoir and may be discharged to collection ditches which run into Little Robbins Slough. Grab samples may be taken semiannually at locations near the site boundary where these surface flows enter off-site surface waters. ### 5.2.5 Ground Water Sampling Since seepage from the bottom of the reservoir is expected to occur, some chance exists for radionuclides to enter ground water. Two aquifers underlie the site: a shallow aquifer above about 90 feet, and a deeper one below about 300 feet. Drinking water used in the area is drawn from the aquifer below 300 feet which is separated from the shallow aquifer by an impermeable strata of clay. Due to the existence of one unfilled Sondex pipe that passes from the surface through the shallow and into the deep aquifer, the possibility exists for nuclides to migrate down this Sondex structure into the drinking water. Therefore, wells on-site are sampled and analyzed for tritium and gamma emitting nuclides from both the shallow and deep aquifers. # 5.2.6 Fish/Aquatic Wildlife Radioactivity in the liquid effluent from the plant may be available to the fish of the Colorado River and Little Robbins Slough. The Colorado River is used by sports fishermen and hence, radionuclides may find their way into the human food chain. Fish and/or aquatic wildlife samples are taken twice annually downstream and at a control location beyond plant influence. Fish samples shall be taken in the main cooling reservoir as necessary to comply with STP license agreements. These samples are analyzed for gamma emitting nuclides. # 5.2.7 Agricultural Products The Lower Colorado River Authority which regulates the majority of irrigation water in the vicinity of STP indicates that these waters originate upstream from the dam on the Colorado River near Bay City. Hence, plant liquid discharges do not affect local agriculture. The broadleaf vegetation samples are taken monthly when available. STP collects broadleaf vegetation samples near the site boundary in two of the three highest predicted X/Q sectors in place of sampling private garden plots. Milk samples may be taken depending on the presence of milk animals and the success of obtaining samples. Gamma isotopic analysis is performed on the vegetation samples and iodine analyses will be performed if any milk samples are identified and taken. ### 5.2.8 Domestic Meat At least one sample of meat is taken annually from farms located within ten miles of the plant. The edible tissue is analyzed for gamma-emitting radionuclides. #### 5.2.9 Game Game is obtained on site or within ten miles of the site, when available. The edible tissue is analyzed for gamma-emitting radionuclides. #### 5.2.10 Sewage Sludge Land Farming In 1999 sewage sludge potentially contaminated with trace quantities of radioactive material was approved for land application on STP property in accordance with Texas Natural Resource Conservation Commission Registration No. 710645. Soil samples are taken to confirm concentrations do not exceed the limits specified in Title 25 of the Texas Administrative Code Section 289.202(ddd). However, land farming sewage sludge does not represent an effluent pathway and hence is not monitored as part of the Radiological Environmental Monitoring Program. #### 5.3 Sampling Frequency The sampling frequencies given in Table B5-1 were selected to conform with the 1979 Nuclear Regulatory Commission Branch Technical Position on environmental monitoring. In some cases the sampling frequency is determined by inherent characteristics of the medium; e.g., air filters can be run only 7-10 days before excessive pressure-drop arises. The frequency terms used in Table B5-1 generally mean once during the time period specified. Hence Annually means some time during the year, not 365 days from the previous sample collection time. Likewise, Monthly means during the calendar month, not 30 days from the previous sample date. An effort is made to space the samples reasonably but sample media availability, other scheduled activities, and equipment availability largely control the precise sample dates. # 5.4 Sample Station Locations Table B5-2 lists the media codes used in Table B5-3. Table B5-3 identifies sample stations by an ID number, location vector, brief location description and media that might be collected. This list is not limiting and may be modified to satisfy requirements described in Table B5-1. ### 5.5 Quality Control Control checks and tests are applied to the analytical operations by means of duplicate and/or split analyses of selected samples, and by the introduction of environmental samples with known nuclide concentrations. Calibrations are confirmed by participation in the Nuclear Energy Institute/National Institute of Standards and Technology Measurement Assurance Program (NEI/NIST MAP). Analytical procedures are similar to those reported in HASL-300 or equivalent commercial practice. # 5.6 Analytical Sensitivity The detection sensitivities of the various program elements are listed in Table A5-1. Samples are analyzed as described in the program summary. ### 5.7 Data Presentation Typically, reporting units are pCi/m³ for air and pCi/kg for liquid and solid samples. The standard deviation of the net counting rate is computed using the gross counting rate and the background rate. Suitable statistical methods are used to determine whether a count is significant as described in references 1 and 6. #### 5.8 Routine Reporting Requirements Reports on radiological environmental monitoring sample analyses are submitted in accordance with the requirements of Control 6.9.1.3. These reports are summaries of the results of the environmental activities and assessments of the observed impacts of plant operation on the environment. # EXPOSURE: **DIRECT RADIATION**(2) **40 TOTAL SAMPLING STATIONS** Forty routine monitoring stations, either with two or more dosimeters or with one instrument for measuring and recording dose rate continuously, placed as follows: - An inner ring of stations, one in each meteorological sector in the general area of the SITE BOUNDARY; - An outer ring of stations, one in each meteorological sector in the 6 to 8 km range from the site; and - The balance of the stations to be placed in special interest areas such as population centers, nearby residences, schools, and in one or two areas to serve as control stations. | Sample Media, Number, Approximate Location <sup>(1)</sup> and Distance of Sample Stations from Containment. | Routine<br>Sampling Mode | Sampling and<br>Collection<br>Frequency | Analysis<br>Type | Minimum<br>Analysis<br>Frequency | |-------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|------------------|----------------------------------| | Exposure Media: TLD | | | | | | $\underline{16}$ - Located in all 16 meteorological sectors, $0.2^*$ to 4 miles. | Continuously | Quarterly | Gamma<br>dose | Quarterly | | 16- Located in all 16 meteorological sectors, 2 to 7 miles. | | | | | | 6- Located in special interest areas (e.g. school, population centers), within 14 miles. | | | | | | 2- Control stations located in areas of minimal wind direction (WSW,ENE), 10-16 miles. | | | | | <sup>\*</sup> The inner ring of stations in the southern sectors are located within 1 mile because of the main cooling reservoir. # EXPOSURE: AIRBORNE **5** TOTAL SAMPLING STATIONS # Samples from five locations: - Three samples from close to the three SITE BOUNDARY locations in the different sectors of the highest calculated annual average ground-level D/Q; - One sample from the vicinity of a community having the highest calculated annual average ground-level D/Q; and One sample from a control location, as for example 15 to 30 km distant and in a minimal wind direction. | Sample Media, Number, Approximate Location <sup>(1)</sup> , and Distance of Sample Stations from Containment. | Routine<br>Sampling<br>Mode | Nominal<br>Collection<br>Frequency | Analysis<br>Type | Minimum<br>Analysis<br>Frequency | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------| | Charcoal and Particulate Filters 3- Located at the exclusion zone, N, NNW, NW Sectors, 1 mile. 1- Located in Bay City, 14 miles. 1- Control Station, located in a minimal wind direction (WSW), 10 miles. | Continuous sampler operations | Weekly or more frequently if required by dust loading | Radioiodin e Canister: I-131 Particulate Sampler: Gross Beta activity Gamma- Isotopic of composite (by location) | Following filter change <sup>(3)</sup> Quarterly | # **EXPOSURE:** WATERBORNE **9 TOTAL SAMPLING STATIONS** # Surface<sup>(5)</sup>: - One sample from the Colorado River upstream of the main cooling reservoir spillway. - One sample from the Colorado River downstream of the main cooling reservoir spillway. - One sample from the main cooling reservoir. ### Ground: • Sample from the shallow aquifer. (7) | Sample Media, Number And Approximate Location <sup>(1)</sup> of Sample Stations | Routine<br>Sampling<br>Mode | Nominal Collection Frequency | Analysis<br>Type | Minimum<br>Analysis<br>Frequency | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------|----------------------------------------------|----------------------------------| | <u>Surface</u> | | | | | | <ul> <li>1- Located in MCR at the MCR blowdown structure.</li> <li>1- Located above the site on the Colorado River not influenced by plant discharge (control).</li> </ul> | Composite <sup>(6)</sup> sample over a 1- month period (grab if not available) | Monthly | Gamma-<br>Isotopic <sup>(4)</sup><br>Tritium | Monthly Quarterly Composite | | 1- Located downstream from blowdown entrance into the Colorado River. | | | | | | Ground 1- Located at well down gradient in the shallow aquifer. | Grab | Quarterly | Gamma-<br>Isotopic<br>(4)&<br>Tritium | Quarterly | # EXPOSURE: WATERBORNE (continue) # **Drinking:** - One sample of each of one to three of the nearest water supplies that could be affected by its discharge. - One sample from a site deep aquifer well. - One sample from a control location. # **Sediment from Shoreline:** - One sample from upstream and downstream of the cooling reservoir spillway. - One sample from main cooling reservoir. | Sample Media, Number And Approximate Location <sup>(1)</sup> of Sample Stations | Routine<br>Sampling<br>Mode | Nominal<br>Collection<br>Frequency | Analysis<br>Type | Minimum<br>Analysis<br>Frequency | |-------------------------------------------------------------------------------------|-----------------------------|------------------------------------|---------------------------------------------------|----------------------------------| | Drinking Water 1- Located on site. * 1- Located at a control station. | Grab | Monthly | Gross Beta<br>& Gamma-<br>Isotopic <sup>(4)</sup> | Monthly | | Sediment | | | Tritium | <b>Quarterly</b> Composites | | 1- Located above the site on the Colorado River, not influenced by plant discharge. | Grab | Semi-annually | Gamma-<br>Isotopic <sup>(4)</sup> | Semiannually | | 1- Located downstream from blowdown entrance into the Colorado River. | | | | | | 1- Located in MCR. | | | | | <sup>\*</sup> No municipal water systems are affected by STP. This sample taken from deep aquifer supplying drinking water to STP employees while at work. ### EXPOSURE: **INGESTION** #### 7 TOTAL SAMPLING STATIONS #### Milk: - Samples from milk animals in three locations within 5 km distance having the highest dose potential. If there are none from which samples can be obtained, then one sample from milk animals in each of three areas between 5 to 8 km distance when doses are projected by calculation to be grater than 1 mrem per year<sup>(8)</sup>. One sample from milk animals at a control location greater than 30 km distant in a minimal wind direction. No samples are required if there are no milk animals from which samples can be obtained within the 8 km distance. - Samples of three different kinds of broadleaf vegetation grown nearest each of two different offsite locations of highest predicted annual average ground level D/Q if milk sampling is not performed. • One sample each of the similar broadleaf vegetation grown 15 to 30 km distant in a minimal wind direction if milk sampling is not performed. | Sample Media, Number And Approximate Location <sup>(1)</sup> of Sample Stations | Routine<br>Sampling<br>Mode | Nominal Collection Frequency <sup>(10)</sup> | Analysis<br>Type | Minimum<br>Analysis<br>Frequency | |----------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------| | Milk * Broadleaf Vegetation** | Grab | Semi-monthly when animals are on pasture; monthly at other times. | Gamma-<br>Isotopic <sup>(4)</sup><br>and I-131 | Semi-monthly<br>when animals<br>are on<br>pasture;<br>monthly at<br>other times | | <ul><li>2- Located at the exclusion zone, N, NW, or NNW sectors.</li><li>1- Located in a minimal wind direction.</li></ul> | Grab | Monthly during growing season When available | Gamma-<br>Isotopic <sup>(4)</sup><br>and I-131 | As collected | <sup>\*</sup> Limited source of sample in vicinity of STP. (Attempts will be made to obtain samples when available.) <sup>\*\*</sup> Three different kinds of broadleaf vegetation are to be collected over the growing season, not each collection period. # EXPOSURE: **INGESTION** (continued) ### Fish and Invertebrates: - One sample representing each commercially and recreationally important species in vicinity of plant discharge area. - One sample representing each commercially and recreationally important species found within the main cooling reservoir. • One sample representing the same species in areas not influenced by plant discharge. | Sample Media, Number And Approximate Location <sup>(1)</sup> of Sample Stations | Routine<br>Sampling<br>Mode | Nominal Collection Frequency <sup>(10)</sup> | Analysis<br>Type | Minimum<br>Analysis<br>Frequency | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------|------------------------------------------------------------|----------------------------------| | Fish and Invertebrates (edible portions) 1- Representing commercially or recreational important species in vicinity of STP that maybe influenced by plant operation. 1- Same or analogous species in area not influenced by STP. 1- Same or analogous species in the MCR. | Grab | Sample semi-<br>annually | Gamma-<br>Isotopic <sup>(4)</sup><br>on edible<br>portions | As collected | EXPOSURE: **INGESTION** (continued) ### **Food Products:** • One sample of each principle class of food products from any area that is irrigated by water that receives the main cooling reservoir discharges. | Sample Media, Number And Approximate Location <sup>(1)</sup> of Sample Stations | Routine<br>Sampling<br>Mode | Nominal<br>Collection<br>Frequency <sup>(10)</sup> | Analysis<br>Type | Minimum<br>Analysis<br>Frequency | |-------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------|----------------------------------------------------------------------|----------------------------------| | * Agricultural Products * Domestic Meat | Grab | At time of harvest <sup>(9)</sup> | Gamma<br>isotopic<br>analysis <sup>(4)</sup><br>in edible<br>portion | As collected | | 1- Represents domestic stock fed on crops grown exclusively within 10 miles of the plant. | Grab | Annually | Gamma-<br>Isotopic <sup>(4)</sup> | As collected | <sup>\*</sup> No sample stations have been identified in the vicinity of the site. Presently no agricultural land is irrigated by water into which liquid plant wastes will be discharged. Agricultural products will be considered if these conditions change. #### Table B5-1 Notations - Specific parameters of distance and direction sector from the centerline of one reactor, and additional description where pertinent, shall be provided for each and every sample location in Table B5-3 in a table and figure(s) in this manual. Refer to NUREG-0133, "Preparation of Radiological Effluent Technical Specification For Nuclear Power Plants," October 1978, and Radiological Assessment Branch Technical Position, Revision 1, November 1979. Deviations are permitted from the required sampling schedule if specimens are unobtainable due to circumstances such as hazardous conditions, seasonal unavailability, and malfunction of automatic sampling equipment. If specimens are unobtainable due to sampling equipment malfunction, effort shall be made to complete corrective action prior to the end of the next sampling period. All deviations from the sampling schedule shall be documented in the Annual Radiological Environmental Operating Report pursuant to Control 6.9.1.3. It is recognized that, at times, it may not be possible or practicable to continue to obtain samples of the media of choice at the most desired location or time. In these instances, suitable alternative media and locations may be chosen for the particular pathway in question and appropriate substitutions made within 30 days in the Radiological Environmental Monitoring Program given in this manual. Pursuant to Technical Specification 6.14 [ITS 5.5.1], submit in the next Annual Radioactive Effluent Release Report documentation for a change in this manual including a revised figure(s) and table for this manual reflecting the new location(s) with supporting information identifying the cause of the unavailability of samples for that pathway and justifying the selection of the new location(s) for obtaining samples. - (2) One or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously may be used in place of, or in addition to, integrating dosimeters. For the purposes of this table, a thermoluminescent dosimeter (TLD) is considered to be one phosphor; two or more phosphors in a packet are considered as two or more dosimeters. Film badges shall not be used as dosimeters for measuring direct radiation. The 40 stations is not an absolute number. The number of direct monitoring stations may be reduced according to geographical limitations. TLD's may be located at nonprescribed distances from the plant due to access limitations. - (3) Airborne particulate sample filters shall be analyzed for gross beta radioactivity 24 hours or more after sampling to allow for radon and thoron daughter decay. If gross beta activity in air particulate samples is greater than 10 times the yearly mean of control samples, gamma isotopic analysis shall be performed on the individual samples. - (4) Gamma isotopic analysis means the identification and quantification of gammaemitting radionuclides that may be attributable to the effluents from the facility. #### Table B5-1 Notations - (5) The "upstream sample" shall be taken at a distance beyond significant influence of the discharge. The "downstream" sample shall be taken in an area beyond but near the mixing zone. "Upstream" samples in an estuary must be taken far enough upstream to be beyond the plant influence. Salt water shall be sampled only when the receiving water is utilized for recreational activities. - (6) A composite sample is one in which the quantity (aliquot) of liquid sampled is proportional to the quantity of flowing liquid and in which the method of sampling employed results in a specimen that is representative of the liquid flow. In this program, composite sample aliquots shall be collected at time intervals that are very short (e.g., hourly) relative to the compositing period (e.g., monthly) in order to assure obtaining a representative sample. - (7) Groundwater samples shall be taken when this source is tapped for drinking or irrigation purposes in areas where the hydraulic gradient or recharge properties are suitable for contamination. - (8) The dose shall be calculated for the maximum organ and age group, using the methodology and parameters in this manual. - (9) If harvest occurs more than once a year, sampling shall be performed during each discrete harvest. If harvest occurs continually, sampling shall be monthly. Attention shall be paid to including samples of tuberous and root food products.\* - (10) Collection frequency may vary to accommodate sample media availability, equipment availability, and/or weather conditions. 01/01/2000 B5-14 Rev. 10 <sup>\*</sup> The bold type of Table B5-1 reflects the minimum requirements for the Radiological Environmental Monitoring Program outlined in the 1979 NRC Branch Technical Position Paper as modified for inclusion in the original South Texas Project Technical Specifications. Table B5-2 | SAMPI | LE MEDIA CODES | | | |-------|----------------------------|------------|----------------------| | | | | | | AI | AIRBORNE RADIOIODINE | L5 | CABBAGE | | AP | AIRBORNE PARTICULATE | L6 | COLLARD GREENS | | B1 | RESIDENT DABBLER DUCK | M1 | BEEF MEAT | | B2 | RESIDENT DIVER DUCK | M2 | POULTRY MEAT | | В3 | MIGRATORY DABBLER DUCK | M3 | WILD SWINE | | B4 | MIGRATORY DIVER DUCK | M4 | DOMESTIC SWINE | | B5 | GOOSE | M5 | EGGS | | В6 | DOVE | M6 | GAME DEER | | B7 | QUAIL | M7 | ALLIGATOR | | B8 | PIGEON | M8 | RABBIT | | CC | CRUSTACEAN CRAB | OY | OYSTER | | CS | CRUSTACEAN SHRIMP | SO | SOIL | | DR | DIRECT RADIATION | <b>S</b> 1 | SEDIMENT - SHORELINE | | F1 | FISH - PISCIVOROUS | S2 | SEDIMENT - BOTTOM | | F2 | FISH - CRUSTACEAN & INSECT | VP | PASTURE GRASS | | | FEEDERS | | | | F3 | FISH - PLANTIVORES & | WD | DRINKING WATER | | | DETRITUS FEEDERS | | | | L1 | BANANA LEAVES | WG | GROUND WATER | | L2 | CANA LEAVES | WS | SURFACE WATER | | L4 | TURNIP GREENS | WW | (relief) WELL WATER | | | | | | Table B5-3: Sample Station Locations | SAMPLE SUBMISSION CODE INFORMATION LIST | | | | | |-----------------------------------------|-----------------|----------------------|---------------------------------------------|--| | MEDIA CODE | STATION<br>CODE | VECTOR (Approximate) | LOCATION DESCRIPTION | | | DR AI AP VB VP SO | 001 | 1 mile N | FM 521 | | | DR | 002 | 1 mile NNE | FM 521 | | | DR | 003 | 1 mile NE | FM 521 | | | DR | 004 | 1 mile ENE | FM 521 | | | DR | 005 | 1 mile E | STP Visitor Center on FM 521 | | | DR AI AP SO | 006 | 3.5 miles ESE | Site near reservoir makeup pumping facility | | | DR | 007 | 3.5 miles SE | MCR Dike | | | DR | 008 | 0.25 mile SSE | MCR Dike | | | DR | 009 | 0.25 mile S | MCR Dike | | | DR | 010 | 0.25 mile SSW | MCR Dike | | | DR | 011 | 0.5 mile SW | MCR Dike | | | DR | 012 | 1.5 mile WSW | MCR Dike | | | DR | 013 | 1.5 mile W | FM 521 | | | DR | 014 | 1.5 mile WNW | FM 521 | | | DR AI AP VB SO VP | 015 | 1 mile NW | FM 521 | | | DR AI AP VB SO VP | 016 | 1 mile NNW | FM 521 | | | DR | 017 | 6.5 miles N | Buckeye - FM 1468 | | | DR AI AP SO | 018 | 5.5 miles NNE | Celanese Plant - FM 3057 | | | DR | 019 | 5.5 miles NE | FM 2668 | | <sup>♦</sup> This station may be used to obtain the required aquatic samples in the vicinity of STP that may be influenced by plant operations. MCR - STP Main Cooling Reservoir Media codes typed in bold satisfy collection requirement described in Table B5-1. Station codes printed in bold identify offsite locations. <sup>\*</sup> Control Station Table B5-3: Sample Station Locations Cont'd | SAMPLE SUBMISSION CODE INFORMATION LIST | | | | | |-----------------------------------------|-----------------|-------------------------|-----------------------------------------------------|--| | MEDIA CODE | STATION<br>CODE | VECTOR<br>(Approximate) | LOCATION DESCRIPTION | | | DR | 020 | 5 miles ENE | FM 2668 & FM 2078 | | | DR | 021 | 5 miles E | FM 521& FM 2668 | | | DR | 022 | 7 miles E | Lyondell Chemical Plant | | | DR | *023 | 16 miles ENE | Intersection of FM 521 and FM 2540 | | | DR | 024 | 4 miles SSE | MCR Dike | | | DR | 025 | 4 miles S | MCR Dike | | | DR | 026 | 4 miles SSW | MCR Dike | | | DR | 027 | 2.5 miles SW | MCR Dike | | | DR | 028 | 5 miles WSW | FM 1095 & Ellis Road | | | DR SO | 029 | 4.5 miles W | FM 1095 | | | DR | 030 | 6 miles WNW | Tres Palacios Oaks, FM 2853 | | | DR | 031 | 5.5 miles NW | Wilson Creek Road | | | DR | 032 | 3.5 miles NNW | FM 1468 | | | DR AI AP SO | 033 | 14 miles NNE | Microwave Tower at end of Kilowatt road in Bay City | | | DR | 034 | 7.5 miles ENE | Wadsworth Water Supply Pump<br>Station | | | DR AI AP SO | 035 | 8.5 miles SSE | Matagorda | | | DR | 036 | 9 miles WSW | College Port | | | DR AI AP VB VP SO | *037 | 10 miles WSW | Palacios CP&L Substation | | | DR | 038 | 10.5 miles NW | CP&L Substation on TX 71 near Blessing | | <sup>♦</sup> This station may be used to obtain the required aquatic samples in the vicinity of STP that may be influenced by plant operations. <sup>\*</sup> Control Station MCR - STP Main Cooling Reservoir Media codes typed in bold satisfy collection requirement described in Table B5-1. Station codes printed in bold identify offsite locations. Table B5-3: Sample Station Locations Cont'd | SAMPLE SUBMISSION CODE INFORMATION LIST | | | | | |-----------------------------------------|-----------------|-------------------------|------------------------------------------------------------------------------------|--| | MEDIA CODE | STATION<br>CODE | VECTOR<br>(Approximate) | LOCATION DESCRIPTION | | | DR AI AP SO | 039 | 9 miles NW | TX 35 under High Voltage Power lines near Tidehaven High School | | | DR | 040 | 4.5 miles SW | Citrus Grove | | | DR | 041 | 2.0 miles ESE | MCR Dike | | | DR | 042 | 8.5 miles NW | FM 459 at Tidehaven Intermediate<br>School | | | DR | 043 | 4.5 miles SE | Site boundary at blowdown outlet | | | WS | 209 | 2 miles ESE | Kelly Lake | | | WD | 210 | On Site | Approved drinking water supply from STP | | | WS S1 | 211♦ | 3.5 miles S | Site, E. Branch Little Robbins Slough | | | WS S1 | 212♦ | 4 miles S | Little Robbins Slough | | | WS S1 | 213 | 4 miles SE | W. Branch Colorado River | | | F (1, 2, or 3) CC | 214 | 2.5 miles SE | MCR at Makeup Water Discharge | | | S2 | 215 | 0.5 mile SW | MCR at Circulating Water Discharge | | | WS S2 | 216 | 3.5 miles SSE | MCR at blowdown structure | | | F (1, 2, or 3) CC CS<br>OY | 222+ | >10 miles | West Matagorda Bay | | | WS S(1 or 2) | 227 | 5-6 miles SE | West bank of Colorado River<br>downstream of STP across from<br>channel marker #22 | | | WD | *228 | 14 miles NNE | Le Tulle Park Public water supply | | <sup>♦</sup> This station may be used to obtain the required aquatic samples in the vicinity of STP that may be influenced by plant operations. <sup>\*</sup> Control Station MCR - STP Main Cooling Reservoir Media codes typed in bold satisfy collection requirement described in Table B5-1. Station codes printed in bold identify offsite locations. Table B5-3: Sample Station Locations Cont'd | SAMPLE SUBMISSION CODE INFORMATION LIST | | | | | |-----------------------------------------|-----------------|-------------------------|----------------------------------------------------------------------------------------------------|--| | MEDIA CODE | STATION<br>CODE | VECTOR<br>(Approximate) | LOCATION DESCRIPTION | | | WS S1 | 229 | 2-3 miles ESE | Drainage ditch north of reservoir that empties into Colorado upstream from makeup pumping facility | | | S(1 or 2) | 230+ | 3.5 miles ESE | Colorado River at point where drainage ditch (#229) empties into it | | | S(1 or 2) WS | 233♦ | 4.5 miles SE | Colorado River where MCR blowdown discharge channel empties into it. | | | WG | 235 | 3.8 miles S | Well B-3 directly south from MCR | | | B8 | 236 | N/A | STP Protected Area | | | ws | 237 | 3.7 miles SSE | Blowdown discharge channel from MCR | | | S(1 or 2) WS | *242 | >10 miles N | Colorado River where it intersects<br>Highway 35 | | | ws | *243 | >10 miles N | Colorado River upstream of Bay City<br>Dam at the LCRA pumping station | | | WS | 247 | <1 mile E | Essential Cooling Pond | | | F(1,2, or 3) | *249 | N/A | Control sample purchased from a local retailer | | | SO | 250 | 0.75 miles NW | Sewage sludge land farming area | | | F(1, 2, or 3) CC S2 | 300 | S | STP Main Cooling Reservoir | | | ww | 701 | 4 miles S | MCR Relief Well #440 | | <sup>♦</sup> This station may be used to obtain the required aquatic samples in the vicinity of STP that may be influenced by plant operations. MCR - STP Main Cooling Reservoir Media codes typed in bold satisfy collection requirement described in Table B5-1. Station codes printed in bold identify offsite locations. <sup>\*</sup> Control Station Table B5-3: Sample Station Locations Cont'd | SAMPLE SUBMISSION CODE INFORMATION LIST | | | | |-----------------------------------------|-----------------|-------------------------|---------------------------------------------------------------| | MEDIA CODE | STATION<br>CODE | VECTOR<br>(Approximate) | LOCATION DESCRIPTION | | ws | Q01 | N/A | Quarterly composite of station #227 and/or alternate #233 (1) | | WS | Q02 | N/A | Quarterly composite of station #243 and/or alternate #242 (1) | | | | | | <sup>♦</sup> This station may be used to obtain the required aquatic samples in the vicinity of STP that may be influenced by plant operations. MCR - STP Main Cooling Reservoir Media codes typed in bold satisfy collection requirement described in Table B5-1. Station codes printed in bold identify offsite locations. <sup>\*</sup> Control Station