

Richard B. Abbott Vice President Nuclear Engineering Phone: 315.349.1812 Fax: 315.349.4417

45

January 21, 2000 NMP2L 1928

U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

RE: Nine Mile Point Unit 2 Docket No. 50-410 NPF-69

Subject: Conversion of the Nine Mile Point Unit 2 Current Technical Specifications to the Improved Technical Specifications (TAC No. MA3822)

Gentlemen:

Niagara Mohawk Power Corporation (NMPC) transmitted an Application for Amendment regarding the above subject by letter dated October 16, 1998 (NMP2L 1830). Subsequently, by letters dated March 26, 1999; May 10, 1999; May 18, 1999; June 16, 1999; September 2, 1999, and September 21, 1999, the Nuclear Regulatory Commission (NRC) requested additional information pertaining to the Application for Amendment. NMPC provided the requested additional information by letters dated May 10, 1999 (NMP2L 1866); June 15, 1999 (NMP2L 1872); July 30, 1999 (NMP2L 1881); August 2, 1999 (NMP2L 1883); August 11, 1999 (NMP2L 1885); August 16, 1999 (NMP2L 1886); August 19, 1999 (NMP2L 1888); August 27, 1999 (NMP2L 1893) and September 10, 1999 (NMP2L 1896). Additionally, meetings were held between the NRC Staff and NMPC on October 20 and 21, 1999 to discuss some of these issues further. The additional information provided by NMPC in these letters and during the meetings and subsequent telephone conversations included commitments to revise the Application for Amendment. Accordingly, the appropriate changes to our Application for Amendment regarding Volumes 1 through 11 of our October 16, 1998 submittal were made via revisions dated September 30, 1999, December 14, 1999, and January 6, 2000.

The specific revision in the enclosure to this letter includes the result of the recent approval by the Staff of Technical Specification Amendments No. 87 (December 16, 1999) and No. 88 (December 16, 1999) regarding alternate isolation methods for primary containment bypass or purge system pipes and the addition of new valves and associated leakage limits for primary containment bypass leakage paths. Also, included is a location correction for primary containment isolation instrumentation.

AR

Page 2

Attachment 1 of this letter provides a summary of the changes to the proposed Amendment. In addition, Attachment 2 provides the discard and insertion instructions pertaining to the integration of the proposed changes into our Application for Amendment dated October 16, 1998, as supplemented on September 30, 1999, December 14, 1999, and January 6, 2000.

NMPC has determined that the revision of our proposed Amendment does not involve a significant hazards consideration. The evaluation of the alternate isolation methods and the addition of new valves, which supports this determination, is included in License Amendments Nos. 87 and 88, which have been approved by the Staff. The location correction change is editorial in nature. Accordingly, the evaluations provided in our letter dated October 16, 1998, as revised by the September 30, 1999, December 14, 1999, and January 6, 2000 letters remain valid. In addition, the revision as discussed herein does not create a potential for a significant change in the types or a significant increase in the amounts of any effluents that may be released offsite, nor do the changes involve a significant increase in individual or cumulative occupational radiation exposure. Accordingly, the revision as set forth in 10 CFR 51.22(c)(9). Therefore, pursuant to 10 CFR 51.22(b), an environmental assessment of the revision to our proposed Amendment is not required.

Pursuant to 10 CFR 50.91(b)(1), NMPC has provided a copy of the revision to this Amendment application and the associated analysis regarding no significant hazards consideration to the appropriate state representative.

Sincerely,

Richard B Bletst

Richard B. Abbott Vice President Nuclear Engineering

RBA/TWP/kap Attachments 1 and 2 Enclosure

Mr. H. J. Miller, NRC Regional Administrator, Region I
 Ms. M. K. Gamberoni, Acting Section Chief PD-I, Section 1, NRR
 Mr. G. K. Hunegs, NRC Senior Resident Inspector
 Mr. P. S. Tam, Senior Project Manager, NRR
 Mr. J. P. Spath
 NYSERDA
 286 Washington Avenue Ext.
 Albany, NY 12203-6399
 Records Management

ATTACHMENT 1

SUMMARY OF CHANGES

This attachment provides a brief summary of the changes in Revision E. The original Technical Specification (TS) amendment request (Revision A) was submitted to the NRC on October 16, 1998, Revision B was submitted to the NRC on September 30, 1999, and Revision C was submitted to the NRC on December 14, 1999, and Revision D was submitted to the NRC on January 6, 2000.

The summary of the changes is provided in Chapter/Section order. Page removal and insert instructions have also been provided in Attachment 2 to facilitate updating the amendment request to include Revision E.

Section 3.3

 An elevation was incorrectly provided for Improved Technical Specification (ITS) Table 3.3.6.1-1. This elevation appears in the following three locations: Functions 3.h, 4.e, and 5.d. Specifically, the elevation is revised from 206 ft. to 227 ft. This change affects ITS 3.3.6.1, pages 3.3-62, 3.3-63, and 3.3-64, and the ISTS markup insert pages 3.3-59, 3.3-60, and 3.3-61.

Section 3.6

 A license amendment (Amendment 88) received subsequent to the original ITS submittal added new valves and leakage limits to Current Technical Specification (CTS) Table 3.6.1.2-1, the Allowable Leak Rates Through Valves In Potential Bypass Leakage Paths Table. This change affects ITS 3.6.1.3, pages 3.6-22 and 3.6-23, the CTS markup for ITS 3.6.1.1, page 5 of 10, the CTS markup for ITS 3.6.1.3, pages 9 of 14 and 10 of 14, and the Improved Standard Technical Specification (ISTS) markup for ITS 3.6.1.3, insert pages 3.6-18a and 3.6-18b. In addition, it was noted that Revision D, which included changes based upon CTS Amendment 87, did not include a revised CTS markup page for Specification 3.6.1.1. This new CTS markup page does not technically change the submittal since the CTS page was being moved to another Specification, and the CTS page (as amended by Amendment 87) for the other Specification was included in Revision D. This change affects the CTS markup for ITS 3.6.1.1, page 6 of 10.

ATTACHMENT 2

DISCARD AND INSERTION INSTRUCTIONS

VOL	JME 3
	es, and CTS Markup/DOCs
DISCARD	INSERT
ITS pages 3.3-62; 3.3-63, and 3.3-64	ITS pages 3.3-62, 3.3-63, and 3.3-64
	JME 4
	es, and CTS Markup/DOCs
DISCARD	INSERT
ISTS markup insert page 3.3-59	ISTS markup insert page 3.3-59
ISTS markup insert page 3.3-60	ISTS markup insert page 3.3-60
ISTS markup insert page 3.3-61	ISTS markup insert page 3.3-61
	JME 6
	s, and CTS Markup/DOCs
DISCARD	INSERT
ITS pages 3.6-22 and 3.6-23	ITS pages 3.6-22 and 3.6-23
CTS markup for Specification 3.6.1.1 pages 5 of 10 and 6 of 10	CTS markup for Specification 3.6.1.1 pages 5 of 10 and 6 of 10
CTS markup for Specification 3.6.1.3 pages 9 of 14 and 10 of 14	CTS markup for Specification 3.6.1.3 pages 9 of 14 and 10 of 14
VOL	JME 7
SECTION 3.6: ISTS/JFDs,	ISTS Bases/JFDs, and NSHE
DISCARD	INSERT
ISTS markup insert pages 3.6-18a and 3.6-18b	ISTS markup insert pages 3.6-18a and 3.6-18b

.

ENCLOSURE

.....

i

· ·	•	FUNCTION	APPLICABLE NODES OR OTHER SPECIFIED CONDITIONS	REQUIRED CHANNELS PER TRIP SYSTEM	CONDITIONS REFERENCED FROM REQUIRED ACTION C.1	SURVEILLANCE REQUIREMENTS	ALLOWABLE VALUE	_
5.		C System Isolation continued)						
	g.	RHR Equipment Room Area Temperature - High	1,2,3	1 per area	F	SR 3.3.6.1.1 SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6	≤ 144.5°F	
	h.	Reactor Building Pipe Chase Area Temperature — High	1,2,3	1 per area	F	SR 3.3.6.1.1 SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6		
		El. # 319 ft.					≤ 144.5°F	
		El. ≠ 292 ft.					≤ 140.5°F	
		El. ≠ 266 ft.					≤ 140.5°F	-
		El. ≠ 227 ft.					≤ 140.5°F	ļ
	i.	Reactor Building General Area Temperature — Kigh	1,2,3	1 per area	F	SR 3.3.6.1.1 SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6	≤ 134°F	
	j.	Area Temperature — Timer	1,2,3	1	F	SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6	≤ 1.15 seconds	1
	k.	RCIC/RHR Steam Flow — Kigh	1,2,3	1	F	SR 3.3.6.1.1 SR 3.3.6.1.3 SR 3.3.6.1.4 SR 3.3.6.1.5 SR 3.3.6.1.6	≤ 40.73 inches water	1
	ι.	RCIC/RHR Steam Flow — Timer	1,2,3	1	F	SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6	≤ 13 seconds	1,
	m.	Manual Initiation	1,2,3	1 ^(c)	G	SR 3.3.6.1.6	NA	1.
•	Rea (RW	ctor Water Cleanup CU) System Isolation						-
	a.	Differential Flow — Kigh	1,2,3	1	F	SR 3.3.6.1.1 SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6	≤ 165.5 gpm	
	Ь.	Differential Flow - Timer	1,2,3	1	F	SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6	≤ 47 seconds	
							(continued))

Table 3.3.6.1-1 (page 3 of 5) Primary Containment Isolation Instrumentation

(c) Only inputs into one of the two trip systems.

Revision A

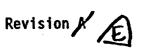

. . .

 Table 3.3.6.1-1 (page 4 of 5)

 Primary Containment Isolation Instrumentation

	FUNCTION	APPLICABLE NODES OR OTHER SPECIFIED CONDITIONS	REQUIRED CHANNELS PER TRIP SYSTEM	CONDITIONS REFERENCED FROM REQUIRED ACTION C.1	SURVEILLANCE REQUIREMENTS	ALLOWABLE VALUE
	CU System Isolation ontinued)					
c.	Neat Exchanger Room Temperature - Wigh	1,2,3	1	F	SR 3.3.6.1.1 SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6	≤ 140.5°F
d.	Pump Room Temperature — High	1,2,3	1 per room	F	SR 3.3.6.1.1 SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6	
	Pump Room A					≤ 144.5°F
	Pump Room B					≤ 159.5°F
e.	Reactor Building Pipe Chase Area Temperature — Wigh	1,2,3	1 per area	F	SR 3.3.6.1.1 SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6	
	El. # 319 ft.					≤ 144.5°F
	El. ≈ 292 ft.					≤ 140.5°F
	El. # 266 ft.					≤ 140.5°F
,	El. # 227 ft.			1		≤ 140.5°F
f.	Reactor Vessel Water Level — Low Low, Level 2	1,2,3	2	F	SR 3.3.6.1.1 SR 3.3.6.1.3 SR 3.3.6.1.4 SR 3.3.6.1.5 SR 3.3.6.1.6	≥ 101.8 inches
g.	SLC System Initiation	1,2	1	I	SR 3.3.6.1.6	NA
h.	Nanual Initiation	1,2,3	4	G	SR 3.3.6.1.6	NA
S. RHI	R SDC System Isolation					
a.	RHR Equipment Room Area Temperature — High	3	1 per area	F	SR 3.3.6.1.1 SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6	≤ 144.5°F
						(continued)

Primary Containment Isolation Instrumentation 3.3.6.1

		FUNCTION	APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS	REQUIRED CHANNELS PER TRIP SYSTEM	CONDITIONS REFERENCED FROM REQUIRED ACTION C.1		EVEILLANCE SUIREMENTS	ALLOWABLE VALUE
j. F	RHR ((cont	SDC System Isolation tinued)						-
t		Reactor Vessel Water Level — Low, Level 3	3,4,5	2 ^(d)	J		3.3.6.1.1 3.3.6.1.3 3.3.6.1.4 3.3.6.1.5 3.3.6.1.6	≥ 157.8 in ches
Ċ		Reactor Vessel Pressure – High	1,2,3	2	F		3.3.6.1.1 3.3.6.1.3 3.3.6.1.4 3.3.6.1.5 3.3.6.1.6	≤ 148 psig
ć	(Reactor Building Pipe Chase Area Femperature — Kigh	3	1 per area	F	SR	3.3.6.1.1 3.3.6.1.3 3.3.6.1.5 3.3.6.1.6	
		El. # 319 ft.						≤ 144.5°F
		El. ≈ 292 ft.						≤ 140.5°F
		El. # 266 ft.						≤ 140.5°F
		El. # 227 ft.						≰ 140.5°F
•	(Reactor Building General Area Temperature — High	3	1 per area	F	SR SR SR SR	3.3.6.1.1 3.3.6.1.3 3.3.6.1.5 3.3.6.1.6	≤ 134°F
1	f. 1	Manual Initiation	1,2,3	4	G	SR	3.3.6.1.6	NA

Table 3.3.6.1-1 (page 5 of 5) Primary Containment Isolation Instrumentation

(d) Only one trip system required in MODES 4 and 5 with RHR Shutdown Cooling System integrity maintained.

A

INSERT 3.h, 3.i, 3.j

h.	Reactor Building Pipe Chase Area Temperature — High	1,2,3	1 per area	F	SR 3.3.6.1.1 SR 3.3.6.1.3			
<Т 3.32 <Г 3.32	-1>				SR 3.3.6.1.5 SR 3.3.6.1.6			
(10, 34) (14,33)	3> El. ≈ 319 ft.					≤ 144.5°F ≤ 140.5°F ≤ 140.5°F ≤ 140.5°F	1	Æ
i.	Reactor Building General Area Temperature — High	1,2,3	1 per area	F	SR 3.3.6.1.1 SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6	≤ 134°F		
j. Te	Area emperature — Timer	1,2,3	1	F	SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6	\leq 1.15 seconds]	Ð

INSERT 3.1

1

1.

LCTSY

R

RCIC/RHR Steam Flow - Timer 1,2,3

F

SR 3.3.6.1.3 ≤ 13 seconds SR 3.3.6.1.5 SR 3.3.6.1.6 12

Insert Page 3.3-59

<pre> </pre> </th <th>SERT 4.d. 4.e</th>	SERT 4.d. 4.e
Pump Room A Pump Room B	≤ 144.5°F ≤ 159.5°F
Area Temperature — High	ber area F SR 3.3.6.1.1 SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6
$\langle T 3.3.2-1 \rangle$ $\langle T 3.3.2-2 \rangle$ $\langle Doc M.3 \rangle$ $E1. \approx 319 \text{ ft}$ $E1. \approx 292 \text{ ft}$ $\langle T 4.3.2.1-1 \rangle$ $E1. \approx 266 \text{ ft}$ $E1. \approx 227 \text{ ft}$	≤ 144.5°F ≤ 140.5°F ≤ 140.5°F ≤ 140.5°F I

Insert Page 3.3-60

LCTS> < T33.2 < T33.2 < DOC M < T4.3.2	-2> 42) 3>	INSERT 5	.d. 5.e. and 5	δ.f		
d.	Reactor Building Pipe Chase Chase Area Temperature — High	3	1 per area	F	SR 3.3.6.1.1 SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6	
•	E1. \approx 319 ft E1. \approx 292 ft E1. \approx 266 ft E1. \approx 227 ft					≤ 144.5°F ≤ 140.5°F ≤ 140.5°F ≤ 140.5°F
е.	Reactor Building General Area Temperature — High	3	1 per area	F	SR 3.3.6.1.1 SR 3.3.6.1.3 SR 3.3.6.1.5 SR 3.3.6.1.6	≤ 134°F

1,2,3

4

SR 3.3.6.1.6

NA

G

f.

Manual Initiation

Insert Page 3.3-61

à

Revision A

1

VALVE NUMBER	PER VALVE LEAK RATE (SCFH)	
2MSS*MOV111 2MSS*MOV112	1.875	
2MSS*M0V208	0.625	
2CMS*SOV74A, B 2CMS*SOV75A, B 2CMS*SOV76A, B 2CMS*SOV77A, B	0.2344	
2DER*MOV119 2DER*RV344	(a)	E
2DER*MOV120	1.25	
2DER*MOV130 2DER*MOV131	0.625	
2DFR*MOV120	1.875	
2DFR*MOV121 2DFR*RV228	(b)	
2DFR*MOV139 2DFR*MOV140	0.9375	·
2WCS*MOV102 2WCS*MOV112	2.5	
2FWS*AOV23A, B 2FWS*V12A, B	12.0	
2CPS*A0V104 2CPS*A0V106	4.38	
	(co	ntinued)

Table 3.6.1.3-1 (page 1 of 2)Secondary Containment Bypass Leakage Paths Leakage Rate Limits

(b) The combined leakage rate for these two values shall be \leq 1.875 SCFH.

PCIVs 3.6.1.3

VALVE NUMBER	PER VALVE LEAK RATE (SCFH)	
2CPS*A0V105 2CPS*A0V107	3.75	
2CPS*SOV119 2CPS*SOV120 2CPS*SOV121 2CPS*SOV122	0.625	
21AS*SOV164 21AS*V448	0.9375	IB
2IAS*S0V165 2IAS*V449	0.9375	
2GSN*SOV166 2GSN*V170	(c)	E
21AS*SOV166 21AS*SOV184	(c)	10
2IAS*SOV167 2IAS*SOV185	(c)	11
21AS*S0V168 21AS*S0V180	(c)	12
2CPS*S0V132 2CPS*V50	(c)	IA
2CPS*S0V133 2CPS*V51	(c)	

Table 3.6.1.3-1 (page 2 of 2) Secondary Containment Bypass Leakage Paths Leakage Rate Limits

(c) The combined leak rate for these penetrations shall be \leq 3.6 SCFH. The assigned leakage rate through a penetration shall be that of the valve with the highest leakage rate in that penetration. However, if a penetration is isolated by one closed and de-activated automatic valve, closed manual valve, or blind flange, the leakage through the penetration shall be the actual pathway leakage.

Revision K/E

IE

Specification 3.6.1.1

	LEAK RATES THROUGH VA		```
POTENTI	AL BYPASS LEAKAGE PAT	<u>THS</u>	
INE DESCRIPTION	VALVE MARK NO.	TERMINATION REGION	PER VALVE LEAK RATE, SCFH
4 Main Steam Lines	2MSS*AOV6A, B, C, D 2MSS*AOV7A, B, C, D	Turbine Bldg.	24.0
Main Steam Drain Line (Inboard)	2MSS*MOV111, 112	Turbine Bldg.	1.875
Main Steam Drain Line Outboard)	2MSS*MOV208	Turbine Bldg.	0.625
Postaccident Sampling Lines	2CMS*SOV77A, B 2CMS*SOV74A, B 2CMS*SOV75A, B 2CMS*SOV75A, B	Radwaste Tunnel	0.2344
Drywell Equipment Drain Line	2DER*MOV119 AND 2DER*RV344 2DER*MOV120	Radwaste Tunnel	1.25**•
Drywell Equipment Vent Line	2DER*MOV130 2DER*MOV131	Radwaste Tunnel	0.625
Drywell Floor Drain Line	2DFR*MOV120 2DFR*MOV121 AND 2DFR*RV228	Radwaste Tunnel	1.875**
Drywell Floor Vent Line	2DFR*MOV139 2DFR*MOV140	Radwaste Tunnel	0.9375
WCU Line	2WCS*MOV102 2WCS*MOV112	Turbine Bldg.	2.5
eedwater Line	2FWS*A0V23A 2FWS*V12A 2FWS*A0V23B 2FWS*V12B	Turbine Bldg.	12.0
CPS Supply Line to Drywell	2CPS*AOV104 2CPS*AOV106	Standby Gas Trtmt. Area	4.38
PS Supply Line to Drywell	2CPS*SOV120 2CPS*SOV122	Standby Gas Trtmt. Area	0.625
PS Supply Line to Supp. Chamber	2CPS*AOV105 2CPS*AOV107	Standby Gas Trtmt. Area	3.75
PS Supply Line to Supp. Chamber	2CPS*SOV119 2CPS*SOV121	Standby Gas Trtmt. Area	0.625

NINE MILE POINT - UNIT 2

3/4 6-6

Amendment No. 61, 11, 88

Rege Sofro

TABLE 3.6.1.2-1 (Continued)

Specification 3.6.1.1

ALLOWABLE LEAK RATES THROUGH VALVES IN

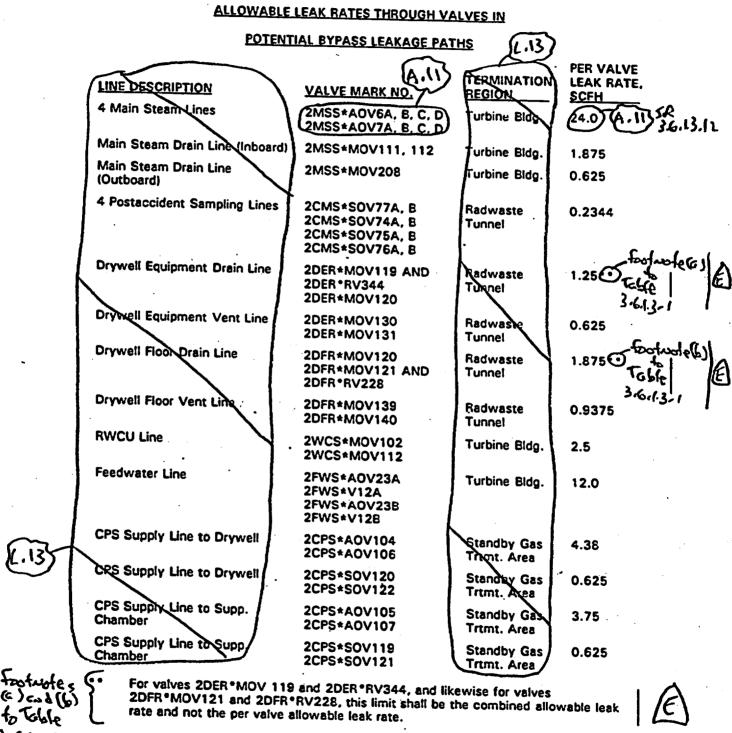
POTENTIAL BYPASS LEAKAGE PATHS

LINE DESCRIPTION	VALVE MARK NO.	TERMINATION REGION	PER VALVE LEAK RATE, SCFH	
Inst. Air to ADS Valve Accumulator	IAS*SOV164 IAS*V448	Yard Area	0.9375	
Inst. Air to ADS Valve Accumulator	IAS*SOV165 IAS*V449	Yard Area	0.9375	
N ₂ Purge to TIP Index Mechanism	GSN*SOV166 GSN*V170	Yard Area	t .	
Inst. Air to SRV Accumulator	IAS*SOV166 IAS*SOV184	Yard Area	*	
Inst. Air to Drywell	IAS*SOV167 IAS*SOV185	Yard Area	≇	
nst. Air to Drywell	IAS*SOV168 IAS*SOV180	Yard Area	ŧ	
nst. Air to CPS Valve in Suppression Chamber	CPS*SOV132 CPS*V50	Yard Area	ŧ	A.J nove
nst. Air to CPS Valve in Suppression Chamber	CPS*SOV133 CPS*V51	Yard Area	€ ·	403.6

The combined leakage of these six penetrations shall not exceed 3.6 SCFH. The leakage through each penetration shall be that of the valve with the highest rate in that penetration. However, if a penetration is isolated by one closed and de-activated automatic valve, closed manual valve, or blind flange, the leakage through the penetration shall be that of the isolation device.

NINE MILE POINT - UNIT 2

3/4 6-7


Amendment No. 14 87

Page 6 of 10

Ô

Specification 3.6.1.3

Table 3.6.1.3-1 IABLE 3.6.1.2-1

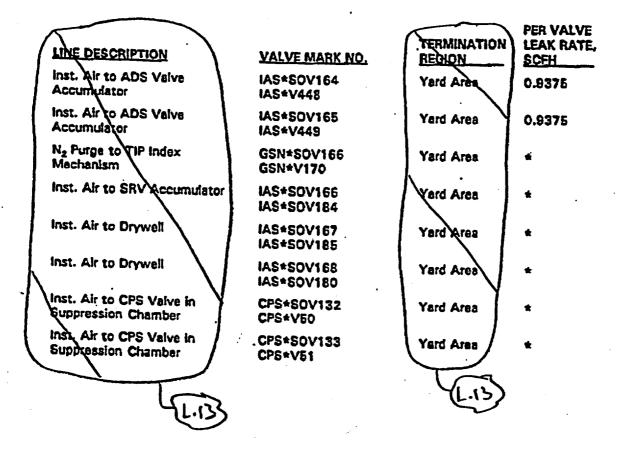
3.6.6.7.4

NINE MILE POINT - UNIT 2

3/4 6-6

Amendment No. 67, 11, 88

Page 90 F 14



Specification 3.6.63

Table 3.6.(.3-1 IABLE 3.6.1.2-1 (Continued)

ALLOWABLE LEAK RATES THROUGH VALVES IN

POTENTIAL BYPASS LEAKAGE PATHS

_ footwote (c) to Table 3.6.1.]-1

The combined leakage of these six penetrations shall not exceed 3.6 SCFH. The leakage through each penetration shall be that of the valve with the highest rate in that penetration. However, if a penetration is isolated by one closed and de-activated automatic valve, closed manual valve, or blind flange, the leakage through the penetration shall be that of the isolation device.

NINE MILE POINT - UNIT 2

3/4 6-7

Page 10 of 14

HE

LCTS> LT3.6.1.2-1>

B

INSERT TABLE 3.6.1.3-1

Table 3.6.1.3-1 (page 1 of 2) Secondary Containment Bypass Leakage Paths Leakage Rate Limits

VALVE NUMBER	PER VALVE LEAK RATE (SCFH)
2MSS*MOV111 2MSS*MOV112	1.875
2MSS*MOV208	0.625
2CMS*SOV74A, B 2CMS*SOV75A, B 2CMS*SOV76A, B 2CMS*SOV77A, B	0.2344
2DER*MOV119 2DER*RV344	(a)
2DER*MOV120	1.25
2DER*MOV130 2DER*MOV131	0.625
2DFR*MOV120	1.875
2DFR*MOV121 2DFR*RV228	(b)
2DFR*MOV139 2DFR*MOV140	0.9375
2WCS*MOV102 2WCS*MOV112	2.5
2FWS*AOV23A, B 2FWS*V12A, B	12.0
2CPS*A0V104 2CPS*A0V106	4.38
	(continued)

E

INSERT TABLE 3.6.1.3-1 (cont'd)

VALVE NUMBER	PER VALVE LEAK RAT (SCFH)	E
2CPS*A0V105 2CPS*A0V107	3.75	
2CPS*S0V119 2CPS*S0V120 2CPS*S0V121 2CPS*S0V122	0.625	
2IAS*SOV164 2IAS*V448	0.9375	B
21AS*SOV165 21AS*V449	0.9375	
2GSN*SOV166 2GSN*V170	(c)	(E)
21AS*SOV166 21AS*SOV184	(c)	IE
21AS*SOV167 21AS*SOV185	(c)	(L)
21AS*SOV168 21AS*SOV180	(c)	
2CPS*S0V132 2CPS*V50	(c)	IA
2CPS*S0V133 2CPS*V51	(c)	IE

Table 3.6.1.3-1 (page 2 of 2) Secondary Containment Bypass Leakage Paths Leakage Rate Limits

(c) The combined leak rate for these penetrations shall be \leq 3.6 SCFH. The assigned leakage rate through a penetration shall be that of the valve with the highest leakage rate in that penetration. However, if a penetration is isolated by one closed and de-activated automatic valve, closed manual valve, or blind flange, the leakage through the penetration shall be the actual pathway leakage.