

W. R. McCollum, Jr. Vice President

Duke Power

Oconee Nuclear Site 7800 Rochester Highway Seneca, SC 29672 (864) 885-3107 OFFICE (864) 885-3564 FAX

February 22, 2000

U. S. Nuclear Regulatory Commission Document Control Desk Washington, D. C. 20555

Subject: Oconee Nuclear Site

Docket No. 50-269, 50-270, 50-287 Core Operating Limits Report (COLR)

Gentlemen:

Attached, pursuant to Oconee Technical Specifications 5.6.5, is an information copy of a revision to the Core Operating Limits Report for Oconee Unit 1 Cycle 19, rev. 13, Oconee Unit 2, cycle 18, rev. 14, Oconee Unit 3, cycle 18, rev. 12.

Very truly yours,

W. R. McCollum, Jr., Site Vice President

Oconee Nuclear Sit

Attachment

NRC Document Control Desk February 22, 2000 Page 2

xc w/att: Mr. L. A. Reyes, Regional Administrator U. S. Nuclear Regulatory Commission, Region II

Mr. D. E. LaBarge, Project Manager Office of Nuclear Reactor Regulation

Mr. M. C. Shannon Senior Resident Inspector Oconee Nuclear Site

1) 00813 DOC CONTROL EC03C ORIGINAL									Document Transmittal #: DUK003670867														
2) 06358 ONS REGUL COMPLIANCE ON03RC 3) 06700 ONS MANUAL MASTER FILE ON03DM				Duke Power Company DOCUMENT TRANSMITTAL FORM					QA CONDITION Yes No OTHER ACKNOWLEDGEMENT REQUIRED Yes] No									
				OCONEI PART # RESP.G	M.4	CLEAR	STATIO		E					KNOWLE	Duke Pov 7800 Roc Documer ON02DM	CEIPT BY ver Comp thester High at Manage	r RETUR any ghway ement	NING TH	QUIRED, F HIS FORM				
						Page	: 1 of	1					Red	c'd By						<u> </u>			
DOCUMENT NO	QA COND	REV #/ DATE	DISTR C	ODE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	TOTAL
ONEI-0400-050 ONEI-0400-051 ONEI-0400-070	1 1 1	013 02/01/00 014 02/01/00 012 02/01/00	NOM	ID-27	X	V1	V1																2
REMARKS: AS-BUILT DUKE							,								Ν	S CA	BER		IEERII	NG			
			FOF	R INF	OF	RMA	TIO	NO)NL	Y				3Y: J.W.S	SIMMO	ONS	JWS/	MEG	E	C 886	4		

Date: 02/01/00

DISPOSITION OF THE ORIGINAL DOCUMENT WILL BE TO THE TRANSMITTAL SIGNATURE UNLESS RECIPIENT IS OTHERWISE IDENTIFIED BELOW

SuperRush

Duke Power Company

Oconee 1 Cycle 19

Core Operating Limits Report

QA Condition 1

Not Reviewed or Approved by CFAM 3.13

REVIEWED AND APPROVED BY CFAM 3.13

Prepared By: T. P. Phelps T. P. Phelps	Date: 26 JAN 2000
Checked By: D. W. Harris David Dom	Date: Jan 31, 2000
CDR By : J. S. Muransky	Date: 2/1/2000
Approved By: R. R. St. Clair R. A. Clair	Date: Feb. 1,2000
Approved By: H. H. St. Clair P. T. M. M.	Date. July

Oconee 1 Cycle 19

Core Operating Limits Report

Insertion Sheet for Revision 13

This revision is effective after the implementation of TSC 99-06, February 2000.

Remove these revision 12 pages

Insert these revision 13 pages

1-3

1 - 3

Remove this revision 11 page

4

4

Revision Log

Revision	Effective Date	Pages Revised	Pages Added	Pages Deleted	Total Effective Pages
Oconee 1 Cy	cle 19 revisio	ons below			
13	Feb-00	1,2,3,4	-	-	31
12	Jul-99	1, 2, 3, 8,	-	-	31
		10, 13, 31			
11	May-99	1 - 31	-	1-31	31
Oconee 1 Cy	cle 18 revision	ons below			
10	Mar-99	1 - 31	-	32-38	31
9	Feb-98	1,2,3,5,13,	-	-	38
		16,17,32,36			
8	Nov-97	1,2,3,5,10,	37	-	38
		32			
7	Aug-97	1 - 38	-	-	38

Oconee 1 C	ycle 17 revision	s below			
6	Nov-95	1-33	34 - 38	-	38

Oconee 1 Cycle 19

1.0 Error Adjusted Core Operating Limits

The Core Operating Limits Report for O1C19 has been prepared in accordance with the requirements of ITS 5.6.5. The core operating limits within this report have been developed using NRC approved methodology identified in references 1, 2, 3, 4, 5, 6, and 7. The RPS protective limits and maximum allowable setpoints are documented in references 8 and 9. These limits are validated for use in O1C19 by references 10, 11, and 12. The O1C19 analyses assume a design flow of 107.5% of 88,000 gpm per RCS pump, radial local peaking ($F\Delta h$) of 1.714, and axial peaking factor (Fz) of 1.5.

The error adjusted core operating limits included in section 1 of the report incorporate all necessary uncertainties and margins required for operation of the O1C19 reload core.

1.1 References

- 1. Nuclear Design Methodology Using CASMO-3 / SIMULATE-3P, DPC-NE-1004A, Revision 0, SER dated November 23, 1992.
- 2. Oconee Nuclear Station Reload Design Methodology II, DPC-NE-1002A, Revision 1, SER dated October 1, 1985.
- 3. Oconee Nuclear Station Reload Design Methodology, NFS-1001A, Revision 4, SER dated July 29, 1981.
- 4. ONS Core Thermal Hydraulic Methodology Using VIPRE-01, DPC-NE-2003A, SER dated July 19, 1989.
- 5. Thermal Hydraulic Statistical Core Design Methodology, DPC-NE-2005P-A, Revision 1, SER dated November 7, 1996.
- Fuel Mechanical Reload Analysis Methodology Using TACO3, DPC-NE-2008P-A, SER dated April 3, 1995.
- 7. UFSAR Chapter 15 Transient Analysis Methodology, DPC-NE-3005-PA, Revision 1, SER dated May 25, 1999.
- 8. Variable Low Pressure Safety Limit, OSC-4048, Revision 3, July 1998.
- 9. Power Imbalance Safety Limits and Tech Spec Setpoints Using Error Adjusted Flux-Flow Ratio of 1.094, OSC-5604, Revision 1, November 1998.
- 10. O1C19 Maneuvering Analysis, OSC-7295, Revision 2, February 2000.
- 11. O1C19 Specific DNB Analysis, OSC-7302, Revision 1, March 1999.
- 12. O1C19 Reload Safety Evaluation and 50.59, OSC-7402, Revision 1, October 1999.

Oconee 1 Cycle 19

Miscellaneous Setpoints

BWST boron concentration shall be greater than 2220 ppm and less than 3000 ppm. Referred to by ITS 3.5.4.

Spent fuel pool boron concentration shall be greater than 2220 ppm and less than 3000 ppm. Referred to by ITS 3.7.12.

The equivalent of at least 1100 cubic feet of 11,000 ppm boron shall be maintained in the CBAST. Referred to by ITS SLC 16.5.13.

CFT boron concentration shall be greater than 1835 ppm. The average boron concentration in the CFT's shall be less than 4000 ppm. Referred to by ITS 3.5.1.

RCS and Refueling canal boron concentration shall be greater than 2220 ppm. Referred to by ITS 3.9.1.

Shutdown Margin (SDM) shall be greater than 1% $\Delta k/k$. Referred to by ITS 3.1.1.

Moderator Temperature Coefficient (MTC) shall be less than:	MTC x 10-4	
Linear interpolation is valid within table provided.	Δρ / °F	% FP
Referred to by ITS 3.1.3.	0.700	0
	0.030	15
	-0.281	95
	-0.300	100
	-0.375	120

Departure from Nucleate Boiling (DNB) parameter for RCS loop pressure shall be

Referred to by ITS 3.4.1.

4 RCP: measured hot leg pressure ≥ 2125 psig

3 RCP:

measured hot leg pressure ≥ 2125 psig

DNB parameter for RCS loop average temperature shall be:

Max Loop Tavg

581.00

Referred to by ITS 3.4.1.

Incl 2°F unc

ΔTc, °F 0

The measured Tavg must be less than the temperature

specified by an amount equal to the uncertainty

corresponding to the instrument from which it is read. Δ Tc is the setpoint value selected by the operators.

DNB parameter for RCS loop total flow shall be:

4 RCP:

Measured \geq 108.5 %df

Referred to by ITS 3.4.1.

3 RCP:

Measured ≥ 74.7 % of 4 RCP min flow

Regulating rod groups shall be withdrawn in sequence starting with group 5, group 6, and finally group 7. Referred to by ITS 3.2.1.

Regulating rod group overlap shall be 25% \pm 5% between two sequential groups. Referred to by ITS 3.2.1.

Duke Power Company

Oconee 2 Cycle 18

Core Operating Limits Report

QA Condition 1

NOT REVIEWED OR APPROVED BY CFAM 3.13

Prepared By: T. P. Phelps T. P. Phelps	Date : <u> </u>
Checked By: D. W. Harris Dal Whi	Date: Jan 31, 2000
CDR By: J. M. Sawyer ASLM SAWY,	Date : 1/31/00
Approved By: R. R. St. Clair	Date: Fel. 1, 2000

Approved By: R. R. St. Clair

Oconee 2 Cycle 18

Core Operating Limits Report

Insertion Sheet for Revision 14

This revision is effective after the implementation of TSC 99-06, February 2000.

Remove these revision 13 pages

Insert these revision 14 pages

1-4

1-4

Revision Log

Revision	Effective Date	Pages Revised	Pages Added	Pages Deleted	Total Effective Pages
Oconee 2 Cy	cle 18 revisio	ons below			
14	Feb-00	1-4	•	-	31
13	Nov-99	1-31	-	-	31
12	Sep-99	1-31	-	-	31
11	Apr-99	1-4, 6	-	-	0
10	Mar-99	1 - 31	-	-	0
Oconee 2 Cy	cle 17 revisi	ons below			
9A	Jul-99	1-4	-	-	31
9	Jul-99	1-31	-	-	31
9	Mar-99	1 - 31	-	32 - 38	31
8	May-98	1-3,5,11,32,35		-	38
7	Mar-98	1 - 38	-	-	38
Oconee 2 Cy	cle 16 revisi	ons below			
6	Oct-96	1-3, 18	-	-	38
5	Mar-96	1 - 34	35 - 38	-	38

Oconee 2 Cycle 18

1.0 Error Adjusted Core Operating Limits

The Core Operating Limits Report for O2C18 has been prepared in accordance with the requirements of ITS 5.6.5. The core operating limits within this report have been developed using NRC approved methodology identified in references 1, 2, 3, 4, 5, 6, and 7. The RPS protective limits and maximum allowable setpoints are documented in references 8 and 9. These limits are validated for use in O2C18 by references 10, 11, and 12. The O2C18 analyses assume a design flow of 107.5% of 88,000 gpm per RCS pump, radial local peaking (Fdh) of 1.714, and axial peaking factor (Fz) of 1.5.

The error adjusted core operating limits included in section 1 of the report incorporate all necessary uncertainties and margins required for operation of the O2C18 reload core.

1.1 References

- 1. Nuclear Design Methodology Using CASMO-3 / SIMULATE-3P, DPC-NE-1004A, Revision 0, (SER dated November 23, 1992).
- 2. Oconee Nuclear Station Reload Design Methodology II, DPC-NE-1002A, Revision 1, (SER dated October 1, 1985).
- 3. Oconee Nuclear Station Reload Design Methodology, NFS-1001A, Revision 4, (SER dated July 29, 1981).
- 4. ONS Core Thermal Hydraulic Methodology Using VIPRE-01, DPC-NE-2003P-A, (SER dated July 19, 1989).
- 5. Thermal Hydraulic Statistical Core Design Methodology, DPC-NE-2005P-A, Revision 1, (SER dated November 7, 1996).
- 6. Fuel Mechanical Reload Analysis Methodology Using TACO3, DPC-NE-2008P-A, (SER dated April 3, 1995).
- 7. UFSAR Chapter 15 Transient Analysis Methodology, DPC-NE-3005-PA, Revision 1, (SER dated May 25, 1999).
- 8. Variable Low Pressure Safety Limit, OSC-4048, Revision 3, July 1998.
- 9. Power Imbalance Safety Limits and Tech Spec Setpoints Using Error Adjusted Flux-Flow Ratio of 1.094, OSC-5604, Revision 1, November 1998.
- 10. O2C18 Maneuvering Analysis, OSC-7273, Revision 5, February 2000.
- 11. O2C18 Specific DNB Analysis, OSC-7333, Revision 0, January 1999.
- 12. O2C18 Reload Safety Evaluation, OSC-7361, Revision 0, October 1999.

Oconee 2 Cycle 18

Miscellaneous Setpoints

BWST boron concentration shall be greater than 2220 ppm and less than 3000 ppm. Referred to by ITS 3.5.4.

Spent fuel pool boron concentration shall be greater than 2220 ppm and less than 3000 ppm. Referred to by ITS 3.7.12.

The equivalent of at least 1100 cubic feet of 11,000 ppm boron shall be maintained in the CBAST. Referred to by ITS SLC 16.5.13.

CFT boron concentration shall be greater than 1835 ppm. The average boron concentration in the CFT's shall be less than 4000 ppm. Referred to by ITS 3.5.1.

RCS and Refueling canal boron concentration shall be greater than 2220 ppm. Referred to by ITS 3.9.1.

Shutdown Margin (SDM) shall be greater than 1% $\Delta k/k$. Referred to by ITS 3.1.1.

Moderator Temperature Coefficient (MTC) shall be less than:	MTC x 10-4	
Linear interpolation is valid within table provided.	Δρ / °F	% FP
Referred to by ITS 3.1.3.	0.700	0
•	0.030	15
	-0.281	95
	-0.300	100
	-0.375	120

Departure from Nucleate Boiling (DNB) parameter for RCS loop pressure shall be Referred to by ITS 3.4.1. 4 RCP: measured hot leg pressure ≥ 2125 psig

3 RCP: measured hot leg pressure ≥ 2125 psig

DNB parameter for RCS loop average temperature shall be: Max Loop Tavg Referred to by ITS 3.4.1. Max Loop Tavg Incl $2^{\circ}F$ unc ΔTc , $^{\circ}F$ 581.00 0

The measured Tavg must be less than the temperature specified by an amount equal to the uncertainty corresponding to the instrument from which it is read. \(\Delta \text{Tc} \) is the setpoint value selected by the operators.

DNB parameter for RCS loop total flow shall be: 4 RCP: Measured ≥ 107.5 %df

Referred to by ITS 3.4.1. 3 RCP: Measured ≥ 74.7 % of 4 RCP min flow

Regulating rod groups shall be withdrawn in sequence starting with group 5, group 6, and finally group 7. Referred to by ITS 3.2.1.

Regulating rod group overlap shall be 25% \pm 5% between two sequential groups. Referred to by ITS 3.2.1.

Duke Power Company

Oconee 3 Cycle 18

Core Operating Limits Report

QA Condition 1

Prepared By: D. W. Harris	Date: <u>fan 31, 2000</u>
Checked By: T. P. Phelps T. P. Phelps	Date: <u>3/<i>JAN2000</i></u>
CDR By: G. J. Byers A Byos	Date : 1/3\100
Approved By: R. R. St. Clair K. M. St. Clair	Date: Fel. 1, 2000

Oconee 3 Cycle 18

Core Operating Limits Report

Insertion Sheet for Revision 12

This revision is effective after the implementation of TSC 99-06, February 2000.

Remove these revision 11 pages

Insert these revision 12 pages

1-3

1-3

Remove this revision 10 page

Insert this revision 12 page

4

4

Revision Log

Revision	Effective Date	Pages Revised	Pages Added	Pages Deleted	Total Effective Pages
Oconee 3 cy	cle 18 revisio	ons below			
12	Feb-00	1 - 4	-	-	31
11	Jun-99	1 - 3, 31	-		31
10	Mar-99	1 - 31	-	32 - 38	31
9	Oct-98	1 - 38	•	-	38
Oconee 3 cy	cle 17 revisio	ons below			
8	Mar-98	1, 2, 3, 5, 13			38
		16, 17, 32,			
		36			
7	Dec-96	1 - 38	-	-	38

Oconee 3 c	ycle 16 revisio	ns below			
6	Sep-95	1, 2, 3, 9, 28, 29, 30 31	-	-	38
5	Jun-95	1, 2, 3, 7	-	-	38
4	May-95	1 - 33	34 - 38	-	38

Oconee 3 Cycle 18

1.0 Error Adjusted Core Operating Limits

The Core Operating Limits Report for O3C18 has been prepared in accordance with the requirements of ITS 5.6.5 The core operating limits within this report have been developed using NRC approved methodology identified in references 1, 2, 3, 4, 5, 6 and 7. The RPS protective limits and maximum allowable setpoints are documented in references 8 and 9. These limits are validated for use in O3C18 by references 10, 11 and 12. The O3C18 analyses assume a design flow of 107.5% of 88,000 gpm per RCS pump, radial local peaking (FΔh) of 1.714, and axial peaking factor (Fz) of 1.5.

The error adjusted core operating limits included in section 1 of the report incorporate all necessary uncertainties and margins required for operation of the O3C18 reload core.

1.1 References

- 1. Nuclear Design Methodology Using CASMO-3 / SIMULATE-3P, DPC-NE-1004A, Revision 0, (SER dated November 23, 1992).
- 2. Oconee Nuclear Station Reload Design Methodology II, DPC-NE-1002A, Revision 1, (SER dated October 1, 1985).
- 3. Oconee Nuclèar Station Reload Design Methodology, NFS-1001A, Revision 4, (SER dated July 29, 1981).
- 4. ONS Core Thermal Hydraulic Methodology Using VIPRE-01, DPC-NE-2003A, (SER dated July 19, 1989).
- 5. Thermal Hydraulic Statistical Core Design Methodology, DPC-NE-2005P-A, Revision 1, (SER dated November 7, 1996).
- Fuel Mechanical Reload Analysis Methodology Using TACO3, DPC-NE-2008P-A, (SER dated April 3, 1995).
- 7. UFSAR Chapter 15 Transient Analysis Methodology, DPC-NE-3005-PA, Revision 1, (SER May 25, 1999).
- 8. Variable Low Pressure Safety Limit, OSC-4048, Revision 3, July 1998.
- 9. Power Imbalance Safety Limits and Tech Spec Setpoints Using Error Adjusted Flux-Flow Ratio of 1.094, OSC-5604, Revision 1, November 1998.
- 10. O3C18 Maneuvering Analysis, OSC-7091, Revision 4, February 2000.
- 11. O3C18 Specific DNB Analysis, OSC-7138, Revision 1, August 1998.
- 12. O3C18 Reload Safety Evaluation and 50.59, OSC-7235, Revision 2, October 1999.

Oconee 3 Cycle 18

Miscellaneous Setpoints

BWST boron concentration shall be greater than 2220 ppm and less than 3000 ppm. Referred to by ITS 3.5.4.

Spent fuel pool boron concentration shall be greater than 2220 ppm and less than 3000 ppm. Referred to by ITS 3.7.12. This revision is effective after the ITS implementation.

The equivalent of at least 1100 cubic feet of 11,000 ppm boron shall be maintained in the CBAST. Referred to by ITS SLC 16.5.13.

CFT boron concentration shall be greater than 1835 ppm. The average boron concentration in the CFT's shall be less than 4000 ppm. Referred to by ITS 3.5.1.

RCS and Refueling canal boron concentration shall be greater than 2220 ppm. Referred to by ITS 3.9.1.

Shutdown Margin (SDM) shall be greater than 1% Δ k/k. Referred to by ITS 3.1.1.

Moderator Temperature Coefficient (MTC) shall be less than :	MTC x 10-4	
Linear interpolation is valid within table provided.	Δρ/°F	% FP
Referred to by ITS 3.1.3.	0.700	0
	0.030	15
	-0.281	95
	-0.300	100
	-0.375	120

Departure from Nucleate Boiling (DNB) parameter for RCS loop pressure shall be

Referred to by ITS 3.4.1. 4 RCP: measured hot leg pressure ≥ 2125 psig 3 RCP: measured hot leg pressure > 2125 psig

3 NOF. Measured not leg pressure ≥ 2123 pag

DNB parameter for RCS loop average temperature shall be:

Referred to by ITS 3.4.1.

Max Loop Tavg

Incl 2°F unc

581.00

0

The measured Tavg must be less than the temperature specified by an amount equal to the uncertainty corresponding to the instrument from which it is read. ΔTc is the setpoint value selected by the operators.

DNB parameter for RCS loop total flow shall be: 4 RCP: measured ≥ 107.5 %df

Referred to by ITS 3.4.1. 3 RCP: measured ≥ 74.7 % of the 4 RCP minimum flows

Regulating rod groups shall be withdrawn in sequence starting with Group 5, then Group 6, and finally Group 7. Referred to by ITS 3.2.1.

Regulating rod group overlap shall be 25% \pm 5% between two sequential groups. Referred to by ITS 3.2.1.