MEMORANDUM TO: Thomas L. King, Director Division of Risk Analysis and Applications Office of Nuclear Regulatory Research

FROM: Mark Cunningham, Chief Probabilistic Risk Analysis Branch Division of Risk Analysis and Applications Office of Nuclear Regulatory Research PDK Advance Copy

RECENSE

'00 JAN 27 P1:19

PUBLIC DOCUMENT (1999)

SUBJECT: TRANSMITTAL OF THE LOW-POWER SHUTDOWN PUBLIC WORKSHOP SUMMARY REPORT

Attached is a summary report of the public workshop on Low-Power and Shutdown Risk, held in Rockville Maryland, April 27, 1999. This report titled "Summary of Information Presented at an NRC-Sponsored Low-Power Shutdown Public Workshop, April 27, 1999, Rockville Maryland" was prepared by Sandia National Laboratories (SNL). It summarizes the presentations given during the workshop, and the discussions held during the general discussion session. It also includes the workshop's agenda, the attendance list, and the view graphs used by the NRC as well as the public.

SNL has forwarded copies of this report to the workshop participants. By copy of this memorandum, the report is being placed in the Public Document Room.

cc: A. Thadani M. Federline G.M. Holahan J.T. Larkins

DISTRIBUTION: PDR PRAB Subject File File Center

DOCUMENT NAME: G:\LPSD workshop to PDR

***SEE PREVIOUS CONCURRENCE**

To receive a copy of this document, indicate in the box: "C" = Copy without attachment/enclosure "E" = Copy with attachment/enclosure "N" = No copy

OFFICE	PRAB\DST*	PRAB\DST*	PRAB\DST*			
NAME	ELois:m	MDrouin	MCunningham			
DATE	01/05/2000	01/02/2000	01/14/2000 '	/	1	

OFFICIAL RECORD COPY

(Res File Code) RES: _____

ML 00 3685563 That they they

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

January 19, 2000

MEMORANDUM TO: Thomas L. King, Director Division of Risk Analysis and Applications Office of Nuclear Regulatory Research

FROM:

Mark Cunningham, Chief Probabilistic Risk Analysis Branch Division of Risk Analysis and Applications Office of Nuclear Regulatory Research

Rubin An AAC

SUBJECT: TRANSMITTAL OF THE LOW-POWER SHUTDOWN PUBLIC WORKSHOP SUMMARY REPORT

Attached is a summary report of the public workshop on Low-Power and Shutdown Risk, held in Rockville Maryland, April 27, 1999. This report titled "Summary of Information Presented at an NRC-Sponsored Low-Power Shutdown Public Workshop, April 27, 1999, Rockville Maryland" was prepared by Sandia National Laboratories (SNL). It summarizes the presentations given during the workshop, and the discussions held during the general discussion session. It also includes the workshop's agenda, the attendance list, and the view graphs used by the NRC as well as the public.

SNL has forwarded copies of this report to the workshop participants. By copy of this memorandum, the report is being placed in the Public Document Room.

A. Thadani M. Federline G.M. Holahan J.T. Larkins

cc:

SANDIA REPORT

SAND99-1815 Unlimited Release Printed July 1999

Maryland

PDR Advance Copy

RECEIVED

Summary of Information Presented at an NRC-Sponsored Low-Power Shutdown Public Workshop, April 27, 1999, Rockville

Timothy A. Wheeler, Donnie W. Whitehead and Erasmia Lois

Prepared by

Sandia National Laboratories Albuquerque, New México 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831

Prices available from (703) 605-6000 Web site: http://www.ntis.gov/ordering.htm

Available to the public from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Rd Springfield, VA 22161

NTIS price codes Printed copy: A07 Microfiche copy: A01

SAND99-1815 Unlimited Release Printed July 1999

Summary of Information Presented at an NRC-Sponsored Low-Power Shutdown Public Workshop April 27, 1999 Rockville, Maryland

Timothy A. Wheeler and Donnie W. Whitehead Risk Assessment and Systems Modeling Department Sandia National Laboratories P.O. Box 5800 Albuquerque, NM 87185-0747

> Erasmia Lois Nuclear Regulatory Commission Washington DC, 20555

Abstract

This report summarizes a public workshop that was held on April 27, 1999, in Rockville, Maryland. The workshop was conducted as part of the United States Nuclear Regulatory Commission's (NRC) efforts to further develop its understanding of the risks associated with low power and shutdown operations at United States nuclear power plants. A sufficient understanding of such risks is required to support decision-making for risk-informed regulation, in particular Regulatory Guide 1.174, and the development of a consensus standard. During the workshop the NRC staff discussed and requested feedback from the public (including representatives of the nuclear industry, state governments, consultants, private industry, and the media) on the risk associated with low-power and shutdown operations.

Prepared for Division of Risk Analysis and Applications Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555 Under Memorandum of Understanding DOE 40-550-75 NRC JCN W6904

Acknowledgment

The authors thank the following for additional notes taken of important points made during the Low-Power Shutdown Workshop:

Tsong-Lun Chu, Brookhaven National Laboratory John Lehner, Brookhaven National Laboratory Allen Camp, Sandia National Laboratories Mary Drouin, Nuclear Regulatory Commission

CONTENTS

. .

Lis	st of Acronyr	Acronyms and Initialisms	
1	INTRODUC	TION	1
	1.1	Background	
	1.2	Workshop Structure	
	1.3	Organization of the Report	
2.	NRC PRESI	ENTATION ON LOW-POWER SHUTDOWN RISK	3
3.	PRESENTA	TIONS FROM THE NUCLEAR POWER INDUSTRY	5
	3.1	Westinghouse Experience and Insights from Shutdown Risk Projects	5
	3.2	Shutdown Risk Monitoring – Scientech	6
	3.3	Shutdown PSA and EOOS [™] at River Bend	6
	3.4	Perspective on Shutdown Issues at South Texas Project	
	3.5	Shutdown Risk Assessment at Seabrook Station - North Atlantic Energy Service Co.	8
	3.6	Risk Perspective from EPRI Research and Application	
4.	OPEN DISC	CUSSION	11
	4.1	Perspectives on LPSD Risk Analysis Results	
	4.2	Perspective on LPSD Scope and Level of Detail	
	4.3	Perspectives on LPSD Methods	
	4.4	Perspectives on LPSD Standards	6
AP	PPENDIX A.	WORKSHOP AGENDA 1	1 7
AP	PPENDIX B.	WORKSHOP REGISTRATION LIST	9
AP	PPENDIX C.	NRC PRESENTATION MATERIAL	23
AP	PENDIX D.	PRESENTATION MATERIAL OF PUBLIC PRESENTATIONS	53

List of Acronyms and Initialisms

AOT	Allowed outage time
ACRS	Advisory Committee on Reactor Safety
	-
BWR	Boiling water reactor
CDF	Core damage frequency
CRM	Configuration risk management
DG	Diesel generator
DHR	Decay heat removal
EOOS™	Equipment out of service
EPRI	Electric Power Research Institute
ERIN	Engineering Research, Inc.
FTS	fail-to-run
FTR	fail-to-start
HRA	human reliability analysis
IAEA	International Atomic Energy Agency
IE	initiating event
LERF	large early release frequency
LOCA	Loss-of-coolant accident
LPSD	low-power shutdown
NSAC	Nuclear Safety Analysis Center
NRC	Nuclear Regulatory Commission
ORAM™	Outage risk assessment management
POS	Plant operating state
PRA	Probabilistic risk assessment
PSA	Probabilistic safety assessment
PSSA	Probabilistic shutdown safety assessment
PWR	Pressurized water reactor
RCS	Reactor cooling system
RG	Regulatory guide
RHR	Residual heat removal
RPV	Reactor pressure vessel
STP	South Texas Project
WOG	Westinghouse Owners Group
	······································

ł.

1 INTRODUCTION

. .

1.1 Background

The Office of Nuclear Regulatory Research of the United States Nuclear Regulatory Commission (NRC) has initiated a program on low-power and shutdown (LPSD) nuclear power plant operations. The objective is to provide (or develop, as necessary) an understanding of the risk associated with LPSD operations that is sufficient to support risk-informed regulatory decision-making. The development of this understanding involves a review of the lessons learned from NRC screening studies and from domestic and international work on LPSD risk. A public workshop was conducted on April 27, 1999, in Rockville Maryland, to support this information gathering NRC activity. The objectives of the workshop were to:

- solicit, gather, and share the results of previous and ongoing LPSD evaluations
- identify the LPSD information and methods required for risk-informed regulatory decisionmaking
- identify an acceptable approach and structure for an LPSD probabilistic risk assessment (PRA) consensus standard

This report summarizes the workshop.

1.2 Workshop Structure

The morning session consisted of presentations by the NRC and representatives of the nuclear power industry. The afternoon session consisted of a general discussion. The workshop was well attended and very successful in generating significant feedback from interested parties. Most of the feedback was given verbally during the general discussion session, but some written comments were submitted as well. This report summarizes the comments received in both forms.

1.3 Organization of the Report

The intent of this report is to capture the main point of the presentations and comments offered as well as those of the written comments. It is *not* intended to provide a verbatim transcript of the actual dialogue that occurred. Chapters 2 and 3 summarize the various presentations. Chapter 4 summarizes information gathered during the open discussion session and from written comments. Appendix A provides the workshop agenda. Appendix B contains the attendance list; Appendix C, copies of the viewgraphs used by the NRC; and Appendix D, copies of the view graphs used by representatives of the nuclear power industry.

Intentionally Left Blank

2.

2. NRC PRESENTATION ON LOW-POWER SHUTDOWN RISK

The workshop opened with remarks by NRC Commissioner Nill J. Diaz; Ashok Thadani, NRC Director of the Office of Nuclear Regulatory Research; and Tom King, NRC Director of the Division of Risk Analysis and Applications. The presentation summarized below was given by Mary Drouin, Section Leader, Probabilistic Risk Analysis Branch. The viewgraphs are provided in Appendix C.

1. The risk associated with core damage frequency (CDF) for LPSD plant configurations is of the same order of numerical magnitude as the risk associated with full-power plant operations. This is supported by NRC, domestic, and international industry-sponsored Level 1 LPSD risk assessments. Level 2 and 3 risks for LPSD have not be thoroughly evaluated.

A comparison of CDF, early fatality risk, and total latent cancer fatality risk results from the Grand Gulf and Surry NUREG-1150 and NUREG/CR-6143 and NUREG/CR-6144 studies indicates that LPSD risks may even be higher than full-power risks. The risks associated with LPSD plant configurations can be highly dependent on the specific plant operating states (POS) during LPSD activities. The instantaneous LPSD risk (per hour) can vary significantly throughout the time in which a plant is in LPSD configurations, and can be significantly higher than the instantaneous risk during full-power operations. Furthermore, important contributors to risk can be significantly different than for full-power operations.

- 2. Operational events presented (Wolf Creek, Cooper, Clinton, and Washington Nuclear Plant 2) indicate that LPSD risk should be examined.
- 3. The main differences between LPSD and full-power risks are:
 - The significance of human actions is greater than that during full-power operations.
 - There is a greater reliance on administrative procedures.
 - The vessel and containment may be open during LPSD.
 - Plant configurations change frequently throughout a shutdown.
 - Plant configuration transitions may be risk significant.
- 4. The objective of the NRC's LPSD research program is to develop an understanding of the risk associated with LPSD plant configurations that is sufficient to support risk-informed regulatory decision-making. At present it includes an assessment of the current LPSD information and the identification of risk significant concerns. Based on the results of this effort, the program could include:
 - research activities (e.g., methods development) as needed, and the investigation and analysis of methods issues,
 - the development of guidance for LPSD risk that would be sufficient to support riskinformed decision-making, and in particular Regulatory Guide (RG) 1.174, and
 - the development of an LPSD consensus PRA standard.

Intentionally Left Blank

3. PRESENTATIONS FROM THE NUCLEAR POWER INDUSTRY

Representatives of the nuclear power industry also gave presentations, which are summarized below. Viewgraphs are provided in Appendix D.

3.1 Westinghouse Experience and Insights from Shutdown Risk Projects

Selim Sancaktar of Westinghouse Electric Company, LLC summarized experience and insights gained from their LPSD risk projects.

Westinghouse developed the generic Outage Risk Assessment Management (ORAMTM) model based on the Zion nuclear power plant and was responsible for its application to Diablo Canyon. Several NSAC and EPRI references were given (see Appendix D) for both generic and Diablo Canyon-specific documentation of applications of ORAM. It was stated that the application of ORAM has taken LPSD accident sequence evaluation to the "Boil" end state as well as core damage. ORAM has provided thermal-hydraulic analyses for LPSD POSs in terms of thermal margin and inventory margin to provide success criteria. Twelve changes in outage practices are attributable to the original application of ORAM. ORAM was also applied to an LPSD risk assessment for the AP600 PRA. CDF and large early release frequencies (LERF) were calculated for LPSD. LPSD risk was dominated by events related to low reactor coolant system (RCS) inventory conditions.

Westinghouse is developing an LPSD PRA model for the V.C. Summer plant that will be compatible with the plant's full-power PRA. Both the LPSD and full-power models will ultimately be incorporated into a model. The LPSD PRA has three end states defined; boiling, return to criticality, and core damage. Preliminary results suggest that the plant is most vulnerable during mid-loop operations.

Westinghouse has also performed several deterministic analyses to address LPSD safety issues for their customers. These analyses include:

- various loss of residual heat removal (RHR) cooling scenarios;
- plant specific calculations for ties to boiling, times to core uncovery, and guidance to address Generic Letters 87-12 and 88-13; and
- procedure guidance for a Mode 3/4 LOCA when some safeguards systems are removed from service.

A Westinghouse survey of plants owned by members of the Westinghouse Owners Group (WOG) shows that 11 of 36 units have no shutdown model of any sort, while the remaining 25 do have models of varying levels. The most common modeling tool used among these 25 plants is ORAM (12 plants).

Several insights were gained:

- Time windows for operator response to initiators are very important and must be derived from thermal hydraulic analyses.
- Time to boiling is an important indicator of the state of plant vulnerability.
- LPSD risk is dominated by a few periods of high vulnerability.
- Diablo Canyon has incorporated 12 outage risk improvements without extending outage time.
- LPSD risk assessment has been proven to be of practical value.

3.2 Shutdown Risk Monitoring – Scientech

Safety Monitor[™] is a computer based risk tool developed by Scientech for the management of LPSD risk. Jeffery Julius and Thomas Morgan of Scientech summarized LPSD risk assessments from the Safety Monitor users group, which involves 18 domestic plants, 15 pressurized water reactors (PWRs) and 3 boiling water reactors (BWRs).

Scientech summarized their LPSD PRA experience as follows:

- San Onofre has used an LPSD PRA since the early 1990's.
- Ten PWR models have been built or are in progress.
- Two BWR models have been built or in progress.
- The Borssele LPSD PRA includes Levels 1, 2, and 3 analyses.
- They participated in the development of the International Atomic Energy Agency's LPSD risk assessment guidelines.

Insights gained include:

- LPSD CDF is less than, but comparable to full-power CDF.
- The instantaneous risk may be higher for LPSD than for full-power, but only for very short durations.
- Most risk is related to low inventory configurations early in the outage.

The Scientech philosophy regarding an LPSD PRA was characterized as:

- Such analyses should be optional.
- They are useful as a supplement to the Defense-In-Depth concepts of NUMARC 91-06.
- They provide insights regarding plant configurations and contingency planning.
- They may support current licensing basis changes (e.g., San Onofre diesel generator (DG) allowed outage time (AOT)).

Scientech believes that the validity of comparisons between LPSD and full-power risk estimates depends on the consistency in methods, level of detail, and modeling assumptions. With regard to a release risk metric, a surrogate Level 3 measure other than LERF might be more applicable for LPSD. It might be better to monitor the status of the containment rather than releases. Scientech also believes that current human reliability analysis (HRA) methods are adequate and that an LPSD PRA standard should be developed after benefits from the full-power standard are understood.

In conclusion, Scientech stated that the NUMARC 91-06 defense-in-depth approach provides sufficient safety margin for plants and that an LPSD PRA should be optional. Furthermore, LPSD PRAs should focus on high-risk POSs.

3.3 Shutdown PSA and EOOSTM at River Bend

Loys Bedel of Entergy Inc. summarized LPSD risk assessment experience at the River Bend plant.

An LPSD PSA has been performed on the River Bend plant using Equipment Out of Service (EOOS[™]). End states assessed in the analysis were boiling, core damage, fuel pool boiling, prompt criticality, exposed bundles, and containment performance for Level 2. Challenges that confronted the analysts were:

LPSD Workshop Summary Report

- the definition and quantification of initiating events,
- success criteria changes,
- human reliability analysis,
- recovery actions,
- defense-in-depth modeling, and
- EOOS development.

With regard to HRA and recovery actions, several observations were given. HRA issues included the applicability of the procedures for LPSD events, limited procedural guidance, the issue of what type of indications are available to the operators, and appropriate incorporation of low operator stress levels. The important recovery actions were:

- off-site power,
- decay heat removal (DHR),
- Spent fuel pool cooling, and
- OPDRV/OPDRC.

Recovery actions were assessed with data from Nuclear Safety Analysis Center (NSAC) documents.

The results of the analysis show that RCS boiling frequency is very high in the beginning of outages (0.72 yr^{-1}) and during hydrostatic testing of the reactor pressure vessel (RPV) (0.7 yr^{-1}) . However, high RCS boiling frequency does not imply high CDF. CDF is driven by support system maintenance and cannot be directly tied to any Defense-In-Depth status. Fuel pool boiling frequency is very low (~10⁻⁹ yr⁻¹). However, fuel pool storage risk is not necessarily negligible for full core offload. The cumulative LPSD risk for a 21-day outage may be as great as the annual full-power risk.

It was concluded that performing a PSA for LPSD is viable method, but the situations that must be modeled are dynamic and very different than full-power plant configurations. LPSD risk is driven by the outage schedule and dominated by human error events and recovery actions. The results of LPSD risk assessment are not simple and straightforward, but they can be useful in determining the risk impact of moving maintenance and repair activities from outages to full-power, thus allowing for the overall reduction of risk.

3.4 Perspective on Shutdown Issues at South Texas Project

Steve Rosen of the South Texas Project (STP) discussed LPSD risk assessment activities at STP.

The STP has implemented a shutdown risk assessment group to perform LPSD risk assessment and manage LPSD risk during outages. The group includes an operations manager, shift technical advisor, a risk and reliability analyst, staff from STP's Nuclear Assurance, Nuclear Licensing, and Outage Management organizations. The responsibility of this group is to review the Level 2 outage schedule and prepare a report for the Outage Support Manager and the Plant Manager. The report addresses LPSD safety issues, such as mid-loop operations, RCS pressurization, loss of inventory, LOCA, loss of power, and containment integrity.

The STP has developed several compensatory actions as a result of LPSD analyses. These include procedures and rules to minimize on-site work in the switchyard and on electrical systems during outages, maintaining reactor building containment integrity during mid-loop operations, and putting RHR trains into "protected" status. Extra personnel are also assigned to critical locations during certain outage activities to facilitate the identification of undesired conditions.

LPSD risk is numerically comparable to full-power risk. Furthermore, boiling frequency is comparable to LPSD CDF. Front-end mid-loop operations contribute 15% of LPSD risk in only 1% of the outage time. These results have driven STP to identify compensatory measures (including mid-loop precautions) to protect public health and safety.

3.5 Shutdown Risk Assessment at Seabrook Station – North Atlantic Energy Service Co.

Ken Kiper of North Atlantic Energy Service Company summarized LPSD risk assessment activities as the Seabrook Station.

The Seabrook shutdown PRA was completed in 1988. The scope included analysis of Modes 4, 5, and 6, hot shutdown, cold shutdown, and refueling. Both internal and external initiators were modeled. The models accounted for plant-specific design and operation. The risk analysis included a Level 3 analysis, as well as an uncertainty analysis on the plant configuration, time after shutdown, operator action, and source term.

The results of the PRA indicate that the mean CDF is numerically comparable to full-power CDF, but that the uncertainty range of an LPSD CDF is twice that for full power operations. Estimates for health effects were negligible. The CDF estimate was dominated by loss of RHR at low inventory configurations, RCS drain-down events, and internal initiators, whereas the frequency of releases was dominated by loss-of-coolant accidents (LOCAs). Internal flood and fire events tend to be more likely to occur during LPSD, but the consequences are less likely to be serious.

Shutdown risks can be difficult to quantify because of the complexity of correlating the time available for recovery or response to operator reliability. However, Seabrook believes that LPSD risks are manageable because the risk is driven by alignments and planned equipment outages that can be controlled.

Mr. Kiper claimed that LERF is essentially zero because of the relationship between decay heat and the timing of releases, and the close-in population. Mid-loop operations do not contribute significantly to release frequency because the hatch is closed.

A consensus LPSD standard should allow for the following:

- screen out low thermal margin configurations;
- verify that generic conclusions apply to each plant; and
- apply PRA methods to those potentially high-risk plant configurations that are not screened out.

3.6 Risk Perspective from EPRI Research and Application

Jeff Mitman of the Electric Power Research Institute (EPRI) and Doug True of Engineering Research, Inc. (ERIN) gave a presentation on LPSD risk experience based on EPRI's development and application of the ORAM computer modeling tool.

EPRI identified the implementation of NUMARC 91-06 in 1991 as a benchmark for LPSD risk assessment guidance. EPRI contends that the trend in LPSD risk-significant events has been downward since NUMARC 91-06. This is attributed in part to the development and application of configuration risk management (CRM) tools (e.g., EOOS, ORAM, Safety Monitor) by the U.S. nuclear power industry.

According to EPRI, approximately 55 units have implemented the use of some sort of LPSD CRM tool for risk management at their site. Approximately 20 other units have plans for implementation of CRM tools.

The EPRI ORAM probabilistic shutdown safety assessment (PSSA) methodology was initiated in 1991. CRM has been applied to over 100 refueling outages, for which core boiling and core damage were the primary risk metrics.

EPRI has benchmarked the ORAM tool against high level PRA and PSSA analyses for the South Texas Project units. An ORAM PSSA was compared to a Shutdown PSA developed with RISKMANTM. The risk results for both analyses were comparable once differences in assumptions between the two analyses were reconciled.

EPRI has written over 20 reports on specific ORAM applications and several other technical reports on LPSD issues, such as loss of DHR event trends. EPRI has issued EOOS for use by the nuclear power industry and continues to release enhancements to the tool. ORAM-SENTINEL version 3.3 will be released in September 1999, as a tool for interfacing with LPSD PSA, and ORAM version 4.0 is being developed.

For both BWR and PWR analyses, the LPSD risk is dominated by peak risk periods characterized by relatively high instantaneous risk over short periods of time early during the outage. The risk contribution of these peaks is approximately 86% for both BWRs and PWRs. The average cumulative risk over a 48-day outage for BWRs is approximately 5.0×10^{-6} yr⁻¹, and for a 45-day outage for PWRs is approximately 2×10^{-4} yr⁻¹.

EPRI maintains that LPSD risks have been significantly reduced since the issuing of NUMARC 91-06. Since the risk is dominated by the peaks in instantaneous risk, longer outages are not necessarily safer than shorter ones. The key to reducing LPSD risk is to minimize the length of time in which the plant is in the "peak" risk configurations. The dominant contributor to risk is human error (50%). Other factors that are significant in LPSD risk estimates are the POS, the decay heat level, and the configuration of plant equipment.

EPRI also indicated that initiating event frequencies related to LPSD seem to be decreasing.

EPRI believes that the average cumulative LPSD risk estimates cannot be directly compared with fullpower risk estimates. The LPSD risk models are highly outage specific, strongly influenced by the duration of key POSs, and are dominated by human performance issues.

The initiating events for LPSD are well understood and the accident sequence and system modeling is straightforward. However, appropriate success criteria issues have not been fully investigated, and the treatment of POS transitions and human reliability issues is challenging. Furthermore, there has been limited experience with flood, fire, and external event analyses, and Level 2 and 3 risks have been largely unanalyzed.

In conclusion, EPRI believes that computed changes in LPSD risk can range from negligible to huge, depending on the outage schedule. The nuclear power industry has significant expertise and experience for LPSD risk assessment, and methods are well developed but still improving. Significant uncertainties exist with regard to human performance and plant outage activities.

Intentionally Left Blank

LPSD Workshop Summary Report

1

4. OPEN DISCUSSION

In order to facilitate feedback on four major areas the NRC focused the general discussion:

LPSD risk analysis results, scope and level of detail needed (or used) in LPSD risk studies, methods and assumptions used in assessing LPSD risk, and the appropriate structure and format of an LPSD consensus standard.

This summary includes both verbal and written comments. Time did not allow for extensive elaboration regarding the rationale or the bases for the views expressed.

4.1 Perspectives on LPSD Risk Analysis Results

The NRC opened the discussion on LPSD risk analysis results by presenting the following topics on which it was seeking feedback:

- What is the CDF and LERF range for LPSD conditions?
- What are the dominant contributors to CDF and LERF?

The NRC indicated that it was evident from the morning presentations that there were several different definitions of CDF used in the context of LPSD. These are:

Hourly risk rate ($CDF_1 = X$) Annualized risk rate ($CDF_2 = X \times Y$, Y = number of hours in a year) Annual LPSD risk discounted for fraction of year at LPSD configuration ($CDF_3 = X \times Y \times F$, F = fraction of time in configuration)

The NRC clarified that the third CDF definition, CDF_3 , is the most appropriate for the NRC's use in riskinformed regulatory decision-making (and in particular the updating of Reg. Guide 1.174) and the development of a consensus standard.

To initiate further dialogue on appropriate LPSD risk metrics, the NRC summarized its interpretation of the main points made during the morning presentations regarding LPSD risk:

- CDF₃ can be significant—of the same order of magnitude as for full-power operations.
- What is an appropriate release metric?
- Current LPSD analyses relate high risk to low thermal margin, but what about LOCAs and draindown events?

Comments from the discussion are summarized below:

1. Core Damage Frequency Metric

It was generally agreed that the annual risk metric that accounts for the fraction of the year at which a plant is in LPSD (CDF_3) is the appropriate metric for comparing LPSD risk with full-power risk estimates. However, the other LPSD CDF metrics (CDF_1 , CDF_2) were still considered valid for low-power risk management applications.

2. Radioactive Release Metric

Opinions regarding the need to develop a metric to measure the effects of radioactive releases from accidents during LPSD operations were mixed. Views supporting such a metric were expressed as well as views that such a release metric was not necessary. There was virtually unanimous consensus that the LERF metric, as currently defined for full-power risk analysis, was either not completely appropriate or relevant for LPSD.

In support of an LPSD release metric it was stated that the metric should account for the dynamic nature of the source term and decay heat rate as a function of time since the start of the power outage. The LERF metric might be valid for early time periods of an outage when the reactor isotopic inventory and the decay heat rate are relatively similar to the full-power accident scenarios, but as the outage time progresses, the LERF metric would become irrelevant. Possible alternatives to LERF should be investigated. The timing of the release with regard to the time frame of the power outage would be very important.

Viewpoints that questioned the validity of an LPSD release metric were expressed as well. It was argued that the mechanisms required to achieve a release with early fatalities (e.g., pressurized RCS, the appropriate source term) do not exist during LPSD outages. It was suggested that the status of the containment, with particular focus on the containment hatch, for various plant configurations would be a more useful indicator of potential release risk than a release metric.

It was generally acknowledged that there has been very little development of methods or application with regard to LPSD Level 2 and 3 risk analyses.

3. Other Risk Metrics

Two other Level 1 metrics were suggested. The frequency of boiling events, in which boiling is defined as an undesirable end state in the LPSD event tree in addition to the core damage end state, has been calculated in several LPSD risk assessments. Furthermore, several utility LPSD risk assessments have estimated the amount of time that would be required to bring the RCS inventory to boil for each plant configuration during an outage. This metric, referred to as time-to-boil, is used as a measure of the thermal margin available to the plant staff at any time.

4.2 Perspective on LPSD Scope and Level of Detail

The NRC summarized its main points of interest regarding the scope and level of detail of the LPSD program as follows:

- Should fuel handling and storage be included in the scope of LPSD risk assessment?
- Should all LPSD POSs be analyzed?
- Should the transitions between POSs be explicitly modeled?
- Should the level of detail be comparable to full-power (i.e., the same rigor)?

It summarized the main points made during the morning presentations on this subject.:

- Forced and unplanned outages, fuel handling, fuel misloading, and fuel pool storage should be within the scope of an LPSD risk assessment.
- Risk associated with the transition between POSs should be within the scope of an LPSD risk assessment. Would a dynamic type of tool be required for this?

- Internal fires and floods, and external events are potentially important for LPSD risk.
- The level of detail should be similar to the detail and rigor of a full-power risk assessment.

Public comments are summarized below.

1. Fuel Pool Cooling, Fuel Handling, and Fuel Misloading

Comments regarding fuel handling and fuel pool cooling consistently indicated that such activities have been analyzed for risk, and that the risk associated with these activities is insignificant compared with both full-power and LPSD risk. Specifically with regard to fuel misloading, the general opinion of the attendees was that so many checks are in place that the probability of a mishandling event is negligible. With regard to fuel handling, the view was expressed that data on crane mishaps are very old and not relevant to the nuclear power industry's operational experience. It was suggested that if actual operational data were collected and developed for fuel handling risk assessment, they would show that the risk was negligible. The general consensus was that fuel handling, misloading, and fuel pool cooling should not necessarily be included in the scope of an LPSD risk assessment. However, it was pointed out that a risk management tool used by several utilities, Safety Monitor, is designed to include fuel pool cooling. Its was also stated that fuel pool cooling typically is incorporated into a plant's LPSD risk management by the users of Safety Monitor when the activity is relevant to a particular outage.

2. Unplanned Outages

There was general acknowledgment that the risk management of unplanned outages has not been investigated as extensively as that for planned outages. One concern that was expressed was that a gap may exist in current risk assessment and risk management involving unplanned outages for which the plant configuration must be further altered from its initial shutdown state to repair the component or resolve the problem that caused the unplanned outage. The view was expressed that risk should be modeled for such unplanned outages as well as other unplanned outages in which the plant configuration is intentionally altered to perform other maintenance (i.e., the utility decides to take "advantage" of the outage to perform maintenance). It was stated that it would be useful to look at risk management of unplanned outages. However, the view was also expressed that unplanned outages cannot be fully accounted for by risk monitoring methods, and thus should be explicitly incorporated into LPSD risk models.

3. Internal Fire and Flood and External Events

It was suggested that LPSD risks associated with fire, flood, and seismic events have not been well analyzed to date and the potential for significant risk should not be dismissed. However, it was also suggested that LPSD seismic risk assessments could benefit extensively from the work done on full-power seismic risk by using these assessments as the basis for LPSD seismic analyses. It was also suggested that, of this set of events, fire and flood risk assessments for LPSD might be the "trickiest" to analyze. However, the view that LPSD fire risks are insignificant was expressed as well. It was felt that if full-power fire risk was insignificant, then the LPSD fire risks should also be insignificant. Furthermore, it was felt that fire risk is controlled through adherence to Appendix R. However, the views that full-power fire insights cannot be extrapolated to LPSD plant activities, and that Appendix R does not eliminate the potential for significant fire risk were expressed as well.

4. Plant Operating State Transition Risk

It was suggested that the risk associated with the transition between POSs does not need to be analyzed. It was felt that since such situations are tightly controlled and exist for only short periods of time, a risk assessment is not warranted. However, another view suggested that risk assessment of transitional conditions may be valuable for unplanned outages, especially those outages that require component repair. It was also suggested that transitional states could be modeled as additional POSs, and that no basis exists for dismissing such states as risk insignificant.

5. Need for Level of Detail Analogous to Full-Power PRA

A range of opinions were expressed on the need for "full-power" level of detail in LPSD risk assessment. There was a strong consensus among many attendees that highly detailed methods commensurate with those of full-power risk assessment should be applied to LPSD risk assessment only when appropriate. The level of detail required should be determined by the particular application and plant configurations being assessed. A high level of detail should be needed only for cases in which the risk potential is high. It was also suggested that PRA techniques may not be needed at all, but that qualitative defense-in-depth concepts may be adequate. However, the view that "PRA type" methods should be applied to all plant configurations was expressed as well. Furthermore, it was also stated that an insufficient level of detail could yield erroneous risk assessments.

4.3 **Perspectives on LPSD Methods**

The NRC summarized its main points of interest as follows:

- What available methods are appropriate?
 - What scope and level of detail does the method address?
 - What are the key assumptions used in the method?
- What improvements or research are needed?
 - Methods for modeling PRA elements?
 - Tools and software needed to analyze models?

The NRC summarized its interpretation of the main points of the morning presentations as follows:

- 1. Key assumptions for:
 - Defining POSs
 - Identifying IEs
 - Defining success criteria
 - What codes and methods should be used for:
 - Screening criteria
 - Human error analysis
- 3. Data

2.

- Fails-to-start (FTS)/Fails-to-run (FTR)-Same as full-power PRA?
- Unavailabilities
- 4. Research needs
 - Uncertainty methods
 - Release metrics
 - Code enhancements and additional analyses

LPSD Workshop Summary Report

The public comments are summarized under four categories: general risk methods, human error analysis, data, and research needs.

1. General Risk Methods

Statements supporting both detailed, traditional PRA-type analyses as well as qualitative methods were voiced in the discussion on risk assessment methods. The view that traditional PRA approaches are necessary for valid risk-informed regulatory decisions was expressed. However, it was also felt that qualitative methods might be sufficient to capture the majority of risk insights. It was also stated that risks associated with LPSD activities cannot be determined by generic analyses.

The need for greater work in the area of success criteria, including possible benefits from research programs designed to address special LPSD thermal-hydraulic issues, was also voiced. Such areas include boron dilution events, alternatives to DHR, and reflux cooling.

It was suggested that LPSD risk assessment methods should facilitate the evaluation of risk tradeoffs between continued operation with on-line repair and shutting down to repair.

2. Human Error Analysis

There was general agreement by the participants that human error is a large contributor to LPSD risk. However, there was less agreement as to whether there is a need to improve human reliability analysis methods for LPSD. Most of the attendees believe that the methods available to quantify human error are applicable to LPSD because the human errors of commission are latent and are accounted for in the initiating event frequency and equipment failure rate. However, previous NRC work (documented in NUREG/CR-6093) suggests that there are human errors of commission that are not latent errors, and these are not generally modeled in PRAs, and can be important to LPSD risk. It was suggested in the workshop that PWR mid-loop operations might be a good application for the NRC's ATHEANA program.

3. Data

The general view expressed at the workshop was that data should be developed for plant-specific quantification of risk events. It was stated that average unavailabilities should be suitable for most component failures, but not for initiating events, maintenance frequencies and durations, and common-cause failure rates. It was further suggested that LPSD maintenance data should be collected and analyzed to support the modeling of unscheduled maintenance events during LPSD (see Unplanned Outages under Section 4.2).

4. Research Needs

Several areas of potential research were identified:

- 1. Boron dilution events;
- 2. maintenance or testing-induced drain-down events;
- 3. nuclear grade crane failures;
- 4. impact of the definition of "success terms" on the selection of computational tools;
- 5. fire and flood initiators;

- 6. impact of emergency procedures, plant technical specification., emergency action guidance/levels on LPSD modeling assumptions;
- 7. cold overpressure events.

4.4 Perspectives on LPSD Standards

The NRC summarized its main points of interest as follows:

- What should be the scope and structure of an LPSD risk assessment standard?
- What are the appropriate risk metrics?
- What methods should be endorsed by such a standard?

The NRC also summarized its interpretation of the main points made during the morning presentations as follows:

- An LPSD standard should be similar to the full-power standard.
- Level 2 risk metrics need additional study.
- Available methods provide a starting point for a standard, but are not sufficient to address all aspects of LPSD risk.

The public comments are summarized below.

A range of opinions on the general need for a standard were voiced during the workshop. One view was that the development of an LPSD standard should be delayed until the full-power standard has been finalized so that "lessons learned" can be incorporated into the development of an LPSD standard. However, another view was that an LPSD standard was needed sooner than later or else it would be too late to facilitate consistency in LPSD risk assessment approaches across plants. There was a strong consensus that any LPSD standard should not necessarily be similar to the full-power standard, but that it should address the unique applications needs as well as the risk needs of LPSD activities. There was no clear consensus that such a standard would be useful. Nevertheless, a view was also expressed that an LPSD standard was unnecessary.

It was suggested that an LPSD standard should be high level in nature without detailed prescriptions of methods. However, it was also suggested that a standard should be prescriptive in certain areas with significant risks, but high level in other areas less risk significant. One opinion voiced was that a standard should include minimum requirement to ensure proper configuration control, especially during high-risk evolutions.

The NRC was encouraged to become familiar with current risk assessment tools used for LPSD risk management (e.g., Safety Monitor, ORAM) and with recent applications of these tools to LPSD risk management.

APPENDIX A. WORKSHOP AGENDA

Workshop Agenda

7:45 am to 8:15 am	Introduction,
	NRC presentation
8:15 am to 10:15 am	Industry presentation (Westinghouse, Scientech, Seabrook, River Bend,
	South Texas)
10:15 am to 10:30 am	BREAK
10:30 am to 11:40 am	Industry presentation (NEI and EPRI)
11:40 am to 1:00 pm	LUNCH
1:00 pm to 1:30 pm	General Discussion: Perspectives on LPSD results
1:30 pm to 2:00 pm	General Discussion: Perspectives on LPSD scope and level of detail
2:00 pm to 2:15 pm	BREAK
2:15 pm to 3:30 pm	General Discussion: Perspectives on LPSD methods
3:30 pm to 3:45 pm	BREAK
3:45 pm to 4:30 pm	General Discussion: Perspectives on LPSD standard
4:30 pm to 4:50 pm	General Discussion: Other issues
4:50 pm to 5:00 pm	Wrap-up

T

I

APPENDIX B. WORKSHOP REGISTRATION LIST

Table B-1 Workshop Reg	istration
------------------------	-----------

Name	Affiliation
Michael Adelizzi	PP&L Resources, Inc., Susquehanna Steam Electric Station
Loys Bedell	Entergy - River Bend Station
Biff Bradley	Nuclear Energy Institute
Robert Budnitz	Future Resources Associates Inc.
Ken Bych	PG&E Diablo Canyon
Kendall Byrd	First Energy Nuclear Operating Company, Davis-Besse Nuclear Power Plant
Allen Camp	Sandia National Laboratories
Bryan Carroll	Duke Power Co.
Mark Caruso	Nuclear Regulatory Commission (NRR/DSSA)
Pat Castleman	ECM/NJD
Richard Cathy	Southern Nuclear Plant Vogtle
Mark Cheok	Nuclear Regulatory Commission (NRR/DSSA)
Bob Christie	Performance Technology
Tsong-Lun Chu	Brookhaven National Laboratory
Fred Cietek	Millstone/NNECO
Nancy Closky	Westinghouse Electric Company
Mark Cunningham	Nuclear Regulatory Commission (DRAA/PRAB)
Nill Diaz	Nuclear Regulatory Commission (Commissioner)
Mary Drouin	Nuclear Regulatory Commission (DRAA/PRAB)
Leslie Collins	ABB CENP
Lester Ettlinger	Oxford Group and American Nuclear Society
Anees Farruk	Southern Nuclear
David Finnicum	ABB
Mark Flaherty	Rochester Gas & Electric/Ginna Station
Robin Franke	Baltimore Gas & Electric, Constilation Energy Corporation, Calvert Cliffs
Kim Green	NUS Information Services

JCN W6904

Name	Affiliation
Ching Guey	FPL/Nuclear Engineering
John H. Emmett	Pennsylvania Power & Light, Susquehanna Steam Electric Station
Jim Hawley	American Electric Power
Harry Heilmeier	Framatome Tech
Tony Hsia	Nuclear Regulatory Commission
Roger Huston	Licensing Support Services
Jeffrey Julius	Scientech, Inc.
Bill Ketchum	Wolf Creek Nuclear Operating Corporation
Kenneth Kiper	North Atlantic Energy Service Corporation
Tom King	Nuclear Regulatory Commission (DRAA)
Gregory Krueger	PECO Energy
John Lehner	Brookhaven National Laboratory
Stanley Levinson	Framatome Technologies
Clem Littleton	Pilgrim Nuclear Power Station, Boston Edison
Erasmia Lois	Nuclear Regulatory Commission (DRAA/PRAB)
Stan Maingi	Pennsylvania Bureau of Radiation Protection
Asimios Malliakos	Nuclear Regulatory Commission
Michael Markley	Nuclear Regulatory Commission (ACRS Staff)
Jonathan Mawsell	General Physics
Mark Melnicoff	Commonwealth. Edison Nuclear Engineering Services - Risk Management
William Mims, Jr.	Tennessee Valley Authority
Jeff Mitman	Electric Power Research Institute
Parviz Mojini	Southern California Edison (SCE)
Thomas Morgan	Scientech, Inc.
Craig Nierode	Northern States Power Company
Gareth Parry	Nuclear Regulatory Commission (NRR/DSSA)

Table B-1 Workshop Registration

LPSD Workshop Summary Report

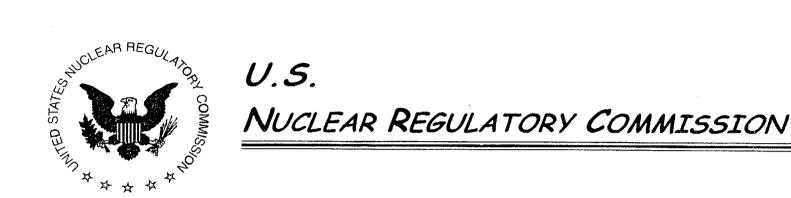

Name	Affiliation
Michael Phillips	Scientech, Inc.
Marie Pohida	Nuclear Regulatory Commission (DSSA/SPSB)
Steve Rosen	STP Nuclear Operating Company
Selim Sancaktar	Westinghouse Electric Company
Mohammed Schuabi	Nuclear Regulatory Commission (NRR/SRXB)
Leo Shanley	ERIN
Nathan Siu	Nuclear Regulatory Commission (DRAA/PRAB)
David Stellfox	McGraw Hill
Jeff Stone	Baltimore Gas & Electric, Constilation Energy Corporation, Calvert Cliffs
Theresa Sutter	Bechtel
Ashok Thadani	Nuclear Regulatory Commission (Director of the Office of Nuclear Regulatory Research)
Tatsuya Tamirami	Toloyo Electric Power Co. Inc., Washington Office
George Thomas	Nuclear Regulatory Commission (DSSA/SRXB)
Thomas Timmons	Westinghouse Electric Co.
Nick Trikouros	GPU Nuclear Corp.
Doug True	ERIN
Kenneth Tuley	Virginia Power
James Tunink	Ameren UE/Callaway
Donald Vanover	ERIN
L. Victory Jr.	Enertech Servus
Donald Wakefield	PLG/EQE
Timothy Wheeler	Sandia National Laboratories
Robert White	Consumers Energy
Donnie Whitehead	Sandia National Laboratories
Millard Wohl	Nuclear Regulatory Commission (NRR/SPSB)
Antonios Zoulis	New York Power Authority

Table B-1 Workshop Registration

JCN W6904

APPENDIX C. NRC PRESENTATION MATERIAL

.

NRC PUBLIC WORKSHOP ON LOW POWER SHUTDOWN RISK

Rockville, Maryland

April 27, 1999

24

Page 1 of 28

HISTORICAL PERSPECTIVES

Previous NRC studies and operational events indicate LPSD risk comparable to full-power risk

ACRS recommended to Commission research activities to gain a better understanding of LPSD risk

Commission direction

Page 2 of 28

NRC DEVELOPING A LPSD PROGRAM

Objective:

Develop an understanding of LPSD risk sufficient to support regulatory decision-making

(Risk defined as core damage frequency and large early release frequency)

Scope:

- Assess current LPSD information and identify risk significant concerns
- Perform research activities (e.g., methodology development), if needed, to further investigate or analyze these concerns
- Develop guidance for LPSD risk sufficient to support riskinformed decision-making
- □ Support development of LPSD consensus PRA standard

Page 3 of 28

OBJECTIVES OF WORKSHOP

Solicit and gather information to support staff LPSD program

□ Share results of previous and on-going LPSD

Identify LPSD information and methods needs sufficient for regulatory decision-making

Identify acceptable approach and structure for LPSD PRA consensus standard

Page 4 of 28

WORKSHOP AGENDA

7:45 am to 8:15 am	Introduction, NRC presentation
8:15 am to 10:15 am	Industry presentation (Westinghouse, Scientech, Seabrook, River Bend, South Texas)
10:15 am to 10:30 am	BREAK
10:30 am to 11:40am	Industry presentation (NEI and EPRI)
11:40 am to 1:00 pm	LUNCH
1:00 pm to 1:30 pm	General Discussion: Perspectives on LPSD results
1:30 pm to 2:00 pm	General Discussion: Perspectives on LPSD scope and level of detail
2:00 pm to 2:15 pm	BREAK
2:15 pm to 3:30 pm	General Discussion: Perspectives on LPSD methods
3:30 pm to 3:45 pm	BREAK
3:45 pm to 4:30 pm	General Discussion: Perspectives on LPSD standard
4:30 pm to 4:50 pm	General Discussion: Other issues
4:50 pm to 5:00 pm	Wrap-up

28

Page 5 of 28

Workshop Structure

- Morning presentations given without interruption, questions and comments will be held in afternoon discussion sessions
- Individuals are to speak at a microphone, state their name and affiliation
- Blank forms are available in each package and at each table for written comments
- All questions and comments, whether verbal or written will be summarized in public document
- Workshop agenda times will be enforced, therefore, questions, comments and discussions may be limited
- Blank registration form in package, please complete and turn in

Page 6 of 28

CURRENT UNDERSTANDING OF LPSD RISK

□ Risk comparable to full-power operation

Risk varies among plant operating states

Contributors can be significantly different than those at full-power

Instantaneous LPSD risk (per hour) can be higher than instantaneous full-power risk

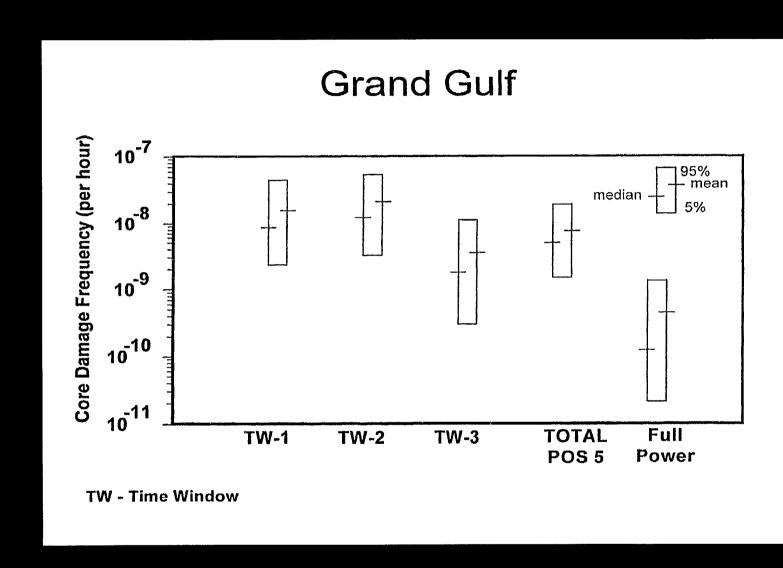
Based on NRC and international studies and operational experience

Page 7 of 28

RESULTS FROM NUREG-1150 AND LPSD STUDIES

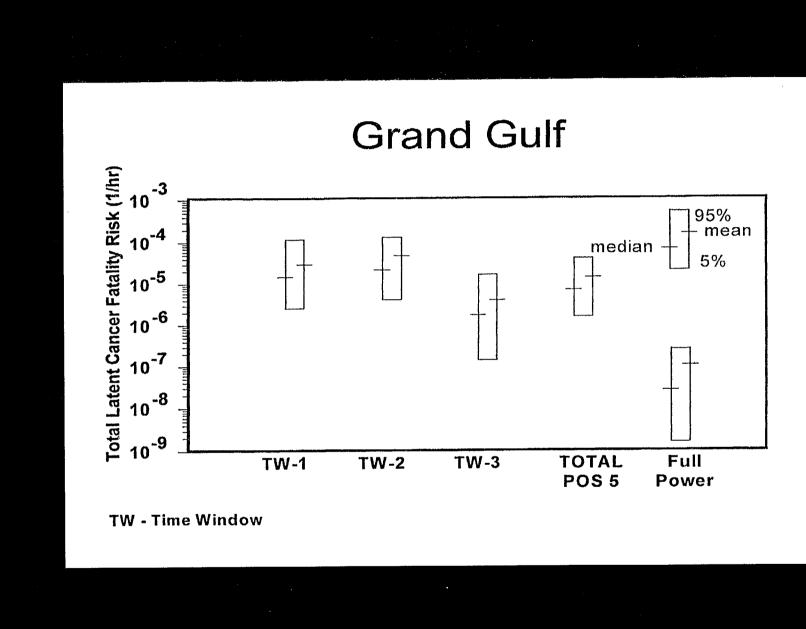
Distributions for Core damage frequency and aggregate risk for POS 5 and full-power operation for Grand Gulf

Analysis	Descriptive Statistics (All values are per calendar year) Percentiles					
	5th	50th	95th	 Mean		
	Core Damage Frequency					
POS 5	4.1×10 ⁻⁷	1.4×10 ⁻⁶	5.6×10 ⁻⁶	2.1×10 ⁻⁶		
Full Power	1.8×10 ⁻⁷	1.1×10 ⁻⁶	1.4×10 ⁻⁵	4.1×10 ⁻⁶		
	Early Fatality Risk					
POS 5	3.7×10 -11	2.8×10 ⁻⁹	3.9×10 ⁻⁸	1.4×10 ⁻⁸		
Full Power	2.5×10 ⁻¹²	6.1×10 ⁻¹⁰	2.6×10 ⁻⁸	8.2×10 -9		
	Total Latent Cancer Fatality Risk					
POS 5	4.3×10 ⁻⁴	1.9×10 ⁻³	1.2×10 ⁻²	3.8×10 ⁻³		
Full Power	1.4×10 ⁻⁵	2.4×10 ⁻⁴	2.3×10 ⁻³	9.5×10⁻⁴		


Page 8 of 28

RESULTS FROM NUREG-1150 AND LPSD STUDIES

Distributions for Core damage frequency and aggregate risk for mid-loop and full-power operation for Surry


Analysis	Descriptive Statistics (All values are per calendar year) Percentiles					
	5th	50th	95th	Mean		
	Core Damage Frequency					
Mid Loop	3,2×10 ⁻⁷	2.0×10 ⁻⁶	1.9×10 ⁻⁵	4.2×10 ⁻⁶		
Full Power	9.8×10 ⁻⁶	2.5×10 ⁻⁵	1.0×10 ⁻⁴	4.1×10 ⁻⁵		
		Early Fata	lity Risk			
Mid Loop	1.3×10 ⁻¹⁰	3.6×10 ⁻⁹	1.6×10 ⁻⁷	4.9×10 ⁻⁸		
Full Power	7.6×10 ⁻¹⁰	7.0×10 ⁻⁸	5.4×10 ⁻⁶	2.0×10 ⁻⁶		
	Total Latent Cancer Fatality Risk					
Mid Loop	8.0×10 ⁻⁴	5.3×10 ⁻³	5.5×10 ⁻²	1.6×10 ⁻²		
Full Power	3.1×10 ⁻⁴	2.2×10 ⁻³	1.9×10 ⁻²	5.2×10 ⁻³		

Page 9 of 28

Page 10 of 28

33

Page 11 of 28

JCN W6904

LPSD Workshop Summary Report

34

OPERATIONAL EVENTS

Wolf Creek (9/17/94) Drain Down Event (AEOD/S95-01)

- Inadvertent blowdown of about 9200 gallons of reactor coolant through RHR system to the refueling water storage tank.
- Involved concurrent manipulations of RHR valves while cooling down to begin a refueling outage.
- Terminated by operators before reactor hot leg uncovered and steam introduced into supply line for the ECCS pumps potential common cause failure

Cooper (NRC IR 50-298/98-08) Human Action Renders RHR Loop A Inoperable

 Review of maintenance activities fails to identify potential for causing both methods of RHR room cooling (room cooler and natural air circulation)

Page 12 of 28

OPERATIONAL EVENTS

□ Clinton (2/13/98) Loss of Shutdown Cooling (LER 461/98-003)

- Shutdown cooling isolated when a common line suction valve for the RHR system went shut.
- Valve closed due to a de-energization of the Division II Nuclear Systems Protection System (NSPS) bus.
- NSPS bus became de-energized because the inverter reverse transferred to the bypass transformer which was out of service for maintenance.
- Inverter reverse transferred due to the failure of a 12 volt power supply that

was being supplied by the Division II NSPS bus.

Washington Nuclear Plant - Unit 2 Flooding of ECCS (LER 397/98-011)

- A significant water hammer event in the fire protection system piping resulted in the catastrophic failure of fire protection valve.
- Water from the ruptured fire protection valve flooded the RHR C and LPCS rooms.
 - Water entered RHR C room through the water-tight door which had not been properly dogged closed.
 - A floor drain isolation valve failed to automatically close, providing a flow path from the RHR C room sump to the floor drains in the LPCS room. Water flowed through this pathway from the sump up through the drains in the LPSC pump room

Page 13 of 28

DIFFERENCES BETWEEN LPSD AND FULL-POWER

- Increased significance on human actions
- Greater reliance (dependency) on administrative procedures
- Open vessel and containment
- Varying configurations
- □ Mode (plant operational states) transitions

Page 14 of 28

Intentionally Left Blank

Page 15 of 28

IONS [NDUSTR) SENTA

LPSD Workshop Summary Report

JCN W6904

39

SION [SCI

40

JCN W6904

Page 16 of 28

PERSPECTIVES ON LPSD RESULTS

- What is the CDF and LERF range for LPSD conditions?
- What are the dominant contributors to CDF and LERF?

Page 17 of 28

PERSPECTIVES ON LPSD RESULTS: PUBLISHED Q'S

- 1. Are LPSD core damage frequency (CDF) and large early release frequency (LERF) comparable to full power CDF and LERF?
- 2. Are the LPSD CDF and LERF contributors comparable to the contributors from full power?

Page 18 of 28

PERSPECTIVES ON LPSD RESULTS -INSIGHTS FROM INDUSTRY PRESENTATIONS

Core damage frequency
 CDF₁: "x" (hourly rate)
 CDF₂: x *y (hours in a year)
 CDF₃: x * y * f (fraction of time in configuration)

- □ CDF₃ from LPSD can be significant and of the same order of magnitude
- \Box To support RG 1.174, need CDF₃
- \Box What is appropriate release metric?
- LPSD dominated by configurations with short boil-off times (LOCAs and drain-down events?)

Page 19 of 28

PERSPECTIVES ON LPSD SCOPE & LEVEL OF DETAIL

Should fuel handling and storage be included?

□ Include all plant operating states?

□ Include transitions between states?

Should the level of detail be comparable to fullpower (e.g., same level of rigor)?

Page 20 of 28

PERSPECTIVES ON LPSD SCOPE & LEVEL OF DETAIL: PUBLISHED Q'S

- 4. Should the scope of LPSD analyses include fuel handling and storage, e.g., full core offloading?
- 6. Is the CDF and LERF associated with the transition from one operational state to another important?

Page 21 of 28

PERSPECTIVES ON LPSD SCOPE & LEVEL-OF-DETAIL -INSIGHTS FROM INDUSTRY PRESENTATIONS

- Include forced/unplanned outages, fuel handling and storage
- Transitional risk: a "dynamic" type of tool required?
- If internal flood, fire, seismic important at fullpower, potentially important at LPSD
- Level of detail similar to full-power

Page 22 of 28

PERSPECTIVES ON LPSD METHODS

What available methods are appropriate?

- What scope and level of detail does the method address?
- What are the key assumptions used in the method?

□ What improvements or research are needed?

- Methods for modeling PRA elements?
- Tools and software needed to analyze models?

Page 23 of 28

PERSPECTIVES ON LPSD METHODS: PUBLISHED Q'S

- 1. (Are LPSD CDF and LERF comparable to full power CDF and LERF?) What methods and assumptions should be used to answer this question?
- 2. (Are the LPSD CDF and LERF contributors comparable to the contributors from full power?) What methods and assumptions should be used to answer this question?
- 3. How many plant operational states (POS) are needed to adequately represent the risk associated with LPSD operations?
- 4. (Should the scope of LPSD analyses include fuel handling and storage, e.g., full core offloading?) What methods and assumptions should be used to answer this question?
- 5. Is there a sufficient technical basis (knowledge of core melt phenomena, source terms, varying containment configurations, etc.) available to support LERF analysis for LPSD? If not, what issues require additional study? If a sufficient technical basis exists, what information sources can be cited to support the assertion?
- 6. (Is the CDF and LERF associated with the transition from one operational state to another important?) What methods and assumptions should be used to answer this question?
- 13. Can NUREG/CR-6595 be used to calculate LERF for LPSD conditions? If not, what additional guidance should be added to the report to support LERF calculations for LPSD conditions?
- 14. Are average equipment unavailabilities during LPSD conditions (resulting in average CDF and LERF estimates) sufficient to support risk-informed decision-making?
- 15. Is the following definition of an initiating event during LPSD adequate: "An event that causes loss of the function(s) necessary to maintain the plant in its existing operating state?" If not, then what changes should be made to enhance the definition?
- 16. Are there generic data sources for the identification and quantification of LPSD initiating events? If so, are the data sources publicly available? Are these generic data sources consistent?
- 17. Do certain LPSD operational states have the potential to have more human failures than full power operation? If event trees and fault trees are used to model the response of a plant to LPSD initiating events, where is the more appropriate place to model these human failures? What is the basis for this choice?
- 18. What improvements are required to ensure an adequate representation of human actions during LPSD conditions
- 19. What are the important uncertainties (parameter, model, and completeness) that should be considered in LPSD analyses? How should these uncertainties be evaluated in LPSD analyses?

Page 24 of 28

PERSPECTIVES ON LPSD METHODS -

INSIGHTS FROM INDUSTRY PRESENTATIONS

- Using traditional PRA methods
- □ What are the key assumptions?
 - Defining POSs
 - Identifying IEs
 - Defining success criteria, etc.
- What codes/methods should be used?
 - Success criteria
 - HRA
- 🖵 Data
 - FTS/FTR same as full-power
 - Unavailabilities need to be plant-specific, use running averages
- □ Research/improvement needs
 - Methods for simplified uncertainty
 - Release metric
 - Code enhancements and additional analyses

PERSPECTIVES ON LPSD STANDARD

What should be the scope and structure of the standard?

□ What are the appropriate risk metrics?

What method(s) should be endorsed by the standard?

50

Page 26 of 28

PERSPECTIVES ON LPSD STANDARD: PUBLISHED Q'S

- 7. Is a traditional PRA approach needed to provide an understanding of LPSD for risk-informed regulatory decision-making? If not, what other approaches are available? What are their strengths and limitations?
- 9. Draft NUREG-1602 provides reference material on the scope and quality of a LPSD PRA. Is the information in this draft complete and correct? Is it useful as reference material in making assessments on an application specific basis on the scope and quality of a LPSD risk assessment to support that particular application? How could it be improved?
- 10. Would draft NUREG-1602 be useful as a starting point to develop a standard on LPSD PRA? What would be needed? Should it specify acceptable LPSD PRA methods?
- 11. Given the lack of experience in performing LPSD PRAs, should a standard for LPSD PRA provide both (1) requirements for what activities should be performed and (2) detailed information/instructions on how those activities should be performed?
- 12. Is LERF an appropriate metric for meeting the Safety Goal Policy Statement for all POS? If not, what metrics should be used? For example, should there be a metric on long term release frequency to supplement LERF? What should it be based upon?

Page 27 of 28

PERSPECTIVES ON LPSD STANDARD -INSIGHTS FROM INDUSTRY PRESENTATIONS

LPSD Standard should be similar to Full Power Standard.

Level 2 risk metrics need additional study.

Available methods provide a starting point for a standard, but are not currently sufficient.

Page 28 of 28

APPENDIX D. PRESENTATION MATERIAL OF PUBLIC PRESENTATIONS

WESTINGHOUSE EXPERIENCE AND INSIGHTS FROM

SHUTDOWN RISK PROJECTS PERFORMED

PREPARED FOR PRESENTATION AT THE NRC

SHUTDOWN RISK WORKSHOP

ON APRIL 27 1999

PRESENTED BY

SELIM SANCAKTAR

RELIABILITY AND RISK ASSESSMENT SERVICES WESTINGHOUSE ELECTRIC COMPANY LLC

1

Sdrisk.doc

OUTLINE

CONTRIBUTION TO ORAM 1992 - 1994

AP600 SHUTDOWN PRA 1990 - 1997

2

V.C. SUMMER SHUTDOWN PRA 1998

DETERMINISTIC ANALYSES

PSA SURVEY RESULTS

INSIGHTS

QUESTIONS

Sdrisk.doc

JCN W6904

CONTRIBUTION TO ORAM

Westinghouse developed the generic ORAM model (based on Zion) and its application to the Diablo Canyon.

The generic ORAM model for PWRs is documented by the following reports prepared by Westinghouse:

- 1. Survey of PWR Plant Personnel on Shutdown Safety Practices..., March 1992, NSAC-174
- 2. Safety Assessment of PWR Risk During Shutdown Operations, August 1992, NSAC-176L
- 3. Risk of PWR Inadvertent Criticality During Shutdown and Refueling, December 1992, NSAC-183
- 4. Generic Outage Risk management Guidelines for PWRs, December 1993, EPRI TR-102970
- 5. Reflux Cooling: Application to decay Heat Removal During Shutdown Operations, March 1994, EPRI TR-102972

The Diablo Canyon application is documented in the following reports:

3

- 1. Safety Assessment of Diablo Canyon Risks During Shutdown Operations, June 1993, NSAC-195L
- Contingency Strategies for Diablo Canyon During Potential Shutdown Operation Events, December 1993, EPRI TR-102969
- 3. Outage Risk management Guidelines for Diablo Canyon During Shutdown Operations, December 1993, EPRI TR-102981

Sdrisk.doc

CONTRIBUTION TO ORAM

ORAM program took the shutdown accident sequences to "BOIL" endstates, as well as CD endstates.

ORAM provided thermo hydraulic analyses for shutdown states in

thermal margin

inventory margin

to provide success criteria.

Twelve outage practice changes are attributable to the results of the original ORAM application.

4

Sdrisk.doc

AP600 SHUTDOWN PRA

For the AP600 design approval process, the NRC requested the performance of a Shutdown PRA, in addition to the power operation PRA.

The shutdown PRA was performed to be consistent with the at-power PRA and it calculated plant LERF as well as plant CDF.

The CDF frequency at shutdown and low power operations is less than one-third of the CDF from at-power events.

The LERF frequency at shutdown is about 25 % of the shutdown CDF.

63% of the early impaired containment frequency comes from events that bypass the containment (such as pre-existing containment opening during the event). The largest contributor to the early impaired containment state is an open equipment hatch, which cannot be quickly and easily closed.

In-containment refueling water storage tank has a high risk increase worth, which indicates that it is a valuable asset in keeping CDF low.

RHR pumps and EDGs rank high in risk decrease importances.

The majority (85%) of shutdown CDF risk still comes from events during RCS drained conditions.

Sdrisk.doc

5

V.C. SUMMER SHUTDOWN PRA MODEL

V.C. SUMMER has chosen to create a shutdown model compatible with and complementing the existing at-power PRA model, which is currently being updated. The final version of both models are intended to be incorporated into an EOOS model which will provide a consistent method of monitoring risk as plant components/trains are taken out of service from different plant operating states.

The shutdown model is developed for a typical refueling outage and comprise 10 distinct plant operational states. Three undesirable end states are defined:

boiling

return to criticality

core damage

The shutdown model has been already generated and placed in EOOS format. The major insight from the preliminary results is that the plant is most vulnerable to events during reduced inventory (mid-loop) conditions. The goal is to develop the EOOS model with the at-power model being one plant state and the shutdown model comprising the other plant states for risk comparison and maintenance or outage optimization.

6

Currently, the models are being reviewed,

59

Sdrisk.doc

DETERMINISTIC ANALYSES FOR THE WESTINGHOUSE OWNERS GROUP AND INDIVIDUAL UTILITIES

Westinghouse has used WGOTHIC and other calculation tools to analyze various loss of RHR cooling scenarios during shutdown.

• WCAP-11916, 7/1988, "Loss of RHRS Cooling While the RCS is Partially Filled."

Abnormal Response Guideline ARG-1, Rev. 1, 6/6/1996 "Loss of RHR While Operating at Mid-Loop Conditions,"

WCAP-11916, ARG-1, and plant specific calculations were performed to determine times to boiling, times to core uncovery, and for provide procedure guidance to address Generic Letters 87-12 and subsequently 88-17, "Loss of Decay Heat Removal"

Abnormal Response Guideline ARG-2, Rev. 1, 9/30/1997 "Shutdown LOCA"

7

ARG-2 was issued to provide WOG utility members with procedure guidance for Mode 3 / 4 LOCA when some of the safeguards systems may be removed from service

- WCAP-15145, 2/1999, "Development and Testing of Generic Plant Models with the GOTHIC Computer Code for Analyses to Support Shutdown Operations"
- WCAP-14988, 4/1998, "Use of the GOTHIC Computer Code for Analyses to Support Shutdown Operations"
- WCAP-14089, Rev. 1, 1994, "Analyses to Develop a Basis for Surge Line Flooding Response to Support Shutdown Operations"

Sdrisk.doc

WCAP-14988 documents the generic models; WCAP-15145 updates the RHR, RCP, SG, and thermal conductor models and uses the latest version of GOTHIC (6.1P versus 5.0e)

WCAP-14988 and WCAP-14089, Rev. 1 models have been used to determine limiting pressures on temporary seals in the RCS, such as Steam Generator Nozzle Dams

Thus, more deterministic analysis capability is made available to support success criteria for shutdown risk models, and also to support outage optimization.

Sdrisk.doc

8

WESTINGHOUSE PWR PSA SURVEY RESULTS

FROM WOG RBT PRA SURVEY:

SHUTDOWN MODEL ?

NONE	11
ORAM	12
PRA MODEL	6
ORAM/PRA COMBINED	3
ORAM/SENTINEL	2
CAFTA/EOOS	2
Total	36

The utilities are already taking action, in different ways.

Sdrisk.doc

9

SOME ADDITIONAL INSIGHTS

During ORAM, an extensive set of deterministic analyses needed to be made. At shutdown, response to initiating events requires substantially more manual actions than during power operation. Thus, the time windows for operators to detect, diagnose, and act with an event become important and need to be determined by thermal-hydraulic analyses.

The time to boiling margin is an important parameter in determining periods of high vulnerability.

Plant shutdown risk is dominated by a few periods of high vulnerability. Risk management actions during these periods may be identified and implemented. Duration of these time periods may be minimized.

The twelve outage risk reduction improvements at Diablo Canyon did not lengthen the outage.

10

Postulated inadvertent losses of coolant while in Modes 5 and 6 (when the cavity is not flooded) dominate shutdown risk.

Some plants have taken to off-loading the entire core when any planned maintenance involving the RCS is scheduled to reduce perceived risk.

There is no doubt that shutdown risk assessment of some form has proven to be of practical value in understanding and reducing plant risk.

What then: see the questions next!

Sdrisk.doc

QUESTIONS

Can different ways of modeling shutdown risk assessment co-exist? Should they be encouraged to co-exist?

Should calculation of numerical goals (CDF, LERF) be required and compared with at-power values) ?

What is the scope ? (fire during shutdown; flooding during shutdown; seismic events during shutdown?)

Can one be going into a deeper abyss in human error modeling and calculations by getting into numerical measures in shutdown? Will this lead to prescriptive recovery procedures (EOPs and SAMG)?

How can one consolidate risk-informed applications requirements with the shutdown risk model and measure requirements?

Sdrisk.doc

11

CONCLUSIONS

Two important conclusions emerge:

- 1. Utilities already recognize the value of shutdown risk assessment and address in different ways that are most suitable for their needs.
- 2. Valuable and practical risk insights can be obtained for shutdown operations using different methods.

Sdrisk.doc

04/26/99

Intentionally Left Blank

I

Shutdown Risk Monitoring

Presented by Jeffrey A. Julius Thomas A. Morgan April 1999 SCIENTECH, Inc.

Collective Response to NRC Questions

- This response of the Safety Monitor Users Group represents the input of the 18 US plants that are members
- Cross-section of the US nuclear generating facilities.
- Includes 15 PWR, 3 BWR of varying plant type and vendor.

Safety Monitor[™] Users Group Members

- San Onofre Units 2 & 3 Surry Units 1 & 2
- Comanche Peak 1 & 2
- Wolf Creek
- Callaway
- Indian Point 2
- Perry

- Nine Mile Point 1 & 2
- North Anna Units 1 & 2
- Beaver Valley 1 & 2
- Point Beach Units 1 & 2

Shutdown PRA Experience

- In the United States:
 - San Onofre used Shutdown PRA since early '90s.
 - Ten PWR models built or in progress.
 - Two BWR models built or in progress.
- Internationally:
 - Borssele Shutdown PRA:
 - Internal and External events, Level 1 through 3.
 - Human Errors of Commission for Power and Shutdown.
 - IAEA Shutdown Methods development participation, 1992 & 1994.
 - IAEA Guidelines for Shutdown Risk Assessment.

Shutdown PRA Evolution

- Full scope international study & San Onofre models developed.
 - International study completed IAEA Peer Review.
- EPRI tailored collaboration project developed focused scope shutdown template based on.
 - International study & IAEA Shutdown Guidelines.
 - San Onofre Shutdown PRA.
 - Surry and Grand Gulf NUREGs.
- Independently reviewed.

Shutdown PRA Philosophy

- OPTIONAL Application, Used by plants to better manage risk during outages.
- Supplements Defense-In-Depth concepts of NUMARC 91-06.
- Provide additional insights regarding:
 - Alignments and Components.
 - Contingencies or Functional Alternatives.
- May Support Current Licensing Basis changes.
 - e.g. San Onofre DG Allowed Outage Times.

Shutdown PRA Model Scope

- Models All Modes, All Outage Types:
 - Reactor Coolant System & Fuel Pool.
 - Continuous timeline through all shutdown states.
- Endpoints:
 - Core Damage for All plant states.
 - Boiling for Cold Shutdown Modes.
- Dependencies: Functional, Human, & Time.
- Component Level of Detail.
- Consistent with Full Power PRA.
- An Integrated Model.

Shutdown PRA Model Design

- Boundary Conditions and Assumptions are Important to Results.
- Typical PRA Quantification Process Followed.
- Integrated Model Concept Employed:
 - One set of Fault Trees for Full Power and Shutdown
 - Three sets of PWR Event Trees Power, RHR, Fuel Pool
- Shutdown-specific Data primarily Initiator and HEPs.
- Quantification conducted in a Top Logic Model.

Shutdown PRA vs. PRA Model

Shutdown PRA

- "Backward"-looking.
- IPE-like:
 - Average configuration.
- - Duration of states.
 - Time since shutdown.
 - Test and Maintenance.
- More expensive, wide variations in data.

Shutdown PRA Model

- "Forward"-looking tool.
- Config. Risk Management: - Specific outage configs.
- Data developed by PRA: Data provided by Schedule:
 - Duration of states.
 - Time since shutdown.
 - Test and Maintenance.
 - Minimize cost, better insights to outage managers.

Summary Response to Questions

- Shutdown CDF:
 - Less, but comparable to, Full Power PRA.
 - Comparability depends on:
 - Consistency in methods, level of detail, & dependencies.
 - Dimensions (per year vs. per hour or per POS).
 - Instantaneous Risk may by higher, but for short durations.

Summary Response Cont'd

- Shutdown LERF:
 - Idea of surrogate Level 3 measure applies during shutdown.
 - May require re-visiting the definition of LERF.
 - Better to monitor Containment status than model.
- Shutdown Standard:
 - Develop after Full Power Standard benefits are realized.
- NUREG-1602:
 - "Cadillac" method, heavy on data development.

Summary Response Cont'd Human Reliability Analysis: Full Power HRA methods apply. Methods have difficulty with very long time windows (beyond 24 hours) with 2 ways to treat. Apply additional recovery beyond "floor" limits. Truncate sequences rather than defend very low HEPs. Errors of Commission:

- Same treatment as in Full Power.
- Primarily included in Initiating Events.

Overall Conclusions

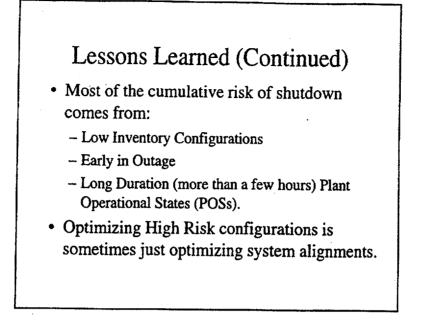
- Defense in Depth approach of NUMARC 91-06 provides sufficient safety margin for the current plants.
- Shutdown PRA should remain as an optional tool:
 - For outage risk management.
 - If desired to support Risk-Informed Regulatory submittals.

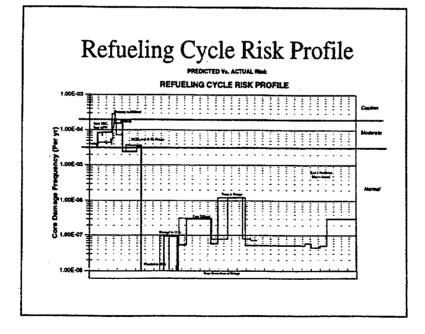
Application of Shutdown Models - Practical Examples

• Let's look at how an existing shutdown model is being used, in conjunction with existing Defense in Depth methods.

Shutdown PRA Experience at One Users Group Plant

- Shutdown PRA Used Since Early 1990's
 - PRA Results supplement Defense-in-Depth methods used by Outage Planners.
- Shutdown Safety Monitor Models developed in the last two years.
 - Used in a similar manner as Shutdown PRA, except:
 - More detailed schedules now analyzed
 - Models include more system alignment selections.


and the second	DEFENSE IN DEPTH PLANNING SHEET owner the present of the states		
SHUTDOWN SAFETY FUNCTIONS	PEAPETY FUNCTION OFFICE A CONSTRUCT	PREFILMENT PLAN	OTHER CONTINUENCY PLAIL PMPP or COMMENTE
Reactivity Cantral (Coro)	Lan A Danay Alater semiating with the anticenteral Rep Web, SCH and Aug, and anyon RC2 hours any 24 km. <u>International Contents</u> CONT and June 2000 from, an an ACD kmp with SCC Ten	Land Barra Andrea andrea gorf Anna Laternanden Maria Statu and ang	This Harry Annals
Electric Power Availability	Association for Eqs. A detected ACOC Datas, Spectrations of participate, Data control laser containing generative structures, New A. Effects completel, with respect AC analysis, 200 address and the <u>hyper Lines</u> Datas	Angenetana de Sant (angele ACMC Banes, transmus est exploret Ché, entre l'and entretag ant partis sanchana. Fait à l'a l'angenetation est partis sanchana. Fait à l'a l'angele angele all'angeles AC angeles hangeles annos part	BETER - Constraint of AC Property Supervised Rest Acar (Ranno anapplying Load) M Panama
Inventory Central [Cere]	Marti 17100, alle Margan Marga Salt Mart De Sant AMB Ann. Propert der geför att den rekna 5300 AMB MBC, för Log og vede AMART AMB and Train State Log bejorden veden.	Chill also as dan. Magan July: 1997 in a Yakabatta Panga Raspinal dialog RC: antalisor manga BAT AND Sidi, Mari Lag al sain Alabath And ang Titaka S Cali Lag Japanga watera.	NATO IN AVAILABLE SAL
Dacey Heat Removed {Care}	CET of a mean of 10 days is to Const Aust 100 line on any Park A statement requirement EC days standards to Const Australia (days). 195 link A	in dense, CPC and maker of U damp in Sand Party 201 her admire find (strategy any new of 000 her balance) in Gand Harry C Minden, 201 hand	Serten andere Constant
Centelament Cleave Gerand	Constructed Locardon Disa Spinn. Chen Construct quality or que postations la const / XC of IC poor anté y autointe della const d'altée pour rela autoin autoin.	Conservations del construint del 39, Reindrig Group e alter unit propo ar appropriate fondares. Cant Containent apollage ar apia productiva la progesi palmo alma.	fanten finde provi han die Fritze General Channes General en RE stands such plat. Teol Chi weiste bespillt.
Reactivity Control (BPP)	99 Land H. Anna. <u>Angl Juli Tamang</u> 1990 ta 197 Malang Tang 1991 (1980) <u>t</u> a ta 197.	Martin maniper Offices. Internet Statements of the Offices of Statement Statements of the Office Statement State	
Inventory Control (WFP)	99 Lond Ville State Sche Cyner Mann. <u>Manne Fall</u> : 2007 is 99 Millions Prop 7011 (10107) is die 597.	Ling half warrang of 20° land out har sping. <u>Name Ing</u> , 1987, dant is the spins of the 10° (uning Pains 1986 or 1° (a), have a base day spins to do 20°.	
Docey Heat Ramovel (8PP)	97 wrynwan 16, fedradau swynwan 16 7 padadau 5 5 paraeg 5 97 pro dafang paraech y rforman dafan 5 fe fan dafan 1 gan 6 7 february fyw 1985 5 war anteger yn wrannwr Gfriffith. 1 gan 6 7	Rafy hard contacting of SP Staymonds, para and have an adverger primary, hash & SP Coding Paras (196), 4 hard and argument of summary CC/MBHC.	97 Janp has digt


Shutdown Safety Monitor Models

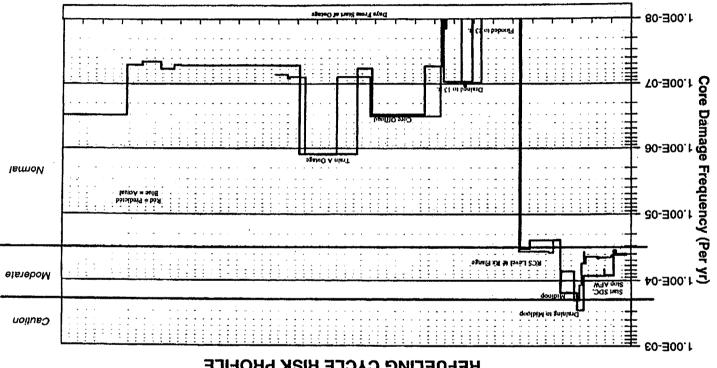
- Transition Risk Model (Modes 2-4, SDC).
- Modes 5-6, Fuel Pool:
 - Loss of SDC IE Fault Tree includes loss of support systems
 - Loss of Offsite Power (Plant/grid) & SBO
 - Loss of Inventory
 - Loss of Fuel Pool Cooling IE Fault Tree.
- Models contain similar detail as Level I.

Lessons Learned

- Outage Risk is on the order of Level I Risk (1E-05/year contribution to cumulative risk)
 - High Risk Evolutions have a higher instantaneous risk than level I, which are offset by low duration.
 - Most of the outage is spent in very low risk configurations.
- Most Equipment OOS occurs during low risk configurations.

Recent Shutdown PRA Uses

- Shutdown Safety Monitor used for recent Risk-Informed IST Project.
 - Developed an "Average" Component Importance based upon a typical schedule.
- DG Allowed Outage Time Tech Spec Change
 - Compared risk of DG Outage at Full Power vs. Shutdown

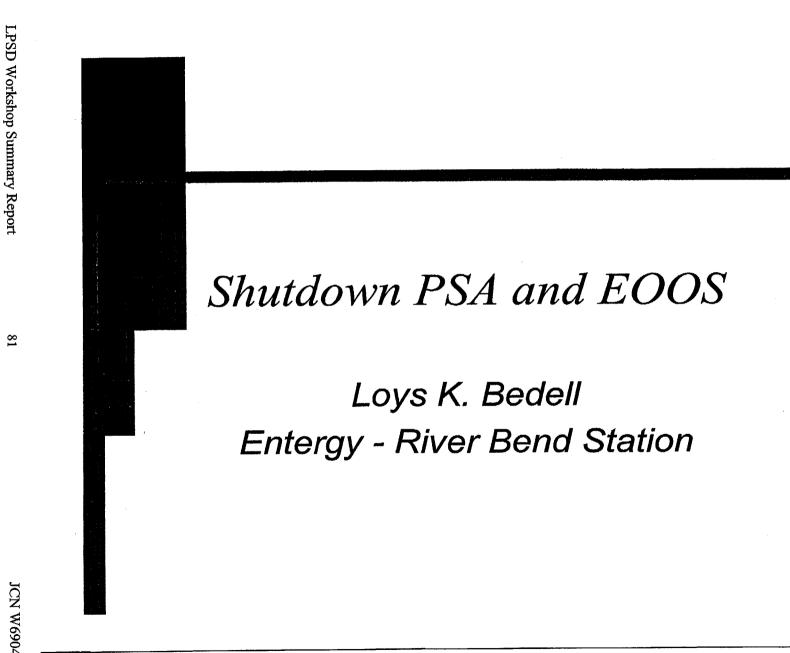

Insights from Practical Applications

- Any shutdown PRA efforts should concentrate on High Risk POSs.
- Equipment Availability, risk optimization, etc. may not be important if the plant does not perform major equipment OOS during High Risk Evolutions.

Refueling Cycle Risk Profile

PREDICTED Vs. ACTUAL Risk

REFUELING CYCLE RISK PROFILE



SHUTDOWN SAFETY	^{III} SAFETY FUNCTION	ence Drain to Micloop To Pressurizer Manway Installed	
FUNCTIONS	METHOD A (Verified Shifty)	METHOD B (Verified Shifty)	OTHER CONTINGENCY PLAN, FISFPP or COMMENTS
Reactivity Control (Core) Electric Power	Train A Boron dilution monitoring and elerm instrumentation; Verify SDM each day, and sample RCS boron every 24 hrs. <u>Boric Actd Flowpath</u> : RWST to a Train A HPSI Pump, to an RCS loop with SDC flow.	Train B Boron dilution monitoring and alarm instrumentation; Verify SDM each day, and sample RCS boron every 24 hrs. Boric Add Flowpath: RWST to a Train B HPSI Pump, to an RCS loop with SDC flow.	SEPP: / Isol, of Boron Ditution Flowpeths. <u>PRA Recommendation for RIC</u> Meintein eff Cherging Pumps available.
Availability	Annuncietors for Train A electrical AC/DC Buses, transformers and switchyard, Delly control board monitoring and weekly surveillance. Train A 1E buses energized, with required AC available from offsite sources and the <u>SAME Units Diesel</u> .	Annunciators for Train B electrical AC/DC Buses, transformers and switchyard, Daily control board monitoring and weetly surveillance. Train B 1E buses energized, with required AC available from offsite sources and the <u>SAME Units Dieset</u> .	SF/PP: Control of AC Power Sources Res Aux Xfmrs supplying both 1E busses
Inventory Control (Core)	RWLI, LT 1520, with a Hillo alerm. <u>Makeup Path</u> : RWST to a Train A HPSI Pump. Required during RIC; miniflow valves 9309 AND 9307, Hot Leg Inj valve HV9420 AND any 2 Train A Cold Leg Injection valves.	DLMS with an elem. <u>Mekeup Paih</u> : RWST to a Train 8 HPSI Pump. Required during RIC: miniflow valves 8347 AND 8348, Hot Leg Inj valve HV9434 AND any 2 Train B Cold Leg Injection valves.	HJTC M (21"NR) sterm set. (During SLF conditions only use HJTC for level indication.)
Decay Heat Removal (Core)	CET with readout and HI alarm in the Control Room, SDC heat exchanger Train A infer/outlist temperature and SDC flow indication in the Control Room with HMLs alarm. SDC Train A.	An alternate CET with readout and Hill alerm in the Control Room; SDC heat exchanger Train B Interfourtet temperature and SDC flow indication in the Control Room with HVLo alerm. SDC Train B.	SFPP; RCS Perturbation Control. <u>PRA Recommendation for RtC:</u> Maintain ability to align CS Pp to SDC within 40min; 2 rd Train of CCW/SWC in operation.
Containment Closure Control	Containment Evacuation Siren Bystern. Close Containment openings or open penetrations by use of AC or DC power which is available during a loss of offsile power or by manual actions.	Communication link established with HP, Refueling Group or other work groups as appropriate for closure. Close Containment openings or open penetrations by manual actions alone.	Equipmi Hatch power from 804 <u>SEPP:</u> Cnimmt Closure Control: use <u>RIC</u> sheets during RIC. Two ECUs systable during RIC.
Reactivity Control (SFP)	SFP Level HI Alem. <u>Bods Acid Flowpeth</u> : RWST to SFP Mekeup Pump P011 (ACMBF), to the SFP.	Weekly sampling of BFP boron. <u>Borle Acki Flowpath:</u> RWST to the suction of the SFP Cooling Pump P009 or P010, to the SFP.	and a second second real real second re
Inventory Control (SFP)	Makeyo Path: RWST to SFP Makeup Pump P011 (A03/8F), to the SFP.	Daily local monitoring of SFP lavel and liner leakage. <u>Makeup Path</u> : RWST, direct to the suction of the SFP Cooling Pump P009 or P010, through the cooling system to the SFP.	
Decay Heat Removal SFP)	SFP temperature HI, Purification temperature HI (if purification is in service) & SFP pump discharge pressure Lo or Overcurrent alerms in the Control Room. Train A SFP Cooling Pump P000, a heet exchanger and necessary CCW/SWC	Shifty local monitoring of SFP temperature, pump and heat exchanger performance. Train B SFP Cooling Pump P010, a heat exchanger and necessary CCW/SWC support.	SFP Healup Rate <3F.Hr. Inteke is devositaned,

A SFFP method consists of a "monitoring and detection" item (numerical) in addition to a compatible "control" item (alphabetical) from the methods menu,
 A SFPP is a means of protecting or minimizing the likelihood of losing a Shutdown Safety Function. Used during a HRE.

Intentionally Left Blank

1

81

JCN W6904

Purpose of RBS Shutdown PSA

Common Risk Assessment Tool for At-Power and Shutdown Operations Component Level Model More Flexible for Shorter Outages

Suppression Pool Cooling & Cleanup / ADHR System Added

Shutdown PSA End States

RCS Boiling

- Core Damage (includes SFP Damage)
- Fuel Pool Boiling

Other NSAC-175L End States

- LTOP RBS LOCA Initiator
- Promt Criticality Maintain SDM
- Exposed Bundles OPDRV Initiator /IFTS
- Containment Performance (Shutdown Level 2)

83

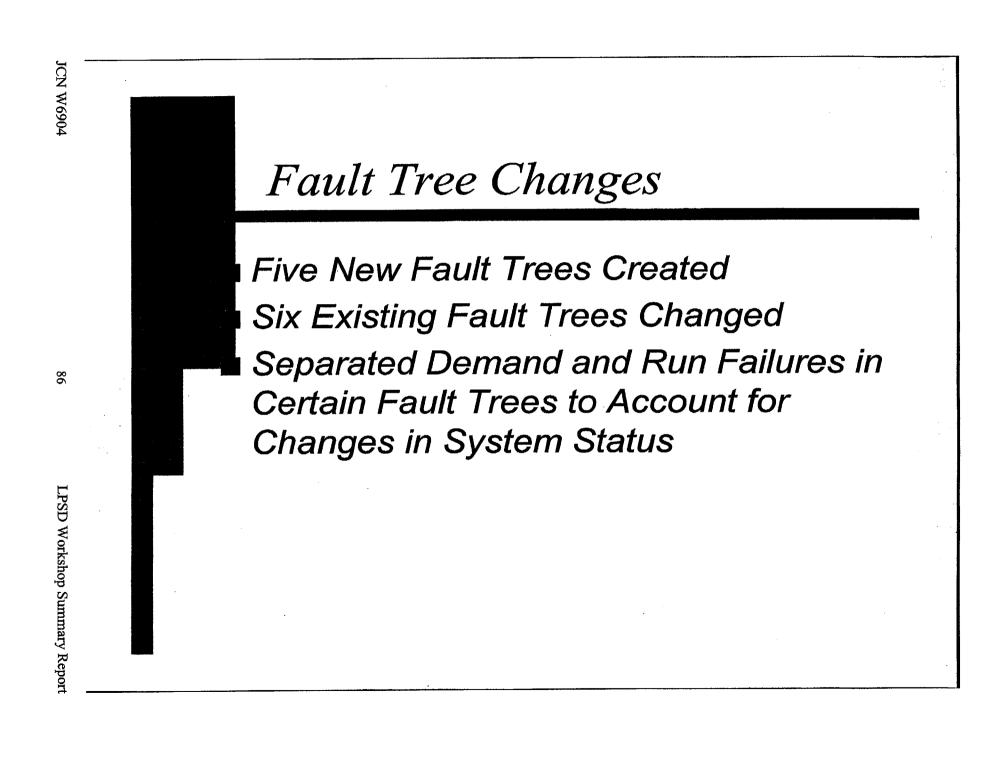
JCN W6904

Shutdown PSA Challenges

Initiating Events
 Success Criteria Changes
 Human Reliability Analysis
 Recovery Actions
 Defense-in Depth Modelling
 EOOS Development

Phased Mission Model

Plant Configuration Changes


- Systems Running
- Systems Out of Service
- Success Criteria Changes

Plant State Changes

- Decay Heat Level
- RPV Water Level
- Containment Status
- RBS had ~65 Flags to Handle ~62 Plant Configurations

85

JCN W6904

Shutdown PSA Quantification

No Baseline CDF or Boiling Risk Quantification Done for All Combinations of Flag Settings

- Sequence Quantification Done for Model Testing and Enhancement
- Schedule Quantification Done Through EOOS

Human Reliability Analysis

Procedure Applicability
 Limited Procedural Guidance
 Indications Available
 More Time Available (and Less Stress)
 Applicable HRA Methodologies

88

LPSD Workshop Summary Report

68

Operator Recovery Actions

Recovery of Off-site Power Recovery of Decay Heat Removal Recovery of Spent Fuel Pool Cooling Recovery from OPDRV/OPDRC Recovery Data from NSAC Documents

Decay Heat Level

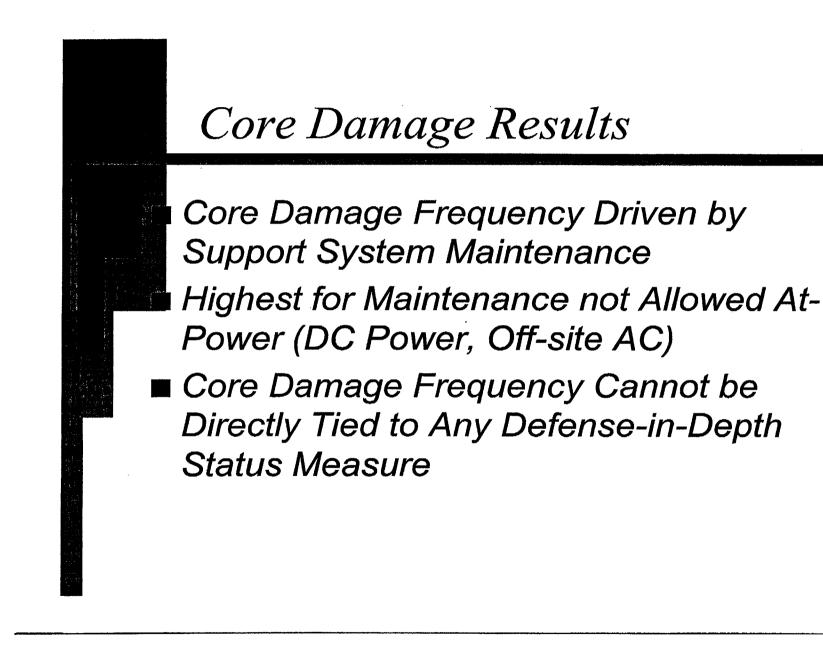
- High Decay Heat (Days 1-4)
- Medium Decay Heat (Days 5-18)
- Low Decay Heat (After Day 18)

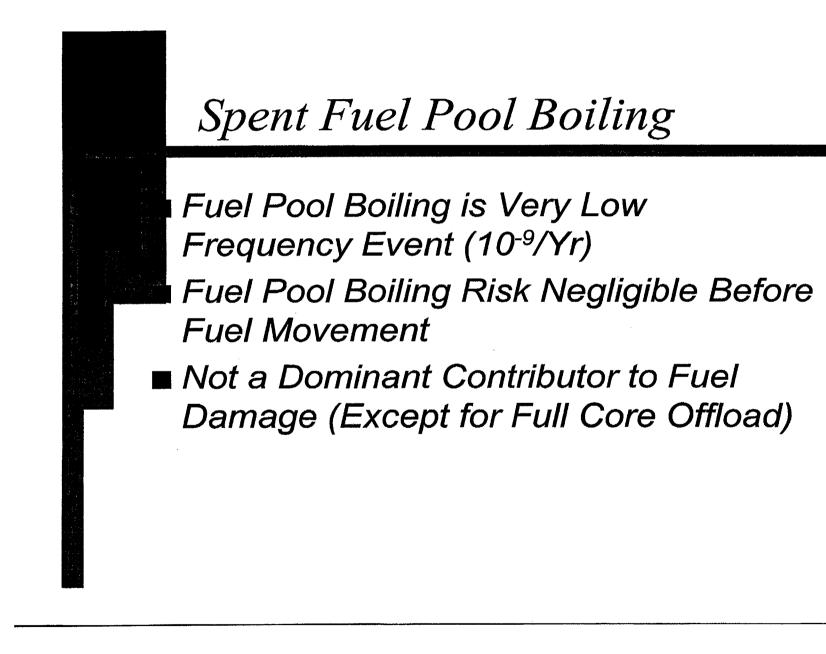
RPV Level

- Normal RPV Level
- RPV Level > 23 feet above Flange

16

Defense-In Depth Logic


SSFAT Logic not Well Documented Force Color Code with Fault Tree Develop Consistent Color Codes Based on Technical Specifications


- Green Exceed LCO Requirements
- Yellow Meet LCO Requirements
- Orange In LCO Action Statement
- Red Tech. Spec. Violation

RCS Boiling Frequency is High at the Beginning of the Outage (0.72/yr) RCS Boiling Frequency is High during RPV Hydrostatic Testing (0.7/yr)

High RCS Boiling Frequency Does Not Imply High Core Damage Frequency

Shutdown PSA Limitations Difficult to Perform Sensitivity and Uncertainty No Overall Importance Ranking Must Check Alignment before Performing SHEOOS Run ■ No Simple Results

95

JCN W6904

Results and Conclusions

Shutdown PSA is Viable, but much more Dynamic than At-Power PSA No Baseline Risk Number

- Shutdown Risk Driven By Schedule
- Human Reliability Analysis and Operator Recovery Important
- Defense-In Depth Does Not Imply Low Shutdown Risk

Results and Conclusions

Shutdown Risk Comparable to At-Power Risk

Cumulative Risk for 21 Day Outage Could Be as High as Yearly At-Power Risk

Limitations to Short Outages without Impacting Outage Risk

Can Be Physical Limitations for Short Outages

Results and Conclusions

Shorter Outage = Higher Average Risk, but possibly Lower Overall Outage Risk. Can Determine the Impact of Moving Activities from Outage to At-Power Can Reduce Overall Risk By Doing More On-Line Maintenance

PERSPECTIVE ON SHUTDOWN ISSUES AT STP

Presented to the Use of Low Power and Shutdown Risk in Regulatory Activities Public Workshop April 27, 1998

Steve Rosen, Department Manager Risk Management and Industry Relations

TOOLS IN USE AT STP

- ORAM/Sentinel Shutdown Model including Shutdown Safety Functions and Shutdown Probabilistic Safety Assessment
- Shutdown PRA Using RISKMAN
- Shutdown Risk Assessment Group and Shutdown Risk Assessment Procedure

SHUTDOWN RISK ASSESSMENT GROUP

Members Include:

- Operations Manager
- Shift Technical Advisor
- Risk and Reliability Analysis Member
- Nuclear Assurance
- Nuclear Licensing
- Outage Representative

SHUTDOWN RISK ASSESSMENT GROUP (continued)

Duties Include

- Review Level 2 Outage Schedule
- Prepare Report for Outage Support Manager and Plant Manager
- Report Addresses Shutdown Safety Issues - Mid-Loop, RCS Pressurization, Loss of Inventory, Loss of Cooling, Loss of Power, Containment Integrity, etc.

SHUTDOWN RISK ASSESSMENT

- Example of Compensatory Actions (Mid-Loop)
 - On-Site, Switchyard, etc.
 Electrical Work Minimized
 - RCB Containment Integrity Maintained During Mid-Loop
 - RHR Trains "Protected"
 - Extra Personnel Assigned

SHUTDOWN RISK PERSPECTIVES

- Risk At-Power and Risk During Refueling are Comparable (Same Order of Magnitude)
- Front-End Mid-Loop Contributes
 Approximately 15% of the Risk
 During Shutdown in 1% of the Total
 Refueling Hours

CONTAINMENT ISSUES

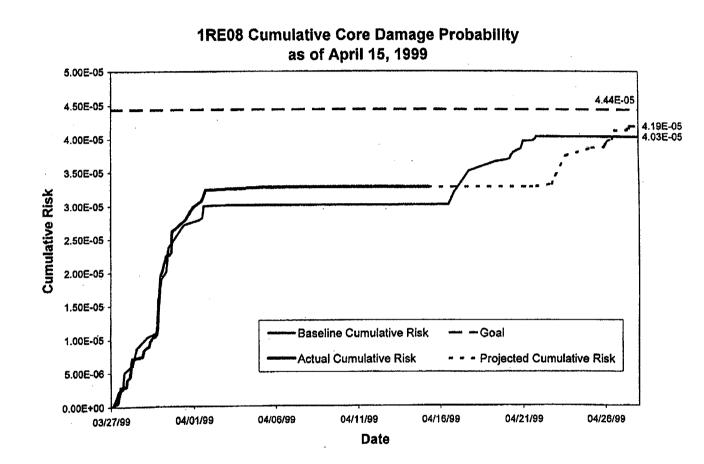
- Issue Raised Prior to Outage Concerning Early Mid-Loop, Reduced Inventory Operations, and Containment Status
- Containment Is Closed Prior to Entry into Reduced Inventory
- Training on Closure of Containment Equipment Hatch Performed

REVIEW OF PAST OUTAGES

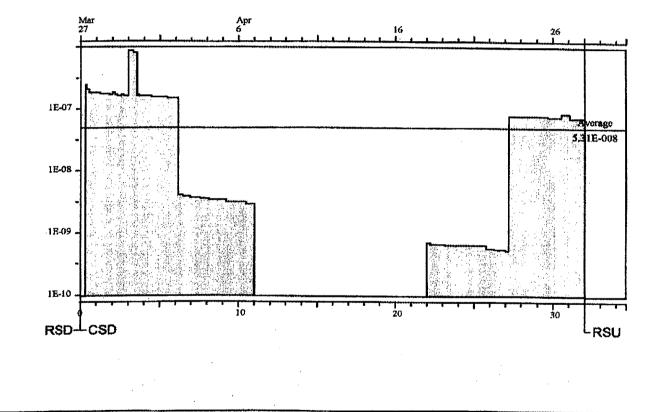
• The Risk per Hour for the Current Outage is Lower than the Risk from the Previous Two Outages. [Longer Length, No-Mode Longer]

• The Cumulative Core Damage Risk and Boiling Risk Are Comparable

COMPARISON

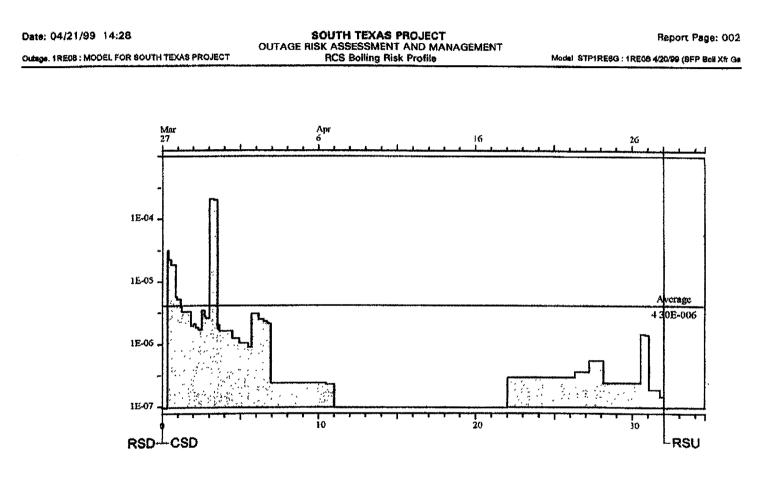

•	Outage Number	Duration (hours)	CD Risk (per hour)	CD Risk (Cumulative)	Boiling Risk (per hour)	Boiling Risk (Cumulative)
	*1RE08	*667	*6.3E-08	* 4.2E-05	* 4.0E-06	*2.7E-03
•	2RE06	464	8.7E-08	4.0E-05	5.9E-06	2.7E-03
٠	1RE07	482	8.2E-08	4.0E-05	7.0E-06	3.4E-03

Note Results Based on ORAM Calculation


* Estimated value prior to start of the current outage

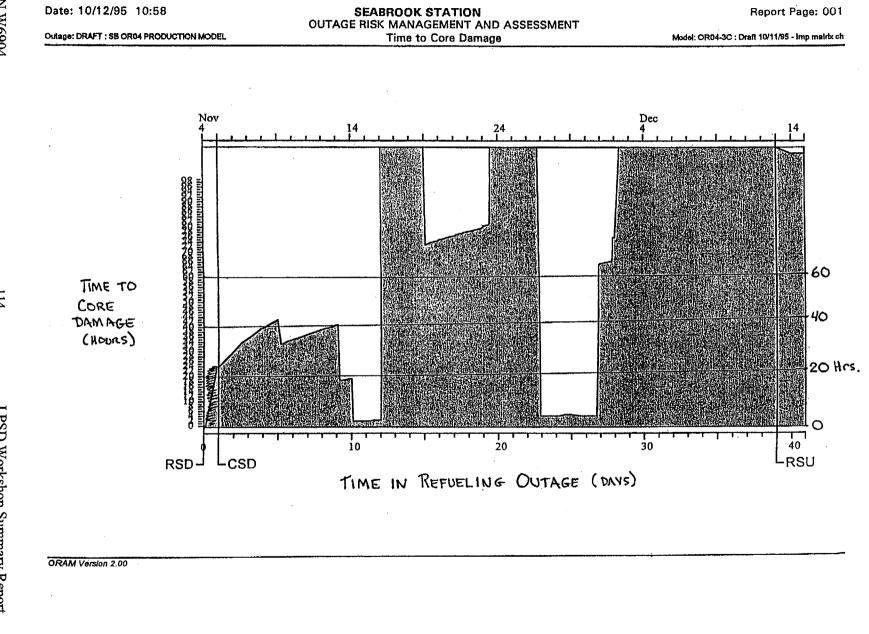
CONCLUSIONS FROM COMPARISON

- The Risk for the Current Refueling Outage is Comparable to the Risk Seen in Previous Outages
- Compensatory Measures (Including Mid-Loop Precautions] are Adequate to Protect the Health and Safety of the Public



JCN W6904

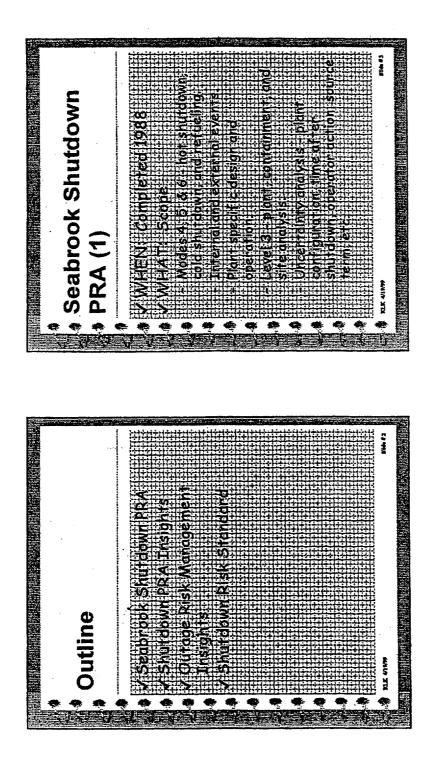
ORAM Version 2.10


LPSD Workshop Summary Report

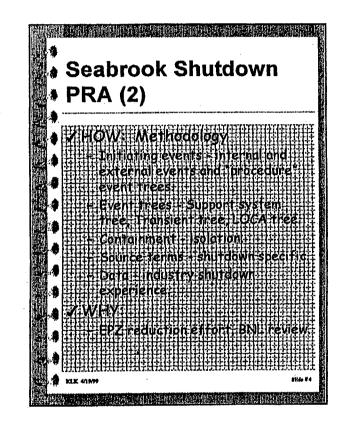
Intentionally Left Blank

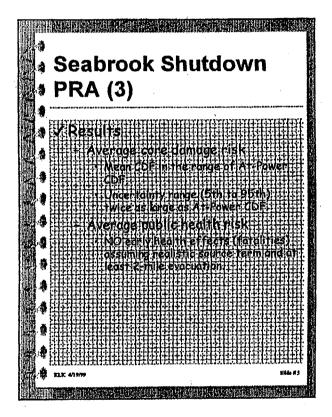
Shutdown Risk Assessment at Seabrook Station

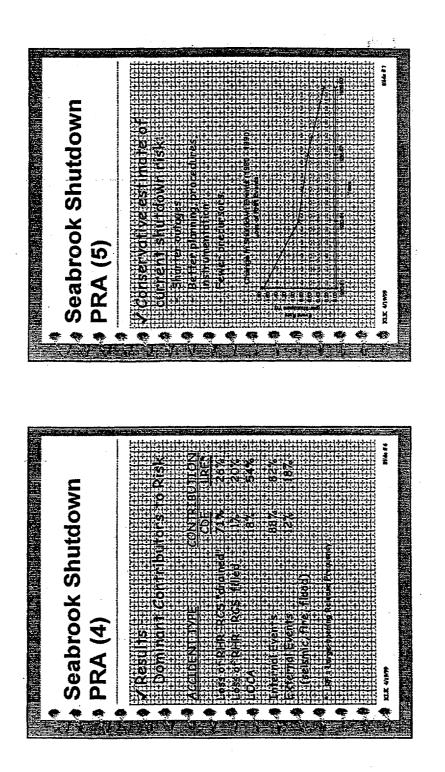
April 1999


Kenneth L. Kiper Seabrook Station North Atlantic Energy Service Co. Seabrook, NH

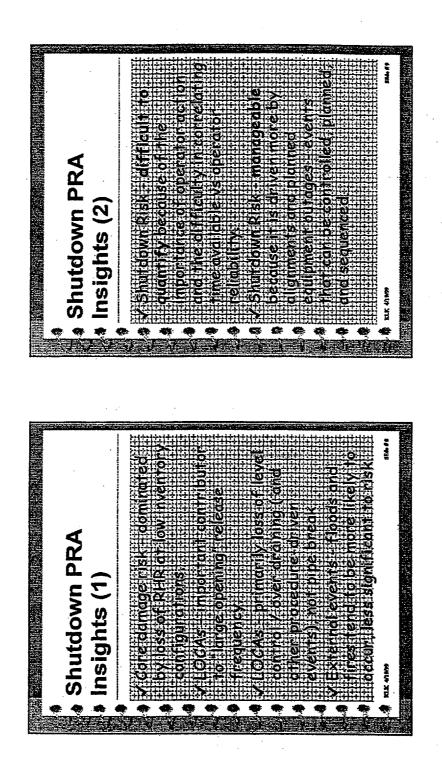
JCN W6904


114


LPSD Workshop Summary Report

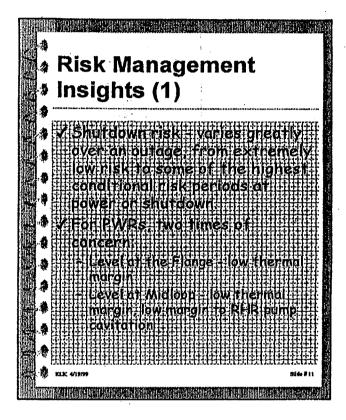

JCN W6904

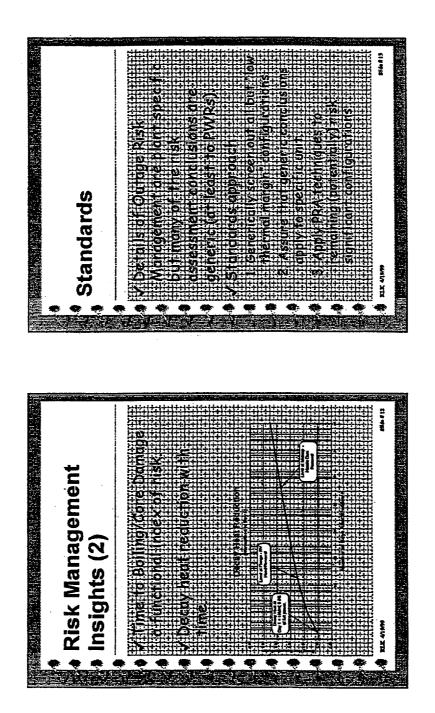
116



2


JCN W6904


3


LPSD Workshop Summary Report

119

5

Presented At: NRC Workshop on LPSD PSA April 27, 1999

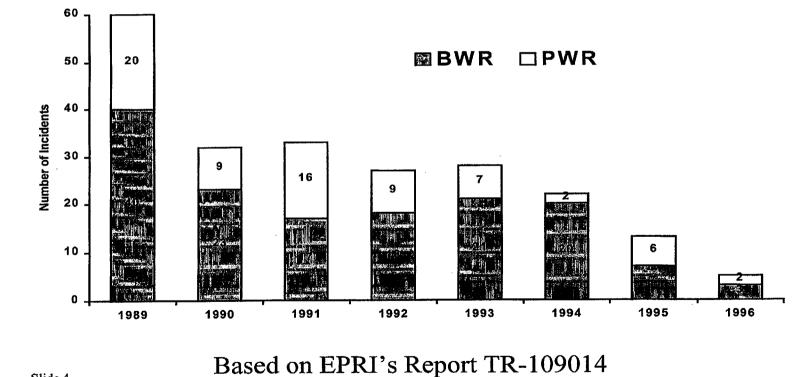
> Presented By: Jeff Mitman - EPRI

Doug True - ERIN Engineering & Research, Inc.

EPRI

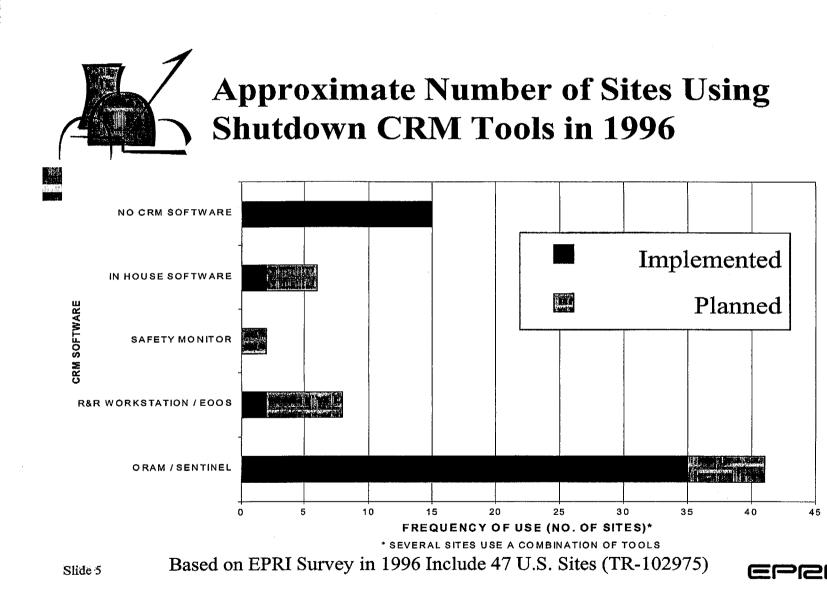
Chockie 3-99a.ppt 1

- Background
- ORAM Background
- Benchmarking of ORAM PSSA Models


- EPRI Resources
- BWR Shutdown Risk Profiles
- PWR Shutdown Risk Profiles
- General PSSA Insights
- Technology Assessment
- **Slide 2** Use of Shutdown PSA Results

JCN W6904

- NUMARC 91-06 Implemented in 1991
- Trend is Downwards Since then in Significant Shutdown Events
- U.S. Industry has Deployed Multiple CRM Tools to Help Ensure Shutdown Safety
 - EPRI's EOOS™
 - EPRI's ORAM[™] family
 - Scientech's Safety Monitor™


Shutdown Event Trends 1989 -- 1996

Slide 4

124

LPSD Workshop Summary Report

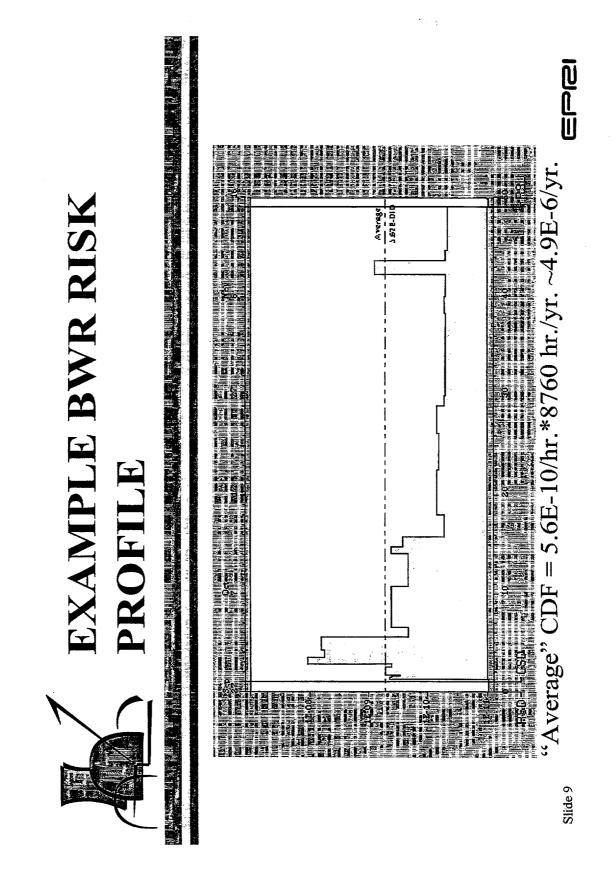
LPSD Workshop Summary Report

125

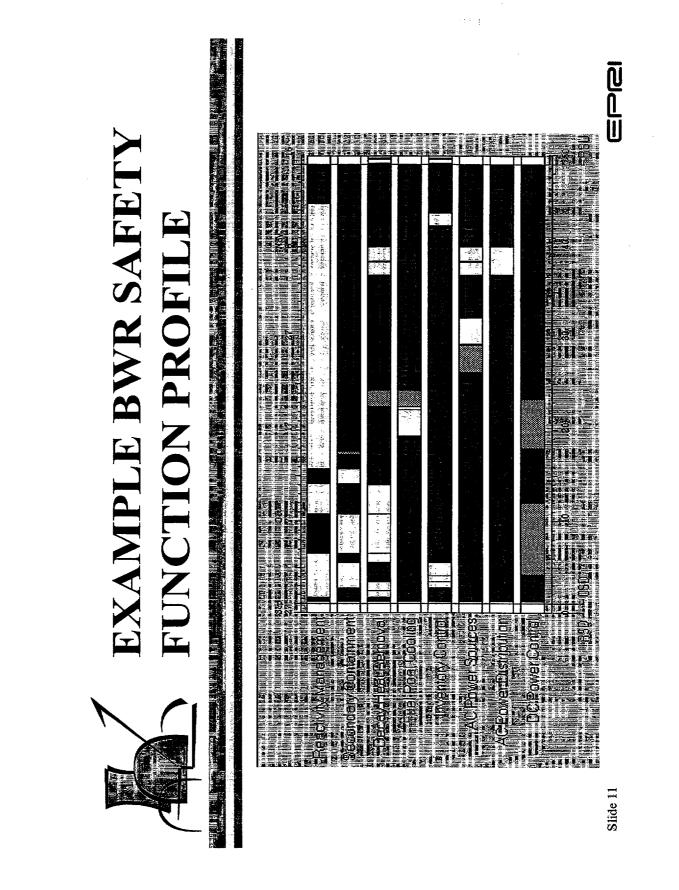
JCN W6904

- EPRI's ORAM PSSA Methodology Initiated in 1991
- Over 40 Unit PSSA Models Have Been
 Developed
- Span More Than 100 Refueling Outages
- Generally Include Both Core Boiling Risk and Core Damage Risk

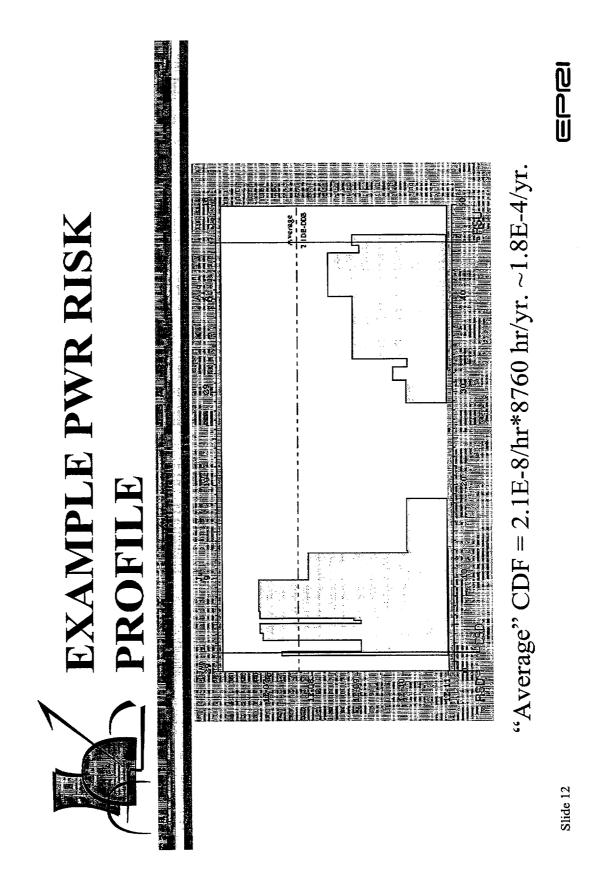
SI	id	e 6
-		


- Core Boiling Models Correlate Well With Industry Experience of Boiling Events
- Developed Both ORAM PSSA and a RISKMAN Shutdown PSA for STPEGS
 - Detailed Review of 11 POSs Identified Differences Due to Specific Modeling Assumptions
 - Once Assumptions Were Reconciled, PSSA & PSA Provided Comparable Results

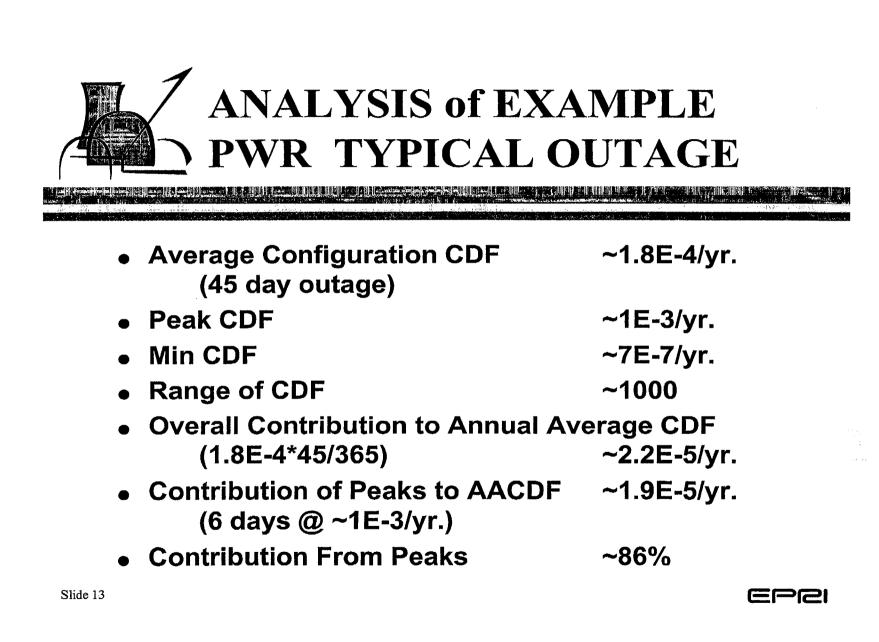
EPRI'S OUTAGE SAFETY RESOURCES


- Base PSSA Technology Reports (BWR & PWR)
- Over 20 Reports on Specific ORAM Applications
- Analysis of Loss of Decay Heat Removal Event Trends (TR-109014)
- EPRI's EOOS[™] Issued for Use (Enhancements Continue)
- ORAM-SENTINEL v3.3 to be Released Sept. 1999
 will Interface with Shutdown PSA

- ORAM V4.0 Under Development
- Scientech's Safety Monitor[™] Issued for Use (Current EPRI TC Applications In Process)

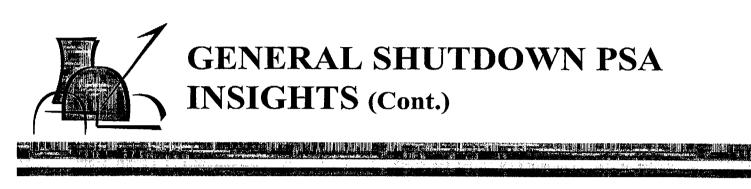


 Average Configuration CDF (48 day outage) 	~4.9E-6/yr.		
Peak CDF	~6.1E-5/yr.		
Min CDF	~4.4E-7/yr.		
CDF Max/Min Ratio	~140		
 Contribution to Annual Average CDF (4.9E-6*48/365) ~6.5E-7/y 			
 Contribution of Peaks to AA CDF (5 of 48 days) 	~5.5E-7/yr.		
Contribution From Peaks	~86%		
1. 10			



131

JCN W6904


JCN W6904

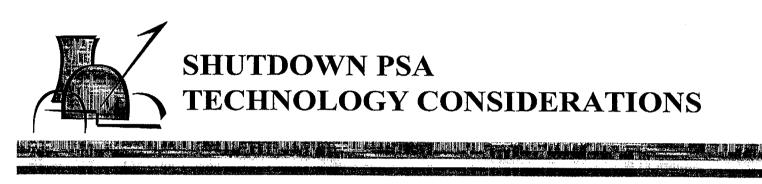
GENERAL SHUTDOWN PSA INSIGHTS

- Shutdown Risks Have Been Significantly Reduced Since NUMARC 91-06 Was Issued
- Due to Impact of "Peaks" Longer Outages are not Necessarily Safer - SD Risk Controlled By Minimizing Time of Peaks
- Strong Relationship Between How Outage is Planned and "Average" Risk
- More than 50% of "Average" Shutdown CDF is Due to Human Errors (During Peaks)

134

• Major Factors in Shutdown Risk Level:

- Plant Operating State
- Human Performance
- Decay Heat Level
- Equipment Configuration
- Initiating Event Frequencies Seem to be Going Down


Slide 15

SHUTDOWN PSA TECHNOLOGY ASSESSMENT

- Initiating Events Relatively Well Understood - Transitions are Challenging
 - Drain Down to Mid-loop
 - Switch Over of Running Pumps
 - Treatment of Instantaneous Risk Spikes?
- Accident Sequence & System Modeling Straightforward
- Success Criteria Not Fully Investigated, Probably Conservative for High Risk Intervals

Ebbi

136

- Component Performance Data Not Well Known
- Unavailability Data for Specific Outages Readily Available, Average Data is Not
- Human Reliability Most Difficult Aspect
- Limited Experience With Flooding & External Events - Fire & Flood Trickiest
- Quantification Tools are Not the Limiting Factor
- Level 2 and 3 Largely Unanalyzed

USE OF SHUTDOWN PSA RESULTS

- "Average" Shutdown Risks Are Not Comparable to At-Power Values:
 - Highly Outage Specific
 - Strongly Influenced By Durations of Key Plant Operating States
 - Dominated by Human Performance
- Computed Changes in Shutdown Risk Can Range from Negligible to Huge, Depending Upon Outage Schedule Assumed
- Decisions Should be Based on Level of Safety of Plant Configuration Regardless of Plant Mode

- Trend in Shutdown Events is Significantly Downward
- A Significant Amount of Shutdown PSA Technology & Experience Exists Within the Industry
- Technology Well Developed but Still Improving
- Significant Uncertainties Exist:
 - Human Reliability

Slide 19

Plant Activities - Plant Response Linkage

LPSD Workshop Summary Report

Intentionally Left Blank

T

DISTRIBUTION:

Erasmia Lois Probabilistic Risk Analysis Branch Division of Risk Analysis and Applications Section A Office of Nuclear Regulatory Research MS T-10E50 US Nuclear Regulatory Commission Washington, DC 20555-0001 [5 copies]

Mary Drouin Probabilistic Risk Analysis Branch Division of Risk Analysis and Applications Section A Office of Nuclear Regulatory Research MS T-10E50 US Nuclear Regulatory Commission Washington, DC 20555-0001

Mark Caruso NRC/NRR/DSSA MS O-10H4 US Nuclear Regulatory Commission Washington, DC 20555-0001

Mike Cheok NRR/DSSA US Nuclear Regulatory Commission Washington, DC 20555-0001

Tony Hsia OCM/NJD US Nuclear Regulatory Commission Washington, DC 20555-0001

Asimios Malliakos DST/AEB US Nuclear Regulatory Commission Washington, DC 20555-0001

Micheal T. Markley NRC/ACRS Staff MS T-ZE26 US Nuclear Regulatory Commission Washington, DC 20555-0001 Gareth W. Parry NRR/DSSA US Nuclear Regulatory Commission Washington, DC 20555-0001

Marie Pohida NRR/DSSA/SPSB US Nuclear Regulatory Commission Washington, DC 20555-0001

Mohammed Schuabi NRR/SRXB MS 0-10B3 US Nuclear Regulatory Commission Washington, DC 20555-0001

Nathan Siu RES/DRAA/PRAB MS T-10E50 US Nuclear Regulatory Commission Washington, DC 20555-0001

George Thomas NRR/DSSA/SRXB MS OWFN-10F2 US Nuclear Regulatory Commission Washington, DC 20555-0001

Millard L. Wohl NRR/SPSE US Nuclear Regulatory Commission Washington, DC 20555-0001

Micheal Adelizzi PP&L Resources, Inc., Susquehanna Steam Electric Station GENA63 PP&L Resources, Inc. Two North Ninth Street Allentown, PA 18101

Loys Bedell Entergy - River Bend Station P.O. Box 220 St. Francisville, LA 70775

LPSD Workshop Summary Report

Dist - 1

JCN W6904

Biff Bradley NEI 1776 I. St., NW, Suite 400 Washington , DC 20006

Robert J. Budnitz Future Resources Associates Inc. 2039 Shattuck Avenue, Suite 402 Berkeley, CA 94704

Ken Bych PG&E Diablo Canyon P.O. Box 56, MS 104/2/4613 Avila Beach, CA 93424

Kendall Byrd First Energy Nuclear Operating Company Davis-Besse Nuclear Power Plant MS 3LOS 5501 N. State Route 2 Oak Harbor, OH 43449

Bryan Carroll Duke Power Co. Mail Code EC087 P.O. Box 1006 Charlotte, NC 28201-1006

Richard Cathy Southern Nuclear Plant Vogtle P.O. Box 281 Waynesboro, GA 30830

Bob Christie Performance Technology P.O. Box 51663 Knoxville, TN 37950-1663

Tsong - Lun Chu Brookhaven National Laboratory Building 475 Upton, NY 11973 Nancy B. Closky Westinghouse Electric Company Westinghouse Electric P.O. Box 355 Pittsburgh, PA 15230-0355

Leslie Collins ABB CENP 12300 Twinbrook Pkwy, Suite 330, Rockville, MD 20852

John H. Emmett Pennsylvania Power Flight Susquehanna Steam Electric Station Independent Safety Engineering Group P.O. Box 467, NUCSA3 Berwick, PA 18603-0467

Lester Ettlinger Oxford Group and American Nuclear Society 1987 Greenberry Road Baltimore, MD 21209

Anees Farruk Southern Nuclear 40 Inverness CTR Pkwy Birmingham, AL 35242

David J. Finnicum ABB MS 9012-1918 2000 Dayhill Road Windsor, CT 06095

Mark Flaherty Rochester Gas and Electric/Ginna Staion Ginna Station 1503 Lake Road Ontario, NY 14519

Robin Frank Baltimore Gas & Electric, Constilation Energy Corporation, Reliability Eng. Unit, Calvert Cliffs 1650 Calvert Cliffs Pkwy. Lusby, MD 20657 Fred Cietek Millstone/NNECO P.O. Box 270 Hartford, CT 06141

Kim Green NUS Information Services 11140 Rockville Pike Suite 500 Rockville, MD 20852

Ching Guey FPL/Nuclear Engineering ENG/JB 700 Universe Blvd. Juno Beach, FL 33408

Jim Hawley American Electric Power 500 Circle Drive Buchanan, MI 49107

Harry Heilmeier Framatome Tech. 3335 Old Forest Road Lynchburg, VA 24502

Roger Huston Licensing Support Services 4204 Christine Place Alexandria, VA 22311

Jeffrey A. Julius Scientech, Inc. 406 W. Growe Kent, WA 98032

Bill Ketchum Wolf Creek Nuclear Operating Corporation P.O. Box 411 Burlington, KS 66839

Kenneth L. Kiper North Atlantic Energy Service Corporation Seabrook Station MS 01-62 P.O. Box 300 Seabrook, NH 03874

LPSD Workshop Summary Report

Stanley H. Levinson Framatome Technologies 3315 Old Forest Road 0F54 Lynchburg, VA 24501

Clem Littleton Senior Systems and Safety Analysis Engineer Pilgrim Nuclear Power Station, Boston Edison 600 Rocky Hill Road Plymouth, MA 02360

Stan Maingi Pennyslvania Bureau of Radiation Protection Rachel Carson State Office Building P.O. Box 8469 Harrisburg, PA 17105-8469

Jonathan E. Mawsell General Physics 790 D East Pine Way Road Aiken, SC 29803

Mark Melnicoff Commonwealth Edison Nuclear Engineering Services - Risk Management ETW III - 1400 Opus Place Downers Grove, IL 60515

Jeff Mitman Electric Power Research Institute 3412 Hillview Ave. (Room 2-207) Palo Alto, CA 94304

Parviz Mojini Southern California Edison (SCE) San Onofre Nuclear Generating Station P.O. Box 128 San Clemente, CA 92672

Thomas Morgan Scientech, Inc. 910 Clopper Road Gaithersburg, MD 20878 Gregory A. Krueger PECO Energy 965 Chesterbrook Blvd., Mail Code 63A-3 Wayne, PA 19087

Micheal A. Phillips Scientech, Inc. 12 Marker Dr. Wilmington, DE 19810

Steve Rosen South Texas Project Generating Station P.O. Box 289 Wadsworth, Texas 77483

Selim Sancaktar Westinghouse Electric Company P.O. Box 355 Pittsburgh, PA 15230-0355

Leo Shanley ERIN Engineering and Research, Inc. 1210 Ward Ave, Suite 100 West Chester, PA 19380

David Stellfox McGraw - Hill 1200 G Street NW Washington, DC 26036

Jeff Stone Baltimore Gas & Electric Constilation Energy Corporation Reliability Eng. Unit, Calvert Cliffs 1650 Calvert Cliffs Parkway Lusby, MD 20657

Theresa Sutler Bechtel 9801 Washington Blvd. Gaitherburg, MD 20878

Tatsuya Tamirami Toloyo Electric Power Co. Inc, Washington Office 1901 L Street, NW Suite 720 Washington, DC 20036

JCN W6904

Craig Nierode Northern States Power Company Monticello Nuclear Generating Plant 2807 west Highway 75 Menticello, MN 55362

Nick Trikouros GPU Nuclear Corp. 1 Upper Pond Road Parsippany, NJ 07054

Doug True ERIN 2033 N. Main Street #1000 Walnut Creek, CA 94596

Kenneth D. Tuley Virginia Power 5000 Dominion Blvd. Glen Allen, VA 23060

James A Turnick American UE / Callaway Box 620 Callaway Plant Futton, MO 65251

Donald Vanover ERIN Engineering & Research Inc. 1210 Ward Avenue, Suite 100 West Chester, PA 19380

L. J. Victory Jr. Enertech Servus 3580 L'ville - Suwanee Road Suwanee, GA 30024

Donald Wakefield PLG/EQE 4590 MacArthur Blvd., Suite 400 Newport Beach, CA 92660-2027

Robert White Consumers Energy 27780 Blve Star Hwy. Covert, MI 49043

Dist - 4

LPSD Workshop Summary Report

Thomas Timmons Westinghouse Electric Company MS 4-33 P.O. Box 355 Pittsburg, PA 15230-0335

 MS0747
 A. L. Camp, 6412

 MS0747
 T. A. Wheeler, 6412

 MS0747
 D. W. Whitehead, 6412 [22]

 MS9018
 Central Technical Files, 8940-2

 MS0899
 Technical Library, 4916 [2]

MS0619 Review & Approval Desk, 4912 For DOE/OSTI Antonio M. Zoulis New York Power Authority Rx Engineering/Nuclear Systems Analysis MS 11F 123 Main Street White Plains, NY 10601