

VERMONT YANKEE NUCLEAR POWER CORPORATION

185 Old Ferry Road, Brattleboro, VT 05301-7002 (802) 257-5271

February 16, 2000 BVY 00-22

TE26

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555

Subject:Vermont Yankee Nuclear Power StationLicense No. DPR-28 (Docket No. 50-271)Vermont Yankee Cycle 21 Start-up Test Report

The purpose of this letter is to submit the Vermont Yankee (VY) Cycle 21 Start-up Test Report in accordance with the requirements of section 6.7.A.1 of the VY Technical Requirements Manual.

We trust that the information provided is adequate; however, should you have questions or require additional information, please contact Mr. Jim DeVincentis at (802) 258-4236.

Sincerely,

VERMONT YANKEE NUCLEAR POWER CORPORATION

andam

Øautam Sen Licensing Manager

Attachment

cc: USNRC Region 1 Administrator USNRC Resident Inspector – VYNPS USNRC Project Manager – VYNPS Vermont Department of Public Service

SUMMARY OF VERMONT YANKEE COMMITMENTS

BVY NO.: 00-22

The following table identifies commitments made in this document by Vermont Yankee. Any other actions discussed in the submittal represent intended or planned actions by Vermont Yankee. They are described to the NRC for the NRC's information and are not regulatory commitments. Please notify the Licensing Manager of any questions regarding this document or any associated commitments.

COMMITMENT	COMMITTED DATE OR "OUTAGE"
None	N/A

VYAPF 0058.04 AP 0058 Original Page 1 of 1

STARTUP TEST REPORT VERMONT YANKEE CYCLE 21

Introduction:

Vermont Yankee Cycle 21 initial startup commenced on December 1, 1999 following a 34 day outage for refueling and maintenance activities.

The core loading for Cycle 21 consists of:

20 GE9B-P8DWB335-10GZ-80M-150-T reinserts from Cycle 18 8 GE9B-P8DWB335-11GZ-80M-150-T reinserts from Cycle 18 120 GE9B-P8DWB354-12GZ-80M-150-T reinserts from Cycle 19 72 GE13-P9HTB380-12GZ-100T-146-T reinserts from Cycle 20 40 GE13-P9HTB379-13GZ-100T-146-T reinserts from Cycle 20 24 GE13-P9HTB388-13GZ1-100T-146-T non-irradiated assemblies 84 GE13-P9HTB388-13GZ-100T-146-T non-irradiated assemblies

An as-loaded Cycle 21 core map is included as Figure 1. Details of the Cycle 21 core loading are contained in the GE Nuclear document J11-03546CMR, "Cycle Management Report for Vermont Yankee Nuclear Power Station, Cycle 21", October 1999.

The final as-loaded core loading was verified correct by Vermont Yankee personnel on November 19, 1999 in accordance with procedure OP1411. Three separate criteria were checked:

- 1. Proper bundle seating was verified.
- 2. Proper bundle orientation, channel fastener integrity and upper tie plate cleanliness were verified.
- 3. Proper core loading was verified by checking the serial number of each bundle through the use of a video camera. This verification was recorded on video tape and was later independently reviewed and re-verified to agree with the licensed core loading of Figure 1.

After independent review of core verification was completed, a strongest worth control rod subcritical check was performed on November 19, 1999 in accordance with OP1411.

Control rod coupling and withdrawal speed verification was satisfactorily completed for all 89 control rods on November 29, 1999

Startup commenced December 1, 1999 and steady state full power conditions were reached December 5, 1999.

Process Computer Data Checks:

Process computer data shuffling checks were completed on November 24, 1999. These checks included various manual and computer checks of the new data constants.

In-Sequence Critical:

The in-sequence critical test was performed on December 1, 1999 as part of the reactor startup. Control rod sequence 21-A-2(1) was used to perform the in-sequence critical test. Criticality was achieved on the 7th rod in group 2 (26-31) at notch position 16. The moderator temperature was 141°F.

The actual critical rod pattern and the prediction agreed within +/- 1% $\Delta k/k$.

Cold Shutdown Margin Testing:

The cold shutdown margin calculation was performed using data collected during the in-sequence critical and information provided in GE Nuclear document J11-03546CMR, "Cycle Management Report for Vermont Yankee Nuclear Power Station, Cycle 21", October 1999. The minimum shutdown margin required was 0.38% $\Delta k/k$. The actual shutdown margin was shown to be 1.12% $\Delta k/k$, as determined in accordance with OP4426.

Control Rod Scram Testing:

Single rod scram testing of all 89 control rods was completed on November 29, 1999. All insertion times were within the limits defined in the Vermont Yankee Technical Specifications. Results of the testing are presented in Table 1.

In accordance with Technical Specifications Section 4.3.C.2, scram time information available for scrams occurring since the transmittal of the previous startup test report is included in Table 2.

Thermal Hydraulic Limits and Power Distribution:

The core maximum fraction of limiting critical power ratio (MFLCPR), the core maximum fraction of limiting power density (CMFLPD), the maximum average planar linear heat generation rate ratio to its limit (MAPRAT) and the ratio of CMFLPD to the fraction of rated power (FRP) were all checked daily during the startup using the process computer. All checks of core thermal limits were within the limits specified in the Technical Specifications.

The process computer power distribution was updated three times using the traversing incore probe (TIP) system as part of the ascent to full power. The results of these updates are presented in Table 3.

The local power range monitors (LPRMs) were manually calibrated once in conjunction with the TIP system. The LPRM high and low trip alarm set points were verified correct prior to startup on November 29, 1999. The TIPs and the LPRMs were both functionally tested and found to operate satisfactorily. A total of 7 APRM gain adjustments were done as required during the startup from December 1 through December 5, 1999.

The process computer power distribution update performed after reaching steady state conditions on December 7, 1999 was used as a basis for comparison with an off line calculation performed using Duke Engineering & Services nodal code SIMULATE-3. For that power distribution, the SIMULATE-3 core average axial power distribution was compared to that calculated by the plant process computer. Comparisons are shown in Table 4. A comparison was also performed between SIMULATE-3 and process computer peak radial powers. These values show reasonable agreement and are presented in Table 5.

At approximately 25, 50, 75 and 100 percent power levels the process computer heat balance was compared with an off-line computer calculation. The values of core thermal power from each method were found to be in excellent agreement (within 6 Megawatts thermal).

A core flow calibration was completed on December 28, 1999 to ensure that the core flow calculation by the process computer is accurate over the entire operating range.

TIP Reproducibility and TIP Symmetry:

TIP system reproducibility was checked in conjunction with the power distribution update performed on January 25, 2000. All three TIP system traces were reproducible to within 1.6%. A TIP intermachine calibration was successfully completed on February 3, 2000. A check of tip axial alignment was completed on January 26, 2000 and found to be acceptable.

The total TIP uncertainty was calculated using TIP set 1651. Since the rod pattern was symmetric, the actual plant TIP readings were used in the calculation. The resulting total TIP uncertainty for this case was 1.00%. The results of the TIP uncertainty test as shown in Figure 2 are well below the 8.7% acceptance criteria.

TABLE 1CONTROL ROD SCRAM TESTING RESULTSVERMONT YANKEE BEGINNING OF CYCLE 21

Single Rod Scrams – November 27, 1999 through November 29 1999

Maximum 92.01% insertion time of rods measured (seconds) = 3.053 Tech. Spec. Limit for slowest 90% insertion time (seconds) = 7.000

Average time for % insertion	<u>4.51%</u>	<u>25.</u>	<u>34%</u>	<u>46.</u> ′	18%	<u>87.8</u>	<u>34%</u>
Measured time (sec)	0.283	0.8	0.801		1.337		57
Tech. Spec. limit (sec)	0.358	0.912		1.468		2.68	86
<u>Slowest 2x2 array for % inse</u> Measured time (see Tech. Spec. limit (see	c) 0	. <u>51%</u> .289 .379	<u>25.3</u> 0.82 0.96	28	<u>46.^</u> 1.3 1.5		<u>87.84%</u> 2.520 2.848

TABLE 2 CONTROL ROD SCRAM TESTING RESULTS VERMONT YANKEE CYCLE 20

Full Scram – June 9, 1998 Scram #188 – 73 rods

Maximum 92.01% insertion time of rods measured (seconds) = 3.169 Tech. Spec. Limit for slowest 90% insertion time (seconds) = 7.000

Mean time for % insertion	<u>4.51%</u>	<u>25.34%</u>	<u>46.18%</u>	<u>87.84%</u>
Measured time (sec) – 73 rods	0.282	0.796	1.318	2.443
Measured time (sec) – all rods	0.281	0.796	1.321	2.443
Tech. Spec. limit (sec)	0.358	0.912	1.468	2.686
Slowest 2x2 array for % insertion	<u>4.51%</u>	<u>25.34%</u>	<u>46.18%</u>	<u>87.84%</u>
Measured time (sec)	0.288	0.813	1.345	2.502
Tech. Spec. limit (sec)	0.379	0.967	1.556	2.848

Single Rod Scrams - January 6, 1999 Scram #189 – 46 rods

Maximum 92.01% insertion time of rods measured (seconds) = 2.950 Tech. Spec. Limit for slowest 90% insertion time (seconds) = 7.000

Mean time for % insertion	<u>4.51%</u>	<u>25.34%</u>	<u>46.18%</u>	<u>87.84%</u>
Measured time (sec) – 46 rods	0.285	0.806	1.338	2.470
Measured time (sec) – all rods	0.282	0.799	1.327	2.449
Tech. Spec. limit (sec)	0.358	0.912	1.468	2.686
Slowest 2x2 array for % insertion	<u>4.51%</u>	<u>25.34%</u>	<u>46.18%</u>	<u>87.84%</u>
Measured time (sec)	0.289	0.813	1.349	2.492
Tech. Spec. limit (sec)	0.379	0.967	1.556	2.848

Single Rod Scram - March 16, 1999 Scram #190 - 1 rod

Maximum 92.01% insertion time of rods measured (seconds) = 2.821 Tech. Spec. Limit for slowest 90% insertion time (seconds) = 7.000

Mean time for % insertion	<u>4.51</u>	<u>% 25.34</u>	<u>% 46.18</u>	<u>3% 87.84%</u>
Measured time (sec) – all rods	0.289	9 0.800	1.328	3 2.452
Tech. Spec. limit (sec)	0.358	3 0.912	1.468	3 2.686
Slowest 2x2 array for % insertion	<u>4.51%</u>	<u>25.34%</u>	<u>46.18%</u>	<u>87.84%</u>
Measured time (sec)	0.289	0.813	1.349	2.492
Tech. Spec. limit (sec)	0.379	0.967	1.556	2.848

Single Rod Scrams - May 25, 1999 Scram #191 – 45 rods

Maximum 92.01% insertion time of rods measured (seconds) = 2.876 Tech. Spec. Limit for slowest 90% insertion time (seconds) = 7.000

Mean time for % insertion	<u>4.51%</u>	<u>25.34%</u>	<u>46.18%</u>	<u>87.84%</u>
Measured time (sec) – 45 rods	0.287	0.818	1.358	2.492
Measured time (sec) – all rods	0.282	0.803	1.334	2.455
Tech. Spec. limit (sec)	0.358	0.912	1.468	2.686
Slowest 2x2 array for % insertion	<u>4.51%</u>	<u>25.34%</u>	<u>46.18%</u>	<u>87.84%</u>
Measured time (sec)	0.290	0.820	1.363	2.530
Tech. Spec. limit (sec)	0.379	0.967	1.556	2.848

TABLE 3

•

Vermont Yankee Power Distribution Measurements Cycle 21 Start-Up

			Core			
<u>Date</u>	<u>Time</u>	<u> Power(%)</u>	<u>Flow(%)</u>	<u>CMFLPD</u>	<u>MFLCPR</u>	<u>MAPRAT</u>
12/3/99	22:05	76.8	69.9	0.714	0.791	0.763
12/4/99	01:18	74.6	70.4	0.682	0.770	0.754
12/7/99	15:19	100.0	97.9	0.797	0.850	0.931

The Tech. Spec. limit for the three thermal limits above is less than or equal to 1.0.

/

TABLE 4

Core Average Axial Power Distributions Comparison of Process Computer and SIMULATE-3 Vermont Yankee Beginning of Cycle 21

Node	SIMULATE-3	Process Computer
25	0.086	0.078
24	0.226	0.224
23	0.602	0.575
22	0.745	0.752
21	0.865	0.892
20	0.934	0.974
19	1.004	1.031
18	1.067	1.088
17	1.059	1.072
16	1.083	1.081
15	1.084	1.080
14	1.075	1.063
13	1.112	1.091
12	1.134	1.113
11	1.147	1.121
10	1.176	1.137
9	1.207	1.181
8	1.242	1.225
7	1.274	1.252
6	1.332	1.347
5	1.365	1.413
4	1.337	1.406
3	1.229	1.317
2	0.956	1.016
1	0.260	0.471

TABLE 5

Comparison of 10 Highest Relative Radial Powers Vermont Yankee Beginning of Cycle 21

Location	Process Computer	SIMULATE-3
23-22	1.305	1.286
25-22	1.463	1.420
23-20	1.467	1.417
25-20	1.253	1.234
27-20	1.249	1.235
35-20	1.253	1.199
25-18	1.260	1.234
35-18	1.254	1.268
35-14	1.245	1.215
27-10	1.246	1.263

Vermont Yankee

Cycle 21

Figure 1

							-		YJA 039	YJA	YJF	YJF	YJA	YJA]							
44							-	YJA	YJL	017 YJM	529 YJT	517 YJT	013 YJM	<u> </u>	YJA	ר						
42				-	YJF	YJA	YJF	011 YJL	1 901 901 YJM	533 YJT	877 YJM	839 (YJM	534 YJT	902 YJM	009 YJL	YJF	YJA	YJF	1			
40			-	YJF	458 YJL	088 YJL	450 YJL	921 YJL	529 YJT	889 YJF	517 YJT	518	851	530	922	477	046	446		1		
38		-	[<u></u>	453	4893	917	949	941	911	508	914	901	YJF 506	YJT 904	942	950	YJL _918 3 →	YJL 894	YJF 465		_	
36		-	YJF 499	YJL 937	YJT 856	YJF 489	YJM 513	YJT 820	YJM 509	YJT 823	YJF 420	YJF 471	YJT 853	YJM 510	YJT 860	YJM 514	YJF 478	YJT 824	YJL 938	YJF 496		
34			YJA 038	YJL 909	479	YJL 953	YJT 883	YJF 483	YJT 879	YJF 442	YJT 912	YJT 899	YJF 414	YJT 833	YJF 509	YJT 840	YJL 954	YJF 461	YJL 910	YJA 047	1	
32		-	YJF 498	YJL 957	YJM 525	YJT 817	YJF 440	YJT 810	YJF 473	YJL 889	YJF 416	YJF 432	YJL 890	YJF 475	YJT 891	YJF 486	YJT 857	YJM 526	YJL 958	YJF	:	
	-	YJA 051	YJL 929	YJL 913	YJT 	YJF 527	YJT 892	YJL	YJT	YJF	YJT	YJT	YJF	YJT	YJL	YJT	YJF	YJT	YJL	497 YJL	YJA]
30	YJF	YJL	YJM	TLY	P ├── YJM	TLY	YJF	905 YJT	878 YJF	488 YJT	869 YJF	838 {I YJF		832 YJF	906 YJT	890 YJF	528 YJT	841 YJM	914 YJT	930 YJM	111 YJL	YJF
28	494 YJA	925 YJM	505 YJT	896 YJF	537 YJT	809 YJF	484 YJL	816 YJF	502 YJT	815 YJF	516 YJL	493 YJL	858 YJF	501 YJT	852 YJF	520 YJL	854 YJF	538 YJT	907 YJF	506	926	481
26	036 YJF	501 YJT	884 YJM	460 (I YJT	870 YJF	429 YJT	897 YJF	521	875	455	945	946	435	831	522	898 (E	430	829	425	YJT 834	YJM 502	YJA 070
24	437	818	521	893	469	895	427	YJT 819	YJF 463	YJL 933	YJF 531	YJF 500	YJL 934	YJF 447	YJT 859	YJF 485	YJT 908	YJF 418	YJT 906	YJM 522	YJT 861	YJF 474
22	YJF 448	YJT 836	YJM 523	YJT 902	YJF ' 417	YJT 903	YJF 436	YJT 835 C	YJF ر451	YJL 935	YJF 532	YJF 467	YJL 936	YJF 480	YJT 871	YJF 421_	¥ЈТ ₋916	YJF 470	YJT 913	YJM 524	YJT 881	YJF 438
20	YJA 033	YJM 503	YJT 849	YJF 426	YJT 868	YJF 413	YJL 899	YJF 523	YJT 864	YJF 439	YJL 947	YJL 948	YJF 456	YJT 826	YJF 524	YJL 900	YJF 431	YJT 811	YJF 476	YJT 822	YJM 504	YJA 082
18	YJF 512	YJL 927	YJM 507	YJT 900_	YJM 539	YJT 848	YJF 519	YJT 837	YJF 503	YJT 846	YJF	YJF	YJT	YJF	TLY	YJF	YJT	YJM	TLY	YJM	YJL	YJF
	L	YJA	YJL	YJL	TLY	YJF	YJT	(c YJL]) TIY	YJF	515 YJT	495 YJT	882 YJF	504 YJT	880 YJL	468 C YJT	873 YJF	540 YJT	915 YJL	508 YJL	928 YJA	482
16]	086	931 YJF	915 YJL	862 YJM	526 YJT	850 YJF	907 YJT	867 YJF	428 YJL	866 YJF	828 YJF	423 YJL	812 YJF	908 YJT	814 YJF	525 YJT	827 YJM	916 YJL	932 YJF	116	
14			513 YJA	959_ F YJL	527 YJF	843 YJL	487 YJT	830 YJF		891	415	444	892	434	874	422 E	_886	528	960	514		
12			112	911	457	955	863	511	YJT 855	YJF 441	YJT 905	YJT 894	YJF 443	YJT 813	YJF 510	YJT 825	"YJL 956	YJF 492	YJL 912	YJA 037		
10			YJF 452	' YJL 939_ (B	888	YJF 462	YJM 515	YJT 844	YJM 511	YJT 847	YJF 419	YJF 472	YJT 872	YJM 512	YJT 887	YJM 516	YJF 491	YJT 842	YJL 940	YJF 464		
8				YJF 466	YJL 895	YJL 919	YJL 951	YJL 943	YJT 910	YJF 507	YJT 909	YJT	YJF 505	YJT 897	YJL 944	YJL		YJL 896	YJF 454	J		
6			•		YJF 445	YJA 059	YJF 490	YJL 923	YJM 531	YJT 845	YJM 519	ҮЈМ 520	YJT 885	YJM 532	YJL 924	YJF 449	YJA	YJF		ĺ		
				l				YJA	YJL	YJM	YJT	TLY	YJM	YJL	YJA	449	045	459				
4							l	010	903 YJA	535 YJA	865 YJF	821 YJF	536 YJA	904 YJA	004	I	I	I				
2		-						l	060	019	518	530	014	048	1							
	1	3 3	5 5	7 7	9 9	11 11	13 13	15	17	19	21	23	25	27	29	31_	33	35	37	 39	41	43

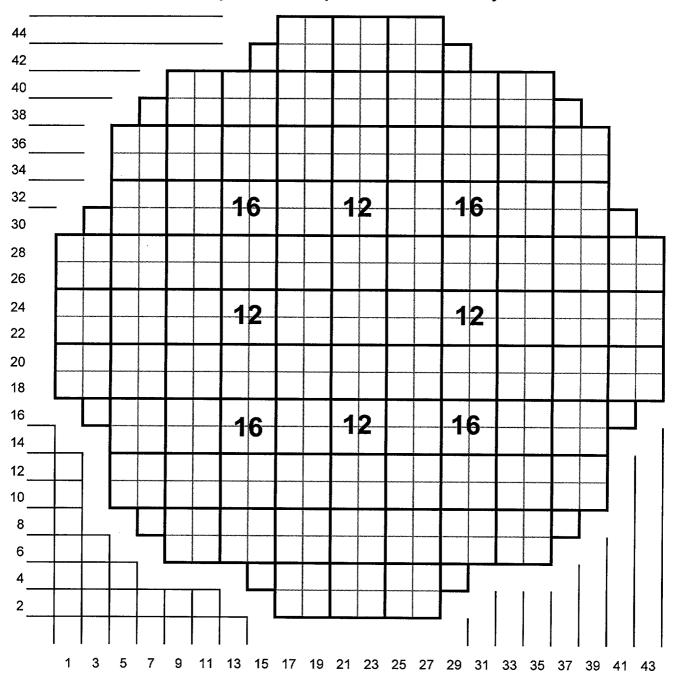


Figure 2 Vermont Yankee Cycle 21 Startup Total TIP Uncertainty

.

TIP #1651Date: 7-Dec-1999CTP = 99.0%WT = 97.9%Uncertainty:1.00%

Page 11 of 11