

Telephone (856) 797-0900 Fax (856) 797-0909

KIMSSOIPLBIC

BY FAX AND OVERNIGHT MAIL

February 18, 2000

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

Subject: USNRC Docket No. 71-9261; TAC No. L22085 HI-STAR 100 Transportation CoC 9261 License Amendment Request 9261-1, Supplement 2

References:1. Holtec Project 50142. Holtec Letter to NRC dated November 24,1999, LAR 9261-1

Dear Sir:

As committed during our telephone conversation yesterday, we enclose herewith replacement pages for proposed Safety Analysis Report (SAR) Revision 9, a sketch of the criticality model of the QUAD+ assembly, and revised wording for the Certificate of Compliance related to the Antimony-Beryllium neutron source. Please note that while the value of S_{by} presented in Appendix 2.R is different due to a unit conversion, the value used in the underlying calculation is unaffected and the 33% safety margin remains unchanged.

If you have any questions or require additional information, please contact us.

Sincerely,

Brian Gutherman, P.E. Licensing Manager

Approval:

Denis Singh, Ph.D, P.E. President and CEO

cc: Ms. Marissa Bailey, USNRC (w/10 copies of enclosure) Mr. Mark. Delligatti, USNRC (w/ encl.)

Document ID: 5014370

- Enclosures: 1. Replacement SAR page 2.R-7, proposed Revision 9 (1 page)
 - 2. QUAD+ Criticality Model Sketch (1 page)
 - 3. Mark-ups of CoC 9261, Appendix A (2 pages)

Holtec Center, 555 Lincoln Drive West, Marlton, NJ 08053

Telephone (856) 797-0900 Fax (856) 797-0909

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Document ID 5014370 Page 2 of 2

Technical Concurrence:

Dr. Alan Soler (Structural Evaluation)

Dr. Everett Redmond II (Shielding Evaluation)

Dr. Stefan Anton (Criticality Evaluation)

Distribution (w/o encl.):

Recipient

Affiliation

Mr. David Bland	Southern Nuclear Operating Company
Mr. Ken Phy	New York Power Authority
Mr. J. Nathan Leech	Commonwealth Edison
Dr. Max DeLong	Private Fuel Storage
Mr. Stan Miller	Vermont Yankee Nuclear Power Corporation
Mr. David Larkin	Energy Northwest
Mr. Bruce Patton	Pacific Gas & Electric – Diablo Canyon
Mr. Mark Smith	Pacific Gas & Electric – Humboldt Bay
Mr. Rodney Pickard	American Electric Power
Mr. Eric Meils	Wisconsin Electric Power Company
Mr. Paul Plante	Maine Yankee Atomic Power Company
Mr. Jeff Ellis	Southern California Edison
Mr. Darrell Williams	Entergy Operations – Arkansas Nuclear One
Mr. Joe Andrescavage	GPUN – Oyster Creek Nuclear Power Station
Mr. Ron Bowker	IES Utilities
Mr. William Swantz	Nebraska Public Power District
Mr. Chris Kudla	Entergy Operations – Millstone Unit 1 Decommissioning
Mr. Keith Waldrop	Duke Power Company
Mr. Matt Eyre	PECO Energy
Mr. Al Gould	Florida Power & Light
Dr. Seymour Raffety	Dairyland Power
Mr. John Sanchez	Consolidated Edison Company
Ms. Kathy Picciott	Niagara Mohawk Power Corporation
Mr. John Donnell	Private Fuel Storage, LLC (SWEC)
Dr. Stanley Turner	Holtec International, Florida Operations Center

The direct shear force/unit throat thickness is determined as:

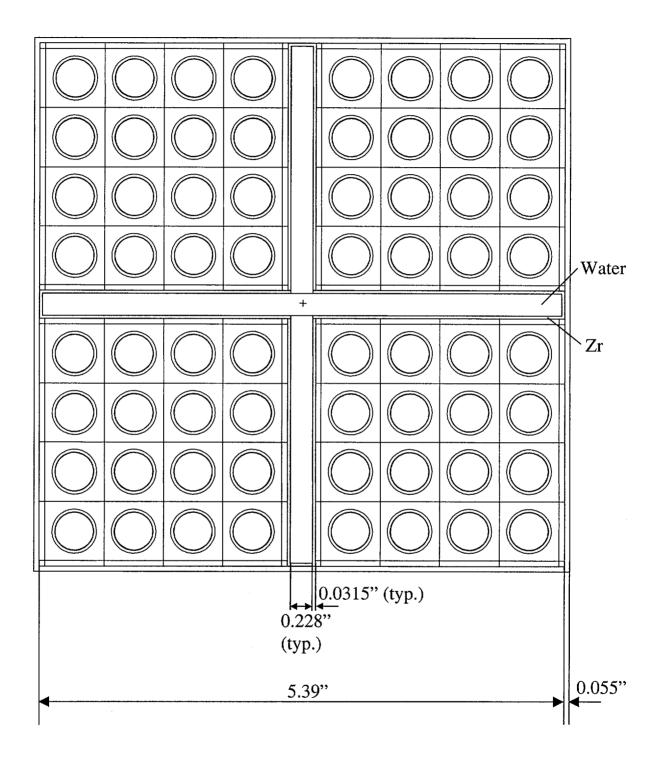
$$S_{r} := \frac{Fr}{A_{weld}}$$
$$S_{r} = 4.012 \times 10^{4} \frac{lbf}{in}$$

The force/unit throat thickness at point D, which is farthest from the centroid of the weld group, due to the two bending moments is determined as:

$$\begin{split} S_{by} &:= \frac{Mx}{S_{xx}} \\ S_{by} &= 1.337 \times 10^4 \frac{lbf}{in} \\ S_{bx} &:= \frac{My}{S_{yyb}} \\ S_{bx} &= 8.307 \times 10^4 \frac{lbf}{in} \\ S_{b} &:= S_{bx} + S_{by} \\ \end{split}$$

The torsional force/unit of throat thickness at point D is determined as:

$$S_{t} := \frac{Mz \cdot \frac{W}{2}}{J_{w}} \qquad \qquad S_{t} = 7.148 \times 10^{3} \frac{lbf}{in}$$


The net force/unit of weld throat thickness is computed as a root mean square

$$S_{eq} := \left[S_b^2 + (S_r + S_t)^2 \right]^{0.5}$$
 $S_{eq} = 1.074 \times 10^5 \frac{lbf}{in}$

Dividing by the yield strength of the material yields a minimum required throat thickness

$$t_{req} := \frac{S_{eq}}{\sigma_y}$$
 $t_{req} = 3.187 in$

HI-STAR SAR Report HI-951251 2.R-7

MCNP Model of QUAD+ Assembly with Dimensions

.

Appendix A-Certificate of Compliance No. 9261

Table A.1 (continued) Fuel Assembly Limits

II. MPC MODEL: MPC-68 (continued)

5. Thoria rods (ThO₂ and UO₂) placed in Dresden Unit 1 Thoria Rod Canisters and meeting the following specifications:

a. Cladding Type:	Zircaloy (Zr)
b. Composition:	98.2 wt.% ThO ₂ , 1.8 wt. % UO ₂ with an enrichment of 93.5 wt. % 235 U.
c. Number of Rods Per Thoria Rod Canister:	<u><</u> 18
d. Decay Heat Per Thoria Rod Canister:	<u><</u> 115 Watts
e. Post-irradiation Fuel Cooling Time and Average Burnup Per Thoria Rod Canister:	A fuel post-irradiation cooling time \geq 18 years and an average burnup \leq 16,000 MWD/MTIHM.
f. Initial Heavy Metal Weight:	\leq 27 kg/canister
g. Fuel Cladding O.D.:	≥ 0.412 inches
h. Fuel Cladding I.D.:	<u><</u> 0.362 inches
i. Fuel Pellet O.D.:	<u>≤</u> 0.358 inches
j. Active Fuel Length:	≤ 111 inches
k. Canister Weight:	\leq 550 lbs, including fuel

- B. Quantity per MPC: Up to one (1) Dresden Unit 1 Thoria Rod Canister plus any Any combination of damaged fuel assemblies in damaged fuel containers and intact fuel assemblies, up to a total of 68.
- C. Fuel assemblies with stainless steel channels are not authorized for loading in the MPC-68.
- D. Dresden Unit 1 fuel assemblies with one Antimony-Beryllium neutron source are authorized for loading in the MPC-68. The Antimony-Berylium neutron source material shall be in a water rod location.

Appendix A-Certificate of Compliance No. 9261

Table A.1 (continued) Fuel Assembly Limits

III. MPC MODEL: MPC-68F (continued)

7. Thoria rods (ThO₂ and UO₂) placed in Dresden Unit 1 Thoria Rod Canisters and meeting the following specifications:

a. Cladding Type:	Zircaloy (Zr)
b. Composition:	98.2 wt.% ThO ₂ , 1.8 wt. % UO ₂ with an enrichment of 93.5 wt. % 235 U.
c. Number of Rods Per Thoria Rod Canister:	<u><</u> 18
d. Decay Heat Per Thoria Rod Canister:	<u><</u> 115 Watts
e. Post-irradiation Fuel Cooling Time and Average Burnup Per Thoria Rod Canister:	A fuel post-irradiation cooling time \geq 18 years and an average burnup \leq 16,000 MWD/MTIHM.
f. Initial Heavy Metal Weight:	< 27 kg/canister
g. Fuel Cladding O.D.:	\geq 0.412 inches
h. Fuel Cladding I.D.:	<u><</u> 0.362 inches
i. Fuel Pellet O.D.:	<u><</u> 0.358 inches
j. Active Fuel Length:	≤ 111 inches
k. Canister Weight:	≤ 550 lbs, including fuel

B. Quantity per MPC:

Up to four (4) damaged fuel containers containing uranium oxide or MOX BWR fuel debris. The remaining MPC-68F fuel storage locations may be filled with array/class 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A fuel assemblies of the following type, as applicable:

- 1. Uranium oxide BWR intact fuel assemblies;
- 2. MOX BWR intact fuel assemblies;
- 3. Uranium oxide BWR damaged fuel assemblies placed in damaged fuel containers; or
- 4. MOX BWR damaged fuel assemblies placed in damaged fuel containers; or
- 5. Up to one (1) Dresden Unit 1 Thoria Rod Canister.
- C. Fuel assemblies with stainless steel channels are not authorized for loading in the MPC-68F.
- D. Dresden Unit 1 fuel assemblies with one Antimony-Beryllium neutron source are authorized for loading in the MPC-68. The Antimony-Berylium neutron source material shall be in a water rod location.