TVA	CALCI	ULATION SHEE	Т	
Document: CD-N0001-9	80038	Rev.: 0	Plant: BFN	Page: J1
Subject: Main Steam S		ss Evaluation	Prepared By:	Date: <u>9-12-7</u> 8 Date: <u>9-12-7</u> 8

Attachment J

This Attachment addresses:

Condenser Seismic Evaluation

EQE Calculation 200621-C-009

	CAL	CULATION	COVE	R SH	EET
Calculati	on No. 🥻	200621-C-009			
Project:	-	TVA BFN-3 MSIV OUTLIER RESOL	UTION		
Calculati	on Title: 0	CONDENSER SEISMIC EVALUATI	ON		
Referenc		SEE SECTION 3.0			······································
Appendic		NONE	·····		
Total Nur Revision Number	mber of Pag Approval Date	es (Including Cover Sheet):	21 Originator	Checker	Approver
0	9/08/98	ORIGINAL ISSUE	S.P. HARRIS	J.O. DIZON	J.O. DIZON J.O. Dizon
			·		

•

.

...

Calc. No. <u>CA - NOO01-90038</u> REV. <u>O</u> Sheet No. <u>JZ</u> of	Attachment No.	J
	Galc. No. <u>CA-/</u>	10001-90038 REV. 0
		of

CALCULATION SHEET

NTERNOTÓAL	SHEET NO. 2
JOB NO. 200621.01 JOB TVA BEN-3 MSIV OUTLIER RESOLUTION	
CALC NO. <u>C-009</u> SUBJECT <u>Condenser Seismic Evaluation</u>	CHK <u>JOD</u> DATE <u>9/08/98</u>

TABLE OF CONTENTS

.

		<u>PAGE</u>
1.0	PURPOSE AND SCOPE	3
2.0	METHODOLOGY	3
3.0	REFERENCES	4
4.0	TURBINE CONDENSER CHARACTERISTICS COMPARISON	5
5.0	ANCHORAGE EVALUATION	13
6.0	CONCLUSIONS	21
	Figure 4-1 Size Comparison	6
	Figure 4-2 Weight Comparison	7
	Figure 4-3 Height Comparison	7
	Figure 4-4 Plan Dimension Comparison	8
	Figure 4-5 Schematic Plan of Condenser Anchorage	8
	Figure 4-6 Anchorage Comparison Transverse to Turbine	9
	Figure 4-7 Anchorage Comparison Parallel to Turbine	9
	Figure 4-8 Design Basis Spectra Comparison with Database Sites	12
	Figure 5-1 Anchor Design	16
	Table 5-1 BFN Condenser Weight and C.G.	17
	Table 5-2 Condenser Loads	18
	Table 5-3 Anchor Demands	20

Attachment No.	\mathcal{J}	
Calc. No. <u>C.O</u> -,	N0001-980038 REV.	D
Sheet No	2of	

CALCULATION SHEET

JOB NO. 200621.01	JOB TVA BEN-3 MSIV OUTLIER RESOLUTION	BYSPH	DATE	8/31/98
A		CHK JOD		

1.0 PURPOSE AND SCOPE

The purpose of this calculation is to verify the Browns Ferry (BFN) condenser seismic capacity and resolve Outlier 13-1, as identified during the BFN-3 MSIV Seismic Verification Walkdown (Reference 2).

2.0 METHODOLOGY

The BFN Unit 3 condenser is evaluated using seismic experience data from past earthquakes and ongineering analysis. Seismic capacity versus domand is evaluated by comparing the BFN Unit 3 condenser with condensers in the seismic experience database that have experienced strong ground motions in excess of the BFN-3 Design Basis Earthquake (DBE). Condenser size, construction, design and anchorage characteristics are summarized and compared with parameters of earthquake experience condensers.

Anchorage evaluation methodology used is consistent with that described in the Generic Implementation Procedure (GIP, Reference 1) and standard structural engineering practices.

Attachment No.	J	-
Caic. No. C.A-NO	1001-48003 REV.	Ð
Sheat No. J4	7of	¥

SHEET NO. 3

CALCULATION SHEET

SHEET NO. 4

JOB NO. 200621.01	JOB TVA BEN-3 MSIV OUTLIER RESOLUTION	_BY <u>_SPH</u> _	_DATE
CALC NO. <u>C-009</u>	SUBJECT Condenser Seismic Evaluation	CHK <u>JOD</u>	DATE9/08/98

3.0 REFERENCES

- "Generic Implementation Procedure (GIP) for Seismic Verification of Nuclear Plant Equipment", Rev. 2A, March 1993, prepared by Winston & Strawn, EQE, et al., for the Seismic Qualification Utility Group (SQUG).
- 2. "BFNP Unit 3 MSIV Seismic Verification Walkdown Report", EQE Report No 50147.08-R-001, Draft, September 30, 1995.
- 3. BWROG Report for Increasing MSIV Leakage Rate Limits and Elimination of Leakage Control Systems, General Electric NEDC-31858P, Rev. 2, September 1993.
- 4. AISC Manual of Steel Construction, 8th Edition
- 5. Seismic Verification of Nuclear Plant Equipment Anchorage (Revision 1), Volume 1 : Development of Anchorage Guidelines, EPRI NP-5228-SL, June 1991.
- 8. TVA and Vendor Documents:

a. Misc. Steel Turbine Foundation Embedded Parts Sheet 2	48N840 R12
b. Outline of Shell 3A for 666,000 Sq. FtSurface Condenser	3-93-621-5-1A
c. Outline of Shell 3B for 666,000 Sq. Ft Surface Condenser	3-93-621-5-2A
d. Outline of Shell 3 for 666,000 Sq. FtSurface Condenser	3-93-621-5-3A
e. Instructions for the Care & Operation of Surface	BFN-VTD- F175-0050
Condenser & Accessories	
f. Arrangement of Condenser Supports & Anchor	93-505-3-190 Rev E

- 7. TVA Browns Ferry Nuclear Plant Final Safety Analysis Report (FSAR).
- 8. TVA Calculation No. CD-N0001-980039, "Main Steam Seismic Ruggedness Verification".

Attachment No.	Ţ	
Catc. No. C.A-NL	0001-980038 REV. (2
Sheet No	5 of	

CALCULATION SHEET

NTEBNATIONAL		Sh	HEET NO	5
JOB NO. 200621.01	JOB TVA BEN-3 MSIV OUTLIER RESOLUTION	_BY <u>SPH</u>	_DATE	_8/31/98
CALC NO, <u>C-009</u>	SUBJECT Condenser Seismic Evaluation	CHK JOD		9/08/98

4.0 TURBINE CONDENSER CHARACTERISTICS COMPARISON

The High Pressure condenser has a heat transfer surface area of 222,000 tt^2 . In Table 3-1, the design attributes of the condenser is compared with the two sites in the earthquake experience database that have condensers most representative of BWR type condensers: Moss Landing Units 6 & 7, and Ormond Beach Units 1 & 2.

The shell of the condenser is constructed of ASTM A-285 Gr. C steel plate. The database condenser shells are ASTM A-285 Gr. C steel plate. Some of the overall heat transfer area, weight, and footprint of the condenser are enveloped by the database condensers, as shown in Figures 4-1 through 4-4.

In summary, the condenser design and anchorage are similar to those at facilities in the earthquake experience database that have experienced earthquakes in excess of the Browns Ferry design basis DBE (See Figure 4-8). Appendix D, Section 4.1, of NEDC -31858P (Reference 3) contains details of the earthquake experience for condensers. Specific data used in the evaluation are as follows:

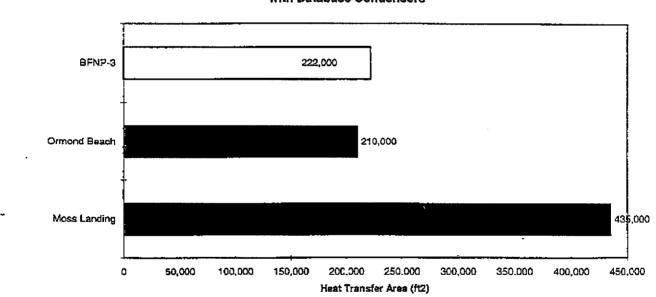
4.1 BFNP-Unit 3 Condenser Design Basis

4.1.1 Design Code

Heat Exchanger Institute (HEI) Standards

- 4.1.2 Hydrostatic Test Requirements
 - Shell Completely filled with water

Attachment No.	T
Calc. No. CA-NOI	101-980038 REV. O
Sheet No. <u>J6</u>	Of

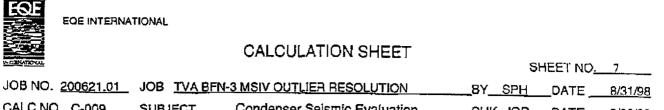


CALCULATION SHEET

JOB NO. 200621.01	JOB TVA BEN-3 MSIV OUTLIER RESOLUTION	_BYSPH	DATE	8/31/98
CALC NO. <u>C-009</u>	SUBJECT <u>Condenser Seismic Evaluation</u>	СНК <u>ЈОД</u>	DATE	9/08/98

4.1.3 Anchorage

The condenser anchorage is shown schematically in Figure 4-5. The condenser has six plate supports with (2 or 3) 2" or 2½ " diameter anchor bolts each. Each anchor bolt has greater than 5' nominal length with approximately 48" embedment in the turbine building foundation. The supports are designed to resist vertical operating loads. Thermal growth of the condenser occurs from the fixed point near the center of the base. The sliding plate supports have slotted holes allowing thermal growth radial to a fixed center support pad. The center support consists of a built-up H section, embedded 4' into the turbine base mat and welded to the condenser bottom.



Size Comparison of Browns Ferry Unit 3 Condenser with Database Condensers

Figure 4-1 Size Comparison of Browns Ferry Unit 3 Condenser with Database Condensers

Attachment No.	\mathcal{J}
Calc. No. <u>C.S-No</u>	0001-981038 REV. D
Sheet NoJZ	of

SHEET NO. 6

CALC NO. C-009 SUBJECT ___

Condenser Seismic Evaluation

CHK JOD DATE 9/08/98

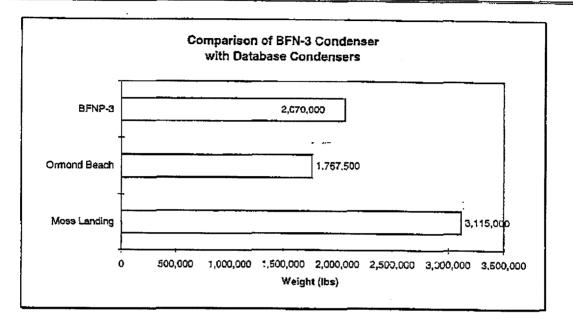
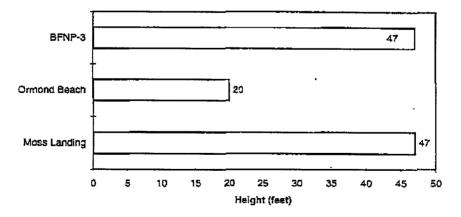
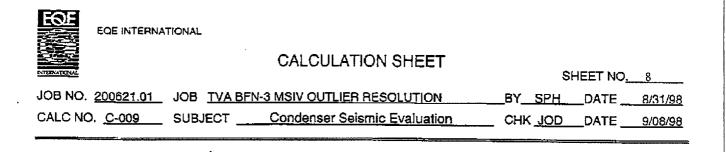
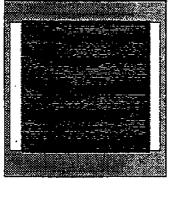
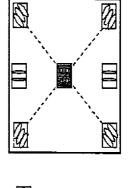


Figure 4-2 Weight Comparison of BFN-3 Condenser with Database Condensers

> Comparison of BFN-3 Condenser with Database Condensers


Figure 4-3 Height Comparison of BFN-3 Condenser with Database Condensers

Atlachment	 No.	5		
Calc. No. C	D-NOC	201-9880	2 <u>38</u> REV.	0
Sheet No.	J8_	of		

10000000000		
	Moss Landing 6 & 7	(65ft x 36 ft)
	Ormond Beach	(52ft x 27ft)
	Browns Ferry Unit 3	(50ft x 32ft)

Anchor bolts with slotted holes directed from center anchor plate (Supports A & C)

Anchor bolts with slotted holes perpendicular (Supports B & D)

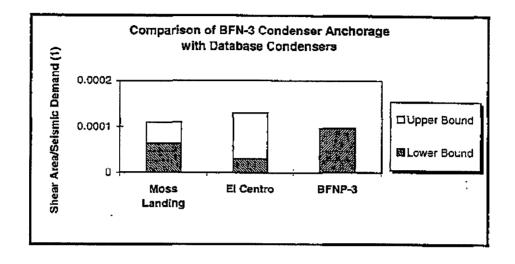
Fixed anchor plate

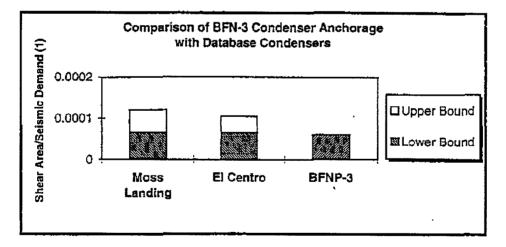

Figure 4-5 Schematic Plan View of Browns Ferry Unit 3 Condenser Anchorage

Attachment No. J
Calc. No. C.A-NON01-980038 REV. O
Sheet No. <u>J9</u> of

Figure 4-4 Comparison of Browns Ferry Unit 3 Condenser Plan Dimensions with Database Condensers

x:\bfnpmsiv\calc09.doc


· .**.**. ·



 SHEET NO. 9

 JOB NO. 200621.01
 JOB TVA BEN-3 MSIV OUTLIER RESOLUTION
 BY_SPH_DATE
 8/31/98

 CALC NO. C-009
 SUBJECT
 Condenser Seismic Evaluation
 CHK_JOD_DATE
 9/08/98

Note (1): Shear Area(in²)/Demand(condenser weight x g level)

Figure 4-6 and 4-7 Comparison of BFN-3 Condenser Anchorage with Database Condensers

Attachment No.	J	
Calc. No. C.D-NC	0001-98	1038 REV. 0
Sheet No. JIC	7of	

x:\bfnpmsiv\calc09.doc

.

CALCULATION SHEET

JOB NO. 200621,01	JOB TVA BEN-3 MSIV OUTLIER RESOLUTION	BY <u>SPH</u>	 8/31/98
CALC NO. <u>C-009</u>	SUBJECT Condenser Seismic Evaluation	CHK <u>JOD</u>	9/08/98

The condenser anchorage was compared with the performance of similar condenser in the earthquake experience database. The shear area of the condenser anchorages, divided by the seismic demand was used to compare condenser anchorage with condensers in the earthquake experience database (See Figures 4-6 and 4-7). The values for the BFN-Unit 3 condenser are as follows:

Shear Area (in²)/Selsmic Demand

SHEET NO. 10

Lower Bound

Parallel to Turbine Generator Axis

0.0000966

0.0000604

Transverse to Turbine Generator Axis

The condenser anchorage shear area to seismic demand is substantially greater than the selected

database sites (see NEDC 31858P, Reference 3, Figures 4-10 and 4-11 of Appendix D)

- 4.1.4 Manufacturer: Foster Wheeler
- 4.1.5 Surface Area, Weight, Dimensions

Surface Area: condenser has 222,000 ft²

Weight: condenser weighs 2,070,000 ibs operating.

Dimensions: condenser is 50' long, 32' wide and 471/2 ' high.

- 4.1.6 Type: Base supported, rectangular.
- 4.1.7 Shell Material

Material: ASTM A-285 Gr. C steel 7/8" thick

·		
Attachment No.	J	~
Calc. No. CA-N	0001-48002 8 m	
Sheet No		<u>v</u>
·		

CALCULATION SHEET

JOB NO. 200621,01	JOB TVA BEN-3 MSIV	OUTLIER RESOLUTION	_BY	SPH	DATE	8/31/98
CALC NO. <u>C-009</u>	SUBJECT Conde	nser Seismic Evaluation	СНК	JOD		<u>9/08/98</u>

4.1.8 Tube Design

Material: ASTM B-111 Inhibited Admiralty

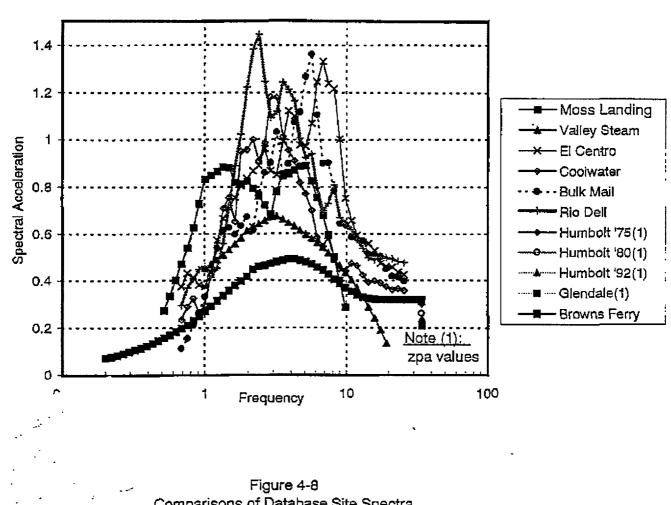
Tubes: ASTM B-111 Inhibited Admiralty, 7/8"-18 BWG.

The effective tube length is 49' 91/4".

The condenser design and anchorage are similar to those at facilities in the earthquake experience database that have experienced earthquakes in excess of the BFN design basis DBE and the BFN condenser is bounded by the comparable attributes of the database condensers.

x:\bfnpmsiv\calc09.doc

Attachment No. J	
Calc. No. C. A. NOOOI - 980038 REV. O	_
Sheet No. <u>J/Z</u> of	_


SHEET NO. 11

CALCULATION SHEET

SHEET NO. 12

JOB NO. 200621.01	JOB TVABEN-	3 MSIV OUTLIER RESOLUTION	_BY	SPH	_DATE	8/31/98
CALC NO. <u>C-009</u>	SUBJECT	Condenser Seismic Evaluation	СНК	<u></u>	_DATE	9/08/98

Comparisons of Database Site Spectra to Browns Ferry Unit 3 DBE Ground Spectra

Attachment No.	J	
Calc. No. <u>CA-</u>	N0001-981238 REV.	0
Sheet No. 7	7 <u>3</u> of	

CALCULATION SHEET

 JOB NO. 200621.01
 JOB TVA BEN-3 MSIV OUTLIER RESOLUTION
 BY_SPH_DATE
 8/31/98

 CALC NO. C-009
 SUBJECT
 Condenser Seismic Evaluation
 CHK_JQD_DATE
 9/08/98

5.0 ANCHORAGE EVALUATION

Determine Input Seismic Accelerations

An evaluation of the condenser support system was performed using seismic demand determined by the GIP method for the turbine building at the condenser foundation elevation.

Condensers are large structures that are by design very stiff to withstand operating vacuum and hydrostatic test loads. The condenser shell design utilizes a steel shell, stiffened with integral plate stiffeners and structural members. The predominant seismic response of the condenser is expected to be rigid body dynamics. The calculations are performed for the frequency range of the zero period acceleration (ZPA).

The condenser is mounted on the base mat at elevation 562 feet. Design spectra were not available for the Turbine Building at this elevation. Accelerations for the condenser analysis were based on the site design spectra zero period acceleration of 0.2g. This value was increased by a factor of 1.6 in accordance with the BFN FSAR (Reference 7) to account for site amplification for soil-founded structures (see also Reference 8).

Determine Overturning Moments and Base Shears

Established weights, center of gravity, overturning moments and base shears for the condenser are calculated and shown in Table 5-1. Overturning moments and base shears are established using conservative methods for combination of directional and load components. The condenser is symmetric about two axes and eccentricities are expected to be very small.

Dynamic frequencies for the condenser are complex due to the stiffened plate nature of the construction and the complicated internals, and are not known. The condenser was assumed to behave in a rigid manner and respond to the ZPA.

Overturning moments are calculated assuming that plane section remain plane and materials are assumed to be elastic. Moments and base shears are shown in Table 5-2.

Attachment No. J	
Calc. No. C.A-NOCO1-980038 REV.	Ũ
Sheet No. <u>J14</u> of	

x:\bfnpmsiv\calc09.doc

SHEET NO.

13

CALCULATION SHEET

 SHEET NO.
 14

 JOB NO.
 200621.01
 JOB TVA BEN-3 MSIV OUTLIER RESOLUTION
 BY
 SPH
 DATE
 8/31/98

 CALC NO.
 C-009
 SUBJECT
 Condenser Seismic Evaluation
 CHK
 JOD
 DATE
 9/08/98

Support Forces and Capacities

Support forces and capacitles are calculated and shown in Table 5-2. Total tension forces due to overturning moments in N-S and E-W directions of earthquake excitation are combined by the Square Root of the Sum of the Squares (SRSS) rule and are added absolutely to the operating loads. Operating loads are taken as the sum of vacuum loads and dead load forces on the anchor pads from Reference 6f. Tension forces are resisted by the six support pads around the condenser perimeter. Base shears are calculated separately for N-S and E-W directions of earthquake excitation and compared with shear capacities. Base shear is resisted by the anchor support at the condenser center.

Bolt Capacity - Tension Supports A, B, C & D

The condenser anchorage is shown schematically in Figure 4-5. The condenser has six plate supports with (2 or 3) 2" or 2½ " diameter anchor bolts each. The supports are designed to resist vertical operating loads. Thermal growth of the condenser occurs from the fixed point near the center of the base. The sliding plate supports have slotted holes allowing thermal growth radial to a fixed center support pad.

Each of the six perimeter bolted anchorages (Supports A, B, C & D), located at around the condenser perimeter, consists of either (2 or 3) 2- or 2¹/₂-inch bolts. Each anchor bolt has greater than 5' nominal length with approximately 48ⁿ embedment in the turbine building foundation per Reference 6a. The bolts are in slotted holes on 15 inch centers.

The ACI allowable pullout on a cast-in-place anchor is based on the area of the bolt, the bolt material, the concrete strength, and the embedment length. Bolt material is assumed to be A-36 steel and the allowable tensile load is based on the nominal bolt area times an allowable stress. The allowable stress is 1.7 times the working stress design allowable given in Part 1 of the AISC (Reference 4) and is equal to 34,000 psi. Some of the bolts are 2", some are 21/2". The pullout capacity of all the bolts is calculated assuming a 2" nominal. The pullout capacity of the bolts is as follows:

Bolt Diameter, D = 2.0 inch Bolt Area, A = 3.14 inch ² Bolt Capacity, C = (4) 3.14×34 ksi = 427 Kips

Attachment No	J	
Calc. No. <u>CO-N</u>	0001-981	138 REV. D
Sheet No. J/	-	

CALCULATION SHEET

 JOB NO. 200621.01
 JOB TVA BEN-3 MSIV OUTLIER RESOLUTION
 BY SPH DATE
 8/31/98

 CALC NO. C-009
 SUBJECT
 Condenser Seismic Evaluation
 CHK JOD
 DATE
 9/08/98

The ACI code formula for pullout capacity of cast-in-place bolts due to failure of concrete is:

C= $4\phi \sqrt{f'c} \pi(L+D)L$ where: L = 48 inches (min assumed) $\phi = 0.65$ f'c = 3,500 psi; concrete compressive strength D = 2 inches

C = 1,159 Kips per bolt minimum (greater for 2½" bolts)

The projected shear cone for a bolt with 48 inch of embedment is as follows:

$$A_{cone} = \frac{\pi (2 \times L + D)^2}{4}$$
 $A_{cone} = 7,543 \text{ in }^2$

The installed anchorage configuration has only 15 inch spacing between the bolts. Using the GIP Tension bolt reduction formula (Reference 1):

A'cone = $\pi r^2 - \frac{1}{2} \{ r^2 \theta^{-r} s' \sin(\theta/2) \}$

where: L = bolt embedment = 48 in. D = bolt diameter = 2 in. s' = actual bolt spacing = 15 in. r = (2L+D)/2 = 49 in. $\theta = 2 \cos^{-1} (s'/(2L+D)) = 2.8343$ rad.

:A'cone = $4,504 \text{ in}^2$

The perimeter supports are primarily designed for tensile loads but can carry some shear loads once small bolt hole gaps are overcome.

Attachment No.	T
	001-980038 REV. ()
Sheet No. J16	

SHEET NO. 15

NTEDIATIONAL		SI	HEET NO	16
JOB NO. 200621,01	JOB TVA BEN-3 MSIV OUTLIER RESOLUTION	_BY <u>SPH</u>	_DATE	8/31/98
CALC NO. <u>C-009</u>	SUBJECTCondenser Seismic Evaluation	СНК <u>ЈОД</u>	_DATE	9/08/98

Center Anchor Support Capacity - Shear

The center support consists of a built-up H section, embedded 4' into the turbine base mat and welded to the condenser bottom as shown in Figure 5-1. All seismic shears are assumed to be resisted by the H section.

 $F_v = 0.4 F_y \times 4/3$ (AISC earthquake increase) = 19.2 Ksi for A-36 steel

 $A_v = 20 \text{ x } 2 = 40 \text{ in}^2 \text{ N-S}$

 $A_v = 16 \times 2 \times 2 = 64 \text{ in}^2 \text{ E-W}$

V_{all} = 40 x 19.2 = 768 Kips N-S (Transverse)

 $V_{all} = 64 \times 19.2 = 1,229$ Kips E-W (Longitudinal)

The existing condenser anchorage system capacity is substantially greater than the demand of combined operational and lateral seismic DBE forces.

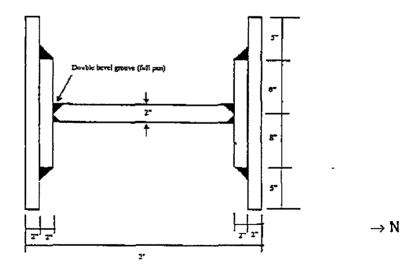


Figure 5-1 Anchor Design

Attachment No	u	Γ	
Calc. No.	NOOD	-980038 REV.	0
Sheet No. 🚽	717	_of	-
			—— (

CALCULATION SHEET

 JOB NO.
 200621.01
 JOB
 TVA BEN-3 MSIV OUTLIER RESOLUTION
 BY
 SPH
 DATE
 8/31/98

 CALC NO.
 C-009
 SUBJECT
 Condenser Seismic Evaluation
 CHK
 JOD
 DATE
 9/08/98

Table 5-1

BFNP Condenser Weight & C.G.

Section No.	No. of Sections	Weight Each (Ib)	Weight (lb)	y C.G. (in)	W*y
Condenser Shell	1	1,500,000	1 ,500 ,000	190	285,000,000
Water in Tubes Water in Hot Well	1 1	327,946 242,575	327,946 242,575	81 18	26,563,610 4,366,343
		Totals	2,070,520		315,929,952
			C.G.	12.72 (ft)	
Operating wt from F No. 0-93-505-3-190		er Dwg. (Ref. 6f)	2,070,000	(Ibs)	

Attachment No.	$ \mathcal{J} $
Calc. No. CA-A	10001 - 780038REV. ()
Sheet No. $J/$	8

SHEET NO. 17

EQE	
INTERNATIONAL	

i

Т

EQE INTERNATIONAL

CALCULATION SHEET

4

SHEET NO. 18

Attachment Calc. No. (Sheet No. _

7

Scores.

REV

່ຊ

JOB NO. 200621.01	JOB TVA BEN	3 MSIV OUTLIER RESOLUTION	BY_	SPH	_DATE	8/31/98
CALC NO. <u>C-009</u>	SUBJECT	Condenser Seismic Evaluation	СНҚ	JOD	_DATE	9/08/98

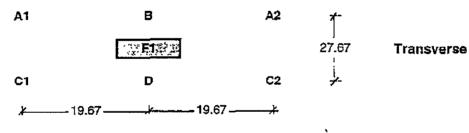
Table 5-2

Condenser Loads

"Vertical Loads: "+" = Tension

	L	ateral E	arthqual	e Accele	erations				Vertical	Earthqua	ake Accel.	Πk
DBE Acc.horizorial	0,32	*"	0.2	X	1.6	Soil Amplification	Moment:	kip-ft	DBE Acc. vert	ica 0.20	a	== '
Total Wt	2070	kips		Arm:	12.72	fl.	8426	kip-ft kip-ft			8	
Total: Wiotal:	2070	kips							Total: Wiotat:	2070	kips	
DBE Shear:	662.4	kips	1		DBE Mom	ent:	8426	kip-ft	Total Uplift:	414	kips	

Support	Longit	Idinal							Transverso	3						Total
Location							Max							Max		SRSS
	"1" = .	Bolt	Anchor Load	*1" =	Bolt	Anchor Load	Bolt		"1" ==	Bolt	Anchor Load	" 1 " =	Anchor Load	Bolt	Anchor Load	Bolt
	Active Support	Load (kips)	(kips)	Active Suppor t	Load (kips)	(kips)	Load (kips)		Active Support	Load (kips)	(kips)	Active Support	(kips)	Load (kips)	(kips)	Load (kips)
X1		0			0		0]		0				0		0
Y۱	ļ	0			0		0		j	ß	ł			0		0
Z1		0			0		0			0				0		0
X2	ļĮ	0			0		0			0 ·				0		0
Y2		0			0		0	1		0	1			0		0
Z2		0			0		0			Q				0		0
Ft	1		662	1		662	0	662	1		662	1	662		662	
Totais:	1.00	0		1.00	0	ί <u>α</u>			1.00	0	L	1,00	I			


CALCULATION SHEET

JOB NO. 200621.01	JOB TVA BEN-	3 MSIV OUTLIER RESOLUTION	ΒΥ΄	SPH_	_DATE _	8/31/98
CALC NO. <u>C-009</u>	SUBJECT	Condenser Seismic Evaluation	_ снк	JOD	_DATE	9/08/98

Table 5-2 (Cont.)

Support	ОР	Tension Due to Seismic Overturning							nsion to Vert
Location	Operating		Longitudinai		Transverse			Vertical	
	Load (kips)	Arm (ft)	"1" = Active Support	Tension (kips)	Arm (ft)	"1" = Active Support	Tension (kips)	"1" = Active Support	Tension (kips)
A1 B A2 C1 D C2 F1	-70 -70 -70 -70 -70 -70	39.34 39.34 39.34 39.34 39.34 39.34 39.34	1	86 43 0 86 43 0	27.67 27.67 27.67 27.67 27.67 27.67	1 1	203 203 203 0 0 0	1 1 1 1 1	69 69 69 69 69 69
Totals:	-420		4	L		3	<u> </u>	<u>لے م</u>	414

Support Location Diagram

Longitudinal

Assumptions:

Anchors A, B, C & D take no shear. All seismic shear is taken by the fixed support F Anchors A, B, C & D take tension/compression from rocking and operating loads

Attachment No.	7	···
Calo. No. CO-NC	001-7800	38 REV. D
Sheet No. 72	O_of_	

SHEET NO.___19

x:\bfnpmsiv\calc09.doc

. .

CALCULATION SHEET

JOB NO. 200621.01	JOB TVA BEN-3 MSIV OUTLIER RESOLUTION	_BY <u>\$</u>	<u>PH</u> DATE _	8/31/98
CALC NO. <u>C-009</u>	SUBJECT Condenser Seismic Evaluation	СНК <u>Ј</u>	DATE_	9/08/98

Table 5-3

Anchor Demands

Support	DBE Loads		Per Bolt Load						
	Shear	Tension	# of Bolts	Shear	Tension	Bolt Size	Stress Bolt Area	Bolt Stress	For A-36 steel, Allowable is 34ksi
	(kips)	(kips)		(k/bolt)	(k/bolt)			Ksi	
A1 B A2 C1 D C2 F1	0 0 0 0 0 0 662	80 60 53 80 60 53 0	3 2 3 3 2 3 3	0 0 0 0 0	27 30 18 27 30 18	2 2 2.5 2.5 2.5 2.5	3.14 3.14 3.14 4.91 4.91 4.91	17.08 23.67 15.33 2.72 1.14 0	ok ok ok ok ok ok

All bolt tension loads are much less than 427 Kip capacity (minimum 2" Diameter)

Anchor shear load is less than minimum 768 Kip (N-S) capacity

Attachment No.	J	
Calc. No. CA-/	M0001-98	238 REV. ()
Sheet No. J	<u>Z/of</u>	

SHEET NO. 20

CALCULATION SHEET

DITERMATIONAL		SHEET NO. 21
JOB NO. 200621.01	JOB TVA BEN-3 MSIV OUTLIER RESOLUTION	
CALC NO. <u>C-009</u>	SUBJECTCondenser Seismic Evaluation	CHK JOD DATE 9/08/98

6.0 CONCLUSIONS

Analyses of the BFN Unit 3 condenser and comparisons with database condensers were performed. The condenser design and anchorage are shown to be similar to those at facilities in the earthquake experience database that have experienced earthquakes in excess of the BFN design basis DBE. The BFN condenser is bounded by the comparable attributes of the database condensers. Anchorage calculations performed for the BFN Unit 3 condenser indicate that the Imposed seismic and operational demand of the design basis DBE is less than the anchorage capacity.

Attachment No.	$\overline{\mathcal{T}}$	
Calc, No. CA-/	YODOI - 980038 REV	.0
Sheet No	<u>27_of</u>	