UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001 #### SOUTHERN NUCLEAR OPERATING COMPANY, INC. #### **ALABAMA POWER COMPANY** #### **DOCKET NO. 50-348** #### JOSEPH M. FARLEY NUCLEAR PLANT, UNIT 1 #### AMENDMENT TO FACILITY OPERATING LICENSE Amendment No. 146 License No. NPF-2 - 1. The Nuclear Regulatory Commission (the Commission) has found that: - A. The application for amendment by Southern Nuclear Operating Company, Inc. (Southern Nuclear), dated March 12, 1998, as supplemented by letters dated April 24, August 20, November 20, 1998, February 3, February 20, April 30 (two letters), May 28, June 30, July 27, August 19, August 30, September 15, and September 23, 1999, comply with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I; - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission; - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations; - D. The issuance of this license amendment will not be inimical to the common defense and security or to the health and safety of the public; and - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied. # UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001 ## SOUTHERN NUCLEAR OPERATING COMPANY, INC. #### ALABAMA POWER COMPANY #### **DOCKET NO. 50-364** ## JOSEPH M. FARLEY NUCLEAR PLANT, UNIT 2 # AMENDMENT TO FACILITY OPERATING LICENSE Amendment No. 137 License No. NPF-8 - 1. The Nuclear Regulatory Commission (the Commission) has found that: - A. The application for amendment by Southern Nuclear Operating Company, Inc. (Southern Nuclear), dated March 12, 1998, as supplemented by letters dated April 24, August 20, November 20, 1998, February 3, February 20, April 30 (two letters), May 28, June 30, July 27, August 19, August 30, September 15, and September 23, 1999, comply with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I; - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission; - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations; - D. The issuance of this license amendment will not be inimical to the common defense and security or to the health and safety of the public; and - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied. 2. Accordingly, the license is amended by changes to the Operating License and Technical Specifications, as indicated in the attachment to this license amendment; and paragraph 2.C.(2) of Facility Operating License No. NPF-8 is hereby amended to read as follows: ## (2) Technical Specifications The Technical Specifications contained in Appendices A and B, as revised through Amendment No. 137, are hereby incorporated in the license. Southern Nuclear shall operate the facility in accordance with the Technical Specifications. 3. This license amendment is effective as of its date of issuance and shall be implemented following completion of the associated training program, but no later than March 31, 2000. FOR THE NUCLEAR REGULATORY COMMISSION Richard L. Emch, Jr., Chief, Section I Project Directorate II Division of Licensing Project Management Richard I. Emchin. Office of Nuclear Reactor Regulation Attachment: Changes to Operating License, Technical Specifications, and Appendix C Date of Issuance: November 30, 1999 #### ATTACHMENT TO LICENSE AMENDMENT NO. 146 #### TO FACILITY OPERATING LICENSE NO. NPF-2 #### **DOCKET NO. 50-348** #### AND LICENSE AMENDMENT NO. 137 ## TO FACILITY OPERATING LICENSE NO. NPF-8 #### **DOCKET NO. 50-364** Replace the following pages of Facility Operating License No. NPF-2 with the attached revised pages. The revised pages are identified by amendment number and contain vertical lines indicating area of changes. Remove Insert Page 6 Page 6 Appendix C Appendix C Replace the following pages of Facility Operating License No. NPF-8 with the attached revised pages. The revised pages are identified by amendment number and contain vertical lines indicating area of changes. Remove <u>Insert</u> Page 14 Page 14 Appendix C Appendix C Replace Appendix A Technical Specifications (TSs) and the associated Bases in their entirety with the attached Appendix A TSs and Bases pages. Remove Insert TSs (in their entirety) TSs (in their entirety) - 2. Identification of the procedures used to quantify parameters that are critical to control points; - 3: Identification of process sampling points; - 4. A procedure for the recording and management of data; - 5. Procedures defining corrective actions for off control point chemistry conditions; and - A procedure identifying the authority responsible for the interpretation of the data and the sequence and timing of administrative events required to initiate corrective action. - (h) The Additional Conditions contained in Appendix C, as revised through Amendment No. 146, are hereby incorporated in the license. The licensee shall operate the facility in accordance with the additional conditions. - (i) For Cycle 16 only, Southern Nuclear shall be permitted to operate the reactor based on a risk-informed demonstration that predicted steam generator tube structural integrity is adequate to meet Regulatory Guide 1.174 numerical acceptance criteria. In accordance with Principle 5 in Regulatory Guide 1.174 concerning monitoring operational experience to ensure that performance is consistent with risk analysis predictions, if Southern Nuclear plugs or repairs steam generator tubes during Cycle 16, then Southern Nuclear shall reinspect the steam generators to the extent necessary to verify that they have been returned to a condition consistent with the operational assessment. ### (4) Fire Protection Southern Nuclear shall implement and maintain in effect all provisions of the approved fire protection program as described on the Final Safety Analysis Report for the facility and as approved in the Fire Protection Safety Evaluation Reports dated February 12, 1979, August 24, 1983, December 30, 1983, November 19, 1985, September 10, 1986, and December 29, 1986. Southern Nuclear may make changes to the approved fire protection program without prior approval of the Commission only if those changes would not adversely affect the ability to achieve and maintain safe shutdown. # APPENDIX C # ADDITIONAL CONDITIONS FACILITY OPERATING LICENSE NO. NPF-2 Southern Nuclear Operating Company, Inc. (SNC), shall comply with the following conditions on the schedules noted below: | Amendment
Number | Additional Condition | Condition Completion Date | |---------------------|---|---| | 137 | SNC shall complete classroom and simulator training for operations crews as described in SNC's letter dated September 22, 1997, and evaluated in the staff's Safety Evaluation dated April 29, 1998. | Prior to Unit 2 entering
Mode 2 from the
spring 1998 refueling
outage. | | 137 | SNC shall complete final simulator modifications in accordance with ANSI/ANS 3.5-1985 and review results of the Cycle 16 startup testing to determine any potential effects on operator training as described in SNC's letter dated September 22, 1997, and evaluated in the staff's Safety Evaluation dated April 29, 1998. | Two years after restart from the Unit 1 fall 1998 refueling outage. | | 137 | SNC shall provide a Steam Generator (SG) Tube Rupture radiological consequences analysis that incorporates a flashing fraction, which is appropriate for the Unit 1 design. | Prior to the Unit 1
SG replacement outage
in spring 2000. | | 146 | SNC shall relocate certain Technical Specification requirements to SNC-controlled documents. Implementation of the Improved Technical Specifications shall include relocating these certain technical specification requirements to the appropriate documents, as described in Table LA – Removal of Requirements from Retained Technical Specifications and Table R – Relocation of Technical Specifications, that are attached to the NRC staff's Safety Evaluation enclosed with this amendment. | Concurrent with the implementation of the Improved Technical Specifications. | # **APPENDIX C** # ADDITIONAL CONDITIONS FACILITY OPERATING LICENSE NO. NPF-2 | Amendment
Number | Additional Condition | Condition Completion Date | |---------------------|---
--| | 146 | The schedule for performing new and revised Surveillance Requirements (SRs) shall be as follows: 1. For SRs that are new in this amendment the | Concurrent with the implementation of the Improved Technical | | | first performance is due at the end of the first surveillance interval that begins on the date of implementation of this amendment. | Specifications. | | | For SRs that existed prior to this
amendment whose intervals of
performance are being reduced, the first
reduced surveillance interval begins upon
completion of the first surveillance
performed after implementation of this
amendment. | | | | 3. For SRs that existed prior to this amendment that have modified acceptance criteria, the first performance is due at the end of the first surveillance interval that began on the date the surveillance was last performed prior to the implementation of this amendment. | , | | | 4. For SRs that existed prior to this amendment whose intervals of performance are being extended, the first extended surveillance interval begins upon completion of the last surveillance performed prior to implementation of this amendment. | | required to provide for an automatic pump trip. This submittal is required within three months after NRC determination of acceptability of the small break LOCA model based on comparisons with LOFT test L3-6. - (ii) If required based on (i) above, complete plant modifications to provide for automatic tripping of reactor coolant pumps within 11 months after NRC determination of model acceptability, provided there is an appropriate outage during that time interval to complete installation or during the first such scheduled outage occurring thereafter. - (3) With respect to reliability of reactor coolant pump seal cooling (II.K.3.25), - (i) Prior to January 1, 1982, submit results of analyses or experiments to determine consequences of a loss of cooling water to the reactor coolant pump seal coolers and describe any modifications found necessary. - (ii) Prior to July 1, 1982, complete any necessary modifications. - (4) With respect to a revised small break LOCA model, - (i) Prior to January 1, 1982, submit to the NRC a revised model to account for recent experimental data (II.K.3.30). - (ii) Submit to the NRC the results of plant-specific calculations using the NRC-approved revised model prior to January 1, 1983. # (22) Additional Conditions The Additional Conditions contained in Appendix C, as revised through Amendment No. 137 , are hereby incorporated in the license. The licensee shall operate the facility in accordance with the additional conditions. ### APPENDIX C # ADDITIONAL CONDITIONS OPERATING LICENSE NO. NPF-8 Southern Nuclear Operating Company, Inc. (SNC), shall comply with the following conditions on the schedules noted below: | Amendment
Number | Additional Condition | Condition Completion Date | |---------------------|--|---| | 129 | SNC shall complete classroom and simulator training for operations crews and temporary simulator modifications as described in SNC's letter dated September 22, 1997, and evaluated in the staff's Safety Evaluation dated April 29, 1998. | Prior to Unit 2
entering Mode 2 from
the spring 1998
refueling outage. | | 129 | SNC shall review the results of the Cycle 13 startup testing to determine any potential effects on operator training and incorporate these changes into licensed operator training as described in SNC's letter dated September 22, 1997, and evaluated in the staff's Safety Evaluation dated April 29, 1998. | Prior to Unit 1 startup
from the fall 1998
refueling outage. | | 129 | SNC shall provide a Steam Generator (SG) Tube
Rupture radiological consequences analysis that
incorporates a flashing fraction, which is appropriate
for the Unit 2 design. | Prior to the Unit 2 SG replacement outage in spring 2001. | | 137 | SNC shall relocate certain Technical Specification requirements to SNC-controlled documents. Implementation of the Improved Technical Specifications shall include relocating these certain technical specification requirements to the appropriate documents, as described in Table LA – Removal of Requirements from Retained Technical Specifications and Table R – Relocation of Technical Specifications, that are attached to the NRC staff's Safety Evaluation enclosed with this amendment. | | # **APPENDIX C** # ADDITIONAL CONDITIONS FACILITY OPERATING LICENSE NO. NPF-8 | Amendment
Number | Additional Condition | Condition Completion Date | |---------------------|---|--| | 137 | The schedule for performing new and revised Surveillance Requirements (SRs) shall be as follows: | Concurrent with the implementation of the Improved Technical | | | For SRs that are new in this amendment the
first performance is due at the end of the first
surveillance interval that begins on the date of
implementation of this amendment. | Specifications. | | | 2. For SRs that existed prior to this amendment whose intervals of performance are being reduced, the first reduced surveillance interval begins upon completion of the first surveillance performed after implementation of this amendment. | | | | For SRs that existed prior to this amendment that have modified acceptance criteria, the first performance is due at the end of the first surveillance interval that began on the date the surveillance was last performed prior to the implementation of this amendment. | | | | 4. For SRs that existed prior to this amendment whose intervals of performance are being extended, the first extended surveillance interval begins upon completion of the last surveillance performed prior to implementation of this amendment. | | | | | 444 | |----------------|---|-----------------------------| | 1.0 | USE AND APPLICATION | 1.191
4 4 4 | | 1.1 | Definitions | 1.1-1
1 2 ₋ 1 | | 1.2 | Logical Connectors | 1 3-1 | | 1.3 | Completion Times | 1 4-1 | | 1.4 | Logical Connectors | ******** | | 2.0 | | | | 2.1 | SI c | 2.0-1 | | 2.2 | SAFETY LIMITS (SLs) | 2.0-1 | | : | | | | 3.0 | LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY | 3.0-1 | | 3.0 | SURVEILLANCE REQUIREMENT (SR) APPLICABILITY | 3.0-3 | | | REACTIVITY CONTROL SYSTEMS | 3.1.1-1 | | 3.1 | SHUTDOWN MARGIN (SDM) | 3.1.1-1 | | 3.1.1
3.1.2 | Core Reactivity | 3.1.2-1 | | 3.1.2 | Core Reactivity | 3.1.3-1 | | 3.1.4 | Rod Group Alignment Limits | 3.1.4-1 | | 3.1.5 | Shutdown Bank Insertion Limits | 3.1.5-1 | | 3.1.6 | Control Bank Insertion Limits | 3.1.6-1 | | 3.1.7 | Rod Position Indication | 3.1./-1 | | 3.1.8 | PHYSICS TESTS Exceptions—MODE 2 | _. 3.1.8-1 | | | | 2 2 1 1 | | 3.2 | POWER DISTRIBUTION LIMITS | 3.2.1-1
2.2.1-1 | | 3.2.1 | Heat Flux Hot Channel Factor (Fo(Z)) | 2 2 2 1-1 | | 3.2.2 | Nuclear Enthalpy Rise Hot Channel Factor (FAH) | ا - ع.ج.د
1 - 2 - 2 - 1 | | 3.2.3 | AXIAL FLUX DIFFERENCE (AFD) | 3.2.3-1
2.2.4-1 | | 3.2.4 | QUADRANT POWER TILT RATIO (QPTR) | 5.2.4-1 | | 3.3 | INSTRUMENTATION | 3.3.1-1 | | 3.3.1 | Reactor Trip System (RTS) Instrumentation | 3.3.1-1 | | 3.3.2 | Engineered Safety Feature Actuation System (ESFAS) | • | | | Instrumentation | 3.3.2-1 | | 3.3.3 | Post Accident Monitoring (PAM) Instrumentation | 3.3.3- I | | 3.3.4 | Remote Shutdown System | 3.3.4-1 | | 3.3.5 | loss of Power (LOP) Diesel Generator (DG) Start | | | • | Instrumentation | 3.3.5-1 | | 3.3.6 | Containment Purge and Exhaust Isolation | 2264 | | | Instrumentation | 3.3.6-1 | | 3.3.7 | Control Room Emergency Filtration/Pressurization System | 227-1 | | | (CREFS) Actuation Instrumentation | 5.5.7-1 | | 3.3.8 | Penetration Room Filtration (PRF) System Actuation | 3.3.8-1 | | | Instrumentation | | | 3.4 | REACTOR COOLANT SYSTEM (RCS) | 3.4.1-1 | |----------------|--|----------| | | RCS Pressure, Temperature, and Flow Departure from | 1 . | | 3.4.1 | Nucleate Boiling (DNB) Limits | 3.4.1-1 | | 3.4.2 | RCS Minimum Temperature for Criticality | 3.4.2-1 | | 3.4.3 | RCS Pressure and Temperature (P/T) Limits | 3.4.3-1 | | 3.4.4
3.4.4 | RCS Loops—MODES 1 and 2 | 3.4.4-1 | | | RCS Loops—MODE 3 | 3.4.5-1 | | 3.4.5
3.4.6 | RCS Loops—MODE 4 | 3.4.6-1 | | •••• | RCS Loops—MODE 4RCS Loops—MODE 5, Loops Filled | 3.4.7-1 | | 3.4.7
3.4.8 | PCS Loops — MODE 5 Loops Not Filled | 3.4.0-1 | | | Proceurizor | 3.4.9-1 | | 3.4.9 | Procurizor Safaty Valvas | 3.4.10-1 | | 3.4.10 | Pressurizer Safety Valves Pressurizer Power Operated Relief Valves (PORVs) | 3.4.11-1 | | 3.4.11 | Low Temperature Overpressure Protection (LTOP) System | 3.4.12-1 | | 3.4.12 | BCS Operational I EAKAGE | 3.4.13-1 | | 3.4.13 | RCS Operational LEAKAGE | 3.4.14-1 | | 0.4.1.4 | | 3.4.15-1 | | 3.4.15 | RCS Specific Activity | 3.4.16-1 | | 3.4.16 | $oldsymbol{\gamma}$ | | | 3.5 | EMERGENCY CORE COOLING SYSTEMS (ECCS) | 3.5.1-1 | | 3.5.1 | Accumulatore | 3.5.1-1 | | 3.5.2 | ECCS—Operating | 3.3.Z- I | | 3.5.3
| ECCS—Shutdown | 3.5.3-1 | | 3.5.4 | Refueling Water Storage Tank (RWST) | 3.5.4-1 | | 3.5.5 | Seal Injection Flow | 5.5.5-1 | | 3.5.6 | ECCS Recirculation Fluid pH Control System | 3.5.6-1 | | | CONTAINMENT SYSTEMS | 3.6.1-1 | | 3.6 | Containment | 3.6.1-1 | | 3.6.1 | Containment Air Locks | 3.6.2-1 | | 3.6.2 | Containment Isolation Valves | 3.6.3-1 | | 3.6.3 | Containment Pressure | J.D.4-1 | | 3.6.4 | Containment Air Temperature | 3.6.5-1 | | 3.6.5 | Containment Spray and Cooling Systems | 3.6.6-1 | | U.U.U | Containment Spray and Cooling Systems Hydrogen Recombiners | 3.6.7-1 | | 3.6.7 | Hydrogen Mixing System (HMS) | 3.6.8-1 | | 3.6.8 | Reactor Cavity Hydrogen Dilution System | 3.6.9-1 | | 3.6.9 | | | | 3.7 | PLANT SYSTEMS | 3.7.1-1 | | 3.7.1 | Main Steam Safety Valves (MSSVs) | 3./.1-1 | | 3.7.2 | Main Steam Isolation Valves (MSIVs) | 3.7.2-1 | | ~··· | | | | 3.7.3 | Main Feedwater Stop Valves and | ***** | |--------|---|----------------------| | | Main Feedwater Regulation Valves (MFRVs) | | | | and Associated Bypass Valves | 3.7.3-1 | | 3.7.4 | Atmospheric Relief Valves (ARVs) | 3.7.4-1 | | 3.7.5 | | 3.7.5-1 | | 376 | Condensate Storage Tank (CST) | 3.7.6-1 | | 3.7.7 | Component Cooling Water (CCW) System | 3.7.7-1 | | 3.7.8 | Service Water System (SWS) | 3.7.8-1 | | 3.7.9 | Ultimate Heat Sink (UHS) | 3.7.9-1 | | 3.7.10 | | A sub- | | 3.7.10 | System (CREES) | 3.7.10-1 | | 0744 | System (CREFS) | 3 7 11-1 | | 3.7.11 | Penetration Room Filtration (PRF) System | 3 7 12-1 | | 3.7.12 | Final Startes Peal Mater Level | 3 7 13-1 | | 3.7.13 | Fuel Storage Pool Water Level | 2 7 1 <i>1</i> -1 | | 3.7.14 | Fuel Storage Pool Boron Concentration | 2 7 1F-1 | | 3.7.15 | Spent Fuel Assembly Storage | 0.7.10-1
2.7.10-1 | | 3.7.16 | Secondary Specific Activity | 3.7.10-1 | | 3.8 | ELECTRICAL POWER SYSTEMS | 3.8.1-1 | | 3.8.1 | AC Sources—Operating | 3.8.1-1 | | 3.8.2 | AC Sources—Shutdown | 3.8.2-1 | | 3.8.3 | Diesel Fuel Oil, Lube Oil, and Starting Air | 3.8.3-1 | | 3.8.4 | DC Sources—Operating | 384-1 | | | DC Sources—Shutdown | 3.8.5-1 | | 3.8.5 | Patters Coll Becometers | 3 8 6-1 | | 3.8.6 | Battery Cell Parameters | 3 8 7-1 | | 3.8.7 | Inverters—Operating | 2 R R-1 | | 3.8.8 | Inverters — Shutdown | 3.0.0-1 | | 3.8.9 | Distribution Systems — Operating | | | 3.8.10 | Distribution Systems — Shutdown | 3.0.10-1 | | 3.9 | REFUELING OPERATIONS | 3.9.1-1 | | 3.9.1 | Boron Concentration | 3.9.1-1 | | 3.9.2 | Nuclear Instrumentation | 3.9.2-1 | | 3.9.3 | Containment Penetrations | 3.9.3-1 | | 3.9.4 | Residual Heat Removal (RHR) and Coolant | | | 3.5.4 | Circulation—High Water Level | 3.9.4-1 | | 005 | Residual Heat Removal (RHR) and Coolant | | | 3.9.5 | Circulation—Low Water Level | 3 9 5-1 | | | Circulation—Low water Level | 3 Q G-1 | | 3.9.6 | Refueling Cavity Water Level | 5.5.0-1 | | 4.0 | DESIGN FEATURES | 4.0-1 | | 4.0 | Site Location | 4.0-1 | | | Reactor Core | 4.0-1 | | 4.2 _ | TEAULUI OUIE | | | | | | | 4.3 | Fuel Storage | 4.0- | |------------|---------------------------|------| | 5.0 | ADMINISTRATIVE CONTROLS | 5.1- | | 5.1 | Responsibility | | | 5.2 | Organization | 5.2- | | 5.3 | Unit Staff Qualifications | 5.3- | | 5.4 | Procedures | | | 5.5 | Programs and Manuals | | | 5.6 | Reporting Requirements | 5.6- | | 5.6
5.7 | High Radiation Area | 5.7- | #### 1.0 USE AND APPLICATION #### 1.1 Definitions NOTE- The defined terms of this section appear in capitalized type and are applicable throughout these Technical Specifications and Bases. #### <u>Term</u> #### <u>Definition</u> #### **ACTIONS** ACTIONS shall be that part of a Specification that prescribes Required Actions to be taken under designated Conditions within specified Completion Times. #### **ACTUATION LOGIC TEST** An ACTUATION LOGIC TEST shall be the application of various simulated or actual input combinations in conjunction with each possible interlock logic state and the verification of the required logic output. The ACTUATION LOGIC TEST, as a minimum, shall include a continuity check of output devices. # AXIAL FLUX DIFFERENCE (AFD) AFD shall be the difference in normalized flux signals between the top and bottom halves of a two section excore neutron detector. #### **CHANNEL CALIBRATION** A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel so that it responds within the required range and accuracy to known input. The CHANNEL CALIBRATION shall encompass the entire channel, including the required sensor, alarm, interlock, and trip functions. Calibration of instrument channels with resistance temperature detector (RTD) or thermocouple sensors may consist of an inplace qualitative assessment of sensor behavior and normal calibration of the remaining adjustable devices in the channel. Whenever a sensing element is replaced, the next required CHANNEL CALIBRATION shall include an inplace cross calibration that compares the other sensing elements with the recently installed sensing element. The CHANNEL CALIBRATION may be performed by means of any series of sequential, overlapping calibrations or total channel steps so that the entire channel is calibrated. #### **CHANNEL CHECK** A CHANNEL CHECK shall be the qualitative assessment, by observation, of channel behavior during operation. This determination shall include, where possible, comparison of the channel indication and status to other indications or status derived from independent instrument channels measuring the same parameter. # CHANNEL OPERATIONAL TEST (COT) A COT shall be the injection of a simulated or actual signal into the channel as close to the sensor as practicable to verify the OPERABILITY of required alarm, interlock, and trip functions. The COT shall include adjustments, as necessary, of the required alarm, interlock, and trip setpoints so that the setpoints are within the required range and accuracy. #### **CORE ALTERATION** CORE ALTERATION shall be the movement of any fuel, sources, or reactivity control components, within the reactor vessel with the vessel head removed and fuel in the vessel. Suspension of CORE ALTERATIONS shall not preclude completion of movement of a component to a safe position. # CORE OPERATING LIMITS REPORT (COLR) The COLR is the unit specific document that provides cycle specific parameter limits for the current reload cycle. These cycle specific parameter limits shall be determined for each reload cycle in accordance with Specification 5.6.5. Unit operation within these limits is addressed in individual Specifications. #### **DOSE EQUIVALENT I-131** DOSE EQUIVALENT I-131 shall be that concentration of I-131 (microcuries/gram) that alone would produce the same thyroid dose as the quantity and isotopic mixture of I-131, I-132, I-133, I-134, and I-135 actually present. The thyroid dose conversion factors used for this calculation shall be those listed in Table E-7 of Regulatory Guide 1.109, Rev. 1, NRC, 1977. # **E — AVERAGE**DISINTEGRATION ENERGY E shall be the average (weighted in proportion to the concentration of each radionuclide in the reactor coolant at the time of sampling) of the sum of the average beta and gamma energies per disintegration (in MeV) for isotopes, other than iodines, with half lives > 15 minutes, making up at least 95% of the total noniodine activity in the coolant. #### ENGINEERED SAFETY FEATURE (ESF) RESPONSE TIME The ESF RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its ESF actuation setpoint at the channel sensor until the ESF equipment is capable of performing its safety function (i.e., the valves travel to their required positions, pump discharge pressures reach their required values, etc.). Times shall include diesel generator starting and sequence loading delays, where applicable. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured. #### **LEAKAGE** #### LEAKAGE shall be: ### a. Identified LEAKAGE - LEAKAGE, such as that from pump seals or valve packing (except reactor coolant pump (RCP) seal water injection or leakoff), that is captured and conducted to collection systems or a sump or collecting tank; - LEAKAGE into the containment atmosphere from sources that are both specifically located and known either not to interfere with the operation of leakage detection systems or not to be pressure boundary LEAKAGE; or - 3. Reactor Coolant System (RCS) LEAKAGE through a steam generator (SG) to the Secondary System; #### b. <u>Unidentified LEAKAGE</u> All LEAKAGE (except RCP seal water injection or leakoff) that is not identified LEAKAGE; ### c. Pressure Boundary LEAKAGE LEAKAGE (except SG LEAKAGE) through a nonisolable fault in an RCS component body, pipe wall, or vessel wall. #### MASTER RELAY TEST A MASTER RELAY TEST shall consist of energizing each master relay and verifying the OPERABILITY of each relay. The MASTER RELAY TEST shall include a continuity check of each associated slave relay. #### MODE A MODE shall correspond to any one inclusive combination of core reactivity condition, power level, average reactor coolant temperature, and reactor vessel head closure bolt tensioning specified in Table 1.1-1 with fuel in the reactor vessel. #### OPERABLE—OPERABILITY A system, subsystem, train, component, or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified safety function(s) and when all necessary attendant instrumentation, controls, normal or emergency electrical power, cooling and seal water. lubrication, and other auxiliary equipment that are required for the system, subsystem, train, component, or device to perform its specified safety function(s) are also capable of performing their related support function(s). #### PHYSICS TESTS PHYSICS TESTS shall be those tests performed to measure the fundamental nuclear characteristics of the reactor core and related instrumentation. These
tests are: - a. Described in Chapter 14, Initial Tests and Operation, of the FSAR: - Authorized under the provisions of 10 CFR 50.59; or b. - Otherwise approved by the Nuclear Regulatory Commission. ### PRESSURE AND **TEMPERATURE LIMITS** REPORT (PTLR) The PTLR is the unit specific document that provides the reactor vessel pressure and temperature limits, including heatup and cooldown rates, for the current reactor vessel fluence period. These pressure and temperature limits shall be determined for each fluence period in accordance with Specification 5.6.6. Plant operation within these operating limits is addressed in LCO 3.4.3, "RCS Pressure and Temperature (P/T) Limits." # QUADRANT POWER TILT RATIO (QPTR) QPTR shall be the ratio of the maximum upper excore detector calibrated output to the average of the upper excore detector calibrated outputs, or the ratio of the maximum lower excore detector calibrated output to the average of the lower excore detector calibrated outputs, whichever is greater. # RATED THERMAL POWER (RTP) RTP shall be a total reactor core heat transfer rate to the reactor coolant of 2775 MWt. #### REACTOR TRIP SYSTEM (RTS) RESPONSE TIME The RTS RESPONSE TIME shall be that time interval from when the monitored parameter exceeds its RTS trip setpoint at the channel sensor until loss of stationary gripper coil voltage. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured. ### SHUTDOWN MARGIN (SDM) SDM shall be the instantaneous amount of reactivity by which the reactor is subcritical or would be subcritical from its present condition assuming: - a. All rod cluster control assemblies (RCCAs) are fully inserted except for the single RCCA of highest reactivity worth, which is assumed to be fully withdrawn. With any RCCA not capable of being fully inserted, the reactivity worth of the RCCA must be accounted for in the determination of SDM; and - b. In MODES 1 and 2, the fuel and moderator temperatures are changed to the hot zero power temperatures. #### **SLAVE RELAY TEST** A SLAVE RELAY TEST shall consist of energizing each slave relay and verifying the OPERABILITY of each slave relay. The SLAVE RELAY TEST shall include, as a minimum, a continuity check of associated testable actuation devices. #### STAGGERED TEST BASIS A STAGGERED TEST BASIS shall consist of the testing of one of the systems, subsystems, channels, or other designated components during the interval specified by the Surveillance Frequency, so that all systems, subsystems, channels, or other designated components are tested during (continued) STAGGERED TEST BASIS (continued) *n* Surveillance Frequency intervals, where *n* is the total number of systems, subsystems, channels, or other designated components in the associated function. THERMAL POWER THERMAL POWER shall be the total reactor core heat transfer rate to the reactor coolant. TRIP ACTUATING DEVICE OPERATIONAL TEST (TADOT) A TADOT shall consist of operating the trip actuating device and verifying the OPERABILITY of required alarm, interlock, and trip functions. The TADOT shall include adjustment, as necessary, of the trip actuating device so that it actuates at the required setpoint within the required accuracy. Table 1.1-1 (page 1 of 1) MODES | MODE | TITLE | REACTIVITY
CONDITION
(keff) | % RATED
THERMAL
POWER(a) | AVERAGE
REACTOR COOLANT
TEMPERATURE
(°F) | |------|------------------|-----------------------------------|--------------------------------|---| | 1 | Power Operation | ≥ 0.99 | > 5 | NA | | 2 | Startup | ≥ 0.99 | ≤5 | Ν̈́Α | | 3 | Hot Standby | < 0.99 | NA | ≥ 350 | | 4 | Hot Shutdown(b) | < 0.99 | NA | 350 > T _{avg} > 200 | | 5 | Cold Shutdown(b) | < 0.99 | NA | ≤ 200 | | 6 | Refueling(c) | NA | NA | NA | | | | | | | - (a) Excluding decay heat. - (b) All reactor vessel head closure bolts fully tensioned. - (c) One or more reactor vessel head closure bolts less than fully tensioned. | | FREQUENCY | | |------------|--|---------| | SR 3.5.5.1 | Not required to be performed until 4 hours after the Reactor Coolant System pressure stabilizes at ≥ 2215 psig and ≤ 2255 psig. | | | | Verify manual seal injection throttle valves are adjusted to give a flow within the limits of Figure 3.5.5-1 with the seal water injection flow control valve full open. | 31 days | 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.5 Seal Injection Flow LCO 3.5.5 Reactor coolant pump seal injection flow shall be within limits. APPLICABILITY: MODES 1, 2, and 3. #### **ACTIONS** | 701 | ACTIONS | | | | | |-----------|--|-----|---|-----------------|--| | CONDITION | | | REQUIRED ACTION | COMPLETION TIME | | | A. | Seal injection flow not within limit. | A.1 | Adjust manual seal injection throttle valves in accordance with SR 3.5.5.1. | 4 hours | | | В. | Required Action and | B.1 | Be in MODE 3. | 6 hours | | | · | associated Completion
Time not met. | AND | | | | | | •
· | B.2 | Be in MODE 4. | 12 hours | | | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.5.4.1 | Only required to be performed when ambient air temperature is < 35°F. | | | | Verify RWST borated water temperature is ≥ 35°F. | 24 hours | | SR 3.5.4.2 | Verify RWST borated water volume is ≥ 471,000 gallons. | 7 days | | SR 3.5.4.3 | Verify RWST boron concentration is ≥ 2300 ppm and ≤ 2500 ppm. | 7 days | 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.4 Refueling Water Storage Tank (RWST) LCO 3.5.4 The RWST shall be OPERABLE. APPLICABILITY: MODES 1, 2, 3, and 4. #### **ACTIONS** | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | | |----|---|-----|----------------------------------|-----------------|--| | A. | RWST boron concentration not within limits. | A.1 | Restore RWST to OPERABLE status. | 8 hours | | | | <u>OR</u> | | | | | | | RWST borated water temperature not within limits. | | | | | | В. | RWST inoperable for reasons other than Condition A. | B.1 | Restore RWST to OPERABLE status. | 1 hour | | | C. | | C.1 | Be in MODE 3. | 6 hours | | | | associated Completion Time not met. | AND | • | | | | | | C.2 | Be in MODE 5. | 36 hours | | | | SU | RVEILLANCE | | FREQUENCY | |------------|-------------------------------|-----------------|---|-----------| | SR 3.5.3.2 | Verify the followith power to | 31 days | | | | | Number | <u>Position</u> | <u>Function</u> | | | · | 8706A,
8706B | Closed | RHR pump discharge to centrifugal charging pump suction | | | | 888 4,
8886 | Closed | Centrifugal charging pump discharge to RCS hot legs | | ## **ACTIONS** | CONDITION | REQUIRED ACTION | COMPLETION TIME | |---|--|-----------------| | C. Required ECCS centrifugal charging subsystem inoperable. | C.1 Restore required ECCS centrifugal charging subsystem to OPERABLE status. | 1 hour | | D. Required Action and associated Completion Time of Condition B or C not met. AND At least one RHR subsystem OPERABLE. | D.1 Be in MODE 5. | 24 hours | | | FREQUENCY | | | |------------|-----------------------------------|-----------------------------------|--| | SR 3.5.3.1 | The following SF required to be O | In accordance with applicable SRs | | | | SR 3.5.2.2
SR 3.5.2.3 | SR 3.5.2.6
SR 3.5.2.7 | | ## 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) #### 3.5.3 ECCS—Shutdown ## LCO 3.5.3 One ECCS train shall be OPERABLE. - 1. An RHR train may be considered OPERABLE during alignment and operation for decay heat removal, if capable of being manually realigned to the ECCS mode of operation. - Upon entry into MODE 4 from MODE 3, the breaker or disconnect device to the valve operators for MOVs 8706A and 8706B may be closed for up to 4 hours to allow for repositioning from MODE 3 requirements. APPLICABILITY: MODE 4. #### **ACTIONS** | ACTIONS | | | | |--|-----|--|-----------------| | CONDITION | | REQUIRED ACTION | COMPLETION TIME | | A. Required ECCS residual heat removal (RHR) subsystem inoperable. | A.1 | Initiate action to restore required ECCS RHR subsystem to OPERABLE status. | Immediately | | B. Required ECCS centrifugal charging subsystem inoperable. AND | B.1 | Restore required ECCS centrifugal charging subsystem to OPERABLE status. | 72 hours | | At least 100% of the ECCS flow equivalent to a single OPERABLE ECCS train available. | | | | | | SURVEILLANCE | FREQUENCY | |------------|--|-----------| | SR 3.5.2.5 | 18 months | | | SR 3.5.2.6 | Verify, for each ECCS throttle valve listed below, each position stop is in the correct position. | 18 months | | | Valve Number | | | | CVC-V-8991 A/B/C
CVC-V-8989 A/B/C
CVC-V-8996 A/B/C
CVC-V-8994 A/B/C
RHR-HV 603 A/B | | | SR 3.5.2.7 | Verify, by visual inspection, each ECCS train containment sump suction inlet is not restricted by debris and the suction inlet trash racks, screens, and inner cages are properly installed and show no evidence of structural distress or
abnormal corrosion. | 18 months | | | SURVEILLANCE | FREQUENCY | | |------------|--|--|--| | SR 3.5.2.1 | Only required to be performed for valves 8132A and 8132B when Centrifugal Charging Pump A is inoperable. | | | | | Verify the following valves are in the listed position with power to the valve operator removed. | 12 hours | | | | Number Position Function | · | | | | 8884, 8886 Closed Centrifugal Charging Pump to RCS Hot Leg | | | | | 8132A, 8132B Open Centrifugal Charging Pump discharge isolation | | | | | 8889 Closed RHR to RCS Hot Leg Injection | | | | SR 3.5.2.2 | Verify each ECCS manual, power operated, and automatic valve in the flow path, that is not locked, sealed, or otherwise secured in position, is in the correct position. | 31 days | | | SR 3.5.2.3 | Verify each ECCS pump's developed head at the test flow point is greater than or equal to the required developed head. | In accordance with the Inservice Testing Program | | | SR 3.5.2.4 | Verify each ECCS automatic valve in the flow path that is not locked, sealed, or otherwise secured in position, actuates to the correct position on an actual or simulated actuation signal. | 18 months | | # 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) #### 3.5.2 ECCS—Operating ## LCO 3.5.2 Two ECCS trains shall be OPERABLE. - In MODE 3, the Residual Heat Removal or the Centrifugal Charging Pump flow paths may be isolated by closing the isolation valves for up to 2 hours to perform pressure isolation valve testing per SR 3.4.14.1. - Upon entry into MODE 3 from MODE 4, the breaker or disconnect device to the valve operators for MOVs 8706A and 8706B may be locked open for up to 4 hours to allow for repositioning from MODE 4 requirements. APPLICABILITY: MODES 1, 2, and 3. #### **ACTIONS** | CONDITION | | | REQUIRED ACTION | | COMPLETION TIME | | |-----------|--|------------|--------------------------------------|----------|-----------------|--| | A. | One or more trains inoperable. | A.1 | Restore train(s) to OPERABLE status. | 72 hours | | | | | AND | | | | | | | - | At least 100% of the ECCS flow equivalent to a single OPERABLE ECCS train available. | | | | • | | | В. | Required Action and associated Completion Time not met. | B.1
AND | Be in MODE 3. | 6 hours | | | | | | B.2 | Be in MODE 4. | 12 hours | | | | | SURVEILLANCE | FREQUENCY | |--|--|--| | SR 3.5.1.1 | Verify each accumulator isolation valve is fully open. | 12 hours | | SR 3.5.1.2 | Verify borated water volume in each accumulator is ≥ 7555 gallons (31.4%) and ≤ 7780 gallons (58.4%). | 12 hours | | SR 3.5.1.3 | Verify nitrogen cover pressure in each accumulator is ≥ 601 psig and ≤ 649 psig. | 12 hours | | SR 3.5.1.4 | Verify boron concentration in each accumulator is | 31 days | | • #1 * | ≥ 2200 ppm and ≤ 2500 ppm. | AND | | er e | | NOTE Only required to be performed for affected | | | | accumulators | | | | Once within 6 hours after each solution volume increase of ≥ 12% | | | | level, indicated,
that is not the
result of addition
from the refueling
water storage tank | | SR 3.5.1.5 | Verify power is removed from each accumulator isolation valve operator when RCS pressure is ≥ 2000 psig. | 31 days | # 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) #### 3.5.1 Accumulators LCO 3.5.1 Three ECCS accumulators shall be OPERABLE. **APPLICABILITY:** MODES 1 and 2, MODE 3 with RCS pressure > 1000 psig. ----NOTE-- In MODE 3, with RCS pressure > 1000 psig, the accumulators may be inoperable for up to 12 hours to perform pressure isolation valve testing per SR 3.4.14.1. #### **ACTIONS** | | CONDITION | F | REQUIRED ACTION | COMPLETION TIME | |----|---|--------------------------|--|------------------| | A. | One accumulator inoperable due to boron concentration not within limits. | A.1 | Restore boron concentration to within limits. | 72 hours | | В. | One accumulator inoperable for reasons other than Condition A. | B.1 | Restore accumulator to OPERABLE status. | 1 hour | | C. | Required Action and associated Completion Time of Condition A or B not met. | C.1
<u>AND</u>
C.2 | Be in MODE 3. Reduce RCS pressure to ≤ 1000 psig. | 6 hours 12 hours | | D. | Two or more accumulators inoperable. | D.1 | Enter LCO 3.0.3. | Immediately | Figure 3.4.16-1 DOSE EQUIVALENT I-131 Primary Coolant Specific Activity Limit Versus Percent of RATED THERMAL POWER with the Primary Coolant Specific Activity > 0.30 μ Ci/gram DOSE EQUIVALENT I-131. | • | SURVEILLANCE | FREQUENCY | |-------------|---|-----------| | SR 3.4.16.3 | Not required to be performed until 31 days after a minimum of 2 effective full power days and 20 days of MODE 1 operation have elapsed since the reactor was last subcritical for ≥ 48 hours. | | | | Determine ^E from a sample taken in MODE 1 after a minimum of 2 effective full power days and 20 days of MODE 1 operation have elapsed since the reactor was last subcritical for ≥ 48 hours. | 184 days | ## **ACTIONS** | CONDITION | | REQUIRED ACTION | COMPLETION TIME | | |-----------|--|-------------------------------------|-----------------|--| | C. | Required Action and associated Completion Time of Condition A not met. | C.1 Be in MODE 3 with Tavg < 500°F. | 6 hours | | | | OR | | | | | | DOSE EQUIVALENT
I-131 in the unacceptable
region of Figure 3.4.16-1. | | | | | | SURVEILLANCE | FREQUENCY | |-------------|---|---| | SR 3.4.16.1 | Verify reactor coolant gross specific activity ≤ 100/Ē µCi/gm. | 7 days | | SR 3.4.16.2 | Only required to be performed in MODE 1. | - | | · | Verify reactor coolant DOSE EQUIVALENT I-131 specific activity ≤ 0.30 μCi/gm. | 14 days AND | | | | Between 2 and 6 hours after a THERMAL POWER change of ≥ 15% RTP within a 1 hour | 3.4.16 RCS Specific Activity LCO 3.4.16 The specific activity of the reactor coolant shall be within limits. **APPLICABILITY:** MODES 1 and 2, MODE 3 with RCS average temperature $(T_{avg}) \ge 500$ °F. | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|--|------------------------------|---|------------------| | A. | DOSE EQUIVALENT
I-131 > 0.30 µCi/gm. | LCO 3.0.4 is not applicable. | | | | • | | A.1 | Verify DOSE
EQUIVALENT I-131
within the acceptable
region of
Figure 3.4.16-1. | Once per 4 hours | | | | AND | | | | | | A.2 | Restore DOSE EQUIVALENT I-131 to within limit. | 48 hours | | В. | Gross specific activity of the reactor coolant not within limit. | B.1 | Be in MODE 3 with
T _{avg} < 500°F. | 6 hours | | | SURVEILLANCE | FREQUENCY | |-------------|--|-----------| | SR 3.4.15.1 | Perform CHANNEL CHECK of the required containment atmosphere radioactivity monitor. | 12 hours | | SR 3.4.15.2 | Perform COT of the required containment atmosphere radioactivity monitor. | 92 days | | SR 3.4.15.3 | Perform CHANNEL CALIBRATION of the required containment atmosphere radioactivity monitor. | 18 months | | SR 3.4.15.4 | Perform CHANNEL CALIBRATION of the required containment air cooler condensate level monitor. | 18 months | | | CONDITION | F | REQUIRED ACTION | COMPLETION TIME | |----|---|------------|---|-------------------| | В. | Required containment atmosphere gaseous radioactivity monitor inoperable. | B.1.1 | Analyze grab samples of the containment atmosphere. | Once per 24 hours | | | | <u>OR</u> | | | | • | AND | B.1.2 | Perform SR 3.4.13.1. | Once per 24 hours | | | Required containment air cooler condensate level monitor inoperable. | AND | A etalogica
Soloto
Soloto | | | | | B.2 | Restore at least one required monitor to OPERABLE status. | 30 days | | C. | Required Action and associated Completion Time not met. | C.1 | Be in MODE 3. | 6 hours | | | | C.2 | Be in MODE 5. | 36 hours | | D. | All required monitors inoperable. | D.1 | Enter LCO 3.0.3. | Immediately | ### 3.4.15 RCS Leakage Detection Instrumentation LCO 3.4.15 The following RCS leakage detection instrumentation shall be OPERABLE: - a. One containment atmosphere particulate radioactivity monitor; and - b. One containment air cooler condensate level monitor or one containment atmosphere gaseous radioactivity monitor. | APPLICABILITY: | MODES 1, 2, 3, and 4. | |---------------------|-----------------------| | | | | | | | ACTIONS | | | | NOTE | | LCO 3.0.4 is not ap | pplicable. | | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|--|-----------|--|-------------------| | A. | Containment atmosphere particulate
radioactivity monitor inoperable. | A.1.1 | Analyze grab samples of the containment atmosphere. | Once per 24 hours | | | | <u>OR</u> | | | | | | A.1.2 | Perform SR 3.4.13.1. | Once per 24 hours | | | | AND | | • | | | | A.2 | Restore the containment atmosphere particulate radioactivity monitor to OPERABLE status. | 30 days | | | SURVEILLANCE | FREQUENCY | |-------------|---|-----------| | SR 3.4.14.3 | Not required to be met when the RHR System valves valves are required open in accordance with SR 3.4.12.3. | | | | Verify RHR System open permissive interlock prevents the valves from being opened with a simulated or actual RCS pressure signal ≥ 295 psig and ≤ 415 psig. | 18 months | | | SURVEILLANCE | FREQUENCY | |-------------|---|---| | SR 3.4.14.1 | Not required to be performed in MODES 3 and 4. Not required to be performed on the RCS PIVs located in the RHR flow path when in the shutdown cooling mode of operation. RCS PIVs actuated during the performance of this Surveillance are not required to be tested more than once if a repetitive testing loop cannot be avoided. | | | | Verify leakage from each RCS PIV is equivalent to ≤ 0.5 gpm per nominal inch of valve size up to a maximum of 5 gpm at an RCS pressure ≥ 2215 psig and ≤ 2255 psig. | 18 months, prior to entering MODE 2 AND Following valve actuation due to automatic or manual action or flow | | SR 3.4.14.2 | Not required to be met when the RHR System valves are required open in accordance with SR 3.4.12.3. Verify RHR System autoclosure interlock causes the valves to close automatically with a simulated or actual RCS pressure | through the valve | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |---|---|-----------------| | A. (continued) | A.1 Isolate the high pressure portion of the affected system from the low pressure portion by use of one closed manual, deactivated automatic, or check valve. AND | 4 hours | | | A.2 Isolate the high pressure portion of the affected system from the low pressure portion by use of a second closed manual, deactivated automatic, or check valve. | 72 hours | | B. Required Action and associated Completion Time for Condition A normet. | B.1 Be in MODE 3. AND B.2 Be in MODE 5. | 6 hours | | C. RHR System autoclosure or open permissive interlock function inoperable. | C.1 Place the affected valve(s) in the closed position and maintain closed under administrative control. | 4 hours | 3.4.14 RCS Pressure Isolation Valve (PIV) Leakage LCO 3.4.14 Leakage from each RCS PIV shall be within limit. APPLICABILITY: MODES 1, 2, and 3, MODE 4, except valves in the residual heat removal (RHR) flow path when in, or during the transition to or from, the RHR mode of operation. #### **ACTIONS** --NOTES - Separate Condition entry is allowed for each flow path. - 2. Enter applicable Conditions and Required Actions for systems made inoperable by an inoperable PIV. | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |------------|---|---|-----------------| | A . | One or more flow paths with leakage from one or more RCS PIVs not within limit. | Each valve used to satisfy Required Action A.1 and Required Action A.2 must be verified to meet SR 3.4.14.1 and be in the reactor coolant pressure boundary or the high pressure portion of the system. | | | | | | (continued) | | | SURVEILLANCE | | | | | |-------------|--|--|--|--|--| | SR 3.4.13.1 | Not required to be performed in MODE 3 or 4 until 12 hours of steady state operation. | Only required to be performed during steady state operation | | | | | | Verify RCS Operational LEAKAGE is within limits by performance of RCS water inventory balance. | 72 hours | | | | | SR 3.4.13.2 | Verify steam generator tube integrity is in accordance with the Steam Generator Tube Surveillance Program. | In accordance with
the Steam
Generator Tube
Surveillance
Program | | | | ### 3.4.13 RCS Operational LEAKAGE LCO 3.4.13 RCS operational LEAKAGE shall be limited to: - a. No pressure boundary LEAKAGE; - b. 1 gpm unidentified LEAKAGE; - c. 10 gpm identified LEAKAGE; - d. 420 gallons per day for Unit 1 and 450 gallons per day for Unit 2 total primary to secondary LEAKAGE through all steam generators (SGs); and - e. 140 gallons per day for Unit 1 and 150 gallons per day for Unit 2 primary to secondary LEAKAGE through any one SG. APPLICABILITY: MODES 1, 2, 3, and 4. | AUT | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |-----|---|--------------------------|----------------------------------|-----------------| | A. | RCS LEAKAGE not within limits for reasons other than pressure boundary LEAKAGE. | A.1 | Reduce LEAKAGE to within limits. | 4 hours | | В. | Required Action and associated Completion Time of Condition A not met. | B.1
<u>AND</u>
B.2 | Be in MODE 3. Be in MODE 5. | 6 hours | | | <u>OR</u> | D.2 | De III MODE 3. | | | | Pressure boundary
LEAKAGE exists. | | | | | - 13 × 1. | SURVEILLANCE | FREQUENCY | | | |-------------|--|---|--|--| | SR 3.4.12.2 | SR 3.4.12.2 Verify each accumulator is isolated. | | | | | SR 3.4.12.3 | Verify RHR suction isolation valves are open for each required RHR suction relief valve. | 72 hours | | | | SR 3.4.12.4 | Only required to be performed when complying with LCO 3.4.12.b. | | | | | | Verify RCS vent ≥ 2.85 square inches open. | 12 hours for unlocked, unsealed, or unsecured open vent valve(s) | | | | | | 31 days for locked, sealed, or otherwise secured open vent valve(s) | | | | SR 3.4.12.5 | Verify each required RHR suction relief valve setpoint. | In accordance with
the Inservice
Testing Program | | | | | | AND | | | | | | Every 18 months
on a
STAGGERED
TEST BASIS | | | | | CONDITION | R | EQUIRED ACTION | COMPLETION TIME | | |----|---|---------|--|-----------------|--| | D. | One required RHR relief valve inoperable. | D.1 | Reduce pressurizer level to ≤ 30% (cold calibrated). | 24 hours | | | | | D.2 AND | Assign a dedicated operator for RCS pressure monitoring and control. | 24 hours | | | | | D.3 | Restore required RHR relief valve to OPERABLE status. | 7 days | | | Ε. | Two required RHR relief valves inoperable. OR | E.1 | Depressurize RCS and establish RCS vent of ≥ 2.85 square inches. | 8 hours | | | | Required Action and associated Completion Time of Condition A, C, or D not met. | | | | | | | OR LTOP System inoperable for any reason other than Condition A, B, C, or D. | | | | | | | FREQUENCY | | |-------------|---|----------| | SR 3.4.12.1 | Verify a maximum of one charging pump is capable of injecting into the RCS. | 12 hours | | | CONDITION | REQUIRED ACTION | COMPLETION TIME | | |----|---|---|-----------------|--| | A. | Two or more charging pumps capable of injecting into the RCS. | A.1 NOTE Two charging pumps may be capable of injecting into the RCS during pump swap operation for ≤ 15 minutes. | | | | | | Initiate action to verify a maximum of one charging pump is capable of injecting into the RCS. | Immediately | | | B. | An accumulator not isolated when the accumulator pressure is greater than or equal to the maximum RCS pressure for existing cold leg temperature allowed in the PTLR. | B.1 Isolate affected accumulator. | 1 hour | | | C. | Required Action and associated Completion Time of Condition B not met. | C.1 Increase RCS cold leg temperature to > 325°F. OR C.2 Depressurize affected accumulator to less than the maximum RCS pressure for existing cold leg temperature allowed in the PTLR. | 12 hours | | ### 3.4.12 Low Temperature Overpressure Protection (LTOP) System #### LCO 3.4.12 An LTOP System shall be OPERABLE with a maximum of one charging pump capable of injecting into the RCS and the accumulators isolated and either a or b below. - a. Two residual heat removal (RHR) suction relief valves with setpoints ≤ 450 psig. - The RCS depressurized and an RCS vent of ≥ 2.85 square inches. ####
APPLICABILITY: MODE 4 when the temperature of one or more RCS cold legs is \leq 325°F, MODE 5, MODE 6 when the reactor vessel head is on. #### -NOTES- - 1. The requirement to have only one charging pump capable of injecting into the RCS is only applicable when one or more of the RCS cold legs is ≤ 180°F; however, while in this condition, two charging pumps may be capable of injecting into the RCS during pump swap operations for a period of no more than 15 minutes provided that the RCS is in a non-water solid condition and both RHR relief valves are OPERABLE or the RCS is vented via an opening of no less than 5.7 square inches in area. - Accumulator isolation is only required when accumulator pressure is greater than or equal to the maximum RCS pressure for the existing RCS cold leg temperature allowed by the P/T limit curves provided in the PTLR. - 3. LCO 3.0.4 is not applicable. | | FREQUENCY | | | |-------------|---|-----------|--| | SR 3.4.11.2 | Not required to be performed prior to entry into MODE 3. | | | | | Perform a complete cycle of each PORV during MODE 3 or 4. | 18 months | | | SR 3.4.11.3 | Perform a complete cycle of each PORV using the backup PORV control system. | 18 months | | | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | | |----|---|-----|---|-----------------|--| | F. | More than one block valve inoperable. | F.1 | Place associated PORVs in manual control. | 1 hour | | | | | AND | | | | | | | F.2 | Restore one block valve to OPERABLE status. | 2 hours | | | | | AND | | | | | | | F.3 | Restore remaining block valve to OPERABLE status. | 72 hours | | | G. | | G.1 | Be in MODE 3. | 6 hours | | | | associated Completion Time of Condition F not | AND | • | | | | | met. | G.2 | Be in MODE 4. | 12 hours | | | | SURVEILLANCE | FREQUENCY | |-------------|--|-----------| | SR 3.4.11.1 | Not required to be met with block valve closed in accordance with the Required Action of Condition B or E. Not required to be performed prior to entry into MODE 3. | | | | Perform a complete cycle of each block valve. | 92 days | | | CONDITION | R | EQUIRED ACTION | COMPLETION TIME | |---|--|-----|--|-----------------| | C. | One block valve inoperable. | C.1 | Place associated PORV in manual control. | 1 hour | | | | AND | | | | | | C.2 | Restore block valve to OPERABLE status. | 72 hours | | D. | Required Action and associated Completion | D.1 | Be in MODE 3. | 6 hours | | Time of Condi | Time of Condition A, B, or C not met. | AND | • | | | 4- | or Chot met. | D.2 | Be in MODE 4. | 12 hours | | E. | Two PORVs inoperable and not capable of being manually cycled. | E.1 | Close associated block valves. | 1 hour | | | mandany dydica. | AND | | 1919 | | | | E.2 | Remove power from associated block valves. | 1 hour | | er en | | AND | | | | | • | E.3 | Be in MODE 3. | 6 hours | | | | AND | | | | | | E.4 | Be in MODE 4. | 12 hours | 3.4.11 Pressurizer Power Operated Relief Valves (PORVs) LCO 3.4.11 Each PORV and associated block valve shall be OPERABLE. APPLICABILITY: MODES 1, 2, and 3. ### **ACTIONS** ---NOTES----- - 1. Separate Condition entry is allowed for each PORV. - 2. LCO 3.0.4 is not applicable. | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|--|-------------------|---|-----------------| | A. | One or more PORVs inoperable and capable of being manually cycled. | A.1 | Close and maintain power to associated block valve. | 1 hour | | В. | One PORV inoperable and not capable of being manually cycled. | B.1 | Close associated block valve. | 1 hour | | | | B.2
<u>AND</u> | Remove power from associated block valve. | 1 hour | | | | B.3 | Restore PORV to OPERABLE status. | 72 hours | | | SURVEILLANCE | FREQUENCY | |-------------|---|--| | SR 3.4.10.1 | Verify each pressurizer safety valve is OPERABLE in accordance with the Inservice Testing Program. Following testing, lift settings shall be within ± 1%. | In accordance with
the Inservice
Testing Program | #### 3.4.10 Pressurizer Safety Valves LCO 3.4.10 Three pressurizer safety valves shall be OPERABLE with lift settings ≥ 2460 psig and ≤ 2510 psig. APPLICABILITY: MODES 1, 2, and 3, MODE 4 with all RCS cold leg temperatures > 325°F. ---NOTE-- The lift settings are not required to be within the LCO limits during MODES 3 and 4 for the purpose of setting the pressurizer safety valves under ambient (hot) conditions. This exception is allowed for 54 hours following entry into MODE 3 provided a preliminary cold setting was made prior to heatup. | **** | CONDITION | | REQUIRED ACTION | COMPLETION TIME | | |------|---|-----|------------------------------------|-----------------|--| | A. | One pressurizer safety valve inoperable. | A.1 | Restore valve to OPERABLE status. | 15 minutes | | | В. | Required Action and | B.1 | Be in MODE 3. | 6 hours | | | | associated Completion
Time not met. | AND | | | | | | <u>OR</u> | B.2 | Be in MODE 4 with any RCS cold leg | 12 hours | | | | Two or more pressurizer safety valves inoperable. | | temperatures ≤ 325°F. | | | | | SURVEILLANCE | FREQUENCY | |------------|--|-----------| | SR 3.4.9.1 | Verify pressurizer water level is ≤ 63.5% indicated. | 12 hours | | SR 3.4.9.2 | Verify capacity of each required group of pressurizer heaters is ≥ 125 kW. | 92 days | | SR 3.4.9.3 | Verify required pressurizer heaters are capable of being powered from an emergency power supply. | 18 months | #### 3.4.9 Pressurizer LCO 3.4.9 The pressurizer shall be OPERABLE with: - a. Pressurizer water level ≤ 63.5% indicated; and - b. Two groups of pressurizer heaters OPERABLE with the capacity of each group ≥ 125 kW and capable of being powered from an emergency power supply. | ADDI | ICABI | ITV. | |------|--------------|------| | AFFL | .IUADII | | MODES 1, 2, and 3. Pressurizer water level limit does not apply during: - a. THERMAL POWER ramp > 5% RTP per minute; or - b. THERMAL POWER step > 10% RTP. | <u> حسنت بيج</u> | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |------------------|---|-----|---|-----------------| | Α. | Pressurizer water level not within limit. | A.1 | Be in MODE 3 with reactor trip breakers open. | 6 hours | | | | AND | | · | | | | A.2 | Be in MODE 4. | 12 hours | | В. | One required group of pressurizer heaters inoperable. | B.1 | Restore required group of pressurizer heaters to OPERABLE status. | 72 hours | | C. | | C.1 | Be in MODE 3. | 6 hours | | | associated Completion Time of Condition B not | AND | · | | | | met. | C.2 | Be in MODE 4. | 12 hours | | CONDITION | | | REQUIRED ACTION | | COMPLETION TIME | | |-----------|--------------------------------|-----|---|-------------|-----------------|--| | В. | Required RHR loops inoperable. | B.1 | Suspend all operations involving reduction in RCS boron concentration. | Immediately | Open in | | | | No RHR loop in | AND | | | | | | | operation. | B.2 | Initiate action to restore one RHR loop to OPERABLE status and operation. | Immediately | | | | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.4.8.1 | Verify one RHR loop is in operation. | 12 hours | | SR 3.4.8.2 | Verify correct breaker alignment and indicated power are available to the required RHR pump that is not in operation. | 7 days | ### 3.4.8 RCS Loops — MODE 5, Loops Not Filled LCO 3.4.8 Two residual heat removal (RHR) loops shall be OPERABLE and one RHR loop shall be in operation. # -----NOTES - 1. All RHR pumps may not be in operation for ≤ 15 minutes when switching from one loop to another provided: - a. The core outlet temperature is maintained > 10°F below saturation temperature. - b. No operations are permitted that would cause a reduction of the RCS boron concentration; and - c. No draining operations to further reduce the RCS water volume are permitted. - 2. One RHR loop may be inoperable for ≤ 2 hours for surveillance testing provided that the other RHR loop is OPERABLE and in operation. APPLICABILITY: MODE 5 with RCS loops not filled. | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |-----------------------------|-----|---|-----------------| | A. One RHR loop inoperable. | A.1 | Initiate action to restore RHR loop to OPERABLE status. | Immediately | | OUTVEILERING | SURVEILLANCE | FREQUENCY | |--------------|---|-----------| | SR 3.4.7.3 | Verify correct breaker alignment and indicated power are available to the required RHR pump that is not in operation. | 7 days | **APPLICABILITY:** MODE 5 with RCS loops filled. #### **ACTIONS** | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|---
--|-----------------| | A. | One RHR loop inoperable. AND | A.1 Initiate action to restore a second RHR loop to OPERABLE status. OR | Immediately | | | Required SGs secondary side water levels not within limits. | A.2 Initiate action to restore required SG secondary side water levels to within limits. | Immediately | | В. | Required RHR loops inoperable. OR | B.1 Suspend all operations involving a reduction of RCS boron concentration. AND | Immediately | | | No RHR loop in operation. | B.2 Initiate action to restore one RHR loop to OPERABLE status and operation. | Immediately | | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.4.7.1 | Verify one RHR loop is in operation. | 12 hours | | SR 3.4.7.2 | Verify SG secondary side water level is ≥ 74% (wide range) in required SGs. | 12 hours | ### 3.4.7 RCS Loops — MODE 5, Loops Filled - LCO 3.4.7 One residual heat removal (RHR) loop shall be OPERABLE and in operation, and either: - a. One additional RHR loop shall be OPERABLE; or - The secondary side water level of at least two steam generators (SGs) shall be ≥ 74% (wide range). - 1. The RHR pump of the loop in operation may not be in operation for ≤ 2 hours per 8 hour period provided: - a. No operations are permitted that would cause reduction of the RCS boron concentration; and - b. Core outlet temperature is maintained at least 10°F below saturation temperature. - 2. One required RHR loop may be inoperable for ≤ 2 hours for surveillance testing provided that the other RHR loop is OPERABLE and in operation. - 3. No reactor coolant pump shall be started with one or more RCS cold leg temperatures ≤ 325°F unless: - a. The secondary side water temperature of each SG is < 50°F above each of the RCS cold leg temperatures; or - b. The pressurizer water volume is less than 770 cubic feet (24% of wide range, cold, pressurizer level indication). - 4. All RHR loops may be removed from operation during planned heatup to MODE 4 when at least one RCS loop is in operation. - 5. The number of operating Reactor Coolant Pumps is limited to one at RCS temperatures < 110°F with the exception that a second pump may be started for the purpose of maintaining continuous flow while taking the operating pump out of service. | | CONDITION | REQUIRED ACTION | COMPLETION TIME | | |----|--|--|-----------------|--| | B. | One required RHR loop inoperable. AND | B.1 Be in MODE 5. | 24 hours | | | | Two required RCS loops inoperable. | | ; | | | C. | Required RCS or RHR loops inoperable. | C.1 Suspend all operations involving a reduction of RCS boron concentration. | Immediately | | | | OR | AND | | | | | No RCS or RHR loop in | | | | | | operation. | C.2 Initiate action to restore one loop to OPERABLE status and operation. | Immediately | | | | FREQUENCY | | |------------|---|----------| | SR 3.4.6.1 | Verify one RHR or RCS loop is in operation. | 12 hours | | SR 3.4.6.2 | Verify SG secondary side water levels are ≥ 74% (wide range) for required RCS loops. | 12 hours | | SR 3.4.6.3 | Verify correct breaker alignment and indicated power are available to the required pump that is not in operation. | 7 days | #### 3.4.6 RCS Loops—MODE 4 #### LCO 3.4.6 Two loops consisting of any combination of RCS loops and residual heat removal (RHR) loops shall be OPERABLE, and one loop shall be in operation. #### --NOTES-- - 1. All reactor coolant pumps (RCPs) and RHR pumps may not be in operation for ≤ 2 hours per 8 hour period provided: - a. No operations are permitted that would cause reduction of the RCS boron concentration; and - b. Core outlet temperature is maintained at least 10°F below saturation temperature. - 2. No RCP shall be started with any RCS cold leg temperature ≤ 325°F unless: - The secondary side water temperature of each steam generator (SG) is < 50°F above each of the RCS cold leg temperatures; or - b. The pressurizer water volume is less than 770 cubic feet (24% of wide range, cold, pressurizer level indication). APPLICABILITY: MODE 4. | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|--|-----|--|-----------------| | A. | One required RCS loop inoperable. AND | A.1 | Initiate action to restore a second loop to OPERABLE status. | Immediately | | | Two RHR loops inoperable. | | | : | | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|--|--|-------------------------| | C. | One required RCS loop not in operation, and reactor trip breakers closed and Rod Control System capable of rod withdrawal. | C.1 Restore required RCS loop to operation. OR C.2 De-energize all control rod drive mechanisms (CRDMs). | 1 hour | | D. | Two required RCS loops inoperable. OR No RCS loop in operation. | D.1 De-energize all CRDMs. AND D.2 Suspend all operations involving a reduction of RCS boron concentration. AND | Immediately Immediately | | | • | D.3 Initiate action to restore one RCS loop to OPERABLE status and operation. | Immediately | | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.4.5.1 | Verify required RCS loops are in operation. | 12 hours | | SR 3.4.5.2 | Verify steam generator secondary side water levels are ≥ 28% (narrow range) for required RCS loops. | 12 hours | | SR 3.4.5.3 | Verify correct breaker alignment and indicated power are available to the required pump that is not in operation. | 7 days | ### 3.4.5 RCS Loops—MODE 3 # LCO 3.4.5 Two RCS loops shall be OPERABLE, and either: - a. Two RCS loops shall be in operation when the Rod Control System is capable of rod withdrawal; or - b. One RCS loop shall be in operation when the Rod Control System is not capable of rod withdrawal. All reactor coolant pumps may not be in operation for ≤ 1 hour per 8 hour period provided: - a. No operations are permitted that would cause reduction of the RCS boron concentration; and - b. Core outlet temperature is maintained at least 10°F below saturation temperature. APPLICABILITY: MODE 3. | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |-----------|--|-----|---|-----------------| | A. | One required RCS loop inoperable. | A.1 | Restore required RCS loop to OPERABLE status. | 72 hours | | В. | Required Action and associated Completion Time of Condition A not met. | B.1 | Be in MODE 4. | 12 hours | 3.4.4 RCS Loops -- MODES 1 and 2 LCO 3.4.4 Three RCS loops shall be OPERABLE and in operation. APPLICABILITY: MODES 1 and 2. ### **ACTIONS** | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |---------------------------------|-----|-----------------|-----------------| | A. Requirements of LCO not met. | A.1 | Be in MODE 3. | 6 hours | | | SURVEILLANCE | FREQUENCY | |------------|---------------------------------------|-----------| | SR 3.4.4.1 | Verify each RCS loop is in operation. | 12 hours | | CONDITION | | REQUIRED ACTION | | COMPLETION TIME | | |-----------|--|-----------------|---|--------------------------|--| | C. | Required Action C.2 shall be completed whenever this Condition is entered. | C.1 | Initiate action to restore parameter(s) to within limits. | Immediately | | | | Requirements of LCO not met any time in other than MODE 1, 2, 3, or 4. | C.2 | Determine RCS is acceptable for continued operation. | Prior to entering MODE 4 | | | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.4.3.1 | Only required to be performed during RCS heatup and cooldown operations and RCS inservice leak and hydrostatic testing. | | | | Verify RCS pressure, RCS temperature, and RCS heatup and cooldown rates are within the limits | 1 hour | | | specified in the PTLR. | | # 3.4.3 RCS Pressure and Temperature (P/T) Limits LCO 3.4.3 RCS pressure, RCS temperature, and RCS heatup and cooldown rates shall be maintained within the limits specified in the PTLR. APPLICABILITY: At all times. | CONDITION | | REQUIRED ACTION | | COMPLETION TIME | | |-----------|--|--------------------------|---|------------------|--| | A. | Required Action A.2 shall be completed whenever this Condition is entered. | A.1 | Restore parameter(s) to within limits. | 30 minutes | | | | Requirements of LCO not met in MODE 1, 2, 3, or 4. | A.2 | Determine RCS is acceptable for continued operation. | 72 hours | | | В. | Required Action and associated Completion Time of Condition A not met. | B.1
<u>AND</u>
B.2 | Be in MODE 3. Be in MODE 5 with RCS pressure < 500 psig. | 6 hours 36 hours | | # 3.4.2 RCS Minimum Temperature for Criticality LCO 3.4.2 Each RCS loop average temperature (T_{avg}) shall be $\geq 541^{\circ}F$. **APPLICABILITY:** MODE 1, MODE 2 with $k_{eff} \ge 1.0$. ### **ACTIONS** | CONDITION | REQUIRED ACTION | | COMPLETION TIME | |--|-----------------
---------------|-----------------| | A. Tavg in one or more RCS loops not within limit. | A.1 | Be in MODE 3. | 30 minutes | | | SURVEILLANCE | FREQUENCY | |------------|---|---| | SR 3.4.2.1 | Verify RCS T _{avg} in each loop ≥ 541°F. | Only required if low low T _{avg} alarm not reset and any RCS loop T _{avg} < 547°F | | | SURVEILLANCE | FREQUENCY | |------------|--|-----------| | SR 3.4.1.1 | Verify pressurizer pressure is ≥ 2209 psig. | 12 hours | | SR 3.4.1.2 | Verify RCS average temperature is ≤ 580.3°F. | 12 hours | | SR 3.4.1.3 | Verify RCS total flow rate is ≥ 264,200 gpm. | 12 hours | | SR 3.4.1.4 | Not required to be performed until 7 days after ≥ 90% RTP. | | | | Verify by measurement that RCS total flow rate is ≥ 264,200 gpm. | 18 months | #### 3.4 REACTOR COOLANT SYSTEM (RCS) #### 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 3.4.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below: - a. Pressurizer pressure ≥ 2209 psig; - b. RCS average temperature ≤ 580.3°F; and - c. RCS total flow rate \geq 264,200 gpm. | APPLICABILITY: M | ODE 1 | ١. | |------------------|-------|----| |------------------|-------|----| | | | | | -NO | TE |
 | | | |---|--|----|----|-----|----|------|---|--| | _ | | •• | •- | | | | • | | Pressurizer pressure limit does not apply during: - a. THERMAL POWER ramp > 5% RTP per minute; or - b. THERMAL POWER step > 10% RTP. #### **ACTIONS** | CC | ONDITION | | REQUIRED ACTION | . COMPLETION TIME | |----|---|-----|---|-------------------| | A. | One or more RCS DNB parameters not within limits. | A.1 | Restore RCS DNB parameter(s) to within limit. | 2 hours | | B. | Required Action and associated Completion Time not met. | B.1 | Be in MODE 2. | 6 hours | # Table 3.3.8-1 (page 1 of 1) PRF Actuation Instrumentation | | FUNCTION | APPLICABLE
MODES OR OTHER
SPECIFIED
CONDITIONS | REQUIRED
CHANNELS | SURVEILLANCE
REQUIREMENTS | TRIP SETPOINT | |-----------|--|---|----------------------|--|------------------------------------| | 1. | Manual Initiation | 1,2,3,4, (a) | 2 trains | SR 3.3.8.6 | NA L | | 2. | Automatic Actuation Logic and Actuation Relays | 1,2,3,4 | 2 trains | SR 3.3.8.3
SR 3.3.8.4
SR 3.3.8.5 | NA | | 3. | Spent Fuel Pool Room
Radiation Gaseous
(R-25A, B) | (a) | 2 | SR 3.3.8.1
SR 3.3.8.2
SR 3.3.8.7 | ≤ 8.73 x 10 ⁻³ µCV∞ (b) | | 4. | Spent Fuel Pool Room
Ventilation Differential
Pressure
(PDSL-3989A and B) | (a) | 2 | SR 3.3.8.6
SR 3.3.8.7 | NA | | 5. | Containment Isolation -
Phase B | Refer to LCO 3.3.2, "ES requirements. | SFAS Instrumentation | * Function 3.b, for all init | iation Functions and | ⁽a) During movement of irradiated fuel assemblies in the spent fuel pool room.(b) Above background with no flow. #### SURVEILLANCE REQUIREMENTS Refer to Table 3.3.8-1 to determine which SRs apply for each PRF Actuation Function. | | The state of s | | |------------|--|---| | | SURVEILLANCE | FREQUENCY | | SR 3.3.8.1 | Perform CHANNEL CHECK. | 12 hours | | SR 3.3.8.2 | Perform COT. | 92 days | | SR 3.3.8.3 | Perform ACTUATION LOGIC TEST. | 31 days on a
STAGGERED
TEST BASIS | | SR 3.3.8.4 | Perform MASTER RELAY TEST. | 31 days on a
STAGGERED
TEST BASIS | | SR 3.3.8.5 | Perform SLAVE RELAY TEST. | 18 months | | SR 3.3.8.6 | Verification of setpoint is not required. | - | | | Perform TADOT. | 18 months | | SR 3.3.8.7 | Perform CHANNEL CALIBRATION. | 18 months | | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|--|--|-----------------| | C. | Only applicable to Functions required OPERABLE by Table 3.3.8-1 during movement of irradiated | C.1 Suspend movement of irradiated fuel assemblies in the spent fuel pool room. | Immediately | | | fuel assemblies in the spent fuel pool room. | | | | | Required Action and associated Completion Time for Condition A or B not met during | e de la proposición de la companya d | | | | movement of irradiated fuel assemblies in the spent fuel pool room. | | | | D. | Only applicable to Functions required | D.1 Be in MODE 3. AND | 6 hours | | | OPERABLE by Table 3.3.8-1 in MODES 1-4. | D.2 Be in MODE 5. | 36 hours | | | Required Action and associated Completion Time for Condition A or B not met in MODE 1, 2, 3, or 4. | | -
- | # 3.3.8 Penetration Room Filtration (PRF) System Actuation Instrumentation LCO 3.3.8 The PRF actuation instrumentation for each Function in Table 3.3.8-1 shall be OPERABLE. APPLICABILITY: According to Table 3.3.8-1. #### **ACTIONS**NOTE-- Separate Condition entry is allowed for each Function. | | CONDITION | F | REQUIRED ACTION | COMPLETION TIME | |----|---|-----------|--|-----------------| | A. | One or more Functions with one channel or train inoperable. | A.1 | Place one PRF train in operation. | 7 days | | В. | One or more Functions with two channels or two trains inoperable. | B.1.1 | Place one PRF train in operation. | Immediately | | | | <u>AN</u> | <u>D</u> - | | | | | B.1.2 |
Enter applicable Conditions and Required Actions of LCO 3.7.12, "PRF System," for one train made inoperable by inoperable actuation instrumentation. | Immediately | | | | <u>OR</u> | | | | | | B.2 | Place both PRF trains in operation. | Immediately | # Table 3.3.7-1 (page 1 of 1) CREFS Actuation Instrumentation | | FUNCTION | APPLICABLE
MODES OR OTHER
SPECIFIED
CONDITIONS | REQUIRED
CHANNELS | SURVEILLANCE
REQUIREMENTS | TRIP SETPOINT | |----|---|---|----------------------|--|------------------------| | 1. | Manual Initiation | 1,2,3,4, (a), (b) | 2 trains | SR 3.3.7.6 | NA | | 2. | Automatic Actuation Logic and Actuation Relays | 1,2,3,4 | 2 trains | SR 3.3.7.4
SR 3.3.7.5 | NA | | 3. | Control Room Radiation
Control Room Air Intake
(R-35A, B) | 1,2,3,4
(a), (b) | | SR 3.3.7.1
SR 3.3.7.2
SR 3.3.7.7 | ≤ 800 cpm | | 4. | Containment Isolation -
Phase A | Refer to LCO 3.3.2, "ES requirements. | FAS Instrumentation | n," Function 3.a., for all in | itiation functions and | ⁽a) During CORE ALTERATIONS.(b) During movement of irradiated fuel assemblies. ## SURVEILLANCE REQUIREMENTS | | SURVEILLANCE | FREQUENCY | |------------|---|---| | SR 3.3.7.3 | Perform ACTUATION LOGIC TEST. | 31 days on a
STAGGERED
TEST BASIS | | SR 3.3.7.4 | Perform MASTER RELAY TEST. | 31 days on a
STAGGERED
TEST BASIS | | SR 3.3.7.5 | Perform SLAVE RELAY TEST. | 18 months | | SR 3.3.7.6 | Verification of setpoint is not required. | | | | Perform TADOT. | 18 months | | SR 3.3.7.7 | Perform CHANNEL CALIBRATION. | 18 months | | | CONDITION | 1 | REQUIRED ACTION | COMPLETION TIME | |----|---|--------------------------|---|-------------------------| | В. | (continued) | B.2 | Place both CREFS trains in emergency recirculation mode. | Immediately | | C. | Required Action and associated Completion Time for Condition A or B not met in MODE 1, 2, 3, or 4. | C.1
<u>AND</u>
C.2 | Be in MODE 3. Be in MODE 5. | 6 hours 36 hours | | D. | Required Action and associated Completion Time for Condition A or B not met during movement of irradiated fuel assemblies or during CORE ALTERATIONS. | D.1 <u>AND</u> D.2 | Suspend CORE
ALTERATIONS. Suspend movement of irradiated fuel assemblies. | Immediately Immediately | ### **SURVEILLANCE REQUIREMENTS** Refer to Table 3.3.7-1 to determine which SRs apply for each CREFS Actuation Function. | | FREQUENCY | | |------------|------------------------|----------| | SR 3.3.7.1 | Perform CHANNEL CHECK. | 12 hours | | SR 3.3.7.2 | Perform COT. | 92 days | 3.3.7 Control Room Emergency Filtration/Pressurization System (CREFS) Actuation Instrumentation LCO 3.3.7 The CREFS actuation instrumentation for each Function in Table 3.3.7-1 shall be OPERABLE. APPLICABILITY: According to Table 3.3.7-1. **ACTIONS** Separate Condition entry is allowed for each Function. | | CONDITION | F | REQUIRED ACTION | COMPLETION TIME | |----|--|-----------|--|-----------------| | A. | One or more Functions with one required channel or train inoperable. | A.1 | Place one CREFS train in emergency recirculation mode. | 7 days | | В. | One or more Functions with two required channels or two trains inoperable. | B.1.1 | Place one CREFS train in emergency recirculation mode. | Immediately | | | | B.1.2 | Enter applicable Conditions and Required Actions of LCO 3.7.10, "CREFS" for one CREFS train made inoperable by inoperable CREFS actuation instrumentation. | Immediately | | | | <u>OR</u> | | (continued) | # Table 3.3.6-1 (page 1 of 1) Containment Purge and Exhaust Isolation Instrumentation | • | FUNCTION | APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS | REQUIRED
CHANNELS | SURVEILLANCE
REQUIREMENTS | TRIP SETPOINT | |----|--|--|----------------------|--|--| | 1. | Manual Initiation | 1,2,3,4, (a), (b) | 2 | SR 3.3.6.6 | NA | | 2. | Automatic Actuation Logic and Actuation Relays | 1,2,3,4 | 2 trains | SR 3.3.6.2
SR 3.3.6.3
SR 3.3.6.5
SR 3.3.6.8 | NA | | 3. | Containment Radiation
Gaseous (R-24A, B) | 1,2,3,4
(a), (b) | | SR 3.3.6.1
SR 3.3.6.4
SR 3.3.6.7 | ≤ 2.27 X 10 ⁻² µCi/cc
(c)(d)
≤ 4.54 X 10 ⁻³ µCi/cc
(c)(e)
≤ 2.27 X 10 ⁻³ µCi/cc
(c)(f) | **During CORE ALTERATIONS.** During movement of irradiated fuel assemblies within containment. Above background with no flow. (b) ⁽c) (d) With mini-purge in operation. ⁽e) (f) With slow speed main purge in operation. With fast speed main purge in operation. #### SURVEILLANCE REQUIREMENTS Refer to Table 3.3.6-1 to determine which SRs apply for each Containment Purge and Exhaust Isolation Function. | | SURVEILLANCE | FREQUENCY | |------------|---|---| | SR 3.3.6.1 | Perform CHANNEL CHECK. | 12 hours | | SR 3.3.6.2 | Perform ACTUATION LOGIC TEST. | 31 days on a
STAGGERED
TEST BASIS | | SR 3.3.6.3 | Perform MASTER RELAY TEST. | 31 days on a
STAGGERED
TEST BASIS | | SR 3.3.6.4 | Perform COT. | 92 days | | SR 3.3.6.5 | Perform SLAVE RELAY TEST. | 18 months | | SR 3.3.6.6 | Verification of setpoint is not required. | - | | | Perform TADOT. | 18 months | | SR 3.3.6.7 | Perform CHANNEL CALIBRATION. | 18 months | | SR 3.3.6.8 | Verify ESF RESPONSE TIME within limit. | 18 months on a
STAGGERED
TEST BASIS | | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|---|---|-----------------| | C. | Only applicable during CORE ALTERATIONS or movement of irradiated fuel assemblies within containment. | C.1 Place and maintain containment purge and exhaust valves in closed position. OR | Immediately | | | One or more manual channel(s) inoperable. OR Two radiation monitoring channels inoperable. | C.2 Enter applicable Conditions and Required Actions of LCO 3.9.3, "Containment Penetrations," for containment purge and exhaust isolation valves made inoperable by isolation instrumentation. | Immediately | | , | OR , | lander (1904) et et en | | | | Required Action and associated Completion Time for Condition A not met. | | | # 3.3.6 Containment Purge and Exhaust Isolation Instrumentation LCO 3.3.6 The Containment Purge and Exhaust Isolation instrumentation for each Function in Table 3.3.6-1 shall be OPERABLE. APPLICABILITY: According to Table 3.3.6-1. **ACTIONS** Separate Condition entry is allowed for each Function. | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|---|-----|---|-----------------| | Α. | One Required radiation monitoring channel inoperable. | A.1 | Restore the affected channel to OPERABLE status. | 4 hours | | В. | Only applicable in MODE 1, 2, 3, or 4. One or more Functions with one or more manual or automatic actuation trains inoperable. OR | B.1 | Enter applicable Conditions and Required Actions of LCO 3.6.3, "Containment Isolation Valves," for containment purge and exhaust isolation valves made inoperable by isolation instrumentation. | Immediately | | | Required Action and associated Completion Time of Condition A not met. | | | | Table 3.3.5-1 (page 1 of 1) Loss of Power Diesel Generator Start Instrumentation | FUN | CTION | APPLICABLE
MODES OR
OTHER
SPECIFIED
CONDITIONS | REQUIRED
CHANNELS
PER TRAIN | SURVEILLANCE
REQUIREMENTS | ALLOWABLE
VALUE | TRIP
SETPOINT | |--|------------------------------|--|-----------------------------------|--|-----------------------------|------------------| | 1. 4.16 kV Em
Loss of Volt | ergency Bus
tage DG Start | 1,2,3,4, (a) | 3 | SR 3.3.5.1
SR 3.3.5.2
SR 3.3.5.3 | ≥ 3222 V
and
≤ 3418 V | ≥ 3255 V | | 2. 4.16 kV Em
Degraded G
Actuation | | 1,2,3,4, (a) | | SR 3.3.5.1
SR 3.3.5.2
SR 3.3.5.3 | ≥ 3638 V
and
≤ 3749 V | ≥ 3675 V | | 3. 4.16 kV Em
Degraged G
Alarm | | 1,2,3,4 | 1 | SR 3.3.5.1
SR 3.3.5.2 | ≥ 3835 V | ≥ 3850 V | ⁽a) When associated DG is required to be OPERABLE by LCO 3.8.2, "AC Sources - Shutdown." #### SURVEILLANCE REQUIREMENTS | | SURVEILLANCE | FREQUENCY | |------------|--|---| | SR 3.3.5.2 | CHANNEL CALIBRATION shall exclude actuation of the final trip actuation relay for Functions 1 and 2. | | | | Perform CHANNEL CALIBRATION. | 18 months | | SR 3.3.5.3 | Response time
testing shall include actuation of the final trip actuation relay. | | | | Verify ESF RESPONSE TIME within limit. | 18 months on a
STAGGERED
TEST BASIS | | CONDITION | | | REQUIRED ACTION | COMPLETION TIME | | |-----------|---|--|--|------------------|--| | D. | NOTEOnly applicable to | D.1 Verify voltage on associated bus is ≥ 3850 | | Once per 4 hours | | | | Function 3. | | volts. | | | | | One Alarm Function | | | | | | | channel inoperable on one or more trains. | | Section 1987 and the section of se | | | | E. | Required Action and associated Completion | E.1 | Restore bus voltage to ≥ 3850 volts. | 1 hour | | | | Time of Condition D not met. | | ora a redigilada en la casa de la como la
Como de la como c | | | | F, | Required Action and | F.1 | Be in MODE 3. | 6 hours | | | , | associated Completion Time of Condition E | AND | | | | | | not met. | F.2 | Be in MODE 5. | 36 hours | | #### **SURVEILLANCE REQUIREMENTS** | | SURVEILLANCE | FREQUENCY | |------------|--|-----------| | SR 3.3.5.1 | TADOT shall exclude actuation of the final trip actuation relay for LOP Functions 1 and 2. | | | | 2. Setpoint verification not required. | | | | Perform TADOT. | 31 days | 3.3.5 Loss of Power (LOP) Diesel Generator (DG) Start Instrumentation LCO 3.3.5 The LOP instrumentation for each Function in Table 3.3.5-1 shall be OPERABLE. APPLICABILITY: According to Table 3.3.5-1. **ACTIONS** --NOTE-- Separate Condition entry is allowed for each Function. | | CONDITION | REQ | UIRED ACTION | COMPLETION TIME | |----|--|-----------------------|--|-----------------| | A. | Only applicable to Functions 1 and 2. One or more functions with one channel per train inoperable. | Th
ma
to
tes | e inoperable channel ay be bypassed for up 4 hours for surveillance sting of other channels. | 6 hours | | В. | Only applicable to Functions 1 and 2. One or more Functions with two or more channels per train inoperable. | ch | estore all but one
annel per train to
PERABLE status. | 1 hour | | C. | Required Action and associated Completion Time of Condition A or B not met. | Co
Ad
as
in | nter applicable ondition(s) and Required ction(s) for the ssociated DG made operable by LOP DG eart instrumentation. | Immediately | # Table 3.3.4-1 (page 1 of 1) Remote Shutdown System Instrumentation and Controls | FUNCTION/INSTRUMENT
OR CONTROL PARAMETER | REQUIRED
NUMBER OF CHANNELS | |--|--------------------------------| | MONITORING INSTRUMENTATION | | | Steam Generator Wide Range Level | 1/SG | | 2. Steam Generator Pressure | 1/SG | | 3. Pressurizer Water Level | 1 | | 4. Pressurizer Pressure | 1 | | 5. RCS Hot Leg Temperature (Loop A) | 1 | | 6. RCS Cold Leg Temperature (Loop A) | 1 | | 7. Source Range Neutron Flux (Gammametrics) | 1 | | 8. Condensate Storage Tank Level | 1 | | TRANSFER AND CONTROL CIRCUITS | · | | 9. Reactivity Control | 1 | | a. Boric Acid Transfer System 10. RCS Pressure | • | | a. Pressurizer Heater Control | 4 | | 11. RCS Inventory | • | | a. Charging System | · 1 | | b. Letdown Orifice Isolation Valves | • | | 12. Decay Heat Removal | • | | a. Auxiliary Feedwater System | 1 | | b. SG Atmospheric Relief Valves | 1 | | 13. Safety Grade Support Systems Required For Functions Listed Above | 1 | | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|--|---|-----------------| | C. | Required Action and associated Completion Time not met for Source Range Neutron Flux function. | C.1 Submit a report to the NRC outlining the preplanned alternate method of ensuring the reactor remains shutdown in the event of a control room evacuation, the cause of the inoperability, and the plans and schedule for restoring the Source Range Neutron Flux monitor to OPERABLE status. | 14 days | ### SURVEILLANCE REQUIREMENTS | | SURVEILLANCE | FREQUENCY | |------------|--|--------------| | SR 3.3.4.1 | Perform CHANNEL CHECK for each required monitoring instrumentation channel that is normally energized. | 31 days | | SR 3.3.4.2 | Verify each required control circuit and transfer switch is capable of performing the intended function. | 18 months | | SR 3.3.4.3 | Neutron detectors are excluded from CHANNEL CALIBRATION. | E CONTRACTOR | | • | Perform CHANNEL CALIBRATION for each required monitoring instrumentation channel. | 18 months | ## 3.3.4 Remote Shutdown System LCO 3.3.4 The Remote Shutdown System Functions in Table 3.3.4-1 shall be OPERABLE. **APPLICABILITY:** MODES 1, 2, and 3. #### **ACTIONS** -NOTES - 1. LCO 3.0.4 is not applicable. - 2. Separate Condition entry is allowed for each Function. | | CONDITION | 1 - 1 | REQUIRED ACTION | COMPLETION TIME | | |----|---|------------|---|-----------------|--| | A. | One or more required Functions inoperable. | A.1 | Restore required Function to OPERABLE status. | 30 days | | | B. | NOTENot applicable to | B.1 | Be in MODE 3. | 6 hours | | | - | Source Range Neutron Flux function. | AND
B.2 | Be in MODE 4. | 12 hours | | | | Required Action and associated Completion Time not met. | | | | | # Table 3.3.3-1 (page 1 of 1) Post Accident Monitoring Instrumentation | , | FUNCTION | REQUIRED CHANNELS | CONDITION
REFERENCED
FROM | |-----|---|-------------------|---------------------------------| | | | | REQUIRED
ACTION E.1 | | 1. | RCS Hot Leg Temperature (Wide Range) | 2 | F | | 2. | | 2 | F | | | RCS Pressure (Wide Range) | 2 | F | | | Steam Generator (SG) Water Level (Wide or Narrow Range) | 2/SG | F | | 5. | Refueling Water Storage Tank Level | 2 | F | | | Containment Pressure (Narrow Range) | 2 | F | | 7. | Pressurizer Water Level | 2 | F | | 8. | Steam Line Pressure | 2/SG | F | | 9. | Auxiliary Feedwater Flow Rate | 2 | F | | 10. | RCS Subcooling Margin Monitor | 2 | F | | | Containment Water Level (Wide Range) | 2 | F | | | Core Exit Temperature - Quadrant 1 | 2(a) | F | | | Core Exit Temperature - Quadrant 2 | 2(a) | F | | | Core Exit Temperature - Quadrant 3 | 2(a) | F | | | Core Exit Temperature - Quadrant 4 | 2(a) | F | | | Reactor Vessel Level Indicating System | 2 | G | | | Condensate Storage Tank Level | 2 | F | | | Hydrogen Monitors | 2 · | F | | | Containment Area Radiation (High Range) | 2 | G | ⁽a) A channel consists of two core exit thermocouples. | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|--|-----|--|-----------------| | D. | Two hydrogen monitor channels inoperable. | D.1 | Restore one hydrogen
monitor channel to
OPERABLE status | 72 hours | | E. | Required Action and associated Completion Time of Condition C or D not met. | E.1 | Enter the Condition referenced in Table 3.3.3-1 for the channel. | Immediately | | F. | As required by Required
Action E.1
and
referenced in
Table 3.3.3-1. | F.1 | Be in MODE 3. | 6 hours | | | | F.2 | Be in MODE 4. | 12 hours | | G. | As required by Required Action E.1 and referenced in Table 3.3.3-1. | G.1 | Initiate action in accordance with Specification 5.6.8. | Immediately | ## SURVEILLANCE REQUIREMENTS SR 3.3.3.1 and SR 3.3.3.2 apply to each PAM instrumentation Function in Table 3.3.3-1. | | SURVEILLANCE | FREQUENCY | | |------------|---|-----------|--| | SR 3.3.3.1 | Perform CHANNEL CHECK for each required instrumentation channel that is normally energized. | 31 days | | | SR 3.3.3.2 | Perform CHANNEL CALIBRATION. | 18 months | | 3.3.3 Post Accident Monitoring (PAM) Instrumentation LCO 3.3.3 The PAM instrumentation for each Function in Table 3.3.3-1 shall be OPERABLE. APPLICABILITY: MODES 1, 2, and 3. #### **ACTIONS** -----NOTE - 1. LCO 3.0.4 is not applicable. - 2. Separate Condition entry is allowed for each Function. | | CONDITION | F | REQUIRED ACTION | COMPLETION TIME | | |--|--|------------|---|-----------------|--| | A. One or more Functions with one required channel inoperable. | | A.1 | Restore required channel to OPERABLE status. | 30 days | | | В. | Required Action and associated Completion Time of Condition A not met. | B.1 | Initiate action in accordance with Specification 5.6.8. | Immediately | | | C. | Not applicable to hydrogen monitor channels. One or more Functions with two required channels inoperable. | C.1 | Restore one channel to OPERABLE status. | 7 days | | Table 3.3.2-1 (page 4 of 4) Engineered Safety Feature Actuation System Instrumentation | | | | APPLICABLE
MODES OR | | | | | | |----|------------|--|----------------------------------|-----------------------|--------------------------|---|------------------------|--------------------| | | | FUNCTION | OTHER
SPECIFIED
CONDITIONS | REQUIRED
CHANNELS | CONDITIONS | SURVEILLANCE
REQUIREMENTS | ALLOWABLE
VALUE | TRIP
SETPOINT | | 5. | | oine Trip and
dwater Isolation | | | | | | | | | a. | Automatic Actuation
Logic and Actuation
Relays | 1,2 | 2 trains | н | SR 3.3.2.2
SR 3.3.2.3
SR 3.3.2.8 | NA | NĄ | | | b. | SG Water Level -
High High (P-14) | 1,2 | 3 per SG | 1 | SR 3.3.2.1
SR 3.3.2.4
SR 3.3.2.7
SR 3.3.2.9 | ≤ 78.9% | ≤ 78.5% | | | C. | Safety Injection | Refer to Function | n 1 (Safety Injec | ction) for all initiatio | n functions and require | ements. | | | 6. | Aux | illary Feedwater | | | | - | | | | | a. | Automatic Actuation
Logic and Actuation
Relays | 1,2,3 | 2 trains | G | SR 3.3.2.2
SR 3.3.2.3
SR 3.3.2.8 | NA . | NA | | | b. | SG Water Level -
Low Low | 1,2,3 | 3 per SG | D | SR 3.3.2.1
SR 3.3.2.4
SR 3.3.2.7
SR 3.3.2.9 ^(g) | ≥ 24.6% | ≥ 25% | | | C. | Safety Injection | Refer to Function | on 1 (Safety Injec | ction) for all initiatio | on functions and require | ements. | | | | đ. | Undervoltage
Reactor Coolant
Pump | 1,2 | 3 | i | SR 3.3.2.5
SR 3.3.2.7
SR 3.3.2.9 | ≥ 2640 volts | ≥ 2680
volts | | | 8. | Trip of all Main
Feedwater Pumps | 1 | 2 per pump | J | SR 3.3.2.10 | NA · | · NA | | 7. | ES | FAS Interlocks | | | | | | | | | a . | Automatic Actuation
Logic and Actuation
Relays | 1,2,3 | 2 trains | L | SR 3.3.2.2
SR 3.3.2.3
SR 3.3.2.8 | NA | NA | | | b. | Reactor Trip, P-4 | 1,2,3 | 1 per train, 2 trains | С | SR 3.3.2.6 | NA · | NA | | | C. | Pressurizer
Pressure, P-11 | 1,2,3 | 3 | К | SR 3.3.2.4
SR 3.3.2.7 | ≤ 2003 psig | ≤ 2000 psig | | | d. | T _{avg} - Low Low, P-12
(Decreasing)
(Increasing) | 1,2,3 | 1 per loop | K | SR 3.3.2.4
SR 3.3.2.7 | ≥ 542.6°F
≤ 545.4°F | ≥ 543°F
≤ 545°F | ⁽g) Applicable to MDAFW pumps only. Table 3.3.2-1 (page 3 of 4) Engineered Safety Feature Actuation System Instrumentation | | | | APPLICABLE
MODES OR
OTHER | | | | | | |----|-------------|---|---|---------------------|------------|--|---------------------------|--------------------------| | | | FUNCTION | SPECIFIED CONDITIONS | REQUIRED CHANNELS | CONDITIONS | SURVEILLANCE
REQUIREMENTS | ALLOWABLE
VALUE | TRIP
SETPOINT | | ١. | Ste | am Line Isolation | | | | • | | | | | a. | Manual Initiation | 1,2(d),3(d) | 1 per steam
line | F | SR 3.3.2.6 | NA | NA | | | b. | Automatic
Actuation Logic
and Actuation
Relays | 1,2 ^(d) ,3 ^(d) | 2 trains | G | SR 3.3.2.2
SR 3.3.2.3
SR 3.3.2.8 | NA | NA
 | | | . c. | Containment
Pressure - High 2 | 1,2 ^(d) , 3 ^(d) | 3 | D | SR 3.3.2.1
SR 3.3.2.4
SR 3.3.2.7
SR 3.3.2.9 | ≤ 17.5 psig | ≤ 16.2 psig | | | đ. | Steam Line
Pressure Low | 1,2 ^(d) ,3 ^{(b)(d)} | 1 per steam
line | D | SR 3.3.2.1
SR 3.3.2.4
SR 3.3.2.7
SR 3.3.2.9 | ≥ 575 ^(c) psig | ≥ 585 ^(c) psi | | | e. | High Steam Flow
in Two Steam
Lines | 1,2 ^(d) ,3 ^(d) | 2 per steam
line | D | SR 3.3.2.1
SR 3.3.2.4
SR 3.3.2.7 | (e) | (1) | | | | Coincident with
T _{avg} - Low Low | 1,2 ^(d) ,3 ^(d) | 1 per loop | D | SR 3.3.2.1
SR 3.3.2.4
SR 3.3.2.7 | ≥ 542.6°F | ≥ 543°F | ⁽b) Above the P-12 (Tavg - Low Low) interlock. ⁽c) Time constants used in the lead/lag controller are $t_1 \ge 50$ seconds and $t_2 \le 5$ seconds. ⁽d) Except when one MSIV is closed in each steam line. ⁽e) Less than or equal to a function defined as ΔP corresponding to 40.3% full steam flow below 20% load, ΔP increasing linearly from 40.3% full steam flow at 20% load to 110.3% full steam flow at 100% load. tull steam flow at 20% load to 110.3% full steam flow at 100% load. (i) Less than or equal to a function defined as ΔP corresponding to 40% full steam flow between 0% and 20% load and then a ΔP increasing linearly from 40% steam flow at 20% load to 110% full steam flow at 100% load. Table 3.3.2-1 (page 2 of 4) Engineered Safety Feature Actuation System Instrumentation | | | | | APPLICABLE
MODES OR
OTHER | | | | | | |----|-----|----------|---|---------------------------------|-------------------|-------------------------|--|--------------------|------------------| | | | FUNC | TION | SPECIFIED CONDITIONS | REQUIRED CHANNELS | CONDITIONS | SURVEILLANCE
REQUIREMENTS | ALLOWABLE
VALUE | TRIP
SETPOINT | | 2. | Con | tainm | ent Spray | | | | | | | | | a. | Man | ual Initiation | 1,2,3,4 | 2 | В | SR 3.3.2.6 | NA | NA | | | b. | | matic Actuation
c and Actuation
ys | 1,2,3,4 | 2 trains | С | SR 3.3.2.2
SR 3.3.2.3
SR 3.3.2.8 | NA | NA | | | C. | | ainment
sure | 1,2,3 | 4 | E | SR 3.3.2.1
SR 3.3.2.4
SR 3.3.2.7 | ≤ 28.3 psig | ≤ 27 psig | | | | | | : | * * * | | SR 3.3.2.9 | | | | 3. | Cor | ntainm | ent Isolation | | - | | | | | | | a. | Pha | se A Isolation | | | | | | | | | | (1) | Manual
Initiation | 1,2,3,4 | 2 | В | SR 3.3.2.8 | NA | NA | | | | (2) | Automatic Actuation Logic and Actuation Relays | 1,2,3,4 | 2 trains | C | SR 3.3.2.2
SR 3.3.2.3
SR 3.3.2.8 | NA | NA
 | | | | ·
(3) | Safety Injection | Refer to Function | on 1 (Safety Inje | ection) for all initiat | ion functions and req | uirements. | | | | b. | Pha | se B Isolation | • | • | | | | | | | | (1) | Manual
Initiation | 1,2,3,4 | 2 | | SR 3.3.2.6 | NA | NA | | | | (2) | Automatic
Actuation Logic
and Actuation
Relays | 1,2,3,4 | 2 trains | C | SR 3.3.2.2
SR 3.3.2.3
SR 3.3.2.8 | NA | NA . | | | | (3) | Containment
Pressure
High - 3 | 1,2,3 | 4 | E | SR 3.3.2.1
SR 3.3.2.4
SR 3.3.2.7
SR 3.3.2.9 | ≤ 28.3 psig | ≤ 27 psig | Table 3.3.2-1 (page 1 of 4) Engineered Safety Feature Actuation System Instrumentation | | F | UNCTION | APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS | REQUIRED
CHANNELS | CONDITIONS | SURVEILLANCE
REQUIREMENTS | ALLOWABLE
VALUE | TRIP
SETPOINT | |----|-----------|---|--|----------------------|---|--|---------------------------|---------------------------| | 1. | Saf | ety Injection | | | , | | · · | • | | | 8. | Manual Initiation | 1,2,3,4 | 2 | 8 | SR 3.3.2.6 | NA | NA ·· | | | b. | Automatic
Actuation Logic
and Actuation
Relays | 1,2,3,4 | 2 trains | C | SR 3.3.2.2
SR 3.3.2.3
SR 3.3.2.8 | NA | · NA ^(*) · | | | C. | Containment
Pressure —
High 1 | 1,2,3 | 3 | 1 D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | SR 3.3.2.1
SR 3.3.2.4
SR 3.3.2.7
SR 3.3.2.9 | ≤ 4.5 psig | ≤ 4.0 psig | | | d. | Pressurizer
Pressure — Low | 1,2,3 ^(a) | 3 | D | SR 3.3.2.1
SR 3.3.2.4
SR 3.3.2.7
SR 3.3.2.9 | ≥ 1847 psig | ≥ 1850 psig . | | | e. | Steam Line
Pressure | • | | | | | | | | | (1) Low | 1,2,3 ^(b) | 1 per steam
line | D | SR 3.3.2.1
SR 3.3.2.4
SR 3.3.2.7
SR 3.3.2.9 | ≥ 575 ^(c) psig | ≥ 585 ^(c) psig | | | | (2) High Differential Pressure | 1,2,3 | 3 per steam
line | D | SR 3.3.2.1
SR 3.3.2.4
SR 3.3.2.7 | ≤ 112 psig | ≤ 100 psig | | | | Between
Steam
Lines | • | | e de la companya
l
La companya de la co | SR 3.3.2.9 | | | ⁽a) Above the P-11 (Pressurizer Pressure) interlock. ⁽b) Above the P-12 (Tavg - Low Low) interlock. ⁽c) Time constants used in the lead/lag controller are $t_1 \ge 50$ seconds and $t_2 \le 5$ seconds. ### SURVEILLANCE REQUIREMENTS | | SURVEILLANCE | FREQUENCY | |-------------|---|---| | SR 3.3.2.6 | Verification of setpoint not required. | | | : | Perform TADOT. | 18 months | | SR 3.3.2.7 | This Surveillance shall include verification that the time constants are adjusted to the prescribed values. | | | | Perform CHANNEL CALIBRATION. | 18 months | | SR 3.3.2.8 | Perform SLAVE RELAY TEST | 18 months | | SR 3.3.2.9 | Not required to be performed for the turbine driven AFW pump until 24 hours after SG pressure is ≥ 1005 psig. | | | | Verify ESFAS RESPONSE TIMES are within limit. | 18 months on a
STAGGERED TEST
BASIS | | SR 3.3.2.10 | Verification of setpoint not required. | Only required when not performed within previous 92 days. | | | Perform TADOT. | Prior to reactor startup | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----------------|--|-----------------| | L. (continued) | L.2NOTE One train may be bypassed for up to 4 hours for Surveillance testing, provided the other train is OPERABLE. Restore train to OPERABLE status. | 6 hours | | | OR | | | | L.3.1 Be in MODE 3. | 12 hours | | | AND L.3.2 Be in MODE 5 | 42 hours | ## SURVEILLANCE REQUIREMENTS Refer to Table 3.3.2-1 to determine which SRs apply for each ESFAS Function. **SURVEILLANCE FREQUENCY** 12 hours Perform CHANNEL CHECK. SR 3.3.2.1 31 days on a STAGGERED TEST BASIS Perform ACTUATION LOGIC TEST. SR 3.3.2.2 31 days on a STAGGERED TEST BASIS Perform MASTER RELAY TEST. SR 3.3.2.3 92 days Perform COT. SR 3.3.2.4 92 days Perform TADOT. SR 3.3.2.5 | | CONDITION | RI | EQUIRED ACTION | COMPLETION TIME | |----|---|-----------|--|------------------------------| | 1. | One channel inoperable. | 1.1 | The inoperable channel may be bypassed for up to 4 hours for surveillance testing of other channels. | | | | | | Place channel in trip. | 6 hours | | | | <u>OR</u> | | | | | | 1.2 | Be in MODE 3. | 12 hours | | J. | One or more Main
Feedwater Pump trip
channels inoperable on | J.1 | Restore channel(s) to OPERABLE status. | Prior to next required TADOT | | | one or more Main
Feedwater Pumps. | | | | | K. | Two channels inoperable. | K.1 | Verify interlock is in required state for existing unit condition. | 1 hour | | | | <u>OR</u> | | | | | | K.2.1 | Be in MODE 3. | 7 hours | | | | AN | | to provide the | | | | K.2.2 | Be in MODE 4. | 13 hours | | L. | One train inoperable. | L.1 | Verify interlock is in required state for existing unit condition. | 1 hour | | | en e | | | | | | | <u>OR</u> | | A deficiency | | | | | • | | | | | | e e e e e e e e e e e | (continued | Amendment No. 146 (Unit 1) Amendment No. 137 (Unit 2) | | CONDITION | F | REQUIRED ACTION | COMPLETION TIME | |----|--|------------|--|-----------------| | G. | One train inoperable. | G.1 | One train may be bypassed for up to 4 hours for surveillance testing provided the other train is OPERABLE. | | | | | | Restore train to OPERABLE status. | 6 hours | | | | <u>OR</u> | . 3 | | | | | G.2.1 | Be in MODE 3. | 12 hours | | | • | ANI | | | | | · · · · · · · · · · · · · · · · · · · | G.2.2 | Be in MODE 4. | 18 hours | | Н. | One train inoperable. | H.1 \ | One train may be bypassed for up to 4 hours for surveillance testing provided the other train is OPERABLE. | | | | e e e e e e e e e e e e e e e e e e e | | Restore train to OPERABLE status. | 6 hours | | | | <u>OR</u> | | · | | | | H.2 | Be in MODE 3. | 12 hours | | | CONDITION | REQUIRED ACTIO | N COMPLETION TIME | |----|--|--|--------------------| | E. | One Containment
Pressure channel
inoperable. | E.1NOTE One additional comay be bypasse to 4 hours for surveillance test | hannel
d for up | | | | Place channel ir bypass. | 6 hours | | | | OR Published to the | | | | | E.2.1 Be in MODE 3. | 12 hours | | | | <u>AND</u> 11 - 4 1 1 41 - 41 | | | | • | E.2.2 Be in MODE 4. | 18 hours | | F. | One channel or train inoperable. | F.1 Restore channel to OPERABLE | | | | | <u>OR</u> | | | | | F.2.1 Be in MODE 3. | 54 hours | | | | AND | | | | | F.2.2 Be in MODE 4. | 60 hours | | CONDITION | | REQUIRED ACTION | | COMPLETION TIME | |-----------|-------------------------|-----------------|--|-----------------| | C. | One train inoperable. | C.1 | One train may be bypassed for up to 4 hours for surveillance testing provided the other train is OPERABLE. | | | | | | Restore train to OPERABLE status. | 6 hours | | | | <u>OR</u> | | | | | | C.2.1 | Be in MODE 3. | 12 hours | | | | AND | | | | | • | C.2.2 | Be in MODE 5. | 42 hours | | D. | One channel inoperable. | D.1 | The inoperable channel may be bypassed for up to 4 hours for surveillance testing of other channels. | | | | | | Place channel in trip. | 6 hours | | | | <u>OR</u> | | | | | | D.2.1 | Be in MODE 3. | 12 hours | | | | AND | | | | | | D.2.2 | Be in MODE 4. | 18 hours | Amendment No. 146 (Unit 1) Amendment No. 137 (Unit 2) 3.3.2 Engineered Safety Feature Actuation System (ESFAS) Instrumentation LCO 3.3.2 The ESFAS instrumentation for each Function in Table 3.3.2-1 shall be OPERABLE. APPLICABILITY: According to Table 3.3.2-1. **ACTIONS** -----NOTE Separate Condition entry is allowed for each Function. | CONDITION | | REQUIRED ACTION | | COMPLETION TIME | |-----------|--|-----------------|---|-----------------| | Α. | One or more Functions with one or more required channels or trains inoperable. | A.1 | Enter the Condition referenced in Table 3.3.2-1 for the channel(s) or train(s). | Immediately | | В. | One channel or train inoperable. | B.1 | Restore channel or train to OPERABLE status. | 48 hours | | | | <u>OR</u> | | | | | ÷ : | B.2.1 | Be in MODE 3. | 54 hours | | | | AND | | | | | | B.2.2 | Be in MODE 5. | 84 hours | # Table 3.3.1-1 (page 8 of 8) Reactor Trip System Instrumentation ### Note 2: Overpower ΔT The Overpower ΔT Function Allowable Value shall not exceed the following Trip Setpoint by more than 0.4% of ΔT span. $$\Delta T \frac{(1+\tau_4 s)}{(1+\tau_5 s)} \leq \Delta T_0 \left\{ K_4 - K_5 \frac{\tau_3 s}{1+\tau_3 s} \left(\frac{1}{1+\tau_6 s} \right) T - K_6 \left[T \frac{1}{1+\tau_6 s} - T^* \right] - f_2(\Delta I) \right\}$$ Where: ΔT is measured loop ΔT , °F. ΔT_0 is the indicated loop ΔT at RTP and reference $T_{avo.}$ °F. s is the Laplace transform operator, sec 1. T is the measured loop average temperature, °F. T" is the reference T_{avg} at RTP, \leq 577.2°F. $K_4 = 1.10$ $K_5 = 0.02$ /°F for increasing T_{avg} $K_5 = 0$ /°F for decreasing T_{avg} $K_8 = 0.00109$ /°F when T > T" $K_8 = 0$ °F when $T \le T$ " τ₃ ≥ 10 sec $\tau_4 = 0$ sec τ5 ≤ 6 sec τ6 ≤ 6 sec $f_2(\Delta I) = 0\%$ RTP for all ΔI . # Table 3.3.1-1 (page 7 of 8) Reactor Trip System Instrumentation #### Note 1: Overtemperature ΔT The Overtemperature ΔT Function Allowable Value shall not exceed the following Trip Setpoint by more than 0.4% of ΔT span. $$\Delta T \frac{(1+\tau_4 s)}{(1+\tau_5 s)} \leq \Delta T_0 \left\{ K_1 - K_2 \frac{(1+\tau_1 s)}{(1+\tau_2 s)} \left[T \frac{1}{(1+\tau_6 s)} - T' \right] + K_3 (P-P') - f_1(\Delta I) \right\}$$ Where: ΔT is measured loop ΔT , °F. ΔT₀ is the indicated loop ΔT at RTP and reference T_{avo.} °F. s is the Laplace transform operator, sec-1. T is the measured loop average temperature, °F. T is the reference T_{avg} at RTP, \leq 577.2°F. P is the measured pressurizer pressure, psig. P' is the nominal pressurizer operating pressure = 2235 psig. $K_1 = 1.17$ $K_2 = 0.017/^{\circ}F$ $K_3 = 0.000825/psi$ $\tau_1 \ge 30 \text{ sec}$ τ2 ≤ 4 sec $\tau_4 = 0$ sec $\tau_5 \le 6$ sec $\tau_6 \le 6 \text{ sec}$ $f_1(\Delta I)$ is a function of the indicated difference between top and bottom detectors of the power-range nuclear ion chambers; with gains to be selected based on measured instrument response during plant startup tests such that: $$f_1(\Delta I) = -2.48\{23 + (q_t - q_b)\}$$ when $(q_1 - q_b) \le -23\%$ RTP 0% of RTP when -23% RTP < $(q_t - q_b) \le 15\%$ RTP $2.05\{(q_t - q_b) - 15\}$ when $(q_t - q_b) > 15\%$ RTP Where q_t and q_b are percent RTP in the upper and lower halves of the core, respectively, and q_t + q_b is the total THERMAL POWER in percent RTP. # Table 3.3.1-1 (page 6 of 8) Reactor Trip System Instrumentation | | FUNCTION | APPLICABLE
MODES OR
OTHER
SPECIFIED
CONDITIONS | REQUIRED
CHANNELS | CONDITIONS | SURVEILLANCE
REQUIREMENTS | ALLOWAB
LE VALUE | TRIP
SETPOINT | |-----|--|--|----------------------|------------|------------------------------|---------------------|------------------| | 18. | Reactor Trip
Breakers
(i) | 1,2 | 2 trains | R, V | SR 3.3.1.4 | NA | NA . | | | Diedkeis W | 3 (a) , 4 (a) , 5 (a) | 2 trains | C, V | SR 3.3.1.4 | NA - | 1 % T NA | | | | | magna a tabbi | | | | | | 19. | Reactor Trip
Breaker | 1,2 | 1 each per
RTB | U | SR 3.3.1.4 | NA | NA · | | | Undervoltage and
Shunt Trip
Mechanisms | 3 (a) , 4 (a) , 5 (a) | 1 each per | C | SR 3.3.1.4 | NA | NA | | | | | RTB | | | - | | | 20. | Automatic Trip
Logic | 1,2 | 2 trains | Q, V | SR 3.3.1.5 | NA | NA | | | | 3 (a) , 4 (a) , 5 (a) | 2 trains | C, V | SR 3.3.1.5 | NA | NA | ⁽a) With RTBs closed and Rod Control System capable of rod withdrawal. ⁽j) Including any reactor trip bypass breaker that is racked in and closed for bypassing an RTB. Table 3.3.1-1 (page 5 of 8) Reactor Trip System Instrumentation | | FUNCTION | APPLICABLE MODES OR OTHER SPECIFIED CONDITIONS | REQUIRED
CHANNELS | CONDITIONS | SURVEILLANCE
REQUIREMENTS | ALLOWABLE
VALUE | TRIP
SETPOINT | |-----|---|--|----------------------|------------|--|----------------------------------|------------------------------| | 15. | Turbine Trip | | | | | | . 4 | | | a. Low Auto Stop
Oil Pressure | 1 (i) | 3 | o . | SR 3.3.1.10
SR 3.3.1.13 | ≥ 43 psig | ≥ 45 psig | | | b. Turbine Throttle
Valve Closure | 1 (1) | 4 | P | SR 3.3.1.10
SR 3.3.1.13 | NA | NA | | 16. | Safety Injection (SI)
Input from
Engineered Safety
Feature Actuation
System (ESFAS) | 1,2 | 2 trains | Q | SR 3.3.1.12 | NA | NA | | 17. | Reactor Trip
System Interlocks | *** | | | | | | | | a. Intermediate
Range Neutron
Flux, P-6 | 2 (d) | 2 | S | SR 3.3.1.10
SR 3.3.1.11 | ≥ 6E-11 amp | ≥ 1E-10
amp | | | b. Low Power
Reactor Trips
Block, P-7 | 1 . | 1 per train | T | NA | NA | NA. | | | c. Power Range
Neutron Flux,
P-8 | 1 | 4 | T | SR 3.3.1.10
SR 3.3.1.11 | ≤ 30.4% RTP | ≤ 30% RTF | | | d. Power Range
Neutron Flux,
P-9 | 1 | 4 | T | SR 3.3.1.10
SR 3.3.1.11 | ≤ 50.4% RTP | ≤ 50% RTF | | | e. Power Range
Neutron Flux,
P-10 | 1,2 | 4 | s | SR 3.3.1.10
SR 3.3.1.11 | ≥ 7.6% RTP
and
≤ 10.4% RTP | ≥ 8% RTP
and
≤ 10% RTF | | | f. Turbine
Impulse
Pressure, P-13 | , 1 | 2 | T | SR 3.3.1.1
SR 3.3.1.10
SR 3.3.1.11 | ≤ 11%
turbine
power | ≤ 10%
turbine
power | ⁽d) Below the P-6 (Intermediate Range Neutron Flux) interlocks. ⁽i) Above the P-9 (Power Range Neutron Flux) interlock. Table 3.3.1-1 (page 4 of 8) Reactor Trip System Instrumentation | | FUNCTION | APPLICABLE
MODES OR
OTHER
SPECIFIED
CONDITIONS | REQUIRED
CHANNELS | CONDITIONS | SURVEILLANCE
REQUIREMENTS | ALLOWABLE
VALUE | TRIP
SETPOINT | |-----|---|--|----------------------|------------|--|--------------------|------------------| | 11. | Reactor Coolant
Pump (RCP)
Breaker Position | • | | . , | | | | | | a. Single Loop | 1(9) | 1 per RCP | N | SR 3.3.1.12 | , NA | NA | | | b. Two Loops | 1(h) | 1 per RCP | M | SR 3.3.1.12 | NA NA | NA NA | | 12. | Undervoltage
RCPs | 1(1) | 3 | M | SR 3.3.1.6
SR 3.3.1.10 | ≥ 2640 V | ≥ 2680 V | | 13. | Underfrequency
RCPs | 1(1) | 3 | M | SR 3.3.1.6
SR 3.3.1.10 | ≥ 56.9 Hz | ≥ 57 Hz | | 14. | Steam
Generator (SG)
Water Level —
Low Low | 1,2 | 3 per SG | E | SR 3.3.1.1
SR 3.3.1.7
SR 3.3.1.10
SR 3.3.1.14 | ≥ 24.6% | ≥ 25% | ⁽f) Above the P-7 (Low Power Reactor Trips Block) interlock. ⁽g) Above the P-8 (Power Range Neutron Flux) interlock. ⁽h) Above the P-7 (Low Power Reactor Trips Block) interlock and below the P-8 (Power Range Neutron Flux) interlock. # Table 3.3.1-1 (page 3 of 8) Reactor Trip System Instrumentation | FUNCTION | APPLICABLE MODES OR OTHER SPECIFIED | REQUIRED | COMPITIONS | SURVEILLANCE | ALLOWABLE | TRIP | |-----------------------------------|--|--|--|---|--|--| | TOTOTION | CONDITIONS | CHANNELS | CONDITIONS | REQUIREMENTS | VALUE | SETPOINT | | Pressurizer
Pressure | | * | | · | | ÷ . | | a. Low | 1 (1) | 3 | М | SR 3.3.1.1
SR 3.3.1.7
SR 3.3.1.10
SR 3.3.1.14 | ≥ 1862 p sig | ≥ 1865 psig | | b. High | 1,2 | 3 | E | SR 3.3.1.1
SR 3.3.1.7
SR 3.3.1.10
SR 3.3.1.14 | ≤ 2388 psig | ≤ 2385 psig | | Pressurizer Water
Level — High | 1 (0 | 3 | М | SR 3.3.1.1
SR 3.3.1.7
SR 3.3.1.10 | ≤ 92.4% | ≤ 92% | | Reactor Coolant
Flow — Low | 1(1) | 3 per loop | M | SR 3.3.1.1
SR 3.3.1.7
SR 3.3.1.10 | ≥ 89.7% | ≥ 90% | | | Pressure a. Low b. High Pressurizer Water Level — High Reactor Coolant | MODES OR OTHER SPECIFIED CONDITIONS Pressurizer Pressure a. Low 1 (f) b. High 1,2 Pressurizer Water 1 (f) Reactor Coolant 1 (f) | MODES OR OTHER SPECIFIED REQUIRED CONDITIONS CHANNELS Pressurizer Pressure a. Low 1 (f) 3 b. High 1,2 3 Pressurizer Water 1 (f) 3 Pressurizer Water Level — High | MODES OR OTHER SPECIFIED REQUIRED CONDITIONS Pressurizer Pressure a. Low 1 (f) 3 M b. High 1,2 3 E Pressurizer Water Level — High Reactor Coolant 1 (f) 3 per loop M | ## MODES OR OTHER SPECIFIED REQUIRED CONDITIONS CHANNELS CONDITIONS REQUIREMENTS Pressurizer Pressure a. Low 1 (f) 3 M SR 3.3.1.1 SR 3.3.1.7 SR 3.3.1.10 SR 3.3.1.14 b. High 1,2 3 E SR 3.3.1.1 SR 3.3.1.7 SR 3.3.1.1 SR 3.3.1.1 SR 3.3.1.1 SR 3.3.1.10 3.3. | MODES OR OTHER SPECIFIED REQUIRED CONDITIONS SURVEILLANCE REQUIREMENTS SURVEILLANCE CONDITIONS SURVEILLANCE REQUIREMENTS VALUE | ⁽f) Above the P-7 (Low Power Reactor Trips Block) interlock. Table 3.3.1-1 (page 2 of 8) Reactor Trip System Instrumentation | | | APPLICABLE
MODES OR
OTHER | • | | | | | |----|-----------------------|---------------------------------|-------------------|----------------|------------------------------|--------------------|------------------| | | FUNCTION | SPECIFIED | REQUIRED CHANNELS | CONDITIONS | SURVEILLANCE
REQUIREMENTS | ALLOWABLE
VALUE | TRIP
SETPOINT | | | | | | | | | - | | 5. | Source Range | 2 (đ) | 2 | لہا | SR 3.3.1.1 | ≤ 1.3 E5 cps | ≤ 1.0 E5 cps | | | Neutron Flux | | | : | SR 3.3.1.8 | | | | | | • | | | SR 3.3.1.10 | | | | | | 3(a), 4(a), 5(a) | 2 | J,K | SR 3.3.1.1 | ≤ 1.3 E5 cps | ≤ 1.0 E5 cps | | | | 31-7, 41-7, 31-7 | | - , | SR 3.3.1.7 | • | | | | | | 1 | | SR 3.3.1.10 | | • | | | | 3(e) 4(e),5(e) | 1 | L · | SR 3.3.1.1 | N/A | N/A | | | | | | | SR 3.3.1.10 | | | | _ | O codomo oroburo | 1,2 | 3 | . E | SR 3.3.1.1 | Refer to | Refer to | | 6. | Overtemperature | 1,2 | • | - | SR 3.3.1.3 | Note 1 (Page | Note 1 (Page | | | ⇔ 1 | | | | SR 3.3.1.7 | 3.3.1-20) | 3.3.1-20) | | | | | | | SR 3.3.1.9 | · | | | | | • | | | SR 3.3.1.10 | | | | | | r | | | SR 3.3.1.14 | | | | | | | 6.
 | | | | | | 7. | Overpower AT | 1,2 | 3 | E | SR 3.3.1.1 | Refer to | Refer to | | | • | • | 14 F 1 1 | | SR 3.3.1.7 | Note 2 (Page | Note 2 (Page | | | a de aleman de aleman | a a second | and the second | and the second | SR 3.3.1.10 | 3.3.1-21) | 3.3.1-21) | | | | | | | SR
3.3.1.14 | | | ⁽a) With RTBs closed and Rod Control System capable of rod withdrawal. ⁽d) Below the P-6 (Intermediate Range Neutron Flux) interlocks. ⁽e) With the RTBs open. In this condition, source range Function does not provide reactor trip but does provide indication. # Table 3.3.1-1 (page 1 of 8) Reactor Trip System Instrumentation | | | APPLICABLE
MODES OR
OTHER | | | | | | |----|---------------------------------------|---------------------------------|---------------------------------------|------------|--|---------------------------------------|-------------------------------------| | | FUNCTION | SPECIFIED CONDITIONS | REQUIRED CHANNELS | CONDITIONS | SURVEILLANCE
REQUIREMENTS | ALLOWABLE
VALUE | TRIP
SETPOINT | | 1. | Manual Reactor
Trip | 1,2 | 2 | B | SR 3.3.1.12 | NA | NA | | | | 3 (a) , 4 (a) , 5 (a) | 2 | C | SR 3.3.1.12 | NA | NA | | 2. | Power Range
Neutron Flux | | | | | | • | | | a. High | 1,2 | 4 | D | SR 3.3.1.1
SR 3.3.1.2
SR 3.3.1.7
SR 3.3.1.10
SR 3.3.1.14 | ≤ 109.4% RTP | ≤ 109%
RTP | | | b. Low | 1 ^(b) ,2 | 4 . | E | SR 3.3.1.1
SR 3.3.1.8
SR 3.3.1.10 | ≤ 25.4% RTP | ≤ 25% RTP | | 3. | Power Range
Neutron Flux Rate | | | | SR 3.3.1.14 | 1.1 4.5
6.6 1 | | | | a. High Positive
Rate | 1,2 | • • • • • • • • • • • • • • • • • • • | D | SR 3.3.1.7
SR 3.3.1.10 | ≤ 5.4% RTP with time constant ≥ 2 sec | ≤ 5% RTP with time constant ≥ 2 sec | | | b. High Negative
Rate | 1,2 | . 4 - 1: | | SR 3.3.1.7
SR 3.3.1.10 | ≤ 5.4% RTP with time constant ≥ 2 sec | ≤ 5% RTP with time constant ≥ 2 sec | | 4. | Intermediate
Range Neutron
Flux | 1(p), 5(c) | 2 | F,G | SR 3.3.1.1
SR 3.3.1.8
SR 3.3.1.10 | ≤ 40% RTP | ≤ 35% RTP | | | | ₂ (d) | 2 | Ή | SR 3.3.1.1
SR 3.3.1.8
SR 3.3.1.10 | ≤ 40% RTP | ≤35% RTP | ⁽a) With Reactor Trip Breakers (RTBs) closed and Rod Control System capable of rod withdrawal. ⁽b) Below the P-10 (Power Range Neutron Flux) interlocks. ⁽c) Above the P-6 (Intermediate Range Neutron Flux) interlocks. ⁽d) Below the P-6 (Intermediate Range Neutron Flux) interlocks. | | SURVEILLANCE | FREQUENCY | |-------------|--|--| | SR 3.3.1.12 | Verification of setpoint is not required. | | | | Perform TADOT. | 18 months | | SR 3.3.1.13 | Verification of setpoint is not required. | | | | Perform TADOT. | Prior to exceeding
the P-9 interlock
whenever the unit
has been in
MODE 3, if not
performed within
the previous 31
days | | SR 3.3.1.14 | Neutron detectors are excluded from response time testing. | | | | Verify RTS RESPONSE TIME is within limits. | 18 months on a
STAGGERED
TEST BASIS | | | SURVEILLANCE | FREQUENCY | |-------------|--|---| | SR 3.3.1.9 | Neutron detectors are excluded from the calibration. | | | | 2. Not required to be performed until 7 days after THERMAL POWER is ≥ 50% RTP. | · | | | Calibrate excore channels to agree with incore detector measurements. | 18 months | | SR 3.3.1.10 | Neutron detectors are excluded from CHANNEL CALIBRATION. | | | | 2. This Surveillance shall include verification that the time constants are adjusted to the prescribed values. | | | | Perform CHANNEL CALIBRATION. | 18 months | | SR 3.3.1.11 | Perform COT. | 18 months | | | İ | AND | | | | Only required when not performed within previous 92 days. | | | | Prior to reactor startup | | * * | SURVEILLANCE | FREQUENCY | |------------|---|---| | SR 3.3.1.8 | This Surveillance shall include verification that interlocks P-6 and P-10 are in their required state for existing unit conditions. | | | | Perform COT. | Only required when not performed within previous 92 days | | | | Prior to reactor startup | | · | | AND | | | | Four hours after reducing power below P-10 for power range and intermediate range instrumentation | | | | AND | | | | Four hours after reducing power below P-6 for source range instrumentation | | | · • | AND | | • | | Every 92 days
thereafter | | | SURVEILLANCE | FREQUENCY | | |------------|---|---|--| | SR 3.3.1.4 | This Surveillance must be performed on the reactor trip bypass breaker prior to placing the bypass breaker in service. | | | | | Perform TADOT. | 31 days on a
STAGGERED
TEST BASIS | | | SR 3.3.1.5 | Perform ACTUATION LOGIC TEST. | 31 days on a
STAGGERED
TEST BASIS | | | SR 3.3.1.6 | Perform TADOT. | 92 days | | | SR 3.3.1.7 | Not required to be performed for source range instrumentation prior to entering MODE 3 from MODE 2 until 4 hours after entry into MODE 3. | | | | • | Perform COT. | 92 days | | Amendment No. 146 (Unit 1) Amendment No. 137 (Unit 2) ## SURVEILLANCE REQUIREMENTS -NOTE--Refer to Table 3.3.1-1 to determine which SRs apply for each RTS Function. FREQUENCY SURVEILLANCE ---NOTE-----SR 3.3.1.1 Not required to be performed for source range instrumentation until 1 hour after THERMAL POWER is < P-6. 12 hours Perform CHANNEL CHECK. SR 3.3.1.2 --NOTES--Adjust NIS channel if calorimetric calculated 1. power exceeds NIS indicated power by more than +2% RTP. Not required to be performed until 24 hours 2. after THERMAL POWER is ≥ 15% RTP. 24 hours Compare results of calorimetric heat balance calculation to Nuclear Instrumentation System (NIS) channel output. -----NOTES----SR 3.3.1.3 Adjust NIS channel if absolute difference is 1. ≥ 3%. Not required to be performed until 7 days after 2. THERMAL POWER is ≥ 50% RTP. Compare results of the incore detector measurements to NIS AFD. Performance of SR 3.3.1.9 satisfies this SR. 31 effective full power days (EFPD) | - | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|--|---|-----------------| | Т. | One or more channels inoperable. | T.1 Verify interlock is in required state for existing unit conditions. | 1 hour | | | | <u>OR</u> | | | | | T.2 Be in MODE 2. | 7 hours | | U. | One trip mechanism inoperable for one RTB. | One RTB may be bypassed for maintenance on an undervoltage or shunt trip mechanism, provided the other RTB train is OPERABLE. | | | • | | U.1 Restore inoperable trip mechanism to OPERABLE status. | 48 hours | | | | <u>OR</u> | | | | | U.2 Be in MODE 3. | 54 hours | | V. | Two RTS trains inoperable. | V.1 Enter LCO 3.0.3. | Immediately | | | CONDITION | REC | QUIRED ACTION | COMPLETION TIME | |----|----------------------------------|---|---|--| | Q. | One train inoperable. | one train inoperable. One train may be bypassed for up to 4 hours for surveillance testing provided the other train is OPERABLE. | | ************************************** | | • | | | Restore train to OPERABLE status. | 6 hours | | | | Q.2 | Be in MODE 3. | 12 hours | | R. | One RTB train inoperable. | One train may be bypassed for up to 2 hours for surveillance testing, provided the other train is OPERABLE. | | | | | | | Restore train to OPERABLE status. | 1 hour | | | | OR | | | | | | R.2 | Be in MODE 3. | 7 hours | | S. | One or more channels inoperable. | | Verify interlock is in required state for existing unit conditions. | 1 hour | | | | <u>OR</u> | | | | | | S.2 | Be in MODE 3. | 7 hours | | | CONDITION | R | EQUIRED ACTION | COMPLETION TIME | |----|---|--|-------------------------------------|-----------------| | N. | One Reactor Coolant
Pump Breaker Position
channel inoperable. | N.1
<u>OR</u> | Restore channel to OPERABLE status. | 6 hours | | | | N.2 | Reduce THERMAL POWER to < P-8. | 10 hours | | О. | One Low Auto Stop Oil
Pressure channel
inoperable. | The inoperable channel may be bypassed for up to 4 hours for surveillance testing of other channels. | | | | | | 0.1 | Place channel in trip. | 6 hours | | | | <u>OR</u> | | | | | | 0.2 | Reduce THERMAL POWER to < P-9. | 10 hours | | P. | One, two, or three Turbine
Throttle Valve Closure | P.1 | Place channel(s) in trip. | 6 hours | | | channel(s) inoperable. | <u>OR</u> | | | | | | P.2 | Reduce THERMAL POWER to < P-9. | 10 hours | | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|--|--|------------------------------| | L. | Required Source Range
Neutron Flux channel
inoperable. | L.1 Suspend operations involving positive reactivity additions. | Immediately | | | | AND | • | | | | L.2 Close unborated water source isolation valves. | 1 hour | | | | AND | | | | | L.3 Perform SR 3.1.1.1. | 1 hour | | | | | AND | | | 200 A | | Once per 12 hours thereafter | | M. | One channel inoperable. | The inoperable channel may be bypassed for up to 4 hours for surveillance testing of other channels. | | | | | M.1
Place channel in trip. | 6 hours | | | | OR | | | | • | M.2 Reduce THERMAL POWER to < P-7. | 12 hours | | | CONDITION | . ⊢ R | EQUIRED ACTION | COMPLETION TIME | |----|--|-------|---|--| | G. | THERMAL POWER > P-6
and < P-10, two
Intermediate Range
Neutron Flux channels
inoperable. | G.1 | Suspend operations involving positive reactivity additions. | Immediately | | | | G.2 | Reduce THERMAL POWER to < P-6. | 2 hours | | н. | THERMAL POWER < P-6, one or two Intermediate Range Neutron Flux channels inoperable. | H.1 | Restore channel(s) to OPERABLE status. | Prior to increasing
THERMAL POWER to
> P-6 | | I. | One Source Range
Neutron Flux channel
inoperable. | 1.1 | Suspend operations involving positive reactivity additions. | Immediately | | J. | Two Source Range
Neutron Flux channels
inoperable. | J.1 | Open RTBs. | Immediately | | K. | One Source Range
Neutron Flux channel
inoperable. | K.1 | Restore channel to OPERABLE status. | 48 hours | | | - | K.2 | Open RTBs. | 49 hours | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |--|--|--| | D. (continued) | D.2.2NOTE Only required to be performed when the Power Range Neutron Flux input to QPTR is inoperable. | | | | Perform SR 3.2.4.2. | Once per 12 hours | | | <u>OR</u> | en e | | | D.3 Be in MODE 3. | 12 hours | | E. One channel inoperable. | The inoperable channel may be bypassed for up to 4 hours for surveillance testing of other channels. | | | | E.1 Place channel in trip. | 6 hours | | | <u>OR</u> | The Million Harmon Co. | | | E.2 Be in MODE 3. | 12 hours | | F. THERMAL POWER > P-6
and < P-10, one | F.1 Reduce THERMAL POWER to < P-6. | 2 hours | | Intermediate Range
Neutron Flux channel | <u>OR</u> | | | inoperable. | F.2 Increase THERMAL POWER to > P-10. | 2 hours | | CONDITION | REQUIRED ACTION | COMPLETION TIME | | |--|--|-----------------|--| | C. One channel or train inoperable. | C.1 Restore channel or train to OPERABLE status. | 48 hours | | | | <u>OR</u> | | | | | C.2 Open RTBs. | 49 hours | | | D. One Power Range Neutron Flux channel inoperable. | The inoperable channel may be bypassed for up to 4 hours for surveillance testing and setpoint adjustment of other channels. | | | | | D.1.1 Place channel in trip. AND | 6 hours | | | | D.1.2 Reduce THERMAL POWER to ≤ 75% RTP. | 12 hours | | | n de la companya l | D.2.1 Place channel in trip. | 6 hours | | | ÷ | <u>AND</u> | | | | | Magazine (a) | (continued) | | #### 3.3 INSTRUMENTATION # 3.3.1 Reactor Trip System (RTS) Instrumentation LCO 3.3.1 The RTS instrumentation for each Function in Table 3.3.1-1 shall be OPERABLE. APPLICABILITY: According to Table 3.3.1-1. **ACTIONS** -NOTE- Separate Condition entry is allowed for each Function. | | CONDITION | | EQUIRED ACTION | COMPLETION TIME | | |----|--|-----------|---|-----------------|--| | A. | One or more Functions with one or more required channels inoperable. | A.1 | Enter the Condition referenced in Table 3.3.1-1 for the channel(s). | Immediately | | | В. | One Manual Reactor Trip channel inoperable. | B.1 | Restore channel to OPERABLE status. | 48 hours | | | | | <u>OR</u> | | · | | | | nation (M) | B.2 | Be in MODE 3. | 54 hours | | | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.2.4.1 | NOTES | | | | With input from one Power Range Neutron
Flux channel inoperable and THERMAL
POWER ≤ 75% RTP, the remaining three
power range channels can be used for
calculating QPTR. | | | | 2. SR 3.2.4.2 may be performed in lieu of this Surveillance. | | | | Verify QPTR is within limit by calculation. | 7 days | | SR 3.2.4.2 | NOTE | | | | Not required to be performed until 12 hours after input from one or more Power Range Neutron Flux channels are inoperable with THERMAL POWER > 75% RTP. | | | | | | | | Confirm that the normalized symmetric power distribution is consistent with QPTR. | 12 hours | | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|---|---|---| | Α. | (continued) | A.6 Perform Required Action A.6 only after Required Action A.5 is completed. | - | | | | Perform SR 3.2.1.1 and
SR 3.2.2.1. | 24 hours after achieving equilibrium conditions at RTP | | | | | OR | | | | | Within 48 hours after increasing THERMAL POWER above the limit of Required Action A.1 | | В. | Required Action and associated Completion Time not met. | B.1 Reduce THERMAL
POWER to < 50% RTP | 4 hours | | | CONDITION | F | REQUIRED ACTION | COMPLETION TIME | |----|-------------|--|--|---| | A. | (continued) | A.4 | Reevaluate safety analyses and confirm results remain valid for duration of operation under this condition. | Prior to increasing
THERMAL POWER
above the limit of
Required Action A.1 | | | | AND | | an the White | | | | A.5 · · · · · · · · · · · · · · · · · · · | NOTES 1. Perform Required Action A.5 only after Required Action A.4 is completed. 2. Required Action A.6 shall be completed if Required Action A.5 is performed. | | | | | | Normalize excore detectors to restore QPTR to within limits. | Prior to increasing
THERMAL POWER
above the limit of
Required Action A.1 | | | | AND | | (continued) | ## 3.2 POWER DISTRIBUTION LIMITS ## 3.2.4 QUADRANT POWER TILT RATIO (QPTR) LCO 3.2.4 The QPTR shall be ≤ 1.02. APPLICABILITY: MODE 1 with THERMAL POWER ≥ 50% RTP. | ACTIONS | | والمعاولة والمستخف فالمستح فالمراقع والمستح فالمستح والمستح والمستح والمستح والمستح والمستح والمستح والمستح والمستح | |---------------------------|---|---| | CONDITION | REQUIRED ACTION | COMPLETION TIME | | A. QPTR not within limit. | A.1 Limit THERMAL POWER to ≥ 3% below RTP for each 1% of QPTR > 1.00. | 2 hours after each
QPTR determination | | | AND | | | | A.2 Determine QPTR. | Once per 12 hours | | | AND | | | | A.3 Perform SR 3.2.1.1 and SR 3.2.2.1. | 24 hours after
achieving equilibrium
conditions with
THERMAL POWER
limited by Required
Action A.1 | | | | AND | | | | Once per 7 days thereafter | | | AND | | | • | | (continued) | #### 3.2 POWER DISTRIBUTION LIMITS #### 3.2.3 AXIAL FLUX DIFFERENCE (AFD) The AFD in % flux difference units shall be maintained within the limits specified in the COLR. The AFD shall be considered outside limits when two or more OPERABLE excore channels indicate AFD to be outside limits. APPLICABILITY: MODE 1 with THERMAL POWER ≥ 50% RTP. #### **ACTIONS** | CONDITION | | REQUIRED ACTION | COMPLETION
TIME | |---------------------------|-----|---------------------------------------|-----------------| | A. AFD not within limits. | A.1 | Reduce THERMAL
POWER to < 50% RTP. | 30 minutes | | | SURVEILLANCE | FREQUENCY | |------------|--|-----------| | SR 3.2.3.1 | Verify AFD within limits for each OPERABLE excore channel. | 7 days | | | FREQUENCY | | |------------|---|--| | SR 3.2.2.1 | Verify $F_{\Delta H}^N$ is within limits specified in the COLR. | Once after each refueling prior to THERMAL POWER exceeding 75% RTP | | | | AND | | | | 31 EFPD
thereafter | | CONDITION | REQUIRED ACTION | COMPLETION TIME | | |--|---|---|--| | A. (continued) | A.3 THERMAL POWER does not have to be reduced to comply with this Required Action. | | | | | Perform SR 3.2.2.1. | Prior to THERMAL
POWER exceeding
50% RTP | | | | | AND | | | | | Prior to THERMAL
POWER exceeding
75% RTP | | | | frage of | AND | | | | | 24 hours after
THERMAL POWER
reaching ≥ 95% RTP | | | B. Required Action and associated Completion Time not met. | B.1 Be in MODE 2. | 6 hours | | #### 3.2 POWER DISTRIBUTION LIMITS # 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor ($F_{\Delta H}^{N}$) LCO 3.2.2 $F^{N}_{\Delta H}$ shall be within the limits specified in the COLR. APPLICABILITY: MODE 1. | | CONDITION | Ri | EQUIRED ACTION | COMPLETION TIME | |-----------|---|--------------------|---|-----------------| | A. | Required Actions A.2 and A.3 must be completed whenever Condition A is entered. | A.1.1
<u>OR</u> | Restore F ^N _{AH} to within limit. | 4 hours | | ٠ | | A.1.2.1 | Reduce THERMAL POWER to < 50% RTP. | 4 hours | | • | F ^N _{ΔH} not within limit. | · | AND | | | | | A.1.2.2 | Reduce Power Range
Neutron Flux – High trip
setpoints to ≤ 55% RTP. | 72 hours | | • | | AND | | | | | | A.2 | Perform SR 3.2.2.1. | 24 hours | | | | AND | | | | | | | | | | | | | | (continued) | | SURVEILLANCE | FREQUENCY | |------------------------|--| | SR 3.2.1.2 (continued) | Once after achieving equilibrium conditions after exceeding, by ≥ 20% RTP, the THERMAL POWER at which F _Q (Z) was last verified | | | AND | | | 31 EFPD thereafter | | | FREQUENCY | | |--|--|--| | SR 3.2.1.2 | If measurements indicate | | | | $maximumoverZ\left[\begin{array}{c}F_0(Z)\\K(Z)\end{array}\right]$ | | | | has increased since the previous evaluation of Fo(Z): | | | *1 | a. Increase F _Q (Z) by the appropriate penalty factor specified in the COLR and reverify that this value is within the transient limits; or | · | | A Control of the Cont | b. Repeat SR 3.2.1.2 once per 7 EFPD until either "a." above is met or two successive flux maps indicate | · | | | $maximumoverZ\left[\begin{array}{c} F_{O}(Z) \\ \hline K(Z) \end{array}\right]$ | | | edicina e e e e e e e e e e e e e e e e e e e | has not increased. | | | | Verify $F_Q(Z)$ is within the transient limit. | Once after each refueling prior to THERMAL POWER exceeding 75% RTP | | | | AND | | · . | | (continued) | | NOTE | |--| | During power escalation at the beginning of each cycle, THERMAL POWER may be increased until an equilibrium power level has been achieved, at which a power distribution map is obtained | | | | | SURVEILLANCE | FREQUENCY | |---------------------------------------|--|---| | SR 3.2.1.1 | Verify Fo(Z) is within steady state limit. | Once after each
refueling prior to
THERMAL POWER
exceeding 75% RTP | | | | AND | | | | Once after achieving equilibrium conditions after | | | | exceeding, by ≥ 20% RTP, the THERMAL POWER at which Fo(Z) was last verified | | | | AND | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 31 EFPD thereafter | | CONDITION | REQUIRED ACTION | Prior to increasing THERMAL POWER above the limit of Required Action A.1 | | |--|---|--|--| | A. (continued) | A.4 Perform SR 3.2.1.1. | | | | B. F _Q (Z) not within transient limits. | B.1 Reduce AFD limits ≥ 1% for each 1% Fo(Z) exceeds transient limit and control AFD within reduced limits. | 4 hours | | | C. Required Action and associated Completion Time not met. | C.1 Be in MODE 2. | 6 hours | | #### 3.2 POWER DISTRIBUTION LIMITS ## 3.2.1 Heat Flux Hot Channel Factor (FQ(Z)) LCO 3.2.1 F_Q(Z) shall be within the steady state and transient limits specified in the COLR. APPLICABILITY: MODE 1. | CONDITION | | F | REQUIRED ACTION | | COMPLETION TIME | | |-----------|---|-----|---|-----------|-----------------|--| | A. | F _Q (Z) not within steady state limit. | A.1 | Reduce THERMAL
POWER ≥ 1% RTP for
each 1% F _o (Z) exceeds
steady state limit. | 15 minute | 3 | | | | | AND | | | | | | | | A.2 | Reduce Power Range
Neutron Flux—High trip
setpoints ≥ 1% for each
1% F ₀ (Z) exceeds
steady state limit. | 72 hours | | | | | | AND | | | • | | | | | A.3 | Reduce Overpower ΔT trip setpoints $\geq 1\%$ for each 1% $F_0(Z)$ exceeds steady state limit. | 72 hours | | | | | | AND | | | | | | | • . | | | | (continued) | | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | | |-----------|--|--|-----------------|--| | C. | RCS lowest loop average temperature not within limit. | C.1 Restore RCS lowest loop average temperature to within limit. | 15 minutes | | | D. | Required Action and associated Completion Time of Condition C not met. | D.1 Be in MODE 3. | 15 minutes | | # **SURVEILLANCE REQUIREMENTS** | | SURVEILLANCE | FREQUENCY | | |------------|--|--------------------------------------|--| | SR 3.1.8.1 | Perform a CHANNEL OPERATIONAL TEST on power range and intermediate range channels per SR 3.3.1.7, SR 3.3.1.8, and Table 3.3.1-1. | Prior to initiation of PHYSICS TESTS | | | SR 3.1.8.2 | Verify the RCS lowest loop average temperature is ≥ 531°F. | 30 minutes | | | SR 3.1.8.3 | Verify THERMAL POWER is ≤ 5% RTP. | 1 hour | | | SR 3.1.8.4 | Verify SDM to be within the limits provided in the COLR. | 24 hours | | Amendment No. 146 (Unit 1) Amendment No. 137 (Unit 2) #### 3.1 REACTIVITY CONTROL SYSTEMS #### 3.1.8 PHYSICS TESTS Exceptions—MODE 2 During the performance of PHYSICS TESTS, the requirements of LCO 3.1.8 LCO 3.1.3, "Moderator Temperature Coefficient (MTC)"; LCO 3.1.4, "Rod
Group Alignment Limits"; LCO 3.1.5, "Shutdown Bank Insertion Limits"; LCO 3.1.6, "Control Bank Insertion Limits"; and LCO 3.4.2, "RCS Minimum Temperature for Criticality" may be suspended, provided: - THERMAL POWER is ≤ 5% RTP; - SDM is within the limits provided in the COLR; and b. - RCS lowest loop average temperature is ≥ 531°F. MODE 2 during PHYSICS TESTS. APPLICABILITY: | CONDITION | | REQUIRED ACTION | | COMPLETION TIME | | |-----------|---------------------------------------|--|-----------------------------------|-----------------|--| | A. | SDM not within limit. | A.1 Initiate boration to restore SDM to within limit. AND | | Immediately | | | | · · · · · · · · · · · · · · · · · · · | A.2 | Suspend PHYSICS TESTS exceptions. | 1 hour | | | В. | THERMAL POWER not within limit. | B.1 | Open reactor trip breakers. | Immediately | | | | SURVEILLANCE | FREQUENCY | |------------|--|---| | SR 3.1.7.1 | Verify each DRPI agrees within 12 steps of the group demand position for the full indicated range of rod travel. | Once prior to criticality after each removal of the reactor head. | | CONDITION | | REQUIRED ACTION | | COMPLETION TIME | |----------------|--|-------------------|---|------------------| | C. (continued) | | C.1.2 | Complete rod position verification started in Required Action C.1.1. | 8 hours | | | en e | <u>OR</u> | | Series Series | | | | C.2 | Reduce THERMAL POWER to ≤ 50% RTP. | 8 hours | | D. | One demand position indicator per bank inoperable for one or more banks. | D.1.1 | Verify by administrative means all DRPIs for the affected banks are OPERABLE. | Once per 8 hours | | | | ANI | Q | | | | | D.1.2 | Verify the most withdrawn rod and the least withdrawn rod of the affected banks are ≤ 12 steps apart. | Once per 8 hours | | | | | | | | | | D.2 | Reduce THERMAL
POWER to ≤ 50% RTP. | 8 hours | | E. | Required Action and associated Completion Time not met. | E.1 Be in MODE 3. | | 6 hours | 3.1.7-3 | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |-----------|---|--|---| | B. | (continued) | B.3 Verify the position of the rods with inoperable position indicators indirectly using the movable incore detectors. | Once per 8 hours | | | | AND | · ' | | | | B.4 Restore the inoperable position indicators to OPERABLE status such | 24 hours | | | | that a maximum of one DRPI per group is | All Market and All All All All All All All All All Al | | | | inoperable. | | | C. | One or more rods with inoperable DRPIs have been moved in excess of 24 steps in one direction since the last determination of the rod's position. | C.1.1 Initiate action to verify the position of the rods with inoperable DRPIs indirectly by using movable incore detectors. | Immediately | | | | AND | (continued) | #### 3.1.7 Rod Position Indication LCO 3.1.7 The Digital Rod Position Indication (DRPI) System and the Demand Position Indication System shall be OPERABLE. **APPLICABILITY:** MODES 1 and 2. **ACTIONS** --NOTE- Separate Condition entry is allowed for each inoperable digital rod position indicator and each demand position indicator. | | CONDITION | R | EQUIRED ACTION | COMPLETION TIME | |----|---|------------|---|------------------| | A. | One DRPI per group inoperable for one or more groups. | A.1 | Verify the position of the rods with inoperable DRPIs indirectly by using movable incore detectors. | Once per 8 hours | | | · | <u>OR</u> | | | | | | A.2 | Reduce THERMAL POWER to ≤ 50% RTP. | 8 hours | | В. | More than one DRPI per group inoperable. | B.1 | Place the control rods under manual control. | Immediately | | | · | AND | | | | | | B.2 | Monitor and Record RCS Tavg. | Once per 1 hour | | | | AND | | | | | • | | | (continued) | | SURVEILLANO | FREQUENCY | | |-------------|---|----------| | SR 3.1.6.2 | Verify each control bank insertion is within the limits specified in the COLR. | 12 hours | | SR 3.1.6.3 | Verify sequence and overlap limits specified in the COLR are met for control banks not fully withdrawn from the core. | 12 hours | # **ACTIONS** | CONDITION | R | EQUIRED ACTION | COMPLETION TIME | |--|-----------|---|-----------------| | B. Control bank sequence or overlap limits not met. | B.1.1 | Verify SDM to be within the limits provided in the COLR. | 1 hour | | | <u>OR</u> | | | | | B.1.2 | Initiate boration to restore SDM to within limit. | 1 hour | | e e e e e e e e e e e e e e e e e e e | AND | errychiol (1994) er en er
En en er | | | | B.2 | Restore control bank sequence and overlap to within limits. | 2 hours | | C. Required Action and associated Completion Time not met. | C.1 | Be in MODE 3. | 6 hours | | | SURVEILLANCE | FREQUENCY | |------------|---|---| | SR 3.1.6.1 | Verify estimated critical control bank position is within the limits specified in the COLR. | Within 4 hours prior to achieving criticality | # 3.1.6 Control Bank Insertion Limits LCO 3.1.6 Control banks shall be within the insertion, sequence, and overlap limits specified in the COLR. APPLICABILITY: MODE 1, MODE 2 with $k_{eff} \ge 1.0$. -----NOTE----- This LCO is not applicable while performing SR 3.1.4.2. | ACT | CONDITION | | EQUIRED ACTION | COMPLETION TIME | |-----|--|-----------|--|-----------------| | A. | Control bank insertion limits not met. | A.1.1 | Verify SDM to be within the limits provided in the COLR. | 1 hour | | | | <u>OF</u> | | | | | | A.1.2 | Initiate boration to restore SDM to within limit. | 1 hour | | | | AND | | | | | | A.2 | Restore control bank(s) to within limits. | 2 hours | | | SURVEILLANCE | FREQUENCY | | | |------------|--|-----------|--|--| | SR 3.1.5.1 | Verify each shutdown bank is within the limits | 12 hours | | | | | specified in the COLR. | | | | # 3.1.5 Shutdown Bank Insertion Limits LCO 3.1.5 Each shutdown bank shall be within insertion limits specified in the COLR. APPLICABILITY: MODE 1, MODE 2 with any control bank not fully inserted. Title 4 00 is and smaller than while performing SR 2 1 4 2 This LCO is not applicable while performing SR 3.1.4.2. | <u> </u> | IONS | PEOLIPED ACTION | | COMPLETION TIME | |----------|---|-----------------|--|-----------------| | | CONDITION | | EQUIRED ACTION | CONFERNORTHAL | | A. | One or more shutdown banks not within limits. | A.1.1 | Verify SDM to be within the limits provided in the COLR. | 1 hour | | | • | <u>OR</u> | | , | | | | A.1.2 | Initiate boration to restore SDM to within limit. | 1 hour | | | | AND | | | | | | A.2 | Restore shutdown banks to within limits. | 2 hours | | В. | Required Action and associated Completion Time not met. | B.1 | Be in MODE 3. | 6 hours | ## **ACTIONS** | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|---|-----------|--|-----------------| | D. | More than one rod not within alignment limit. | D.1.1 | Verify SDM to be within the limits provided in the COLR. | 1 hour | | | | <u>OF</u> | 3 | | | | | D.1.2 | Initiate boration to restore required SDM to within limit. | 1 hour | | | | AND | | · | | | | D.2 | Be in MODE 3. | 6 hours | | | SURVEILLANCE | FREQUENCY | | |------------|--|--|--| | SR 3.1.4.1 | Verify individual rod positions within alignment limit. | 12 hours | | | SR 3.1.4.2 | Verify rod freedom of movement (trippability) by moving each rod not fully inserted in the core ≥ 10 steps in either direction. | 92 days | | | SR 3.1.4.3 | Verify rod drop time of each rod, from the fully withdrawn position, is ≤ 2.7 seconds from the beginning of decay of stationary gripper coil voltage to dashpot entry, with: | Prior to reactor
criticality after
each removal of
the reactor head | | | | a. T _{avg} ≥ 541°F; and | | | | | b. All reactor coolant pumps operating. | | | | CONDITION | REQUIRED ACTION | COMPLETION TIME | | |--|--|----------------------|--| | B. (continued) | B.2.1.2 Initiate boration to restore SDM to within limit. | 1 hour | | | | AND | | |
 | B.2.2 Reduce THERMAL POWER to ≤ 75% RTP. | 2 hours | | | | AND | | | | | B.2.3 Verify SDM to be within the limits provided in the COLR. | Once per
12 hours | | | | AND | | | | | B.2.4 Perform SR 3.2.1.1. | 72 hours | | | | AND | | | | | B.2.5 Perform SR 3.2.2.1. | 72 hours | | | | <u>AND</u> | | | | | B.2.6 Re-evaluate safety analyses and confirm results remain valid for duration of operation under these conditions. | 5 days | | | C. Required Action and | C.1 Be in MODE 3. | 6 hours | | | associated Completion Time of Condition B not met. | | | | ## 3.1.4 Rod Group Alignment Limits LCO 3.1.4 All shutdown and control rods shall be OPERABLE, with all individual indicated rod positions within 12 steps of their group step counter demand position. APPLICABILITY: MODES 1 and 2. | | CONDITION | R | EQUIRED ACTION | COMPLETION TIME | |----|--------------------------------------|-----------|--|-----------------| | A. | One or more rod(s) untrippable. | A.1.1 | Verify SDM to be within the limits provided in the COLR. | 1 hour | | | | OR | :
4 * | | | | | A.1.2 | Initiate boration to restore SDM to within limit. | 1 hour | | | , | AND | | | | | | A.2 | Be in MODE 3. | 6 hours | | B. | One rod not within alignment limits. | B.1 | Restore rod to within alignment limits. | 1 hour | | | 1 H. 14. | <u>OR</u> | | | | | | B.2.1.1 | Verify SDM to be within the limits provided in the COLR. | 1 hour | | | | | <u>OR</u> | | | | • | | | (continued) | | | SURVEILLANCE | FREQUENCY | |------------|--|---| | SR 3.1.3.1 | Verify MTC is within BOL limit. | Once prior to
entering MODE 1
after each
refueling | | SR 3.1.3.2 | Not required to be performed until 7 effective full power days (EFPD) after reaching the equivalent of an equilibrium RTP all rods out (ARO) boron concentration of 300 ppm. If the MTC is more negative than the 300 ppm Surveillance limit (not LCO limit) specified in the COLR, SR 3.1.3.2 shall be repeated once per 14 EFPD during the remainder of the fuel cycle. | | | | 3. SR 3.1.3.2 need not be repeated if the MTC measured at the equivalent of equilibrium RTP-ARO boron concentration of ≤ 100 ppm is less negative than the 100 ppm Surveillance limit specified in the COLR. | | | | Verify MTC is within EOL limit. | Once each cycle | # 3.1.3 Moderator Temperature Coefficient (MTC) LCO 3.1.3 The MTC shall be maintained within the beginning of cycle life (BOL) limit and the end of cycle life (EOL) limit specified in the COLR. The maximum upper limit shall be $\leq 0.7 \times 10^{-4} \, \Delta \text{k/k/°F}$ for power levels up to 70% THERMAL POWER with a linear ramp to 0 $\Delta \text{k/k/°F}$ at 100% THERMAL POWER. APPLICABILITY: MODE 1 and MODE 2 with $k_{\text{eff}} \ge 1.0$ for the BOL MTC limit, MODES 1, 2, and 3 for the EOL MTC limit. | CONDITION | | REQUIRED ACTION | COMPLETION TIME | | |-----------|--|--|-----------------|--| | A. | MTC not within BOL limit. | A.1 Establish administrative withdrawal limits for control banks to maintain MTC within limit. | 24 hours | | | В. | Required Action and associated Completion Time of Condition A not met. | B.1 Be in MODE 3. | 6 hours | | | C. | MTC not within EOL limit. | C.1 Be in MODE 4. | 12 hours | | | | SURVEILLANCE | FREQUENCY | |---|---|---| | SR 3.1.2.1 | The predicted reactivity values may be adjusted (normalized) to correspond to the measured core reactivity prior to exceeding a fuel burnup of 60 effective full power days (EFPD) after each fuel loading. | | | | Verify measured core reactivity is within \pm 1% Δ k/k of predicted values. | Once prior to
entering MODE 1
after each
refueling | | | | AND | | | i de la composition br>La composition de la br>La composition de la | Only required after 60 EFPD | | | en de la companya de
La companya de la co | *************************************** | | eran eran i i i i i i i i i i i i i i i i i i i | | 31 EFPD
thereafter | # 3.1.2 Core Reactivity LCO 3.1.2 The measured core reactivity shall be within \pm 1% Δ k/k of predicted values. APPLICABILITY: MODES 1 and 2. | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |-----------|---|---|-----------------| | Α. | Measured core reactivity not within limit. | A.1 Re-evaluate core design and safety analysis, and determine that the reactor core is acceptable for continued operation. | 7 days | | | | AND | | | ÷ | | A.2 Establish appropriate operating restrictions and SRs. | 7 days | | В. | Required Action and associated Completion Time not met. | B.1 Be in MODE 3. | 6 hours | # 3.1.1 SHUTDOWN MARGIN (SDM) LCO 3.1.1 SDM shall be within the limits provided in the COLR. **APPLICABILITY:** MODE 2 with $k_{eff} < 1.0$, MODES 3, 4, and 5. #### **ACTIONS** | CONDITION | REQUIRED ACTION | COMPLETION TIME | |--------------------------|---|-----------------| | A. SDM not within limit. | A.1 Initiate boration to restore SDM to within limit. | Immediately | | SURVEILLANCE | | FREQUENCY | |--------------|---------------------------------|-----------| | SR 3.1.1.1 | Verify SDM to be within limits. | 24 hours | # 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY | SRs shall be met during the MODES or other specified conditions in the Applicability for individual LCOs, unless otherwise stated in the SR. Failure to meet a Surveillance, whether such failure is experienced during the performance of the Surveillance or between performances of the Surveillance, shall be failure to meet the LCO. Failure to perform a Surveillance within the specified Frequency shall be failure to meet the LCO except as provided in SR 3.0.3. Surveillances do not have to be performed on inoperable equipment or variables outside specified limits. | |---| | The specified Frequency for each SR is met if the Surveillance is performed within 1.25 times the interval specified in the Frequency, as measured from the previous performance or as measured from the time a specified condition of the Frequency is met. | | For Frequencies specified as "once," the above interval extension does not apply. | | If a Completion Time requires periodic performance on a "once per" basis, the above Frequency extension applies to each performance after the initial performance. | | Exceptions to this Specification are stated in the individual Specifications. | | If it is discovered that a Surveillance was not performed within its specified Frequency, then compliance with the requirement to declare the LCO not met may be delayed, from the time of discovery, up to 24 hours or up to the limit of the specified Frequency, whichever is less. This delay period is permitted to allow performance of the Surveillance. | | If the Surveillance is not performed within the delay period, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered. | | When the Surveillance is performed within the delay period and the Surveillance is not met, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered. | | Entry into a MODE or other specified condition in the Applicability of an LCO shall not be made unless the LCO's Surveillances have been met within their specified Frequency. This provision shall not prevent entry into MODES or other specified conditions in the Applicability that are required to comply with ACTIONS. | | | #### 3.0 LCO APPLICABILITY #### LCO 3.0.5 Equipment removed from service or declared inoperable to comply with ACTIONS may be returned to service under administrative control solely to perform testing required to demonstrate its OPERABILITY or the OPERABILITY of other equipment. This is an exception to LCO 3.0.2 for the system returned to service under administrative control to perform the testing required to demonstrate OPERABILITY. #### LCO 3.0.6 When a supported system LCO is not met solely due to a support system LCO not being met, the Conditions and Required Actions associated with this supported system are not required to be entered. Only the support system LCO ACTIONS are required to be entered. This is an exception to LCO 3.0.2 for
the supported system. In this event, an evaluation shall be performed in accordance with specification 5.5.15, "Safety Function Determination Program (SFDP)." If a loss of safety function is determined to exist by this program, the appropriate Conditions and Required Actions of the LCO in which the loss of safety function exists are required to be entered. When a support system's Required Action directs a supported system to be declared inoperable or directs entry into Conditions and Required Actions for a supported system, the applicable Conditions and Required Actions shall be entered in accordance with LCO 3.0.2. #### LCO 3.0.7 Test Exception LCO 3.1.8 allows specified Technical Specification (TS) requirements to be changed to permit performance of special tests and operations. Unless otherwise specified, all other TS requirements remain unchanged. Compliance with Test Exception LCOs is optional. When a Test Exception LCO is desired to be met but is not met, the ACTIONS of the Test Exception LCO shall be met. When a Test Exception LCO is not desired to be met, entry into a MODE or other specified condition in the Applicability shall be made in accordance with the other applicable Specifications. | LCO 3.0.1 | LCOs shall be met during the MODES or other specified conditions in the Applicability, except as provided in LCO 3.0.2 and 3.0.7. | |-----------|---| | LCO 3.0.2 | Upon discovery of a failure to meet an LCO, the Required Actions of the associated Conditions shall be met, except as provided in LCO 3.0.5 and LCO 3.0.6. | | | If the LCO is met or is no longer applicable prior to expiration of the specified Completion Time(s), completion of the Required Action(s) is not required unless otherwise stated. | | LCO 3.0.3 | When an LCO is not met and the associated ACTIONS are not met, an associated ACTION is not provided, or if directed by the associated ACTIONS, the unit shall be placed in a MODE or other specified condition in which the LCO is not applicable. Action shall be initiated within 1 hour to place the unit, as applicable, in: | | | a. MODE 3 within 7 hours; | | | b. MODE 4 within 13 hours; and | | | c. MODE 5 within 37 hours. | | | Exceptions to this Specification are stated in the individual Specifications. | | | Where corrective measures are completed that permit operation in accordance with the LCO or ACTIONS, completion of the actions required by LCO 3.0.3 is not required. | | | LCO 3.0.3 is only applicable in MODES 1, 2, 3, and 4. | | LCO 3.0.4 | When an LCO is not met, entry into a MODE or other specified condition in the Applicability shall not be made except when the associated ACTIONS to be entered permit continued operation in the MODE or other specified condition in the Applicability for an unlimited period of time. This Specification shall not prevent changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS. Exceptions to this Specification are stated in the individual specifications. | | • | | Figure 2.1.1-1 Reactor Core Safety Limits ## 2.0 SAFETY LIMITS (SLs) #### 2.1 SLs ### 2.1.1 Reactor Core SLs In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the SLs specified in Figure 2.1.1-1. ### 2.1.2 RCS Pressure SL In MODES 1, 2, 3, 4, and 5, the RCS pressure shall be maintained \leq 2735 psig. #### 2.2 SL Violations - 2.2.1 If SL 2.1.1 is violated, restore compliance and be in MODE 3 within 1 hour. - 2.2.2 If SL 2.1.2 is violated: - 2.2.2.1 In MODE 1 or 2, restore compliance and be in MODE 3 within 1 hour. - 2.2.2.2 In MODE 3, 4, or 5, restore compliance within 5 minutes. #### 1.4 Frequency # (continued) ### **EXAMPLE 1.4-3** ## SURVEILLANCE REQUIREMENTS | SURVEILLANCE | FREQUENCY | |--|-----------| | Not required to be performed until 12 hours after ≥ 25% RTP. | | | Perform channel adjustment. | 7 days | The interval continues, whether or not the unit operation is < 25% RTP between performances. As the Note modifies the required <u>performance</u> of the Surveillance, it is construed to be part of the "specified Frequency." Should the 7 day interval be exceeded while operation is < 25% RTP, this Note allows 12 hours after power reaches ≥ 25% RTP to perform the Surveillance. The Surveillance is still considered to be performed within the "specified Frequency." Therefore, if the Surveillance were not performed within the 7 day (plus the extension allowed by SR 3.0.2) interval, but operation was < 25% RTP, it would not constitute a failure of the SR or failure to meet the LCO. Also, no violation of SR 3.0.4 occurs when changing MODES, even with the 7 day Frequency not met, provided operation does not exceed 12 hours with power ≥ 25% RTP. Once the unit reaches 25% RTP, 12 hours would be allowed for completing the Surveillance. If the Surveillance were not performed within this 12 hour interval, there would then be a failure to perform a Surveillance within the specified Frequency, and the provisions of SR 3.0.3 would apply. ### 1.4 Frequency # EXAMPLES (continued) ### **EXAMPLE 1.4-2** #### SURVEILLANCE REQUIREMENTS | SURVEILLANCE | FREQUENCY | |-------------------------------|--| | Verify flow is within limits. | Once within
12 hours after
≥ 25% RTP | | | AND | | | 24 hours thereafter | Example 1.4-2 has two Frequencies. The first is a one time performance Frequency, and the second is of the type shown in Example 1.4-1. The logical connector "AND" indicates that both Frequency requirements must be met. Each time reactor power is increased from a power level < 25% RTP to \geq 25% RTP, the Surveillance must be performed within 12 hours. The use of "once" indicates a single performance will satisfy the specified Frequency (assuming no other Frequencies are connected by "AND"). This type of Frequency does not qualify for the 25% extension allowed by SR 3.0.2. "Thereafter" indicates future performances must be established per SR 3.0.2, but only after a specified condition is first met (i.e., the "once" performance in this example). If reactor power decreases to < 25% RTP, the measurement of both intervals stops. New intervals start upon reactor power reaching 25% RTP. ### 1.4 Frequency # (continued) ### **EXAMPLE 1.4-1** ## SURVEILLANCE REQUIREMENTS | SUNVEILL | ANDE NEGOINEMENTS | | |---------------------------------------|-------------------|-----------| | · <u></u> | SURVEILLANCE | FREQUENCY | | Perform C | HANNEL CHECK. | 12 hours | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | Example 1.4-1 contains the type of SR most often encountered in the Technical Specifications (TS). The Frequency specifies an interval (12 hours) during which the associated Surveillance must be performed at least one time. Performance of the Surveillance initiates the subsequent interval. Although the Frequency is stated as 12 hours, an extension of the time interval to 1.25 times the stated Frequency is allowed by SR 3.0.2 for operational flexibility. The measurement of this interval continues at all times, even when the SR is not required to be met per SR 3.0.1 (such as when the equipment is inoperable, a variable is outside specified limits, or the unit is outside the Applicability of the LCO). If the interval specified by SR 3.0.2 is exceeded while the unit is in a MODE or other specified condition in the Applicability of the LCO, and the performance of the Surveillance is not otherwise modified (refer to Example 1.4-3), then SR 3.0.3 becomes applicable. If the interval as specified by SR 3.0.2 is exceeded while the unit Is not in a MODE or other specified condition in the Applicability of the LCO for which performance of the SR is required, the Surveillance must be performed within the Frequency requirements of SR 3.0.2 prior to entry into the MODE or other specified condition. Failure to do so would result in a violation of SR 3.0.4. #### 1.0 USE AND APPLICATION ## 1.4 Frequency #### **PURPOSE** The purpose of this section is to define the proper use and application of Frequency requirements. #### DESCRIPTION Each Surveillance Requirement (SR) has a specified Frequency in which the Surveillance must be met in order to meet the associated LCO. An understanding of the correct application of the specified Frequency is necessary for compliance with the SR. The "specified Frequency" is referred to throughout this section and each of the Specifications of Section 3.0, Surveillance Requirement (SR) Applicability. The "specified Frequency" consists of the requirements of the Frequency column of each SR as well as certain Notes in the Surveillance column that modify performance requirements. Situations where a Surveillance could be required (i.e., its Frequency could expire), but where it is not possible or not desired that it be performed until sometime after the associated LCO is within its Applicability, represent potential SR 3.0.4 conflicts. To avoid these conflicts, the SR (i.e., the Surveillance or the Frequency) is stated such that it is only "required" when it can be and should be performed. With an SR satisfied, SR 3.0.4 imposes no restriction. #### **EXAMPLES** The following examples illustrate the various ways that Frequencies are specified. In these examples, the Applicability of the LCO (LCO not shown) is MODES 1, 2, and 3. ## **EXAMPLES** ##
EXAMPLE 1.3-7 (continued) Condition A was initially entered. If Required Action A.1 is met after Condition B is entered, Condition B is exited and operation may continue in accordance with Condition A, provided the Completion Time for Required Action A.2 has not expired. # **IMMEDIATE** When "Immediately" is used as a Completion Time, the COMPLETION TIME Required Action should be pursued without delay and in a controlled manner. # EXAMPLES (continued) #### **EXAMPLE 1.3-7** #### **ACTIONS** | CONDITION | REQUIRED ACTION | COMPLETION TIME | |-----------------------------------|---|-----------------------------| | A. One subsystem inoperable. | A.1 Verify affected subsystem isolated. | 1 hour | | | | Once per 8 hours thereafter | | | AND | | | | A.2 Restore subsystem to OPERABLE status. | 72 hours | | B. Required Action and associated | B.1 Be in MODE 3. AND | 6 hours | | Completion Time not met. | B.2 Be in MODE 5. | 36 hours | Required Action A.1 has two Completion Times. The 1 hour Completion Time begins at the time the Condition is entered and each "Once per 8 hours thereafter" interval begins upon performance of Required Action A.1. If after Condition A is entered, Required Action A.1 is not met within either the initial 1 hour or any subsequent 8 hour interval from the previous performance (plus the extension allowed by SR 3.0.2), Condition B is entered. The Completion Time clock for Condition A does not stop after Condition B is entered, but continues from the time #### **EXAMPLES** ## **EXAMPLE 1.3-6** (continued) Entry into Condition A offers a choice between Required Action A.1 or A.2. Required Action A.1 has a "once per" Completion Time, which qualifies for the 25% extension, per SR 3.0.2, to each performance after the initial performance. The initial 8 hour interval of Required Action A.1 begins when Condition A is entered and the initial performance of Required Action A.1 must be complete within the first 8 hour interval. If Required Action A.1 is followed, and the Required Action is not met within the Completion Time (plus the extension allowed by SR 3.0.2), Condition B is entered. If Required Action A.2 is followed and the Completion Time of 8 hours is not met, Condition B is entered. If after entry into Condition B, Required Action A.1 or A.2 is met, Condition B is exited and operation may then continue in Condition A. #### **EXAMPLES** ## **EXAMPLE 1.3-5** (continued) If the Completion Time associated with a valve in Condition A expires, Condition B is entered for that valve. If the Completion Times associated with subsequent valves in Condition A expire, Condition B is entered separately for each valve and separate Completion Times start and are tracked for each valve. If a valve that caused entry into Condition B is restored to OPERABLE status, Condition B is exited for that valve. Since the Note in this example allows multiple Condition entry and tracking of separate Completion Times, Completion Time extensions do not apply. #### **EXAMPLE 1.3-6** #### **ACTIONS** | CONDITION | REQUIRED ACTION | COMPLETION TIME | |--|--|------------------| | A. One channel inoperable. | A.1 Perform
SR 3.x.x.x. | Once per 8 hours | | | <u>OR</u> | | | | A.2 Reduce THERMAL POWER to ≤ 50% RTP. | 8 hours | | B. Required Action and associated Completion Time not met. | B.1 Be in MODE 3. | 6 hours | # EXAMPLES (continued) #### **EXAMPLE 1.3-5** **ACTIONS** Separate Condition entry is allowed for each inoperable valve. | DITION | REQUIRED ACTION | COMPLETION TIME | |-----------------------------|--|--| | S | A.1 Restore valve to OPERABLE status. | 4 hours | | on and
ciated
pletion | B.1 Be in MODE 3. AND B.2 Be in MODE 4 | 6 hours | | | or more es erable. uired on and ociated upletion e not met. | or more es OPERABLE status. uired on and ociated upletion A.1 Restore valve to OPERABLE status. A.2 Restore valve to OPERABLE status. A.3 Restore valve to OPERABLE status. A.4 Restore valve to OPERABLE status. | The Note above the ACTIONS Table is a method of modifying how the Completion Time is tracked. If this method of modifying how the Completion Time is tracked was applicable only to a specific Condition, the Note would appear in that Condition rather than at the top of the ACTIONS Table. The Note allows Condition A to be entered separately for each inoperable valve, and Completion Times tracked on a per valve basis. When a valve is declared inoperable, Condition A is entered and its Completion Time starts. If subsequent valves are declared inoperable, Condition A is entered for each valve and separate Completion Times start and are tracked for each valve. # EXAMPLES (continued) ### **EXAMPLE 1.3-4** | AC | TK | ON | IS | |----|----|----|----| | CONDITION | REQUIRED ACTION | COMPLETION TIME | |--|---|-----------------| | A. One or more valves inoperable. | A.1 Restore valve(s) to OPERABLE status. | 4 hours | | B. Required Action and associated Completion Time not met. | B.1 Be in MODE 3. AND B.2 Be in MODE 4. | 6 hours | A single Completion Time is used for any number of valves inoperable at the same time. The Completion Time associated with Condition A is based on the initial entry into Condition A and is not tracked on a per valve basis. Declaring subsequent valves inoperable, while Condition A is still in effect, does not trigger the tracking of separate Completion Times. Once one of the valves has been restored to OPERABLE status, the Condition A Completion Time is not reset, but continues from the time the first valve was declared inoperable. The Completion Time may be extended if the valve restored to OPERABLE status was the first inoperable valve. The Condition A Completion Time may be extended for up to 4 hours provided this does not result in any subsequent valve being inoperable for > 4 hours. If the Completion Time of 4 hours (including the extension) expires while one or more valves are still inoperable, Condition B is entered. #### EXAMPLES ## EXAMPLE 1.3-3 (continued) When one Function X train and one Function Y train are inoperable, Condition A and Condition B are concurrently applicable. The Completion Times for Condition A and Condition B are tracked separately for each train starting from the time each train was declared inoperable and the Condition was entered. A separate Completion Time is established for Condition C and tracked from the time the second train was declared inoperable (i.e., the time the situation described in Condition C was discovered). If Required Action C.2 is completed within the specified Completion Time, Conditions B and C are exited. If the Completion Time for Required Action A.1 has not expired, operation may continue in accordance with Condition A. The remaining Completion Time in Condition A is measured from the time the affected train was declared inoperable (i.e., initial entry into Condition A). The Completion Times of Conditions A and B are modified by a logical connector with a separate 10 day Completion Time measured from the time it was discovered the LCO was not met. In this example, without the separate Completion Time, it would be possible to alternate between Conditions A, B, and C in such a manner that operation could continue indefinitely without ever restoring systems to meet the LCO. The separate Completion Time modified by the phrase "from discovery of failure to meet the LCO" is designed to prevent indefinite continued operation while not meeting the LCO. This Completion Time allows for an exception to the normal "time zero" for beginning the Completion Time "clock". In this instance, the Completion Time "time zero" is specified as commencing at the time the LCO was initially not met, instead of at the time the associated Condition was entered. # EXAMPLES (continued) # **EXAMPLE 1.3-3** # **ACTIONS** | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |-----------|---|--|--| | A. | One
Function X
train
inoperable. | A.1 Restore Function X train to OPERABLE status. | 7 days AND 10 days from discovery of failure to meet the LCO | | B. | One
Function Y
train
inoperable. | B.1 Restore Function Y train to OPERABLE status. | 72 hours AND 10 days from discovery of failure to meet the LCO | | C. | Function X train inoperable. | C.1 Restore Function_X train to OPERABLE status. | 72 hours | | | AND | <u>OR</u> | | | | One
Function Y
train
inoperable. | C.2 Restore Function Y train to OPERABLE status. | 72 hours | #### **EXAMPLES** ## EXAMPLE 1.3-2 (continued) While in LCO 3.0.3, if one of the inoperable pumps is restored to OPERABLE status and the Completion Time for Condition A has expired, LCO 3.0.3 may be exited and operation continued in accordance with Condition B. The Completion Time for Condition B is tracked from the time the Condition A Completion Time expired. On restoring one of the pumps to OPERABLE status, the Condition A Completion Time is not reset, but continues from the time the first pump was declared inoperable. This Completion Time may be extended if the pump restored to OPERABLE status was the first inoperable pump. A 24 hour extension to the stated 7 days is allowed, provided this does not result in the second pump being inoperable for > 7 days. # (continued) #### **EXAMPLE 1,3-2** #### **ACTIONS** | | CONDITION | REQUIRED ACTION | COMPLETION TIME |
----|---|---|------------------| | Α. | One pump inoperable. | A.1 Restore pump to OPERABLE status. | 7 days | | В. | Required Action and associated Completion Time not met. | B.1 Be in MODE 3. AND B.2 Be in MODE 5. | 6 hours 36 hours | When a pump is declared inoperable, Condition A is entered. If the pump is not restored to OPERABLE status within 7 days, Condition B is also entered and the Completion Time clocks for Required Actions B.1 and B.2 start. If the inoperable pump is restored to OPERABLE status after Condition B is entered, Condition A and B are exited, and therefore, the Required Actions of Condition B may be terminated. When a second pump is declared inoperable while the first pump is still inoperable, Condition A is not re-entered for the second pump. LCO 3.0.3 is entered, since the ACTIONS do not include a Condition for more than one inoperable pump. The Completion Time clock for Condition A does not stop after LCO 3.0.3 is entered, but continues to be tracked from the time Condition A was initially entered. While in LCO 3.0.3, if one of the inoperable pumps is restored to OPERABLE status and the Completion Time for Condition A has not expired, LCO 3.0.3 may be exited and operation continued in accordance with Condition A. ## **EXAMPLES** The following examples illustrate the use of Completion Times with different types of Conditions and changing Conditions. #### **EXAMPLE 1.3-1** #### **ACTIONS** | CONDITION | REQUIRED ACTION | COMPLETION TIME | |--------------------------|-------------------|-----------------| | B. Required Action and | B.1 Be in MODE 3. | 6 hours | | associated
Completion | AND | | | Time not met. | B.2 Be in MODE 5. | 36 hours | Condition B has two Required Actions. Each Required Action has its own separate Completion Time. Each Completion Time is referenced to the time that Condition B is entered. The Required Actions of Condition B are to be in MODE 3 within 6 hours AND in MODE 5 within 36 hours. A total of 6 hours is allowed for reaching MODE 3 and a total of 36 hours (not 42 hours) is allowed for reaching MODE 5 from the time that Condition B was entered. If MODE 3 is reached within 3 hours, the time allowed for reaching MODE 5 is the next 33 hours because the total time allowed for reaching MODE 5 is 36 hours. If Condition B is entered while in MODE 3, the time allowed for reaching MODE 5 is the next 36 hours. # DESCRIPTION (continued) limits, the Completion Time(s) may be extended. To apply this Completion Time extension, two criteria must first be met. The subsequent inoperability: - a. Must exist concurrent with the first inoperability; and - b. Must remain inoperable or not within limits after the first inoperability is resolved. The total Completion Time allowed for completing a Required Action to address the subsequent inoperability shall be limited to the more restrictive of either: - a. The stated Completion Time, as measured from the initial entry into the Condition, plus an additional 24 hours; or - b. The stated Completion Time as measured from discovery of the subsequent inoperability. The above Completion Time extensions do not apply to those Specifications that have exceptions that allow completely separate re-entry into the Condition (for each train, subsystem, component, or variable expressed in the Condition) and separate tracking of Completion Times based on this re-entry. These exceptions are stated in individual Specifications. The above Completion Time extension does not apply to a Completion Time with a modified "time zero." This modified "time zero" may be expressed as a repetitive time (i.e., "once per 8 hours," where the Completion Time is referenced from a previous completion of the Required Action versus the time of Condition entry) or as a time modified by the phrase "from discovery . . ." Example 1.3-3 illustrates one use of this type of Completion Time. The 10 day Completion Time specified for Conditions A and B in Example 1.3-3 may not be extended. #### 1.0 USE AND APPLICATION #### 1.3 Completion Times #### **PURPOSE** The purpose of this section is to establish the Completion Time convention and to provide guidance for its use. #### **BACKGROUND** Limiting Conditions for Operation (LCOs) specify minimum requirements for ensuring safe operation of the unit. The ACTIONS associated with an LCO state Conditions that typically describe the ways in which the requirements of the LCO can fail to be met. Specified with each stated Condition are Required Action(s) and Completion Time(s). #### **DESCRIPTION** The Completion Time is the amount of time allowed for completing a Required Action. It is referenced to the time of discovery of a situation (e.g., inoperable equipment or variable not within limits) that requires entering an ACTIONS Condition unless otherwise specified, providing the unit is in a MODE or specified condition stated in the Applicability of the LCO. Required Actions must be completed prior to the expiration of the specified Completion Time. An ACTIONS Condition remains in effect and the Required Actions apply until the Condition no longer exists or the unit is not within the LCO Applicability. If situations are discovered that require entry into more than one Condition at a time within a single LCO (multiple Conditions), the Required Actions for each Condition must be performed within the associated Completion Time. When in multiple Conditions, separate Completion Times are tracked for each Condition starting from the time of discovery of the situation that required entry into the Condition. Once a Condition has been entered, subsequent trains, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will <u>not</u> result in separate entry into the Condition, unless specifically stated. The Required Actions of the Condition continue to apply to each additional failure, with Completion Times based on initial entry into the Condition. However, when a <u>subsequent</u> train, subsystem, component, or variable expressed in the Condition is discovered to be inoperable or not within (continued) #### 1.2 Logical Connectors # EXAMPLES (continued) #### **EXAMPLE 1.2-2** #### **ACTIONS** | | CONDITION | REQUIRED ACTION | | COMPLETION TIME | |----|--------------|-----------------|-----------|-----------------| | A. | LCO not met. | A.1 | Trip | | | | | <u>OR</u> | | | | | | A.2.1 | Verify | | | | | AND | | | | | | A.2.2.1 | Reduce | | | | | | <u>OR</u> | | | | | A.2.2.2 | Perform | | | | | <u>OR</u> | | | | | | A.3 | Align | | This example represents a more complicated use of logical connectors. Required Actions A.1, A.2, and A.3 are alternative choices, only one of which must be performed as indicated by the use of the logical connector OR and the left justified placement. Any one of these three Actions may be chosen. If A.2 is chosen, then both A.2.1 and A.2.2 must be performed as indicated by the logical connector AND. Required Action A.2.2 is met by performing A.2.2.1 or A.2.2.2. The indented position of the logical connector OR indicates that A.2.2.1 and A.2.2.2 are alternative choices, only one of which must be performed. # 1.2 Logical Connectors # EXAMPLES (continued) #### **EXAMPLE 1.2-1** #### **ACTIONS** | CONDITION | REQUIRED ACTION | COMPLETION TIME | |-----------------|-----------------|-----------------| | A. LCO not met. | A.1 Verify | | | | AND | | | | A.2 Restore | | In this example the logical connector <u>AND</u> is used to indicate that when in Condition A, both Required Actions A.1 and A.2 must be completed. #### 1.0 USE AND APPLICATION #### 1.2 Logical Connectors #### **PURPOSE** The purpose of this section is to explain the meaning of logical connectors. Logical connectors are used in Technical Specifications (TS) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TS are <u>AND</u> and <u>OR</u>. The physical arrangement of these connectors constitutes logical conventions with specific meanings. #### **BACKGROUND** Several levels of logic may be used to state Required Actions. These levels are identified by the placement (or nesting) of the logical connectors and by the number assigned to each Required Action. The first level of logic is identified by the first digit of the number assigned to a Required Action and the placement of the logical connector in the first level of nesting (i.e., left justified with the number of the Required Action). The successive levels of logic are identified by additional digits of the Required Action number and by successive indentations of the logical connectors. When logical connectors are used to state a Condition, Completion Time, Surveillance, or Frequency, only the first level of logic is used, and the logical connector is left justified with the statement of the Condition, Completion Time, Surveillance, or Frequency. #### **EXAMPLES** The following examples illustrate the use of logical connectors. (continued) Figure 3.5.5-1 Seal Injection Flow Limits #### 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) #### 3.5.6 ECCS Recirculation Fluid pH Control System LCO 3.5.6 The ECCS Recirculation Fluid pH Control System shall be OPERABLE. APPLICABILITY: MODES 1, 2, 3, and 4. #### **ACTIONS** | CONDITION | | REQUIRED ACTION | | COMPLETION TIME | |-----------|---|-----------------|------------------------------------|-----------------| | A. | ECCS Recirculation Fluid pH Control System inoperable. | A.1 | Restore system to OPERABLE status. | 72 hours | | B. | Required Action and associated Completion Time not met. | B.1 | Be in MODE 3. | 6 hours | | | | B.2 | Be in MODE 5. | 84 hours | | | SURVEILLANCE | FREQUENCY | |------------
---|-----------| | SR 3.5.6.1 | Perform a visual inspection of the ECCS Recirculation Fluid pH Control System and verify the following: | 18 months | | | a. Three (3) storage baskets are in place, and b. Have maintained their integrity, and c. Each basket is filled with trisodium phosphate compound such that the level is between the indicated fill marks on the baskets. | | #### 3.6.1 Containment LCO 3.6.1 Containment shall be OPERABLE. APPLICABILITY: MODES 1, 2, 3, and 4. | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |-----------|---|------------|--|-----------------| | A. | Structural integrity of the containment not conforming to the requirements of SR 3.6.1.2. | A.1 | Restore the structural integrity to within limits. | 24 hours | | B. | Containment inoperable for reasons other than Condition A. | B.1 | Restore containment to OPERABLE status. | 1 hour | | C. | Required Action and associated Completion Time not met. | C.1
AND | Be in MODE 3. | 6 hours | | | | C.2 | Be in MODE 5. | 36 hours | | | FREQUENCY | | |------------|---|--| | SR 3.6.1.1 | Perform required visual examinations and leakage rate testing except for containment air lock testing, in accordance with the Containment Leakage Rate Testing Program. | In accordance with
the Containment
Leakage Rate
Testing Program. | | SR 3.6.1.2 | Verify containment structural integrity in accordance with the Containment Tendon Surveillance Program. | In accordance with
the Containment
Tendon
Surveillance
Program | 3.6.2 Containment Air Locks LCO 3.6.2 Two containment air locks shall be OPERABLE. APPLICABILITY: MODES 1, 2, 3, and 4. #### **ACTIONS** -NOTES - 1. Entry and exit is permissible to perform repairs on the affected air lock components. - 2. Separate Condition entry is allowed for each air lock. - 3. Enter applicable Conditions and Required Actions of LCO 3.6.1, "Containment," when air lock leakage results in exceeding the overall containment leakage rate. | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |-----|--|--|-----------------| | A.º | One or more containment air locks with one containment air lock door inoperable. | 1. Required Actions A.1, A.2, and A.3 are not applicable if both doors in the same air lock are inoperable and Condition C is entered. | | | | | Entry and exit is permissible for 7 days under administrative controls if both air locks are inoperable. | (continued) | | ACTIONS | | | | |----------------|-----|--|------------------| | CONDITION | | REQUIRED ACTION | COMPLETION TIME | | A. (continued) | A.1 | Verify the OPERABLE door is closed in the affected air lock. | 1 hour | | | AND | | | | | A.2 | Lock the OPERABLE door closed in the affected air lock. | 24 hours | | | AND | i savine o populario de la compansión de l
La compansión de la compa | | | | A.3 | Air lock doors in high radiation areas may be verified locked closed by | | | | | administrative means. | | | | | Verify the OPERABLE door is locked closed in the affected air lock. | Once per 31 days | 3.6.2-2 | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|---|--|------------------| | В. | One or more containment air locks with containment air lock interlock mechanism inoperable. | 1. Required Actions B.1, B.2, and B.3 are not applicable if both doors in the same air lock are inoperable and Condition C is entered. | | | | | 2. Entry and exit of containment is permissible under the control of a dedicated individual. | | | | | B.1 Verify an OPERABLE door is closed in the affected air lock. | 1 hour | | | | AND | | | | | B.2 Lock an OPERABLE door closed in the affected air lock. | 24 hours | | | | AND | | | | | B.3 Air lock doors in high radiation areas may be verified locked closed by administrative means. | | | | | Verify an OPERABLE
door is locked closed in
the affected air lock. | Once per 31 days | | | CONDITION | 10- | REQUIRED ACTION | COMPLETION TIME | |----|---|------------|---|-----------------| | C. | One or more containment air locks inoperable for reasons other than Condition A or B. | C.1 | Initiate action to evaluate overall containment leakage rate per LCO 3.6.1. | Immediately | | | 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | AND | | The Artist | | | | C.2 | Verify a door is closed in the affected air lock. | 1 hour | | | | AND | | | | | | C.3 | Restore air lock to OPERABLE status. | 24 hours | | D. | Required Action and associated Completion | D.1 | Be in MODE 3. | 6 hours | | | Time not met. | AND | | | | | | D.2 | Be in MODE 5. | 36 hours | | | SURVEILLANCE | FREQUENCY | | |------------|---|--|--| | SR 3.6.2.1 | NOTES | | | | | An inoperable air lock door does not invalidate
the previous successful performance of the
overall air lock leakage test. | | | | | Results shall be evaluated against acceptance criteria applicable to SR 3.6.1.1. | | | | | Perform required air lock leakage rate testing in accordance with the Containment Leakage Rate Testing Program. | In accordance with
the Containment
Leakage Rate
Testing Program | | | SR 3.6.2.2 | Verify only one door in the air lock can be opened at a time. | 24 months | | #### 3.6.3 Containment Isolation Valves LCO 3.6.3 Each containment isolation valve shall be OPERABLE. The 8-inch containment mini-purge supply and exhaust isolation valves may be open for safety-related reasons. APPLICABILITY: MODES 1, 2, 3, and 4. #### **ACTIONS** -NOTES-- - 1. Penetration flow path(s) except for 48-inch purge valve flow paths may be unisolated intermittently under administrative controls. - 2. Separate Condition entry is allowed for each penetration flow path. - 3. Enter applicable Conditions and Required Actions for systems made inoperable by containment isolation valves. - 4. Enter applicable Conditions and Required Actions of LCO 3.6.1, "Containment," when isolation valve leakage results in exceeding the overall containment leakage rate acceptance criteria. | | CONDITION | R | REQUIRED ACTION | COMPLETION TIME | |-----------|--|------------
--|--| | A. | Only applicable to penetration flow paths with two containment isolation valves. One or more penetration flow paths with one | A.1 | Isolate the affected penetration flow path by use of at least one closed and de-activated automatic valve, closed manual valve, blind flange, or check valve with flow through the valve secured. | 4 hours | | | containment isolation valve inoperable except for purge valve penetration leakage not within limit. | AND
A.2 | Isolation devices in high radiation areas may be verified by use of administrative means. | Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
Andreas
And | | | | | Verify the affected penetration flow path is isolated. | Once per 31 days for isolation devices outside containment | | | and the second s | | and the state of t | AND | | | | | | Prior to entering MODE 4 from MODE 5 if not performed within the previous 92 days for isolation devices inside containment | | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|--|--|------------------| | В. | Only applicable to penetration flow paths with two containment isolation valves. One or more penetration flow paths with two containment isolation valves inoperable except for purge valve penetration leakage not within limit. | B.1 Isolate the affected penetration flow path by use of at least one closed and de-activated automatic valve, closed manual valve, or blind flange. | 1 hour | | C. | Only applicable to penetration flow paths with only one containment isolation valve and a closed system. | C.1 Isolate the affected penetration flow path by use of at least one closed and de-activated automatic valve, closed manual valve, or blind flange. | 72 hours | | | One or more penetration flow paths with one containment isolation valve inoperable. | C.2NOTE | | | | | Verify the affected penetration flow path is isolated. | Once per 31 days | | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|--|--|--| | D. | One or more penetration flow paths containing containment purge valves, with penetration leakage such that the sum of the leakage for all Type B and C tests is not within limits. | D.1 Isolate the affected
penetration flow path by use of at least one closed and de-activated automatic valve, closed manual valve, or blind flange. | 24 hours | | | | AND | | | | | D.2NOTE Isolation devices in high radiation areas may be verified by use of administrative means. | | | | | Verify the affected penetration flow path is isolated. | Once per 31 days for isolation devices outside containment | | | | | AND | | | | | Prior to entering
MODE 4 from
MODE 5 if not
performed within the
previous 92 days for
isolation devices
inside containment | | | | AND | · . | | | | D.3 Perform SR 3.6.3.5 for the penetrations containing resilient seal purge valves closed to comply with Required Action D.1. | Once per 92 days | | _ | | | | | |---|--------|-----|-----|---| | Λ | \sim | TIC | 1 | c | | - | | | . N | | | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|---|-------------------------------------|--| | E. | Required Action and associated Completion Time of Condition A, B, C, or D not met. | E.1 Be in MODE 3. AND | 6 hours | | | O, or b not met. | E.2 Be in MODE 5. | 36 hours | | F. | One or more penetration flow paths containing containment purge valves, with penetration leakage not within the penetration limits. | F.1 Reduce leakage to within limit. | Prior to entering MODE 4 from MODE 5 if the existing leakage is determined during quarterly testing per SR 3.6.3.5 | | | | | <u>OR</u> | | | | | Prior to entering
MODE 4 if excess
leakage is determined
during MODE 5 per
SR 3.6.3.5 | | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.6.3.1 | Verify each 48 inch purge valve is sealed closed, except for one purge valve in a penetration flow path while in Condition D of this LCO. | 31 days | | SR 3.6.3.2 | Valves and blind flanges in high radiation areas may be verified by use of administrative controls. | | | | Verify each containment isolation manual valve and blind flange that is located outside containment and not locked, sealed, or otherwise secured and required to be closed during accident conditions is closed, except for containment isolation valves that are open under administrative controls. | 31 days | | | SURVEILLANCE | FREQUENCY | |------------|--|--| | SR 3.6.3.3 | Valves and blind flanges in high radiation areas may be verified by use of administrative means. | | | | 2. The blind flange on the fuel transfer canal flange is only required to be verified closed after each draining of the canal. | | | | Verify each containment isolation manual valve and blind flange that is located inside containment and not locked, sealed, or otherwise secured and required to be closed during accident conditions is closed, except for containment isolation valves that are open under administrative controls. | Prior to entering
MODE 4 from
MODE 5 if not
performed within
the previous
92 days | | SR 3.6.3.4 | Verify the isolation time of each power operated or automatic containment isolation valve in the IST Program is within limits. | In accordance with
the Inservice
Testing Program | | SR 3.6.3.5 | Perform leakage rate testing for containment penetrations containing containment purge valves with resilient seals. | 184 days
AND | | | | Within 92 days
after opening the
valve | | SR 3.6.3.6 | Verify each automatic containment isolation valve that is not locked, sealed or otherwise secured in position, actuates to the isolation position on an actual or simulated actuation signal. | 18 months | # 3.6.4 Containment Pressure LCO 3.6.4 Containment pressure shall be \geq -1.5 psig and \leq +3.0 psig. APPLICABILITY: MODES 1, 2, 3, and 4. #### **ACTIONS** | CONDITION | | | REQUIRED ACTION | COMPLETION TIME | | |-----------|---|------------|--|-----------------|--| | A. | Containment pressure not within limits. | A.1 | Restore containment pressure to within limits. | 1 hour | | | В. | Required Action and associated Completion Time not met. | B.1
AND | Be in MODE 3. | 6 hours | | | | | B.2 | Be in MODE 5. | 36 hours | | | | FREQUENCY | | |------------|---|----------| | SR 3.6.4.1 | Verify containment pressure is within limits. | 12 hours | # 3.6.5 Containment Air Temperature LCO 3.6.5 Containment average air temperature shall be ≤ 120°F. APPLICABILITY: MODES 1, 2, 3, and 4. #### **ACTIONS** | CONDITION | | REQUIRED ACTION | | COMPLETION TIME | | |-----------|---|-----------------|--|-----------------|--| | A. | Containment average air temperature not within limit. | A.1 | Restore containment average air temperature to within limit. | 8 hours | | | В. | Required Action and associated Completion Time not met. | B.1 | Be in MODE 3. | 6 hours | | | | | B.2 | Be in MODE 5. | 36 hours | | | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.6.5.1 | Verify containment average air temperature is within limit. | 24 hours | # 3.6.6 Containment Spray and Cooling Systems LCO 3.6.6 Two containment spray trains and two containment cooling trains shall be OPERABLE. APPLICABILITY: MODES 1, 2, 3, and 4. | _ | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|--|---|---| | A. | One containment spray train inoperable. | A.1 Restore containment spray train to OPERABLE status. | 72 hours AND | | | | | 10 days from discovery of failure to meet the LCO | | B. | Required Action and associated Completion Time of Condition A not met. | B.1 Be in MODE 3. AND B.2 Be in MODE 5. | 6 hours
84 hours | | C. | One containment cooling train inoperable. | C.1 Restore containment cooling train to OPERABLE status. | 7 days | | | | | 10 days from
discovery of failure to
meet the LCO | | | CONDITION | F | REQUIRED ACTION | COMPLETION TIME | |----|--|------------|---|-----------------| | D. | Two containment cooling trains inoperable. | D.1 | Restore one containment cooling train to OPERABLE status. | 72 hours | | E. | Required Action and associated Completion Time of Condition C or D | E.1
AND | Be in MODE 3. | 6 hours | | | not met. | E.2 | Be in MODE 5. | 36 hours | | F. | Two containment spray trains inoperable. | F.1 | Enter LCO 3.0.3. | Immediately | | | OR | | | | | | Any combination of three or more trains inoperable. | | | | | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.6.6.1 | Verify each containment spray manual, power operated, and automatic valve in the flow path that is not locked, sealed, or otherwise secured in position is in the correct position. | 31 days | | SR 3.6.6.2 | Operate each required containment cooling train fan unit for ≥ 15 minutes. | 31 days | | SR 3.6.6.3 | Verify each containment cooling train cooling water flow rate is ≥ 1600 gpm. | 31 days | | | SURVEILLANCE | FREQUENCY | |------------|---|--| | SR 3.6.6.4 | Verify each containment spray pump's developed head at the flow test point is greater than or equal to the required developed head. | In accordance with
the Inservice
Testing Program | | SR 3.6.6.5 | Verify each automatic containment spray valve in the flow path that is not locked, sealed, or otherwise secured in position, actuates to the correct position on an actual or simulated actuation signal. | 18 months | | SR 3.6.6.6 | Verify each containment spray pump starts automatically on an actual or simulated actuation signal. | 18 months | | SR 3.6.6.7 | Verify each containment cooling train starts automatically on an actual or simulated actuation signal. | 18 months | | SR 3.6.6.8 | Verify each spray nozzle is unobstructed. | 10 years | # 3.6.7 Hydrogen Recombiners LCO 3.6.7 Two hydrogen recombiners shall be OPERABLE. APPLICABILITY: MODES 1 and 2. | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|---|-----|--|---| | A. | One hydrogen recombiner inoperable. | A.1 | LCO 3.0.4 is not applicable. | | | | | | Restore hydrogen recombiner to OPERABLE status. | 30 days | | B. | Two hydrogen
recombiners inoperable. | B.1 | Verify by administrative means that the hydrogen control function is maintained. | 1 hour AND Once per 12 hours thereafter | | | | B.2 | Restore one hydrogen recombiner to OPERABLE status. | 7 days | | C. | Required Action and associated Completion Time not met. | C.1 | Be in MODE 3. | 6 hours | | | SURVEILLANCE | | | | | | |------------|---|-----------|--|--|--|--| | SR 3.6.7.1 | Perform a system functional test for each hydrogen recombiner. | 18 months | | | | | | SR 3.6.7.2 | Visually examine each hydrogen recombiner enclosure and verify there is no evidence of abnormal conditions. | 18 months | | | | | | SR 3.6.7.3 | Perform a resistance to ground test for each heater phase. | 18 months | | | | | 3.6.8 Hydrogen Mixing System (HMS) LCO 3.6.8 Two HMS trains shall be OPERABLE. APPLICABILITY: MODES 1 and 2. | | CONDITION | ı | REQUIRED ACTION | COMPLETION TIME | |----|---|-----|--|---| | Α. | One HMS train inoperable. | A.1 | LCO 3.0.4 is not applicable. | | | | | | Restore HMS train to OPERABLE status. | 30 days | | B. | Two HMS trains inoperable. | B.1 | Verify by administrative means that the hydrogen control function is maintained. | 1 hour AND Once per 12 hours thereafter | | | | AND | | | | | | B.2 | Restore one HMS train to OPERABLE status. | 7 days | | C. | Required Action and associated Completion Time not met. | C.1 | Be in MODE 3. | 6 hours | | | SURVEILLANCE | FREQUENCY | |------------|--|-----------| | SR 3.6.8.1 | Operate each HMS train for ≥ 15 minutes. | 92 days | | SR 3.6.8.2 | Verify each HMS fan speed is ≥ 1320 rpm. | 18 months | | SR 3.6.8.3 | Verify each HMS train starts on an actual or simulated actuation signal. | 18 months | # 3.6.9 Reactor Cavity Hydrogen Dilution System LCO 3.6.9 Two Reactor Cavity Hydrogen Dilution trains shall be OPERABLE. APPLICABILITY: MODES 1 and 2. #### **ACTIONS** | CONDITION | | REQUIRED ACTION | | COMPLETION TIME | | |-----------|---|-----------------|---------------|-----------------|--| | Α. | One Reactor Cavity Hydrogen Dilution train inoperable. | A.1 | NOTE | 30 days | | | В. | Required Action and associated Completion Time not met. | B.1 | Be in MODE 3. | 6 hours | | | | FREQUENCY | | |------------|---|-----------| | SR 3.6.9.1 | Operate each Reactor Cavity Hydrogen Dilution train for ≥ 15 minutes. | 92 days | | SR 3.6.9.2 | Verify each Reactor Cavity Hydrogen Dilution train starts on an actual or simulated actuation signal. | 18 months | #### 3.7 PLANT SYSTEMS 3.7.1 Main Steam Safety Valves (MSSVs) LCO 3.7.1 Five MSSVs per steam generator shall be OPERABLE. APPLICABILITY: MODES 1, 2, and 3. **ACTIONS** Separate Condition entry is allowed for each MSSV. | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|---|---|---------------------| | A. | One or more steam generators with one MSSV inoperable and the Moderator Temperature Coefficient (MTC) zero or negative at all power levels. | A.1 Reduce THERMAL POWER to ≤ 87% RTP. | 4 hours | | B. | One or more steam generators with two or more MSSVs inoperable. OR One or more steam generators with one MSSV inoperable and the MTC positive at any power level. | B.1 Reduce THERMAL POWER to less than or equal to the Maximum Allowable % RTP specified in Table 3.7.1-1 for the number of OPERABLE MSSVs. AND | 4 hours (continued) | | Δ | C | ۲ı | 0 | N | C | |---|---|-----|---|---|---| | м | • | 1 1 | u | ľ | | | CONDITION | | | REQUIRED ACTION | COMPLETION TIME | | |-----------|---|------------|---|-----------------|--| | В. | (continued) | B.2 | Only required in MODE 1. | | | | | | | Reduce the Power Range
Neutron Flux-High reactor
trip setpoint to less than
or equal to the Maximum
Allowable % RTP
specified in Table 3.7.1-1
for the number of
OPERABLE MSSVs. | 36 hours | | | C. | Required Action and associated Completion Time not met. | C.1
AND | Be in MODE 3. | 6 hours | | | | OR | C.2 | Be in MODE 4. | 12 hours | | | | One or more steam generators with ≥ 4 MSSVs inoperable. | | · · · · · · · · · · · · · · · · · · · | | | | | SURVEILLANCE | FREQUENCY | |------------|--|--| | SR 3.7.1.1 | Only required to be performed in MODES 1 and 2. | | | | Verify each required MSSV lift setpoint per Table 3.7.1-2 in accordance with the Inservice Testing Program. Following testing, lift setting shall be within ±1%. | In accordance with
the Inservice
Testing Program | # Table 3.7.1-1 (page 1 of 1) OPERABLE Main Steam Safety Valves versus Maximum Allowable Power | NUMBER OF OPERABLE MSSVs PER STEAM GENERATOR | | | MAXIMUM ALLOV
POWER (% R | | |--|---|-----|-----------------------------|--| | | 4 | 4.1 | 60 | | | | 3 | | 43 | | | | 2 | | 24 | | # Table 3.7.1-2 (page 1 of 1) Main Steam Safety Valve Lift Settings | | LIFT SETTING (psig ± 3%) | | | |---------------|--------------------------|---------------|------| | | STEAM GENERATO | R - 1 | | | #1 | #2 | #3 | | | Q1(2)N11V010A | Q1(2)N11V011A | Q1(2)N11V012A | 1075 | | Q1(2)N11V010B | Q1(2)N11V011B | Q1(2)N11V012B | 1088 | | Q1(2)N11V010C | Q1(2)N11V011C | Q1(2)N11V012C | 1102 | | Q1(2)N11V010D | Q1(2)N11V011D | Q1(2)N11V012D | 1115 | | Q1(2)N11V010E | Q1(2)N11V011E | Q1(2)N11V012E | 1129 | | | | | | | | | | | | | · . | · | | #### 3.7 PLANT SYSTEMS 3.7.2 Main Steam Isolation Valves (MSIVs) LCO 3.7.2 Two MSIVs per steam line shall be OPERABLE. APPLICABILITY: MODE 1, MODES 2 and 3 except when one MSIV in each steam line is closed. #### **ACTIONS** Separate Condition entry is allowed for each steam line. | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|---|-----|---|-------------------------------| | A. | One or more steam lines with one MSIV inoperable in MODE 1. | | Restore MSIV to OPERABLE status. | 72 hours | | B. | One or more steam lines with two MSIVs inoperable in MODE 1. | B.1 | Restore one MSIV to OPERABLE status in affected steam line. | 4 hours | | C. | Required Action and associated Completion Time of Condition A or B not met. | C.1 | Be in MODE 2. | 6 hours | | D. | One or more steam lines | D.1 | Verify one MSIV closed in affected steam line. | 7 days | | | with one MSIV inoperable in MODE 2 or | | anecieu steam mie. | AND | | | 3. | | | Once per 7 days
thereafter | | | CONDITION | - | REQUIRED ACTION | COMPLETION TIME | |----|---|--------------------------|--|--| | E. | One or more steam lines with two MSIVs inoperable in MODE 2 or 3. | E.1 | Verify one MSIV closed in affected steam line. | 4 hours AND Once per 7 days thereafter | | F. | Required Action and associated Completion Time of Condition D or E not met. | F.1
<u>AND</u>
F.2 | Be in MODE 3. Be in MODE 4. | 6 hours 12 hours | | | SURVEILLANCE | FREQUENCY | | |------------|--|--|--| | SR 3.7.2.1 | Only required to be performed in MODES 1 and 2. | | | | | Verify closure time of each MSIV is ≤ 7 seconds. | In accordance with
the Inservice
Testing Program | | #### 3.7 PLANT SYSTEMS 3.7.3 Main Feedwater Stop Valves and Main Feedwater Regulation Valves (MFRVs) and Associated Bypass Valves LCO 3.7.3 Three Main FW Stop Valves, three MFRVs, and associated bypass valves shall be OPERABLE. APPLICABILITY: MODES 1 and 2, except when all main feedwater lines are isolated by either a Main FW Stop Valve, a MFRV and its associated bypass valve or by a closed manual valve. | Α | CT | 10 | N | S | |---|----|----|---|---| |---|----|----|---|---| -----NOTE----- Separate Condition entry is allowed for each valve. | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|--|------------|--|-----------------| | A. | One or more Main FW
Stop Valves inoperable. | A.1 | Close or isolate Main FW Stop Valve. | 72 hours | | | | A.2 | Verify Main FW Stop Valve is closed or isolated. | Once per 7 days | | В. | One or more MFRVs inoperable. | B.1
AND | Close or isolate MFRV. | 72 hours | | | · · · · · · · · · · · · · · · · · · · | B.2 | Verify MFRV is closed or isolated. | Once per 7 days | #### **ACTIONS** | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|---|-----|--|-----------------| | C. | One or more MFRV bypass
valves inoperable. | C.1 | Close or isolate bypass valve. | 72 hours | | | | C.2 | Verify bypass valve is closed or isolated. | Once per 7 days | | D. | Two valves in the same flow path inoperable. | D.1 | Isolate affected flow path. | 8 hours | | E. | Required Action and associated Completion Time not met. | E.1 | Be in MODE 3. | 6 hours | | | SURVEILLANCE | FREQUENCY | |------------|---|---| | SR 3.7.3.1 | Verify the closure time of each Main FW Stop Valve, MFRV, and associated bypass valve is in accordance with the time requirement in the Inservice Testing Plan. | In accordance with
the Inservice
Testing Program. | #### 3.7 PLANT SYSTEMS 3.7.4 Atmospheric Relief Valves (ARVs) LCO 3.7.4 Three ARV lines shall be OPERABLE. APPLICABILITY: MODES 1, 2, and 3. #### **ACTIONS** | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|---|-----|--|-----------------| | Α. | One required ARV line inoperable. | A.1 | LCO 3.0.4 is not applicable. | | | | | | Restore required ARV line to OPERABLE status. | 7 days | | В. | Two or more required ARV lines inoperable. | B.1 | Restore all but one ARV line to OPERABLE status. | 24 hours | | C. | Required Action and associated Completion Time not met. | C.1 | Be in MODE 3. | 6 hours | | | | C.2 | Be in MODE 4. | 18 hours | | | SURVEILLANCE | FREQUENCY | |------------|--|-----------| | SR 3.7.4.1 | Verify one complete cycle of each ARV. | 18 months | | SR 3.7.4.2 | Verify one complete cycle of at least one manual isolation valve in each ARV Line. | 18 months | # 3.7 PLANT SYSTEMS 3.7.5 Auxiliary Feedwater (AFW) System LCO 3.7.5 Three AFW trains shall be OPERABLE. APPLICABILITY: MODES 1, 2, and 3. #### **ACTIONS** | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|--|---|---| | Α. | One steam supply to | A.1 Restore steam supply to | 7 days | | | turbine driven AFW pump inoperable. | OPERABLE status. | AND | | | | | 10 days from discovery of failure to meet the LCO | | В. | One AFW train | B.1 Restore AFW train to OPERABLE status. | 72 hours | | | inoperable for reasons other than Condition A. OPERABLE status. | OFERABLE status. | AND | | | | | 10 days from discovery of failure to | | | | Maring a property of the first | meet the LCO | | C. | Required Action and | C.1 Be in MODE 3. | 6 hours | | | associated Completion
Time for Condition A or B
not met. | AND | · | | | | C.2 Be in MODE 4. | 12 hours | | | <u>OR</u> | | | | | Two AFW trains inoperable. | | | # **ACTIONS** | CONDITION | REQUIRED ACTION | COMPLETION TIME | |---------------------------------|--|-----------------| | D. Three AFW trains inoperable. | D.1 NOTE LCO 3.0.3 and all other LCO Required Actions requiring MODE changes are suspended until one AFW train is restored to OPÉRABLE status. | | | | Initiate action to restore one AFW train to OPERABLE status. | Immediately | | | SURVEILLANCE | | | | |------------|--|---------|--|--| | SR 3.7.5.1 | Not required to be performed for the AFW flow control valves when ≤ 10% RTP or when the AFW system is not in automatic control. | | | | | | Verify each AFW manual, power operated, and automatic valve in each water flow path, and in both steam supply flow paths to the steam turbine driven pump, that is not locked, sealed, or otherwise secured in position, is in the correct position. | 31 days | | | | | SURVEILLANCE | FREQUENCY | |------------|--|---| | SR 3.7.5.2 | Not required to be performed for the turbine driven AFW pump until 24 hours after ≥ 1005 psig in the steam generator. | | | | Verify the developed head of each AFW pump at the flow test point is greater than or equal to the required developed head. | In accordance with the Inservice Testing Program. | | SR 3.7.5.3 | Verify each AFW automatic valve that is not locked, sealed, or otherwise secured in position, actuates to the correct position on an actual or simulated actuation signal. | 18 months | | SR 3.7.5.4 | Not required to be performed for the turbine driven AFW pump until 24 hours after ≥ 1005 psig in the steam generator. | | | | Verify each AFW pump starts automatically on an actual or simulated actuation signal. | 18 months | | SR 3.7.5.5 | Verify the turbine driven AFW pump steam admission valves open when air is supplied from their respective air accumulators. | 18 months | #### 3.7 PLANT SYSTEMS 3.7.6 Condensate Storage Tank (CST) LCO 3.7.6 The CST shall be OPERABLE. APPLICABILITY: MODES 1, 2, and 3. #### **ACTIONS** | , | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|--|-----|---|---------------------------------| | A. | CST inoperable. | A.1 | Verify by administrative means OPERABILITY of | 4 hours | | | | | backup water supply. | AND | | | | : | | Once per
12 hours thereafter | | | | AND | | | | | · | A.2 | Restore CST to OPERABLE status. | 7 days | | В. | Required Action and | B.1 | Be in MODE 3. | 6 hours | | | associated Completion
Time not met. | AND | | | | | · | B.2 | Be in MODE 4. | 12 hours | | | SURVEILLANCE | FREQUENCY | |------------|--|-----------| | SR 3.7.6.1 | Verify the CST level is ≥ 150,000 gal. | 12 hours | #### 3.7 PLANT SYSTEMS 3.7.7 Component Cooling Water (CCW) System LCO 3.7.7 Two CCW trains shall be OPERABLE. APPLICABILITY: MODES 1, 2, 3, and 4. #### **ACTIONS** | CONDITION | REQUIRED ACTION | COMPLETION TIME | | |--|---|-----------------|--| | A. One CCW train inoperable. | A.1 Enter applicable Conditions and Required Actions of LCO 3.4.6, "RCS Loops—MODE 4," for residual heat removal loops made inoperable by CCW. Restore CCW train to | 72 hours | | | B. Required Action and | OPERABLE status. B.1 Be in MODE 3. | 6 hours | | | associated Completion Time of Condition A not met. | AND | O HOUIS | | | met. | B.2 Be in MODE 5. | 36 hours | | | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.7.7.1 | Isolation of CCW flow to individual components does not render the CCW System inoperable. | | | | Verify each accessible CCW manual, power operated, and automatic valve in the flow path servicing safety related equipment, that is not locked, sealed, or otherwise secured in position, is in the correct position. | 31 days | | SR 3.7.7.2 | Verify each CCW automatic valve in the flow path that is not locked, sealed, or otherwise secured in position, actuates to the correct position on an actual or simulated actuation signal. | 18 months | | SR 3.7.7.3 | Verify each CCW pump starts automatically on an actual or simulated actuation signal. | 18 months | #### 3.7 PLANT SYSTEMS 3.7.8 Service Water System (SWS) LCO 3.7.8 Two SWS trains shall be OPERABLE. APPLICABILITY: MODES 1, 2, 3, and 4. #### **ACTIONS** | ACTIONS | | | |---|--|-----------------| | CONDITION | REQUIRED ACTION | COMPLETION TIME | | A. One SWS train inoperable. | A.1 ——NOTES——— 1. Enter applicable Conditions and Required Actions of LCO 3.8.1, "AC Sources — Operating," for emergency diesel generator made | | | | inoperable by SWS. 2. Enter applicable Conditions and Required Actions of LCO 3.4.6, "RCS Loops — MODE 4," for residual heat removal loops made | | | B. One SWS automatic | Restore SWS train to OPERABLE status. B.1 Restore both inoperable | 72 hours | | B. One SWS automatic turbine building isolation valve inoperable in each SWS train. | turbine building isolation valves to OPERABLE status. | /2 Hours | **ACTIONS** | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|--|-----|-------------------------|-----------------| | C. | Required Action and | C.1 | Be in MODE 3. | 6 hours | | | associated Completion Time of Condition A or B | AND | AND BURNESS AND THE BAN | | | | not met. | C.2 | Be in MODE 5. | 36 hours | | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.7.8.1 | Isolation of SWS flow to individual components does not render the SWS inoperable. | | | | Verify each accessible SWS manual, power
operated, and automatic valve in the flow path servicing safety related equipment, that is not locked, sealed, or otherwise secured in position, is in the correct position. | 31 days | | SR 3.7.8.2 | Verify each SWS automatic valve in the flow path that is not locked, sealed, or otherwise secured in position, actuates to the correct position on an actual or simulated actuation signal. | 18 months | | SR 3.7.8.3 | Verify each SWS pump starts automatically on an actual or simulated actuation signal. | 18 months | | SR 3.7.8.4 | Verify the integrity of the SWS buried piping by visual inspection of the ground area. | 18 months | #### 3.7 PLANT SYSTEMS #### 3.7.9 Ultimate Heat Sink (UHS) LCO 3.7.9 The UHS (Service Water Pond) shall be OPERABLE. APPLICABILITY: MODES 1, 2, 3, and 4. #### **ACTIONS** | | CONDITION | i | REQUIRED ACTION | COMPLETION TIME | |----|---|-----|-----------------|-----------------| | A. | UHS water level or | A.1 | Be in MODE 4. | 48 hours | | | temperature not within the required limit(s). | AND | | | | | | A.2 | Be in MODE 5. | 60 hours | | | SURVEILLANCE | FREQUENCY | |------------|--|-----------| | SR 3.7.9.1 | Verify water level of UHS is ≥ 184 ft mean sea level. | 24 hours | | SR 3.7.9.2 | Verify water temperature of ≤ 95°F at the discharge of the Service Water Pumps | 24 hours | | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|---|------------------------------------|----------------| | | | | ITS 3.6.6 CONTAINMENT SPRAY AND COOLING SYSTEMS | | | | 2-LA | 3/4.6.2.1 | 3.6 Bases | The descriptive text in CTS 3.6.2.1 regarding containment spray system water supplies is moved into the ITS Bases. Also, the LCO is revised to delete the word "independent" since it is implicit in ITS. | 5.5.14
Bases Control
Program | 1,3 | | 5-LA | 3/4.6.2.1 | 3.6 Bases | CTS surveillance 4.6.2.1.b is reworded to refer to the "required developed head at the flow test point" rather than to specific values, which are moved into the Bases. | 5.5.14
Bases Control
Program | 1,3 | | 8-LA | 3/4.6.2.1 | 3.6 Bases | The specific actuation signal used for automatic valve and pump verifications, and the descriptive detail about spray header nozzle verification in CTS 4.6.2.1.c.1/2 and 4.6.2.1.d are moved to the Bases. | 5.5.14
Bases Control
Program | 1,3 | | 2-LA | 3/4.6.2.3 | 3.6 Bases | The descriptive text in CTS 3.6.2.3 regarding groups of containment cooling fans is moved into the expanded ITS Bases. Also, the LCO is revised to delete the word "independent" since it is implicit in ITS and "train" is used in place of "group". | 5.5.14
Bases Control
Program | 1,3 | - 1. Details of system design and system description including design limits - Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|---|------------------------------------|----------------| | 1-LA | 3/4.6.3 | TRM | The list of Containment Isolation Valves in CTS Table 3.6-1 is moved to the TRM. | 10 CFR 50.59 | . 1 | | 11-LA | 3/4.6.3 | TRM | CTS 4.6.3.1, stating post maintenance test requirements, are moved to the TRM. | 10 CFR 50.59 | 3 | | 13-LA | 3/4.6.3 | 3.6 Bases | The specific actuation signal for the valves and the requirement that the surveillance be performed in COLD SHUTDOWN contained in CTS 4.6.3.2 are moved to the Bases. | 5.5.14
Bases Control
Program | 1,3 | | 19-LA | 3/4.6.3 | 3.6 Bases | The ** footnote of CTS Table 3.6-1, which addresses opening of the RHR loop isolation valves for overpressure protection, is moved to the Bases. | 5.5.14
Bases Control
Program | 1,3 | | | | | ITS 3.6.5 CONTAINMENT AIR TEMPERATURE | | | | 2-LA | 3/4.6.1.5 | 3.6 Bases | The descriptive details in CTS 4.6.1.5.1 regarding the instruments for determining containment average air temperature are moved into the Bases. | 5.5.14
Bases Control
Program | 1,3 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | | t to | | ITS 3.6.2 CONTAINMENT AIR LOCKS | | | | 1-LA | . 3/4.6.1.3 | 3.6 Bases | The descriptive text in CTS 3.6.1.3 regarding the status of the airlock doors and the exception to allow entry and exit through the airlock is moved to the Bases. | 5.5.14
Bases Control
Program | 2, 3 | | | | | ITS 3.6.3 CONTAINMENT ISOLATION VALVES | | | | 4-LA | 3/4.6.1.7 | 3.6 Bases | The listing of the 48 inch and 8 inch purge supply and exhaust isolation valve numbers in CTS 3.6.1.7 is moved to the Bases. | 5.5.14
Bases Control
Program | 1 | | 9-LA | 3/4.6.1.7 | 3.6 Bases | The CTS * footnote to LCO 3/4.6.1.7 is moved to the Bases. | 5.5.14
Bases Control
Program | 3 | | 15-LA | 3/4.6.1.7 | TRM | The provision of CTS 4.6.1.7.3 requiring comparison of past isolation valve leakage test results, and all of CTS 4.6.1.7.4 (requiring periodic seal replacement) are moved to the Technical Requirements Manual. | 10 CFR 50.59 | 3 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|--|---|---|----------------| | | | | ITS 3.6.1 CONTAINMENT | | | | 6-LA | 3/4.6.1.1 | 3.6 Bases | CTS 4.6.1.1.a * footnote verifies the status of containment penetrations, including the equipment hatch. Containment operability requirement pertaining to the equipment hatch is discussed in the LCO 3.6.1 Bases. | 5.5.14
Bases Control
Program | 3 | | 9-LA | 3/4.6.1.1 | Pre-Stressed
Containment
Tendon
Surveillance
Program | SR 3.6.1.2 is added to require containment structural integrity to be verified per the Pre-Stressed Concrete Containment Tendon Surveillance Program. See DOC 1-LA for CTS 3/4.6.1.6. | 5.5.6 Pre-Stressed Concrete Containment Tendon Surveillance Program | 1,3 | | 1-LA | 3/4.6.1.6 | Pre-Stressed
Containment
Tendon
Surveillance
Program | The CTS LCO and surveillance requirements for the containment tendons, anchorages, and containment surfaces are relocated to the Pre-Stressed Concrete Containment Tendon Surveillance Program. | 5.5.6 Pre-Stressed Concrete Containment Tendon Surveillance Program | 1,3 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations # Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 3.5 - EMERGENCY CORE COOLING SYSTEMS (ECCS) | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |---|------------------|-------------------------|---|------------------------------------|----------------| | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | ITS 3.5.5 SEAL INJECTION FLOW | | | | | | | N/A | | | | | | | ITS 3.5.6 ECCS RECIRCULATION FLUID pH CONTROL SYSTEM | | | | 1-LA | 3/4.5.6 | 3.5.6 Bases | The CTS 3.5.6 LCO describing system operability (requirements for trisodium phosphate compound) are moved to the Bases for LCO 3.5.6. | 5.5.14
Bases Control
Program | 1,3 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations #### Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 3.5 - EMERGENCY CORE COOLING SYSTEMS (ECCS) | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|---------------------------------
--|------------------------------------|----------------| | 4-LA | 3/4.5.3 | 3.5.3 Bases | The description of the CTS Action statement regarding the charging subsystem (pump and flow path) is replaced by the term subsystem. Descriptive information for the subsystems that comprise an ECCS train is moved to the Bases of LCO 3.5.2. | 5.5.14
Bases Control
Program | 1 | | 7-LA | 3/4.5.3 | 3.5.3 Bases | The description of CTS Action statement b about the RHR subsystem (heat exchanger and RHR pump) is replaced by the term subsystem. Descriptive information for the subsystems that comprise an ECCS train is moved to the Bases of LCO 3.5.2. | 5.5.14
Bases Control
Program | 1 | | 8-LA | 3/4,5.3 | 3.5.3 Bases | The CTS action b requirement for maintaining the RCS Tavg < 350° F by the use of alternate heat removal methods is moved to the Bases discussion for the corresponding ITS Action A.1. | 5.5.14
Bases Control
Program | 3 | | 10-LA | 3/4.5.3 | 10 CFR
50.73
(a) (2) (iv) | CTS action statement c is deleted; this CTS requirement is effectively addressed by existing regulations. 10 CFR 50.73(a) (2) (iv) provides requirements for the licensee to submit a Licensee Event Report in the event of an ECCS actuation. | 10 CFR 50.73
(a) (2) (iv) | 4 | | 12-LA | 3/4.5.3 | 3.5.3 Bases | CTS surveillance 4.5.3.2 is revised to require power removed from the valves. The specific method of removing power (breaker or disconnect device locked open) is moved into the Bases for the FNP ITS SR 3.5.3.2. | 5.5.14
Bases Control
Program | 2,3 | - 1. Details of system design and system description including design limits - 2. Descriptions of system operation - 3. Procedural details for requirements and related reporting problems4. Administrative requirements redundant to regulations # Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 3.5 - EMERGENCY CORE COOLING SYSTEMS (ECCS) | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|---------------------------|---|---|----------------| | 15-LA | 3/4.5.2 | 3.5.2 Bases | CTS 4.5.2.h and 4.5.2.e are combined into one ITS surveillance (SR 3.5.2.6) for ECCS valve position stop verification. The existing details of the CTS surveillances have been moved into the TRM. In addition, the requirement in 4.5.2.h for the RHR valve mechanical stop | 5.5.14
Bases Control
Program | 1,3 | | • | | TRM | verification "Prior to entry into Mode 3 from Mode 4" (which verifies the mechanical stop is intact after the RHR valves have been utilized during a shutdown for decay heat removal) is moved into the TRM along with the other post stroke operation position stop verification requirements for ECCS valves in 4.5.2.e.1. | and
10 CFR 50.59 | | | 16-LA | 3/4.5.2 | TRM
and
3.5.2 Bases | CTS 4.5.2.i requires an ECCS flow balance test to be performed after any modifications that alter the subsystem flow characteristics. This CTS is a post maintenance test requirement and is moved into the TRM, while the specific flows required for the ECCS subsystems are moved into the TS LCO Bases discussion of an operable ECCS system. | 10 CFR 50.59
and
5.5.14
Bases Control
Program | 1,3 | | | | | ITS 3.5.3 ECCS - SHUTDOWN | | | | 2-LA | 3/4.5.3 | 3.5.3 Bases | The details of CTS 3.5.3 LCO describing system operability are moved to the Bases for LCO 3.5.2. | 5.5.14
Bases Control
Program | 1,2 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations #### Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 3.5 - EMERGENCY CORE COOLING SYSTEMS (ECCS) | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|---|------------------------------------|----------------| | 7-LA | 3/4.5.2 | TRM | The requirements of CTS 4.5.2.c, requiring a visual inspection of containment, are moved to the Technical Requirements Manual (TRM). | 10 CFR 50.59 | 3 | | 10-LA | 3/4.5.2 | TRM | The requirements of CTS 4.5.2.e.1, which requires verification of the mechanical position stop for the ECCS throttle valves after each valve stroke and maintenance, are moved to the Technical Requirements Manual (TRM). | 10 CFR 50.59 | 3 | | 12-LA | 3/4.5.2 | 3.5.2 Bases | CTS 4.5.2.f.1 and 2 are revised to move details into the Bases. The phrase "during shutdown," the specific actuating signal (SI), and the specific pumps involved in the testing are all moved into the applicable Bases discussion for these Surveillances. | 5.5.14
Bases Control
Program | 1 | | 14-LA | 3/4.5.2 | 3.5.2 Bases | CTS 4.5.2.g.1 and 2 are revised to become ITS SR 3.5.2.3, with the specific requirement to test the pumps on recirculation flow and the required differential pressure values replaced in ITS with less specific language. Details concerning the specific test method and data for the pumps are moved to the Bases. | 5.5.14
Bases Control
Program | 1,3 | - 1. Details of system design and system description including design limits - Descriptions of system operation Procedural details for requirements and related reporting problems - 4. Administrative requirements redundant to regulations # Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 3.5 - EMERGENCY CORE COOLING SYSTEMS (ECCS) | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|---|---------------------------------|--|------------------------------------|----------------| | (DOO NO.) | 1 | | ITS 3.5.1 ACCUMULATORS | | | | 8-LA | 3/4.5.1 | 3.5 Bases | The CTS surveillance 4.5.1.1. explanation regarding RWST boron concentration being within the accumulator boron concentration limits is moved to the Bases. | 5.5.14
Bases Control
Program | 3 | | 10-LA | 3/4.5.1 | 3.5 Bases | The CTS surveillance 4.5.1.1. details of how power is removed from the valve operators are moved into the Bases. | 5.5.14
Bases Control
Program | 2,3 | | | | | ITS 3.5.2 ECCS - OPERATING | | | | 2-LA | 3/4.5.2 | 3.5 Bases | The CTS 3.5.2 LCO statement containing descriptive information regarding the ECCS subsystems operability is moved into the Bases. | 5.5.14
Bases Control
Program | 1,2 | | 5-LA | 3/4.5.1 | 10 CFR
50.73
(a) (2) (iv) | CTS action statement b is deleted; this CTS requirement is effectively addressed by existing regulations. 10 CFR 50.73(a) (2) (iv) provides requirements for the licensee to submit a Licensee Event Report in the event of an ECCS actuation. | 10 CFR 50.73
(a) (2) (iv) | 4 | | 6-LA | 3/4.5.2 | 3.5 Bases | The CTS 4.5.2.a surveillance detail of how power is removed from the affected valves (locked open disconnect device) is moved into the Bases. | 5.5.14
Bases Control
Program | 2 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|--|---|---|----------------| | | | | ITS 3.4.15 RCS LEAKAGE DETECTION INSTRUMENTATION | | | | 1-LA | 3/4.4.7.1 | 3.4.15
Bases | Details from CTS 3.4.7.1 LCO statement (radiation monitor instrument designations R-11 and R-12) are moved to the Bases. | 5.5.14
Bases Control
Program | 1 | | | | e e | ITS - N/A
CTS 3/4.4.6 STEAM GENERATORS - UNIT 1 AND UNIT 2 | | | | 2-LA | 3/4.4.6 | 10 CFR
50.55a | The CTS surveillance 4.4.6.0 reference to the requirements of Specification 4.0.5 (which is eliminated in ITS) for the Inservice Inspection (ISI) program is removed in ITS. ISI requirements are directly controlled by regulations (10 CFR 50.55a). | 10 CFR 50.55a | 4 | | | | 4
1944 - 19 | ITS 5.5.8 INSERVICE TESTING PROGRAM
CTS 3/4.4.11 RCS STRUCTURAL INTEGRITY | | | | 1-LA |
3/4.4.11 | 10 CFR
50.55a
(ISI)
and
ITS 5.5.8
(IST) | The CTS LCO, Actions, Applicability and Surveillance Requirements for Structural Integrity for ASME Code Class 1, 2, and 3 components are removed from ITS and maintained in accordance with the Inservice Testing (IST) and Inservice Inspection (ISI) programs. | 10 CFR 50.55a
(ISI)
and
ITS 5.5.8
(IST) | 3, 4 | - 1. Details of system design and system description including design limits - 2. Descriptions of system operation - 3. Procedural details for requirements and related reporting problems4. Administrative requirements redundant to regulations | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|---|------------------------------------|----------------| | 12-LA | 3/4.4.10.3 | 3.4.12
Bases | The description of the specific means by which a charging pump is rendered incapable of injecting into the RCS is moved to the Bases. | 5.5.14 Bases Control Program | 3 | | | | | ITS 3.4.14 RCS PRESSURE ISOLATION VALVE LEAKAGE | | | | 14-LA | 3/4.4.7.2 | TRM | The information in CTS Table 3.4-1, containing a list of RCS PIVs, is moved to the Technical Reference Manual. | 10 CFR 50.59 | 1 | | 15-LA | 3/4.4.7.2 | 10 CFR
50.55a | The CTS surveillance 4.4.7.2.2 references to the requirements of Specification 4.0.5 (which is eliminated in ITS) for the Inservice Inspection (ISI) program are removed in ITS. ISI requirements are directly controlled by regulations (10 CFR 50.55a). | 10 CFR 50.55a | 4 | | 19-LA | 3/4.4.7.2 | TRM | The CTS surveillance 4.4.7.2.2.b requirement for post maintenance testing on RCS PIVs is moved to the Technical Reference Manual. | 10 CFR 50.59 | 3 | | 26-LA | 3/4.4.7.2 | 3.4.14
Bases | CTS surveillance 4.4.7.2.2 footnote # information with specific procedural guidance for performing the RCS PIV leakage measurement surveillance is moved to the Bases. | 5.5.14
Bases Control
Program | 3 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|---|------------------------------------|---------------------------------------| | <u>.</u> | | | ITS 3.4.9 PRESSURIZER | | | | 1-LA | 3/4.4.4 | 3.4.9 Bases | The CTS LCO 3.4.4 (ITS LCO 3.4.9) cubic foot value for the allowable pressurizer water volume is moved to the Bases (the percent indicated level value remains in the LCO). | 5.5.14
Bases Control
Program | 1,2 | | 4-LA | 3/4.4.4 | 3.4.9 Bases | CTS surveillance 4.4.4.2 and 4.4.4.3 details regarding how the surveillance requirements are to be met are moved to the Bases. | 5.5.14 Bases Control Program | 3 | | | | | ITS 3.4.10 PRESSURIZER SAFETY VALVES | | · · · · · · · · · · · · · · · · · · · | | 5-LA | 3/4.4.3 | 3.4.10
Bases | The CTS LCO 3/4.4.3 footnote * information that the pressurizer safety valve lift setting pressure shall correspond to ambient conditions of the valve at nominal operating temperature and pressure is moved to the Bases. | 5.5.14
Bases Control
Program | 3 | | | | | ITS 3.4.12 LOW TEMPERATURE OVERPRESSURE PROTECTION SYSTEM | | | | 8-LA | 3/4.4.10.3 | 3.4.12
Bases | The specific RHR relief valve identification numbers listed in CTS surveillance 4.4.10.3.1.a are moved to the Bases. | 5.5.14
Bases Control
Program | 1 | - 1. Details of system design and system description including design limits - 2. Descriptions of system operation - 3. Procedural details for requirements and related reporting problems4. Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|---|------------------------------------|----------------| | | | | ITS 3.4.6 RCS LOOPS - MODE 4 | - | | | 2-LA | 3/4.4.1.3 | 3.4.6 Bases | The CTS 3.4.1.3 descriptive list of RCS loops in the LCO statement is moved to the Bases. | 5.5.14
Bases Control
Program | - 1 | | 7-LA | 3/4.4.1.3 | 3.4.6 Bases | CTS surveillance 4.4,1.3.1 and 4.4.1.3.3 details "and circulating reactor coolant" and "shall be determined operable" are moved to the Bases. | 5.5.14
Bases Control
Program | 3 | | | | | ITS 3.4.7 RCS LOOPS - MODE 5 - LOOPS FILLED | | | | 4-LA | 3/4.4.1.4 | 3.4.7 Bases | CTS surveillance 4.4.1.4 detail "and circulating reactor coolant" is moved to the Bases for ITS 3.4.7 and 3.4.8. | 5.5.14
Bases Control
Program | 2 | | | | | ITS 3.4.8 RCS LOOPS - MODE 5 - LOOPS NOT FILLED | · | | | 4-LA | 3/4.4.1.4 | 3.4.8 Bases | CTS surveillance 4.4.1.4 detail "and circulating reactor coolant" is moved to the Bases for ITS 3.4.7 and 3.4.8. | 5.5.14
Bases Control
Program | 2 | - 1. Details of system design and system description including design limits - Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | 6-LA | 3.4.4.10 | 10 CFR 50
Appendix H | CTS surveillance 4.4.10.1.2 requirement for reactor vessel material surveillance specimens to be removed and examined to determine changes in material properties are redundant to 10 CFR 50 App. H. | 10 CFR 50
Appendix H | 4 | | | | | ITS 3.4.4 RCS LOOPS - MODES 1 AND 2 | | | | 5-LA | 3/4.4.1.1 | 3.4.4 Bases | The CTS 4.4.1.1 surveillance requirement to verify the circulation of reactor coolant in order to verify an operable RCS loop is moved to the Bases. | 5.5.14
Bases Control
Program | 3 | | 1 (14 4 2) | d | | ITS 3.4.5 RCS LOOPS - MODE 3 | | | | 2-LA | 3/4.4.1.2 | 3.4.5 Bases | The CTS 3.4.1.2 descriptive list of RCS loops in the LCO statement is moved to the Bases. | 5.5.14
Bases Control
Program | 1 | | 3-LA | 3/4.4.1.2 | 3.4.5 Bases | The specific actions described in CTS Action Statement b to open the reactor trip breakers or shut down the rod drive MG sets are moved to the Bases and replaced with more general information. | 5.5.14
Bases Control
Program | 2,3 | | 7-LA | 3/4.4.1.2 | 3.4.5 Bases | CTS surveillance 4.4.1.2.2 and 4.4.1.2.3 details "and circulating reactor coolant" and "shall be determined operable" are moved to the Bases. | 5.5.14
Bases Control
Program | 3 | - 1. Details of system design and system description including design limits - 2. Descriptions of system operation - 3. Procedural details for requirements and related reporting problems - 4. Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|---|-------------------------|--|------------------------------------|----------------| | | | | ITS 3.4.1 RCS PRESSURE, TEMPERATURE, AND FLOW DNB LIMITS | | <u> </u> | | . 10-LA | 3/4.2.5 | 3.4.1 Bases | CTS Table 3.2-1 footnote *** contains the measurement uncertainties associated with the calculations used to determine the minimum RCS flow specified in the TS; this information is moved to the Bases. | 5.5.14
Bases Control
Program | 1 | | . " | | | ITS 3.4.2 RCS MINIMUM TEMPERATURE FOR CRITICALITY | erine
Visit (1944) | | | 3-LA | 3/4.1.1.4 | 3.4.2 Bases | The CTS Applicability * footnote referencing special test exception 3.10.3 is moved to the Bases. | 5.5.14
Bases Control
Program | 3 | | | 1 30 1 10 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | ITS 3.4.3 RCS PRESSURE TEMPERATURE (P/T) LIMITS | | á | | 1-LA | 3.4.4.10 | 3.4.3 Bases | The CTS LCO statement exception taken to the pressurizer, and the descriptive information concerning the applicability of the LCO statement, are moved to the Bases. | 5.5.14
Bases Control
Program | 2,3 | | 4-LA | 3.4.4.10 | 3.4.3 Bases | The CTS Action Statement description of the engineering evaluation required if PTLR limits are exceeded is moved to the Bases. | 5.5.14 Bases Control Program | 3 | - 1. Details of system design and system description including design limits - Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of
Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|---|--------------------|----------------| | | | · | ITS 3.3.6 CONTAINMENT PURGE AND EXHAUST ISOLATION INSTRUMENTATION | | | | | | | N/A | | | | | | | ITS 3.3.7 CREFS ACTUATION INSTRUMENTATION | | | | | | | N/A | | | | | | | ITS 3.3.8 PRF ACTUATION INSTRUMENTATION | | | | | | | N/A | · | · | - 1. Details of system design and system description including design limits - 2. Descriptions of system operation - Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|---|------------------------------------|----------------| | 1-LA | 3.3.3.11 | TRM | The Waste Gas Monitoring Instrumentation, which contains the requirements for the instrumentation necessary to ensure the explosive gas concentrations in the waste gas system do not exceed the required limits, is removed from the TS consistent with the content of the STS and will be contained in the TRM. | 10 CFR 50.59 | 1 | | | | | ITS 3.3.4 REMOTE SHUTDOWN SYSTEM | | | | | | | N/A | | | | * *** ; | | , | ITS 3.3.5 LOSS OF POWER (LOP) DIESEL GENERATOR (DG) START INSTRUMENTATION | | | | 70-LA | T 3.3-4 | Bases | The * footnote to the loss of power functions is removed from the CTS ESFAS TS and placed in the new LOP LCO bases for the required channel calibration surveillance of the associated LOP functions. | 5.5.14
Bases Control
Program | 1 | | 96-LA | T 4.3-2 | Bases | Note 4 of the referenced table contains surveillance instructions that is moved to the bases of the associated ITS SR. | 5.5.14
Bases Control
Program | 1 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | 9-LA | Т 3.3-6 | TRM | The requirement, including the setpoints, applicable Modes, minimum channel requirements, measurement range, Actions, and surveillance requirements for the fuel storage pool area monitor and the noble gas effluent monitors are removed from the TS and placed in the TRM. | 10 CFR 50.59 | 1 | | 22-LA | T 3.3-6 | TRM | CTS Actions 27a is retained for the fuel storage pool area monitor. The noble gas effluent monitors are removed from the TS and placed in the TRM. | 10 CFR 50.59 | 1 | | 20-LA | T 3.3-11 | Bases | The # footnote of the referenced table is moved into the bases description of the reactor vessel water level indication system. This CTS footnote describes a channel of level indication and defines what is required for an operable channel. | 5.5.14
Bases Control
Program | 1 | | 30-LA | 4.6.4.1 | Bases | The surveillance for the channel calibration of the hydrogen analyzers is revised consistent with the corresponding STS surveillance for the channel calibration of post-accident monitoring instruments. The information regarding the sample gases used during the channel calibration is moved into the bases for the corresponding STS surveillance. | 5.5.14
Bases Control
Program | 1, 3 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|--|---------------------------------------|----------------| | 94-LA | T 4.3-2 | Bases | Note 1 of the referenced table includes a requirement to perform manual actuation surveillances during shutdowns. The information in this note has been moved to the bases. | 5.5.14 Bases Control Program | 1 | | 96-LA | T 4.3-2 | Bases | Note 4 of the referenced table contains surveillance instructions that are moved to the bases of the associated ITS SR. | 5.5.14
Bases Control
Program | 1 | | | | | ITS 3.3.3 POST ACCIDENT MONITORING INSTRUMENTATION | · · · · · · · · · · · · · · · · · · · | | | 1-LA | 3/4.3.3.1 | TRM | Most of the Radiation Monitoring TS are divided into individual system related instrumentation TS consistent with the organization and content of the radiation monitors in the STS. The remaining radiation monitors, consisting of the fuel storage pool area monitor and the noble gas effluent monitors are deleted from the TS because these monitors do not actuate equipment or monitor parameters required in the STS. | 10 CFR 50.59 | 1 | | 2-LA | T 3.3-6 | TRM | The LCO statement and applicability for the fuel storage pool area monitor and the noble gas effluent monitors are moved unchanged into a TRM requirement for radiation monitors. | 10 CFR 50.59 | 1 | | 5-LA | T 3.3-6 | TRM | CTS Actions a and b are retained for the fuel storage pool area monitor. The noble gas effluent monitors are removed from the TS and placed in the TRM. | 10 CFR 50.59 | 1 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | 29-LA | T 3.3-3 | Bases | The details describing SG water level low-low auxiliary feedwater initiation function are moved to the bases. The details regarding what pumps are started and how they are started by this function are moved into the bases description for this function consistent with the STS without affecting the basic LCO requirements for the function. | 5.5.14
Bases Control
Program | 1 | | 33-LA | T 3.3-3 | Bases | The information describing the start of the motor-driven auxiliary feedwater pumps is moved to the bases for both the auxiliary feedwater auto start on SI and trip of main feedwater pump functions. This is consistent with the presentation of this information in the STS. | 5.5.14
Bases Control
Program | 1 | | 67-LA | T 3.3-4 | Bases | The descriptive detail regarding the narrow range instrument span on each SG is removed from the CTS and included in the bases description of the SG water level high high turbine trip feedwater isolation function. | 5.5.14
Bases Control
Program | 1 | | 68-LA | Т 3.3-4 | Bases | The descriptive detail regarding the narrow range instrument span on each SG is removed from the CTS and included in the bases description of the SG water level low low auxiliary feedwater pump start function. | 5.5.14
Bases Control
Program | 1 | | 87-LA | T 4.3-2 | Bases | Note 6 on the referenced table, which modifies the monthly ESFAS CFT for the auxiliary feedwater automatic actuation logic function is revised consistent with the STS and retained in the bases for the applicable actuation logic test surveillance. | 5.5.14
Bases Control
Program | 1 | - 1. Details of system design and system description including design limits - Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------
---|--|----------------| | | | | ITS 3.3.2 ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION (ESFAS) | | | | 2-LA | 3.3.2 | Bases | The LCO statement for the ESFAS instrumentation is moved to the associated bases consistent with the format and presentation of STS LCO statements. The operability details (trip setpoint setting requirements) are discussed in the associated bases of the LCO. | 5.5.14
Bases Control
Program | 1 | | 4c-LA | 4.3.2.3 | Bases | The referenced SR, which contains the ESF Response Time Testing requirements for the ESFAS functions, is included in the bases of the corresponding STS surveillance. | 5.5.14
Bases Control
Program | 1 | | 12-LA | Т 3.3-3 | Bases,
FSAR | The Channels To Trip column contains information describing the ESFAS design features. This descriptive information is not an essential requirement of the ESFAS LCO. The ESFAS design features are detailed in the FSAR (7.3) and other FNP design description documentation including the TS bases and are controlled by the required industry standards (IEEE 279, etc.), federal regulations (General Design Criteria), and specific NRC requirements and guidelines pertaining to the ESFAS. | 5.5.14 Bases Control Program, 10 CFR 50.59 | 1, 4 | - 1. Details of system design and system description including design limits - Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | 104-LA | T 4.3-1 | Bases | Note 13 of the referenced table which modifies both the frequency of testing and the type of testing required for the reactor trip bypass breakers is moved into the bases for the corresponding STS TADOT surveillance. | 5.5.14
Bases Control
Program | 1 | | 105-LA | T 4.3-1 | Bases | Note 11 on the referenced table, which requires that the undervoltage and shunt trip mechanisms be independently verified for the manual reactor trip function and modifies the surveillance, is effectively addressed in the existing STS bases for the corresponding manual reactor trip TADOT surveillance. | 5.5.14
Bases Control
Program | 1 | - 1. Details of system design and system description including design limits - 2. Descriptions of system operation - 3. Procedural details for requirements and related reporting problems4. Administrative requirements redundant to regulations | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|---|---|----------------| | 44-LA | T 3.3-1 | Bases,
FSAR | The channels to trip column contains information describing the RTS design features. This information is not an essential requirement of the RTS LCO. The RTS design features are detailed in the FSAR (7.2) and other FNP design description documentation including the TS bases and are controlled by the required industry standards (IEEE 279, etc.), federal regulations (General Design Criteria), and specific NRC requirements and guidelines pertaining to the RTS. | 5.5.14
Bases Control
Program,
10 CFR 50.59 | 1,4 | | 83-LA | T 4.3-1 | Bases | The manual reactor trip function surveillances, which provide test requirement details, are moved to the bases consistent with the STS format placing descriptive or explanatory information in the bases. | 5.5.14
Bases Control
Program | 1 | | 93-LA | T 4.3-1 | Bases | Note 9 to the referenced table, which is applicable to the CFT for the turbine trip RTS functions, is moved into the bases for the corresponding STS TADOT surveillance. | 5.5.14
Bases Control
Program | 1 | | 99-LA | T 4.3-1 | Bases | The surveillance Notes 14 and 15 on the referenced table, which describe the testing required by this CFT, are moved to the bases for the corresponding STS surveillance. This move is consistent with the general philosophy of the STS concerning the location of such detail in the bases. | 5.5.14
Bases Control
Program | 1 | - 1. Details of system design and system description including design limits - Descriptions of system operation Procedural details for requirements and related reporting problems - 4. Administrative requirements redundant to regulations | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | | a e ta e sata | | ITS 3.3.1 REACTOR TRIP SYSTEM (RTS) INSTRUMENTATION | | | | 2-LA | 2.2.1 | Bases | The Safety Limit statement for the RTS instrumentation is replaced by the STS 3.3.1 LCO statement and associated bases. The operability details are discussed in the associated bases consistent with the format and presentation of STS LCO statements. | 5.5.14
Bases Control
Program | 1 | | 5-LA | T 2.2-1 | Bases | The trip setpoints and allowable values descriptive information is moved to the LCO 3.3.1 Bases section consistent with the general philosophy of the STS to place descriptive or explanatory information in the bases. | 5.5.14
Bases Control
Program | 1 | | 15c-LA | 4.3.1.3 | Bases | Details of RTS response time testing requirements are moved to the bases of the corresponding ITS surveillance consistent with the STS. | 5.5.14
Bases Control
Program | 1 | | 36-LA | T 3.3-1 | Bases | The design information describing the two types of Low Flow trips regarding CTS Function 12 A and 12B, Loss of Flow trip instrumentation, is moved into the bases consistent with the presentation of this information in the STS. | 5.5.14
Bases Control
Program | 1 | - 1. Details of system design and system description including design limits - 2. Descriptions of system operation - 3. Procedural details for requirements and related reporting problems4. Administrative requirements redundant to regulations # Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 3.2 - POWER DISTRIBUTION LIMITS | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | | | | ITS 3.2.4 QUADRANT POWER TILT RATIO (QPTR) | | | | 12-LA | 3/4.2.4 | 3.2 Bases | The descriptive detail contained in CTS surveillance 4.2.4.2 describing how that surveillance may be met is removed from the TS. | 5.5.14
Bases Control
Program | 3 | - 1. Details of system design and system description including design limits - 2. Descriptions of system operation - - 3. Procedural details for requirements and related reporting problems - 4. Administrative requirements redundant to regulations # Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 3.2 - POWER DISTRIBUTION LIMITS | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|---|------------------------------------|----------------| | | | | ITS 3.2.1 HEAT FLUX HOT CHANNEL FACTOR (FQ(Z)) | | | | 7-LA | 3/4.2.2 | 3.2 Bases | Details describing the surveillance requirements for power distribution mapping and computing the heat flux hot channel factor in CTS are moved to the Bases in ITS. | 5.5.14
Bases Control
Program | 3 | | 8-LA | 3/4.2.2 | COLR | The F _Q (Z) relationships and specific values provided in CTS surveillance 4.2.2.2.d are moved to the Core Operating Limits Report (COLR) | 5.6.5
COLR | 3 | | | | | ITS 3.2.2 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR (F ^N _{AH}
) | | | | 9-LA | 3/4.2.3 | 3.2 Bases | The descriptive information in CTS surveillance 4.2.3.1, which notes use of the movable incore detectors to create a power distribution map, is moved to the Bases in ITS. | 5.5.14
Bases Control
Program | 3 | | 11-LA | 3/4.2.3 | 3.2 Bases | The information in CTS surveillance 4.2.3.2, concerning F ^N _{ΔH} measurement uncertainty compensation, is removed from the TS and placed in the Bases in ITS. | 5.5.14
Bases Control
Program | 3 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations # Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 3.1 - REACTIVITY CONTROL SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | Destination Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|----------------------|---|------------------------------------|----------------| | 2-LA | 3/4.1.3.4 | 3.1.4 Bases | The LCO statement and the associate * note which specify the rod position (in steps) that corresponds to the fully withdrawn position are moved into the Bases. | 5.5.14
Bases Control
Program | 1 | | 7-LA | 3/4.1.3.4 | TRM | The post maintenance test requirement for rod drop time is moved to the Technical Requirements Manual. | 10 CFR 50.59 | 3 | | - | | · | ITS 3.1.7 ROD POSITION INDICATION | | | | 2-LA | 3/4.1.3.2 | 3.1.7 Bases | The details regarding the operability of the digital rod position indication system are moved to the Bases. | 5.5.14
Bases Control
Program | 1 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations # Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 3.1 - REACTIVITY CONTROL SYSTEMS | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|----------------------------------|--|------------------------------------|----------------| | | | • . • • · | ITS 3.1.3 MODERATOR TEMPERATURE COEFFICIENT (MTC) | | | | 4-LA | 3/4.1.1.3 | 3.1.3 Bases | Information on control rod withdrawal limits modifying the required actions is moved into the Bases. | 5.5.14 Bases Control Program | 3 | | 5-LA | 3/4.1.1.3 | 10CFR 50.72
&
10 CFR 50.73 | CTS Action Statement 3.a required the preparation and submission of a special report to NRC within 10 days if the MTC is more positive than the beginning of life limit. | 10CFR 50.72
&
10 CFR 50.73 | 4 | | | | | ITS 3.1.4 "ROD GROUP ALIGNMENT LIMITS" | | | | 5-LA | 3/4.1.3.1 | 3.1.4 Bases | Action Statement d.2, regarding guidance describing how to restore rod alignment to within the limits, is moved to the Bases. | 5.5.14
Bases Control
Program | 2,3 | | 7-LA | 3/4.1.3.1 | 3.1.4 Bases | The list of accident analyses in Table 3.1-1 that must be evaluated in CTS Action Statement d.3.a is moved into the Bases. | 5.5.14
Bases Control
Program | 3 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations # Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 3.1 - REACTIVITY CONTROL SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|---|------------------------------------|----------------| | | | | ITS 3.1.1 SHUTDOWN MARGIN (SDM) | | | | 1-LA | 3/4.1.1.1 | TRM | Shutdown Margin requirements for Mode 1 and Mode 2 with k _{ef} ≥1 are moved to the Technical Requirements Manual. | 10 CFR 50.59 | 3 | | 11-LA | 3/4.1.1.1 | 3.1.1 Bases | Surveillance 4.1.1.1.1.e items 1-6 containing guidance for performing these surveillance requirements are moved to the Bases. | 5.5.14
Bases Control
Program | 3 | | 15-LA | 3/4.1.1.1 | 3.1.1 Bases | Reference information contained in surveillance 4.1.1.1.2 about the "factors stated in 4.1.1.1.e, above" (items 1-6) is moved to the Bases. | 5.5.14
Bases Control
Program | 3 | | 2-LA | 3/4.1.1.2 | 3.1.1 Bases | TS actions describing the flow rate and boron concentration required to be used to restore the SDM to within limit are moved to the Bases. | 5.5.14
Bases Control
Program | 1,2 | | 5-LA | 3/4.1.1.2 | 3.1.1 Bases | Descriptive information contained in Surveillance 4.1.1.2.b (6 items) providing guidance for performing surveillance requirement is moved to the Bases. | 5.5.14
Bases Control
Program | 3 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations # Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 3.0 - LCO and SR APPLICABILITY | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|---|--------------------|----------------| | 16-LA | 4.0.5 | ISI Program | References to ASME inservice inspection (ISI) requirements duplicate existing regulations (10 CFR 50.55a), thus they are removed from CTS 4.0.5. These requirements are effectively contained in the current FNP ISI program. | 10 CFR 50.55a | 4 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations # Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 2.0 - SAFETY LIMITS (SLs). No applicable less restrictive changes - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO VI. - Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC ## Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 1.0 - USE and APPLICATION | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|---|------------------------------|----------------| | | | | ITS 1.1 DEFINITIONS | | | | 6-LA | 1.6 | LCO 3.6.1
Bases | The definition of Containment Integrity is eliminated in ITS; the information contained in this definition is implicit to the operability of the containment and is moved into the LCO 3.6.1 Bases. | 5.5.14 Bases Control Program | 1 | | 19-LA | 1.22 | FSAR | The Process Control Program (PCP) is eliminated in ITS; it implements regulatory requirements and no need exists for a separate TS to address it and it is moved to the FSAR. | 10 CFR 50.59 | 4 | | 32-LA | Table 1.1 | TRM | The CTS Table 1.1Refueling (Mode 6) temperature limit is eliminated in ITS to avoid ambiguity in defining Mode changes. This temperature limit is moved to the TRM. | 10 CFR 50.59 | 1, 3 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations #### Table L - LESS RESTRICTIVE CHANGES CTS 3/4.10 - SPECIAL TEST EXCEPTIONS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | | | | CTS 3/4.10.4 REACTOR COOLANT LOOPS TEST EXCEPTION ITS - N/A | | | 1-L | 3/4.10.4 | N/A | This CTS Special Test Exception allows reactor operation up to 10% RTP with no RCS loops in operation. This test exception was to allow natural circulation testing during the initial plant startup test program. No further testing requiring this exception is performed, therefore this exception is no longer needed and it is deleted. | VII | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time - IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - VI. Relaxation of LCO - VII.
Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC #### Table L - LESS RESTRICTIVE CHANGES CTS 3/4.10 - SPECIAL TEST EXCEPTIONS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | | | | CTS 3/4.10.1 SHUTDOWN MARGIN SPECIAL TEST EXCEPTION
ITS - N/A | | | 1-L | 3/4.10.1 | N/A | This CTS Special Test Exception allows suspension of the Shutdown Margin requirement of CTS 3.1.1.1 in Mode 2 to allow measurement of control rod worth and shutdown margin. This exception is no longer needed due to changes in measurement techniques and it is therefore deleted. | VII | | | | | CTS 3/4.10.2 GROUP HEIGHT, INSERTION AND POWER DISTRIBUTION LIMITS TEST EXCEPTION 1TS - N/A | | | 1-L | 3/4.10.2 | N/A | This CTS Special Test Exception allows suspension of CTS 3.1.3.1, 3.1.3.5, 3.1.3.6, 3.2.1, and 3.2.4 to perform physics testing in Mode 1. The pertinent physics tests were only required during initial plant startup and are not required to be performed during post-refueling startups. This exception is therefore no longer needed and is deleted. | VII | - Relaxation of Modes of Applicability Relaxation of Surveillance Frequency Relaxation of Completion Time Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** VII. - VIII. Deletion of Requirement for 30-day Special Report to NRC #### Table L - LESS RESTRICTIVE CHANGES Section 5.0 - ADMINISTRATIVE CONTROLS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|----------| | 60-L | 6.9.1.12 | 5.6.7 | The Annual Diesel Generator Reliability Data Report required by CTS is replaced by ITS 5.6.7, the Emergency Diesel Generator (EDG) Failure Report, which is required only when specific start failure criteria are exceeded. | IV | | 61-L | 6.9.1.13 | 5.0 | The Annual Reactor Coolant System Specific Activity Report required by CTS is deleted in ITS; violations of RCS specific activity limits either need not be reported or, if more serious, are required to be reported by 10 CFR 50.73. | VII | | 62-L | 6.9.1.14 | 5.0 | The Annual Sealed Source Leakage Report required by CTS is redundant to 10 CFR 20 requirements and is deleted in ITS. | VII | | 72-L | 6.12.2 | 5.0 | The CTS requirement that accessible areas with radiation levels >1000 mrem/hr be locked or roped off is relaxed in ITS to allow the option of a continuous guard. | | | 77-L | 6.12.1.c | 5.0 | The CTS requirement to perform periodic radiation surveillance at the frequency specified by the "Health Physics Supervisor" is relaxed in ITS to allow any HP supervisory personnel (not necessarily the HP Supervisor) to provide this direction. | IV | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC #### Table L - LESS RESTRICTIVE CHANGES Section 5.0 - ADMINISTRATIVE CONTROLS | Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |---------------------|-------------------------------|------------------|---|---------------------------------------| | 2-L | 6.1.2 | 5.1.2 | The CTS requirement for an annual management directive regarding the Shift Supervisor control room command function is deleted in ITS. Also deleted in ITS is use of the "Shift Supervisor" title, while specific information is added on the requirements for an individual designated to assume the command function in the absence of the responsible SRO. | IV | | 7a-L | 6.2.2.f | 5.2.2.e | The CTS work hour limits are revised to ITS format, including the use of the word "should" in place of "shall", consistent with the STS and with exceptions permitted by CTS. | VI | | 10a-L | 6.2.2.g | 5.2.2.f | The CTS requirement for both the Assistant General Manager – Plant Operations and the Operations Manger to hold SRO licenses is relaxed in ITS to require only that one or the other of them hold an SRO license. | IV | | 14a-L | Table 6.2-1 | 5.2.2.c | The CTS Table 6.2-1 note regarding the minimum shift crew composition and the 2 hour exception is revised by deletion of the sentence prohibiting application of the 2 hour absence or tardiness exception to oncoming shift crew members. | · · · · · · · · · · · · · · · · · · · | | 47-L | 6.9.1.1
6.9.1.2
6.9.1.3 | 5.0 | The Startup Report requirements of CTS are no longer applicable and are deleted in ITS. | | | 51-L | 6.9.1.5.a | 5.6.1 | The CTS 6.9.1.4 requirement for the Occupational Radiation Exposure Report required by CTS 6.9.1.5.a to be submitted prior to March 1 is revised to "by April 30" in ITS. | . IV | | 52-L | 6.9.1.6
6.9.1.7 | 5.6.2 | The required report date for the Annual Radiological Environmental Operating Report is revised from "before May 1" in CTS to "by May 15" in ITS. | IV | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** - Deletion of Requirement for 30-day Special Report to NRC # Table L - LESS RESTRICTIVE CHANGES Section 4.0 - DESIGN FEATURES No applicable less restrictive changes #### Table L - LESS RESTRICTIVE CHANGES CTS 3/4.10 - SPECIAL TEST EXCEPTIONS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | | | | CTS 3/4.10.4 REACTOR COOLANT LOOPS TEST EXCEPTION
ITS - N/A | | | 1-L | 3/4.10.4 | N/A | This CTS Special Test Exception allows reactor operation up to 10% RTP with no RCS loops in operation. This test exception was to allow natural circulation testing during the initial plant startup test program. No further testing requiring this exception is performed, therefore this exception is no longer needed and it is deleted. | VII | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** - Deletion of Requirement for 30-day Special Report to NRC # CTS 3/4.10 - SPECIAL TEST EXCEPTIONS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | | | | CTS 3/4.10.1 SHUTDOWN MARGIN SPECIAL TEST EXCEPTION
ITS - N/A | | | 1-L | 3/4.10.1 | N/A | This CTS Special Test Exception allows suspension of the Shutdown Margin requirement of CTS 3.1.1.1 in Mode 2 to allow measurement of control rod worth and shutdown margin. This exception is no longer needed due to changes in measurement techniques and it is therefore deleted. | VII | | | | | CTS 3/4.10.2 GROUP HEIGHT, INSERTION AND POWER DISTRIBUTION LIMITS TEST EXCEPTION ITS - N/A | | | 1-L | 3/4.10.2 | N/A | This CTS Special Test Exception allows suspension of CTS 3.1.3.1, 3.1.3.5, 3.1.3.6, 3.2.1, and 3.2.4 to perform physics testing in Mode 1. The pertinent physics tests were only required during initial plant startup and are not required to be performed during post-refueling startups. This exception is therefore no longer needed and is deleted. | VII | Categories: Relaxation of Modes of Applicability Relaxation of Surveillance Frequency Relaxation of Completion Time IV. Relaxation of Required Actions Relaxation of Surveillance Requirement Acceptance Criteria Relaxation of LCO **Deletion of SR** Deletion of Requirement for 30-day Special Report to NRC # Table L - LESS RESTRICTIVE CHANGES Section 3.9 - REFUELING OPERATIONS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------
---|----------| | | | | ITS 3.9.6 REFUELING CAVITY WATER LEVEL | | | 9-L | 3/4.9.10.1 | 3.9.6 | The CTS 4.9.10.1 surveillance requirement to verify the level 2 hours prior to entering the Mode of Applicability is deleted. | l) | | 3-L | 3/4.9.10.2 | 3.9.6 | The CTS Applicability requirement for the movement of control rods within the reactor pressure vessel is replaced in ITS with "During CORE ALTERATIONS, except during latching and unlatching of control rod drive shafts." Also added to Applicability in ITS is "During movement of irradiated fuel assemblies within containment." | ` I | | 6-L | 3/4.9.10.2 | 3.9.6 | The CTS 4.9.10.2 surveillance requirement to verify the level 2 hours prior to entering the Mode of Applicability is deleted. | 11 | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO VI. - **Deletion of SR** - VIII. Deletion of Requirement for 30-day Special Report to NRC # Table L - LESS RESTRICTIVE CHANGES Section 3.9 - REFUELING OPERATIONS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|----------| | | | | ITS 3.9.4 RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION - HIGH WATER LEVEL | | | 9-L | 3/4.9.8.1 | 3.9.4 | The CTS requirement to "close all containment penetrations" is revised in ITS to require placement of the penetrations "in the status described in LCO 3.9.3), which does not require all penetrations to be closed. | IV | | | | | ITS 3.9.5 RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION - LOW WATER LEVEL | | | 3-L | 3/4.9.8.2 | 3.9.5 | An alternate action is added to immediately initiate action to increase the refueling cavity water level when the RHR loop operability requirements are not met. | IV | | 6-L | 3/4.9.8.2 | 3.9.5 | CTS surveillance 4.9.8.2, which requires extensive testing per ASME B & PV Code Section XI, is replaced with ITS surveillances SR 3.9.5.1 and 2, which require only verification that one RHR loop is in operation and the other has power available. | IV | | 7a-L | 3/4.9.8.2 | 3.9.5 | Actions B.3, B.4, B.5.1, and B.5.2 are added consistent with ITS LCO 3.9.3 to provide an atternative to the CTS requirement to close all containment penetrations within 4 hours when less than one RHR loop is in operation. | IV | | 9-L | 3/4.9.8.2 | 3.9.5 | The CTS note which provides an exception for surveillance testing allowing one RHR loop to be inoperable is revised in a NOTE to ITS LCO 3.9.5 to add that "no RHR loop may be in the decay heat removal mode of operation". | VI | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO VI. - VII. Deletion of SR VIII. Deletion of Requirement for 30-day Special Report to NRC ## Table L - LESS RESTRICTIVE CHANGES Section 3.9 - REFUELING OPERATIONS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------------|------------------|------------------|---|----------| | | | | ITS 3.9.2 NUCLEAR INSTRUMENTATION | | | 6-L | 3/4.9.2 | 3.9.2 | The CTS Channel Functional Test requirements of 4.9.2.b and c for the source neutron flux monitors are deleted (a Channel Calibration requirement is added, discussed elsewhere). | VII | | 8-L | 3/4.9.2 | 3.9.2 | The specific CTS LCO location requirement for audible indication (i.e. containment) is deleted (audible indication can be in the control room and/or the containment). | VI | | | | | ITS 3.9.3 CONTAINMENT PENETRATIONS | | | 3-L | 3/4.9.4 | 3.9.3 | The term "or equivalent" is added to the list of acceptable isolation devices in the CTS LCO statement c.1 for the containment building penetrations. | VI | | 3-L | 3/4.9.4 | 3.9.3 | The CTS frequency requiring the surveillance to be performed 100 hours prior to entering the Mode of Applicability is deleted. The requirement to test the automatic containment purge and exhaust system isolation function every 7 days is revised to once every 10 months. | 11 | | 7-LB | 3/4.9.9 | 3.9.3 | The CTS requirement to verify that Purge and Exhaust isolation occurs is revised to provide allowance to utilize an actual or simulated signal. | V | | 5-L | 3/4.9.9 | 3.9.3 | The CTS frequency requiring the surveillance to be performed 100 hours prior to entering the Mode of applicability is deleted. | .u | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | | | | ITS 3.8.10 DISTRIBUTION SYSTEMS - SHUTDOWN | | | 4-L | 3/4.8.2.4 | 3.8.10 | ITS 3.8.5 and 3.8.10 are revised to provide additional flexibility beyond CTS in the event one or more offsite circuits or required inverters becomes inoperable. ITS provides the option to declare the affected supported equipment inoperable and to take the resultant required TS actions, making it possible to avoid otherwise TS-required suspension of Core Alterations, positive reactivity additions, and irradiated fuel handling. | IV | | 5-L | 3/4.8.2.2 | 3.8.10 | ITS 3.8.8 and 3.8.10 are revised to provide additional flexibility beyond CTS in the event one or more offsite circuits or required inverters becomes inoperable. ITS provides the option to declare the affected supported equipment inoperable and to take the resultant required TS actions, making it possible to avoid otherwise TS-required suspension of Core Alterations, positive reactivity additions, and irradiated fuel handling. | IV | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO VI. - **Deletion of SR** - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | | | | ITS 3.8.8 INVERTERS - SHUTDOWN | | | 5-L | 3/4.8.2.2 | 3.8.8 | ITS 3.8.8 and 3.8.10 are revised to provide additional flexibility beyond CTS in the event one or more offsite circuits or required inverters becomes inoperable. ITS provides the option to declare the affected supported equipment inoperable and to take the resultant required TS actions, making it possible to avoid otherwise TS-required suspension of Core Alterations, positive reactivity additions, and irradiated fuel handling. | ÎV. | | | | 1.1 | ITS 3.8.9 DISTRIBUTION SYSTEMS - OPERATING | : | | 5-L | 3/4.8.2.5 | 3.8.9 | CTS allows 2 hours to restore the SWIS DC distribution and battery systems to operable status before requiring a plant shutdown. Revisions are made in ITS (at LCO 3.8.4 and Required Action F.1 and also at LCO 3.8.9 F.1) to provide for immediate declaration of the required supported equipment (the associated Service Water train) as inoperable if a SWIS DC subsystem is inoperable. This means that the 72 hour completion time associated with an inoperable Service Water train will be available for restoration of the SWIS DC subsystem to operable status. | iii | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** - VIII. Deletion of Requirement for 30-day Special
Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|----------| | | | | ITS 3.8.6 BATTERY CELL PARAMETERS | • | | 8-L | 3/4.8.2.3 | 3.8.6 | The CTS surveillance requirements to verify no visible terminal corrosion and electrolyte temperature after a battery discharge or overcharge are deleted. | IV. | | 11-L | 3/4.8.2.3 | 3.8.6 | The CTS surveillance requirement to verify battery terminals are tight is deleted as part of other revisions to the battery surveillance requirements that establish other appropriate means of verifying proper terminal connections. | IV | | 20-L | 3/4.8.2.3 | 3.8.6 | A note is added in ITS that provides an allowance for the electrolyte level to temporarily increase above the maximum specified level during equalizing charges provided it does not overflow. | IV | | 25-L | 3/4.8.2.3 | 3.8.6 | The CTS Battery Surveillance Requirements Table 4.8-2 footnotes are revised in ITS as Condition A Required Actions in LCO 3.8.6 to provide a single 31 day Completion Time for restoring both Category A and B parameters to within their limits (vs. 24 hour and 6 day times required by CTS). | m | | 9-L | 3/4.8.2.5 | 3.8.6 | CTS surveillances 4.8.2.5.2.b.2 and 3 are revised to become ITS SR 3.8.4.2 and SR 3.8.6.3, with the CTS requirements to verify no visible terminal corrosion and electrolyte temperature after a battery discharge or overcharge deleted. | IV | | 12-L | 3/4.8.2.5 | 3.8.6 | The CTS surveillance requirement to verify battery terminals are tight is deleted as part of other revisions to the battery surveillance requirements that establish other appropriate means of verifying proper terminal connections. | IV | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** - Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|-----------| | | | | ITS 3.8.4 DC SOURCES - OPERATING | | | 5-L | 3/4.8.2.5 | 3.8.4 | CTS allows 2 hours to restore the SWIS DC distribution and battery systems to operable status before requiring a plant shutdown. Revisions are made in ITS (at LCO 3.8.4 and Required Action F.1 and also at LCO 3.8.9 F.1) to provide for immediate declaration of the required supported equipment (the associated Service Water train) as inoperable if a SWIS DC subsystem is inoperable. This means that the 72 hour completion time associated with an inoperable Service Water train will be available for restoration of the SWIS DC subsystem to operable status. | 111 | | 9-L | 3/4.8.2.5 | 3.8.4 | CTS surveillances 4.8.2.5.2.b.2 and 3 are revised to become ITS SR 3.8.4.2 and SR 3.8.6.3, with the CTS requirements to verify no visible terminal corrosion and electrolyte temperature after a battery discharge or overcharge deleted. | IV | | 2 2 | | | ITS 3.8.5 DC SOURCES - SHUTDOWN | | | 4-L | 3/4.8.2.4 | 3.8.5 | ITS 3.8.5 and 3.8.10 are revised to provide additional flexibility beyond CTS in the event one or more offsite circuits or required inverters becomes inoperable. ITS provides the option to declare the affected supported equipment inoperable and to take the resultant required TS actions, making it possible to avoid otherwise TS-required suspension of Core Alterations, positive reactivity additions, and irradiated fuel handling. | IV | #### Categories: - 1. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC Page 4 of 7 | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | | | | ITS 3.8.3 DIESEL FUEL OIL, LUBE OIL, and STARTING AIR | | | 3-L | 3/4.8.1.1 | 3.8.3 | CTS LCO 3.8.1.1.b.3 and SR 4.8.1.1.2.a.2 requirements for DG fuel oil storage volume are moved to ITS LCO 3.8.3 and SR 3.8.3.1. New ITS LCO 3.8.1 Action A.1 provides an additional 48 hours to restore fuel level above the minimum before declaring a DG inoperable. | W | | 16-L | 3/4.8.2.3 | 3.8.4 | CTS surveillance requirement 4.8.2.3.2.d is revised as ITS SR 3.8.4.8, allowing the option of performing either a performance discharge test or a modified performance discharge test every 60 months, and of performing the modified performance discharge test in lieu of the SR 3.8.4.7 service test. | V | | 9-L | 3/4.8.1.2 | 3.8.2 | A NOTE is added at ITS SR 3.8.2.1 providing exception to performance of certain surveillance tests to avoid requiring a remaining operable DG being paralleled with the offsite power network for surveillance test performance. | IV | - Relaxation of Modes of Applicability Relaxation of Surveillance Frequency Relaxation of Completion Time Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|--|------------------|--|----------------| | 27-LB | 3/4.8.1.1 | 3.8.1 | The CTS requirement to verify that automatic emergency diesel generator trips are automatically bypassed on loss of emergency bus voltage and/or a safety injection test signal is revised for ITS by insertion of the phrase "an actual or simulated" ahead of the cited actuation signals. Also, "safety injection test" signal is replaced by "simulated ESF actuation" signal. | v | | 42-L | 3/4.8.1.1 | 3.8.1 | CTS surveillance 4.8.1.1.2.e, which verifies the DGs do not trip on large load rejections, is revised from a Staggered Test Basis to a straight 5 years. | 11 | | | entra de la compansión de | | ITS LCO 3.8.2 AC SOURCES - SHUTDOWN | <i>y</i> * | | 6-L | 3/4.8.1.2 | 3.8.2 | ITS 3.8.2 is revised to provide additional flexibility beyond CTS in the event one or more offsite circuits becomes inoperable. ITS provides the option to declare the affected supported equipment inoperable and to take the resultant required TS actions, making it possible to avoid otherwise TS-required suspension of Core Alterations, positive reactivity additions, and irradiated fuel handling. | | | 8-L | 3/4.8.1.2 | 3.8.2 | CTS 4.8.1.2 is revised into ITS SR 3.8.2.1, which eliminates the performance requirement for a list of surveillances that demonstrate capabilities which are not required in Modes 5 and 6. | 1 | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------------|------------------|------------------|--|----------| | | | | ITS 3.8.1 AC SOURCES - OPERATING | | | 5-L | 3/4.8.1.1 | 3.8.1 | CTS Action Statement a for an inoperable offsite circuit and d for two inoperable offsite circuits are revised to delete the action requirement to test the required DG sets. | IV | | 8-L | 3/4.8.1.1 | 3.8.1 | ITS is revised to provide a broader allowance to avoid unnecessary testing of operable DGs when one is inoperable; CTS requirements for DG testing intended to confirm no common-mode failure
exists provide exceptions only for inoperability due to preplanned maintenance or testing. | IV | | 11-L | 3/4.8.1.1 | 3.8.1 | The time permitted to make a determination of no common-mode failure (8 hours per CTS Action Statements c and e) is extended to 24 hours in ITS. | 111 | | 17-L | 3/4.8.1.1 | 3.8.1 | The test interval for DG associated surveillances is revised from a Staggered Test Basis to a straight 31 days. | 11 | | 18-L | 3/4.8.1.1 | 3.8.1 | A slow start option is added in ITS for the monthly DG surveillance testing, with a fast DG start surveillance (as per CTS) required only every 184 days. | V | | 21-L | 3/4.8.1.1 | 3.8.1 | The CTS monthly surveillance test requirement that the DGs operate for 5 minutes is deleted in ITS. | v | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|----------| | 6-LB | 3/4.7.8 | 3.7.12 | The CTS surveillance requirement to verify automatic PRF system actuation upon receipt of a Phase B Isolation actuation test signal is revised to replace "test signal" with "actual or simulated actuation signal". | · . | | 9-L | 3/4.9.13 | 3.7.12 | The CTS surveillance 4.9.13.1 requirement to verify PRF system alignment to the spent fuel pool room 12 hours prior to entering the Mode of Applicability is deleted in ITS SR 3.7.12.1. | 11 - | | | | | ITS 3.7.13 FUEL STORAGE POOL WATER LEVEL | | | 2-L | 3/4.9.11 | 3.7.13 | Applicability of the LCO is relaxed from "whenever" irradiated fuel assemblies are in the pool to apply "during movement" of irradiated fuel. Also, the Action in the event the LCO (ITS LCO 3.7.13) is not met is relaxed to require suspension of movement of only "irradiated" fuel (rather than of all fuel and all loaded crane operations). | 1, 1V | | | | | ITS 3.7.16 SECONDARY SPECIFIC ACTIVITY | | | 3-L | 3/4.7.1.4 | 3.7.16 | CTS surveillance 4.7.1.4, by reference to Table 4.7-2, requires measurement of gross activity in the secondary coolant at least once per 72 hours. This requirement, used in determining specific activity analysis frequencies, is deleted in ITS SR 3.7.16.1, which sets a straight 31 day interval for specific activity verification. | 11 | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria Relaxation of LCO - VI. - **Deletion of SR** - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|----------| | 9-LB | 3/4.7.7.1 | 3.7.10 | The CTS surveillance requirement to verify automatic CREFS actuation upon receipt of a Safety Injection test signal is revised to replace "test signal" with "actual or simulated actuation signal". | V | | | | | ITS 3.7.11 CONTROL ROOM AIR CONDITIONING SYSTEM (CRACS) | | | 1-L | 3/4.7.7.2 | 3.7.11 | The CTS applicability statement and actions are revised in ITS LCO 3.7.11 to eliminate Modes 5 and 6 and to add Core Alterations. | ı | | 2-L | 3/4.7.7.2 | 3.7.11 | The CTS applicability statement and actions are revised in ITS LCO 3.7.11 to delete "movement of loads over irradiated fuel". | ı | | | | | ITS 3.7.12 PENETRATION ROOM FILTRATION (PRF) SYSTEM | • | | 3-L | 3/4.7.8 | 3.7.12 | The CTS surveillance 4.7.8.a requirement to test the PRF every 31 days on a Staggered Test Basis is revised in ITS SR 3.7.12.2 to a straight 31 day frequency. | II · | | 4-L | 3/4.9.13 | 3.7.12 | The CTS applicability statement and actions are revised in ITS LCO 3.7.12 to delete the reference to crane operation with loads over the spent fuel pit and specify applicability during "irradiated" fuel movement. | 1 | | 5-L | 3/4.9.13 | 3.7.12 | The CTS 3.9.13 action requirement to restore an inoperable train of the PRF system within 48 hours is revised to 7 days in ITS 3.7.12. | · III | | 6-L | 3/4.9.13 | 3.7.12 | CTS 3.9.13 actions for an inoperable PRF system are revised in ITS 3.7.12 by addition of an optional action for a single inoperable train, i.e. to place the operable train into service rather than suspending movement of irradiated fuel assemblies. | IV | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|----------| | 8-L | 3/4.7.4 | 3.7.8 | CTS surveillance 4.7.4.b is revised to SR 3.7.8.2, limiting the required automatic valve actuation verifications to valves that are not locked, sealed, or otherwise secured in position. | IV | | 10-L | 3/4.7.4 | 3.7.8 | CTS surveillance 4.7.4.a is revised to SR 3.7.8.1, with a NOTE added providing that isolation of flow to individual components does not render the SWS inoperable. | IV | | 11-L | 3/4.7.4 | 3.7.8 | Condition B is added to ITS LCO 3.7.8 providing an Action not present in CTS which credits the redundant turbine building isolation valves in each SWS train in addressing an inoperable valve in each train. The new Action allows 72 hours to restore both valves, where in CTS entry into LCO 3.0.3 might be made. | | | 15 j. s
1 | | | ITS 3.7.10 CONTROL ROOM EMERGENCY FILTRATION/PRESSURIZATION SYSTEM (CREFS) | | | 1-L | 3/4.7.7.1 | 3.7.10 | The CTS applicability statement and actions are revised in ITS LCO 3.7.10 to eliminate Modes 5 and 6 and to add Core Alterations. | ı | | 2-L | 3/4.7.7.1 | 3.7.10 | The CTS applicability statement and actions are revised in ITS LCO 3.7.10 to delete "movement of loads over irradiated fuel". | ı | | 3-L | 3/4.7.7.1 | 3.7.10 | The CTS surveillance 4.7.7.1.a requirement to test the CREFS every 31 days on a Staggered Test Basis is revised in ITS SR 3.7.10.1 to a straight 31 day frequency. | 11 | | 5-L | 3/4.7.7.1 | 3.7.10 | CTS surveillance 4.7.7.1.a is revised in ITS SR 3.7.10.1 to provide separate run time requirements for the CREFS Recirculation and the CREFS Pressurization subsystems. This reduces the total test time of the Recirculation and filtration subsystem from 10 hours to 15 minutes with the heaters on. | V | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time - IV. Relaxation of Required Actions - V. Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------------|------------------|------------------|--|----------| | | | | ITS 3.7.6 CONDENSATE STORAGE TANK (CST) | | | 3-L | 3/4.7.1.3 | 3.7.6 | CTS LCO 3.7.1.3 Action b and Surveillance 4.7.1.3.2 are revised to ITS LCO 3.7.6 Action Condition A to allow verification "by administrative means" and the CTS requirement to perform an SW system surveillance is deleted. | IV | | | | | ITS 3.7.7 COMPONENT COOLING WATER (CCW) SYSTEM | | | 4-L | 3/4.7.3 | 3.7.7 | CTS surveillance 4.7.3.a is revised to SR 3.7.7.1, with a NOTE added providing that isolation of flow to individual components does not render the CCW system inoperable. | IV | | 7-L | 3/4.7.3 | 3.7.7 | CTS surveillance 4.7.3.b is revised to SR 3.7.7.2, limiting the required automatic valve actuation verifications to valves that are not locked, sealed, or otherwise secured in position. | IV | | 8-LB | 3/4.7.3 | 3.7.7 | The CTS surveillance requirement to verify automatic CCW valve actuation upon receipt of a Safety Injection test signal is revised to replace "test signal" with "actual or simulated actuation signal". | ٧ | | | · | | JTS 3.7.8 SERVICE WATER SYSTEM (SWS) | | | 7-LB | 3/4.7.4 | 3.7.8 | The CTS surveillance requirement to verify automatic SWS valve actuation upon receipt of a Safety Injection test signal is revised to replace "test signal" with "actual or simulated actuation signal". | ٧ | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV.
Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO VI. - **Deletion of SR** - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|----------| | | | | ITS 3.7.5 AUXILIARY FEEDWATER (AFW) SYSTEM | | | 7-L | 3/4.7.1.2 | 3.7.5 | CTS surveillance 4.7.1.2.1 contains an exception to TS 4.0.4 for the turbine-driven pump to allow entry into Mode 3 for testing developed head; in ITS SR 3.7.5.2 this is replaced with a note allowing a 72 hour delay after T _{avg} reaches 547°F before surveillance performance is required. This change restricts the time allowed for test performance but does not restrict it to Mode 3. | ı | | 11-L | 3/4.7.1.2 | 3.7.5 | Condition A is added at ITS LCO 3.7.5 providing an Action not present in CTS which credits the redundant steam supply lines to the turbine-driven AFW pump. The new Action allows 7 days to restore an inoperable steam supply line, where in CTS the AFW train would be considered inoperable with 72 hours for restoration. | (1) | | 12-L | 3/4.7.1.2 | 3.7.5 | CTS surveillance 4.7.1.2.2.b is revised to SR 3.7.5.3, limiting the required automatic valve actuation verifications to valves that are not locked, sealed, or otherwise secured in position. | IV | | 13-LB | 3/4.7.1.2 | 3.7.5 | The CTS sureveillance requirement is revised in ITS SR 3.7.5.3 such that each automatic valve actuates to its correct position on an "actual or simulated signal". | V | | 16-L | 3/4.7.1.2 | 3.7.5 | CTS surveillance 4.7.1.2.2.c is revised to SR 3.7.5.4, with a NOTE allowing 72 hours after T _{avg} reaches 547°F before surveillance performance is required (allowing auto start testing under normal system pressures and temperatures). CTS contains no exceptions to TS 3.0.4 or 4.0.4, thus requiring testing of the turbine-driven AFW pump to be performed during shutdown. | | | 18-L | 3/4.7.1.2 | 3.7.5 | CTS surveillance 4.7.1.2.2.d is delete | VII | - Relaxation of Modes of Applicability Relaxation of Surveillance Frequency - III. Relaxation of Completion Time - IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - VI. Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--|------------------|------------------|--|----------| | Autoria de la Principalita | | | ITS 3.7.1 MAIN STEAM SAFETY VALVES (MSSVs) | | | 4-L | 3/4.7.1.1 | 3.7.1 | CTS Action a is divided into two actions in ITS. A separate Action Statement A.1 is added to reduce power below the value specified in Table 3.7.1-1 within 4 hours. The CTS Action to reduce the Power Range Neutron Flux-High trip setpoint becomes A.2 in ITS, but with the 4 hour Completion Time allowed per CTS increased to 12 hours. | 111 | | 4a-L | 3/4.7.1.1 | 3.7.1 | A note is added to require ITS Action A.2 (was CTS Action a) in MODE 1 only (it applied in MODE 1-3 in CTS). | | | 6-L | 3/4.7.1.1 | 3.7.1 | Action Condition C is added in ITS containing the shutdown Actions of CTS Action Statement a (falling to reduce power or trip setpoints within the required time). Whereas CTS required the unit to be placed in Mode 3 in 6 hours and Mode 5 in the following 30 hours, ITS relaxes this to Mode 3 in 6 hours and Mode 4 in 12 hours (following 6 hours). | IV | | | | , | ITS 3.7.2 MAIN STEAM ISOLATION VALVES (MSIVs) | | | 2-L | 3/4.7.1.5 | 3.7.2 | The CTS statement of applicability is revised in ITS LCO 3.7.2 to provide an exception (to the requirement to have two operable MSIVs per steam line) when one MSIV in each steam line is closed. | 1 | | 4-L | 3/4.7.1.5 | 3.7.2 | CTS LCO 3.7.1.5 is revised to ITS LCO 3.7.2 with new Actions taking credit for dual MSIVs rather than a single MSIV per steam line and extending completion times and/or relaxing required actions accordingly. | .iii, IV | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO VI. - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | | | | ITS 3.6.8 HYDROGEN MIXING SYSTEM (HMS) | | | 2-L | 3/4.6.4.4 | 3.6.8 | CTS 3.6.4.4 Actions are modified by the addition of a note providing an exception to LCO 3.0.4, allowing Mode changes with a single inoperable hydrogen mixing train, which was not permitted by the CTS. | IV | | 3-L | 3/4.6.4.4 | 3.6.8 | CTS 3.6.4.4 Actions are modified by the addition of ITS 3.6.8Condition B permitting operation for up to 7 days with 2 inoperable hydrogen mixing trains provided the backup post accident containment venting system is verified operable. The CTS would require entry into CTS 3.0.3. | m, rv | | 4-L | 3/4.6.4.4 | 3.6.8 | The test interval of CTS 4.6.4.4.a for the Hydrogen Mixing System is revised from a Staggered Test Basis to a straight 92 days. | . 11 | | . * | | . 4" | ITS 3.6.9 REACTOR CAVITY HYDROGEN DILUTION SYSTEM | | | 2-L | 3/4.6.4.3 | 3.6.9 | CTS 3.6.4.3 Actions are modified by the addition of a note providing an exception to LCO 3.0.4, allowing Mode changes with a single inoperable reactor cavity hydrogen dilution train, which was not permitted by the CTS. | IV | | 3-L | 3/4.6.4.3 | 3.6.9 | The test interval of CTS 4.6.4.3.a for the Reactor Cavity Hydrogen Dilution System is revised from a Staggered Test Basis to a straight 92 days | 11 | - Relaxation of Modes of Applicability Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO VI. - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------------|------------------|------------------|---|----------| | 5-L | 3/4.6.2.3 | 3.6.6 | The time allowed in CTS 3.6.2.3 Actions for reducing the unit Mode of operation below Mode 3 in the event of an inoperable containment spray system is increased from 6 hours to Mode 4 to
78 hours to Mode 5 (84 hours total to Mode 5). | m | | 5a-L | 3/4.6.2.3 | 3.6.6 | The test interval of CTS 4.6.2.3.a to test the Containment Cooling Fans on a Staggered Test Basis has been change to a straight 31 day frequency. | II. | | 7-LB | 3/4/.6.2.3 | 3.6.6 | The CTS requirement to verify automatic fan group actuation with a test signal is replaced with the ITS phrase "actual or simulated actuation signal". | V | | | | 1 | ITS 3.6.7 HYDROGEN RECOMBINERS | | | 2-L | 3/4.6.4.2 | 3.6.7 | CTS 3.6.4.2 Actions are modified by the addition of a note providing an exception to the provisions of LCO 3.0.4, allowing Mode changes with a single inoperable hydrogen recombiner, which was not permitted by the CTS. | IV | | 3-L | 3/4.6.4.2 | 3.6.7 | CTS 3.6.4.2 Actions are modified by the addition of ITS 3.6.3 Condition B permitting operation for up to 7 days with 2 inoperable hydrogen recombiners provided the backup post accident containment venting system is verified operable. The CTS would require entry into CTS 3.0.3. | III, IV | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - Deletion of SR - Deletion of Requirement for 30-day Special Report to NRC # Table L - LESS RESTRICTIVE CHANGES Section 3.6 - CONTAINMENT SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|------------------------| | 2-L | 3/4.6.3 | 3.6.3 | A note is added to CTS 3.6.3 Actions permitting intermittent unisolation of penetration flow paths under administrative controls for all but the 48 inch purge valve flow paths; CTS permitted this for only a limited number of valves. | IV | | 9-L | 3/4.6.3 | 3.6.3 | ITS allows an additional method of isolating a penetration flow path; a check valve with flow through the valve secured, which is not allowed in CTS 3.6.3 Actions. | IV | | 10-L | 3/4.6.3 | 3.6.3 | ITS provides two additional Conditions for inoperable Containment Isolation Valves not addressed by CTS: Condition B, when one or more penetration flow paths with two isolation valves are inoperable except for purge valve leakage not within limit, and Condition C, when one or more penetration flow paths have one containment isolation | III, IV | | 22 H | | | valve inoperable. Condition C allows 72 hours for completion, vs. 4 hours allowed per the original CTS requirement, which did not distinguish the particular valve inoperability situations covered by Condition C. | | | 12-L | 3/4.6.3 | 3.6.3 | ITS adds an exception to the CTS 4.6.3.2 requirement to demonstrate that each containment isolation valve actuates on signal. The exception pertains to valves that are already secured in the required safety position. | · · · v · · · · | | 14-LB | 3/4.6.3 | 3.6.3 | The CTS requirement to verify automatic containment isolation valve actuation with a Phase A or B test signal is replaced with the ITS phrase "actual or simulated actuation signal". | V. | | | | | ITS 3.6.6 CONTAINMENT SPRAY AND COOLING SYSTEMS | | | 7-LB | 3/4.6.2.1 | 3.6.6 | The CTS requirement to verify automatic valve and pump actuation with a test signal is replaced with the ITS phrase "actual or simulated actuation signal". | V | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time - IV. Relaxation of Required Actions - V. Relaxation of Surveillance Requirement Acceptance Criteria - VI. Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category . | |--------------------------------|------------------|------------------|---|-------------| | 4a-L | 3/4.6.1.7 | 3.6.3 | A Note is added to the CTS 3.6.1.7 Actions to provide an allowance applicable to all containment isolation valves (except purge and exhaust valves) to open valves under administrative control, whereas the CTS provided this allowance only for certain valves denoted in CTS Table 3.6-1. | IV . | | 5a-L | 3/4.6.1.7 | 3.6.3 | CTS 3.6.1.7 Actions are modified by the addition of ITS 3.6.3 Condition B which allows continued operation for the situation where two CIVs are inoperable on the same penetration flowpath, a condition not provided for in CTS. The CTS does not address this situation for the containment purge and exhaust valves, which would result in entry into CTS 3.0.3. | III, IV | | 5b-L | 3/4.6.1.7 | 3.6.3 | CTS 3.6.1.7.b specifies that the 8 inch minipurge supply and exhaust isolation valves may be open for safety related reasons. The CTS does not provide an Action if these valves are open for other than safety related reasons. Thus CTS 3.0.3 is entered. In the ITS, ITS 3.6.3 Action A is entered for this situation which allows continued operation provided that the Required Actions are met. | 10, 1 | | 6-L | 3/4.6.1.7 | 3.6.3 | The time permitted to reduce excessive leakage from or isolate the containment purge exhaust and supply penetrations is increased from 12 hours to 24 hours. | | | 11-L | 3/4.6.1.7 | 3.6.3 | An exception is added to the CTS 4.6.1.7.1 requirement that the 48 inch containment purge exhaust and supply isolation valves be sealed closed. This exception permits one valve to be opened while in ITS LCO 3.6.3 Condition D to facilitate repairs. | V | | 12-L | 3/4.6.1.7 | 3.6.3 | The CTS surveillance frequency specified in CTS 4.6.1.7.2 and 4.6.1.7.3 of 92 days for containment purge valves with resilient seals is extended to 184 days (and within 92 days of opening the valve). | u | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO VI. - **Deletion of SR** - Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | 9-L | 3/4.6.1.3 | 3.6.2 | New actions are added to CTS 3.6.1.3 for an inoperable air lock door mechanism to allow continued operation with a dedicated individual used to control air lock door status in place of the inoperable interlock mechanism, whereas the CTS made no provision for continued operation and required restoration of operability within 24 hours. | IV | | . 14-L | 3/4.6.1.3 | 3.6.2 | The surveillance frequency in CTS 4.6.1.3.b for the air lock door interlock mechanism is relaxed from 6 months to 24 months. | 11 | | | | | ITS 3.6.3 CONTAINMENT ISOLATION VALVES | | | 2a-L | 3/4.6.1.1 | 3.6.3 | The phrase "and not locked, sealed, or otherwise secured" is inserted into the surveillance requirement of CTS 4.6.1.1.a. This standard phrase used in the ITS recognizes that administrative controls exist to provide assurance that any changes to valve position are tracked, hence providing the option to verify penetration integrity by administrative control of valves outside containment, whereas CTS permits this option only for valves inside | V | | | | | containment. | | | 3-L | 3/4.6.1.1 | 3.6.3 | ITS provides an allowance applicable to all containment isolation valves (except the purge and exhaust valves) to open valves under administrative control, whereas the CTS provided this allowance only for certain valves denoted in CTS Table 3.6-1. | IV, V | | 8-L | 3/4.6.1 | 3.6.3 | A note is added to CTS 4.6.1.1.a allowing verification of containment isolation valve position and blind flange status in high radiation areas to be accomplished by administrative controls. | IV, V | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO VI. - Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC Table L - LESS RESTRICTIVE CHANGES Section 3.6 - CONTAINMENT SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------
---|----------| | | | | ITS 3.6.2 CONTAINMENT AIR LOCKS | · . | | 2-L | 3/4.6.1.3 | 3.6.2 | Three Notes are added to CTS 3.6.1.3 Actions to: 1) allow entry and exit to air locks to perform maintenance on air lock components while action requirements to maintain one air lock door closed apply; 2) allow separate Completion Time clocks for inoperable air locks; and 3) clarify that LCO 3.6.1 leakage limits apply | m, IV | | 3-L | 3/4.6.1.3 | 3.6.2 | CTS 3.6.1.3 Actions are revised to include "one or more" inoperable air locks, clarifying that each ITS 3.6.2 condition may apply to more than one air lock at a time. | IV | | 4-L | 3/4.6.1.3 | 3.6.2 | CTS 3.6.1.3 Action a has notes added to 1) clarify actions if two doors are inoperable on one air lock 2) allow containment entry and exit for up to 7 days when both air locks have an inoperable door, unrestricted to the purpose of air lock door repairs | IV
1 | | 7- L | 3/4.6.1.3 | 3.6.2 | The CTS requirement in CTS 3.6.1.3 Action a.2 limiting continued operation with one air lock door inoperable is deleted; in ITS 3.6.2 operation may continue indefinitely provided the required actions (verification operable door is locked closed) and surveillances (leakage within limits) continue to be met. | IV | | 8-L | 3/4.6.1.3 | 3.6.2 | New note in CTS 3.6.1.3 Action a.2 is added which allows verification of air lock door status in high radiation areas to be accomplished by administrative controls. | · IV | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC ## Table L - LESS RESTRICTIVE CHANGES Section 3.5 - EMERGENCY CORE COOLING SYSTEMS (ECCS) | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | 5-L | 3.5.3 | 3.5.3 | Action statement "a" time allowed to reach Mode 5 is revised from 20 hours to 24 hours consistent with the STS. | m | | | | | ITS 3.5.4 REFUELING WATER STORAGE TANK | | | 2-L | 3/4.5.5 | 3.5.4 | The actions are reworded and a new action is added for an inoperable RWST due to boron concentration or temperature not within limits to be consistent with the STS. | IV | | | | | ITS 3.5.5 SEAL INJECTION FLOW | | | 2-L | 3.4.7.2 | 3.5.5 | The Mode of applicability for the RCP seal injection limit was revised consistent with the STS. The CTS LCO requirement to maintain this limit in Mode 4 was eliminated. Also, the actions associated with this TS limit are revised consistent with the STS to reflect the change in the Mode of applicability. | l | Categories: I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions Relaxation of Surveillance Requirement Acceptance Criteria Relaxation of LCO **Deletion of SR** Deletion of Requirement for 30-day Special Report to NRC ## Table L - LESS RESTRICTIVE CHANGES Section 3.5 - EMERGENCY CORE COOLING SYSTEMS (ECCS) | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|----------| | | | | ITS 3.5.2 ECCS - OPERATING | | | 3-L | 3/4.5.2 | 3.5.2 | The LCO is modified with a note that provides an exception in Mode 3 that allows the RHR or charging pump flow paths to be blocked for a limited time (2 hours) in order to accomplish RCS pressure isolation valve testing at full RCS pressure. | i, Vi | | 4-L | 3/4.5.2 | 3.5.2 | Action statement "a" is revised to provide an allowed outage time for one or both ECCS trains (subsystems) inoperable consistent with the STS contingent on the remaining operable ECCS components being capable of providing 100% of the ECCS flow equivalent to a single operable ECCS subsystem. | IV . | | 11-L | 3/4.5.2 | 3.5.2 | SR 4.5.2.f.1 is revised to add an exception to the requirement to verify the correct position of each automatic valve after an actuation. Since this change provides an exception to an existing requirement it is considered less restrictive. | V | | 13-LB | 3/4.5.2 | 3.5.2 | The CTS surveillance requirement is revised in ITS SR 3.5.2.5 such that each ECCS actuates on an "actual or simulated actuation" signal. | V | | í | · | · | ITS 3.5.3 ECCS – SHUTDOWN | 7. | | 4a-L | 3/4.5.3 | 3.5.3 | Action statement "a" is revised by the addition of an action which provides an allowed outage time of 72 hours for the required ECCS centrifugal charging subsystem to be inoperable provided the remaining operable ECCS components are capable of providing 100% of the ECCS flow. | IV , | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC # Table L - LESS RESTRICTIVE CHANGES Section 3.5 - EMERGENCY CORE COOLING SYSTEMS (ECCS) | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|----------| | | | | ITS 3.5.1 ACCUMULATORS | | | 2-L | 3/4.5.1 | 3.5.1 | A new action for boron concentration not within limits is added to the existing actions consistent with the STS. The new Condition A allows 72 hours to restore boron concentration to within limits – the previous action would allow only 1 hour. | VI | | 3-L | 3/4.5.1 | 3.5.1 | The action statements a and b are combined and expanded to cover all inoperable accumulator conditions other than boron concentration, consistent with the STS. The net effect of this change results in the allowed outage time for a closed isolation valve being increased from "immediately" to 1 hour. | VI | | 4-L | 3/4.5.1 | 3.5.1 | Action statement a is revised consistent with the STS to more precisely specify the required action to remove the unit from the applicability of the TS. The proposed action requires placing the unit in Mode 3 with pressurizer pressure ≤ 1000 psig. The CTS action requires the unit to ultimately be placed in Mode 4. This change is consistent with the general rules of TS regarding the applicability of TS actions. | I, VI | | 11-L | 3/4.5.1. | 3.5.1 | SR 4.5.1.1.d.1 and 2 are removed from the TS consistent with the STS. These requirements verify the automatic actuations (SI and P-11) of the accumulator isolation valves every 18 months. The verification of the automatic actuation of these valves is not required in the accumulator TS to preserve the assumptions of the safety analyses and have been deleted. | VII | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - Deletion of SR - Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | 12-L | 3/4.4.9 | 3.4.16 | CTS Table 4.4-4 item 4.b Isotopic Analysis for Iodine surveillance is incorporated into SR 3.4.16.2 in ITS and is annotated as "Only required to be performed in Mode 1". | ı | | | | | ITS 5.5.7 REACTOR COOLANT PUMP FLYWHEEL INSPECTION PROGRAM | | | 3-L | 3/4.4.11 | 5.5.7 | CTS surveillance 4.4.11.2 requires RCP flywheel inspection per Reg. Guide 1.14 Regulatory Position C.4.b; in ITS the inspection interval is changed to once every 10 years (per WCAP-1435A, "Topical Report on RCP Flywheel Inspection Elimination". | 1) | - I. Relaxation of Modes of ApplicabilityII. Relaxation of Surveillance Frequency - III. Relaxation of Completion TimeIV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** VII. - Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference |
ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | | | | ITS 3.4.15 RCS LEAKAGE DETECTION INSTRUMENTATION | Ų | | 3-L | 3/4.4.7.1 | 3.4.15 | The time allowed to restore an inoperable leakage detection instrument is revised from 7 days in CTS to 30 days in ITS. | 111 | | 8-L | 3/4.4.7.1 | 3.4.15 | A new NOTE is added to the Actions in ITS providing exception to LCO 3.0.4, thereby allowing Mode transitions to be made despite entry into ITS Conditions A and B. | ı | | 9-L | 3/4.4.7.2 | 3.4.15 | CTS surveillances 4.4.7.2.1.a and b, requiring the leak detection particulate and gaseous radiation monitors and containment air cooler condensate level to be monitored every 12 hours, are deleted in ITS. | VII | | | | | ITS 3.4.16 RCS SPECIFIC ACTIVITY | | | 2-L | 3/4.4.9 | 3.4.16 | The LCO Applicability (Modes 1 – 5 in CTS) is revised in ITS to Modes 1, 2 and Mode 3 with RCS average temperature = 500°F. | ı | | 3-L | 3/4.4.9 | 3.4.16 | A new NOTE is added to the Actions in ITS providing exception to LCO 3.0.4, thereby allowing Mode transitions to be made despite entry into ITS Condition A. | 1 | | 8-L | 3/4.4.9 | 3.4.16 | The CTS Gross Activity Determination surveillance (Table 4.4-4 item 1) is revised to become ITS SR 3.4.16.1, and has the surveillance interval relaxed from 72 hours to 7 days. | | - 1. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | 6-L | 3/4.4.5 | 3.4.11 | CTS surveillance 4.4.5.1.c, requiring a Channel Calibration of the PORV actuation instrumentation every 18 months, is deleted in ITS. | VII | | | | | ITS 3.4.13 RCS OPERATIONAL LEAKAGE | | | 12-L | 3/4.4.7.2 | 3.4.13 | CTS surveillance 4.4.7.2.1.e, requiring monitoring the reactor head flange leakoff system at least once per 24 hours, is deleted in ITS. | VII | | | 1 414 | | ITS 3.4.14 RCS PRESSURE ISOLATION VALVE LEAKAGE | W | | 6-L | 3/4.4.7.2 | 3.4.14 | For an RCS PIV that does not meet leakage limits, CTS requires the affected flow path be isolated by two valves within 4 hours; in ITS this is changed to require isolation by one valve within 4 hours and a second valve within 72 hours. | 111 | | 7-L | 3/4.4.7.2 | 3.4.14 | ITS is revised to explicitly allow the use of check valves in addition to the CTS specified manual and deactivated automatic valves for flow path isolation. | IV | | 17-L | 3/4.4.7.2 | 3.4.14 | The portion of CTS surveillance 4.4.7.2.2 addressing identification of valves with potential seat degradation ("the measured leak rate for any given test and the maximum allowable leakage specified in Table 3.4-1 by more than 50%") is deleted in ITS. | IV | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------------|------------------|------------------|--|----------| | | | | ITS 3.4.10 PRESSURIZER SAFETY VALVES | | | 2-L | 3/4.4.3 | 3.4.10 | Condition A in ITS for one pressurizer safety valve inoperable allows an additional 15 minutes to accomplish a plant shutdown beyond the CTS LCO 3.4.3 Action requirement. | 111 | | 4-L | 3/4.4.3 | 3.4.10 | A new NOTE is added to ITS LCO 3.4.10 providing an applicability exception for the lift settings to be outside the LCO limits during MODES 3 and 4 (for 54 hours following MODE 3 entry) to allow setting of the pressurizer safety valves under hot conditions. | 1 | | | | | ITS 3.4.11 PRESSURIZER POWER OPERATED RELIEF VALVES (PORVs) | | | 1-L | 3/4.4.5 | 3.4.11 | A new "separate condition entry" NOTE is added in ITS, allowing a separate Completion Time to be established for each affected component based on when it enters the applicable Actions Condition. | 111 | | 2-L | 3/4.4.5 | 3.4.11 | The PORV actions are revised in ITS to delete reference to excessive seat leakage and focus on PORV manual operation capability or the lack thereof as the indicator of safety function availability. | IV | | 5a-L | 3/4.4.5 | 3.4.11 | CTS surveillance 4.4.5.2 is revised by addition of a Note allowing entry into Mode 3 in order to perform the surevillance. Addition of this Note allows startup into Mode 3 if the SR has not been performed during the normal frequency but limits the exception to prior to entering Mode 2. | V | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** - Deletion of Requirement for 30-day Special Report to NRC | Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |------------------------|------------------|------------------|--|----------| | | | | ITS 3.4.4 RCS LOOPS - MODES 1 AND 2 | | | 4-L | 3/4.4.1.1 | 3.4.4 | The time allowed to reduce power to Mode 3 with less than all the RCS loops in operation is increased from 1 hour per CTS to 6 hours per ITS. | 111 | | · | | | ITS 3.4.7 RCS LOOPS - MODE 5 - LOOPS FILLED | | | 9-L | 3/4.4.1.4 | 3.4.7 | Two new LCO notes are added in ITS. New NOTE 2 allows one of the required RHR loops to be removed from service for up to 2 hours for surveillance testing provided the other RHR loop is operable and in operation. New NOTE 4 allows all RHR loops to be removed form service during a planned heatup to Mode 4 when at least one RCS loop is in operation. | VI | | | | | ITS 3.4.8 RCS LOOPS - MODE 5 - LOOPS NOT FILLED | | | 8-L | 3/4.4.1.4 | 3.4.8 | New LCO NOTE 2 is added in ITS, allowing one of the required RHR loops to be removed from service for up to 2 hours for surveillance testing provided the other RHR loop is operable and in operation. | VI | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time - IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---
--| | | | | ITS 3.4.1 RCS PRESSURE, TEMPERATURE, AND FLOW DNB LIMITS | | | 4-L | 3/4.2.5 | 3.4.1 | The CTS allowance of 4 hours to reach less than 5% power is revised in ITS to allow 6 hours to reach Mode 2 (= 5% power). | 111 | | 5a-L | 3/4.2.5· | 3.4.1 | CTS surveillance 4.2.5.3 on RCS flow rate is deleted in ITS. | · VII | | | | | ITS 3.4.2 RCS MINIMUM TEMPERATURE FOR CRITICALITY | | | 5-L | 3/4.1.1.4 | 3.4.2 | The CTS surveillance 4.1.4.a requirement to verify the minimum temperature for criticality within 15 minutes prior to achieving criticality is deleted in ITS. | VII | | | | | ITS 3.4.3 RCS PRESSURE TEMPERATURE (P/T) LIMITS | e de la companya l | | 5-L | 3.4.4.10 | 3.4.3 | The existing CTS action is revised to apply in Modes 1-4 only, and a new Condition (C) is added in ITS that specifically addresses the condition where the P/T limits are violated outside Modes 1-4. The existing CTS action requires P/T restoration to within limits within 30 minutes, but the new ITS requirement only specifies that action must be initiated, rather than when it must be completed. | 111 | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** - Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|-------------| | | | | ITS 3.3.8 PRF ACTUATION INSTRUMENTATION | | | 12a-L | T 3.3-6 | 3.3.8 | The requirements of the fuel storage pool area radiation monitors are revised consistent with the applicable FNP design basis accident analysis. The fuel storage pool area radiation monitors actuate the isolation of the normal fuel storage pool area ventilation and start the PRF system. The function of the PRF system upon actuation by a spent fuel pool area radiation monitor is to filter the air exhausted from the fuel storage pool area in the event of a design basis fuel handling accident. | | | 19-L | T 3.3-6 | 3.3.8 | Action statement 25 for the fuel storage pool area ventilation isolation radiation monitors is revised extensively to be consistent with the Actions provided in the corresponding STS LCO. The STS Actions provide acceptable alternatives to the CTS Actions which simply require that the channel(s) be restored or that the movement of fuel in the spent fuel pool be suspended. | . IV | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - VI. Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|----------| | 14-L | Т 3.3-6 | 3.3.6 | The Mode 5 and 6 applicability for containment purge and exhaust isolation radiation monitors to isolate the containment purge and exhaust valves on a high radiation signal due to a fuel handling accident in containment is revised consistent with the STS and with the CTS requirements for the purge and exhaust isolation system. | 1 | | 20-L | Т 3.3-6 | 3.3.6 | Action statement 26 applicable to the containment purge and exhaust isolation radiation monitors is revised consistent with the corresponding Actions Conditions of Specification 3.6.3 and 3.9.3. (Condition B and C of LCO 3.3.6). | IV | | | | | ITS 3.3.7 CREFS ACTUATION INSTRUMENTATION | | | 21-L | Т 3.3-6 | 3.3.7 | Action 27 applicable to the control room emergency filtration system radiation monitors is revised extensively to be consistent with the Actions provided in the corresponding STS LCO 3.3.7. The STS Actions which replace the CTS Action 27 provide a longer Completion Time and alternative Actions that address inoperable FNP control room isolation radiation monitor(s). | III, IV | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | | | | ITS 3.3.5 LOSS OF POWER (LOP) DIESEL GENERATOR (DG) START INSTRUMENTATION | | | 59-L | T 3.3-3 | 3.3.5 | Action statement 24b of the referenced table, which allows 2 hours to bypass an inoperable Loss of power (LOP) or degraded grid voltage instrument channel for surveillance testing other channels, is revised consistent with the STS. The time allowed to bypass a loss of power channel is increased from 2 to 4 hours. The allowance to bypass a channel for testing other channels is a common allowance in both the RTS and ESFAS LCOs. | V | | 60-L | Т 3.3-3 | 3.3.5 | Action statement 24 of the referenced table, which addresses the loss of voltage and degraded grid voltage ESFAS functions is supplemented by additional Actions applicable to these ESFAS functions. The STS provides two additional Actions applicable to these ESFAS functions. | IV | | | | | ITS 3.3.6 CONTAINMENT PURGE AND EXHAUST ISOLATION INSTRUMENTATION | | | 45-L | Т 3.3-3 | 3.3.6 | Action statement 17 of the referenced table, which addresses the containment purge and exhaust manual and automatic actuation logic and actuation relay instrument functions in Modes 1-4 is revised consistent with the STS via two Action options. Condition C effectively place the plant in an equally safe condition and both require immediate action. Condition C introduces an alternate action by providing an Action to remove the unit from the Mode of applicability. The introduction of this option also ensures the plant is placed in an equally safe condition as provided by the existing CTS action to isolate the purge and exhaust penetration. | I, IV | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency III. Relaxation
of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|------------| | 27-L | 3/4.6.4.1 | 3.3.3 | Action statement "a" requires that the unit be placed in Hot Standby (Mode 3) within 6 hours or establish an alternate sampling capability. It is revised consistent with the corresponding STS post accident monitoring Condition B, which is applicable when the Required Actions and associated Completion Time of Condition A are not met and requires that action be initiated in accordance with Specification 5.6.8 immediately. | IV | | 29-L | 4.6.4.1 | 3.3.3 | The surveillance which requires a channel calibration to be performed on the hydrogen analyzers every 92 days on a staggered test basis is revised consistent with the STS to require the surveillance to be performed every 18 months and does not require staggered testing. | 11 | | | | | ITS 3.3.4 REMOTE SHUTDOWN SYSTEM | | | 4-L | 3/4.3.3.5 | 3.3.4 | Action statement "a" Completion time of 7 days is revised to 30 days consistent with the time provided in STS 3.3.4 Condition A. | 111 | | 7-L | 3/4.3.3.5 | 3.3.4 | The surveillance requirement for the performance of a channel check is moved into a separate SR and channels which are not normally energized are excepted from the surveillance. | ; V | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |------------------------|------------------|------------------|---|-----------| | 8-L | T 3.3-11 | 3.3.3 | Action statement 1 which requires that the unit be placed in Hot Shutdown (Mode 4) within 12 hours is revised consistent with the corresponding STS Condition B. STS Condition B is applicable when the Required Actions and associated Completion Time of Condition A are not met and requires that a post accident monitoring report be submitted to the NRC. | IV | | 10-L | T 3.3-11 | 3.3.3 | Action statements 2 and 4, which address two inoperable channels and allow 48 hours to restore the inoperable channels to operable status, are revised consistent with the corresponding STS Condition C. The time allowed to restore the inoperable channels is revised to 7 days. | III, IV | | 11-L | Т 3.3-11 | 3.3.3 | Action statement 3, which is applicable to the reactor vessel water level instrument, is revised consistent with the STS. The action is replaced with the corresponding STS default Condition B. | IV | | 18-L | T 3.3-11 | 3.3.3 | The list of accident monitoring instruments is revised by the deletion of the PORV Position Indicator, PORV Block Valve Position Indication, Safety Valve Position Indication, and Containment Water Level (Narrow Range). Also, the footnotes associated with these instrument channels are deleted. | IV, VI | | 25-L | 3/4.6.4.1 | 3.3.3 | Hydrogen analyzers is revised consistent with STS post accident monitoring, by the addition of a note which takes exception to the requirements of LCO 3.0.4. The addition of this note allows changes to be made in the Mode of operation of the plant while an Action is applicable to one or both hydrogen analyzers. | er and | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------------|------------------|------------------|--|----------------| | 23-L | Т 3.3-6 | 3.3.3 | Action 27a for the containment area radiation monitors is revised consistent with the corresponding STS Actions in LCO 3.3.3, "Post Accident Monitoring." The requirement to initiate the preplanned alternate method of monitoring the appropriate parameters within 72 hours is deleted. In the STS, the use of preplanned alternate methods of monitoring must be described at the time the special reporting requirements become applicable. | (1) | | 24-L | Т 3.3-6 | 3.3.3 | Action 27a.1 for an inoperable containment radiation monitor is revised consistent with the STS. The time allowed for restoration to operable status is revised to 30 days for a single inoperable channel and 7 days for two inoperable channels. | , W , , | | 30-L | Т 4.3-3 | 3.3.3 | The surveillance requirement for the containment area radiation monitors is revised consistent with the corresponding STS surveillance. The surveillance is changed from a shiftly (12 hours) channel check to be performed on the radiation monitors to once every 31 days. | III, V | | 5-L | T3/4.3.3.8 | 3.3.3 | The surveillance requirement for the performance of a channel check is moved into a separate SR and channels which are not normally energized are excepted from the surveillance. | V | | 7-L | Т 3.3-11 | 3.3.3 | Action statements 1 and 3 are revised consistent with the corresponding STS Condition A. The time allowed to restore an inoperable channel is revised from 7 days to 30 days consistent with the time allowed in the corresponding STS Condition A which also addresses a single inoperable channel. | III, IV | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------------|------------------|--|---|----------| | 71-L | T 3.3-4 | T 3.3.2-1 | The P-12 Tavg low low interlock function Trip Setpoints are revised to include inequalities consistent with the corresponding STS setpoint for this function. The increasing setpoint is revised by the addition of the inequality "less than or equal to" and the decreasing setpoint is revised by the addition of the inequality "greater than or equal to." | l | | • | | | ITS 3.3.3 POST ACCIDENT MONITORING INSTRUMENTATION | | | 8-L | T 3.3-6 | T 3.3.3-1
T 3.3.6-1
T 3.3.7-1
T 3.3.8-1
3.4.15 | The radiation monitoring measurement range on the referenced table is deleted consistent with the STS. The measurement range of the monitors listed on this CTS Table is not included in the corresponding STS LCOs and is not required information for the TS. | V | | 11-L | Т 3.3-6 | 3.3.3 | The Mode of applicability for the containment area radiation monitors is revised consistent with the STS. The Mode 4 applicability is deleted. The post accident monitoring instrumentation applicability of Modes 1-3 is based on the fact that the accidents for which these instruments are required are assumed to occur in Modes 1-3. Plant conditions in Modes 4, 5, and 6 are such that the likelihood of an event that would require this instrumentation is low. | 1 | | 18-L | Т 3.3-6 | 3.3.3 | The applicability footnotes g and h used for the control room isolation radiation monitors, the fuel storage pool area radiation monitors, and the containment purge and exhaust radiation monitors are revised consistent with the STS by the deletion of "movement of heavy loads over irradiated fuel" from both notes and the addition of "During Core Alterations" to note h. | | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions. - Relaxation of Surveillance Requirement Acceptance
Criteria - Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | 95-L | T 4.3-1 | 3.3.1 | The CFT applicable to the safety injection (SI) input from ESF RTS function is revised by deletion of note 4 which had defined the CFT as pertaining to the manual ESF functional input to RTS. The RTS SI input function is appropriate and applicable for the RTS TS. | . | | | | | ITS 3.3.2 ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION (ESFAS) | • | | 28-L | т 3.3-3 | T 3.3.2-1 | Deleted To the state of sta | I | | 39-L | Т 3.3-3 | Т 3.3.2-1 | The ** footnote in the referenced table is revised to be consistent with the FNP main steam system design. The FNP design utilizing two main steam isolation valves in each steam line is not a typical PWR design. The revision of this note is considered a plant specific enhancement of the existing ** footnote to clarify the isolation function is accomplished by closing either main steam isolation valve in a steam line. | l | | 42-L | Т 3.3-3 | T 3.3.2-1 | Action statement 13 of the referenced table, which allows 6 hours to restore one inoperable train, is replaced by STS Condition F for the P-4 interlock function. Condition F allows 48 hours to restore one train of the P-4 interlock function to operable status before requiring a unit shutdown. The additional time allowed by the STS is based on the diverse and backup nature of the P-4 interlock functions. | l | | 54-L | Т 3.3-3 | T 3.3.2-1 | Action statement 23 of the referenced table, which addresses the auxiliary feedwater pump start on trip of the main feedwater pumps ESFAS function, is revised. The number of required channels in the FNP ITS has been revised to include all 4 (2 per pump) channels to ensure an Action is applicable as soon as one channel is inoperable. | | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - VI. Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|----------| | 82-L | T 4.3-1 | 3.3.1 | The 2 CFT surveillances for the Manual Reactor Trip function on the referenced table are revised and replaced with a single STS surveillance SR Trip Actuating Device Operational Test (TADOT) which is required to be performed every 18 months. The addition of the STS surveillance requirements for this function eliminate the CTS requirement to perform a CFT prior to startup. The elimination of the requirement to reperform the CFT prior to each startup is acceptable based on the remaining requirement to perform this testing every 18 months which provides adequate assurance of operability and the known reliability and simplicity of manually actuated functions. | V | | 86-L | T 4.3-1 | 3.3.1 | The power, intermediate, and source range neutron flux trip setpoint CFT surveillances are revised to be an STS COT. In addition, the 31 day allowance provided by CTS note 10 is revised to 92 days consistent with the frequency of the corresponding STS surveillance. The performance of the new quarterly COT on the power range low trip function, combined with the addition of 18 month channel calibration effectively provides the same level of assurance that the power range low trip function is maintained within the required setpoint tolerance. | V | | 86a-L | T 4.3-1 | 3.3.1 | The quarterly channel calibration surveillance requirement associated with the power range neutron flux low trip function is replaced with the corresponding COT SR. Since neutron detectors are excluded from channel calibrations the new COT requirement is effectively the same as the channel calibration for setpoint verification and adjustment of the power range channels. | V | | 88-L | T 4.3-1 | 3.3.1 | The quarterly CFT surveillance requirement for the source range instrumentation is revised. The STS provides a more detailed breakdown of the Modes in which the source range instrument is required operable. In Modes 3, 4, and 5 with the RTBs open the STS deletes the requirement to perform the COT. Operation with the RTBs closed in Modes 3, 4, and 5 is addressed by the corresponding STS COT surveillance. | V | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|----------| | 61-L | T 3.3-1 | Т 3.3.1-1 | Action statement 2c on the referenced table, which addresses a single inoperable power range neutron flux channel, is revised. An STS Note that modifies the Action requirement to verify QPTR every 12 hours is added to the CTS. If the input from the affected power range instrument channel is intact, QPTR may be monitored normally without the undue use of resources or the potential distraction to the operating staff resulting from the requirement to perform incore measurements every 12 hours. | V | | 67-L | T 3.3-1 | T 3.3.1-1 | Action statement 10 on the referenced table, which allows 6 hours to restore the inoperable channel to operable status or power must be reduced below the P-8 interlock setpoint within the next 2 hours, is revised. The additional 2 hours allowed to reduce power is acceptable because of the low likelihood of an event occurring during this brief time and because the total time allowed to remove the plant from the applicable Mode is still less than that allowed by LCO 3.0.3 for comparable situations of similar or greater safety significance. | • | | 70-L | T 3.3-1 | T 3.3.1-1 | Action statement 11 on the referenced is revised by the addition of a note which allows the inoperable channel to be bypassed for up to 4 hours for surveillance testing the other required channels. Action statement 11 applies to the low RCS flow RCP breaker trip RTS function and is applicable when one channel is inoperable. The addition of this allowance for the RCP breaker trip function is
reasonable considering that this function is only one of 4 diverse RTS functions for initiating a reactor trip on low RCS flow. | V | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|----------| | 53-L | Т 3.3-1 | T 3.3.1-1 | Action statement 1 on the referenced table, which is applicable to the RTBs, is revised by the addition of 1 hour in which to restore an inoperable RTB to operable status before requiring a plant shutdown. The additional time provided in the STS is sufficient to correct minor problems before requiring the plant to undergo a shutdown transient. | · | | 58-L | T 3.3-1 | T 3.3.1-1 | Action statement 2b on the referenced table is revised into the STS Condition note format. This CTS Action provides an allowance to bypass an inoperable channel for surveillance testing of other channels. The STS provides the allowance to bypass the inoperable channel when making required setpoint adjustments on the other channels | V | | 1 | , . | | as well as performing surveillance tests on other channels. Also, the allowance reduces the potential risk of an inadvertent reactor trip occurring during the required setpoint adjustments. | | | 59-L | T 3.3-1 | T 3.3.1-1 | Action statement 2c on the referenced table, which applies to the power range neutron flux instrumentation when a single power range channel is inoperable, is revised. The requirement in CTS Action 2c to reduce the power range neutron flux high trip setpoint is deleted consistent with the STS. The resultant surveillance requirements in the RTS TS provide adequate remedial measures (increased surveillance frequency and/or different method for monitoring QPTR) when an inoperable power range channel affects the input | VII | | 60-L | T 3.3-1 | T 3.3.1-1 | Action statement 2c on the referenced table addresses a single inoperable power range neutron flux channel and is revised. The CTS Action is revised to require power to be reduced to less than or equal to 75% within 12 hours consistent with the STS and the Action requirement to perform the surveillance to verify QPTR. QPTR changes slowly and the proposed time for a power reduction (12 hours) is adequate to ensure an unacceptable flux tilt does not develop. | VII | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - VI. Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | 37-L | T 3.3-1 | Т 3.3.1-1 | The applicabilities and Actions associated with the Turbine Trip functions are revised. The Mode 1 applicability of these functions is modified by the addition of an STS footnote. The footnote modifying these functions limits the applicability in Mode 1 to "above the P-9 interlock." In addition to the revision of the applicability for these functions, the STS introduces a separate Actions Condition to specifically address the applicability of these functions. The Turbine Trip RTS functions are normally blocked below the P-9 interlock and therefore are not relied on to mitigate any design basis | | | 41-L | T 3.3-1 | T 3.3.1-1 | The applicabilities and Actions associated with the RTS RCP breaker position (single and two loop) functions are revised. The Mode 1 applicability of these functions is modified by the addition of STS footnotes. The STS footnotes are similar to the A and B designations provided in the CTS Functional Unit column for the RCP breaker position trip function. As the CTS notes are effectively incorporated into the Applicability of the function (where they limit the CTS applicability requirements), they are deleted from the Functional Unit column. In addition to the revision of the applicability for these functions, the STS introduces a separate Actions Condition to specifically address the applicability of these functions. | | | 42-L | Т 3.3-1 | T 3.3.1-1 | The Mode of applicability for the P-6 interlock function is revised. CTS Applicability includes all of Mode 2 and the *footnote that includes whenever the RTBs are closed and the control rod drive system is capable of rod withdrawal. The STS Applicability limits the operability requirement of this interlock to Mode 2 below the interlock setpoint. The STS Applicability is based on the standard Westinghouse RTS design for this function and the associated intermediate and source range neutron flux instrumentation. | | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|----------| | 27-L | T 3.3-1 | Т 3.3.1-1 | Action 3.a of the referenced table for the intermediate range instrumentation is revised to include one or two inoperable intermediate range channels with power below P-6. This Action addresses an inoperable instrument channel with power < P-6 and requires restoration of the channel to operable status prior to increasing power above P-6. The allowance to have two intermediate instrumentation channels inoperable with power < P6 is acceptable since the source range instrumentation is required operable with power < P-6 and provides the necessary monitoring and reactor trip functions below P-6. | | | 29-L | Т 3.3-1 | Т 3.3.1-1 | The Actions for inoperable intermediate range instrument channels are revised by the addition of a new Action for two inoperable channels with power above the P-6 interlock. STS Condition G introduces the condition of two inoperable intermediate range channels with power > P-6 and < P-10. In this power range, the intermediate range instrumentation provides required monitoring and trip functions. With two channels inoperable, STS Condition G requires operations involving positive reactivity additions to be suspended immediately and power to be reduced within 2 hours to < P-8. | | | 34-L | T 3.3-1 | T 3.3.1-1 | The applicability and associated Action for the Pressurizer Pressure-Low, Pressurizer Water Level-High, Loss of Flow, Undervoltage - RCPs and Underfrequency - RCPs functions are revised which provides for blocking these functions below the P-7 interlock. Also, the conversion to the RTS STS incorporates several new Actions Conditions that are derived from the CTS Action statements but include specific default Actions for specific functions. | l | - 1. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------
---|----------| | | | | ITS 3.3 INSTRUMENTATION | | | 1a-LC | 2.2 | Section 3.3 | In conversion to ITS several new Actions Conditions are incorporated which are derived from the CTS Action statements but include specific default Actions for specific functions. These changes provide for equivalent, or in some cases more stringent, shutdown requirements as compared to LCO 3.0.3 entry, but are considered less restrictive since they provide an alternative to LCO 3.0.3 entry, thus avoiding the reporting requirements of 10 CFR 50.73. | IV | | | | | ITS 3.3.1 REACTOR TRIP SYSTEM (RTS) INSTRUMENTATION | | | 9-L | T 2.2-1 | T 3.3.1-1 | Notes 1 and 2 of the referenced table, which contain the overtemperature and overpower delta T equations are revised. The revision consists of changing some of the variables used in these formulas from an equality to an inequality. The direction of conservatism identified by the proposed FNP specific inequalities for the gain and time constants contained in the overtemperature and overpower delta T trip functions is consistent with the modeling of these parameters in the applicable FNP safety analyses. | IV | | 23-L | Т 3.3-1 | T 3.3.1-1 | The Mode of applicability of the intermediate range neutron flux trip function is revised such that the applicability does not require the intermediate range detectors operable below Mode 2. Although this change is less restrictive in nature, it is acceptable given that the intermediate range detectors are not accurate at the low neutron flux rates present during shutdown and that the source range instrumentation is required operable in shutdown Modes to provide the required protection. | .1 | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC ## Table L - LESS RESTRICTIVE CHANGES Section 3.2 - POWER DISTRIBUTION LIMITS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|--|----------| | 6-L | 3/4.2.4 | 3.2.4 | CTS Actions a.3, a.4, c.2, and c.3 are replaced in ITS by Actions A.1 through A.6 and B.1. The less restrictive changes introduced by ITS are: 1) deletion of the CTS a.3 and c.2 requirements to reduce the power range neutron flux trip setpoints if thermal power is reduced to <50%, and 2) deletion of the requirements for power reduction to <50% RTP within 2 (CTS c.2) or 24 (CTS a.3) hours when QPTR exceeds limits. | IV | | 10-L | 3/4.2.4 | 3.2.4 | CTS surveillance 4.2.4.1 is translated as ITS SR 3.2.4.1 with the CTS requirement to calculate QPTR once per 12 hours when the alarm is inoperable deleted, leaving only the 7 day frequency for calculating QPTR. | II,VII | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO VI. - Deletion of SR - Deletion of Requirement for 30-day Special Report to NRC #### Table L - LESS RESTRICTIVE CHANGES Section 3.2 - POWER DISTRIBUTION LIMITS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------------|------------------|------------------|---|----------| | 4-L | 3/4.2.3 | 3.2.2 | CTS Action b requirements that provide a default action if other actions are not met allows 2 hours to reduce power to less than 5% RTP is extended to 6 hours in the ITS. | III
 | | 7-L | 3/4.2.3 | 3.2.2 | CTS Action a (Unit 2) allows 2 hours (this time limit is 4 hours in Unit 1 CTS) to reduce power to less than 50% RTP when F ^N _{AH} exceeds its limit is extended to 4 hours in ITS. | 111 | | | : | | ITS 3.2.3 – AXIAL FLUX DIFFERENCE (AFD) | , | | 6-L | 3/4.2.1 | 3.2.3 | The CTS surveillance 4.2.1 requirement to monitor AFD once per hour with the AFD Monitor Alarm inoperable is deleted leaving only the 7 day surveillance frequency for monitoring the indicated AFD in ITS SR 3.2.3.1. | II,VII | | | | | ITS 3.2.4 QUADRANT POWER TILT RATIO (QPTR) | | | 3-L | 3/4.2.4 | 3.2.4 | CTS Actions a.1 and c.1 which require QPTR to be calculated once per hour until TS limits are restored or power is required to be reduced to less than 50% RTP are replaced by ITS Actions A.2 and A.1. A.2 requires QPTR to be determined at least once per 12 hours, while A.1 requires power to be limited from RTP by 3% for each 1% QPTR exceeds 1.00. | III, IV | | 5-L | 3/4.2.4 | 3.2.4 | The CTS Action a.2.b requirement to reduce the power range neutron flux high trip setpoint within 4 hours by reducing power 3% for each 1% QPTR exceeds 1.00 is deleted. | IV | - 1. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC #### Table L - LESS RESTRICTIVE CHANGES Section 3.2 - POWER DISTRIBUTION LIMITS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------------|------------------|------------------|---|----------| | | · | | ITS 3.2.1 HEAT FLUX HOT CHANNEL FACTOR (F _Q (Z)) | | | 4-L | 3/4.2.2 | 3.2.1 | CTS Action a requirements to reduce the power range neutron flux - high trip setpoints within the next 4 hours is revised in ITS 3.2.1 to within 72 hours. | 111 | | 10-L | 3/4.2.2 | 3.2.1 | CTS surveillance 4.2.2.2.g.2 allows 15 minutes to control AFD to within limits when the limits are revised due to an increasing $F_o(Z)$. ITS 3.2.1 increases this allowance to 4 hours. | 111
· | | 12-L | 3/4.2.2 | 3.2.1 | The CTS surveillance 4.2.2.2.g.2 requirement to reset the AFD alarm setpoints to the modified limits is deleted in ITS 3.2.1. | IV | | | | | ITS 3.2.2 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR (FN AH) | | | 3a-L | 3/4.2.3 | 3.2.2 | CTS Action Statement a.2 requirement to reduce the power range neutron flux – high trip setpoints within the next 4 hours is extended to 72 hours in ITS 3.2.2. | 111 | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** - Deletion of Requirement for 30-day Special Report to NRC #### Table L - LESS RESTRICTIVE CHANGES Section 3.1 - REACTIVITY CONTROL SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------|------------------|------------------|---|----------| | | | | ITS 3.1.8 PHYSICS TESTS EXCEPTIONS - MODE 2 | | | 6-L | 3/4.10.3 | 3.1.8 | The CTS requirement to perform surveillance testing on the intermediate and power range channels "within 12 hours" prior to initiation of PHYSICS TESTS is deleted in ITS SR 3.1.8.1. | IV | - Relaxation of Modes of Applicability Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC #### Table L - LESS RESTRICTIVE CHANGES Section 3.1 - REACTIVITY CONTROL SYSTEMS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------------|------------------|------------------|---|----------| | | | | ITS 3.1.5 SHUTDOWN BANK INSERTION LIMITS | | | 2-L | 3/4.1.3.5 | 3.1.5 | The CTS LCO, Actions, and
Surveillances are revised to incorporate the ITS use of "shutdown banks", so the insertion limits apply to each shutdown bank rather than to individual rods. Also, the time allowed to restore the shutdown banks is increased from the CTS allowance of 1 hour to 2 hours in ITS. | III, IV | | • | | | ITS 3.1.6 CONTROL BANK INSERTION LIMITS | | | 10-L | 3/4.1.3.6 | 3.1.6 | The CTS surveillance requirement to verify that each control rod bank is within the insertion limits every 4 hours when the Rod Insertion Limit Monitor is inoperable is deleted in ITS. | VII | | * | | | ITS 3.1.7 ROD POSITION INDICATION | | | 1a-L | 3/4.1.3.2 | 3.1.7 | New Condition B is added in ITS addressing the situation where more than one DRPI per group is inoperable, making additional actions necessary. Condition B allows that no power reduction is required, provided that the system can be restored within 24 hours such that a maximum of one DRPI per group is inoperable. | IV | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC ## Table L - LESS RESTRICTIVE CHANGES Section 3.1 - REACTIVITY CONTROL SYSTEMS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------------|------------------|------------------|---|----------| | | | | ITS 3.1.2 CORE REACTIVITY | | | 14-L | 3/4.1.1.1 | 3.1.2 | The 31 EFPD surveillance frequency for determining core reactivity balance is modified in ITS by addition of the NOTE "Only required after 60 EFPD". | 11 | | | | | ITS 3.1.4 ROD GROUP ALIGNMENT LIMITS | | | 2-L | 3/4.1.3.1 | 3.1.4 | The CTS Actions are revised in ITS to address misaligned and inoperable shutdown and control rods, as well as removing rod operability actions for causes other than "untrippable". | IV, V | | 9-L | 3/4.1.3.1 | 3.1.4 | The CTS Action completion time to 1 hour to reduce power to less than or equal to 75% RTP is revised in ITS to allow 2 hours. | 111 | | 10-L | 3/4.1.3.1 | 3.1.4 | The CTS Action to reduce the power range high neutron flux trip setpoint to less than or equal to 85% RTP is deleted in ITS. | VI | | 13-L | 3/4.1.3.1 | 3.1.4 | The CTS surveillance requirement to verify that the individual rod positions are within the group demand limit every 4 hours when the Rod Position Deviation Monitor is inoperable is deleted in ITS. | VII | | 8-L | 3/4.1.3.4 | 3.1.4 | The CTS 18 month surveillance frequency for rod drop time is deleted. | VII | - I. Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time - IV. Relaxation of Required Actions - V. Relaxation of Surveillance Requirement Acceptance Criteria - VI. Relaxation of LCO - VII. Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC ## Table L - LESS RESTRICTIVE CHANGES Section 3.0 - LCO AND SR APPLICABILITY | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------------|------------------|------------------|---|----------| | 4-L | 3.0 | 3.0 | CTS 3.0.4 is revised in ITS 3.0.4 to add an exception that allows Mode changes when the LCO is not met and the applicable Actions permit continued operation in the Mode or other specified condition in the Applicability for an unlimited period of time. | IV | | 6-L | 3.0 | 3.0 | CTS 3.0.5 is deleted in ITS. Movement of the first part of CTS 3.0.5 into ITS is covered elsewhere. The second part of CTS 3.0.5 provides conditions (Actions) to be met when a normal or emergency power supply is inoperable, and is addressed in ITS LCO 3.8.1. The time limits given in ITS LCO 3.8.1 are increased from the 2 hours stated in CTS 3.0.5. | M | | 8-L | 3.0 | 3.0 | A new LCO 3.0.5 is added in ITS, providing an exception to LCO 3.0.2 for instances where restoration of inoperable equipment could not be performed while continuing to comply with Required Actions. | IV | | 13-L | 3.0 | 3.0 | CTS 4.0.2 is revised as ITS SR 3.0.2 to allow 25% frequency extension to apply to Completion Time for Actions that require a periodic performance. | 11 | | 14-L | 3.0 | 3.0 | CTS 4.0.3 and associated * footnote is replaced in ITS by new material at SR 3.0.3. SR 3.0.3 addresses missed surveillance requirements, allowing declaration of inoperability to be delayed for up to 24 hours to allow time to perform missed surveillances. | (11) | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO - **Deletion of SR** - VIII. Deletion of Requirement for 30-day Special Report to NRC #### Table L - LESS RESTRICTIVE CHANGES Section 2.0 - SAFETY LIMITS (SLs) No applicable less restrictive changes - Relaxation of Modes of Applicability - II. Relaxation of Surveillance Frequency - III. Relaxation of Completion Time IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO VI. - Deletion of SR - VIII. Deletion of Requirement for 30-day Special Report to NRC ## Table L - LESS RESTRICTIVE CHANGES Section 1.0 - USE AND APPLICATION | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | Category | |--------------------------------------|------------------|------------------|---|----------| | | | | ITS 1.1 - DEFINITIONS | | | 8-L | 1.8 | 1.1 | The ITS definition of CORE ALTERATIONS is qualified to pertain to movement of fuel, sources, or reactivity control components, whereas the CTS definition could include movement of any component within the reactor vessel with fuel in the vessel as a CORE ALTERATION. | l | - I. Relaxation of Modes of Applicability II. Relaxation of Surveillance Frequency III. Relaxation of Completion Time - IV. Relaxation of Required Actions - Relaxation of Surveillance Requirement Acceptance Criteria - Relaxation of LCO VI. - **Deletion of SR** VII. - Deletion of Requirement for 30-day Special Report to NRC ## Table A - ADMINISTRATIVE CHANGES Section 5.0 - ADMINISTRATIVE CONTROLS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | 75-A | 6.14.1 | 5.5 | CTS 6.14.1, which contains requirements applicable to initial ODCM implementation, is deleted since the ODCM has been implemented for many years. Also, the reference to CTS 6.10.2.0 is deleted since this record keeping requirement has been moved to the QA Program along with the other record keeping requirements of CTS 6.10. | | 76-A | 6.16 | 5.5.17 | The CTS Containment Leakage Rate Testing Program is moved to the ITS Program section without change. | | 78-A | 6.16 | 5.5.17 | The leakage rate acceptance criterion for each containment purge penetration flow path from CTS 4.6.1.7.3.b is incorporated into the Containment Leakage Rate Testing Program. | ## Table A - ADMINISTRATIVE CHANGES Section 5.0 - ADMINISTRATIVE CONTROLS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 58-A | 6.9.1.11 | 5.6.5 | The CTS paragraph for the Core Operating Limits Report (COLR) is revised to incorporate renumbering and other changes made to associated LCOs in ITS 3.1 and 3.2 (addressed in associated DOCs). These editorial revisions do not change the CTS requirements. | | 59-A | 6.9.1.11 | 5.6.5 | The specific reporting requirements for the COLR in CTS are deleted in ITS; ITS 5.6 applies the reporting requirements of 10 CFR 50.4 to all reports. | | 62a-A | 6.9.1.15 | 5.6.6 | The CTS text regarding the Pressure Temperature Limits Report is revised editorially to conform to ITS, with no changes made to the CTS requirements. | | 63-A | 6.9.2 | 5.6 | The CTS Special Reports section is deleted; it is not needed in ITS, which specifies that all reports be submitted in accordance with 10 CFR 50.4. | | 64-A | 6.9 | 5.6.8 | The CTS reporting requirement section is revised by addition of a Post Accident Monitoring (PAM) Report. This replaces the CTS Special Report requirement
referenced from within the CTS PAM LCO. | | 66-A | 6.9 | 5.6.10 | The CTS reporting requirement section is revised by addition of a Steam Generator Tube Inspector Report. The reporting requirements of CTS 3/4.4.6 (4.4.6.5) are moved into ITS 5.6.10; the CTS requirements are unchanged. | | 67-A | 6.9 | 5.6.11 | The CTS reporting requirement section is revised by addition of the Alternate AC (AAC) Source Out of Service Report. This report is based on the written procedure requirement in CTS 6.8.1.j which addressed the Station Blackout AAC Reliability Program and movement into ITS section 5.6 does not change the CTS requirements. | | 70-A | 6.12 | 5.7 | CTS 6.12, High Radiation Area, is revised and reformatted to become ITS 5.7. | | 72a-A | 6.12 | 5.7 | The CTS 6.12 ** footnote on radiation measurement is revised to be included into the body of the text in ITS 5.7.2. | | 74-A | 6.14 | 5.5.1 | The CTS 6.14 Offsite Dose Calculation Manual (ODCM) requirements are moved into the Program subsection of the Administrative Controls section of ITS. | ## Table A - ADMINISTRATIVE CHANGES Section 5.0 - ADMINISTRATIVE CONTROLS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|--------------------|------------------|--| | 48-A | 6.9.1.4
6.9.1.5 | 5.6 | The CTS Annual Report sections are deleted; these sections are not needed in ITS where each report item incorporates the required submittal date information. This deletion does not change any CTS requirements. | | 49-A | 6.9.1.5.a | 5.6.1 | The CTS reporting requirement is reformatted for ITS, and titled "Occupational Radiation Exposure Report", while leaving the CTS requirements unchanged. | | 50-A | 6.9.1.5.a | 5.6.1 | CTS footnotes 1/ and 2/ are reformatted for ITS, with footnote 1/ moved to the top of ITS paragraph 5.6.1 and footnote 2/ incorporated into the ITS paragraph text, with no change in the CTS requirements. | | 53-A | 6.9.1.6
6.9.1.7 | 5.6.2 | The CTS provision allowing a single submittal to be made for a multi unit station is revised to add that "the submittal should combine sections common to all units at the station". This provision is reformatted into a note at the top of the affected ITS paragraph (5.6.2, "Annual Radiological Environmental Operating Report"), with no change to the CTS requirements. | | 54-A | 6.9.1.8
6.9.1.9 | 5.6.3 | The CTS paragraph for the Annual Radioactive Effluent Release Report is revised in ITS 5.6.3 by addition of the phrase "in accordance with 10 CFR 50.36a". Addition of this reference to the applicable CFR does not change the CTS requirements. | | 55-A | 6.9.1.8
6.9.1.9 | 5.6.3 | The CTS provision allowing a single submittal to be made for a multi unit station is reformatted into a note at the top of the affected ITS paragraph (5.6.3, "Radioactive Effluent Release Report"), with no change to the CTS requirements. | | 56-A | 6.9.10 | 5.6.4 | The CTS text is revised in ITS for clarification; "PORVs" is replaced by "the pressurizer power operated relief valves" and "safety valves" is replaced by "pressurizer safety valves". These clarifications do not change the CTS requirements. | | 56a-A | 3.4.10.3 | 5.6.4 | CTS Action Statement c is reformatted to become part of ITS 5.6.4 since the CTS special reports section (6.9.2) does not exist in ITS. | | 57-A | 6.9.1.10 | 5.6 | The reference to 10 CFR 50.4 in CTS is deleted; reference to this CFR is no longer required within each individual reporting requirement since ITS 5.6 applies the reporting requirements of 10 CFR 50.4 to all reports. | #### Table A - ADMINISTRATIVE CHANGES Section 5.0 - ADMINISTRATIVE CONTROLS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 37-A | 6.8.3 | 5.5.7 | A new program, the RCP Flywheel Inspection Program (ITS 5.5.7) is added to the Administrative Controls section. The addition of this program requirement conforms to ITS format while retaining the existing CTS RCP flywheel inspection surveillance requirements. | | 38-A | 6.8.3 | 5.5.8 | A new program, the Inservice Testing Program (ITS 5.5.8) is added to the Administrative Controls section. The addition of this program requirement conforms to ITS format while retaining the requirements previously located in CTS 4.0.5 for inservice testing of ASME Code Class 1, 2, and 3 components. | | 39-A | 6.8.3 | 5.5.9 | A new program, the Steam Generator (SG) Tube Inspection Program (ITS 5.5.9) is added to the Administrative Controls section. This program is based on the surveillance requirements of CTS 3/4.4.6 which are moved intact into the Administrative Controls section of ITS with appropriate format changes. The Unit 1 and Unit 2 surveillance requirements are merged into one program, with Unit 2 specific references called out, but with no change to the CTS requirements. | | 40-A | 6.8.3 | 5.5.11 | A new program, the Ventilation Filter Testing Program (ITS 5.5.11) is added to the Administrative Controls section. The addition of this program requirement conforms to ITS format while retaining the existing CTS surveillance requirements for the CREFS and PRF system. | | 41-A | 6.8.3 | 5.5.12 | A new program, the Explosive Gas and Storage Tank Radioactivity Monitoring Program (ITS 5.5.12) is added to the Administrative Controls section. This program is based on CTS 3/4.11.1.4, 3/4.11.2.5, 3/4.11.2.6, and 3/4.3.3.11 requirements, which have been removed from ITS (as discussed in the associated DOCs). The essential requirements of these CTS sections to monitor and limit explosive gases and the radioactivity of stored liquid and gaseous effluents are retained in ITS. | | 45-A | 6.8.3 | 5.5.16 | A new program, the Main Steamline Inspection Program (ITS 5.5.16) is added to the Administrative Controls section. This program is based on CTS 3/4.4.11 (removed in ITS), specifically surveillance requirement 4.4.11.3, and the CTS requirements are retained in ITS 5.5.16. | | 46-A | 6.9.1 | 5.6 | The separate CTS section title "Routine Reports" is deleted and submittal instructions are simplified to just reference 10 CFR 50.4; these revisions to suit ITS format do not change any CTS requirements. | # Table A - ADMINISTRATIVE CHANGES Section 5.0 - ADMINISTRATIVE CONTROLS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 24-A | 6.8.1.i | 5.4.1.b | The CTS item is revised to ITS format and the term "Programs" is replaced by "Quality Assurance", but the CTS requirements are not changed. | | 26-A | 6.8.1.j | 5.6 | CTS 6.8.1.j(ii) requires NRC notification if the AAC source is out of service for >10 days; this requirement is moved into ITS section 5.6, Reporting Requirements with the requirement unchanged. | | 28-A | 6.8.3
6.8.3.a | 5.5
5.5.2 | The CTS paragraphs which introduce the administrative controls and which describe the Primary Cooling Sources Outside Containment are revised to conform to ITS, with no changes to the CTS requirements. | | 30-A | 6.8.3.d | 5.5.10
5.5.3 | The CTS paragraphs for Secondary Water Chemistry and Post Accident Sampling are revised editorially to ITS format. The term "provides controls" is added to the CTS introduction of the programs, but no changes are made to the CTS requirements. | | 32-A | 6.8.3.e | 5.5.4 | The CTS paragraph for the Radioactive Effluents Controls Program is revised to ITS format, including wording changes with no effect on CTS requirements. | | 33-A | 6.8.3.e | 5.5.4 | For CTS 6.8.3.e (i) and (vi) the word "operability" is replaced in ITS with "functional capability" to avoid confusion with the ITS-defined term "OPERABILITY". This clarification does not change the CTS requirements. | | 33a-A | 6.8.3.e | 5.5.4 | The CTS phrase "Limitations at all times on the concentration" is revised in ITS to delete the words "at all times"; the limitations are controlled under 10 CFR 20. This revision deleting unnecessary words doe not change the CTS requirements. | | 35-A | 6.8.3 | 5.5.5 | A new program, the Component Cyclic or Transient Limit Program (ITS 5.5.5) is added to the Administrative Controls section. The addition of this program requirement conforms to ITS format while retaining the existing CTS requirement to maintain components within cyclic or transient limits. | | 36-A | 6.8.3 | 5.5.6 | A new program, the Pre-Stressed Containment Tendon Surveillance Program (ITS 5.5.6) is added to the Administrative Controls section. The addition of this program requirement conforms to ITS format while retaining the existing CTS tendon surveillance requirements. | ## Table A - ADMINISTRATIVE CHANGES Section 5.0 - ADMINISTRATIVE
CONTROLS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | 3-A | 6.2.1 | 5.2.1 | Editorial revisions are made in CTS paragraphs a-d to conform to ITS; no changes to CTS requirements are made. | | 4-A | 6.2.2
6.3 | 5.2.2
5.3 | The CTS term "Facility" is replaced by the ITS term "Unit" in the section titles, and a lead-in sentence is added to CTS 6.2.2 to introduce the items following. | | 6-A | 6.2.2 | 5.2.2 | A new paragraph c is added containing an exception to the required shift crew composition to accommodate unexpected absences up to two hours; this paragraph corresponds to an existing CTS provision associated with Table 6.2-1 and is needed because Table 6.2-1 is not used in ITS. | | 7-A | 6.2.2.b | 5.2.2.b | The CTS paragraph specifying additional requirements for licensed operators is revised to also address requirements for SRO staffing to include information formerly given by CTS Table 6.2-1, which is not used in ITS. | | 8-A | 6.2.2.c | 5.2.2.d | The CTS subsection containing staffing requirements for Health Physics technicians is revised to ITS format and incorporates information into the text in ITS which was contained in a footnote in CTS; the requirements are unchanged. | | 10-A | 6.2.2.f.5 | 5.2.2.e | The CTS subsection addressing deviations from the overtime guidelines is revised to ITS format, with reference to Table 6.2-1 deleted (not used in ITS), position titles of designated individuals deleted, and the term "authority" revised to "levels of management". These revisions do not change the CTS requirements. | | 12a-A | 6.3.1 | 5.3.1 | The specific job title for the "Health Physics Supervisor" is replaced by "the senior individual in charge of Health Physics", a terminology revision which does not change CTS requirements. | | 14-A | Table 6.2-1 | 5.2.2.c | The Table 6.2-1 note regarding the minimum shift crew composition and the 2 hour exception is replace by ITS 5.2.2.c, which contains the same exception and references the CFRs and ITS sections which comprise the equivalent staff requirements as Table 6.2-1 (not used in ITS). | | 23-A | 6.8.1.h | 5.0 | This CTS reference to the ODCM is deleted; in ITS the ODCM is located in the Program section (5.5) at the CTS 6.8.1.h item is superfluous. | #### Table A - ADMINISTRATIVE CHANGES Section 4.0 - DESIGN FEATURES | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 1a-A | 5.0 | 4.0 | In conversion of CTS Chapter 5.0 to ITS Chapter 4.0 numerous changes are made to numbers, references, and ordering of information. These changes do not change the CTS requirements. | | 5-A | 5.0 | 4.0 | CTS 5.6, Fuel Storage, is revised and reformatted to become ITS 4.3, Fuel Storage. Any changes to CTS requirements are addressed by other DOCs. | | 7-A | 5.0 | 4.0 | CTS requirements are addressed by other boos. CTS 5.6.1.1.a and b, which pertain to spent fuel rack parameters, are revised to become ITS 4.3.1.1.b and c and to each is added reference to the FSAR section (4.3.2.7.2) that discusses the criticality analysis and uncertainties used therein. Addition of this reference information does not change the CTS requirements. | | 8-A | 5.0 | 4.0 | CTS 5.6.1.1.c, d, and e, which pertain to spent fuel rack parameters, are revised to become ITS 4.3.1.1.d, a and e, and have descriptive terms ("fuel", "fuel assemblies", "storage" racks) added. These revisions do not change the CTS requirements. | | 9-A | 5.0 | 4.0 | CTS 5.6.1.1.g is revised to become ITS 4.3.1.1.g and has the words "Unit 1 only" added prior to the statement concerning damaged fuel assembly storage. This addition clarifies that damaged fuel is only stored in the Unit 1 spent fuel pool, and does not change any CTS requirements. | | 10-A | 5.0 | 4.0 | CTS 5.1.6.2.c.1 and 2 are revised to become ITS 4.3.1.2.a and b, and have the phrase "maximum nominal" inserted to modify the statement in each concerning fuel weight percent, thereby permitting deletion of the leading phrase "A maximum nominal enrichment of:". Also deleted is the descriptive name "Westinghouse". These revisions do not change the CTS requirements. | | Discussion Of Change | стѕ | ITS | Summary of Change | |----------------------|------------|-----------|--| | (DOC No.) | Reference | Reference | | | 3-A | 3/4.9.10.1 | 3.9.6 | The CTS applicability statement is revised in ITS by addition of the word "irradiated" regarding the type of fuel being moved and by deletion of reference to the reactor pressure vessel. These revisions are consistent with the change to specification applicability (discussed elsewhere) which added CORE ALTERATIONS. | | 4-A | 3/4.9.10.1 | 3.9.6 | The CTS Actions are changed to incorporate "irradiated" in reference to fuel assemblies, in accordance with the change which added this term to the applicability statement. | | 7-A | 3/4.9.10.1 | 3.9.6 | The portion of the CTS Action Statement taking exception to LCO 3.0.3 is unnecessary because in ITS LCO 3.0.3 is clearly stated to apply only in Modes 1 through 4. The 3.0.3 language is therefore deleted without changing CTS requirements. | | 10-A | 3/4.9.10.1 | 3.9.6 | The phrase in the CTS surveillance requirement which essentially repeats the applicable Mode is not necessary and is deleted in ITS SR 3.9.6.1. | | 1-A | 3/4.9.10.2 | 3.9.6 | The CTS title is revised in ITS since there is only one water level specification, 3.9.6, which combines CTS 3/4.9.10.1(Water Level – Reactor Vessel – Fuel Assemblies) and 3/4.9.10.2 (Water Level – Reactor Vessel - Control Rods). | | 5-A | 3/4.9.10.2 | 3.9.6 | The portion of the CTS Action Statement taking exception to LCO 3.0.3 is unnecessary because in ITS LCO 3.0.3 is clearly stated to apply only in Modes 1 through 4. The 3.0.3 language is therefore deleted without changing CTS requirements. | | 7-A | 3/4.9.10.2 | 3.9.6 | The phrase in the CTS surveillance requirement which essentially repeats the applicable Mode is not necessary and is deleted in ITS SR 3.9.6.1. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | | | | ITS 3.9.5 RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION - LOW WATER LEVEL | | 1-A | 3/4.9.8.2 | 3.9.5 | The CTS LCO statement is revised in ITS to add a requirement that one RHR loop be in operation. This is a reorganization moving (but not changing) the CTS requirement from CTS LCO 3.9.8.1 (which as ITS 3.9.4 applies when water is ≥ 23 feet above flange level) to ITS 3.9.5 (which applies when water level is < 23 feet). | | 2-A | 3/4.9.8.2 | 3.9.5 | The LCO statement is revised to delete the word "independent", a descriptive term not needed or used in the ITS format. This deletion does not change the CTS requirements. | | 5-A | 3/4.9.8.2 | 3.9.5 | CTS Action Statement b taking exception to LCO 3.0.3 is unnecessary because in ITS LCO 3.0.3 is clearly stated to apply only in Modes 1 through 4. This statement is therefore deleted without changing CTS requirements. | | 7-A | 3/4.9.8.2 | 3.9.5 | The CTS Actions are revised in ITS to add additional actions (Condition B). This is a reorganization moving (but not changing) CTS requirements from CTS LCO 3.9.8.1 (which as ITS 3.9.4 applies when water is ≥ 23 feet above flange level) to ITS 3.9.5 (which applies when water level is < 23 feet). | | 8-A | 3/4.9.8.2 | 3.9.5 | The CTS * footnote regarding operability of power sources is deleted in ITS. The allowance it granted to have one power source inoperable is made unnecessary by the ITS definition of operability, which states that only one (normal or emergency) power supply is necessary. | | | • | : | ITS 3.9.6 REFUELING CAVITY WATER LEVEL | | 1-A | 3/4.9.10.1 | 3.9.6 | The CTS title is revised in ITS since there is only one water level specification, 3.9.6, which combines CTS 3/4.9.10.1(Water Level - Reactor Vessel - Fuel Assemblies) and 3/4.9.10.2 (Water Level - Reactor Vessel - Control Rods). | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------
---| | 4-A | 3/4.9.9 | 3.9.3 | The CTS 3.9.9 requirements are retained in ITS 3.9.3, and the ITS LCO may be met with or without an operable containment purge and exhaust isolation system, so the CTS statement taking exception to LCO 3.0.4 is unnecessary. This statement is therefore deleted without changing CTS requirements. | | 8-A | 3/4.9.9 | 3.9.3 | The CTS 4.9.9 requirement for the instrumentation associated with manual and high radiation actuation of the containment purge and exhaust isolation valves is retained in ITS LCO 3.3.6, "Containment Purge and Exhaust Isolation Valve Instrumentation". | | | | | ITS 3.9.4 RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION - HIGH WATER LEVEL | | 1- A | 3/4.9.8.1 | 3.9.4 | The CTS title is changed in ITS to specify "High Water Level" and the applicability is revised to cite "water level greater than or equal to 23 feet above the reactor vessel flange". These changes are made to clarify the distinction between this specification and CTS 3/4.9.8.1 (ITS 3.9.5), but do not change the CTS requirements. | | 3-A | 3/4.9.8.1 | 3.9.4 | The CTS Action Statement a requirement to suspend operations involving an increase in decay heat load is replaced in ITS with a requirement to suspend loading irradiated assemblies. This revision provides a more specific action for the operators, addressing the only significant way the heat load could be increased, and hence is a clarification that does not change the CTS requirement. | | 6-A | 3/4.9.8.1 | 3.9.4 | CTS Action Statement b is revised and moved into a NOTE to ITS LCO 3.9.4; this format change does not change the CTS requirements. | | 7-A | 3/4.9.8.1 | 3.9.4 | CTS Action Statement c taking exception to LCO 3.0.3 is unnecessary because in ITS LCO 3.0.3 is clearly stated to apply only in Modes 1 through 4. This statement is therefore deleted without changing CTS requirements. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 4-A | 3/4.9.4 | 3.9.3 | CTS LCO 3.9.9 requirements for the Containment Purge and Exhaust Isolation System are combined with CTS LCO 3.9.4 and become ITS LCO 3.9.3. Accordingly, the CTS LCO 3.9.4.c.2 reference to the Containment Purge and Exhaust "isolation valve" is changed to "Isolation System" in ITS LCO 3.9.3.c.2. This reorganization does not change the CTS requirements. | | 5-A | 3/4.9.4 | 3.9.3 | The CTS Action Statement is revised to ITS format, divided into Actions A.1 and A.2, and editorially revised, with no change to the CTS requirements. | | 6-A | 3/4.9.4 | 3.9.3 | The CTS statement taking exception to LCO 3.0.3 is unnecessary because in ITS LCO 3.0.3 is clearly stated to apply only in Modes 1 through 4. This statement is therefore deleted without changing CTS requirements. | | 7-A | 3/4.9.4 | 3.9.3 | The first paragraph of CTS surveillance 4.9.4 repeats LCO operability and applicability requirements and is deleted, and parts a and b are reorganized into ITS SRs 3.9.3.1 and 2. Deletion of the redundant information and reorganization to ITS format do not change the CTS requirements. | | 8-A | 3/4.9.4 | 3.9.3 | CTS 4.9.4.b is revised to directly state the surveillance requirement to verify actuation of each containment purge and exhaust isolation valve instead of referencing CTS 4.9.9; this revision leaves the CTS requirements effectively unchanged. | | 1-A | 3/4.9.9 | 3.9,3 | CTS 3/4.9.9 is deleted as a separate specification with it's requirements retained in ITS 3.9.3 (which also incorporates the revised CTS 3/4.9.4). This is a reorganization to put all requirements related to containment penetrations into one ITS chapter; the CTS requirements are not changed by this reorganization. | | 2-A | 3/4.9.9 | 3.9.3 | The CTS LCO statement, Applicability, and Action are all incorporated into ITS 3.9.3. | | 3-A | 3/4.9.9 | 3.9.3 | The CTS statement taking exception to LCO 3.0.3 is unnecessary because in ITS LCO 3.0.3 is clearly stated to apply only in Modes 1 through 4. This statement is therefore deleted without changing CTS requirements. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 10-A | 3/4.9.1 | 3.9.1 | The CTS * Applicability footnote repeats information from the definition of Mode 6 and provides additional guidance not needed due to the information provided in ITS in other sections (1.1 Definitions; LCO 3.0.4 and SR 3.0.4). It is therefore deleted without changing the CTS requirements. | | | | | ITS 3.9.2 NUCLEAR INSTRUMENTATION | | 1-A | 3/4.9.2 | 3.9.2 | The terms "as a minimum" and "operating" in the CTS LCO statement are removed in the ITS revision of the LCO. In ITS it is implicit that LCOs state minimum requirements, and operating requirements are stated in the bases, not the LCO. These deletions therefore do not change the CTS requirements. | | 2a-A | 3/4.9.2 | 3.9.2 | The audible indication requirement of the CTS LCO is revised and made a separate operability requirement within the ITS LCO; this change is a reorganization that retains the CTS requirement for audible count rate. | | 3-A | 3/4.9.2 | 3.9.2 | CTS Action Statement a is revised to replace the non-specific phrase "with the requirements of the above specification not satisfied" with the ITS Condition A wording "One source range neutron flux monitor inoperable". This change is made to conform to ITS format and does not change the CTS requirement. | | 5-A | 3/4.9.2 | 3.9.2 | The CTS statement taking exception to LCO 3.0.3 is unnecessary because in ITS LCO 3.0.3 is clearly stated to apply only in Modes 1 through 4. This statement is therefore deleted without changing CTS requirements. | | | | | ITS 3.9.3 CONTAINMENT PENETRATIONS | | 1-A | 3/4.9.4 | 3.9.3 | The phrase "a minimum of" in the CTS LCO statement is deleted in ITS. In ITS it is implicit that LCOs state minimum requirements. This deletion therefore does not change the CTS requirement. | | 2-A | 3/4.9.4 | 3.9.3 | The term "outside atmosphere" in the CTS LCO statement is changed to "environment" in ITS. The wording change is intended as a clarification and does not change the CTS requirement. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | | | | ITS 3.7.12 PENETRATION ROOM FILTRATION (PRF) SYSTEM | | 1-A | 3/4.9.13 | 3.7.12 | CTS item is moved to ITS Chapter 3.7 Plant Systems; changes are addressed there. | | | | | ITS 3.7.13 FUEL STORAGE POOL WATER LEVEL | | 1-A | 3/4.9.11 | 3.7.13 | CTS item is moved to ITS Chapter 3.7 Plant Systems; changes are addressed there. | | | | | ITS 3.9.1 BORON CONCENTRATION | | 1-A | 3/4.9.1 | 3.9.1 | The CTS statement "With the reactor head closure bolts" is removed from the ITS LCO; it is redundant information, repeating the MODE 6 definition. | | 3-A | 3/4.9.1 | 3.9.1 | The last part of the CTS statement "uniform and sufficient" is deleted from the ITS LCO. This LCO maintains the "required" boron concentration but does not ensure uniformity; other TS requirements ensure mixing. Deletion of this statement does not change CTS requirements. | | 6-A | 3/4.9.1 | 3,9.1 | The dual requirements (for k _{st} and boron concentration) in CTS surveillance 4.9.9.1 are deleted and replaced in ITS SR 3.9.9.1 by a single requirement (requiring that boron concentration be within the limit specified in the COLR) which accomplishes the same end; CTS requirements are therefore unchanged. | | 7-A | 3/4.9.1 | 3.9.1 | The CTS Actions are revised and reformatted into the similar ITS LCO 3.9.1 Actions; the CTS requirements are not changed. | | 9-A | 3/4.9.1 | 3.9.1 | The CTS statement taking exception to LCO 3.0.3 is unnecessary because in ITS LCO 3.0.3 is clearly stated to apply only in Modes 1 through 4. This statement is therefore deleted without changing CTS requirements. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 8-A | 3/4.8.2.1 | 3.8.9 | CTS
3.8.2.1 Action Statement b bus and inverter requirements are split up among ITS LCO 3.8.7 Conditions A and B and LCO 3.8.9 Conditions B and D, without change to the technical requirements | | 9-A | 3/4.8.2.1 | 3.8.9 | CTS 3.8.2.1 Action Statement b is revised to separate out inverter Action to ITS LCO 3.8.7 and focus on the AC vital busses. It is reformatted into ITS LCO 3.8.9 Condition B, with addition of an allowance that "one or more" AC vital bus distribution systems be inoperable, a revision made to conform to ITS format which does not introduce a change in technical requirements. | | 10-A | 3/4.8.2.1 | 3.8.9 | CTS surveillance 4.8.2.1 is split into ITS SR 3.8.7.1 for the inverters and 3.8.9.1 for the AC busses, but with essentially the same surveillance requirements. | | 1-A | 3/4.8.2.3 | 3.8.9 | The Auxiliary Building DC distribution systems addressed by CTS LCO 3/4.8.2.3 are included into ITS LCO 3.8.9. In addition, the LCO statement is revised to specify both Train A and Train B distribution subsystems instead of listing individual busses as in CTS. These changes are made to conform to ITS format and do not introduce technical changes. | | 1-A | 3/4.8.2.5 | 3.8.9 | The Service Water Building DC distribution systems addressed by CTS LCO 3/4.8.2.5 are included into ITS LCO 3.8.9. In addition, the LCO statement is revised to specify both Train A and Train B distribution subsystems instead of listing individual busses as in CTS. These changes are made to conform to ITS format and do not introduce technical changes. | | | | | ITS 3.8.10 DISTRIBUTION SYSTEMS - SHUTDOWN | | 3-A | 3/4.8.2.4 | 3.8.10 | CTS Action is separated into ITS LCOs 3.8.5 and 3.8.10, but no technical changes are made. | | 6-A | 3/4.8.2.4 | 3.8.10 | CTS surveillance 4.8.2.4.1 is retained without change in the corresponding ITS LCO as SR 3.8.10.1; CT 4.8.2.4.2 is addressed under ITS 3.8.5. | | Discussion
Of Chapge
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | 19-A | 3/4.8.2.3 | 3.8.6 | The Category B column of CTS Table 4.8-2 is split into 2 columns of battery cell limits in ITS. The new column is renamed, but no revision is made to the technical requirements. | | 23-A | 3/4.8.2.3 | 3.8.6 | CTS Table 4.8-2 footnote (b) which allows use of charging current in lieu of specific gravity readings for Category A limits (applicable to pilot cells) is relabeled as footnote (c) in ITS. | | 24-A | 3/4.8.2.3 | 3.8.6 | A note is added to ITS Table 3.8.6-1 to clarify that separate Condition entry is made for each affected battery, a clarification consistent with the intent of the battery cell parameter Actions. | | 26-A | 3/4.8.2.3 | 3.8.6 | CTS Table 4.8-2 footnotes 3 and 4 are combined into the new battery cell parameter ITS LCO 3.8.6 as Condition B Required Actions, with no technical changes introduced. | | | | | ITS 3.8.7 INVERTERS OPERATING | | 8-A | 3/4.8.2.1 | 3.8.7 | CTS 3.8.2.1 Action Statement b bus and inverter requirements are split up among ITS LCO 3.8.7 Conditions A and B and LCO 3.8.9 Conditions B and D, without change to the technical requirements | | 10-A | 3/4.8.2.1 | 3.8.7 | CTS surveillance 4.8.2.1 is split into ITS SR 3.8.7.1 for the inverters and 3.8.9.1 for the AC busses, but with essentially the same surveillance requirements. | | | | | ITS 3.8.9 DISTRIBUTION SYSTEMS OPERATING | | 1-A | 3/4.8.2.1 | 3.8.9 | CTS LCO 3.8.2.1 is revised to become ITS LCO 3.8.9, reorganized to apply to all required AC and DC distribution systems, but with no technical changes intended. | | 6-A | 3/4.8.2.1 | 3.8.9 | CTS LCO 3.8.2.1 Action Statement a is revised as ITS LCO 3.8.9 Condition A for required AC busses inoperable, using ITS-format terms and phrases. The shutdown actions from CTS 3.8.2.1.a become ITS LCO 3.8.9 Condition D. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 13-A | 3/4.8.2.5 | 3.8.4 | CTS requirement to "verify clean" is revised to "remove visible corrosion" in ITS, but intent is unchanged. | | 13-A | 3/4.8.2.3 | 3.8.4 | CTS footnote allowing 24 hours to restore battery cable connection resistance to within limit is incorporated into ITS LCO 3.8.4. | | 15-A | 3/4.8.2.5 | 3.8.4 | CTS footnote allowing 24 hours to restore battery cable connection resistance to within limit is incorporated into ITS LCO 3.8.4. | | 7 4 | | | ITS 3.8.5 DC SOURCES - SHUTDOWN | | 3-A | 3/4.8.2.4 | 3.8.5 | CTS Action is separated into ITS LCOs 3.8.5 and 3.8.10, but no technical changes are made. | | 6-A | 3/4.8.2.4 | 3.8.5 | CTS 4.8.2.4.1 is addressed under ITS 3.8.10; CTS surveillance 4.8.2.4.2 is revised to become ITS SR 3.8.5.1. A note is added to clarify that certain SRs are applicable but not required to be performed; this is to clarify the intent implied in CTS to maintain the required equipment operable as specified in the LCO. This clarifies existing TS requirements and does not introduce a technical change. | | **** | | | ITS 3.8.6 BATTERY CELL PARAMETERS | | 6-A | 3/4.8.2.3 | 3.8.6 | CTS Battery surveillance 4.8.2.3 is separated into ITS LCOs 3.8.4 and 3.8.6, but no technical changes are made. | | 6-A | 3/4.8.2.5 | 3.8.6 | CTS Battery surveillance 4.8.2.5 is separated into ITS LCOs 3.8.4 and 3.8.6, but no technical changes are made. | | 18-A | 3/4.8.2.3 | 3.8.6 | Information from CTS Table 4.8-2 is reformatted and incorporated into ITS Table 3.8.6-1, retitled as "Battery Cell Parameters Requirements", with notes from the CTS table reformatted as ITS LCO 3.8.6 Action Conditions. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 40-A | 3/4.8.1.1 | 3.8.1 | CTS surveillance 4.8.1.1.2.d is reformatted into ITS SR 3.8.1.19 for the 10 year simultaneous DG start test, with a note added clarifying that the DGs may be prelubed. This clarification does not significantly impact the CTS surveillance as performed currently and does not change the technical intent. | | 43-A | 3/4.8.1.1 | Bases | The CTS ** footnote that allows testing on either unit to satisfy the shared DG surveillance requirements for both units such that redundant testing is not performed on the shared DGs is incorporated into ITS as a note for SR 3.8.1.18. | | | | | ITS LCO 3.8.2 AC SOURCES - SHUTDOWN | | 1-A | 3/4.8.1.2 | 3.8.2 | CTS LCO 3.8.1.2 is revised to ITS format and terminology, eliminating unnecessary phrases and incorporating ITS terminology into ITS LCO 3.8.2 on AC electrical power sources, without introducing technical changes. | | 4-A | 3/4.8.1.2 | 3.8.2 | CTS LCO 3.8.1.2 parts b.1 – 3, stating LCO requirements for DG fuel oil, are moved into other appropriate ITS sections and reformatted without reducing the existing requirements. | | 10-A | 3/4.8.1.2 | 3.8.2 | A statement of applicable SRs required to be performed is added to ITS SR 3.8.2.1. This addition of an FNP-specific list introduces no technical change to the surveillance requirements (as modified by the changes described in DOCs 8L and 9L). | | ; | | | ITS 3.8.4 DC SOURCES - OPERATING | | 6-A | 3/4.8.2.3 | 3.8.4 | CTS Battery surveillance 4.8.2.3 is separated into ITS LCOs 3.8.4 and 3.8.6, but no technical changes are made. | | 6-A | 3/4.8.2.5 | 3.8.4 | CTS Battery surveillance 4.8.2.5 is separated into ITS LCOs 3.8.4 and 3.8.6, but no technical changes are made. | | 12-A | 3/4.8.2.3 | 3.8.4 | CTS requirement to "verify clean" is revised to "remove visible corrosion" in ITS, but intent is unchanged | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 15-A | 3/4.8.1.1 | 3.8.1 | CTS 3.8.1.1 surveillance requirements are divided into various appropriate ITS surveillances and notes, with editorial changes and renumbering as needed for conversion to the ITS format. Technical changes are discussed in other DOCs. | | . 19-A | 3/4.8.1.1 | 3.8.1 | CTS surveillance 4.8.1.1.2.a.4 is reformatted into ITS SR 3.8.1.2 and has notes added. Note 1 allows performance of the more-restrictive SR 3.8.1.6 to satisfy 3.8.1.2, and Note 2 clarifies the accepted procedure of allowing engine pre-lube prior to starting and warm-up prior to loading. | | 22-A | 3/4.8.1.1 | 3.8.1 | CTS surveillance 4.8.1.1.2.a.5 is reformatted into ITS SR 3.8.1.3 and has four notes added. The added notes are intended to make no technical
changes, but provide clarifying information for performance of the DG load test surveillance. | | 28-A | 3/4.8.1.1 | 3.8.1 | A Note is added at ITS SR 3.8.1.10 clarifying that all DG starts may be preceded by an engine pre-lube period; this clarification does not significantly impact the CTS surveillance as performed currently and constitutes no technical change. | | 33-A | 3/4.8.1.1 | 3.8.1 | A Note is added at iTS SR 3.8.1.12 clarifying that momentary transients outside the DG load range do not invalidate the surveillance test. This clarification does not significantly impact this CTS surveillance as performed currently and does not change the technical intent. | | 34-A | 3/4.8.1.1 | 3.8.1 | CTS surveillance 4.8.1.1.2.c.5 is divided and reformatted into ITS SR 3.8.1.12 for a 24 hour full load DG run and SR 3.8.1.13 for a hot restart test. Separation of these surveillances in ITS provides operational flexibility while satisfying the technical requirements of CTS. | | 35-A | 3/4.8.1.1 | 3.8.1 | Notes are added at ITS SR 3.8.1.13 for the DG hot restart test similar to the notes for the 24 hour run test. These notes permit testing after engine prelube, note momentary load transients are acceptable, and specify the test must commence after 2 or more hours of full load operation to ensure hot conditions. These clarifications do not significantly impact the CTS surveillance as performed currently and do not change the technical intent. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | | | | ITS 3.8.1 AC SOURCES - OPERATING | | 1-A | 3/4.8.1.1 | 3.8.1 | CTS LCO 3.8.1.1 parts a and b are revised to ITS format and terminology, eliminating unnecessary phrases and incorporating ITS terminology into ITS LCO 3.8.1 on offsite power sources, without introducing technical changes. | | 3-A . | 3/4.8.1.1 | 3.8.1 | CTS LCO 3.8.1.1 parts b.1 – 3, stating LCO requirements for the DG auxiliary systems, are moved into other appropriate ITS sections and reformatted without diminishing the operability requirements. | | 4-A | 3/4.8.1.1 | 3.8.1 | CTS LCO 3.8.1.1 Action Statement a is subdivided and reformatted into multiple ITS Required Actions. Technical changes are discussed in other DOCs. | | 9-A | 3/4.8.1.1 | 3.8.1 | CTS 3.8.1.1 Action Statements are divided into various appropriate ITS Conditions, Required Actions, and Notes, with editorial changes and renumbering as needed for conversion to the ITS format. Technical changes are discussed in other DOCs. | | 10-A | 3/4.8.1.1 | 3.8.1 | CTS 3.8.1.1 Action Statement c becomes ITS LCO 3.8.1 Condition D and has a Note added to clarify when LCO 3.8.9 applies, made necessary by ITS conventions regarding supported systems. | | 12-A | 3/4.8.1.1 | 3.8.1 | Action Statement e for two inoperable DG sets is revised by deletion of the action requirement to test the required offsite circuits based on conventions used in the STS. This CTS requirement is covered in ITS under Condition B. | | 13-A | 3/4.8.1.1 | 3.8.1 | With the ITS convention of actions applying individually to each unit, the reference to "both units" in CTS 3.8.1.1 Action Statement e is deleted in conversion to ITS Condition E. | | 14-A | 3/4.8.1.1 | 3.8.1 | A new Actions Condition I is added in ITS, addressing the situation where 3 or more required AC source are inoperable; this is needed due to the ITS convention allowing unit operation when more than one Actions Condition is applicable. | #### Table A - ADMINISTRATIVE CHANGES Section 3.7 - PLANT SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | | | | ITS 3.7.14 FUEL STORAGE POOL BORON CONCENTRATION | | 1-A | 3/4.7.13 | 3.7.14 | Editorial and numbering changes made to LCO to conform to format of corresponding ITS 3.7.14. | | | | | ITS 3.7.15 SPENT FUEL ASSEMBLY STORAGE | | 1-A | 3/4.7.14 | 3.7.15 | Editorial and numbering changes made to LCO to conform to format of corresponding ITS 3.7.15. No technical changes to LCO requirements. | | | | | ITS 3.7.16 SECONDARY SPECIFIC ACTIVITY | | 1-A | 3/4.7.1.4 | 3.7.16 | Action Statement is revised to delete the specific activity limit value and just reference the "limit" since it is redundant to the limit specified in the LCO. | #### Table A - ADMINISTRATIVE CHANGES Section 3.7 - PLANT SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | 8-A | 3/4.7.8 | 3.7.12 | The expression of test frequency in CTS surveillance 4.7.8.e is revised in ITS SR 3.7.12.5 from "36" months to "18" months on a Staggered Test Basis. Per the CTS convention, the 36 month frequency stated is the overall test frequency, which must be divided by the number of trains tested (2) to yield the interval at which a train must be tested (18 months). Therefore the actual test frequency in ITS remains unchanged from the CTS requirement. | | 1-A | 3/4.9.13 | 3.7.12 | CTS LCO 3.9.13 on Storage Pool Ventilation is reorganized and combined with CTS LCO 3.7.8 to become ITS LCO 3.7.12 on the PRF system. | | 2-A | 3/4.9.13 | 3.7.12 | The term "independent" is unnecessary and is deleted and the term "systems" is replaced by "trains" in revision of the CTS LCO to ITS LCO 3.7.12, but no changes result to CTS requirements. Also, reference to CTS LCO 3.7.8 is eliminated, since CTS LCOs 3.7.8 and 3.9.12 are combined into ITS LCO 3.7.12. | | 8-A | 3/4.9.13 | 3.7.12 | CTS Action Statement b, which provided exceptions to LCOs 3.0.3 and 3.0.4, is deleted. ITS LCO 3.7.12 addresses the situations covered by 3.0.3 and 3.0.4 such that no specific exception to them is needed. | | 10-A | 3/4.9.13 | 3.7.12 | The portion of CTS surveillance 4.9.13.1 making it applicable during fuel movement is revised into a NOTE accompanying ITS SR 3.7.12.1, but with no change in the meaning of the CTS requirement. | | 13-A | 3/4.9.13 | 3.7.12 | The * footnote to CTS LCO 3.9 makes allowances for emergency power source inoperability. Since the ITS definition of operability (which differs from CTS) effectively provides the same allowance as the CTS * footnote, the footnote is redundant and is deleted without changing the CTS requirement. | | | | | ITS 3.7.13 FUEL STORAGE POOL WATER LEVEL | | 1-A | 3/4.9.11 | 3.7.13 | Fuel Storage Pool Water Level requirements are moved from the Refueling Chapter to the Plant System Chapter in ITS (3.7.13) consistent with STS organization, with title and numbering revised accordingly. | | 3-A | 3/4.9.11 | 3.7.13 | The CTS Action Statement regarding the provisions of LCO 3.0.3 is reformatted into NOTE A.1 in ITS LCO 3.7.13 Condition A with no change in the CTS requirement. | | 4-A | 3/4.9.11 | 3.7.13 | CTS surveillance 4.9.11 is revised to ITS SR 3.7.13.1, with a phrase essentially repeating the applicabil of the TS deleted. This is in accordance with ITS format and creates no change from the CTS requirements. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | */ | | | ITS 3.7.9 ULTIMATE HEAT SINK (UHS) | | 2-A | 3/4.7.6.2 | 3.7.9 | Parts a and b of the CTS LCO statement are moved to ITS SR 3.7.9.1 and 2 without change. | | | | | ITS 3.7.10 CONTROL ROOM EMERGENCY FILTRATION/PRESSURIZATION SYSTEM (CREFS) | | 7-A | 3/4.7.7.1 | 3.7.10 | Action Condition E is added in ITS for two trains of CREFS inoperable in Modes 1-4, requiring that LCO 3.0.3 be entered. CTS did not explicitly provide an action for this situation, so 3.0.3 would have been applicable by default anyway, hence there is effectively no change to the CTS requirements in ITS. | | 11-A | 3/4.7.7.1 | 3.7.10 | The # footnote to CTS surveillance 4.7.7.1.d.2 is carried over to ITS SR 3.7.10.3 and is revised in format but with the intent and meaning unchanged from CTS. | | 12-A | 3/4.7.7.1 | 3.7.10 | The + footnote to CTS surveillance 4.7.7.1.d.4 is deleted; it contains a deadline predating ITS implementation and is hence inapplicable to ITS. | | · | | | ITS 3.7.11 CONTROL ROOM AIR CONDITIONING SYSTEM (CRACS) | | 3-A | 3/4.7.7.2 | 3.7.11 | The * footnote to CTS surveillance 4.7.8.b.1.b is deleted; it contains a deadline predating ITS implementation and is hence inapplicable to ITS. | | | | | ITS 3.7.12 PENETRATION ROOM FILTRATION (PRF) SYSTEM | | 1-A | 3/4.7.8 | 3.7.12 | The term "independent" is unnecessary and is deleted and the term "systems" is replaced by "trains" in revision of the CTS LCO to ITS LCO 3.7.12, but no changes result to CTS requirements. | #### Table A - ADMINISTRATIVE CHANGES
Section 3.7 - PLANT SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | | | | ITS 3.7.6 CONDENSATE STORAGE TANK (CST) | | 1-A | 3/4.7.1.3 | 3.7.6 | The CTS LCO statement is revised to become ITS LCO 3.7.6, with the specific Condensate Storage Tan water level requirement moved into the associated ITS SR 3.7.6.1, unchanged from the CTS requirement. | | 2-A | 3/4.7.1.3 | 3.7.6 | CTS Action Statement a is eliminated in ITS; it provided a choice to restore the CST or perform Action Statement b within certain time limits. In ITS restoration to operable status is an inherent operation which need not be explicitly stated, so deletion of this action option results in no change to the CTS requirements. | | 4-A | 3/4.7.1.3 | 3.7.6 | CTS Action Statement b is revised to become ITS LCO 3.7.6 Action Conditions A.1 and A.2, incorporating the time limits from CTS Action Statement a and deleting CTS surveillance 4.7.1.3.2. This change does not change the CTS requirements but reorganizes them into ITS format. | | , t. | | | ITS 3.7.7 COMPONENT COOLING WATER (CCW) SYSTEM | | 1-A | 3/4.7.3 | 3.7.7 | The terms "at least" and "independent" are unnecessary and are deleted and the term "loops" is replace by "trains" in revision of the CTS LCO to ITS LCO 3.7.7, but no changes result to CTS requirements. | | 2-A | 3/4.7.3 | 3.7.7 | The CTS Action Statement is split into ITS Action Conditions A and B with terminology and phrasing revised for ITS, but with no changes to the CTS requirements. | | | | | ITS 3.7.8 SERVICE WATER SYSTEM (SWS) | | 1-A | 3/4.7.4 | 3.7.8 | The terms "at least" and "independent" are unnecessary and are deleted and the term "loops" is replace by "trains" in revision of the CTS LCO to ITS LCO 3.7.8, but no changes result to CTS requirements. | | 3-A | 3/4.7.4 | 3.7.8 | The CTS Action Statement is split into ITS Action Conditions A and C with terminology and phrasing revised for ITS, but with no changes to the CTS requirements. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 6-A | 3/4.7.1.5 | 3.7.2 | The specific "restore to operable status" action in CTS is deleted; in ITS restoration to operable status is an inherent operation which need not be explicitly stated, so deletion of this action results in no change to the CTS requirements. | | 7-A | 3/4.7.1.5 | 3.7.2 | The CTS Mode 1 Actions which require power reduction to less than or equal to 5% RTP are revised in ITS by instead requiring the plant to go to Mode 2. The CTS requirement is effectively unchanged since it was only a restatement of the Mode 2 definition. | | 9-A | 3/4.7.1.5 | 3.7.2 | CTS surveillance 4.7.1.5 refers to TS 4.0.5, which contains requirements for the Inservice Inspection and Test Program, but in ITS 4.0.5 does not exist. Instead, the successor ITS surveillance, SR 3.7.2.1, references the Inservice Testing Program (which is specified in ITS Chapter 5.0) in requiring verification of the MSIV closure times; there are no resulting changes from CTS requirements. | | | 1.11 | | ITS 3.7.5 AUXILIARY FEEDWATER (AFW) SYSTEM | | 1-A | 3/4.7.1.2 | 3.7.5 | The CTS LCO statement is reformatted and editorially revised with updated terminology to become ITS LCO 3.7.5 with no technical change to the CTS requirements. | | 4-A | 3/4.7.1.2 | 3.7.5 | The CTS Action Statements are revised in ITS to use the term "trains" instead of "pumps" to clarify the intent of the LCO to specify operability of more than simply the AFW pumps alone. This is a clarification and does not change the CTS requirements. | | 5-A | 3/4.7.1.2 | 3.7.5 | CTS Action Statement c for three inoperable AFW pumps becomes ITS CONDITION D and has a NOTE added suspending application of LCO 3.0.3 and other Required Actions pending restoration of an AFW train to operability. This note clarifles but does not change the CTS intent. | | 8-A | 3/4.7.1.2 | 3.7.5 | CTS surveillance 4.7.1.2.1 refers to TS 4.0.5, which contains requirements for the Inservice Inspection and Test Program, but in ITS 4.0.5 does not exist. Instead, the successor ITS surveillance, SR 3.7.5.2, references the Inservice Testing Program (which is specified in ITS Chapter 5.0) in requiring verification of the developed head of each AFW pump; there are no resulting changes from CTS requirements. | | 9a-A | 3/4.7.1.2 | 3.7.5 | CTS surveillance 4.7.1.2.2.a.2 is reformatted into a NOTE applicable to ITS SR 3.7.5.1, but with no change to the CTS requirements. | #### Table A - ADMINISTRATIVE CHANGES Section 3.7 - PLANT SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | | | | ITS 3.7.1 MAIN STEAM SAFETY VALVES (MSSVs) | | 1-A | 3/4.7.1.1 | 3.7.1 | A note is added to ITS stating that separate Condition entry is allowed for each MSSV. This note provides enhanced guidance but does not alter the basic intent of the CTS Actions or how the CTS Completion Times are applied. | | 2-A | 3/4.7.1.1 | 3.7.1 | All CTS references to 2 or 3 loop operation are deleted; this creates no change in CTS requirements. FNP is licensed for 3 loop operation only so CTS references which identify possible separate requirements for 2 or 3 loop operation are unnecessary and potentially confusing. | | 3-A | 3/4.7.1.1 | 3.7.1 | The specific "restore to operable status" action in CTS is deleted; in ITS restoration to operable status is an inherent operation which need not be explicitly stated, so deletion of this action results in no change to the CTS requirements. | | 7-A | 3/4.7.1.1 | 3.7.1 | CTS surveillance 4.7.1.1 refers to TS 4.0.5, which contains requirements for the Inservice Inspection and Test Program, but in ITS 4.0.5 does not exist. Instead, the successor ITS surveillance, SR 3.7.1.1, references the Inservice Testing Program (which is specified in ITS Chapter 5.0), requires verifying the MSSV lift setpoints from Table 3.7.1-2, and states the ± 1% as left tolerance from the CTS ** footnote with no resulting changes in CTS requirements. | | 8-A | 3/4.7.1.1 | 3.7.1 | CTS Table 3.7-1 becomes ITS Table 3.7.1-1, with the number of MSSVs stated in terms of minimum operable rather than maximum inoperable, and with other title terminology changes, but with no change to the actual power level requirements from CTS. | | 11-A | 3/4.7.1.1 | 3.7.1 | The ** footnote in CTS Table 3.7-1 specifying MSSV lift setting tolerance is moved into the text of ITS SR 3.7.1.1 without change to the CTS requirement (± 1% as left tolerance). | | : | | | ITS 3.7.2 MAIN STEAM ISOLATION VALVES (MSIVs) | | 1-A | 3/4.7.1.5 | 3.7.2 | The CTS LCO statement is revised in ITS LCO 3.7.2 by explicitly calling out "Two" MSIVs rather than "Each" MSIV. This revision more accurately reflects FNP design but does not change CTS requirements. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------
--|------------------|--| | 1-A | 3/4.6.2.3 | 3.6.6 | CTS 3/4.6.2.1 and 3/4.6.2.3 for Containment Spray System and for Containment Cooling System respectively are combined into ITS LCO 3.6.6, "Containment Spray and Cooling Systems". | | 4-A | 3/4.6.2.3 | 3.6.6 | CTS 3.6.2.3 Actions a, b, and c are replaced by the equivalent TS 3.6.6 Conditions A through E. ITS 3.6.6 Condition F is added due to the ITS format rules for actions (See DOC 3/4.6.3.2-3a-A). | | | | | ITS 3.6.7 HYDROGEN RECOMBINERS | | ** 1-A | 3/4.6.4.2 | 3.6.7 | The descriptive term "independent" is deleted as this describes an inherent system design and operability requirements. | | | The second of th | | ITS 3.6.8 HYDROGEN MIXING SYSTEM (HMS) | | 1-A | 3/4.6.4.4 | 3.6.8 | The descriptive term "independent" is deleted as this describes an inherent system design and operability requirements. Also, "system" is replaced with the common ITS term "train". | | | | | ITS 3.6.9 REACTOR CAVITY HYDROGEN DILUTION SYSTEM | | 1-A | 3/4.6.4.3 | 3.6.9 | The descriptive term "independent" is deleted as this describes an inherent system design and operability requirements. Also, "system" is replaced with the common ITS term "train". | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |-------------------------------------|------------------|------------------|--| | | | | ITS 3.6.4 CONTAINMENT PRESSURE | | 1-A | 3/4.6.1.4 | 3.6.4 | Title and text are revised to delete the word "internal" since it does not appear in ITS and it is implicit in the specification that "containment pressure" refers to internal pressure. | | · · · · · · · · · · · · · · · · · · | | | ITS 3.6.5 CONTAINMENT AIR TEMPERATURE | | 1-A | 3/4.6.1.5 | 3.6.5 | Text is revised to delete the word "primary" since ITS does not use this word. | | 3-A | 3/4.6.1.5 | 3.6.5 | CTS 4.6.1.5.2 is revised to specifically require determination of "average" containment temperature which was encompassed by CTS 4.6.1.5.1. (See DOC 3/4.6.1.5-2-LA) | | | | | ITS 3.6.6 CONTAINMENT SPRAY AND COOLING SYSTEMS | | 1-A | 3/4.6.2.1 | 3.6.6 | CTS 3/4.6.2.1 and 3/4.6.2.3 for Containment Spray System and for Containment Cooling System respectively are combined into ITS LCO 3.6.6, "Containment Spray and Cooling Systems". | | 3a-A | 3/4.6.2.1 | 3.6.6 | ITS 3.6.6 Condition F is added to CTS 3.6.2.1 Actions since there is no equivalent CTS Action for Loss of Function. ITS 3.6.6 Condition F requires entry into ITS LCO 3.0.3 for the Loss of Function situation. Because on the structure and format of the ITS this action is required in ITS 3.6.6 and maintains the intent of CTS 3/4.6.2.1, which would require entry into CTS 3.0.3. | | 4-A | 3/4.6.2.1 | 3.6.6 | The separate Completion Times specified in CTS 3.6.2.1 Action for power reduction to Mode 3, system restoration, and cooling down to Mode 5 are reformatted in ITS 3.6.6 Actions with no change in intent or overall Completion Time. | | 6-A | 3/4.6.2.1 | 3.6.6 | The CTS 4.6.2.1.b reference to CTS 4.0.5 for Inservice Inspection and Testing requirements is replaced with a direct reference to the Inservice Testing Program. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | 4-A | 3/4.6.3 | 3.6.3 | CTS 3.6.3 Action is revised consistent with ITS 3.6.3 Condition A, using the term "penetration", and is clarified to apply only when a single isolation valve in a penetration flow path is inoperable. A statement is also added to exempt purge valve leakage, which is addressed by a separate ITS Action. | | 5-A | 3/4.6.3 | 3.6.3 | CTS 3.6.3 Action becomes ITS Condition A and is modified by a Note clarifying it is applicable only to penetration flow paths with two isolation valves. | | 6-A | 3/4.6.3 | 3.6.3 | CTS 3.6.3 Action a requiring restoration of the inoperable valve(s) is deleted; it is implicit in the ITS that restoration is an option and no explicit statement is needed. | | 7-A | 3/4.6.3 | 3.6.3 | CTS 3.6.3 Action is revised by the addition of ITS Required Action A.2, corresponding to CTS SR 4.6.1.1.a, which combines surveillance of penetrations isolated by deactivated automatic valves into the required actions for deactivation of the automatic valves. | | 8-A | 3/4.6.3 | 3.6.3 | The CTS 3.6.3 Action b requirement of "secured in the isolation position" is replaced by the ITS term "closed and deactivated" and is applicable for isolation of a containment penetration with an inoperable isolation valve. The terms are considered equivalent. | | 15-A | 3/4.6.3 | 3.6.3 | The CTS 4.6.3.3 reference to CTS 4.0.5 for Inservice Inspection and Testing requirements is replaced with a direct reference to the Inservice Testing Program. | | 16-A | 3/4.6.3 | 3.6.3 | The CTS 4.6.3.4 requirements for containment purge supply and exhaust valve leakage rate testing are deleted. These requirements are redundant to the requirements of CTS 3/4.6.1.7 which have been incorporated into ITS 3.6.3. | | 17-A | 3/4.6.3 | 3.6.3 | ITS SR 3.6.3.2 and SR 3.6.3.3 are added (moved from CTS 3/4.6.1.1), requiring verification of containment isolation manual valves and blind flanges inside and outside of containment (CTS 4.6.1.1.a). | | 18-A | 3/4.6.3 | 3.6.3 | Footnote *** of CTS Table 3.6-1 allowing intermittent opening of certain containment isolation valves is deleted since ITS includes the same allowance for all containment isolation valves. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | 1-A | 3/4.6.1.7 | 3.6.3 | Containment ventilation system valve requirements of CTS 3/4.6.1.7 are incorporated into ITS LCQ 3.6.3, which addresses all containment isolation valve requirements. | | 2-A | 3/4.6.1.7 | 3.6.3 | The requirements of CTS 3/4.6.1.7 regarding 48 inch purge supply and exhaust valves being "deactivated and secured" are incorporated into ITS SR 3.6.3.1 using the term "sealed", which is equivalent to the CTS requirements. | | 3-A | 3/4.6.1.7 | 3.6.3 | The CTS 3/4.6.1.7.b LCO provision for the 8 inch mini-purge supply and exhaust valves is retained in the LCO statement for ITS LCO 3.6.3. | | 4b-A | 3/4.6.1.7 | 3.6.3 | CTS 3.6.1.7 ACTIONS are modified by the addition of ITS 3.6.3 Action Notes 2, 3, and 4 to provide additional clarification and guidance in the use and application of ITS 3.6.3 and the change is consistent with the intent of the CTS. | | 7-A | 3/4.6.1.7 | 3.6.3 | CTS 3.6.1.7 Action b.1 requires restoration of containment purge supply and exhaust penetration leakage to within the limits. This statement is deleted, since it is implicit in the ITS that restoration is an option and no explicit statement is
needed. | | 10A | 3/4.6.1.7 | 3.6.3 | CTS 3.6.1.7 Action c provides specific actions for purge supply and exhaust penetration not within the limits specified in CTS 4.6.1.7.3.b. This action has been retained as ITS 3.6.3 Action F. | | 13-A | 3/4.6.1.7 | 3.6.3 | CTS 4.6.1.7.2 and 4.6.7.1.3 are revised to delete leakage rate limits, which are specified in the Containment Leakage Rate Testing Program (ITS.5.5.17). | | 14-A | 3/4.6.1.7 | 3.6.3 | CTS 4.6.7.1.3 frequency of "Prior to startup after each Cold Shutdown if not performed in the previous 92 days" is deleted since it is redundant with the general rules of CTS/ITS Section 3.0. | | 3-A | 3/4.6.3 | 3.6.3 | CTS 3.6.3 Actions are modified by addition of ITS 3.6.3 ACTION Notes 2, 3, and 4 to provide additional clarification and guidance in the use and application of ITS 3.6.3 and the change is consistent with the intent of the CTS. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 3-A | 3/4.6.1.6 | 3.6.1 | Shutdown requirements of CTS 3.6.1.6 ACTIONS are moved into ITS LCO 3.6.1 Condition C. | | | | | ITS 3.6.2 CONTAINMENT AIR LOCKS | | 6-A | 3/4.6.1.3 | 3.6.2 | The requirement in CTS 3.6.1.3 Action a.1 to restore the inoperable air lock door to operable status is deleted since restoration is always an option in ITS. | | 10-A | 3/4.6.1.3 | 3.6.2 | CTS 3.6.1.3 Action Statement b address all inoperable air lock conditions except CTS 3.6.1.3 Action a. In the ITS this action becomes ITS Action B and C. | | 11-A | 3/4.6.1.3 | 3.6.2 | CTS 3.6.1.3 Action c is deleted; it is made redundant by ITS 3.6.1 concerning containment leakage not within limit. | | 12-A | 3/4.6.1.3 | 3.6.2 | CTS 3.6.1.3 Action a.4 is deleted; it is made redundant by ITS LCO 3.0.4 which provides actions to permit continued operation with a single air lock door inoperable. | | 13-A | 3/4.6.1.3 | 3.6.2 | CTS 4.6.1.3.a is revised by addition of ITS, SR 3.6.2.1 Notes 1 and 2 providing specific guidance and clarification on air lock testing, which is consistent with the intent of the CTS. | | | | | ITS 3.6.3 CONTAINMENT ISOLATION VALVES | | 2-A | 3/4.6.1.1 | 3.6.3 | CTS 4.6.1.1.a containment isolation device surveillance requirements have been moved to the Containment Isolation Valve TS (ITS LCO 3.6.3). | | 5-A | 3/4.6.1.1 | 3.6.3 | Isolation device requirements accompanying the CTS 4.6.1.1.a * footnote have been moved to the Containment Isolation Valve TS, LCO 3.6.3. | | 7-A | 3/4.6.1.1 | 3.6.3 | Portions of CTS4.6.1.1.a* footnote requiring fuel transfer canal blind flange closure verification after each draining of the canal is retained as a note in ITS SR 3.6.3.3. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | | | | ITS 3.3.3 POST ACCIDENT MONITORING (PAM) INSTRUMENTATION | | 1-A | 3/4.6.4.1 | 3.3.3 | Requirements are moved to ITS LCO 3.3.3; changes are addressed there. | | d . | | | ITS 3.6 CONTAINMENT SYSTEMS | | 0-A | 3/4.6 | 3.6 | Numerous Reformatting, Renumbering and Editorial changes have been made to CTS 3/4.6 to make the specification more readily readable and understandable by the users. These changes did not result in any technical changes. | | | | | ITS 3.6.1 CONTAINMENT | | 1-A | 3/4.6.1.1 | 3.6.1 | CTS term "Integrity" is replaced by ITS term "Operable" with respect to containment function in the LCO and Action Statements. | | 1a-A | 3/4.6.1.1 | 3.6.1 | The Actions of 3.6.1.6 associated with the 24 hour AOT are moved to CTS 3.6.1.1 ACTIONS for incorporation in ITS 3.6.1 ACTION A. | | 4-A | 3/4.6.1.1 | 3.6.1 | CTS 4.6.1.1.b containment air locks surveillance requirements are deleted; they were made redundant by the ITS LCO 3.6.2 for the air locks. | | 1-A | 3/4.6.1.2 | 3.6.1 | Requirements of CTS 3/4.6.1.2 are incorporated into ITS LCO 3.6.1. | | 1a-A | 3/4.6.1.2 | 3.6.1 | The ACTIONS of CTS 3.6.1.6 associated with the 24 hour AOT are moved to CTS 3.6.1.2 ACTIONS for incorporation into ITS 3.6.1 ACTION A. | | 2 A | 3/4.6.1.6 | 3.6.1 | CTS 3.6.1.6 contains Actions which allows 24 hours to restore the containment structural integrity. This ACTION now becomes ITS 3.6.1 ACTION A. | # Table A - ADMINISTRATIVE CHANGES Section 3.5 - EMERGENCY CORE COOLING SYSTEM (ECCS) | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | | | | ITS 3.5.4 REFUELING WATER STORAGE TANK | | 1-A | 3/4.5.5 | 3.5.4 | The LCO statement is revised to remove the required values for water volume, boron concentration, and water temperature information from the LCO and place the values in the applicable surveillance requirement consistent with the presentation and format of the STS. | | 3-A | 3/4.5.5 | 3.5.4 | The CTS surveillance requirements are revised consistent with the STS. The LCO limits for the parameters verified in the surveillances are included in the ITS surveillances. | | | | · | ITS 3.5.5 SEAL INJECTION FLOW | | 3-A | 3/4.4.7.2 | 3.5.5 | The RCS Operational leakage action statement b is revised to become Condition A and B in the STS 3.5.5 for seal injection flow consistent with the STS to be specific to the RCP seal water injection flow limit. | | | | | ITS 3.5.6 ECCS RECIRCULATION FLUID pH CONTROL SYSTEM | | 2-A | 3/4.5.6 | 3.5.6 | The Completion Times specified for reducing power to Mode 3, restoration in Mode 3, and cooling down to Mode 5 in the action statement have been combined consistent with the form and format of the STS. | | 3-A | 3/4.5.6 | 3.5.6 | The LCO and surveillance requirement are revised by adding the descriptor "ECCS" to conform with the format and presentation of the STS. | ### Table A - ADMINISTRATIVE CHANGES Section 3.5 - EMERGENCY CORE COOLING SYSTEM (ECCS) | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 8-A | 3/4.5.2 | 3.5.2 | The surveillance, which addresses the isolation of the RCS, is moved to the RCS Pressure Isolation Valve Leakage TS LCO consistent with the STS. | | 9-A | 3/4.5.2 | 3.5.2 | The * footnote in the CTS surveillance is revised consistent with similar notes in the STS and moved into the corresponding FNP surveillance. Also, editorial changes to this footnote are made to conform with the presentation of such notes in the STS. | | t og med | | | ITS 3.5.3 ECCS - SHUTDOWN | | : .1-A | 3/4.5.3 | 3.5.3 | The title and LCO are revised to be consistent with the STS. The term "as a minimum" is deleted from the LCO. Also, reference is made to ECCS "train" instead of "subsystem." | | 3-A ' | 3/4.5.3 | 3.5.3 | The LCO statement regarding the operability of the ECCS flow path and "being manually realigned" is effectively retained in the STS as a note in the LCO statement. | | 6-A | 3/4.5.3 | 3.5.3 | The action statement "a" that modifies the requirement to place the unit in Mode 5 is revised consistent with similar information presented in the STS and included as a second requirement in FNP ITS Condition D. | | 10a-A | 3/4.5.3 | 3.5.3 | The * footnote applicable to part d. of the LCO statement is moved into the LCO statement as Note 2 in the corresponding FNP ITS. Retention of this note is based on the FNP specific design and the requirement to address a change in the required state of the power supplies for the RHR discharge to charging pump suction valves when transitioning from Mode 3 into Mode 4. | | 11-A | 3/4.5.3 | 3.5.3 | The surveillance is revised to be consistent with the STS. The CTS requirement to perform the "applicable" surveillances of CTS 4.5.2 is revised to be more specific. The applicable surveillances equivalent to those from the CTS are listed within proposed FNP ITS SR 3.5.3.1. | # Table A - ADMINISTRATIVE CHANGES Section 3.5 - EMERGENCY CORE COOLING SYSTEM (ECCS) | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | | | | ITS 3.5.1 ACCUMULATORS | | 1-A | 3/4.5.1 | 3.5.1 | Specific operability requirements for the accumulators are moved from the LCO statement to the corresponding surveillance requirements. | | 7-A | 3/4.5.1 | 3.5.1 | The surveillance which verifies the boron concentration of the accumulators is revised consistent with the STS to add a note that modifies the
frequency part of this surveillance. The note provides clarification consistent with the intent of the CTS. | | 9-A | 3/4.5.1 | 3.5.1 | The surveillance which verifies the power removed from the accumulator isolation valves is revised consistent with the STS to state the surveillance requirement in terms of pressurizer pressure instead of referencing the P-11 interlock. | | 13-A | 3/4.5.1 | 3.5.1 | To conform with the STS and to enhance the operators ability to easily determine when to verify accumulator boron concentration, the verification of boron concentration in an accumulator is changed from a percent of tank volume to a change in indicated level. | | | | 3 | ITS 3.5.2 ECCS - OPERATING | | 1-A | 3/4.5.2 | 3.5.2 | The LCO statement is revised to delete the word "independent" consistent with the STS. Also, the common term used in the STS "trains" is substituted for the FNP term "subsystems" in the LCO and associated action statements. | | За-А | 3/4.5.2 | 3.5.2 | The * footnote is moved into the LCO statement as Note 2 in the corresponding FNP TS consistent with the STS. This note is based on the FNP specific design and the requirement to address a change in the required state of the power supplies for the RHR discharge to charging pump suction valves when transitioning from Mode 4 into Mode 3. | | | | | | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|---------------------------------------|--| | 14-A | 3/4.4.9 | 3.4.16 | CTS Figure 3.4-1 is retained in ITS and renumbered as Figure 3.4.16-1 | | | | | ITS 3.5.5 ECCS SEAL INJECTION FLOW | | 1-A | 3/4.4.7.2 | 3.5.5 | Requirements are moved to ITS LCO 3.5.5; changes are addressed there. | | 10-A | 3/4.4.7.2 | 3.5.5 | Requirements are moved to ITS LCO 3.5.5; changes are addressed there. | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ITS 5.5 PROGRAMS AND MANUALS | | 1-A | 3/4.4.6 | 5.5 | CTS 3/4.4.4.6 STEAM GENERATORS LCO 3.4.6 is effectively replaced by ITS SR 3.4.13.2, which requires verification of steam generator tube integrity in accordance with the Steam Generator Tube Surveillance Program of ITS section 5.5. | | 3-A | 3/4.4.6 | 5.5 | CTS 3/4.4.4.6 STEAM GENERATORS surveillance requirements are moved intact to the Steam Generator Tube Surveillance Program in the Administrative Controls section of ITS, to specification 5.5.9 | | 2-A . | 3/4.4.11 | 5.5 | CTS 3/4.4.4.11 RCS STRUCTURAL INTEGRITY surveillances 4.4.11.2 on the RCP Flywheel Inspection Program and 4.4.11.3 on the Main Steamline Inspection Program are moved into the Administrative Controls section of ITS, to specifications 5.5.7 and 5.5.16. | | | | | ITS 5.6 REPORTING REQUIREMENTS | | 4-A | 3/4.4.6 | 5.6 | The CTS steam generator tube inspection report requirements are moved intact to the Steam Generator Tube Inspection Report in the Administrative Controls section of ITS, 5.6.10. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | 5-A | 3/4.4.7.1 | 3.4.15 | CTS actions are revised in ITS to clarify LCO applicability; the change serves only to clarify the existing relationship of the containment atmosphere gaseous radioactivity monitor and containment air cooler condensate level monitor. | | 6-A | 3/4.4.7.1 | 3.4.15 | CTS surveillance requirements for the containment atmosphere radioactivity monitors are reorganized into individually numbered ITS SRs, with the technical intent and surveillance frequencies unchanged but with revised terminology and format. | | | | | ITS 3.4.16 RCS SPECIFIC ACTIVITY | | 1-A | 3/4.4.9 | 3.4.16 | The CTS LCO statement is revised to delete the RCS specific activity limits; these limits are repeated within the actions and surveillances, hence no technical change is introduced. | | 4-A | 3/4.4.9 | 3.4.16 | ITS Required Action A.1 is added to retain the CTS requirement (from Table 4.4-4, which does not exist in ITS) to verify that RCS specific activity is within limit. No technical changes were made. | | 5-A | 3/4.4.9 | 3.4.16 | The CTS * applicability footnote is moved directly into the APPLICABILITY section of the ITS LCO. | | 6-A | 3/4.4.9 | 3.4.16 | CTS Action Statement a is no longer needed (replaced by ITS 3.4.16 Required Actions) and is deleted. | | 7-A | 3/4.4.9 | 3.4.16 | The CTS surveillance requirement, which referenced Table 4.4-4 is revised and reformatted as individuaLTS surveillance requirements, while Table 4.4-4 is eliminated. | | 9-A | 3/4.4.9 | 3.4.16 | CTS Table 4.4-4 surveillance requirement 2 is revised and reformatted as ITS SR 3.4.16.2 without technical change. | | 10-A | 3/4.4.9 | 3.4.16 | CTS Table 4.4-4 surveillance requirement 3 is revised and reformatted as ITS SR 3.4.16.3 without technical change. | | 13-A | 3/4.4.9 | 3.4.16 | The # footnote to surveillance 4.a of CTS Table 4.4-4 is revised to become part of ITS Required Actions A.1 and B.1, which effectively replace this surveillance requirement. No technical changes were made. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | 16-A | 3/4.4.7.2 | 3.4.14 | CTS surveillance 4.4.7.2.2 for PIV testing is revised and reformatted for ITS SR 3.4.14.1, with the max leakage limit (from deleted CTS Table 3.4-1) and the test pressure requirements (moved from the CTS LCO) included. | | 18-A | 3/4.4.7.2 | 3.4.14 | CTS surveillance 4.4.7.2.2.a is revised and reformatted as part of the Frequency requirement of ITS SR 3.4.14.1, with editorial changes to improve consistency with ITS terminology and practices. No technical changes were made. | | 20-A | 3/4.4.7.2 | 3.4.14 | CTS surveillance 4.4.7.2.2.c is reformatted as part of the Frequency requirement of ITS SR 3.4.14.1. No technical changes were made. | | 21-A | 3/4.4.7.2 | 3.4.14 | A new surveillance (SR 3.4.14.2) is added to verify RHR system autoclosure interlock functions. This change amounts to a reorganization of CTS surveillance 4.5.2.d.1 to put these requirements in the RCS PIV LCO. No technical changes were made. | | 23-A | 3/4.4.7.2 | 3.4.14 | The CTS 4.4.7.2.2.d exception to TS 4.0.4 is revised and reformatted to become NOTE 1 to ITS SR 3.4.14.1, accomplishing the same thing (not requiring testing in MODES 3 and 4). No technical change were made. | | 24-A | 3/4.4.7.2 | 3.4.14 | CTS * footnote to Table 3.4-1 is deleted, made redundant by the applicability provisions stated in ITS LCO 3.4.14 Mode 4 applicability and SR 3.4.14.1 NOTE 2. No technical changes were made. | | | | | ITS 3.4.15 RCS LEAKAGE DETECTION INSTRUMENTATION | | 2-A | 3/4.4.7.1 | 3.4.15 | CTS LCO 3.4.7.1 is revised and reformatted as ITS LCO 3.4.15 with editorial changes in terminology. No technical changes were made. | | 4-A | 3/4.4.7.1 | 3.4.15 | An alternate action is added to perform a RCS water balance instead of the currently required containment atmosphere grab sample; adding this option does not impact the technical intent of CTS. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | . 13-A | 3/4.4.10.3 | 3.4.12 | CTS 3.1.2.3 * applicability footnote is made a NOTE under LCO 3.4.12 without introducing a technical change. | | , | | | ITS 3.4.13 RCS OPERATIONAL LEAKAGE | | 11-A | 3/4.4.7.2 | 3.4.13 | CTS surveillance 4.4.7.2.1.d for performance of an RCS water balance is revised to clarify its purpose and reformatted into ITS SR 3.4.13.1, with two additional NOTES added to clarify appropriate performance times. | | 22-A | 3/4.4.7.2 | 3.4.13 | A new surveillance (SR 3.4.13.2) is added for Operational Leakage, made necessary by reorganization of the CTS requirements (removal of the CTS LCO for steam generators from TS and movement of the tube inspection requirements to the Administrative Controls section). | | 25-A | 3/4.4.7.2 | 3.4.13 | Unit 2 CTS LCO 3.4.7.2 leakage limits differ from Unit 1. These limits are moved into ITS LCO 3.4.13 items d and e unchanged. | | | | | ITS 3.4.14 RCS PRESSURE ISOLATION VALVE LEAKAGE | | 2-A | 3/4.4.7.2 | 3.4.14 | LCO requirement for PIV leakage is moved to ITS LCO 3.4.14, reorganized and simplified consistent with STS without technical changes. | | 3-A | 3/4.4.7.2 | 3.4.14 | Mode of applicability is clarified regarding RHR operation in conformance with existing operational and TS requirements. | | 4-A | 3/4.4.7.2 | 3.4.14 | Two NOTES are added, Note 1 clarifying that completion time applies separately to each PIV flow path, and Note 2 requiring entry into LCO conditions for systems made inoperable by an inoperable PIV. Note 2 is needed because of ITS LCO 3.0.6 provisions limiting cascading inoperabilities between systems. | | 13-A | 3/4.4.7.2 | 3.4.14
 Three NOTES are added clarifying SR 3.4.14.1 applicability and acceptable PIV leakage test methodology. No technical changes were made. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | | | | ITS 3.4.12 LOW TEMPERATURE OVERPRESSURE PROTECTION SYSTEM | | 2-A | 3/4.4.10.3 | 3.4.12 | CTS LCO 3.4.10.3.a.2 is revised and reformatted as ITS SR 3.4.12.3 with no technical change. | | 3-A | 3/4.4.10.3 | 3.4.12 | Three Applicability Notes are added in ITS. NOTE 1 is derived from a CTS 3/4.1.2.3 * footnote and the change only reformats the location of the note. NOTE 2 provides specific guidance on application of the requirement to isolate the accumulators (a more restrictive change to the LCO discussed in a separate DOC). NOTE 3 simply replicates the CTS 3.0.4 exception in the ITS format. | | 4a-A | 3/4.4.10.3 | 3.4.12 | The CTS Action Statement a requirement to restore the inoperable valve is deleted; in ITS restoration to operable status is an inherent operation which need not be explicitly stated, so deletion of this action results in no change to the CTS requirements. | | 6-A | 3/4.4.10.3 | 3.4.12 | CTS 3.4.10.3 Action Statement c requires a special report if an RHR relief valve mitigates an RCS pressure transient; the CTS 6.9.2 special reports section does not exist in ITS, so this requirement is incorporated into ITS 5.6.4, "Monthly Operating Reports." | | 7-A | 3/4.4.10.3 | 3.4.12 | CTS 3.4.10.3 Action Statement d, taking exception to LCO 3.0.4, is moved to the ITS 3.4.12 Applicability Notes. | | 9-A | 3/4.4.10.3 | 3.4.12 | CTS surveillance 4.4.10.3.1.b is revised and reformatted as ITS SR 3.4.12.5, in combination with CTS 4.4.10.3.1.c. The new surveillance directly references the IST program (rather than CTS 4.0.5); no technical change is included. | | 10-A | 3/4.4.10.3 | 3.4.12 | CTS surveillance 4.4.10.3.1.c is revised and reformatted as ITS SR 3.4.12.5, in combination with CTS 4.4.10.3.1.b. The new surveillance calls out the frequency as per the IST and every 18 months on a staggered test basis, which results in the same surveillance interval as per the original CTS instructions, so no technical change is involved. | | 11-A | 3/4.4.10.3 | 3.4.12 | CTS surveillance 4.1.2.3.2 is moved from the RCS chapter into ITS as SR 3.4.12.1; it is revised and reformatted for ITS without introducing technical changes. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | | | | ITS 3.4.9 PRESSURIZER | | 2-A | 3/4.4.4 | 3.4.9 | The CTS LCO is revised and reformatted as ITS LCO 3.4.9, with an additional provision included for an emergency power supply to the pressurizer heaters. CTS 4.4.4.2 has this requirement already, so no technical change is introduced by explicit inclusion of this requirement into LCO 3.4.9. | | 3-A | 3/4.4.4 | 3.4.9 | CTS Action Statement b is revised and reformatted as ITS LCO 3.4.9 Condition A, with no technical changes introduced. | | 5-A | 3/4.4.4 | 3.4.9 | The CTS 3/4.4.4 * footnote to LCO 3.4.4 that provides exceptions for the pressurizer level limit is reformatted in ITS as a NOTE in the Applicability section, with no change in technical requirements. | | | | | ITS 3.4.10 PRESSURIZER SAFETY VALVES | | 3-A | 3/4.4.3 | 3.4.10 | CTS surveillance 4.4.3 is replaced by ITS SR 3.4.10.1, deleting reference to CTS 4.0.5 (which does not have an ITS counterpart). CTS 4.0.5 referenced the Inservice Testing Program. This program is directly referenced as necessary in ITS, and this information is added to ITS 3.4.10.1, therefore no technical change is introduced. | | | | | ITS 3.4.11 PRESSURIZER POWER OPERATED RELIEF VALVES (PORVs) | | 3-A | 3/4.4.5 | 3.4.11 | CTS Action Statements are revised and reformatted as ITS LCO 3.4.11 Conditions, with some explicit restoration statements removed. In ITS, restoration to operable status is always an available alternative; removing these specific restoration actions simplifies the Conditions without making technical changes. | | 4-A | 3/4.4.5 | 3.4.11 | CTS Action Statement f taking exception to LCQ 3.0.4 is moved into a NOTE in ITS. | | 5-A | 3/4.4.5 | 3.4.11 | CTS surveillance 4.4.5.1 is revised and reformatted as ITS SR 3.4.11.2, with a NOTE added to allow PORV testing after entry to MODE 3, as is allowed in CTS. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--|------------------|------------------|--| | 2-A | 3/4.4.1.4 | 3.4.7 | CTS LCO 3.4.1.4 and # footnote are combined and reformatted into ITS LCO 3.4.7 with no technical changes. | | 6-A | 3/4.4.1.4 | 3.4.7 | CTS 3/4.4.1.4 * footnote is deleted; it is no longer required due to the ITS definition of operable-operability. | | 8-A | 3/4.4.1.4 | 3.4.7 | CTS 3/4.4.1.4 ## and ### footnotes are revised and reformatted as ITS LCO 3.4.7 NOTES with no technical changes. | | e de la companya l | | | ITS 3.4.8 RCS LOOPS - MODE 5 - LOOPS NOT FILLED | | 1-A | 3/4.4.1.4 | 3.4.8 | CTS 3/4.4.1.4 is revised and reformatted, split into ITS 3.4.7 and 3.4.8. Technical changes made as part of this process are addressed in other DOCs. | | 2-A | 3/4.4.1.4 | 3.4.8 | CTS Action Statement a is revised to reflect the reorganization of this CTS into separate ITS specs 3.4.7 and 3.4.8, so that references to the RCS loops are no longer pertinent to the 3.4.8 version. The changes from CTS result from this reorganization, not from changing technical requirements. | | 5-A | 3/4.4.1.4 | 3.4.8 | CTS 3/4.4.1.4 * footnote is deleted; it is no longer required due to the ITS definition of operable-operability. | | 7-A | 3/4.4.1.4 | 3.4.8 | CTS 3/4.4.1.4 ## and ### footnotes are deleted; they apply only to the loops filled condition, which is addressed in ITS LCO 3.4.7. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | | | | ITS 3.4.5 RCS LOOPS - MODE 3 | | . 1-A | 3/4.4.1.2 | 3.4.5 | CTS 3.4.1.2 LCO is revised and reformatted as ITS 3.4.5 with a simplified title and with descriptions for operational rod control system and disabled rod control system replaced with standard ITS phrases. These wording and format changes do not change the technical content. | | 4-A | 3/4.4.1.2 | 3.4.5 | CTS Action Statement b is revised and reformatted as ITS Condition C, with an alternative action added for restoration. Restoration is always an
option whether stated explicitly or not, so this addition has no technical impact. | | 6-A | 3/4.4.1.2 | 3.4.5 | CTS Action Statement c is revised and reformatted as ITS Condition D, with an alternative action added to immediately de-energize all CRDMs. This addition simply repeats the requirement of CTS Action Statement b and is made to maintain consistency with the ITS format; this addition has no technical impact. | | | | | ITS 3.4.6 RCS LOOPS - MODE 4 | | 1-A | 3/4.4.1.3 | 3.4.6 | CTS 3.4.1.3 LCO is revised and reformatted as ITS 3.4.6 with a simplified title and with references to the list of loops and other editorial changes made to conform to ITS format. These wording and format changes do not alter the technical content. | | 6-A | 3/4.4.1.3 | 3.4.6 | CTS 3.4.1.3 * and ** footnotes are reformatted and moved into the ITS LCO NOTES section, with no technical changes made. | | | 1 | | ITS 3.4.7 RCS LOOPS - MODE 5 - LOOPS FILLED | | 1-A | 3/4.4.1.4 | 3.4.7 | CTS 3/4.4.1.4 is revised and reformatted, split into ITS 3.4.7 and 3.4.8. Technical changes made as particles of this process are addressed in other DOCs. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|---------------------------------------|--| | 1-A | 3/4.1.1.4 | 3.4.2 | CTS for Minimum Temperature for Criticality is renamed and moved to the RCS chapter, reformatted for ITS. This reorganization makes no technical changes. | | 2-A | 3/4.1.1.4 | 3.4.2 | CTS LCO 3.1.1.4 is revised and reformatted as ITS LCO 3.4.2, without introducing any technical changes. | | 4-A | 3/4.1.1.4 | 3.4.2 | CTS LCO 3.1.1.4 Action is revised and reformatted as ITS LCO 3.4.2 Action; the CTS requirements are restated without introducing any technical changes. | | 6-A | 3/4.1.1.4 | 3.4.2 | CTS applicability footnote # text is revised and moved into the ITS LCO 3.4.2 Applicability statement without making any technical changes. | | 7-A - · | 3/4.1.1.4 | 3.4.2 | CTS surveillance 4.1.1.4.b is revised in ITS SR 3.4.2.1 to reference the Lo-Lo Tavg Alarm instead of the Tavg-Tref alarm. This change enhances accuracy of the existing CTS requirement and is not a significant technical change. | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ITS 3.4.3 RCS PRESSURE TEMPERATURE (P/T) LIMITS | | 7-A | 3.4.4.10 | 3.4.3 | The CTS LCO is revised and reformatted as ITS LCO 3.4.3, with a NOTE added requiring completion of Required Action A.2 (determination/evaluation of RCS operability) whenever a PTL is exceeded. This note addition is made to clarify the CTS requirement and does not introduce a technical change | | | | | ITS 3.4.4 RCS LOOPS - MODES 1 AND 2 | | 1-A | 3/4.4.1.1 | 3.4.4 | CTS 3/4.4.1.1 title is simplified to ITS 3.4.4 RCS LOOPS - MODES 1 AND 2. | | 3-A | 3/4.4.1.1 | 3.4.4 | The * footnote in the CTS Applicability statement referencing Special Test Exceptions is deleted; in ITS Test Exceptions stand alone and are not referenced from within other TS. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | | | | ITS 3.4.1 RCS PRESSURE, TEMPERATURE, AND FLOW DNB LIMITS | | 1-A | 3/4.2.5 | 3.4.1 | CTS for DNB parameters is renamed and moved to the RCS chapter, reformatted for ITS. This reorganization makes no technical changes. | | 2-A | 3/4.2.5 | 3.4.1 | CTS LCO 3.2.5 is reformatted as ITS LCO 3.4.1, with reference to CTS Table 3.2-1 deleted and the DNB parameters from the table moved directly into the ITS LCO and SR statements. This reorganization of existing requirements makes no technical changes. | | 3-A | 3/4.2.5 | 3.4.1 | CTS Action Statement to reduce THERMAL POWER is replaced in ITS by a requirement to "be in Mode 2". This is effectively equivalent to the CTS intent but more accurately defines the action in accordance with the applicable Modes. | | 5-A | 3/4.2.5 | 3.4.1 | CTS surveillance requirements 4.2.5.1 and 4.2.5.2 are revised and reformatted as ITS SRs 3.4.1.1 – 4. This reorganization of existing requirements does not introduce any technical changes. | | 6-A | 3/4.2.5 | 3.4.1 | The CTS * footnote information is reformatted into a two part NOTE in the Applicability section of ITS LCO 3.4.1, with no technical change. | | 7-A | 3/4.2.5 | 3.4.1 | CTS Table 3.2-1 is deleted and the DNB parameters from the table moved directly into the ITS LCO and SR statements. This reorganization of existing requirements makes no technical changes. | | 8-A | 3/4.2.5 | 3.4.1 | The DNB parameters from CTS Table 3.2-1 are moved directly into the ITS LCO and SR statements. This reorganization of existing requirements makes no technical changes. | | 9-A | 3/4.2.5 | 3.4.1 | The CTS Table 3.2-1 references to two loop operation are deleted. FNP is not currently licensed for two loop operation and has no plans to pursue such license. | | | | e je Storove | ITS 3.4.2 RCS MINIMUM TEMPERATURE FOR CRITICALITY | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | | | | ITS 3.3.7 CREFS ACTUATION INSTRUMENTATION | | 17-A | T3.3-6 | 3.3.7 | The requirements for the control room isolation radiation monitors are moved into the ITS LCO related to control room emergency filtration system (CREFS) actuation instrumentation consistent with the location of this information in the STS. | | ··· | | | ITS 3.3.8 PRF ACTUATION INSTRUMENTATION | | 12-A | Т 3.3-6 | 3.3.8 | The fuel storage pool area radiation monitors are moved into the system specific instrumentation LCO for the FNP penetration room filtration system. | | 16-A | T 3.3-6 | 3.4.15 | The RCS leakage detection radiation monitor requirements are moved directly into the RCS leakage detection TS. | | 25-A | T 3.3-6 | 5.0 | Action statement 27a.2 of the referenced table is revised to be consistent with the corresponding STS LCO 3.3.3, post accident monitoring Conditions B and G and the reporting requirements section of STS Administrative Controls section 5.0. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 84-A | T 4.3-2 | 3.3.6 | The Channel Functional Test requirement associated with the manual ESFAS functions on the referenced table is revised to be consistent with the STS. The "R" CFT requirement for testing manual purge and exhaust isolation ESFAS function is replaced by FNP ITS SR 3.3.6.6 consistent with the STS. The replacement of the CTS CFT and associated CTS note 1 with the STS TADOT and associated STS SR note does not change the existing CTS requirements to verify the operability of the ESFAS purge and exhaust isolation manual functions. | | 85-A | T 4.3-2 | 3.3.6 | The monthly CFT requirement associated with the purge and exhaust isolation automatic actuation logic ESFAS function on the referenced table is revised to be consistent with the STS. This single CTS surveillance requirement for the automatic actuation logic function is replaced by the two corresponding STS surveillances, the Actuation Logic Test and the Master Relay. The replacement of the CTS CFT and associated CTS note 2 with the STS Actuation Logic Test and Master Relay Test does not change the existing CTS requirements to verify the operability of these ESFAS functions. | | 4-A | 3/4.3.3.1 | 3.3.6 | The radiation monitors associated with actuation of the containment purge and exhaust isolation are effectively retained. The radiation monitor alarm/trip setpoints being within the specified limit is considered an inherent part of the operability of each monitor and is not addressed separately in each LCO. | | 13-A | Т 3.3-6 | 3.3.6 | The containment purge and exhaust isolation radiation monitors are moved into the containment purge and exhaust isolation instrumentation LCO consistent with the location of this instrumentation in the STS. This change documents the retention of existing TS requirements in the proposed FNP ITS. | | 15-A | T 3.3-6 | 3.3.6 | The footnotes (d, e, and f) to the applicability for the containment purge and exhaust isolation radiation monitors are revised to be associated with the required setpoints for the radiation monitors instead of the applicable Modes. The FNP specific footnotes specify the operating conditions of the containment purge and exhaust system for which each setpoint is required. | | 1-A | NEW | 3.3.6 | The addition of Containment Purge and
Exhaust Isolation Instrumentation represents a new LCO that did not previously exist in the CTS. The requirements contained within this new ITS LCO are derived from CTS requirements contained in the ESFAS and Radiation Monitor LCOs. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | 97-A | T 4.3-2 | 3.3.5 | The * footnote to note 4 on the referenced table is revised to be consistent with the format of surveillance notes in the STS. This FNP specific note will verify the final trip actuation relay of the ESF Loss of Power functions is moved into the appropriate surveillance. | | 1-A | NEW | 3.3.5 | The addition of LOP DG Start Instrumentation represents a new LCO that did not previously exist in the CTS. The requirements contained within this new ITS LCO are derived from CTS requirements contained in the ESFAS LCO. | | • | | | ITS 3.3.6 CONTAINMENT PURGE AND EXHAUST ISOLATION INSTRUMENTATION | | 22-A | T3.3-3 | 3.3.6 | The ESFAS requirements for purge and exhaust isolation are moved into a separate Instrumentation LCO consistent with the STS. This change moves the existing CTS requirements (LCO, Actions and surveillances) from one TS to another. | | 23-A | 3/4.9.9 | 3.3.6 | The applicability for the purge and exhaust isolation manual function is revised consistent with the STS requirements. This change does not alter the requirements of the CTS. It merely reformats the CTS ESFAS purge and exhaust isolation function requirements along with the associated requirements in CTS 3/4.9.9 to be consistent with the single LCO (3.3.6) presentation of these requirements in the STS. | | 24-A | 3/4.9.9 | 3.3.6 | The Containment purge and exhaust isolation function is revised by the addition of Phase A to the initiating functions consistent with the STS LCO. The addition of a separate line item for the Phase A initiation of containment purge and exhaust isolation is consistent with the FNP design and provides a more complete list of purge and exhaust isolation initiating functions consistent with the new STS LCO 3.3.6. | | 83-A | T 4.3-2 | 3.3.6 | The ESFAS requirements for the purge and exhaust isolation function on CTS Table 4.3-2 are moved into a separate Instrumentation LCO to be consistent with the STS. This change moves the existing CTS requirements (LCO, Actions and surveillances) from one TS to another. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 57-A | Т 3.3-3 | 3.3.5 | Action statement 24 in the referenced table is revised to be consistent with the format and presentation of the corresponding LCO 3.3.5 Actions Condition A. The reference to the total number of channels is replaced with the "required channels." The CTS Action phraseology has been revised consistent with the STS. | | 62-A | T 3.3-3 | 3.3.5 | Action statement 24 in the referenced table which is applicable to the loss of voltage and degraded grid voltage ESFAS instrument functions is revised to be consistent with the format of the STS and with the FNP specific design of the loss of power instrument functions. | | 63-A | Т 3.3-3 | 3.3.5 | The ESFAS LOP Actions are revised by the addition of a note which affects all Actions consistent with the STS LOP LCO 3.3.5. The addition of this STS note providing guidance for the application of Action Conditions is considered a clarification that is consistent with the use and application of the CTS and not a technical change to the CTS. | | 69-A | T 3.3-4 | 3.3.5 | The ESFAS loss of power function setpoints are moved to the new LCO for loss of power functions. The setpoints remain within the FNP TS but are placed in a new LCO. | | 89-A | T 4.3-2 | 3.3.5 | The ESFAS requirements for the loss of power ESFAS function on the referenced table are moved into a separate Instrumentation LCO consistent with the STS. This change effectively moves the existing CTS requirements (LCO, Actions and surveillances) from one TS to another. | | 90-A | T 4.3-2 | 3.3.5 | The monthly CFT and associated note 4 applicable to the ESFAS loss of power functions on the referenced table are revised to be consistent with the presentation of this information in the STS. The CFT is revised to be a TADOT consistent with the STS use of this defined test term. Additionally, the contents of note 4 which modifies the CFT are incorporated into the corresponding FNP ITS TADOT SR. | | 91-A | T 4.3-2 | 3.3.5 | The refueling Channel Calibration and associated note 3 applicable to the ESFAS loss of power functions on the referenced table are replaced with an STS 18 month Channel Calibration and an FNP specific associated note. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 8-A | 3/4.3.3.5 | 3.3.4 | The surveillance requirement for the performance of a channel calibration is revised consistent with the STS. The STS includes a note, which excepts the neutron detectors from the channel calibration. The note is required due to the addition of the source range channel to the required remote shutdown instrumentation and the fact that the neutron detectors are not adjusted during the course of a channel calibration. | | 9-A | 3/4.3.3.5 | 3.3.4 | Surveillance 4.3.3.5 is revised by not using the reference to Table 4.3-6; a separate table containing the surveillance frequencies is not used in the STS. The frequencies are identified in each STS surveillance (SR 3.3.4.1 and SR 3.3.4.3). | | 12-A | T 4.3-6 | Deleted . | The referenced table is replaced with the individual STS surveillance requirements. This CTS Table contains the surveillance requirements for the remote shutdown instrumentation. This table format for surveillance presentation is not used in the STS. The individual surveillance requirements including frequencies are listed separately in the standard STS format. | | | | | ITS 3.3.5 LOP DG START INSTRUMENTATION | | 37-A | T 3.3-3 | 3.3.5 | The loss of power ESFAS functions are moved from the ESFAS LCO 3.3.2 and placed in the loss of power DG start instrumentation to be consistent with the STS. The STS organization separates this ESFAS function into a different LCO. The actual requirements for this instrumentation remain within | | • • • | | | the FNP TS. The movement of these CTS requirements from one TS to another conforms with the format and presentation of this information in the STS. Also, the change to specify the requirement on a per train basis enhances the clarity of the LCO requirement consistent with the FNP specific design of this function. | | 56-A | Т 3.3-3 | 3.3.5 | The loss of power ESFAS Action statement 24 in the referenced table is moved from the ESFAS LCO and placed in the loss of power DG start instrumentation, LCO consistent with the organization of these requirements in the STS. This Action corresponds to the STS LCO 3.3.5 Condition A. The changes in location and presentation of these requirements described above are not considered to introduce a technical change to the CTS. The actual requirements for this instrumentation remain within the FNP ITS. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 21-A | T 4.3-7 | 3.3.3 | This CTS table contains a list of the post accident monitoring instruments and the surveillances associated with each instrument. Because the surveillances, including the frequency are the same for all instruments, these surveillance requirements are replaced with the corresponding STS surveillances SR 3.3.3.1 and SR 3.3.3.2 which are applicable to all instruments in the LCO; a table format is not used. | | 22-A | 3/4.6.4.1 | 3.3.3 | Hydrogen Analyzers is moved from the containment section of the CTS to the instrumentation section and placed in the post accident monitoring ITS consistent with the location of these
requirements in the STS. | | 23-A | 3/4.6.4.1 | 3.3.3 | The LCO and Action statements are revised consistent with the corresponding STS requirements and Actions. The STS LCO requirement for the hydrogen monitors is not intended to be technically different from the CTS. The word independent is not used in STS LCO statements and is deleted from the CTS LCO. Additionally, the term "monitors" and "channels" are used to describe the requirements for this equipment in the LCO statement and Actions consistent with the STS terminology for this equipment. | | 26-A | 3/4.6.4.1 | 3.3.3 | Hydrogen analyzers is revised to be consistent with STS post accident monitoring, by the addition of a note affecting the Actions. The Actions of CTS 3.6.4.1 are modified by a note which allows separate Condition entry for each instrument function listed in the post accident monitoring TS. The addition of this STS note to the TS requirements for the hydrogen analyzers in the post accident monitoring LCO is consistent with the CTS licensing basis for this instrumentation. | | | | | ITS 3.3.4 REMOTE SHUTDOWN SYSTEM | | 5-A | 3/4.3.3.5 | 3.3.4 | Action statement "b" is revised consistent with the STS. This change simply adopts the STS format and presentation of this exception without introducing a technical change. | | 6-A | 3/4.3.3.5 | 3.3.4 | The Actions are modified by a note consistent with the STS. The STS note that allows separate Condition entry for each inoperable function is added, consistent with CTS interpretation. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 4-A | 3/4.3.3.8 | 3.3.3 | Surveillance 4.3.3.8 is revised consistent with the STS. The single CTS surveillance is divided into two separate STS surveillances for the channel check and channel calibration. | | 6-A | T 3.3-11 | 3.3.3 | The statement of inoperable channels in 3/4.3.3.8 Action statements 1, 2, 3, and 4 on the referenced table is replaced with the corresponding STS Condition A and C wording. These CTS Actions address the Condition of less than the "required" channels operable or less than the "minimum" channels operable. The Actions are based on the "required number of channels" and the "minimum channels" operable. Also, the STS wording describing "one or more functions with" is consistent with the manner in which the CTS Actions are applied to the Instrument functions. | | 14-A | T 3.3-11 | 3.3.3 | The list of accident monitoring instrumentation is revised to include two channels of hydrogen monitors and two channels of containment area radiation (high range). These instruments are currently required in other TS in the CTS and are being moved into the post accident monitor TS to be consistent with the location of these instruments in the STS. | | 15-A | Т 3.3-11 | 3.3.3 | The containment pressure instrument identified on the post accident monitoring instrumentation table is revised by the addition of the "narrow range" identifier. The containment pressure narrow (or normal) range instrument is identified as RG 1.97 Type A, Category I instrumentation required available by TS in the FNP RG 1.97 compliance report. The addition of the narrow range identifier is a clarification of the TS requirement which is consistent with the FNP licensing basis stated in the FNP RG 1.97 compliance report. | | 16-A | T 3.3-11 | 3.3.3 | The Minimum Channels Operable column on the referenced table is not used, consistent with the STS. The STS does not include a minimum channels operable requirement. All the STS Actions are based on the total required channels. The STS Actions establish separate Actions Conditions to address the different levels of operability for each instrument function. | | 17-A | T 3.3-11 | 3.3.3 | The Action column on the referenced table is revised to be consistent with the STS. The Action column contains a reference to the applicable Actions for each instrument function. The CTS column is revised to incorporate the reference to Required Action E.1 which directs the user to the Table and to include Condition F or G as applicable for each instrument. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 12b-A | T 3.3-6 | Deleted | Footnote (i) is not used with Instrument Functions 2.a, 2.b, and 2.c on the referenced table. In the STS, this is effectively addressed in the definition of operable-operability. Therefore, the note from the CTS requirements is effectively replaced by the FNP ITS definition of operability. | | 12c-A | Т 3.3-6 | 3.3.3 | The Mode 1- 6 applicability for the Control Room Isolation Monitors is revised to be consistent with the STS and with the FNP design basis accidents for which these monitors provide protection. | | 25-A | T 3.3-6 | 3.3.3 | Action statement 27a.2 of the referenced table is revised to be consistent with the corresponding STS LCO 3.3.3, post accident monitoring Conditions B and G and the reporting requirements section of STS Administrative Controls section 5.0. | | 28-A | T 4.3-3 | Deleted | The radiation monitoring surveillance Table does not exist in the STS. The radiation monitors are divided up into separate LCOs or moved outside of the TS. In the STS, the mode of applicability is only listed once for each radiation monitor. | | 29-A | T 4.3-3 | Deleted | The surveillance requirements identified in the referenced table are revised to indicate their FNP ITS corresponding SR number. | | 1-A | 3/4.3,3.8 | 3.3.3 | The title and LCO statement for Accident Monitoring Instrumentation are revised to be consistent with the STS. The title is revised to "Post Accident Monitoring Instrumentation" which more accurately describes the instrumentation function. Consistent with other STS instrument LCOs, the instruments listed in the Table associated with the LCO are labeled as Functions. | | 2-A | 3/4.3.3.8 | 3.3.3 | The Action which provides an exception to Specification 3.0.4 is revised consistent with the STS. The format and presentation of the CTS exception is revised to conform with the standard note format of the STS. The exception to Specification 3.0.4 remains unchanged. | | 3-A | 3/4.3.3.8 | 3.3.3 | The Actions are modified by a note consistent with the STS. The STS note which allows separate Condition entry for each inoperable function is added consistent with STS 3.3.3. The addition of the STS note provides a clarification which does not introduce a technical change to the way in which the CTS Actions are applied. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | 88-A | T 4.3-2 | 3.3.2 | The CFT applicable to the trip of all main feedwater pumps function is revised consistent with the type of surveillance assigned this function in the STS. The STS applies a TADOT surveillance to this function. Therefore, the corresponding FNP CFT is revised to be a TADOT but the CTS frequency including the modifying note 6 is retained in the corresponding SR. | | 92-A | T 4.3-2 | 3.3.2 | The presentation of the ESFAS interlock functions is revised consistent with the STS. Each function is listed separately and assigned individual surveillance requirements. | | 93-A | T 4.3-2 | 3.3.2 | A TADOT surveillance is assigned to the P-4 interlock consistent with the surveillance requirements for this function in the STS. The adoption of the STS TADOT and associated note, with the retention of the CTS frequency for the P-4 interlock surveillance is considered an administrative change. | | 95-A | T 4.3-2 | 3.3.2 | The surveillance frequency requirement to perform logic testing in note 2 of the referenced table is revised to be consistent with the STS. This frequency is incorporated into the corresponding FNP ITS surveillance requirements. The frequency of the affected surveillances remains unchanged. | | 98-A | T 4.3-2 | 3.3.2 | CTS surveillance requirement 4.3.2.2 for ESFAS Permissives/Interlocks P-4, P-11, and P-12 is retained in ITS by adding a new line Item to Table 3.3.2-1 under Function No. 8, "ESFAS Interlocks." This change is made to conform to ITS format but introduces no technical changes. | | | | | ITS 3.3.3 POST ACCIDENT MONITORING INSTRUMENTATION | | 7-A | 4.3.3.1 | Deleted | The referenced generic surveillance is replaced with individual surveillance requirements consistent with the format and presentation of the surveillance requirements in the STS. | | 10-A | Т 3.3-6 | 3.3.3 | The containment
area radiation monitors included on the referenced table are retained within the TS and moved into the Post Accident Monitoring TS consistent with the location of this instrumentation in the STS. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 75-A | T 4.3-2 | 3.3.2 | The applicable Modes for the surveillances on the referenced table are deleted. All changes to the applicable Modes for each ESFAS function are marked-up on CTS Table 3.3-3 and discussed appropriately. The STS does not list the functions or applicable Modes twice. | | 76-A | T 4.3-2 | 3.3.2 | The list of individual surveillances on the referenced table is modified to be consistent with the STS to include the surveillance requirement for a response time test where applicable. The assignment of the STS response time surveillance to each FNP ESFAS function provides more specific TS guidance consistent with the STS. | | 77-A | T 4.3-2 | 3.3.2 | The Channel Functional Test requirement associated with the manual ESFAS functions on the referenced table is revised to be consistent with the STS. The "R" CFT requirement for testing manual ESFAS functions is replaced by FNP ITS SR 3.3.2.6 consistent with the STS. The replacement of the CTS CFT and associated CTS note 1 with the STS TADOT and associated STS SR note does not change the existing CTS requirements to verify the operability of these ESFAS manual functions. | | 78-A | T 4.3-2 | 3.3.2 | The monthly CFT requirement associated with the automatic actuation logic ESFAS function on the referenced table is revised to be consistent with the STS. This single CTS surveillance requirement for the automatic actuation logic function is replaced by the two corresponding STS surveillances, the Actuation Logic Test and the Master Relay Test. The STS definitions split the existing testing into two types of tests which more accurately define the required testing. | | 80-A | T 4.3-2 | 3.3.2 | The Channel Check surveillance requirement for the ESFAS functions on the referenced table is replaced with the STS Channel Check surveillance. The STS surveillance replaces the CTS requirement without introducing a technical change. | | 82-A | T 4.3-2 | 3.3.2 | The quarterly Channel Functional Test (CFT) surveillance requirement for the ESFAS functions on Table 4.3-2 is replaced with the STS 92 day Channel Operational Test (COT) surveillance. The frequency requirement for this surveillance remains unchanged. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|--------------------|------------------|--| | 62-A | T 3.3-3 | 3.3.2 | Action statement 24 in the referenced table which is applicable to the loss of voltage and degraded grid voltage ESFAS instrument functions is revised to be consistent with the format of the STS and with | | | | | the FNP specific design of the loss of power instrument functions. Additionally, Action #24 is revised by the addition of references to Function 1 and 2. These FNP specific references replace the corresponding STS Condition A wording of "one or more functions." The corresponding STS Condition A and Action #24 are altered to clearly identify this Condition with the loss of voltage and degraded grid voltage Functions 1 and 2 on FNP ITS specific Table 3.3.5-1. The changes are made to be consistent with the format of the STS and to account for the new FNP specific function. | | 64-A | T 3.3-4 | 3.3.2 | The referenced table contains the trip setpoints and allowable values associated with the ESFAS functions. Consistent with the STS, the CTS setpoints are moved into the STS integrated Table 3.3.2-1. This change documents the movement of this information within the TSs. | | 66-A | T 3.3-4 | 3.3.2 | The steam flow in two steam lines high coincident with Tavg low low ESFAS function setpoints are revised consistent with the format and presentation of the STS. The CTS function is presented as two line items each with separate associated setpoints. | | 72-A | T 3.3-4
T 4.3-2 | 3.3.2 | The ESFAS functions listed on the referenced tables have been revised consistent with the format and presentation of the STS ESFAS functions. | | 73-A | T 4.3-2 | 3.3.2 | The referenced table, which contains the required surveillances for the ESFAS functions, is revised consistent with the STS. The STS Table 3.3.2-1 contains all the requirements associated with each ESFAS function. Therefore, the list of individual ESFAS functions and the Applicable Modes for each function are not listed twice in the STS. | | 74-A | T 4.3-2 | 3.3.2 | The Channel Functional Test requirement is revised consistent with the STS. The STS does not use the term Channel Functional Test. The corresponding STS defined term is the Channel Operational Test. This change only documents the implementation of the various STS surveillances in place of the CTS Channel Functional Test. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | 49-A | Т 3.3-3 | 3.3.2 | Action statement 19b in the referenced table is revised to provide an allowance to bypass an inoperable channel for up to 4 hours for surveillance testing other channels. In the STS, this same allowance is expressed in the standard STS note format. | | 51-A | T 3.3-3 | 3.3.2 | Action statement 21 in the referenced table is revised consistent with the corresponding STS Condition G format and presentation. The CTS reference to the minimum number of channels is replaced with the STS "required channels." | | 52-A | Т 3.3-3 | 3.3.2 | Action statement 21 in the referenced table is revised consistent with the corresponding STS Condition G by the reformat of the bypass allowance provision of this Action into an STS note. The reformat of this provision into the standard STS note format does not introduce a technical change to the CTS requirements. | | 53-A | Т 3.3-3 | 3.3.2 | Action statement 22 in the referenced table is revised to be consistent with the corresponding STS Condition F format and presentation. The CTS reference to the total number of channels is replaced with the STS "required channels." Train is used in the corresponding STS Condition in addition to channel to more accurately describe the train oriented functions which are also addressed by the Actions Condition. | | 55-A | Т 3.3-3 | 3.3.2 | Action statement 23 in the referenced table is revised by replacing the reference to a Channel Functional Test with the corresponding STS instrumentation test, a Trip Actuating Device Operational Test (TADOT). The same testing performed under the CTS for this function is performed under the STS TADOT surveillance. | | 58-A | Т 3.3-3 | 3.3.2 | Action statement 24b in the referenced table is revised to be consistent with the STS. The revision of this Action into a note format does not introduce a technical change. This change is made to conform with the format and presentation of this requirement in the corresponding STS Action Conditions. | | Discussion | | | Summary of Change | |------------|-----------|-----------|---| | Of Change | CTS | ITS | Summary or Change | | (DOC No.) | Reference | Reference | | | 41-A | Т 3.3-3 | 3.3.2 | Action statement 13 of the referenced table is revised consistent with the STS format by the incorporation of the bypass allowance into a note in the corresponding STS Action. The Action, which contained an allowance to bypass a channel for up to 4 hours for surveillance testing provided the other channel is operable, has been reformatted into a separate note within the corresponding STS | | 42-A | Т 3.3-3 | 3.3.2 | Action. Action statement 16 of the referenced table, which is applicable to ESFAS functions that must be bypassed instead of tripped and addresses one inoperable channel is revised to be
consistent with the STS. This CTS Action is effectively replaced by the STS Condition E. The CTS reference to the total number of channels is replaced with the STS "required channels." Similarly, the CTS phrase "and the | | 44
 | 11.74 | ** 1** | minimum channels operable requirement is met" is not required in the STS and has also been deleted. Also, the CTS Action contains the phrase "operation may proceed provided" which preceded the Action requirements. This CTS phrase is not used in the STS and is deleted from the CTS. Further, the CTS Action is revised by the deletion of the reference to specification 4.3.2.1. The CTS Action references specification 4.3.2.1 regarding the surveillance testing for which an additional channel may be bypassed. | | 44-A | Т 3.3-3 | 3.3.2 | Action statement 16 of the referenced table is revised consistent with the STS format by the incorporation of the bypass allowance into a note in the corresponding STS Action. | | 46-A | Т 3.3-3 | 3.3.2 | Action statement 18 of the referenced table is revised consistent with the corresponding STS ESFAS Condition B. The CTS Action is revised to incorporate the word "trains" in addition to channels to address those functions which are train oriented and use this Action. The use of the word trains and the STS reference to required channels do not introduce technical changes to the CTS requirements. | | 48-A | T 3.3-3 | 3.3.2 | Action statement 19 in the referenced table is revised consistent with the STS format and presentation of Actions Conditions. The CTS reference to the total number of channels is replaced with the STS "required channels." In addition, the CTS Action contains the phrase "startup and/or power operation | | | | | may proceed provided" which preceded the Action requirements. Similarly, the CTS phrase "The minimum channels operable requirement is met; however" is not required in the STS and has also been deleted. Additionally, the CTS Action is revised by the deletion of the reference to specification 4.3.2.1. The CTS Action references specification 4.3.2.1 regarding the surveillance testing for which the inoperable channel may be bypassed. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 27-A | Т3.3-3 | 3.3.2 | The turbine trip and feedwater isolation function is revised by the addition of safety injection to the initiating functions consistent with the STS. The addition of a separate line item for the safety injection initiation of turbine trip and feedwater isolation is consistent with the FNP design and provides a more complete list of initiating functions. | | 30-A | Т3.3-3 | 3.3.2 | The redundant CTS function 6.b SG water level channels, applicable Modes, and Action are deleted consistent with the presentation of this information in the STS. The information being deleted is redundant and unnecessary to correctly specify the requirements for the 3 required SG level channels. | | 32-A | T3.3-3 | 3.3.2 | The requirement for the number of channels of the RCP bus undervoltage start of the turbine-driven | | | | . 7.
 | auxiliary feedwater pump is revised consistent with the orion and consequently the number of electrical supply busses required, is fixed by plant design and the RCS TS which specify the number of operable RCS loops (RCPs) required in any given Mode of operation. The deletion of this information from the instrumentation TS does not reduce the requirements placed on the number of operable RCPs or the RCP electrical supply busses or the undervoltage instrumentation on those busses. | | 38-A | Т 3.3-3 | 3.3.2 | The * footnote used in the referenced table to revise the Actions associated with several ESFAS functions is deleted consistent with the STS. The CTS note was necessary to allow operations to continue once an inoperable channel of an RTS function was placed in trip. Although the ESFAS LCO Actions allowed for continued operation after placing a channel in trip, the ESFAS LCO requirement for that function may be considered not to be met. In the STS, the ESFAS Actions for placing a channel in trip allow continued operation with that channel in trip. | | 40-A | Т 3.3-3 | 3.3.2 | Action statement 13 of the referenced table, which is generally applicable to train oriented ESFAS functions and addresses one inoperable train is revised to be consistent with the STS. This CTS functions and addresses one inoperable train is revised to be consistent with the STS. This CTS Action is effectively replaced by the STS Condition C for most ESFAS functions. Also, the CTS Action is effectively replaced by the STS condition C for most ESFAS functions. Also, the CTS action is effectively replaced by the STS condition C for most ESFAS functions. | | | | | reference to the minimum charmers operable requirement to reperture to the minimum charmers operable requirement to reperture to the minimum charmers operable requirement to reperture to the surveillance is also one of terminology and presentation, the number of channels upon which the Action is based remain unchanged. The general reference to surveillance testing in the STS effectively accomplishes the purpose of allowing the applicable surveillances to be performed as the specific CTS reference. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 17-A | Т 3.3-3 | 3.3.2 | The automatic actuation logic functions on the referenced table are revised consistent with the STS to indicate the train orientation of this function. The number of trains required operable remains unchanged. | | 18-A | Т 3.3-3 | 3.3.2 | The ESFAS functions, Actions, and notes on the referenced table are revised to delete references to requirements that pertain to plant operation with less than 3 RCS loops. FNP is not licensed for less than 3 loop operation. | | 19-A | Т 3.3-3 | 3.3.2 | The individual listings in the referenced table total number channels column are revised consistent with the presentation of this information in the STS. The changes regarding the train orientation of certain functions are incorporated into the proposed FNP ITS ESFAS functions consistent with the FNP ESFAS function design and the description of these functions in the STS. | | 20-A | T 3.3-3 | 3.3.2 | The ## footnote to the referenced table is revised to be consistent with the STS. The revised STS footnote is stated consistent with the Mode of applicability as a positive statement of when the function is required. The revision of the CTS footnote to agree with the corresponding STS note "b" does not introduce a technical change to the CTS. | | 21-A | Т 3.3-3 | 3.3.2 | The Containment Isolation Phase A function in the referenced table is revised to be consistent with the FNP design and provides a more complete list of Phase A initiating functions. The applicable requirements for safety injection are all addressed under the safety injection function and no additional or new requirements are implied or expressed by the inclusion of safety injection under the Phase A function. | | 22-A | T3.3-3 | 3.3.2 | The ESFAS requirements for purge and exhaust isolation are moved into a separate instrumentation LCO consistent with the STS. This change effectively relocates the existing CTS requirements (LCO, Actions and surveillances) from one TS to another. | | 26-A | T3.3-3 | 3.3.2 | The P-14 SG water level high-high interlock function is revised consistent with the STS. Function 5a was redundant and therefore deleted. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 8-A | T 3.3-3 | 3.3.2 | The referenced table incorporates a clarification to the Applicable Modes column to add the phrase "or other specified conditions." This change conforms with the STS and is intended to cover the notes used to modify the Modes listed in this column. | | 9-A | Т 3.3-3 | 3.3.2 | The referenced table is revised to incorporate an additional column for the surveillance requirements associated with each function listed on the table. | | 10-A | T 3.3-4 | 3.3.2 | The Allowable Values and Trip Setpoints for each instrument function previously provided in the referenced table are moved into the integrated STS instrument table. This change conforms to format and presentation of this information in the STS and provides
all the information for each instrument function on one table. | | 11-A | Т 3.3-3 | 3.3.2 | The title of the referenced table "Action" column is changed to "Condition" consistent with the STS. In the STS, Conditions are provided to describe all channel inoperabilities allowed within the technical specifications. The revision of this column title and the replacement of the CTS Action Statement numbers with the letter(s) of the corresponding STS Conditions are made to conform with the format of the STS. | | 13-A | T 3.3-3 | 3.3.2 | The Minimum Channels Operable column of the referenced table is deleted consistent with the STS. The corresponding STS ESFAS table does not include this information. The replacement of the CTS Total Channels and Minimum Channels columns with the single STS Required Channels column is intended to be a change in the presentation and format of this information. | | 14-A | Т 3.3-3 | 3.3.2 | The functional unit titles on the referenced table are revised to be consistent with the corresponding STS functional units on the STS table. The editorial changes made to the CTS functional units are made to conform to the presentation and format of the STS. | | 16-A | T 3,3-3 | 3.3.2 | The # footnote to referenced table is revised to be consistent with the STS. The revision of the CTS footnote to agree with the corresponding STS note "a" does not introduce a technical change to the CTS and only restates the same requirement in terms of when the function is required. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | 3-A | 3/4.3.2 | 3.3.2 | The Action statement for an ESFAS setpoint are replaced by the STS 3.3.2 Condition A Required Action and associated Completion Time for one or more inoperable instrument channel(s). The reorganization of this Action requirements into the STS 3.3.2 Actions is made to conform with the presentation and format of this information in the STS. | | 4a-A | 3/4.3.2 | 3.3.2 | The generic requirement to perform all applicable surveillance requirements is deleted consistent with the STS. The corresponding required surveillances in the STS LCO 3.3.2 are individually identified for each ESFAS function on the integrated STS Table 3.3.2-1 and each surveillance requirement is further described in the surveillance section of the STS LCO. | | 4b-A | 3/4.3.2 | 3.3.2 | CTS surveillance 4.3.2.2 addresses testing of interlock functions and is revised to conform to STS. The CTS surveillance requirement for the Automatic Logic Test is added to the ITS Table 3.3.2-1, and the remainder of the surveillance requirements are covered by other ITS SRs. | | 4d-A | 3/4.3.2 | 3.3.2 | The surveillance which contains the requirement for response time testing of the ESFAS functions has been revised to be consistent with the STS. The corresponding STS response time surveillance includes a note that allows testing of the turbine-driven auxiliary feedwater pump to be delayed until sufficient steam pressure exists to support the required testing of this pump. The addition of this note to the response time test requirement is considered a clarification necessary to meet the ESF Response Time Test definition for pump testing. | | 5-A | 3/4.3.2 | 3.3.2 | The Actions are revised by the addition of a note, which affects all Actions consistent with the STS. The addition of this STS note providing guidance for the application of Action Conditions is considered a clarification that is consistent with the presentation and format of this information in the STS. | | 6-A | Т 3.3-3 | 3.3.2 | The title of the "Total Number of Channels" column is revised to be "Required Channels" consistent with the columns of the corresponding STS table. | | 7-A | Т 3.3-3 | 3.3.2 | The referenced table is revised to be consistent with the STS to include all applicable information for each ESFAS function. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 103-A | T 4.3-1 | 3.3.1 | The CFT designated by note 13 and assigned to the RTS reactor trip bypass breaker function on the referenced table is revised to a TADOT surveillance which is assigned to the common STS RTB and bypass breaker function consistent with the STS. In addition, the CTS note 13 which contains a modification of the test frequency applicable to the bypass breakers (prior to placing the bypass breakers in service) is incorporated directly into the corresponding STS TADOT surveillance consistent with the presentation of this information in the STS. This change does not alter the type or frequency of testing currently performed on the reactor trip bypass breakers. | | 106-A | T 4.3-1 | 3.3.1 | The RTB and reactor trip bypass breaker functions are combined into a single RTS RTB function consistent with the presentation of this information in the STS. | | 107-A | T 4.3-1 | 3.3.1 | The RTS functions are revised by the addition of a separate line item function for the RTB undervoltage and shunt trip mechanisms. Since the RTB diverse trip mechanisms have a longer allowed outage time than the RTBs themselves, the STS includes a separate function with an appropriate Action and surveillances. | | 108-A | 3/4.3.1 | 3.3.1 | The Actions are revised by the addition of a note which affects all Actions consistent with the STS which states that "Separate Condition entry is allowed for each Function." The STS note provides a clarification regarding the procedure for entering Actions Conditions in the STS. The note is required by the STS format conventions to allow each Actions Condition to be applied as necessary to an inoperable instrumentation Function listed on STS Table 3.3.1-1. The addition of this STS note providing guidance for the application of Action Conditions is considered a clarification that is consistent with the use and application of the CTS. | | | ··· . · · | | ITS 3.3.2 ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION (ESFAS) | | 1-A | 3/4.3.2 | 3.3.2 | The LCO statement, and Applicability are revised to address the STS table and the functions listed on that table. These changes are made to conform with the format and presentation of the LCO, Applicability, and Action requirements for this Technical Specification in the STS. | | Discussion | 1 | 170 | Summary of Change | |------------|-----------|-----------|---| | Of Change | CTS | ITS | Culturary of Orlango | | (DOC No.) | Reference | Reference | | | 94-A | Т 4.3-1 | 3.3.1 | The CFT on the referenced table, which is applicable to the safety injection (SI) input from ESF RTS function is revised to a TADOT and formatted consistent with the STS. The change to a TADOT surveillance is made to conform with the presentation and format of this information in the STS and does not result in a technical change to the required testing for this function. In addition, the corresponding STS TADOT surveillance is modified by a note which states that verification of setpoint is not required. The inclusion of this note is consistent with the design of the SI actuation of reactor trip in that there is no setpoint associated with this actuation circuitry. | | 96-A | T 4.3-1 | 3.3.1 | The refueling CFT for the RCP breaker position trip is revised to a TADOT and formatted consistent with the STS. In addition, the corresponding STS TADOT surveillance is modified by a note which states that verification of setpoint is not required. The inclusion of this note is consistent with the design of the RCP breaker position actuation of reactor trip
in that there is no setpoint associated with this actuation circuitry. The RCP breakers simply actuate contacts open or closed. | | 100-A | T 4.3-1 | 3.3.1 | The CFT and associated surveillance note 5 assigned to the RTB function on the referenced table are revised to a TADOT and formatted consistent with the STS. In addition, the CTS note 5 which contains the test frequency applicable to the RTB function surveillance is incorporated into the frequency of the corresponding STS TADOT surveillance. A two train system tested 31 days on a Staggered Test Basis in the STS is the same as a two train system tested 62 days on a Staggered Test Basis in the CTS. The changes discussed above do not reduce or after the CTS requirements for testing the RTBs. | | 102-A | T 4.3-1 | 3.3.1 | The CFT and associated note 5 assigned to the RTS automatic trip logic function on the referenced table are revised to an Actuation Logic Test surveillance consistent with the STS. The Actuation Logic Test is an STS defined test that is one of the surveillances used to replace the CFT surveillance. The conversion of this CTS CFT into the STS Actuation Logic Test does not reduce the CTS surveillance requirements for this function. The change to an Actuation Logic Test surveillance is made to conform with the presentation and format of this information in the STS and does not result in a technical change to the required testing for this function. Additionally, the revised STS states the Staggered Test Frequency in terms of the interval between each required test of a train or channel. A two train system tested 31 days on a Staggered Test Basis in the STS is the same as a two train system tested 62 days on a Staggered Test Basis in the CTS. The changes discussed above do not reduce or alter the CTS requirements for testing the automatic trip logic. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | 89-A | T 4.3-1 | 3.3.1 | The surveillance note 7 of the referenced table, which modifies the source range neutron flux channel check is composed of 2 provisions. The first provision of this note, which effectively establishes the applicability of the source range instrumentation channel check surveillance as below the P-6 interlock is deleted consistent with the presentation and format of this information in the STS. The second provision of note 7 is retained and revised consistent with the STS format for such notes. | | 90-A | T 4.3-1 | 3.3.1 | The RTS loss of flow-two loop functions is assigned a quarterly COT the same as most other RTS functions and consistent with the STS. The loss of flow function is presented as two separate functions in the RTS, one loop and two loop. However, the same instrument channels are used for both the one loop and two loop RTS loss of flow functions. The STS, for consistency of presentation requires the COT be applied for both loss of flow RTS functions. | | 91-A | T 4.3-1 | 3.3.1 | The quarterly CFT for the undervoltage and underfrequency RTS functions is retained in the FNP ITS as a quarterly Trip Actuating Device Operational Test (TADOT) consistent with the STS. As the CTS Channel Functional Test definition does not include the requirement for setpoint verification and adjustment, the addition of this note is consistent with the CTS quarterly test requirements for these functions. | | 92-A | T 4.3-1 | 3.3.1 | The CFT and associated note 10 on the referenced table, which is applicable to the turbine trip RTS functions are revised to a TADOT and formatted consistent with the STS. These changes are made to conform with the presentation and format of this information in the STS. In addition, the corresponding STS TADOT surveillance is modified by a note, which states that verification of setpoint is not required. The inclusion of this note is consistent with the CFT surveillance requirement for these functions as modified by note 9. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 78-A | T4.3-1 | 3.3.1 | The referenced table, which contains the required surveillances for the RTS functions, is revised consistent with the STS. The required surveillances listed on this Table are moved into the STS integrated function Table 3.3.1-1. The applicable Modes on CTS Table 4.3-1 only repeat the information contained on Table 3.3-1. | | 79-A | T4.3-1 | 3.3.1 | The CTS Channel Functional Test (CFT) surveillance is revised to be consistent with the STS. Changes to the defined terms and individual CTS surveillances are all discussed separately. | | 80-A | T4.3-1 | 3.3.1 | The list of individual CTS surveillances on the referenced table is modified to be consistent with the STS to include the requirement for a response time test. This change reformats the CTS generic surveillance requirements into individual TS function SRs. The response time surveillance is applied consistent with the response time test requirements identified in the FSAR and does not after the CTS requirements. | | 81-A | T 4.3-1 | 3.3.1
3.3.1 | The RTS functions on the referenced table are revised to correspond to the presentation of these functions on the integrated STS table. | | 84-A | T 4.3-1 | 3.3.1 | The monthly and quarterly Channel Calibrations for the power range neutron flux high setpoint are replaced by an 18 month channel calibration surveillance consistent with the STS. Also, monthly channel calibration surveillance is moved to the overtemperature delta T function consistent with the location and presentation of this SR in the STS. The actual performance requirements of this surveillance remain unchanged. | | 85-A | T 4.3-1 | 3.3.1 | The CTS daily and monthly, channel calibration requirements associated with the power range neutron flux low trip setpoint are replaced by an 18 month channel calibration surveillance consistent with the STS. The reorganization of these surveillances consistent with the STS provides an improved presentation more consistent with the other RTS functions and without repeating the same surveillance in multiple functions. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | 69-A | T 3.3-1 | 3.3.1 | Action statement 11 of the referenced table, which applies to the low RCS flow RCP breaker trip RTS function, is revised to be consistent with the corresponding STS Condition. The CTS reference to the Minimum number of channels is replaced with the STS term "Required Channels." The number of Required Channels in the STS is the same as the FNP minimum number of channels. | | 72-A | T 3.3-1 | 3.3.1 | Action statement 12 of the referenced table, which is applicable to the manual reactor trip function, is revised to be consistent with the corresponding STS Condition except that the STS Action to open the RTBs is part of CTS Action statement 13. This Action corresponds to STS Condition C and is applicable after Mode 3 is entered. | | 73-A | T 3.3-1 | 3.3.1 | Action statement 13 of the referenced table, which is applicable to reactor trip actuation trains (manual and automatic) and reactor trip breakers is revised to be consistent with the corresponding STS Condition. | | 74-A | Т 3.3-1 | 3.3.1 | Action statement 14 of the referenced table, which is applicable to the undervoltage and shunt trip mechanisms, is revised to be consistent with the STS. Also, the CTS requirement in Action 14 to declare the RTB inoperable and apply Action 1 is replaced with the STS requirement to be in Mode 3 in the following 6 hours, which is effectively the same as declaring the RTB inoperable and applying Action statement 1. | | 75-A | T 3.3-1 | 3.3.1 | Action statement 14 of the referenced table, which is applicable to the undervoltage and shunt trip mechanisms, is revised to be consistent with the STS. The allowance to bypass an RTB for maintenance on the undervoltage and shunt trip mechanisms is revised into the typical STS Note form and placed as a Note in Condition U Actions. | | 77-A | T 3.3-1 | 3.3.1 | Action statement 15 of the referenced table, which is applicable to the SI input and automatic actuation logic functions, is revised consistent with the STS. The use of the word "channel" is replaced by the STS term "train." Also, the provision of CTS Action 15 to bypass one channel (train) is revised into a note form in the
applicable Condition consistent with all such bypass provisions in the STS. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 57-A | T 3.3-1 | 3.3.1 | CTS Action statement 2b of the referenced table is revised into the Condition note format consistent with the STS. This CTS Action provides an allowance to bypass an inoperable channel. This allowance is expressed as a note in the corresponding STS Actions Condition. | | 63-A | T 3.3-1 | 3.3.1 | CTS Action statement 6 of the referenced table applies to inoperable turbine throttle valve closure turbine trip channels and becomes ITS Condition P. CTS Action statement 6 provides for multiple channels to be inoperable by simply stating "With the number of Operable channels less than the total number" The turbine trip - reactor trip function is anticipatory and not credited by any design basis accident analyses described in FSAR Chapter 15. ITS 3.3.1 Condition P is included which is equivalent to CTS Action statement 6. | | 65-A | Т 3.3-1 | 3.3.1 | Action statement 7 of the referenced table is converted into Condition E. The total number of channels requirement is revised to "Required Channels" consistent with the STS format and presentation of the number of required channels. In addition, the CTS Action 7 allowance for "Startup and Power Operation to proceed provided the following Conditions are satisfied" is no longer necessary and is deleted. | | 66-A | T 3.3-1 | 3.3.1 | Action statement 7b of the referenced table, which provides a channel bypass allowance, is reformatted into an STS note in the applicable Actions Condition. The statement in this CTS Action regarding meeting the minimum channels operable requirement is deleted, because the minimum channels operable requirement is one less than the total channel requirement. Therefore, the CTS minimum channels requirement is always met while the STS Action Condition is applicable. The CTS bypass allowance in Action 7b is also revised by deletion of the specific reference to a CTS surveillance. The specific reference is replaced by a simple reference to surveillance testing. | | 68-A | T 3.3-1 | 3.3.1 | Action statement 10 of the referenced table is revised to be consistent with the corresponding STS Condition. In the STS, entry into the applicable Action Condition for any TS requirement is automatically required. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | 48-A | Т 3.3-1 | 3.3.1 " | The RTB function on the referenced table is revised by the addition of a footnote. The footnote is intended to ensure that the RTB function and the RTS LCO clearly includes the bypass breaker when it is in use. Although this is a change to the CTS, it represents a clarification that is consistent with the intent of the CTS. | | 49-A | T 3.3-1 | 3.3.1 | The referenced table is revised by the addition of various STS Notes which modify the functions listed on the CTS Table. The notes modify the function itself, or the applicability or Actions listed on the referenced table for each function. | | 50-A | Т 3.3-1 | 3.3.1 | The * footnote used in the referenced table is revised consistent with the corresponding note in the STS. Although the new note does not include the phrase "and fuel in the reactor vessel." Because "fuel in the vessel" is part of the definition of MODE, the inclusion of this phrase in the STS note, which serves only to modify a stated MODE, is unnecessary. | | 51-A | Т 3.3-1 | 3.3.1 | The # footnote used in the referenced table to revise the Actions associated with several RTS functions is deleted consistent with the STS. The CTS note was necessary to allow operations to continue once an inoperable channel of an RTS function was placed in trip. The STS RTS Actions for placing a channel in trip allow continued operation with that channel in trip. | | 52-A | Т 3.3-1 | 3.3.1 | The Action statements associated with the referenced table have been modified to include the standard STS "Separate Condition Entry is Allowed" note that is applicable to each RTS function listed in the referenced table. The use of this STS note is explained in the STS Use and Application Section (1.0). The note allows each function to be treated independently and the LCO Actions Conditions to be entered separately for each inoperability associated with a different function. | | 54-A | T 3.3-1 | 3.3.1 | Action statement 1 on the referenced table is revised consistent with the format and presentation of the corresponding STS Actions Condition. The CTS Action reference to the minimum channels column is revised to refer to the STS "required channels." | | 56-A | Т 3.3-1 | 3.3.1 | Action statement 2 of the referenced table is revised to be consist with the corresponding STS Actions Condition. The CTS Action is revised to address the STS "required number of channels" instead of the "total number of channels." | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 35-A | T 3.3-1 | 3.3.1 | The Overtemperature and Overpower delta T functions on the referenced table have been revised to delete references to two loop operation because FNP is not licensed for two loop operation and these references do not contain requirements that are applicable to FNP. | | 38-A | Т 3.3-1 | 3.3.1 | The instrument channels identified in the Total Channels Column of the referenced table are revised to be consistent with the terminology used in the STS. Various terms used to identify or quantify specific channels listed in the Total Channels Column of the referenced table are revised solely to be consistent with the equivalent terms used in the STS. | | 39-A | T 3.3-1 | 3.3.1 | The total number of busses for the RCP undervoltage and underfrequency functions specified in the Total Channels Column of the referenced table are revised consistent with the presentation of this information in the STS. | | 40-A | T 3.3-1 | 3.3.1 | The Total Channels column on the referenced table for the P-7 interlock function is revised consistent with the STS presentation of this information. The reorganization of this information in the CTS does not reduce the CTS requirements. The same P-7, P-10, and P-13 channels are still required operable as before with the same applicable Modes but the P-10 and P-13 channels are only listed once and the P-7 function is more clearly identified as a RTS actuation train related interlock with its own applicable Mode and Action. | | 45-A | T 3.3-1 | 3.3.1 | The Minimum Channels Operable column of the referenced table is deleted. The corresponding STS Table 3.3.1-1 does not include this information. The STS simplifies the presentation of the number of channels necessary for each function on the RTS Table in a single column which is titled Required Channels. | | 46-A | T 3.3-1 | 3.3.1 | Action statement 14 associated with the referenced table is revised. The presentation of the trip mechanisms as a separate function is not intended to introduce technical changes to the intent of the CTS. The introduction of the new trip mechanism function on the referenced table and the reassignment of Action 14 to this new function are made only to facilitate the separation of the RTBs from the trip mechanisms for improved clarity. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------
--| | 20-A | T 2.2-1 | 3.3.1 | The Allowable Values and Trip Setpoints for each instrument function previously provided in the referenced table are moved into the integrated STS instrument table. This change provides all the information for each instrument function on one table. | | 22-A | Т 3.3-1 | 3.3.1 | The Action applicable to the power range neutron flux low trip function on the referenced table is revised. In the STS, Action statement 2 becomes Condition D and the STS provides a new Condition E which contains requirements that are applicable and appropriate for the power range neutron flux low trip function. For the power range neutron flux functions required operable above 50% RTP, STS Condition D retains the appropriate QPTR Actions. An inoperable channel in the power range neutron flux low trip function does not impact the operability of QPTR. STS Condition E eliminates the QPTR Actions for the power range neutron flux low trip function. | | 24-A | Т 3.3-1 | 3.3.1 | The Mode 2 applicability for the intermediate range instrumentation on the referenced table is revised. The Mode 2 applicability is expressed as two parts with P-6 as the boundary to facilitate the application of the STS Actions which are Mode specific (> P-6 or < P-6). | | 26-A | Т 3.3-1 | 3.3.1 | The introduction statement of the referenced table Action 3 is deleted. This introduction to the Action statements 3a, 3b, and 3c referred to the minimum channels operable column which is not used in the STS and which was the same as the CTS total channels required column for this function. | | 30-A | T 3.3-1 | 3.3.1 | The modes of applicability of the referenced table for the source range neutron flux function are revise and clarified. The STS defines 3 separate modes or conditions in which the source range is required operable. This change serves only to enhance clarity and simplify the TS requirements. | | 33-A | T 3.3-1 | 3.3.1 | The single channel requirement for source range instrumentation in Modes 3,4 and 5 is based on the sole function of the required channel being indication. This is consistent with the STS source range instrumentation requirements in these Modes. Since no Action is required for this function in these Modes unless there are no operable channels, and only one channel is required operable, the corresponding number of channels in the STS Required Channels column is 1. Therefore, the CTS Total Number of Channels Column (which becomes the STS Required Channels column) is revised to indicate only 1 required channel in Modes 3, 4, and 5 (with RTBs open) for the source range | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | 12-A | T 2.2-1 | 3.3.1 | Note 1 of the referenced table contains a definition for f_1 (ΔI). It has been revised to be consistent with the similar expression in Note 1 of STS Table 3.3.1-1. The components of this definition are revised to be expressed in equation form. | | . 13-A | T 2.2-1 | 3.3.1 | Notes 3 and 6 of the referenced table have been effectively incorporated into Notes 1 and 2 respectively, consistent with the format and presentation of this information in the STS Table 3.3.1-1. | | 14-A | 3/4.3.1 | 3.3.1 | The referenced LCO statement, Applicability, and Actions are revised consistent with the STS format and presentation of this information. The simple reference to CTS Table 3.3-1 in the CTS Action is replaced with the STS Condition A. The STS Condition A, although more technically complete in stating the applicable condition, effectively accomplishes the same thing as the simple CTS reference | | | 2 7 11 | | to the Table. | | 15a-A | 3/4.3.1 | 3.3.1 | The generic requirement to perform all applicable surveillance requirements is deleted. The corresponding required surveillances in the STS are identified for each individual instrument function on the integrated STS table and each surveillance requirement is described in the surveillance section of the STS technical specification. The information contained within these generic instrument surveillance requirements (type of testing required and frequency) is retained within the individual corresponding STS surveillance requirements. | | 16-A | T 3.3-1 | 3.3.1 | "Total Number of Channels" column in the referenced table is revised to be "Required Channels" consistent with the columns of the corresponding STS table. | | 17-A | T 3.3-1 | 3.3.1 | The referenced table is revised to incorporate a clarification to the Applicable Modes column. The phrase "or other specified conditions" is added to the Applicable Modes column title. This change is intended to cover the notes used to modify the Modes listed in this column. | | 18-A | T 3.3-1 | 3.3.1 | The referenced table is revised to incorporate an additional column for the surveillance requirements associated with each function listed on the table. | | 19-A | T 3.3-1 | 3.3.1 | "Action" column in the referenced table is revised to be "Condition" consistent with the columns of the corresponding STS table. Conditions are provided to describe all channel inoperabilities allowed within the technical specifications. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|--------------------|------------------|--| | | | | ITS 3.3.1 REACTOR TRIP SYSTEM (RTS) INSTRUMENTATION | | 1-A | 2.2 | 3.3.1 | Requirement for Limiting Safety System Settings is moved to organize all RTS setpoints and allowable values into a single TS. | | 3-A | 2.2.1 | 3.3.1 | The reorganization of the CTS to the ITS moves this Action requirement to be consistent with the presentation and format of the STS and does not change the technical intent of the action. | | 4-A | T 2.2-1
T 3.3-1 | 3.3.1 | The reorganization of the CTS to the ITS merges the RTS instrument setpoints, required channels and applicable Modes from both Table 2.2-1 and Table 3.3-1 to Table 3.3.1-1. | | 6-A | 2.2 | 3.3.1 | The P-7 Interlock function is moved into ITS Table 3.3-1 as a separate function. While P-7 does not have setpoints of its own, it represents a combined input from P-10 and P-13. P-7 is revised to correctly indicate that its setpoint is not unique. | | 7-A | 2.2.1 | 3.3.1 | Notes associated with the initial plant startup testing that provided guidance for determining the P-13 setpoints have been deleted. | | 8-A | T 2.2-1 | 3.3.1 | Added Reactor Trip Breaker Undervoltage and Shunt Trip Mechanisms Function to the referenced table as well as applicable Actions and surveillances to be consistent with the STS format and presentation of the reactor trip breaker requirements. | | 10-A | T 2.2-1 | 3.3.1 | Notes 1 and 2 of the referenced table regarding overtemperature and overpower delta T equations have been revised to delete descriptive information to be consistent with the format and presentation o this information in the STS. These descriptions constitute detail beyond that included in the technical specifications for any other safety analysis calculations. | | 11-A | T 2.2-1 | 3.3.1 | Note 1 of the referenced table has been revised to delete references to two loop operation because FNP is not licensed for two loop operation and these references do not contain requirements that are applicable to FNP. | #### Table A - ADMINISTRATIVE CHANGES Section 3.2 - POWER DISTRIBUTION LIMITS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | 4-A | 3/4.2.4 | 3.2.4 | CTS Action Statement a.2.a is deleted. This Action specifies that QPTR is to be restored or commence power reduction per Action a.2.b. ITS LCOs do not explicitly state restoration requirements unless it is the only specified action. CTS Action a.2.a is therefore deleted. | | 4a-A | 3/4.2.4 | 3.2.4 | CTS Action Statement a.2.b is revised and reformatted as ITS Required Action A.1, with "Reduce" replaced by 'Limit" with respect to THERMAL
POWER to clarify the intent that power is limited below the appropriate level while allowing increases in power within the mode of applicability. | | 8-A | 3/4.2.4 | 3.2.4 | The CTS Action d provision providing an exception to CTS LCO 3.0.4 is deleted because ITS LCO 3.0.4 provides for continued operation within the applicable Mode provided the Actions are met. | | 9-A | 3/4.2.4 | 3.2.4 | CTS 4.2.4.1 is revised and reformatted into ITS SR 3.2.4.1 with the phrase "above 50% power" deleted since allowance is included in the Mode of Applicability and it is redundant to restate it in the surveillance. | | 11-A | 3/4.2.4 | 3.2.4 | CTS 4.2.4.2 is revised and reformatted as ITS SR 3.2.4.2 with an accompanying note to clarify the SR applicability. | | 13-A | 3/4.2.4 | 3.2.4 | CTS 4.2.4.1 is translated as Note 1 to ITS SR 3.2.4.1 to clarify SR performance by combining guidance previously contained in the CTS 1.0 QPTR definition and the 75% power limitation from CTS 4.2.4.2. | | 14-A | 3/4.2.4 | 3.2.4 | CTS 4.2.4 1 is translated as Note 2 to ITS SR 3.2.4.1 to clarify that ITS SR 3.2.4.2 may be performed in lieu of SR 3.2.4.1. | | | | | ITS 3.4.1 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING (DNB) LIMITS | | 1-A | 3/4.2.5 | 3.4.1 | Requirements are moved to ITS LCO 3.4.1. Changes made to CTS are addressed in Section 3.4. | # Table A - ADMINISTRATIVE CHANGES Section 3.2 - POWER DISTRIBUTION LIMITS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | 5-A | 3/4.2.3 | 3.2.2 | The portion of CTS Action Statement c requiring Identification and correction of the cause of the out-of-limit condition prior to increasing power is deleted in ITS. In ITS repair requirements are implicit. | | 6-A | 3/4.2.3 | 3.2.2 | CTS Action Statement c is translated and modified using a NOTE in ITS stating that THERMAL POWER does not have to be reduced to comply with the Required Action. This note clarifies the applicability requirements of this Action Statement in relation to other actions affecting power level. | | 8-A | 3/4.2.3 | 3.2.2 | In ITS, the Unit 2 CTS Action Statement a includes the optional action to restore F ^N _{AH} to a value within the specified TS limit. Since restoration action is always an inherent operation whether specifically stated or not, addition of this optional action is administrative. | | 10-A | 3/4.2.3 | 3.2.2 | CTS surveillance 4.2.3.1 specifies an exception to CTS 4.0.4 (ITS SR 3.0.4) to allow Mode 1 entry to perform testing. This exception is deleted in ITS where the requirements of SR 3.0.4 is revised so that specifying such exceptions is not required. | | | | | ITS 3.2.3 - AXIAL FLUX DIFFERENCE (AFD) | | 3-A | 3/4.2.1 | 3.2.3 | The ** footnote in CTS referencing Special Test Exception LCO 3.10.2 is deleted consistent with ITS format to eliminate cross references in TS. | | 4-A | 3/4.2.1 | 3.2.3 | CTS Action Statement a.1 is deleted. This Action specifies requirements to restore AFD or apply Action a.2. ITS LCOs do not explicitly state restoration requirements unless it is the only specified action. CTS Action a.1 is therefore deleted. | | 5-A | 3/4,2.1 | 3.2.3 | The * footnote is moved included in ITS LCO 3.2.3 as a NOTE to the LCO statement. | | <u> </u> | | | ITS 3.2.4 QUADRANT POWER TILT RATIO (QPTR) | | 1-A | 3/4.2.4 | 3.2.4 | The * footnote in CTS referencing Special Test Exception LCO 3.10.2 is deleted consistent with the ITS format to eliminate cross references in TS. | #### Table A - ADMINISTRATIVE CHANGES Section 3.2 - POWER DISTRIBUTION LIMITS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | | : | | ITS 3.2.1 HEAT FLUX HOT CHANNEL FACTOR (FQ(Z)) | | 2-A | 3/4.2.2 | 3.2.1 | The ITS format introduces two separate limits for $F_0(Z)$. The Actions and Surveillance Requirements from CTS are revised and reformatted in ITS 3.2.1 to refer to these separate "steady state" and "transient" limits, for which " $F_0(Z)$ " is the only term used. | | 3-A | 3/4.2.2 | 3.2.1 | The CTS Action Statements a and b are revised and reformatted into ITS Actions A.1, A.2, and A.3, with applicable surveillances referenced rather than restated, but with no technical revision introduced. | | 6-A | 3/4.2.2 | 3.2.1 | CTS surveillance 4.2.2.1, which specified an exception to CTS 4.0.4 (ITS 3.0.4), is deleted. This exception is not needed in ITS, where each surveillance contains its own specified frequency. | | 9-A | 3/4.2.2 | 3.2.1 | CTS surveillance 4.2.2.2.f is incorporated into ITS SR 3.2.1.2 as a note without introducing technical changes. | | 11-A | 3/4.2.2 | 3.2.1 | CTS surveillance 4.2.2.2.g.2 is presented in ITS format as Required Action B.1 without changing CTS requirements. | | 13-A | ` 3/4.2.2 | 3.2.1 | CTS surveillance 4.2.2.3, which specifies allowances for manufacturing tolerances and measurement uncertainty when measuring $F_o(Z)$., is not a specified limit and is deleted. In ITS, requirements to measure $F_o(Z)$ automatically include all the appropriate allowances. | | | | | ITS 3.2.2 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR (FN AH) | | 2-A | 3/4.2.3 | 3.2.2 | A NOTE is added to ITS Action Condition A to ensure Actions A.2 and A.3 are completed; this ITS note duplicates the effect of part of CTS Action b, which therefore does not otherwise need to appear in ITS and is deleted. | | 3-A | 3/4.2.3 | 3.2.2 | CTS Action Statement b is revised and reformatted as ITS Condition B. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | 7-A | 3/4.1.3.2 | 3.1.7 | CTS surveillance 4.1.3.2 is retained in ITS as SR 3.1.4.1, a reorganization of this requirement to a more appropriate ITS section. This surveillance verifies agreement between demand position indication and DRPI, with the limit (12 steps) also being the limit for ITS LCO 3.1.4. | | | | | ITS 3.1.8 PHYSICS TESTS EXCEPTIONS - MODE 2 | | 1-A | 3/4.10.3 | 3.1.8 | The LCO statement is revised to reference updated ITS Specification numbers and titles. | | 4-A | 3/4.10.3 | 3.1.8 | The applicability statement is reworded to clarify that the LCO is applicable in Mode 2 during actual physics testing, in conformance with ITS format. | | 5-A | 3/4.10.3 | 3.1.8 | The CTS surveillance requirements are reworded and reformatted as ITS SRs, with the phrase "during Physics Tests" moved to the applicability statement and the instrument test definition Channel Functional Test changed to the ITS term Channel Operational Test. | | | | | ITS 3.4.2 RCS MINIMUM TEMPERATURE FOR CRITICALITY | | 1-A | 3/4.1.1.4 | 3.4.2 | Requirements are moved to ITS LCO 3.4.2; changes are addressed there. | | | | | ITS - 3.4.12 RCS LOW TEMPERATURE OVERPRESSURE PROTECTION (LTOP) SYSTEM | | 2-A | 3/4.1.2 | 3.4.12 | Part of CTS surveillance 4.1.2.3.2 and the * applicability footnote provide low temperature overpressure protection to the RCS and are therefore retained in the RCS section of ITS LCO 3.4.12 as a Note to the applicability of the LCO and as SR 3.4.12.1. Any changes are discussed in the DOCs for the RCS Chapter. | | Discussion | | | • | |------------|-----------|-----------|--| | Of Change | CTS | ITS | Summary of Change | | (DOC No.) | Reference | Reference | | | 3-A | 3/4.1.3.6 | 3.1.6 | CTS Figure 3.1-2 is deleted because it pertains only to two loop operation. FNP is not currently licensed for two loop operation. | | 4-A | 3/4.1.3.6 | 3.1.6 | The exception for surveillance testing stated in CTS is reformatted as an ITS SR note. | | 6-A | 3/4.1.3.6 | 3.1.6 | CTS Action Statement b is eliminated in ITS because it is essentially redundant to Action Statement a and is included in the Bases as an available option. | | 7-A | 3/4.1.3.6 | 3.1.6 | A surveillance requirement (SR 3.1.6.1) is added which effectively retains CTS 4.1.1.1.1.c requirements concerning control bank position. Movement of these CTS requirements is a reorganization to place them in the pertinent ITS section (3.1.6). | | 8-A | 3/4.1.3.6 | 3.1.6 | The * footnote in the CTS Applicability statement referencing Special Test Exceptions is deleted consistent with ITS format to not provide cross references to Special Test Exception LCOs. | | 9-A | 3/4.1.3.6 | 3.1.6 | The # footnote in CTS modifying applicability of the LCO is moved directly into the Applicability section of ITS LCO 3.1.6. | | | | | ITS 3.1.7 ROD POSITION INDICATION | | 1-A | 3/4.1.3.2 | 3.1.7 | CTS Actions are revised and a NOTE is added in ITS added permitting more than one rod position indicator per group to be
inoperable, with separate Condition entry allowed for each DRPI per group and for each demand position indicator per bank. This represents a more explicit statement of CTS allowances. | | 4-A | 3/4.1.3.2 | 3.1.7 | CTS Action b.1 is reworded and reformatted to become ITS Action Condition C, with clarification added in standard ITS terminology that DRPI verification may be "by administrative means". | | 5-A | 3/4.1.3.2 | 3.1.7 | CTS Action c is deleted because the provision to provide an exception to CTS LCO 3.0.4 by allowing indefinite operation with the LCO not met is included in ITS LCO 3.0.4. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | 6-A | 3/4.1.3.4 | 3.1.4 | The CTS 4.1.3.4.a surveillance requirement is reworded and reformatted into ITS SR 3.1.4.3. | | | | | ITS 3.1.5 SHUTDOWN BANK INSERTION LIMITS | | 1-A | 3/4.1.3.5 | 3.1.5 | The CTS LCO statement is reworded and reformatted to be consistent with STS SR 3.1.5.1. | | 3-A | 3/4.1.3.5 | 3.1.5 | The CTS Action Statement is reworded and reformatted to be consistent with STS LCO 3.1.5 with an accompanying applicability note. | | 5-A | 3/4.1.3.5 | 3.1.5 | The CTS surveillance requirement 4.1.3.5.a on shutdown rod insertion limit verification is deleted since it is redundant to the ITS general rules that require confirming shutdown rod position prior to withdrawing any control bank. | | 6-A | 3/4.1.3.5 | 3.1.5 | The * footnote in the CTS Applicability statement referencing Special Test Exceptions is deleted consistent with ITS format to not provide cross references to Special Test Exception LCOs. | | | | | ITS 3.1.6 CONTROL BANK INSERTION LIMITS | | 7-A | 3/4.1.1.1 | 3.1.6 | Requirements of CTS surveillance 4.1.1.1.b apply to Mode 1 and Mode 2 with $k_{\rm eff} \ge 1$. This condition is no longer covered in the SDM TS but continues to apply to control bank insertion limits in ITS 3.1.6, with the COLR referenced for the actual insertion limits. | | 8-A | 3/4.1.1.1 | 3.1.6 | Requirements of CTS surveillance 4.1.1.1.c apply to predicted critical control rod position, which is no longer covered in the SDM TS but is instead addressed by the control bank insertion limits TS. Therefore, this information is incorporated into ITS 3.1.6, with the COLR referenced for the actual insertion limits. | | 2-A | 3/4.1.3.6 | 3.1.6 | The CTS LCO statement is reworded and reformatted for ITS as SR 3.1.6. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 1-A | 3/4.1.3.1 | 3.1.4 | The * footnote in the CTS Applicability statement referencing Special Test Exceptions is deleted consistent with ITS format to not provide cross references to Special Test Exception LCOs. | | 3-A | 3/4.1.3.1 | 3.1.4 | CTS LCO 3.1.3.1 is reworded and reformatted as ITS LCO 3.1.4. The term "full length" is deleted because all rods are full length rods making the descriptor meaningless. | | 4-A | 3/4.1.3.1 | 3.1.4 | CTS LCO 3.1.3.1 Actions are reworded and reformatted into ITS LCO 3.1.4. | | 6-A | 3/4.1.3.1 | 3.1.4 | CTS Action Statement d.2 is reworded to eliminate a redundant reference to THERMAL POWER level restriction per CTS LCO 3.1.3.6. | | 8-A | 3/4.1.3.1 | 3.1.4 | CTS Action Statement d.3.c is reworded to require performance of the specific ITS SRs, SR 3.2.1.1 and 3.2.2.1 (which verify $F_o(Z)$ and F^N_{AH}), in place of describing the surveillances. | | 12-A | 3/4.1.3.1 | 3.1.4 | A new surveillance on rod drop time consistent with STS is added to the ITS Rod Group Alignment section as SR 3.1.4.3. | | 1-A | 3/4.1.3.4 | 3.1.4 | CTS LCO requirements are reformatted as SR 3.1 4.3 consistent with the STS format. | | 3-A | 3/4.1.3.4 | 3.1.4 | The term "full length" is deleted because all rods are full length rods making the descriptor meaningless | | 4-A | 3/4.1.3.4 | 3.1.4 | The CTS LCO requirements are retained in ITS 3.1.4, in conjunction with the general rules specified in SR 3.0.4. | | 5-A | 3/4.1.3.4 | 3.1.4 | CTS Action Statement b is deleted because it pertains only to two loop operation. FNP is not currently licensed for two loop operation. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|--|--|---| | 1b-A | 3/4.1.1.2 | 3.1.1 | LCO and surveillance statements regarding shutdown margin are reworded to ITS format, with no technical changes made. | | | | | ITS 3.1.2 CORE REACTIVITY | | 13-A | 3/4.1.1.1 | 3.1.2 | CTS surveillance 4.1.1.1.2 is reworded to be consistent with STS format and moved into the new ITS Core Reactivity LCO as SR 3.1.2.1. | | | e de la companya l | to the state of the second | ITS 3.1.3 MODERATOR TEMPERATURE COEFFICIENT (MTC) | | 1-A | 3/4.1.1.3 | 3.1.3 | The LCO statement is reworded and renumbered to ITS format, becoming LCO 3.1.3, with the abbreviation "MTC" used rather than the spelled-out phrase. | | 2-A | 3/4.1.1.3 | 3.1.3 | The # footnote in CTS referencing Special Test Exception LCO 3.10.3 is deleted consistent with ITS format to not provide cross references to Special Test Exception LCOs. | | 6-A | 3/4.1.1.3 | 3.1.3 | The * footnote in CTS modifying applicability of the LCO is moved to the Applicability section of ITS LCO 3.1.3. | | 7-A | 3/4.1.1.3 | 3.1.3 | CTS surveillance 4.1.1.3.b requirements are reworded and reformatted into ITS SR 3.1.3.2. | | | | | ITS 3.1.4 ROD GROUP ALIGNMENT LIMITS | | 5-A | 3/4.1.1.1 | 3.1.4 | Requirements of the first sentence of CTS surveillance 4.1.1.1.a constitute required actions for inoperable control rods and are incorporated into ITS 3.1.4 Actions. | | 3-A | 3/4.1.1.2 | 3.1.4 | Requirements of the first sentence of CTS surveillance 4.1.1.2.a constitute required actions for inoperable control rods and are incorporated into ITS 3.1.4 Actions. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | | |--------------------------------------|------------------|------------------|---|--| | | | | ITS 1.1 DEFINITIONS | | | 6-A | 3/4.1.1.1 | 1.1 | Requirements of the second sentence of CTS surveillance 4.1.1.1.a are incorporated into the SDM definition in ITS 1.1. | | | 4-A | 3/4.1.1.2 | 1.1 | Requirements of the second sentence of CTS surveillance 4.1.1.2.a are incorporated into the SDM definition in ITS 1.1. | | | į. | 1000 | | ITS 3.1.1 SHUTDOWN MARGIN (SDM) | | | 1a-A | 3/4.1.1.1 | 3.1.1 | A reference to the COLR replaces two CTS LCOs. The Temperature limit is deleted from the title and Mode 5 added to the Applicability. Since a COLR is implemented for both units, division of LCOs by temperature and mode is no longer needed, so that CTS LCOs
3.1.1.1 and 3.1.1.2 are combined into ITS LCO 3.1.1. | | | 1b-A | 3/4.1.1.1 | 3.1.1 | The LCO statement and surveillance are reworded consistent with STS and limits placed on SDM are retained in the COLR. These changes result in no technical difference from CTS. | | | 4-A | 3/4.1.1.1 | 3.1.1 | The surveillance frequency reference to the COLR is stated as a 24 hour surveillance interval, consister with STS. | | | 9-A | 3/4.1.1.1 | 3.1.1 | CTS 3/4.1.1.1, * footnote referencing special test exception 3.10.1 is deleted. ITS test exception LCO changes are included in their associated TS sections. | | | 10-A | 3/4.1.1.1 | 3.1.1 | CTS surveillance 4.1.1.1.e is reworded consistent with STS format without technical change to become ITS SR 3.1.1.1. | | | 1a-A | 3/4.1.1.2 | 3.1.1 | The temperature limit is deleted from the title because COLR limits implemented for both units do not require division of LCOs by temperature and Mode so that CTS LCOs 3.1.1.1 and 3.1.1.2 are combined into ITS LCO 3.1.1. | | # Table A - ADMINISTRATIVE CHANGES Section 3.0 - LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | | | | ITS 3.0 LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY | | 1-A | 3/4.0 | 3.0 | CTS 3.0.1 and 3.0.2 are revised to clarify that Actions are applicable upon discovery of failure to meet the LCO and to cite explicit exceptions to LCO 3.0.1 and 3.0.2 provided by other sections. Also, the statement in CTS 3.0.2 referring to "a condition prohibited by the TS" is addressed by new ITS LCO 3.0.3 and is therefore deleted from 3.0.2. | | 2-A | 3/4.0 | 3.0 | CTS 3.0.3 is revised to the ITS LCO format, expanded to clarify applicability, and the Completion Time limits made consistent with the ITS time clock system. | | 5-A | 3/4.0 | 3.0 | Applicable information is moved to the definition of Operable - Operability and this item is deleted in ITS | | 7-A | 3/4.0 | 3.0 | Format and presentation of times allowed until unit shutdown if 3.0.5 conditions aren't met are revised to be consistent with the applicable ITS LCO 3.8.1 Actions, with Completion Times tracked from the time at which the Condition is entered. | | 10-A | 3/4.0 | 3.0 | New LCO 3.0.7 is added about using Test Exception LCOs, consistent with the intent and current practice but providing formal and specific TS allowance to use the Test Exception to suspend another LCO's requirements. | | 11-A | 3/4.0 | 3.0 | CTS 4.0.1 and 4.0.3 are combined into ITS SR 3.0.1 and revised to conform with the format and presentation of the ITS. | | 12-A | 3/4.0 | 3.0 | CTS 4.0.2 is revised to become ITS SR 3.0.2 with additional clarifications pertaining to surveillance interval measurement which provide guidance in applying the new ITS format. | | 15-A | 3/4.0 | 3.0 | CTS 4.0.4 is revised to ITS SR 3.0.4, including a clarifying statement about mode entry consistent with LCO 3.0.4 and NRC guidance in GL 87-09. | | 18-A | 3/4.0 | 5.0 | CTS 4.0.5 is moved into the administrative controls section of ITS, reformatted in specification 5.5.8, and revised to delete now-inapplicable CTS 4.0.5.d and reference the applicability of SR 3.0.3. | ## Table A - ADMINISTRATIVE CHANGES Section 2.0 - SAFETY LIMITS (SLs) | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | | | | ITS 2.0 SAFETY LIMITS (Sis) | | 1-A | 2.0 | 2.0 | The Limiting Safety System Settings are moved into ITS Reactor Trip System LCO 3.3.1; changes made are addressed there. | | 2-A | 2.0 | 2.0 | CTS Safety Limit 2.1.1 for the reactor core is revised to incorporate the ITS numbering scheme and reference ITS figure 2.1.1-1 which will retain the FNP-specific figure contained in CTS). | | 3-A | 2.0 | 2.0 | References to 2 loop operation are deleted because they are not currently applicable to FNP. | | 5-A | 2.0 | 2.0 | Action Statements associated with CTS Safety Limit 2.1.2 are revised to be consistent with STS to correctly reference the appropriate ITS Safety Limit instead of restating the limit. | | 6-A | 2.0 | 2.0 | CTS reactor core Safety Limits figure 2.1-1 units are referenced in the ITS instead of restating the limit. | ## Table A - ADMINISTRATIVE CHANGES Section 1.0 - USE and APPLICATION | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|--------------------------|---| | 33-A | Table 1.1 | 1.1 | Modes 3, 4, & 5 Rated Thermal Power is revised to "NA" from "0" consistent with STS format since $k_{\rm eff}$ < 0.99 in these modes and therefore power is not produced. | | 34-A | Table 1.1 | 1.1 | Mode 6 $k_{\rm eff}$ revised consistent with STS to "NA". STS define Mode 6 as "one or more reactor vessel head bolts less than fully tensioned. This change eliminates duplicate requirements for the same parameter, otherwise Table 1.1 would include required value specified in Refueling LCO 3.9.1. | | 35-A | Table 1.1 | ** *** 1.1 ** * * | Modes 4 & 5 are modified by an added footnote noting full tensioning of reactor head bolts, thus more clearly distinguishing mode boundaries from Mode 6. | | 36-A | Table 1.1 | 1.1 | Mode 6 footnote is revised to address only head bolt status, with reference to fuel in the vessel moved to the "Mode" definition statement, consistent with STS. | # Table A - ADMINISTRATIVE CHANGES Section 1.0 - USE and APPLICATION | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 18-A | 1.19 | 1.1 | Definition of Mode is revised in ITS to incorporate footnote information (regarding fuel in the vessel and head bolt tension) from CTS Table 1.1, consistent with STS. | | 20-A | 1.23 | 1.1 | Definition of Purge-Purging is deleted; they are not used in STS and therefore not used in ITS, any resultant technical change will be addressed at the pertinent instance of CTS usage. | | 21-A | 1.21 | 1.1 | Definition of the Pressure Temperature Limits Report (PTLR) is revised in ITS to conform to STS wording with no change in meaning. | | 22-A | 1.24 | 1.1 | Definition of Quadrant Power Tilt Ratio (QPTR) is revised consistent with STS, with the instruction specifying how to compute the ratio with one detector inoperable moved to the pertinent surveillance requirement in the QPTR TS. | | 23-A | 1,26 | 1.1 | Definition of Reactor Trip System (RTS) is modified consistent with FSAR 7.3.2.7 and CTS B 3/4 3-2, adding guidance that ESF Response Time can be measured in a series of overlapping steps. | | 24-A | 1.27 | 1.1 | Definition of a Reportable Event is deleted consistent with STS; reporting requirements are specified in 10 CFR 50.72, 10 CFR 50.73. FNP reporting practices will not be impacted by this deletion. | | 26-A | 1.30 | 1.1 | Definition of Source Check is deleted; not used in STS and therefore not used in ITS, any resultant technical change will be addressed at the pertinent instance where CTS usage is changed. | | 27-A | 1.31 | 1.1 | Definition of Staggered Test Basis is revised consistent with STS; change affects how Frequency is specified in ITS, but no change results in the way testing is done at FNP. | | 30-A | 1.34, 35 | 1.1 | Definitions of Ventilation Exhaust Treatment System and Venting are deleted; these definitions are not used in STS and therefore not used in ITS, any resultant technical change will be addressed at the pertinent instance where CTS usage is changed. | | 31-A | Table 1.1 | 1.1 | Modes 1 & 2 temperatures are revised consistent with STS to "NA", since T _{ave} is specified in the Minimum Temperature for Criticality TS and controlled by the operating program for RCS T _{ave} . | ## Table A - ADMINISTRATIVE CHANGES Section 1.0 - USE and APPLICATION | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | | | | 1.1 DEFINITIONS | | 1-A | 1.0 | 1.1 | Definitions revised in ITS to conform to STS; rewording involves no technical changes. | | 5-A | 1.5.b | 1.1 | Part "b" of the CTS Channel Functional Test definition is made redundant by the single new Channel Operational Test definition in ITS and other new ITS instrumentation test definitions and is deleted. | | 7-A | 1.7 | 1.1 | The definition of Controlled Leakage is deleted; ITS addresses reactor coolant pump seal flow limits in a separate LCO in
Chapter 3.5. | | 9-A | 1.8 | 1.1 | The definition of the Core Operating Limits Report (COLR) is revised in the ITS; the meaning is not changed but the wording is made consistent with STS. | | 11-A | 1.11 | 1.1 | A statement is added consistent with FSAR 7.3.2.7 and CTS B 3/4 3-2 clarifying that ESF Response Time can be measured in a series of overlapping steps. | | 12-A | 1.12 | 1.1 | Frequency Notation definition and Table 1.2 are deleted; ITS spells out frequency intervals, eliminating the need for symbolic notation. | | 13-A | 1.13, 15,
16 | 1.1 | Titles of various definitions removed by previous license amendments are deleted. | | 14-A | 1.14, 33 | 1.1 | CTS definitions of types of leakage are combined into a single ITS "LEAKAGE" definition consistent with STS. | | 16-A | 1.17 | 1.1 | Definition of the Offsite Dose Calculation Manual (ODCM) is moved to the Administrative Controls section of ITS. | | 17-A | 1.18 | 1.1 | Definition of Operable-Operability is revised in ITS to incorporate CTS LCO 3.0.5 requirements (this LCO doesn't exist in ITS), consistent with STS. | ## CTS Discussion of Change Tables #### 5.7 High Radiation Area #### 5.7.2 (continued) except during periods of access by personnel under an approved RWP that shall specify the dose rate levels in the immediate work areas and the maximum allowable stay times for individuals in those areas. In lieu of the stay time specification of the RWP, direct or remote (such as closed circuit TV cameras) continuous surveillance may be made by personnel qualified in radiation protection procedures to provide positive exposure control over the activities being performed within the area. 5.7.3 For individual high radiation areas with radiation levels, as measured at 30 cm from the radiation source or from any surface that the radiation penetrates, such that a major portion of the body could receive in one hour a dose greater than 1000 mrem, accessible to personnel, that are located within large areas such as reactor containment, where no enclosure exists for purposes of locking, or that cannot be continuously guarded, and where no enclosure can be reasonably constructed around the individual area, that individual area shall be barricaded and conspicuously posted, and a flashing light shall be activated as a warning device. #### 5.0 ADMINISTRATIVE CONTROLS #### 5.7 High Radiation Area Pursuant to 10 CFR 20, paragraph 20.1601(c), in lieu of the requirements of 10 CFR 20.1601, each high radiation area, as defined in 10 CFR 20, in which the intensity of radiation is > 100 mrem/hr but < 1000 mrem/hr, shall be barricaded and conspicuously posted as a high radiation area and entrance thereto shall be controlled by requiring issuance of a Radiation Work Permit (RWP). Individuals qualified in radiation protection procedures (e.g., Health Physics personnel) or personnel continuously escorted by such individuals may be exempt from the RWP issuance requirement during the performance of their assigned duties in high radiation areas with exposure rates ≤ 1000 mrem/hr, provided they are otherwise following plant radiation protection procedures for entry into such high radiation areas. Any individual or group of individuals permitted to enter such areas shall be provided with or accompanied by one or more of the following: - a. A radiation monitoring device that continuously indicates the radiation dose rate in the area. - b. A radiation monitoring device that continuously integrates the radiation dose rate in the area and alarms when a preset integrated dose is received. Entry into such areas with this monitoring device may be made after the dose rate levels in the area have been established and personnel are aware of them. - c. An individual qualified in radiation protection procedures with a radiation dose rate monitoring device, who is responsible for providing positive control over the activities within the area and shall perform periodic radiation surveillance at the frequency specified by the health physics supervision in the RWP. - In addition to the requirements of Specification 5.7.1, areas accessible to personnel with radiation levels, as measured at 30 cm from the radiation source or from any surface that the radiation penetrates, such that a major portion of the body could receive in one hour a dose greater than 1000 mrem, shall be provided with locked or continuously guarded doors to prevent unauthorized entry and the keys shall be maintained under the administrative control of the Shift Foreman on duty or health physics supervision. Doors shall remain locked #### 5.6.10 <u>Steam Generator Tube Inspector Report</u> (continued) - c. Results of steam generator tube inspections which fall into Category C-3 shall be considered a Reportable Event and shall be reported pursuant to 10 CFR 50.73 prior to resumption of plant operation. The written report shall provide a description of investigations conducted to determine the cause of the tube degradation and corrective measures taken to prevent recurrence. - d. For implementation of the voltage-based repair criteria to tube support plate intersections, notify the NRC staff prior to returning the steam generators to service (Mode 4) should any of the following conditions arise: - If estimated leakage based on the projected end-of-cycle (or if not practical, using the actual measured end-of-cycle) voltage distribution exceeds the leak limit (determined from the licensing basis dose calculation for the postulated main steam line break) for the next operating cycle. - 2. If circumferential crack-like indications are detected at the tube support plate intersections. - 3. If indications are identified that extend beyond the confines of the tube support plate. - 4. If indications are identified at the tube support plate elevations that are attributable to primary water stress corrosion cracking. - 5. If the calculated conditional burst probability based on the projected end-of-cycle (or if not practical, using the actual measured end-of-cycle) voltage distribution exceeds 1 x 10⁻², notify the NRC and provide an assessment of the safety significance of the occurrence. #### 5.6.11 Alternate AC (AAC) Source Out of Service Report The NRC shall be notified if the AAC source is out of service for greater than 10 days. 5.6-6 #### 5.6 Reporting Requirements #### 5.6.8 PAM Report When a report is required by Condition B or G of LCO 3.3.3, "Post Accident Monitoring (PAM) Instrumentation," a report shall be submitted within the following 14 days. The report shall outline the preplanned alternate method of monitoring, the cause of the inoperability, and the plans and schedule for restoring the instrumentation channels of the Function to OPERABLE status. #### 5.6.9 <u>Tendon Surveillance Report</u> Any abnormal degradation of the containment structure detected during the tests required by the Pre-stressed Concrete Containment Tendon Surveillance Program shall be reported to the NRC within 30 days. The report shall include a description of the tendon condition, the condition of the concrete (especially at tendon anchorages), the inspection procedures, the tolerances on cracking, and the corrective action taken. #### 5.6.10 Steam Generator Tube Inspector Report - a. Following each inservice inspection of steam generator tubes, the number of tubes plugged, repaired (for Unit 2 only: or designated F*), in each steam generator shall be reported to the Commission within 15 days of the completion of the plugging or repair effort. - b. The complete results of the steam generator tube and sleeve inservice inspection shall be submitted to the Commission within 12 months following the completion of the inspection. This Report shall include: - Number and extent of tubes and sleeves inspected. - 2. Location and percent of wall-thickness penetration for each indication of an imperfection. - 3. Identification of tubes plugged or repaired. ### 5.6.5 <u>CORE OPERATING LIMITS REPORT (COLR)</u> (continued) 3b. WCAP-12610-P-A, "Vantage+ Fuel Assembly Reference Core Report," April 1995 (W Proprietary). (Methodology for LCO 3.2.1 - Heat Flux Hot Channel Factor.) - c. The core operating limits shall be determined such that all applicable limits (e.g., fuel thermal mechanical limits, core thermal hydraulic limits, Emergency Core Cooling Systems (ECCS) limits, nuclear limits such as SDM, transient analysis limits, and accident analysis limits) of the safety analysis are met. - d. The COLR, including any midcycle revisions or supplements, shall be provided upon issuance for each reload cycle to the NRC. ## 5.6.6 Reactor Coolant System (RCS) PRESSURE AND TEMPERATURE LIMITS REPORT (PTLR) - a. The reactor coolant system pressure and temperature limits, including heatup and cooldown rates, shall be established and documented in the PTLR for LCO 3.4.3. - b. The analytical methods used to determine the RCS pressure and temperature limits shall be those previously reviewed and approved by the NRC, specifically those described in the NRC letters dated March 31, 1998 and April 3, 1998. - c. The PTLR shall be provided to the NRC upon issuance for each reactor fluence period and for any revision or supplement thereto. #### 5.6.7 EDG Failure Report If an individual emergency diesel generator (EDG) experiences four or more valid failures in the last 25 demands, these failures shall be reported within 30 days. Reports on EDG failures shall include a description of the failures, underlying causes, and corrective actions taken per the Emergency Diesel Generator Reliability Monitoring Program. #### 5.6 Reporting Requirements ## 5.6.5 CORE OPERATING LIMITS REPORT (COLR) (continued) - 1. SHUTDOWN MARGIN limit for MODES 2 (with k_{eff} < 1), 3, 4, and 5 for LCO 3.1.1. - 2. Moderator Temperature Coefficient BOL and EOL limits and 300 ppm and 100 ppm surveillance limits for LCO 3.1.3, - 3. Shutdown Bank Insertion Limits for LCO 3.1.5, - 4. Control Bank Insertion Limit for
LCO 3.1.6, - 5. Axial Flux Limits for LCO 3.2.3, - 6. Heat Flux Hot Channel Factor FoRTP limits, K(Z) figure, W(Z) values, and Fo(Z) Penalty Factors for LCO 3.2.1, - 7. Nuclear Enthalpy Rise Hot Channel Factor limits, $F_{\Delta H}^{RTP}$, and Power Factor Multiplier, $PF_{\Delta H}$, for LCO 3.2.2. - b. The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents: - 1. WCAP-9272-P-A, "Westinghouse Reload Safety Evaluation Methodology," July 1985 (W Proprietary). - (Methodology for LCOs 3.1.1 SHUTDOWN MARGIN, 3.1.3 Moderator Temperature Coefficient, 3.1.5 Shutdown Bank Insertion Limit, 3.1.6 Control Bank Insertion Limits, 3.2.3 Axial Flux Difference, 3.2.1 Heat Flux Hot Channel Factor, and 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor.) - 2. WCAP-10216-P-A, Rev.1A, "Relaxation of Constant Axial Offset Control / Fo Surveillance Technical Specification," February 1994 (W Proprietary). - (Methodology for LCOs 3.2.3 Axial Flux Difference and 3.2.1 Heat Flux Hot Channel Factor.) - 3a. WCAP-12945-P-A, Volume 1, Revision 2, and Volumes 2 through 5, Revision 1, "Code Qualification Document for Best Estimate LOCA Analysis," March 1998 (W Proprietary). #### 5.6 Reporting Requirements #### 5.6.3 Radioactive Effluent Release Report A single submittal may be made for a multiple unit station. The submittal should combine sections common to all units at the station; however, for units with separate radwaste systems, the submittal shall specify the releases of radioactive material from each unit. The Radioactive Effluent Release Report covering the operation of the unit in the previous year shall be submitted prior to May 1 of each year in accordance with 10 CFR 50.36a. The report shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit. The material provided shall be consistent with the objectives outlined in the ODCM and Process Control Program and in conformance with 10 CFR 50.36a and 10 CFR Part 50, Appendix I, Section IV.B.1. #### 5.6.4 <u>Monthly Operating Reports</u> Routine reports of operating statistics and shutdown experience, including documentation of all challenges to the pressurizer power operated relief valves or pressurizer safety valves, shall be submitted on a monthly basis no later than the 15th of each month following the calendar month covered by the report. In the event a RHR relief valve or a RCS vent is used to mitigate a RCS pressure transient, the monthly operating report shall describe the circumstances initiating the transient, the effect of the RHR relief valves or vent on the transient, and any corrective action necessary to prevent recurrence. #### 5.6.5 CORE OPERATING LIMITS REPORT (COLR) a. Core operating limits shall be established prior to each reload cycle, or prior to any remaining portion of a reload cycle, and shall be documented in the COLR for the following: #### 5.0 ADMINISTRATIVE CONTROLS #### 5.6 Reporting Requirements The following reports shall be submitted in accordance with 10 CFR 50.4. #### 5.6.1 Occupational Radiation Exposure Report A single submittal may be made for a multiple unit station. The submittal should combine sections common to all units at the station. A tabulation on an annual basis of the number of station, utility, and other personnel (including contractors), for whom monitoring was performed, receiving an annual deep dose equivalent > 100 mrems and the associated collective deep dose equivalent (reported in person - rem) according to work and job functions (e.g., reactor operations and surveillance, inservice inspection, routine maintenance, special maintenance (describe maintenance), waste processing, and refueling). This tabulation supplements the requirements of 10 CFR 20.2206. The dose assignments to various duty functions may be estimated based on pocket ionization chamber, thermoluminescence dosimeter (TLD), electronic dosimeter, or film badge measurements. Small exposures totaling < 20 percent of the individual total dose need not be accounted for. In the aggregate, at least 80 percent of the total deep dose equivalent received from external sources should be assigned to specific major work functions. The report covering the previous calendar year shall be submitted by April 30 of each year. ### 5.6.2 Annual Radiological Environmental Operating Report A single submittal may be made for a multiple unit station. The submittal should combine sections common to all units at the station. The Annual Radiological Environmental Operating Report covering the operation of the unit during the previous calendar year shall be submitted by May 15 of each year. The report shall include summaries, interpretations, and analyses of trends of the results of the radiological environmental monitoring program for the reporting period. The material provided shall be consistent with the objectives outlined in the Offsite Dose Calculation Manual (ODCM), and in 10 CFR 50, Appendix I, Sections IV.B.2, IV.B.3, and IV.C. #### 5.5 Programs and Manuals #### 5.5.17 Containment Leakage Rate Testing Program (continued) Leakage rate acceptance criteria are: - a. Containment overall leakage rate acceptance criterion is \leq 1.0 L_a. During plant startup following testing in accordance with this program, the leakage rate acceptance criteria are \leq 0.60 L_a for the combined Type B and C tests, and \leq 0.75 L_a for Type A tests; - b. Air lock testing acceptance criteria are: - 1. Overall air lock leakage rate is $\leq 0.05 L_a$ when tested at $\geq P_a$. - 2. For each door, leakage rate is ≤ 0.01 L₂ when pressurized to ≥ 10 psig. - c. During plant startup following testing in accordance with this program, the leakage rate acceptance criterion for each containment purge penetration flowpath is $\leq 0.05 L_a$. The provisions of SR 3.0.2 do not apply to the test frequencies specified in the Containment Leakage Rate Testing Program. The provisions of SR 3.0.3 are applicable to the Containment Leakage Rate Testing Program. #### 5.5.15 Safety Function Determination Program (SFDP) (continued) - b. A required system redundant to the system(s) in turn supported by the inoperable supported system is also inoperable; or - c. A required system redundant to the support system(s) for the supported systems (a) and (b) above is also inoperable. The SFDP identifies where a loss of safety function exists. If a loss of safety function is determined to exist by this program, the appropriate Conditions and Required Actions of the LCO in which the loss of safety function exists are required to be entered. #### 5.5.16 <u>Main Steamline Inspection Program</u> The three main steamlines from the rigid anchor points of the containment penetrations downstream to and including the main steam header shall be inspected. The extent of the inservice examinations completed during each inspection interval (IWA 2400, ASME Code, 1974 Edition, Section XI) shall provide 100 percent volumetric examination of circumferential and longitudinal pipe welds to the extent practical. The areas subject to examination are those defined in accordance with examination category C-G for Class 2 piping welds in Table IWC-2520. #### 5.5.17 Containment Leakage Rate Testing Program A program shall be established to implement the leakage rate testing of containment as required by 10 CFR 50.54 (o) and 10 CFR 50, Appendix J, Option B, as modified by approved exemptions. This program shall be in accordance with the guidelines contained in Regulatory Guide 1.163, "Performance-Based Containment Leak-Test Program," dated September 1995. The peak calculated containment internal pressure for the design basis loss of coolant accident, Pa, is 43 psig. The maximum allowable containment leakage rate, L_a , at P_a , is 0.15% of containment air weight per day. #### 5.5 Programs and Manuals ### 5.5.14 Technical Specifications (TS) Bases Control Program (continued) - c. The Bases Control Program shall contain provisions to ensure that the Bases are maintained consistent with the FSAR. - d. Proposed changes that meet the criteria of Specification 5.5.14b above shall be reviewed and approved by the NRC prior to implementation. Changes to the Bases implemented without prior NRC approval shall be provided to the NRC on a frequency consistent with 10 CFR 50.71(e). ### 5.5.15 <u>Safety Function Determination Program (SFDP)</u> This program ensures loss of safety function is detected and appropriate actions taken. Upon entry into LCO 3.0.6, an evaluation shall be made to determine if loss of safety function exists. Additionally, other appropriate actions may be taken as a result of the support system inoperability and corresponding exception to entering supported system Condition and Required Actions. This program implements the requirements of LCO 3.0.6. The SFDP shall contain the following: - a. Provisions for cross train checks to ensure a loss of the capability to perform the safety function assumed in the accident analysis does not go undetected: - b. Provisions for ensuring the plant is maintained in a safe condition if a loss of function condition exists: - c. Provisions to ensure that an inoperable supported system's Completion Time is not inappropriately extended as a result of multiple support system inoperabilities; and - d. Other appropriate limitations and remedial or compensatory actions. A loss of safety function exists when, assuming no concurrent single failure, a safety function assumed in the accident analysis cannot be performed. For the purpose of this program, a loss of safety function may exist when a support system is inoperable, and: a. A required system redundant to the system(s) supported by the inoperable support system is also inoperable; or #### 5.5.13 <u>Diesel Fuel Oil Testing Program</u> A diesel fuel oil testing program to
implement required testing of both new fuel oil and stored fuel oil shall be established. The program shall include sampling and testing requirements, and acceptance criteria, all in accordance with applicable ASTM Standards. The purpose of the program is to establish the following: - a. Acceptability of new fuel oil for use prior to addition to the emergency diesel generator storage tanks by determining that the fuel oil has: - an API gravity or an absolute specific gravity within limits, - 2. a flash point and kinematic viscosity within limits for ASTM 2D fuel oil, and - 3. a clear and bright appearance. - b. Fuel oil stored in the emergency diesel generator storage tanks is within limits by verifying that a sample of diesel fuel oil from the storage tank, obtained in accordance with ASTM-D270-65, is within the acceptable limits specified in Table 1 of ASTM D975-74 when checked for viscosity, water, and sediment every 92 days. - c. The provisions of SR 3.0.2 and SR 3.0.3 are applicable to the Diesel Fuel Oil Testing Program surveillance test frequencies. #### 5.5.14 Technical Specifications (TS) Bases Control Program This program provides a means for processing changes to the Bases of these Technical Specifications. - a. Changes to the Bases of the TS shall be made under appropriate administrative controls and reviews. - b. Licensees may make changes to Bases without prior NRC approval provided the changes do not involve either of the following: - 1. a change in the TS incorporated in the license; or - 2. a change to the updated FSAR or Bases that involves an unreviewed safety question as defined in 10 CFR 50.59. #### 5.5 Programs and Manuals #### 5.5.11 Ventilation Filter Testing Program (VFTP) (continued) e. Demonstrate that the heaters for the CREFS Pressurization System dissipate the value specified below when tested in accordance with ASME N510-1989. ESF Ventilation System Wattage (kW) **CREFS Pressurization** 2.5 ± 0.5 The provisions of SR 3.0.2 and SR 3.0.3 are applicable to the VFTP test frequencies. ### 5.5.12 <u>Explosive Gas and Storage Tank Radioactivity Monitoring Program</u> This program provides controls for potentially explosive gas mixtures contained in the Waste Gas System, the quantity of radioactivity contained in gas storage tanks, and the quantity of radioactivity contained in unprotected outdoor liquid storage tanks. The program shall include: - a. The limits for concentrations of hydrogen and oxygen in the Waste Gas System and a surveillance program to ensure the limits are maintained. Such limits shall be appropriate to the system's design; - b. A surveillance program to ensure that the quantity of radioactivity contained in each gas storage tank is less than the amount that would result in a whole body exposure of ≥ 0.5 rem to any individual in an unrestricted area, in the event of an uncontrolled release of the tanks' contents; and - c. A surveillance program to ensure that the quantity of radioactivity contained in all outdoor liquid radwaste tanks that are not surrounded by liners, dikes, or walls, capable of holding the tanks' contents and that do not have tank overflows and surrounding area drains connected to the Liquid Radwaste Treatment System is less than 10 curies. The provisions of SR 3.0.2 and SR 3.0.3 are applicable to the Explosive Gas and Storage Tank Radioactivity Monitoring Program surveillance frequencies. #### 5.5.11 <u>Ventilation Filter Testing Program (VFTP)</u> (continued) b. Demonstrate for each of the ESF systems that an inplace test of the charcoal adsorber shows a penetration and system bypass < 0.5% when tested in accordance ASME N510-1989 at the system flowrate specified below. | ESF Ventilation System | Flowrate (CFM) | |------------------------|--------------------| | CREFS Recirculation | 2,000 ± 10% | | CREFS Filtration | 1,000 ± 10% | | CREFS Pressurization | 300 + 25% to - 10% | | PRF Post LOCA Mode | 5,000 + 10% | c. Demonstrate for each of the ESF systems that a laboratory test of a sample of the charcoal adsorber, when obtained as described in ASME N510-1989, shows the methyl iodide penetration less than the value specified below when tested in accordance with ASTM D3803-1989 at a temperature of ≤ 30°C and greater than or equal to the relative humidity specified below. | ESF Ventilation System | <u>Penetration</u> | <u>RH</u> | |------------------------|--------------------|-----------| | CREFS Recirculation | 2.5% | 70% | | CREFS Filtration | 2.5% | 70% | | CREFS Pressurization | 0.5% | 70% | | PRF Post LOCA Mode | 5% | 95% | NOTE: CREFS Pressurization methyl iodide penetration limit is based on a 6-inch bed depth. d. Demonstrate for each of the ESF systems that the pressure drop across the combined HEPA filters and the charcoal adsorbers is less than the value specified below when tested in accordance with ASME N510-1989 at the system flowrate specified below. | ESF Ventilation System | Delta P
(in. water gauge) | Flowrate
(CFM) | |------------------------|------------------------------|---------------------| | CREFS Recirculation | 2.3 | 2,000 <u>+ 10</u> % | | CREFS Filtration | 2.9 | 1,000 <u>+</u> 10% | | CREFS Pressurization | 2.2 | 300 + 25% to - 10% | | PRF Post LOCA Mode | 2.6 | 5,000 <u>+</u> 10% | #### 5.5 Programs and Manuals #### 5.5.10 Secondary Water Chemistry Program This program provides controls for monitoring secondary water chemistry to inhibit SG tube degradation. The program shall include: - a. Identification of a sampling schedule for the critical variables and control points for these variables; - b. Identification of the procedures used to measure the values of the critical variables; - c. Identification of process sampling points, which shall include monitoring the condenser hotwells for evidence of condenser in leakage; - d. Procedures for the recording and management of data; - e. Procedures defining corrective actions for all off control point chemistry conditions; and - f. A procedure identifying the authority responsible for the interpretation of the data and the sequence and timing of administrative events, which is required to initiate corrective action. ## 5.5.11 <u>Ventilation Filter Testing Program (VFTP)</u> A program shall be established to implement the following required testing of Engineered Safety Feature (ESF) filter ventilation systems at the frequencies specified in, and in accordance with, ASME N510-1989. The FNP Final Safety Analysis Report identifies the relevant surveillance testing requirements. a. Demonstrate for each of the ESF systems that an inplace test of the high efficiency particulate air (HEPA) filters shows a penetration and system bypass < 0.5% when tested in accordance with ASME N510-1989 at the system flowrate specified below. | ESF Ventilation System | Flowrate (CFM) | |---------------------------------------|--| | CREFS Recirculation | 2,000 ± 10% | | CREFS Filtration CREFS Pressurization | 1,000 <u>+</u> 10%
300 + 25% to - 10% | | PRF Post LOCA Mode | 5,000 <u>+</u> 10% | Table 5.5.9-3 Steam Generator Repaired Tube Inspection | | 1st S | ample Inspection | 2nd Sample Inspection | | | |--|--------|---|---|--|--| | Sample Size | Result | Action
Required | Result | Action
Required | | | A minimum of | C-1 | None | N/A | N/A | | | 20% of repaired | C-2 | Plug or repair defective | C-1 | None | | | tubes (1)(2) repaired tubes and inspect 100% of the repaired tubes in this | | C-2 | Plug or repair defective repaired tubes. | | | | | | steam generator | C-3 | Perform action for C-3 result of first sample. | | | | C-3 | Inspect all repaired
tubes in this steam
generator, plug or repair | All other steam generators are C-1. | None | | | | | defective tubes and inspect 20% of the repaired tubes in each steam generator | Some steam
generators C-2
but no
additional
steam | Perform action for C-2 result of first sample. | | | | | Notification to NRC pursuant to 10CFR50.72(b)(2). | generators are
C-3. | | | | | • | | Additional
steam
generator is
C-3. | Inspect all repaired tubes in each steam generator and plug or repair defective tubes. Notification to NRC pursuant to 10CFR50.72(b)(2). | | | | | | | | | ⁽¹⁾ (2) Each repair method is considered a separate population for determination of scope expansion. The inspection of repaired tubes may be performed on tubes from 1 to 3 steam generators based on outage plans. Table 5.5.9-2 Steam Generator Tube Inspection | | 1st Sample Inspection | | 1st Sample Inspection 2nd Sample Inspection | | 3rd Sample Inspection | | |---------------------------------|------------------------------|---|--|--|--------------------------------|---| | Sample Size | Result | Action Required | Result | Action Required | Result | Action Required | | A minimum of | C-1 | None | N/A | N/A | N/A | N/A | | S Tubes per | C-2 | Plug or repair | C-1 | None | N/A | NA | | S.G. | J | defective tubes | C-2 | Plug or repair | C-1 | None | | and ir | and inspect
additional 2S | | defective tubes and inspect | C-2 | Plug or repair defective tubes | | | | | tubes in this S.G. | | additional 4S tubes in this S.G. | C-3 | Perform action for C-3 result of first sample | | | | | C-3 | Perform action for C-3 result of first sample | N/A | N/A | | | C-3 | Inspect all tubes
in this S.G.,
plug
or repair defective | All other
S.G.s are
C-1 | None | NA | N/A | | | | tubes and inspect
2S tubes in each
other S.G. | Some S.G.s
C-2 but no
additional
S.G.s are
C-3 | Perform action
for C-2 result of
second sample | N/A | N/A | | NRC pursuant to
10 CFR 50.73 | Additional
S.G. is C-3 | Inspect all tubes in each S.G. and plug or repair defective tubes. Notification to NRC pursuant to 10 CFR 50.73 | N/A | N/A | | | | * . | | | | | | | $S = \frac{3N}{n}$ % Where N is the number of steam generators in the unit, and n is the number of steam generators inspected during an inspection. (For Unit 2 only --- NOTE: F* tubes do not have to be plugged or repaired.) Table 5.5.9-1 | No. of Steam Generators per Unit | Three | |---|-------| | First Inservice Inspection | Two | | Second and Subsequent Inservice Inspections | One* | ^{*} The other steam generator not inspected during the first inservice inspection shall be reinspected. The third and subsequent inspections may be limited to one steam generator on a rotating schedule encompassing 3 N% of the tubes (where N is the number of steam generators in the plant) if the results of the first or previous inspections indicate that all steam generators are performing in a like manner. Note that under some circumstances, the operating conditions in one or more steam generators may be found to be more severe than those in other steam generators. Under such circumstances the same sequence shall be modified to inspect the most severe conditions. #### 5.5 Programs and Manuals #### 5.5.9.4 <u>Acceptance Criteria</u> (continued) length of time since last scheduled Δt inspection during which VURL and V_{LRL} were implemented cycle length (the time between two CL scheduled steam generator inspections) structural limit voltage **V**SL average growth rate per cycle length Gr 95-percent cumulative probability NDE allowance for nondestructive examination uncertainty (i.e., a value of 20 percent has been approved by NRC) Implementation of these mid-cycle repair limits should follow the same approach as in TS 5.5.9.4.a.14.a, 5.5.9.4.a.14.b, and 5.5.9.4.a.14.c. b. The steam generator shall be determined OPERABLE after completing the corresponding actions (plug or repair of all tubes exceeding the plugging or repair limit) required by Tables 5.5.9-2 and 5.5.9-3. ### 5.5.9.4 <u>Acceptance Criteria</u> (continued) - degradation attributed to outside diameter stress corrosion cracking within the bounds of the tube support plate with a bobbin voltage greater than the lower voltage repair limit (2.0 volts), but less than or equal to the upper voltage repair limit*, may remain in service if a rotating probe inspection does not detect degradation. Steam generator tubes, with indications of outside diameter stress corrosion cracking degradation with a bobbin voltage greater than the upper voltage repair limit*, will be plugged or repaired. - d. If an unscheduled mid-cycle inspection is performed, the following mid-cycle repair limits apply instead of the limits identified in 5.5.9.4.a.14.a, 5.5.9.4.a.14.b, and 5.5.9.4.a.14.c. $$V_{MURL} = \frac{V_{SL}}{1.0 + NDE + Gr \frac{[CL - \Delta t]}{CL}}$$ $$V_{MLRL} = V_{MURL} - \left[V_{URL} - V_{LRL}\right] \frac{\left[CL - \Delta t\right]}{CL}$$ where: V_{URL} = upper voltage repair limit V_{LRL} = lower voltage repair limit V_{MURL} = mid-cycle upper voltage repair limit based on time into cycle V_{MLRL} = mid-cycle lower voltage repair limit based on V_{MURL} and time into cycle ^{*} The upper voltage repair limit is calculated according to the methodology in Generic Letter 95-05 as supplemented. #### 5.5.9.4 Acceptance Criteria (continued) - 13. (For Unit 2 only) Tube Expansion is that portion of a tube which has been increased in diameter by a rolling process such that no crevice exists between the outside diameter of the tube and the hole in the tubesheet. Tube expansion also refers to that portion of a sleeve which has been increased in diameter by a rolling process such that no crevice exists between the outside diameter of the sleeve and the parent steam generator tube. - 14. Tube Support Plate Repair Limit is used for the disposition of an alloy 600 steam generator tube for continued service that is experiencing predominantly axially oriented outside diameter stress corrosion cracking confined within the thickness of the tube support plates. At tube support plate intersections, the repair limit is based on maintaining steam generator tube serviceability as described below: - a. Steam generator tubes, whose degradation is attributed to outside diameter stress corrosion cracking within the bounds of the tube support plate with bobbin voltage less than or equal to the lower voltage repair limit (2.0 volts), will be allowed to remain in service. - b. Steam generator tubes, whose degradation is attributed to outside diameter stress corrosion cracking within the bounds of the tube support plate with a bobbin voltage greater than the lower voltage repair limit (2.0 volts), will be repaired or plugged except as noted in 5.5.9.4.a.14.c below. #### 5.5.9.4 <u>Acceptance Criteria</u> (continued) - 9. Tube repair refers to mechanical sleeving, as described by Westinghouse report WCAP-11178, Rev. 1, or laser welded sleeving, as described by Westinghouse reports WCAP-13088, Revision 4, and WCAP-14740 dated January 1997, which is used to maintain a tube in service or return a tube to service. This includes the removal of plugs that were installed as a corrective or preventive measure. - 10. Preservice Inspection means an inspection of the full length of each tube in each steam generator performed by eddy current techniques prior to service to establish a baseline condition of the tubing. This inspection shall be performed after the field hydrostatic test and prior to initial Power Operation using the equipment and techniques expected to be used during subsequent inservice inspections. - 11. (For Unit 2 only) F* Distance is the distance of the expanded portion of a tube which provides a sufficient length of undegraded tube expansion to resist pullout of the tube from the tubesheet. The F* distance is equal to 1.60 inches plus allowance for eddy current uncertainty measurement and is measured down from the top of the tube sheet or the bottom of the roll transition, whichever is lower in elevation. The allowance for eddy current uncertainty is documented in the steam generator eddy current inspection procedure. #### 12. (For Unit 2 only) F* Tube is a tube: - a. with degradation equal to or greater than 40% below the F* distance, and - b. which has no indication of imperfections greater than or equal to 20% of nominal wall thickness within the F* distance, and - c. that remains inservice. #### 5.5.9.4 <u>Acceptance Criteria</u> (continued) - Plugging or Repair Limit means the imperfection depth at or beyond which the tube shall be repaired (i.e., sleeved) or removed from service by plugging and is greater than or equal to 40% of the nominal tube wall thickness. (For Unit 2 only: This definition does not apply for tubes that meet the F* criteria.) For a tube that has been sleeved with a mechanical joint sleeve. through wall penetration of greater than or equal to 31% of sleeve nominal wall thickness in the sleeve requires the tube to be removed from service by plugging. For a tube that has been sleeved with a welded joint sleeve, through wall penetration greater than or equal to 24% of sleeve nominal wall thickness in the sleeve between the weld joints requires the tube to be removed from service by plugging. This definition does not apply to tube support plate intersections for which the voltage-based repair criteria are being applied. Refer to 5.5.9.4.a.14 for the repair limit applicable to these intersections. (For Unit 2 only: For a tube with an imperfection or flaw in the tube sheet below the lower joint of an installed elevated laser welded sleeve, no repair or plugging is required provided the installed sleeve meets all sleeved tube inspection requirements.) - 7. Unserviceable describes the condition of a tube or sleeve if it leaks or contains a defect large enough to affect its structural integrity in the event of an Operating Basis Earthquake, a loss-of-coolant accident, or a steam line or feedwater line break as specified in 5.5.9.3.c, above. - 8. Tube Inspection means an inspection of the steam generator tube from the point of entry (hot leg side) completely around the U-bend to the top support of the cold leg. (For Unit 2 only: For a tube with a tube sheet sleeve installed, the point of entry is the bottom of the tube sheet sleeve below the lower sleeve joint.) For a tube that has been repaired by sleeving, the tube inspection should include the sleeved portion of the tube. #### 5.5.9.3 Inspection Frequencies (continued) - 1. Primary-to-secondary tube leaks (not including leaks originating from tube-to-tubesheet welds) in excess of the limits of Specification 3.4.13. - 2. A seismic occurrence greater than the Operating Basis Earthquake. - 3. A loss-of-coolant accident requiring actuation of the engineered safeguards. - 4. A main steam line or feedwater line break. #### 5.5.9.4 Acceptance Criteria - a. As used in this Specification: - Imperfection means an exception to the dimensions, finish or contour of a tube or sleeve from that required by fabrication drawings or specifications. Eddy-current testing indications below 20% of the nominal wall thickness, if detectable, may be considered as imperfections. - 2. <u>Degradation</u> means a service-induced cracking, wastage, wear or general corrosion occurring on either inside or outside of a tube or sleeve. - 3. <u>Degraded Tube</u> means a tube, including the sleeve if the tube has been repaired, that contains imperfections greater than or equal to 20% of the nominal wall thickness caused by degradation. - 4. <u>%
Degradation</u> means the percentage of the tube or sleeve wall thickness affected or removed by degradation. - 5. <u>Defect</u> means an imperfection of such severity that it exceeds the plugging or repair limit. A tube or sleeve containing a defect is defective. # 5.5.9 Steam Generator (SG) Tube Surveillance Program (continued) # 5.5.9.2.2 (For Unit 2 only) Steam Generator F* Tube Inspection In addition to the minimum sample size as determined by Specification 5.5.9.2.1, all F* tubes will be inspected within the tubesheet region. The results of this inspection will not be a cause for additional inspections per Tables 5.5.9-2 and 5.5.9-3. ## 5.5.9.3 <u>Inspection Frequencies</u> The above required inservice inspections of steam generator tubes shall be performed at the following frequencies: - a. The first inservice inspection shall be performed after 6 Effective Full Power Months but within 24 calendar months of initial criticality. Subsequent inservice inspections shall be performed at intervals of not less than 12 nor more than 24 calendar months after the previous inspection. If two consecutive inspections following service under AVT conditions, not including the preservice inspection, result in all inspection results falling into the C-1 category or if two consecutive inspections demonstrate that previously observed degradation has not continued and no additional degradation has occurred, the inspection interval may be extended to a maximum of once per 40 months. - b. If the results of the inservice inspection of a steam generator conducted in accordance with Tables 5.5.9-2 and 5.5.9-3 at 40 month intervals fall in Category C-3, the inspection frequency shall be increased to at least once per 20 months. The increase in inspection frequency shall apply until the subsequent inspections satisfy the criteria of Specification 5.5.9.3.a; the interval may then be extended to a maximum of once per 40 months. - c. Additional, unscheduled inservice inspections shall be performed on each steam generator in accordance with the first sample inspection specified in Tables 5.5.9-2 and 5.5.9-3 during the shutdown subsequent to any of the following conditions: #### 5.5.9.2.1 (continued) d. Implementation of the steam generator tube/tube support plate repair criteria requires a 100 percent bobbin coil inspection for hot-leg and cold-leg tube support plate intersections down to the lowest cold-leg tube support plate with known outside diameter stress corrosion cracking (ODSCC) indications. The determination of the lowest cold leg tube support plate intersections having ODSCC indications shall be based on the performance of at least a 20 percent random sampling of tubes inspected over their full length. The results of each sample inspection shall be classified into one of the following three categories: | Category | Inspection Results | |---|---| | C-1 | Less than 5% of the total tubes inspected are degraded tubes and | | i de la companya de
La companya de la co | none of the inspected tubes are defective. | | C-2 | One or more tubes, but not more than 1% of the total tubes | | | inspected are defective, or between 5% and 10% of the total tubes | | | inspected are degraded tubes. | | C-3 | More than 10% of the total tubes inspected are degraded tubes or | | | more than 1% of the inspected tubes are defective. | Note: In all inspections, previously degraded tubes or sleeves must exhibit significant (greater than 10%) further wall penetrations to be included in the above percentage calculations. (continue^r # 5.5.9.2.1 (continued) - 2. Tubes in those areas where experience has indicated potential problems. - 3. A tube inspection (pursuant to Specification 5.5.9.4.a.8) shall be performed on each selected tube. If any selected tube does not permit the passage of the eddy current probe for a tube or sleeve inspection, this shall be recorded and an adjacent tube shall be selected and subjected to a tube inspection. - Indications left in service as a result of application of the tube support plate voltagebased repair criteria shall be inspected by bobbin coil probe during all future refueling outages. - c. The tubes selected as the second and third samples (if required by Tables 5.5.9-2 and 5.5.9-3) during each inservice inspection may be subjected to a partial tube inspection provided: - The tubes selected for these samples include the tubes from those areas of the tube sheet array where tubes with imperfections were previously found. - The inspections include those portions of the tubes where imperfections were previously found. ## 5.5.9 <u>Steam Generator (SG) Tube Surveillance Program</u> (continued) ## 5.5.9.1 <u>Steam Generator Sample Selection and Inspection</u> Each steam generator shall be determined OPERABLE during shutdown by selecting and inspecting at least the minimum number of steam generators specified in Table 5.5.9-1. # 5.5.9.2 <u>Steam Generator Tube * Sample Selection and Inspection</u> - 5.5.9.2.1 The steam generator tube minimum sample size, inspection result classification, and the corresponding action required shall be as specified in Tables 5.5.9-2 and 5.5.9-3. The inservice inspection of steam generator tubes shall be performed at the frequencies specified in Specification 5.5.9.3 and the inspected tubes shall be verified acceptable per the acceptance criteria of Specification 5.5.9.4. The tubes selected for each inservice inspection shall include at least 3% of the total number of tubes in all steam generators. (For Unit 2 only: Selection of tubes to be inspected is not affected by the F* designation.) When applying the exceptions of 5.5.9.2.1.a through 5.5.9.2.1.c, previous defects or imperfections in the area repaired by sleeving are not considered an area requiring reinspection. The tubes selected for these inspections shall be selected on a random basis except: - a. Where experience in similar plants with similar water chemistry indicates critical areas to be inspected, then at least 50% of the tubes inspected shall be from these critical areas. - b. The first sample of tubes selected for each inservice inspection (subsequent to the preservice inspection) of each steam generator shall include: - 1. All nonplugged tubes that previously had detectable wall penetrations greater than 20%. When referring to a steam generator tube, the sleeve shall be considered a part of the tube if the tube has been repaired per Specification 5.5.9.4.a.9. #### 5.5 Programs and Manuals #### 5.5.8 Inservice Testing Program This program provides controls for inservice testing of ASME Code Class 1, 2, and 3 components. The program shall include the following: a. Testing frequencies specified in Section XI of the ASME Boiler and Pressure Vessel Code and applicable Addenda as follows: ASME Boiler and Pressure Vessel Code and applicable Addenda terminology for inservice testing activities Required Frequencies for performing inservice testing activities Weekly Monthly Quarterly or every 3 months Semiannually or every 6 months Every 9 months Yearly or annually Biennially or every 2 years At least once per 31 days At least once per 92 days At least once per 7 days At least once per 184 days At least once per 276 days At least once per 366 days At least once per 731 days - b. The provisions of SR 3.0.2 are applicable to the above required Frequencies for performing inservice testing activities; - c. The provisions of SR 3.0.3 are applicable to inservice testing activities; and - d. Nothing in the ASME Boiler and Pressure Vessel Code shall be construed to supersede the requirements of any TS. # 5.5.9 <u>Steam Generator (SG) Tube Surveillance Program</u> The provisions of SR 3.0.2 are applicable to the SG Tube Surveillance Program Test Frequencies. 5.5.9.0 Each steam generator shall be demonstrated OPERABLE by performance of the following augmented inservice inspection program. ## 5.5 Programs and Manuals # 5.5.4 Radioactive Effluent Controls Program (continued) - i. Limitations on the annual and quarterly doses to a member of the public from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half lives > 8 days in gaseous effluents released from each unit to areas beyond the site boundary, conforming to 10 CFR 50, Appendix I; and - j. Limitations on the annual dose or dose commitment to any member of the public due to releases of radioactivity and to radiation from uranium fuel cycle sources, conforming to 40 CFR 190. ## 5.5.5 Component Cyclic or Transient Limit This program provides controls to track the FSAR, Table 5.2-2a, cyclic and transient occurrences to ensure that components are maintained within the design limits. # 5.5.6 <u>Pre-Stressed Concrete Containment Tendon Surveillance Program</u> This program provides controls for monitoring any tendon degradation in prestressed concrete containments, including effectiveness of its corrosion protection medium, to ensure containment structural integrity. The program shall include baseline measurements prior to initial operations. The Tendon Surveillance Program, inspection frequencies, and acceptance criteria shall be in accordance with Regulatory Guide 1.35, Revision 2, 1976. The provisions of SR 3.0.2 and SR 3.0.3 are applicable to the Tendon Surveillance Program inspection frequencies. # 5.5.7 Reactor Coolant Pump Flywheel Inspection Program This program shall provide for the inspection of each reactor coolant pump flywheel at least once per 10 years by conducting either: - a. An in-place ultrasonic examination over the volume from the innner bore of the flywheel to the circle of one-half the outer radius: or - b. A surface examination (magnetic particle and/or
liquid penetrant) of exposed surfaces of the disassembled flywheel. The provisions of SR 3.0.2 and SR 3.0.3 are applicable to the Reactor Coolant Pump Flywheel Inspection Program. ## 5.5 Programs and Manuals ## 5.5.4 Radioactive Effluent Controls Program (continued) - b. Limitations on the concentrations of radioactive material released in liquid effluents to unrestricted areas, conforming to 10 times the concentration stated in 10 CFR 20, Appendix B (to paragraphs 20.1001-20.2401), Table 2, Column 2; - c. Monitoring, sampling, and analysis of radioactive liquid and gaseous effluents in accordance with 10 CFR 20.1302 and with the methodology and parameters in the ODCM; - d. Limitations on the annual and quarterly doses or dose commitment to a member of the public from radioactive materials in liquid effluents released from each unit to unrestricted areas, conforming to 10 CFR 50, Appendix I; - e. Determination of cumulative and projected dose contributions from radioactive effluents for the current calendar quarter and current calendar year in accordance with the methodology and parameters in the ODCM at least every 31 days; - f. Limitations on the functional capability and use of the liquid and gaseous effluent treatment systems to ensure that appropriate portions of these systems are used to reduce releases of radioactivity when the projected doses in a period of 31 days would exceed 2% of the guidelines for the annual dose or dose commitment, conforming to 10 CFR 50, Appendix I; - g. Limitations on the dose rate resulting from radioactive material released in gaseous effluents to areas at and beyond the site boundary as follows: - For noble gases: Less than or equal to a dose rate of 500 mrem/year to the total body and less than or equal to a dose rate of 3000 mrem/year to the skin, and - 2. For lodine-131, lodine-133, tritium, and for all radionuclides in particulate form with half lives greater than 8 days: Less than or equal to a dose rate of 1500 mrem/year to any organ. - h. Limitations on the annual and quarterly air doses resulting from noble gases released in gaseous effluents from each unit to areas beyond the site boundary, conforming to 10 CFR 50, Appendix I; ## 5.5.2 Primary Coolant Sources Outside Containment This program provides controls to minimize leakage from those portions of systems outside containment that could contain highly radioactive fluids during a serious transient or accident to levels as low as practicable. The systems include recirculation portions of the Containment Spray, Safety Injection, and Chemical and Volume Control Systems, the Waste Gas System, the Reactor Coolant Sampling System, the Residual Heat Removal System, and the Containment Atmosphere Sampling System. The program shall include the following: - a. Preventive maintenance and periodic visual inspection requirements; and - b. Integrated leak test requirements for each system with the exception of the waste gas system and the containment atmosphere sampling system which are "snoop" tested at refueling cycle intervals or less. #### 5.5.3 Post Accident Sampling This program provides controls that ensure the capability to obtain and analyze reactor coolant, radioactive gases and particulates in plant gaseous effluents, and containment atmosphere samples under accident conditions. The program shall include the following: - a. Training of personnel; - b. Procedures for sampling and analysis; and - c. Provisions for maintenance of sampling and analysis equipment. # 5.5.4 Radioactive Effluent Controls Program This program conforms to 10 CFR 50.36a for the control of radioactive effluents and for maintaining the doses to members of the public from radioactive effluents as low as reasonably achievable. The program shall be contained in the ODCM, shall be implemented by procedures, and shall include remedial actions to be taken whenever the program limits are exceeded. The program shall include the following elements: a. Limitations on the functional capability of radioactive liquid and gaseous monitoring instrumentation including surveillance tests and setpoint determination in accordance with the methodology in the ODCM; #### 5.5 Programs and Manuals The following programs shall be established, implemented, and maintained. #### 5.5.1 Offsite Dose Calculation Manual (ODCM) - a. The ODCM shall contain the methodology and parameters used in the calculation of offsite doses resulting from radioactive gaseous and liquid effluents, in the calculation of gaseous and liquid effluent monitoring alarm and trip setpoints, and in the conduct of the radiological environmental monitoring program; and - b. The ODCM shall also contain the radioactive effluent controls and radiological environmental monitoring activities, and descriptions of the information that should be included in the Annual Radiological Environmental Operating, and Radioactive Effluent Release Reports required by Specification 5.6.2 and Specification 5.6.3. #### Licensee initiated changes to the ODCM: - a. Shall be documented and records of reviews performed shall be retained. This documentation shall contain: - 1. sufficient information to support the change(s) together with the appropriate analyses or evaluations justifying the change(s), and - 2. a determination that the change(s) maintain the levels of radioactive effluent control required by 10 CFR 20.1302, 40 CFR 190, 10 CFR 50.36a, and 10 CFR 50, Appendix I, and not adversely impact the accuracy or reliability of effluent, dose, or setpoint calculations; - b. Shall become effective after review and acceptance by the PORC and the approval of the General Manager Nuclear Plant; and - c. Shall be submitted to the NRC in the form of a complete, legible copy of the entire ODCM as a part of or concurrent with the Radioactive Effluent Release Report for the period of the report in which any change in the ODCM was made. Each change shall be identified by markings in the margin of the affected pages, clearly indicating the area of the page that was changed, and shall indicate the date (i.e., month and year) the change was implemented. #### 5.4 Procedures - 5.4.1 Written procedures shall be established, implemented, and maintained covering the following activities: - a. The applicable procedures recommended in Regulatory Guide 1.33, Revision 2, Appendix A, February 1978; - b. Quality assurance for effluent and environmental monitoring, using the quidance in Regulatory Guide 4.15, February 1979; - c. Fire Protection Program implementation; and - d. All programs specified in Specification 5.5. # 5.3 Unit Staff Qualifications 5.3.1 Each member of the unit staff shall meet or exceed the minimum qualifications of ANSI N18.1-1971 for comparable positions and the supplemental requirements specified in 10 CFR 55, except for (1) the senior individual in charge of Health Physics who shall meet or exceed the qualifications of Regulatory Guide 1.8, September 1975. Personnel who complete an accredited program which has been endorsed by the NRC shall meet the requirements of the accredited program in lieu of the above. ## 5.2 Organization ## 5.2.2 <u>Unit Staff</u> (continued) - 3. A break of at least 8 hours should be allowed between work periods, including shift turnover time; - 4. Except during extended shutdown periods, the use of overtime should be considered on an individual basis and not for the entire staff on a shift. Any deviation from the above guidelines for the minimum shift compliment defined in Specifications 5.2.2.a and b and health physics technicians shall be reviewed and approved by the General Manager - Nuclear Plant, his designee, or by higher levels of management. Any deviation from the above guidelines for key maintenance personnel shall be reviewed and approved by the Maintenance Manager or his designee. - f. The Assistant General Manager Plant Operations or the Operations Manager shall hold an SRO license. - g. The Shift Technical Advisor (STA) shall provide advisory technical support to the responsible SRO in the areas of thermal hydraulics, reactor engineering, and plant analysis with regard to the safe operation of the unit. In addition, the STA shall meet the qualifications specified by the Commission Policy Statement on Engineering Expertise on Shift. The same individual may fill this position for both units. ## 5.2.2 <u>Unit Staff</u> (continued) - At least one licensed Reactor Operator (RO) shall be present in the control room when fuel is in the reactor. In addition, while the unit is in MODE 1, 2, 3, or 4, at least one licensed Senior Reactor Operator (SRO) shall be present in the control room. A single SRO may fill this position for both units. - c. Shift crew composition may be less than the minimum requirement of 10 CFR 50.54(m)(2)(i) and 5.2.2.a and 5.2.2.g for a period of time not to exceed 2 hours in order to accommodate unexpected absence of on-duty shift crew members provided immediate action is taken to restore the shift crew composition to within the minimum requirements. - d. A Health Physics Technician shall be on site when fuel is in the reactor. The position may be vacant for not more than 2 hours, in order to provide for unexpected absence, provided immediate action is taken to fill the required position. - e. Administrative procedures shall be developed and implemented to limit the working hours of unit staff who perform safety related functions (e.g., licensed SROs, licensed ROs, health physicists, auxiliary operators, and key maintenance personnel). Adequate shift coverage shall be maintained without routine heavy use of overtime. The objective shall be to have operating personnel work a nominal 40 hour week while the unit is operating. However, in the event that unforeseen problems require substantial amounts of overtime to be used, or during extended periods of shutdown for refueling, major maintenance, or major plant modification, on a temporary basis the following guidelines
shall be followed: - 1. An individual should not be permitted to work more than 16 hours straight, excluding shift turnover time; - An individual should not be permitted to work more than 16 hours in any 24 hour period, nor more than 24 hours in any 48 hour period, nor more than 72 hours in any 7 day period, all excluding shift turnover time; ## 5.2 Organization #### 5.2.1 Onsite and Offsite Organizations Onsite and offsite organizations shall be established for unit operation and corporate management, respectively. The onsite and offsite organizations shall include the positions for activities affecting safety of the nuclear power plant. - a. Lines of authority, responsibility, and communication shall be defined and established throughout highest management levels, intermediate levels, and all operating organization positions. These relationships shall be documented and updated, as appropriate, in organization charts, functional descriptions of departmental responsibilities and relationships, and job descriptions for key personnel positions, or in equivalent forms of documentation. These requirements shall be documented in the FSAR; - The General Manager Nuclear Plant shall be responsible for overall safe operation of the plant and shall have control over those onsite activities necessary for safe operation and maintenance of the plant; - c. The Vice-President shall have corporate responsibility for overall plant nuclear safety and shall take any measures needed to ensure acceptable performance of the staff in operating, maintaining, and providing technical support to the plant to ensure nuclear safety; and - d. The individuals who train the operating staff, carry out health physics, or perform quality assurance functions may report to the appropriate onsite manager; however, these individuals shall have sufficient organizational freedom to ensure their independence from operating pressures. ## 5.2.2 Unit Staff The unit staff organization shall include the following: a. A non-licensed operator shall be assigned to each reactor containing fuel and an additional non-licensed operator shall be assigned for each control room from which a reactor is operating in MODES 1, 2, 3, or 4. With both units in MODES 5 or 6 or defueled, a total of three non-licensed operators are required. #### 5.1 Responsibility 5.1.1 The General Manager - Nuclear Plant shall be responsible for overall unit operation and shall delegate in writing the succession to this responsibility during his absence. The General Manager - Nuclear Plant or his designee shall approve, prior to implementation, each proposed test, experiment or modification to systems or equipment that affect nuclear safety. A Senior Reactor Operator (SRO) shall be responsible for the control room command function. During any absence of the responsible SRO from the control room while the unit is in MODE 1, 2, 3, or 4, an individual with an active SRO license shall be designated to assume the control room command function. During any absence of the responsible SRO from the control room while the unit is in MODE 5 or 6, an individual with an active SRO license or Reactor Operator license shall be designated to assume the control room command function. A single individual may be responsible for the control room command function for both units. | ****** | ******** | *** | *********** | | | |--------|----------------------|-------|-------------|---------|------| | | | | | | | | | | | | | **** | | | F31 | Empty | F30 | F06 | | | | F18 | F17 | F19 | F02 | | | | F15 | F20 | F05 | F32 | | | 777777 | ,,,,,,,,, | | | | | | | | | | :Water: | | | | | | | | | Note: All Assemblies are 3.0 w/o ²³⁵U nominal enrichment Figure 4.3-6 Damaged Fuel Assembly Configuration (Unit 1 Only) | | Empty | С | Empty | С | Empty | С | |-----------|-------|-------|-------|-------|-------|-------| | | C | Empty | С | Empty | C | Empty | | Interface | Empty | С | Empty | С | Empty | С | | | Н | Empty | Н | Empty | С | Empty | | | L | L | Empty | С | Empty | С | | | Н | L. | Н | Empty | С | Empty | | | | | | | | | C = 2-out-of-4 Enrichment L = Low Enrichment of Burned/Fresh H = High Enrichment of Burned/Fresh Empty = Empty Cell Boundary Between 2-out-of-4 Storage and Burned/Fresh Storage A row of empty cells can be used at the interface to separate the configurations. It is acceptable to replace an assembly with an empty cell. Figure 4.3-5 Interface Requirements | | A | Α | Α | Α | Α | Α | |-----------|-------|-------|-------|-------------|---|---| | | Α | Α | Α | Α | Α | Α | | Interface | A | Empty | Α | Α | Α | Α | | | Empty | С | Empty | Α | A | Α | | | С | Empty | С | Empty | Α | А | | | Empty | С | Empty | A | A | А | | • | | • | |]
]
] | | | A = All Cell Enrichment C = 2-out-of-4 Enrichment Empty = Empty Cell Boundary Between All Cell Storage and 2-out-of-4 Storage A row of empty cells can be used at the interface to separate the configurations. It is acceptable to replace an assembly with an empty cell. Figure 4.3-4 Interface Requirements | | | | | - | | | |-----------|---|------|---|---|---|---| | | Α | Α | Α | Α | Α | Α | | | Α | Α | Α | Α | Α | Α | | Interface | Α | Α | A | Α | Α | Α | | | L | L 4. | L | Α | Α | Α | | | L | Н | L | Α | A | Α | | | L | L | L | Α | Α | Α | | | | | | | | | A = All Cell Enrichment L = Low Enrichment of Burned/Fresh H = High Enrichment of Burned/Fresh Boundary Between All Cell Storage and Burned/Fresh Storage #### Note: 1. A row of empty cells can be used at the interface to separate the configurations: 2. It is acceptable to replace an assembly with an empty cell. #### Figure 4.3-3 Interface Requirements **Burned/Fresh Storage** A = All Cell Enrichment (Figure 3.7.15-1) C = 2-out-of-4 Enrichment (No restriction on enrichment or burnup) L = Low Enrichment of Burned/Fresh (Figure 4.3-1) H = High Enrichment of Burned/Fresh (See section 4.3.1.1.f for IFBA requirement) Empty = Empty Cell Figure 4.3-2 Spent Fuel Storage Configurations Figure 4.3-1 Fuel Assembly Burnup Limit Requirements for Low Enrichment (L) Assembly of the Burned/Fresh Checkerboard Storage (see Figure 4.3-2) #### 4.0 DESIGN FEATURES #### 4.3.1.2 (continued) - Fuel assemblies with Optimized Fuel Assembly fuel rod diameters having a maximum nominal U-235 enrichment of 5.0 weight percent. Fuel assemblies with Optimized Fuel Assembly fuel rod diameters having a maximum nominal U-235 enrichment > 3.9 weight percent shall contain sufficient integral burnable absorbers such that a maximum reference fuel assembly K_∞ ≤ 1.455 at 68°F is maintained; - c. $k_{eff} \le 0.95$ if fully flooded with unborated water; - d. $k_{eff} \le 0.98$ if moderated by aqueous foam; and - e. A nominal 21 inch center to center distance between fuel assemblies placed in the storage racks. #### 4.3.2 Drainage The spent fuel storage pool is designed and shall be maintained to prevent inadvertent draining of the pool below elevation 149 ft. #### 4.3.3 Capacity The spent fuel storage pool is designed and shall be maintained with a storage capacity limited to no more than 1407 fuel assemblies. #### 4.3.1.1 (continued) - k_{eff} < 1.0 If fully flooded with unborated water, which includes an allowance for uncertainties as described in Section 4.3.2.7.2 of the FSAR; - k_{eff} ≤ 0.95 if fully flooded with water borated to 400 ppm, which includes an allowance for uncertainties and biases as described in Section 4.3.2.7.2 of the FSAR; - d. A nominal 10.75 inch center to center distance between fuel assemblies placed in the fuel storage racks; - e. New or partially spent fuel assemblies with a combination of discharge burnup and initial enrichment in the "acceptable range" of Figure 3.7.15-1 may be allowed unrestricted storage in the spent fuel storage rack(s) (also shown as the All Cell Storage configuration in Figure 4.3-2); - f. New or partially spent fuel assemblies with a combination of discharge burnup and initial enrichment in the "unacceptable range" of Figure 3.7.15-1 will be stored in compliance with the NRC approved Figures 4.3-1 through 4.3-5. The high enrichment fuel assemblies shown in the Burned/Fresh Storage configuration in Figure 4.3-2, with maximum nominal enrichments > 3.9 weight percent U-235, shall contain sufficient integral burnable absorbers such that a maximum reference fuel assembly $K_{\infty} \le 1.455$ at 68°F is maintained; and - g. Unit 1 only Damaged fuel assemblies F02, F05, F06, F15, F17, F18, F19, F20, F30, F31, and F32 shall be stored in accordance with Figure 4.3-6. - 4.3.1.2 The new fuel pit storage racks are designed and shall be maintained with: - a. Fuel assemblies with Standard Fuel Assembly fuel rod diameters having a maximum nominal U-235 enrichment of 4.25 weight percent; #### 4.0 DESIGN FEATURES #### 4.1 Site Location The site is located in southeast Alabama on the west side of the Chattahoochee River about 6 miles north of the intersection of U.S. Highway No. 84 and State Highway No. 95. It is in the northeastern section of Houston County, Alabama, and about 180 miles south-southwest of Atlanta, Georgia. #### 4.2 Reactor Core #### 4.2.1 Fuel Assemblies The reactor shall contain 157 fuel assemblies. Each assembly shall consist of a matrix of zirconium alloy, zircaloy-4, or ZIRLO fuel rods with an initial composition of natural or slightly enriched uranium dioxide (UO₂) as fuel material. Limited substitutions of zirconium alloy, zircaloy-4, ZIRLO, or stainless steel filler rods for fuel rods, in accordance with NRC-approved applications of fuel rod configurations, may be used. Fuel assemblies shall be limited to those fuel designs that have been analyzed with applicable NRC staff approved codes and methods and shown by tests or analyses to comply with all fuel safety design bases. A limited number of lead test assemblies that have not completed representative testing may be placed in nonlimiting core regions. # 4.2.2 Control Rod Assemblies The reactor core shall contain 48
control rod assemblies. The control material shall be silver, indium, and cadmium as approved by the NRC. # 4.3 Fuel Storage #### 4.3.1 Criticality - 4.3.1.1 The spent fuel storage racks are designed and shall be maintained with: - a. Fuel assemblies having a maximum nominal U-235 enrichment of 5.0 weight percent; #### 3.9 REFUELING OPERATIONS ## 3.9.6 Refueling Cavity Water Level LCO 3.9.6 Refueling cavity water level shall be maintained \geq 23 ft above the top of reactor vessel flange. APPLICABILITY: During CORE ALTERATIONS, except during latching and unlatching of control rod drive shafts, During movement of irradiated fuel assemblies within containment. **ACTIONS** | 7101 | IONO | | the second secon | | |-----------|--|-----------------|--|-----------------| | CONDITION | | REQUIRED ACTION | | COMPLETION TIME | | Α. | Refueling cavity water level not within limit. | A.1 | Suspend CORE
ALTERATIONS. | Immediately | | | | AND | | | | | | A.2 | Suspend movement of irradiated fuel assemblies within containment. | Immediately | SURVEILLANCE REQUIREMENTS | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.9.6.1 | Verify refueling cavity water level is \geq 23 ft above the top of reactor vessel flange. | 24 hours | # SURVEILLANCE REQUIREMENTS | | FREQUENCY | | |------------|---|----------| | SR 3.9.5.1 | Verify one RHR loop is in operation and circulating reactor coolant at a flow rate of ≥ 3000 gpm. | 12 hours | | SR 3.9.5.2 | Verify correct breaker alignment and indicated power available to the required RHR pump that is not in operation. | 7 days | # **ACTIONS** | CONDITION | REQUIRED ACTION | COMPLETION TIME | |--|---|-----------------| | B. (continued) | B.2 Initiate action to restore one RHR loop to operation. | Immediately | | | AND | | | | B.3 Close equipment hatch and secure with four bolts. | 4 hours | | | AND | | | | B.4 Close one door in each air lock. | 4 hours | | er alle er | AND | | | | B.5.1 Close each penetration providing direct access from the containment atmosphere to the outside atmosphere with a manual or automatic isolation valve, blind flange, or equivalent. | 4 hours | | | OR | | | | B.5.2 Verify each penetration is capable of being closed by an OPERABLE Containment Purge and Exhaust Isolation System. | 4 hours | #### 3.9 REFUELING OPERATIONS 3.9.5 Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level LCO 3.9.5 Two RHR loops shall be OPERABLE, and one RHR loop shall be in operation. One RHR loop may be inoperable and no RHR loop may be in the decay heat removal mode of operation for up to 2 hours for required surveillance testing. APPLICABILITY: MODE 6 with the water level < 23 ft above the top of reactor vessel flange. #### **ACTIONS** | | CONDITION | | EQUIRED ACTION | COMPLETION TIME | |----|--|-----------|---|-----------------| | A. | Less than the required number of RHR loops OPERABLE. | A.1 | Initiate action to restore required RHR loops to OPERABLE status. | Immediately | | | | <u>OR</u> | | | | | | A.2 | Initiate action to establish ≥ 23 ft of water above the top of reactor vessel flange. | Immediately | | В. | No RHR loop in operation. | B.1 | Suspend operations involving a reduction in reactor coolant boron concentration. | Immediately | | | to the second of | AND | | | | | | | | (continued) | #### **ACTIONS** | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----------------|---|-----------------| | A. (continued) | A.4 Close equipment hatch and secure with four bolts. | 4 hours | | | AND | | | | A.5 Close one door in each air lock. | 4 hours | | | AND | | | | A.6.1 Close each penetration providing direct access from the containment atmosphere to the outside atmosphere with a manual or automatic isolation valve, blind flange, or equivalent. | 4 hours | | | A.6.2 Verify each penetration is capable of being closed by an OPERABLE Containment Purge and exhaust Isolation System. | 4 hours | #### SURVEILLANCE REQUIREMENTS | | FREQUENCY | | |------------|---|----------| | SR 3.9.4.1 | Verify one RHR loop is in operation and circulating reactor coolant at a flow rate of ≥ 3000 gpm. | 12 hours | #### 3.9 REFUELING OPERATIONS # 3.9.4 Residual Heat Removal (RHR) and Coolant Circulation — High Water Level LCO 3.9.4 One RHR loop shall be OPERABLE and in operation. The required RHR loop may be removed from operation for ≤ 1 hour per 8 hour period, provided no operations are permitted that would cause reduction of the Reactor Coolant System boron concentration. APPLICABILITY: MODE 6 with the water level \geq 23 ft above the top of reactor vessel flange. #### **ACTIONS** | ACTIONS | | <u>and the state of </u> | | | | |-----------|---
--|--|-----------------|--| | CONDITION | | R | EQUIRED ACTION | COMPLETION TIME | | | Α. | RHR loop requirements not met. | A.1 | Suspend operations involving a reduction in reactor coolant boron concentration. | Immediately | | | : | | AND | oute to the first of the
Late of the first of the first
Late of the first fi | | | | | | A.2 | Suspend loading irradiated fuel assemblies in the core. | Immediately | | | | era di Salah | AND | | | | | | | A.3 | Initiate action to satisfy RHR loop requirements. | Immediately | | | | | AND | ** | | | | | en e | | tion of the second second | (continued) | | # **SURVEILLANCE REQUIREMENTS** | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.9.3.1 | Verify each required containment penetration is in the required status. | 7 days | | SR 3.9.3.2 | Verify each required containment purge and exhaust valve actuates to the isolation position on an actual or simulated actuation signal. | 18 months | #### 3.9 REFUELING OPERATIONS #### 3.9.3 Containment Penetrations LCO 3.9.3 The containment penetrations shall be in the following status: - a. The equipment hatch closed and held in place by four bolts; - b. One door in each air lock closed; and - c. Each penetration providing direct access from the containment atmosphere to the outside atmosphere either: - 1. closed by a manual or automatic isolation valve, blind flange, or equivalent, or - 2. capable of being closed by an OPERABLE Containment Purge and Exhaust Isolation System. APPLICABILITY: During CORE ALTERATIONS, During movement of irradiated fuel assemblies within containment. #### **ACTIONS** | | CONDITION | F | REQUIRED ACTION | COMPLETION TIME | |----|--|-----|--|-----------------| | Α. | One or more containment penetrations not in required status. | A.1 | Suspend CORE
ALTERATIONS. | Immediately | | | | A.2 | Suspend movement of irradiated fuel assemblies within containment. | Immediately | # **SURVEILLANCE REQUIREMENTS** | | SURVEILLANCE | FREQUENCY | |------------|--|-----------| | SR 3.9.2.1 | Perform CHANNEL CHECK. | 12 hours | | SR 3.9.2.2 | Neutron detectors are excluded from CHANNEL CALIBRATION. | | | • | Perform CHANNEL CALIBRATION. | 18 months | #### 3.9 REFUELING OPERATIONS #### 3.9.2 Nuclear Instrumentation LCO 3.9.2 Two source range neutron flux monitors and one channel of audible count rate shall be OPERABLE. **APPLICABILITY:** MODE 6. #### **ACTIONS** | CONDITION | | | REQUIRED ACTION | COMPLETION TIME | |-----------|--|------|--|----------------------| | A. | One source range neutron flux monitor inoperable. | A.1 | Suspend CORE
ALTERATIONS. | Immediately | | | | AND | · . | | | | | A.2 | Suspend positive reactivity additions. | Immediately | | В. | Two source range neutron flux monitors inoperable. | B.1 | Initiate action to restore one source range neutron flux monitor to OPERABLE status. | Immediately | | | | AND | · | | | | | B.2 | Perform SR 3.9.1.1. | Once per
12 hours | | C. | No audible count rate. | C.1. | Initiate action to isolate unborated water sources. | Immediately | # 3.9 REFUELING OPERATIONS #### 3.9.1 Boron Concentration LCO 3.9.1 Boron concentrations of the Reactor Coolant System, the refueling canal, and the refueling cavity shall be maintained within the limit specified in the COLR. APPLICABILITY: MODE 6. **ACTIONS** | CONDITION | | REQUIRED ACTION | | COMPLETION TIME | |-----------|---------------------------------------|-----------------|---|-----------------| | Α. | Boron concentration not within limit. | A.1 | Suspend CORE
ALTERATIONS. | Immediately | | | | AND | | | | | | A.2 | Suspend positive reactivity additions. | Immediately | | | | AND | | | | | • | A.3 | Initiate action to restore boron concentration to within limit. | Immediately | CURVEILL ANCE REQUIREMENTS | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.9.1.1 | Verify boron concentration is within the limit specified in COLR. | 72 hours | #### **ACTIONS** | | CONDITION | R | EQUIRED ACTION | COMPLETION TIME | |----|-------------|-------|--|-----------------| | A. | (continued) | A.2.4 | Initiate actions to restore required AC, DC, and AC vital bus electrical power distribution subsystems to OPERABLE status. | Immediately | | | | ANI | 2 ` | | | | | A.2.5 | Declare associated required residual heat removal subsystem(s) inoperable and not in operation. | Immediately | #### **SURVEILLANCE REQUIREMENTS** | | SURVEILLANCE | FREQUENCY | | |-------------|--|-----------|--| | SR 3.8.10.1 | Verify correct breaker alignments and voltage to required AC, DC, and AC vital bus electrical power distribution subsystems. | 7 days | | 3.8.10 Distribution Systems—Shutdown LCO 3.8.10 The necessary portion of AC, DC, and AC vital bus electrical power distribution subsystems shall be OPERABLE to support equipment required to be OPERABLE. **APPLICABILITY:** MODES 5 and 6, During movement of irradiated fuel assemblies. | : | CONDITION | R | EQUIRED ACTION | COMPLETION TIME | |----
--|-------------|--|--| | A. | One or more required AC,
DC, or AC vital bus
electrical power distribution | A. 1 | Declare associated supported required feature(s) inoperable. | Immediately | | | subsystems inoperable. | <u>OR</u> | | The second secon | | | | A.2.1 | Suspend CORE
ALTERATIONS. | Immediately | | | | ANI | | A.
相か | | | | A.2.2 | Suspend movement of irradiated fuel assemblies. | Immediately | | | | ANI | <u>D</u> | Immediately | | | | A.2.3 | Initiate action to suspend operations involving positive reactivity additions. | · | | | | ANI | <u>D</u> | | | | | | | (continued) | | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|---|------------|--|-----------------| | D. | Required Action and associated Completion Time of Condition A, B, or C not met. | D.1
AND | Be in MODE 3. | 6 hours | | _ | · | D.2 | Be in MODE 5. | 36 hours | | E. | One Service Water Intake
Structure (SWIS) DC
electrical power distribution
subsystem inoperable. | E.1 | Declare the associated
Service Water train
inoperable. | Immediately | | F. | Two trains with inoperable distribution subsystems that result in a loss of safety function. | F.1 | Enter LCO 3.0.3. | Immediately | | | SURVEILLANCE | FREQUENCY | |------------|--|-----------| | SR 3.8.9.1 | Verify correct breaker alignments and voltage to required AC, DC, and AC vital bus electrical power distribution subsystems. | 7 days | 3.8.9 Distribution Systems—Operating LCO 3.8.9 Train A and Train B AC, DC, and AC vital bus electrical power distribution subsystems shall be OPERABLE. APPLICABILITY: MODES 1, 2, 3, and 4. | | CONDITION | R | EQUIRED ACTION | COMPLETION TIME | |-----------|---|-----|---|--| | A. | One or more AC electrical power distribution subsystems inoperable. | A.1 | Restore AC electrical power distribution subsystem(s) to OPERABLE status. | 8 hours AND 16 hours from discovery of failure to meet LCO | | В. | One or more AC vital buses inoperable. | B.1 | Restore AC vital bus subsystem(s) to OPERABLE status. | 8 hours AND 16 hours from discovery of failure to meet LCO | | C. | One Auxiliary Building DC electrical power distribution subsystem inoperable. | C.1 | Restore Auxiliary Building DC electrical power distribution subsystem to OPERABLE status. | 2 hours AND 16 hours from discovery of failure to meet LCO | | CONDITION | | REQUIRED ACTION | | COMPLETION TIME | | |-----------|-------------|-----------------|---|-----------------|--| | A. | (continued) | A.2.4 | Initiate action to restore required inverters to OPERABLE status. | Immediately | | | | SURVEILLANCE | FREQUENCY | |------------|--|-----------| | SR 3.8.8.1 | Verify correct inverter voltage, frequency, and alignments to required AC vital buses. | 7 days | #### 3.8.8 Inverters—Shutdown LCO 3.8.8 Inverters shall be OPERABLE to support the onsite Class 1E AC vital bus electrical power distribution subsystem(s) required by LCO 3.8.10, "Distribution Systems—Shutdown." APPLICABILITY: MODES 5 and 6, During movement of irradiated fuel assemblies. | CONDITION | F | REQUIRED ACTION | COMPLETION TIME | |---|-----------|--|-----------------| | A. One or more required inverters inoperable. | A.1 | Declare affected required feature(s) inoperable. | Immediately | | | <u>OR</u> | | | | | A.2.1 | Suspend CORE ALTERATIONS. | Immediately | | | AN | <u> </u> | | | | A.2.2 | Suspend movement of irradiated fuel assemblies. | Immediately | | | AN | <u>ID</u> | | | | A.2.3 | Initiate action to suspend operations involving positive reactivity additions. | Immediately | | | <u>A1</u> | <u>ND</u> | | | | | | (continued) | | | CONDITION | REQUIRED ACTION | COMPLETION TIME | | |----|---|-------------------|-----------------|--| | B. | Required Action and associated Completion | B.1 Be in MODE 3. | 6 hours | | | | Time not met. | AND | | | | | | B.2 Be in MODE 5. | 36 hours | | | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.8.7.1 | Verify correct inverter voltage, frequency, and alignment to required AC vital buses. | 7 days | ## 3.8.7 Inverters—Operating LCO 3.8.7 The required Train A and Train B inverters shall be OPERABLE. Two inverters may be disconnected from their associated DC bus for ≤ 24 hours to perform an equalizing charge on their associated common battery, provided: - a. The associated AC vital buses are energized from their Class 1E constant voltage source transformers; and - b. All other AC vital buses are energized from their associated OPERABLE inverters. APPLICABILITY: MODES 1, 2, 3, and 4. | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|-----------------------------------|-----|---|-----------------| | A. | One required inverter inoperable. | A.1 | Enter applicable Conditions and Required Actions of LCO 3.8.9, "Distribution Systems - Operating" with any vital bus de- energized. | | | | | | Restore inverter to OPERABLE status. | 24 hours | # Table 3.8.6-1 (page 1 of 1) Battery Cell Parameters Requirements | PARAMETER | CATEGORY A:
LIMITS FOR EACH
DESIGNATED
PILOT CELL | CATEGORY B:
LIMITS FOR EACH
CONNECTED CELL | CATEGORY C:
ALLOWABLE
LIMITS FOR EACH
CONNECTED CELL | |---------------------|--|--|---| | Electrolyte Level | > Minimum level indication mark, and ≤ ¼ inch above maximum level indication mark(a) | > Minimum level indication mark, and ≤ 1/4 inch above maximum level indication mark(a) | Above top of plates, and not overflowing | | Float Voltage | ≥ 2.08 V | ≥ 2.08 V | > 2.02 V | | Specific Gravity(b) | ≥ 1.195 ^(c) | ≥ 1.190 AND Average of all connected cells > 1.195 | If a cell is < 1.190,
then it shall not have
decreased more than
0.080 from the
previous 92 day test. | | · | | · | Average of all connected cells ≥ 1.190 | - (a) It is acceptable for the electrolyte level to temporarily increase above the specified maximum during equalizing charges provided it is not overflowing. - (b) Corrected for electrolyte temperature and level. Level correction is not required, however, when battery charging is < 2 amps when on float charge. - (c) Or battery charging current of < 2 amps when on float charge is acceptable for meeting specific gravity limits. Amendment No. 146 (Unit 1) Amendment No. 137 (Unit 2) | SURVEILLANCE | FREQUENCY | |---
---| | SR 3.8.6.2 Verify battery cell parameters meet Table 3.8.6-1 | 92 days | | Category B limits. | AND | | | Once within 7 days after a battery discharge < 110 V AND | | | Once within 7 days after a battery overcharge > 150 V | | SR 3.8.6.3 Verify average electrolyte temperature of representative cells is ≥ 60°F for the Auxiliary Building batteries and ≥ 35°F for the SWIS batteries. | 92 days | | • | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|---|--|-----------------| | B. | Required Action and associated Completion Time of Condition A not met. | B.1 Declare associated battery inoperable. | Immediately | | | <u>OR</u> | | | | | One or more required batteries with average electrolyte temperature of the representative cells < 60°F for the Auxiliary Building batteries or < 35°F for the SWIS batteries. | | | | - | OR | | | | | One or more required batteries with one or more battery cell parameters not within Category C values. | | | | | <u>OR</u>
NOTE | The Assertion of As | | | | Battery terminal voltage of
127.8 volts as measured by
SR 3.8.4.1 is equivalent to
average cell float voltage of
2.13 volts per cell. | | | | | One or more required batteries with the average cell float voltage ≤ 2.13 volts. | | · | | | SURVEILLANCE | FREQUENCY | |------------|--|-----------| | SR 3.8.6.1 | Verify battery cell parameters meet Table 3.8.6-1 Category A limits. | 7 days | | | Category A littins. | | ## 3.8.6 Battery Cell Parameters LCO 3.8.6 Battery cell parameters for Train A and Train B Auxiliary Building and Service Water Intake Structure (SWIS) batteries shall be within the limits of Table 3.8.6-1. ı . APPLICABILITY: When When associated DC electrical power subsystems are required to be OPERABLE. ## **ACTIONS** Separate Condition entry is allowed for each battery. | | CONDITION | R | EQUIRED ACTION | COMPLETION TIME | |-----------|--|-----|--|----------------------------| | A. | One or more required batteries with one or more battery cell parameters not within Category A or B limits. | A.1 | Verify pilot cells
electrolyte level and float
voltage meet
Table 3.8.6-1
Category C limits. | 2 hours | | | | AND | | | | | | A.2 | Verify battery cell
parameters meet
Table 3.8.6-1
Category C limits. | 24 hours | | | | | | AND | | | | | | Once per 7 days thereafter | | ٠ | | AND | | | | | | A.3 | Restore battery cell parameters to Category A and B limits of Table 3.8.6-1. | 31 days | | CONDITION | REQUIRED ACTION | | COMPLETION TIME | | |----------------|-----------------|--|-----------------|--| | A. (continued) | A.2.4 | Initiate action to restore required DC electrical power subsystems to OPERABLE status. | Immediately | | | • | . SURVEILLANCE | | | | |------------|--|-----------------------------------|--|--| | SR 3.8.5.1 | The following SRs are applicable but are not requito be performed: SR 3.8.4.6, SR 3.8.4.7, and SR 3.8.4.8. | ired | | | | | For DC sources required to be OPERABLE, the following SRs are applicable: | In accordance with applicable SRs | | | | , | SR 3.8.4.1 SR 3.8.4.4 SR 3.8.4.7 SR 3.8.4.2 SR 3.8.4.5 SR 3.8.4.8. SR 3.8.4.3 SR 3.8.4.6 | | | | #### 3.8.5 DC Sources—Shutdown LCO 3.8.5 DC electrical power subsystem(s) shall be OPERABLE to support the DC electrical power distribution subsystem(s) required by LCO 3.8.10, "Distribution Systems — Shutdown." **APPLICABILITY:** MODES 5 and 6, During movement of irradiated fuel assemblies. | | CONDITION | F | REQUIRED ACTION | COMPLETION TIME | |----|---|-----------|--|-----------------| | A. | One or more required DC electrical power subsystems inoperable. | A.1 | Declare affected required feature(s) inoperable. | Immediately | | | | <u>OR</u> | | | | | | A.2.1 | Suspend CORE
ALTERATIONS. | Immediately | | | | AN | <u>ID</u> | | | | | A.2.2 | Suspend movement of irradiated fuel assemblies. | Immediately | | | | AN | <u>ID</u> | | | • | | A.2.3 | Initiate action to suspend operations involving positive reactivity additions. | Immediately | | | | AN | <u>ID</u> | | | | | | | (continued) | | | SURVEILLANCE | FREQUENCY | |------------|--|--| | SR 3.8.4.8 | This Surveillance shall not be performed for the Auxiliary Building batteries in MODE 1, 2, 3, or 4. | | | | Verify battery capacity is ≥ 80% of the manufacturer's rating when subjected to a performance discharge test or a modified performance discharge test. | 60 months | | | | 18 months when battery shows | | | | degradation or has reached 85% of expected life or 17 years, whichever comes | | SURVEILLANCE | E REQUIREMENTS SURVEILLANCE | FREQUENCY | |---------------------------------------|---|-----------| | | SURVEILLANGE | | | SR 3.8.4.6 | This Surveillance may be performed in MODE 1, 2, 3, 4, 5, or 6 provided spare or redundant charger(s) placed in service are within surveillance frequency to maintain DC subsystem(s) OPERABLE. | | | i i i i i i i i i i i i i i i i i i i | Verify each required Auxiliary Building battery charger supplies ≥ 536 amps at ≥ 125 V for ≥ 4 hours and each required SWIS battery charger supplies ≥ 3 amps at ≥ 125 V for ≥ 4 hours. | 18 months | | SR 3.8.4.7 | NOTES | | | GR 5.5.4.7 | 1. The performance discharge test in SR 3.8.4.8 may be performed in lieu of the service test in SR 3.8.4.7 once per 60 months. | | | | The modified performance discharge test in SR
3.8.4.8 may be performed in lieu of the service
test at any time. | | | | This Surveillance shall not be performed for
the Auxiliary Building batteries in MODE 1, 2,
3, or 4. | | | | Verify battery capacity is adequate to supply, and maintain in OPERABLE status, the required emergency loads for the design load profile described in the Final Safety Analysis Report, Section 8.3.2, by subjecting the battery to a service test. | 18 months | | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.8.4.1 | Verify battery terminal voltage is ≥ 127.8 V on float charge. | 7 days | | SR 3.8.4.2 | Verify no visible corrosion at battery terminals and connectors. | 92 days | | | <u>OR</u> | | | | Verify post-to-post battery connection resistance of each cell-to-cell and terminal connection is \leq 150 microhms for the Auxiliary Building batteries and \leq 1500 microhms for the SWIS batteries. | | | SR 3.8.4.3 | Verify battery cells, cell plates, and racks show no visual indication of physical damage or abnormal deterioration. | 18
months | | SR 3.8.4.4 | Remove visible terminal corrosion, verify battery cell- to-cell and terminal connections are coated with anti-corrosion material. | 18 months | | SR 3.8.4.5 | Verify post-to-post battery connection resistance of each cell-to-cell and terminal connection is ≤ 150 microhms for the Auxiliary Building batteries and ≤ 1500 microhms for the SWIS batteries. | 18 months | | | | **** | ## 3.8.4 DC Sources—Operating LCO 3.8.4 The Train A and Train B Auxiliary Building and Service Water Intake Structure (SWIS) DC electrical power subsystems shall be OPERABLE. APPLICABILITY: MODES 1, 2, 3, and 4. | | CONDITION | REQUIRED ACTIO | COMPLETION TIME | |----|---|--|------------------| | Α. | One Auxiliary Building DC electrical power subsystem inoperable. | A.1 Restore the Auxi
Building DC elec
power subsystem
OPERABLE stat | trical
n to | | В. | One Auxiliary Building DC electrical power subsystem with battery connection resistance not within limit. | B.1 Restore the batto
connection resis
within limit. | | | C. | Required Action and associated Completion Time of Condition A or B not met. | C.1 Be in MODE 3. AND C.2 Be in MODE 5. | 6 hours 36 hours | | D. | One required SWIS DC electrical power subsystem battery connection resistance not within limit. | D.1 Restore the batt connection resis within the limit. | | | E. | One required SWIS DC electrical power subsystem inoperable. | E.1 Declare the ass
Service Water S
train inoperable | ystem | | | <u>OR</u> | | | | | Required Action and associated Completion Time of Condition D not met. | | | | | SURVEILLANCE | | | | | |------------|--|--|--|--|--| | SR 3.8.3.2 | Verify lubricating oil inventory is \geq 238 gal (for DG 1-2A, 1B, and 2B) or \geq 167 gal (for DG 1C). | 31 days | | | | | SR 3.8.3.3 | Verify fuel oil properties of new and stored fuel oil are tested in accordance with, and maintained within the limits of, the Diesel Fuel Oil Testing Program. | In accordance with
the Diesel Fuel Oil
Testing Program | | | | | SR 3.8.3.4 | Verify each DG has at least one air start receiver with a pressure ≥ 350 psig (for DG 1-2A, 1B, and 2B) and ≥ 200 psig (for DG 1C). | 31 days | | | | | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |-------|--|--|-----------------| | D. | One or more DGs with new fuel oil properties not within limits. | D.1 Restore stored fuel oil properties to within limits. | 30 days | | E. | One or more DGs with the required starting air receiver pressure < 350 psig and ≥ 150 psig (for DG 1-2A, 1B, and 2B), or < 200 psig and ≥ 90 psig (for DG 1C). | E.1 Restore at least one starting air receiver pressure per affected DG to ≥ 350 psig (for DG 1-2A, 1B, and 2B) or ≥ 200 psig (for DG 1C). | 48 hours | | F. | Required Action and associated Completion Time not met. | F.1 Declare associated DG inoperable. | Immediately | | * • • | <u>OR</u> | | | | | One or more DGs diesel
fuel oil, lube oil, or starting
air subsystem not within
limits for reasons other
than Condition A, B, C, D, | | | | | or E. | 1 | | | e e e e e e e e e e e e e e e e e e e | SURVEILLANCE | FREQUENCY | |---------------------------------------|--|-----------| | SR 3.8.3.1 | Verify each fuel oil storage tank contains ≥ 25,000 gal of useable fuel. | 31 days | 3.8.3 Diesel Fuel Oil, Lube Oil, and Starting Air LCO 3.8.3 The stored diesel fuel oil, lube oil, and starting air subsystem shall be within limits for each required diesel generator (DG). APPLICABILITY: When associated DG is required to be OPERABLE. | A | | \sim | NIC | |---|----|--------|-----| | А | CT | U | CVI | Separate Condition entry is allowed for each DG. | | CONDITION | | REQUIRED ACTION | COMPLETION | TIME | |----|---|-----|---|------------|----------------| | A. | One or more DGs with a useable fuel level < 25,000 gal and > 21,000 gal in the storage tank. | A.1 | Restore fuel oil level to within limits. | 48 hours | | | В. | One or more DGs with lube oil inventory < 238 gal and > 204 gal (for DG 1-2A, 1B, and 2B) or < 167 gal and > 143 gal (for DG 1C). | B.1 | Restore lube oil inventory to within limits. | 48 hours | | | C. | One or more DGs with stored fuel oil total particulates not within limit. | C.1 | Restore fuel oil total particulates within limit. | 7 days | eren
Karana | | | SURVEILLANCE | | | | |------------|--|-----------------------------------|--|--| | SR 3.8.2.1 | The following SRs are applicable but are not required to be performed: SR 3.8.1.8, SR 3.8.1.9, SR 3.8.1.11, SR 3.8.1.12, SR 3.8.1.13, SR 3.8.1.14, and SR 3.8.1.18. | | | | | | For AC sources required to be OPERABLE, the SRs of Specification 3.8.1, "AC Sources—Operating," except SR 3.8.1.3, SR 3.8.1.7, SR 3.8.1.10, SR 3.8.1.15, SR 3.8.1.16, SR 3.8.1.17, and SR 3.8.1.19, are applicable. The following SRs are applicable and required to be performed: SR 3.8.1.1, SR 3.8.1.2, SR 3.8.1.4, SR 3.8.1.5, and SR 3.8.1.6. | In accordance with applicable SRs | | | | | CONDITION | | EQUIRED ACTION | COMPLETION TIME | |----|-----------------------------|---------------------|--|-------------------------| | A. | (continued) | A.2.2 | Suspend movement of irradiated fuel assemblies. | Immediately | | | | <u>ANE</u>
A.2.3 | Initiate action to suspend operations involving positive reactivity additions. | Immediately | | | | <u>ANE</u>
A.2.4 | Initiate action to restore required offsite power circuit to OPERABLE status. | Immediately | | В. | One required DG inoperable. | B.1 <u>AND</u> B.2 | Suspend CORE
ALTERATIONS. Suspend movement of irradiated fuel assemblies. | Immediately Immediately | | | | B.3 AND | Initiate action to suspend operations involving positive reactivity additions. | Immediately | | | | B.4 | Initiate action to restore required DG to OPERABLE status. | Immediately | Amendment No. 146 (Unit 1) Amendment No. 137 (Unit 2) #### 3.8.2 AC Sources—Shutdown LCO 3.8.2 The following AC electrical power sources shall be OPERABLE: - a. One qualified circuit between the offsite transmission network and the onsite Class 1E AC electrical power distribution subsystem(s) required by LCO 3.8.10, "Distribution Systems—Shutdown"; and - b. One diesel generator (DG) capable of supplying one train of the onsite Class 1E AC electrical power distribution subsystem(s) required by LCO 3.8.10. APPLICABILITY: MODES 5 and 6, During movement of irradiated fuel assemblies. | <u> </u> | IONS | | | |----------|--|--|-----------------| | | CONDITION | REQUIRED ACTION | COMPLETION TIME | | A. | One required offsite circuit inoperable. | Enter applicable Conditions and Required Actions of LCO 3.8.10, with one required train de-energized as a result of Condition A. | | | | | A.1 Declare affected required feature(s) with no offsite power available inoperable. | Immediately | | | | OR A.2.1 Suspend CORE ALTERATIONS. | Immediately | | | | AND | | | | | | (continued) | | | SURVEILLANCE | FREQUENCY | | |---------------|--|-----------|--| | SR 3.8.1.17 (| continued) | | | | | 2. energizes auto-connected emergency loads through load sequencer, | | | | | 3. achieves steady state voltage≥ 3740 V and ≤ 4580 V, | | | | • | 4. achieves steady state frequency ≥ 58.8 Hz and ≤ 61.2 Hz, and | | | | | 5. supplies permanently connected and auto-connected emergency loads for ≥ 5 minutes. | | | | SR 3.8.1.18 | Testing of the shared Emergency Diesel Generator (EDG) set (EDG 1-2A or EDG 1C) on either unit may be used to satisfy this surveillance requirement for these EDGs for both units. | | | | | Verify each DG does not trip and voltage is maintained ≤ 4990 V and ≥ 3330 V during and following a load rejection of ≥ 1200 kW and ≤ 2400 kW. | 5 years | | | ∋R 3.8.1.19 | All DG starts may be preceded by an engine prelube period. | | | | | Verify when started simultaneously from standby condition, each DG achieves, in ≤ 12 seconds, voltage ≥ 3952 V and frequency ≥ 60 Hz. | 10 years | | | TS_ | |-----| | | | • | SURVEILLANCE | FREQUENCY | |-------------|--|-------------| | SR 3.8.1.15 | Verify, with a DG operating in
test mode and connected to its bus, an actual or simulated ESF actuation signal overrides the test mode by returning DG to ready-to-load operation. | 18 months | | SR 3.8.1.16 | Verify interval between each sequenced load block is within ± 10% of design interval or 0.5 seconds, whichever is greater, for each emergency load sequencer. | 18 months | | SR 3.8.1.17 | NOTES All DG starts may be preceded by an engine prelube period. This Surveillance shall not be performed in | | | | Verify on an actual or simulated loss of offsite power signal in conjunction with an actual or simulated ESF actuation signal: | 18 months | | | a. De-energization of emergency buses; | | | | b. Load shedding from emergency buses; and | | | | c. DG auto-starts from standby condition and: | | | | energizes permanently connected loads
in ≤ 12 seconds, | | | | | (continued) | | | SURVEILLANCE | FREQUENCY | |-------------|---|-----------| | SR 3.8.1.13 | This Surveillance shall be performed within 10 minutes of shutting down the DG after the DG has operated ≥ 2 hours loaded ≥ 4075 kW for the 4075 kW DGs and ≥ 2850 kW for the 2850 kW DG. | | | | Momentary transients below the minimum load specified do not invalidate this test. | | | | All DG starts may be preceded by an engine prelube period. | | | | Verify each DG starts and achieves, in \leq 12 seconds, voltage \geq 3952 V and frequency \geq 60 Hz. | 18 months | | SR 3.8.1.14 | This Surveillance shall not be performed in MODE 1, 2, 3, or 4. | | | | Verify each DG: | 18 months | | | Synchronizes with offsite power source while
loaded with emergency loads upon a simulated
restoration of offsite power; | | | | b. Transfers loads to offsite power source; and | | | | c. Returns to ready-to-load operation. | | Amendment No. 146 (Unit 1) Amendment No. 137 (Unit 2) | | SURVEILLANCE | FREQUENCY | |-------------|---|-----------| | SR 3.8.1.11 | Verify each DG's automatic trips are bypassed on actual or simulated loss of voltage signal on the emergency bus and/or an actual or simulated ESF actuation signal except: | 18 months | | | a. Engine overspeed; | | | | b. Generator differential current; and | | | | c. Low lube oil pressure. | | | SR 3.8.1.12 | Momentary transients below the minimum load specified do not invalidate this test. | | | | Verify each DG operates for ≥ 24 hours: | 18 months | | | a. For ≥ 2 hours loaded ≥ 4353 for the 4075 kW DGs and ≥ 3100 kW for the 2850 kW DG; and | | | | For the remaining hours of the test loaded ≥ 4075 kW for the 4075 kW DGs and ≥ 2850 kW for the 2850 kW DG. | | | | | SURVEILLANCE | FREQUENCY | |-------------|-------|--|-----------| | SR 3.8.1.10 | All I | DG starts may be preceded by prelube period. | | | · | Fea | ify on an actual or simulated Engineered Safety ature (ESF) actuation signal each DG auto-starts in standby condition and: | 18 months | | | a. | In ≤ 12 seconds after auto-start and during tests, achieves voltage ≥ 3952 V; | | | • | b. | In ≤ 12 seconds after auto-start and during tests, achieves frequency ≥ 60 Hz; | | | | C. | Operates for \geq 5 minutes and maintains a steady state generator voltage and frequency of \geq 3740 V and \leq 4580 V and \geq 58.8 Hz and \leq 61.2 Hz; | | | | | NOTE | | | | SR : | 3.8.1.10.d and e shall not be performed in DE 1 or 2. | | | | d. | Permanently connected loads remain energized from the offsite power system; and | | | | e. | Emergency loads are energized from the offsite power system. | | | | | SURVEILLANCE | FREQUENCY | |------------|--------------|--|-----------| | SR 3.8.1.9 | | NOTES | • 1 | | | 1. | All DG starts may be preceded by an engine prelube period. | | | a Car | 2. | This Surveillance shall not be performed in MODE 1, 2, 3, or 4. | • | | | Veri
sign | y on an actual or simulated loss of offsite power
al: | 18 months | | | a. | De-energization of emergency buses; | | | | b. | Load shedding from emergency buses; | | | | c. | DG auto-starts from standby condition and: | ` | | | | energizes permanently connected loads
in ≤ 12 seconds, | | | • | | energizes auto-connected shutdown loads through automatic load sequencer | , | | | | maintains steady state voltage≥ 3740 V and ≤ 4580 V, | | | | | 4. maintains steady state frequency ≥ 58.8 Hz and ≤ 61.2 Hz, and | | | | | 5. supplies permanently connected and auto-connected shutdown loads for ≥ 5 minutes. | | | | SURVEILLANCE | FREQUENCY | |------------|---|-----------| | SR 3.8.1.7 | This Surveillance shall not be performed in MODE 1 or 2. | | | | Verify manual transfer of AC power sources from the normal offsite circuit to the alternate required offsite circuit. | 18 months | | SR 3.8.1.8 | Verify each DG rejects a load greater than or equal to its associated single largest post-accident load, and: a. Following load rejection, the speed is ≤ 75% of the difference between nominal speed and the overspeed trip setpoint; and | 18 months | | | Following load rejection, the voltage is ≥ 3740 V and ≤ 4580 V. | | | | SURVEILLANCE | FREQUENCY | | | | |---------------|---|--|--|--|--| | SR 3.8.1.3 | 1. DG loadings may include gradual loading as | | | | | | | recommended by the manufacturer. | | | | | | | Momentary transients outside the load range do not invalidate this test. | | | | | | . | This Surveillance shall be conducted on only one DG at a time. | Awar and a second secon | | | | | | 4. This SR shall be preceded by and immediately follow without shutdown a successful | | | | | | | performance of SR 3.8.1.2 or SR 3.8.1.6. | | | | | | | Verify each DG is synchronized and loaded and | 31 days | | | | | | operates for ≥ 60 minutes at a load ≥ 2700 kW and ≤ 2850 kW for the 2850 kW DG and ≥ 3875 kW and ≤ 4075 kW for the 4075 kW DGs. | | | | | | SR 3.8.1.4 | Verify each day tank contains ≥ 900 gal of fuel oil for the 4075 kW DGs and 700 gal of fuel oil for the 2850 kW DG. | 31 days | | | | | SR 3.8.1.5 | Verify the fuel oil transfer system operates to transfer fuel oil from storage tank to the day tank. | 31 days | | | | | SR 3.8.1.6 | All DG starts may be preceded by an engine prelube | | | | | | | period. | | | | | | | Verify each DG starts from standby condition and achieves in \leq 12 seconds, voltage \geq 3952 V and frequency \geq 60 Hz. | 184 days | | | | | | SURVEILLANCE | FREQUENCY | | | |------------|---|-----------|--|--| | SR 3.8.1.1 | SR 3.8.1.1 Verify correct breaker alignment and indicated power availability for each required
offsite circuit. | | | | | SR 3.8.1.2 | 1. Performance of SR 3.8.1.6 satisfies this SR. | · | | | | | All DG starts may be preceded by an engine
prelube period and followed by a warmup
period prior to loading. | | | | | * | 3. A modified DG start involving idling and gradual acceleration to synchronous speed may be used for this SR as recommended by the manufacturer. When modified start procedures are not used, the time, voltage, and frequency tolerances of SR 3.8.1.6 must be met. | | | | | | Verify each DG starts from standby conditions and achieves steady state voltage ≥ 3740 V and ≤ 4580 V, and frequency ≥ 58.8 Hz and ≤ 61.2 Hz. | 31 days | | | Amendment No. 146 (Unit 1) Amendment No. 137 (Unit 2) | CONDITION | | REQUIRED ACTION | | COMPLETION TIME | |-----------|---|-----------------|--|-----------------| | G. | One automatic load sequencer inoperable. | G.1 | Restore automatic load sequencer to OPERABLE status. | 12 hours | | Н. | H. Required Action and associated Completion Time of Condition A, B, D, or G not met. | H.1 | Be in MODE 3. | | | | | H.2 | Be in MODE 5. | 36 hours | | l. | Three or more required AC sources inoperable. | 1.1 | Enter LCO 3.0.3. | Immediately | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |-----------|---|--|--| | D. | One required offsite circuit inoperable. AND One DG set inoperable. | Enter applicable Conditions and Required Actions of LCO 3.8.9, "Distribution Systems—Operating," when Condition D is entered with no AC power source to any train. | | | | | D.1 Restore required offsite circuit to OPERABLE status. | 24 hours | | | | D.2 Restore DG set to OPERABLE status. | 24 hours | | E. | Two DG sets inoperable. | E.1 Restore one DG set to OPERABLE status. | 2 hours if all three
DGs are inoperable | | | | | <u>OR</u> | | | | | 8 hours if DG 1-2A
and DG 1(2)B are
inoperable | | | | | <u>OR</u> | | | | | 24 hours if DG 1C
and DG 1(2)B are
inoperable | | F. | Required Action and associated Completion Time of Condition C or E not met. | F.1 Be in MODE 3. | 6 hours | | CONDITION | | | REQUIRED ACTION | | COMPLETION TIME | |-----------|---|--|---------------------|--|---| | В. | (continued) | | B.3.2
<u>AND</u> | Perform SR 3.8.1.6 for OPERABLE DG set. | 24 hours | | | | | B.4 | Restore DG set to OPERABLE status. | 10 days | | | | | | | 13 days from discovery of failure to meet LCO | | C. | Two required offsite circuits inoperable. | | C.1 | Declare required feature(s) inoperable when its redundant required feature(s) is inoperable. | 12 hours from discovery of Condition C concurrent with inoperability of redundant required features | | | | | AND
C.2 | Restore one required offsite circuit to OPERABLE status. | 24 hours | | | CONDITION | REQUIRED ACTION | COMPLETION TIME | |----|------------------------|---|---| | A. | (continued) | A.3 Restore required offsite circuit to OPERABLE status. | 72 hours AND | | | | | 13 days from
discovery of failure to
meet LCO | | B. | One DG set inoperable. | LCO 3.0.4 is not applicable when only one of the three DGs is inoperable. | | | | | B.1 Perform SR 3.8.1.1 for the required offsite circuit(s). | 2 hours | | | | <u>AND</u> | Once per 8 hours
thereafter | | | | B.2 Declare required feature(s) supported by the inoperable DG set inoperable when its required redundant feature(s) is inoperable. | 4 hours from discovery of Condition B concurrent with inoperability of redundant required | | | | AND | feature(s) | | | | B.3.1 Determine OPERABLE DG set is not inoperable due to common cause failure. | 24 hours | | | | <u>OR</u> | | | | | | (continued) | #### 3.8 ELECTRICAL POWER SYSTEMS ### 3.8.1 AC Sources—Operating # LCO 3.8.1 The following AC electrical sources shall be OPERABLE: - a. Two qualified circuits between the offsite transmission network and the onsite Class 1E AC Electrical Power Distribution System; and - b. Two diesel generator (DG) sets capable of supplying the onsite Class 1E power distribution subsystem(s); and - c. Automatic load sequencers for Train A and Train B. APPLICABILITY: MODES 1, 2, 3, and 4. **ACTIONS** | | CONDITION | RE | EQUIRED ACTION | COMPLETION TIME | |----|--|-----|---|--| | A. | One required offsite circuit inoperable. | A.1 | Perform SR 3.8.1.1 for required OPERABLE | 2 hours | | • | | | offsite circuit. | AND | | | | | | Once per 8 hours thereafter | | | | AND | | | | | | A.2 | Declare required feature(s) with no offsite power available inoperable when its | 24 hours from discovery of no offsite power to one train concurrent with | | | | | redundant required feature(s) is inoperable. | inoperability of redundant required feature(s) | | | | AND | | | | | | | | (continued) | # 3.7.16 Secondary Specific Activity LCO 3.7.16 The specific activity of the secondary coolant shall be $\leq 0.10~\mu\text{Ci/gm}$ DOSE EQUIVALENT I-131. APPLICABILITY: MODES 1, 2, 3, and 4. **ACTIONS** | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|-------------------------------------|-----|-----------------|-----------------| | A. | Specific activity not within limit. | A.1 | Be in MODE 3. | 6 hours | | • | | AND | | | | | | A.2 | Be in MODE 5. | 36 hours | | | SURVEILLANCE | FREQUENCY | |-------------|---|-----------| | SR 3.7.16.1 | Verify the specific activity of the secondary coolant is ≤ 0.10 µCi/gm DOSE EQUIVALENT I-131. | 31 days | Initial U-235 Enrichment (nominal w/o) Figure 3.7.15-1 Fuel Assembly Burnup Limit Requirements For All Cell Storage # 3.7.15 Spent Fuel Assembly Storage LCO 3.7.15 The combination of initial enrichment and burnup of each spent fuel assembly stored in the spent fuel storage pool shall be within the Acceptable Burnup Domain of Figure 3.7.15-1 or in accordance with Specification 4.3.1.1. APPLICABILITY: Whenever any fuel assembly is stored in the spent fuel storage pool. ## **ACTIONS** | | CONDITION | REQUIRED ACTION | | COMPLETION TIME | |----|----------------------------------|-----------------|---|-----------------| | A. | Requirements of the LCO not met. | A. 1 | LCO 3.0.3 is not applicable. | | | | | | Initiate action to move the noncomplying fuel assembly to an acceptable storage location. | Immediately | | | FREQUENCY | | |-------------|---|---| | SR 3.7.15.1 | Verify by administrative means the initial enrichment and burnup of the fuel assembly is in accordance with Figure 3.7.15-1 or Specification 4.3.1.1. | Within 7 days following the relocation or addition of fuel assemblies to the spent fuel storage pool. | # 3.7.14 Fuel Storage Pool Boron Concentration LCO 3.7.14 The fuel storage pool boron concentration shall be \geq 2000 ppm. APPLICABILITY: When fuel assemblies are stored in the fuel storage pool. #### **ACTIONS** | 7101 | 10110 | | | | |------|--|-----|---|-----------------| | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | | A. | A. Fuel storage pool boron concentration not within limit. | | NOTE
0.3 is not applicable. | | | | | A.1 | Suspend movement of fuel assemblies in the fuel storage pool. | Immediately | | | | AND | | | | | | A.2 | Initiate action to restore fuel storage pool boron concentration to within limit. | Immediately | | | SURVEILLANCE | FREQUENCY | |-------------|---|-----------| | SR 3.7.14.1 | Verify the fuel storage pool boron concentration is within limit. | 7 days | # 3.7.13 Fuel Storage Pool Water Level LCO 3.7.13 The fuel storage pool water level shall be \geq 23 ft over the top of irradiated fuel assemblies seated in the storage racks. APPLICABILITY: During movement of irradiated fuel assemblies in the fuel storage pool. **ACTIONS** | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|---|-----|--|-----------------| | A. | Fuel storage pool water level not within limit. | A.1 | Suspend movement of irradiated fuel assemblies in the fuel storage pool. | Immediately | | | SURVEILLANCE | FREQUENCY | |-------------|--|-----------| | SR 3.7.13.1 | Verify the fuel storage pool water level is ≥ 23 ft above the top of the irradiated fuel assemblies seated in the storage
racks. | 7 days | # **ACTIONS** | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | |----|--|-----|---|-----------------| | D. | Two PRF trains inoperable during movement of irradiated fuel assemblies in the spent fuel pool room. | D.1 | Suspend movement of irradiated fuel assemblies in the spent fuel pool room. | Immediately | | | SURVEILLANCE | FREQUENCY | |-------------|---|---| | SR 3.7.12.1 | Only required to be performed during movement of irradiated fuel assemblies in the spent fuel pool room. | | | | Verify two PRF trains aligned to the spent fuel pool room. | 24 hours | | SR 3.7.12.2 | Operate each PRF train for ≥ 15 minutes in the applicable mode of operation (post LOCA and/or refueling accident). | 31 days | | SR 3.7.12.3 | Perform required PRF filter testing in accordance with the Ventilation Filter Testing Program (VFTP). | In accordance with the VFTP | | SR 3.7.12.4 | Verify each PRF train actuates and the normal spent fuel pool room ventilation system isolates on an actual or simulated actuation signal. | 18 months | | SR 3.7.12.5 | Verify one PRF train can maintain a pressure ≤ -0.125 inches water gauge with respect to adjacent areas during the post LOCA mode of operation at a flow rate ≤ 5500 cfm. | 18 months on a
STAGGERED
TEST BASIS | | SR 3.7.12.6 | Verify one PRF train can maintain a slightly negative pressure with respect to adjacent areas during the fuel handling accident mode of operation at a flow rate \leq 5500 cfm. | 18 months on a
STAGGERED
TEST BASIS | # 3.7.12 Penetration Room Filtration (PRF) System LCO 3.7.12 Two PRF trains shall be OPERABLE. APPLICABILITY: MODES 1, 2, 3, and 4, During movement of irradiated fuel assemblies in the spent fuel pool room. ### **ACTIONS** | | CONDITION | F | REQUIRED ACTION | COMPLETION TIME | |----|---|--------------------------|---|-------------------------| | A. | One PRF train inoperable. | A.1 | Restore PRF train to OPERABLE status. | 7 days | | B. | Required Action and associated Completion Time of Condition A not met in MODE 1, 2, 3, or 4. OR Two PRF trains | B.1
<u>AND</u>
B.2 | Be in MODE 3. Be in MODE 5. | 6 hours 36 hours | | | inoperable in MODE 1, 2, 3, or 4. | | | | | C. | Required Action and associated Completion Time of Condition A not met during movement of irradiated fuel assemblies in the fuel building. | C.1
<u>OR</u>
C.2 | Place OPERABLE PRF train in operation. Suspend movement of irradiated fuel assemblies in the spent fuel pool room. | Immediately Immediately | **ACTIONS** | <u> </u> | CONDITION | | REQUIRED ACTION | COMPLETION TIME | E | |----------|---|-----|---|-----------------|------| | D. | Two CRACS trains inoperable during movement of irradiated fuel assemblies or during CORE ALTERATIONS. | D.1 | Suspend CORE
ALTERATIONS. | Immediately | | | | CORE ALTERATIONS. | D.2 | Suspend movement of irradiated fuel assemblies. | Immediately | | | E. | Two CRACS trains inoperable in MODE 1, 2, 3, or 4. | E.1 | Enter LCO 3.0.3. | Immediately | Ç. T | | | SURVEILLANCE | FREQUENCY | |-------------|---|-----------| | SR 3.7.11.1 | Verify each CRACS train has the capability to | 18 months | | | remove the assumed heat load. | | 3.7.11 Control Room Air Conditioning System (CRACS) LCO 3.7.11 Two CRACS trains shall be OPERABLE. **APPLICABILITY:** MODES 1, 2, 3, and 4, During movement of irradiated fuel assemblies, During CORE ALTERATIONS. ### **ACTIONS** | *** | CONDITION | F | REQUIRED ACTION | COMPLETION TIME | |-----|--|---------------------------|---|------------------| | A. | One CRACS train inoperable. | A.1 | Restore CRACS train to OPERABLE status. | 30 days | | В. | Required Action and associated Completion Time of Condition A not met in MODE 1, 2, 3, or 4. | B.1
<u>AND</u>
B.2 | Be in MODE 3. Be in MODE 5. | 6 hours 36 hours | | C. | C. Required Action and associated Completion Time of Condition A not met during movement of irradiated fuel assemblies or during CORE ALTERATIONS. | C.1
<u>OR</u>
C.2.1 | Place OPERABLE CRACS train in operation. Suspend CORE ALTERATIONS. | Immediately | | | | <u>AND</u>
C.2.2 | Suspend movement of irradiated fuel assemblies. | Immediately | # **ACTIONS** | | CONDITION | | REQUIRED ACTION | COMPLETION TIME | | |----|---|----------------------------------|---|-----------------|--| | D. | Two CREFS trains inoperable during movement of irradiated fuel assemblies or during CORE ALTERATIONS. | D.1 Suspend CORE ALTERATIONS AND | | Immediately | | | | CONE ALTERATIONS. | D.2 | Suspend movement of irradiated fuel assemblies. | Immediately | | | E. | Two CREFS trains inoperable in MODE 1, 2, 3, or 4. | E.1 | Enter LCO 3.0.3. | Immediately | | | ***** | SURVEILLANCE | FREQUENCY | |-------------|--|-------------------------| | SR 3.7.10.1 | Operate each CREFS Pressurization train for ≥ 10 continuous hours with the heaters operating and each CREFS Recirculation and Filtration train for ≥ 15 minutes. | 31 days | | SR 3.7.10.2 | Perform required CREFS filter testing in accordance with the Ventilation Filter Testing Program (VFTP). | In accordance with VFTP | | SR 3.7.10.3 | Not required to be performed in MODES 5 and 6. | | | . • | Verify each CREFS train actuates on an actual or simulated actuation signal. | 18 months | | SR 3.7.10.4 | Verify one CREFS train can maintain a positive pressure of ≥ 0.125 inches water gauge, relative to the outside atmosphere during system operation. | 18 months | 3.7.10 Control Room Emergency Filtration/Pressurization System (CREFS) LCO 3.7.10 Two CREFS trains shall be OPERABLE. APPLICABILITY: MODES 1, 2, 3, and 4, During movement of irradiated fuel assemblies, During CORE ALTERATIONS. ### **ACTIONS** | CONDITION | REQUIRED ACTION | COMPLETION TIME | |--|--|-------------------------| | A. One CREFS train inoperable. | A.1 Restore CREFS train to OPERABLE status. | 7 days | | B. Required Action and associated Completion Time of Condition A not met in MODE 1, 2, 3, or 4. | B.1 Be in MODE 3. AND B.2 Be in MODE 5. | 6 hours 36 hours | | C. Required Action and associated Completion Time of Condition A not met during movement of irradiated fuel assemblies or during CORE ALTERATIONS. | C.1 Place OPERABLE CREFS train in emergency recirculation mode. OR C.2.1 Suspend CORE ALTERATIONS. AND C.2.2 Suspend movement of irradiated fuel assemblies. | Immediately Immediately | | Discussion Of Change (DOC No.) | CTS
Reference | Desfination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | 6-LA | 3/4.6.2.3 | 3.6 Bases | The specific actuation signal for the fans and the details about where to start the fans contained in CTS 4.6.2.3.a.1 and 4.6.2.3.b are moved to the Bases. | 5.5.14
Bases Control
Program | 1,2,3 | | 14 g | | | ITS 3.6.7 HYDROGEN RECOMBINERS | | | | 4-LA | 3/4.6.4.2 | TRM | CTS 4.6.4.2.b.1, which requires performance of a Channel Calibration on all the hydrogen recombiner instrumentation, is removed from the CTS. These calibrations are controlled administratively in the Technical Requirements Manual. | 10 CFR 50.59 | 3 | | 5-LA | 3/4.6.4.2 | 3.6 Bases | Hydrogen recombiner testing details from CTS 4.6.4.2 are moved into the Bases. | 5.5.14
Bases Control
Program | 13 | - 1. Details of system design and system description including design limits - 2. Descriptions of system operation - 3. Procedural details for requirements and related reporting problems - 4. Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|--------------------------|-------------------------|---|------------------------------------|----------------| | | | | ITS 3.6.8 HYDROGEN MIXING SYSTEM (HMS) | | | | 5-LA | 5-LA 3/4.6.4.4 3.6 Bases | 3.6 Bases | The detail
of where the hydrogen mixing system is started is moved into the Bases from CTS 4.6.4.3.a.1. | 5.5.14
Bases Control
Program | 2,3 | | | | - | ITS 3.6.9 REACTOR CAVITY HYDROGEN DILUTION SYSTEM | | | | 4-LA | 3/4.6.4.3 | 3.6 Bases | The particulars of how and where the reactor cavity hydrogen dilution fans are started are moved into the Bases from CTS 4.6.4.3.a.1. | 5.5.14
Bases Control
Program | 2,3 | - 1. Details of system design and system description including design limits - Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|---|------------------------------------|----------------| | | 1.4.44 | | ITS 3.7.1 MAIN STEAM SAFETY VALVES (MSSVs) | | | | 9-LA | 3/4.7.1.1 | 3.7 Bases | The MSSV orifice size data listed in CTS Table 3.7-3 is moved to the bases of LCO 3.7.1 as Table 3.7.1-2. | 5.5.14
Bases Control
Program | 1 | | 10-LA | 3/4.7.1.1 | 3.7 Bases | The * footnote to CTS Table 3.7-3, requiring MSSV lift setting pressure correspond to nominal operating temperature and pressure, is effectively incorporated into the ITS bases for SR 3.7.1.1. | 5.5.14
Bases Control
Program | 3 | | 12-LA | 3/4.7.1.1 | 3.7 Bases | CTS Table 3.7-1 footnote *** is moved to the Bases for ITS 3.7.1 Action A.1 to provide guidance on maximum power level when one MSSV is inoperable. | 5.5.14
Bases Control
Program | 3 | | | | | ITS 3.7.5 AUXILIARY FEEDWATER (AFW) SYSTEM | | | | 2-LA | 3/4.7.1.2 | 3.7 Bases | CTS details of AFW operability requirements are removed from the LCO statement and are discussed in the ITS 3.7.5 bases. | 5.5.14
Bases Control
Program | 3 | | 9-LA | 3/4.7.1.2 | 3.7 Bases | CTS surveillances 4.7.1.2.2.a.1, 2 and 3 on AFW system valve position verification are consolidated into one surveillance in ITS, SR 3.7.5.1. The specific valve position guidance given in CTS is moved to the ITS bases for SR 3.7.5.1. | 5.5.14
Bases Control
Program | 3 | - 1. Details of system design and system description including design limits - Descriptions of system operation Procedural details for requirements and related reporting problems - 4. Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|---|------------------------------------|----------------| | 14-LA | 3/4.7.1.2 | 3.7 Bases | CTS surveillances 4.7.1.2.2.b and c are revised to become ITS SRs 3.7.5.3 and 3.7.5.4. The ITS SRs refer only to verifying automatic action in response to test (or actual) signals, with the specific signals listed in CTS moved to the associated ITS bases. | 5.5.14
Bases Control
Program | 1,3 | | 15-LA | 3/4.7.1.2 | 3.7 Bases | CTS surveillance 4.7.1.2.2.c, requiring AFW pump and valve actuations to be performed every 18 months "during shutdown" is revised to become ITS SR 3.7.5.4, with the CTS phrase "during shutdown" removed. The associated ITS bases contains a discussion of the 18 month frequency being based on the need to perform the surveillance during shutdown. | 5.5.14
Bases Control
Program | 3 | | 17-LA | 3/4.7.1.2 | 3.7 Bases | CTS surveillance 4.7.1.2.2.c.3 on the turbine-driven AFW pump steam admission valves is revised to become ITS SR 3.7.5.5, with the specific valve numbers cited in CTS moved to the Bases. | 5.5.14
Bases Control
Program | 3 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | | | | ITS 3.7.7 COMPONENT COOLING WATER (CCW) SYSTEM | | | | 6-LA | 3/4.7.3 | 3.7 Bases | CTS surveillance 4.7.3.b, requiring actuation of automatic CCW valves, is revised to become ITS SR 3.7.7.2. The ITS SR refers only to verifying automatic action in response to test (or actual) signals, with the specific signal cited in CTS moved to the associated Bases. Also, CTS requires performance "during shutdown"; this qualification is incorporated into the bases, which contain a discussion of the 18 month frequency being based on the need to perform the surveillance | 5.5.14
Bases Control
Program | 1,3 | | | | | during shutdown. | | | | | | | ITS 3.7.8 SERVICE WATER SYSTEM (SWS) | | | | 2-LA | 3/4.7.4 | 3.7 Bases | The LCO operability statement for two SWs pumps per loop is moved into the bases description of the SW system | 5.5.14 Bases Control Program | 1 | - 1. Details of system design and system description including design limits - Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|--|--|----------------| | 6-LA | 3/4.7.4 | 3.7 Bases | CTS surveillance 4.7.4.b, requiring actuation of automatic SWS valves, is revised to become ITS SR 3.7.8.2. The ITS SR refers only to verifying automatic action in response to test (or actual) signals, with the specific signal cited in CTS (Safety Injection) moved to the associated Bases. Also, CTS requires performance "during shutdown"; this qualification is incorporated into the bases, which contain a discussion of the 18 month frequency being based on the need to perform the surveillance during shutdown. | 5.5.14
Bases Control
Program | 1,3 | | 12-LA | 3/4.7.4 | 3.7 Bases | CTS surveillance 4.7.4, which requires visual inspection of the ground area surrounding buried SWs piping, is revised to become ITS SR 3.7.8.4 by removal of the terminology "leak tight", which is placed in the associated bases. | 5.5.14
Bases Control
Program | 3 | | | | | ITS 3.7.9 ULTIMATE HEAT SINK (UHS) | ·
· · · · · · · · · · · · · · · · · · · | | | 1-LA | 3/4.7.6.2 | 3.7 Bases | CTS LCO 3.7.6.2 is revised to become ITS LCO 3.7.9 with movement of the description of the UHS as a "pond" to the bases. | 5.5.14
Bases Control
Program | 1 | | 3-LA | 3/4.7.6.2 | TRM | CTS surveillance requirements 4.7.6.2.2, 3 and 4, which concern UHS erosion and seepage, are removed from TS and placed in the Technical Requirements Manual. | 10 CFR 50.59 | 1 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|--|--|----------------| | | | | ITS 3.7.10 CONTROL ROOM EMERGENCY
FILTRATION/PRESSURIZATION SYSTEM (CREFS) | | | | . 4-LA | 3/4.7.7.1 | 3.7 Bases | CTS surveillance 4.7.7.1.a is revised to become ITS SR 3.7.10.1 with movement of the details of where CREFS is started and what flow path is required moved to the associated bases. | 5.5.14
Bases Control
Program | 3 | | 8-LA | 3/4.7.7.1 | VFTP | CTS surveillances 4.7.7.1.b, c, d.1, d.4, e, f and associated * footnote, containing the procedural details CREFS filter testing, are moved to the Ventilation Filter Test Program, which is cited by the new
ITS SR 3.7.10.2. | 5.5.11 Ventilation
Filter Test Program
and SR 3.7.10.2 | 3 | | 10-LA | 3/4.7.7.1 | 3.7 Bases | CTS surveillance 4.7.7.1.d.2, for verification of automatic CREFS actuation, is revised to become ITS SR 3.7.10.3. The ITS SR refers only to verifying automatic action in response to test (or actual) signals, with the specific signal cited in CTS (Safety Injection) moved to the associated Bases. | 5.5.14
Bases Control
Program | 1,3 | - 1. Details of system design and system description including design limits 2. Descriptions of system operation - 3. Procedural details for requirements and related reporting problems 4. Administrative requirements redundant to regulations | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|--|---|----------------| | | | | ITS 3.7.12 PENETRATION ROOM FILTRATION (PRF) SYSTEM | | | | 4-LA | 3/4.7.8 | 3.7 Bases | CTS surveillance 4.7.8.a is revised to become ITS SR 3.7.12.2 with movement of the details of where the PRF system is started and what flow path is required moved to the associated bases. | 5.5.14
Bases Control
Program | 3 | | 5-LA | 3/4.7.8 | VFTP | CTS surveillances 4.7.8.b, c, d.1, d.3, e, f and associated * footnote, containing the procedural details of PRF filter testing, are moved to the Ventilation Filter Test Program, which is cited by the new ITS SR 3.7.12.3. | 5.5.11 Ventilation
Filter Test Program
and SR 3.7.12.3. | 3 | | 7-LA | 3/4.7.8 | 3.7 Bases | CTS surveillance 4.7.8.d.2, for verification of automatic PRF system actuation, is revised to become ITS SR 3.7.12.4. The ITS SR refers only to verifying automatic action in response to test (or actual) signals, with the specific signal cited in CTS (Phase B Isolation) moved to the associated bases. | 5.5.14
Bases Control
Program | 1,3 | | 3-LA | 3/4.9.13 | 3.7 Bases | The CTS 3.9.13 LCO statement contains the operability requirement description "aligned to the spent fuel pool room". This detailed information is moved to the LCO 3.7.12 bases. | 5.5.14
Bases Control
Program | 3 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | 11-LA | 3/4.9.13 | 3.7 Bases | CTS surveillance 4.9.13.2 references PRF system surveillances 4.9.12.2 and 3; in ITS these surveillances are combined with CTS 3/4.7.8 items and addressed by SR 3.7.12.2, 3, and 4. The actuation signal descriptions for these surveillances are moved to the bases. | 5.5.14
Bases Control
Program | 3 | - 1. Details of system design and system description including design limits - 2. Descriptions of system operation - Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|---------------------------------------|---|------------------------------------|----------------| | | | · · · · · · · · · · · · · · · · · · · | ITS 3.8.1 AC SOURCES - OPERATING | | | | 2-LA | 3.8.1.1 | Bases | The LCO statement description of "DG Set" is moved to the bases consistent with the treatment of descriptive text in the STS. | 5.5.14
Bases Control
Program | 1 | | 16-LA | 4.8.1.1 | 10 CFR
50.65 | The surveillance which refers to the accelerated testing requirements for the DGs contained in Table 4.8-1 is deleted consistent with the guidance provided in NRC Generic Letter 94-01. The intent of CTS Table 4.8-1, to assure DG reliability and availability, is retained by implementation of the requirements of the maintenance rule. | 10 CFR50.65
Maintenance
Rule | 4 | | 20-LA | 3/4.8.1.1 | Bases | The surveillance specifies the required DG engine speed in rpms as well as the required Frequency in Hz. The STS specifies only one parameter, the required frequency. Therefore, the CTS engine speeds required to achieve the specified generator frequency (60Hz) are moved into the bases for this SR. | 5.5.14
Bases Control
Program | 1 | | 23-LA | 3/4.8.1.1 | Bases | The surveillance requirement to verify that the DGs are aligned to provide power to the associated buses is deleted. The surveillance essentially repeats the LCO requirement for the DGs. The surveillance is described in more detail in the associated bases. | 5.5.14
Bases Control
Program | 1 | - 1. Details of system design and system description including design limits - Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | 25-LA | 3/4.8.1.1 | TRM | The surveillance that specifies the performance of an inspection and maintenance of the DGs every 18 months in accordance with the manufacturer's recommendations is moved to the TRM consistent with the recommendations of NUREG-1366, "improvements to Technical Specification Surveillance Requirements." | 10 CFR 50.59 | 1 | | 32-LA | 3/4.8.1.1 | Bases | The surveillance for 24 hour full load run of the DGs contains voltage and frequency requirements is moved to the bases for the associated surveillance. | 5.5.14
Bases Control
Program | 1 | | 36-LA | 3/4.8.1.1 | Bases | The surveillance that verifies the DG loads do not exceed the 2000-hour kW rating of the DGs is moved to the TS bases with other system background information describing system operability and design, including applicable short term overload limits, consistent with the location of such information in the STS. | 5.5.14
Bases Control
Program | 1 | | 39-LA | 3/4.8.1.1 | TRM | The surveillance that verifies the operation of DG lockout features (Oil Temperature High, Coolant Temperature High, Coolant Pressure Low, and Crankcase Pressure High) that are bypassed on an ESF or LOSP start demand on the DG are not part of the DGs required safety function. The requirement for testing these lockout features is moved to the TRM. | 10 CFR 50.59 | 1 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | 41-LA | 3/4.8.1.1 | Bases | The 10 year surveillance to conduct a simultaneous start of the DGs contains an additional requirement that this surveillance also be performed following any modifications which could affect the interdependence of the DGs. ITS SR 3.0.1 requires that all applicable surveillances must be met for equipment to be operable. Reliance on ITS 3.0.1 and the STS bases guidance for performing required surveillances is acceptable. | 5.5.14
Bases Control
Program | 1 | | 43-LA | 3/4.8.1.1 | Bases | The surveillance for DG large load rejection test contains details of a procedural nature involving specific equipment checks. The CTS footnote that allows testing on either unit to satisfy the shared DG surveillance requirements for both units to prevent excessive testing on the shared DGs is moved into the corresponding ITS surveillance Bases. | 5.5.14
Bases Control
Program | 1 | | 44-LA | 3/4.8.1.1 |
Bases | The surveillance for DG single load rejection test contains details that is effectively incorporated into the STS bases. | 5.5.14
Bases Control
Program | 1 | | 45-LA | 3/4.8.1.1 | Bases | The acceptance criteria of the surveillance which requires a simultaneous fast start of the EDGs every 10 years to verify no common cause failures is moved to the bases consistent with the acceptance criteria used for the DG fast start test in other surveillances. | 5.5.14
Bases Control
Program | 1 | - 1. Details of system design and system description including design limits - 2. Descriptions of system operation - 3. Procedural details for requirements and related reporting problems - 4. Administrative requirements redundant to regulations | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|--|---|----------------| | 4-LA | 3/4.8.2.1 | FSAR
Bases | The AC Distribution-Operating LCO is revised by the removal of the "H" and "J" buses from the LCO consistent with the STS. The operability requirement for the J bus is moved into the FNP FSAR discussions associated with the equipment required operable for a response to an SBO event. The operability of the H bus is directly linked to the operability of the 1C DG. Discussions have been added to the bases of 3.8.1, "AC Sources-Operating" and 3.8.2, "AC Sources-Shutdown". | 10 CFR 50.59,
5.5.14
Bases Control
Program | 1 | | | | | ITS LCO 3.8.2 AC SOURCES - SHUTDOWN | | · | | 3-LA | 3/4.8.1.2 | Bases | The LCO statement that contains the individual DG designations is moved into the LCO bases consistent with the location and presentation of this type of information in the STS. | 5.5.14
Bases Control
Program | 1 . | | 4-LA | 3/4.8.2.1 | FSAR
Bases | The AC Distribution-Operating LCO is revised by the removal of the "H" and "J" buses from the LCO consistent with the STS. The operability requirement for the J bus is moved into the FNP FSAR discussions associated with the equipment required operable for a response to an SBO event. The operability of the H bus is directly linked to the operability of the 1C DG. Discussions have been added to the bases of 3.8.1, "AC Sources-Operating" and 3.8.2, "AC Sources-Shutdown". | 10 CFR 50.59,
5.5.14
Bases Control
Program | 1 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | | | | ITS 3.8.4 DC SOURCES - OPERATING | | | | 2-LA | 3/4.8.2.1 | Bases | The DC Distribution - Operating LCO requirement regarding the required DC buses and batteries is revised consistent with the STS. The specific CTS battery banks and the required chargers for each battery are discussed in the STS bases as part of the DC Source subsystem. | 5.5.14
Bases Control
Program | 1 | | 5-LA | 3/4.8.2 | Bases | The CTS 3/4.8.2.3 LCO and Action statement are revised by the removal of the reference to "energized." The STS bases discussion includes energized in the definition of operability. | 5.5.14
Bases Control
Program | 1 | | 7-LA | 3/4.8.2 | Bases | The description of "excessive" regarding the visible corrosion on battery connections is moved into the bases. The corresponding STS surveillance does not contain this descriptive term. | 5.5.14
Bases Control
Program | 1 | | 17-LA | 3/4.8.2 | Bases | The CTS description of battery degradation is moved from the surveillance for a performance discharge test to the associated bases. | 5.5.14
Bases Control
Program | 1 | | 2-LA | 3/4.8.2 | Bases | The specific information regarding battery banks and the required chargers for each battery of the 125V portion of the DC Distribution - Operating LCO requirement is moved to the bases of the associated LCO consistent with the STS. | 5.5.14
Bases Control
Program | 1 | - 1. Details of system design and system description including design limits - Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | 8-LA | 3/4.8.2 | Bases | The description of "excessive" regarding the visible corrosion on battery connections is moved into the bases. | 5.5.14
Bases Control
Program | 1 | | 17-LA | 3/4.8.2 | Bases | The description of battery degradation is moved from the surveillance and into the associated bases. | 5.5.14
Bases Control
Program | 1 | | | | | ITS 3.8.6 BATTERY CELL PARAMETERS | | | | 9-LA | 3/4.8.2 | Bases | The number of "connected cells" used to comply with the IEEE-450 guidance of "representative" cells is moved from the CTS electrolyte temperature verification surveillance into the associated bases consistent with the STS. | 5.5.14
Bases Control
Program | 1 | | 22-LA | 3/4.8.2 | Bases | The requirement to correct specific gravity readings to an electrolyte temperature of 77 °F in Note (a) to Table 4.8-2 is moved to the applicable bases discussion for Table 3.8.6-1. | 5.5.14
Bases Control
Program | 1 | | 10-LA | 3/4.8.2 | Bases | The number of "connected cells" used to comply with the IEEE-450 guidance of "representative" cells is moved from the CTS electrolyte temperature verification surveillance into the bases associated with the corresponding STS surveillance consistent with the STS. | 5.5.14
Bases Control
Program | 1 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | | | | ITS 3.8.7 INVERTERS OPERATING | | | | 3-LA 3/4 | 3/4.8.2 | Bases | The CTS description specifying how the inverter is connected (DC bus and alternate AC Class 1E power supply) is moved into the inverter TS bases. | 5.5.14
Bases Control
Program | . 1 | | | | | ITS 3.8.9 DISTRIBUTION SYSTEMS OPERATING | | | | 2-LA | 3/4.8.2 | Bases | The statement and Action is revised consistent with the STS. The CTS requirement for the distribution systems to be energized is moved into the STS bases. | 5.5.14
Bases Control
Program | 1 | | 5-LA | 3/4.8.2 | Bases | The list of required electrical power buses is moved into a table in the bases. The placement of the list of required buses in the bases is consistent with the STS format. | 5.5.14
Bases Control
Program | 1 | | 3-LA | 3/4.8.2 | Bases | The specific 125V buses listed in the LCO are moved to a Table in the bases of STS 3.8.9 consistent with the STS. | 5.5.14
Bases Control
Program | 1 | | 5-LA | 3/4.8.2 | Bases | The CTS 3/4.8.2.3 LCO and Action statement are revised by the removal of the reference to "energized." The STS bases discussion includes energized in the definition of operability. | 5.5.14
Bases Control
Program | 1 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems - 4. Administrative requirements redundant to regulations # Section 3.8 - ELECTRICAL POWER SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|-------------------------|---|------------------------------------|----------------| | 3-LA | 3/4.8.2 | Bases | The specific 125V buses listed in the CTS 3/4.8.2.5 LCO are moved to a Table in the bases of STS 3.8.9 consistent with the STS. | 5.5.14
Bases Control
Program | 1 | | | | | ITS 3.8.10 DISTRIBUTION SYSTEMS -
SHUTDOWN | | | | N/A | | | | | | - Details of system design and system description including design limits Descriptions of system operation - Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations ## Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 3.9 - REFUELING OPERATIONS | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | | · | | ITS 3.9.1 BORON CONCENTRATION | | | | 5-LA | 3/4.9.1 | COLR | The boron concentration required by this LCO will be contained in the Core Operating Limits Report (COLR). | 5.6.5
COLR | 1 | | 8-LA | 3/4.9.1 | 3.9 Bases | Detailed makeup flow rate and boron concentration information given in the CTS Action is removed; the ITS 3.9 Bases provide more general guidance. | 5.5.14
Bases Control
Program | 2 | | | | | ITS 3.9.2 NUCLEAR INSTRUMENTATION | | | | 2-LA | 3/4.9.2 | 3.9 Bases | Visual indication is removed from the operability requirements stated in CTS LCO 3.9.2 and moved to the ITS LCO 3.9 bases. | 5.5.14
Bases Control
Program | 3 | | | | | ITS 3.9.3 CONTAINMENT PENETRATIONS | • | | | 6-LA | 3/4.9.9 | 3.9 Bases | The CTS 4.9.9 surveillance test description of the high radiation and manual actuating signal is moved into the bases for ITS SR 3.9.3.2. | 5.5.14
Bases Control
Program | 3 | - 1. Details of system design and system description including design limits - 2. Descriptions of system operation - 3. Procedural details for requirements and related reporting problems 4. Administrative requirements redundant to regulations ## Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 3.9 - REFUELING OPERATIONS | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|-------------------------|--|------------------------------------|----------------| | | | | ITS 3.9.4 RESIDUAL HEAT REMOVAL AND COOLANT
CIRCULATION - HIGH WATER LEVEL | | | | 5-LA | 3/4.9.8.1 | 3.9 Bases | Descriptive information in CTS Action Statement b regarding the actions performed (CORE ALTERATIONS) when the RHR loop is removed from service for 1 hour in an 8 hour period is moved to the ITS 3.9 Bases. | 5.5.14
Bases Control
Program | 2 | | | | | ITS 3.9.5 RESIDUAL HEAT REMOVAL AND COOLANT
CIRCULATION - LOW WATER LEVEL | | | | 4-LA | 3/4.9.8.2 | 3.9 Bases | The phrase "as soon as possible" is removed from CTS 3.9.8.2 Action Statement a; this information is placed in the 3.9 Bases. | 5.5.14
Bases Control
Program | 3 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations ## Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS Section 4.0 - DESIGN FEATURES | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|---|---|----------------------------------|----------------| | 1-LA | 5.0 | FSAR 2.1 | All the figures (5.1-1 through 5.1-4) related to the site location are removed in ITS, which contains only a text description of the site location (ITS 4.1). The information in the CTS figures is redundant to descriptions and figures contained in FSAR section 2.1. | 10 CFR 50.59 | 1 | | 2-LA | 5.0 | FSAR 3.8
and Table
6.2-1 | The CTS 5.2 list of containment design features is removed in ITS. This information is redundant to the containment design parameters listed in FSAR section 3.8 and Table 6.2-1. | 10 CFR 50.59 | 1 | | 3-LA | 5.0 | FSAR 5.0,
Table 5.1-1,
and 5.2 | The CTS 5.4 list of RCS design features is removed in ITS. This information is redundant to the RCS design information contained in the FSAR section 5.0, Table 5.1-1, and Table 5.2. | 10 CFR 50.59 | 1 | | 4-LA | 5.0 | FSAR 2.3.3,
Figures
2.3-27
and 2.4-1 | CTS 5.5 cites Fig. 5.5-1 for location of the meteorological tower; this citation and figure are removed in ITS. This information is redundant to FSAR figures 2.3-27 and 2.4-1, which also show the tower location, and to FSAR section 2.3.3, which discusses the tower in detail. | 10 CFR 50.59 | 1 | | 11-LA | 5.0 | New FSAR
Table 5.2-
2a | CTS 5.7, Component Cyclic or Transient Limit, is removed in ITS. The requirement to maintain the pertinent components within the required limits is retained in the ITS Administrative Controls Program (5.5.5). CTS Table 5.7-1, which lists specific components and associated limits, is moved without change to the FSAR as Table 5.2-2a. | ITS 5.5.5
and
10 CFR 50.59 | 1 | - 1. Details of system design and system description including design limits - Descriptions of system operation Procedural details for requirements and related reporting problems - 4. Administrative requirements redundant to regulations | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|------------------|---|--|--|----------------| | 5-LA | 6.2.2.a | 10CFR50.54
(k) (l) & (m) | References to shift crew composition shown in Table 6.2-1 are replaced in ITS with the specifics for non-licensed operators. Table 6.2-1 information is redundant to regulations. | 10CFR50.54
(k) (l) & (m) | 4 | | 9-LA | 6.2.2.d | 10CFR50.54
(m) (2) (iv) | The requirement for an SRO to supervise all Core Alterations is redundant to regulations and is removed from ITS. | 10CFR50.54
(m) (2) (iv) | 4 | | 11-LA | 6.2.2.g | 10CFR50.54
(k) (l) & (m)
and FSAR Ch.
13 | The requirements that shift supervisors hold senior reactor operator licenses and that reactor operators hold reactor operator licenses are redundant to regulations and are removed from ITS. | 10CFR50.54
(k) (l) & (m)
and
10CFR50.59 | 4 | | 13-LA | Table 6.2-1 | 10CFR50.54
(k) (l) & (m) | Table 6.2-1, Minimum Shift Crew Composition, contains information is redundant to regulations for staffing requirements and is removed from ITS. | 10CFR50.54
(k) (l) & (m) | 4 | | 15-LA | 6.2.3 | Quality
Assurance
Program | The requirements for the Safety Audit and Engineering Review Group (SAERG) are moved into the FNP Quality Assurance Program. | 10CFR50.54(a) | 3 | | 16-LA | 6.4 | FSAR
Ch. 13.2,
Training
Program | The brief summary of training information in the CTS is redundant to the more detailed information presented in the FSAR and is removed from ITS. | 10CFR50.59 | 3 | - Details of system design and system description including design limits Descriptions of system operation - 3. Procedural details for requirements and related reporting problems - 4. Administrative requirements redundant to regulations | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------------|--|--|--|--|--| | 17-LA | 6.5 | Quality
Assurance
Program | The requirements for Review and Audit functions are moved into the FNP Quality Assurance Program. | 10CFR50.54(a) | 3 | | 18-LA | 6.6 | 10CFR50.72
and
10CFR50.73 | The CTS requirements for Reportable Events are redundant to regulations and are removed from ITS. | 10CFR50.72
and
10CFR50.73 | 4 | | 19-LA | 6.7 | 10CFR50.36
10CFR50.72
and
10CFR50.73 | The CTS requirements for actions to be taken in the event a Safety Limit is exceeded are redundant to regulations and are removed from ITS. | 10CFR50.36
10CFR50.72
and
10CFR50.73 | 4 | | 20-LA | 6.8.1.b
6.8.1.c
6.8.1.d
6.8.1.e | R.G. 1.33,
10CFR50.54(q),
and
10CFR50
App. E | The CTS requirements to establish, implement, and maintain written procedures for refueling operations (6.8.1.b), surveillance and test activities of safety related equipment (6.8.1.c), Security Plan implementation (6.8.1.d), and Emergency Plan implementation (6.8.1.e) are redundant to regulations and are removed from ITS. | R.G. 1.33,
10CFR50.54(q),
and
10CFR50
App. E | * * 4 * *
* * * * * * * * * * * * * * * * * | | 22-LA | 6.8.1
6.8.3.g | FSAR | The CTS requirements to establish, implement, and maintain written procedures are revised in ITS by elimination of the reference to the Process Control Program (PCP). PCP requirements are moved to the FSAR. | 10CFR50.59,
10CFR20,
10CFR61,
and
10CFR71 | 3 | - Details of system design and system description including design limits Descriptions of system operation Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|------------------|--|---|---|----------------| | 25-LA | 6.8.1.j (i) | FSAR
8.3.1.1.7.3
and
10CFR50.65 | The CTS requirements to establish, implement, and maintain written procedures for the station blackout Alternate AC (AAC) source Reliability Program to maintain the AAC as Class 1E are removed from ITS. The CTS requirements are redundant to the FSAR and requirements of the Maintenance Rule (10 CFR 50.65) | 10CFR50.59
and
10CFR50.65 | 3,4 | | 27-LA | 6.8.2 | Quality
Assurance
Program | The CTS requirements for the procedure and policy review process are moved intact into the FNP Quality Assurance Program. | 10CFR50.54(a) | 3 | | 29-LA | 6.8.3.b | FSAR | The In-Plant Radiation Monitoring Program requirements are moved from the CTS to the FSAR. | 10CFR50.59 | 3 | | 34-LA | 6.8.3.f | ODCM | The program controls for the Radiological Environmental Monitoring Program, which is implemented within the Offsite Dose Calculation Manual (ODCM), are moved from CTS to the ODCM. | 10CFR50 App. I,
10CFR50.34a,
and
10CFR50.36a | 3 | | 68-LA | 6.10 | Quality
Assurance
Program | The Record Retention requirements contained in CTS 6.10 are moved intact into the FNP Quality Assurance Program. | 10CFR50.54(a) | 3 | | 69-LA | 6.11 | 10CFR
20.1101
(b) and (c) | The requirements of CTS 6.11 for the Radiation Protection Program are redundant to regulations and are removed from ITS. | 10CFR20.1101
(b) and (c) | 4 | - 1. Details of system design and system description including design limits - 2. Descriptions of system operation - 3. Procedural details for requirements and related reporting problems4. Administrative requirements redundant to regulations | Discussion Of Change (DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |--------------------------------|----------------------|-------------------------|--|---|----------------| | 71-LA | 6.12
*** footnote | 10CFR
20.1602 | The *** footnote to CTS 6.12 provides radiation level reference information that is redundant to regulations and is removed from ITS. | 10CFR20.1602 | 4 | | 73-LA | 6.13 | FSAR | The program control requirements of CTS 6.8.3.g and 6.13, as well as the requirements of CTS 6.8.1 to establish, implement, and maintain written procedures are revised by the elimination of the Process Control Program (PCP) consistent with the STS. The STS does not include references to the PCP. The PCP requirements will be moved to the FSAR. The PCP adddresses the requirements of state, federal, and other applicable regulations | 10CFR50.59,
10CFR20,
10CFR61,
and
10CFR71 | 4 | | | | | regarding solid radioactive waste products. The requirements contained in the CTS for the PCP provide assurance the PCP is maintained in conformance with the applicable state, federal, and other regulations. The PCP implements the applicable portions of 10 CFR Part 20, 61 and 71 and is ultimately controlled by these federal regulations (and any other local regulations that may apply). | | | - Details of system design and system description including design limits Descriptions of system operation - Procedural details for requirements and related reporting problems Administrative requirements redundant to regulations #### Table LA - REMOVAL OF REQUIREMENTS FROM RETAINED TS CTS 3/4.11 - Radioactive.Effluents | Discussion
Of Change
(DOC No.) | CTS
Reference | Destination
Document | Description | Control
Process | Change
Type | |---------------------------------------|------------------|-------------------------|--|--------------------|----------------| | | į | | CTS 3/4.11.1.4 LIQUID HOLDUP TANKS | | | | 1-LA | 3/4.11.1.4 | TRM | The requirements for the quantity of radioactive material contained in outside temporary tanks are moved from CTS to the Explosive Gas and Storage Tank Radioactivity Monitoring Program in the Technical Requirements Manual (TRM). | 10 CFR 50.59 | 3 | | · · · · · · · · · · · · · · · · · · · | | | CTS 3/4.11.2.5 WASTE GAS MONITORING | | | | 1-LA | 3/4.11.2.5 | TRM | The requirements for hydrogen and oxygen concentrations in the gaseous radwaste treatment system are moved from the CTS to the Explosive Gas and Storage Tank Radioactivity Monitoring Program in the Technical Requirements Manual (TRM). | 10 CFR 50.59 | 3 | | | | , | CTS 3/4.11.2.6 GAS STORAGE TANKS | | | | 1-LA | 3/4.11.2.6 | TRM | The requirements for the quantity of radioactivity contained in each gas storage tank are moved from the CTS to the Explosive Gas and Storage Tank Radioactivity Monitoring Program in the Technical Requirements Manual (TRM). | 10 CFR 50.59 | 3 | ### LA Change Types: - 1. Details of system design and system description including design limits - 2. Descriptions of system operation - 3. Procedural details for requirements and related reporting problems4. Administrative requirements redundant to regulations # Table M - MORE RESTRICTIVE CHANGES Section 1.0 - USE AND APPLICATION | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | | | | ITS 1.1 DEFINITIONS | | 2-M | 1.0 | 1.1 | The definition for Actuation Logic Test is added, intended to specifically address surveillance testing of SSPS actuation logic. This testing is currently performed under the CTS Channel Function Test surveillance requirement, but this change introduces a new requirement in specifying the definition of this test. | | 3-M | 1.0 | 1.1 | The definition of Channel Calibration is revised extensively to conform to STS, including addition of the term "interlock" in the channel functions to be calibrated, which represents a new TS requirement. Also added are specific requirements for calibrating channels with resistance temperature detectors or thermocouple sensors. | | 4-M | 1.0 | 1.1 | The definition of the Channel Functional Test is revised extensively to conform to STS (and is renamed Channel Operational Test or COT), and includes other changes that introduce a different and more specialized set of instrument test definitions than are used in CTS. | | 15-M | 1.0 | 1.1 | The definition for Master Relay Test is added, intended to specifically address surveillance testing of SSPS master and slave relays. This testing is currently performed under the CTS Channel Function Tessurveillance requirement, but this change introduces a new requirement in specifying the definition of this test. | | 25-M | 1.0 | 1.1 | The definition of Shutdown Margin (SDM) is revised to conform to STS, with two additional requirements added to account for any RCCAs not capable of full insertion, and in Modes 1 and 2 to change the fuel and moderator temperatures to the hot zero power temperatures. The second requirement is consistent with current FNP practice but is a new TS requirement. | | 28-M | 1.0 | 1.1 | A new definition is added for Slave Relay Test. Currently slave relay testing is performed under the CTS Channel Functional Test surveillance requirements, but this change introduces a new requirement in specifying the definition of this test. | ## Table M - MORE RESTRICTIVE CHANGES Section 1.0 - USE AND APPLICATION | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------
--| | 29-M | 1.0 | 1.1 | A new definition is added for the Trip Actuating Device Operational Test (TADOT), typically direct field contact inputs to SSPS and handswitch inputs. Currently testing of these types of channels is performed under the CTS Channel Functional Test surveillance requirements, but this change introduces a new requirement in specifying the definition of this test. | | | | | ITS 1.2 LOGICAL CONNECTORS ITS 1.3 COMPLETION TIMES ITS 1.4 FREQUENCY | | 37-M | 1.0 | 1.2, 1.3, 1.4 | Three new sections, standardized throughout the industry by the Owners Groups for STS, are incorporated into ITS to provide examples and guidance in application of these new TS format features. While many of the requirements and interpretations introduced by these sections are consistent with current practice at FNP, formal standardization represents additional TS requirements. | ## Table M - MORE RESTRICTIVE CHANGES Section 2.0 - SAFETY LIMITS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 4-M | 2.1.1 | 2.2.1 | The CTS Action Statement is revised to reference Safety Limit 2.1.1 instead of restating the limit. Also, a new requirement to restore compliance to SL 2.1.1 within 1 hour is added to the existing action requirement to place the unit in MODE 3 (Hot Standby) within 1 hour. | ## Table M - MORE RESTRICTIVE CHANGES Section 3.0 - LCO and SR APPLICABILITY | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 9-M | 3.0 | 3.0 | A new LCO 3.0.6 is added in ITS to clarify actions for inoperable support systems covered under their own LCOs. LCO 3.0.6 requires the supported system(s) to be declared inoperable as a result of support system inoperability, but entry into the supported system's required actions is not necessary unless directed by the support system's required actions. Evaluation per the Safety Function Determination Program (SFDP) is required when a support system is inoperable; this is a new, more restrictive requirement in ITS. | ## Table M - MORE RESTRICTIVE CHANGES Section 3.1 - REACTIVITY CONTROL SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | | | | ITS 3.1.1 SHUTDOWN MARGIN (SDM) | | 12-M | 3/4.1.1.1 | 3.1.1 | CTS surveillance 4.1.1.1.2 is revised consistent with STS and modified by addition of a new frequency requirement of "once prior to entering Mode 1 after each refueling", providing an initial check at the beginning of core life. | | | | | ITS 3.1.2 CORE REACTIVITY | | 1-M | NA | 3.1.2 | LCO 3.1.2 is added providing specific actions for not maintaining core reactivity within limits. | | 47.77 | | - 11- | ITS 3.1.4 ROD GROUP ALIGNMENT LIMITS | | 11-M | 3/4.1.3.1 | 3.1.4 | ITS Condition C is added which provides required actions for when the requirements of Condition B are not met. | | | | | ITS 3.1.5 SHUTDOWN BANK INSERTION LIMITS | | 4-M | 3/4.1.3.5 | 3.1.5 | CTS Action Statement b which applies to one rod inserted beyond the specified TS insertion limit, is replaced by new requirements to perform additional SDM verifications within one hour or commencement shutdown of the reactor after two hours. This eliminates the CTS option to continue operating with a single rod declared inoperable. | | 7-M | 3/4.1.3.5 | 3.1.5 | The CTS # Note to the Mode 2 applicability "With k _{yll} ≥1.0" is replaced with the more restrictive operational applicability limit "With any control bank not fully inserted". | ### Table M - MORE RESTRICTIVE CHANGES Section 3.1 - REACTIVITY CONTROL SYSTEMS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | | | | ITS 3.1.6 CONTROL BANK INSERTION LIMITS | | 1-M | 3/4.1.3.6 | 3.1.6 | ITS include new requirements for control rod sequence and overlap limits as well as insertion limits. | | 5-M | 3/4.1.3.6 | 3.1.6 | ITS include new requirements to verify or initiate restoration of SDM. | | | | | ITS 3.1.7 ROD POSITION INDICATION | | 6-M | 3/4.1.3.2 | 3.1.7 | ITS Condition E is added providing required actions that are applicable if the other requirements of the LCO are not met. | | 8-M | 3/4.1.3.2 | 3.1.7 | ITS surveillance requirement SR 3.1.7.1 is added to require that DRPI and the demand position indicator be verified to be in agreement for the full range of rod travel once prior to criticality after each removal of the reactor head. | | | | | ITS 3.1.8 PHYSICS TEST EXCEPTIONS - MODE 2 | | 3-M | 3/4.10.3 | 3.1.8 | ITS Condition A is added for SDM not within limit and to require initiation of boration to restore SDM and suspension of PHYSICS TESTS exceptions. | ## Table M - MORE RESTRICTIVE CHANGES Section 3.2 - POWER DISTRIBUTION LIMITS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | | | | ITS 3.2.1 HEAT FLUX HOT CHANNEL FACTOR (F _Q (Z)) | | 5-M | 3/4.2.2 | 3.2.1 | Condition C is added providing a default TS action applicable when Actions or Completion Times are not met and which requires the plant be placed in Mode 2 within 6 hours. | | 8a-M | 3/4.2.2 | 3.2.1 | The * footnote to CTS 4.2.2.2.e.1 is revised to require that $F_0(Z)$ be measured once after refueling prior to THERMAL POWER exceeding 75% RTP, a restriction that doesn't exist in CTS. | | | | | ITS 3.2.3 - AXIAL FLUX DIFFERENCE (AFD) | | 2-M | 3/4.2.1 | 3.2.3 | The CTS Mode of Applicability is revised in ITS 3.2.3 to expand applicability from "above 50%" to "≥ 50%" Rated Thermal Power. | | | | | ITS 3.2.4 QUADRANT POWER TILT RATIO (QPTR) | | 1a-M | 3/4.2.4 | 3.2.4 | The CTS Mode of Applicability is revised in ITS 3.2.4 to expand applicability from "above 50%" to "≥ 50%" Rated Thermal Power. | | 2-M | 3/4.2.4 | 3.2.4 | CTS Actions a and c applied to QPTR limits between 1.02 and 1.09, and greater than 1.09 are replaced in ITS with QPTR Actions based on exceeding 1.02, the lower of the CTS QPTR limits. | | 7-M | 3/4.2.4 | 3.2.4 | CTS Action b limits applied to QPTR in excess of 1.09 due to rod misalignment are replaced in ITS with actions for QPTR limits exceeding 1.02. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | : | | | ITS 3.3.1 REACTOR TRIP SYSTEM (RTS) INSTRUMENTATION | | 5a-M | T 2.2-1 | 3.3.1 | Function 12 (Loss of Flow) Trip Setpoint and Allowable Value are revised to be more consistent with the assumptions of the applicable safety analyses. The specification of the loss of flow setpoints is revised to be percent of indicated flow instead of percent of MMF and the associated footnote specifying the MMF per loop is moved to the applicable section of the RTS bases. | | 15b-M | 4.3.1.2 | 3.3.1 | The RTS surveillance, which required the logic for the interlock functions to be demonstrated operable prior to each startup unless performed during the preceding 92 days, is deleted consistent with the STS. However, the ITS include an Actuation Logic Test requirement every 31 days in addition to "prior to reactor startup" which increases the frequency specified in the TS for verifying the interlock logic, this change is considered more
restrictive. | | 21-M | T 3.3-1 | 3.3.1 | The Mode of applicability for the power range neutron flux low trip function is revised consistent with the STS and the FNP RTS design. The Mode of applicability for this function is expanded from just Mode 2 to Mode 1 below the P-10 interlock and Mode 2. | | 25-M | T 3.3-1 | 3.3.1 | Action statement 3, for the intermediate range instrument function, is revised consistent with the STS and the changes made to the applicable Modes for the intermediate instrumentation to address a power level up to 10% (P-10) instead of the CTS requirement of 5% RTP. | | 28-M | T 3.3-1 | 3.3.1 | Action statement 3b is revised consistent with the corresponding STS Condition F. The current Action does not require that the plant be removed from the Mode of applicability for the intermediate range instrumentation and does not impose any time constraints. The corresponding STS Action in Condition F requires that the plant be removed from the Mode of applicability (power reduced below P-6 or increased above P-10) within two hours. | | 31-M | Т 3.3-1 | 3.3.1 | Action statement 4 for the source range neutron flux instrument function is replaced by three STS Conditions (I, J, and K). The three STS Conditions added for the source range instrumentation, although applicable and appropriate for FNP, contain more limiting, more comprehensive, or more immediate Actions than the CTS and are considered more restrictive changes. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | 32-M | T 3.3-1 | 3.3.1 | The CTS Action statement 5, applicable to the source range instrumentation in Modes 3, 4, and 5 with the RTBs open, is revised consistent with the corresponding STS Condition L. In this mode of applicability, a single channel of source range instrumentation is required operable to perform monitoring functions. Although the STS Actions provide additional assurance of core stability and are appropriate and applicable to FNP, the addition of these actions represent a more restrictive change to the CTS. | | 43-M | T 3.3-1 | 3.3.1 | Action Statement 8 for the RTS interlock functions is replaced with the STS Conditions applicable to the same interlock functions. The STS provides a uniform 1 hour time in which to manually verify the status of the affected interlock channels before requiring that action be taken to place the plant in a Mode or specified condition in which that interlock function (blocked trip) is no longer required. As such the STS Actions are generally more conservative than the corresponding CTS Actions. | | 47-M | T 3.3-1 | 3.3.1 | The RTB, and Automatic Trip Logic functions are revised by the addition of a new Action Condition (V) consistent with the STS. The STS Condition "Two RTS trains inoperable, enter LCO 3.0.3 immediately" is added to the RTS LCO due to the conventions of Actions Condition entry used in the STS. The addition of this action represents a more restrictive change to the CTS. | | 55-M | T 3.3-1 | 3.3.1 | The allowance to bypass one channel for two hours in Action 1 is revised by the addition of the STS requirement that the other train be operable. The additional requirement provides assurance two RTS trains are not affected at the same time. | | 62-M | T 3.3-1 | 3.3.1 | Action 2 for a single inoperable power range instrument channel is revised by the addition of a new Action consistent with the STS. The STS default Action "or be in Mode 3 in 12 hours" is added to CTS Action statement 2 and is more restrictive than the total CTS action time of 13 hours to reach Mode 3. | | 64-M | T 3.3-1 | 3.3.1 | Action statement 6, which applies to inoperable turbine throttle valve closure reactor trip channels and, with the exception of the note that allows an inoperable channel to be bypassed for up to 4 hours for surveillance testing of other channels, is revised into ITS Condition P. CTS Action statement 7 applies to an inoperable auto stop oil low pressure reactor trip channel and is revised into ITS Condition O. These Actions are further revised by addition of a default Action that is applicable if the other Actions cannot be met. This default Action "or reduce power to < P-9" effectively removes the plant from the applicable Mode for the turbine trip/reactor trip function, and the ITS action time of 10 hours is more restrictive than the CTS time of 13 hours. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 66a-M | T 3.3-1 | 3.3.1 | Action statement 7, for a single inoperable instrument channel, is revised by the addition of a new Action consistent with the corresponding STS Condition E to include a default Action that is applicable if the other Actions can not be met. This default Action "or be in Mode 3 in 12 hours" is more restrictive than the total CTS action time of 13 hours to reach Mode 3. | | 71-M | T 3.3-1 | 3.3.1 | Action statement 11, for a single inoperable RCP breaker position trip instrument channel, is revised by the addition of a new Action consistent with the STS. The STS default Action "or reduce power to less than P-7 in 12 hours" is added to CTS Action statement 11 consistent with the corresponding STS Condition. The total CTS action time to reduce power below the level of the RTS function applicability is 13 hours, hence this change is considered more restrictive. | | 62-M | T 3.3-1 | 3.3.1 | Action 2 for a single inoperable power range instrument channel is revised by the addition of a new Action consistent with the STS. The STS default Action "or be in Mode 3 in 12 hours" is added to CTS Action statement 2. | | 64-M | Т 3.3-1 | 3.3.1 | Action statement 6, which applies to inoperable turbine throttle valve closure turbine trip channels is revised into the STS format in FNP ITS Condition P to include a default Action that is applicable if the other Actions can not be met. This default Action "or reduce power to < P-9" effectively removes the plant from the applicable Mode for this RTS function. | | 66a-M | T 3.3-1 | 3.3.1 | Action statement 7, for a single inoperable instrument channel, is revised by the addition of a new Action consistent with the corresponding STS Condition E to include a default Action that is applicable if the other Actions can not be met. This default Action "or be in Mode 3 in 12 hours" represents a new TS requirement that was not previously specified in the CTS. | | 71-M | Т 3.3-1 | 3.3.1 | Action statement 11, for a single inoperable RCP breaker position trip instrument channel, is revised by the addition of a new Action consistent with the STS. The STS default Action "or reduce power to less than P-7 in 12 hours" is added to CTS Action statement 11 consistent with the corresponding STS Condition. | | 76-M | Т 3.3-1 | 3.3.1 | The RTB bypass provision of Action statement 14, applicable to the undervoltage and shunt trip mechanisms, is revised. The allowance to bypass an RTB for maintenance on the undervoltage and shunt trip mechanisms is revised by the addition of the STS requirement that stipulates "provided the other train (RTB) is operable." | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 85a-M | T 3.3-1 | 3.3.1 | The Channel Calibration requirement for the neutron flux rate trip and overpower and overtemperature delta T trip functions is revised to add a note that requires time constants to be verified within the prescribed tolerance | | 86b-M | T 3.3-1 | 3.3.1 | The CTS CFT specified for the intermediate range neutron flux trip becomes a COT (SR 3.3.1.8) in ITS and two frequencies are added; four hours after reducing power below P-10 and every 92 days thereafter. These two new frequencies are additional requirements not in CTS. | | 87-M | T 3.3-1 | 3.3.1 | The CFT specified for the power, intermediate, and source range neutron flux trip instrument functions is revised by the addition of a note,
which includes verification that the P-6 and P-10 interlocks are in the required state for the existing unit conditions. | | 88a-M | T 3.3-1 | 3.3.1 | A new surveillance is added to the CTS Overtemperature Delta T function, which requires an incore/excore cross calibration be performed every 18 months and requires the calibration be completed within 7 days of exceeding 50% power. | | 97-M | T 4.3-1 | 3.3.1 | The S/U functional test requirement for the RTS interlocks in CTS 4.3.1.2 and Table 4.3-1 is included in the Actuation Logic Test, ITS SR 3.3.1.5, Function No. 20, Reactor Trip Logic. CTS Table 4.3-1 Note 8 is redundant and is deleted in ITS. The periodicity required in ITS is every 31 days on a staggered test basis, which exceeds the CTS periodicity of S/U or 92 days and is therefore more restrictive. | | 98-M | T 4.3-1 | 3.3.1 | The CFT requirement for the RTS interlocks is revised as appropriate to add a Channel Operational Test in ITS. The CTS CFT for the RTS interlock functions as modified by Note 8 is a logic test which is required to be performed prior to reactor startup if not performed in the previous 92 days. Plant procedures include provisions for functional testing and trip setpoint verification of the RTS permissives, but CTS includes no explicit channel functional test for these functions, so addition of the RTS permissive COTs is considered more restrictive. | | 101-M | T 4.3-1 | 3.3.1 | The specific CFT and associated surveillance note 1 assigned to the RTS RTB function for Modes 3, 4, and 5 with the RTBs closed and the control rod drive system capable of rod withdrawal are replaced with the same STS TADOT surveillance assigned to the RTB function in Modes 1 and 2. The addition of this STS surveillance increases the frequency of testing. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | 109-M | T 4.3-1 | 3.3.1 | The CTS RTS monthly Channel Calibration assigned to the power range neutron flux channels is revised by the addition of requirements which modify the required performance of the surveillance. This addition specifies a time limit and power level at which the surveillance becomes due. | | 110-M | T 4.3-1 | 3.3.1 | The CTS RTS daily channel calibration assigned to the power range neutron flux channels is revised by the addition of a time limit for the performance of this surveillance after reaching 15% power consistent with the STS. | | 112-M | T 4.3-1 | 3.3.1 | The RTS Interlock function is revised by the addition of a Channel Check surveillance requirement applicable only for the P-13, Turbine Impulse Pressure indicators | | • | | | ITS 3.3.2 ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION (ESFAS) | | 15-M | T 3.3-3 | 3.3.2 | The ESFAS Automatic Actuation Logic function is revised to include "actuation relays" as well as actuation logic. | | 25-M | T 3.3-3 | 3.3.2 | The turbine trip and feedwater isolation ESFAS function is revised by the addition of automatic actuation logic and actuation relays. | | 31-M | T 3.3-3 | 3.3.2 | The applicable Mode for the undervoltage RCP start of the turbine-driven pump is revised. Mode 2 is added to the Mode 1 applicability. | | 34-M | Т 3.3-3 | 3.3.2 | The CTS auxiliary feedwater start requirement on trip of the main feedwater pumps is revised. The required channels specified in the FNP ITS and on which the Action is based is increased to 2 channels per pump instead of the CTS 1 channel per pump. | | 35-M | T 3.3-3 | 3.3.2 | The ESFAS requirements for loss of power are revised by the addition of LCO, Actions, setpoints, and surveillance requirements for a degraded grid alarm to provide operator notification of degrading 4160 volt bus voltage on the Class 1E buses. | | 36-M | T 3.3-3 | 3.3.2 | The CTS Mode of applicability for the loss of power ESFAS functions is revised by the addition of the STS requirements for these ESFAS functions to be operable on a bus in Modes 5 and 6 whenever the DG associated with that bus is required operable. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 43a-M | Т 3.3-3 | 3.3.2 | Action statement 16 is revised to limit the time allowed to place the inoperable channel in bypass to 6 hours. | | 47-M | Т 3.3-3 | 3.3.2 | Action statement 19 is revised consistent with the corresponding STS Conditions D and I to add default Actions to the Action statement that correspond to the applicable Modes of the functions which utilize this Action. The default Actions are designed to place the plant in a Mode or condition in which the associated ESFAS function is no longer required operable. | | 50-M | Т 3.3-3 | 3.3.2 | Action Statement 20 for the ESFAS interlock functions is replaced with the STS Condition L applicable to the same interlock functions which is modified to account for the allowance in the CTS Action for more than one channel to be inoperable and affect an interlock function. The STS provides a uniform 1 hour time in which to manually verify the status of the affected interlock channels before requiring that action be taken to place the plant in a Mode in which that interlock function (blocked ESFAS function) is no longer required. | | 61-M | T 3.3-3 | 3.3.2 | The ESFAS requirements for loss of power are revised by the addition of Action requirements (insert to ESFAS Action #24) for an FNP specific degraded grid alarm to provide operator notification of degrading 4160 volt bus voltage on the Class 1E buses. | | 65-M | T 3.3-3 | 3.3.2 | The CTS setpoints for the ESFAS steam line pressure low function are revised by footnote (c), which contains the applicable lead/lag time constants for these setpoints. | | 79-M | T 4.3-2 | 3.3.2 | The surveillance requirements applicable to the Automatic Actuation Logic function are revised by the addition of a requirement for slave relay testing. | | 81-M | T 4.3-2 | 3.3.2 | The refueling Channel Calibration surveillance requirement for the ESFAS functions is changed to include a note which specifies that the time constants associated with the ESFAS setpoints must also be verified. The addition of the note represents a new requirement. | | 99-M | Т 4.3-2 | 3.3.2 | SR 3.3.2.4 is added in ITS to provide for periodic testing of the instrument channels for P-11 and P-12 between calibrations, a requirement which does not exist in CTS. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | | | | ITS 3.3.3 POST ACCIDENT MONITORING INSTRUMENTATION | | 9-M | Т 3.3-11 | 3.3.3 | The default action of Action statement 2 is revised consistent with the corresponding STS Condition F. STS Condition F requires that the unit be placed in Mode 3 within 6 hours and in Mode 4 in 12 hours. The requirement to be in Mode 3 in 6 hours represents an addition to CTS requirements to be in Mode 4 in 12 hours. | | 12-M | T 3.3-11 | 3.3.3 | The default action for Action 4 applicable to the reactor vessel water level instrument is action is replaced with the corresponding STS default Condition G consistent with the STS. Condition G is applicable when the Required Actions and associated Completion Time of Condition C are not met (directed by Condition E) and requires that action be initiated in accordance with Specification 5.6.8 immediately. The adoption of the STS Action report requirement includes a reduction in the time available to prepare the report and is therefore considered a more restrictive change. | | 13-M | T 3.3-11 | 3.3.3 | The list of accident monitoring instrumentation is revised to include two channels of the condensate storage tank (CST) level. The addition of this instrumentation to the post accident monitoring LCO introduces new TS requirements. | | 19-M | T 3.3-11 | 3.3.3 | The Incore Thermocouples instrumentation terminology used in the CTS for this instrumentation is revised to "core exit thermocouples" consistent with the STS. The single line entry in the CTS for this instrumentation is specified 4 channels per core quadrant is listed in ITS as 4 separate TS functions, one for each core quadrant. The number of channels is revised to 2 channels per quadrant instead of 4 total channels. The change is more restrictive because the ITS definition of a channel requires 2 operable thermocouples per
channels, in the CTS the required number of thermocouples per channels is not specified. | | 24-M | 3/4.6.4.1 | 3.3.3 | The applicability for the hydrogen analyzers is revised consistent with the STS post accident monitoring LCO. The CTS applicability of Modes 1 and 2 is revised to include Mode 3. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | 28-M | 3/4.6.4.1 | 3.3.3 | The default action in Action statement "b" is revised consistent with the corresponding STS Condition F. CTS Action "b" addresses the condition of two inoperable hydrogen analyzers and requires restoration within 72 hours or that the unit be placed in Hot Standby (Mode 3) within the next 6 hours. Consistent with the STS Mode of applicability for the post accident monitoring LCO the default ITS Action includes the additional requirement to be in Mode 4 in 12 hours. | | 31-M | 3/4.6.4.1 | 3.3.3 | Hydrogen analyzers is revised by the addition of a channel check surveillance consistent with the STS post accident monitoring instrumentation surveillance requirements in STS 3.3.3. The added STS surveillance requires the performance of a channel check every 31 days for each instrument channel that is normally energized. | | | | | ITS 3.3.4 REMOTE SHUTDOWN SYSTEM | | 1-M | 3/4.3.3.5 | 3.3.4 | The remote shutdown instrumentation LCO is revised to include controls and transfer circuits, in addition to indications. | | 2-M | 3/4.3.3.5 | 3.3.4 | Action statement "a", which only addresses less than the required monitoring channels operable is revised consistent with the STS Conditions A and B to address one or more inoperable remote shutdown functions. This change expands the CTS Action to include the new remote shutdown transfer and control functions. | | 3-M | 3/4.3.3.5 | 3.3.4 | The default Action to be in hot shutdown within the next 12 hours is revised to include the standard default Action requirement to be in Mode 3 within 6 hours prior to the existing CTS Action to be in Mode 4 in 12 hours consistent with the STS. Incorporation of this additional Action conforms with the STS 3.3.4 Condition B Required Actions and the standard default Actions used throughout the TS. | | 10-M | 3/4.3.3.5 | 3.3.4 | CTS 3/4.3.3.5 surveillances are revised by the addition of STS surveillance SR 3.3.4.2, which addresses the required control and transfer circuits which have been added to the CTS remote shutdown instrument requirements. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | 10a-M | T3.3-9 | 3.3.4 | Action statement "a" is revised by the addition of a note which modifies STS Condition B and the addition of a new ITS Condition C for the Source Range Neutron Flux monitor. The addition of this instrumentation to the remote shutdown Actions is appropriate for and applicable to FNP, a shutdown requirement is not. However, the addition of this instrumentation to the FNP TS introduces new TS requirements and is therefore considered more restrictive. | | 11-M | 3/4.3.3 | 3.3.4 | Table 3.3-9 is replaced with a more comprehensive listing of remote shutdown instrumentation consistent with the requirements of the STS and with the FNP FSAR Chapter 7.4. The new Table 3.3.4-1 contains additional monitoring channels as well as transfer and control circuits. | | | | | ITS 3.3.6 CONTAINMENT PURGE AND EXHAUST ISOLATION INSTRUMENTATION | | 86-M | T 4.3-2 | 3.3.6 | The CTS purge and exhaust surveillance requirements applicable to the ESFAS Automatic Actuation Logic function are revised consistent with the STS by the addition of a requirement for slave relay testing. | | 3-M | 3/4.3.3 | 3.3.6 | For the radiation monitors associated with post accident monitoring, fuel storage pool area PRF actuation, RCS leakage detection, and Control Room Isolation which remain within the FNP ITS, CTS Actions a and b are deleted consistent with the STS. This change eliminates a CTS allowance to delay declaring a required channel inoperable. | | 6-M | 3/4.3.3 | 3.3.6 | Action statement c, which provides an exception to the provisions of Specification 3.0.3 and 3.0.4, is deleted consistent with the STS. The exception to Specification 3.0.3 contained in CTS Action c constitutes an allowance that does not exist in the STS and the deletion of this allowance is considered a more restrictive change. | | | | | ITS 3.3.7 CREFS ACTUATION INSTRUMENTATION | | 1-M | NEW | 3.3.7 | The addition of CREFS Instrumentation LCO represents a new LCO that did not previously exist in the CTS. The requirements contained within this new ITS LCO are derived from CTS requirements contained in the ESFAS (CTS 3/4.3.2) and Radiation Monitor (CTS 3/4.3.3) LCOs. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | | | | ITS 3.3.8 PRF ACTUATION INSTRUMENTATION | | 1-M | NEW | 3.3.8 | The addition of PRF System Actuation Instrumentation LCO represents a new LCO that did not previously exist in the CTS. The requirements contained within this new ITS LCO are derived from CTS requirements contained in the ESFAS (CTS 3/4.3.2) and Radiation Monitor (CTS 3/4.3.3) LCOs. | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | | | | ITS 3.4.1 RCS PRESSURE, TEMPERATURE, AND FLOW DNB LIMITS | | 11-M | 3/4.2.5 | 3.4.1 | A NOTE is added to CTS surveillance 4.2.5.2 (ITS SR 3.4.1.4) providing allowance that the surveillance is not required until 7 days after = 90% RTP; no time or power requirements existed in CTS, however, making this a more restrictive change. | | | | | ITS 3.4.3 RCS PRESSURE TEMPERATURE (P/T) LIMITS | | 3-M | 3/4.4.10 | 3.4.3 | The CTS Action Statement is simplified in ITS to state only the requirement to make a determination that the RCS is acceptable for continued operation, and a new time limit of 72 hours is added for making the determination that the RCS is acceptable for continued operation. | | | | | ITS 3.4.4 RCS LOOPS - MODES 1 AND 2 | | 2-M | 3/4.4.1.1 | 3.4.4 | A requirement for the RCS loops to be "OPERABLE" is added to the CTS requirement to be "in operation". | | , | | | ITS 3.4.5 RCS LOOPS - MODE 3 | | 5-M | 3/4.4.1.2 | 3.4.5 | CTS Actions a and c are revised to ITS Conditions A and D, identifying that CTS Action a applies to one inoperable RCS loop and that actions similar to those specified in CTS Action c are applicable when two RCS loops are inoperable. The new ITS requirements will impose immediate actions not specified in CTS for the condition of two required RCS loops inoperable. | | 8-M | 3/4.4.1.2 | 3.4.5 | The CTS 3.4.1.2 * footnote allowing RCPs to be de-energized for 1 hour is moved into the ITS LCO statement and revised to add the restriction "per 8 hour period" to this allowance. | | | | | | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 9-M | 3/4.4.1.2 | 3.4.5 | The secondary side water level required in CTS surveillance 4.4.1.2.2 is revised from 10% wide range to 28% narrow range in ITS SR 3.4.5.2. | | : | | | ITS 3.4.6 RCS LOOPS - MODE 4 | | 3-M | 3/4.4.1.3 | 3.4.6 | CTS Action Statement a addressing less than required loops operable and requiring restoration as soon as possible is revised in ITS to provide more specific action and time requirements ("one required RHR and two required RCS loops inoperable be in MODE 5 in 24 hours"). | | 4-M | 3/4.4.1.3 | 3.4.6 | CTS Action Statement b addressing no RCS or RHR loops in operation is revised in ITS to apply also to "both required RHR and RCS loops inoperable". | | 5-M | 3/4.4.1.3 | 3.4.6 | The CTS 3.4.1.2 3 ** footnote allowing all RCPs and RHR pumps to be de-energized for up to 2 hours is moved into the ITS LCO statement and revised to add
the restriction "per 8 hour period" to this allowance. | | 8-M | 3/4.4.1.3 | 3.4.6 | The secondary side water level required in CTS surveillance 4.4.1.3.2 is revised from 10% to 74% in ITS SR 3.4.6.2. | | | | | ITS 3.4.7 RCS LOOPS - MODE 5 - LOOPS FILLED | | 3-M | 3/4.4.1.4 | 3.4.7 | CTS Action b is revised in ITS (Condition B) to apply to the situation of no OPERABLE RHR loops as well as no operating loops (addressed in CTS). | | 5-M | 3/4.4.1.4 | 3.4.7 | Two new surveillances are added to CTS to verify operability of the second non-operating RHR loop (SR 3.4.7.3) and the level in the two RCS loop stern generators (SR 3.4.7.2). | | 7-M | 3/4.4.1.4 | 3.4.7 | The CTS 3.4.1.4 ** footnote allowing an RHR loop to be removed from operation for up to 2 hours is moved into the ITS LCO statement and revised to add the restriction "per 8 hour period" to this allowance. | | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | 10-M | 3/4.4.1.4 | 3.4.7 | The secondary side water level specified in the CTS 3.4.1.4 # footnote is revised from 10% to 74% in ITS. | | | | | ITS 3.4.8 RCS LOOPS - MODE 5 - LOOPS NOT FILLED | | 3-M | 3/4.4.1.4 | 3.4.8 | CTS Action b is revised in ITS (Condition B) to apply to the situation of no OPERABLE RHR loops as well as no operating loops (addressed in CTS). | | 6-M | 3/4.4.1.4 | 3.4.8 | The CTS 3.4.1.4 ** footnote allowing an RHR loop to be removed from operation for up to 2 hours (if specified conditions are met) is moved into the ITS LCO statement and revised to allow stopping both RHR pumps for up to 15 minutes when switching loops. In addition to the CTS conditions for allowing removal of a loop from service (no dilution operations and core outlet temperature =10° below saturation), | | | | | a third condition is added in ITS in order to stop both RHR pumps; no draining operations to further reduce RCS water volume are permitted. | | 9-M | 3/4.4.1.4 | 3.4.8 | A new surveillance (SR 3.4.8.2) is added to verify operability of the second non-operating RHR loop every 7 days. | | | | | ITS 3.4.9 PRESSURIZER | | | | | N/A | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | · | | | ITS 3.4.10 PRESSURIZER SAFETY VALVES | | 1-M | 3/4.4.3 | 3.4.10 | The applicability of the LCO is expanded beyond the CTS applicability (MODES 1, 2 and 3) in ITS LCO 3.4.10 to include MODE 4 with all RCS cold leg temperatures > 310°F. | | | | | ITS 3.4.12 LOW TEMPERATURE OVERPRESSURE PROTECTION SYSTEM | | 10a-M | 3/4.4.10.3 | 3.4.12 | New surveillance SR 3.4.12.2 is added to address the new LCO requirement for the accumulators to isolated. | | | | 1 | ITS 3.4.14 RCS PRESSURE ISOLATION VALVE LEAKAGE | | 5-M | 3/4.4.7.2 | 3.4.14 | A new NOTE is added in ITS (to LCO 3.4.14 Condition A) requiring that valves used to satisfy Actions A.1 and A.2 must be in the reactor coolant pressure boundary or the high pressure portion of the system. | | 21a-M | 3/4.4.7.2 | 3.4.14 | New surveillance SR 3.4.12.3 is added to verify the RHR system open permissive interlock functions to prevent the RHR/RCS isolation valves from opening above a certain RCS pressure. | | | | | ITS 3.4.15 RCS LEAKAGE DETECTION INSTRUMENTATION | | 7-M | 3/4.4.7.1 | 3.4.15 | A new Condition (D) is added in ITS to address the situation where all the required leakage detection monitors are inoperable and requires that LCO 3.0.3 be entered immediately. | | 8-M | 3/4.4.7.2 | 3.4.14 | New Condition C of LCO 3.4.14 is added to explicitly address an inoperable RHR valve autoclosure interlock. | | | | | ITS 3.4.16 RCS SPECIFIC ACTIVITY | | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | 10a-M | 3/4.4.9 | 3.4.16 | ITS SR 3.4.16.2 requirement to verify DOSE EQUIVALENT I-131 will include analysis of I-132 and 134 in addition to the three iodine isotopes specified in CTS Table 4.4-4. | | 11-M | 3/4.4.9 | 3.4.16 | The * footnote in CTS Table 4.4-4 is revised to become a NOTE to ITS SR 3.4.16.3 and a time limitation of 31 days (no time limit in CTS) is added for performance of the required radiochemical analysis surveillance after the required conditions are reached. | | | | | ITS 3.4.12 LOW TEMPERATURE OVERPRESSURE PROTECTION (LTOP) SYSTEM | | 1-M | 3/4.4.10.3 | 3.4.12 | The CTS LCO statement is revised in ITS by addition of "low temperature" terminology to clarify the application of the LCO and by addition of requirements for the charging pumps (only one capable of injection, a requirement moved from CTS 3/4.1.2.3) and for the accumulators (all must be isolated, a new requirement). | | 4-M | 3/4.4.10.3 | 3.4.12 | New Conditions A, B, and C are added in ITS to address the new LCO requirements for only one charging pump operable and for the accumulators to be isolated. | | 5-M | 3/4.4.10.3 | 3.4.12 | CTS Action b is revised in ITS (Condition E) to include additional plant conditions (other Required Actions or Completion Times not met, and LTOP system inoperable for any reason other than addressed by other Actions Conditions). | ### Table M - MORE RESTRICTIVE CHANGES Section 3.5 - EMERGENCY CORE COOLING SYSTEMS (ECCS) | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | | | | ITS 3.5.1 ACCUMULATORS | | 5-M | 3/4.5.1 | 3.5.1 | A new Condition D and actions which address the condition when more than one accumulator is inoperable are added consistent with the STS. Although a new requirement for FNP, and therefore, more restrictive, the addition of this action is consistent with the importance of the accumulators in the FNP safety analyses and represents an appropriate action applicable to FNP. | | 6-M | 3/4.5.1 | 3.5.1 | The * footnote to the applicability, which specifies the applicable pressurizer pressure of the TS (above the P-11 setpoint) is revised and moved into the applicability section consistent with the STS. The proposed applicability becomes Mode 3 with pressurizer pressure > 1000 psig. As this change extends the applicability from Mode 3 above 2000 psig down to 1000 psig, it is considered a more restrictive change. | | 12-M | 3/4.5.1 | 3.5.1 | A new note is added which is necessitated by the adoption of the 1000 psig Applicability limit for the accumulator LCO consistent with the STS. The new note is necessary to allow the performance of the required RCS PIV testing consistent with current FNP practice. Although this note is based on current FNP practice, the addition of this note adds a restriction to the testing of the RCS PIVs that does not currently exist and therefore is considered a more restrictive change. | | | | | ITS 3.5.2 ECCS - OPERATING | | 14-M | 3/4.5.2 | 3.5.2 | CTS 4.5.2.h is combined with CTS 4.5.2.e into one ITS surveillance (SR 3.5.2.6) for ECCS valve position stop verification. The proposed ITS surveillance requires verifying that the position stops are in their correct position. The CTS require verification that the stops are intact. | # Table M - MORE RESTRICTIVE CHANGES Section 3.5 - EMERGENCY CORE COOLING SYSTEMS (ECCS) | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | | | | ITS 3.5.3 ECCS - SHUTDOWN | | 9-M | 3/4.5.3 | 3.5.3 | Action "b" is modified by the STS phrase to "initiate action immediately to restore" The STS wording of this action highlights the urgency appropriate for this condition and focuses all action on restoration of the RHR subsystem to operable status. As the CTS action for the use of alternate decay heat removal methods is removed as an option and the action is revised to begin restoration of the RHR immediately, this
change is considered more restrictive but appropriate and applicable to FNP. | | | | | ITS 3.5.5 SEAL INJECTION FLOW | | 4-M | 3/4.4.7 | 3.5.5 | The requirement for controlled leakage which specifies a flow limit (31 gpm) and an RCS pressure (2235 ± 20 psig) is revised to add an additional parameter (charging pump discharge header pressure) to the LCO requirements consistent with the intent of the STS. Since this change introduces an additional requirement in the TS, it is considered more restrictive | | 5-M | 3/4.4.7 | 3.5.5 | SR 4.4.7.2.1.c, which provides for verification of seal water flow is revised to remove the exceptions to the provisions of Specification 4.0.4 for entry into modes 3 and 4 consistent with the STS. The current TS allowed the performance of this surveillance to be delayed until the RCS pressure was within the specified limits. In the STS, there are no exceptions to the equivalent SR 3.0.4. As this change introduces a new time restriction for performance of this surveillance at FNP, it is considered more restrictive. | ### Table M - MORE RESTRICTIVE CHANGES Section 3.6 - CONTAINMENT SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | | | · | ITS 3.6.2 CONTAINMENT AIR LOCKS | | 5-M | 3/4.6.1.3 | 3.6.2 | CTS 3.6.1.3 Action 1.a and b are revised to include a one hour time limit in which to verify closure of an air lock door, a restriction absent in the CTS. | | | | · | ITS 3.6.3 CONTAINMENT ISOLATION VALVES | | 5-M | 3/4.6.1.7 | 3.6.3 | In addition to the existing requirement to isolate a penetration with an inoperable containment purge supply or exhaust valve, CTS 3.6.1.7 Action a is revised to require continuing periodic verification that an affected penetration remains isolated. | | 8-M | 3/4.6.1.7 | 3.6.3 | CTS 3.6.1.7 Action b.2 is revised, expanding on the CTS requirement to isolate a containment penetration flow path with inoperable containment purge supply or exhaust valve. A requirement is added to perform continuing periodic verification to assure an affected penetration remains isolated, and also a requirement for periodic leak testing of any resilient seal valves used for this purpose. | | | | | ITS 3.6.4 CONTAINMENT PRESSURE | | , | | | N/A | | | | | ITS 3.6.6 CONTAINMENT SPRAY AND COOLING SYSTEMS | | 3-M | 3/4.6.2.1 | 3.6.6 | CTS 3.6.2.1 Action is revised to add a second Completion Time, intended to limit serial (overlapping) entries into different Conditions of the same TS to one time each, creating a Completion Time "cap". This is a new limitation for FNP (The CTS does not limit serial entry into Conditions). | ## Table M - MORE RESTRICTIVE CHANGES Section 3.6 - CONTAINMENT SYSTEMS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | За-М | 3/4.6.2.3 | 3.6.6 | Applicability of CTS 3.6.2.3 is extended to Mode 4, and the Action Statements for inoperable Spray and Cooling Systems are also revised to place the unit in Cold Shutdown rather than Hot Shutdown, reflecting the change in applicable Modes. | | 3a-M | 3/4.6.2.3 | 3.6.6 | CTS 3.6.2.3 Action a is revised to add a second Completion Time, intended to limit serial (overlapping) entries into different conditions of the same TS to one time each, creating a Completion Time "Cap". This is a new limitation for FNP (The CTS does not limit serial entry into Conditions). | | | | | ITS 3.6.8 HYDROGEN MIXING SYSTEM (HMS) | | 6-M | 3/4.6.4.4 | 3.6.8 | CTS 4.6.4.4 is modified by the addition of a requirement to verify automatic actuation of the hydrogen mixing system every 18 months. | | | | | ITS 3.6.9 REACTOR CAVITY HYDROGEN DILUTION SYSTEM | | 5-M | 3/4.6.4.3 | 3.6.9 | CTS 4.6.4.3 is modified by the addition of a requirement to verify automatic actuation of the reactor cavity hydrogen dilution system every 18 months. | ## Table M - MORE RESTRICTIVE CHANGES Section 3.7 - PLANT SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | | | | ITS 3.7.1 MAIN STEAM SAFETY VALVES (MSSVs) | | 5-M | 3/4.7.1.1 | 3.7.1 | A NOTE is added at ITS SR 3.7.7.1 to require performance of the MSSV surveillance only in Modes 1 and 2; therefore entry into Mode 3 is permitted in order to perform testing at normal operating temperatures and pressures. This is more restrictive than CTS, which in Action c specified that the provisions of TS 3.0.4 were not applicable, hence permitting MSSV testing in any Mode. | | - | | | ITS 3.7.2 MAIN STEAM ISOLATION VALVES (MSIVs) | | 3-M | 3/4.7.1.5 | 3.7.2 | The CTS exception to the provisions of TS 3.0.4, which allows "hot" closure testing of the MSIVs in Modes 3 and 2, is deleted and a NOTE is added to ITS SR 3.7.2.1 requiring surveillance performance only in Modes 1 and 2. | | 5-M | 3/4.7.1.5 | 3.7.2 | An additional requirement beyond CTS is added to ITS LCO 3.7.2 Required Action E.1 to periodically reverify MSIV closure once per 7 days after the initial closure of the valve. | | | | | ITS 3.7.3 MAIN FEEDWATER STOP VALVES AND MAIN FEEDWATER REGULATION VALVES (MFRVs) AND ASSOCIATED BYPASS VALVES | | 1-M | N/A | 3.7.3 | CTS do not contain LCO requirements for the Main Feedwater isolation valves (MFRVs and associated bypass valves). Requirements are added to ITS as LCO 3.7.3. | | | | | ITS 3.7.4 ATMOSPHERIC RELIEF VALVES (ARVs) | | 1-M | N/A | 3.7.4 | CTS do not contain LCO requirements for the SG Atmospheric Relief Valves (ARVs). Requirements are added to ITS as LCO 3.7.4. | ### Table M - MORE RESTRICTIVE CHANGES Section 3.7 - PLANT SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | | | | ITS 3.7.5 AUXILIARY FEEDWATER (AFW) SYSTEM | | 3-M | 3/4.7.1.2 | 3.7.5 | CTS Action Statement a, applicable to an inoperable AFW train, is revised to become ITS LCO 3.7.5 Condition B. A second completion time is added, allowing 10 days from discovery of failure to meet the LCO, which creates a completion time "cap" limiting the time the LCO could otherwise not be met due to serial entry of different Conditions. CTS has no limit on serial entry of the actions. | | 6-M | 3/4.7.1.2 | 3.7.5 | CTS surveillance 4.7.1.2.1 is revised to replace a general reference to TS 4.0.5 (which in turn contains requirements for the Inservice Inspection and Testing program) with a specific ITS SR 3.7.5.2 test acceptance criterion. | | 10-M | 3/4.7.1.2 | 3.7.5 | CTS surveillance 4.7.1.2.2.a.1 is revised to specifically include the verification of the valves in the steam supply flow paths to the turbine-driven pump in ITS SR 3.7.5.1. | | | | | ITS 3.7.7 COMPONENT COOLING WATER (CCW) SYSTEM | | 3-M | 3/4.7.3 | 3.7.7 | A NOTE is added to ITS LCO 3.7.7 Required Action A.1 requiring entry into LCO 3.4.6, a requirement not specified in CTS. | | 9-M | 3/4.7.3 | 3.7.7 | A new surveillance (ITS SR 3.7.7.3) is added requiring verification of automatic CCW pump start. | | | | | ITS 3.7.8 SERVICE WATER SYSTEM (SWS) | | 4-M | 3/4.7.4 | 3.7.8 | NOTES are added to ITS LCO 3.7.8 Required Action A.1 requiring entry into LCO 3.4.6 and LCO 3.8.1, requirements not specified in CTS. | | 9-M | 3/4.7.4 | 3.7.8 | A new surveillance (ITS SR 3.7.8.3) is added requiring verification of automatic SWS pump start. | ## Table M - MORE RESTRICTIVE CHANGES Section 3.7 - PLANT SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | | | | ITS 3.7.11 CONTROL ROOM AIR CONDITIONING SYSTEM (CRACS) | | 4-M | 3/4.7.7.2 | 3.7.11 | ITS LCO 3.7.11 Action Condition E is added requiring immediate LCO 3.0.3 entry if two CRACS trains are inoperable in MODE 1, 2, 3, or 4. | | | | • | ITS 3.7.12 PENETRATION ROOM FILTRATION (PRF) SYSTEM | | 2-M | 3/4.7.8 | 3.7.12 | A new Action (ITS LCO 3.7.12 Condition B) option is added addressing the case of two PRF trains inoperable in MODE 1, 2, 3, or 4,
which CTS provides no action for (LCO 3.0.3 would therefore apply by default). | | 7-M | 3/4.9.13 | 3.7.12 | The CTS Applicability reference to the spent fuel "pit" is replaced in the ITS LCO 3.7.12 Applicability statement with "pool room", hence broadening applicability of the LCO. | | 12-M | 3/4.9.13 | 3.7.12 | New ITS Action Condition D is added to LCO 3.7.12 to suspend movement of irradiated fuel in the spent fuel pool room if two PRF trains are inoperable. | | | | | ITS 3.7.16 SECONDARY SPECIFIC ACTIVITY | | 2-M | 3/4.7.1.4 | 3.7.16 | The frequency of CTS surveillance 4.7.1.4 is revised to a straight 31 day interval in ITS SR 3.7.16.1 to verify the LCO limit (0.10 μ ci/gm DEI) from the conditional frequencies of Table 4.7-2 (deleted in ITS), which allowed up to 6 month intervals based on gross activity. | ### Table M - MORE RESTRICTIVE CHANGES Section 3.8 - ELECTRICAL POWER SYSTEMS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|--------------------|------------------|--| | 2 1 | et e <u>-</u> ee - | | ITS 3.8.1 AC SOURCES - OPERATING | | 2a-M | 3/4.8.1.1 | 3.8.1 | The LCO statement is revised by the addition of LCO item c., which adds the operability requirement for the train A and train B automatic load sequencers. | | 6-M | 3/4.8.1.1 | 3.8.1 | The Actions for inoperable AC sources are revised by the addition of explicit "cross train" equipment operability verifications not previously required by CTS. These changes are consistent with the STS. | | 7-M | 3/4.8.1.1 | 3.8.1 | The action statements are revised by the addition of a second completion time for an inoperable AC source consistent with the STS. The new Completion Time of 13 days from discovery of failure to meet the LCO is applicable to an inoperable AC source as well as the 72 hour or 10 day Completion Times in the CTS. | | 13a-M | 3/4.8.1.1 | 3.8.1 | A new Actions Condition G is added to address the condition of one automatic load sequencer inoperable. The addition of this new Condition provides an appropriate action for a specific inoperability not previously addressed in the CTS. | | 26-M | 3/4.8.1.1 | 3.8.1 | The surveillance that verifies the required DG and ESF bus functions on loss of offsite power is modified by two notes consistent with the STS. Note 1 provides that DG starts may be preceded by an engine prelube period. Note 2 restricts performance of this surveillance to Modes of operation other than 1, 2, 3, or 4. | | 29-M | 3/4.8.1.1 | 3.8.1 | The surveillance that verifies the required DG and ESF bus functions on loss of offsite power and ESF signal is modified by two STS notes consistent with the STS. Note 1 provides a clarification that DG starts may be preceded by an engine prelube period. This does not significantly impact the CTS surveillance as performed currently. STS note 2 restricts performance of this surveillance to Modes of operation other than 1, 2, 3, or 4. | # Table M - MORE RESTRICTIVE CHANGES Section 3.8 - ELECTRICAL POWER SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 30-M | 3/4.8.1.1 | 3.8.1 | The surveillance that verifies the required automatic function of the DGs on an ESF (SI) signal is modified by two additional verifications regarding the status of the associated ESF bus and required emergency loads consistent with the STS. This does not significantly impact the CTS surveillance as performed currently. The new requirements are modified by a Note consistent with the STS that restricts performance of these surveillance requirements to Modes other than 1 and 2 | | 31-M | 3/4.8.1.1 | 3.8.1 | The surveillance that verifies the required DG functions on an ESF (SI) signal is revised to be more consistent with the STS and with other timed start tests of the DG to standby condition. The change to 60 Hz is more restrictive than the CTS 57 Hz requirement. | | 37-M | 3/4.8.1.1 | 3.8.1 | The surveillance that verifies the DG capability to synchronize with an offsite power source and transfer ESF loads to that source is modified by a note which restricts performance of this surveillance to Modes of operation other than 1, 2, 3, or 4. | | | | | ITS 3.8.2 AC SOURCES - SHUTDOWN | | 2-M | 3/4.8.1.2 | 3.8.2 | The LCO requirements for an offsite circuit and DG are modified by the addition of a description that the source be capable of supplying the Class 1E distribution systems required operable by LCO 3.8.10 "Distribution Systems-Shutdown" consistent with the STS. | | 5-M | 3/4.8.1.2 | 3.8.2 | The Applicability is modified by the addition of the condition "During movement of irradiated fuel assemblies" consistent with the STS. The addition of this condition will require that the AC Sources Shutdown LCO requirements be met any time irradiated fuel is being moved. | | 7-M | 3/4.8.1.2 | 3.8.2 | The Actions are modified by the addition of the STS terminology to "initiate action(s)" to suspend or restore with an immediate Completion Time, and the inclusion of an Action to suspend movement of irradiated fuel assemblies immediately. | ### Table M - MORE RESTRICTIVE CHANGES Section 3.8 - ELECTRICAL POWER SYSTEMS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | | | | ITS 3.8.3 DIESEL FUEL OIL, LUBE OIL, AND STARTING AIR | | 1-M | N/A | 3.8.3 | The electrical section is revised by the addition of requirements for DG lube oil, starting air receiver pressure, and fuel oil properties consistent with LCO 3.8.3 to the FNP TS. | | | | | ITS 3.8.5 DC SOURCES - SHUTDOWN | | 1-M | 3/4.8.2.4 | 3.8.5 | The LCO requirement for "one 125-volt DC bus, battery and associated full capacity charger" to be operable is divided into 2 STS LCOs (distribution and source) consistent with the STS. The DC Sources - Shutdown LCO includes the required DC Source. In the revised LCO, the requirement for which | | 17 av 1 | ? · · · · | | distribution and source systems must be operable is defined in terms of the equipment required operable and places more specific demands in the TS than the less explicit CTS single bus and battery requirements. | | 2-M | 3/4.8.2.4 | 3.8.5 | The CTS 3/4.8.2.4 Applicability is revised consistent with the STS. The CTS applicability is modified by the addition of the condition "During movement of irradiated fuel assemblies." The addition of this condition to the current applicability of Modes 5 and 6 will effectively require that the DC Sources - Shutdown LCO requirements be met any time irradiated fuel is being moved. | | · | | | ITS 3.8.6 BATTERY CELL PARAMETERS | | 10-M | 3/4.8.2.3 | 3.8.6 | A surveillance which consists of a verification that the average electrolyte temperature of the cells checked does not deviate more than 5 degrees from each other is revised to verify the average temperature of the cells checked are the minimum temperature rating of the battery (60°F for the Auxiliary Building batteries and 35°F for the Service Water Intake Structure batteries), consistent with the STS. | # Table M - MORE RESTRICTIVE CHANGES Section 3.8 - ELECTRICAL POWER SYSTEMS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|---| | 14-M | 3/4.8.2.3 | 3.8.6 | The ** footnote which provided a 24 hour allowance to restore cell to cell electrolyte temperature deviations to within the limit is deleted consistent with the STS. Operability is now based on the minimum electrolyte temperature instead of the cell to cell electrolyte temperature deviation. | | 15-M | 3/4.8.2.3 | 3.8.6 | The surveillances that require the performance of a battery service test and performance discharge test were revised by the addition of a note which prohibits the performance of these surveillance tests in Modes 1, 2, 3, or 4. Since the performance of these tests would render the affected battery inoperable and both batteries are required operable in Modes 1-4, this restriction is
reasonable and applicable to FNP. | | 21-M | 3/4.8.2.3 | 3.8.6 | The Battery Surveillance Requirements is revised consistent with the STS to include the requirement to correct specific gravity readings for electrolyte level as well as the current requirement for electrolyte temperature. | | 25a-M | 3/4.8.2.3 | 3.8.6 | Footnote 1 is revised by the inclusion of the requirement to restore the battery parameters to within the Category A limits consistent with the STS. The footnote previously only required restoration of the battery parameters to within the Category B limits. | | 27-M | 3/4.8.2.3 | 3.8.6 | The Battery Surveillance Requirements footnotes 3 and 4 which contain conditions where the battery is considered inoperable are revised consistent with the STS. The STS Condition of electrolyte temperature less than the limit is included with these CTS notes. | | 11-M | 3/4.8.2.5 | 3.8.6 | The surveillance which requires testing to verify that the average electrolyte temperature of ten connected (battery) cells does not deviate more than 5 degrees from each other is revised to specify a minimum battery electrolyte temperature for representative cells checked. | | 16-M | 3/4.8.2.5 | 3.8.6 | The ** footnote to the surveillance which provided a 24 hour allowance to restore cell to cell electrolyte temperature deviations to within the limit is deleted consistent with the STS. | | | | | ITS 3.8.7 INVERTERS - OPERATING | ## Table M - MORE RESTRICTIVE CHANGES Section 3.8 - ELECTRICAL POWER SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | 12-M | 3/4.8.2.1 | 3.8.7 | The footnote to the LCO requirements, which provides an exception to the requirement for the inverter to be connected to the DC source, is moved into the Inverters - Operating LCO. The CTS note is further revised to specify additional requirements regarding how the vital bus must be energized when not supplied by the associated inverter and how the remaining vital buses must be energized. | | 13-M | 3/4.8.2.1 | 3.8.7 | The Unit 2 CTS 3/4.8.2.1 is used in place of the Unit 1 CTS 3/4.8.2.1 in this enclosure due to the fact that the Unit 2 CTS contains requirements for the inverters not found in the Unit 1 CTS. The addition of these TS requirements to FNP Unit 1 is considered more restrictive. | | | | | ITS 3.8.8 INVERTERS - SHUTDOWN | | 2-M | 3/4.8.2.2 | 3.8.8 | The CTS LCO requirements for the electrical distribution systems required operable during shutdown are revised by the addition of a new LCO requirement for Inverters - Shutdown LCO. | | 3-M | 3/4.8.2.2 | 3.8.8 | The Applicability is modified by the addition of the condition "During movement of irradiated fuel assemblies." The addition of this condition to the current applicability of Modes 5 and 6 will effectively require that the Distribution Systems - Shutdown and Inverters - Shutdown LCO requirements be met any time irradiated fuel is being moved. | | 4-M | 3/4.8.2.2 | 3.8.8 | The action to establish containment integrity within 8 hours of failure to meet the LCO requirements for AC buses is replaced with the STS actions for failure to meet the STS LCO requirement for AC, DC, and AC vital buses as well as the STS actions for the required inverters. | | 6-M | 3/4.8.2.2 | 3.8.8 | The CTS surveillance 4.8.2.2 is revised consistent with the STS. The CTS surveillance remains essentially the same except that it is expanded to include references to DC and AC vital buses consistent with the revision to the LCO discussed previously and with STS SR 3.8.10.1. In addition, a specific STS surveillance applicable to inverters is included (SR 3.8.8.1). This STS surveillance verifies the correct inverter voltage, frequency, and alignment to the required AC vital bus every 7 days. The additional STS inverter surveillance is applicable to FNP and provides assurance of correct inverter operation but represents an additional TS requirement and is therefore considered a more restrictive change. | ### Table M - MORE RESTRICTIVE CHANGES Section 3.8 - ELECTRICAL POWER SYSTEMS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | | | | ITS 3.8.9 DISTRIBUTION SYSTEMS - OPERATING | | 7-M | 3/4.8.2.1 | 3.8.9 | The action statements "a" and "b" are revised by the addition of a second completion time for the inoperable electrical distribution subsystem consistent with the corresponding STS Conditions. | | 11-M | 3/4.8.2.1 | 3.8.9 | The actions are revised by the addition of a new Actions Condition E which requires entry into LCO 3.0.3 if two or more distribution subsystems are inoperable and a loss of safety function exists has been added. | | 4-M | 3/4.8.2.5 | 3.8.9 | The action statement is revised by the addition of a second completion time for an inoperable DC distribution train consistent with the corresponding LCO. The new Completion Time of 16 hours from discovery of failure to meet the LCO is applicable to an inoperable DC distribution train as well as the 2 hour Completion Times in the CTS. | | 7-M | 3/4.8.2.5 | 3.8.9 | The * footnote which provides an exception to the action requirements for an inoperable DC train to allow the performance of surveillance requirements which render the associated DC train inoperable is deleted consistent with the STS. | | | | | ITS 3.8.10 DISTRIBUTION SYSTEMS - SHUTDOWN | | 1-M | 3/4.8.2.2 | 3.8.10 | The CTS requirement for the "following train oriented AC electrical busses," is revised consistent with the STS. The new requirement specifies that the distribution systems necessary to supply AC, DC, and AC vital power to all equipment required to be operable in the current plant condition must be operable. | | 3-M | 3/4.8.2.2 | 3.8.10 | The Applicability is modified by the addition of the condition "During movement of irradiated fuel assemblies." The addition of this condition to the current applicability of Modes 5 and 6 will effectively require that the Distribution Systems - Shutdown LCO requirements be met any time irradiated fuel is being moved. | ## Table M - MORE RESTRICTIVE CHANGES Section 3.8 - ELECTRICAL POWER SYSTEMS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | 4-M | 3/4.8.2.2 | 3.8.10 | The action to establish containment integrity within 8 hours of failure to meet the LCO requirements for AC buses, is replaced with the STS actions for failure to meet the STS LCO requirement for AC, DC, and AC vital buses as well as the STS actions for the required inverters. | | 1-M | 3/4.8.2.4 | 3.8.10 | The LCO requirement for "one 125-volt DC bus, battery and associated full capacity charger" to be operable is divided into 2 STS LCOs (distribution and source) consistent with the STS. The Distribution Systems - Shutdown LCO includes all the required electrical buses. In the revised LCO, the requirement for which distribution and source systems must be operable is defined in terms of the equipment required operable and places more specific demands in the TS than the less explicit CTS single bus and battery requirements. | | 2-M | 3/4.8.2.4 | 3.8.10 | The CTS 3/4.8.2.4 Applicability is revised consistent with the STS. The CTS applicability is modified by the addition of the condition "During movement of irradiated fuel assemblies." The addition of this condition to the current applicability of Modes 5 and 6 will effectively require that the Distribution Systems - Shutdown LCO requirements be met any time irradiated fuel is being moved. | | 5-M | 3/4.8.2.4 | 3.8.10 | Action A.2.5 is added to require the associated required RHR system be declared inoperable and not in operation consistent with the LCO which contains the requirements for all distribution system buses required operable during shutdown conditions. The addition of this STS action clarifies the appropriate action to be taken if the electrical power distribution system(s) required to support the required RHR system become inoperable. | ## Table M - MORE RESTRICTIVE CHANGES Section 3.9 - REFUELING OPERATIONS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |
--------------------------------|------------------|------------------|---|--| | (DOO NO.) | Transferre | | ITS 3.9.1 BORON CONCENTRATION | | | 4-M | 3/4.9.1 | 3.9.1 | The CTS LCO requirements for maintaining boron concentration in the RCS and refueling canal are extended in ITS LCO 3.9.1 to also include the refueling cavity. | | | | | | ITS 3.9.2 NUCLEAR INSTRUMENTATION | | | 4-M | 3/4.9.2 | 3.9.2 | The CTS Action in case both source range neutron flux monitors are inoperable (determining RCS boror concentration) is revised in ITS to additionally require immediate initiation of action to restore one monitor. | | | 7-M | 3/4.9.2 | 3.9.2 | A new Channel Calibration surveillance requirement (SR 3.9.2.2) is added in ITS. | | | 9-M | 3/4.9.2 | 3.9.2 | New Action Condition C is added in ITS to immediately isolate unborated water sources if there is no audible count rate. | | | | | | ITS 3.9.4 RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION - HIGH WATER LEVEL | | | 2-M | 3/4.9.8.1 | 3.9.4 | The CTS LCO statement is revised in ITS LCO 3.9.4 to require that one RHR loop be "operable" (thus explicitly invoking the TS definition of operability), in addition to "in operation" as per CTS. | | | 4-M | 3/4.9.8.1 | 3.9.4 | CTS Action Statement a, revised into ITS Required Action A.1, is made an immediate requirement, an additional immediate requirement is added in ITS (Action A.2) to initiate action to satisfy RHR local requirements. | | | 8-M | 3/4.9.8.1 | 3.9.4 | CTS Action Statement b, which permits removal of the required RHR loop from operation under limited circumstances, is revised into a NOTE to ITS LCO 3.9.4, and has a restriction added prohibiting operations that would cause a reduction in RCS boron concentration while the RHR loop is removed for service. | | ### Table M - MORE RESTRICTIVE CHANGES Section 3.9 - REFUELING OPERATIONS | Discussion
Of Change
(DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------------|------------------|------------------|--| | | | | ITS 3.9.6 REFUELING CAVITY WATER LEVEL | | 2-M | 3/4.9.10.1 | 3.9.6 | The CTS Applicability statement, which cites movement of fuel assemblies, is expanded in ITS to include "During CORE ALTERATIONS, except during latching and unlatching of control rod drive shafts". | | 5-M | 3/4.9.10.1 | 3.9.6 | The CTS Action Statement to suspend fuel movement is revised in ITS (LCO 3.9.6 Action A.2) to explicitly require immediate performance. | | 6-M | 3/4.9.10.1 | 3.9.6 | The CTS Action Statement to suspend fuel movement is revised in ITS (LCO 3.9.6 Action A.2) to apply within containment (not just within the pressure vessel). | | 8-M | 3/4.9.10.1 | 3.9.6 | The CTS Action Statement to suspend fuel movement is revised in ITS, adding an action (LCO 3.9.6 Action A.1) requiring immediate suspension of CORE ALTERATIONS. | | 2-M | 3/4.9.10.2 | 3.9.6 | The CTS water level requirement to maintain 23 feet above the top of the fuel is revised in ITS, increased to 23 feet above the top of the reactor vessel flange. | | 4-M | 3/4.9.10.2 | 3.9.6 | The CTS Action to suspend movement of control rods within the reactor vessel is replaced in ITS by more comprehensive requirements to immediately suspend CORE ALTERATIONS and movement of irradiated fuel in containment. | ### Table M - MORE RESTRICTIVE CHANGES Section 4.0 - DESIGN FEATURES | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|--| | 6-M | 5.0 | 4.0 | CTS 5.6.1.2, describing the design features and requirements for new fuel pit storage racks, is revised to become ITS 4.3.1.2 and a new requirement (4.3.1.2.c) is added to maintain k _{eff} =0.95 if fully flooded with unborated water. | ## Table M - MORE RESTRICTIVE CHANGES Section 5.0 - ADMINISTRATIVE CONTROLS | Discussion Of Change (DOC No.) | CTS
Reference | ITS
Reference | Summary of Change | |--------------------------------|------------------|------------------|---| | 1-M | 6.1.1 | 5.1.1 | A new paragraph is added in ITS stating responsibilities of the General Manager – Nuclear Plant not previously specified in CTS. | | 12-M | 6.2 | 5.2 | More comprehensive information defining Shift Technical Adviser (STA) qualifications and responsibilities is added to ITS. | | 12b-M | 6.3 | 5.3 | Provision is added in ITS requiring personnel who have completed an accredited program endorsed by the NRC to meet additional requirements of that program in lieu of cited standards. | | 21-M | 6.8.1 | 5.4.1.d | A requirement is added in ITS requiring procedures to be established, implemented, and maintained for all programs specified in ITS 5.5 (concerning operation, maintenance, and testing of the plant). | | 31-M | 6.8.3.d | 5.5.3 | The CTS requirement to obtain and analyze radioactive "iodines" is broadened to apply to "gases". | | 43-M | 6.8.3 | 5.5.14 | A new program, the Technical Specifications Bases Control Program, is added to ITS to provide guidance for making changes to the TS Bases. | | 42-M | 6.8.3 | 5.5.13 | A new program, the Diesel Fuel Oil Testing Program, is added to ITS for testing emergency diesel fuel oil stored on site. | | 44-M | 6.8.3 | 5.5.15 | A new program, the Safety Function Determination Program, is added to ITS to provide guidance for implementing a program to determine if a loss of safety function exists when multiple components may be affected and ITS LCO 3.0.6 is applicable. | | 65-M | 6.9 | 5.6.9 | A new reporting requirement, for the Tendon Surveillance Report, is added in ITS to the existing CTS reports. | Table R - RELOCATION OF TECHNICAL SPECIFICATIONS | CTS
Reference | Destination
Document | Description | Control
Process | |------------------|-------------------------|--|--------------------| | 3/4.1.2.1 | TRM | Requirements to maintain a source of borated water, one or more flow paths to inject this borated water into the RCS and appropriate charging pumps to provide the necessary charging head to | 10 CFR 50.59 | | 3/4.1.2.2 | TRM | overcome RCS pressure for boron injection are relocated to the TRM. | • | | 3/4.1.2.3 | TRM | | | | 3/4.1.2.4 | TRM | | | | 3/4.1.2.5 | TRM | | in the second | | 3/4.1.2.6 | TRM | | | | 3/4.1.3.3 | TRM | territoria de la Companya de la com
La companya de la co | . (| | 3/4.3.3 | TRM | Specification for Movable Incore Detectors; contains requirements for instrumentation used to perform testing on instruments that monitor core flux distribution and peaking factors. | 10 CFR 50.59 | | 3/4.3.3 | TRM | Specification for High Energy Line Break Isolation Sensors; contains requirements for instrumentation used to either detect and mitigate the discharge of steam or water into the affected room or provide an alarm to alert operators in the event of a line break. | 10 CFR 50.59 | | 3/4.3.4 | TRM | Specification for the Turbine Overspeed Protection; requires the turbine overspeed protection instrumentation and turbine speed control valves to be operable to protect the turbine from excessive speed. | 10 CFR 50.59 | #### Table R - RELOCATION OF TECHNICAL SPECIFICATIONS | CTS
Reference | Destination
Document | Description | Control
Process | |------------------|-------------------------|--|--------------------| | 3/4.4.2 | TRM | Specification for Safety Valves-Shutdown; requires minimum of one code safety valve operable and specifies setpoint. | 10 CFR 50.59 | | 3/4.4.8 | TRM | Specification for RCS Chemistry; establishes requirements for steady state and transient chemistry limits and sample frequencies. | 10 CFR 50.59 | | 3/4.4.10.2 | TRM | Specification for Pressurizer Temperature Limits; provides pressurizer heatup and cooldown limits. | 10 CFR 50.59 | | 3/4.4.12 | TRM | Specification for Reactor Coolant System Vents – requires at least one of two reactor vessel head vent paths to be operable and closed. | 10 CFR 50.59 | | 3/4.7.2 | TRM | Specification for Steam Generator Pressure/Temperature Limitation; places limits on the steam generator pressure and temperature. | 10 CFR 50.59 | | 3/4.7.9 | TRM | Specification for Snubbers; provides surveillance requirements for inspection and testing of mechanical and hydraulic snubbers. | 10 CFR 50.59 | | 3/4.7.10 | TRM | Specification for Sealed Source Contamination; provides limits for the allowed removable contamination on sealed sources. | 10 CFR 50.59 | |
3/4.7.13 | TRM | Specification for Area Temperature Monitoring; contains temperature limits to ensure that safety-
related equipment will not be subjected to temperatures in excess of their environmental
qualification temperatures. | 10 CFR 50.59 | | 3/4.8.3.1 | TRM | Specification for the Containment Penetration Conductor Overcurrent Protective Devices; contains requirements for installed overcurrent devices and required breaker position or fuse status to minimize the potential for a fault in a component inside containment or in cabling which penetrates containment. | 10 CFR 50.59 | | 3/4.8.3.2 | TRM | Specification for Motor Operated Valve Thermal Overload Protection Devices; contains requirements to ensure the thermal overload protection will not prevent a safety-related motor-operated valve from performing its intended safety function. | 10 CFR 50.59 | ### Table R - RELOCATION OF TECHNICAL SPECIFICATIONS | CTS
Reference | Destination
Document | Description | Control
Process | |------------------|-------------------------|---|--------------------| | 3/4.9.3 | TRM | Specification for Decay Time; requires reactor to have been subcritical for at least 100 hours before movement of irradiated fuel in the reactor vessel. | 10 CFR 50.59 | | 3/4.9.5 | TRM | Specification for Communications; requires direct communication between control room and refueling personnel during CORE ALTERATIONS. | 10 CFR 50.59 | | 3/4.9.6 | TRM | Specification for Manipulator Crane; provides hoist capacities and overload cutoff limits for the manipulator crane and auxiliary hoist. | 10 CFR 50.5 | | 3/4.9.7.1 | TRM | Specification for Crane Travel – Spent Fuel Storage Pool Building Bridge Crane; prohibits loads over 3000 pounds from traveling over fuel assemblies in the storage pool. | 10 CFR 50.5 | | 3/4.9.7.2 | TRM | Specification for Spent Fuel Cask Crane; provides requirements for operation and maintenance of the crane. | 10 CFR 50.5 | | 3/4.9.12 | TRM | Specification for Storage Pool Ventilation; contains requirements for the penetration room filtration system that are applicable whenever irradiated fuel is stored in the spent fuel pool. | 10 CFR 50.5 | | 3/4.10.5 | TRM | The test exception for Position Indication Systems – Shutdown allows the CTS 3/4.1.3.3 requirement, that a single digital rod position indicator be operable for each rod not fully inserted, to be suspended in Modes 3, 4, and 5 for the purpose of rod drop time measurements. | 10 CFR 50.5 | # Joseph M. Farley Nuclear Plant License Amendment Request -Improved Technical Specification Conversion Units 1 and 2 Volume 14 Bases (Final Clean Typed Copy) ### TABLE OF CONTENTS | B 2.0 | SAFETY LIMITS (SLs) | B 2.1.1-1 | |---------|---|-----------| | B 2.1.1 | SAFETY LIMITS (SLs) Reactor Core SLs Beauty Coolert System (BCS) Brooking SI | B 2.1.1-1 | | B 2.1.2 | Reactor Coolant System (RCS) Pressure SL | B 2.1.2-1 | | | | | | B 3.0 | LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY | B 3.0-1 | | B 3.0 | SURVEILLANCE REQUIREMENT (SR) APPLICABILITY | B 3.0-11 | | _ 0 | | : | | B 3.1 | REACTIVITY CONTROL SYSTEMS | B 3.1.1-1 | | B 3.1.1 | SHUTDOWN MARGIN (SDM) | | | B 3.1.2 | Core Reactivity | B 3.1.2-1 | | B 3.1.3 | Moderator Temperature Coefficient (MTC) | | | B 3.1.4 | Rod Group Alignment Limits | B 3.1.4-1 | | B 3.1.5 | Rod Group Alignment LimitsShutdown Bank Insertion Limits | B 3.1.5-1 | | B 3.1.6 | Control Bank Insertion Limits | B 3.1.6-1 | | B 3.1.7 | Pod Position Indication | R317-1 | | B 3.1.8 | Rod Position Indication PHYSICS TESTS Exceptions—MODE 2 | R318-1 | | D 3.1.0 | F1113103 11313 1.000ptions—WODE 2 | | | B 3.2 | DOWED DISTRIBUTION LIMITS | : R321-1 | | B 3.2.1 | POWER DISTRIBUTION LIMITS Heat Flux Hot Channel Factor (Fo(Z)) | B 2 2 1-1 | | | | 5.2.1-1 | | B 3.2.2 | Nuclear Enthalpy Rise Hot Channel | B 2 2 2 4 | | | Factor (FNA) | B 3.2.2-1 | | B 3.2.3 | AXIAI FILIX DIFFERENCE (AFD) | B 3.2.3-1 | | B 3.2.4 | QUADRANT POWER TILT RATIO (QPTR) | B 3.2.4-1 | | • | | | | B 3.3 | INSTRUMENTATION | B 3.3.1-1 | | B 3.3.1 | Reactor Trip System (RTS) Instrumentation | B 3.3.1-1 | | B 3.3.2 | Engineered Safety Feature Actuation | • | | • | System (ESFAS) Instrumentation | B 3.3.2-1 | | B 3.3.3 | Post Accident Monitoring (PAM) Instrumentation | B 3.3.3-1 | | B 3.3.4 | Remote Shutdown System | B 3.3.4-1 | | B 3.3.5 | Loss of Power (LOP) Diesel Generator (DG) | | | | Start Instrumentation | B 3.3.5-1 | | B 3.3.6 | Containment Purge and Exhaust Isolation | • | | | Instrumentation | B 3.3.6-1 | | B 3.3.7 | Control Room Emergency Filtration/Pressurization System | | | | (CREFS) Actuation Instrumentation | B 3.3.7-1 | | B 3.3.8 | Panetration Room Filtration (PRF) System | | | | Actuation Instrumentation | B 3.3.8-1 | | * | The second of | , | | B 3.4 | REACTOR COOLANT SYSTEM (RCS) | B 3.4.1-1 | | B 3.4.1 | RCS Pressure, Temperature, and Flow Departure | | | | from Nucleate Boiling (DNB) Limits | B 3.4.1-1 | | B 3.4.2 | RCS Minimum Temperature for Criticality | B 3.4.2-1 | | J U.T.E | | , | ### TABLE OF CONTENTS | B 3.4.3 | RCS Pressure and Temperature (P/T) Limits | B 3.4.3-1 | |----------|--|--| | B 3.4.4 | RCS Loops—MODES 1 and 2 | B 3.4.4-1 | | B 3.4.5 | RCS Loops—MODE 3 | B 3.4.5-1 | | B 3.4.6 | RCS Loops—MODE 4 | B 3.4.6-1 | | B 3.4.7 | RCS Loops—MODE 4RCS Loops—MODE 5, Loops Filled | B 3.4.7-1 | | B 3.4.8 | RCS Loops — MODE 5, Loops Not Filled | B 3.4.8-1 | | B 3.4.9 | Pressurizer | B 3.4.9-1 | | B 3.4.10 | PressurizerPressurizer Safety Valves | B 3.4.10-1 | | B 3.4.11
 Properties Power Operated Relief | | | D 3.4.11 | Volvoe (PODVe) | B 3.4.11-1 | | 20110 | Pressurizer Safety Valves Pressurizer Power Operated Relief Valves (PORVs) Low Temperature Overpressure Protection (LTOP) | | | B 3.4.12 | Low reinperature Overpressure Protection (E10) | B 3.4.12-1 | | | SystemRCS Operational LEAKAGE | D 2 / 12-1 | | B 3.4.13 | RCS Operational LEARAGE | D 3.4.13-1 | | B 3.4.14 | RCS Pressure Isolation Valve (PIV) Leakage | D 2 4 15 1 | | B 3.4.15 | RCS Leakage Detection Instrumentation RCS Specific Activity | D 0.4.10*1 | | B 3.4.16 | RCS Specific Activity | B 3.4. 10-1 | | | | | | B 3.5 | EMERGENCY CORE COOLING SYSTEMS (ECCS) | B 3.5.1-1 | | B 3.5.1 | Accumulators | B 3.5.1-1 | | B 3.5.2 | AccumulatorsECCS—Operating | B 3.5.2-1 | | B 3.5.3 | ECCSShutdown | B 3.5.3-1 | | B 3.5.4 | Refueling Water Storage Tank (RWST) | B 3.5.4-1 | | B 3.5.5 | Seal Injection Flow | B 3.5.5-1 | | B 3.5.6 | Seal Injection Flow | B 3.5.6-1 | | | | | | B 3.6 | CONTAINMENT SYSTEMSContainment | B 3.6.1-1 | | B 3.6.1 | Containment | B 3.6.1-1 | | B 3.6.2 | Containment Air Locks | 0 0.0.2-1 | | B 3.6.3 | Containment Isolation Valves | D J.D.J-I | | B 3.6.4 | Containment Pressure Containment Air Temperature | B 3.6.4-1 | | B 3.6.5 | Containment Air Temperature | B 3.6.5-1 | | B 3.6.6 | Containment Spray and Cooling Systems | D 3.0.0-1 | | B 3.6.7 | Hydrogen Recombiners | B 3.6.7-1 | | B 3.6.8 | Hydrogen Recombiners | B 3.6.8-1 | | B 3.6.9 | | | | D 3.6.3 | Reactor Cavity Hydrogen Dilution System (RCHDS) | B 3.6.9-1 | | · | and the control of th | | | D 2 7 | PLANT SYSTEMS | B 3.7.1-1 | | B 3.7 | Main Steam Safety Valves (MSSVs) | B 3.7.1-1 | | B 3.7.1 | Main Steam Isolation Valves (MSIVs) | B 3.7.2-1 | | B 3.7.2 | Mail Steam isolation value (| | | B 3.7.3 | Main Feedwater Stop Valves and Main Feedwater Regulation Valves (MFRVs) | | | • | and Main reedwater negulation valves (Wirnvs) | P 2 7 2-1 | | | and Associated Bypass Valves | 1-0.7.5 G | | B 3.7.4 | Atmospheric Relief Valves (AHVS) | D 3.7.4-1 | | | and the control of th | and the second s | ### TABLE OF CONTENTS | B 3.7.5 | Auxiliary Feedwater (AFW) System | B 3.7.5-1 | |----------|--|------------| | B 3.7.6 | Condensate Storage Tank (CST) | B 3.7.6-1 | | B 3.7.7 | Component Cooling Water (CCW) System | B 3.7.7-1 | | B 3.7.8 | Service Water System (SWS) | B 3.7.8-1 | | B 3.7.9 | Ultimate Heat Sink (UHS) | B 3.7.9-1 | | B 3.7.10 | Control Room Emergency Filtration/Pressurization | | | | System (CREFS) | B 3.7.10-1 | | B 3.7.11 | Control Room Air Conditioning | | | | System (CRACS) | B 3.7.11-1 | | B 3.7.12 | Penetration Room Filtration (PRF) System | B 3.7.12-1 | | B 3.7.13 | Fuel Storage Pool Water Level | B 3.7.13-1 | | B 3.7.14 | Fuel Storage Pool Boron Concentration | B 3.7.14-1 | | B 3.7.15 | Spent Fuel Assembly Storage | | | B 3.7.16 | Secondary Specific Activity | B 3.7.16-1 | | | | | | B 3.8 | ELECTRICAL POWER SYSTEMS | B 3.8.1-1 | | B 3.8.1 | AC Sources—Operating | B 3.8.1-1 | | B 3.8.2 | AC Sources—Shutdown | B 3.8.2-1 | | B 3.8.3 | Diesel Fuel Oil, Lube Oil, and Starting Air | B 3.8.3-1 | | B 3.8.4 | DC Sources—Operating | B 3.8.4-1 | | B 3.8.5 | DC Sources—Shutdown | B 3.8.5-1 | | B 3.8.6 | Battery Cell Parameters | | | B 3.8.7 | Inverters—Operating | | | B 3.8.8 | Inverters—Shutdown | B 3.8.8-1 | | B 3.8.9 | Distribution Systems—Operating | B 3.8.9-1 | | B 3.8.10 | Distribution Systems—Shutdown | B 3.8.10-1 | | | | • | | B 3.9 | REFUELING OPERATIONS | B 3.9.1-1 | | B 3.9.1 | Boron Concentration | B 3.9.1-1 | | B 3.9.2 | Nuclear Instrumentation | B 3.9.2-1 | | B 3.9.3 | Containment Penetrations | B 3.9.3-1 | | B 3.9.4 | Residual Heat Removal (RHR) and Coolant | • | | | Circulation—High Water Level | B 3.9.4-1 | | B 3.9.5 | Residual Heat Removal (RHR) and Coolant | | | | Circulation—Low Water Level | B 3.9.5-1 | | B 3.9.6 | Refueling Cavity Water Level | B 3.9.6-1 | | | | | #### B 2.0 SAFETY LIMITS (SLs) B 2.1.1 Reactor Core SLs #### **BASES** #### **BACKGROUND** GDC 10 (Ref. 1) requires that specified acceptable fuel design limits are not exceeded during steady state operation, normal operational transients, and anticipated operational occurrences (AOOs). This is accomplished by having a departure from nucleate boiling (DNB) design basis, which corresponds to a 95% probability at a 95% confidence level (the 95/95 DNB criterion) that DNB will not occur on the limiting fuel rod and by requiring that fuel centerline temperature stays below the melting temperature. The restrictions of this SL prevent overheating of the fuel and cladding, as well as possible cladding perforation, that would result in the release of fission products to the reactor coolant. Overheating of the fuel is prevented by maintaining the steady state peak linear heat rate (LHR) below the level at which fuel centerline melting occurs. Overheating of the fuel cladding is prevented by restricting fuel operation to within the nucleate boiling regime, where the heat transfer coefficient is large and the cladding surface temperature is slightly above the coolant saturation temperature. Fuel centerline melting occurs when the local LHR, or power peaking, in a region of the fuel is high enough to cause the fuel centerline temperature to reach the melting point of the fuel. Expansion of the pellet upon centerline melting may cause the pellet to stress the cladding to the point of failure, allowing an uncontrolled release of activity to the reactor coolant. Operation above the boundary of the nucleate boiling regime could result in excessive cladding temperature because of the onset of DNB and the resultant sharp reduction in heat transfer coefficient. Inside the steam film, high cladding temperatures are reached, and a cladding water (zirconium water) reaction may take place. This chemical reaction results in oxidation of the fuel cladding to a structurally weaker form. This weaker form may lose its integrity, resulting in an uncontrolled release of activity to the reactor coolant. The proper functioning of the Reactor Protection System (RPS) and main steam safety valves prevents violation of the reactor core SLs. #### APPLICABLE SAFETY ANALYSES The fuel cladding must not sustain damage as a result of normal operation and AOOs. The reactor core SLs are established to preclude violation of the following fuel design criteria: - a. There must be at least 95% probability at a 95% confidence level (the 95/95 DNB criterion) that the hottest fuel rod in the core does not experience DNB; and - b. The hottest fuel pellet in the core must not experience centerline fuel melting. In meeting the DNB design criterion, uncertainties in plant operating parameters, nuclear and thermal parameters, fuel fabrication parameters, and computer codes must be considered. As described in the FSAR, the effects of these uncertainties have been statistically combined with the correlation uncertainty to determine design limit DNBR values that satisfy the DNB design criterion. Additional DNBR margin is maintained by performing the safety analyses to a higher DNB limit. This margin between the design and safety analysis limit DNBR values is used to offset known DNBR penalties (e.g., rod bow and transition core) and to provide DNBR margin for operating and design flexibility. The Reactor Trip System Functions (Ref. 2), in combination with all the LCOs, are designed to prevent any anticipated combination of transient conditions (i.e., resulting from a Condition I or II event) for Reactor Coolant System (RCS) temperature, pressure, and THERMAL POWER level that would result in a departure from nucleate boiling ratio (DNBR) of less than the DNBR limit and preclude the existence of flow instabilities. Automatic enforcement of these reactor core SLs is provided by the following functions: - a. High pressurizer pressure trip; - b. Low pressurizer pressure trip; - c. Overtemperature ΔT trip; #### APPLICABLE SAFETY ANALYSES (continued) - d. Overpower ΔT trip; - e. Reactor Coolant Flow-Low trip; - f. Power Range Neutron Flux trip; and - g. Main steam safety valves. The limitation that the average enthalpy in the hot leg be less than or equal to the enthalpy of saturated liquid also ensures that the ΔT measured by instrumentation, used in the RPS design as a measure of core power, is proportional to core power. The SLs represent a design requirement for establishing the RPS trip setpoints identified previously. LCO 3.4.1, "RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits," or the assumed initial conditions of the safety analyses provide more restrictive limits to ensure that the SLs are not exceeded. #### **SAFETY LIMITS** The curves provided in Figure 2.1.1-1 show the reactor core safety limits for a range of THERMAL POWER, Reactor Coolant System pressure and average temperature for which the minimum DNBR is not less than the safety analyses limit, that fuel centerline temperature remains below melting, that the average enthalpy in the hot leg is less than the enthalpy of saturated liquid, or that the exit quality is within the limits defined by the DNBR correlation (not a limiting criterion). The curves are based on enthalpy hot channel factor limits provided in the COLR. The SL is higher than the limit calculated when the AFD is within the limits of the $F_1(\Delta I)$ function of the overtemperature ΔT reactor trip. When the AFD is not within the tolerance, the AFD effect on the overtemperature ΔT reactor trips will reduce the setpoints to provide protection consistent with the reactor core SLs (Refs. 3 and 4). #### **APPLICABILITY** SL 2.1.1 only applies in MODES 1 and 2 because these are the only MODES in which the reactor is critical. Automatic protection functions are required to be OPERABLE during MODES 1 and 2 to ensure operation within the reactor core SLs. The main steam safety valves or automatic protection
actions serve to prevent RCS heatup to the reactor core SL conditions or to initiate a reactor trip function, which forces the unit into MODE 3. Setpoints for the reactor trip functions are specified in LCO 3.3.1, "Reactor Trip System (RTS) Instrumentation." In MODES 3, 4, 5, and 6, Applicability is not required since the reactor is not generating significant THERMAL POWER. ### SAFETY LIMIT If SL 2.1.1 is violated, the requirement to go to MODE 3 places the unit in a MODE in which this SL is not applicable. The allowed Completion Time of 1 hour recognizes the importance of bringing the unit to a MODE of operation where this SL is not applicable, and reduces the probability of fuel damage. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 10. - 2. FSAR, Section 7.2. - 3. WCAP-8746-A, March 1977. - 4. WCAP-9273-NP-A, July 1985. #### **B 2.0 SAFETY LIMITS (SLs)** B 2.1.2 Reactor Coolant System (RCS) Pressure SL #### **BASES** #### **BACKGROUND** The SL on RCS pressure protects the integrity of the RCS against overpressurization. In the event of fuel cladding failure, fission products are released into the reactor coolant. The RCS then serves as the primary barrier in preventing the release of fission products into the atmosphere. By establishing an upper limit on RCS pressure, the continued integrity of the RCS is ensured. According to 10 CFR 50, Appendix A, GDC 14, "Reactor Coolant Pressure Boundary," and GDC 15, "Reactor Coolant System Design" (Ref. 1), the reactor coolant pressure boundary (RCPB) design conditions are not to be exceeded during normal operation and anticipated operational occurrences (AOOs). Also, in accordance with GDC 28, "Reactivity Limits" (Ref. 1), reactivity accidents, including rod ejection, do not result in damage to the RCPB greater than limited local yielding. The design pressure of the RCS is 2500 psia. During normal operation and AOOs, RCS pressure is limited from exceeding the design pressure by more than 10%, in accordance with Section III of the ASME Code (Ref. 2). To ensure system integrity, all RCS components were hydrostatically tested at 125% of design pressure, according to the ASME Code requirements prior to initial operation when there was no fuel in the core. Following inception of unit operation, RCS components shall be pressure tested, in accordance with the requirements of ASME Code, Section XI (Ref. 3). Overpressurization of the RCS could result in a breach of the RCPB. If such a breach occurs in conjunction with a fuel cladding failure, fission products could enter the containment atmosphere, raising concerns relative to limits on radioactive releases specified in 10 CFR 100, "Reactor Site Criteria" (Ref. 4). #### APPLICABLE SAFETY ANALYSES The RCS pressurizer safety valves, the main steam safety valves (MSSVs), and the reactor high pressure trip have settings established to ensure that the RCS pressure SL will not be exceeded. #### APPLICABLE SAFETY ANALYSES (continued) The RCS pressurizer safety valves are sized to prevent system pressure from exceeding the design pressure by more than 10%, as specified in Section III of the ASME Code for Nuclear Power Plant Components (Ref. 2). The transient that establishes the required relief capacity, and hence valve size requirements and lift settings, is a complete loss of external load without a direct reactor trip. During the transient, no control actions are assumed, except that the safety valves on the secondary plant are assumed to open when the steam pressure reaches the secondary plant safety valve settings. The Reactor Trip System Functions (Ref. 5), together with the settings of the MSSVs, provide pressure protection for normal operation and AOOs. The reactor high pressure trip setpoint is specifically set to provide protection against overpressurization (Ref. 5). The safety analyses for both the high pressure trip and the RCS pressurizer safety valves are performed using conservative assumptions relative to pressure control devices. More specifically, no credit is taken for operation of the following: - a. Pressurizer power operated relief valves (PORVs); - b. Steam line atmospheric relief valves; - c. Steam Dump System; - d. Reactor Control System; - e. Pressurizer Level Control System; or - f. Pressurizer spray valve. #### SAFETY LIMITS The maximum transient pressure allowed in the RCS pressure vessel pressurizer, and RCS piping and fittings under the ASME Code, Section III, is 110% of design pressure. Therefore, the SL on maximum allowable RCS pressure is 2735 psig. #### **APPLICABILITY** SL 2.1.2 applies in MODES 1, 2, 3, 4, and 5 because this SL could be approached or exceeded in these MODES due to overpressurization events. The SL is not applicable in MODE 6 because the reactor vessel head closure bolts are not fully tightened, making it unlikely that the RCS can be pressurized. ### SAFETY LIMIT VIOLATIONS If the RCS pressure SL is violated when the reactor is in MODE 1 or 2, the requirement is to restore compliance and be in MODE 3 within 1 hour. Exceeding the RCS pressure SL may cause immediate RCS failure and create a potential for radioactive releases in excess of 10 CFR 100, "Reactor Site Criteria," limits (Ref. 4). The allowable Completion Time of 1 hour recognizes the importance of reducing power level to a MODE of operation where the potential for challenges to safety systems is minimized. If the RCS pressure SL is exceeded in MODE 3, 4, or 5, RCS pressure must be restored to within the SL value within 5 minutes. Exceeding the RCS pressure SL in MODE 3, 4, or 5 is more severe than exceeding this SL in MODE 1 or 2, since the reactor vessel temperature may be lower and the vessel material, consequently, less ductile. As such, pressure must be reduced to less than the SL within 5 minutes. The action does not require reducing MODES, since this would require reducing temperature, which would compound the problem by adding thermal gradient stresses to the existing pressure stress. #### **REFERENCES** - 1. 10 CFR 50, Appendix A, GDC 14, GDC 15, and GDC 28. - 2. ASME, Boiler and Pressure Vessel Code, Section III, Article NB-7000. - 3. ASME, Boiler and Pressure Vessel Code, Section XI, Article IWX-5000. - 4. 10 CFR 100. - 5. FSAR, Section 7.2. #### B 3.0 LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY | BASES | | |-----------|---| | LCOs | LCO 3.0.1 through LCO 3.0.7 establish the general requirements applicable to all Specifications and apply at all times, unless otherwise stated. | | LCO 3.0.1 | LCO 3.0.1 establishes the Applicability statement within each individual Specification as the requirement for when the LCO is required to be met (i.e., when the unit is in the MODES or other specified conditions of the Applicability statement of each Specification). | | LCO 3.0.2 | LCO 3.0.2 establishes that upon discovery of a failure to meet an LCO, the associated ACTIONS shall be met. The Completion Time of each Required Action for an ACTIONS Condition is applicable from the point in time that an ACTIONS Condition is entered. The Required Actions establish those remedial measures that must be taken within specified Completion Times when the requirements of an LCO are not met. This Specification establishes that: | | | a. Completion of the Required Actions within the specified Completion | - a. Completion of the Required Actions within the specified Completion Times constitutes compliance with a Specification; and - b. Completion of the Required Actions is not required when an LCO is met within the specified Completion Time, unless otherwise specified. There are two basic types of Required Actions. The first type of Required Action specifies a time limit in which the LCO must be met. This time limit is the Completion Time to restore an inoperable system or component to OPERABLE status or to restore variables to within specified limits. If this type of Required Action is not completed within the specified Completion Time, a shutdown may be required to place the unit in a MODE or condition in which the Specification is not applicable. (Whether stated as a Required Action or not, correction of the entered Condition is an action that may always be considered upon entering ACTIONS.) The second type of Required Action specifies the remedial measures that permit continued operation of the unit that is not further ### (continued) restricted by the Completion Time. In this case, compliance with the Required Actions provides an acceptable level of safety for continued operation. Completing the Required Actions is not required when an LCO is met or is no longer applicable, unless otherwise stated in the individual Specifications. The nature of some Required Actions of some Conditions necessitates that, once the Condition is entered, the Required Actions must be completed even though the associated Conditions no longer exist. The individual LCO's ACTIONS specify the Required Actions where this is the case. An example of this is in LCO 3.4.3, "RCS Pressure and Temperature (P/T) Limits." The Completion Times of the Required Actions are also applicable when a system or component is removed from service intentionally. The reasons for intentionally relying on the ACTIONS include, but are not limited to, performance of Surveillances, preventive maintenance, corrective maintenance, or investigation of operational problems. Entering ACTIONS for these reasons must be done in a manner that does not compromise safety. Intentional entry into ACTIONS should not be made for operational convenience.
Additionally, if intentional entry into ACTIONS would result in redundant equipment being inoperable. alternatives should be used instead. Doing so limits the time both subsystems/trains of a safety function are inoperable and limits the time conditions exist which may result in LCO 3.0.3 being entered. Individual Specifications may specify a time limit for performing an SR when equipment is removed from service or bypassed for testing. In this case, the Completion Times of the Required Actions are applicable when this time limit expires, if the equipment remains removed from service or bypassed. When a change in MODE or other specified condition is required to comply with Required Actions, the unit may enter a MODE or other specified condition in which another Specification becomes applicable. In this case, the Completion Times of the associated Required Actions would apply from the point in time that the new Specification becomes applicable, and the ACTIONS Condition(s) are entered. LCO 3.0.3 LCO 3.0.3 establishes the actions that must be implemented when an LCO is not met and: - a. An associated Required Action and Completion Time is not met and no other Condition applies; or - b. The condition of the unit is not specifically addressed by the associated ACTIONS. This means that no combination of Conditions stated in the ACTIONS can be made that exactly corresponds to the actual condition of the unit. Sometimes, possible combinations of Conditions are such that entering LCO 3.0.3 is warranted; in such cases, the ACTIONS specifically state a Condition corresponding to such combinations and also that LCO 3.0.3 be entered immediately. This Specification delineates the time limits for placing the unit in a safe MODE or other specified condition when operation cannot be maintained within the limits for safe operation as defined by the LCO and its ACTIONS. It is not intended to be used as an operational convenience that permits routine voluntary removal of redundant systems or components from service in lieu of other alternatives that would not result in redundant systems or components being inoperable. Upon entering LCO 3.0.3, 1 hour is allowed to prepare for an orderly shutdown before initiating a change in unit operation. This includes time to permit the operator to coordinate the reduction in electrical generation with the load dispatcher to ensure the stability and availability of the electrical grid. The time limits specified to reach lower MODES of operation permit the shutdown to proceed in a controlled and orderly manner that is well within the specified maximum cooldown rate and within the capabilities of the unit, assuming that only the minimum required equipment is OPERABLE. This reduces thermal stresses on components of the Reactor Coolant System and the potential for a plant upset that could challenge safety systems under conditions to which this Specification applies. The use and interpretation of specified times to complete the actions of LCO 3.0.3 are consistent with the discussion of Section 1.3, Completion Times. A unit shutdown required in accordance with LCO 3.0.3 may be terminated and LCO 3.0.3 exited if any of the following occurs: a. The LCO is now met. ### LCO 3.0.3 (continued) - b. A Condition exists for which the Required Actions have now been performed. - c. ACTIONS exist that do not have expired Completion Times. These Completion Times are applicable from the point in time that the Condition is initially entered and not from the time LCO 3.0.3 is exited. The time limits of Specification 3.0.3 allow 37 hours for the unit to be in MODE 5 when a shutdown is required during MODE 1 operation. If the unit is in a lower MODE of operation when a shutdown is required, the time limit for reaching the next lower MODE applies. If a lower MODE is reached in less time than allowed, however, the total allowable time to reach MODE 5, or other applicable MODE, is not reduced. For example, if MODE 3 is reached in 2 hours, then the time allowed for reaching MODE 4 is the next 11 hours, because the total time for reaching MODE 4 is not reduced from the allowable limit of 13 hours. Therefore, if remedial measures are completed that would permit a return to MODE 1, a penalty is not incurred by having to reach a lower MODE of operation in less than the total time allowed. In MODES 1, 2, 3, and 4, LCO 3.0.3 provides actions for Conditions not covered in other Specifications. The requirements of LCO 3.0.3 do not apply in MODES 5 and 6 because the unit is already in the most restrictive Condition required by LCO 3.0.3. The requirements of LCO 3.0.3 do not apply in other specified conditions of the Applicability (unless in MODE 1, 2, 3, or 4) because the ACTIONS of individual Specifications sufficiently define the remedial measures to be taken. Exceptions to LCO 3.0.3 are provided in instances where requiring a unit shutdown, in accordance with LCO 3.0.3, would not provide appropriate remedial measures for the associated condition of the unit. An example of this is in LCO 3.7.13, "Fuel Storage Pool Water Level." LCO 3.7.13 has an Applicability of "During movement of irradiated fuel assemblies in the fuel storage pool." Therefore, this LCO can be applicable in any or all MODES. If the LCO and the Required Actions of LCO 3.7.13 are not met while in MODE 1, 2, or 3, there is no safety benefit to be gained by placing the unit in a shutdown condition. The Required Action of LCO 3.7.13 of "Suspend movement of irradiated fuel assemblies in the fuel storage pool" is the appropriate Required Action to complete in lieu of the actions of LCO 3.0.3. These exceptions are addressed in the individual Specifications. LCO 3.0.4 LCO 3.0.4 establishes limitations on changes in MODES or other specified conditions in the Applicability when an LCO is not met. It precludes placing the unit in a MODE or other specified condition stated in that Applicability (e.g., Applicability desired to be entered) when the following exist: - a. Unit conditions are such that the requirements of the LCO would not be met in the Applicability desired to be entered; and - b. Continued noncompliance with the LCO requirements, if the Applicability were entered, would result in the unit being required to exit the Applicability desired to be entered to comply with the Required Actions. Compliance with Required Actions that permit continued operation of the unit for an unlimited period of time in a MODE or other specified condition provides an acceptable level of safety for continued operation. This is without regard to the status of the unit before or after the MODE change. Therefore, in such cases, entry into a MODE or other specified condition in the Applicability may be made in accordance with the provisions of the Required Actions. The provisions of this Specification should not be interpreted as endorsing the failure to exercise the good practice of restoring systems or components to OPERABLE status before unit startup. The provisions of LCO 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS. In addition, the provisions of LCO 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that result from a normal unit shutdown. Exceptions to LCO 3.0.4 are stated in the individual Specifications. The exceptions allow entry into MODES or other specified conditions in the Applicability when the associated ACTIONS to be entered do not provide for continued operation for an unlimited period of time. Exceptions may apply to all the ACTIONS or to a specific Required Action of a Specification. Surveillances do not have to be performed on the associated inoperable equipment (or on variables outside the specified limits), as permitted by SR 3.0.1. Therefore, changing MODES or other specified conditions while in an ACTIONS Condition, in compliance with LCO 3.0.4 or where ### LCO 3.0.4 (continued) an exception to LCO 3.0.4 is stated, is not a violation of SR 3.0.1 or SR 3.0.4 for those Surveillances that do not have to be performed due to the associated inoperable equipment. However, SRs must be met to ensure OPERABILITY prior to declaring the associated equipment OPERABLE (or variable within limits) and restoring compliance with the affected LCO. #### LCO 3.0.5 LCO 3.0.5 establishes the allowance for restoring equipment to service under administrative controls when it has been removed from service or declared inoperable to comply with ACTIONS. The sole purpose of this Specification is to provide an exception to LCO 3.0.2 (e.g., to not comply with the applicable Required Action(s)) to allow the performance of required testing to demonstrate: - a. The OPERABILITY of the equipment being returned to service; or - b. The OPERABILITY of other equipment. The administrative controls ensure the time the equipment is returned to service in conflict with the requirements of the ACTIONS is limited to the time absolutely necessary to perform the required testing to demonstrate OPERABILITY. This Specification does not provide time to perform any other preventive or corrective maintenance. An example of demonstrating the OPERABILITY of the equipment being returned to service is reopening a containment isolation valve that has been closed to comply with Required Actions and must be reopened to perform the required testing. An example of demonstrating the OPERABILITY of other equipment is taking an inoperable channel or trip system out of the tripped condition to prevent the trip function from occurring during the performance of required testing on another channel in the other trip system. A similar example of demonstrating the OPERABILITY of other equipment is taking an inoperable channel or trip system out of the tripped condition to permit the logic to function and indicate the appropriate response during the performance of required testing on another channel in the
same trip system. LCO 3.0.6 LCO 3.0.6 establishes an exception to LCO 3.0.2 for support systems that have an LCO specified in the Technical Specifications (TS). This exception is provided because LCO 3.0.2 would require that the Conditions and Required Actions of the associated inoperable supported system LCO be entered solely due to the inoperability of the support system. This exception is justified because the actions that are required to ensure the unit is maintained in a safe condition are specified in the support system LCO's Required Actions. These Required Actions may include entering the supported system's Conditions and Required Actions or may specify other Required Actions. When a support system is inoperable and there is an LCO specified for it in the TS, the supported system(s) are required to be declared inoperable if determined to be inoperable as a result of the support system inoperability. However, it is not necessary to enter into the supported systems' Conditions and Required Actions unless directed to do so by the support system's Required Actions. The potential confusion and inconsistency of requirements related to the entry into multiple support and supported systems' LCOs' Conditions and Required Actions are eliminated by providing all the actions that are necessary to ensure the unit is maintained in a safe condition in the support system's Required Actions. However, there are instances where a support system's Required Action may either direct a supported system to be declared inoperable or direct entry into Conditions and Required Actions for the supported system. This may occur immediately or after some specified delay to perform some other Required Action. Regardless of whether it is immediate or after some delay, when a support system's Required Action directs a supported system to be declared inoperable or directs entry into Conditions and Required Actions for a supported system, the applicable Conditions and Required Actions shall be entered in accordance with LCO 3.0.2. Specification 5.5.15, "Safety Function Determination Program (SFDP)," ensures loss of safety function is detected and appropriate actions are taken. Upon entry into LCO 3.0.6, an evaluation shall be made to determine if loss of safety function exists. Additionally, other limitations, remedial actions, or compensatory actions may be identified as a result of the support system inoperability and corresponding exception to entering supported system Conditions and Required Actions. The SFDP implements the requirements of LCO 3.0.6. ### LCO 3.0.6 (continued) Cross train checks to identify a loss of safety function for those support systems that support multiple and redundant safety systems are required. The cross train check verifies that the supported systems of the redundant OPERABLE support system are OPERABLE, thereby ensuring safety function is retained. The following examples are provided for illustration: - a. A required system redundant to system(s) supported by the inoperable support system is also inoperable; or (EXAMPLE B3.0.6-1). - b. A required system redundant to system(s) in turn supported by the inoperable supported system is also inoperable; or (EXAMPLE B3.0.6-2). - A required system redundant to support system(s) for the supported systems (a) and (b) above is also inoperable. (EXAMPLE B3.0.6-3) #### **EXAMPLE B3.0.6-1** If System 2 of Train A is inoperable, and System 5 of Train B is inoperable, a loss of safety function exists in supported System 5. #### **EXAMPLE B3.0.6-2** If System 2 of Train A is inoperable, and System 11 of Train B is inoperable, a loss of safety function exists in System 11 which is in turn supported by System 5. #### **EXAMPLE B3.0.6-3** If System 2 of Train A is inoperable, and System 1 of Train B is inoperable, a loss of safety function exists in Systems 2, 4, 5, 8, 9, 10 and 11. If this evaluation determines that a loss of safety function exists, the appropriate Conditions and Required Actions of the LCO in which the loss of safety function exists are required to be entered. LCO 3.0.6 (continued) #### **EXAMPLES** LCO 3.0.7 There are certain special tests and operations required to be performed at various times over the life of the unit. These special tests and operations are necessary to demonstrate select unit performance characteristics, to perform special maintenance activities, and to perform special evolutions. Test Exception LCO 3.1.8 allows specified Technical Specification (TS) requirements to be changed to permit performances of these special tests and operations, which otherwise could not be performed if required to comply with the requirements of these TS. Unless otherwise specified, all the other TS requirements remain unchanged. This will ensure all appropriate requirements of the MODE or other specified condition not directly associated with or required to be changed to perform the special test or operation will remain in effect. LCO 3.0.7 (continued) The Applicability of a Test Exception LCO represents a condition not necessarily in compliance with the normal requirements of the TS. Compliance with Test Exception LCOs is optional. A special operation may be performed either under the provisions of the appropriate Test Exception LCO or under the other applicable TS requirements. If it is desired to perform the special operation under the provisions of the Test Exception LCO, the requirements of the Test Exception LCO shall be followed. #### B 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY #### **BASES** #### SRs SR 3.0.1 through SR 3.0.4 establish the general requirements applicable to all Specifications and apply at all times, unless otherwise stated. #### SR 3.0.1 SR 3.0.1 establishes the requirement that SRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the LCO apply, unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with SR 3.0.2, constitutes a failure to meet an LCO. Systems and components are assumed to be OPERABLE when the associated SRs have been met. Nothing in this Specification, however, is to be construed as implying that systems or components are OPERABLE when: - a. The systems or components are known to be inoperable, although still meeting the SRs; or - b. The requirements of the Surveillance(s) are known not to be met between required Surveillance performances. Surveillances do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a test exception are only applicable when the test exception is used as an allowable exception to the requirements of a Specification. Unplanned events may satisfy the requirements (including applicable acceptance criteria) for a given SR. In this case, the unplanned event may be credited as fulfilling the performance of the SR. This allowance includes those SRs whose performance is normally precluded in a given MODE or other specified condition. ### SR 3.0.1 (continued) Surveillances, including Surveillances invoked by Required Actions, do not have to be performed on inoperable equipment because the ACTIONS define the remedial measures that apply. Surveillances have to be met and performed in accordance with SR 3.0.2, prior to returning equipment to OPERABLE status. Upon completion of maintenance, appropriate post maintenance testing is required to declare equipment OPERABLE. This includes ensuring applicable Surveillances are not failed and their most recent performance is in accordance with SR 3.0.2. Post maintenance testing may not be possible in the current MODE or other specified conditions in the Applicability due to the necessary unit parameters not having been established. In these situations, the equipment may be considered OPERABLE provided testing has been satisfactorily completed to the extent possible and the equipment is not otherwise believed to be incapable of performing its function. This will allow operation to proceed to a MODE or other specified condition where other necessary post maintenance tests can be completed. #### SR 3.0.2 SR 3.0.2 establishes the requirements for meeting the specified Frequency for Surveillances and any Required Action with a Completion Time that requires the periodic performance of the Required Action on a "once per . . ." interval. SR 3.0.2 permits a 25% extension of the interval specified in the Frequency. This extension facilitates Surveillance scheduling and considers plant operating conditions that may not be suitable for conducting the Surveillance (e.g., transient conditions or other ongoing Surveillance or maintenance activities). The 25% extension does not significantly degrade the reliability that results from performing the Surveillance at its specified Frequency. This is based on the recognition that the most probable result of any particular Surveillance being performed is the verification of conformance with the SRs. The exceptions to SR 3.0.2 are those Surveillances for which the 25% extension of the interval specified in the Frequency does not apply. These exceptions are stated in the individual Specifications. An example of where SR 3.0.2 does not apply is the Containment Leakage Rate Testing Program. ## SR 3.0.2 (continued) As stated in SR 3.0.2, the 25% extension also does not apply to the initial portion of a periodic Completion Time that requires performance on a "once per ..." basis. The 25% extension applies to each performance after the initial performance. The initial performance of the Required Action, whether it is a particular Surveillance or some other remedial action, is considered a
single action with a single Completion Time. One reason for not allowing the 25% extension to this Completion Time is that such an action usually verifies that no loss of function has occurred by checking the status of redundant or diverse components or accomplishes the function of the Inoperable equipment in an alternative manner. The provisions of SR 3.0.2 are not intended to be used repeatedly merely as an operational convenience to extend Surveillance intervals (other than those consistent with refueling intervals) or periodic Completion Time intervals beyond those specified. #### SR 3.0.3 SR 3.0.3 establishes the flexibility to defer declaring affected equipment inoperable or an affected variable outside the specified limits when a Surveillance has not been completed within the specified Frequency. A delay period of up to 24 hours or up to the limit of the specified Frequency, whichever is less, applies from the point in time that it is discovered that the Surveillance has not been performed in accordance with SR 3.0.2, and not at the time that the specified Frequency was not met. This delay period provides adequate time to complete Surveillances that have been missed. This delay period permits the completion of a Surveillance before complying with Required Actions or other remedial measures that might preclude completion of the Surveillance. The basis for this delay period includes consideration of unit conditions, adequate planning, availability of personnel, the time required to perform the Surveillance, the safety significance of the delay in completing the required Surveillance, and the recognition that the most probable result of any particular Surveillance being performed is the verification of conformance with the requirements. When a Surveillance with a Frequency based not on time intervals, but upon specified unit conditions or operational situations, is discovered not to have been performed when specified, SR 3.0.3 allows the full delay period of 24 hours to perform the Surveillance. ### SR 3.0.3 (continued) SR 3.0.3 also provides a time limit for completion of Surveillances that become applicable as a consequence of MODE changes imposed by Required Actions. Failure to comply with specified Frequencies for SRs is expected to be an infrequent occurrence. Use of the delay period established by SR 3.0.3 is a flexibility which is not intended to be used as an operational convenience to extend Surveillance intervals. If a Surveillance is not completed within the allowed delay period, then the equipment is considered inoperable or the variable is considered outside the specified limits and the Completion Times of the Required Actions for the applicable LCO Conditions begin immediately upon expiration of the delay period. If a Surveillance is failed within the delay period, then the equipment is inoperable, or the variable is outside the specified limits and the Completion Times of the Required Actions for the applicable LCO Conditions begin immediately upon the failure of the Surveillance. Completion of the Surveillance within the delay period allowed by this Specification, or within the Completion Time of the ACTIONS, restores compliance with SR 3.0.1. #### SR 3.0.4 SR 3.0.4 establishes the requirement that all applicable SRs must be met before entry into a MODE or other specified condition in the Applicability. This Specification ensures that system and component OPERABILITY requirements and variable limits are met before entry into MODES or other specified conditions in the Applicability for which these systems and components ensure safe operation of the unit. This Specification applies to changes in MODES or other specified conditions in the Applicability associated with unit shutdown as well as startup. However, in certain circumstances, failing to meet an SR will not result in SR 3.0.4 restricting a MODE change or other specified condition change. When a system, subsystem, division, component, device, or variable is inoperable or outside its specified limits, the associated SR(s) are not required to be performed, per SR 3.0.1, which states that surveillances ### SR 3.0.4 (continued) do not have to be performed on inoperable equipment. When equipment is inoperable, SR 3.0.4 does not apply to the associated SR(s) since the requirement for the SR(s) to be performed is removed. Therefore, failing to perform the Surveillance(s) within the specified Frequency does not result in an SR 3.0.4 restriction to changing MODES or other specified conditions of the Applicability. However, since the LCO is not met in this instance, LCO 3.0.4 will govern any restrictions that may (or may not) apply to MODE or other specified condition changes. The provisions of SR 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS. The precise requirements for performance of SRs are specified such that exceptions to SR 3.0.4 are not necessary. The specific time frames and conditions necessary for meeting the SRs are specified in the Frequency, in the Surveillance, or both. This allows performance of Surveillances when the prerequisite condition(s) specified in a Surveillance procedure require entry into the MODE or other specified condition in the Applicability of the associated LCO prior to the performance or completion of a Surveillance. A Surveillance that could not be performed until after entering the LCO Applicability, would have its Frequency specified such that it is not "due" until the specific conditions needed are met. Alternately, the Surveillance may be stated in the form of a Note as not required (to be met or performed) until a particular event, condition, or time has been reached. Further discussion of the specific formats of SRs' annotation is found in Section 1.4, Frequency. #### **B 3.1 REACTIVITY CONTROL SYSTEMS** #### **B 3.1.1 SHUTDOWN MARGIN (SDM)** #### **BASES** #### **BACKGROUND** According to GDC 26 (Ref. 1), the reactivity control systems must be redundant and capable of holding the reactor core subcritical when shut down under cold conditions. Maintenance of the SDM ensures that postulated reactivity events will not damage the fuel. SDM requirements provide sufficient reactivity margin to ensure that acceptable fuel design limits will not be exceeded for normal shutdown and anticipated operational occurrences (AOOs). As such, the SDM defines the degree of subcriticality that would be obtained immediately following the insertion or trip of all shutdown and control rods, assuming that the single rod cluster assembly of highest reactivity worth is fully withdrawn. The system design requires that two independent reactivity control systems be provided, and that one of these systems be capable of maintaining the core subcritical under cold conditions. These requirements are provided by the use of movable control assemblies and soluble boric acid in the Reactor Coolant System (RCS). The Rod Control System can compensate for the reactivity effects of the fuel and water temperature changes accompanying power level changes over the range from full load to no load. In addition, the Rod Control System, together with the boration system, provides the SDM during power operation and is capable of making the core subcritical rapidly enough to prevent exceeding acceptable fuel damage limits, assuming that the rod of highest reactivity worth remains fully withdrawn. The Chemical and Volume Control System can control the soluble boron concentration to compensate for fuel depletion during operation and all xenon burnout reactivity changes and can maintain the reactor subcritical under cold conditions. During power operation, SDM control is ensured by operating with the shutdown banks fully withdrawn and the control banks within the limits of LCO 3.1.6, "Control Bank Insertion Limits." When the unit is in the shutdown and refueling modes, the SDM requirements are met by means of adjustments to the RCS boron concentration. #### APPLICABLE SAFETY ANALYSES The minimum required SDM is assumed as an initial condition in safety analyses. The safety analysis (Ref. 2) establishes an SDM that ensures specified acceptable fuel design limits are not exceeded for normal operation and AOOs, with the assumption of the highest worth rod stuck out on a trip. For MODE 5, the primary Safety Analysis that relies on the SDM limits is the boron dilution analysis. The acceptance criteria for the SDM requirements are that specified acceptable fuel design limits are maintained. This is done by ensuring that: - a. The reactor can be made subcritical from all operating conditions, transients, and Design Basis Events; - b. The reactivity transients associated with postulated accident conditions are controllable within acceptable limits (departure from nucleate boiling ratio (DNBR), fuel centerline temperature limits for AOOs, and less than 200 cal/gm, thus meeting the NRC acceptance criteria of ≤ 280 cal/gm average fuel pellet enthalpy at the hot spot for the rod ejection accident); and - c. The reactor will be maintained sufficiently subcritical to preclude inadvertent criticality in the shutdown condition. An Operating Procedure (Ref. 5) assures sufficient operator action time for the mitigation of an uncontrolled boron dilution event (Ref. 3) in MODE 5. This procedure is independent of SDM and uses the RHR system flowrate, and the calculated critical boron concentration to specify a minimum allowable boron concentration. The most limiting accident for the SDM requirements is based on a guillotine break of a main steam line (MSLB) inside containment initiated at the end of core cycle life with RCS average temperature at no-load operating temperature, as described in the accident analysis (Ref. 2). The increased steam flow resulting from a pipe break in the main steam system causes an increased energy removal from the affected steam generator (SG), and
consequently the RCS. This results in a reduction of the reactor coolant temperature. The resultant ## APPLICABLE SAFETY ANALYSES (continued) coolant shrinkage causes a reduction in pressure. In the presence of a negative moderator temperature coefficient, this cooldown causes an increase in core reactivity. As RCS temperature decreases, the severity of an MSLB decreases until the MODE 5 value is reached. The most limiting MSLB, with respect to potential fuel damage before a reactor trip occurs, is a guillotine break of a main steam line inside containment initiated at the end of core life. The positive reactivity addition from the moderator temperature decrease will terminate when the affected SG boils dry, thus terminating RCS heat removal and cooldown. Following the MSLB, a post trip return to power may occur; however, no fuel damage occurs as a result of the post trip return to power, and that the Safety Limit (SL) requirement of SL 2.1.1 is met. In addition to the limiting MSLB transient, the SDM requirement must also protect against: - a. Inadvertent boron dilution; and - b. Rod ejection. Each of these events is discussed below. In the boron dilution analysis (Ref. 3), the required SDM defines the reactivity difference between an initial subcritical boron concentration and the corresponding critical boron concentration. These values, in conjunction with the configuration of the RCS and the assumed dilution flow rate, directly affect the results of the analysis. This event is most limiting at the beginning of core life, when critical boron concentrations are highest. For each cycle of operation at Farley Nuclear Plant, the minimum boron concentrations that are required in MODES 4 and 5 to allow 15 minutes operator action time are given in the Nuclear Design Report for that cycle. The ejection of a control rod rapidly adds reactivity to the reactor core, causing both the core power level and heat flux to increase with corresponding increases in reactor coolant temperatures and pressure. The ejection of a rod also produces a time dependent redistribution of core power. ## APPLICABLE SAFETY ANALYSES (continued) SDM satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). Even though it is not directly observed from the control room, SDM is considered an initial condition process variable because it is periodically monitored to ensure that the unit is operating within the bounds of accident analysis assumptions. With T_{avg} less than 200°F, the reactivity transients resulting from a postulated steam line break cooldown are minimal, and a 1% delta k/k SHUTDOWN MARGIN provides adequate protection. ## LCO SDM is a core design condition that can be ensured during operation through control rod positioning (control and shutdown banks) and through the soluble boron concentration. The MSLB (Ref. 2) and the boron dilution (Ref. 3) accidents are the most limiting analyses that establish the SDM value of the LCO. For MSLB accidents, if the LCO is violated, there is a potential to exceed the DNBR limit and to exceed 10 CFR 100, "Reactor Site Criteria," limits (Ref. 4). For the boron dilution accident, if the LCO is violated, the minimum required time assumed for operator action to terminate dilution may no longer be applicable. # **APPLICABILITY** In MODE 2 with $k_{\rm eff}$ < 1.0 and in MODES 3, 4, and 5, the SDM requirements are applicable to provide sufficient negative reactivity to meet the assumptions of the safety analyses discussed above. In MODE 6, the shutdown reactivity requirements are given in LCO 3.9.1, "Boron Concentration." In MODES 1 and 2, SDM is ensured by complying with LCO 3.1.5, "Shutdown Bank Insertion Limits," and LCO 3.1.6, "Control Bank Insertion Limits." #### **ACTIONS** <u>A.1</u> If the SDM requirements are not met, boration must be initiated promptly. A Completion Time of Immediately is adequate to ensure prompt operator action to correctly align and start the required #### **ACTIONS** ## A.1 (continued) systems and components. It is assumed that boration will be continued until the SDM requirements are met. In the determination of the required combination of boration flow rate and boron concentration, there is no unique requirement that must be satisfied. Since it is imperative to raise the boron concentration of the RCS as soon as possible, the flowpath of choice would utilize a highly concentrated solution, such as that normally found in the boric acid storage tank, or the refueling water storage tank. The operator should borate with the best source available for the plant conditions. In determining the boration flow rate, the time in core life must be considered. For instance, the most difficult time in core life to increase the RCS boron concentration is at the beginning of cycle when the boron concentration may approach or exceed 2000 ppm. For example, if the emergency boration path is used, the CVCS is capable of inserting negative reactivity at a rate of approximately 65 pcm/min when the RCS boron concentration is 1000 ppm and approximately 75 pcm/min when the RCS boron concentration is 100 ppm. ## SURVEILLANCE REQUIREMENTS #### SR 3.1.1.1 In MODES 1 and 2, SDM is verified by observing that the requirements of LCO 3.1.5 and LCO 3.1.6 are met. In the event that a rod is known to be untrippable, however, SDM verification must account for the worth of the untrippable rod as well as another rod of maximum worth. In MODES 3, 4, and 5, the SDM is verified by performing a reactivity balance calculation, considering the listed reactivity effects: - a. RCS boron concentration; - b. Control bank position; - c. RCS average temperature; - d. Fuel burnup based on gross thermal energy generation; ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.1.1.1</u> (continued) - e. Xenon concentration; - f. Samarium concentration; and - g. Isothermal temperature coefficient (ITC). Using the ITC accounts for Doppler reactivity in this calculation because the reactor is subcritical, and the fuel temperature will be changing at the same rate as the RCS. The Frequency of 24 hours is based on the generally slow change in required boron concentration and the low probability of an accident occurring without the required SDM. This allows time for the operator to collect the required data, which includes performing a boron concentration analysis, and complete the calculation. ### **REFERENCES** - 1. 10 CFR 50, Appendix A, GDC 26. - 2. FSAR, Section 15.4.2. - 3. FSAR, Section 15.2.4. - 4. 10 CFR 100. - 5. Letter from D.E. McKinnon to L.K. Mathews, "Operating Procedure for Mode 4/5 Boron Dilution," 90 AP*-G-0041, July 6, 1990. #### **B 3.1 REACTIVITY CONTROL SYSTEMS** B 3.1.2 Core Reactivity #### **BASES** #### BACKGROUND According to GDC 26, GDC 28, and GDC 29 (Ref. 1), reactivity shall be controllable, such that subcriticality is maintained under cold conditions, and acceptable fuel design limits are not exceeded during normal operation and anticipated operational occurrences. Therefore, reactivity balance is used as a measure of the predicted versus measured core reactivity during power operation. The periodic confirmation of core reactivity is necessary to ensure that Design Basis Accident (DBA) and transient safety analyses remain valid. A large reactivity difference could be the result of unanticipated changes in fuel, control rod worth, or operation at conditions not consistent with those assumed in the predictions of core reactivity, and could potentially result in a loss of SDM or violation of acceptable fuel design limits. Comparing predicted versus measured core reactivity validates the nuclear methods used in the safety analysis and supports the SDM demonstrations (LCO 3.1.1, "SHUTDOWN MARGIN (SDM)") in ensuring the reactor can be brought safely to cold, subcritical conditions. When the reactor core is critical or in normal power operation, a reactivity balance exists and the net reactivity is zero. A comparison of predicted and measured reactivity is convenient under such a balance, since parameters are being maintained relatively stable under steady state power conditions. The positive reactivity inherent in the core design is balanced by the negative reactivity of the control components, thermal feedback, neutron leakage, and materials in the core that absorb neutrons, such as burnable absorbers producing zero net reactivity. Excess reactivity can be inferred from the boron letdown curve (or critical boron curve), which provides an indication of the soluble boron concentration in the Reactor Coolant System (RCS) versus cycle burnup. Periodic measurement of the RCS boron concentration for comparison with the predicted value with other variables fixed (such as rod height, temperature, pressure, and power), provides a convenient method of ensuring that core reactivity is within design expectations and that the calculational models used to generate the safety analysis are adequate. # BACKGROUND (continued) In order to achieve the required fuel cycle energy output, the uranium enrichment, in the new fuel loading and in the fuel remaining from the previous cycle, provides excess positive reactivity beyond that required to sustain steady state operation throughout the cycle. When the reactor is critical at RTP and moderator temperature, the excess positive reactivity is compensated by burnable absorbers (if any), control rods, whatever neutron poisons (mainly xenon and samarium) are present in the fuel, and the RCS boron concentration. When the core is producing THERMAL POWER, the fuel is being depleted and excess reactivity is decreasing. As the fuel depletes, the RCS boron concentration is reduced to decrease negative reactivity and maintain constant THERMAL POWER. The boron letdown curve is based on steady state operation at RTP. Therefore, deviations from the predicted boron letdown curve may indicate deficiencies in the design analysis, deficiencies in the calculational models, or abnormal core conditions, and
must be evaluated. ## APPLICABLE SAFETY ANALYSES The acceptance criteria for core reactivity are that the reactivity balance limit ensures plant operation is maintained within the assumptions of the safety analyses. Accurate prediction of core reactivity is either an explicit or implicit assumption in the accident analysis evaluations. Every accident evaluation (Ref. 2) is, therefore, dependent upon accurate evaluation of core reactivity. In particular, SDM and reactivity transients, such as control rod withdrawal accidents or rod ejection accidents, are very sensitive to accurate prediction of core reactivity. These accident analysis evaluations rely on computer codes that have been qualified against available test data, operating plant data, and analytical benchmarks. Monitoring reactivity balance additionally ensures that the nuclear methods provide an accurate representation of the core reactivity. Design calculations and safety analyses are performed for each fuel cycle for the purpose of predetermining reactivity behavior and the RCS boron concentration requirements for reactivity control during fuel depletion. ## APPLICABLE SAFETY ANALYSES (continued) The comparison between measured and predicted initial core reactivity provides a normalization for the calculational models used to predict core reactivity. If the measured and predicted RCS boron concentrations for identical core conditions at beginning of cycle life (BOL) do not agree, then the assumptions used in the reload cycle design analysis or the calculational models used to predict soluble boron requirements may not be accurate. If reasonable agreement between measured and predicted core reactivity exists at BOL, then the prediction may be normalized to the measured boron concentration. Thereafter, any significant deviations in the measured boron concentration from the predicted boron letdown curve that develop during fuel depletion may be an indication that the calculational model is not adequate for core burnups beyond BOL, or that an unexpected change in core conditions has occurred. The normalization of predicted RCS boron concentration to the measured value is typically performed after reaching RTP following startup from a refueling outage, with the control rods in their normal positions for power operation. The normalization is performed at BOL conditions, so that core reactivity relative to predicted values can be continually monitored and evaluated as core conditions change during the cycle. Core reactivity satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). #### LCO Long term core reactivity behavior is a result of the core physics design and cannot be easily controlled once the core design is fixed. During operation, therefore, the LCO can only be ensured through measurement and tracking, and appropriate actions taken as necessary. Large differences between actual and predicted core reactivity may indicate that the assumptions of the DBA and transient analyses are no longer valid, or that the uncertainties in the Nuclear Design Methodology are larger than expected. A limit on the reactivity balance of \pm 1% Δ k/k has been established based on engineering judgment. A 1% deviation in reactivity from that predicted is larger than expected for normal operation and should therefore be evaluated. # LCO (continued) When measured core reactivity is within 1% Δ k/k of the predicted value at steady state thermal conditions, the core is considered to be operating within acceptable design limits. Since deviations from the limit are normally detected by comparing predicted and measured steady state RCS critical boron concentrations, the difference between measured and predicted values would be approximately 100 ppm (depending on the boron worth) before the limit is reached. These values are well within the uncertainty limits for analysis of boron concentration samples, so that spurious violations of the limit due to uncertainty in measuring the RCS boron concentration are unlikely. ## **APPLICABILITY** The limits on core reactivity must be maintained during MODES 1 and 2 because a reactivity balance must exist when the reactor is critical or producing THERMAL POWER. As the fuel depletes, core conditions are changing, and confirmation of the reactivity balance ensures the core is operating as designed. This Specification does not apply in MODES 3, 4, and 5 because the reactor is shut down and the reactivity balance is not changing. In MODE 6, fuel loading results in a continually changing core reactivity. Boron concentration requirements (LCO 3.9.1, "Boron Concentration") ensure that fuel movements are performed within the bounds of the safety analysis. An SDM demonstration is required during the first startup following operations that could have altered core reactivity (e.g., fuel movement, control rod replacement, control rod shuffling). #### **ACTIONS** ## A.1 and A.2 Should an anomaly develop between measured and predicted core reactivity, an evaluation of the core design and safety analysis must be performed. Core conditions are evaluated to determine their ### **ACTIONS** ## A.1 and A.2 (continued) consistency with input to design calculations. Measured core and process parameters are evaluated to determine that they are within the bounds of the safety analysis, and safety analysis calculational models are reviewed to verify that they are adequate for representation of the core conditions. The required Completion Time of 7 days is based on the low probability of a DBA occurring during this period, and allows sufficient time to assess the physical condition of the reactor and complete the evaluation of the core design and safety analysis. Following evaluations of the core design and safety analysis, the cause of the reactivity anomaly may be resolved. If the cause of the reactivity anomaly is a mismatch in core conditions at the time of RCS boron concentration sampling, then a recalculation of the RCS boron concentration requirements may be performed to demonstrate that core reactivity is behaving as expected. If an unexpected physical change in the condition of the core has occurred, it must be evaluated and corrected, if possible. If the cause of the reactivity anomaly is in the calculation technique, then the calculational models must be revised to provide more accurate predictions. If any of these results are demonstrated, and it is concluded that the reactor core is acceptable for continued operation, then the boron letdown curve may be renormalized and power operation may continue. If operational restriction or additional SRs are necessary to ensure the reactor core is acceptable for continued operation, then they must be defined. The required Completion Time of 7 days is adequate for preparing whatever operating restrictions or Surveillances that may be required to allow continued reactor operation. #### **B.1** If the core reactivity cannot be restored to within the 1% Δ k/k limit, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours. If the SDM for MODE 3 is not met, then the boration required by 3.1.1.1 would occur. The allowed Completion Time is reasonable, based on operating experience, for reaching MODE 3 from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.1.2.1 Core reactivity is verified by periodic comparisons of measured and predicted RCS boron concentrations. The comparison is made, considering that other core conditions are fixed or stable, including control rod position, moderator temperature, fuel temperature, fuel depletion, xenon concentration, and samarium concentration. The Surveillance is performed prior to entering MODE 1 as an initial check on core conditions and design calculations at BOL. The SR is modified by a Note. The Note indicates that the normalization of predicted core reactivity to the measured value must take place within the first 60 effective full power days (EFPD) after each fuel loading. This allows sufficient time for core conditions to reach steady state, but prevents operation for a large fraction of the fuel cycle without establishing a benchmark for the design calculations. The required subsequent Frequency of 31 EFPD, following the initial 60 EFPD after entering MODE 1, is acceptable, based on the slow rate of core changes due to fuel depletion and the presence of other indicators (QPTR, AFD, etc.) for prompt indication of an anomaly. ## REFERENCES - 1. 10 CFR 50, Appendix A, GDC 26, GDC 28, and GDC 29. - 2. FSAR, Chapter 15. #### **B 3.1 REACTIVITY CONTROL SYSTEMS** B 3.1.3 Moderator Temperature Coefficient (MTC) #### **BASES** ### **BACKGROUND** According to GDC 11 (Ref. 1), the reactor core and its interaction with the Reactor Coolant System (RCS) must be designed for inherently stable power operation, even in the possible event of an accident. In particular, the net reactivity feedback in the system must compensate for any unintended reactivity increases. The MTC relates a change in core reactivity to a change in reactor coolant temperature (a positive MTC means that reactivity increases with increasing moderator temperature; conversely, a negative MTC means that reactivity decreases with increasing moderator temperature). The reactor is designed to operate with a negative MTC over the largest possible range of fuel cycle operation. Therefore, a coolant temperature increase will cause a reactivity decrease, so that the coolant temperature tends to return toward its initial value. Reactivity increases that cause a coolant temperature increase will thus be self limiting, and stable power operation will result. MTC values are predicted at selected burnups during the safety evaluation analysis and are confirmed to be acceptable by measurements. Both initial and reload cores are designed so that the
beginning of cycle life (BOL) MTC is less than zero when THERMAL POWER is at RTP. The actual value of the MTC is dependent on core characteristics, such as fuel loading and reactor coolant soluble boron concentration. The core design may require additional fixed distributed poisons to yield an MTC at BOL within the range analyzed in the plant accident analysis. The end of cycle life (EOL) MTC is also limited by the requirements of the accident analysis. Fuel cycles that are designed to achieve high burnups or that have changes to other characteristics are evaluated to ensure that the MTC does not exceed the EOL limit. The limitations on MTC are provided to ensure that the value of this coefficient remains within the limiting conditions assumed in the FSAR accident and transient analyses. If the LCO limits are not met, the unit response during transients may not be as predicted. The core could violate criteria that prohibit a # BACKGROUND (continued) return to criticality, or the departure from nucleate boiling ratio criteria of the approved correlation may be violated, which could lead to a loss of the fuel cladding integrity. The SRs for measurement of the MTC at the beginning and near the end of the fuel cycle are adequate to confirm that the MTC remains within its limits, since this coefficient changes slowly, due principally to the reduction in RCS boron concentration associated with fuel burnup. ## APPLICABLE SAFETY ANALYSES The acceptance criteria for the specified MTC are: - a. The MTC values must remain within the bounds of those used in the accident analysis (Ref. 2); and - b. The MTC must be such that inherently stable power operations result during normal operation and accidents, such as overheating and overcooling events. The FSAR, Chapter 15 (Ref. 2), contains analyses of accidents that result in both overheating and overcooling of the reactor core. MTC is one of the controlling parameters for core reactivity in these accidents. Both the most positive value and most negative value of the MTC are important to safety, and both values must be bounded. Values used in the analyses consider worst case conditions to ensure that the accident results are bounding (Ref. 3). The consequences of accidents that cause core overheating must be evaluated when the MTC is positive. Such accidents include the rod withdrawal transient from either zero or RTP, loss of main feedwater flow, loss of load, rod ejection, and loss of forced reactor coolant flow. The consequences of accidents that cause core overcooling must be evaluated when the MTC is negative. Such accidents include sudden feedwater flow increase, rod withdrawal at power, loss of load, and sudden decrease in feedwater temperature. In order to ensure a bounding accident analysis, the MTC is assumed to be its most limiting value for the analysis conditions appropriate to each accident. The bounding value is determined by considering ## APPLICABLE SAFETY ANALYSES (continued) rodded and unrodded conditions, whether the reactor is at full or zero power, and whether it is at BOL or EOL. The most conservative combination appropriate to the accident is then used for the analysis (Ref. 2). MTC values are bounded in reload safety evaluations assuming steady state conditions at BOL and EOL. An EOL measurement is conducted at conditions when the RCS boron concentration reaches approximately 300 ppm. The measured value may be extrapolated to project the EOL value, in order to confirm reload design predictions. MTC satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). Even though it is not directly observed and controlled from the control room, MTC is considered an initial condition process variable because of its dependence on boron concentration. ## LCO LCO 3.1.3 requires the MTC to be within specified limits of the COLR to ensure that the core operates within the assumptions of the accident analysis. During the reload core safety evaluation, the MTC is analyzed to determine that its values remain within the bounds of the original accident analysis during operation. Assumptions made in safety analyses require that the MTC be less positive than a given upper bound and more positive than a given lower bound. The MTC is most positive at BOL; this upper bound must not be exceeded. This maximum upper limit occurs at BOL, all rods out (ARO), hot zero power conditions. At EOL the MTC takes on its most negative value, when the lower bound becomes important. This LCO exists to ensure that both the upper and lower bounds are not exceeded. During operation, therefore, the conditions of the LCO can only be ensured through measurement. The Surveillance checks at BOL and EOL on MTC provide confirmation that the MTC is behaving as anticipated so that the acceptance criteria are met. The LCO establishes a maximum positive value that cannot be exceeded. The BOL positive limit and the EOL negative limit are established in the COLR to allow specifying limits for each particular cycle. This permits the unit to take advantage of improved fuel management and changes in unit operating schedule. #### **APPLICABILITY** Technical Specifications place both LCO and SR values on MTC, based on the safety analysis assumptions described above. In MODE 1, the limits on MTC must be maintained to ensure that any accident initiated from THERMAL POWER operation will not violate the design assumptions of the accident analysis. In MODE 2 with the reactor critical, the upper limit must also be maintained to ensure that startup and subcritical accidents (such as the uncontrolled CONTROL ROD assembly or group withdrawal) will not violate the assumptions of the accident analysis. The lower MTC limit must be maintained in MODES 2 and 3, in addition to MODE 1, to ensure that cooldown accidents will not violate the assumptions of the accident analysis. In MODES 4, 5, and 6, this LCO is not applicable, since no Design Basis Accidents using the MTC as an analysis assumption are initiated from these MODES. #### **ACTIONS** ## <u>A.1</u> If the BOL MTC limit is violated, administrative withdrawal limits for control banks must be established to maintain the MTC within its limits. The MTC becomes more negative with control bank insertion and decreased boron concentration. A Completion Time of 24 hours provides enough time for evaluating the MTC measurement and computing the required bank withdrawal limits. These withdrawal limits shall be in addition to the insertion limits required by LCO 3.1.7, "Control Bank Insertion Limits." As cycle burnup is increased, the RCS boron concentration will be reduced. The reduced boron concentration causes the MTC to become more negative. Using physics calculations, the time in cycle life at which the calculated MTC will meet the LCO requirement can be determined. At this point in core life Condition A no longer exists. The unit is no longer in the Required Action, so the administrative withdrawal limits are no longer in effect. # ACTIONS (continued) # <u>B.1</u> If the required administrative withdrawal limits at BOL are not established within 24 hours, the unit must be brought to MODE 3 to prevent operation with an MTC that is more positive than that assumed in safety analyses. The allowed Completion Time of 6 hours is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems. #### **C.1** Exceeding the EOL MTC limit means that the safety analysis assumptions for the EOL accidents that use a bounding negative MTC value may be invalid. If the EOL MTC limit is exceeded, the plant must be brought to a MODE or condition in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to at least MODE 4 within 12 hours. The allowed Completion Time is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.1.3.1 This SR requires measurement of the MTC at BOL prior to entering MODE 1 in order to demonstrate compliance with the most positive MTC LCO. Meeting the limit prior to entering MODE 1 ensures that the limit will also be met at higher power levels. The BOL MTC value for ARO will be inferred from isothermal temperature coefficient measurements obtained during the physics tests after refueling. The ARO value can be directly compared to the BOL MTC limit of the LCO. If required, measurement results and predicted design values can be used to establish administrative withdrawal limits for control banks. # SURVEILLANCE REQUIREMENTS (continued) ## SR 3.1.3.2 In similar fashion, the LCO demands that the MTC be less negative than the specified value for EOL full power conditions. This measurement may be performed at any THERMAL POWER, but its results must be extrapolated to the conditions of RTP and all banks withdrawn in order to make a proper comparison with the LCO value. Because the RTP MTC value will gradually become more negative with further core depletion and boron concentration reduction, a 300 ppm SR value of MTC should necessarily be less negative than the EOL LCO limit. The 300 ppm SR value is sufficiently less negative than the EOL LCO limit value to ensure that the LCO limit will be met when the 300 ppm Surveillance criterion is met. SR 3.1.3.2 is modified by three Notes that include the following requirements: - a. The SR is not required to be performed until 7 effective full power days (EFPDs) after reaching the equivalent of an equilibrium RTP all rods out (ARO) boron concentration of 300 ppm. - b. If the 300 ppm Surveillance limit is exceeded, it is possible that the EOL limit on MTC could be reached before the planned EOL. Because the MTC changes slowly with core depletion, the Frequency of 14 effective full power days is sufficient to avoid exceeding the EOL limit. - c. The Surveillance limit for RTP
boron concentration of 100 ppm is conservative. If the measured MTC at 100 ppm is more positive than the 100 ppm Surveillance limit, the EOL limit will not be exceeded because of the gradual manner in which MTC changes with core burnup. ### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 11. - 2. FSAR, Chapter 15. - 3. WCAP 9273-NP-A, "Westinghouse Reload Safety Evaluation Methodology," July 1985. ### **B 3.1 REACTIVITY CONTROL SYSTEMS** ## **B 3.1.4 Rod Group Alignment Limits** ### **BASES** #### BACKGROUND The OPERABILITY (e.g., trippability) of the shutdown and control rods is an initial assumption in all safety analyses that assume rod insertion upon reactor trip. Maximum rod misalignment is an initial assumption in the safety analysis that directly affects core power distributions and assumptions of available SDM. The applicable criteria for these reactivity and power distribution design requirements are 10 CFR 50, Appendix A, GDC 10, "Reactor Design," GDC 26, "Reactivity Control System Redundancy and Protection" (Ref. 1), and 10 CFR 50.46, "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Nuclear Power Plants" (Ref. 2). Mechanical or electrical failures may cause a control rod to become inoperable or to become misaligned from its group. Control rod inoperability or misalignment may cause increased power peaking, due to the asymmetric reactivity distribution and a reduction in the total available rod worth for reactor shutdown. Therefore, control rod alignment and OPERABILITY are related to core operation in design power peaking limits and the core design requirement of a minimum SDM. Limits on control rod alignment have been established, and all rod positions are monitored and controlled during power operation to ensure that the power distribution and reactivity limits defined by the design power peaking and SDM limits are preserved. Rod cluster control assemblies (RCCAs), or rods, are moved by their control rod drive mechanisms (CRDMs). Each CRDM moves its RCCA one step (approximately 5/8 inch) at a time, but at varying rates (steps per minute) depending on the signal output from the Rod Control System. The RCCAs are divided among control banks and shutdown banks. Each bank may be further subdivided into two groups to provide for precise reactivity control. A group consists of two or more RCCAs that are electrically paralleled to step simultaneously. A bank # BACKGROUND (continued) of RCCAs consists of two groups that are moved in a staggered fashion, but always within one step of each other. There are four control banks and two shutdown banks. All control banks and shutdown banks contain two rod groups. The shutdown banks are maintained either in the fully inserted or fully withdrawn position. The control banks are moved in an overlap pattern, using the following withdrawal sequence: When control bank A reaches a predetermined height in the core, control bank B begins to move out with control bank A. Control bank A stops at the position of maximum withdrawal, and control bank B continues to move out. When control bank B reaches a predetermined height, control bank C begins to move out with control bank B. This sequence continues until control banks A, B, and C are at the fully withdrawn position, and control bank D is approximately halfway withdrawn. The insertion sequence is the opposite of the withdrawal sequence. The control rods are arranged in a radially symmetric pattern, so that control bank motion does not introduce radial asymmetries in the core power distributions. The axial position of shutdown rods and control rods is indicated by two separate and independent systems, which are the Bank Demand Position Indication System (commonly called group step counters) and the Digital Rod Position Indication (DRPI) System. The Bank Demand Position Indication System counts the pulses from the rod control system that moves the rods. There is one step counter for each group of rods. Individual rods in a group all receive the same signal to move and should, therefore, all be at the same position indicated by the group step counter for that group. The Bank Demand Position Indication System is considered highly precise (\pm 1 step or \pm 5/8 inch). If a rod does not move one step for each demand pulse, the step counter will still count the pulse and incorrectly reflect the position of the rod. The DRPI System provides a highly accurate indication of actual control rod position, but at a lower precision than the step counters. This system is based on inductive analog signals from a series of coils spaced along a hollow tube with a center to center distance of 3.75 inches, which is six steps. To increase the reliability of the system, the inductive coils are connected alternately to data system A or B. Thus, if one system fails, the DRPI will go on half accuracy with # BACKGROUND (continued) an effective coil spacing of 7.5 inches, which is 12 steps. Therefore, the normal indication accuracy of the DRPI System is \pm 4 steps (all coils operable and 1 step added for manufacturing and temperature tolerances), and the maximum uncertainty is \pm 10 steps (only one data system A or B coils operable). With an indicated deviation of 12 steps between the group step counter and DRPI, the maximum deviation between actual rod position and the demand position could be 22 steps. ## APPLICABLE SAFETY ANALYSES Control rod misalignment accidents are analyzed in the safety analysis (Ref. 3). The acceptance criteria for addressing control rod inoperability or misalignment are that: - a. There be no violations of: - 1. specified acceptable fuel design limits, or - 2. Reactor Coolant System (RCS) pressure boundary integrity; and - b. The core remains subcritical after accident transients that result in a reactor trip, except for the MSLB. Two types of misalignment are distinguished. During movement of a control rod group, one rod may stop moving, while the other rods in the group continue. This condition may cause excessive power peaking. The second type of misalignment occurs if one rod fails to insert upon a reactor trip and remains stuck fully withdrawn. This condition requires an evaluation to determine that sufficient reactivity worth is held in the control rods to meet the SDM requirement, with the maximum worth rod stuck fully withdrawn. Two types of analysis are performed in regard to static rod misalignment (Ref. 4). With control banks at their insertion limits, one type of analysis considers the case when any one rod is completely inserted into the core. The second type of analysis considers the case of a completely withdrawn single rod from a bank inserted to its insertion limit. Satisfying limits on departure from nucleate boiling ratio in both of these cases bounds the situation when a rod is misaligned from its group by 12 steps. # APPLICABLE SAFETY ANALYSES (continued) Another type of misalignment occurs if one RCCA fails to insert upon a reactor trip and remains stuck fully withdrawn. This condition is assumed in the evaluation to determine that the required SDM is met with the maximum worth RCCA also fully withdrawn. The Required Actions in this LCO ensure that either deviations from the alignment limits will be corrected or that THERMAL POWER will be adjusted so that excessive local linear heat rates (LHRs) will not occur, and that the requirements on SDM and ejected rod worth are preserved. Continued operation of the reactor with a misaligned control rod is allowed if the heat flux hot channel factor ($F_Q(Z)$) and the nuclear enthalpy hot channel factor ($F_{\Delta H}^N$) are verified to be within their limits in the COLR and the safety analysis is verified to remain valid. When a control rod is misaligned, the assumptions that are used to determine the rod insertion limits, AFD limits, and quadrant power tilt limits are not preserved. Therefore, the limits may not preserve the design peaking factors, and $F_Q(Z)$ and $F_{\Delta H}^N$ must be verified directly by incore mapping. Bases Section 3.2 (Power Distribution Limits) contains more complete discussions of the relation of $F_Q(Z)$ and $F_{\Delta H}^N$ to the operating limits. Shutdown and control rod OPERABILITY and alignment are directly related to power distributions and SDM, which are initial conditions assumed in safety analyses. Therefore they satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii). ## LCO The limits on shutdown or control rod alignments ensure that the assumptions in the safety analysis will remain valid. The requirements on OPERABILITY ensure that upon reactor trip, the assumed reactivity will be available and will be inserted. The OPERABILITY requirements also ensure that the RCCAs and banks maintain the correct power distribution and rod alignment. The requirement to maintain the rod alignment to within plus or minus 12 steps is conservative. The minimum misalignment assumed in safety analysis is 24 steps (15 inches), and in some cases a total misalignment from fully withdrawn to fully inserted is assumed. # LCO (continued) Failure to meet the requirements of this LCO may produce unacceptable power peaking factors and LHRs, or unacceptable SDMs, all of which may constitute initial conditions inconsistent with the safety analysis. ## **APPLICABILITY** The requirements on RCCA OPERABILITY and alignment are applicable in MODES 1 and 2 because these are the only MODES in which a self-sustaining chain reaction occurs, and the OPERABILITY (i.e., trippability) and alignment of rods have the potential to affect the safety of the plant. In MODES 3, 4, 5, and 6, the alignment limits do not apply because the control rods are fully inserted and the reactor is shut down, with no self-sustaining chain reaction. In the shutdown MODES, the OPERABILITY of the shutdown and control rods has the potential to affect the required SDM, but this effect can be compensated for by an increase in the boron concentration of the RCS. See
LCO 3.1.1, "SHUTDOWN MARGIN (SDM), " for SDM in MODES 3, 4, and 5 and LCO 3.9.1, "Boron Concentration," for boron concentration requirements during refueling. #### **ACTIONS** ## A.1.1 and A.1.2 When one or more rods are untrippable, there is a possibility that the required SDM may be adversely affected. Under these conditions, it is important to determine the SDM, and if it is less than the required value, initiate boration until the required SDM is recovered. The Completion Time of 1 hour is adequate for determining SDM and, if necessary, for initiating emergency boration and restoring SDM. In this situation, SDM verification must account for the absence of the negative reactivity of the untrippable rod(s), as well as a rod of maximum worth. #### <u>A.2</u> If the untrippable rod(s) cannot be restored to OPERABLE status, the plant must be brought to a MODE or condition in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours. #### **ACTIONS** ## A.2 (continued) The allowed Completion Time is reasonable, based on operating experience, for reaching MODE 3 from full power conditions in an orderly manner and without challenging plant systems. #### **B.1** When a rod becomes misaligned, it can usually be moved and is still trippable. If the rod can be realigned within the Completion Time of 1 hour, local xenon redistribution during this short interval will not be significant, and operation may proceed without further restriction. An alternative to realigning a single misaligned RCCA to the group average position is to align the remainder of the group to the position of the misaligned RCCA. However, this must be done without violating the bank sequence, overlap, and insertion limits specified in LCO 3.1.5, "Shutdown Bank Insertion Limits," and LCO 3.1.6, "Control Bank Insertion Limits." The Completion Time of 1 hour gives the operator sufficient time to adjust the rod positions in an orderly manner. ## B.2.1.1 and B.2.1.2 With a misaligned rod, SDM must be verified to be within limit or boration must be initiated to restore SDM to within limit. In many cases, realigning the remainder of the group to the misaligned rod may not be desirable. For example, realigning control bank B to a rod that is misaligned 15 steps from the top of the core would require a significant power reduction, since control bank D must be moved fully in and control bank C must be moved in to below 90 steps. Power operation may continue with one RCCA trippable but misaligned, provided that SDM is verified within 1 hour. The Completion Time of 1 hour represents the time necessary for determining the actual unit SDM and, if necessary, aligning and starting the necessary systems and components to initiate boration. # ACTIONS (continued) ## B.2.2, B.2.3, B.2.4, B.2.5, and B.2.6 For continued operation with a misaligned rod, RTP must be reduced, SDM must periodically be verified within limits, hot channel factors ($F_{\Omega}(Z)$ and $F_{\Delta H}^{N}$) must be verified within limits, and the safety analyses must be re-evaluated to confirm continued operation is permissible. Reduction of power to 75% RTP ensures that local LHR increases due to a misaligned RCCA will not cause the core design criteria to be exceeded. The Completion Time of 2 hours gives the operator sufficient time to accomplish an orderly power reduction without challenging the Reactor Protection System. When a rod is known to be misaligned, there is a potential to impact the SDM. Since the core conditions can change with time, periodic verification of SDM is required. A Frequency of 12 hours is sufficient to ensure this requirement continues to be met. Verifying that $F_Q(Z)$ and $F_{\Delta H}^N$ are within the required limits ensures that current operation at 75% RTP with a rod misaligned is not resulting in power distributions that may invalidate safety analysis assumptions at full power. The Completion Time of 72 hours allows sufficient time to obtain flux maps of the core power distribution using the incore flux mapping system and to calculate $F_Q(Z)$ and $F_{\Delta H}^N$. Once current conditions have been verified acceptable, time is available to perform evaluations of accident analysis to determine that core limits will not be exceeded during a Design Basis Event for the duration of operation under these conditions. A Completion Time of 5 days is sufficient time to obtain the required input data and to perform the analysis. The following accident analyses are required to be reevaluated: - 1. Rod Cluster Control Assembly Insertion Characteristics; - 2. Rod Cluster Control Assembly Misalignment; - Loss Of Reactor Coolant From Small Ruptured Pipes or From Cracks In Large Pipes Which Actuates The Emergency Core Cooling System; #### **ACTIONS** # B.2.2, B.2.3, B.2.4, B.2.5, and B.2.6 (continued) - 4. Single Rod Cluster Control Assembly Withdrawal At Full Power; - 5. Major Reactor Coolant System Pipe Ruptures (Loss Of Coolant Accident); - 6. Major Secondary System Pipe Rupture; and - 7. Rupture Of A Control Rod Drive Mechanism Housing (Rod Cluster Control Assembly Ejection). ### <u>C.1</u> When Required Actions cannot be completed within their Completion Time, the unit must be brought to a MODE or Condition in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours, which obviates concerns about the development of undesirable xenon or power distributions. The allowed Completion Time of 6 hours is reasonable, based on operating experience, for reaching MODE 3 from full power conditions in an orderly manner and without challenging the plant systems. # D.1.1 and D.1.2 More than one control rod becoming misaligned from its group average position is not expected, and has the potential to reduce SDM. Therefore, SDM must be evaluated. One hour allows the operator adequate time to determine SDM. Restoration of the required SDM, if necessary, requires increasing the RCS boron concentration to provide negative reactivity, as described in the Bases or LCO 3.1.1. The required Completion Time of 1 hour for initiating boration is reasonable, based on the time required for potential xenon redistribution, the low probability of an accident occurring, and the steps required to complete the action. This allows the operator sufficient time to align the required valves and start the boric acid pumps. Boration will continue until the required SDM is restored. ## **D.2** If more than one rod is found to be misaligned or becomes misaligned because of bank movement, the unit conditions fall outside of the #### **ACTIONS** ## D.2 (continued) accident analysis assumptions. Since automatic bank sequencing would continue to cause misalignment, the unit must be brought to a MODE or Condition in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours. The allowed Completion Time is reasonable, based on operating experience, for reaching MODE 3 from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.1.4.1 Verification that individual rod positions are within alignment limits at a Frequency of 12 hours provides a history that allows the operator to detect a rod that is beginning to deviate from its expected position. The specified Frequency takes into account other rod position information that is continuously available to the operator in the control room, so that during actual rod motion, deviations can immediately be detected. ## SR 3.1.4.2 Verifying each control rod is OPERABLE would require that each rod be tripped. However, in MODES 1 and 2, tripping each control rod would result in radial or axial power tilts, or oscillations. Exercising each individual control rod every 92 days provides increased confidence that all rods continue to be OPERABLE without exceeding the alignment limit, even if they are not regularly tripped. Moving each control rod by 10 steps will not cause radial or axial power tilts, or oscillations, to occur. The 92 day Frequency takes into consideration other information available to the operator in the control room and SR 3.1.4.1, which is performed more frequently and adds to the determination of OPERABILITY of the rods. Between required performances of SR 3.1.4.2 (determination of control rod OPERABILITY by movement), if a control rod(s) is discovered to be immovable, but remains trippable and aligned, the control rod(s) is considered to be OPERABLE. At any time, if a control rod(s) is immovable, a determination of the trippability (OPERABILITY) of the control rod(s) must be made, and appropriate action taken. # SURVEILLANCE REQUIREMENTS (continued) #### SR 3.1.4.3 Verification of rod drop times allows the operator to determine that the maximum rod drop time permitted is consistent with the assumed rod drop time used in the safety analysis. Measuring rod drop times prior to reactor criticality, after reactor vessel head removal, ensures that the reactor internals and rod drive mechanism will not interfere with rod motion or rod drop time, and that no degradation in these systems has occurred that would adversely affect control rod motion or drop time. This testing is performed with all RCPs operating and the average moderator temperature ≥ 541°F to simulate a reactor trip under actual conditions. Testing is performed with the rods fully withdrawn (225 to 231 steps inclusive). The fully withdrawn position used for determining rod drop times shall be greater than or equal to the fully withdrawn position used during subsequent plant operation. This Surveillance is performed during a plant outage, due to the plant conditions needed to perform the SR and the potential for an unplanned plant transient if the Surveillance were performed with the reactor at power. #### REFERENCES - 1. 10 CFR 50,
Appendix A, GDC 10 and GDC 26. - 2. 10 CFR 50.46. - 3. FSAR, Section 15.2.3. - 4. FSAR, Section 15.2.3.2.2.C. #### **B 3.1 REACTIVITY CONTROL SYSTEMS** ### B 3.1.5 Shutdown Bank Insertion Limits #### **BASES** ### **BACKGROUND** The insertion limits of the shutdown and control rods are initial assumptions in all safety analyses that assume rod insertion upon reactor trip. The insertion limits directly affect core power and fuel burnup distributions and assumptions of available ejected rod worth, SDM and initial reactivity insertion rate. The applicable criteria for these reactivity and power distribution design requirements are 10 CFR 50, Appendix A, GDC 10, "Reactor Design," GDC 26, "Reactivity Control System Redundancy and Protection," GDC 28, "Reactivity Limits" (Ref. 1), and 10 CFR 50.46, "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Nuclear Power Reactors" (Ref. 2). Limits on control rod insertion have been established, and all rod positions are monitored and controlled during power operation to ensure that the power distribution and reactivity limits defined by the design power peaking and SDM limits are preserved. The rod cluster control assemblies (RCCAs) are divided among control banks and shutdown banks. Each bank may be further subdivided into two groups to provide for precise reactivity control. A group consists of two or more RCCAs that are electrically paralleled to step simultaneously. A bank of RCCAs consists of two groups that are moved in a staggered fashion, but always within one step of each other. There are four control banks and two shutdown banks. See LCO 3.1.4, "Rod Group Alignment Limits," for control and shutdown rod OPERABILITY and alignment requirements, and LCO 3.1.7, "Rod Position Indication," for position indication requirements. The control banks are used for precise reactivity control of the reactor. The positions of the control banks are normally automatically controlled by the Rod Control System, but they can also be manually controlled. They are capable of adding negative reactivity very quickly (compared to borating). The control banks must be maintained above designed insertion limits and are typically near the fully withdrawn position during normal full power operations. # BACKGROUND (continued) Hence, they are not capable of adding a large amount of positive reactivity. Boration or dilution of the Reactor Coolant System (RCS) compensates for the reactivity changes associated with large changes in RCS temperature. The design calculations are performed with the assumption that the shutdown banks are withdrawn first. The shutdown banks can be fully withdrawn without the core going critical. This provides available negative reactivity in the event of boration errors. The shutdown banks are controlled manually by the control room operator. During normal unit operation, the shutdown banks are either fully withdrawn or fully inserted. The shutdown banks must be completely withdrawn from the core, prior to withdrawing any control banks during an approach to criticality. The shutdown banks are then left in this position until the reactor is shut down. They affect core power and burnup distribution, and add negative reactivity to shut down the reactor upon receipt of a reactor trip signal. ## APPLICABLE SAFETY ANALYSES On a reactor trip, all RCCAs (shutdown banks and control banks). except the most reactive RCCA, are assumed to insert into the core. The shutdown banks shall be at or above their insertion limits and available to insert the maximum amount of negative reactivity on a reactor trip signal. The control banks may be partially inserted in the core, as allowed by LCO 3.1.6, "Control Bank Insertion Limits." The shutdown bank and control bank insertion limits are established to ensure that a sufficient amount of negative reactivity is available to shut down the reactor and maintain the required SDM (see LCO 3.1.1, "SHUTDOWN MARGIN (SDM)," following a reactor trip from full power. The combination of control banks and shutdown banks (less the most reactive RCCA, which is assumed to be fully withdrawn) is sufficient to take the reactor from full power conditions at rated temperature to zero power, and to maintain the required SDM at rated no load temperature (Ref. 3). The shutdown bank insertion limit also limits the reactivity worth of an ejected shutdown rod. on the foreign of the ## APPLICABLE SAFETY ANALYSES (continued) The acceptance criteria for addressing shutdown and control rod bank insertion limits and inoperability or misalignment is that: - a. There be no violations of: - 1. specified acceptable fuel design limits, or - 2. RCS pressure boundary integrity; and - b. The core remains subcritical after accident transients that result in a reactor trip, except for the MSLB. As such, the shutdown bank insertion limits affect safety analysis involving core reactivity and SDM (Ref. 3). The shutdown bank insertion limits preserve an initial condition assumed in the safety analyses and, as such, satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii). ### LCO The shutdown banks must be within their insertion limits any time the reactor is critical or approaching criticality. This ensures that a sufficient amount of negative reactivity is available to shut down the reactor and maintain the required SDM following a reactor trip. The shutdown bank insertion limits are defined in the COLR. #### **APPLICABILITY** The shutdown banks must be within their insertion limits, with the reactor in MODES 1 and 2. The applicability in MODE 2 begins at initial control bank withdrawal, during an approach to criticality, and continues throughout MODE 2, until all control bank rods are again fully inserted by reactor trip or by shutdown. This ensures that a sufficient amount of negative reactivity is available to shut down the reactor and maintain the required SDM following a reactor trip. The shutdown banks do not have to be within their insertion limits in MODE 3, unless an approach to criticality is being made. In MODE 3, 4, 5, or 6, the shutdown banks are fully inserted in the core and contribute to the SDM. Refer to LCO 3.1.1 for SDM requirements in MODES 3, 4, and 5. LCO 3.9.1, "Boron Concentration," ensures adequate SDM in MODE 6. # APPLICABILITY (continued) The Applicability requirements have been modified by a Note indicating the LCO requirement is suspended during SR 3.1.4.2. This SR verifies the freedom of the rods to move, and requires the shutdown bank to move below the LCO limits, which would normally violate the LCO. #### **ACTIONS** ## A.1.1, A.1.2 and A.2 When one or more shutdown banks is not within insertion limits, 2 hours is allowed to restore the shutdown banks to within the insertion limits. This is necessary because the available SDM may be significantly reduced, with one or more of the shutdown banks not within their insertion limits. Also, verification of SDM or initiation of boration within 1 hour is required, since the SDM in MODES 1 and 2 is ensured by adhering to the control and shutdown bank insertion limits (see LCO 3.1.1). If shutdown banks are not within their insertion limits, then SDM will be verified by performing a reactivity balance calculation, considering the effects listed in the BASES for SR 3.1.1.1. The allowed Completion Time of 2 hours provides an acceptable time for evaluating and repairing minor problems without allowing the plant to remain in an unacceptable condition for an extended period of time. ## <u>B.1</u> If the shutdown banks cannot be restored to within their insertion limits within 2 hours, the unit must be brought to a MODE where the LCO is not applicable. The allowed Completion Time of 6 hours is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.1.5.1 Verification that the shutdown banks are within their insertion limits prior to an approach to criticality ensures that when the reactor is critical, or being taken critical, the shutdown banks will be available to ## SURVEILLANCE REQUIREMENTS # <u>SR 3.1.5.1</u> (continued) shut down the reactor, and the required SDM will be maintained following a reactor trip. This SR and Frequency ensure that the shutdown banks are withdrawn before the control banks are withdrawn during a unit startup. Since the shutdown banks are positioned manually by the control room operator, a verification of shutdown bank position at a Frequency of 12 hours, after the reactor is taken critical, is adequate to ensure that they are within their insertion limits. Also, the 12 hour Frequency takes into account other information available in the control room for the purpose of monitoring the status of shutdown rods. # REFERENCES - 1. 10 CFR 50, Appendix A, GDC 10, GDC 26, and GDC 28. - 2. 10 CFR 50.46. - 3. FSAR, Chapter 15. #### B 3.1 REACTIVITY CONTROL SYSTEMS ## B 3.1.6 Control Bank Insertion Limits #### **BASES** #### **BACKGROUND** The insertion limits of the shutdown and control rods are initial assumptions in all safety analyses that assume rod insertion upon reactor trip. The insertion limits directly affect core power and fuel burnup distributions and assumptions of available SDM, and initial reactivity insertion rate. The applicable criteria for these reactivity and power distribution design requirements are 10 CFR 50, Appendix A, GDC 10, "Reactor Design," GDC 26, "Reactivity Control System Redundancy and Protection," GDC 28, "Reactivity Limits" (Ref. 1), and 10 CFR 50.46, "Acceptance Criteria for Emergency Core Cooling Systems for Light Water Nuclear Power Reactors" (Ref. 2). Limits on control rod insertion have been established, and all rod positions are monitored and controlled during power operation to ensure that the power distribution and reactivity limits defined by the design power peaking and SDM limits are preserved. The rod cluster
control assemblies (RCCAs) are divided among control banks and shutdown banks. Each bank may be further subdivided into two groups to provide for precise reactivity control. A group consists of two or more RCCAs that are electrically paralleled to step simultaneously. A bank of RCCAs consists of two groups that are moved in a staggered fashion, but always within one step of each other. There are four control banks and two shutdown banks. See LCO 3.1.4, "Rod Group Alignment Limits," for control and shutdown rod OPERABILITY and alignment requirements, and LCO 3.1.7, "Rod Position Indication," for position indication requirements. The control bank insertion limits are specified in the COLR. An example is provided for information only in Figure B 3.1.6-1. The control banks are required to be at or above the insertion limit lines. Figure B 3.1.6-1 also indicates how the control banks are moved in an overlap pattern. Overlap is the distance travelled together by two control banks. The predetermined position of control bank C, at which control bank D will begin to move with bank C on a withdrawal, will be at 128 steps for a fully withdrawn position of 225 to 231 steps, inclusive. The fully withdrawn position is defined in the COLR. # BACKGROUND (continued) The control banks are used for precise reactivity control of the reactor. The positions of the control banks are normally controlled automatically by the Rod Control System, but can also be manually controlled. They are capable of adding reactivity very quickly (compared to borating or diluting). The power density at any point in the core must be limited, so that the fuel design criteria are maintained. Together, LCO 3.1.4, "Rod Group Alignment," LCO 3.1.5, "Shutdown Bank Insertion Limits," LCO 3.1.6, "Control Bank Insertion Limits," LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," and LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)," provide limits on control component operation and on monitored process variables, which ensure that the core operates within the fuel design criteria. The shutdown and control bank insertion and alignment limits, AFD, and QPTR are process variables that together characterize and control the three dimensional power distribution of the reactor core. Additionally, the control bank insertion limits control the reactivity that could be added in the event of a rod ejection accident, and the shutdown and control bank insertion limits ensure the required SDM is maintained. Operation within the subject LCO limits will prevent fuel cladding failures that would breach the primary fission product barrier and release fission products to the reactor coolant in the event of a loss of coolant accident (LOCA), loss of flow, ejected rod, or other accident requiring termination by a Reactor Trip System (RTS) trip function. # APPLICABLE SAFETY ANALYSES The shutdown and control bank insertion limits, AFD, and QPTR LCOs are required to prevent power distributions that could result in fuel cladding failures in the event of a LOCA, loss of flow, ejected rod, or other accident requiring termination by an RTS trip function. The acceptance criteria for addressing shutdown and control bank insertion limits and inoperability or misalignment are that: ## APPLICABLE SAFETY ANALYSES (continued) - a. There be no violations of: - 1. specified acceptable fuel design limits, or - 2. Reactor Coolant System pressure boundary integrity; and - b. The core remains subcritical after accident transients that result in a reactor trip, except for the MSLB. As such, the shutdown and control bank insertion limits affect safety analysis involving core reactivity and power distributions (Ref. 3). The SDM requirement is ensured by limiting the control and shutdown bank insertion limits so that allowable inserted worth of the RCCAs is such that sufficient reactivity is available in the rods to shut down the reactor to hot zero power with a reactivity margin that assumes the maximum worth RCCA remains fully withdrawn upon trip (Ref. 4). Operation at the insertion limits or AFD limits may approach the maximum allowable linear heat generation rate or peaking factor with the allowed QPTR present. Operation at the insertion limit may also indicate the maximum ejected RCCA worth could be equal to the limiting value in fuel cycles that have sufficiently high ejected RCCA worths. The control and shutdown bank insertion limits ensure that safety analyses assumptions for SDM, ejected rod worth, and power distribution peaking factors are preserved (Ref. 5). The insertion limits satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii), in that they are initial conditions assumed in the safety analysis. ## LCO The limits on control banks sequence, overlap, and physical insertion, as defined in the COLR, must be maintained because they serve the function of preserving power distribution, ensuring that the SDM is maintained, ensuring that ejected rod worth is maintained, and ensuring adequate negative reactivity insertion is available on trip. The overlap between control banks provides more uniform rates of reactivity insertion and withdrawal and is imposed to maintain acceptable power peaking during control bank motion. ## **APPLICABILITY** The control bank sequence, overlap, and physical insertion limits shall be maintained with the reactor in MODES 1 and 2 with $k_{\text{eff}} \geq 1.0$. These limits must be maintained, since they preserve the assumed power distribution, ejected rod worth, SDM, and reactivity rate insertion assumptions. Applicability in MODES 3, 4, and 5 is not required, since neither the power distribution nor ejected rod worth assumptions would be exceeded in these MODES. The applicability requirements have been modified by a Note indicating the LCO requirements are suspended during the performance of SR 3.1.4.2. This SR verifies the freedom of the rods to move, and requires the control bank to move below the LCO limits, which would violate the LCO. #### **ACTIONS** # A.1.1, A.1.2, A.2, B.1.1, B.1.2, and B.2 When the control banks are outside the acceptable insertion limits, they must be restored to within those limits. This restoration can occur in two ways: - a. Reducing power to be consistent with rod position; or - b. Moving rods to be consistent with power. Also, verification of SDM or initiation of boration to regain SDM is required within 1 hour, since the SDM in MODES 1 and 2 normally ensured by adhering to the control and shutdown bank insertion limits (see LCO 3.1.1, "SHUTDOWN MARGIN (SDM)") has been upset. If control banks are not within their insertion limits, then SDM will be verified by performing a reactivity balance calculation, considering the effects listed in the BASES for SR 3.1.1.1. Similarly, if the control banks are found to be out of sequence or in the wrong overlap configuration, they must be restored to meet the limits. Operation beyond the LCO limits is allowed for a short time period in order to take conservative action because the simultaneous occurrence of either a LOCA, loss of flow accident, ejected rod accident, or other accident during this short time period, together with an inadequate power distribution or reactivity capability, has an acceptably low probability. ### **ACTIONS** # A.1.1, A.1.2, A.2, B.1.1, B.1.2, and B.2 (continued) The allowed Completion Time of 2 hours for restoring the banks to within the insertion, sequence, and overlaps limits provides an acceptable time or evaluating and repairing minor problems without allowing the plant to remain in an unacceptable condition for an extended period of time. ## <u>C.1</u> If Required Actions A.1 and A.2, or B.1 and B.2 cannot be completed within the associated Completion Times, the plant must be brought to MODE 3, where the LCO is not applicable. The allowed Completion Time of 6 hours is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS #### SR 3.1.6.1 This Surveillance is required to ensure that the reactor does not achieve criticality with the control banks below their insertion limits. The estimated critical position (ECP) depends upon a number of factors, one of which is xenon concentration. If the ECP was calculated long before criticality, xenon concentration could change to make the ECP substantially in error. Conversely, determining the ECP immediately before criticality could be an unnecessary burden. There are a number of unit parameters requiring operator attention at that point. Performing the ECP calculation within 4 hours prior to criticality avoids a large error from changes in xenon concentration, but allows the operator some flexibility to schedule the ECP calculation with other startup activities. #### SR 3.1.6.2 Verification of the control bank insertion limits at a Frequency of 12 hours is sufficient to detect control banks that may be approaching the insertion limits since, normally, very little rod motion occurs in 12 hours. ## SURVEILLANCE REQUIREMENTS (continued) ### SR 3.1.6.3 When control banks are maintained within their insertion limits as checked by SR 3.1.6.2 above, it is unlikely that their sequence and overlap will not be in accordance with requirements provided in the COLR. A Frequency of 12 hours is consistent with the insertion limit check above in SR 3.1.6.2. ### **REFERENCES** - 1. 10 CFR 50, Appendix A, GDC 10, GDC 26, GDC 28. - 2. 10 CFR 50.46,1988. - 3. FSAR, Section 15. - 4. FSAR, Section 4.3.2.6. - 5. FSAR, Section 4.3.2.5. Fraction of Rated Thermal Power Figure 3.1.6-1 Rod Group Insertion Limits Versus Thermal Power ### **B 3.1 REACTIVITY CONTROL SYSTEM** #### B 3.1.7 Rod Position Indication #### **BASES** ### BACKGROUND According to GDC 13 (Ref. 1), instrumentation to monitor variables and systems over their operating ranges during normal operation, anticipated operational occurrences, and accident conditions must be
OPERABLE. LCO 3.1.7 is required to ensure OPERABLITY of the control rod position indicators to determine control rod positions and thereby ensure compliance with the control rod alignment and insertion limits. The OPERABILITY, including position indication, of the shutdown and control rods is an initial assumption in all safety analyses that assume rod insertion upon reactor trip. Maximum rod misalignment is an initial assumption in the safety analysis that directly affects core power distributions and assumptions of available SDM. Rod position indication is required to assess OPERABILITY and misalignment. Mechanical or electrical failures may cause a shutdown or a control rod to become inoperable or to become misaligned from its group. Control rod inoperability or misalignment may cause increased power peaking, due to the asymmetric reactivity distribution and a reduction in the total available rod worth for reactor shutdown. Therefore, control rod alignment and OPERABILITY are related to core operation in design power peaking limits and the core design requirement of a minimum SDM. Limits on control rod alignment and OPERABILITY have been established, and all rod positions are monitored and controlled during power operation to ensure that the power distribution and reactivity limits defined by the design power peaking and SDM limits are preserved. Rod cluster control assemblies (RCCAs), or rods, are moved out of the core (up or withdrawn) or into the core (down or inserted) by their control rod drive mechanisms. The RCCAs are divided among control banks and shutdown banks. Each bank may be further subdivided into two groups to provide for precise reactivity control. ## BACKGROUND (continued) The axial positions of shutdown rods and control rods are determined by two separate and independent systems: the Bank Demand Position Indication System (commonly called group step counters) and the Digital Rod Position Indication (DRPI) System. The Bank Demand Position Indication System counts the pulses from the Rod Control System that move the rods. There is one step counter for each group of rods. Individual rods in a group all receive the same signal to move and should, therefore, all be at the same position indicated by the group step counter for that group. The Bank Demand Position Indication System is considered highly precise (\pm 1 step or \pm % inch). If a rod does not move one step for each demand pulse, the step counter will still count the pulse and incorrectly reflect the position of the rod. The DRPI System provides a highly accurate indication of actual control rod position, but at a lower precision than the step counters. This system is based on inductive analog signals from a series of coils spaced along a hollow tube with a center to center distance of 3.75 inches, which is 6 steps. To increase the reliability of the system, the inductive coils are connected alternately to data system A or B. Thus, if one system fails, the DRPI will go on half accuracy with an effective coil spacing of 7.5 inches, which is 12 steps. Therefore, the normal indication accuracy of the DRPI System is \pm 4 steps (all coils operable and 1 step added for manufacturing and temperature tolerances), and the maximum uncertainty is \pm 10 steps (only one data system A or B coils operable). With an indicated deviation of 12 steps between the group step counter and DRPI, the maximum deviation between actual rod position and the demand position could be 22 steps. ## APPLICABLE SAFETY ANALYSES Control and shutdown rod position accuracy is essential during power operation. Power peaking, ejected rod worth, or SDM limits may be violated in the event of a Design Basis Accident (Ref. 2), with control or shutdown rods operating outside their limits undetected. Therefore, the acceptance criteria for rod position indication is that rod positions must be known with sufficient accuracy in order to verify the core is operating within the assumed group sequence, overlap, design peaking limits, ejected rod worth, and with minimum SDM (LCO 3.1.5, "Shutdown Bank Insertion Limits," and LCO 3.1.6, "Control Bank Insertion Limits"). The rod positions must ## APPLICABLE SAFETY ANALYSES (continued) also be known in order to verify the alignment limits are preserved (LCO 3.1.4, "Rod Group Alignment Limits"). Control rod positions are continuously monitored to provide operators with information that ensures the plant is operating within the bounds of the accident analysis assumptions (Ref.2). The control rod position indicator channels satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii). The control rod position indicators monitor control rod position, which is an initial condition of the accident. ### LCO LCO 3.1.7 specifies that one DRPI System (data System A or B) and one Bank Demand Position Indication System be OPERABLE for each shutdown and control rod. For the control rod position indicators to be OPERABLE requires meeting the SR of the LCO and the following: - a. The required DRPI System indicates within 12 steps of the group step counter demand position as required by LCO 3.1.4, "Rod Group Alignment Limits"; - b. For the required DRPI System there are no failed coils; and - c. The Bank Demand Indication System has been calibrated either in the fully inserted position or to the DRPI System. The 12 step agreement limit between the Bank Demand Position Indication System and the DRPI System indicates that the Bank Demand Position Indication System is adequately calibrated, and can be used for indication of the measurement of control rod bank position. A deviation of less than the allowable limit, given in LCO 3.1.4, in position indication for a single control rod, ensures high confidence that the position uncertainty of the corresponding control rod group is within the assumed values used in the analysis (that specified control rod group insertion limits). These requirements ensure that control rod position indication during power operation and PHYSICS TESTS is accurate, and that design assumptions are not challenged. ## LCO (continued) OPERABILITY of the position indicator channels ensures that inoperable, misaligned, or mispositioned control rods can be detected. Therefore, power peaking, ejected rod worth, and SDM can be controlled within acceptable limits. ### **APPLICABILITY** The requirements on the DRPI and step counters are only applicable in MODES 1 and 2 (consistent with LCO 3.1.4, LCO 3.1.5, and LCO 3.1.6), because these are the only MODES in which power is generated, and the OPERABILITY and alignment of rods have the potential to affect the safety of the plant. In the shutdown MODES, the OPERABILITY of the shutdown and control banks has the potential to affect the required SDM, but this effect can be compensated for by an increase in the boron concentration of the Reactor Coolant System. #### **ACTIONS** The ACTIONS table is modified by a Note indicating that a separate Condition entry is allowed for each inoperable rod position indicator and each demand position indicator. This is acceptable because the Required Actions for each Condition provide appropriate compensatory actions for each inoperable position indicator. ### **A.1** When one DRPI system (both A and B) per group fails for one or more groups, the position of the affected rod(s) may still be determined indirectly by use of the movable incore detectors. The Required Action may also be satisfied by ensuring at least once per 8 hours that Fo satisfies LCO 3.2.1, Fah satisfies LCO 3.2.2, and SHUTDOWN MARGIN is within the limits provided in the COLR, provided the non-indicating rods have not been moved. Based on experience, normal power operation does not require excessive movement of banks. If a bank has been significantly moved, the Required Action of C.1 or C.2 below is required. Therefore, verification of RCCA position within the Completion Time of 8 hours is adequate for allowing continued full power operation, since the probability of simultaneously having a rod significantly out of position and an event sensitive to that rod position is small. ## ACTIONS (continued) ## <u>A.2</u> Reduction of THERMAL POWER to \leq 50% RTP puts the core into a condition where rod position is not significantly affecting core peaking factors. The allowed Completion Time of 8 hours is reasonable, based on operating experience, for reducing power to \leq 50% RTP from full power conditions without challenging plant systems and allowing for rod position determination by Required Action A.1 above. ### B.1, B.2, B.3, and B.4 When more than one DRPI channel per group fails (Data A and Data B), additional actions are necessary to ensure that acceptable power distribution limits are maintained, minimum SDM is maintained, and the potential effects of rod misalignment on associated accident analyses are limited. Placing the Rod Control System in manual assures unplanned rod motion will not occur. Together with the indirect position determination available via movable incore detectors, this action will minimize the potential for rod misalignment. The immediate Completion Time for placing the Rod Control System in manual reflects the urgency with which unplanned rod motion must be prevented while in this Condition. Monitoring and recording reactor coolant T_{avg} helps assure that significant changes in power distribution and SDM are avoided. The once per hour Completion Time is acceptable because only minor fluctuations in RCS temperature are expected at steady state plant operating conditions. The position of the rods may be determined indirectly by use of the movable incore detectors. The Required Action may also be satisfied by ensuring at least once per 8 hours that F_0 satisfies LCO 3.2.1, F_{AH}^N satisfies LCO 3.2.2, and SHUTDOWN MARGIN is within the limits provided in the COLR, provided the non-indicating rods have not been moved. Verification of control rod position once per 8 hours
is adequate for allowing continued full power operation for a limited, 24 hour period, since the probability of simultaneously having a rod significantly out of position and an event sensitive to that rod position is small. The 24 hour Completion Time provides sufficient time to troubleshoot and restore the DRPI system to operation while avoiding the plant challenges associated with a shutdown without full rod position indication. #### **ACTIONS** ## B.1, B.2, B.3, and B.4 (continued) Based on operating experience, normal plant operation does not require excessive rod movement. If one or more rods has been significantly moved, the Required Action of C.1 or C.2 below is required. ### C.1.1, C.1.2, and C.2 These Required Actions clarify that when one or more rods with inoperable position indicators have been moved in excess of 24 steps in one direction, since the position was last determined, the Required Actions of A.1 and A.2, or B.1, as applicable, are still appropriate but must be initiated immediately under Required Action C.1.1 to begin verifying that these rods are still properly positioned, relative to their group positions. If, within 8 hours, the rod positions have not been determined, THERMAL POWER must be reduced to ≤ 50% RTP to avoid undesirable power distributions that could result from continued operation at > 50% RTP, if one or more rods are misaligned by more than 24 steps. The allowed Completion Time of 8 hours provides an acceptable period of time to verify the rod positions using the movable incore detectors or reduce power to ≤ 50% RTP. ### D.1.1 and D.1.2 With one demand position indicator per bank inoperable, the rod positions can be determined by the DRPI System. Since normal power operation does not require excessive movement of rods, verification by administrative means that the rod position indicators are OPERABLE and the most withdrawn rod and the least withdrawn rod are ≤ 12 steps apart within the allowed Completion Time of once every 8 hours is adequate. ### D.2 Reduction of THERMAL POWER to ≤ 50% RTP puts the core into a condition where rod position is not significantly affecting core peaking factor limits specified in the COLR. The allowed Completion Time of 8 hours provides an acceptable period of time to verify the rod positions per Required Actions D.1.1 and D.1.2 or reduce power to ≤ 50% RTP. ## ACTIONS (continued) ## <u>E.1</u> If the Required Actions cannot be completed within the associated Completion Time, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours. The allowed Completion Time is reasonable, based on operating experience, for reaching the required MODE from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ### SR 3.1.7.1 Verification that the DRPI agrees with the demand position within 12 steps over the full indicated range ensures that the DRPI is operating correctly. This surveillance is performed prior to reactor criticality after each removal of the reactor head as there is the potential for unnecessary plant transients if the SR were performed with the reactor at power. ## **REFERENCES** - 1. 10 CFR 50, Appendix A, GDC 13. - 2. FSAR, Chapter 15. ### **B 3.1 REACTIVITY CONTROL SYSTEMS** ## B 3.1.8 PHYSICS TESTS Exceptions—MODE 2 ### **BASES** #### **BACKGROUND** The primary purpose of the MODE 2 PHYSICS TESTS exceptions is to permit relaxations of existing LCOs to allow certain PHYSICS TESTS to be performed. Section XI of 10 CFR 50, Appendix B (Ref. 1), requires that a test program be established to ensure that structures, systems, and components will perform satisfactorily in service. All functions necessary to ensure that the specified design conditions are not exceeded during normal operation and anticipated operational occurrences must be tested. This testing is an integral part of the design, construction, and operation of the plant. Requirements for notification of the NRC, for the purpose of conducting tests and experiments, are specified in 10 CFR 50.59 (Ref. 2). The key objectives of a test program are to (Ref. 3): - a. Ensure that the facility has been adequately designed; - b. Validate the analytical models used in the design and analysis; - c. Verify the assumptions used to predict unit response; - d. Ensure that installation of equipment in the facility has been accomplished in accordance with the design; and - e. Verify that the operating and emergency procedures are adequate. To accomplish these objectives, testing is performed prior to initial criticality, during startup, during low power operations, during power ascension, at high power, and after each refueling. The PHYSICS TESTS requirements for reload fuel cycles ensure that the operating characteristics of the core are consistent with the design predictions and that the core can be operated as designed (Ref. 4). ## BACKGROUND (continued) PHYSICS TESTS procedures are written and approved in accordance with established formats. The procedures include all information necessary to permit a detailed execution of the testing required to ensure that the design intent is met. PHYSICS TESTS are performed in accordance with these procedures and test results are approved prior to continued power escalation and long term power operation. The PHYSICS TESTS required for reload fuel cycles (Ref. 4) in MODE 2 are listed below: - a. Critical Boron Concentration—Control Rods Withdrawn; - b. Critical Boron Concentration—Lead Bank Inserted: - c. Control Rod Worth; and - d. Isothermal Temperature Coefficient (ITC). These tests are performed in MODE 2 at hot zero power (HZP), and they may cause the operating controls and process variables to deviate from their LCO requirements during their performance. - a. The Critical Boron Concentration—Control Rods Withdrawn Test measures the critical boron concentration at hot zero power (HZP). With all rods out, the lead control bank is at or near its fully withdrawn position. HZP is where the core is critical (keff = 1.0), and the Reactor Coolant System (RCS) is at design temperature and pressure for zero power. Performance of this test should not violate any of the referenced LCOs. - b. The Critical Boron Concentration—Control Rods Withdrawn except lead bank Test measures the critical boron concentration at HZP, with the lead bank fully inserted into the core. The reactivity resulting from each incremental bank movement is measured with a reactivity computer. The difference between the measured critical boron concentration with all rods fully withdrawn and with the lead bank inserted is determined. The boron reactivity coefficient is determined by dividing the measured bank worth by the measured boron concentration difference. Performance of this test could violate LCO 3.1.4, "Rod Group Alignment Limits"; LCO 3.1.5, "Shutdown Bank Insertion Limit"; or LCO 3.1.6, "Control Bank Insertion Limits." ## BACKGROUND (continued) 3.1 2 3 The Control Rod Worth Test is used to measure the reactivity worth of shutdown and control banks. This test is performed at HZP and has four alternative methods of performance. The first method, the Boron Exchange Method, varies the reactor coolant boron concentration and moves the selected bank in response to the changing boron concentration. The reactivity changes are measured with a reactivity computer. This sequence is repeated for the remaining shutdown and control banks. The second method, the Rod Swap Method, measures the worth of a predetermined lead or reference bank using the Boron Exchange Method above. The reference bank is then nearly fully inserted into the core. The selected bank is then inserted into the core as the reference bank is withdrawn. The HZP critical conditions are then determined with the selected bank fully inserted into the core. The worth of the selected bank is calculated, based on the position of the reference bank with respect to the selected bank. This sequence is repeated as necessary for the remaining shutdown and control banks. The third method, the Boron Endpoint Method, moves the selected bank over its entire length of travel and then varies the reactor coolant boron concentration to achieve HZP criticality again. The difference in boron concentration is the worth of the selected bank. This sequence is repeated for the remaining shutdown and control banks. The fourth method is based on measuring the reactivity worth of individual control and shutdown rod banks. It is a fast process that is accomplished by inserting and withdrawing the bank at a maximum stepping speed, without changing boron concentration, and recording the signals on the excore detectors. In this method, referred to as Dynamic Rod Worth Measurement technique, the recorded signals from the excore detectors are processed on a conventional reactivity meter, which solves the inverse point kinetics equation with proper analytical compensation for spacial effects. Performance of this test could violate LCO 3.1.4, LCO 3.1.5, or LCO 3.1.6. ## BACKGROUND (continued) d. The ITC Test measures the ITC of the reactor. This test is performed at HZP and has two methods of performance. The first method, the Slope Method, varies RCS temperature in a slow and continuous manner. The reactivity change is measured with a reactivity computer as a function of the temperature change. The ITC is the slope of the reactivity versus the temperature plot. The test is repeated by reversing the direction of the temperature change, and the final ITC is the average of the two calculated ITCs. The second method, the Endpoint Method, changes the RCS temperature and measures the reactivity at the beginning and end of the temperature change. The ITC is the total reactivity change divided by the total temperature change. The test is repeated by reversing the direction of the temperature change, and the final
ITC is the average of the two calculated ITCs. The Moderator Temperature Coefficient (MTC) at the beginning-of-life (BOL) is determined from the measured ITC. Performance of this test could violate LCO 3.4.2, "RCS Minimum Temperature for Criticality." ## APPLICABLE SAFETY ANALYSES The fuel is protected by LCOs that preserve the initial conditions of the core assumed during the safety analyses. The methods for development of the LCOs that are excepted by this LCO are described in the Westinghouse Reload Safety Evaluation Methodology Report (Ref. 5). The above mentioned PHYSICS TESTS, and other tests that may be required to calibrate nuclear instrumentation or to diagnose operational problems, may require the operating control or process variables to deviate from their LCO limitations. The FSAR defines requirements for initial testing of the facility, including PHYSICS TESTS. Table 14.1-1 summarizes the zero, low power, and power tests. Requirements for reload fuel cycle PHYSICS TESTS are defined in ANSI/ANS-19.6.1-1985 (Ref. 4). Although these PHYSICS TESTS are generally accomplished within the limits for all LCOs, conditions may occur when one or more LCOs must be suspended to make completion of PHYSICS TESTS possible or practical. This is acceptable as long as the fuel design criteria are ## APPLICABLE SAFETY ANALYSES (continued) not violated. When one or more of the requirements specified in LCO 3.1.3, "Moderator Temperature Coefficient (MTC)," LCO 3.1.4, LCO 3.1.5, LCO 3.1.6, and LCO 3.4.2 are suspended for PHYSICS TESTS, the fuel design criteria are preserved as long as the power level is limited to ≤ 5% RTP, the reactor coolant temperature is kept ≥ 531°F, and SDM is within the limits provided in the COLR. The PHYSICS TESTS include measurement of core nuclear parameters or the exercise of control components that affect process variables. Among the process variables involved are AFD and QPTR, which represent initial conditions of the unit safety analyses. Also involved are the movable control components (control and shutdown rods), which are required to shut down the reactor. The limits for these variables are specified for each fuel cycle in the COLR. PHYSICS TESTS meet the criteria for inclusion in the Technical Specifications, since the components and process variable LCOs suspended during PHYSICS TESTS meet Criteria 1, 2, and 3 of 10 CFR 50.36 (c)(2)(ii). Reference 6 allows special test exceptions (STEs) to be included as part of the LCO that they affect. It was decided, however, to retain this STE as a separate LCO because it was less cumbersome and provided additional clarity. ### LCO This LCO allows the reactor parameters of MTC and minimum temperature for criticality to be outside their specified limits. In addition, it allows selected control and shutdown rods to be positioned outside of their specified alignment and insertion limits. Operation beyond specified limits is permitted for the purpose of performing PHYSICS TESTS and poses no threat to fuel integrity, provided the SRs are met. The requirements of LCO 3.1.3, LCO 3.1.4, LCO 3.1.5, LCO 3.1.6, and LCO 3.4.2 may be suspended during the performance of PHYSICS TESTS provided: - a. THERMAL POWER is ≤ 5% RTP; and - b. SDM is within the limits provided in the COLR; and - c. RCS lowest loop average temperature is ≥ 531°F. ### **APPLICABILITY** This LCO is applicable in MODE 2 when performing low power PHYSICS TESTS. The applicable PHYSICS TESTS are performed in MODE 2 at HZP. ### **ACTIONS** ### A.1 and A.2 if the SDM requirement is not met, boration must be initiated promptly. A Completion Time of Immediately is adequate to ensure prompt operator action to correctly align and start the required systems and components. The operator should begin boration with the best source available for the plant conditions. Boration will be continued until SDM is within limit. Suspension of PHYSICS TESTS exceptions requires restoration of each of the applicable LCOs to within specification. ### **B.1** When THERMAL POWER is > 5% RTP, the only acceptable action is to open the reactor trip breakers (RTBs) to prevent operation of the reactor beyond its design limits. Immediately opening the RTBs will shut down the reactor and prevent operation of the reactor outside of its design limits. ### **C.1** When the RCS lowest T_{avg} is < 531°F, the appropriate action is to restore T_{avg} to within its specified limit. The allowed Completion Time of 15 minutes provides time for restoring T_{avg} to within limits without allowing the plant to remain in an unacceptable condition for an extended period of time. Operation with the reactor critical and with temperature below 531°F could violate the assumptions for accidents analyzed in the safety analyses. ### **D.1** If the Required Actions cannot be completed within the associated Completion Time, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be #### **ACTIONS** ### D.1 (continued) brought to at least MODE 3 within an additional 15 minutes. The Completion Time of 15 additional minutes is reasonable, based on operating experience, for reaching MODE 3 in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ### SR 3.1.8.1 The power range and intermediate range neutron detectors must be verified to be OPERABLE in MODE 2 by LCO 3.3.1, "Reactor Trip System (RTS) Instrumentation." A CHANNEL OPERATIONAL TEST is performed on each power range and intermediate range channel prior to initiation of the PHYSICS TESTS. This will ensure that the RTS is properly aligned to provide the required degree of core protection during the performance of the PHYSICS TESTS. ### SR 3.1.8.2 Verification that the RCS lowest loop T_{avg} is $\geq 531^{\circ}F$ will ensure that the unit is not operating in a condition that could invalidate the safety analyses. Verification of the RCS temperature at a Frequency of 30 minutes during the performance of the PHYSICS TESTS will ensure that the initial conditions of the safety analyses are not violated. #### SR 3.1.8.3 Verification that the THERMAL POWER is ≤ 5% RTP will ensure that the plant is not operating in a condition that could invalidate the safety analyses. Verification of the THERMAL POWER at a Frequency of 1 hour during the performance of the PHYSICS TESTS will ensure that the initial conditions of the safety analyses are not violated. ### SR 3.1.8.4 The SDM is verified by performing a reactivity balance calculation, considering the following reactivity effects: ## B 3.2 POWER DISTRIBUTION LIMITS ## B 3.2.1 Heat Flux Hot Channel Factor (Fo(Z)) ### **BASES** ### **BACKGROUND** The purpose of the limits on the values of $F_Q(Z)$ is to limit the local (i.e., pellet) peak power density. The value of $F_Q(Z)$ varies along the axial height (Z) of the core. Fq(Z) is defined as the maximum local fuel rod linear power density divided by the average fuel rod linear power density, assuming nominal fuel pellet and fuel rod dimensions. Therefore, Fq(Z) is a measure of the peak fuel pellet power within the reactor core. During power operation, the global power distribution is limited by LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," and LCO 3.2.4, "QUADRANT TILT POWER RATIO (QPTR)," which are directly and continuously measured process variables. These LCOs, along with LCO 3.1.6, "Control Bank Insertion Limits," maintain the core within power distribution limits on a continuous basis. Fo(Z) varies with fuel loading patterns, control bank insertion, fuel burnup, and changes in axial power distribution. Fo(Z) is measured periodically using the incore detector system. These measurements are generally taken with the core at or near steady state conditions. Using the measured three dimensional power distributions, it is possible to derive a measured value for Fo(Z). However, because this value represents a steady state condition, it does not include the variations in the value of Fo(Z) that are present during nonequilibrium situations, such as load following. To account for these possible variations, the steady state value of $F_0(Z)$ is adjusted by an elevation dependent factor that accounts for the calculated worst case transient conditions. Core monitoring and control under nonsteady state conditions are accomplished by operating the core within the limits of the appropriate LCOs, including the limits on AFD, QPTR, and control rod insertion. ## APPLICABLE SAFETY ANALYSES This LCO precludes core power distributions that violate the following fuel design criteria: - a. During a loss of coolant accident (LOCA), the peak cladding temperature must not exceed 2200°F (Ref. 1); - b. During normal operation, operational transients and any transient condition arising from events of moderate frequency, there must be at least 95% probability at the 95% confidence level (the 95/95 DNB criterion) that the hot fuel rod in the core does not experience a departure from nucleate boiling (DNB) condition; - c. During an ejected rod accident, the energy deposition to the fuel will be below 200 cal/gm, thus meeting the NRC acceptance criteria of ≤ 280 cal/gm (Ref. 2); and - d. The control rods must be capable of shutting down the reactor with a minimum required SDM with the highest worth control rod stuck fully withdrawn (Ref. 3). Limits on Fq(Z) ensure that the value of the initial total peaking factor assumed in the accident analyses remains valid. Other criteria must also be met (e.g., maximum cladding oxidation, maximum hydrogen generation, coolable geometry, and long term cooling). However, the peak cladding temperature is typically most limiting. Fo(Z) limits assumed in the LOCA analysis are typically limiting relative to (i.e., lower than) the Fo(Z) limit assumed in safety analyses for other postulated accidents. Therefore, this LCO provides conservative limits for other postulated accidents. Fq(Z) satisfies Criterion 2 of 10
CFR 50.36(c)(2)(ii). **LCO** To ensure that the Heat Flux Hot Channel Factor, Fo(Z), will remain within limits during steady state operation, Fo(Z) shall be limited by the following relationships which define the steady state limits: $$F_Q(Z) \le \frac{F_QRTP}{P}K(Z)$$ for $P > 0.5$ $$F_Q(Z) \le \frac{F_QRTP}{0.5}K(Z)$$ for $P \le 0.5$ where: FoRTP is the Fo(Z) limit at RTP provided in the COLR, K(Z) is the normalized Fo(Z) as a function of core height provided in the COLR, and For this facility, the actual values of $Fo^{\mbox{\scriptsize RTP}}$ and K(Z) are given in the COLR. An FQ(Z) evaluation requires obtaining an incore flux map in MODE 1. From the incore flux map results we obtain the measured value ($F_Q^M(Z)$) of FQ(Z). Then, $$F_Q(Z) = (F_Q^M(Z)) 1.0815$$ where 1.0815 is a factor that accounts for fuel manufacturing tolerances (3%) and flux map measurement uncertainty (5%). Fo(Z) evaluations for comparison to the steady state limits are applicable in all axial core regions, i.e., from 0 to 100% inclusive. Because flux maps are taken as a snap shot in steady state conditions, the variations in power distribution resulting from normal operational maneuvers are not present in the flux map data. These variations are, however, conservatively calculated by considering a wide range of unit maneuvers in normal operation. The ratio of the calculated transient $F_Q(Z)$ over the calculated steady state $F_Q(Z)$ as a function of core elevation, Z, is called W(Z). ## (continued) The W(Z) curve is provided in the COLR for discrete core elevations. Fo(Z) evaluations for comparison to the transient limits are not following axial core regions, measured in percent of core height: - a. Lower core region, from 0 to 15% inclusive; and - b. Upper core region, from 85 to 100% inclusive. The top and bottom 15% of the core are excluded from the evaluation because of the low probability that these regions would be more limiting in the safety analyses and because of the difficulty of making a precise measurement in these regions. To account for power distribution transients encountered during normal operation, the transient limits for $F_Q(Z)$ are established utilizing the cycle dependent function W(Z). To ensure that $F_Q(Z)$ will not become excessively high if a normal operational transient occurs, $F_Q(Z)$ shall be limited by the following relationships which define the transient limits: $$F_Q(Z) \le \frac{F_QRTP*K(Z)}{P*W(Z)}$$ for $P>0.5$ $$F_Q(Z) \le \frac{F_QRTP*K(Z)}{0.5*W(Z)}$$ for $P \le 0.5$ The Fq(Z) limits define limiting values for core power peaking that precludes peak cladding temperatures above 2200°F during either a large or small break LOCA. This LCO requires operation within the bounds assumed in the safety analyses. Calculations are performed in the core design process to confirm that the core can be controlled in such a manner during operation that it can stay within the LOCA Fo(Z) limits. If Fo(Z) cannot be maintained within the LCO limits, reduction of the core power is required. Violating the LCO limits for Fo(Z) produces unacceptable consequences if a design basis event occurs while Fo(Z) is outside its specified limits. ### **APPLICABILITY** The Fq(Z) limits must be maintained in MODE 1 to prevent core power distributions from exceeding the limits assumed in the safety analyses. Applicability in other MODES is not required because there is either insufficient stored energy in the fuel or insufficient energy being transferred to the reactor coolant to require a limit on the distribution of core power. ### **ACTIONS** ### <u>A.1</u> Reducing THERMAL POWER by \geq 1% RTP for each 1% by which FQ(Z) exceeds its steady state limit, maintains an acceptable absolute power density. FQ(Z) is F_Q^M(Z) multiplied by a factor accounting for manufacturing tolerances and measurement uncertainties. F_Q^M(Z) is the measured value of FQ(Z). The Completion Time of 15 minutes provides an acceptable time to reduce power in an orderly manner and without allowing the plant to remain in an unacceptable condition for an extended period of time. ## <u>A.2</u> A reduction of the Power Range Neutron Flux – High trip setpoints by ≥ 1% for each 1% by which Fo(Z) exceeds its limit, is a conservative action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 72 hours is sufficient considering the small likelihood of a severe transient in this time period and the preceding prompt reduction in THERMAL POWER in accordance with Required Action A.1. ### <u>A.3</u> Reduction in the Overpower ΔT trip setpoints (value of K_4) by $\geq 1\%$ for each 1% by which $F_0(Z)$ exceeds its limit, is a conservative action for protection against the consequences of severe transients with unanalyzed power distributions. The Completion Time of 72 hours is sufficient considering the small likelihood of a severe transient in this time period, and the preceding prompt reduction in THERMAL POWER in accordance with Required Action A.1. ## ACTIONS (continued) ## <u>A.4</u> Verification that $F_Q(Z)$ has been restored to within its limit, by performing SR 3.2.1.1 prior to increasing THERMAL POWER above the limit imposed by Required Action A.1, ensures that core conditions during operation at higher power levels are consistent with safety analyses assumptions. ### <u>B.1</u> If it is found that $F_Q(Z)$ exceeds its specified transient limits, there exists a potential for $F_Q(Z)$ to become excessively high if a normal operational transient occurs. Reducing the AFD by \geq 1% for each 1% by which $F_Q(Z)$ exceeds its transient limits within the allowed Completion Time of 4 hours, restricts the axial flux distribution such that even if a transient occurred, core peaking factors are not exceeded (Ref.5). The percent $F_Q(Z)$ exceeds its transient limits is calculated based on the following expressions: $$\left\{ \left(\frac{\text{maximum}}{\text{over Z}} \left[\frac{F_0(Z) * W(Z)}{F_0RTP} * K(Z) \right] \right) - 1 \right\} * 100 \text{ for P} > 0.5$$ $$\left\{ \left(\frac{\text{maximum}}{\text{over Z}} \left[\frac{F_0(Z) * W(Z)}{\frac{F_0RTP}{0.5} * K(Z)} \right] - 1 \right\} * 100 \text{ for } P \le 0.5$$ ### <u>C.1</u> If Required Actions A.1 through A.4 or B.1 are not met within their associated Completion Times, the plant must be placed in a mode or condition in which the LCO requirements are not applicable. This is done by placing the plant in at least MODE 2 within 6 hours. This allowed Completion Time is reasonable based on operating experience regarding the amount of time it takes to reach MODE 2 from full power operation in an orderly manner and without challenging plant systems. ### SURVEILLANCE REQUIREMENTS SR 3.2.1.1 and SR 3.2.1.2 are modified by a Note. The Note applies during the first power ascension after a refueling. It states that THERMAL POWER may be increased until an equilibrium power level has been achieved at which a power distribution map can be obtained. This allowance is modified, however, by one of the Frequency conditions that requires verification that Fo(Z) is within its specified limits after a power rise of more than 20% RTP over the THERMAL POWER at which it was last verified to be within specified limits. Because Fo(Z) could not have previously been measured in this reload core, there is a second Frequency condition, applicable only for reload cores, that requires determination of these parameters before exceeding 75% RTP. This ensures that some determination of Fo(Z) is made at a lower power level at which adequate margin is available before going to 100% RTP. Also, this Frequency condition, together with the Frequency condition requiring verification of $F_Q(Z)$ following a power increase of more than 20% ensures that $F_0(Z)$ is verified as soon as RTP (or any other level for extended operation) is achieved. In the absence of these Frequency conditions, it is possible to increase power to RTP and operate for 31 days without verification of Fo(Z). The Frequency condition is not intended to require verification of these parameters after every 20% increase in power level above the last verification. It only requires verification after a power level is achieved for extended operation that is at least 20% higher than that power at which $F_0(Z)$ was last measured. ### SR 3.2.1.1 This surveillance is performed using the movable incore detectors to obtain a power distribution map at THERMAL POWER Levels greater than 5% RTP. Verification that $F_Q(Z)$ is within its steady state limits involves increasing $F_Q^M(Z)$ by 3% to allow for manufacturing tolerance and by 5% to allow for measurement uncertainties in order to obtain $F_Q(Z)$. Specifically, $F_Q^M(Z)$ is the measured value of $F_Q(Z)$ obtained from incore flux map results and $F_Q(Z) = (F_Q^M(Z))$ 1.0815 (Ref. 4). $F_Q(Z)$ is then compared to its steady state limits specified in the COLR and is applicable in all core plane regions, i.e., 0-100%, inclusive. Performing this Surveillance in MODE 1 prior to exceeding 75% RTP following refueling ensures that the Fo(Z) limit is met when RTP is achieved, because peaking factors generally decrease as power level is increased. ### SURVEILLANCE REQUIREMENTS ## **SR 3.2.1.1** (continued) If THERMAL POWER has been increased by \geq 20% RTP since the last determination of Fo(Z), another evaluation of this factor is required after achieving equilibrium conditions at this higher power level (to ensure that Fo(Z) values are being reduced sufficiently with power increase to stay within the LCO limits). The Frequency of 31 EFPD is adequate to monitor the change of power distribution with core burnup because such changes are slow and well controlled when the plant is operated in accordance with the Technical Specifications (TS). ### SR 3.2.1.2 This surveillance is performed using the movable incore detectors to obtain a power distribution map at
THERMAL POWER Levels greater than 5% RTP. This surveillance determines if $F_Q(Z)$ (i.e. $(F_Q^M(Z))$ 1.0815, obtained from incore flux map results) will remain within its limit during a normal operational transient. If $F_Q(Z)$ is determined to exceed the transient limit, Action B.1 requires that the AFD limit be reduced 1% for each 1% $F_Q(Z)$ exceeds the transient limit. This will ensure that $F_Q(Z)$ will not exceed the transient limit during a normal operational transient within the reduced AFD limit. For this surveillance, the Fo(Z) evaluations are not applicable for the following axial core regions, measured in percent of core height: - a. Lower core region, from 0 to 15% inclusive; and - b. Upper core region, from 85 to 100% inclusive. The top and bottom 15% of the core are excluded from the evaluation because of the low probability that these regions would be more limiting in the safety analyses and because of the difficulty of making a precise measurement in these regions. Demonstrating that Fo(Z) is within the transient limit or reducing the AFD limit if the transient Fo(Z) limit was initially exceeded, only ### SURVEILLANCE REQUIREMENTS ## **SR 3.2.1.2** (continued) ensures that the transient $F_Q(Z)$ limit will not be exceeded at the time $F_Q(Z)$ was evaluated. This does not ensure that the limit will not be exceeded during the following surveillance interval. Both the steady state and transient $F_Q(Z)$ change as a function of core burnup. If the two most recent $F_Q(Z)$ evaluations show an increase in the quantity $$\text{maximum over Z } \left[\begin{array}{c} F_{Q}(Z) \\ \hline K(Z) \end{array} \right],$$ it is not guaranteed that Fo(Z) will remain within the transient limit during the following surveillance interval. SR 3.2.1.2 is modified by a Note to determine if there is sufficient margin to the transient Fo(Z) limit to ensure that the limit will not be exceeded during the following surveillance interval. This is accomplished by increasing Fo(Z) by the appropriate penalty factor specified in the COLR and comparing this value to the transient Fo(Z) limit. If there is insufficient margin, i.e., this value exceeds the limit, SR 3.2.1.2 must be repeated once per 7 EFPD until either Fo(Z) increased by the penalty factor is within the transient limit or, two successive (i.e., subsequent consecutive) flux maps indicate maximum over $$Z \left[\begin{array}{c} F_0(Z) \\ \hline K(Z) \end{array} \right]$$, has not increased. Performing the Surveillance in MODE 1 prior to exceeding 75% RTP following refueling ensures that the FQ(Z) limit is met when RTP is achieved, because peaking factors are generally decreased as power level is increased. $F_Q(Z)$ is verified at power levels \geq 20% RTP above the THERMAL POWER of its last verification, after achieving equilibrium conditions to ensure that $F_Q(Z)$ is within its limits at higher power levels. ### SURVEILLANCE REQUIREMENTS ## SR 3.2.1.2 (continued) The Surveillance Frequency of 31 EFPD is adequate to monitor the change of power distribution with burnup because such a change is sufficiently slow, when the plant is operated in accordance with the TS, to preclude adverse peaking factors between 31 day surveillances. Also, the result of this surveillance can result in more frequent surveillance of Fo(Z) if necessary. ### **REFERENCES** - 1. 10 CFR 50.46, 1988. - 2. FSAR, Section 15.4.6. - 3. 10 CFR 50, Appendix A, GDC 26. - 4. WCAP-7308-L-P-A, "Evaluation of Nuclear Hot Channel Factor Uncertainties," June 1988. - 5. WCAP-10216-P-A, Revision 1A, "Relaxation of Constant Axial Offset Control Fo Surveillance Technical Specification," February 1994. Figure B 3.2.1-1 (page 1 of 1) K(Z) - Normalized Fo(Z) as a Function of Core Height #### **B 3.2 POWER DISTRIBUTION LIMITS** B 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FAH) ### BASES ### **BACKGROUND** The purpose of this LCO is to establish limits on the power density at any point in the core so that the fuel design criteria are not exceeded and the accident analysis assumptions remain valid. The design limits on local (pellet) and integrated fuel rod peak power density are expressed in terms of hot channel factors. Control of the core power distribution with respect to these factors ensures that local conditions in the fuel rods and coolant channels do not challenge fuel design limits at any location in the core during either normal operation or a postulated accident analyzed in the safety analyses. $F_{\Delta H}^{N}$ is defined as the ratio of the integral of the linear power along the fuel rod with the highest integrated power to the average integrated fuel rod power. Therefore, $F_{\Delta H}^{N}$ is a measure of the maximum total power produced in a fuel rod. $F_{\Delta H}^{N}$ is sensitive to fuel loading patterns, bank insertion, and fuel burnup. $F_{\Delta H}^{N}$ typically increases with control bank insertion and typically decreases with fuel burnup except for a few months of reactor operation. $\mathsf{F}^\mathsf{N}_{\Delta\mathsf{H}}$ is not directly measurable but is inferred from a power distribution map obtained with the movable incore detector system. Specifically, the results of the three dimensional power distribution map are analyzed by a computer to determine $\mathsf{F}^\mathsf{N}_{\Delta\mathsf{H}}$. This factor is calculated at least every 31 EFPD. However, during power operation, the global power distribution is monitored by LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," and LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)," which address directly and continuously measured process variables. The COLR provides peaking factor limits that ensure that the design criterion for the departure from nucleate boiling (DNB) is met for normal operation, operational transients, and any transient condition arising from events of moderate frequency. All DNB limited transient events are assumed to begin with an $F_{\Delta H}^{N}$ value that satisfies the LCO requirements. ## BACKGROUND (continued) Operation outside the LCO limits may produce unacceptable consequences if a DNB limiting event occurs. The DNB design basis ensures that there is no overheating of the fuel that results in possible cladding perforation with the release of fission products to the reactor coolant. ## APPLICABLE SAFETY ANALYSES Limits on $F_{\Delta H}^N$ preclude core power distributions that exceed the following fuel design limits: - a. There must be at least 95% probability at the 95% confidence level (the 95/95 DNB criterion) that the hottest fuel rod in the core does not experience a DNB condition during normal operation, operational transients and any transient condition arising from events of moderate frequency; - b. During a loss of coolant accident (LOCA), peak cladding temperature (PCT) must not exceed 2200°F (Ref. 3); - c. During an ejected rod accident, the energy deposition to the fuel will be less than 200 cal/gm, thus meeting the NRC acceptance criteria of ≤ 280 cal/gm (Ref. 1); and - d. Fuel design limits required by GDC 26 (Ref. 2) for the condition when control rods must be capable of shutting down the reactor with a minimum required SDM with the highest worth control rod stuck fully withdrawn. For transients that may be DNB limited, $F_{\Delta H}^N$ is an important core parameter. The limits on $F_{\Delta H}^N$ ensure that the DNB design criterion is met for normal operation, operational transients, and any transients arising from events of moderate frequency. Minimum DNBR values (Ref. 4) were established that satisfy the DNB design criterion. These values provide the required degree of assurance that the hottest fuel rod in the core does not experience DNB. ## APPLICABLE SAFETY ANALYSES (continued) The allowable $F_{\Delta H}^N$ limit increases with decreasing power level. This functionality in $F_{\Delta H}^N$ is included in the analyses that provide the Reactor Core Safety Limits (SLs) of SL 2.1.1. Therefore, any DNB events in which the calculation of the core limits is modeled implicitly use this variable value of $F_{\Delta H}^N$ in the analyses. Likewise, all transients that may be DNB limited are assumed to begin with an initial $F_{\Delta H}^N$ as a function of power level defined by the COLR limit equation. The LOCA safety analysis indirectly models $F_{\Delta H}^N$ as an input parameter. The Nuclear Heat Flux Hot Channel Factor ($F_Q(Z)$) and the axial peaking factors are inserted directly into the LOCA safety analyses that verify the acceptability of the resulting peak cladding temperature (Ref. 3). The fuel is protected in part by Technical Specifications, which ensure that the initial conditions assumed in the safety and accident analyses remain valid. The following LCOs ensure this: LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)," LCO 3.1.6, "Control Bank Insertion Limits," LCO 3.2.2, "Nuclear Enthalpy Rise Hot Channel Factor ($F_{\Delta H}^{N}$ and LCO 3.2.1, "Heat Flux Hot Channel Factor ($F_{\Omega}(Z)$)." $F_{\Delta H}^{N}$ and $F_{Q}(Z)$ are measured periodically using the movable incore detector system. Measurements are generally taken with the core at, or near, steady state conditions. Core monitoring and control under transient conditions (Condition 1 events) are accomplished by operating the core within the limits of the LCOs on AFD, QPTR, and Bank Insertion Limits. F^N_{AH} satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). LCO $F_{\Delta H}^{N}$ shall be maintained within the limits of the relationship provided in the COLR. The F_{AH}^N limit identifies the coolant flow channel with the maximum enthalpy rise. This channel has the least heat removal capability and thus the highest probability for a DNB. ## (continued) The limiting value of $F_{\Delta H}^N$ described by the equation contained in the COLR, is the design radial peaking factor used in the unit safety analyses. A power multiplication factor in this equation includes an
additional margin for higher radial peaking from reduced thermal feedback and greater control rod insertion at low power levels. The limiting value of $F_{\Delta H}^{N}$ is allowed to increase 0.3% for every 1% RTP reduction in THERMAL POWER. ### **APPLICABILITY** The $F_{\Delta H}^{N}$ limits must be maintained in MODE 1 to preclude core power distributions from exceeding the fuel design limits for DNBR and PCT. Applicability in other modes is not required because there is either insufficient stored energy in the fuel or insufficient energy being transferred to the coolant to require a limit on the distribution of core power. Specifically, the design bases events that are sensitive to $F_{\Delta H}^{N}$ in other modes (MODES 2 through 5) have significant margin to DNB, and therefore, there is no need to restrict $F_{\Delta H}^{N}$ in these modes. #### **ACTIONS** ### **A.1.1** With $F_{\Delta H}^N$ exceeding its limit, the unit is allowed 4 hours to restore $F_{\Delta H}^N$ to within its limits. This restoration may, for example, involve realigning any misaligned rods or reducing power enough to bring $F_{\Delta H}^N$ within its power dependent limit. When the $F_{\Delta H}^N$ limit is exceeded, the DNBR limit is not likely violated in steady state operation, because events that could significantly perturb the $F_{\Delta H}^N$ value (e.g., static control rod misalignment) are considered in the safety analyses. However, the DNBR limit may be violated if a DNB limiting event occurs. Thus, the allowed Completion Time of 4 hours provides an acceptable time to restore $F_{\Delta H}^N$ to within its limits without allowing the plant to remain in an unacceptable condition for an extended period of time. ### **ACTIONS** ## A.1.1 (continued) Condition A is modified by a Note that requires that Required Actions A.2 and A.3 must be completed whenever Condition A is entered. Thus, if power is not reduced because $F_{\Delta H}^{N}$ is restored to within the limit within the 4 hour time period, Required Action A.2 nevertheless requires another measurement and calculation of $F_{\Delta H}^{N}$ within 24 hours in accordance with SR 3.2.2.1. However, if power is reduced below 50% RTP, Required Action A.3 requires that another determination of $F_{\Delta H}^N$ must be done prior to exceeding 50% RTP, prior to exceeding 75% RTP, and within 24 hours after reaching or exceeding 95% RTP. In addition, Required Action A.2 is performed if power ascension is delayed past 24 hours. ### A.1.2.1 and A.1.2.2 If the value of FAH is not restored to within its specified limit either by adjusting a misaligned rod or by reducing THERMAL POWER, the alternative option is to reduce THERMAL POWER to < 50% RTP in accordance with Required Action A.1.2.1 and reduce the Power Range Neutron Flux—High to ≤ 55% RTP in accordance with Required Action A.1.2.2. Reducing RTP to < 50% RTP increases the DNB margin and does not likely cause the DNBR limit to be violated in steady state operation. The reduction in trip setpoints ensures that continuing operation remains at an acceptable low power level with adequate DNBR margin. The allowed Completion Time of 4 hours for Required Action A.1.2.1 is consistent with those allowed for in Required Action A.1.1 and provides an acceptable time to reach the required power level from full power operation without allowing the plant to remain in an unacceptable condition for an extended period of time. The Completion Times of 4 hours for Required Actions A.1.1 and A.1.2.1 are not additive. The allowed Completion Time of 72 hours to reset the trip setpoints per Required Action A.1.2.2 recognizes that, once power is reduced, the safety analysis assumptions are satisfied and there is no urgent need to reduce the trip setpoints. This is a sensitive operation that may inadvertently trip the Reactor Protection System. ## ACTIONS (continued) ### <u>A.2</u> Once the power level has been reduced to < 50% RTP per Required Action A.1.1 or A.1.2.1, an incore flux map (SR 3.2.2.1) must be obtained and the measured value of $F_{\Delta H}^{N}$ verified not to exceed the allowed limit at the lower power level. The unit is provided 20 additional hours to perform this task over and above the 4 hours allowed by either Action A.1.1 or Action A.1.2.1. The Completion Time of 24 hours is acceptable because of the increase in the DNB margin, which is obtained at lower power levels, and the low probability of having a DNB limiting event within this 24 hour period. Additionally, operating experience has indicated that this Completion Time is sufficient to obtain the incore flux map, perform the required calculations, and evaluate $F_{\Delta H}^{N}$. ### <u>A.3</u> Verification that $F_{\Delta H}^N$ is within its specified limits after an out of limit occurrence ensures that the cause that led to the $F_{\Delta H}^N$ exceeding its limit is corrected, and that subsequent operation proceeds within the LCO limit. This Action demonstrates that the $F_{\Delta H}^N$ limit is within the LCO limits prior to exceeding 50% RTP, again prior to exceeding 75% RTP, and within 24 hours after THERMAL POWER is \geq 95% RTP. This Required Action is modified by a Note that states that THERMAL POWER does not have to be reduced prior to performing this Action. It is only applicable to the extent that THERMAL POWER has been reduced to comply with Required Actions A.1.1 or A.1.2.1. For example, if THERMAL POWER was only reduced to 70% RTP, then SR 3.2.2.1 must be performed prior to exceeding 75% RTP and within 24 hours after reaching 95% RTP. #### **B.1** When Required Actions A.1.1 through A.3 cannot be completed within their required Completion Times, the plant must be placed in a mode in which the LCO requirements are not applicable. This is done by placing the plant in at least MODE 2 within 6 hours. The allowed Completion Time of 6 hours is reasonable, based on operating experience regarding the time required to reach MODE 2 from full power conditions in an orderly manner and without challenging plant systems. ### SURVEILLANCE REQUIREMENTS ## SR 3.2.2.1 The value of $F_{\Delta H}^N$ is determined by using the movable incore detector system to obtain a flux distribution map. A data reduction computer program then calculates the maximum value of $F_{\Delta H}^N$ from the measured flux distributions. The measured value of $F_{\Delta H}^N$ must be multiplied by 1.04 to account for measurement uncertainty before making comparisons to the $F_{\Delta H}^N$ limit. After each refueling, $F_{\Delta H}^{N}$ must be determined in MODE 1 prior to exceeding 75% RTP. This requirement ensures that $F_{\Delta H}^{N}$ limits are met at the beginning of each fuel cycle. The 31 EFPD Frequency is acceptable because the power distribution changes relatively slowly over this amount of fuel burnup. Accordingly, this Frequency is short enough that the $F_{\Delta H}^N$ limit cannot be exceeded for any significant period of operation. ### REFERENCES - 1. FSAR, Section 15.4.6. - 2. 10 CFR 50, Appendix A, GDC 26. - 3. 10 CFR 50.46, 1988. - 4. FSAR, Section 4.4.1. ### **B 3.2 POWER DISTRIBUTION LIMITS** ### B 3.2.3 AXIAL FLUX DIFFERENCE (AFD) ### **BASES** ### **BACKGROUND** The purpose of this LCO is to establish limits on the values of the AFD in order to limit the amount of axial power distribution skewing to either the top or bottom of the core. By limiting the amount of power distribution skewing, core peaking factors are consistent with the assumptions used in the safety analyses. Limiting power distribution skewing over time also minimizes the xenon distribution skewing, which is a significant factor in axial power distribution control. RAOC is a calculational procedure that defines the allowed operational space of the AFD versus THERMAL POWER. The AFD limits are selected by considering a range of axial xenon distributions that may occur as a result of large variations of the AFD. Subsequently, power peaking factors and power distributions are examined to ensure that the loss of coolant accident (LOCA), loss of flow accident, and anticipated transient limits are met. Violation of the AFD limits invalidate the conclusions of the accident and transient analyses with regard to fuel cladding integrity. The AFD is monitored on an automatic basis using the unit process computer, which has an AFD monitor alarm. The computer determines the 1 minute average of each of the OPERABLE excore detector outputs and provides an alarm message immediately if the AFD for two or more OPERABLE excore channels is outside its specified limits. Although the RAOC defines limits that must be met to satisfy safety analyses, typically an operating scheme, Constant Axial Offset Control (CAOC), is used to control axial power distribution in day to day operation (Ref. 1). CAOC requires that the AFD be controlled within a narrow tolerance band around a burnup dependent target to minimize the variation of axial peaking factors and axial xenon distribution during unit maneuvers. The CAOC operating space is typically smaller and lies within the RAOC operating space. Control within the CAOC operating space constrains the variation of axial xenon distributions and axial power distributions. # BACKGROUND (continued) RAOC calculations assume a wide range of xenon distributions and then confirm that the resulting power distributions satisfy the requirements of the accident analyses. ### APPLICABLE SAFETY ANALYSES The AFD is a measure of the axial power distribution skewing to either the top or bottom half of the core. The AFD is sensitive to many core related parameters such as control bank positions, core power level, axial burnup, axial xenon distribution, and, to a lesser extent, reactor coolant temperature and boron concentration. The allowed range of the AFD is used in the nuclear design process to confirm that operation within these limits produces core peaking factors and axial power distributions that meet safety
analysis requirements. The RAOC methodology (Ref. 2) establishes a xenon distribution library with tentatively wide AFD limits. One dimensional axial power distribution calculations are then performed to demonstrate that normal operation power shapes are acceptable for the LOCA and loss of flow accident, and for initial conditions of anticipated transients. The tentative limits are adjusted as necessary to meet the safety analysis requirements. The limits on the AFD ensure that the Heat Flux Hot Channel Factor (Fo(Z)) is not exceeded during either normal operation or in the event of xenon redistribution following power changes. The limits on the AFD also restrict the range of power distributions that are used as initial conditions in the analyses of Condition 2, 3, or 4 events. This ensures that the fuel cladding integrity is maintained for these postulated accidents. Condition 2 accidents simulated to begin from within the AFD limits are used to confirm the adequacy of the Overpower ΔT and Overtemperature ΔT trip setpoints. The limits on the AFD satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii). LCO The shape of the power profile in the axial (i.e., the vertical) direction is largely under the control of the operator through the manual operation of the control banks or automatic motion of control banks. #### **BASES** # (continued) The automatic motion of the control banks is in response to temperature deviations resulting from manual operation of the Chemical and Volume Control System to change boron concentration or from power level changes. Signals are available to the operator from the Nuclear Instrumentation System (NIS) excore neutron detectors. Separate signals are taken from the top and bottom detectors. The AFD is defined as the difference in normalized flux signals between the top and bottom excore detectors in each detector well. For convenience, this flux difference is converted to provide flux difference units expressed as a percentage and labeled as $\%\Delta$ flux or $\%\Delta$ I. The AFD limits are provided in the COLR. Figure B 3.2.3-1 shows typical RAOC AFD limits. The AFD limits for RAOC do not depend on the target flux difference. However, the target flux difference may be used to minimize changes in the axial power distribution. Violating this LCO on the AFD could produce unacceptable consequences if a Condition 2, 3, or 4 event occurs while the AFD is outside its specified limits. # **APPLICABILITY** The AFD requirements are applicable in MODE 1 greater than or equal to 50% RTP when the combination of THERMAL POWER and core peaking factors are of primary importance in safety analysis. For AFD limits developed using RAOC methodology, the value of the AFD does not affect the limiting accident consequences with THERMAL POWER < 50% RTP and for lower operating power MODES. #### **ACTIONS** # **A.1** As an alternative to restoring the AFD to within its specified limits, Required Action A.1 requires a THERMAL POWER reduction to < 50% RTP. This places the core in a condition for which the value of the AFD is not important in the applicable safety analyses. A Completion Time of 30 minutes is reasonable, based on operating experience, to reach 50% RTP without challenging plant systems. #### **BASES** ## SURVEILLANCE REQUIREMENTS #### SR 3.2.3.1 This Surveillance verifies that the AFD, as indicated by the NIS excore channel, is within its specified limits. The Surveillance Frequency of 7 days is adequate considering that the AFD is monitored by a computer and any deviation from requirements is alarmed. #### **REFERENCES** - 1. WCAP-8403 (nonproprietary), "Power Distribution Control and Load Following Procedures," Westinghouse Electric Corporation, September 1974. - 2. R. W. Miller et al., "Relaxation of Constant Axial Offset Control: F Q Surveillance Technical Specification," WCAP-10217-A, Rev. 1 (NP), February 1994. Figure B 3.2.3-1 (page 1 of 1) AXIAL FLUX DIFFERENCE Acceptable Operation Limits as a Function of RATED THERMAL POWER #### **B 3.2 POWER DISTRIBUTION LIMITS** ## B 3.2.4 QUADRANT POWER TILT RATIO (QPTR) #### **BASES** #### **BACKGROUND** The QPTR limit ensures that the gross radial power distribution remains consistent with the design values used in the safety analyses. Precise radial power distribution measurements are made during startup testing, after refueling, and periodically during power operation. The power density at any point in the core must be limited so that the fuel design criteria are maintained. Together, LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)," LCO 3.2.4, and LCO 3.1.6, "Control Rod Insertion Limits," provide limits on process variables that characterize and control the three dimensional power distribution of the reactor core. Control of these variables ensures that the core operates within the fuel design criteria and that the power distribution remains within the bounds used in the safety analyses. # APPLICABLE SAFETY ANALYSES This LCO precludes core power distributions that violate the following fuel design criteria: - a. During a loss of coolant accident, the peak cladding temperature must not exceed 2200°F (Ref. 1); - b. During normal operation, operational transients and any transient condition arising from events of moderate frequency, there must be at least 95% probability at the 95% confidence level (the 95/95 departure from nucleate boiling (DNB) criterion) that the hot fuel rod in the core does not experience a DNB condition; - c. During an ejected rod accident, the energy deposition to the fuel will be below 200 cal/gm, thus meeting the NRC acceptance criteria of ≤ 280 cal/gm (Ref. 2); and - d. The control rods must be capable of shutting down the reactor with a minimum required SDM with the highest worth control rod stuck fully withdrawn (Ref. 3). #### **BASES** # APPLICABLE SAFETY ANALYSES (continued) The LCO limits on the AFD, the QPTR, the Heat Flux Hot Channel Factor ($F_Q(Z)$), the Nuclear Enthalpy Rise Hot Channel Factor ($F_{\Delta H}^N$), and control bank insertion are established to preclude core power distributions that exceed the safety analyses limits. The QPTR limits ensure that $F_{\Delta H}^N$ and $F_Q(Z)$ remain below their limiting values by preventing an undetected change in the gross radial power distribution. In MODE 1, the $F_{\Delta H}^N$ and $F_Q(Z)$ limits must be maintained to preclude core power distributions from exceeding design limits assumed in the safety analyses. The QPTR satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). # LCO The QPTR limit of 1.02, at which corrective action is required, provides a margin of protection for both the DNB ratio and linear heat generation rate contributing to excessive power peaks resulting from X-Y plane power tilts. The value of 1.02 was selected because the purpose of the LCO is to limit, or require detection of, gross changes in core power distribution between monthly incore flux maps. In addition, it is the lowest value of quadrant power tilt that can be used for an alarm without spurious actuation. # **APPLICABILITY** The QPTR limit must be maintained in MODE 1 with THERMAL POWER ≥ 50% RTP to prevent core power distributions from exceeding the design limits. Applicability in MODE 1 < 50% RTP and in other MODES is not required because there is either insufficient stored energy in the fuel or insufficient energy being transferred to the reactor coolant to require the implementation of a QPTR limit on the distribution of core power. The QPTR limit in these conditions is, therefore, not important. Note that the $F_{\Delta H}^{N}$ and $F_{Q}(Z)$ LCOs still apply, but allow progressively higher peaking factors at 50% RTP or lower. #### **ACTIONS** #### <u>A.1</u> With the QPTR exceeding 1.02, limiting THERMAL POWER to ≥ 3% below RTP for each 1% by which the QPTR exceeds 1.00 is a conservative tradeoff of total core power with peak linear power. The Completion Time of 2 hours after each determination of QPTR allows sufficient time to identify the cause and correct the tilt. Note that the power reduction itself may cause a change in the tilted condition. The maximum allowable THERMAL POWER level initially determined by Required Action A.1 may be affected by subsequent determinations of QPTR in Required Action A.2. Increases in QPTR would require a THERMAL POWER reduction within 2 hours of QPTR determination, if necessary to comply with the decreased maximum allowable THERMAL POWER level. Conversely, decreases in QPTR would allow raising the maximum allowable THERMAL POWER level and increasing THERMAL POWER up to this revised limit. ## <u>A.2</u> After completion of Required Action A.1, the QPTR alarm may still be in its alarmed state. As such, any additional changes in the QPTR are detected by requiring a check of the QPTR once per 12 hours. If the QPTR continues to increase, THERMAL POWER has to be reduced according to Required Action A.1. A 12 hour Completion Time is sufficient because any additional change in QPTR would be relatively slow. #### <u>A.3</u> The peaking factors $F_{\Delta H}^N$ and $F_Q(Z)$ are of primary importance in ensuring that the power distribution remains consistent with the initial conditions used in the safety analyses. Performing SRs on $F_{\Delta H}^N$ and $F_Q(Z)$ within the Completion Time of 24 hours after achieving equilibrium conditions from a THERMAL POWER reduction required by Required Action A.1 ensures that these primary indicators of power distribution are within their respective limits. Equilibrium conditions are achieved when the core is sufficiently stable at the intended operating conditions to support flux mapping. The above Completion Time of 24 hours after achieving equilibrium conditions from a THERMAL POWER reduction required by Required Action A.1 takes into consideration the rate at which peaking factors are likely to #### **ACTIONS** # A.3 (continued) change, and the time required to stabilize the plant and perform a flux map.
If these peaking factors are not within their limits, the Required Actions of these Surveillances provide an appropriate response for the abnormal condition. If the QPTR remains above its specified limit, the peaking factor surveillances are required each 7 days thereafter to evaluate $F_{\Delta H}^N$ and $F_Q(Z)$ with changes in power distribution. Relatively small changes are expected due to either burnup and xenon redistribution or correction of the cause for exceeding the QPTR limit. #### <u>A.4</u> Although F_{AH}^N and $F_{C}(Z)$ are of primary importance in ensuring that the power distribution remains consistent with the initial conditions used in the safety analyses, other changes in the power distribution may occur as the QPTR limit is exceeded and may have an impact on the validity of the safety analysis. A change in the power distribution can affect such reactor parameters as bank worths and peaking factors for rod malfunction accidents. When the QPTR exceeds its limit, it does not necessarily mean a safety concern exists. It does mean that there is an indication of a change in the gross radial power distribution that requires an investigation and evaluation that is accomplished by examining the incore power distribution. Specifically, the core peaking factors and the quadrant tilt must be evaluated because they are the factors that best characterize the core power distribution. This re-evaluation is required to ensure that, before increasing THERMAL POWER to above the limit of Required Action A.1, the reactor core conditions are consistent with the assumptions in the safety analyses and will remain so after the return to RTP. #### **A.5** If the QPTR remains above the 1.02 limit and a re-evaluation of the safety analysis is completed and shows that safety requirements are met, the excore detectors are normalized to restore QPTR to within limits prior to increasing THERMAL POWER to above the limit of Required Action A.1. Normalization is accomplished by measuring currents for each detector during flux mapping and using this information to normalize the output from each detector (either through #### **ACTIONS** # A.5 (continued) calibration of the NIS or through the use of constants in calculations) in such a manner that the indicated QPTR following normalization is near 1.00. This is done to detect any subsequent significant changes in QPTR. Required Action A.5 is modified by two Notes. Note 1 states that the QPTR is not restored to within limits until after the re-evaluation of the safety analysis has determined that core conditions at RTP are within the safety analysis assumptions (i.e., Required Action A.4). Note 2 states that if Required Action A.5 is performed, then Required Action A.6 shall be performed. Required Action A.5 normalizes the excore detectors to restore QPTR to within limits, which restores compliance with LCO 3.2.4. Thus, Note 2 prevents exiting the Actions prior to completing flux mapping to verify peaking factors, per Required Action A.6. These Notes are intended to prevent any ambiguity about the required sequence of actions. #### <u>A.6</u> Once the excore detectors are normalized to restore QPTR to within limits (i.e., Required Action A.5 is performed), it is acceptable to return to full power operation. However, as an added check that the core power distribution at RTP is consistent with the safety analysis assumptions, Required Action A.6 requires verification that $F_Q(Z)$ and $F_{\Delta H}^N$ are within their specified limits within 24 hours after achieving equilibrium conditions at RTP. Required Action A.6 also states that the peaking factor surveillance must be performed within 48 hours after increasing THERMAL POWER above the limit of Required Action A.1. This is an added precaution in the event that RTP is not achieved in a timely manner. These Completion Times are intended to allow adequate time to increase THERMAL POWER to above the limit of Required Action A.1, while not permitting the core to remain with unconfirmed power distributions for extended periods of time. Required Action A.6 is modified by a Note that states that the peaking factor surveillances may only be done after the excore detectors have been normalized to restore QPTR to within limits (i.e., Required Action A.5). The intent of this Note is to have the peaking factor #### **BASES** #### **ACTIONS** # A.6 (continued) surveillances performed at operating power levels, which can only be accomplished after the excore detectors are normalized to restore QPTR to within limits and the core returned to power. ## <u>B.1</u> If Required Actions A.1 through A.6 are not completed within their associated Completion Times, the unit must be brought to a MODE or condition in which the requirements do not apply. To achieve this status, THERMAL POWER must be reduced to < 50% RTP within 4 hours. The allowed Completion Time of 4 hours is reasonable, based on operating experience regarding the amount of time required to reach the reduced power level without challenging plant systems. # SURVEILLANCE REQUIREMENTS # SR 3.2.4.1 SR 3.2.4.1 is modified by two Notes. Note 1 allows QPTR to be calculated with three power range channels if THERMAL POWER is ≤ 75% RTP and the input from one Power Range Neutron Flux channel is inoperable. Note 2 allows performance of SR 3.2.4.2 in lieu of SR 3.2.4.1. This Surveillance verifies that the QPTR, as indicated by the Nuclear Instrumentation System (NIS) excore channels, is within its limits. The Frequency of 7 days takes into account other information and alarms available to the operator in the control room. For those causes of QPT that occur quickly (e.g., a dropped rod), there typically are other indications of abnormality that prompt a verification of core power tilt. #### SR 3.2.4.2 This Surveillance is modified by a Note, which states that it is not required until 12 hours after the input from one or more Power Range Neutron Flux channels are inoperable and the THERMAL POWER is >75% RTP. #### **BASES** # SURVEILLANCE REQUIREMENTS # SR 3.2.4.2 (continued) With an NIS power range channel inoperable, tilt monitoring for a portion of the reactor core becomes degraded. Large tilts are likely detected with the remaining channels, but the capability for detection of small power tilts in some quadrants is decreased. Performing SR 3.2.4.2 at a Frequency of 12 hours provides an acceptable alternative means for confirming the accuracy of the QPTR measurement via excore detectors and ensuring that any tilt remains within its limits. For purposes of monitoring the QPTR when one power range channel is inoperable, the moveable incore detectors are used to confirm that the normalized symmetric power distribution is consistent with the indicated QPTR and any previous data indicating a tilt. The incore detector monitoring is performed with a full incore flux map or two sets of four thimble locations with quarter core symmetry. The two sets of four symmetric thimbles is a set of eight unique detector locations. These locations are C-8, E-5, E-11, H-3, H-13, L-5, L-11, and N-8. The power flux map can be used to generate power "tilt." This can be compared to a reference power tilt, from the most recent calibration flux map. Therefore, incore monitoring of QPTR can be used to confirm the accuracy of the QPTR as indicated by the excore detectors and that QPTR is within limits. #### REFERENCES - 1. 10 CFR 50.46, 1988. - 2. FSAR, Section 15.4.6. - 3. 10 CFR 50, Appendix A, GDC 26. #### **B 3.3 INSTRUMENTATION** # B 3.3.1 Reactor Trip System (RTS) Instrumentation #### **BASES** #### **BACKGROUND** The RTS initiates a unit shutdown, based on the values of selected unit parameters, to protect against violating the core fuel design limits and Reactor Coolant System (RCS) pressure boundary during anticipated operational occurrences (AOOs) and to assist the Engineered Safety Features (ESF) Systems in mitigating accidents. The protection and monitoring systems have been designed to assure safe operation of the reactor. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the RTS, as well as specifying LCOs on other reactor system parameters and equipment performance. The LSSS, defined in this specification as the Trip Setpoints, in conjunction with the LCOs, establish the threshold for protective system action to prevent exceeding acceptable limits during Design Basis Accidents (DBAs). During AOOs, which are those events expected to occur one or more times during the unit life, the acceptable limits are: - The Departure from Nucleate Boiling Ratio (DNBR) shall be maintained above the Safety Limit (SL) value to prevent departure from nucleate boiling (DNB); - 2. Fuel centerline melt shall not occur; and - 3. The RCS pressure SL of 2735 psig shall not be exceeded. Operation within the SLs of Specification 2.0, "Safety Limits (SLs)," also maintains the above values and assures that offsite dose will be within the 10 CFR 50 and 10 CFR 100 criteria during AOOs. Accidents are events that are analyzed even though they are not expected to occur during the unit life. The acceptable limit during accidents is that offsite dose shall be maintained within an acceptable fraction of 10 CFR 100 limits. Different accident categories are allowed # BACKGROUND (continued) a different fraction of these limits, based on probability of occurrence. Meeting the acceptable dose limit for an accident category is considered having acceptable consequences for that event. The RTS instrumentation is segmented into four distinct but interconnected modules as illustrated in functional diagrams referenced in the FSAR, Chapter 7 (Ref. 1), and as identified below: - 1. Field transmitters or process sensors: provide a measurable electronic signal based upon the physical characteristics of the parameter being measured; - 2. Signal Process Control and Protection System, including Analog
Protection System, Nuclear Instrumentation System (NIS), field contacts, and protection channel sets: provides signal conditioning, bistable setpoint comparison, process algorithm actuation, compatible electrical signal output to protection system devices, and control board/control room/miscellaneous indications; - 3. Solid State Protection System (SSPS), including input, logic, and output bays: initiates proper unit shutdown and/or ESF actuation in accordance with the defined logic, which is based on the bistable outputs from the signal process control and protection system; and - 4. Reactor trip switchgear, including reactor trip breakers (RTBs) and bypass breakers: provides the means to interrupt power to the control rod drive mechanisms (CRDMs) and allows the rod cluster control assemblies (RCCAs), or "rods," to fall into the core and shut down the reactor. The bypass breakers allow testing of the RTBs at power. #### Field Transmitters or Sensors To meet the design demands for redundancy and reliability, more than one, and in some cases as many as four, field transmitters or sensors are used to measure unit parameters. To account for the calibration tolerances and instrument drift, which are assumed to occur between calibrations, statistical allowances are provided in the Trip Setpoint. The OPERABILITY of each transmitter or sensor can be evaluated when its "as found" calibration data are compared against its documented acceptance criteria. # BACKGROUND (continued) ## Signal Process Control and Protection System Generally, three or four channels of process control equipment are used for the signal processing of unit parameters measured by the field instruments. The process control equipment provides signal conditioning, comparable output signals for instruments located on the main control board, and comparison of measured input signals with setpoints established by safety analyses. These setpoints are discussed in FSAR, Chapter 7 (Ref. 1), Chapter 6 (Ref. 2), and Chapter 15 (Ref. 3) and specified in the FNP Unit 1(2) Precautions, Limitations, and Setpoints For Nuclear Steam Supply Systems (Ref. 12). If the measured value of a unit parameter exceeds the predetermined setpoint, an output from a bistable is forwarded to the SSPS for decision evaluation. Channel separation is maintained up to and through the input bays. However, not all unit parameters require four channels of sensor measurement and signal processing. Some unit parameters provide input only to the SSPS, while others provide input to the SSPS, the main control board, the unit computer, and one or more control systems. Generally, if a parameter is used only for input to the protection circuits, three channels with a two-out-of-three logic are sufficient to provide the required reliability and redundancy. If one channel fails in a direction that would not result in a partial Function trip, the Function is still OPERABLE with a two-out-of-two logic. If one channel fails, such that a partial Function trip occurs, a trip will not occur and the Function is still OPERABLE with a one-out-of-two logic. Generally, if a parameter is used for input to the SSPS and a control function, four channels with a two-out-of-four logic are sufficient to provide the required reliability and redundancy. Otherwise, functional separation between the protection and control systems must be demonstrated as described in FSAR Section 7.2.2.3. In addition, the circuit must be able to withstand both an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Again, a single failure will neither cause nor prevent the protection function actuation. These requirements are described in IEEE-279-1971 (Ref. 4). The actual number of channels required for each unit parameter is specified in FSAR Table 7.2-1 (Ref. 1). Two logic channels are required to ensure no single random failure of a logic channel will disable the RTS. The logic channels are designed #### **BACKGROUND** # Signal Process Control and Protection System (continued) such that testing required while the reactor is at power may be accomplished without causing trip. Provisions to allow removing logic channels from service during maintenance are unnecessary because of the logic system's designed reliability. # Trip Setpoints and Allowable Values The Trip Setpoints are the nominal values at which the field devices and bistables are set. Any protection system channel is considered to be properly adjusted when the "as left" value is within the band for CHANNEL CALIBRATION accuracy. The Trip Setpoints used are based on the analytical limits stated in Reference 1. The selection of these Trip Setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account. To allow for calibration tolerances, instrumentation uncertainties, instrument drift, and severe environment errors for those RTS channels that must function in harsh environments as defined by 10 CFR 50.49 (Ref. 5), the Trip Setpoints and Allowable Values specified in Table 3.3.1-1 in the accompanying LCO are conservatively adjusted with respect to the analytical limits. A detailed description of the methodology used to calculate the Trip Setpoints, including their explicit uncertainties, is provided in the "RTS/ESFAS Setpoint Methodology Study" (Ref. 6). The actual nominal Trip Setpoint is more conservative than that specified by the Allowable Value to account for changes in random measurement errors detectable by a COT. One example of such a change in measurement error is drift during the surveillance interval. If the measured setpoint does not exceed the Allowable Value, the bistable is considered OPERABLE. Setpoints in accordance with the Allowable Value ensure that SLs are not violated during AOOs (and that the consequences of DBAs will be acceptable, providing the unit is operated from within the LCOs at the onset of the AOO or DBA and the equipment functions as designed). Note that in the accompanying LCO 3.3.1, the Trip Setpoints of Table 3.3.1-1 are the LSSS. Each channel of the process control equipment can be tested on line to verify that the signal or setpoint accuracy is within the specified allowance requirements. Once a designated channel is taken out of #### **BACKGROUND** # Trip Setpoints and Allowable Values (continued) service for testing, a simulated signal is injected in place of or superimposed on the field instrument signal. The process equipment for the channel in test is then tested, verified, and if required, calibrated. SRs for the channels are specified in the SRs section. The Trip Setpoints and Allowable Values listed in Table 3.3.1-1 are based on the methodology described in Reference 6, which incorporates all of the known uncertainties applicable for each channel. The magnitudes of these uncertainties are factored into the determination of each Trip Setpoint. All field sensors and signal processing equipment for these channels are assumed to operate within the allowances of these uncertainty magnitudes. #### Solid State Protection System The SSPS equipment is used for the decision logic processing of inputs from field contacts and control board switches and the signal processing equipment bistables. To meet the redundancy requirements, two trains of SSPS, each performing the same functions, are provided. If one train is taken out of service for maintenance or test purposes, the second train will provide reactor trip and/or ESF actuation for the unit. If both trains are taken out of service or placed in test, a reactor trip will result. The reactor trip may be caused by a General Warning alarm in both trains or if both RTB bypass breakers BYA and BYB are racked in and closed. Each train is packaged in its own cabinet for physical and electrical separation to satisfy separation and independence requirements. The system has been designed to trip in the event of a loss of power, directing the unit to a safe shutdown condition. The SSPS performs the decision logic for actuating a reactor trip or ESF actuation, generates the electrical output signal that will initiate the required trip or actuation, and provides the status, permissive, and annunciator output signals to the main control room of the unit. The input signals from field contacts, control board switches and bistable outputs from the signal processing equipment are sensed by the SSPS equipment and combined into logic matrices that represent combinations indicative of various unit upset and accident transients. If a required logic matrix combination is completed, the system will initiate a reactor trip or send actuation signals via master and slave relays to #### **BACKGROUND** # Solid State Protection System (continued) those components whose aggregate Function best serves to alleviate the condition and restore the unit to a safe condition. Examples are given in the Applicable Safety Analyses, LCO, and Applicability sections of this Bases. # Reactor Trip Switchgear Two RTBs are connected in series in the electrical power supply line from the control rod drive motor generator set power supply to the CRDMs. Opening of any one RTB interrupts power to the CRDMs, which allows the shutdown rods and control rods to fall into the core by gravity. Each RTB is equipped with a bypass breaker to allow testing of the RTB while the unit is at power. During normal operation the output from the SSPS is a voltage signal that energizes the undervoltage coils in the RTBs and bypass breakers, if in use. When the required logic matrix combination is completed, the SSPS output voltage signal is removed, the undervoltage coils are de-energized, the breaker trip lever is actuated by the de-energized undervoltage coil, and the RTBs and bypass breakers are tripped open. This allows the shutdown rods and control rods to fall into the
core. In addition to the de-energization of the undervoltage coils, each RTB is also equipped with a shunt trip device that is energized to trip the breaker open upon receipt of a reactor trip signal from the SSPS. Either the undervoltage coil or the shunt trip mechanism is sufficient by itself, thus providing a diverse trip mechanism. The RTB bypass breakers are also equipped with a shunt trip device; however, manual actuation (local or remote) is required to energize this trip mechanism. The decision logic matrix Functions are described in the functional diagrams included in Reference 9. In addition to the reactor trip or ESF, these diagrams also illustrate the various "permissive interlocks" that are associated with unit conditions. Each train has a built in testing device that can automatically test the selected decision logic matrix Functions and the actuation devices while the unit is at power. When any one train is taken out of service for testing, the other train is capable of providing unit monitoring and protection until the testing has been completed. The testing device is semiautomatic to minimize testing time. The RTS functions to maintain the SLs during all AOOs and mitigates the consequences of DBAs in all MODES in which the RTBs are closed. Each of the analyzed accidents and transients can be detected by one or more RTS Functions. The accident analysis described in Reference 3 takes credit for most RTS trip Functions. RTS trip Functions not specifically credited in the accident analysis are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit. These RTS trip Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function performance. They may also serve as backups to RTS trip Functions that were credited in the accident analysis. The LCO requires all instrumentation performing an RTS Function, listed in Table 3.3.1-1 in the accompanying LCO, to be OPERABLE. Typically, failure of any instrument renders the affected channel(s) inoperable and reduces the reliability of the affected Functions. The LCO generally requires OPERABILITY of two. three, or four channels in each instrumentation Function, two channels of Manual Reactor Trip in each logic Function, and two trains in each Automatic Trip Logic Function. Four OPERABLE instrumentation channels in a two-out-of-four configuration are required when one RTS channel is also used as a control system input or functional separation between the protection and control systems must be demonstrated as described in FSAR Section 7.2.2.3. This configuration accounts for the possibility of the shared channel failing in such a manner that it creates a transient that requires RTS action. In this case, the RTS will still provide protection, even with random failure of one of the other three protection channels. Three operable instrumentation channels in a two-out-of-three configuration are generally required when there is no potential for control system and protection system interaction that could simultaneously create a need for RTS trip and disable one RTS channel. The two-out-of-three and two-out-of-four configurations allow one channel to be tripped during maintenance or testing without causing a reactor trip. Specific exceptions to the above general philosophy exist and are discussed below. ## Reactor Trip System Functions The safety analyses and OPERABILITY requirements applicable to each RTS Function are discussed below: ## 1. Manual Reactor Trip The Manual Reactor Trip ensures that the control room operator can initiate a reactor trip at any time by using either of two reactor trip switches in the control room. A Manual Reactor Trip accomplishes the same results as any one of the automatic trip Functions. The manual reactor trip feature is not credited by any safety analyses nor is it credited for diversity. It is used by the reactor operator to shut down the reactor whenever any parameter is rapidly trending toward its Trip Setpoint. The LCO requires two Manual Reactor Trip channels to be OPERABLE. Each channel is controlled by a manual reactor trip switch. Each channel activates the reactor trip breaker in both trains. Two independent channels are required to be OPERABLE so that no single random failure will disable the Manual Reactor Trip Function. In MODE 1 or 2, manual initiation of a reactor trip must be OPERABLE. These are the MODES in which the shutdown rods and/or control rods are partially or fully withdrawn from the core. In MODE 3, 4, or 5, the manual initiation Function must also be OPERABLE if the shutdown rods or control rods are withdrawn or the Control Rod Drive (CRD) System is capable of withdrawing the shutdown rods or the control rods. In this condition, inadvertent control rod withdrawal is possible. In MODE 3, 4, or 5, manual initiation of a reactor trip does not have to be OPERABLE if the CRD System is not capable of withdrawing the shutdown rods or control rods. If the rods cannot be withdrawn from the core, there is no need to be able to trip the reactor because all of the rods are inserted. In MODE 6, neither the shutdown rods nor the control rods are permitted to be withdrawn and the CRDMs are disconnected from the control rods and shutdown rods. Therefore, the manual initiation Function is not required. ## 2. Power Range Neutron Flux The NIS power range detectors are located external to the reactor vessel and measure neutrons leaking from the core. NIS power range detector NI44 provides input to the Rod Control System. Therefore, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Note that this Function also provides a control interlock signal to prevent automatic and manual rod withdrawal prior to initiating a reactor trip. Limiting further rod withdrawal may terminate the transient and eliminate the need to trip the reactor. # a. Power Range Neutron Flux-High The Power Range Neutron Flux—High trip Function ensures that protection is provided, at most power levels, against a fast positive reactivity excursion leading to DNB and fuel overpower during power operations. These events can be caused by rod withdrawal or reductions in RCS temperature. The LCO requires all four of the Power Range Neutron Flux—High channels to be OPERABLE. The channels are combined in a 2-out-of-4 trip Logic. In MODE 1 or 2, when a positive reactivity excursion could occur, the Power Range Neutron Flux—High trip must be OPERABLE. This Function will terminate the reactivity excursion and shut down the reactor prior to reaching a power level that could damage the fuel. In MODE 3, 4, 5, or 6, the Power Range Neutron Flux—High does not have to be OPERABLE because the reactor is shut down and reactivity excursions into the power range are extremely unlikely. Other RTS Functions and administrative controls provide protection against reactivity additions when in MODE 3, 4, 5, or 6. # b. Power Range Neutron Flux-Low The LCO requirement for the Power Range Neutron Flux— Low trip Function ensures that protection is provided against a positive reactivity excursion from low power or subcritical conditions. The LCO requires all four of the Power Range Neutron Flux— Low channels to be OPERABLE. The channels are combined in a 2-out-of-4 trip Logic. In MODE 1, below the Power Range Neutron Flux (P-10 setpoint), and in MODE 2, the Power Range Neutron Flux—Low trip must be OPERABLE. This Function may be manually blocked by the operator when two out of four power range channels are greater than approximately 10% RTP (P-10 setpoint). This Function is automatically unblocked when three out of four power range channels are below the P-10 setpoint. Above the P-10 setpoint, positive reactivity additions are mitigated by the Power Range Neutron Flux—High trip Function. In MODE 3, 4, 5, or 6, the Power Range Neutron Flux—Low trip Function does not have to be OPERABLE because the reactor is shut down. Other RTS trip Functions and administrative controls provide protection against positive reactivity additions or power excursions in MODE 3, 4, 5, or 6. # 3. Power Range Neutron Flux Rate The Power Range Neutron Flux Rate trips use the same NIS detectors as discussed for Function 2 above. # a. Power Range Neutron Flux—High Positive Rate The Power Range Neutron Flux—High Positive Rate trip Function ensures that protection is provided against rapid increases in neutron flux that are characteristic of an RCCA drive rod housing rupture and the accompanying ejection of the RCCA. In certain cases, this Function compliments the # a. Power Range Neutron Flux—High Positive Rate (continued) Power Range Neutron Flux—High and Low Setpoint trip Functions to ensure that the criteria are met for a rod ejection event. The LCO requires all four of the Power Range Neutron Flux—High Positive Rate channels to be OPERABLE. The channels are combined in a 2-out-of-4 trip Logic. In MODE 1 or 2, when there is a potential to add a large amount of positive reactivity from a rod ejection accident (REA), the Power Range Neutron Flux—High Positive Rate trip must be OPERABLE. In MODE 3, 4, 5, or 6, the Power Range Neutron Flux—High Positive Rate trip Function does not have to be OPERABLE because other RTS trip Functions and administrative controls will provide protection against positive reactivity additions. Also, since only the shutdown banks may be withdrawn in MODE 3, 4, or 5, the remaining complement of control bank worth ensures a sufficient degree of SDM in the event of an REA. In MODE 6, no rods are withdrawn and the SDM is increased during refueling operations. The reactor vessel head is also removed or the closure bolts are detensioned preventing any pressure buildup. # b. Power Range Neutron Flux-High Negative Rate The
Power Range Neutron Flux—High Negative Rate trip Function ensures that protection is provided for multiple rod drop accidents. At high power levels, a multiple rod drop accident could cause local flux peaking that would result in an unconservative local DNBR. DNBR is defined as the ratio of the heat flux required to cause a DNB at a particular location in the core to the local heat flux. The DNBR is indicative of the margin to DNB. The LCO requires all four Power Range Neutron Flux—High Negative Rate channels to be OPERABLE. The channels are combined in a 2-out-of-4 trip Logic. # b. Power Range Neutron Flux—High Negative Rate (continued) In MODE 1 or 2, when there is potential for a multiple rod drop accident to occur, the Power Range Neutron Flux—High Negative Rate trip must be OPERABLE. In MODE 3, 4, 5, or 6, the Power Range Neutron Flux—High Negative Rate trip Function does not have to be OPERABLE because the core is not critical and DNB is not a concern. # 4. Intermediate Range Neutron Flux The Intermediate Range Neutron Flux trip Function ensures that protection is provided against an uncontrolled RCCA bank rod withdrawal accident from a subcritical condition during startup. This trip Function provides diverse protection to the Power Range Neutron Flux—Low Setpoint trip Function. The NIS intermediate range detectors are located external to the reactor vessel and measure neutrons leaking from the core. The NIS intermediate range channels also provide a control interlock signal to prevent automatic and manual rod withdrawal prior to initiating a reactor trip. Limiting further rod withdrawal may terminate the transient and eliminate the need to trip the reactor. No credit is taken in the safety analyses for this trip function. The LCO requires two channels of Intermediate Range Neutron Flux to be OPERABLE. Two OPERABLE channels are sufficient to ensure no single random failure will disable this trip Function. The trip function is accomplished by a 1-out-of-2 trip Logic. Because this trip Function is important only during startup, there is generally no need to disable channels for on-line testing while the Function is required to be OPERABLE. Therefore, a third channel is unnecessary. In MODE 1 below the P-10 setpoint, and in MODE 2, when there is a potential for an uncontrolled RCCA bank rod withdrawal accident during reactor startup, the Intermediate Range Neutron Flux trip must be OPERABLE. Above the P-10 setpoint, the Power Range Neutron Flux—High Setpoint trip and the Power Range Neutron Flux—High Positive Rate trip provide core protection for a rod ## 4. Intermediate Range Neutron Flux (continued) withdrawal accident. In MODE 3, 4, or 5, the Intermediate Range Neutron Flux trip does not have to be OPERABLE because the control rods must be fully inserted and only the shutdown rods may be withdrawn. The reactor cannot be started up in this condition. The core also has the required SDM to mitigate the consequences of a positive reactivity addition accident. In MODE 6, all rods are fully inserted and the core has a required increased SDM. ## 5. Source Range Neutron Flux The LCO requirement for the Source Range Neutron Flux trip Function ensures that protection is provided against an uncontrolled RCCA bank rod withdrawal accident from a subcritical condition during startup. This trip Function provides diverse protection to the Power Range Neutron Flux—Low Setpoint trip Function. In MODES 3, 4, and 5, administrative controls also prevent the uncontrolled withdrawal of rods. The NIS source range detectors are located external to the reactor vessel and measure neutrons leaking from the core. The NIS source range detectors do not provide any inputs to control systems. The source range trip is the only RTS automatic protection function required in MODES 3, 4, and 5. Therefore, the functional capability at the specified Trip Setpoint is assumed to be available. However, no credit is taken in the safety analyses for this trip function. The LCO requires two channels of Source Range Neutron Flux to be OPERABLE. Two OPERABLE channels are sufficient to ensure no single random failure will disable this trip Function. The trip Function is accomplished by a 1-out-of-2 trip Logic. The LCO also requires one channel of the Source Range Neutron Flux to be OPERABLE in MODE 3, 4, or 5 with RTBs open. In this case, the source range Function is to provide control room indication. The outputs of the Function to RTS logic are not required OPERABLE when the RTBs are open. # 5. Source Range Neutron Flux (continued) The Source Range Neutron Flux Function provides protection for control rod withdrawal from subcritical, boron dilution and control rod ejection events. The Function also provides visual neutron flux indication in the control room. In MODE 2 when below the P-6 setpoint during a reactor startup, the Source Range Neutron Flux trip must be OPERABLE. Above the P-6 setpoint, the Intermediate Range Neutron Flux trip and the Power Range Neutron Flux—Low Setpoint trip will provide core protection for reactivity accidents. Above the P-6 setpoint, the NIS source range high Flux reactor trip is blocked and the detectors are manually de-energized. In MODE 3, 4, or 5 with the reactor shut down, the Source Range Neutron Flux trip Function must also be OPERABLE. If the CRD System is capable of rod withdrawal, the Source Range Neutron Flux trip must be OPERABLE to provide core protection against a rod withdrawal accident. If the CRD System is not capable of rod withdrawal, the source range detectors are not required to trip the reactor. However, their monitoring Function must be OPERABLE to monitor core neutron levels and provide indication of reactivity changes that may occur as a result of events like a boron dilution. The requirements for the NIS source range detectors in MODE 6 are addressed in LCO 3.9.3, "Nuclear Instrumentation." # Overtemperature ΔΤ The Overtemperature ΔT trip Function is provided to ensure that the design limit DNBR is met. This trip Function also limits the range over which the Overpower ΔT trip Function must provide protection. The inputs to the Overtemperature ΔT trip include pressure, coolant temperature, axial power distribution, and reactor power as indicated by loop ΔT assuming full reactor coolant flow. Protection from violating the DNBR limit is assured for those transients that are slow with respect to delays from the core to the measurement system when pressure is between the high and low pressure reactor trips. The core thermal power is correlated to the differential temperature across the vessel by measurement of Loop ΔT values at approximately full power with reactor coolant average temperature at the approximate cycle-specific full power reference temperature. The Overtemperature ΔT trip Function uses each # 6. Overtemperature ΔT (continued) loop's ΔT as a measure of reactor power and is compared with a setpoint that is automatically varied with the following parameters: - reactor coolant average temperature—the Trip Setpoint is varied to correct for changes in coolant density and specific heat capacity with changes in coolant temperature; - pressurizer pressure—the Trip Setpoint is varied to correct for changes in system pressure; and - axial power distribution—f(ΔI), the Trip Setpoint is varied to account for imbalances in the axial power distribution as detected by the NIS upper and lower power range detectors. Dynamic compensation is included for system piping delays from the core to the temperature measurement system and for RTD response time delays. The Overtemperature ΔT trip Function is calculated for each loop as described in Note 1 of Table 3.3.1-1. Trip occurs if the indicated ΔT equals or exceeds the calculated Overtemperature ΔT setpoint in two channels. Since the temperature signals are used for other control functions, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Control and Protection System interaction design requirements are addressed by implementation of T_{avg} and ΔT median selector circuits as discussed in FSAR Chapter 7.2. Note that this Function also provides a control interlock signal to prevent rod withdrawal prior to reaching the Trip Setpoint. Limiting further rod withdrawal may terminate the transient and prevent a reactor trip. The LCO requires all three channels on the Overtemperature ΔT trip Function to be OPERABLE. The channels are combined in a 2-out-of-3 trip Logic. Note that the Overtemperature ΔT Function receives T_{avg} , ΔT , pressure, and upper and lower flux # 6. Overtemperature ΔT (continued) inputs from channels shared with Overpower ΔT , pressurizer pressure, and NIS power range RTS/ESFAS Functions. Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions. In MODE 1 or 2, the Overtemperature ΔT trip must be OPERABLE to ensure that the DNB design basis is met. In MODE 3, 4, 5, or 6, this trip Function does not have to be OPERABLE because the reactor is not operating and there is insufficient heat production to be concerned about DNB. ## 7. Overpower AT The Overpower ΔT trip Function provides protection for Condition I and II transients to ensure the integrity of the fuel (i.e., no fuel pellet melting and less than 1% cladding strain) under all possible overpower conditions. This trip Function also limits the required range of the Overtemperature ΔT trip Function and provides a backup to the Power Range Neutron Flux—High Setpoint trip. The Overpower ΔT trip Function ensures that the allowable heat generation rate (kW/ft) of the fuel is not exceeded. This trip
function is explicitly credited in the safety analyses to mitigate the Consequences of small Steam Line breaks at full power. It uses the ΔT of each loop as a measure of reactor power with a setpoint that is automatically varied with the following parameters: - reactor coolant average temperature—the Trip Setpoint is varied to correct for changes in coolant density and specific heat capacity with changes in coolant temperature; and - rate of change of reactor coolant average temperature—including dynamic compensation for the delays between the core and the temperature measurement system including RTD response time delays. The Overpower ΔT trip Function is calculated for each loop as per Note 2 of Table 3.3.1-1. Trip occurs if the indicated ΔT equals or exceeds the calculated Overpower ΔT setpoint in two loops. Since the temperature signals are used for other control functions, the actuation logic must be able to withstand an input failure to the control system, which may then require the # 7. Overpower <u>AT</u> (continued) protection function actuation and a single failure in the remaining channels providing the protection function actuation. Control and Protection System Interaction design requirements are addressed by implementation of T_{avg} and ΔT median selector circuits as discussed in FSAR Chapter 7.2. Note that these channels also provide a control interlock signal prior to reaching the Trip Setpoint which limits rod withdrawal. Limiting rod withdrawal may terminate the transient. The LCO requires three channels of the Overpower ΔT trip Function to be OPERABLE. The channels are combined in a 2-out-of-3 trip Logic. Note that the Overpower ΔT trip Function receives T_{avg} and ΔT inputs from channels shared with the Overtemperature ΔT RTS Function. Failures that affect multiple Functions require entry into the Conditions applicable to all affected Functions. In MODE 1 or 2, the Overpower ΔT trip Function must be OPERABLE. These are the only times that enough heat is generated in the fuel to be concerned about the heat generation rates and overheating of the fuel. In MODE 3, 4, 5, or 6, this trip Function does not have to be OPERABLE because the reactor is not operating and there is insufficient heat production to be concerned about fuel overheating and fuel damage. #### 8. Pressurizer Pressure The same transmitters provide input to the Pressurizer Pressure—High and —Low trips and the Overtemperature ΔT trip and the ESFAS (low pressure SI and P-11 interlock). A Dedicated Pressurizer Pressure control channel provides input to the Pressurizer Pressure Control System, therefore there are no control/protection interaction concerns. This trip Function is credited in several safety analyses. # a. <u>Pressurizer Pressure — Low</u> The Pressurizer Pressure—Low trip Function ensures that protection is provided against violating the DNBR limit due to low pressure. The Trip Setpoint limits the required range of # a. <u>Pressurizer Pressure — Low</u> (continued) protection provided by the Overtemperature ΔT trip Function. This trip is explicitly credited in the safety analyses to mitigate the consequences of a small break LOCA. The LCO requires three channels of Pressurizer Pressure— Low to be OPERABLE. The channels are combined in a 2-out-of-3 trip Logic. In MODE 1, when DNB is a major concern, the Pressurizer Pressure—Low trip must be OPERABLE. This trip Function is automatically enabled on increasing power by the P-7 interlock (NIS power range P-10 or turbine impulse pressure greater than approximately 10% RTP or turbine power). On decreasing power, this trip Function is automatically blocked below P-7. Below the P-7 setpoint, no conceivable power distributions can occur that would cause DNB concerns. # b. Pressurizer Pressure — High The Pressurizer Pressure—High trip Function ensures that protection is provided against overpressurizing the RCS. This trip Function operates in conjunction with the pressurizer safety valves to prevent RCS overpressure conditions. The high pressure trip setpoint Limits the required range of protection provided by the Overtemperature ΔT trip Function. The LCO requires three channels of the Pressurizer Pressure — High to be OPERABLE. The channels are combined in a 2-out-of-3 trip Logic. The Pressurizer Pressure—High LSSS is selected to be below the pressurizer safety valve actuation pressure and above the power operated relief valve (PORV) setting. This setting minimizes challenges to safety valves while avoiding unnecessary reactor trip for those pressure increases that can be controlled by the PORVs and pressurizer spray valves. # b. <u>Pressurizer Pressure — High</u> (continued) In MODE 1 or 2, the Pressurizer Pressure—High trip must be OPERABLE to help prevent RCS overpressurization and minimize challenges to the safety valves. In MODE 3, 4, 5, or 6, the Pressurizer Pressure—High trip Function does not have to be OPERABLE because transients that could cause an overpressure condition will be slow to occur. Therefore, the operator will have sufficient time to evaluate unit conditions and take corrective actions. Additionally, low temperature overpressure protection systems provide overpressure protection when below MODE 4. ## 9. <u>Pressurizer Water Level — High</u> The Pressurizer Water Level—High trip Function provides a backup signal for the Pressurizer Pressure — High trip and also provides protection against water relief through the pressurizer safety and atmospheric relief valves. These valves are designed to pass steam in order to achieve their design energy removal rate, but are also qualified for limited water relief following specific transients. A reactor trip (Pressurizer Pressure — High) is actuated prior to the pressurizer becoming water solid. The Allowable value and Trip setpoint in Table 3.3.1-1 are specified in percent of instrument span. The LCO requires three channels of Pressurizer Water Level—High to be OPERABLE. The channels are combined in a 2-out-of-3 trip Logic. The pressurizer level channels are used as input to the Pressurizer Level Control System. A fourth channel is not required to address control/protection interaction concerns because: (1) The pressurizer pressure high trip function is credited as the primary protection for RCS overpressure or pressurizer overfill events; (2) overfill transients resulting from postulated pressurizer level channel failures are sufficiently slow, such that the operator has adequate time to take corrective actions; and (3) the pressurizer pressure low trip function and ESFAS Functions are credited as the primary protection for RCS depressurization or pressurizer empty events. In MODE 1, when there is a potential for overfilling the pressurizer, the Pressurizer Water Level—High trip must be OPERABLE. This trip Function is automatically enabled on # 9. Pressurizer Water Level — High (continued) increasing power by the P-7 interlock. On decreasing power, this trip Function is automatically blocked below P-7. Below the P-7 setpoint, transients that could raise the pressurizer water level will be slow and the operator will have sufficient time to evaluate unit conditions and take corrective actions. # 10. Reactor Coolant Flow - Low The Allowable Value and Trip Setpoint for this function in Table 3.3.1-1 are specified in percent of indicated flow. The indicated flow is normalized based on the measured ΔP at 100% RTP. The minimum measured Flow (MMF) is 88,100 gpm. The specified Allowable Value and Trip Setpoint are \geq the MMF per Loop. The Reactor Coolant Flow — Low (Single Loop) trip Function provides primary protection for all loss of flow events. For DNB limiting events, including complete loss of flow, this trip ensures that protection is provided against violating the DNBR limit due to low flow in one or more RCS loops, while avoiding reactor trips due to normal variations in loop flow. This trip Function also mitigates the consequences of an RCP locked rotor event by ensuring that the RCS pressure limit is not exceeded and that the core geometry remains amenable to cooling. Above the P-8 setpoint, which is approximately 30% RTP, a loss of flow in any RCS loop will actuate a reactor trip. Each RCS loop has three flow detectors to monitor flow. The flow signals are not used for any control system input. The LCO requires three Reactor Coolant Flow — Low channels per loop to be OPERABLE in MODE 1 above P-8. The trip function is accomplished by 2-out-of-3 channels in a single Loop. In MODE 1 above the P-8 setpoint, a loss of flow in one RCS loop could result in violating the DNB design basis. In MODE 1 below the P-8 setpoint, a loss of flow in two or more loops is required to actuate a reactor trip because of the lower power level and the greater margin to the design limit DNBR. # 10. Reactor Coolant Flow - Low (continued) The Reactor Coolant Flow—Low (Two Loops) trip Function ensures that protection is provided against violating the DNBR limit due to low flow in two or more RCS loops while avoiding reactor trips due to normal variations in loop flow. Above the P-7 setpoint and below the P-8 setpoint, a loss of flow in two or more loops will initiate a reactor trip. Each loop has three flow detectors (shared with the Single Loop trip Function) to monitor flow. The flow signals are not used for any control system input. The LCO requires three Reactor Coolant Flow — Low channels per loop to be OPERABLE. The trip function is accomplished by 2-out-of-3 channels in two Loops. In MODE 1 above the P-7 setpoint and below the P-8 setpoint, the Reactor Coolant Flow — Low (Two Loops) trip must be OPERABLE. Below the P-7 setpoint, all reactor trips on low flow are automatically blocked since no conceivable power distributions could occur that would cause a DNB concern at this low power level. Above the P-7 setpoint,
the reactor trip on low flow in two or more RCS loops is automatically enabled. Above the P-8 setpoint, a loss of flow in any one loop will actuate a reactor trip because of the higher power level and the reduced margin to the design limit DNBR. #### 11. Reactor Coolant Pump (RCP) Breaker Position Both RCP Breaker Position trip Functions operate together on two sets of auxiliary contacts (sensor), with one set (channel) on each RCP breaker. The breaker position sensing channels and Logic circuits are shared by both breaker position Trip Functions. These Functions anticipate the Reactor Coolant Flow — Low trips to avoid RCS heatup that would occur before the low flow trip actuates. The primary trip for reactor core protection against DNB is provided by the loss of flow trip. No credit was taken in the accident analyses for the function of these trips. Their functional capability enhances the overall reliability of the reactor protection system. # 11. Reactor Coolant Pump (RCP) Breaker Position (continued) # a. Reactor Coolant Pump Breaker Position (Single Loop) The RCP Breaker Position (Single Loop) trip Function ensures that protection is provided against violating the DNBR limit due to a loss of flow in one RCS loop. The position of each RCP breaker is monitored. If one RCP breaker is open above the P-8 setpoint, a reactor trip is initiated. For loss of flow transients initiated by opening a given RCP electrical supply breaker, this trip Function will generate a reactor trip before the Reactor Coolant Flow — Low (Single Loop) Trip Setpoint is reached. The LCO requires one RCP Breaker Position channel per RCP to be OPERABLE. Each channel contains one Train A and one Train B auxiliary contact. The trip function is accomplished by actuation of any single channel by either or both auxiliary contacts. One OPERABLE channel is sufficient for this trip Function because the RCS Flow — Low trip alone provides sufficient protection of unit SLs for loss of flow events. The RCP Breaker Position trip serves to compliment the RCP bus undervoltage trip and to anticipate the low flow trip, minimizing the thermal transient associated with loss of a pump. This Function measures only the discrete position (open or closed) of the RCP breaker, using two auxiliary contacts per breaker. Therefore, the Function has no adjustable trip setpoint with which to associate an LSSS. In MODE 1 above the P-8 setpoint, when a loss of flow in any RCS loop could challenge the DNB design basis, the RCP Breaker Position (Single Loop) trip must be OPERABLE. In MODE 1 below the P-8 setpoint, a loss of flow in two or more loops is required to actuate a reactor trip because of the lower power level and the greater margin to the design limit DNBR. # 11. Reactor Coolant Pump (RCP) Breaker Position (continued) ## b. Reactor Coolant Pump Breaker Position (Two Loops) The RCP Breaker Position (Two Loops) trip Function ensures that protection is provided against violating the DNBR limit due to a loss of flow in two or more RCS loops. The position of each RCP breaker is monitored. Above the P-7 setpoint and below the P-8 setpoint, a loss of flow in two or more loops will initiate a reactor trip. For loss of flow transients initiated by opening two or more RCP electrical supply breakers, this trip Function will generate a reactor trip before the Reactor Coolant Flow — Low (Two Loops) Trip Setpoint is reached. The LCO requires one RCP Breaker Position channel per RCP to be OPERABLE. Each channel contains one Train A and one Train B auxiliary contact. The channels are combined in a 2-out-of-3 trip Logic. One OPERABLE channel is sufficient for this Function because the RCS Flow — Low trip alone provides sufficient protection of unit SLs for loss of flow events. The RCP Breaker Position trip serves to compliment the RCP bus undervoltage trip and to anticipate the low flow trip, minimizing the thermal transient associated with loss of an RCP. This Function measures only the discrete position (open or closed) of the RCP breaker, using two auxiliary contacts on each breaker. Therefore, the Function has no adjustable trip setpoint with which to associate an LSSS. In MODE 1 above the P-7 setpoint and below the P-8 setpoint, the RCP Breaker Position (Two Loops) trip must be OPERABLE. Below the P-7 setpoint, all reactor trips on loss of flow are automatically blocked since no conceivable power distributions could occur that would challenge the DNB design basis at this low power level. Above the P-7 setpoint, the reactor trip on loss of flow in two RCS loops is automatically enabled. Above the P-8 setpoint, a loss of flow in any one loop will actuate a reactor trip because of the higher power level and the reduced margin to the design limit DNBR. # 12. Undervoltage Reactor Coolant Pumps The Undervoltage RCPs reactor trip Function ensures that protection is provided against violating the DNBR limit due to a loss of flow in two or more RCS loops. The voltage on each RCP bus is monitored by undervoltage relays. Two UV sensors (relays) are associated with each bus (one for each logic train). Each RCP bus is assigned to a protection channel. The actuation logic is two-out-of-three channels (i.e., buses) with loss of voltage. The RCP UV reactor trip logic is interlocked by permissive P-7. Above the P-7 setpoint, a loss of voltage detected on two or more RCP buses will initiate a reactor trip. For undervoltage conditions on multiple RCP buses, this trip Function will generate a reactor trip before the Reactor Coolant Flow — Low (Two Loops) Trip Setpoint is reached. Time delays are incorporated into the Undervoltage RCPs channels to prevent reactor trips due to momentary electrical power transients. For undervoltage, the delay is set so that the time required for a signal to reach the RTBs following the simultaneous loss of power of two or more RCP buses shall not exceed 0.9 seconds (an additional time delay is allotted for EMF decay). This is an anticipatory trip for reactor core protection against violating the DNB design basis. The primary trip is provided by the loss of flow trip. No credit was taken in the accident analyses for the function of this trip. However, the functional capability of this trip enhances the overall reliability of the reactor protection system. The LCO requires three Undervoltage channels to be OPERABLE. In MODE 1 above the P-7 setpoint, the Undervoltage RCP trip must be OPERABLE. Below the P-7 setpoint, all reactor trips on loss of flow are automatically blocked since no conceivable power distributions could occur that would challenge the DNB design basis at this low power level. Above the P-7 setpoint, the reactor trip on loss of flow in two or more RCS loops is automatically enabled. This Function uses the same undervoltage channels and Logic circuits as the ESFAS Function 6.f, "Undervoltage Reactor Coolant Pump (RCP)" start of the Turbine-Driven auxiliary feedwater (TDAFW) pump. However, the TDAFW actuation does not employ the P-7 interlock. # 13. Underfrequency Reactor Coolant Pumps The Underfrequency RCPs reactor trip Function ensures that protection is provided against violating the DNBR limit due to a loss of flow in two or more RCS loops from a major network frequency disturbance. An underfrequency condition will slow down the pumps, thereby reducing their coastdown time following a pump trip. The proper coastdown time is required so that reactor heat can be removed immediately after reactor trip. The frequency of each RCP bus is monitored. Two UF sensors (relays) are associated with each bus (one for each logic train). Each RCP bus is assigned to a protection channel. The actuation logic is two-out-of-three channels (i.e., buses) with an underfrequency condition. The RCP UF reactor trip logic is interlocked by permissive P-7. Above the P-7 setpoint, a loss of frequency detected on two or more RCP buses will initiate a reactor trip and open the RCP breaker to preclude any reduction in the coast down of the RCPs. This trip Function will generate a reactor trip before the Reactor Coolant Flow — Low (Two Loops) Trip Setpoint is reached. This is an anticipatory trip for reactor core protection against violating the DNB design basis. The primary trip is provided by the loss of flow trip. No credit was taken in the accident analyses for the function of this trip. However, the functional capability of this trip enhances the overall reliability of the reactor protection system. Time delays are incorporated into the Underfrequency RCPs channels to prevent reactor trips due to momentary electrical power transients. For underfrequency, the delay is set so that the time required for a signal to reach the reactor trip breakers after the underfrequency trip setpoint is reached shall not exceed 0.6 seconds. The LCO requires three Underfrequency channels to be OPERABLE. In MODE 1 above the P-7 setpoint, the Underfrequency RCPs trip must be OPERABLE. Below the P-7 setpoint, all reactor trips on loss of flow are automatically blocked since no conceivable power distributions could occur that would challenge the DNB design basis at this low power level. Above the P-7 setpoint, the reactor trip on loss of flow in two or more RCS loops is automatically enabled. This function also trips the RCP Breakers open to prevent excessive RCP speed reduction. This feature is not interlocked with P-7, and it is not credited in the safety analysis. # 14. Steam Generator Water Level — Low Low The SG Water Level — Low Low trip Function ensures that protection is provided against a loss of heat sink and actuates the AFW System prior to uncovering the SG tubes. The SGs are the heat sink for the reactor. In order to act as a heat sink, the SGs must contain a minimum amount of water. A narrow range low low level in any SG is indicative of a loss of heat sink for the reactor. The Allowable Value and Trip Setpoint for this function in Table 3.3-1 are specified in percent of narrow
range instrument span in each SG. The level transmitters provide input to the SG Level Control System. Therefore, the actuation logic must be able to withstand an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Section 2.12.5 (Ref. 9) and Section 7.2.2.2.IE (Ref. 1) discuss the control and protection system interaction for this function which is provided by median signal selection. This Function also performs the ESFAS function of starting the AFW pumps on low low SG level. The LCO requires three channels of SG Water Level — Low Low per SG to be OPERABLE. The trip Function is accomplished by actuation of two channels on any SG. In MODE 1 or 2, when the reactor requires a heat sink, the SG Water Level — Low Low trip must be OPERABLE. The normal source of water for the SGs is the Main Feedwater (MFW) System(not safety related). The MFW System is only in operation in MODE 1 or 2. The AFW System is the safety related backup source of water to ensure that the SGs remain the heat sink for the reactor. During normal startups and shutdowns, the AFW System provides feedwater to maintain SG level. In MODE 3, 4, 5, or 6, the SG Water Level — Low Low Function does not have to be OPERABLE because the MFW System is not in operation and the reactor is not operating or even critical. Decay heat removal is accomplished by the AFW System in MODE 3 and by the Residual Heat Removal (RHR) System in MODE 4, 5, or 6. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) # 15. Turbine Trip # a. Turbine Trip - Low Auto Stop Oil Pressure The Turbine Trip — Low Auto Stop Oil Pressure trip Function anticipates the loss of heat removal capabilities of the secondary system following a turbine trip. This trip Function acts to minimize the pressure/temperature transient on the reactor and the Reactor Coolant System Pressure Boundary components. Any turbine trip from a power level below the P-9 setpoint, approximately 50% power, will not actuate a reactor trip. Three pressure switches monitor the turbine control oil system pressure. A low pressure condition sensed by two-out-of-three pressure switches will actuate a reactor trip. These pressure switches do not provide any input to the control system. The unit is designed to withstand a complete loss of load and not sustain core damage or challenge the RCS pressure limitations. Core protection and RCS integrity are provided by the Pressurizer Pressure - High and Overtemperature ΔT trip Functions and by the pressurizer safety valves. The LCO requires three channels of Turbine Trip — Low Auto Stop Oil Pressure to be OPERABLE in MODE 1 above P-9. The channels are combined in a 2-out-of-3 trip Logic. Below the P-9 setpoint, a turbine trip does not actuate a reactor trip. In MODE 2, 3, 4, 5, or 6, there is no potential for a turbine trip, and the Turbine Trip — Low Auto Stop Oil Pressure trip Function does not need to be OPERABLE. # b. Turbine Trip — Turbine Throttle Valve Closure The Turbine Trip — Turbine Throttle Valve Closure trip Function anticipates the loss of heat removal capabilities of the secondary system following a turbine trip from a power level above the P-9 setpoint, approximately 50% power. Below the P-9 setpoint this action will not actuate a reactor trip. The trip Function anticipates the loss of secondary heat removal capability that occurs when the throttle valves close. Tripping the reactor in anticipation of loss of secondary heat removal # b. <u>Turbine Trip — Turbine Throttle Valve Closure</u> (continued) acts to minimize the pressure and temperature transient on the reactor and the Reactor Coolant System Pressure Boundary components. This trip Function will not and is not required to operate in the presence of a single channel failure. The unit is designed to withstand a complete loss of load and not sustain core damage or challenge the RCS pressure limitations. Core protection and RCS integrity are provided by the Pressurizer Pressure — High and Overtemperature ΔT trip Functions, and by the pressurizer safety valves. This trip Function is diverse to the Turbine Trip — Low Auto Stop Oil Pressure trip Function. Each turbine throttle valve is equipped with one limit switch that inputs to the RTS logic trains. If all four limit switches indicate that the throttle valves are all closed, a reactor trip is initiated. There is no safety analysis limit and there is no LSSS for this Function. The calibration requirement is to set the limit switch to assure channel trip occurs when the associated throttle valve is completely closed. The LCO requires four Turbine Trip — Turbine Throttle Valve Closure channels, one per valve, to be OPERABLE in MODE 1 above P-9. All four channels must trip to cause reactor trip. Below the P-9 setpoint, a load rejection can be accommodated by the Steam Dump System in conjunction with the Auto Rod Control System. In MODE 2, 3, 4, 5, or 6, there is no potential for a load rejection, and the Turbine Trip — Throttle Valve Closure trip Function does not need to be OPERABLE. # 16. <u>Safety Injection Input from Engineered Safety Feature</u> <u>Actuation System</u> The SI Input from ESFAS ensures that if a reactor trip has not already been generated by the RTS, the ESFAS automatic actuation logic will initiate a reactor trip upon any signal that initiates SI. This is a condition of acceptability for the LOCA. However, other transients and accidents take credit for varying levels of ESF performance and rely upon rod insertion, except for # 16. <u>Safety Injection Input from Engineered Safety Feature</u> Actuation System (continued) the most reactive rod that is assumed to be fully withdrawn, to ensure reactor shutdown. Therefore, a reactor trip is initiated every time an SI signal is present. Trip Setpoint and Allowable Values are not applicable to this Function. The SI Input is provided by relay in the ESFAS. Therefore, there is no measurement signal with which to associate an LSSS. The LCO requires two trains of SI Input from ESFAS to be OPERABLE in MODE 1 or 2. A reactor trip is initiated every time an SI signal is present. Therefore, this trip Function must be OPERABLE in MODE 1 or 2 to shut down the reactor in the event of an accident. In MODE 3, 4, 5, or 6, the reactor is not critical, and this trip Function does not need to be OPERABLE. # 17. Reactor Trip System Interlocks Reactor protection interlocks are provided to ensure reactor trips are in the correct configuration for the current unit status. They back up operator actions to ensure protection system Functions are not bypassed during unit conditions under which the safety analysis assumes the Functions are not bypassed. Therefore, the interlock Functions do not need to be OPERABLE when the associated reactor trip functions are outside the applicable MODES. These are: # a. Intermediate Range Neutron Flux, P-6 The Intermediate Range Neutron Flux, P-6 interlock is actuated when any NIS intermediate range channel goes approximately one decade above the minimum channel reading. If both channels drop below the setpoint, the permissive will automatically be defeated. The LCO requirement for the P-6 interlock ensures that the following Functions are performed: # a. Intermediate Range Neutron Flux, P-6 (continued) - on increasing power, the P-6 interlock allows the manual block of the NIS Source Range, Neutron Flux reactor trip. This prevents a premature block of the source range trip and allows the operator to ensure that the intermediate range is OPERABLE prior to leaving the source range. When the source range trip is blocked, the high voltage to the detectors is also removed; and - on decreasing power, the P-6 interlock automatically energizes the NIS source range detectors and enables the NIS Source Range Neutron Flux reactor trip. The LCO requires two channels of Intermediate Range Neutron Flux, P-6 interlock to be OPERABLE in MODE 2 when below the P-6 interlock setpoint to ensure the Source Range Reactor Trip logic is enabled. Above the P-6 interlock setpoint, this Function is not required for safety. In MODE 3, 4, 5, or 6, the P-6 interlock does not have to be OPERABLE because the NIS Source Range is providing core protection. # b. Low Power Reactor Trips Block, P-7 The Low Power Reactor Trips Block, P-7 interlock is actuated by input from either the Power Range Neutron Flux, P-10, or the Turbine Impulse Pressure, P-13 interlock. The LCO requirement for the P-7 interlock ensures that the following Functions are performed: - (1) on increasing power, the P-7 interlock automatically enables reactor trips on the following Functions: - Pressurizer Pressure Low; - Pressurizer Water Level High; - Reactor Coolant Flow Low (Two Loops); - b. Low Power Reactor Trips Block, P-7 (continued) - RCPs Breaker Open (Two Loops); - · Undervoltage RCPs; and - Underfrequency RCPs. These reactor trips are only required when operating above the P-7 setpoint (approximately 10% power). The reactor trips provide protection against violating the DNBR limit. Below the P-7 setpoint, the RCS is capable of providing sufficient natural circulation without any RCP running. - (2) on decreasing power, the P-7 interlock automatically blocks reactor trips on the following Functions: - Pressurizer Pressure Low; - Pressurizer Water Level High; - Reactor Coolant Flow Low (Two Loops); - RCP Breaker Position (Two Loops); - Undervoltage RCPs; and - Underfrequency RCPs. Trip Setpoint and Allowable Value are not applicable to the P-7 interlock because it is a logic Function and thus has no parameter with which to associate an LSSS. The P-7 interlock is a logic Function with train and not channel identity. Therefore, the LCO requires one channel per train of Low Power Reactor Trips Block, P-7 interlock to be OPERABLE in MODE 1. Since the P-7 interlock has no channels, no CHANNEL
CALIBRATION or CHANNEL OPERABILITY TEST is needed. The logic is tested by SR 3.3.1.5 under Function 20, Automatic Trip Logic. The low power trips are blocked below the P-7 setpoint and unblocked above the P-7 setpoint. In MODE 2, 3, 4, 5, or 6, this Function does not have to be OPERABLE because the interlock performs its Function when power level drops below 10% power, which is in MODE 1. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) #### c. Power Range Neutron Flux, P-8 The Power Range Neutron Flux, P-8 interlock is actuated at approximately 30% power as determined by two-out-of-four NIS power range detectors. The P-8 interlock automatically enables the Reactor Coolant Flow — Low (Single Loop) and RCP Breaker Position (Single Loop) reactor trips on one or more RCS loops on increasing power. The LCO requirement for this trip Function ensures that protection is provided against a loss of flow in any RCS loop that could challenge the DNB design basis when greater than approximately 30% power. On decreasing power, the reactor trips on low flow and breaker position in any loop are automatically blocked. The LCO requires four channels of Power Range Neutron Flux, P-8 interlock to be OPERABLE in MODE 1. In MODE 1, a loss of flow in one RCS loop could result in DNB conditions, so the Power Range Neutron Flux, P-8 interlock must be OPERABLE. In MODE 2, 3, 4, 5, or 6, this Function does not have to be OPERABLE because the core is not producing sufficient power to challenge the DNB design basis. #### d. Power Range Neutron Flux, P-9 The Power Range Neutron Flux, P-9 interlock is actuated at approximately 50% power as determined by two-out-of-four NIS power range detectors. The LCO requirement for this Function ensures that the Turbine Trip — Low Auto Stop Oil Pressure and Turbine Trip — Turbine Throttle Valve Closure reactor trips are enabled above the P-9 setpoint. Above the P-9 setpoint, a turbine trip will cause a load rejection beyond the capacity of the Steam Dump System in conjunction with the Auto Rod Control System. A reactor trip is automatically initiated on a turbine trip when it is above the P-9 setpoint, to minimize the transient on the reactor and the Reactor Coolant System Pressure Boundary components. The LCO requires four channels of Power Range Neutron Flux, P-9 interlock to be OPERABLE in MODE 1. # d. Power Range Neutron Flux, P-9 (continued) In MODE 1, a turbine trip could cause a load rejection beyond the capacity of the Steam Dump System in conjunction with the auto rod control system, so the Power Range Neutron Flux interlock must be OPERABLE. In MODE 2, 3, 4, 5, or 6, this Function does not have to be OPERABLE because the reactor is not at a power level sufficient to have a load rejection beyond the capacity of the Steam Dump System in conjunction with the auto rod control system. # e. Power Range Neutron Flux, P-10 The Power Range Neutron Flux, P-10 interlock is actuated at approximately 10% power, as determined by two-out-of-four NIS power range detectors. If power level falls below 10% RTP on 3 of 4 channels, the nuclear instrument trips will be automatically unblocked. The LCO requirement for the P-10 interlock ensures that the following Functions are performed: - on increasing power, the P-10 interlock allows the operator to manually block the Intermediate Range Neutron Flux reactor trip. Note that blocking the reactor trip also blocks the signal to prevent automatic and manual rod withdrawal; - on increasing power, the P-10 interlock allows the operator to manually block the Power Range Neutron Flux — Low reactor trip; - on increasing power, the P-10 interlock automatically provides a backup signal to block the Source Range Neutron Flux reactor trip, and also to de-energize the NIS source range detectors; - the P-10 interlock provides one of the two inputs to the P-7 interlock; and - on decreasing power, the P-10 interlock automatically enables the Power Range Neutron Flux — Low reactor trip and the Intermediate Range Neutron Flux reactor trip (and rod stop). # e. Power Range Neutron Flux, P-10 (continued) The LCO requires four channels of Power Range Neutron Flux, P-10 interlock to be OPERABLE in MODE 1 or 2. OPERABILITY in MODE 1 ensures the Function is available to perform its decreasing power Functions in the event of a reactor shutdown. This Function must be OPERABLE in MODE 2 to ensure that core protection is provided during a startup or shutdown by the Power Range Neutron Flux — Low and Intermediate Range Neutron Flux reactor trips. In MODE 3, 4, 5, or 6, this Function does not have to be OPERABLE because the reactor is not at power and the Source Range Neutron Flux reactor trip provides core protection. #### f. Turbine Impulse Pressure, P-13 The Turbine Impulse Pressure, P-13 interlock is actuated when the pressure in the first stage of the high pressure turbine is greater than approximately 10% of the rated full load pressure. The Trip Setpoint and Allowable Value for this function in Table 3.3.1-1 are specified in percent Turbine power which is based on the impluse pressure equivalent. This is determined by one-out-of-two pressure detectors. The LCO requirement for this Function ensures that one of the inputs to the P-7 interlock is available. The LCO requires two channels of Turbine Impulse Pressure, P-13 interlock to be OPERABLE in MODE 1. The Turbine Impulse Chamber Pressure, P-13 interlock must be OPERABLE when the turbine generator is operating. The interlock Function is not required OPERABLE in MODE 2, 3, 4, 5, or 6 because the reactor trips enabled by P-7 are not required. APPLICABLE SAFETY ANALYSES, LCO and APPLICABILITY (continued) # 18. Reactor Trip Breakers This trip Function applies to the RTBs exclusive of individual trip mechanisms. The LCO requires two OPERABLE trains of trip breakers. A trip breaker train consists of all trip breakers associated with a single RTS logic train that are racked in, closed, and capable of supplying power to the CRD System. Two OPERABLE trains ensure no single random failure can disable the RTS trip capability. These trip Functions must be OPERABLE in MODE 1 or 2. In MODE 3, 4, or 5, these RTS trip Functions must be OPERABLE when the RTBs or associated bypass breakers are closed, and the CRD System is capable of rod withdrawal. # 19. Reactor Trip Breaker Undervoltage and Shunt Trip Mechanisms The LCO requires both the Undervoltage and Shunt Trip Mechanisms to be OPERABLE for each RTB that is in service. The trip mechanisms are not required to be OPERABLE for trip breakers that are open, racked out, incapable of supplying power to the CRD System, or declared inoperable under Function 18 above. OPERABILITY of both trip mechanisms on each breaker ensures that no single trip mechanism failure will prevent opening any breaker on a valid signal. These trip Functions must be OPERABLE in MODE 1 or 2. In MODE 3, 4, or 5, these RTS trip Functions must be OPERABLE when the RTBs or associated bypass breakers are closed, and the CRD System is capable of rod withdrawal. # 20. Automatic Trip Logic The LCO requirement for the RTBs (Functions 18 and 19) and Automatic Trip Logic (Function 20) ensures that means are provided to interrupt the power to allow the rods to fall into the reactor core. Each RTB is equipped with an undervoltage coil and a shunt trip coil to trip the breaker open when needed. Each RTB is equipped with a bypass breaker to allow testing of the trip breaker while the unit is at power. The reactor trip signals generated by the RTS Automatic Trip Logic cause the RTBs and associated bypass breakers to open and shut down the reactor. # 20. Automatic Trip Logic (continued) The LCO requires two trains of RTS Automatic Trip Logic to be OPERABLE. Having two OPERABLE trains ensures that random failure of a single logic train will not prevent reactor trip. These trip Functions must be OPERABLE in MODE 1 or 2. In MODE 3, 4, or 5, these RTS trip Functions must be OPERABLE when the RTBs or associated bypass breakers are closed, and the CRD System is capable of rod withdrawal. The RTS instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). #### **ACTIONS** A Note has been added to the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.1-1. In the event a channel's Trip Setpoint is found nonconservative with respect to the Allowable Value, or the transmitter, instrument loop, signal processing electronics, or bistable is found inoperable, then all affected Functions provided by that channel must be declared inoperable and the LCO Condition(s) entered for the protection Function(s) affected. When the number of inoperable channels in a trip Function exceed those specified in one or other related Conditions associated with a trip Function, then the unit is outside the safety analysis. Therefore, LCO 3.0.3 must be immediately entered if applicable in the current MODE of operation. #### **A.1** Condition A applies to all RTS protection Functions. Condition A addresses the situation where one or more required channels for one or more Functions are inoperable at the same time. The Required Action is to refer to Table 3.3.1-1 and to take the Required Actions for the protection functions affected. The Completion Times are those from the referenced Conditions and Required Actions. # ACTIONS (continued) # B.1, and B.2 Condition B applies to the Manual Reactor Trip in MODE 1 or 2. This action addresses the train orientation of the SSPS for this Function. With one channel inoperable, the inoperable channel must be restored to OPERABLE status within 48 hours. In this Condition, the remaining OPERABLE channel is adequate to perform the safety function. The Completion Time of 48 hours is reasonable considering that there are two automatic actuation trains and another manual initiation channel OPERABLE, and the low probability
of an event occurring during this interval. If the Manual Reactor Trip Function cannot be restored to OPERABLE status within the allowed 48 hour Completion Time, the unit must be brought to a MODE in which Condition B is no longer applicable. To achieve this status, the unit must be brought to at least MODE 3 within 6 additional hours (54 hours total time). The 6 additional hours is reasonable, based on operating experience, to reach MODE 3 from full power operation in an orderly manner and without challenging unit systems. With the unit in MODE 3, Condition C applies to this trip Function. # C.1 and C.2 Condition C applies to the following reactor trip Functions in MODE 3, 4, or 5 with the RTBs closed and the CRD System capable of rod withdrawal: - Manual Reactor Trip; - RTBs: - RTB Undervoltage and Shunt Trip Mechanisms; and - Automatic Trip Logic. This action addresses the train orientation of the SSPS for these Functions. With one channel or train inoperable, the inoperable channel or train must be restored to OPERABLE status within 48 hours. If the affected Function(s) cannot be restored to OPERABLE status # **BASES** #### **ACTIONS** # C.1 and C.2 (continued) within the allowed 48 hour Completion Time, the unit must be placed in a MODE in which the requirement does not apply. To achieve this status, the RTBs must be opened within the next hour. The additional hour provides sufficient time to accomplish the action in an orderly manner. With the RTBs open, these Functions are no longer required. The Completion Time is reasonable considering that in this Condition, the remaining OPERABLE train is adequate to perform the safety function, and given the low probability of an event occurring during this interval. # D.1.1, D.1.2, D.2.1, D.2.2, and D.3 Condition D applies to the Power Range Neutron Flux — High and Power Range Neutron Flux Rate Functions. The NI44 power range detector provides input to the CRD System therefore, the NIS has a two-out-of-four trip logic. A known inoperable channel must be placed in the tripped condition. This results in a partial trip condition requiring only one-out-of-three logic for actuation. The 6 hours allowed to place the inoperable channel in the tripped condition is justified in WCAP-10271-P-A (Ref. 7). In addition to placing the inoperable channel in the tripped condition, THERMAL POWER must be reduced to ≤ 75% RTP within 12 hours. Reducing the power level prevents operation of the core with radial power distributions beyond the design limits. With one of the NIS power range detectors inoperable, 1/4 of the radial power distribution monitoring capability is lost. As an alternative to the above actions, the inoperable channel can be placed in the tripped condition within 6 hours and the QPTR monitored once every 12 hours as per SR 3.2.4.2, QPTR verification. Calculating QPTR every 12 hours compensates for the lost monitoring capability due to the inoperable NIS power range channel and allows continued unit operation at power levels ≥ 75% RTP. The 6 hour Completion Time and the 12 hour Frequency are consistent with LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)." #### **ACTIONS** # D.1.1, D.1.2, D.2.1, D.2.2, and D.3 (continued) As an alternative to the above Actions, the plant must be placed in a MODE where this Function is no longer required OPERABLE. Twelve hours are allowed to place the plant in MODE 3. This is a reasonable time, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging plant systems. If Required Actions cannot be completed within their allowed Completion Times, LCO 3.0.3 must be entered. The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypass condition for up to 4 hours while performing routine surveillance testing of other channels. The Note also allows placing the inoperable channel in the bypass condition to allow setpoint adjustments of other channels when required to reduce the setpoint in accordance with other Technical Specifications. The 4 hour time limit is justified in Reference 7. Required Action D.2.2 has been modified by a Note which only requires SR 3.2.4.2 to be performed if the Power Range Neutron Flux input to QPTR becomes inoperable. Failure of a component in the Power Range Neutron Flux Channel which renders the Trip Function inoperable may not affect the capability to monitor QPTR. As such, determining QPTR using this movable incore detectors once per 12 hours may not be necessary. #### E.1 and E.2 Condition E applies to the following reactor trip Functions: - Power Range Neutron Flux Low; - Overtemperature ΔT; - Overpower ΔT; - Pressurizer Pressure High; and - SG Water Level Low Low #### BASES #### **ACTIONS** # E.1 and E.2 (continued) A known inoperable channel must be placed in the tripped condition within 6 hours. Placing the channel in the tripped condition results in a partial trip condition requiring only one-out-of-two logic for actuation of the two-out-of-three trips and one-out-of-three logic for actuation of the two-out-of-four trips. The 6 hours allowed to place the inoperable channel in the tripped condition is justified in Reference 7. If the operable channel cannot be placed in the trip condition within the specified Completion Time, the unit must be placed in a MODE where these Functions are not required OPERABLE. An additional 6 hours is allowed to place the unit in MODE 3. Six hours is a reasonable time, based on operating experience, to place the unit in MODE 3 from full power in an orderly manner and without challenging unit systems. The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to 4 hours while performing routine surveillance testing of the other channels. The 4 hour time limit is justified in Reference 7. # F.1 and F.2 Condition F applies to the Intermediate Range Neutron Flux trip when THERMAL POWER is above the P-6 setpoint and below the P-10 setpoint and one channel is inoperable. Above the P-6 setpoint and below the P-10 setpoint, the NIS intermediate range detector performs the monitoring Functions. If THERMAL POWER is greater than the P-6 setpoint but less than the P-10 setpoint, 2 hours is allowed to reduce THERMAL POWER below the P-6 setpoint or increase to THERMAL POWER above the P-10 setpoint. The NIS Intermediate Range Neutron Flux channels must be OPERABLE when the power level is above the capability of the source range, P-6, and below the capability of the power range, P-10. If THERMAL POWER is greater than the P-10 setpoint, the NIS power range detectors perform the monitoring and protection functions and the intermediate range is not required. The Completion Times allow for a slow and controlled power adjustment above P-10 or below P-6 and take into account the redundant capability afforded by the redundant OPERABLE channel, and the low probability of its failure during this period. This action does not require the inoperable channel to be tripped because the Function uses one-out-of-two logic. Tripping one channel would trip the reactor. Thus, the Required Actions specified in this Condition are only applicable when channel failure does not result in reactor trip. (continued) Revision 0 # ACTIONS (continued) # G.1 and G.2 Condition G applies to two inoperable Intermediate Range Neutron Flux trip channels when THERMAL POWER is above the P-6 setpoint and below the P-10 setpoint. Required Actions specified in this Condition are only applicable when channel failures do not result in reactor trip. Above the P-6 setpoint and below the P-10 setpoint, the NIS intermediate range detector performs the monitoring Functions. With no intermediate range channels OPERABLE, the Required Actions are to suspend operations involving positive reactivity additions immediately. However, this does not preclude actions to maintain or increase RCS inventory or place the unit in a safe conservative condition provided the required SDM is maintained. The suspension of positive reactivity additions will preclude any power level increase since there are no OPERABLE Intermediate Range Neutron Flux channels. The operator must also reduce THERMAL POWER below the P-6 setpoint within two hours. Below P-6, the Source Range Neutron Flux channels will be able to monitor the core power level. The Completion Time of 2 hours will allow a slow and controlled power reduction to less than the P-6 setpoint and takes into account the low probability of occurrence of an event during this period that may require the protection afforded by the NIS Intermediate Range Neutron Flux trip. #### H.1 Condition H applies to the Intermediate Range Neutron Flux trip when THERMAL POWER is below the P-6 setpoint and one or two channels are inoperable. Below the P-6 setpoint, the NIS source range performs a monitoring and protection function redundant to the credited Power Range Low Trip Function. The inoperable NIS intermediate range channel(s) must be returned to OPERABLE status prior to increasing power above the P-6 setpoint. The NIS intermediate range channels must be OPERABLE when the power level is above the capability of the source range, P-6, and below the capability of the power range, P-10. #### <u>1.1</u> Condition I applies to one inoperable Source Range Neutron Flux trip channel when in MODE 2, below the P-6 setpoint, and performing a reactor startup. With the unit in this Condition, below P-6, the NIS source range performs a monitoring and protection function redundant to the credited Power Range Low Trip Function. With one of the two channels inoperable, operations involving positive reactivity additions shall be suspended immediately. This will preclude any power #### **BASES** #### **ACTIONS** # 1.1 (continued) escalation. With only one source range channel OPERABLE, core protection is severely reduced and any actions that add positive reactivity to the core
must be suspended immediately. However, this does not preclude actions to maintain or increase RCS inventory or place the unit in a safe conservative condition provided the required SDM is maintained. #### **J.1** Condition J applies to two inoperable Source Range Neutron Flux trip channels when in MODE 2, below the P-6 setpoint, and performing a reactor startup, or in MODE 3, 4, or 5 with the RTBs closed and the CRD System capable of rod withdrawal. With the unit in this Condition, below P-6, the NIS source range performs a monitoring and protection function redundant to the credited Power Range Low Trip Function. With both source range channels inoperable, the RTBs must be opened immediately. With the RTBs open, the core is in a more stable condition and the unit enters Condition L. # K.1 and K.2 Condition K applies to one inoperable source range channel in MODE 3, 4, or 5 with the RTBs closed and the CRD System capable of rod withdrawal. With the unit in this Condition, below P-6, the NIS source range performs a monitoring and protection function redundant to the credited Power Range Low Trip Function. With one of the source range channels inoperable, 48 hours is allowed to restore it to an OPERABLE status. If the channel cannot be returned to an OPERABLE status, 1 additional hour is allowed to open the RTBs. Once the RTBs are open, the core is in a more stable condition and the unit enters Condition L. The allowance of 48 hours to restore the channel to OPERABLE status, and the additional hour to open the RTBs, are justified in Reference 7. # ACTIONS (continued) # L.1, L.2, and L.3 Condition L applies when the required number of OPERABLE Source Range Neutron Flux channels is not met in MODE 3, 4, or 5 with the RTBs open. With the unit in this Condition, the NIS source range performs a monitoring function. With less than the required number of source range channels OPERABLE, operations involving positive reactivity additions shall be suspended immediately. This will preclude any power escalation. However, this does not preclude actions to maintain or increase RCS inventory or place the unit in a safe conservative condition provided the required SDM is maintained. In addition to suspension of positive reactivity additions, all valves that could add unborated water to the RCS must be closed within 1 hour. The isolation of unborated water sources will preclude a boron dilution accident. Also, the SDM must be verified within 1 hour and once every 12 hours thereafter as per SR 3.1.1.1, SDM verification. With no source range channels OPERABLE, core protection is severely reduced. Verifying the SDM within 1 hour allows sufficient time to perform the calculations and determine that the SDM requirements are met. The SDM must also be verified once per 12 hours thereafter to ensure that the core reactivity has not changed. Required Action L.1 precludes any positive reactivity additions; therefore, core reactivity should not be increasing, and a 12 hour Frequency is adequate. The Completion Times of within 1 hour and once per 12 hours are based on operating experience in performing the Required Actions and the knowledge that unit conditions will change slowly. #### M.1 and M.2 Condition M applies to the following reactor trip Functions: - Pressurizer Pressure Low: - Pressurizer Water Level High: - Reactor Coolant Flow Low (Single Loop); - Reactor Coolant Flow Low (Two Loop); #### **BASES** #### **ACTIONS** # M.1 and M.2 (continued) - RCP Breaker Position (Two Loops); - Undervoltage RCPs; and - Underfrequency RCPs. With one channel inoperable, the inoperable channel must be placed in the tripped condition within 6 hours. For RCP UV and RCP UF, both sensors associated with a given channel must be tripped (or, if applicable, bypassed) to satisfy the requirements of action M.1. Placing the channel in the tripped condition results in a partial trip condition requiring only one additional channel to initiate a reactor trip above the P-7 setpoint (above P-8 for Reactor Coolant Flow - Low (Single Loop)). These Functions do not have to be OPERABLE below the P-7 setpoint because the trip protection provided is no longer required. The 6 hours allowed to place the channel in the tripped condition is justified in Reference 7. An additional 6 hours is allowed to reduce THERMAL POWER to below P-7 if the inoperable channel cannot be restored to OPERABLE status or placed in trip within the specified Completion Time. The Reactor Coolant Flow - Low (Single Loop) reactor trip Function does not have to be OPERABLE below the P-8 setpoint; however, the Required Action must take the plant below the P-7 setpoint if an inoperable channel is not tripped within 6 hours due to shared components between this Function and the Reactor Coolant Flow — Low (Two Loops) trip function. Allowance of this time interval takes into consideration the redundant capability provided by the remaining redundant OPERABLE channel, and the low probability of occurrence of an event during this period that may require the protection afforded by the Functions associated with Condition M. The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to 4 hours while performing routine surveillance testing of the other channels. With the exception of RCP Breaker Position, the 4 hour time limit is justified in Reference 7. For RCP Breaker Position, the 4 hour time limit is acceptable based on the number of diverse functions providing low flow protection, the relatively brief period of time the channel is allowed to be bypassed, and the low likelihood of an event occurring within this time that would require this particular low flow trip. # ACTIONS (continued) # N.1 and N.2 Condition N applies to the RCP Breaker Position (Single Loop) reactor trip Function. There is one breaker position channel per RCP breaker. With one channel inoperable, the inoperable channel must be restored to OPERABLE status within 6 hours. If the channel cannot be restored to OPERABLE status within the 6 hours, then THERMAL POWER must be reduced below the P-8 setpoint within the next 4 hours. This places the unit in a MODE where the LCO is no longer applicable. This Function does not have to be OPERABLE below the P-8 setpoint because other RTS Functions provide core protection below the P-8 setpoint. The 6 hours allowed to restore the channel to OPERABLE status is justified in Reference 7. The 4 additional hours allowed to reduce THERMAL POWER to below the P-8 setpoint is a reasonable time, based on operating experience, for an orderly power reduction from full power without challenging plant systems. #### O.1 and O.2 Condition O applies to Turbine Trip on Low Auto Stop Oil Pressure. With one channel inoperable, the inoperable channel must be placed in the trip condition within 6 hours. If placed in the tripped condition, this results in a partial trip condition requiring only one additional channel to initiate a reactor trip. If the channel cannot be restored to OPERABLE status or placed in the trip condition, then power must be reduced below the P-9 setpoint within the next 4 hours. The 6 hours allowed to place the inoperable channel in the tripped condition is justified in Reference 7. The additional 4 hours for reducing power is reasonable based on operating experience. The Required Actions have been modified by a Note that allows placing the inoperable channel in the bypassed condition for up to 4 hours while performing routine surveillance testing of the other channels. The 4 hour time limit is justified in Reference 7. # ACTIONS (continued) # P.1 and P.2 Condition P applies to the Turbine Trip on Throttle Valve Closure Function. With one or more channels inoperable, each inoperable channel must be placed in the trip condition within 6 hours. Since all the valves must be tripped in order for the reactor trip signal to be generated, it is acceptable to place more than one Turbine Throttle Valve Closure channel in the tripped condition. If a channel cannot be restored to OPERABLE status or placed in the trip condition, then power must be reduced below the P-9 setpoint within the next 4 hours. The 6 hours allowed to place each inoperable channel in the tripped condition is justified in Reference 7. The additional 4 hours for reducing power is reasonable based on operating experience. # Q.1 and Q.2 Condition Q applies to the SI Input from ESFAS reactor trip and the RTS Automatic Trip Logic in MODES 1 and 2. These actions address the train orientation of the RTS for these Functions. With one train inoperable, 6 hours are allowed to restore the train to OPERABLE status (Required Action Q.1) or the unit must be placed in MODE 3 within the next 6 hours. The Completion Time of 6 hours (Required Action Q.1) is reasonable considering that in this Condition, the remaining OPERABLE train is adequate to perform the safety function and given the low probability of an event during this interval. The Completion Time of 6 hours (Required Action Q.2) is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems. The Required Actions have been modified by a Note that allows bypassing one train up to 4 hours for surveillance testing, provided the other train is OPERABLE. # R.1 and R.2 Condition R applies to the RTBs in MODES 1 and 2. These actions address the train orientation of the RTS for the RTBs. With one train #### **ACTIONS** # R.1 and R.2 (continued) inoperable, 1 hour is allowed to restore the train to OPERABLE status or the unit must be placed in MODE 3 within the next 6 hours. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems. The 1 hour and 6 hour Completion Times are equal to the time allowed by LCO 3.0.3 for shutdown actions in the event of a complete
loss of RTS Function. Analysis presented in Reference 7 also supports a 7 hour time limit. Placing the unit in MODE 3 removes the requirement for this particular Function. The Required Actions have been modified by a Note. The Note allows one channel to be bypassed for up to 2 hours for surveillance testing, provided the other channel is OPERABLE. The 2 hour time limit is reasonable based on operating experience. #### S.1 and S.2 Condition S applies to the P-6 and P-10 interlocks. This Condition is applicable when the interlock is inoperable to the extent that a reactor trip which should not be blocked in the current MODE is blocked. With one or more channels inoperable for one-out-of-two or two-out-of-four coincidence logic, the associated interlock must be verified to be in its required state for the existing unit condition within 1 hour or the unit must be placed in MODE 3 within the next 6 hours. Verifying the interlock status manually accomplishes the interlock's Function. The Completion Time of 1 hour is based on operating experience and the minimum amount of time allowed for manual operator actions. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems. The 1 hour and 6 hour Completion Times are equal to the time allowed by LCO 3.0.3 for shutdown actions in the event of a complete loss of RTS Function. #### T.1 and T.2 Condition T applies to the P-7, P-8, P-9, and P-13 interlocks. This Condition is applicable when the interlock is inoperable to the extent that a reactor trip which should not be blocked in the current MODE is #### BASES #### **ACTIONS** # T.1 and T.2 (continued) blocked. With one or more channels inoperable for one-out-of-two or two-out-of-four coincidence logic, the associated interlock must be verified to be in its required state for the existing unit condition within 1 hour or the unit must be placed in MODE 2 within the next 6 hours. These actions are conservative for the case where power level is being raised. Verifying the interlock status manually accomplishes the interlock's Function. The Completion Time of 1 hour is based on operating experience and the minimum amount of time allowed for manual operator actions. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 2 from full power in an orderly manner and without challenging unit systems. # U.1 and U.2 Condition U applies to the RTB Undervoltage and Shunt Trip Mechanisms, or diverse trip features, in MODES 1 and 2. With one of the diverse trip features inoperable, it must be restored to an OPERABLE status within 48 hours or the unit must be placed in a MODE where Condition U is no longer applicable. This is accomplished by placing the unit in MODE 3 within the next 6 hours (54 hours total time). The Completion Time of 6 hours is a reasonable time, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging unit systems. With the unit in MODE 3, Condition C applies to this trip Function. The affected RTB shall not be bypassed while one of the diverse features is inoperable except for the time required to perform maintenance to one of the diverse features. With the unit in MODE 3, Condition C applies to this trip Function. The Required Actions have been modified by a Note. The Note allows one RTB to be bypassed for maintenance on an undervoltage or shunt trip mechanism if the other RTB train is OPERABLE. However, the affected RTB shall not be bypassed while one of the diverse features is inoperable except for the time required to perform maintenance on one of the diverse features. While no explicit bypass time duration is provided by this Note, it is expected that such corrective maintenance would be accomplished in a timely manner. Reference 14 provides the basis for the bypass allowance. The 48 hour Completion Time is based on confirmation of the OPERABILITY of the other diverse trip mechanism and the associated RTB during the test which identifies a failure of one diverse trip feature (Ref. 14). #### BASES #### **ACTIONS** # U.1 and U.2 (continued) The Completion Time of 48 hours for Required Action U.1 is reasonable considering that in this Condition there is one remaining diverse feature for the affected RTB, and one OPERABLE RTB capable of performing the safety function and given the low probability of an event occurring during this interval. #### <u>V.1</u> With two RTS trains inoperable, no automatic capability is available to shut down the reactor, and immediate plant shutdown in accordance with LCO 3.0.3 is required. # SURVEILLANCE REQUIREMENTS The SRs for each RTS Function are identified by the SRs column of Table 3.3.1-1 for that Function. A Note has been added to the SR Table stating that Table 3.3.1-1 determines which SRs apply to which RTS Functions. Note that each channel of process protection supplies both trains of the RTS. When testing Channel I, Train A and Train B must be examined. Similarly, Train A and Train B must be examined when testing Channel II, Channel III, and Channel IV (if applicable). The CHANNEL CALIBRATION and COTs are performed in a manner that is consistent with the assumptions used in analytically calculating the required channel accuracies. #### SR 3.3.1.1 Performance of the CHANNEL CHECK once every 12 hours ensures that gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION. # SR 3.3.1.1 (continued) Agreement criteria are based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. A Note modifies SR 3.3.1.1. The Note provides a clarification that the source range instrumentation surveillance is only required when reactor power is < P-6 and that 1 hour after power is reduced below P-6 is allowed for performing the surveillance for this instrumentation. The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels. #### SR 3.3.1.2 SR 3.3.1.2 compares the calorimetric heat balance calculation to the NIS channel output every 24 hours. If the calorimetric calculated power exceeds the NIS channel indicated power by more than + 2% RTP, the NIS channel is not declared inoperable, but must be adjusted. If the NIS channel output cannot be properly adjusted, the channel is declared inoperable. If the calorimetric is performed at part power (< 50% RTP), adjusting the NIS channel indication in the increasing power direction will assure a reactor trip below the safety analysis limit (≤ 118% RTP). Making no adjustment to the NIS channel indication in the decreasing power direction due to a part power calorimetric assures a reactor trip consistent with the safety analyses. This allowance does not preclude making indicated power adjustments, if desired, when the calorimetric calculated power is less than the NIS channel indicated power. To provide close agreement between indicated power and calorimetric power and to preserve operating margin, the NIS channels are normally adjusted when operating at or near full power during steady-state conditions. However, discretion must be exercised if the NIS channel indicated power is adjusted in the decreasing power direction due to a part power calorimetric (< 50% RTP). This action could introduce a non-conservative bias at higher power levels which could result in an NIS reactor trip above the safety # **SR 3.3.1.2** (continued) analysis limit (> 118% RTP). The cause of the non-conservative bias is the decreased accuracy of the calorimetric at reduced power conditions, as discussed in Westinghouse Technical Bulletin, ESBU-TB-92-14-R1, "Decalibration Effects of Calorimetric Power Level Measurements On The NIS High Power Reactor Trip At Power Levels Less Than 70% RTP," (Ref. 13). To assure a reactor trip below the safety analysis limit, the Power Range Neutron Flux — High bistables are set ≤ 85% RTP: 1) whenever the NIS channel indicated power is adjusted in the decreasing power direction due to a part power calorimetric below 50% RTP; and 2) for a post refueling startup. Before the Power Range Neutron Flux — High bistables are reset ≤ 109% RTP, the NIS channel calibration must be confirmed based on a calorimetric performed ≥ 50% RTP. Two Notes modify SR 3.3.1.2. The first Note indicates that the NIS channel output shall be adjusted consistent with the calorimetric calculated power if the calorimetric calculated power exceeds the NIS channel output by more than + 2% RTP. The second Note clarifies that this Surveillance is required only if reactor power is ≥ 15% RTP and that 24 hours is allowed for performing the first Surveillance after reaching 15% RTP. A power level of 15% RTP is chosen based on plant stability, i.e., automatic rod control capability and turbine generator synchronized to the grid. The Frequency of every 24 hours is adequate. It is based on unit operating experience, considering instrument reliability and power distribution changes. Together these factors demonstrate that a difference between the heat
balance calculated power and the NIS channel indication of more than + 2% RTP is not expected in any 24 hour period. In addition, control room operators periodically monitor redundant indications and alarms to detect deviations in channel outputs. #### SR 3.3.1.3 SR 3.3.1.3 compares the incore system to the NIS channel output every 31 EFPD. If the absolute difference is ≥ 3% the NIS channel is still OPERABLE, but it must be adjusted. When the channel is outside the # SR 3.3.1.3 (continued) 3% allowance assumed in the setpoint uncertainty calculation, the channel must be adjusted (i.e., normalized) based on incore surveillance data. If the NIS channel cannot be properly adjusted, the channel is declared inoperable. This Surveillance is performed to periodically verify the $f(\Delta I)$ input to the overtemperature ΔT Function. Three Notes modify SR 3.3.1.3. Note 1 indicates that the excore NIS channel shall be adjusted if the absolute difference between the incore and excore AFD is \geq 3% . Note 2 clarifies that the Surveillance is required only if reactor power is \geq 50% RTP and that 7 days are allowed for performing the Surveillance and channel adjustment, if necessary, after reaching 50% RTP. A power level of \geq 50% RTP is consistent with the requirements of SR 3.3.1.9. Note 3 allows SR 3.3.1.9 to be performed in lieu of SR 3.3.1.3, since SR 3.3.1.9 calibrates (i.e., requires channel adjustment) the excore channels to the incore channels, it envelopes the performance of SR 3.3.1.3. For each operating cycle, the initial channel normalization is performed under SR 3.3.1.9. Subsequent verification at a frequency of every 31 EFPD is adequate. It is based on unit operating experience, considering instrument reliability, and the slow changes in neutron flux during the fuel cycle, which can be detected during this interval. #### SR 3.3.1.4 SR 3.3.1.4 is the performance of a TADOT every 31 days on a STAGGERED TEST BASIS. This test shall verify OPERABILITY by actuation of the end devices. The RTB test shall include separate verification of the undervoltage trip via the Reactor Protection System and the local manual shunt trip mechanism. The bypass breaker test shall include a local manual shunt trip and local manual undervoltage trip. A Note has been added to indicate that this test must be performed on a bypass breaker prior to placing it in service. The independent test of undervoltage and shunt # **SR 3.3.1.4** (continued) trip circuitry for the bypass breakers for the manual reactor trip function is included in SR 3.3.1.12. No capability is provided for performing such a test at power. The Frequency of every 31 days on a STAGGERED TEST BASIS is adequate. It is based on Reference 7 and industry operating experience, considering instrument reliability and operating history data. #### SR 3.3.1.5 SR 3.3.1.5 is the performance of an ACTUATION LOGIC TEST. The SSPS is tested every 31 days on a STAGGERED TEST BASIS, using the semiautomatic tester. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection and permissive function. The Frequency of every 31 days on a STAGGERED TEST BASIS is adequate. It is based on Reference 7. #### SR 3.3.1.6 SR 3.3.1.6 is the performance of a TADOT and it is performed every 92 days, as justified in Reference 7. The function is tested up to the SSPS logic circuit. Setpoints must be found within the Allowable Values specified in Table 3.3.1-1. The test includes the undervoltage and underfrequency sensing devices that provide actuation signals directly to the SSPS. The test functionally demonstrates channel OPERABILITY including verification of the trip setpoint. If necessary, the undervoltage/underfrequency setpoint is restored to within calibration tolerance. The frequency is based on instrument reliability and operating history. In addition, it is consistent with setpoint uncertainty calculation allowances for rack drift in Reference 6 and analysis modeled in Reference 7. #### SR 3.3.1.7 SR 3.3.1.7 is the performance of a COT every 92 days. # SR 3.3.1.7 (continued) A COT is performed on each required channel to ensure the rack components will perform the intended Function. Setpoints must be within the Allowable Values specified in Table 3.3.1-1. The "as found" values are evaluated to ensure consistency with (i.e., bounded by) the drift allowance used in the setpoint methodology. The setpoint shall be left set consistent with the assumptions of the current unit specific setpoint methodology. SR 3.3.1.7 is modified by a Note that provides a 4 hour delay in the requirement to perform this Surveillance for source range instrumentation when entering MODE 3 from MODE 2. This Note allows a normal shutdown to proceed without a delay for testing in MODE 2 and for a short time in MODE 3 until the RTBs are open and SR 3.3.1.7 is no longer required to be performed. If the unit is to be in MODE 3 with the RTBs closed for > 4 hours this Surveillance must be performed prior to 4 hours after entry into MODE 3. The Frequency of 92 days is justified in Reference 7. # SR 3.3.1.8 SR 3.3.1.8 is the performance of a COT as described in SR 3.3.1.7, except it is modified by a Note that this test shall include verification that the P-6 and P-10 interlocks are in their required state for the existing unit condition. The Frequency is modified by a Note that allows this surveillance to be satisfied if it has been performed within 92 days of the Frequencies prior to reactor startup and four hours after reducing power below P-10 and P-6. The Frequency of "prior to startup" ensures this surveillance is performed prior to critical operations and applies to the source, intermediate and power range low instrument channels. The Frequency of "4 hours after reducing power below P-10" (applicable to the intermediate range and the power range low channels) and "4 hours after reducing power below P-6" (applicable to source range channels) allows a normal shutdown to be completed and the unit removed from the MODE of Applicability for this surveillance without a delay to perform the testing required by this surveillance. The Frequency of every 92 days thereafter applies if the plant remains in the MODE of Applicability after the initial performances of prior to reactor startup and four hours after reducing power below P-10 or P-6. A test Frequency # SR 3.3.1.8 (continued) of 92 days is consistent with the uncertainty allowances for rack drift in the NIS setpoint Calculations (Ref. 6) and the surveillance frequency analysis (Ref. 7). The MODE of Applicability for this surveillance is < P-10 for the power range low and intermediate range channels and < P-6 for the source range channels. Once the unit is in MODE 3, this surveillance is no longer required. If power is to be maintained < P-10 or < P-6 for more than 4 hours, then the testing required by this surveillance must be performed prior to the expiration of the 4 hour limit. Four hours is a reasonable time to complete the required testing or place the unit in a MODE where this surveillance is no longer required. This test ensures that the NIS source, intermediate, and power range low channels are OPERABLE prior to taking the reactor critical and after reducing power into the applicable MODE (< P-10 or < P-6) for periods > 4 hours. #### SR 3.3.1.9 SR 3.3.1.9 is a calibration of the excore channels to the incore channels based on analysis of a range of core flux distributions. If the measurements do not agree, the excore channels are not declared inoperable but must be adjusted (i.e., normalized) to agree with the incore detector measurements. If the excore channels cannot be adjusted, the channels are declared inoperable. This Surveillance is performed at BOL to normalize the excore $f(\Delta I)$ input to the overtemperature ΔT Function for a given operating cycle. The surveillance also normalizes the excore ΔI indications. Two Notes modify SR 3.3.1.9. Note 1 states that neutron detectors are excluded from the calibration. Note 2 specifies that this Surveillance is required only if reactor power is \geq 50% RTP and that 7 days are allowed for completing the surveillance after reaching 50% RTP. Based on operating experience, a time allowance of 7 days for test performance, data analysis, and channel adjustments is sufficient. A power level of \geq 50% RTP corresponds to the power level for the AFD surveillance (SR 3.2.3.1), which requires calibrated excore Δ I indications. The Frequency of 18 months is based on plant operating experience and has proven sufficient to establish the cycle-specific calibration of the excore ΔI indications and $f(\Delta I)$. # SURVEILLANCE REQUIREMENTS (continued) # SR 3.3.1.10 A CHANNEL CALIBRATION is performed every 18 months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. CHANNEL CALIBRATIONS must be performed consistent with the assumptions of the unit specific setpoint methodology. The "as found" values are evaluated to ensure consistency with (i.e., bounded by) the drift allowance used in the setpoint methodology. The Frequency of 18 months is based on the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint methodology and the need to perform this surveillance under the conditions that apply during a plant outage. Operating experience has shown these components usually pass the surveillance when performed on the 18 month Frequency. This SR is modified by two Notes. Note 1 states that neutron detectors are excluded from the CHANNEL CALIBRATION where applicable. The
CHANNEL CALIBRATION for the power range neutron detectors consists of a normalization of the detector outputs based on an incore/excore cross-calibration (SR 3.3.1.9). In addition, the CHANNEL CALIBRATION for the power range neutron detector outputs includes normalization of the channel output based on a power calorimetric (SR 3.3.1.2) performed above 15% RTP. The CHANNEL CALIBRATION for the intermediate range neutron detector outputs includes normalization of the high flux bistable based on a power calorimetric. The CHANNEL CALIBRATION for the source range neutron detectors consists of obtaining new detector plateau and preamp discriminator curves after a detector is replaced. This Surveillance is not required for the NIS power range detectors for entry into MODE 2 or 1, and is not required for the NIS intermediate range detectors for entry into MODE 2, because the unit must be in at least MODE 2 to perform the test for the intermediate range detectors and MODE 1 for the power range detectors. Note 2 states that this test shall include verification that the time constants are adjusted to the prescribed values where applicable. The OTAT, OPAT, and the power range neutron flux rate functions contain required time constants. # SURVEILLANCE REQUIREMENTS (continued) #### SR 3.3.1.11 SR 3.3.1.11 is the performance of a COT of RTS interlocks every 18 months. This COT is also intended to verify the interlock prior to startup, if not performed in the previous 92 days. The 18 month Frequency is based on the known reliability of the interlocks and the multichannel redundancy available, and has been shown to be acceptable through operating experience. The 92-day Frequency for RTS Interlock COT performance prior to startup is consistent with the uncertainty allowances for rack drift in the setpoint calculations (Ref. 6) and the COT (SR 3.3.1.7 and SR 3.3.1.8) Surveillance Frequencies for the associated trip functions. Performance of the RTS Interlock COTs in conjunction with periodic actuation logic tests (SR 3.3.1.5) provides assurance that the total interlock function is OPERABLE prior to reactor startup and power ascension. #### SR 3.3.1.12 SR 3.3.1.12 is the performance of a TADOT of the Manual Reactor Trip, RCP Breaker Position, and the SI Input from ESFAS. This TADOT is performed every 18 months. The test shall independently verify the OPERABILITY of the undervoltage and shunt trip mechanisms for the Manual Reactor Trip Function for the Reactor Trip Breakers and Reactor Trip Bypass Breakers. The Reactor Trip Bypass Breaker test shall include testing of the automatic undervoltage trip. The Frequency is based on the known reliability of the Functions and the multichannel redundancy available, and has been shown to be acceptable through operating experience. The SR is modified by a Note that excludes verification of setpoints from the TADOT. The Functions affected have no setpoints associated with them. #### SR 3.3.1.13 SR 3.3.1.13 is the performance of a TADOT of Turbine Trip Functions prior to exceeding P-9. This TADOT consists of verifying that each channel indicates a Turbine trip before Latching the turbine and indicates no turbine trip after the turbine is latched prior to exceeding the P-9 interlock whenever the unit has been in MODE 3. A Note states that this Surveillance is not required if it has been performed within the # SR 3.3.1.13 (continued) previous 31 days. Verification of the Trip Setpoint does not have to be performed for this Surveillance. Performance of this test will ensure that the turbine trip Function is OPERABLE prior to exceeding the P-9 interlock. This test may be performed with the reactor at power below P-9 and/or prior to reactor startup. # SR 3.3.1.14 SR 3.3.1.14 verifies that the individual channel/train actuation response times are less than or equal to the maximum values assumed in the accident analysis. Response time testing acceptance criteria are included in FSAR, Table 7.2.5 (Ref. 8). Individual component response times are not modeled in the analyses. The analyses model the overall or total elapsed time, from the point at which the parameter exceeds the trip setpoint value at the sensor to the point at which the equipment reaches the required functional state (i.e., control and shutdown rods fully inserted in the reactor core). For channels that include dynamic transfer Functions (e.g., lag, lead/lag, rate/lag, etc.), the response time test may be performed with the transfer Function set to one, or with the time constants set to their nominal value. The test results must be compared to properly defined acceptance criteria. Response time may be verified by actual tests in any series of sequential, overlapping or total channel measurements, or by summation of allocated sensor response times with actual test on the remainder of the channel in any series of sequential or overlapping measurements. Allocations for specific pressure and differential pressure sensor response times may be obtained from: (1) historical records based on acceptable response time tests (hydraulic, noise, or power interrupt tests), (2) in place, onsite, or offsite (e.g. vendor) test measurements, or (3) utilizing vendor engineering specifications. WCAP — 13632, Revision 2, "Elimination of Pressure Sensor Response Time Testing Requirements," provides the basis and methodology for using allocated sensor response times in the overall verification of the channel response time for specific sensors identified in the WCAP. The allocations for these sensor response times must be verified prior to placing the sensor in operational service and re-verified following # <u>SR 3.3.1.14</u> (continued) maintenance that may adversely affect response time. In general, electric repair work does not impact response time provided the parts used for repair are of the same type and value. One example where time response could be affected is replacing the sensing assembly of a transmitter. Response time verification for other sensor types must be demonstrated by test. As appropriate, each channel's response must be verified every 18 months on a STAGGERED TEST BASIS. Each verification shall include at least one Logic train such that both Logic trains are verified at least once per 36 months. Testing of the final actuation devices is included in the testing. Response times cannot be determined during unit operation because equipment operation is required to measure response times. Experience has shown that these components usually pass this surveillance when performed at the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. SR 3.3.1.14 is modified by a Note stating that neutron detectors are excluded from RTS RESPONSE TIME testing. This Note is necessary because of the difficulty in generating an appropriate detector input signal. Excluding the detectors is acceptable because the principles of detector operation ensure a virtually instantaneous response. #### **REFERENCES** - 1. FSAR, Chapter 7. - 2. FSAR, Chapter 6. - 3. FSAR, Chapter 15. - 4. IEEE-279-1971 - 10 CFR 50.49. - 6. WCAP 13751, FNP RTS/ESFAS Setpoint Methodology Study. #### **BASES** # REFERENCES (continued) - 7. WCAP-10271, "Evaluation of Surveillance Frequencies and Out of Service Times for the Reactor Protection Instrumentation System," and supplements to that report as approved by the NRC and documented in the SERs and SSER (letters to J.J. Sheppard from Cecil O. Thomas dated February 21, 1985; Roger A. Newton from Charles E. Rossi dated February 22, 1989; and Gerard T. Goering from Charles E. Rossi dated April 30, 1990). - 8. FSAR, Table 7.2.5. - 9. RPS Functional System Description (FSD) A 181007. - 10. WCAP 12925, Median Signal Selector (MSS). - 11. WCAP 13807/13808, Elimination of Feedwater Flow trip via Implementation of MSS. - 12. Joseph M. Farley Nuclear Power Plant Unit 1 (2) Precautions, Limitations and Setpoints U 266647 (U 280912). - 13. Westinghouse Technical Bulletin, ESBU-TB-92-14-R1, "Decalibration Effects Of Calorimetric Power Level Measurements On The NIS High Power Reactor Trip At Power Levels Less Than 70% RTP." - NRC Generic Letter 85-09, "Technical Specifications For Generic Letter 83-28 [Required Actions Based On Generic Implications Of Salem ATWS Events], Item 43." #### **B 3.3 INSTRUMENTATION** B 3.3.2 Engineered Safety Feature Actuation System (ESFAS) Instrumentation #### **BASES** #### BACKGROUND The ESFAS initiates necessary safety systems, based on the values of selected unit parameters, to protect against violating core design limits and the Reactor Coolant System (RCS) pressure boundary, and to mitigate accidents. The ESFAS Instrumentation is segmented into three distinct but interconnected modules as identified below: - Field transmitters or process sensors and instrumentation: provide a measurable electronic signal based on the physical characteristics of the parameter being measured; - Signal processing equipment including analog protection system, field contacts, and protection channel sets: provide signal conditioning, bistable setpoint comparison, process algorithm actuation, compatible electrical signal output to protection system devices, and control board/control room/miscellaneous indications; and - Solid State Protection System (SSPS) including input, logic, and output bays: initiates the proper unit shutdown or engineered safety feature (ESF) actuation in accordance with the defined logic and based on the bistable outputs from the signal process control and protection system. # Field Transmitters or Sensors To meet the design demands for redundancy and reliability, more than one, and in some cases as many as four, field transmitters or sensors are used to measure unit parameters. In many cases, field transmitters or sensors that input to the ESFAS are shared with the Reactor Trip System (RTS). In some cases, the same channels also provide control system inputs. To
account for calibration tolerances and instrument drift, which are assumed to occur between calibrations, statistical allowances are provided in the Trip Setpoint. The OPERABILITY of each transmitter or sensor can be evaluated when its "as found" calibration data are compared against its documented acceptance criteria. # BACKGROUND (continued) # Signal Processing Equipment Generally, three or four channels of process control equipment are used for the signal processing of unit parameters measured by the field instruments. The process control equipment provides signal conditioning, comparable output signals for instruments located on the main control board, and comparison of measured input signals with setpoints established by safety analyses. These setpoints are discussed in FSAR, Chapter 6 (Ref. 1), Chapter 7 (Ref. 2), and Chapter 15 (Ref. 3) and specified in the FNP Unit 1 (2) Precautions, Limitations, and setpoints for Nuclear Steam Supply systems (Ref. 12). If the measured value of a unit parameter exceeds the predetermined setpoint, an output from a bistable is forwarded to the SSPS for decision evaluation. Channel separation is maintained up to and through the input bays. However, not all unit parameters require four channels of sensor measurement and signal processing. Some unit parameters provide input only to the SSPS, while others provide input to the SSPS, the main control board, the unit computer, and one or more control systems. Generally, if a parameter is used only for input to the protection circuits, three channels with a two-out-of-three logic are sufficient to provide the required reliability and redundancy. If one channel fails in a direction that would not result in a partial Function trip, the Function is still OPERABLE with a two-out-of-two logic. If one channel fails such that a partial Function trip occurs, a trip will not occur and the Function is still OPERABLE with a one-out-of-two logic. Generally, if a parameter is used for input to the SSPS and a control function, four channels with a two-out-of-four logic are sufficient to provide the required reliability and redundancy. Otherwise, functional separation between the protection and control systems must be demonstrated as described in FSAR Chapter 7.2.2.3. In addition, the circuit must be able to withstand both an input failure to the control system, which may then require the protection function actuation, and a single failure in the other channels providing the protection function actuation. Again, a single failure will neither cause nor prevent the protection function actuation. These requirements are described in IEEE-279-1971 (Ref. 4). The actual number of channels required for each unit parameter is specified in Reference 2. # BACKGROUND (continued) ### Trip Setpoints and Allowable Values The Trip Setpoints are the nominal values at which the field devices and bistables are set. Any protection system channel is considered to be properly adjusted when the "as left" value is within the band for CHANNEL CALIBRATION accuracy. . : The Trip Setpoints used are based on the analytical limits stated in Reference 2. The selection of these Trip Setpoints is such that adequate protection is provided when all sensor and processing time delays are taken into account. To allow for calibration tolerances, instrumentation uncertainties, instrument drift, and severe environment errors for those ESFAS channels that must function in harsh environments as defined by 10 CFR 50.49 (Ref. 5), the Trip Setpoints and Allowable Values specified in Table 3.3.2-1 in the accompanying LCO are conservatively adjusted with respect to the analytical limits. A detailed description of the methodology used to calculate the Trip Setpoints, including their explicit uncertainties, is provided in the "RTS/ESFAS Setpoint Methodology Study" (Ref. 6). The actual nominal Trip Setpoint is more conservative than that specified by the Allowable Value to account for changes in random measurement errors detectable by a COT. One example of such a change in measurement error is drift during the surveillance interval. If the measured setpoint does not exceed the Allowable Value, the bistable is considered OPERABLE. Setpoints in accordance with the Allowable Value ensure that the consequences of Design Basis Accidents (DBAs) will be acceptable, providing the unit is operated from within the LCOs at the onset of the DBA and the equipment functions as designed. Each channel can be tested on line to verify that the signal processing equipment and setpoint accuracy is within the specified allowance requirements. Once a designated channel is taken out of service for testing, a simulated signal is injected in place of or superimposed on the field instrument signal. The process equipment for the channel in test is then tested, verified, and if required, calibrated. SRs for the channels are specified in the SR section. The Trip Setpoints and Allowable Values listed in Table 3.3.2-1 are based on the methodology described in Reference 6, which incorporates all of the known uncertainties applicable for each channel. The magnitudes of these uncertainties are factored into the determination of each Trip Setpoint. All field sensors and signal ### **BACKGROUND** ## Trip Setpoints and Allowable Values (continued) processing equipment for these channels are assumed to operate within the allowances of these uncertainty magnitudes and channel statistical allowances. ### Solid State Protection System The SSPS equipment is used for the decision logic processing of inputs from field contacts and control board switches and the signal processing equipment bistables. To meet the redundancy requirements, two trains of SSPS, each performing the same functions, are provided. If one train is taken out of service for maintenance or test purposes, the second train will provide ESF actuation for the unit. If both trains are taken out of service or placed in test, a reactor trip will result. Each train is packaged in its own cabinet for physical and electrical separation to satisfy separation and independence requirements. The SSPS performs the decision togic for most ESF equipment actuation; generates the electrical output signals that initiate the required actuation; and provides the status, permissive, and annunciator output signals to the main control room of the unit. The input signals from field contacts, control board switches and bistable outputs from the signal processing equipment are sensed by the SSPS equipment and combined into logic matrices that represent combinations indicative of various transients. If a required logic matrix combination is completed, the system will send actuation signals via master and slave relays to those components whose aggregate Function best serves to alleviate the condition and restore the unit to a safe condition. Examples are given in the Applicable Safety Analyses, LCO, and Applicability sections of this Bases. Each SSPS train has a built in testing device that can automatically test the selected decision logic matrix functions and the actuation devices while the unit is at power. When any one train is taken out of service for testing, the other train is capable of providing unit monitoring and protection until the testing has been completed. The testing device is semiautomatic to minimize testing time. The actuation of ESF components is accomplished through master and slave relays. The SSPS energizes the master relays appropriate ### **BACKGROUND** ### Solid State Protection System (continued) for the condition of the unit. Each master relay then energizes one or more slave relays, which then cause actuation of the end devices. The master and slave relays are routinely tested to ensure operation. The test of the master relays energizes the relay, which then operates the contacts and applies a low voltage to the associated slave relays. The low voltage is not sufficient to actuate the slave relays but only demonstrates signal path continuity. The SLAVE RELAY TEST actuates the devices if their operation will not interfere with continued unit operation. For relays with SLAVE RELAY TEST circuits available actual component operation can be prevented and slave relay contact operation is verified by a continuity check of the circuit containing the slave relay. APPLICABLE SAFETY ANALYSES, LCO, AND APPLICABILITY Each of the analyzed accidents can be detected by one or more ESFAS Functions. One of the ESFAS Functions is the primary actuation signal for that accident. An ESFAS Function may be the primary actuation signal for more than one type of accident. An ESFAS Function may also be a secondary, or backup, actuation signal for one or more other accidents. For example, Pressurizer Pressure-Low is a primary actuation signal for small loss of coolant accidents (LOCAs) and a backup actuation signal for steam line breaks (SLBs) outside containment. Functions such as manual initiation, not specifically credited in the accident safety analysis, are qualitatively credited in the safety analysis and the NRC staff approved licensing basis for the unit. These Functions may provide protection for conditions that do not require dynamic transient analysis to demonstrate Function performance. These Functions may also serve as backups to Functions that were credited in the accident analysis. Specific information regarding the ESFAS Functions status as primary or backup actuation signal for a given accident is provided in FSAR Chapter 15 (Ref. 3). The LCO requires all instrumentation performing an ESFAS Function to be OPERABLE. Typically, failure of any instrument renders the affected channel(s) inoperable and reduces the reliability of the affected Functions. The LCO generally requires OPERABILITY of two, three or four channels in each instrumentation function and two channels in each APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) logic and manual initiation function. The
two-out-of-three and the two-out-of-four configurations allow one channel to be tripped during maintenance or testing without causing an ESFAS initiation. Two logic or manual initiation channels are required to ensure no single random failure disables the ESFAS. The required channels of ESFAS instrumentation provide unit protection in the event of any of the analyzed accidents. ESFAS protection functions are as follows: ### 1. Safety Injection Safety Injection (SI) provides two primary functions: - Primary side water addition to ensure maintenance or recovery of reactor vessel water level (coverage of the active fuel for heat removal, clad integrity, and for limiting peak clad temperature to ≤ 2200°F); and - 2. Boration to ensure recovery and maintenance of SDM $(k_{eff} < 1.0)$. These functions are necessary to mitigate the effects of high energy line breaks (HELBs) both inside and outside of containment. The SI signal is also used to initiate other Functions such as: - Phase A Isolation: - Containment Purge Isolation; - Start of Emergency Diesel Generators; - Reactor Trip: - Turbine Trip; - SGFP Trip: - Feedwater Isolation; - Start of motor driven auxiliary feedwater (AFW) pumps; and ### 1. Safety Injection (continued) Place the control room ventilation in the emergency mode of operation. #### These other functions ensure: - Isolation of nonessential systems through containment penetrations; - Emergency Diesel Generators are operating in a standby condition to provide power should a subsequent LOSP occur; - Trip of the turbine and reactor to limit power generation; - Isolation of main feedwater (MFW) and SGFP trip to limit RCS cooldown, post-trip core power excursion, and containment building pressure and temperature rise due to secondary side mass losses: - · Start of AFW to ensure secondary side cooling capability; and - Isolation, pressurization, and filtration of the control room to ensure habitability. ### a. Safety Injection — Manual Initiation The LCO requires two channels to be OPERABLE. The operator can initiate SI at any time by using either of two switches in the control room. This action will cause actuation of all ESF components in both trains in a similar manner as any of the automatic actuation signals. However, the reactor trip signal is initiated via the RTB shunt trip mechanisms. The LCO for the Manual Initiation Function ensures the proper amount of redundancy is maintained in the manual ESFAS actuation circuitry to ensure the operator has manual ESFAS initiation capability. Each channel consists of one manual switch and the interconnecting wiring to the actuation logic cabinet. Each manual switch actuates both trains. This configuration does not allow testing at power. #### **BASES** APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) # b. <u>Safety Injection — Automatic Actuation Logic and Actuation Relays</u> This LCO requires two trains to be OPERABLE. Actuation logic consists of all circuitry housed within the actuation subsystems, including the initiating relay contacts responsible for actuating the ESF equipment. Manual and automatic initiation of SI must be OPERABLE in MODES 1, 2, and 3. In these MODES, there is sufficient energy in the primary and secondary systems to warrant automatic initiation of ESF systems. Manual Initiation is also required in MODE 4 even though automatic initiation from parameters reaching their setpoint is not required. In this MODE, adequate time is available to manually actuate required components in the event of a DBA, but because of the large number of components actuated on a SI, actuation is simplified by the use of the Manual Initiation switches. Automatic Actuation Logic and Actuation Relays must be OPERABLE in MODE 4 to support system level Manual Initiation. These Functions are not required to be OPERABLE in MODES 5 and 6 because there is adequate time for the operator to evaluate unit conditions and respond by manually starting individual systems, pumps, and other equipment to mitigate the consequences of an abnormal condition or accident. Unit pressure and temperature are very low and many ESF components are administratively locked out or otherwise prevented from actuating to prevent inadvertent overpressurization of unit systems. ## c. Safety Injection — Containment Pressure — High 1 This signal provides protection against the following accidents: - SLB inside containment: - LOCA; and - · Feed line break inside containment. ## Safety Injection — Containment Pressure — High 1 (continued) Containment Pressure — High 1 provides no input to any control functions. Thus, three OPERABLE channels are sufficient to satisfy protective requirements with a two-out-of-three logic. The transmitters (d/p cells) and electronics are located outside of containment with the sensing line (high pressure side of the transmitter) located inside containment. Thus, the high pressure Function will not experience any adverse environmental conditions and the Trip Setpoint reflects only steady state instrument uncertainties. Containment Pressure — High 1 must be OPERABLE in MODES 1, 2, and 3 when there is sufficient energy in the primary and secondary systems to pressurize the containment following a pipe break. In MODES 4, 5, and 6, there is insufficient energy in the primary or secondary systems to pressurize the containment. ### d. <u>Safety Injection — Pressurizer Pressure — Low</u> This signal provides protection against the following accidents: - Inadvertent opening of a steam generator (SG) relief or safety valve; - SLB: - A spectrum of rod cluster control assembly ejection accidents (rod ejection); - Inadvertent opening of a pressurizer relief or safety valve: - LOCAs; and - SG Tube Rupture. ## d. Safety Injection — Pressurizer Pressure — Low (continued) Since no control function is provided by these channels, only three protection channels are necessary to satisfy the protective requirements in a two-out-of-three logic. The transmitters are located inside containment, with the taps in the vapor space region of the pressurizer, and thus possibly experiencing adverse environmental conditions (LOCA, SLB inside containment, rod ejection). Therefore, the Trip Setpoint reflects the inclusion of both steady state and adverse environmental instrument uncertainties. This Function must be OPERABLE in MODES 1, 2, and 3 (above P-11) to mitigate the consequences of an HELB inside containment. This signal may be manually blocked by the operator below the P-11 setpoint. Automatic SI actuation below this pressure setpoint is then performed by the Containment Pressure — High 1 signal or the Steam Line Pressure — Low signal if not manually blocked at P-12, or the Steam Line Pressure — High Differential Pressure Between Steam Lines signal. This Function is not required to be OPERABLE in MODE 3 below the P-11 setpoint. Other ESF functions are used to detect accident conditions and actuate the ESF systems in this MODE. In MODES 4, 5, and 6, this Function is not needed for accident detection and mitigation. ## e. Safety Injection — Steam Line Pressure ## (1) Steam Line Pressure — Low Steam Line Pressure — Low provides protection against the following accidents: - SLB; and - Feed line break. #### **BASES** APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY ## (1) Steam Line Pressure — Low (continued) Three OPERABLE channels, one on each steam line, are sufficient to satisfy the protective requirements with a two-out-of-three logic. With the transmitters located outside the main steam valve room, the Trip Setpoint reflects only steady state instrument uncertainties. This Function is anticipatory in nature and has a lead/lao ratio of 50/5. Steam Line Pressure — Low must be OPERABLE in MODES 1, 2, and 3 (above P-12) when a secondary side break or stuck open valve could result in the rapid depressurization of the steam lines. This signal may be manually blocked by the operator below the P-12 setpoint. Automatic SI actuation is provided by containment pressure -- High 1 and/or High Differential Pressure between steam lines. Inside containment SLB will be terminated by automatic MSLI actuation via Containment Pressure - High 2, and outside containment SLB will be terminated by the High Steam flow in two steam lines coincident with Low -Low - Tavo signal for steam line isolation. This Function is not required to be OPERABLE in MODE 4, 5, or 6 because there is insufficient energy in the secondary side of the unit to cause an accident. (2) <u>Steam Line Pressure — High Differential</u> Pressure Between Steam Lines Steam Line Pressure — High Differential Pressure Between Steam Lines provides protection against the following accidents: - · SLB: - Feed line break; and - Inadvertent opening of an SG relief or an SG safety valve. ### (2) <u>Steam Line Pressure — High Differential</u> <u>Pressure Between Steam Lines</u> (continued) Three OPERABLE channels on each steam line are sufficient to satisfy the requirements, with a two-out-of-three protection set logic on each steam line. With the transmitters located outside the main steam valve room, the Trip Setpoint reflects only steady state instrument uncertainties. Steam line high differential pressure must be OPERABLE in MODES 1, 2, and 3 when a secondary side break or stuck open valve could result in the rapid depressurization of the steam line(s). This Function is not required to be OPERABLE in MODE 4, 5, or 6 because there is not sufficient energy in the secondary side of the unit to cause an accident. ### 2. Containment Spray Containment Spray provides two primary functions: - 1. Lowers containment pressure and temperature after an HELB in containment; and - 2. Reduces the amount of radioactive iodine in the containment atmosphere. These functions are necessary to: - Ensure the pressure boundary integrity of the containment structure; and - Limit the release of radioactive iodine to the environment in the event of a failure of the
containment structure. The containment spray actuation signal starts the containment spray pumps and aligns the discharge of the pumps to the containment spray nozzle headers in the upper levels of containment. Water is initially drawn from the RWST by the containment spray pumps. When the RWST reaches the low low level setpoint, the spray pump suctions are shifted to the ### 2. Containment Spray (continued) containment sump if continued containment spray is required. Containment spray is actuated manually or by Containment Pressure — High 3. ### a. Containment Spray — Manual Initiation The operator can initiate containment spray at any time from the control room by simultaneously turning two associated containment spray actuation switches. Because an inadvertent actuation of containment spray could have such serious consequences, two associated switches must be turned simultaneously to initiate containment spray. There are four switches in the control room. Simultaneously turning two associated switches will actuate containment spray in both trains in the same manner as the automatic actuation signal. Two channels of Manual Initiation switches with two associated switches in each channel are required to be OPERABLE to ensure no single failure disables the Manual Initiation Function. Note that Manual Initiation of containment spray also actuates Phase B containment isolation. # b. <u>Containment Spray — Automatic Actuation Logic and Actuation Relays</u> Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b, paragraph 1. Manual and automatic initiation of containment spray must be OPERABLE in MODES 1, 2, and 3 when there is a potential for an accident to occur, and sufficient energy in the primary or secondary systems to pose a threat to containment integrity due to overpressure conditions. Manual Initiation is also required in MODE 4, even though automatic initiation from Containment Pressure — High 3 is not required. In this MODE, adequate time is available to manually actuate required components in the event of a DBA. However, because of the large number of components actuated on a containment spray, actuation is simplified by # b. <u>Containment Spray — Automatic Actuation Logic and Actuation Relays</u> (continued) the use of the Manual Initiation Switches. Automatic Actuation Logic and Actuation Relays must be OPERABLE in MODE 4 to support system level Manual Initiation. In MODES 5 and 6, there is insufficient energy in the primary and secondary systems to result in containment overpressure. In MODES 5 and 6, there is also adequate time for the operators to evaluate unit conditions and respond, to mitigate the consequences of abnormal conditions by manually starting individual components. ### c. Containment Spray — Containment Pressure — High 3 This signal provides protection against a LOCA or an SLB inside containment. The transmitters (d/p cells) and electronics are located outside of containment with the sensing line (high pressure side of the transmitter) located inside containment. Thus, the transmitters will not experience any adverse environmental conditions and the Trip Setpoint reflects only steady state instrument uncertainties. This Function requires the bistable output to energize to perform its required action. It is not desirable to have a loss of power actuate containment spray, since the consequences of an inadvertent actuation of containment spray could be serious. Note that this Function also has the inoperable channel placed in bypass (disabled) rather than trip to decrease the probability of an inadvertent actuation. The Containment Pressure High 3 instrument Function consists of a two-out-of-four logic configuration. Since containment pressure is not used for control, this arrangement exceeds the minimum redundancy requirements. Additional redundancy is warranted because this Function is energize to trip. Containment Pressure—High 3 must be OPERABLE in MODES 1, 2, and 3 when there is sufficient energy in the primary and secondary sides to pressurize the containment following a pipe break. In # c. <u>Containment Spray — Containment Pressure – High 3</u> (continued) MODES 4, 5, and 6, there is insufficient energy in the primary and secondary sides to pressurize the containment and reach the Containment Pressure — High 3 setpoint. ### 3. Containment Isolation Containment Isolation provides isolation of the containment atmosphere, and all process systems that penetrate containment, from the environment (except sw). This Function is necessary to prevent or limit the release of radioactivity to the environment in the event of a large break LOCA. There are two separate Containment Isolation signals, Phase A and Phase B. Phase A isolation isolates all automatically isolable process lines, except component cooling water (CCW) to RCPs and instrument air, at a relatively low containment pressure indicative of primary or secondary system leaks. For these types of events, forced circulation cooling using the reactor coolant pumps (RCPs) and SGs is the preferred (but not required) method of decay heat removal. Since CCW is required to support RCP operation, not isolating CCW on the low pressure Phase A signal enhances unit safety by allowing operators to use forced RCS circulation to cool the unit. Phase A containment isolation is actuated automatically by SI, or manually via the automatic actuation logic. CCW is not isolated at this time to permit continued operation of the RCPs with cooling water flow to the thermal barrier heat exchangers and oil coolers. All process lines not equipped with remote operated isolation valves are manually closed, or otherwise isolated, prior to reaching MODE 4. Manual Phase A Containment Isolation is accomplished by either of two switches in the control room. Either switch actuates both trains. Note that manual actuation of Phase A Containment Isolation also actuates Containment Purge and Exhaust Isolation. The Phase B signal isolates CCW to the RCPs and instrument air to containment. This occurs at a relatively high containment ### 3. Containment Isolation (continued) pressure that is indicative of a large break LOCA or an SLB. Isolating the CCW at the higher pressure does not pose a challenge to the containment boundary because the CCW System is a closed loop inside containment. Although some system components do not meet all of the ASME Code requirements applied to the containment itself, the system is continuously pressurized to a pressure greater than the Phase B setpoint. Thus, routine operation demonstrates the integrity of the system pressure boundary for pressures exceeding the Phase B setpoint. Furthermore, because system pressure exceeds the Phase B setpoint, any system leakage prior to initiation of Phase B isolation would be into containment. Therefore, the combination of CCW System design and Phase B isolation ensures the CCW System is not a potential path for radioactive release from containment. Phase B containment isolation is actuated by Containment Pressure — High 3, or manually, via the automatic actuation logic, as previously discussed. For containment pressure to reach a value high enough to actuate Containment Pressure — High 3 a large break LOCA or SLB must have occurred and containment spray must have been actuated. Under these conditions, in conjunction with CCW isolation, RCP operation will no longer be favorable. Manual Phase B Containment Isolation is accomplished by the same switches that actuate Containment Spray. When the two associated switches are operated simultaneously, Phase B Containment Isolation and Containment Spray will be actuated in both trains. ## a. Containment Isolation — Phase A Isolation ## (1) Phase A Isolation — Manual Initiation Manual Phase A Containment Isolation is actuated by either of two switches in the control room. Either switch actuates both trains. Note that manual initiation of Phase A Containment Isolation also actuates Containment Purge Isolation. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) ### (2) <u>Phase A Isolation — Automatic Actuation</u> <u>Logic and Actuation Relays</u> Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b, paragraph 1. Manual and automatic initiation of Phase A Containment Isolation must be OPERABLE in MODES 1, 2, and 3, when there is a potential for an accident to occur. Manual Initiation is also required in MODE 4 even though automatic actuation is not required. In this MODE, adequate time is available to manually actuate required components in the event of a DBA, but because of the large number of components actuated on a Phase A Containment Isolation, actuation is simplified by the use of the Manual Initiation switches. Automatic Actuation Logic and Actuation Relays must be OPERABLE in MODE 4 to support system level Manual Initiation. In MODES 5 and 6, there is insufficient energy in the primary or secondary systems to pressurize the containment to require Phase A Containment Isolation. There also is adequate time for the operator to evaluate unit conditions and manually actuate individual isolation valves in response to abnormal or accident conditions. ## (3) Phase A Isolation — Safety Injection Phase A Containment Isolation is also initiated by all Functions that initiate SI. The Phase A Containment Isolation requirements for these Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating Functions and requirements. ## b. Containment Isolation — Phase B Isolation Phase B Containment Isolation is accomplished by Manual Initiation, Automatic Actuation Logic and Actuation Relays, and by Containment Pressure channels (the same channels that actuate
Containment Spray, Function 2). The ### b. <u>Containment Isolation — Phase B Isolation</u> (continued) Containment Pressure actuation of Phase B Containment Isolation is energized to actuate in order to minimize the potential of spurious actuation, which would be undesirable. - (1) Phase B Isolation Martual Initiation - (2) Phase B Isolation Automatic Actuation Logic and Actuation Relays Manual and automatic initiation of Phase B containment isolation must be OPERABLE in MODES 1, 2, and 3, when there is a potential for an accident to occur. Manual Initiation is also required in MODE 4 even though automatic initiation from Containment Pressure - High 3 is not required. In this MODE, adequate time is available to manually actuate required components in the event of a DBA. However, because of the large number of components actuated on a Phase B containment isolation, actuation is simplified by the use of the Manual Initiation switches. Automatic Actuation Logic and Actuation Relays must be OPERABLE in MODE 4 to support system level Manual Initiation. In MODES 5 and 6. there is insufficient energy in the primary or secondary systems to pressurize the containment to require Phase B-containment isolation. There also is adequate time for the operator to evaluate unit conditions and manually actuate individual isolation valves in response to abnormal or accident conditions. ## (3) Phase B Isolation — Containment Pressure The basis for containment pressure MODE applicability is as discussed for ESFAS Function 2.c above. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) ### 4. Steam Line Isolation Isolation of the main steam lines provides protection in the event of an SLB inside or outside containment. Rapid isolation of the steam lines will limit the steam break accident to the blowdown from one SG, at most. For an SLB upstream of the main steam isolation valves (MSIVs), inside or outside of containment, closure of the MSIVs limits the accident to the blowdown from only the affected SG. For an SLB downstream of the MSIVs, closure of the MSIVs terminates the accident as soon as the steam line header depressurizes. Steam Line Isolation mitigates the effects of a feed line break and ensures a source of steam for the turbine driven AFW pump during a feed line break. ### a. Steam Line Isolation — Manual Initiation Manual initiation of Steam Line Isolation can be accomplished from the control room. There are six switches in the control room and each switch can initiate action to immediately close the associated MSIV. The LCO requires one channel per steam line to be OPERABLE. Although two MSIVs per steam line are required OPERABLE by LCO 3.7.2, the Manual Initiation function for these valves is not credited in the safety analyses and redundant Manual Initiation per steam line is not required. ## b. <u>Steam Line Isolation — Automatic Actuation Logic</u> and Actuation Relays Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b, paragraph 1. Manual and automatic initiation of steam line isolation must be OPERABLE in MODES 1, 2, and 3 when there is sufficient energy in the RCS and SGs to have an SLB or other accident. This could result in the release of significant quantities of energy and cause a cooldown of the primary system. The Steam Line Isolation Function is required in MODES 2 and 3 unless one MSIV in each Steam Line is closed. In MODES 4, 5, and 6, there is insufficient energy in the RCS and SGs to experience an SLB or other accident releasing significant quantities of energy. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) ## c. Steam Line Isolation — Containment Pressure — High 2 This Function actuates closure of the MSIVs in the event of a LOCA or an SLB inside containment to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment. The transmitters (d/p cells) are located outside containment with the sensing line (high pressure side of the transmitter) located inside containment. Containment Pressure — High 2 provides no input to any control functions. Thus, three OPERABLE channels are sufficient to satisfy protective requirements with two-out-of-three logic. The transmitters and electronics are located outside of containment. Thus, they will not experience any adverse environmental conditions, and the Trip Setpoint reflects only steady state instrument uncertainties. Containment Pressure — High 2 must be OPERABLE in MODES 1, 2, and 3, when there is sufficient energy in the primary and secondary side to pressurize the containment following a pipe break. This would cause a significant increase in the containment pressure, thus allowing detection and closure of the MSIVs. The Steam Line Isolation Function remains OPERABLE in MODES 2 and 3 unless one MSIV in each Steam Line is closed. In MODES 4, 5, and 6, there is not enough energy in the primary and secondary sides to pressurize the containment to the Containment Pressure — High 2 setpoint. ## d. Steam Line Isolation - Steam Line Pressure - Low Steam Line Pressure — Low provides closure of the MSIVs in the event of an SLB to maintain at least one unfaulted SG as a heat sink for the reactor, and to limit the mass and energy release to containment. This Function provides closure of the MSIVs in the event of a feed line break to ensure a supply of steam for the turbine driven AFW pump. Steam Line Pressure — Low Function must be OPERABLE in MODES 1, 2, and 3 (above P-12), when a secondary # d. <u>Steam Line Isolation — Steam Line Pressure – Low</u> (continued) side break could result in the rapid depressurization of the steam lines. This signal may be manually blocked by the operator below the P-12 setpoint. Below P-12, an inside containment SLB will be terminated by automatic actuation via Containment Pressure — High 2. Stuck valve transients and outside containment SLBs will be terminated by the Steam Line High flow in Two Steam Lines coincident with Tavg Low — Low signal for Steam Line Isolation below P-12 when SI has been manually blocked. The Steam Line Isolation Function is required in MODES 2 and 3 unless one MSIV in each Steam Line is closed. This Function is not required to be OPERABLE in MODES 4, 5, and 6 because there is insufficient energy in the secondary side of the unit to have an accident with any significant adverse consequences. # e. <u>Steam Line Isolation — High Steam Flow in Two Steam Lines Coincident with Tavo — Low Low</u> This function provides closure of the MSIVs during an SLB or inadvertent opening of an SG relief or safety valve, to maintain at least one unfaulted SG as a heat sink for the reactor and to limit the mass and energy release to containment. Two steam line flow channels per steam line are required OPERABLE for this Function. The steam line flow channels are combined in a one-out-of-two logic to indicate high steam flow in one steam line. Therefore, two channels are sufficient to satisfy redundancy requirements. The one-outof-two configuration allows on-line testing because trip of one high steam flow channel is not sufficient to cause initiation. Steam line isolation on high steam flow in two steam lines is acceptable in the case of a single steam line fault due to the fact that the steam flow in the remaining intact steam lines will increase due to the fault in the other line. The increased steam flow in the remaining intact lines will actuate the required high steam flow trip. The Function trips on one-out-of-two high steam flow in any two-out-ofthree steam lines if there is a one-out-of-one low low T_{avg} trip in any two-out-of-three RCS loops. The one channel per ## e. <u>Steam Line Isolation — High Steam Flow in Two</u> <u>Steam Lines Coincident with Tava — Low Low</u> (continued) loop and two-out-of-three RCS loop low low T_{avg} logic configuration allows on-line testing and since T_{avg} is an indication of bulk RCS temperature, it satisfies redundancy requirements. The Trip Setpoint for high steam flow is a linear function that varies with power level, which is determined by turbine impulse chamber pressure. The function is a ΔP corresponding to 40% of full steam flow between 0% and 20% load to 110% of full steam flow at 100% load. Although the high steam flow transmitters are located inside containment, the events this instrumentation Function protects against (steam line break outside containment) do not cause the transmitters to be exposed to a severe environment. The electronics associated with the RTDs used to determine T_{avg} are also not exposed to a severe environment as a result of the accident for which this instrumentation provides protection; therefore, the trip setpoints reflect only steady state environmental instrument uncertainties. The steam flow transmitters provide control inputs, but the control function cannot initiate events that the Function acts to mitigate. The T_{avg} channels provide control inputs, but the control system incorporates a median signal selector for T_{avg} , which provides functional isolation between the control and protection systems. This function must be OPERABLE in MODES 1 and 2, and in MODE 3, when a secondary side break or stuck open valve could result in the rapid depressurization of the steam lines unless one MSIV in each steam line is closed. This Function is not required to be OPERABLE in MODES 4, 5, and 6 because there is insufficient energy in the secondary side of the unit to have an accident with any significant adverse consequences. ### 5. Turbine Trip and Feedwater Isolation For the feedline and steamline events, the primary functions of the Turbine Trip and Feedwater Isolation (FWI) signals are to limit RCS cooldown, post-trip core power excursion, and containment building pressure and temperature rise due to secondary side mass losses. ## 5. Turbine
Trip and Feedwater Isolation (continued) For the feedwater malfunction event (i.e., steam generator overfill), the primary functions of the Turbine Trip and Feedwater Isolation signals are to prevent damage to the turbine due to water in the steam lines, and to stop the excessive flow of feedwater into the SGs. These Functions are necessary to mitigate the effects of a high water level in the SGs, which could result in carryover of water into the steam lines and excessive cooldown of the primary system. The SG high water level is due to excessive feedwater flows. The Function is actuated when the level in any SG exceeds the high high setpoint, and performs the following functions: • Trips the main turbine; 100 - Trips the MFW pumps; and - Shuts the MFW regulating valves and the bypass feedwater regulating valves. This Function is actuated by SG Water Level — High High, or by an SI signal. The RTS also initiates a turbine trip signal whenever a reactor trip (P-4) is generated. In the event of SI, the unit is automatically tripped. The MFW System is also taken out of operation and the AFW System is automatically started. The SI signal was discussed previously. Interlock P-4 seals in the FWI signal to ensure main feedwater is not inadvertantly added to an SG following reset of the automatic isolation signal. In addition, the SGFP discharge valves automatically close when the feedpumps trip to ensure that condesate water is not inadvertantly added to a de-pressurized SG. a. <u>Turbine Trip and Feedwater Isolation — Automatic</u> Actuation Logic and Actuation Relays Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b, paragraph 1. Portions of the Automatic Actuation Logic and all of the Actuation Relays are common to both SG Water Level – High High (P-14) and Safety Injection. ### 5. <u>Turbine Trip and Feedwater Isolation</u> (continued) ## b. <u>Turbine Trip and Feedwater Isolation — Steam</u> Generator Water Level — High High (P-14) This signal provides protection against excessive feedwater flow. The ESFAS SG water level instruments provide input to the SG Water Level Control System. Therefore, the actuation logic must be able to withstand both an input failure to the control system (which may then require the protection function actuation) and a single failure in the other channels providing the protection function actuation. Since only three channels are installed, a median signal selector is installed for use with the SG Water Level Control System. The control and protection system interaction criteria of IEEE 279 is satisfied by the median signal selector and administrative controls to ensure channel IV is selected. The transmitters (d/p cells) are located inside containment. However, the events that this Function protects against cannot cause a severe environment in containment. Therefore, the Trip Setpoint reflects only steady state instrument uncertainties. # c. <u>Turbine Trip and Feedwater Isolation — Safety</u> <u>Injection</u> Turbine Trip and Feedwater Isolation is also initiated by all Functions that initiate SI. The Feedwater Isolation Function requirements for these Functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead Function 1, SI, is referenced for all initiating functions and requirements. Turbine Trip and Feedwater Isolation Functions must be OPERABLE in MODES 1 and 2. In MODES 3, 4, 5, and 6, the MFW System and the turbine generator are not in service and this Function is not required to be OPERABLE. ### 6. Auxiliary Feedwater The AFW System is designed to provide a secondary side heat sink for the reactor in the event that the MFW System is not ### 6. Auxiliary Feedwater (continued) available. The system has two motor driven pumps and a turbine driven pump, making it available during normal unit operation, during a loss of AC power, a loss of MFW, during a steamline or Feedwater System pipe break, and during a small break LOCA. The normal source of water for the AFW System is the condensate storage tank (CST). The AFW System is aligned so that upon a pump start, flow is initiated to the SGs immediately. ### a. <u>Auxiliary Feedwater — Automatic Actuation Logic</u> and Actuation Relays Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b, paragraph 1. ### b. <u>Auxiliary Feedwater — Steam Generator Water</u> Level — Low Low SG Water Level — Low Low provides protection against a loss of heat sink and feedline break. The SG water level setpoints are specified in percent of narrow range instrument span on each SG. A feed line break, inside or outside of containment, or a loss of MFW, would result in a loss of SG water level. SG Water Level - Low Low provides input to the SG Level Control System. Therefore, the actuation logic must be able to withstand both an input failure to the control system, which may then require a protection function actuation and a single failure in the other channels providing the protection function actuation. Since only three channels are installed, a median signal selector is installed for use with the SG Water Level Control System. The control and protection system interaction criteria of IEEE 279 is satisfied by the median signal selector and administrative controls to ensure channel IV is selected. With the transmitters (d/p cells) located inside containment and thus possibly experiencing adverse environmental conditions (feed line break), the Trip Setpoint reflects the inclusion of both steady state and adverse environmental instrument uncertainties. APPLICABLE SAFETY ANALYSES, LCO, and APPLICABILITY (continued) ### c. Auxiliary Feedwater - Safety Injection An SI signal starts the motor driven AFW pumps. The AFW initiation functions are the same as the requirements for their SI function. Therefore, the requirements are not repeated in Table 3.3.2-1. Instead, Function 1, SI, is referenced for all initiating functions and requirements. Functions 6.a through 6.c must be OPERABLE in MODES 1. 2, and 3 to ensure that the SGs remain the heat sink for the reactor. The Farley safety analyses assume two pumps operating to assure that the minimum required flow rate is delivered to the SGs for all postulated events. SG Water Level — Low Low in any operating SG will cause the motor driven AFW pumps to start. The system is aligned so that upon a start of the pump, water immediately begins to flow to the SGs. Since the SG Low-Low level signal is credited in the safety analyses as the primary ESF signal for loss of heat sink events, periodic response time testing is required. SG Water Level — Low Low in any two operating SGs will cause the turbine driven pump to start. Since this signal provides backup protection for loss of heat sink events, periodic response time testing is not required. These Functions do not have to be OPERABLE in MODES 5 and 6 because there is not enough heat being generated in the reactor to require the SGs as a heat sink. In MODE 4. AFW actuation does not need to be OPERABLE because either AFW or residual heat removal (RHR) will already be in operation to remove decay heat or sufficient time is available to manually place either system in operation. # d. <u>Auxiliary Feedwater — Undervoltage Reactor Coolant</u> <u>Pump</u> A loss of power on the buses that provide power to the RCPs provides indication of a pending loss of RCP forced flow in the RCS and a loss of power to the station auxiliaries. The SBLOCA analysis credits the TDAFW pump start by RCP bus UV as a primary ESFAS signal. The Undervoltage RCP Function senses the voltage on each RCP bus. Two UV sensors are associated with each bus (one for each logic train). Each RCP bus is assigned to a protection channel. The UV sensors and logic circuits are common to both the RCP UV reactor trip and the TDAFW pump ESF start. A ## d. <u>Auxiliary Feedwater — Undervoltage Reactor Coolant Pump</u> (continued) loss of power on two or more RCP buses, will start the turbine driven AFW pump to ensure that the available SGs contain enough water to serve as the heat sink for reactor decay heat and sensible heat removal following the reactor trip. Function 6.d must be OPERABLE in MODES 1 and 2. This ensures that the available SGs are provided with water to serve as the heat sink to remove reactor decay heat and sensible heat in the event of an accident. In MODES 3, 4, and 5, the RCPs may be normally shut down, and thus a loss of voltage on two or more RCP buses trip may not be indicative of a condition requiring automatic AFW initiation. ### e. <u>Auxiliary Feedwater — Trip of All Main Feedwater</u> <u>Pumps</u> A Trip of all MFW pumps is an indication of a loss of MFW and the subsequent need for some method of decay heat and sensible heat removal to bring the reactor back to no load temperature and pressure. Each MFW pump has two steam stop valves (HP and LP) for the turbine driver. Each MFW pump turbine stop valve is equipped with a limit switch that actuates when the valve is closed. When both MFW pumps are shut down (all four turbine stop valve limit switches are actuated), a start of the motor-driven AFW pumps is initiated. The four-out-of-four logic of this function is not single failure proof but is acceptable due to the backup nature of this AFW pump start function. This ESF function is not credited for diversity, and its electrical circuits are not required to the safety-grade. This function is not relied on in any safety analyses as the primary actuation signal to initiate the AFW pumps but is part of the licensing basis of the ESFAS. Therefore, two channels per pump are required OPERABLE to ensure this function is available if needed. The automatic start of the AFW pumps ensures that the available SGs are supplied with water to act as the heat
sink for the reactor. # e. <u>Auxiliary Feedwater — Trip of All Main Feedwater</u> <u>Pumps</u> (continued) Function 6.e must be OPERABLE in MODE 1 to provide the automatic start of the motor-driven AFW pumps if needed. The automatic start of the AFW pumps ensures that the available SGs are supplied with water to act as the heat sink for the reactor in the event of an accident. In MODES 2, 3, 4, and 5, the MFW pumps may be normally shut down and thus the pump trip is not indicative of a condition requiring automatic AFW initiation. ## 7. Engineered Safety Feature Actuation System Interlocks To allow some flexibility in unit operations, several interlocks are included as part of the ESFAS. These interlocks permit the operator to block some signals, automatically enable other signals, prevent some actions from occurring, and cause other actions to occur. The interlock Functions back up manual actions to ensure bypassable functions are in operation under the conditions assumed in the safety analyses. a. <u>Engineered Safety Feature Actuation System Interlocks-</u> <u>Automatic Actuation Logic and Actuation Relays</u> Automatic actuation logic and actuation relays consist of the same features and operate in the same manner as described for ESFAS function 1.b, paragraph 1. b. Engineered Safety Feature Actuation System Interlocks — Reactor Trip, P-4 The P-4 interlock is enabled when a reactor trip breaker (RTB) and its associated bypass breaker are open. Once the P-4 interlock is enabled, if an SI has occurred, reset of the SI is allowed after a 60 second time delay. This Function allows operators to take manual control of SI systems after the initial phase of injection is complete. Once the SI is reset, automatic actuation of SI cannot occur until the RTBs have been manually closed. The additional functions of the P-4 interlock are: b. <u>Engineered Safety Feature Actuation System</u> Interlocks — Reactor Trip, P-4 (continued) ### Control - Block steam dump control via load rejection controller; - Arm steam dump control for tripping and/or modulation of dump valves via turbine trip controller; and - Isolate MFW with coincident low T_{avg.} ### Safety - Prevent auto reactuation of SI after a manual reset of SI; - Trip the main turbine; - Reset high steam flow setpoint to no-load value; and - Prevent opening of the MFW isolation valves if they were closed on SI or SG Water Level — High High. Each of the above Functions is interlocked with P-4 to avert or reduce the continued cooldown of the RCS following a reactor trip. An excessive cooldown of the RCS following a reactor trip could cause an insertion of positive reactivity with a subsequent increase in generated power. Addition of feedwater to a steam generator associated with a steamline or feedline break could result in excessive containment building pressure. To avoid such a situation, the noted Functions have been interlocked with P-4 as part of the design of the unit control and protection system. The turbine trip Function is explicitly assumed in the non-LOCA safety analyses, since it is an immediate consequence of the reactor trip Function. Block of the auto SI signals is required to support long-term ECCS operation in the post-LOCA recirculation mode. The RTB position switches that provide input to the P-4 interlock only function to energize or de-energize or open or close contacts. Therefore, this Function has no adjustable trip setpoint with which to associate a Trip Setpoint and Allowable Value. ## b. Engineered Safety Feature Actuation System Interlocks — Reactor Trip, P-4 (continued) This Function must be OPERABLE in MODES 1, 2, and 3 when the reactor may be critical or approaching criticality. This Function does not have to be OPERABLE in MODE 4, 5, or 6 because automatic SI is not required in these modes and the main turbine and the MFW System are not in operation. ## c. Engineered Safety Feature Actuation System Interlocks — Pressurizer Pressure, P-11 The P-11 interlock permits a normal unit cooldown and depressurization without actuation of SI from pressurizer Low pressure. With two-out-of-three pressurizer pressure channels (discussed previously) less than the P-11 setpoint, the operator can manually block the Pressurizer Pressure — Low SI signal. The P-11 interlock provides the following two safety functions. With two-out-of-three pressurizer pressure channels above the P-11 setpoint, the Pressurizer Pressure — Low SI actuation is automatically reinstated. To prevent uncontrolled RCS de-pressurization due to control system failure, the pressurizer PORVs are interlocked closed in the autocontrol mode, with two-out-of-three channels below the P-11 setpoint. The Trip Setpoint reflects steady state instrument uncertainties. This Function must be OPERABLE in MODES 1, 2, and 3 to automatically reinstate SI during normal unit startup and to allow an orderly cooldown and depressurization of the unit without the actuation of a pressurizer low pressure SI. This Function does not have to be OPERABLE in MODE 4, 5, or 6 because system pressure must already be below the P-11 setpoint for the requirements of the heatup and cooldown curves to be met. # d. Engineered Safety Feature Actuation System Interlocks — Tava — Low Low, P-12 On increasing reactor coolant temperature, the P-12 interlock safety function is to reinstate the SI and main steam isolation on Steam Line Pressure — Low with two-out-of-three channels above the setpoint. On decreasing reactor coolant temperature, to permit a normal unit cooldown, the P-12 interlock allows the operator to manually block SI and main d. <u>Engineered Safety Feature Actuation System</u> <u>Interlocks — T_{avo} — Low Low, P-12</u> (continued) steam isolation on Steam Line Pressure — Low. On decreasing temperature with two-out-of-three T_{avg} channels below the setpoint, the P-12 interlock safety function is to provide main steam isolation on high steam flow in two steam lines coincident with T_{avg} — Low Low. Another P-12 safety function on a decreasing temperature is for the P-12 interlock to prevent an excessive cooldown of the RCS due to a malfunctioning Steam Dump Control System. The Trip Setpoint and Reset reflect steady-state instrument uncertainties. Since T_{avg} is used as an indication of bulk RCS temperature, this Function meets redundancy requirements with one OPERABLE channel in each loop. These channels are used in two-out-of-three logic. This Function must be OPERABLE in MODES 1, 2, and 3 to automatically reinstate SI and MSLI on Steam Line Pressure— Low and to afford protection when a secondary side break or stuck open valve could result in the rapid depressurization of the steam lines. This Function does not have to be OPERABLE in MODE 4, 5, or 6 because there is insufficient energy in the secondary side of the unit to have a design basis accident. The ESFAS instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii) ### **ACTIONS** A Note has been added in the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed on Table 3.3.2-1. In the event a channel's Trip Setpoint is found nonconservative with respect to the Allowable Value, or the transmitter, instrument Loop, signal processing electronics, or bistable is found inoperable, then all affected Functions provided by that channel must be declared inoperable and the LCO Condition(s) entered for the protection ### **BASES** # ACTIONS (continued) Function(s) affected. When the Required Channels in Table 3.3.2-1 are specified (e.g., on a per steam line, per loop, per SG, etc., basis), then the Condition may be entered separately for each steam line, loop, SG, etc., as appropriate. When the number of inoperable channels in a trip function exceed those specified in one or other related Conditions associated with a trip function, then the unit is outside the safety analysis. Therefore, LCO 3.0.3 should be immediately entered if applicable in the current MODE of operation. ### **A.1** Condition A applies to all ESFAS protection functions. Condition A addresses the situation where one or more channels or trains for one or more Functions are inoperable at the same time. The Required Action is to refer to Table 3.3.2-1 and to take the Required Actions for the protection functions affected. The Completion Times are those from the referenced Conditions and Required Actions. ### B.1, B.2.1 and B.2.2 Condition B applies to manual initiation of: - SI: - Containment Spray; - Phase A Isolation; and - Phase B Isolation. This action addresses the train orientation of the SSPS for the functions listed above. If a channel or train is inoperable, 48 hours is allowed to return it to an OPERABLE status. Note that for containment spray and Phase B isolation, failure of one or both channels in one train renders the train inoperable. Condition B, therefore, encompasses both situations. The specified Completion Time is reasonable considering that there are two automatic actuation trains and another manual initiation train OPERABLE for each Function, and the low probability of an event occurring during this interval. If the train cannot be restored to OPERABLE status, the unit #### **ACTIONS** ### B.1, B.2.1 and B.2.2 (continued) must be placed in a MODE in which the LCO does not apply. This is done by placing the unit in at least MODE 3 within an additional 6 hours (54 hours total time) and in MODE 5 within an additional 30 hours (84 hours total time). The allowable Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ### C.1, C.2.1, and C.2.2 Condition C applies to the automatic actuation logic and actuation relays for the following functions: - SI: - P-4 Interlock: - Containment Spray; - Phase A Isolation; and - Phase B Isolation.
This Condition is intended to address an inoperability of the actuation logic or relays associated with a given train which affects the integrated ESFAS response to an actuation signal. The relatively short Completion Time of this action (6 hours) is based on the fact that multiple ESF components (systems or equipment) within a train are affected by the failure of the actuation logic or relays. This Condition is applicable whenever more than one ESF system is affected by the inoperable train of logic or relays. However, if one or more inoperable actuation relay(s) in a train affect only a single ESF system, then the ACTIONS Condition of the LCO applicable to the affected ESF component or system should be entered and this Condition is not applicable. This action addresses the train orientation of the SSPS and the master and slave relays. If one train is inoperable, 6 hours are allowed to restore the train to OPERABLE status. The specified Completion Time is reasonable considering that there is another train OPERABLE, and the low probability of an event occurring during this interval. If the train cannot be restored to OPERABLE status, the unit ### **BASES** ### **ACTIONS** ## C.1, C.2.1, and C.2.2 (continued) must be placed in a MODE in which the LCO does not apply. This is done by placing the unit in at least MODE 3 within an additional 6 hours (12 hours total time) and in MODE 5 within an additional 30 hours (42 hours total time). The Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. The Required Actions are modified by a Note that allows one train to be bypassed for up to 4 hours for surveillance testing, provided the other train is OPERABLE. This allowance is based on the reliability analysis assumption of WCAP-10271-P-A (Ref. 8) that 4 hours is the average time required to perform channel surveillance. ## D.1, D.2.1, and D.2.2 Condition D applies to: - Containment Pressure—High 1; - Pressurizer Pressure—Low; - Steam Line Pressure—Low; - Steam Line Differential Pressure—High; - Containment Pressure—High 2; - High Steam Flow in Two Steam Lines Coincident With Tavg—Low Low; and - SG Water level—Low Low. If one channel is inoperable, 6 hours are allowed to restore the channel to OPERABLE status or to place it in the tripped condition. Generally this Condition applies to functions that operate on two-out-of-three logic. Therefore, failure of one channel places the Function in a two-out-of-two configuration. One channel must be tripped to place the Function in a partial trip condition where one-out-of-two Logic will result in actuation. This configuration satisfies redundancy requirements. ### **ACTIONS** ## <u>D.1. D.2.1, and D.2.2</u> (continued) Failure to restore the inoperable channel to OPERABLE status or place it in the tripped condition within 6 hours requires the unit be placed in MODE 3 within the following 6 hours and MODE 4 within the next 6 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. In MODE 4, these Functions are no longer required OPERABLE. The Required Actions are modified by a Note that allows the inoperable channel to be bypassed for up to 4 hours for surveillance testing of other channels. The 6 hours allowed to restore the channel to OPERABLE status or to place the inoperable channel in the tripped condition, and the 4 hours allowed for testing, are justified in Reference 8. ### E.1, E.2.1, and E.2.2 Condition E applies to: - Containment Spray Containment Pressure—High 3; and - Containment Phase B Isolation Containment Pressure— High 3. None of these signals has input to a control function. Thus, two-out-of-three logic is necessary to meet acceptable protective requirements. However, a two-out-of-three design would require tripping a failed channel. This is undesirable because a single failure would then cause spurious containment spray initiation and Phase B isolation. Spurious spray actuation is undesirable because of the cleanup problems presented and Phase B isolation is undesirable because of CCW to RCP thermal barrier and oil cooler isolation. Therefore, these channels are designed with two-out-of-four logic so that a failed channel may be bypassed rather than tripped. Note that one channel may be bypassed and still satisfy the single failure criterion. Furthermore, with one channel bypassed, a single instrumentation channel failure will not spuriously initiate containment spray. ### **BASES** ### **ACTIONS** ## E.1, E.2.1, and E.2.2 (continued) To avoid the inadvertent actuation of containment spray and Phase B containment isolation, the inoperable channel should not be placed in the tripped condition. Instead it is bypassed. Restoring the channel to OPERABLE status, or placing the inoperable channel in the bypass condition within 6 hours, is sufficient to assure that the Function remains OPERABLE and minimizes the time that the Function may be in a partial trip condition (assuming the inoperable channel has failed high). The Completion Time is further justified based on the low probability of an event occurring during this interval. Failure to restore the inoperable channel to OPERABLE status, or place it in the bypassed condition within 6 hours, requires the unit be placed in MODE 3 within the following 6 hours and MODE 4 within the next 6 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. In MODE 4, these Functions are no longer required OPERABLE. The Required Actions are modified by a Note that allows one additional channel to be bypassed for up to 4 hours for surveillance testing. Placing a second channel in the bypass condition for up to 4 hours for testing purposes is acceptable based on the results of Reference 8. ## F.1, F.2.1, and F.2.2 Condition F applies to Manual Initiation of Steam Line Isolation. For the Manual Initiation Function, this action addresses the train orientation of the SSPS. If a train or channel is inoperable, 48 hours is allowed to return it to OPERABLE status. The specified Completion Time is reasonable considering the nature of these Functions, the available redundancy, and the low probability of an event occurring during this interval. If the Function cannot be returned to OPERABLE status, the unit must be placed in MODE 3 within the next 6 hours and MODE 4 within the following 6 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power in an orderly manner and without challenging unit systems. In MODE 4, the unit does not have any analyzed transients or conditions that require the explicit use of the protection function noted above. # ACTIONS (continued) ### G.1, G.2.1, and G.2.2 Condition G applies to the automatic actuation logic and actuation relays for the Steam Line Isolation and AFW actuation Functions. This Condition is intended to address an inoperability of the actuation logic or relays associated with a given train which affects the integrated ESFAS response to an actuation signal. The relatively short Completion Time of this action (6 hours) is based on the fact that multiple ESF components (systems or equipment) within a train are affected by the failure of the actuation logic or relays. This Condition is applicable whenever more than one ESF system is affected by the inoperable train of logic or relays. However, if one or more inoperable actuation relay(s) in a train affect only a single ESF system, then the ACTIONS Condition of the LCO applicable to the affected ESF component or system should be entered and this Condition is not applicable. The action addresses the train orientation of the SSPS and the master and slave relays for these functions. If one train is inoperable, 6 hours are allowed to restore the train to OPERABLE status. The Completion Time for restoring a train to OPERABLE status is reasonable considering that there is another train OPERABLE, and the low probability of an event occurring during this interval. If the train cannot be returned to OPERABLE status, the unit must be brought to MODE 3 within the next 6 hours and MODE 4 within the following 6 hours. The allowed Completion Times are reasonable, based on Reference 8 and operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. Placing the unit in MODE 4 removes all requirements for OPERABILITY of the protection channels and actuation functions. In this MODE, the unit does not have analyzed transients or conditions that require the explicit use of the protection functions noted above. The Required Actions are modified by a Note that allows one train to be bypassed for up to 4 hours for surveillance testing provided the other train is OPERABLE. This allowance is based on the reliability analysis (Ref. 8) assumption that 4 hours is the average time required to perform channel surveillance. ### **BASES** # ACTIONS (continued) ### H.1 and H.2 Condition H applies to the automatic actuation logic and actuation relays for the Turbine Trip and Feedwater Isolation Function. This Condition is intended to address an inoperability of the actuation logic or relays associated with a given train which affects the integrated ESFAS response to an actuation signal. The relatively short Completion Time of this action (6 hours) is based on the fact that multiple ESF components (systems or equipment) within a train are affected by the failure of the actuation logic or relays. This Condition is applicable whenever more than one ESF system is affected by the inoperable train of
logic or relays. However, if one or more inoperable actuation relay(s) in a train affect only a single ESF system, then the ACTIONS Condition of the LCO applicable to the affected ESF component or system should be entered and this Condition is not applicable. This action addresses the train orientation of the SSPS and the master and slave relays for this Function. If one train is inoperable, 6 hours are allowed to restore the train to OPERABLE status or the unit must be placed in MODE 3 within the following 6 hours. The Completion Time for restoring a train to OPERABLE status is reasonable considering that there is another train OPERABLE, and the low probability of an event occurring during this interval. The allowed Completion Time of 6 hours is reasonable, based on Reference 8 and operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging unit systems. These Functions are no longer required in MODE 3. Placing the unit in MODE 3 removes all requirements for OPERABILITY of the protection channels and actuation functions. In this MODE, the unit does not have analyzed transients or conditions that require the explicit use of the protection functions noted above. The Required Actions are modified by a Note that allows one train to be bypassed for up to 4 hours for surveillance testing provided the other train is OPERABLE. This allowance is based on the reliability analysis (Ref. 8) assumption that 4 hours is the average time required to perform channel surveillance. # ACTIONS (continued) # 1.1 and 1.2 Condition I applies to: - SG Water Level High High (P-14); and - Undervoltage Reactor Coolant Pump. If one channel is inoperable, 6 hours are allowed to restore one channel to OPERABLE status or to place it in the tripped condition. For RCP UV, both sensors associated with a given channel must be tripped (or, if applicable, bypassed) to satisfy the requirements of Action I.1. If placed in the tripped condition, the Function is then in a partial trip condition where one-out-of-two logic will result in actuation. The 6 hour Completion Time is justified in Reference 8. Failure to restore the inoperable channel to OPERABLE status or place it in the tripped condition within 6 hours requires the unit to be placed in MODE 3 within the following 6 hours. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging unit systems. In MODE 3, these Functions are no longer required OPERABLE. The Required Actions are modified by a Note that allows the inoperable channel to be bypassed for up to 4 hours for surveillance testing of other channels. The 6 hours allowed to place the inoperable channel in the tripped condition, and the 4 hours allowed for a second channel to be in the bypassed condition for testing, are justified in Reference 8. ### <u>J.1</u> Condition J applies to the AFW pump start on trip of all MFW pumps. This action addresses the loss of one or more MFW pump trip channels on one or more MFW pumps. The failure of any one of the four channels (2 per pump) to actuate would prevent this function from initiating a start of the motor-driven AFW pumps. This Condition is intended to address the loss of this ESFAS function by any number of inoperable channels. In order to ensure this function is OPERABLE and capable of initiating a start of the motor-driven AFW pumps, all inoperable channels must be restored to OPERABLE status prior to the next required TADOT surveillance. The allowance for this function ### **ACTIONS** # <u>J.1</u> (continued) to be lost and the associated Completion Time of prior to the next required TADOT surveillance are acceptable based on the backup nature of this function. This function is not relied on as the primary actuation signal for AFW auto-start in any DBA analysis. # K.1, K.2.1, and K.2.2 Condition K applies to the P-11 and P-12 interlocks. This Condition is applicable when the interlock is inoperable to the extent that an ESFAS function which should not be blocked in the current MODE is blocked. With one channel inoperable, the operator is not required to take any action. With two channels inoperable, the operator must verify that the interlock is in the required state for the existing unit condition. This action manually accomplishes the function of the interlock. Determination must be made within 1 hour. The 1 hour Completion Time is equal to the time allowed by LCO 3.0.3 to initiate shutdown actions in the event of a complete loss of ESFAS function. If the interlock is not in the required state (or placed in the required state) for the existing unit condition, the unit must be placed in MODE 3 within the next 6 hours and MODE 4 within the following 6 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. Placing the unit in MODE 4 removes all requirements for OPERABILITY of these interlocks. # L.1, L.2, L.3.1, and L.3.2 Condition L applies to the automatic actuation logic and actuation relays for the P-4, P-11 and P-12 interlocks. This Condition is applicable when the interlock is inoperable to the extent that an ESFAS function which should not be blocked in the current MODE is blocked. With one train inoperable, the operator must verify that the interlock is in the required state for the existing unit condition. This action manually accomplishes the function of the interlock. Determination must be made within 1 hour. If the interlock is not in the required state (or placed in the required state) for the existing unit condition, the interlock must be restored to OPERABLE status within 6 hours, or the unit must be placed in MODE 3 within the next 6 hours and #### **ACTIONS** # L.1, L.2, L.3.1, and L.3.2 (continued) MODE 5 within the following 30 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. Placing the unit in MODE 5 removes all requirements for OPERABILITY of these interlocks and the automatic actuation logic, SI actuation relays and interlock actuation relays. This Condition is intended to address an inoperability of the actuation logic or relays associated with a given train which affects the integrated ESFAS response to a pressurizer low pressure SI (P-11), steam line low pressure SI/MSLI (P-12), or any auto SI (P-4) actuation signal. The relatively short Completion Time of this action (6 hours) is based on the fact that multiple ESF components (systems or equipment) within a train are affected by the failure of the actuation logic or relays. This Condition is applicable whenever more than one ESF system is affected by the inoperable train of logic or relays. However, if one or more inoperable actuation relay(s) in a train affect only a single ESF system, then the ACTIONS Condition of the LCO applicable to the affected ESF component or system should be entered and this Condition is not applicable. This action addresses the train orientation of the SSPS and the master and slave relays. If one train is inoperable, 6 hours are allowed to restore the train to OPERABLE status. The specified Completion Time is reasonable considering that there is another train OPERABLE, and the low probability of an event occurring during this interval. If the train cannot be restored to OPERABLE status, the unit must be placed in a MODE in which the LCO does not apply. This is done by placing the unit in at least MODE 3 within an additional 6 hours (12 hours total time) and in MODE 5 within an additional 30 hours (42 hours total time). The Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. The Required Actions are modified by a Note that allows one train to be bypassed for up to 4 hours for surveillance testing, provided the other train is OPERABLE. This allowance is based on the reliability analysis assumption that 4 hours is the average time required to perform channel surveillance (Ref. 8). ### SURVEILLANCE REQUIREMENTS The SRs for each ESFAS Function are identified by the SRs column of Table 3.3.2-1. A Note has been added to the SR Table to clarify that Table 3.3.2-1 determines which SRs apply to which ESFAS Functions. Note that each channel of process protection supplies both trains of the ESFAS. When testing channel I, train A and train B must be examined. Similarly, train A and train B must be examined when testing channel II, channel III, and channel IV (if applicable). The CHANNEL CALIBRATION and COTs are performed in a manner that is consistent with the assumptions used in analytically calculating the required channel accuracies. # SR 3.3.2.1 Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. Agreement criteria are based on a combination of the channel instrument uncertainties, including indication and reliability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its
limit. The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels. #### SR 3.3.2.2 SR 3.3.2.2 is the performance of an ACTUATION LOGIC TEST. The SSPS is tested every 31 days on a STAGGERED TEST BASIS, using the semiautomatic tester. The train being tested is placed in the ### SURVEILLANCE REQUIREMENTS # SR 3.3.2.2 (continued) bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection and permissive function excluding the automatic actuation Logic for the trip of all main feedwater pumps. In addition, the master relay coil is pulse tested for continuity. This verifies that the logic modules are OPERABLE and that there is an intact voltage signal path to the master relay coils. The Frequency of every 31 days on a STAGGERED TEST BASIS is adequate. It is based on Reference 8 and industry operating experience, considering instrument reliability and operating history data. # SR 3.3.2.3 SR 3.3.2.3 is the performance of a MASTER RELAY TEST. The MASTER RELAY TEST is the energizing of the master relay, verifying contact operation and a low voltage continuity check of the slave relay coil. Upon master relay contact operation, a low voltage is injected to the slave relay coil. This voltage is insufficient to pick up the slave relay, but large enough to demonstrate signal path continuity. This test is performed every 31 days on a STAGGERED TEST BASIS. The time allowed for the testing (4 hours) and the surveillance interval are justified in Reference 8. #### SR 3.3.2.4 SR 3.3.2.4 is the performance of a COT. A COT is performed on each required channel to ensure the rack components will perform the intended Function. Setpoints must be found within the Allowable Values specified in Table 3.3.2-1. With the exception of P-11, the COT also confirms the channel inputs to both actuation logic trans. The P-11 inputs are tested on an 18 month basis under SR 3.3.2.7. The "as found" values are evaluated to ensure consistency with (i.e., bounded by) the drift allowance used in the setpoint methodology. The setpoint shall be left set consistent with the assumptions of the current unit specific setpoint methodology. # SURVEILLANCE REQUIREMENTS # SR 3.3.2.4 (continued) The Frequency of 92 days is justified in References 6 and 8. # SR 3.3.2.5 SR 3.3.2.5 is the performance of a TADOT every 92 days. This test is a check of the Undervoltage RCP Function. The Function is tested up to the SSPS logic circuit. Setpoints must be found within the Allowable Values specified in Table 3.3.2-1. The test includes undervoltage sensing devices that provide actuation signals directly to the SSPS. The test functionally demonstrates channel OPERABILITY including verification of the trip setpoint. If necessary, the undervoltage setpoint is restored to within calibration tolerance. The Frequency is adequate. It is based on instrument reliability and operating history data. In addition, it is consistent with setpoint uncertainty calculation allowances in Reference 6 and analysis modeled in Reference 8. # SR 3.3.2.6 SR 3.3.2.6 is the performance of a TADOT. This test is a check of the Manual Actuation Functions and the P-4 interlock Function, including turbine trip, automatic SI block, and seal-in of FWI by SI. It is performed every 18 months. Each Manual Actuation Function is tested up to, and including, the master relay coils. In some instances, the test includes actuation of the end device (i.e., pump starts, valve cycles, etc.). The turbine trip by reactor trip (P-4) is independently verified for both trains. The Frequency is adequate, based on industry operating experience and is consistent with the typical refueling cycle and allows testing to be performed during shutdowns when necessary. However, the P-4 input signals to SSPS actuation logic are tested in conjunction with RTB testing under SR 3.3.1.4 on a 31-day STAGGERED TEST BASIS. The SR is modified by a Note that excludes verification of setpoints during the TADOT. The manual initiation and P-4 interlock Functions have no associated setpoints. # SURVEILLANCE REQUIREMENTS (continued) ### SR 3.3.2.7 SR 3.3.2.7 is the performance of a CHANNEL CALIBRATION. A CHANNEL CALIBRATION is performed every 18 months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to measured parameter within the necessary range and accuracy. CHANNEL CALIBRATIONS must be performed consistent with the assumptions of the unit specific setpoint methodology. The "as found" values are evaluated to ensure consistency with (i.e., bounded by) the drift allowance used in the setpoint methodology. The Frequency of 18 months is based on the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint methodology. This SR is modified by a Note stating that this test should include verification that the time constants are adjusted to the prescribed values where applicable. ### SR 3.3.2.8 SR 3.3.2.8 is the performance of a SLAVE RELAY TEST. The SLAVE RELAY TEST is the energizing of the slave relays. Contact operation is verified in one of two ways. Actuation equipment that may be operated in the design mitigation MODE is either allowed to function, or is placed in a condition where the relay contact operation can be verified without operation of the equipment. Actuation equipment that may not be operated in the design mitigation MODE is prevented from operation by the SLAVE RELAY TEST circuit or is tested when there will be no adverse impact on the plant. For this latter case, when using the SLAVE RELAY TEST circuit, contact operation is verified by a continuity check of the circuit containing the slave relay. This test is performed every 18 months. The Frequency is adequate, based on plant operating experience, considering instrument reliability and operating history data. While the ESFAS is designed to accommodate online testing at power, slave relay testing is normally conducted during refueling to minimize the potential for plant transients and unnecessary challenges to plant equipment. # SURVEILLANCE REQUIREMENTS (continued) ### SR 3.3.2.9 This SR ensures the individual channel ESF RESPONSE TIMES are less than or equal to the maximum values assumed in the accident analysis. Response Time testing acceptance criteria are included in the FSAR, Table 7.3-16 (Ref. 9). Individual component response times are not modeled in the analyses. The analyses model the overall or total elapsed time, from the point at which the parameter exceeds the Trip Setpoint value at the sensor, to the point at which the equipment in both trains reaches the required functional state (e.g., pumps at rated discharge pressure, valves in full open or closed position). For channels that include dynamic transfer functions (e.g., lag, lead/lag, rate/lag, etc.), the response time test may be performed with the transfer functions set to one or with the time constants set to their nominal value. The test results must be compared to properly defined acceptance criteria. Response time may be verified by actual tests in any series of sequential, overlapping or total channel measurements, or by summation of allocated sensor response times with actual tests on the remainder of the channel in any series of sequential or overlapping measurements. Allocations for specific pressure and differential pressure sensor response times may be obtained from: (1) historical records based on acceptable response time tests (hydraulic, noise, or power interrupt tests), (2) in place, onsite, or offsite (e.g. vendor) test measurements, or (3) utilizing vendor engineering specifications. WCAP-13632, Revision 2, "Elimination of Pressure Sensor Response Time Testing Requirements," provides the basis and methodology for using allocated sensor response times in the overall verification of the channel response time for specific sensors identified in the WCAP. The allocations for these sensor response times must be verified prior to placing the sensor in operational service and re-verified following maintenance that may adversely affect response time. In general, electric repair work does not impact response time provided the parts used for repair are of the same type and value. One example where time response could be affected is replacing the sensing assembly of a transmitter. Response time verification for other sensor types must be demonstrated by test. ESF RESPONSE TIME tests are conducted on an 18 month STAGGERED TEST BASIS. Each verification shall include at least one Logic train such that both Logic trains are verified at least once per 36 months. Testing of the final actuation devices, which make up # SURVEILLANCE REQUIREMENTS # SR 3.3.2.9 (continued) the bulk of the response time, is included in the testing of each channel. The final actuation device in one train is tested with each channel. Therefore, staggered testing results in response time verification of these devices every 18 months. The 18 month Frequency is consistent with the typical refueling cycle and is based on unit operating experience, which shows that random failures of instrumentation components causing serious response time degradation, but not channel failure, are infrequent occurrences. This SR is modified by a Note that clarifies that the turbine driven AFW pump is tested within 24 hours after reaching 1005 psig in the SGs. Based on operating experience, 24 hours is a sufficient time duration for performance of the TDAFW pump response time test. A steam pressure of 1005 psig corresponds to the RCS no-load T_{avg} for
MODE 2. Valid response time tests can be performed at lower SG pressures. # SR 3.3.2.10 SR 3.3.2.10 is the performance of a TADOT as described in SR 3.3.2.6, except that it is performed for the AFW pump start on trip of all MFW pumps Function and the Frequency is prior to reactor startup if not performed within the previous 92 days. This Frequency is based on operating experience. The SR is modified by a Note that excludes verification of setpoints during the TADOT. The Function tested has no associated setpoint. ### REFERENCES - 1. FSAR, Chapter 6. - 2. FSAR, Chapter 7. - 3. FSAR, Chapter 15. - 4. IEEE-279-1971. - 5. 10 CFR 50.49. - 6. WCAP 13751, FNP RTS/ESFAS Setpoint Methodology Study. # REFERENCES (continued) - 7. NUREG-1218, April 1988. - 8. WCAP-10271-P-A, Supplement 2, Rev. 1, "Updated Approved Version," June 1990. - 9. FSAR, Table 7.3-16 - 10. A 181007 Reactor Protection System FSD. - 11. Westinghouse Functional Diagrams U-166231 thru U-166245. - 12. Joseph M. Farley Nuclear Power Plant Unit 1 (2) Precautions, Limitations, and Setpoints U–266647 (U–280912). # **B 3.3 INSTRUMENTATION** # B 3.3.3 Post Accident Monitoring (PAM) Instrumentation ### **BASES** #### **BACKGROUND** The primary purpose of the PAM instrumentation is to display unit variables that provide information required by the control room operators during accident situations. This information provides the necessary support for the operator to take the manual actions for which no automatic control is provided and that are required for safety systems to accomplish their safety functions for Design Basis Accidents (DBAs). The OPERABILITY of the accident monitoring instrumentation ensures that there is sufficient information available on selected unit parameters to monitor and to assess unit status and behavior following an accident. The availability of accident monitoring instrumentation is important so that responses to corrective actions can be observed and the need for, and magnitude of, further actions can be determined. These essential instruments are identified by unit specific documents (Ref. 1) addressing the recommendations of Regulatory Guide 1.97 (Ref. 2) as required by Supplement 1 to NUREG-0737 (Ref. 3). The instrument channels required to be OPERABLE by this LCO include two classes of parameters identified during unit specific implementation of Regulatory Guide 1.97 as Type A and certain Category I variables. Type A variables are included in this LCO because they provide the primary information required for the control room operator to take specific manually controlled actions for which no automatic control is provided, and that are required for safety systems to accomplish their safety functions for DBAs. Category I variables are the key variables deemed risk significant because they are needed to: Determine whether other systems important to safety are performing their intended functions; # BACKGROUND (continued) - Provide information to the operators that will enable them to determine the likelihood of a gross breach of the barriers to radioactivity release; and - Provide information regarding the release of radioactive materials to allow for early indication of the need to initiate action necessary to protect the public, and to estimate the magnitude of any impending threat. These key variables are identified by the unit specific Regulatory Guide 1.97 analyses (Ref. 1). These analyses identify the unit specific Type A and Category I variables and provide justification for deviating from the NRC proposed list of Category I variables. The specific instrument Functions listed in Table 3.3.3-1 are discussed in the LCO section. # APPLICABLE SAFETY ANALYSES The PAM instrumentation ensures the operability of Regulatory Guide 1.97 Type A and certain Category I variables so that the control room operating staff can: - Perform the diagnosis specified in the emergency operating procedures (these variables are restricted to preplanned actions for the primary success path of DBAs), e.g., loss of coolant accident (LOCA); - Take the specified, pre-planned, manually controlled actions, for which no automatic control is provided, and that are required for safety systems to accomplish their safety function; - Determine whether systems important to safety are performing their intended functions; - Determine the likelihood of a gross breach of the barriers to radioactivity release; - Determine if a gross breach of a barrier has occurred; and - Initiate action necessary to protect the public and to estimate the magnitude of any impending threat. # APPLICABLE SAFETY ANALYSES (continued) PAM instrumentation that meets the definition of Type A in Regulatory Guide 1.97 satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). The specified Category I, non-Type A, instrumentation must be retained in TS because it is intended to assist operators in minimizing the consequences of accidents. Therefore, these Category I, non-Type A, variables are important for reducing public risk. #### LCO The PAM instrumentation LCO provides OPERABILITY requirements for Regulatory Guide 1.97 Type A monitors, which provide information required by the control room operators to perform certain manual actions specified in the unit Emergency Operating Procedures. These manual actions ensure that a system can accomplish its safety function, and are credited in the safety analyses. Additionally, this LCO addresses certain Regulatory Guide 1.97 instruments that have been designated Category I, non-Type A and one instrument (Hydrogen Monitors) that is neither Category I nor Type A that has been included in this LCO due to its post accident function. The OPERABILITY of the PAM instrumentation ensures there is sufficient information available on selected unit parameters to monitor and assess unit status following an accident. This capability is consistent with the recommendations of Reference 1. LCO 3.3.3 requires two OPERABLE channels for most Functions. Two OPERABLE channels ensure no single failure prevents operators from getting the information necessary for them to determine the safety status of the unit, and to bring the unit to and maintain it in a safe condition following an accident. Furthermore, OPERABILITY of two channels allows a CHANNEL CHECK during the post accident phase to confirm the validity of displayed information. Table 3.3.3-1 lists all Type A and certain Category I variables identified by the unit specific Regulatory Guide 1.97 analyses, as amended by the NRC's SER. # LCO (continued) Type A and Category I variables are required to meet Regulatory Guide 1.97 Category I (Ref. 2) design and qualification requirements for seismic and environmental qualification, single failure criterion, utilization of emergency standby power, immediately accessible display, continuous readout, and recording of display. Listed below are discussions of the specified instrument Functions listed in Table 3.3.3-1. # 1, 2. Reactor Coolant System (RCS) Hot and Cold Leg Temperatures (Wide Range) RCS Hot and Cold Leg Temperatures are Category I, Type A variables provided for verification of core cooling and long term surveillance. RCS hot and cold leg temperatures are used to determine RCS subcooling margin. RCS subcooling margin will allow termination of safety injection (SI), if still in progress, or reinitiation of SI if it has been stopped. RCS subcooling margin is also used for unit stabilization and cooldown control. In addition, RCS cold leg temperature is used in conjunction with RCS hot leg temperature to verify the unit conditions necessary to establish natural circulation in the RCS. Reactor inlet and outlet temperature inputs to the Reactor Protection System are provided by two fast response resistance elements in each loop. The channels provide indication over a range of 0°F to 700°F. # 3. Reactor Coolant System Pressure (Wide Range) RCS wide range pressure is a Category I, Type A variable provided for verification of core cooling and RCS integrity long term surveillance. RCS pressure is used to verify delivery of SI flow to RCS from at least one train when the RCS pressure is below the pump shutoff head. RCS pressure is also used to verify closure of manually closed spray line valves and pressurizer power operated relief valves (PORVs). LCO # 3. Reactor Coolant System Pressure (Wide Range) (continued) In addition to these verifications, RCS pressure is used for determining RCS subcooling margin. RCS subcooling margin will allow termination of SI, if still in progress, or reinitiation of SI if it has been stopped. RCS pressure can also be used: - to determine whether to terminate actuated SI or to reinitiate stopped SI; - to determine when to reset SI and shut off low head SI; - to manually restart low head SI; - as reactor coolant pump (RCP) trip criteria; and - to make a determination on the nature of the accident in progress and where to go next in the procedure. RCS subcooling margin is also used for unit stabilization and cooldown control. RCS pressure is also related to three decisions about depressurization. They are: - to determine whether to proceed with primary system depressurization: - to verify termination of depressurization; and - to determine whether to close accumulator isolation valves during a controlled cooldown/depressurization. A final use of RCS pressure is to determine whether to operate the pressurizer heaters. RCS pressure is also a Type A variable because the operator uses this indication to monitor the cooldown of the RCS following a steam generator tube rupture (SGTR) or small break LOCA. Operator actions to maintain a controlled cooldown, such as adjusting steam generator (SG) pressure or level, would use this indication. Furthermore, RCS pressure is one factor that may be used in decisions to terminate RCP operation. # LCO (continued) # 4. Steam Generator Water Level (Wide and Narrow Range) SG Water Level is provided to monitor operation of decay
heat removal via the SGs. The Category I, Type A indication of SG level includes both the wide and narrow range instrumentation. The wide range level covers a span of 12 inches to 587 inches above the lower tubesheet. The measured differential pressure is displayed in percent level at 70°F. Temperature compensation of this indication is performed manually by the operator. Redundant monitoring capability is provided by multiple level channels on each SG. The uncompensated level signal is input to the plant computer and a control room indicator. # SG Water Level is used to: - identify the faulted SG following a tube rupture; - verify that the intact SGs are an adequate heat sink for the reactor; - determine the nature of the accident in progress (e.g., verify an SGTR); and - verify unit conditions for termination of SI. Operator action is based on the control room indication of SG level. SG level is a Type A variable because the operator must manually raise and control SG level to establish the required heat sink. Operator action is initiated on a loss of minimum level or minimum AFW flow. Feedwater flow is increased until the indicated level reaches a point where an adequate heat sink is being maintained. # 5. Refueling Water Storage Tank (RWST) Level The RWST level is a Category I, Type A variable provided for verifying a water source to the Emergency Core Cooling Systems (ECCS) and Containment Spray System. It is used to determine the time for initiation of cold leg recirculation following a LOCA. The RWST level accuracy is established to allow an adequate supply of water to the ECCS and spray pumps during the #### LCO # 5. Refueling Water Storage Tank (RWST) Level (continued) switchover to cold leg recirculation mode. A high degree of accuracy is required to maximize the time available to the operator to complete the switchover to the sump recirculation phase and ensure sufficient water is available to avoid losing pump suction. # 6. <u>Containment Pressure (Narrow Range)</u> Containment Pressure (Narrow Range) is a Category I, Type A variable provided for verification of RCS and containment OPERABILITY. Containment pressure is used to verify closure of main steam isolation valves (MSIVs) on High-2 Main Steam Line Isolation, and containment spray Phase B isolation when High-3 containment pressure is reached as well as manual actuation of containment spray if necessary. # 7. <u>Pressurizer Level</u> Pressurizer Level is a Category I, Type A variable used to determine whether to terminate SI, if still in progress, or to reinitiate SI if it has been stopped. Knowledge of pressurizer water level is also used to_verify that the unit is maintained in a safe shutdown condition. #### 8. Steam Line Pressure Main Steam line pressure is a Category I, Type A variable provided for the following: - Determining if a high energy secondary line rupture occurred and which SG is faulted; - Maintaining the plant in a cold shutdown condition; - Monitoring the primary to SG differential pressure during plant cooldown rate; and - Providing diverse indication to cold leg temperature for natural circulation determination. ### LCO # 8. Steam Line Pressure (continued) Two channels of main steam pressure per SG are required OPERABLE. The instrumentation has sufficient accuracy to determine the faulted SG and to verify cold leg temperature for natural circulation. # 9. Auxiliary Feedwater Flow AFW Flow is provided to monitor operation of decay heat removal via the SGs. The AFW Flow to each SG is determined from a differential pressure measurement calibrated for a range of 0 gpm to 800 gpm. One flow indication channel per SG is provided. Each differential pressure transmitter provides an input to a control room indicator and the plant computer. Since the primary indication used by the operator during an accident is the control room indicator, the PAM specification deals specifically with this portion of the instrument channel. # AFW flow is used three ways: - to verify delivery of AFW flow to the SGs; - to determine whether to terminate SI if still in progress, in conjunction with SG water level (narrow range); and - to regulate AFW flow so that the SG tubes remain covered. AFW flow is a Category I, Type A variable because it is used by the operator to verify that the AFW System is delivering the correct flow to each SG and to identify a faulted SG or a SG with a tube rupture. However, the primary indication used by the operator to ensure an adequate inventory is SG level. # LCO (continued) # 10. RCS Subcooling Margin Monitor RCS subcooling is a Category II, Type A variable provided to determine safety injection termination and reinitiation and depressurization and cooldown progression. The subcooled margin monitor (SMM) measures saturation/superheat margin. The function of the SMM is to calculate the subcooled margin which is the difference between the measured temperature of the reactor coolant and the saturation temperature. The saturation temperature is calculated from the minimum primary system pressure input. A maximum or representative temperature input is used for the measured value, which could come from an RTD loop, or a representative core exit thermocouple. # 11. Containment Sump Water Level (Wide Range) Containment Sump Water Level is a Category I, Type A variable provided for verification and long term surveillance of RCS integrity. This information provides a diverse means for checking RWST level. Containment Sump Water Level is used to determine: - containment sump level accident diagnosis; and - when to begin the recirculation procedure. # 12, 13, 14, 15. <u>Core Exit Temperature</u> Core Exit Temperature is provided for verification and long term surveillance of core cooling. Adequate monitoring of core cooling is ensured with two valid Core Exit Temperature channels per quadrant with two core exit thermocouples (CETs) per required channel. The CET pair are oriented radially to permit evaluation of core radial decay power distribution. Core Exit Temperature is used to determine whether to terminate SI, if still in progress, or to reinitiate SI if it has been stopped. Core Exit Temperature is also used for unit stabilization and cooldown control. # LCO 12, 13, 14, 15. Core Exit Temperature (continued) Two OPERABLE channels of Core Exit Temperature are required in each quadrant to provide indication of radial distribution of the coolant temperature rise across representative regions of the core. Power distribution symmetry was considered in determining the specific number and locations provided for diagnosis of local core problems. The two thermocouples in each channel must be located such that the pair of Core Exit Temperatures indicate the radial temperature gradient across their core quadrant consistent with the requirements of NUREG — 0737 (Ref. 3). Two sets of two thermocouples ensure a single failure will not disable the ability to determine the radial temperature gradient. # 16. Reactor Vessel Water Level Reactor Vessel Water Level is a Category I variable provided for verification and long term surveillance of core cooling. It is also used for accident diagnosis and to determine reactor coolant inventory adequacy. A channel is a probe with eight sensors. A channel is OPERABLE if at least four sensors are OPERABLE. The reactor vessel water level is derived from the heated junction thermocouple (HJTC) system. The HJTC system is part of the inadequate core cooling monitoring system (ICCMS). The HJTC system consists of thermocouples strategically located at different heights in the reactor vessel. The reactor vessel water level indicating system provides an indirect measurement of the collapsed liquid level at various plateaus above the upper core plate. The collapsed level represents the amount of liquid mass that is in the reactor vessel above the upper core plate. Measurement of the collapsed liquid level is selected because it is a direct indication of the water inventory. # (continued) # 17. Condensate Storage Tank (CST) Level CST Level is provided to ensure water supply for auxiliary feedwater (AFW). The CST provides the ensured safety grade water supply for the AFW System. The CST consists of a tank and outlet header. Inventory is monitored by two .5—11 feet of water indications for the tank. CST Level is displayed on control room indicators, and plant computer. In addition, control room annunciators alarm on low and low-low level. CST Level is considered a Category I, Type A variable because the control room meter and annunciator are considered the primary indication used by the operator. The DBAs that require AFW are the loss of offsite power, steam line break (SLB), and small break LOCA. The CST is the initial source of water for the AFW System. However, as the CST is depleted, manual operator action is necessary to replenish the CST or align suction to the AFW pumps from the Service Water System. #### 18. <u>Hydrogen Monitors</u> Hydrogen Monitors are provided to detect high hydrogen concentration conditions that represent a potential for containment breach from a hydrogen explosion. This variable is also important in verifying the adequacy of mitigating actions. The Hydrogen Monitors are not Type A or Category I instrumentation (Ref. 1). They are included in this LCO due to their post accident function and to maintain consistency with the location of this instrumentation in the Standard Westinghouse Technical Specifications. # 19. Containment Area Radiation (High Range) Containment Area Radiation is a Category I variable provided to monitor for the potential of significant radiation releases and to provide release assessment for use by operators in determining the need to invoke site emergency plans. Containment radiation level is used to determine if a high energy line break (HELB) has occurred, and whether the event is inside or outside of containment. ### **APPLICABILITY** The PAM instrumentation LCO
is applicable in MODES 1, 2, and 3. These variables are related to the diagnosis and pre-planned actions required to mitigate DBAs. The applicable DBAs are assumed to occur in MODES 1, 2, and 3. In MODES 4, 5, and 6, unit conditions are such that the likelihood of an event that would require PAM instrumentation is low; therefore, the PAM instrumentation is not required to be OPERABLE in these MODES. ### **ACTIONS** Note 1 has been added in the ACTIONS to exclude the MODE change restriction of LCO 3.0.4. This exception allows entry into the applicable MODE while relying on the ACTIONS even though the ACTIONS may eventually require unit shutdown. This exception is acceptable due to the passive function of the instruments, the operator's ability to respond to an accident using alternate instruments and methods, and the low probability of an event requiring these instruments. Note 2 has been added in the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed on Table 3.3.3-1. The Completion Time(s) of the inoperable channel(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function. # <u>A.1</u> Condition A applies when one or more Functions have one required channel that is inoperable. Required Action A.1 requires restoring the inoperable channel to OPERABLE status within 30 days. The 30 day Completion Time is based on operating experience and takes into account the remaining OPERABLE channel (or in the case of a Function that has only one required channel, other non-Regulatory Guide 1.97 instrument channels to monitor the Function), the passive nature of the instrument (no critical automatic action is assumed to occur from these instruments), and the low probability of an event requiring PAM instrumentation during this interval. # ACTIONS (continued) # <u>B.1</u> Condition B applies when the Required Action and associated Completion Time for Condition A are not met. This Required Action specifies initiation of actions in Specification 5.6.8, which requires a written report to be submitted to the NRC. This report discusses the results of the root cause evaluation of the inoperability, if performed, and identifies proposed restorative actions. This action is appropriate in lieu of a shutdown requirement since alternative actions are identified before loss of functional capability, and given the likelihood of unit conditions that would require information provided by this instrumentation. # <u>C.1</u> Condition C applies when one or more Functions have two inoperable required channels (i.e., two channels inoperable in the same Function). Required Action C.1 requires restoring one channel in the Function(s) to OPERABLE status within 7 days. The Completion Time of 7 days is based on the relatively low probability of an event requiring PAM instrument operation and the availability of alternate means to obtain the required information. Continuous operation with two required channels inoperable in a Function is not acceptable because the alternate indications may not fully meet all performance qualification requirements applied to the PAM instrumentation. Therefore, requiring restoration of one inoperable channel of the Function limits the risk that the PAM Function will be in a degraded condition should an accident occur. Condition C is modified by a Note that excludes hydrogen monitor channels. ### <u>D.1</u> Condition D applies when two hydrogen monitor channels are inoperable. Required Action D.1 requires restoring one hydrogen monitor channel to OPERABLE status within 72 hours. The 72 hour Completion Time is reasonable based on the backup capability of the Post Accident Sampling System to monitor the hydrogen concentration for evaluation of core damage and to provide information for operator decisions. Also, it is unlikely that a LOCA (which would cause core damage) would occur during this time. # ACTIONS (continued) # <u>E.1</u> Condition E applies when the Required Action and associated Completion Time of Condition C or D are not met. Required Action E.1 requires entering the appropriate Condition referenced in Table 3.3.3-1 for the channel immediately. The applicable Condition referenced in the Table is Function dependent. Each time an inoperable channel has not met any Required Action of Condition C or D, and the associated Completion Time has expired, Condition E is entered for that channel and provides for transfer to the appropriate subsequent Condition. # F.1 and F.2 If the Required Action and associated Completion Time of Conditions C or D are not met and Table 3.3.3-1 directs entry into Condition F, the unit must be brought to a MODE where the requirements of this LCO do not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # G.1 Alternate means of monitoring Reactor Vessel Water Level and Containment Area Radiation have been developed. These alternate means may be utilized if the normal PAM channel cannot be restored to OPERABLE status within the allotted time. If these alternate means are used, the Required Action is not to shut down the unit but rather to follow the directions of Specification 5.6.8, in the Administrative Controls section required to mitigate of the TS. The report provided to the NRC should discuss the alternate means used, describe the degree to which the alternate means are equivalent to the installed PAM channels, justify the areas in which they are not equivalent, and provide a schedule for restoring the normal PAM channels. The alternate means of monitoring the affected PAM Channel should be identified or installed, if necessary, prior to submitting the report to the NRC. An acceptable alternate means of monitoring Reactor Vessel Water Level is to monitor pressurizer level and upperhead subcooling. # SURVEILLANCE REQUIREMENTS A Note has been added to the SR Table to clarify that SR 3.3.3.1 and SR 3.3.3.2 apply to each PAM instrumentation Function in Table 3.3.3-1. ### SR 3.3.3.1 Performance of the CHANNEL CHECK once every 31 days ensures that a gross instrumentation failure has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. The high radiation instrumentation should be compared to similar unit instruments. Agreement criteria are based on a combination of the channel instrument uncertainties, including isolation, indication, and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. If the channels are within the criteria, it is an indication that the channels are OPERABLE. As specified in the SR, a CHANNEL CHECK is only required for those channels that are normally energized. The Frequency of 31 days is based on operating experience that demonstrates that channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels. ### SR 3.3.3.2 A CHANNEL CALIBRATION is performed every 18 months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to measured parameter with the necessary range and accuracy. # SURVEILLANCE REQUIREMENTS # SR 3.3.3.2 (continued) The hydrogen monitors are calibrated using sample gases containing: - a. Ten volume percent hydrogen, balance nitrogen, for zero check. - b. Ten volume percent hydrogen, balance nitrogen, mixed with compressed air, for span check. The Frequency is based on operating experience and consistency with the typical industry refueling cycle. # **REFERENCES** - A-181866 Unit 1 RG 1.97 Compliance Review A-204866 Unit 2 RG 1.97 Compliance Review NRC SER for FNP RG 1.97 Compliance Report, Letter, Reeves to McDonald, 2/12/87. - 2. Regulatory Guide 1.97. - 3. NUREG-0737, Supplement 1, "TMI Action Items." # Table B 3.3.3-1 (page 1 of 1) Post Accident Monitoring Instrumentation | PAM INSTRUMENTATION | TPNS | |---|---| | RCS Hot Leg Temperature (Wide Range) | TE-413, TE-423, TE-433 | | RCS Cold Leg Temperature (Wide Range) | TE-410, TE-420, TE-430 | | RCS Pressure (Wide Range) | PT-402, PT-403 | | Steam Generator (SG) Water Level | Wide Range - LT-477, LT-487, LT-497 | | | Narrow Range – LT-474, LT-475, LT-476
LT-484, LT-485, LT-486
LT-494, LT-495, LT-496 | | Refueling Water Storage Tank Level | LT-501, LT-502 | | Containment Pressure (Narrow Range) | PT-950, PT-951, PT-952, PT-953 | | Pressurizer Water Level | LT-459, LT-460, LT-461 | | Steam Line Pressure | PT-474, PT-475, PT-476
PT-484, PT-485, PT-486
PT-494, PT-495, PT-496 | | Auxiliary Feewater Flow Rate | FT-3229A, FT-3229B, FT-3229C | | RCS Subcooling Margin Monitor | Q1(2) H11NGCCM2523A&B | | Containment Water Level (Wide Range) | LT-3594A, LT-3594B | | Core Exit Temperature | TE-2301 - TE-2351 | | Reactor Vessel Level Indicating System | LE-2352,
LE-2353 | | Condensate Storage Tank Level | LT-515, LT-516 | | Hydrogen Monitors | AIT-2703A, AIT-2703B | | Containment Area Radiation (High Range) | RE-27A, RE-27B | ### **B 3.3 INSTRUMENTATION** # B 3.3.4 Remote Shutdown System ### **BASES** #### **BACKGROUND** The Remote Shutdown System provides the control room operator with sufficient instrumentation and controls to place and maintain the unit in a safe shutdown condition from a location other than the control room. This capability is necessary to protect against the possibility that the control room becomes inaccessible. A safe shutdown condition is defined as MODE 3. With the unit in MODE 3, the Auxiliary Feedwater (AFW) System and the steam generator (SG) atmospheric relief valves (ARVs) can be used to remove core decay heat and meet all safety requirements. The long term supply of water for the AFW System and the ability to borate the Reactor Coolant System (RCS) from outside the control room allows extended operation in MODE 3. If the control room becomes inaccessible, the operators can establish control at the hot shutdown panels, and place and maintain the unit in MODE 3. Not all controls and necessary transfer switches are located at the hot shutdown panels. Some controls and transfer switches will have to be operated locally at the switchgear, motor control centers, or other local stations. The unit automatically reaches MODE 3 following a unit shutdown and can be maintained safely in MODE 3 for an extended period of time. The OPERABILITY of the remote shutdown control and instrumentation functions ensures there is sufficient information available on selected unit parameters to place and maintain the unit in MODE 3 should the control room become inaccessible. # APPLICABLE SAFETY ANALYSES The Remote Shutdown System is required to provide equipment at appropriate locations outside the control room with a capability to promptly shut down and maintain the unit in a safe condition in MODE 3. The criteria governing the design and specific system requirements of the Remote Shutdown System are located in 10 CFR 50, Appendix A, GDC 19 (Ref. 1). # APPLICABLE SAFETY ANALYSES (continued) The Remote Shutdown System is considered an important contributor to the reduction of unit risk to accidents and as such it has been retained in the Technical Specifications as indicated in 10 CFR 50.36(c)(2)(ii). ### LCO The Remote Shutdown System LCO provides the OPERABILITY requirements of the instrumentation and controls necessary to place and maintain the unit in MODE 3 from a location other than the control room. The instrumentation and controls required are listed in Table 3.3.4-1 in the accompanying LCO. The controls, instrumentation, and transfer switches (where applicable) are required for: - Core reactivity control (initial and long term); - RCS pressure control; - Decay heat removal via the AFW System and SG ARVs; - RCS inventory control via charging flow; and - Safety support systems for the above Functions, including service water, component cooling water, and onsite power, including the diesel generators. A Function of a Remote Shutdown System is OPERABLE if all instrument and control channels needed to support the Remote Shutdown System Function are OPERABLE. However, not all control and transfer circuits in every system identified on Table 3.3.4-1 are required OPERABLE in order to support the required remote shutdown function. For example, the capability to remotely operate a single AFW pump and associated flow control valve and at least one associated SG atmospheric relief valve support an OPERABLE decay heat removal function. All the control and transfer circuits associated with all three AFW pumps do not have to be OPERABLE to support an OPERABLE decay heat removal function. A remote shutdown function is not inoperable until insufficient control and transfer circuits remain OPERABLE to perform the required function. # LCO (continued) The remote shutdown instrument and control circuits covered by this LCO do not need to be energized to be considered OPERABLE. This LCO is intended to ensure the instruments and control circuits will be OPERABLE if unit conditions require that the Remote Shutdown System be placed in operation. # **APPLICABILITY** The Remote Shutdown System LCO is applicable in MODES 1, 2, and 3. This is required so that the unit can be placed and maintained in MODE 3 for an extended period of time from a location other than the control room. This LCO is not applicable in MODE 4, 5, or 6. In these MODES, the facility is already subcritical and in a condition of reduced RCS energy. Under these conditions, considerable time is available to restore necessary instrument control functions if control room instruments or controls become unavailable. # **ACTIONS** Note 1 is included which excludes the MODE change restriction of LCO 3.0.4. This exception allows entry into an applicable MODE while relying on the ACTIONS even though the ACTIONS may eventually require a unit shutdown. This exception is acceptable due to the low probability of an event requiring the Remote Shutdown System and because the equipment can generally be repaired during operation without significant risk of spurious trip. Note 2 has been added to the ACTIONS to clarify the application of Completion Time rules. Separate Condition entry is allowed for each Function listed on Table 3.3.4-1. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function. ### <u>A.1</u> Condition A addresses the situation where one or more required Functions of the Remote Shutdown System are inoperable. This includes any Function listed in Table 3.3.4-1, as well as the control and transfer switches. ### **ACTIONS** # A.1 (continued) The Required Action is to restore the required Function to OPERABLE status within 30 days. The Completion Time is based on operating experience and the low probability of an event that would require evacuation of the control room. # **B.1** and **B.2** A Note modifies Condition B indicating that it is not applicable to the Source Range Neutron Flux (Gammametrics) Function. This Function is covered under Condition C. If the Required Action and associated Completion Time of Condition A is not met, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # **C.1** Condition C applies when the Required Action and associated Completion Time for Condition A are not met for the Source Range Neutron Flux (Gammametrics) monitor. This Required Action requires a written report be submitted to the NRC. This report discusses the results of the root cause evaluation of the inoperability, if performed, and identifies proposed restorative actions. This action is appropriate in lieu of a shutdown requirement since alternative actions are identified before loss of functional capability, and given the likelihood of unit conditions that would require information provided by this instrumentation. # SURVEILLANCE REQUIREMENTS # SR 3.3.4.1 Performance of the CHANNEL CHECK once every 31 days ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter ### SURVEILLANCE REQUIREMENTS # **SR 3.3.4.1** (continued) should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying that the instrumentation continues to operate properly between each CHANNEL CALIBRATION. Agreement criteria are based on a combination of the channel instrument uncertainties, including indication and readability. If the channels are within the criteria, it is an indication that the channels are OPERABLE. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. As specified in the Surveillance, a CHANNEL CHECK is only required for those channels which are normally energized. The Frequency of 31 days is based upon operating experience which demonstrates that channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels. #### SR 3.3.4.2 SR 3.3.4.2 verifies each required Remote Shutdown System control circuit and transfer switch performs the intended function. This verification is performed from the remote shutdown panel and locally, as appropriate. Operation of the equipment from the remote shutdown panel is not necessary. The Surveillance can be satisfied by performance of a continuity check. This will ensure that if the control room becomes inaccessible, the unit can be placed and maintained in MODE 3 from the remote shutdown panel and the local control stations. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. (However. this Surveillance is not required to be performed only during a unit outage.) Operating experience demonstrates that remote shutdown control channels usually pass the Surveillance test when performed at the 18 month Frequency. # SURVEILLANCE
REQUIREMENTS (continued) # SR 3.3.4.3 CHANNEL CALIBRATION is a complete check of the monitoring instrument loop and the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. The Frequency of 18 months is based upon operating experience and consistency with the typical industry refueling cycle. # **REFERENCES** 1. 10 CFR 50, Appendix A, GDC 19. #### **B3.3 INSTRUMENTATION** B 3.3.5 Loss of Power (LOP) Diesel Generator (DG) Start Instrumentation ### **BASES** ### BACKGROUND Successful operation of the required safety functions of the Engineered Safety Features (ESF) systems is dependent upon the availability of adequate power sources for energizing the various components such as pump motors, motor operated valves, and the associated control components. Offsite power is the preferred source of power for the 4.16 kV emergency buses which power the required ESF components. The LOP instrumentation monitors the voltage on each train of 4.16 kV buses. The first level of protection provided by the LOP instrumentation consists of an anticipatory degraded grid voltage alarm. If bus voltage continues to decrease below the LOP degraded grid voltage alarm setpoint, the second level of protection, the sustained degraded grid voltage actuation relays, will automatically disconnect the 4.16 kV emergency buses from the offsite power source (after a time delay) causing a loss of voltage condition which will result in the 4.16 kV emergency buses being automatically connected to the onsite emergency diesel generators (EDG). If the 4.16 kV emergency bus voltage continues to decrease below the degraded grid voltage relay setpoint, the final level of protection, the loss of voltage actuation relays, will automatically disconnect the 4.16 kV buses from the offsite power source (if not already disconnected by the degraded grid voltage relays) and connect the buses to the EDG power sources. Each train of 4.16 kV emergency buses has its own independent LOP relay actuation instrumentation and associated trip logic for detecting loss of voltage and sustained degraded voltage conditions and initiating an LOP start signal to the EDGs. The LOP relay actuation instrumentation monitors the voltage on the F and G 4.16 kV buses. This LOP instrumentation consists of three loss of voltage relays with inverse time characteristics arranged in a two-out-of-three logic to generate an LOP signal if the voltage is below 78.2% of 4160V and three degraded grid undervoltage relays with inverse time characteristics arranged in a two-out-of-three logic to generate an LOP signal if the voltage is below 88.3% of 4160V. The relay time dials are set to initiate separation from the grid as quickly as possible for degraded or loss of voltage conditions while preventing separation for expected system disturbances. # BACKGROUND (continued) Each train of 4.16 kV emergency buses also has a single independent channel of LOP degraded grid voltage alarm instrumentation (monitoring the F and G buses) to provide an anticipatory alarm. The degraded grid voltage alarms are set at 92.5% of 4160V, which is higher than the LOP sustained degraded grid voltage actuation relays. The alarm allows manual actions to be initiated to restore the emergency bus voltage to assure adequate voltage is maintained for the required ESF loads without initiating an automatic separation from the grid. The LOP alarm instrumentation has a time delay which is sufficient to reduce the possibility of nuisance alarms for expected transients, while permitting prompt detection of potential low voltage conditions. The LOP instrumentation is also discussed in FSAR, Section 8.3 (Ref.1). # Alarm/Trip Setpoints and Allowable Values The actual nominal Alarm/Trip Setpoint entered into the device is normally still more conservative than that required by the Allowable Value. If the measured setpoint does not exceed the Allowable Value, the relay is considered OPERABLE. Setpoints adjusted in accordance with the Allowable Value ensure that the consequences of accidents will be acceptable, providing the unit is operated from within the LCOs at the onset of the accident and that the equipment functions as designed. Allowable Values and/or Alarm/Trip Setpoints are specified for each Function in the LCO. Nominal Alarm or Trip Setpoints are also specified in the unit specific setpoint calculations. The nominal setpoints are selected to ensure that the setpoint measured by the surveillance procedure does not exceed the Allowable Value if the device is performing as required. If the measured setpoint does not exceed the Allowable Value, the device is considered OPERABLE. Operation with an Alarm or Trip Setpoint less conservative than the nominal value, but within the Allowable Value, is acceptable provided that operation and testing is consistent with the assumptions of the unit specific setpoint calculation. Each Allowable Value and/or Alarm/Trip Setpoint specified is more conservative than the analytical limit assumed in the transient and accident analyses in order to account for instrument uncertainties appropriate to the trip function. These uncertainties are defined in WCAP - 13751, "RTS/ESFAS Setpoint Methodology Study" (Ref. 3). # APPLICABLE SAFETY ANALYSES The LOP DG start instrumentation is required for the ESF Systems to function in any accident with a loss of offsite power. Its design basis is that of the ESF Actuation System (ESFAS). Accident analyses credit the loading of the DG based on the loss of offsite power during a loss of coolant accident (LOCA). The actual DG start has historically been associated with the ESFAS actuation. The DG loading has been included in the delay time associated with each safety system component requiring DG supplied power following a loss of offsite power. The degraded grid voltage LOP alarm instrumentation provides notification to control room operators that a reduced voltage condition exists on a 4.16 kV emergency bus. In this reduced voltage condition, offsite power is adequate for normal operating conditions, however, the available power may be marginal for some ESF equipment required to mitigate a LOCA. The degraded grid voltage LOP alarm instrumentation allows the initiation of manual actions to restore the bus voltage and protect the required ESF LOCA loads from the reduced voltage condition without initiating an unnecessary automatic disconnect from the preferred offsite power source. The occurrence of a degraded grid voltage alarm condition credits manual actions to mitigate the condition and to ensure adequate voltage is maintained on the 4.16 kV emergency buses. The required channels of LOP DG start instrumentation, in conjunction with the ESF systems powered from the DGs, provide unit protection in the event of any of the analyzed accidents discussed in FSAR, Section 15 (Ref. 2), in which a loss of offsite power is assumed. The delay times assumed in the safety analysis for the ESF equipment include the 12 second DG start delay, and the appropriate sequencing delay, if applicable. The response times for ESFAS actuated equipment in LCO 3.3.2, "Engineered Safety Feature Actuation System (ESFAS) Instrumentation," include the appropriate DG loading and sequencing delay. The LOP DG start instrumentation channels satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO The LCO for LOP DG start instrumentation requires that three channels per train of both the loss of voltage and degraded voltage Functions shall be OPERABLE in MODES 1, 2, 3, and 4 when the LOP DG start instrumentation supports safety systems associated with the ESFAS. In MODES 5 and 6, the three channels must be OPERABLE whenever the associated DG is required to be OPERABLE to ensure that the automatic start of the DG is available when needed. Loss of the LOP DG Start Instrumentation Function could result in the delay of safety systems initiation when required. This could lead to unacceptable consequences during accidents. During the loss of offsite power the DG powers the motor driven auxiliary feedwater pumps. Failure of these pumps to start would leave only one turbine driven pump, as well as an increased potential for a loss of decay heat removal through the secondary system. In addition, the LCO requires one channel of the degraded grid alarm function per train of 4.16 kV emergency buses to be OPERABLE in MODES 1, 2, 3, and 4. The required alarm channels include the Digital Voltmeter Relay Contacts (LO-27V) on buses F and G and the associated alarm annunciators WE2, VE2 (Unit 1) and YE2, ZE2 (Unit 2). The alarm channels provide assurance that manual actions are taken to restore bus voltage and protect the required ESF LOCA loads from a degraded grid voltage condition. ## APPLICABILITY The LOP DG Start Instrumentation Functions are required in MODES 1, 2, 3, and 4 because ESF Functions are designed to provide protection in these MODES. Actuation in MODE 5 or 6 is required whenever the required DG must be OPERABLE so that it can perform its function on an LOP or degraded power to the vital bus. The degraded grid alarm function is required OPERABLE in MODES 1, 2, 3, and 4 to support the voltage requirements of the ESF loads required OPERABLE to mitigate a design basis LOCA. In MODES 5 and 6, the degraded grid alarm function is not required OPERABLE as no design basis LOCA is assumed to occur in these MODES and most of the ESF loads required to mitigate a design basis LOCA are not required OPERABLE. #### **ACTIONS** In the event a channel's Alarm or Trip Setpoint is found nonconservative with respect to the Allowable Value, or the channel is found inoperable, then the function that channel provides must be declared inoperable and the LCO Condition entered for the particular protection function affected. Because the required channels are specified on a per train basis, the Condition may be entered separately for each train as appropriate. A Note
has been added in the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed in the LCO. The Completion Time(s) of the inoperable channel(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function. #### <u>A.1</u> 1. 2. 4. Condition A applies to the LOP DG start Functions (Functions 1 and 2) with one loss of voltage or degraded voltage channel per train inoperable. If one channel is inoperable, Required Action A.1 requires that channel to be placed in trip within 6 hours. With a channel in trip, the LOP DG start instrumentation channels are configured to provide a one-out-of-three logic to initiate a trip of the incoming offsite power. A Note is added to Condition A indicating that it is only applicable to Functions 1 and 2. A Note is added to allow bypassing an inoperable channel for up to 4 hours for surveillance testing of other channels. This allowance is made where bypassing the channel does not cause an actuation and where at least two other channels are monitoring that parameter. The specified Completion Time and time allowed for bypassing one channel are reasonable considering the Function remains fully OPERABLE on each train and the low probability of an event occurring during these intervals. #### **B.1** Condition B applies to LOP Functions 1 and 2 when two or more loss of voltage or degraded voltage channels on a single train are inoperable. #### **ACTIONS** ## **B.1** (continued) A Note is added to Condition B indicating that it is only applicable to Functions 1 and 2. Required Action B.1 requires restoring all but one channel on a train to OPERABLE status. With a single inoperable channel remaining on a train, Condition A is applicable. The 1 hour Completion Time should allow ample time to repair most failures and takes into account the low probability of an event requiring an LOP start occurring during this interval. ## <u>C.1</u> Condition C applies to each of the LOP DG start Functions when the Required Action and associated Completion Time for Condition A or B are not met. In these circumstances the Conditions specified in LCO 3.8.1, "AC Sources — Operating," or LCO 3.8.2, "AC Sources — Shutdown," for the DG made inoperable by failure of the LOP DG start instrumentation are required to be entered immediately. The actions of those LCOs provide for adequate compensatory actions to assure unit safety. ### **D.1** Condition D applies when the required degraded grid voltage alarm function is inoperable on one or both trains of emergency buses. The affected bus voltage associated with each inoperable alarm function must be verified ≥ 3850 volts every 4 hours. Frequent bus voltage verifications in lieu of an OPERABLE alarm effectively accomplish the same function as the alarm and allow operation to continue without the required alarm(s). A Note is added to Condition D indicating that it is only applicable to Function 3. ## <u>E.1</u> Condition E is applicable when the Required Action and associated Completion Time of Condition D is not met. If the voltage being verified per Required Action D.1 is < 3850 volts, action must be taken to restore the voltage to ≥ 3850 volts within one hour. The Completion Time of one hour is reasonable to ensure prompt action is taken to restore adequate voltage to the affected emergency bus(es). # ACTIONS (continued) ## F.1 and F.2 Condition F becomes applicable when the Required Action and associated Completion Time of Condition E is not met. If the emergency bus voltage cannot be restored to ≥ 3850 volts within the Completion Time of Condition E, action must be taken to place the unit in a MODE where the LCO requirement for the Alarm function is not applicable. To achieve this status, the unit must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.3.5.1 SR 3.3.5.1 is the performance of a TADOT. This test is performed every 31 days. The test checks trip devices that provide actuation signals directly, bypassing the analog process control equipment. The TADOT surveillance is modified by two Notes. The first Note excludes the actuation of the final trip actuation relay for LOP Functions 1 and 2 from this TADOT. The actuation of this relay would cause the DG start and separation of the emergency buses from the grid. The actual DG start and connection to the emergency bus is verified by other surveillance testing (SR 3.3.5.3) accomplished during shutdown conditions. The second Note provides an exception to the verification of the LOP function setpoints during performance of this monthly TADOT. The TADOT includes verification of the undervoltage device operation upon removal of the input voltage and does not require the setpoint be verified or adjusted. The LOP function setpoints are verified during the 18 month CHANNEL CALIBRATION. In addition, the TADOT includes verification of the operation of the two-out-of-three logic associated with LOP Functions 1 and 2. The Frequency is based on the known reliability of the relays and controls and the multichannel redundancy available, and has been shown to be acceptable through operating experience. #### SR 3.3.5.2 SR 3.3.5.2 is the performance of a CHANNEL CALIBRATION. The setpoints, as well as the response to a loss of voltage and a degraded voltage test, shall include a single point verification that the ## SURVEILLANCE REQUIREMENTS ## SR 3.3.5.2 (continued) trip occurs within the required time delay (refer to appropriate relay setting sheet calibration requirements). A CHANNEL CALIBRATION is performed every 18 months, or approximately at every refueling. CHANNEL CALIBRATION is a check of the major instrument components in the loop, including the sensor (relay or digital voltmeter). The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. The CHANNEL CALIBRATION is modified by a Note. The Note excludes the actuation of the final trip actuation relay for LOP functions 1 and 2 from this CHANNEL CALIBRATION. The actuation of this relay would cause the DG start and separation of the emergency buses from the grid. The actual DG start and connection to the emergency bus is verified by other surveillance testing (SR 3.3.5.3) accomplished during shutdown conditions. The Frequency of 18 months is based on operating experience and consistency with the typical industry refueling cycle. ## SR 3.3.5.3 This SR ensures the individual channel response times are less than or equal to the maximum values assumed in the safety analysis. The response time testing acceptance criteria are included in FSAR Table 7.3-16. This surveillance is performed in accordance with the guidance provided in the ESF RESPONSE TIME surveillance requirement in LCO 3.3.2, ESFAS. This surveillance is modified by a Note. The Note states that this surveillance shall include verification of the actuation of the final trip actuation relay associated with LOP Functions 1 and 2. ## REFERENCES - 1. FSAR, Section 8.3. - 2. FSAR, Chapter 15. - 3. WCAP 13751, RTS/ESFAS Setpoint Methodology Study. - 4. FSAR, Section 7.3. ## **B 3.3 INSTRUMENTATION** B 3.3.6 Containment Purge and Exhaust Isolation Instrumentation #### **BASES** #### **BACKGROUND** Containment purge and exhaust isolation instrumentation closes the containment isolation valves in the Mini Purge System and the Main Purge System. This action isolates the containment atmosphere from the environment to minimize releases of radioactivity in the event of an accident. The Mini Purge System may be in use during reactor operation and the Main Purge System will be in use with the reactor shutdown. Containment purge and exhaust isolation initiates on a automatic safety injection (SI) signal through the Containment Isolation—Phase A Function, or by manual actuation of Phase A Isolation or manual initiation of the associated valve handswitches. The Bases for LCO 3.3.2, "Engineered Safety Feature Actuation System (ESFAS) Instrumentation," discuss these modes of initiation. Two radiation monitoring channels are also provided as input to the containment purge and exhaust isolation. The two channels measure radiation in a sample of the containment purge exhaust. The purge exhaust radiation detectors are gaseous type monitors. Both detectors will respond to events that release radioactivity to containment. Therefore, for the purposes of this LCO the two channels are considered redundant. Since the purge exhaust monitors constitute a sampling system, various components such as sample line valves and sample pumps are required to support monitor OPERABILITY. Each of the purge systems has inner and outer containment isolation valves in its supply and exhaust ducts. A high radiation signal from either detector initiates containment purge isolation, which closes containment isolation valves in the Mini Purge System and the Main Purge System. These systems are described in the Bases for LCO 3.6.3, "Containment Isolation Valves." ## APPLICABLE SAFETY ANALYSES The safety analyses assume that the containment remains intact with penetrations unnecessary for core cooling isolated early in the event. The isolation of the purge valves has not been analyzed in the dose calculations, although its rapid isolation is assumed. The containment ## APPLICABLE SAFETY ANALYSES (continued) purge and exhaust isolation radiation monitors act as backup to the SI signal to ensure closing of the purge and exhaust valves. They are also the primary means for automatically isolating containment in the event of a fuel handling accident during shutdown. Containment isolation in turn ensures meeting the
containment leakage rate assumptions of the safety analyses, and ensures that the calculated accidental offsite radiological doses are below 10 CFR 100 (Ref. 1) limits. The containment purge and exhaust isolation instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO The LCO requirements ensure that the instrumentation necessary to initiate Containment Purge and Exhaust Isolation, listed in Table 3.3.6-1, is OPERABLE. ## 1. Manual Initiation The LCO requires two channels OPERABLE. The operator can initiate Containment Purge Isolation at any time by using either of two valve hand switches in the control room (labeled CTMT PURGE DMPRS). Each switch actuates one train of purge/exhaust isolation valves. Actuation of either handswitch isolates the Containment Purge and Exhaust System. The LCO for Manual Initiation ensures the proper amount of redundancy is maintained in the manual actuation circuitry to ensure the operator has manual initiation capability. Each channel consists of one handswitch and the interconnecting wiring to the purge/exhaust isolation valves in that train. ## 2. Automatic Actuation Logic and Actuation Relays The LCO requires two trains of Automatic Actuation Logic and Actuation Relays OPERABLE to ensure that no single random failure can prevent automatic actuation. Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 1.b (Paragraph 1), SI, and ESFAS Function 3.a, #### LCO ## 2. Automatic Actuation Logic and Actuation Relays (continued) Containment Phase A Isolation. The Actions Conditions for the containment purge isolation portion of these Functions are different and less restrictive than those for their Phase A isolation and SI roles. If one or more of the SI or Phase A isolation Functions becomes inoperable in such a manner that only the Containment Purge Isolation Function is affected, the Conditions applicable to their SI and Phase A isolation Functions need not be entered. The less restrictive Actions specified for inoperability of the Containment Purge Isolation Functions specify sufficient compensatory measures for this case. #### 3. Containment Radiation The LCO specifies one required channel of radiation monitor in MODES 1-4 and two radiation monitoring channels during CORE ALTERATIONS or movement of irradiated fuel assemblies in containment to ensure that the radiation monitoring instrumentation necessary to initiate Containment Purge Isolation remains OPERABLE. For sampling systems, channel OPERABILITY involves more than OPERABILITY of the channel electronics. OPERABILITY also requires correct valve lineups and sample pump operation, as well as detector OPERABILITY. ## 4. Containment Isolation - Phase A Refer to LCO 3.3.2, Function 3.a., for all initiating Functions and requirements except as described above in item 2, "Automatic Actuation Logic and Actuation Relays." #### **APPLICABILITY** The Automatic Actuation Logic and Actuation Relays and Containment Isolation—Phase A Functions are required OPERABLE in MODES 1, 2, 3 and 4. The Manual Initiation and Containment Radiation Functions are required OPERABLE in MODES 1, 2, 3, and 4, and during CORE ALTERATIONS or movement of irradiated fuel assemblies within containment. Under these conditions, the potential exists for an accident that could release fission product ## APPLICABILITY (continued) radioactivity into containment. Therefore, the containment purge and exhaust isolation instrumentation must be OPERABLE in these MODES. While in MODES 5 and 6 without fuel handling in progress, the containment purge and exhaust isolation instrumentation need not be OPERABLE since the potential for radioactive releases is minimized and operator action is sufficient to ensure post accident offsite doses are maintained within the limits of Reference 1. The Applicability for the containment purge and exhaust isolation on the ESFAS Containment Isolation Phase A Functions is specified in LCO 3.3.2. Refer to the Bases for LCO 3.3.2 for discussion of the Containment Isolation-Phase A Function Applicability. ## **ACTIONS** The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by unit specific calibration procedures. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination is generally made during the performance of a COT, when the process instrumentation is set up for adjustment to bring it within specification. If the Trip Setpoint is less conservative than the tolerance specified by the calibration procedure, the channel must be declared inoperable immediately and the appropriate Condition entered. A Note has been added to the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.6-1. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function. ## <u>A.1</u> Condition A applies to the failure of one required containment purge isolation radiation monitor channel. The failed channel must be restored to OPERABLE status. The 4 hours allowed to restore the affected channel is justified by the low likelihood of events occurring during this interval, and recognition that the radiation monitor provides ### **ACTIONS** ## A.1 (continued) backup protection to the Phase A Isolation signal in MODES 1-4 and that during the Applicability of CORE ALTERTIONS or movement of irradiated fuel assemblies in containment the remaining radiation monitoring channel remains capable of responding if required. ## <u>B.1</u> Condition B applies to all Containment Purge and Exhaust Isolation Functions and addresses the train orientation of the Solid State Protection System (SSPS) and the master and slave relays for these Functions as well as the manual handswitches for the isolation valves. It also addresses the inability to restore a single failed radiation monitor channel to OPERABLE status in the time allowed for Required Action A.1. If a train is inoperable, multiple channels are inoperable, or the Required Action and associated Completion Time of Condition A are not met, operation may continue as long as the Required Action for the applicable Conditions of LCO 3.6.3 is met for each valve made inoperable by failure of isolation instrumentation. A Note is added stating that Condition B is only applicable in MODE 1, 2, 3, or 4. #### C.1 and C.2 Condition C applies to the Containment Purge and Exhaust Manual Isolation Function. It also addresses the failure of two radiation monitoring channels, or the inability to restore a single failed radiation monitor channel to OPERABLE status in the time allowed for Required Action A.1. If one or more manual handswitch channels(s) are inoperable, or two radiation monitor channels are inoperable, or the Required Action and associated Completion Time of Condition A are not met, operation may continue as long as the Required Action to place and maintain containment purge and exhaust isolation valves in their closed position is met or the applicable Conditions of LCO 3.9.3, "Containment Penetrations," are met for each valve made inoperable by failure of isolation instrumentation (which includes manual handswitch channel(s)). The Completion Time for these Required Actions is Immediately. ## **ACTIONS** ## C.1 and C.2 (continued) A Note states that Condition C is applicable during the Applicability of CORE ALTERATIONS and during movement of irradiated fuel assemblies within containment. ## SURVEILLANCE REQUIREMENTS A Note has been added to the SR Table to clarify that Table 3.3.6-1 determines which SRs apply to which Containment Purge and Exhaust Isolation Functions. ## SR 3.3.6.1 Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. Agreement criteria are based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels. ## SR 3.3.6.2 SR 3.3.6.2 is the performance of an ACTUATION LOGIC TEST. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function. In addition, the master relay ## SURVEILLANCE REQUIREMENTS ## SR 3.3.6.2 (continued) coil is pulse tested for continuity. This verifies that the logic modules are OPERABLE and there is an intact voltage signal path to the master relay coils. This test is performed every 31 days on a STAGGERED TEST BASIS. The Surveillance interval is acceptable based on instrument reliability and industry operating experience. ## SR 3.3.6.3 SR 3.3.6.3 is
the performance of a MASTER RELAY TEST. The MASTER RELAY TEST is the energizing of the master relay, verifying contact operation and a low voltage continuity check of the slave relay coil. Upon master relay contact operation, a low voltage is injected to the slave relay coil. This voltage is insufficient to pick up the slave relay, but large enough to demonstrate signal path continuity. This test is performed every 31 days on a STAGGERED TEST BASIS. The Surveillance interval is acceptable based on instrument reliability and industry operating experience. ## SR 3.3.6.4 A COT is performed every 92 days on each required channel to ensure the entire channel will perform the intended Function. The Frequency is based on the staff recommendation for increasing the availability of radiation monitors according to NUREG-1366 (Ref. 2). This test verifies the capability of the instrumentation to provide the containment purge and exhaust system isolation. The setpoint shall be left consistent with the current unit specific calibration procedure tolerance. ## SR 3.3.6.5 SR 3.3.6.5 is the performance of a SLAVE RELAY TEST. The SLAVE RELAY TEST is the energizing of the slave relays. Contact operation is verified in one of two ways. Actuation equipment that may be operated in the design mitigation mode is either allowed to function or is placed in a condition where the relay contact operation can be verified without operation of the equipment. Actuation equipment that may not be operated in the design mitigation mode is prevented from operation by the SLAVE RELAY TEST circuit. For this latter case, contact operation is verified by a continuity check of the circuit containing the slave relay. ## SURVEILLANCE REQUIREMENTS ## SR 3.3.6.5 (continued): This test is performed every 18 months. The Frequency is acceptable based on instrument reliability and operating experience. ## SR 3.3.6.6 SR 3.3.6.6 is the performance of a TADOT. This test is a check of the Manual Actuation Functions and is performed every 18 months. Each Manual Actuation Function is tested up to, and including, the master relay coils. In some instances, the test includes actuation of the end device (i.e., pump starts, valve cycles, etc.). The test also includes trip devices that provide actuation signals directly to the SSPS, bypassing the analog process control equipment. The SR is modified by a Note that excludes verification of setpoints during the TADOT. The Functions tested have no setpoints associated with them. The Frequency is based on the known reliability of the Function and the redundancy available, and has been shown to be acceptable through operating experience. ## SR 3.3.6.7 A CHANNEL CALIBRATION is performed every 18 months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. The Frequency is based on operating experience and is consistent with the typical industry refueling cycle. ## SR 3.3.6.8 This SR ensures the individual channel response times are less than or equal to the maximum values assumed in the safety analysis. The response time testing acceptance criteria are included in FSAR Table 7.3-16 (Ref. 3). This surveillance is performed in accordance with the guidance provided in the ESF RESPONSE TIME surveillance requirement in LCO 3.3.2, ESFAS. ## **REFERENCES** - 1. 10 CFR 100.11. - 2. NUREG-1366. - 3. FSAR Table 7.3-16 #### **B 3.3 INSTRUMENTATION** B 3.3.7 Control Room Emergency Filtration/Pressurization System (CREFS) Actuation Instrumentation #### **BASES** #### **BACKGROUND** The CREFS provides an enclosed control room environment from which the unit can be operated following an uncontrolled release of radioactivity. During normal operation, the Computer Room Ventilation System provides fresh outside air to the control room ventilation. Upon receipt of an actuation signal, the CREFS initiates filtered ventilation and pressurization of the control room. This system is described in the Bases for LCO 3.7.10, "Control Room Emergency Filtration/Pressurization System." The actuation instrumentation consists of redundant radiation monitors in the air intake. A high radiation signal from one of these detectors will isolate the control room ventilation. The control room operator can initiate CREFS trains by manual switches in the control room. The CREFS is automatically actuated by a Phase A Containment isolation signal which also isolates the control room ventilation. The SI Function is discussed in LCO 3.3.2, "Engineered Safety Feature Actuation System (ESFAS) Instrumentation." ## APPLICABLE SAFETY ANALYSES The control room must be kept habitable for the operators stationed there during accident recovery and post accident operations. The automatic actuation of CREFS acts to terminate the supply of unfiltered outside air to the control room, initiate filtration, and pressurize the control room. These actions are necessary to ensure the control room is kept habitable for the operators stationed there during accident recovery and post accident operations by minimizing the radiation exposure of control room personnel. In MODES 1, 2, 3, and 4, the Phase A signal actuation ensures initiation of the CREFS during a loss of coolant accident or steam generator tube rupture. The automatic isolation of the control room ventilation by the radiation detectors provides backup protection for the control room but requires manual initiation of the CREFS. ## APPLICABLE SAFETY ANALYSES (continued) The radiation monitor actuation of control room isolation during movement of irradiated fuel assemblies, and CORE ALTERATIONS, alerts the operators to the need for manual initiation of the CREFS which will ensure control room habitability in the event of a fuel handling accident. The CREFS actuation instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO The LCO requirements ensure that instrumentation necessary to initiate the CREFS is OPERABLE. ## 1. Manual Initiation The LCO requires two trains of manual initiation OPERABLE in MODES 1-4 and during CORE ALTERATIONS or movement of irradiated fuel assemblies. Two different methods of manual initiation are available to meet the requirements of this LCO, either method of manual initiation will accomplish the isolation of the control room and initiation of CREFS. Plant conditions and equipment availability vary through different MODES of operation and will affect which method of manual initiation may be used to meet the requirements of this LCO. The Phase A Containment Isolation manual switches (1 per train) provide a system level control room isolation and CREFS initiation to ensure the habitability of the control room, but Phase A Containment Isolation is only required OPERABLE by LCO 3.3.2, ESFAS Instrumentation, in MODES 1-4, and normally will not be available in MODES 5 and 6. When the system level manual Phase A initiation is not available, the manual switches for the individual CREFS recirculation and pressurization fans (2 handswitches per train) and the manual switches for the control room isolation valves (4 handswitches per train) also provide 2 trains of manual initiation capability to ensure the habitability of the control room. Either method may be used, as permitted by plant conditions and equipment availability, to meet the LCO requirement for two trains of manual initiation. The LCO for Manual Initiation ensures the proper amount of redundancy is maintained in the manual actuation circuitry to ensure the operator has manual initiation capability. ## (continued) ## 2. Automatic Actuation Logic and Actuation Relays The LCO requires two trains of Actuation Logic and Relays OPERABLE to ensure that no single random failure can prevent automatic actuation. Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 3.a.2, Containment Isolation-Phase A, in LCO 3.3.2. The Actions Conditions for the CREFS portion of these Functions are different and less restrictive than those specified for their Phase A Isolation roles. If one or more of the Phase A Isolation Functions becomes inoperable in such a manner that only the CREFS Function is affected, the Conditions applicable to their Phase A Isolation Function need not be entered. The less restrictive Actions specified for inoperability of the CREFS Functions specify sufficient compensatory measures for this case. ## 3. Control Room Radiation The LCO specifies one required Control Room Air Intake Radiation Monitor in MODES 1-4 to ensure that the radiation monitoring instrumentation necessary to provide a backup initiation of control room isolation remains OPERABLE. The LCO requires two air intake radiation monitor channels OPERABLE during CORE ALTERATIONS and during movement of irradiated fuel assemblies when the radiation monitor channels provide the primary control room protection function. For sampling systems, channel OPERABILITY involves more than OPERABILITY of channel electronics. OPERABILITY also requires correct valve lineups and sample pump operation, as well as detector OPERABILITY. ## 4. Containment Isolation-Phase A Refer to LCO 3.3.2, Function 3.a, for all initiating Functions and requirements except as described above in item 2, "Automatic Actuation Logic and Actuation Relays." ## **APPLICABILITY** The CREFS Functions must be OPERABLE in MODES 1, 2, 3, 4, and the radiation monitor and manual initiation Functions must also be OPERABLE during CORE ALTERATIONS and movement of irradiated fuel assemblies to ensure a habitable environment for the control room operators. The Applicability for the CREFS actuation on the ESFAS Containment Isolation-Phase A Functions are specified in LCO 3.3.2. Refer to the Bases for LCO 3.3.2 for discussion of the Containment Isolation-Phase A Function
Applicability. ## **ACTIONS** The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by the unit specific calibration procedures. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination is generally made during the performance of a COT, when the process instrumentation is set up for adjustment to bring it within specification. If the Trip Setpoint is less conservative than the tolerance specified by the calibration procedure, the channel must be declared inoperable immediately and the appropriate Condition entered. A Note has been added to the ACTIONS indicating that separate Condition entry is allowed for each Function. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.7-1 in the accompanying LCO. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function. ## <u>A.1</u> Condition A applies to the actuation logic train Function of the CREFS, the radiation monitor channel Functions, and the manual channel Functions. If one train is inoperable, or one required radiation monitor channel is inoperable in one or more Functions, 7 days are permitted to restore it to OPERABLE status. The 7 day Completion Time is the same as is allowed if one train of the mechanical portion of the system is inoperable. The basis for this Completion Time is the same as provided in LCO 3.7.8. If the channel/train cannot be restored to #### **ACTIONS** ## A.1 (continued) OPERABLE status, one CREFS train must be placed in the emergency recirculation mode of operation. This accomplishes the actuation instrumentation Function and places the unit in a conservative mode of operation. ## B.1.1, B.1.2, and B.2 Condition B applies to the failure of two CREFS actuation trains, two required radiation monitor channels, or two manual initiation trains. The first Required Action is to place one CREFS train in the emergency recirculation mode of operation immediately. This accomplishes the actuation instrumentation Function that may have been lost and places the unit in a conservative mode of operation. The applicable Conditions and Required Actions of LCO 3.7.8 must also be entered for the CREFS train made inoperable by the inoperable actuation instrumentation. In the case of inoperable radiation monitors, one train of CREFS must be declared inoperable and the applicable Condition of LCO 3.7.8 entered. This ensures appropriate limits are placed upon train inoperability as discussed in the Bases for LCO 3.7.8. Alternatively, both trains may be placed in the emergency recirculation mode. This ensures the CREFS function is performed even in the presence of a single failure. ## C.1 and C.2 Condition C applies when the Required Action and associated Completion Time for Condition A or B have not been met and the unit is in MODE 1, 2, 3, or 4. Condition C is only applicable to those CREFS functions in Table 3.3.7-1 required OPERABLE in MODES 1-4. The unit must be brought to a MODE in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ## D.1 and D.2 Condition D applies when the Required Action and associated Completion Time for Condition A or B have not been met during CORE ## **ACTIONS** ## D.1 and D.2 (continued) ALTERATIONS or when irradiated fuel assemblies are being moved. Condition D is only applicable to those CREFS functions in Table 3.3.7-1 required OPERABLE during CORE ALTERATIONS or during movement of irradiated fuel assemblies. Movement of irradiated fuel assemblies and CORE ALTERATIONS must be suspended immediately to reduce the risk of accidents that would require CREFS actuation or control room isolation. ## SURVEILLANCE REQUIREMENTS A Note has been added to the SR Table to clarify that Table 3.3.7-1 determines which SRs apply to which CREFS Actuation Functions. ## SR 3.3.7.1 Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. Agreement criteria are based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels. ## SURVEILLANCE REQUIREMENTS (continued) ### SR 3.3.7.2 A COT is performed once every 92 days on each required channel to ensure the entire channel will perform the intended function. This test verifies the capability of the instrumentation to provide the actuation function. The setpoints shall be left consistent with the unit specific calibration procedure tolerance. The Frequency is based on the known reliability of the monitoring equipment and has been shown to be acceptable through operating experience. ## SR 3.3.7.3 SR 3.3.7.3 is the performance of an ACTUATION LOGIC TEST. The train being tested is placed in the bypass condition, thus preventing inadvertent actuation. Through the semiautomatic tester, all possible logic combinations, with and without applicable permissives, are tested for each protection function. In addition, the master relay coil is pulse tested for continuity. This verifies that the logic modules are OPERABLE and there is an intact voltage signal path to the master relay coils. This test is performed every 31 days on a STAGGERED TEST BASIS. The Frequency is justified in WCAP-10271-P-A, Supplement 2, Rev. 1 (Ref. 1). #### SR 3.3.7.4 SR 3.3.7.4 is the performance of a MASTER RELAY TEST. The MASTER RELAY TEST is the energizing of the master relay, verifying contact operation and a low voltage continuity check of the slave relay coil. Upon master relay contact operation, a low voltage is injected to the slave relay coil. This voltage is insufficient to pick up the slave relay, but large enough to demonstrate signal path continuity. This test is performed every 31 days on a STAGGERED TEST BASIS. The Frequency is acceptable based on instrument reliability and industry operating experience. #### SR 3.3.7.5 SR 3.3.7.5 is the performance of a SLAVE RELAY TEST. The SLAVE RELAY TEST is the energizing of the slave relays. Contact operation is verified in one of two ways. Actuation equipment that may be operated in the design mitigation MODE is either allowed to function or is placed in a condition where the relay contact operation ## SURVEILLANCE REQUIREMENTS ## SR 3.3.7.5 (continued) can be verified without operation of the equipment. Actuation equipment that may not be operated in the design mitigation MODE is prevented from operation by the SLAVE RELAY TEST circuit. For this latter case, contact operation is verified by a continuity check of the circuit containing the slave relay. This test is performed every 18 months. The Frequency is acceptable based on instrument reliability and operating experience. ## SR 3.3.7.6 SR 3.3.7.6 is the performance of a TADOT. This test is a check of the Manual Actuation Functions and is performed every 18 months. The test includes actuation of the end device (i.e., pump starts, valve cycles, etc.). The Frequency is based on the known reliability of the Function and the redundancy available, and has been shown to be acceptable through operating experience. The SR is modified by a Note that excludes verification of setpoints during the TADOT. The Functions tested have no setpoints associated with them. ## SR 3.3.7.7 A CHANNEL CALIBRATION is performed every 18 months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. The Frequency is based on operating experience and is consistent with the typical industry refueling cycle. ## REFERENCES 1. WCAP-10271-P-A, Supplement 2, Rev 1. #### **B 3.3 INSTRUMENTATION** B 3.3.8 Penetration Room Filtration (PRF) System Actuation Instrumentation #### **BASES** #### **BACKGROUND** The PRF ensures that radioactive materials in the Spent Fuel Pool Room atmosphere following a fuel handling accident or ECCS pump rooms and penetration rooms of the auxiliary building following a loss of coolant accident (LOCA) are filtered and adsorbed prior to exhausting to the environment. The system is described in the Bases for LCO 3.7.10, "Penetration Room Filtration System." The system initiates filtered ventilation of the Spent Fuel Pool Room (including isolation of the normal ventilation) automatically following receipt of a high radiation signal (gaseous) or a low air flow signal from the normal Spent Fuel Pool Room ventilation system. In addition, the system initiates
filtered ventilation of the ECCS pump rooms and penetration rooms following receipt of a Phase B Containment Isolation signal. Initiation may also be performed manually as needed from the main control room. High gaseous radiation provides PRF initiation. Each PRF train is initiated by high radiation detected by a channel dedicated to that train. There are a total of two channels, one for each train. Each channel contains a gaseous monitor. High radiation detected by either monitor or a low air flow signal from the normal Spent Fuel Pool Room ventilation or a Phase B Containment Isolation signal from the Engineered Safety Features Actuation System (ESFAS) starts the PRF. These actions function to prevent exfiltration of contaminated air by initiating filtered ventilation, which imposes a negative pressure on the Spent Fuel Pool Room or ECCS pump rooms and penetration rooms. Since the radiation monitors include an air sampling system, various components such as sample line valves and sample pumps are required to support monitor OPERABILITY. ## APPLICABLE SAFETY ANALYSES The PRF ensures that radioactive materials in the Spent Fuel Pool Room atmosphere following a fuel handling accident or ECCS pump rooms and penetration rooms following a LOCA are filtered and adsorbed prior to being exhausted to the environment. This action reduces the radioactive content in the plant exhaust following a LOCA or fuel handling accident so that offsite doses remain within the limits specified in 10 CFR 100 (Ref. 1). ## APPLICABLE SAFETY ANALYSES (continued) The PRF actuation instrumentation satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). #### LCO The LCO requirements ensure that instrumentation necessary to initiate the PRF is OPERABLE. ## 1. Manual Initiation The LCO requires two trains OPERABLE. Each train consists of 2 handswitches for the PRF ventilation fans and one handswitch for the penetration room suction damper. The operator can initiate a PRF train at any time by using two fan switches and one damper switch in the control room. This action will cause actuation of all components in the same manner as any of the automatic actuation signals. The LCO for Manual Initiation ensures the proper amount of redundancy is maintained in the manual actuation circuitry to ensure the operator has manual initiation capability. Each train consists of two fan handswitches and one damper handswitch and the interconnecting wiring to the PRF fans and damper. ## 2. Automatic Actuation Logic and Actuation Relays The LCO requires two trains of Actuation Logic and Relays OPERABLE to ensure that no single random failure can prevent automatic actuation. Automatic Actuation Logic and Actuation Relays consist of the same features and operate in the same manner as described for ESFAS Function 3.b.2, Phase B Containment Isolation, in LCO 3.3.2. The ACTIONS Conditions for the PRF portion of these functions are different and less restrictive than those specified for their Phase B roles. If one or more of the Phase B functions becomes inoperable in such a manner that only the PRF function is affected, the Conditions applicable to their Phase B function need not be entered. The less restrictive Actions specified for inoperability of the PRF functions specify sufficient compensatory measures for this case. ## (continued) ## 3. Spent Fuel Pool Room Radiation The LCO specifies two required Gaseous Radiation Monitor channels to ensure that the radiation monitoring instrumentation necessary to initiate the PRF remains OPERABLE. Each monitor will initiate the associated train of PRF and isolate the normal Spent Fuel Pool Room ventilation. For sampling systems, channel OPERABILITY involves more than OPERABILITY of channel electronics. OPERABILITY requires correct valve lineups, sample pump operation, and detector OPERABILITY. ## 4. Spent Fuel Pool Room Ventilation Differential Pressure The LCO specifies two channels of spent fuel pool room ventilation differential pressure instrumentation to assure filtration protection is provided when insufficient normal spent fuel pool room ventilation system flow exists to ensure proper operation of the radiation monitors. When the instrumentation detects insufficient spent fuel pool room ventilation flow, the PRF is actuated and the spent fuel storage pool room ventilation isolated in the same manner as the radiation monitor actuation of the system. The differential pressure instrumentation assures filtration of the spent fuel pool room exhaust when the spent fuel pool room normal ventilation system flow is not sufficient for proper operation of the radiation monitors. ### 5. Containment Isolation - Phase B Refer to LCO 3.3.2, Function 3.b for all initiation Functions and requirements except as described above in item 2, "Automatic Actuation Logic and Actuation Relays." Only the Trip Setpoint is specified for each PRF Function in the LCO. The Trip Setpoint limits are defined in plant procedures (Ref. 2). #### **APPLICABILITY** The manual PRF initiation must be OPERABLE in MODES 1, 2, 3, and 4 and when moving irradiated fuel assemblies in the Spent Fuel Pool Room, to ensure the PRF operates to remove fission products ## APPLICABILITY (continued) associated with leakage after a LOCA or a fuel handling accident. The automatic Phase B PRF actuation instrumentation is also required in MODES 1, 2, 3, and 4 to remove fission products caused by post LOCA Emergency Core Cooling Systems leakage. High radiation and the normal Spent Fuel Pool Room ventilation system low flow signal initiation of the PRF must be OPERABLE in any MODE during movement of irradiated fuel assemblies in the Spent Fuel Pool Room to ensure automatic initiation of the PRF when the potential for a fuel handling accident exists. While in MODES 5 and 6 without fuel handling in progress, the PRF instrumentation need not be OPERABLE since a fuel handling accident cannot occur. #### **ACTIONS** The most common cause of channel inoperability is outright failure or drift of the bistable or process module sufficient to exceed the tolerance allowed by unit specific calibration procedures. Typically, the drift is found to be small and results in a delay of actuation rather than a total loss of function. This determination is generally made during the performance of a COT, when the process instrumentation is set up for adjustment to bring it within specification. If the Trip Setpoint is less conservative than the tolerance specified by the calibration procedure, the channel must be declared inoperable immediately and the appropriate Condition entered. A Note has been added to the ACTIONS to clarify the application of Completion Time rules. The Conditions of this Specification may be entered independently for each Function listed in Table 3.3.8-1 in the accompanying LCO. The Completion Time(s) of the inoperable channel(s)/train(s) of a Function will be tracked separately for each Function starting from the time the Condition was entered for that Function. ## <u>A.1</u> Condition A applies to the actuation logic train function of the Solid State Protection System (SSPS), the radiation monitor function, the Spent Fuel Pool Room differential pressure function, and the manual function. Condition A applies to the failure of a single actuation logic #### **ACTIONS** ## A.1 (continued) train, radiation monitor channel, Spent Fuel Pool Room differential pressue channel, or manual train. If one channel or train is inoperable, a period of 7 days is allowed to restore it to OPERABLE status. If the train cannot be restored to OPERABLE status, one PRF train must be placed in operation. This accomplishes the actuation instrumentation function and places the unit in a conservative mode of operation. The 7 day Completion Time is the same as is allowed if one train of the mechanical portion of the system is inoperable. The basis for this time is the same as that provided in LCO 3.7.10. ### B.1.1, B.1.2, B.2 Condition B applies to the failure of two PRF actuation logic trains, two radiation monitors, two Spent Fuel Pool Room differential pressure channels, or two manual trains. The Required Action is to place one PRF train in operation immediately. This accomplishes the actuation instrumentation function that may have been lost and places the unit in a conservative mode of operation. The applicable Conditions and Required Actions of LCO 3.7.10 must also be entered for the PRF train made inoperable by the inoperable actuation instrumentation. This ensures appropriate limits are placed on train inoperability as discussed in the Bases for LCO 3.7.10. Alternatively, both trains may be placed in operation. This ensures the PRF Function is performed even in the presence of a single failure. #### C.1 Condition C applies when the Required Action and associated Completion Time for Condition A or B have not been met and irradiated fuel assemblies are being moved in the Spent Fuel Pool Room. Movement of irradiated fuel assemblies in the Spent Fuel Pool Room must be suspended immediately to eliminate the potential for events that could require PRF actuation. This Condition is modified by a Note which limits the applicability of this Condition to those Functions on Table 3.3.8-1 required OPERABLE during movement of irradiated fuel assemblies in the spent fuel pool room to mitigate the consequences of a fuel handling accident. This Condition does not apply to Functions which are only #### **ACTIONS** ## C.1 (continued) required to mitigate the consequences of a LOCA (Phase B Isolation and associated automatic actuation logic and actuation relays). These Functions are not required OPERABLE when moving irradiated fuel assemblies and are unrelated to the mitigation of a fuel handling accident in the spent fuel pool room. ## D.1 and D.2 Condition D applies when the Required Action and associated Completion Time for Condition A or B have not been met and the unit is in MODE 1, 2, 3, or 4. The unit must be
brought to a MODE in which the LCO requirements are not applicable. To achieve this status, the unit must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. This Condition is modified by a Note which limits the applicability of this Condition to those Functions on Table 3.3.8-1 required OPERABLE during MODES 1, 2, 3, or 4 to mitigate the consequences of a LOCA. This Condition is not intended to be applied to Functions which are only required to mitigate the consequences of a fuel handling accident in the Spent Fuel Pool Room (radiation monitors and Spent Fuel Pool Room normal ventilation differential pressure). These Functions are only required OPERABLE when moving irradiated fuel assemblies in the Spent Fuel Pool Room and are unrelated to the mitigation of the consequences of a LOCA. ## SURVEILLANCE REQUIREMENTS A Note has been added to the SR Table to clarify that Table 3.3.8-1 determines which SRs apply to which PRF Actuation Functions. ## SR 3.3.8.1 Performance of the CHANNEL CHECK once every 12 hours ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the ## SURVEILLANCE REQUIREMENTS ## **SR 3.3.8.1** (continued) assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the two instrument channels could be an indication of excessive instrument drift in one of the channels or of something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. Agreement criteria are based on a combination of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit. The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the LCO required channels. ## SR 3.3.8.2 A COT is performed once every 92 days on each required channel to ensure the entire channel will perform the intended function. This test verifies the capability of the instrumentation to provide the PRF actuation. The setpoints shall be left consistent with the unit specific calibration procedure tolerance. The Frequency of 92 days is based on the known reliability of the monitoring equipment and has been shown to be acceptable through operating experience. ## SR 3.3.8.3 SR 3.3.8.3 is the performance of an ACTUATION LOGIC TEST. The actuation logic is tested every 31 days on a STAGGERED TEST BASIS. All possible logic combinations, with and without applicable permissives, are tested for each protection function. The Frequency is based on the known reliability of the relays and controls and the channel redundancy available, and has been shown to be acceptable through operating experience. ## SURVEILLANCE REQUIREMENTS (continued) ### SR 3.3.8.4 SR 3.3.8.4 is the performance of a MASTER RELAY TEST. The MASTER RELAY TEST is the energizing of the master relay, verifying contact operation and a low voltage continuity check of the slave relay coil. Upon master relay contact operation, a low voltage is injected to the slave relay coil. This voltage is insufficient to pick up the slave relay, but large enough to demonstrate signal path continuity. This test is performed every 31 days on a STAGGERED TEST BASIS. The Frequency is acceptable based on instrument reliability and industry operating experience. #### SR 3.3.8.5 SR 3.3.8.5 is the performance of a SLAVE RELAY TEST. The SLAVE RELAY TEST is the energizing of the slave relays. Contact operation is verified in one of two ways. Actuation equipment that may be operated in the design mitigation MODE is either allowed to function or is placed in a condition where the relay contact operation can be verified without operation of the equipment. Actuation equipment that may not be operated in the design mitigation MODE is prevented from operation by the SLAVE RELAY TEST circuit. For this latter case, contact operation is verified by a continuity check of the circuit containing the slave relay. This test is performed every 18 months. The Frequency is acceptable based on instrument reliability and operating experience. #### SR 3.3.8.6 SR 3.3.8.6 is the performance of a TADOT. This test is a check of the manual and Spent Fuel Pool Room ventilation Differential Pressure actuation functions and is performed every 18 months. The test includes actuation of the end device (e.g., pump starts, valve cycles, etc.). The Frequency is based on operating experience and is consistent with the typical industry refueling cycle. The SR is modified by a Note that excludes verification of setpoints during the TADOT. The Functions tested have no required setpoints associated with them. ## SURVEILLANCE REQUIREMENTS (continued) ## SR 3.3.8.7 A CHANNEL CALIBRATION is performed every 18 months, or approximately at every refueling. CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to a measured parameter within the necessary range and accuracy. The Frequency is based on operating experience and is consistent with the typical industry refueling cycle. ## REFERENCES - 1. 10 CFR 100.11. - 2. FNP-1/2-RCP-252. ## B 3.4 REACTOR COOLANT SYSTEM (RCS) B 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits #### **BASES** #### **BACKGROUND** These Bases address requirements for maintaining RCS pressure, temperature, and flow rate within limits assumed in the safety analyses. The safety analyses (Ref. 1) of normal operating conditions and anticipated operational occurrences assume initial conditions within the normal steady state envelope. The limits placed on RCS pressure, temperature, and flow rate ensure that the minimum departure from nucleate boiling ratio (DNBR) will be met for each of the transients analyzed. The RCS pressure limit is consistent with operation within the nominal operational envelope. Pressurizer pressure indications are averaged to come up with a value for comparison to the limit. The indicated limit is based on the average of two control board readings. A lower pressure will cause the reactor core to approach DNB limits. The RCS coolant average temperature limit is consistent with full power operation within the nominal operational envelope. Indications of temperature are averaged to determine a value for comparison to the limit. The indicated limit is based on the average of two control board readings. A higher average temperature will cause the core to approach DNB limits. The RCS flow rate normally remains constant during an operational fuel cycle with all pumps running. The minimum RCS flow limit corresponds to that assumed for DNB analyses. A lower RCS flow will cause the core to approach DNB limits. Operation for significant periods of time outside these DNB limits increases the likelihood of a fuel cladding failure in a DNB limited event. ## APPLICABLE SAFETY ANALYSES The requirements of this LCO represent the initial conditions for DNB limited transients analyzed in the plant safety analyses (Ref. 1). The safety analyses have shown that transients initiated from the limits of this LCO will result in meeting the DNB design criterion throughout ## APPLICABLE SAFETY ANALYSES (continued) each analyzed transient. This is the acceptance limit for the RCS DNB parameters. Changes to the unit that could impact these parameters must be assessed for their impact on the DNBR criteria. The transients analyzed for include loss of coolant flow events and dropped or stuck rod events. A key assumption for the analysis of these events is that the core power distribution is within the limits of LCO 3.1.6, "Control Bank Insertion Limits"; LCO 3.2.3, "AXIAL FLUX DIFFERENCE (AFD)"; and LCO 3.2.4, "QUADRANT POWER TILT RATIO (QPTR)." The pressurizer pressure limit of 2209 psig and the RCS average temperature limit of 580.3°F correspond to analytical limits of 2185 psig and 583.2°F used in the safety analyses, with allowance for measurement uncertainty. The RCS DNB parameters satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii). ## LCO This LCO specifies limits on the monitored process variables—pressurizer pressure, RCS average temperature, and RCS total flow rate—to ensure the core operates within the limits assumed in the safety analyses. Operating within these limits will result in meeting the DNB design criterion in the event of a DNB limited transient. RCS total flow rate is based on two elbow tap measurements from each loop and contains a measurement error of 2.3% based on Δp measurements from the cold leg elbow taps, which are correlated to past precision heat balance measurements or performing a precision heat balance at the beginning of the current cycle. Potential fouling of the feedwater venturi, which might not be detected, could bias the result from the precision heat balance in a nonconservative manner. Therefore, a penalty of 0.1% for undetected fouling of the feedwater venturi raises the nominal flow measurement allowance to 2.4%. Any fouling that might bias the flow rate measurement greater than 0.1% can be detected by monitoring and trending various plant performance parameters. If detected, action shall be taken before performing subsequent precision heat balance measurements, i.e., either the effect of the fouling shall be
quantified and compensated for in the RCS flow rate measurement or the venturi shall be cleaned to eliminate the fouling. ### **APPLICABILITY** In MODE 1, the limits on pressurizer pressure, RCS coolant average temperature, and RCS flow rate must be maintained during steady state operation in order to ensure DNBR criteria will be met in the event of an unplanned loss of forced coolant flow or other DNB limited transient. In all other MODES, the power level is low enough that DNB is not a concern. A Note has been added to indicate the limit on pressurizer pressure is not applicable during short term operational transients such as a THERMAL POWER ramp > 5% RTP per minute or a THERMAL POWER step > 10% RTP. These conditions represent short term perturbations where actions to control pressure variations might be counterproductive. Also, since they represent transients initiated from power levels < 100% RTP, an increased DNBR margin exists to offset the temporary pressure variations. Another set of limits on DNB related parameters is provided in SL 2.1.1, "Reactor Core SLs." Those limits are less restrictive than the limits of this LCO, but violation of a Safety Limit (SL) merits a stricter, more severe Required Action. Should a violation of this LCO occur, the operator must check whether or not an SL may have been exceeded. #### **ACTIONS** #### **A.1** RCS pressure and RCS average temperature are controllable and measurable parameters. With one or both of these parameters not within LCO limits, action must be taken to restore parameter(s). RCS total flow rate is not a controllable parameter and is not expected to vary during steady state operation. If the indicated RCS total flow rate is below the LCO limit, power must be reduced, as required by Required Action B.1, to restore DNB margin and eliminate the potential for violation of the accident analysis bounds. The 2 hour Completion Time for restoration of the parameters provides sufficient time to adjust plant parameters, to determine the cause for the off normal condition, and to restore the readings within limits, and is based on plant operating experience. # ACTIONS (continued) ## <u>B.1</u> If Required Action A.1 is not met within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 2 within 6 hours. In MODE 2, the reduced power condition eliminates the potential for violation of the accident analysis bounds. The Completion Time of 6 hours is reasonable to reach the required plant conditions in an orderly manner. ## SURVEILLANCE REQUIREMENTS ## SR 3.4.1.1 Since Required Action A.1 allows a Completion Time of 2 hours to restore parameters that are not within limits, the 12 hour Surveillance Frequency for pressurizer pressure is sufficient to ensure the pressure can be restored to a normal operation, steady state condition following load changes and other expected transient operations. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess for potential degradation and to verify operation is within safety analysis assumptions. ## SR 3.4.1.2 Since Required Action A.1 allows a Completion Time of 2 hours to restore parameters that are not within limits, the 12 hour Surveillance Frequency for RCS average temperature is sufficient to ensure the temperature can be restored to a normal operation, steady state condition following load changes and other expected transient operations. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess for potential degradation and to verify operation is within safety analysis assumptions. ## SR 3.4.1.3 The 12 hour Surveillance Frequency for RCS total flow rate is a qualitative verification performed using the installed flow indicators on the main control board fed by elbow tap measurements. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess potential significant flow degradation and to verify operation within safety analysis assumptions. ## SURVEILLANCE REQUIREMENTS (continued) #### SR 3.4.1.4 The 18 month surveillance of the total RCS flow rate may be performed by one of two alternate methods. One method is a precision calorimetric performed at the beginning of each fuel cycle as documented in WCAP-12771, Rev. 1. The other method is based on the Δp measurements from the cold leg elbow taps, which are correlated to past precision heat balance measurements. Correlation of the flow indication channels with selected precision loop flow calorimetrics for this method is documented in WCAP-14750. Use of the elbow tap Δp measurement method removes the requirement for performance of a precision RCS flow caloricmetric measurement for that cycle. Measurement of RCS total flow rate by performance of one of these two methods once every 18 months verifies the actual RCS flow rate is greater than or equal to the minimum required RCS flow rate. The Frequency of 18 months reflects the importance of verifying flow after a refueling outage when the core has been altered, which may have caused an alteration of flow resistance. This SR is modified by a Note that allows entry into MODE 1, without having performed the SR, and placement of the unit in the best condition for performing the SR. The Note states that the SR is not required to be performed until 7 days after ≥ 90% RTP. This exception is appropriate since the heat balance and elbow tap measurement methods both require the plant to be at a minimum of 90% RTP to obtain the stated RCS flow accuracies. The Surveillance shall be performed within 7 days after reaching 90% RTP. The intent is that this Surveillance be performed near the beginning of the cycle as close as possible to 100% RTP. #### REFERENCES 1. FSAR, Section 4.4 and 15. # B 3.4.2 RCS Minimum Temperature for Criticality #### **BASES** #### **BACKGROUND** This LCO is based upon meeting several major considerations before the reactor can be made critical and while the reactor is critical. The first consideration is moderator temperature coefficient (MTC), LCO 3.1.3, "Moderator Temperature Coefficient (MTC)." In the transient and accident analyses, the MTC is assumed to be in a range from slightly positive to negative and the operating temperature is assumed to be within the nominal operating envelope while the reactor is critical. The LCO on minimum temperature for criticality helps ensure the plant is operated consistent with these assumptions. The second consideration is the protective instrumentation. Because certain protective instrumentation (e.g., excore neutron detectors) can be affected by moderator temperature, a temperature value within the nominal operating envelope is chosen to ensure proper indication and response while the reactor is critical. The third consideration is the pressurizer operating characteristics. The transient and accident analyses assume that the pressurizer is within its normal startup and operating range (i.e., saturated conditions and steam bubble present). It is also assumed that the RCS temperature is within its normal expected range for startup and power operation. Since the density of the water, and hence the response of the pressurizer to transients, depends upon the initial temperature of the moderator, a minimum value for moderator temperature within the nominal operating envelope is chosen. The fourth consideration is that the reactor vessel is above its minimum nil ductility reference temperature when the reactor is critical. ## APPLICABLE SAFETY ANALYSES Although the RCS minimum temperature for criticality is not itself an initial condition assumed in Design Basis Accidents (DBAs), the closely aligned temperature for hot zero power (HZP) is a process variable that is an initial condition of DBAs, such as the rod cluster # APPLICABLE SAFETY ANALYSES (continued) control assembly (RCCA) withdrawal, RCCA ejection, and main steam line break accidents performed at zero power that either assumes the failure of, or presents a challenge to, the integrity of a fission product barrier. All low power safety analyses assume initial RCS loop temperatures ≥ the HZP temperature of 547°F (Ref. 1). The minimum temperature for criticality limitation provides a small band, 6°F, for critical operation below HZP. This band allows critical operation below HZP during plant startup and does not adversely affect any safety analyses since the MTC is not significantly affected by the small temperature difference between HZP and the minimum temperature for criticality. The RCS minimum temperature for criticality satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). ## LCO Compliance with the LCO ensures that the reactor will not be made or maintained critical ($k_{\rm eff} \ge 1.0$) at a temperature less than a small band below the HZP temperature, which is assumed in the safety analysis. Failure to meet the requirements of this LCO may produce initial conditions inconsistent with the initial conditions assumed in the safety analysis. ## **APPLICABILITY** In MODE 1 and MODE 2 with $k_{eff} \ge 1.0$, LCO 3.4.2 is applicable since the reactor can only be critical ($k_{eff} \ge 1.0$) in these MODES. The special test exception of LCO 3.1.8, "MODE 2 PHYSICS TESTS Exceptions," permits PHYSICS TESTS to be performed at \leq 5% RTP with RCS loop average temperatures slightly lower than normally allowed so that fundamental nuclear characteristics of the core can be verified. In order for nuclear characteristics to be accurately measured, it may be necessary to operate outside the normal restrictions of this LCO. For example, to measure the MTC at beginning of cycle, it is necessary to allow RCS loop average temperatures to fall below $T_{\text{no load}}$, which may cause RCS loop average temperatures to fall below the temperature limit of this LCO. ### **ACTIONS** ## <u>A.1</u>
If the parameters that are outside the limit cannot be restored, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 30 minutes. Rapid reactor shutdown can be readily and practically achieved within a 30 minute period. The allowed time is reasonable, based on operating experience, to reach MODE 3 in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.4.2.1 RCS loop average temperature is required to be verified at or above 541°F every 30 minutes when the low low T_{avg} alarm is not reset and any RCS loop $T_{avg} \le 547$ °F. The Note modifies the SR. When any RCS loop average temperature is $^{<}$ 547°F and the low low T_{avg} alarm is alarming, RCS loop average temperatures could fall below the LCO requirement without additional warning. The SR to verify RCS loop average temperatures every 30 minutes is frequent enough to prevent the inadvertent violation of the LCO. #### **REFERENCES** 1. FSAR, Section 4.3 and 15. # B 3.4.3 RCS Pressure and Temperature (P/T) Limits #### **BASES** #### **BACKGROUND** All components of the RCS are designed to withstand effects of cyclic loads due to system pressure and temperature changes. These loads are introduced by startup (heatup) and shutdown (cooldown) operations, power transients, and reactor trips. This LCO limits the pressure and temperature changes during RCS heatup and cooldown, within the design assumptions and the stress limits for cyclic operation. The PTLR contains P/T limit curves for heatup, cooldown, inservice leak and hydrostatic (ISLH) testing, and data for the maximum rate of change of reactor coolant temperature (Ref. 1). Each P/T limit curve defines an acceptable region for normal operation. The usual use of the curves is operational guidance during heatup or cooldown maneuvering, when pressure and temperature indications are monitored and compared to the applicable curve to determine that operation is within the allowable region. The LCO establishes operating limits that provide a margin to brittle failure of the reactor vessel and piping of the reactor coolant pressure boundary (RCPB). The vessel is the component most subject to brittle failure, and the LCO limits apply mainly to the vessel. The limits do not apply to the pressurizer, which has different design characteristics and operating functions. 10 CFR 50, Appendix G (Ref. 2), requires the establishment of P/T limits for specific material fracture toughness requirements of the RCPB materials. Reference 2 requires an adequate margin to brittle failure during normal operation, anticipated operational occurrences, and system hydrostatic tests. It mandates the use of the American Society of Mechanical Engineers (ASME) Code, Section XI, Appendix G (Ref. 3). The neutron embrittlement effect on the material toughness is reflected by increasing the nil ductility reference temperature (RT_{NDT}) as exposure to neutron fluence increases. The actual shift in the RT_{NDT} of the vessel material will be established periodically by removing and evaluating the irradiated reactor vessel # BACKGROUND (continued) material specimens, in accordance with ASTM E 185 (Ref. 4) and Appendix H of 10 CFR 50 (Ref. 5). The operating P/T limit curves will be adjusted, as necessary, based on the evaluation findings and the recommendations of Regulatory Guide 1.99 (Ref. 6). The P/T limit curves are composite curves established by superimposing limits derived from stress analyses of those portions of the reactor vessel and head that are the most restrictive. At any specific pressure, temperature, and temperature rate of change, one location within the reactor vessel will dictate the most restrictive limit. Across the span of the P/T limit curves, different locations are more restrictive, and, thus, the curves are composites of the most restrictive regions. The heatup curve represents a different set of restrictions than the cooldown curve because the directions of the thermal gradients through the vessel wall are reversed. The thermal gradient reversal alters the location of the tensile stress between the outer and inner walls. The criticality limit curve includes the Reference 2 requirement that it be ≥ 40°F above the heatup curve or the cooldown curve, and not less than the minimum permissible temperature for ISLH testing. However, the criticality curve is not operationally limiting; a more restrictive limit exists in LCO 3.4.2, "RCS Minimum Temperature for Criticality." The consequence of violating the LCO limits is that the RCS has been operated under conditions that can result in brittle failure of the RCPB, possibly leading to a nonisolable leak or loss of coolant accident. In the event these limits are exceeded, an evaluation must be performed to determine the effect on the structural integrity of the RCPB components. The ASME Code, Section XI, Appendix E (Ref. 7), provides a recommended methodology for evaluating an operating event that causes an excursion outside the limits. # APPLICABLE SAFETY ANALYSES The P/T limits are not derived from Design Basis Accident (DBA) analyses. They are prescribed during normal operation to avoid encountering pressure, temperature, and temperature rate of change conditions that might cause undetected flaws to propagate and cause nonductile failure of the RCPB, an unanalyzed condition. Reference 1 ## APPLICABLE SAFETY ANALYSES (continued) establishes the methodology for determining the P/T limits. Although the P/T limits are not derived from any DBA, the P/T limits are acceptance limits since they preclude operation in an unanalyzed condition. RCS P/T limits satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii). ## **LCO** The two elements of this LCO are: - a. The limit curves for heatup, cooldown, and ISLH testing; and - b. Limits on the rate of change of temperature. The LCO limits apply to all components of the RCS, except the pressurizer. These limits define allowable operating regions and permit a large number of operating cycles while providing a wide margin to nonductile failure. The limits for the rate of change of temperature control the thermal gradient through the vessel wall and are used as inputs for calculating the heatup, cooldown, and ISLH testing P/T limit curves. Thus, the LCO for the rate of change of temperature restricts stresses caused by thermal gradients and also ensures the validity of the P/T limit curves. Violating the LCO limits places the reactor vessel outside of the bounds of the stress analyses and can increase stresses in other RCPB components. The consequences depend on several factors, as follow: - a. The severity of the departure from the allowable operating P/T regime or the severity of the rate of change of temperature; - b. The length of time the limits were violated (longer violations allow the temperature gradient in the thick vessel walls to become more pronounced); and - c. The existences, sizes, and orientations of flaws in the vessel material. ## **APPLICABILITY** The RCS P/T limits LCO provides a definition of acceptable operation for prevention of nonductile failure in accordance with 10 CFR 50, Appendix G (Ref. 2). Although the P/T limits were developed to provide guidance for operation during heatup or cooldown (MODES 3, 4, and 5) or ISLH testing, their Applicability is at all times in keeping with the concern for nonductile failure. The limits do not apply to the pressurizer. During MODES 1 and 2, other Technical Specifications provide limits for operation that can be more restrictive than or can supplement these P/T limits. LCO 3.4.1, "RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits"; LCO 3.4.2, "RCS Minimum Temperature for Criticality"; and Safety Limit 2.1, "Safety Limits," also provide operational restrictions for pressure and temperature and maximum pressure. Furthermore, MODES 1 and 2 are above the temperature range of concern for nonductile failure, and stress analyses have been performed for normal maneuvering profiles, such as power ascension or descent. ## **ACTIONS** ## A.1 and A.2 Operation outside the P/T limits during MODE 1, 2, 3, or 4 must be corrected so that the RCPB is returned to a condition that has been verified by stress analyses. The 30 minute Completion Time reflects the urgency of restoring the parameters to within the analyzed range. Most violations will not be severe, and the activity can be accomplished in this time in a controlled manner. Besides restoring operation within limits, an evaluation is required to determine if RCS operation can continue. The evaluation must verify the RCPB integrity remains acceptable and must be completed before continuing operation. Several methods may be used, including comparison with pre-analyzed transients in the stress analyses, new analyses, or inspection of the components. ASME Code, Section XI, Appendix E (Ref. 7), may be used to support the evaluation. However, its use is restricted to evaluation of the vessel beltline. #### **ACTIONS** # A.1 and A.2 (continued) The 72 hour Completion Time is reasonable to accomplish the evaluation. The evaluation for a mild violation is possible within this time, but more severe violations may require special, event specific stress analyses or inspections. A favorable evaluation must be completed before continuing to operate. Condition A is modified by a Note requiring Required Action A.2 to be completed whenever the Condition is entered. The Note emphasizes the need to perform the evaluation of the effects of the excursion outside the allowable limits. Restoration alone per Required Action A.1 is insufficient because higher than analyzed stresses may have occurred and may have affected the RCPB integrity. ## **B.1** and **B.2** If a Required Action and associated Completion Time of Condition A are not met, the plant must be placed in a lower MODE because either the RCS remained
in an unacceptable P/T region for an extended period of increased stress or a sufficiently severe event caused entry into an unacceptable region. Either possibility indicates a need for more careful examination of the event, best accomplished with the RCS at reduced pressure and temperature. In reduced pressure and temperature conditions, the possibility of propagation with undetected flaws is decreased. If the required restoration activity cannot be accomplished within 30 minutes, Required Action B.1 and Required Action B.2 must be implemented to reduce pressure and temperature. If the required evaluation for continued operation cannot be accomplished within 72 hours or the results are indeterminate or unfavorable, action must proceed to reduce pressure and temperature as specified in Required Action B.1 and Required Action B.2. A favorable evaluation must be completed and documented before returning to operating pressure and temperature conditions. Pressure and temperature are reduced by bringing the plant to MODE 3 within 6 hours and to MODE 5 with RCS pressure < 500 psig within 36 hours. #### **ACTIONS** ## B.1 and B.2 (continued) The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## C.1 and C.2 Actions must be initiated immediately to correct operation outside of the P/T limits at times other than when in MODE 1, 2, 3, or 4, so that the RCPB is returned to a condition that has been verified by stress analysis. The immediate Completion Time reflects the urgency of initiating action to restore the parameters to within the analyzed range. Most violations will not be severe, and the activity can be accomplished in this time in a controlled manner. Besides restoring operation within limits, an evaluation is required to determine if RCS operation can continue. The evaluation must verify that the RCPB integrity remains acceptable and must be completed prior to entry into MODE 4. Several methods may be used, including comparison with pre-analyzed transients in the stress analyses, or inspection of the components. ASME Code, Section XI, Appendix E (Ref. 7), may be used to support the evaluation. However, its use is restricted to evaluation of the vessel beltline. Condition C is modified by a Note requiring Required Action C.2 to be completed whenever the Condition is entered. The Note emphasizes the need to perform the evaluation of the effects of the excursion outside the allowable limits. Restoration alone per Required Action C.1 is insufficient because higher than analyzed stresses may have occurred and may have affected the RCPB integrity. ## SURVEILLANCE REQUIREMENTS ## SR 3.4.3.1 Verification that operation is within the PTLR limits is required every hour when RCS pressure and temperature conditions are undergoing planned changes. This Frequency is considered reasonable in view of the control room indication available to monitor RCS status and is proven adequate by operating experience. The 1-hour frequency is also consistent with how the rate of change limits are specified. Surveillance for heatup, cooldown, or ISLH testing may be discontinued when the definition given in the relevant plant procedure for ending the activity is satisfied. This SR is modified by a Note that only requires this SR to be performed during system heatup, cooldown, and ISLH testing. No SR is given for criticality operations because LCO 3.4.2 contains a more restrictive requirement. ## REFERENCES - 1. WCAP-7924-A, April 1975. - 2. 10 CFR 50, Appendix G. - 3. ASME, Boiler and Pressure Vessel Code, Section XI, Appendix G. - 4. ASTM E 185-82, July 1982. - 5. 10 CFR 50, Appendix H. - 6. Regulatory Guide 1.99, Revision 2, May 1988. - 7. ASME, Boiler and Pressure Vessel Code, Section XI, Appendix E. B 3.4.4 RCS Loops—MODES 1 and 2 #### **BASES** #### **BACKGROUND** The primary function of the RCS is removal of the heat generated in the fuel due to the fission process, and transfer of this heat, via the steam generators (SGs), to the secondary plant. The secondary functions of the RCS include: - a. Moderating the neutron energy level to the thermal state, to increase the probability of fission; - b. Improving the neutron economy by acting as a reflector; - c. Carrying the soluble neutron poison, boric acid; - d. Providing a second barrier against fission product release to the environment; and - e. Removing the heat generated in the fuel due to fission product decay following a unit shutdown. The reactor coolant is circulated through three loops connected in parallel to the reactor vessel, each containing an SG, a reactor coolant pump (RCP), and appropriate flow and temperature instrumentation for both control and protection. The reactor vessel contains the clad fuel. The SGs provide the heat sink to the isolated secondary coolant. The RCPs circulate the coolant through the reactor vessel and SGs at a sufficient rate to ensure proper heat transfer and prevent fuel damage. This forced circulation of the reactor coolant ensures mixing of the coolant for proper boration and chemistry control. ## APPLICABLE SAFETY ANALYSES Safety analyses contain various assumptions for the design bases accident initial conditions including RCS pressure, RCS temperature, reactor power level, core parameters, and safety system setpoints. The important aspect for this LCO is the reactor coolant forced flow rate, which is represented by the number of RCS loops in service. ## APPLICABLE SAFETY ANALYSES (continued) Both transient and steady state analyses have been performed to establish the effect of flow on the departure from nucleate boiling (DNB). The transient and accident analyses for the plant have been performed assuming three RCS loops are in operation. The majority of the plant safety analyses are based on initial conditions at high core power or zero power. The accident analyses that are most important to RCP operation are the complete loss of forced reactor coolant flow, single RCP locked rotor, partial loss of reactor coolant flow (broken shaft or coastdown), and rod withdrawal events (Ref. 1). Steady state DNB analysis has been performed for the three RCS loop operation. For three RCS loop operation, the steady state DNB analysis, which generates the pressure and temperature Safety Limit (SL) (i.e., the departure from nucleate boiling ratio (DNBR) limit) assumes a maximum power level of 120% RTP. This is the design overpower condition for three RCS loop operation. The value for the accident analysis setpoint of the nuclear overpower (high flux) trip is 118% and is based on an analysis assumption that bounds possible instrumentation errors. The DNBR limit defines a locus of pressure and temperature points that result in a minimum DNBR greater than or equal to the critical heat flux correlation limit. The plant is designed to operate with all RCS loops in operation to maintain DNBR above the SL, during all normal operations and anticipated transients. By ensuring heat transfer in the nucleate boiling region, adequate heat transfer is provided between the fuel cladding and the reactor coolant. RCS Loops—MODES 1 and 2 satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii). # LCO The purpose of this LCO is to require an adequate forced flow rate for core heat removal. Flow is represented by the number of RCPs in operation for removal of heat by the SGs. To meet safety analysis acceptance criteria for DNB, three pumps are required at rated power. An OPERABLE RCS loop consists of an OPERABLE RCP in operation providing forced flow for heat transport and an OPERABLE SG in accordance with the Steam Generator Surveillance Program. #### **APPLICABILITY** In MODES 1 and 2, the reactor is critical and thus has the potential to produce maximum THERMAL POWER. Thus, to ensure that the assumptions of the accident analyses remain valid, all RCS loops are required to be OPERABLE and in operation in these MODES to prevent DNB and core damage. The decay heat production rate is much lower than the full power heat rate. As such, the forced circulation flow and heat sink requirements are reduced for lower, noncritical MODES as indicated by the LCOs for MODES 3, 4, and 5. Operation in other MODES is covered by: LCO 3.4.5, "RCS Loops—MODE 3"; LCO 3.4.6, "RCS Loops-MODE 4": LCO 3.4.7, "RCS Loops -- MODE 5, Loops Filled"; LCO 3.4.8, "RCS Loops—MODE 5, Loops Not Filled"; LCO 3.9.4, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level" (MODE 6); and LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level" (MODE 6). #### **ACTIONS** #### **A.1** If the requirements of the LCO are not met, the Required Action is to reduce power and bring the plant to MODE 3. This lowers power level and thus reduces the core heat removal needs and minimizes the possibility of violating DNB limits. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging safety systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.4.4.1 This SR requires verification every 12 hours that each RCS loop is in operation. Verification includes flow rate, temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal while maintaining the margin to DNB. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RCS loop performance. ## REFERENCES 1. FSAR, Sections 15.2.2, 15.2.5, 15.3.4, 15.3.6, 15.4.4.3, and 15.4.6.3. B 3.4.5 RCS Loops—MODE 3 #### BASES #### **BACKGROUND** In MODE 3, the primary function of the reactor coolant is removal of decay heat and transfer of this heat, via the steam generator (SG), to the secondary plant fluid. The secondary function of the reactor coolant is to act as a carrier for soluble neutron
poison, boric acid. The reactor coolant is circulated through three RCS loops, connected in parallel to the reactor vessel, each containing an SG, a reactor coolant pump (RCP), and appropriate flow, pressure, level, and temperature instrumentation for control, protection, and indication. The reactor vessel contains the clad fuel. The SGs provide the heat sink. The RCPs circulate the water through the reactor vessel and SGs at a sufficient rate to ensure proper heat transfer and prevent fuel damage. In MODE 3, RCPs are used to provide forced circulation for heat removal during heatup and cooldown. The MODE 3 decay heat removal requirements are low enough that a single RCS loop with one RCP running is sufficient to remove core decay heat. However, two RCS loops are required to be OPERABLE to ensure redundant capability for decay heat removal. ## APPLICABLE SAFETY ANALYSES Whenever the reactor trip breakers (RTBs) are in the closed position and the control rod drive mechanisms (CRDMs) are energized, an inadvertent rod withdrawal from subcritical, resulting in a power excursion, is possible. Such a transient could be caused by a malfunction of the rod control system. In addition, the possibility of a power excursion due to the ejection of an inserted control rod is possible with the breakers closed or open. Such a transient could be caused by the mechanical failure of a CRDM. Therefore, in MODE 3 with RTBs in the closed position and Rod Control System capable of rod withdrawal, accidental control rod withdrawal from subcritical is postulated and requires at least two RCS loops to be OPERABLE and in operation to ensure that the accident analyses limits are met. For those conditions when the Rod Control System is not capable of rod withdrawal, two RCS loops are # APPLICABLE SAFETY ANALYSES (continued) required to be OPERABLE, but only one RCS loop is required to be in operation to be consistent with MODE 3 accident analyses. Failure to provide decay heat removal may result in challenges to a fission product barrier. The RCS loops are part of the primary success path that functions or actuates to prevent or mitigate a Design Basis Accident or transient that either assumes the failure of, or presents a challenge to, the integrity of a fission product barrier. RCS Loops—MODE 3 satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO The purpose of this LCO is to require that at least two RCS loops be OPERABLE. In MODE 3 with the RTBs in the closed position and Rod Control System capable of rod withdrawal, two OPERABLE RCS loops must be in operation. Two OPERABLE RCS loops are required to be in operation in MODE 3 with RTBs closed and Rod Control System capable of rod withdrawal due to the postulation of a power excursion because of an inadvertent control rod withdrawal. The required number of RCS loops in operation ensures that the Safety Limit criteria will be met for all of the postulated accidents. With the RTBs in the open position, or the CRDMs de-energized, the Rod Control System is not capable of rod withdrawal; therefore, only one OPERABLE RCS loop in operation is necessary to ensure removal of decay heat from the core and homogenous boron concentration throughout the RCS. An additional RCS loop is required to be OPERABLE to ensure that safety analyses limits are met. The Note permits all RCPs to not be in operation for ≤ 1 hour per 8 hour period. The purpose of the Note is to perform tests that are designed to validate various accident analyses values. One of these tests is validation of the pump coastdown curve used as input to a number of accident analyses including a loss of flow accident. This test is generally performed in MODE 3 during the initial startup testing program, and as such should only be performed once. If, however, changes are made to the RCS that would cause a change to the flow characteristics of the RCS, the input values of the coastdown curve must be revalidated by conducting the test again. Another test performed during the startup testing program is the validation of rod drop times during cold conditions, both with and without flow. # (continued) The no flow test may be performed in MODE 3, 4, or 5 and requires that the pumps be stopped for a short period of time. The Note permits the stopping of the pumps in order to perform this test and validate the assumed analysis values. As with the validation of the pump coastdown curve, this test should be performed only once unless the flow characteristics of the RCS are changed. The 1 hour time period specified is adequate to perform the desired tests, and operating experience has shown that boron stratification is not a problem during this short period with no forced flow. Utilization of the Note is permitted provided the following conditions are met, along with any other conditions imposed by initial startup test procedures: - a. No operations are permitted that would dilute the RCS boron concentration, thereby maintaining the margin to criticality. Boron reduction is prohibited because a uniform concentration distribution throughout the RCS cannot be ensured when in natural circulation; and - b. Core outlet temperature is maintained at least 10°F below saturation temperature, so that no vapor bubble may form and possibly cause a natural circulation flow obstruction. An OPERABLE RCS loop consists of one OPERABLE RCP and one OPERABLE SG in accordance with the Steam Generator Tube Surveillance Program, which has the minimum water level specified in SR 3.4.5.2. This assumes steam removal capability and the availability of a makeup water source (if necessary for extended use of the SG) as required to remove decay heat. An RCP is OPERABLE if it is capable of being powered and is able to provide forced flow if required. #### **APPLICABILITY** In MODE 3, this LCO ensures forced circulation of the reactor coolant to remove decay heat from the core and to provide proper boron mixing. The most stringent condition of the LCO, that is, two RCS loops OPERABLE and two RCS loops in operation, applies to MODE 3 with the rod control system capable of rod withdrawal. The least stringent condition, that is, two RCS loops OPERABLE and one RCS loop in operation, applies to MODE 3 with the rod control system not capable of rod withdrawal. # APPLICABILITY (continued) Operation in other MODES is covered by: LCO 3.4.4, "RCS Loops—MODES 1 and 2"; LCO 3.4.6, "RCS Loops-MODE 4"; LCO 3.4.7, "RCS Loops—MODE 5, Loops Filled"; LCO 3.4.8, "RCS Loops — MODE 5, Loops Not Filled"; LCO 3.9.4, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level" (MODE 6); and LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level" (MODE 6). ## **ACTIONS** ## **A.1** If one required RCS loop is inoperable, redundancy for heat removal is lost. The Required Action is restoration of the required RCS loop to OPERABLE status within the Completion Time of 72 hours. This time allowance is a justified period to be without the redundant, nonoperating loop because a single loop in operation has a heat transfer capability greater than that needed to remove the decay heat produced in the reactor core and because of the low probability of a failure in the remaining loop occurring during this period. ## **B**.1 If restoration is not possible within 72 hours, the unit must be brought to MODE 4. In MODE 4, the unit may be placed on the Residual Heat Removal System. The additional Completion Time of 12 hours is compatible with required operations to achieve cooldown and depressurization from the existing plant conditions in an orderly manner and without challenging plant systems. #### C.1 and C.2 If the required RCS loop is not in operation, and the RTBs are closed and Rod Control System capable of rod withdrawal, the Required Action is either to restore the required RCS loop to operation or to de-energize all CRDMs by opening the RTBs or de-energizing the motor generator (MG) sets. When the RTBs are in the closed position and Rod Control System capable of rod withdrawal, it is postulated that a power excursion could occur in the event of an #### **ACTIONS** # C.1 and C.2 (continued) inadvertent control rod withdrawal. This mandates having the heat transfer capacity of two RCS loops in operation. If only one loop is in operation, the RTBs must be opened. The Completion Times of 1 hour to restore the required RCS loop to operation or de-energize all CRDMs is adequate to perform these operations in an orderly manner without exposing the unit to risk for an undue time period. ## D.1, D.2, and D.3 If two required RCS loops are inoperable or no RCS loop is in operation, except as during conditions permitted by the Note in the LCO section, all CRDMs must be de-energized by opening the RTBs or de-energizing the MG sets. All operations involving a reduction of RCS boron concentration must be suspended, and action to restore one of the RCS loops to OPERABLE status and operation must be initiated. Boron dilution requires forced circulation for proper mixing, and opening the RTBs or de-energizing the MG sets removes the possibility of an inadvertent rod withdrawal. The immediate Completion Time reflects the importance of maintaining operation for heat removal. The action to restore must be continued until one loop is restored to OPERABLE status and operation. ## SURVEILLANCE REQUIREMENTS ## SR 3.4.5.1 This SR requires verification every 12 hours that the required loops are in operation. Verification includes flow rate, temperature, and pump status monitoring, which help ensure that forced flow is providing heat removal. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RCS loop performance. ## SR 3.4.5.2 SR 3.4.5.2 requires verification of SG OPERABILITY. SG OPERABILITY is verified by ensuring that the secondary side narrow range water level is ≥ 28% for required RCS loops. If the SG ##
SURVEILLANCE REQUIREMENTS # SR 3.4.5.2 (continued) secondary side narrow range water level is < 28%, the tubes may become uncovered and the associated loop may not be capable of providing the heat sink for removal of the decay heat. The 12 hour Frequency is considered adequate in view of other indications available in the control room to alert the operator to a loss of SG level. ## SR 3.4.5.3 Verification that the required RCPs are OPERABLE ensures that safety analyses limits are met. The requirement also ensures that an additional RCP can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power availability to the required RCPs. ## REFERENCES None. B 3.4.6 RCS Loops—MODE 4 #### **BASES** #### **BACKGROUND** In MODE 4, the primary function of the reactor coolant is the removal of decay heat and the transfer of this heat to either the steam generator (SG) secondary side coolant or the component cooling water via the residual heat removal (RHR) heat exchangers. The secondary function of the reactor coolant is to act as a carrier for soluble neutron poison, boric acid. The reactor coolant is circulated through three RCS loops connected in parallel to the reactor vessel, each loop containing an SG, a reactor coolant pump (RCP), and appropriate flow, pressure, level, and temperature instrumentation for control, protection, and indication. The RCPs circulate the coolant through the reactor vessel and SGs at a sufficient rate to ensure proper heat transfer and to prevent boric acid stratification. In MODE 4, either RCPs or RHR loops can be used to provide forced circulation. The intent of this LCO is to provide forced flow from at least one RCP or one RHR loop for decay heat removal and transport. The flow provided by one RCP loop or RHR loop is adequate for decay heat removal. The other intent of this LCO is to require that two paths be available to provide redundancy for decay heat removal. # APPLICABLE SAFETY ANALYSES In MODE 4, RCS circulation is considered in the determination of the time available for mitigation of the accidental boron dilution event. The RCS and RHR loops provide this circulation. RCS Loops — MODE 4 have been identified in the NRC Policy Statement as important contributors to risk reduction. ## LCO The purpose of this LCO is to require that at least two loops be OPERABLE in MODE 4 and that one of these loops be in operation. The LCO allows the two loops that are required to be OPERABLE to # LCO (continued) consist of any combination of RCS loops and RHR loops. Any one loop in operation provides enough flow to remove the decay heat from the core with forced circulation. An additional loop is required to be OPERABLE to provide redundancy for heat removal. Note 1 permits all RCPs or RHR pumps to not be in operation for ≤ 2 hours per 8 hour period. The purpose of the Note is to permit tests that are designed to validate various accident analyses values. One of the tests performed during the startup testing program is the validation of rod drop times during cold conditions, both with and without flow. The no flow test may be performed in MODE 3, 4, or 5 and requires that the pumps be stopped for a short period of time. The Note permits the stopping of the pumps in order to perform this test and validate the assumed analysis values. If changes are made to the RCS that would cause a change to the flow characteristics of the RCS, the input values must be revalidated by conducting the test again. The 2 hour time period is adequate to perform the test, and operating experience has shown that boron stratification is not a problem during this short period with no forced flow. Utilization of Note 1 is permitted provided the following conditions are met along with any other conditions imposed by initial startup test procedures: - a. No operations are permitted that would dilute the RCS boron concentration, therefore maintaining the margin to criticality. Boron reduction is prohibited because a uniform concentration distribution throughout the RCS cannot be ensured when in natural circulation; and - b. Core outlet temperature is maintained at least 10°F below saturation temperature, so that no vapor bubble may form and possibly cause a natural circulation flow obstruction. Note 2 requires that the secondary side water temperature of each SG be < 50°F above each of the RCS cold leg temperatures or that the pressurizer water volume is less than 770 cubic feet (24% of wide range, cold, pressurizer level indication) before the start of an RCP with any RCS cold leg temperature ≤ 325°F. This restraint is to prevent a low temperature overpressure event due to a thermal transient when an RCP is started. # LCO (continued) An OPERABLE RCS loop comprises an OPERABLE RCP and an OPERABLE SG in accordance with the Steam Generator Tube Surveillance Program, which has the minimum water level specified in SR 3.4.6.2. This assumes steam removal capability and the availability of a makeup water source (if necessary for extended use of the SG) as required to remove decay heat. Similarly for the RHR System, an OPERABLE RHR loop comprises an OPERABLE RHR pump capable of providing forced flow to an OPERABLE RHR heat exchanger. RCPs and RHR pumps are OPERABLE if they are capable of being powered and are able to provide forced flow if required. ### **APPLICABILITY** In MODE 4, this LCO ensures forced circulation of the reactor coolant to remove decay heat from the core and to provide proper boron mixing. One loop of either RCS or RHR provides sufficient circulation for these purposes. However, two loops consisting of any combination of RCS and RHR loops are required to be OPERABLE to meet single failure considerations. Operation in other MODES is covered by: LCO 3.4.4, "RCS Loops—MODES 1 and 2"; LCO 3.4.5, "RCS Loops—MODE 3"; LCO 3.4.7, "RCS Loops — MODE 5, Loops Filled"; LCO 3.4.8, "RCS Loops — MODE 5, Loops Not Filled"; LCO 3.9.4, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level" (MODE 6); and LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level" (MODE 6). #### **ACTIONS** #### <u>A.1</u> If one required RCS loop is inoperable and two RHR loops are inoperable, redundancy for heat removal is lost. Action must be initiated to restore a second RCS or RHR loop to OPERABLE status. The immediate Completion Time reflects the importance of maintaining the availability of two paths for heat removal. # ACTIONS (continued) # <u>B.1</u> If one required RHR loop is OPERABLE and in operation and there are no RCS loops OPERABLE, an inoperable RCS or RHR loop must be restored to OPERABLE status to provide a redundant means for decay heat removal. If the parameters that are outside the limits cannot be restored, the unit must be brought to MODE 5 within 24 hours. Bringing the unit to MODE 5 is a conservative action with regard to decay heat removal. With only one RHR loop OPERABLE, redundancy for decay heat removal is lost and, in the event of a loss of the remaining RHR loop, it would be safer to initiate that loss from MODE 5 (≤ 200°F) rather than MODE 4 (200 to 350°F). The Completion Time of 24 hours is a reasonable time, based on operating experience, to reach MODE 5 from MODE 4 in an orderly manner and without challenging plant systems. ## C.1 and C.2 If no loop is OPERABLE or in operation, except during conditions permitted by Note 1 in the LCO section, all operations involving a reduction of RCS boron concentration must be suspended and action to restore one RCS or RHR loop to OPERABLE status and operation must be initiated. Boron dilution requires forced circulation for proper mixing, and the margin to criticality must not be reduced in this type of operation. The immediate Completion Times reflect the importance of maintaining operation for decay heat removal. The action to restore must be continued until one loop is restored to OPERABLE status and operation. # SURVEILLANCE REQUIREMENTS ## SR 3.4.6.1 This SR requires verification every 12 hours that one RCS or RHR loop is in operation. Verification includes flow rate, temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RCS and RHR loop performance. # SURVEILLANCE REQUIREMENTS (continued) ### SR 3.4.6.2 SR 3.4.6.2 requires verification of SG OPERABILITY. SG OPERABILITY is verified by ensuring that the secondary side wide range water level is ≥ 74%. If the SG secondary side wide range water level is < 74%, the tubes may become uncovered and the associated loop may not be capable of providing the heat sink necessary for removal of decay heat. The 12 hour Frequency is considered adequate in view of other indications available in the control room to alert the operator to the loss of SG level. #### SR 3.4.6.3 Verification that the required pump is OPERABLE ensures that an additional RCS or RHR pump can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to the required pump. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience. | 0 | _ | _ | 0 | | N | r | ES | |---|---|---|---|---|---|---|----| | п | _ | _ | п | - | | _ | | | | | | | | | | | None. B 3.4.7 RCS Loops — MODE 5, Loops Filled #### **BASES** #### **BACKGROUND** In MODE 5 with the RCS loops filled, the primary function of the reactor coolant is the removal of decay heat and transfer this heat either to the steam generator (SG) secondary side coolant via natural circulation (Ref. 1) or the component cooling water via the residual heat removal (RHR) heat
exchangers. While the principal means for decay heat removal is via the RHR System, the SGs via natural circulation (Ref. 1) are specified as a backup means for redundancy. Even though the SGs cannot produce steam in this MODE, they are capable of being a heat sink due to their large contained volume of secondary water. As long as the SG secondary side water is at a lower temperature than the reactor coolant, heat transfer will occur. The rate of heat transfer is directly proportional to the temperature difference. The secondary function of the reactor coolant is to act as a carrier for soluble neutron poison, boric acid. In MODE 5 with RCS loops filled, the reactor coolant is circulated by means of two RHR loops connected to the RCS, each loop containing an RHR heat exchanger, an RHR pump, and appropriate flow and temperature instrumentation for control, protection, and indication. One RHR pump circulates the water through the RCS at a sufficient rate to prevent boric acid stratification. The number of loops in operation can vary to suit the operational needs. The intent of this LCO is to provide forced flow from at least one RHR loop for decay heat removal and transport. The flow provided by one RHR loop is adequate for decay heat removal. The other intent of this LCO is to require that a second path be available to provide redundancy for heat removal. The LCO provides for redundant paths of decay heat removal capability. The first path can be an RHR loop that must be OPERABLE and in operation. The second path can be another OPERABLE RHR loop or maintaining two SGs with secondary side water levels ≥ 74% (wide range) to provide an alternate method for decay heat removal via natural circulation (Ref. 1). ## APPLICABLE SAFETY ANALYSES In MODE 5, RCS circulation is considered in the determination of the time available for mitigation of the accidental boron dilution event. The RHR loops provide this circulation. RCS Loops — MODE 5 (Loops Filled) have been identified in the NRC Policy Statement as important contributors to risk reduction. ### LCO The purpose of this LCO is to require that at least one of the RHR loops be OPERABLE and in operation with an additional RHR loop OPERABLE or two SGs with secondary side water level \geq 74% (wide range). One RHR loop provides sufficient forced circulation to perform the safety functions of the reactor coolant under these conditions. An additional RHR loop is required to be OPERABLE to meet single failure considerations. However, if the standby RHR loop is not OPERABLE, an acceptable alternate method is two SGs with their secondary side water levels \geq 74% (wide range). Should the operating RHR loop fail, the SGs could be used to remove the decay heat via natural circulation. Note 1 permits all RHR pumps to not be in operation ≤ 2 hours per 8 hour period. The purpose of the Note is to permit tests designed to validate various accident analyses values. One of the tests performed during the startup testing program is the validation of rod drop times during cold conditions, both with and without flow. The no flow test may be performed in MODE 3, 4, or 5 and requires that the pumps be stopped for a short period of time. The Note permits stopping of the pumps in order to perform this test and validate the assumed analysis values. If changes are made to the RCS that would cause a change to the flow characteristics of the RCS, the input values must be revalidated by conducting the test again. The 2 hour time period is adequate to perform the test, and operating experience has shown that boron stratification is not likely during this short period with no forced flow. Utilization of Note 1 is permitted provided the following conditions are met, along with any other conditions imposed by initial startup test procedures: a. No operations are permitted that would dilute the RCS boron concentration, therefore maintaining the margin to criticality. Boron reduction is prohibited because a uniform concentration # LCO (continued) distribution throughout the RCS cannot be ensured when in natural circulation; and b. Core outlet temperature is maintained at least 10°F below saturation temperature, so that no vapor bubble may form and possibly cause a natural circulation flow obstruction. Note 2 allows one RHR loop to be inoperable for a period of up to 2 hours, provided that the other RHR loop is OPERABLE and in operation. This permits periodic surveillance tests to be performed on the inoperable loop during the only time when such testing is safe and possible. Note 3 requires that the secondary side water temperature of each SG be < 50°F above each of the RCS cold leg temperatures or that the pressurizer water volume is less than 770 cubic feet (24% of wide range, cold, pressurizer level indication) before the start of a reactor coolant pump (RCP) with an RCS cold leg temperature ≤ 325°F. This restriction is to prevent a low temperature overpressure event due to a thermal transient when an RCP is started. Note 4 provides for an orderly transition from MODE 5 to MODE 4 during a planned heatup by permitting removal of RHR loops from operation when at least one RCS loop is in operation. This Note provides for the transition to MODE 4 where an RCS loop is permitted to be in operation and replaces the RCS circulation function provided by the RHR loops. Note 5 restricts the number of operating reactor coolant pumps at RCS temperatures less than 110°F. Only one reactor coolant pump is allowed to be in operation below 110°F (except during pump swap operations) consistent with the assumptions of the P/T Limits Curve. RHR pumps are OPERABLE if they are capable of being powered and are able to provide flow if required. An OPERABLE SG can perform as a heat sink via natural circulation when it has an adequate water level and is OPERABLE in accordance with the Steam Generator Tube Surveillance Program. #### **APPLICABILITY** In MODE 5 with RCS loops filled, this LCO requires forced circulation of the reactor coolant to remove decay heat from the core and to provide proper boron mixing. One loop of RHR provides sufficient circulation for these purposes. However, one additional RHR loop is required to be OPERABLE, or the secondary side water level of at least two SGs is required to be ≥ 74% (wide range). Operation in other MODES is covered by: LCO 3.4.4, "RCS Loops -- MODES 1 and 2"; LCO 3.4.5, "RCS Loops—MODE 3"; LCO 3.4.6, "RCS Loops-MODE 4"; LCO 3.4.8, "RCS Loops — MODE 5, Loops Not Filled"; LCO 3.9.4, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level" (MODE 6); and LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level" (MODE 6). ## **ACTIONS** ## A.1 and A.2 If one RHR loop is inoperable and the required SGs have secondary side water levels < 74% (wide range), redundancy for heat removal is lost. Action must be initiated immediately to restore a second RHR loop to OPERABLE status or to restore the required SG secondary side water levels. Either Required Action A.1 or Required Action A.2 will restore redundant heat removal paths. The immediate Completion Time reflects the importance of maintaining the availability of two paths for heat removal. # **B.1** and **B.2** If no RHR loop is in operation, except during conditions permitted by Note 1, or if no loop is OPERABLE, all operations involving a reduction of RCS boron concentration must be suspended and action to restore one RHR loop to OPERABLE status and operation must be initiated. To prevent boron dilution, forced circulation is required to provide proper mixing and preserve the margin to criticality in this type of operation. The immediate Completion Times reflect the importance of maintaining operation for heat removal. ## SURVEILLANCE REQUIREMENTS ### SR 3.4.7.1 This SR requires verification every 12 hours that the required loop is in operation. Verification includes flow rate, temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RHR loop performance. ### SR 3.4.7.2 Verifying that at least two SGs are OPERABLE by ensuring their secondary side wide range water levels are ≥ 74% ensures an alternate decay heat removal method via natural circulation in the event that the second RHR loop is not OPERABLE. If both RHR loops are OPERABLE, this Surveillance is not needed. The 12 hour Frequency is considered adequate in view of other indications available in the control room to alert the operator to the loss of SG level. ## SR 3.4.7.3 Verification that a second RHR pump is OPERABLE ensures that an additional pump can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to the RHR pump. If secondary side water level is ≥ 74% (wide range) in at least two SGs, this Surveillance is not needed. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience. #### REFERENCES 1. NRC Information Notice 95-35, "Degraded Ability of Steam Generators to Remove Decay Heat by Natural Circulation." B 3.4.8 RCS Loops — MODE 5, Loops Not Filled ## BASES #### **BACKGROUND** In MODE 5 with the RCS loops not filled, the primary function of the reactor coolant is the removal of decay heat generated in the fuel, and the transfer of this heat to the component cooling water via the residual heat removal (RHR) heat exchangers. The steam generators (SGs) are not available as a heat sink when the loops are not filled. The secondary function of the reactor coolant is to act as a carrier for the soluble neutron poison, boric acid. In MODE 5 with loops not filled, only RHR pumps can be used for coolant circulation. The number
of pumps in operation can vary to suit the operational needs. The intent of this LCO is to provide forced flow from at least one RHR pump for decay heat removal and transport and to require that two paths be available to provide redundancy for heat removal. ## APPLICABLE SAFETY ANALYSES In MODE 5, RCS circulation is considered in the determination of the time available for mitigation of the accidental boron dilution event. The RHR loops provide this circulation. The flow provided by one RHR loop is adequate for heat removal and for boron mixing. RCS loops in MODE 5 (loops not filled) have been identified in the NRC Policy Statement as important contributors to risk reduction. #### LCO The purpose of this LCO is to require that at least two RHR loops be OPERABLE and one of these loops be in operation. An OPERABLE loop is one that has the capability of transferring heat from the reactor coolant at a controlled rate. Heat cannot be removed via the RHR System unless forced flow is used. A minimum of one running RHR pump meets the LCO requirement for one loop in operation. An additional RHR loop is required to be OPERABLE to meet single failure considerations. # LCO (continued) Note 1 permits all RHR pumps to not be in operation for ≤ 15 minutes when switching from one loop to another. The circumstances for stopping both RHR pumps are to be limited to situations when the outage time is short and core outlet temperature is maintained > 10°F below saturation temperature. The Note prohibits boron dilution or draining operations when RHR forced flow is stopped. Note 2 allows one RHR loop to be inoperable for a period of ≤ 2 hours, provided that the other loop is OPERABLE and in operation. This permits periodic surveillance tests to be performed on the inoperable loop during the only time when these tests are safe and possible. An OPERABLE RHR loop is comprised of an OPERABLE RHR pump capable of providing forced flow to an OPERABLE RHR heat exchanger. RHR pumps are OPERABLE if they are capable of being powered and are able to provide flow if required. # **APPLICABILITY** In MODE 5 with loops not filled, this LCO requires core heat removal and coolant circulation by the RHR System. Operation in other MODES is covered by: LCO 3.4.4, "RCS Loops-MODES 1 and 2"; LCO 3.4.5, "RCS Loops-MODE 3"; LCO 3.4.6, "RCS Loops—MODE 4"; LCO 3.4.7, "RCS Loops—MODE 5, Loops Filled"; LCO 3.9.4, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level" (MODE 6); and LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level" (MODE 6). #### **ACTIONS** # <u>A.1</u> If only one RHR loop is OPERABLE and in operation, redundancy for RHR is lost. Action must be initiated to restore a second loop to OPERABLE status. The immediate Completion Time reflects the importance of maintaining the availability of two paths for heat removal. # ACTIONS (continued) ## **B.1** and **B.2** If no required RHR loops are OPERABLE or in operation, except during conditions permitted by Note 1, all operations involving a reduction of RCS boron concentration must be suspended and action must be initiated immediately to restore an RHR loop to OPERABLE status and operation. Boron dilution requires forced circulation for uniform dilution, and the margin to criticality must not be reduced in this type of operation. The immediate Completion Time reflects the importance of maintaining operation for heat removal. The action to restore must continue until one loop is restored to OPERABLE status and operation. ## SURVEILLANCE REQUIREMENTS ### SR 3.4.8.1 This SR requires verification every 12 hours that one loop is in operation. Verification includes flow rate, temperature, or pump status monitoring, which help ensure that forced flow is providing heat removal. The Frequency of 12 hours is sufficient considering other indications and alarms available to the operator in the control room to monitor RHR loop performance. #### SR 3.4.8.2 Verification that the required number of pumps are OPERABLE ensures that additional pumps can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to the required pumps. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience. ## **REFERENCES** None. B 3.4.9 Pressurizer #### **BASES** #### **BACKGROUND** The pressurizer provides a point in the RCS where liquid and vapor are maintained in equilibrium under saturated conditions for pressure control purposes to prevent bulk boiling in the remainder of the RCS. Key functions include maintaining required primary system pressure during steady state operation, and limiting the pressure changes caused by reactor coolant thermal expansion and contraction during normal load transients. The pressure control components addressed by this LCO include the pressurizer water level, the required heaters, and their controls and emergency power supplies. Pressurizer safety valves and pressurizer power operated relief valves are addressed by LCO 3.4.10, "Pressurizer Safety Valves," and LCO 3.4.11, "Pressurizer Power Operated Relief Valves (PORVs)," respectively. The intent of the LCO is to ensure that a steam bubble exists in the pressurizer prior to power operation to minimize the consequences of potential overpressure transients. The presence of a steam bubble is consistent with analytical assumptions. Relatively small amounts of noncondensible gases can inhibit the condensation heat transfer between the pressurizer spray and the steam, and diminish the spray effectiveness for pressure control. Electrical immersion heaters, located in the lower section of the pressurizer vessel, keep the water in the pressurizer at saturation temperature and maintain a constant operating pressure. A minimum required available capacity of pressurizer heaters ensures that the RCS pressure can be maintained. The capability to maintain and control system pressure is important for maintaining subcooled conditions in the RCS and ensuring the capability to remove core decay heat by either forced or natural circulation of reactor coolant. Unless adequate heater capacity is available, the hot, high pressure condition cannot be maintained indefinitely and still provide the required subcooling margin in the primary system. Inability to control the system pressure and maintain subcooling under conditions of natural circulation flow in the primary system could lead to a loss of single phase natural circulation and decreased capability to remove core decay heat. ## APPLICABLE SAFETY ANALYSES In MODES 1, 2, and 3, the LCO requirement for a steam bubble is reflected implicitly in the accident analyses. Safety analyses performed for lower MODES are not limiting. All analyses performed from a critical reactor condition assume the existence of a steam bubble and saturated conditions in the pressurizer. In making this assumption, the analyses neglect the small fraction of noncondensible gases normally present. Safety analyses presented in the FSAR (Ref. 1) do not take credit for pressurizer heater operation; however, an implicit initial condition assumption of the safety analyses is that the RCS is operating at normal pressure. The maximum pressurizer water level limit, which ensures that a steam bubble exists in the pressurizer, satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). Although the heaters are not specifically used in accident analysis, the need to maintain subcooling in the long term during loss of offsite power, as indicated in NUREG-0737 (Ref. 2), is the reason for providing an LCO. ## LCO The LCO requirement for the pressurizer to be OPERABLE with a water volume ≤ 868 cubic feet, which is equivalent to 63.5% indicated, ensures that a steam bubble exists. Limiting the LCO maximum operating water level preserves the steam space for pressure control. The LCO has been established to ensure the capability to establish and maintain pressure control for steady state operation and to minimize the consequences of potential overpressure transients. Requiring the presence of a steam bubble is also consistent with analytical assumptions. The LCO requires two groups of OPERABLE pressurizer heaters, each with a capacity ≥ 125 kW, capable of being powered from either the offsite power source or the emergency power supply. The minimum heater capacity required is sufficient to maintain the RCS near normal operating pressure when accounting for heat losses through the pressurizer insulation. By maintaining the pressure near the operating conditions, a wide margin to subcooling can be obtained in the loops. The exact design value of 125 kW is derived from the use of seven heaters rated at 17.9 kW each. The amount needed to maintain pressure is dependent on the heat losses. ### **APPLICABILITY** The need for pressure control is most pertinent when core heat can cause the greatest effect on RCS temperature, resulting in the greatest effect on pressurizer level and RCS pressure control. Thus, applicability has been designated for MODES 1 and 2. The applicability is also provided for MODE 3. The purpose is to prevent solid water RCS operation during heatup and cooldown to avoid rapid pressure rises caused by normal operational perturbation, such as reactor coolant pump startup. A Note has been added to indicate the limit on pressurizer level is not applicable during short term operational transients such as a THERMAL POWER ramp > 5% RTP per minute or a THERMAL POWER step > 10% RTP. These conditions represent short term perturbations. In MODES 1, 2, and 3, there is need to maintain the availability of pressurizer heaters, capable of being powered from an emergency power supply. In the event of a loss of offsite power, the initial conditions of these MODES give the greatest demand for maintaining the
RCS in a hot pressurized condition with loop subcooling for an extended period. For MODE 4, 5, or 6, it is not necessary to control pressure (by heaters) to ensure loop subcooling for heat transfer when the Residual Heat Removal (RHR) System is in service, and therefore, the LCO is not applicable. #### **ACTIONS** #### A.1 and A.2 Pressurizer water level control malfunctions or other plant evolutions may result in a pressurizer water level above the nominal upper limit, even with the plant at steady state conditions. If the pressurizer water level is not within the limit, when the limit is applicable, action must be taken to bring the plant to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to MODE 3, with the reactor trip breakers open, within 6 hours and to MODE 4 within 12 hours. This takes the unit out of the applicable MODES. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # ACTIONS (continued) # <u>B.1</u> If one required group of pressurizer heaters is inoperable, restoration is required within 72 hours. The Completion Time of 72 hours is reasonable considering the anticipation that a demand caused by loss of offsite power would be unlikely in this period. Pressure control may be maintained during this time using normal station powered heaters. # C.1 and C.2 If one group of pressurizer heaters are inoperable and cannot be restored in the allowed Completion Time of Required Action B.1, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS # SR 3.4.9.1 This SR requires that during steady state operation, pressurizer level is maintained below the nominal upper limit to provide a minimum space for a steam bubble. The Surveillance is performed by observing the indicated level. The Frequency of 12 hours corresponds to verifying the parameter each shift. The 12 hour interval has been shown by operating practice to be sufficient to regularly assess level for any deviation and verify that operation is within safety analyses assumption of ensuring that a steam bubble exists in the pressurizer. Alarms are also available for early detection of abnormal level indications. # SR 3.4.9.2 The SR is satisfied when the power supplies are demonstrated to be capable of producing the minimum power and the associated pressurizer heaters are verified to be at their design rating. This may be done by measuring circuit current or testing the power supply output and by performing an electrical check on heater element continuity and resistance. The Frequency of 92 days is considered adequate to detect heater degradation and has been shown by operating experience to be acceptable. # SURVEILLANCE REQUIREMENTS (continued) # SR 3.4.9.3 This Surveillance demonstrates that the heaters can be manually transferred from the normal to the emergency power supply and energized. The Frequency of 18 months is based on a typical fuel cycle and is consistent with similar verifications of emergency power supplies. ## **REFERENCES** - 1. FSAR, Sections 15.1, 15.2, and 6.2. - 2. NUREG-0737, November 1980. # B 3.4 REACTOR COOLANT SYSTEM (RCS) B 3.4.10 Pressurizer Safety Valves #### **BASES** ### **BACKGROUND** The pressurizer safety valves provide, in conjunction with the Reactor Protection System, overpressure protection for the RCS. The pressurizer safety valves are totally enclosed pop type, spring loaded, self actuated valves with backpressure compensation. The safety valves are designed to prevent the system pressure from exceeding the system Safety Limit (SL), 2735 psig, which is 110% of the design pressure. Because the safety valves are totally enclosed and self actuating, they are considered independent components. The relief capacity for each valve, 345,000 lb/hr, is based on postulated overpressure transient conditions resulting from a complete loss of steam flow to the turbine. This event results in the maximum surge rate into the pressurizer, which specifies the minimum relief capacity for the safety valves. The discharge flow from the pressurizer safety valves is directed to the pressurizer relief tank. This discharge flow is indicated by an increase in temperature downstream of the pressurizer safety valves or increase in the pressurizer relief tank temperature or level. Overpressure protection is required in MODES 1, 2, 3, 4, and 5; however, in MODE 4, with one or more RCS cold leg temperatures ≤ 325°F, and MODE 5 and MODE 6 with the reactor vessel head on, overpressure protection is provided by operating procedures and by meeting the requirements of LCO 3.4.12, "Low Temperature Overpressure Protection (LTOP) System." The upper and lower pressure limits are based on the \pm 1% tolerance requirement (Ref. 1) for lifting pressures above 1000 psig. The lift setting is for the ambient conditions associated with MODES 1, 2, and 3. This requires either that the valves be set hot or that a correlation between hot and cold settings be established. The pressurizer safety valves are part of the primary success path and mitigate the effects of postulated accidents. OPERABILITY of the safety valves ensures that the RCS pressure will be limited to 110% of design pressure. The consequences of exceeding the # BACKGROUND (continued) American Society of Mechanical Engineers (ASME) pressure limit (Ref. 1) could include damage to RCS components, increased leakage, or a requirement to perform additional stress analyses prior to resumption of reactor operation. ## APPLICABLE SAFETY ANALYSES All accident and safety analyses in the FSAR (Ref. 2) that require safety valve actuation assume operation of three pressurizer safety valves to limit increases in RCS pressure. The overpressure protection analysis (Ref. 3) is also based on operation of three safety valves. Accidents that could result in overpressurization if not properly terminated include: - a. Uncontrolled rod withdrawal from full power; - b. Loss of reactor coolant flow; - c. Loss of external electrical load; - d. Loss of normal feedwater; - e. Loss of all AC power to station auxiliaries; and - f. Locked rotor. Detailed analyses of the above transients are contained in Reference 2. Safety valve actuation is required in events c, d, and e (above) to limit the pressure increase. Compliance with this LCO is consistent with the design bases and accident analyses assumptions. Pressurizer safety valves satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). # LCO The three pressurizer safety valves are set to open at the RCS design pressure (2500 psia), and within the ASME specified tolerance, to avoid exceeding the maximum design pressure SL, to maintain accident analyses assumptions, and to comply with ASME requirements. The upper and lower pressure tolerance limits are based on the \pm 1% tolerance requirements (Ref. 1) for lifting pressures above 1000 psig. The limit protected by this Specification # LCO (continued) is the reactor coolant pressure boundary (RCPB) SL of 110% of design pressure. Inoperability of one or more valves could result in exceeding the SL if a transient were to occur. The consequences of exceeding the ASME pressure limit could include damage to one or more RCS components, increased leakage, or additional stress analysis being required prior to resumption of reactor operation. ### **APPLICABILITY** In MODES 1, 2, and 3, and portions of MODE 4 above the LTOP temperature (325°F), OPERABILITY of three valves is required because the combined capacity is required to keep reactor coolant pressure below 110% of its design value during certain accidents. MODE 3 and portions of MODE 4 are conservatively included, although the listed accidents may not require the safety valves for protection. The LCO is not applicable in MODE 4 when all RCS cold leg temperatures are ≤ 325°F or in MODE 5 because LTOP is provided. Overpressure protection is not required in MODE 6 with reactor vessel head detensioned. Normally demonstration of the safety valves' lift settings will occur during shutdown and will be performed in accordance with the provisions of Section XI of the ASME Boiler and Pressure Vessel Code. The Note allows entry into MODES 3 and 4 with the lift settings outside the LCO limits. This permits testing and examination of the safety valves at high pressure and temperature near their normal operating range, but only after the valves have had a preliminary cold setting. The cold setting gives assurance that the valves are OPERABLE near their design condition. Only one valve at a time will be removed from service for testing. The 54 hour exception is based on 18 hour outage time for each of the three valves. The 18 hour period is derived from operating experience that hot testing can be performed in this timeframe. ## **ACTIONS** # **A.1** With one pressurizer safety valve inoperable, restoration must take place within 15 minutes. The Completion Time of 15 minutes reflects the importance of maintaining the RCS Overpressure Protection System. An inoperable safety valve coincident with an RCS overpressure event could challenge the integrity of the pressure boundary. # **B.1** and **B.2** If the Required Action of A.1 cannot be met within the required Completion Time or if two or more pressurizer safety valves are inoperable, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 with any RCS cold leg temperatures ≤ 325°F within 12 hours. The
allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. With any RCS cold leg temperatures at or below 325°F, overpressure protection is provided by the LTOP System. The change from MODE 1, 2, or 3 to MODE 4 reduces the RCS energy (core power and pressure), lowers the potential for large pressurizer insurges, and thereby removes the need for overpressure protection by three pressurizer safety valves. # SURVEILLANCE REQUIREMENTS # SR 3.4.10.1 SRs are specified in the Inservice Testing Program. Pressurizer safety valves are to be tested in accordance with the requirements of Section XI of the ASME Code (Ref. 4), which provides the activities and Frequencies necessary to satisfy the SRs. No additional requirements are specified. The pressurizer safety valve setpoint is ± 1% for OPERABILITY. ## **REFERENCES** - 1. ASME, Boiler and Pressure Vessel Code, Section III. - 2. FSAR, Chapter 5.2, 5.5, 15.2, 15.3 and 15.4. - 3. WCAP-7769, Rev. 1, June 1972. - 4. ASME, Boiler and Pressure Vessel Code, Section XI. # B 3.4 REACTOR COOLANT SYSTEM (RCS) B 3.4.11 Pressurizer Power Operated Relief Valves (PORVs) ## **BASES** ## **BACKGROUND** The pressurizer is equipped with two types of devices for pressure relief: pressurizer safety valves and PORVs. The PORVs are air operated valves that are controlled to open at a specific set pressure when the pressurizer pressure increases and close when the pressurizer pressure decreases. The PORVs may also be manually operated from the control room. Block valves, which are normally open, are located between the pressurizer and the PORVs. The block valves are used to isolate the PORVs in case of excessive leakage or a stuck open PORV. Block valve closure is accomplished manually using controls in the control room. A stuck open PORV is, in effect, a small break loss of coolant accident (LOCA). As such, block valve closure terminates the RCS depressurization and coolant inventory loss. The PORVs and their associated block valves may be used by plant operators to depressurize the RCS to recover from certain transients if normal pressurizer spray is not available. Additionally, the series arrangement of the PORVs and their block valves permit performance of surveillances on the valves during power operation. The PORVs may also be used for feed and bleed core cooling in the case of multiple equipment failure events that are not within the design basis, such as a total loss of feedwater. The PORVs, their block valves, and their controls are powered from the vital buses that normally receive power from offsite power sources, but are also capable of being powered from emergency power sources in the event of a loss of offsite power. Two PORVs and their associated block valves are powered from two separate safety trains (Ref. 1). The plant has two PORVs, each having a design relief capacity of 210,000 lb/hr at 2485 psig with a set pressure of 2335 psig. The functional design of the PORVs is based on maintaining pressure below the Pressurizer Pressure—High reactor trip setpoint following a step reduction of 50% of full load with steam dump. In addition, the PORVs minimize challenges to the pressurizer safety valves. # APPLICABLE SAFETY ANALYSES Plant operators employ the PORVs to depressurize the RCS in response to certain plant transients if normal pressurizer spray is not available. For the Steam Generator Tube Rupture (SGTR) event, the safety analysis assumes that manual operator actions are required to mitigate the event. A loss of offsite power is assumed to accompany the event, and thus, normal pressurizer spray is unavailable to reduce RCS pressure. The PORVs are assumed to be used for RCS depressurization, which is one of the steps performed to equalize the primary and secondary pressures in order to terminate the primary to secondary break flow and the radioactive releases from the affected steam generator. For the Inadvertent Operation of ECCS During Power Operation event, the safety analysis assumes that manual operator actions are required to mitigate the event. At least one PORV is assumed to be unblocked and available for water relief prior to reaching a water-solid condition. Use of at least one PORV precludes subcooled water relief through the Pressurizer Safety Relief Valves (PSRVs) by depressurinzing the RCS below the pressure where the PSRVs reseat. Should water relief through the PORV(s) occur, the PORV block valve(s) would be available to isolate the RCS. The PORVs are used in safety analyses for events that result in increasing RCS pressure for which departure from nucleate boiling ratio (DNBR) criteria are critical. By assuming PORV manual actuation, the primary pressure remains below the high pressurizer pressure trip setpoint; thus, the DNBR calculation is more conservative. Events that assume this condition include a loss of RCS flow and a turbine trip (Ref. 2). Pressurizer PORVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## **LCO** The LCO requires the PORVs and their associated block valves to be OPERABLE for manual operation to mitigate the effects associated with an SGTR or an inadvertent operation of ECCS during power operation event. The OPERABILITY of the PORVs and block valves is determined on the basis of their being capable of performing the following functions: # (continued) - A. Manual control of PORVs to control reactor coolant system pressure. This is a function that is used for the steam generator tube rupture accident, the inadvertent operation of ECCS during power operation event, and for plant shutdown. - B. Maintaining the integrity of the reactor coolant pressure boundary. This is a function that is related to controlling identified leakage and ensuring the ability to detect unidentified reactor coolant pressure boundary leakage. - C. Manual control of the block valve to: (1) unblock an isolated PORV to allow it to be used for manual control of reactor coolant system pressure (Item A), and (2) isolate a PORV with excessive seat leakage (Item B). - D. Manual control of a block valve to isolate a stuck-open PORV. By maintaining two PORVs and their associated block valves OPERABLE, the single failure criterion is satisfied. The block valves are available to isolate the flow path through either a failed open PORV or a PORV with excessive leakage. Satisfying the LCO helps minimize challenges to fission product barriers. ### **APPLICABILITY** In MODES 1, 2, and 3, the PORV and its block valve are required to be OPERABLE to limit the potential for a small break LOCA through the flow path. The most likely cause for a PORV small break LOCA is a result of a pressure increase transient that causes the PORV to open. Imbalances in the energy output of the core and heat removal by the secondary system can cause the RCS pressure to increase to the PORV opening setpoint. The most rapid increases will occur at the higher operating power and pressure conditions of MODES 1 and 2. The PORVs are also required to be OPERABLE in MODES 1, 2, and 3 to minimize challenges to the pressurizer safety valves. Pressure increases are less prominent in MODE 3 because the core input energy is reduced, but the RCS pressure is high. Therefore, the LCO is applicable in MODES 1, 2, and 3. The LCO is not applicable in MODE 4 when both pressure and core energy are decreased and the pressure surges become much less significant. The RHR relief # APPLICABILITY (continued) valves or an RCS vent of ≥ 2.85 inches squared is used for overpressure protection in MODES 4, 5, and 6 with the reactor vessel head in place. LCO 3.4.12 addresses the overpressure protection requirements in these MODES. ## **ACTIONS** Note 1 has been added to clarify that all pressurizer PORVs are treated as separate entities, each with separate Completion Times (i.e., the Completion Time is on a component basis). The exception for LCO 3.0.4, Note 2, permits entry into MODES 1, 2, and 3 when Actions Condition(s) are applicable. # <u>A.1</u> With the PORVs inoperable and capable of being manually cycled, either the PORVs must be restored or the flow path isolated within 1 hour. The block valves should be closed but power must be maintained to the associated block valves, since removal of power would render the block valve inoperable. Although a PORV may be designated inoperable, it may be able to be manually opened and closed, and therefore, able to perform its function. PORV inoperability may be due to seat leakage, instrumentation problems related to remote manual operation of the PORVs, or other causes that do not prevent manual use and do not create a possibility for a small break LOCA. For these reasons, the block valve may be closed but the Action requires power be maintained to the valve. This Condition is only intended to permit operation of the plant for a limited period of time not to exceed the next refueling outage (MODE 6) so that maintenance can be performed on the PORVs to eliminate the problem condition. Quick access to the PORV for pressure control can be made when power remains on the closed block valve. The Completion Time of 1 hour is based on plant operating experience that has shown that minor problems can be corrected or closure accomplished in this time period. # ACTIONS (continued) # B.1, B.2, and B.3 If one PORV is inoperable and not capable of being manually cycled, it must be either restored or isolated by closing the associated block valve and removing the power to the associated block valve. The Completion Times of 1 hour are reasonable, based on challenges to the PORVs during this time period, and provide the operator adequate time to correct the situation. If the inoperable valve cannot be restored to OPERABLE status, it must be isolated within the specified time. Because there is at least one PORV that remains OPERABLE, an additional 72 hours is
provided to restore the inoperable PORV to OPERABLE status. If the PORV cannot be restored within this additional time, the plant must be brought to a MODE in which the LCO does not apply, as required by Condition D. # C.1 and C.2 If one block valve is inoperable, then it is necessary to either restore the block valve to OPERABLE status within the Completion Time of 1 hour or place the associated PORV in manual control. The prime importance for the capability to close the block valve is to isolate a stuck open PORV. Therefore, if the block valve cannot be restored to OPERABLE status within 1 hour, the Required Action is to place the PORV in manual control to preclude its automatic opening for an overpressure event and to avoid the potential for a stuck open PORV at a time that the block valve is inoperable. The Completion Time of 1 hour is reasonable, based on the small potential for challenges to the system during this time period, and provides the operator time to correct the situation. Because at least one PORV remains OPERABLE, the operator is permitted a Completion Time of 72 hours to restore the inoperable block valve to OPERABLE status. The time allowed to restore the block valve is based upon the Completion Time for restoring an inoperable PORV in Condition B, since the PORVs are not capable of mitigating an overpressure event when placed in manual control. If the block valve is restored within the Completion Time of 72 hours, the power will be restored and the PORV restored to OPERABLE status. If it cannot be restored within this additional time, the plant must be brought to a MODE in which the LCO does not apply, as required by Condition D. # ACTIONS (continued) # D.1 and D.2 If the Required Action of Condition A, B, or C is not met, then the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODES 4, 5, and 6, the PORVs are not required OPERABLE. # E.1, E.2, E.3, and E.4 if more than one PORV is inoperable and not capable of being manually cycled, it is necessary to either restore at least one valve within the Completion Time of 1 hour or isolate the flow path by closing and removing the power to the associated block valves. The Completion Time of 1 hour is reasonable, based on the small potential for challenges to the system during this time and provides the operator time to correct the situation. If one PORV is restored and one PORV remains inoperable, then the plant will be in Condition B with the time clock started at the original declaration of having two PORVs inoperable. If no PORVs are restored within the Completion Time, then the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODES 4, 5, and 6, the PORVs are not required OPERABLE. # F.1, F.2, and F.3 If more than one block valve is inoperable, it is necessary to either restore the block valves within the Completion Time of 1 hour, or place the associated PORVs in manual control and restore at least one block valve within 2 hours and restore the remaining block valve within 72 hours. The Completion Times are reasonable, based on the small potential for challenges to the system during this time and provide the operator time to correct the situation. # ACTIONS (continued) ## G.1 and G.2 If the Required Actions of Condition F are not met, then the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODES 4, 5, and 6, the PORVs are not required OPERABLE. ## SURVEILLANCE REQUIREMENTS # SR 3.4.11.1 Block valve cycling verifies that the valve(s) can be closed if needed. The basis for the Frequency of 92 days is the ASME Code, Section XI (Ref. 3). If the block valve is closed to isolate a PORV that is capable of being manually cycled, the OPERABILITY of the block valve is of importance, because opening the block valve is necessary to permit the PORV to be used for manual control of reactor pressure. If the block valve is closed to isolate an otherwise inoperable PORV, the maximum Completion Time to restore the PORV and open the block valve is 72 hours, which is well within the allowable limits (25%) to extend the block valve Frequency of 92 days. Furthermore, these test requirements would be completed by the reopening of a recently closed block valve upon restoration of the PORV to OPERABLE status (i.e., completion of the Required Actions fulfills the SR). This SR is modified by two Notes. Note 1 modifies this SR by stating that it is not required to be met with the block valve closed, in accordance with the Required Action of this LCO. Note 2 modifies this SR to allow entry into and operation in MODE 3 prior to performing the SR. This allows the test to be performed in MODE 3 under operating temperature conditions, prior to entering MODE 1 or 2. ## SR 3.4.11.2 SR 3.4.11.2 requires a complete cycle of each PORV in MODE 3 or 4. The PORVs are stroke tested during MODES 3 or 4 with the associated block valves closed in order to limit the uncertainty introduced by testing the PORVs at lesser system temperatures than expected during actual operating conditions. Operating a PORV # SURVEILLANCE REQUIREMENTS # SR 3.4.11.2 (continued) through one complete cycle ensures that the PORV can be manually actuated for mitigation of an SGTR. The Frequency of 18 months is based on a typical refueling cycle and industry accepted practice. The Note modifies this SR to allow entry into and operation in MODE 3 prior to performing the SR. This allows the test to be performed in MODE 3 under operating temperature conditions, prior to entering MODE 1 or 2. ## SR 3.4.11.3 SR 3.4.11.3 requires a complete cycle of each PORV using the backup PORV control system. This surveillance verifies the capability to operate the PORVs using the backup air and nitrogen supply systems. Additionally, this surveillance ensures the correct function of the associated air and nitrogen supply system valves. The 18-month Frequency is based on a typical refueling cycle and industry accepted practice for Surveillances requiring the PORVs to be cycled. #### REFERENCES - 1. Regulatory Guide 1.32, February 1977. - 2. FSAR Sections 5.5 and 15.2. - 3. ASME, Boiler and Pressure Vessel Code, Section XI. # B 3.4 REACTOR COOLANT SYSTEM (RCS) B 3.4.12 Low Temperature Overpressure Protection (LTOP) System ## **BASES** #### **BACKGROUND** The LTOP System controls RCS pressure at low temperatures so the integrity of the reactor coolant pressure boundary (RCPB) is not compromised by violating the pressure and temperature (P/T) limits of 10 CFR 50, Appendix G (Ref. 1). The reactor vessel is the limiting RCPB component for demonstrating such protection. This Technical Specification provides the maximum allowable actuation setpoints for the RHR relief valves and the PTLR contains the maximum RCS pressure for the existing RCS cold leg temperature during cooldown, shutdown, and heatup to meet the Reference 1 requirements during the LTOP MODES. The reactor vessel material is less tough at low temperatures than at normal operating temperature. As the vessel neutron exposure accumulates, the material toughness decreases and becomes less resistant to pressure stress at low temperatures (Ref. 2). RCS pressure, therefore, is maintained low at low temperatures and is increased only as temperature is increased. The potential for vessel overpressurization is most acute when the RCS is water solid, occurring only while shutdown; a pressure fluctuation can occur more quickly than an operator can react to relieve the condition. Exceeding the RCS P/T limits by a significant amount could cause brittle cracking of the reactor vessel. LCO 3.4.3, "RCS Pressure and Temperature (P/T) Limits," requires administrative control of RCS pressure and temperature during heatup and cooldown to prevent exceeding the PTLR limits. This LCO provides RCS overpressure protection by having a minimum coolant input capability and having adequate pressure relief capacity. Limiting coolant input capability requires all but one charging pump incapable of injection into the RCS and isolating the accumulators. The pressure relief capacity requires either two redundant RHR relief valves or a depressurized RCS and an RCS vent of sufficient size. One RHR relief valve or the open RCS vent is the overpressure protection device that acts to terminate an increasing pressure event. # BACKGROUND (continued) With minimum coolant input capability, the ability to provide core coolant addition is restricted. The LCO does not require the makeup control system deactivated or the safety injection (SI) actuation circuits blocked. Due to the lower pressures in the LTOP MODES and the expected core decay heat levels, the makeup system can provide adequate flow via the makeup control valve. If conditions require the use of more than one charging pump for makeup in the event of loss of inventory, then pumps can be made available through manual actions. The LTOP System for pressure relief consists of two residual heat removal (RHR) suction relief valves, or a depressurized RCS and an RCS vent
of sufficient size. Two RHR relief valves are required for redundancy. One RHR relief valve has adequate relieving capability to keep from overpressurization for the required coolant input capability. ## RHR Suction Relief Valve Requirements During LTOP MODES, the RHR System is operated for decay heat removal and low pressure letdown control. Therefore, the RHR suction isolation valves are open in the piping from the RCS hot legs to the inlets of the RHR pumps. While these valves are open and the RHR suction valves are open, the RHR suction relief valves are exposed to the RCS and are able to relieve pressure transients in the RCS. The RHR suction isolation valves and the RHR suction valves must be open to make the RHR suction relief valves OPERABLE for RCS overpressure mitigation. The RHR suction relief valves are spring loaded, bellows type water relief valves with pressure tolerances and accumulation limits established by Section III of the American Society of Mechanical Engineers (ASME) Code (Ref. 3) for Class 2 relief valves. Each relief valve has the capacity to mitigate overpressurization in the worst case of inadvertant startup of three charging pumps injecting into a solid RCS. # **RCS Vent Requirements** Once the RCS is depressurized, a vent exposed to the containment atmosphere will maintain the RCS at containment ambient pressure in an RCS overpressure transient, if the relieving requirements of the transient do not exceed the capabilities of the vent. Thus, the vent path must be capable of relieving the flow resulting from the limiting ## **BACKGROUND** # RCS Vent Requirements (continued) LTOP mass or heat input transient, and maintaining pressure below the P/T limits. The required vent capacity may be provided by one or more vent paths. The vent path(s) must be above the level of reactor coolant, so as not to drain the RCS when open. ## APPLICABLE SAFETY ANALYSES Safety analyses (Ref. 4) demonstrate that the reactor vessel is adequately protected against exceeding the Reference 1 P/T limits. In MODES 1, 2, and 3, and in MODE 4 with RCS cold leg temperature exceeding 325°F, the pressurizer safety valves will prevent RCS pressure from exceeding the Reference 1 limits. At about 325°F and below, overpressure prevention falls to two OPERABLE RHR relief valves or to a depressurized RCS and a sufficient sized RCS vent. Each of these means has a limited overpressure relief capability. The actual temperature at which the pressure in the P/T limit curve falls below the pressurizer safety valve setpoint increases as the reactor vessel material toughness decreases due to neutron embrittlement. Each time the PTLR curves are revised, the LTOP System must be re-evaluated to ensure its functional requirements can still be met using the RHR relief valve method or the depressurized and vented RCS condition. The PTLR contains the acceptance limits that define the LTOP requirements. Any change to the RCS must be evaluated against the Reference 4 analyses to determine the impact of the change on the LTOP acceptance limits. Transients that are capable of overpressurizing the RCS are categorized as either mass or heat input transients, examples of which follow: # Mass Input Type Transients - a. Inadvertent safety injection; or - b. Charging/letdown flow mismatch. # APPLICABLE SAFETY ANALYSES (continued) # **Heat Input Type Transients** - a. Inadvertent actuation of pressurizer heaters; - b. Loss of RHR cooling; or - c. Reactor coolant pump (RCP) startup with temperature asymmetry within the RCS or between the RCS and steam generators. The following are required during the LTOP MODES to ensure that mass and heat input transients do not occur, which either of the LTOP overpressure protection means cannot handle: - a. Rendering all but one charging pump incapable of injection; - b. Deactivating the accumulator discharge isolation valves in their closed positions; and - c. Disallowing start of an RCP if secondary temperature is more than 50°F above primary temperature in any one loop except as provided for in LCO 3.4.6, "RCS Loops—MODE 4," and LCO 3.4.7, "RCS Loops—MODE 5, Loops Filled." The Reference 4 analyses demonstrate that one RHR relief valve can maintain RCS pressure below limits when only one charging pump is actuated. Thus, the LCO allows only one charging pump OPERABLE during the LTOP MODES. Since one RHR relief valve has not been demonstrated to be able to handle the pressure transient need from accumulator injection, when RCS temperature is low, the LCO also requires the accumulators isolated when accumulator pressure is greater than or equal to the maximum RCS pressure for the existing RCS cold leg temperature allowed in the PTLR. The isolated accumulators must have their discharge valves closed and the valve power supply breakers fixed in their open positions. Fracture mechanics analyses established the temperature of LTOP Applicability at 325°F. The consequences of a small break loss of coolant accident (LOCA) in LTOP MODE 4 conform to 10 CFR 50.46 and 10 CFR 50, Appendix K (Refs. 5 and 6), requirements by having a maximum of one charging pump OPERABLE and SI actuation enabled. # APPLICABLE SAFETY ANALYSES (continued) ## RHR Suction Relief Valve Performance The RHR suction relief valves do not have variable pressure and temperature lift setpoints like the PORVs. Analyses show that one RHR suction relief valve (2.85 square inch throat) with a setpoint ≤ 450 psig will pass flow greater than that required for the limiting LTOP transient while maintaining RCS pressure less than the P/T limit curve. Assuming all relief flow requirements during the limiting LTOP event, an RHR suction relief valve will maintain RCS pressure to within the valve rated lift setpoint, plus an accumulation ≤ 10% of the rated lift setpoint. Although each RHR suction relief valve may itself meet single failure criteria, its inclusion and location within the RHR System does not allow it to meet single failure criteria when spurious RHR suction isolation valve closure is postulated. Also, as the RCS P/T limits are decreased to reflect the loss of toughness in the reactor vessel materials due to neutron embrittlement, the RHR suction relief valves must be analyzed to still accommodate the design basis transients for LTOP. The RHR suction relief valves are considered active components. Thus, the failure of one valve is assumed to represent the worst case single active failure. #### **RCS Vent Performance** With the RCS depressurized, analyses show a vent equivalent to an RHR relief valve is capable of mitigating the allowed LTOP overpressure transient. The capacity of a vent this size is greater than the flow of the limiting transient for the LTOP configuration, one charging pump OPERABLE, maintaining RCS pressure less than the maximum pressure on the P/T limit curve. The RCS vent size will be re-evaluated for compliance each time the P/T limit curves are revised based on the results of the vessel material surveillance. The RCS vent is passive and is not subject to active failure. The LTOP System satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). ## LCO This LCO requires that the LTOP System is OPERABLE. The LTOP System is OPERABLE when the minimum coolant input and pressure relief capabilities are OPERABLE. Violation of this LCO could lead to the loss of low temperature overpressure mitigation and violation of the Reference 1 limits as a result of an operational transient. To limit the coolant input capability, the LCO requires only one charging pump capable of injecting into the RCS and all accumulator discharge isolation valves closed and immobilized when accumulator pressure is greater than or equal to the maximum RCS pressure for the existing RCS cold leg temperature allowed in the PTLR. The elements of the LCO that provide low temperature overpressure mitigation through pressure relief are: a. Two OPERABLE RHR suction relief valves; or An RHR suction relief valve is OPERABLE for LTOP when its RHR suction isolation valve and its RHR suction valve are open, its setpoint is ≤ 450 psig, and testing has proven its ability to open at this setpoint. b. A depressurized RCS and an RCS vent. An RCS vent is OPERABLE when open with an area of ≥ 2.85 square inches. Each of these methods of overpressure prevention is capable of mitigating the limiting LTOP transient # **APPLICABILITY** This LCO is applicable in MODE 4 when any RCS cold leg temperature is \leq 325°F, in MODE 5, and in MODE 6 when the reactor vessel head is on (i.e., fully seated on the reactor vessel flange, with or without studs). The pressurizer safety valves provide overpressure protection that meets the Reference 1 P/T limits above 325°F. When the reactor vessel head is raised, such that a total vent area of \geq 2.85 square inches is created, seated on blocks providing an equivalent vent area, or off, overpressurization cannot occur. # APPLICABILITY (continued) LCO 3.4.3 provides the operational P/T limits for all MODES. LCO 3.4.10, "Pressurizer Safety Valves," requires the OPERABILITY of the pressurizer safety valves that provide overpressure protection during MODES 1, 2, and 3, and MODE 4 above 325°F. Low temperature overpressure prevention is most critical during shutdown when the RCS is water solid, and a mass or heat input transient can cause a very rapid increase in RCS pressure with little or no time allowed for operator action to mitigate the event. The Applicability is modified by three Notes. Note 1 states that the requirement to have only one charging pump capable of injecting into the RCS is only applicable when one or more of the RCS cold legs is ≤ 180°F. This Note permits more than one charging pump to be capable of injecting into the RCS in MODE 4 at temperatures > 180°F and specifies that the charging pump surveillance requirement need only be performed at temperatures ≤ 180°F. In addition, this Note allows for two charging pumps to be capable of injecting
into the RCS during pump swap operations, when one or more of the RCS cold leas is ≤ 180°F, for a period of no more than 15 minutes provided that the RCS is in a non-water solid condition and both RHR relief valves are OPERABLE or the RCS is vented via an opening of no less than 5.7 square inches in area. A 5.7 square inch opening is equivalent to the throat size area of two RHR relief valves. This allows seal injection flow to be continually maintained, thus minimizing the potential for RCP number one seal damage by reducing pressure transients on the seal and by preventing RCS water from entering the seal. Particles in the RCS water may cause wear on the seal surfaces and loss of seal injection pressure may cause the seal not to fully reseat when pressure is reapplied. Note 2 states that accumulator isolation is only required when the accumulator pressure is more than or at the maximum RCS pressure for the existing temperature, as allowed by the P/T limit curves. This Note permits the accumulator discharge isolation valve Surveillance to be performed only under these pressure and temperature conditions. Note 3 states that LCO 3.0.4 is not applicable. This Note permits MODE changes to be made when the Low Temperature Overpressure Protection System LCO is not met. ## **ACTIONS** ## **A.1** With two or more charging pumps capable of injecting into the RCS, and the Temperature of one or more RCS cold legs ≤ 180°F, RCS overpressurization is possible. To immediately initiate action to restore restricted coolant input capability to the RCS reflects the urgency of removing the RCS from this condition. Required Action A.1 is modified by a Note that permits two charging pumps capable of RCS injection for ≤ 15 minutes to allow for pump swaps. # B.1, C.1, and C.2 An unisolated accumulator requires isolation within 1 hour. This is only required when the accumulator pressure is at or more than the maximum RCS pressure for the existing temperature allowed by the P/T limit curves. If isolation is needed and cannot be accomplished in 1 hour, Required Action C.1 and Required Action C.2 provide two options, either of which must be performed in the next 12 hours. By increasing the RCS temperature to > 325°F, an accumulator pressure of 600-650 psig cannot exceed the LTOP limits if the accumulators are fully injected. Depressurizing the accumulators below the LTOP limit from the PTLR also gives this protection. The Completion Times are based on operating experience that these activities can be accomplished in these time periods and on engineering evaluations indicating that an event requiring LTOP is not likely in the allowed times. # D.1, D.2, and D.3 In MODE 4 when any RCS cold leg temperature is ≤ 325°F, with one required RHR relief valve inoperable, the pressurizer level must be reduced to ≤ 30% (cold calibrated) and a dedicated operator must be assigned for RCS pressure monitoring and control within 24 hours. These actions provide additional assurance that an RCS pressure transient will be rapidly identified and operator action taken to limit the ## **ACTIONS** # D.1, D.2, and D.3 (continued) transient. The RHR relief valve must be restored to OPERABLE status within a Completion Time of 7 days. Two RHR relief valves are required to provide low temperature overpressure mitigation while withstanding a single failure of an active component. The 7 day Completion Time considers the facts that only one of the RHR relief valves is required to mitigate an overpressure transient, the actions taken to reduce pressurizer level and monitor RCS pressure, and that the likelihood of an active failure of the remaining valve path during this time period is very low. # <u>E.1</u> The RCS must be depressurized and a vent must be established within 8 hours when: - a. Both required RHR relief valves are inoperable; or - b. A Required Action and associated Completion Time of Condition A, C, or D is not met; or - c. The LTOP System is inoperable for any reason other than Condition A, B, C, or D. The vent must be sized ≥ 2.85 square inches to ensure that the flow capacity is greater than that required for the worst case mass input transient reasonable during the applicable MODES. This action is needed to protect the RCPB from a low temperature overpressure event and a possible brittle failure of the reactor vessel. The Completion Time considers the time required to place the plant in this Condition and the relatively low probability of an overpressure event during this time period due to increased operator awareness of administrative control requirements. ## SURVEILLANCE REQUIREMENTS # SR 3.4.12.1 and SR 3.4.12.2 To minimize the potential for a low temperature overpressure event by limiting the mass input capability, a maximum of one charging pump is verified capable of injecting into the RCS and the accumulator discharge isolation valves are verified closed and locked out. The charging pumps are rendered incapable of injecting into the RCS through removing the power from the pumps by racking the breakers out under administrative control. An alternate method of LTOP control may be employed using at least two independent means to prevent a pump start such that a single failure or single action will not result in an injection into the RCS. This may be accomplished through the Hot Shutdown Panel Local/Remote and pump control switches being placed in the Local and Stop positions, respectively, and at teast one valve in the discharge flow path being closed with the position of these components controlled administratively. The Frequency of 12 hours is sufficient, considering other indications and alarms available to the operator in the control room, to verify the required status of the equipment. ## SR 3.4.12.3 Each required RHR suction relief valve shall be demonstrated OPERABLE by verifying its RHR suction isolation valves (8701A, 8701B, 8702A and 8702B) are open. This Surveillance is only required to be performed if the RHR suction relief valve is being used to meet this LCO. The RHR suction valve is verified to be opened every 72 hours. The Frequency is considered adequate in view of other administrative controls such as valve status indications available to the operator in the control room that verify the RHR suction valve remains open. # SR 3.4.12.4 The RCS vent of \geq 2.85 square inches is proven OPERABLE by verifying its open condition either: a. Once every 12 hours for a valve that cannot be locked, sealed, or otherwise secured in position. ## SURVEILLANCE REQUIREMENTS # SR 3.4.12.4 (continued) b. Once every 31 days for a valve that is locked, sealed, or secured in position. A removed pressurizer safety valve fits this category. The passive vent arrangement must only be open to be OPERABLE. This Surveillance is required to be performed if the vent is being used to satisfy the pressure relief requirements of the LCO 3.4.12b. ## SR 3.4.12.5 The RHR relief valves are verified OPERABLE by testing the relief setpoint. The setpoint verification ensures proper relief valve mechanical motion as well as verifying the setpoint. Testing is performed in accordance with the Inservice Testing Program which is based on the requirements of the ASME Code, Section XI (Ref. 7). The RHR relief valve setpoints are verified every 18 months on a STAGGERED TEST BASIS. Per the Inservice Testing Program, if the scheduled valve exceeds the relief setpoint by 3% or greater, the remaining valve shall also be tested. The frequency for testing the RHR relief valves has been shown to be adequate through operating experience. #### REFERENCES - 1. 10 CFR 50, Appendix G. - 2. Generic Letter 88-11. - 3. ASME, Boiler and Pressure Vessel Code, Section III. - 4. FSAR, Chapter 5.2.2.4. - 5. 10 CFR 50, Section 50.46. - 6. 10 CFR 50, Appendix K. - 7. ASME, Boiler and Pressure Vessel Code, Section XI. ## B 3.4 REACTOR COOLANT SYSTEM (RCS) # B 3.4.13 RCS Operational LEAKAGE #### **BASES** #### **BACKGROUND** Components that contain or transport the coolant to or from the reactor core make up the RCS. Component joints are made by welding, bolting, rolling, or pressure loading, and valves isolate connecting systems from the RCS. During plant life, the joint and valve interfaces can produce varying amounts of reactor coolant LEAKAGE, through either normal operational wear or mechanical deterioration. The purpose of the RCS Operational LEAKAGE LCO is to limit system operation in the presence of LEAKAGE from these sources to amounts that do not compromise safety. This LCO specifies the types and amounts of LEAKAGE. 10 CFR 50, Appendix A, GDC 30 (Ref. 1), requires means for detecting and, to the extent practical, identifying the source of reactor coolant LEAKAGE. Regulatory Guide 1.45 (Ref. 2) describes acceptable methods for selecting leakage detection systems. The safety significance of RCS LEAKAGE varies widely depending on its source, rate, and duration. Therefore, detecting and monitoring reactor coolant LEAKAGE into the containment area is necessary. Quickly separating the identified LEAKAGE from the unidentified LEAKAGE is necessary to provide quantitative information to the operators, allowing them to take corrective action should a leak occur that is detrimental to the safety of the facility and the public. A limited amount of leakage inside containment is expected from auxiliary systems that cannot be made 100% leaktight. Leakage from these systems should be detected, located, and isolated from the containment atmosphere, if possible, to not interfere with RCS leakage detection. This LCO deals with protection of the reactor coolant pressure boundary (RCPB) from degradation and the core from inadequate cooling, in addition to preventing the accident analyses radiation release assumptions from being exceeded. The consequences of violating this LCO include the possibility of a loss of coolant accident (LOCA). ## APPLICABLE SAFETY ANALYSES Except for primary to secondary LEAKAGE, the
safety analyses do not address operational LEAKAGE. However, other operational LEAKAGE is typically seen as a precursor to a LOCA; the amount of leakage can affect the probability of such an event. The safety analysis for an event resulting in steam discharge to the atmosphere assumes a 150 gpd per SG primary to secondary LEAKAGE as the initial condition. Primary to secondary LEAKAGE is a factor in the dose releases outside containment resulting from a steam line break (SLB) accident. To a lesser extent, other accidents or transients involve secondary steam release to the atmosphere, such as a steam generator tube rupture (SGTR). The leakage contaminates the secondary fluid. The FSAR (Ref. 3) analysis for SGTR assumes the contaminated secondary fluid is released via the main steam safety valves. The majority of the activity released to the atmosphere results from the tube rupture. Therefore, the 150 gpd per SG primary to secondary LEAKAGE is inconsequential. The main steam line break (MSLB) is more limiting for site radiation releases. The MSLB analysis in support of Generic Letter 95-05 has shown that steam generator tube leakage of 11.8 gpm in the faulted loop, and 0.1 gpm (approximately 150 gpd) in each of the intact loops (total leakage of 12 gpm), following a main steam line break outside of containment, but upstream of the main steam isolation valves, results in offsite doses bounded by a small fraction (i.e., 10%) of the 10 CFR 100 guidelines. The RCS specific activity assumed was 0.30 μ Ci/gm DOSE EQUIVALENT I-131, with either a pre-existing or an accident initiated iodine spike. The RCS operational LEAKAGE satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). # LCO RCS operational LEAKAGE shall be limited to: # a. Pressure Boundary LEAKAGE No pressure boundary LEAKAGE is allowed, being indicative of material deterioration. LEAKAGE of this type is unacceptable as the leak itself could cause further deterioration, resulting in higher #### LCO # a. <u>Pressure Boundary LEAKAGE</u> (continued) LEAKAGE. Violation of this LCO could result in continued degradation of the RCPB. LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. # b. <u>Unidentified LEAKAGE</u> One gallon per minute (gpm) of unidentified LEAKAGE is allowed as a reasonable minimum detectable amount that the containment air monitoring and containment sump level monitoring equipment can detect within a reasonable time period. Violation of this LCO could result in continued degradation of the RCPB, if the LEAKAGE is from the pressure boundary. # c. <u>Identified LEAKAGE</u> e i Up to 10 gpm of identified LEAKAGE is considered allowable because LEAKAGE is from known sources that do not interfere with detection of unidentified LEAKAGE and is well within the capability of the RCS Makeup System. Identified LEAKAGE includes LEAKAGE to the containment from specifically known and located sources, but does not include pressure boundary LEAKAGE or controlled reactor coolant pump (RCP) seal leakoff (a normal function not considered LEAKAGE). Violation of this LCO could result in continued degradation of a component or system. # d. <u>Primary to Secondary LEAKAGE through All Steam Generators</u> (SGs) The limits for total primary to secondary LEAKAGE through all SGs produce acceptable offsite doses in the SLB accident analysis. Violation of this LCO could exceed the offsite dose limits for this accident. Primary to secondary LEAKAGE must be included in the total allowable limit for identified LEAKAGE. # e. Primary to Secondary LEAKAGE through Any One SG The limit on one SG is based on the assumption that a single crack leaking this amount would not propagate to a SGTR under the stress conditions of a LOCA or a main steam line rupture. If ## LCO # e. Primary to Secondary LEAKAGE through Any One SG (continued) leaked through many cracks, the cracks are very small, and the above assumption is conservative. # **APPLICABILITY** In MODES 1, 2, 3, and 4, the potential for RCPB LEAKAGE is greatest when the RCS is pressurized. In MODES 5 and 6, LEAKAGE limits are not required because the reactor coolant pressure is far lower, resulting in lower stresses and reduced potentials for LEAKAGE. LCO 3.4.14, "RCS Pressure Isolation Valve (PIV) Leakage," measures leakage through each individual PIV and can impact this LCO. Of the two PIVs in series in each isolated line, leakage measured through one PIV does not result in RCS LEAKAGE when the other is leak tight. If both valves leak and result in a loss of mass from the RCS, the loss must be included in the allowable identified LEAKAGE. ## **ACTIONS** ## **A.1** Unidentified LEAKAGE, identified LEAKAGE, or primary to secondary LEAKAGE in excess of the LCO limits must be reduced to within limits within 4 hours. This Completion Time allows time to verify leakage rates and either identify unidentified LEAKAGE or reduce LEAKAGE to within limits before the reactor must be shut down. This action is necessary to prevent further deterioration of the RCPB. ## B.1 and B.2 If any pressure boundary LEAKAGE exists, or if unidentified LEAKAGE, identified LEAKAGE, or primary to secondary LEAKAGE cannot be reduced to within limits within 4 hours, the reactor must be brought to lower pressure conditions to reduce the severity of the LEAKAGE and its potential consequences. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary #### **ACTIONS** ## B.1 and B.2 (continued) LEAKAGE. The reactor must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. This action reduces the LEAKAGE and also reduces the factors that tend to degrade the pressure boundary. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. In MODE 5, the pressure stresses acting on the RCPB are much lower, and further deterioration is much less likely. # SURVEILLANCE REQUIREMENTS # SR 3.4.13.1 Verifying RCS LEAKAGE to be within the LCO limits ensures the integrity of the RCPB is maintained. Pressure boundary LEAKAGE would at first appear as unidentified LEAKAGE and can only be positively identified by inspection. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. Unidentified LEAKAGE and identified LEAKAGE are determined by performance of an RCS water inventory balance. Primary to secondary LEAKAGE is also measured by performance of an RCS water inventory balance in conjunction with effluent monitoring within the secondary steam and feedwater systems. The RCS water inventory balance must be met with the reactor at steady state operating conditions and near operating pressure. Therefore, this SR is not required to be performed in MODES 3 and 4 until 12 hours of steady state operation near operating pressure have been established. Steady state operation is required to perform a proper inventory balance; calculations during maneuvering are not useful and a Note requires the Surveillance to be met when steady state is established. For RCS operational LEAKAGE determination by water inventory balance, steady state is defined as stable RCS pressure, temperature, power level, pressurizer and makeup tank levels, makeup and letdown, and RCP seal injection and return flows. An early warning of pressure boundary LEAKAGE or unidentified LEAKAGE is provided by the automatic systems that monitor the ## SURVEILLANCE REQUIREMENTS # SR 3.4.13.1 (continued) containment atmosphere radioactivity and the containment air cooler condensate flow rate. It should be noted that LEAKAGE past seals and gaskets is not pressure boundary LEAKAGE. These leakage detection systems are specified in LCO 3.4.15, "RCS Leakage Detection Instrumentation." The 72 hour Frequency is a reasonable interval to trend LEAKAGE and recognizes the importance of early leakage detection in the prevention of accidents. A Note under the Frequency column states that this SR is required to be performed during steady state operation. ## SR 3.4.13.2 This SR provides the means necessary to determine SG OPERABILITY in an operational MODE. The requirement to demonstrate SG tube integrity in accordance with the Steam Generator Tube Surveillance Program emphasizes the importance of SG tube integrity, even though this Surveillance cannot be performed at normal operating conditions. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 30. - 2. Regulatory Guide 1.45, May 1973. - 3. FSAR, Section 3.1.2.6, 5.2.7, 10.4, 11.0, 12.0 and 15.0. # B 3.4 REACTOR COOLANT SYSTEM (RCS) B 3.4.14 RCS Pressure Isolation Valve (PIV) Leakage ## **BASES** ## **BACKGROUND** 10 CFR 50.2, 10 CFR 50.55a(c), and GDC 55 of 10 CFR 50, Appendix A (Refs. 1, 2, and 3), define RCS PIVs as any two normally closed valves in series within the reactor coolant pressure boundary (RCPB), which separate the high pressure RCS from an attached low pressure system. During their lives, these valves can produce varying amounts of reactor coolant leakage through either normal operational wear or mechanical deterioration. The RCS PIV Leakage LCO allows RCS high pressure operation when leakage through these valves exists in amounts that do not compromise safety. The PIV leakage limit applies to each individual valve. Leakage through both series PIVs in a line must be included as part of the identified LEAKAGE, governed by LCO 3.4.13, "RCS Operational LEAKAGE." This is true during operation only when the loss of RCS mass through two series valves is determined by a water inventory balance (SR 3.4.13.1). A known component of the identified LEAKAGE before operation begins is the least of the two individual leak rates determined for leaking series PIVs during the required surveillance testing; leakage measured through one PIV in a line is not RCS operational LEAKAGE if the other is leaktight. Although this specification provides a limit on allowable PIV leakage rate,
its main purpose is to prevent overpressure failure of the low pressure portions of connecting systems. The leakage limit is an indication that the PIVs between the RCS and the connecting systems are degraded or degrading. PIV leakage could lead to overpressure of the low pressure piping or components. Failure consequences could be a loss of coolant accident (LOCA) outside of containment, an unanalyzed accident, that could degrade the ability for low pressure injection. The basis for this LCO is the 1975 NRC "Reactor Safety Study" (Ref. 4) that identified potential intersystem LOCAs as a significant contributor to the risk of core melt. A subsequent study (Ref. 5) evaluated various PIV configurations to determine the probability of intersystem LOCAs. # BACKGROUND (continued) PIVs are provided to isolate the RCS from the following typically connected systems: - a. Residual Heat Removal (RHR) System; and - b. Charging System. The PIVs are listed in the Technical Requirements Manual (TRM) (Ref. 6). Violation of this LCO could result in continued degradation of a PIV, which could lead to overpressurization of a low pressure system and the loss of the integrity of a fission product barrier. ## APPLICABLE SAFETY ANALYSES Reference 4 identified potential intersystem LOCAs as a significant contributor to the risk of core melt. The dominant accident sequence in the intersystem LOCA category is the failure of the low pressure portion of the RHR System outside of containment. The accident is the result of a postulated failure of the PIVs, which are part of the RCPB, and the subsequent pressurization of the RHR System downstream of the PIVs from the RCS. Because the low pressure portion of the RHR System is typically designed for 600 psig, overpressurization failure of the RHR low pressure line would result in a LOCA outside containment and subsequent risk of core melt. Reference 5 evaluated various PIV configurations, leakage testing of the valves, and operational changes to determine the effect on the probability of intersystem LOCAs. This study concluded that periodic leakage testing of the PIVs can substantially reduce the probability of an intersystem LOCA. RCS PIV leakage satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). ## LCO RCS PIV leakage is identified LEAKAGE into closed systems connected to the RCS. Isolation valve leakage is usually on the order of drops per minute. Leakage that increases significantly suggests that something is operationally wrong and corrective action must be taken. # (continued) The LCO PIV leakage limit is 0.5 gpm per nominal inch of valve size with a maximum limit of 5 gpm. The previous NRC Standard criterion of 1 gpm for all valve sizes imposed an unjustified penalty on the larger valves without providing information on potential valve degradation and resulted in higher personnel radiation exposures. A study concluded a leakage rate limit based on valve size was superior to a single allowable value. Reference 7 permits leakage testing at a lower pressure differential than between the specified maximum RCS pressure and the normal pressure of the connected system during RCS operation (the maximum pressure differential) in those types of valves in which the higher service pressure will tend to diminish the overall leakage channel opening. In such cases, the observed rate may be adjusted to the maximum pressure differential by assuming leakage is directly proportional to the pressure differential to the one half power. ## **APPLICABILITY** In MODES 1, 2, 3, and 4, this LCO applies because the PIV leakage potential is greatest when the RCS is pressurized. In MODE 4, valves in the RHR flow path are not required to meet the requirements of this LCO when in, or during the transition to or from, the RHR mode of operation. In MODES 5 and 6, leakage limits are not provided because the lower reactor coolant pressure results in a reduced potential for leakage and for a LOCA outside the containment. #### **ACTIONS** The Actions are modified by two Notes. Note 1 provides clarification that each flow path allows separate entry into a Condition. This is allowed based upon the functional independence of the flow path. Note 2 requires an evaluation of affected systems if a PIV is inoperable. The leakage may have affected system operability, or isolation of a leaking flow path with an alternate valve may have degraded the ability of the interconnected system to perform its safety function. # ACTIONS (continued) # A.1 and A.2 The flow path must be isolated by two valves. Required Actions A.1 and A.2 are modified by a Note that the valves used for isolation must meet the same leakage requirements as the PIVs and must be within the RCPB or the high pressure portion of the system. However, the valves used to isolate the flow path (which are not PIVs) do not have to be pre-qualified by periodic testing. When Required Action A is entered and the flow path isolated, the valves will be verified at that time to meet the leakage requirements of SR 3.4.14.1. This is accomplished using the methodology of SR 3.4.13.1 (RCS water inventory balance) with the leakage limits of SR 3.4.14.1 applied. Required Action A.1 requires that the isolation with one valve must be performed within 4 hours. Four hours provides time to reduce leakage in excess of the allowable limit and to isolate the affected system if leakage cannot be reduced. The 4 hour Completion Time allows the actions and restricts the operation with leaking isolation valves. Required Action A.2 specifies that the double isolation barrier of two valves be restored by closing some other valve qualified for isolation or restoring one leaking PIV. The 72 hour Completion Time after exceeding the limit considers the time required to complete the Action and the low probability of a second valve failing during this time period. # B.1 and B.2 If leakage cannot be reduced, the system isolated, or the other Required Actions accomplished, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to MODE 3 within 6 hours and MODE 5 within 36 hours. This Action may reduce the leakage and also reduces the potential for a LOCA outside the containment. The allowed Completion Times are reasonable based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## <u>C.1</u> The inoperability of the RHR autoclosure interlock renders the associated RHR suction isolation valves incapable of isolating in response to a high pressure condition. The inoperability of the RHR open permissive interlock renders the associated RHR suction ## **ACTIONS** ## C.1 (continued) isolation valves incapable of preventing inadvertent opening of the valves at RCS pressures in excess of the RHR systems design pressure. If the RHR autoclosure or open permissive interlocks are inoperable, operation may continue as long as the affected RHR suction valves are closed and administrative controls are in place in the control room to maintain them closed (e.g., tags on the main control board handswitches, etc.) within 4 hours. This Action accomplishes the purpose of the autoclosure or open permissive function. Note to Operators: The location of the electrical switchgear containing the breakers for the RHR isolation valves is subject to very high dose rates in the event of a small break LOCA. Therefore, opening the breakers for the RHR isolation valves would place the plant in a condition where, should a small break LOCA occur, the plant could not be placed on normal RHR without unacceptably high exposures to plant personnel. To address the issue of dose during a small break LOCA, the Required Action of Condition C requires isolation of the valves under administrative controls from the control room to allow establishment of RHR operation, should it be required, without unacceptable dose to plant personnel in the event of a small break LOCA. # SURVEILLANCE REQUIREMENTS #### SR 3.4.14.1 Performance of leakage testing on each RCS PIV or isolation valve used to satisfy Required Action A.1 and Required Action A.2 is required to verify that leakage is below the specified limit and to identify each leaking valve. However, the valves used to isolate the flow path to satisfy Required Actions A.1 and A.2 (which are not PIVs) do not have to be pre-qualified by periodic testing. When Required Action A is entered and the flow path isolated, the valves will be verified at that time to meet the leakage requirements of SR 3.4.14.1. This is accomplished using the methodology of SR 3.4.13.1 (RCS water inventory balance) with the leakage limits of SR 3.4.14.1 applied. The leakage limit of 0.5 gpm per inch of nominal valve diameter up to a 3 or 5 gpm maximum applies to each valve. Leakage testing requires a stable pressure condition. ## SURVEILLANCE REQUIREMENTS # SR 3.4.14.1 (continued) For the two PIVs in series, the leakage requirement applies to each valve individually and not to the combined leakage across both valves. If the PIVs are not individually leakage tested, one valve may have failed completely and not be detected if the other valve in series meets the leakage requirement. In this situation, the protection provided by redundant valves would be lost. Testing is to be performed every 18 months, a typical refueling cycle. The 18 month Frequency is consistent with 10 CFR 50.55a(g) (Ref. 8) as contained in the Inservice Testing Program, is within frequency allowed by the American Society of Mechanical Engineers (ASME) Code, Section XI (Ref. 7), and is based on the need to perform such surveillances under the conditions that apply during an outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. In order to satisfy ALARA requirements, leakage may be measured indirectly (as from performance of pressure
indicators) if accomplished in accordance with approved procedures and supported by computations showing that the method is capable of demonstrating valve compliance with leakage criteria. In addition, testing must be performed once after the valve has been opened by flow or exercised to ensure tight reseating. PIVs disturbed in the performance of this Surveillance should also be tested unless documentation shows that an infinite testing loop cannot practically be avoided. Testing must be performed after the valve has been reseated. The leakage limit is to be met at the RCS pressure associated with MODES 1 and 2. This permits leakage testing at high differential pressures with stable conditions not possible in the MODES with lower pressures. Entry into MODES 3 and 4 is allowed to establish the necessary differential pressures and stable conditions to allow for performance of this Surveillance. The Note that allows this provision is complementary to the Frequency of prior to entry into MODE 2. In addition, this Surveillance is not required to be performed on the RHR System when the RHR System is aligned to the RCS in the shutdown cooling mode of operation. PIVs contained in the RHR shutdown cooling flow path must be leakage rate tested after RHR is secured and stable unit conditions and the necessary differential pressures are established. ## SURVEILLANCE REQUIREMENTS (continued) ## SR 3.4.14.2 Verifying that the RHR autoclosure interlock is OPERABLE ensures that RCS pressure will not pressurize the RHR system beyond 125% of its design pressure of 600 psig. The autoclosure interlock isolates the RHR System from the RCS when the interlock setpoint is reached. The setpoint ensures the RHR design pressure will not be exceeded. The 18 month Frequency is based on the need to perform the Surveillance under conditions that apply during a plant outage. The 18 month Frequency is also acceptable based on consideration of the design reliability (and confirming operating experience) of the equipment. The SR is modified by a Note that provides an exception to the requirement to perform this surveillance when using the RHR System suction relief valves for cold overpressure protection in accordance with SR 3.4.12.3. #### SR 3.4.14.3 Verifying that the RHR open permissive interlock is OPERABLE ensures that the RCS will not pressurize the RHR system beyond design of 600 psig. The open permissive interlock prevents opening the RHR System suction valves from the RCS when the RCS pressure is above the setpoint. The setpoint upper value ensures the RHR System design pressure will not be exceeded at the RHR pump discharge and was chosen taking into account instrument uncertainty and calibration tolerances. This value also provides assurance that the RHR System suction relief valves setpoint will not be exceeded. The minimum value of the setpoint range is chosen based upon operational considerations (differential pressure) for the RCP seals and thus does not have a safety-related function. The 18 month Frequency is based on the need to perform the Surveillance under conditions that apply during a plant outage. The 18 month Frequency is also acceptable based on consideration of the design reliability (and confirming operating experience) of the equipment. The SR is modified by a Note that provides an exception to the requirement to perform this surveillance when using the RHR System suction relief valves for cold overpressure protection in accordance with SR 3.4.12.3. ## **REFERENCES** - 1. 10 CFR 50.2. - 2. 10 CFR 50.55a(c). - 3. 10 CFR 50, Appendix A, Section V, GDC 55. - 4. WASH-1400 (NUREG-75/014), Appendix V, October 1975. - 5. NUREG-0677, May 1980. - 6. Technical Requirement Manual (TRM). - 7. ASME, Boiler and Pressure Vessel Code, Section XI. - 8. 10 CFR 50.55a(g). # B 3.4 REACTOR COOLANT SYSTEM (RCS) B 3.4.15 RCS Leakage Detection Instrumentation #### **BASES** #### **BACKGROUND** GDC 30 of Appendix A to 10 CFR 50 (Ref. 1) requires means for detecting and, to the extent practical, identifying the location of the source of RCS LEAKAGE. Regulatory Guide 1.45 (Ref. 2) describes acceptable methods for selecting leakage detection systems. Leakage detection systems must have the capability to detect significant reactor coolant pressure boundary (RCPB) degradation as soon after occurrence as practical to minimize the potential for propagation to a gross failure. Thus, an early indication or warning signal is necessary to permit proper evaluation of all unidentified LEAKAGE. Industry practice has shown that water flow changes of 0.5 to 1.0 gpm can be readily detected in contained volumes by monitoring changes in water level, or flow rate, or in the operating frequency of a pump. The containment air cooler condensate level monitor is instrumented to alarm for abnormal increases in the level (flow rates). The sensitivity is acceptable for detecting increases in unidentified LEAKAGE. The condensate flow rate is measured by monitoring the water level in a vertical standpipe. As flow rate increases, the water level in the standpipe rises. The reactor coolant contains radioactivity that, when released to the containment, can be detected by radiation monitoring instrumentation. Reactor coolant radioactivity levels will be low during initial reactor startup and for a few weeks thereafter, until activated corrosion products have been formed and fission products appear from fuel element cladding contamination or cladding defects. Instrument sensitivities of $10^{-8} \, \mu \text{Ci/cc}$ radioactivity for particulate monitoring and of $10^{-6} \, \mu \text{Ci/cc}$ radioactivity for gaseous monitoring are practical for these leakage detection systems. Radioactivity detection systems are included for monitoring both particulate and gaseous activities because of their sensitivities and rapid responses to RCS LEAKAGE. An increase in humidity of the containment atmosphere would indicate release of water vapor to the containment. Dew point temperature measurements can thus be used to monitor humidity (continued) Appropriate the second second # BACKGROUND (continued) levels of the containment atmosphere as an indicator of potential RCS LEAKAGE. A 1°F increase in dew point is within the sensitivity range of available instruments. Since the humidity level is influenced by several factors, a quantitative evaluation of an indicated leakage rate by this means may be questionable and should be compared to observed increases in liquid flow from the containment condensate air coolers. Humidity level monitoring is considered most useful as an indirect alarm or indication to alert the operator to a potential problem. Humidity monitors are not required by this LCO. Air temperature and pressure monitoring methods may also be used to infer unidentified LEAKAGE to the containment. Containment temperature and pressure fluctuate slightly during plant operation, but a rise above the normally indicated range of values may indicate RCS leakage into the containment. The relevance of temperature and pressure measurements are affected by containment free volume and, for temperature, detector location. Alarm signals from these instruments can be valuable in recognizing rapid and sizable leakage to the containment. Temperature and pressure monitors are not required by this LCO. # APPLICABLE SAFETY ANALYSES The need to evaluate the severity of an alarm or an indication is important to the operators, and the ability to compare and verify with indications from other systems is necessary. The system response times and sensitivities are described in the FSAR (Ref. 3). Multiple instrument locations are utilized, if needed, to ensure that the transport delay time of the leakage from its source to an instrument location yields an acceptable overall response time. The safety significance of RCS LEAKAGE varies widely depending on its source, rate, and duration. Therefore, detecting and monitoring RCS LEAKAGE into the containment area is necessary. Quickly separating the identified LEAKAGE from the unidentified LEAKAGE provides quantitative information to the operators, allowing them to take corrective action should a leakage occur detrimental to the safety of the unit and the public. RCS leakage detection instrumentation satisfies Criterion 1 of 10 CFR 50.36(c)(2)(ii). # LCO One method of protecting against large RCS leakage derives from the ability of instruments to rapidly detect extremely small leaks. This LCO requires instruments of diverse monitoring principles to be OPERABLE to provide a high degree of confidence that extremely small leaks are detected in time to allow actions to place the plant in a safe condition, when RCS LEAKAGE indicates possible RCPB degradation. The LCO is satisfied when monitors of diverse measurement means are available. Thus, the containment atmosphere particulate radioactivity monitor (R-11) in combination with a gaseous radioactivity monitor (R-12) or a containment air cooler condensate level monitor provides an acceptable minimum. ## **APPLICABILITY** Because of elevated RCS temperature and pressure in MODES 1, 2, 3, and 4, RCS leakage detection instrumentation is required to be OPERABLE. In MODE 5 or 6, the temperature is to be ≤ 200°F and pressure is maintained low or at atmospheric pressure. Since the temperatures and pressures are far lower than those for MODES 1, 2, 3, and 4, the likelihood of leakage and crack propagation are much smaller. Therefore, the requirements of this LCO are not applicable in MODES 5 and 6. #### **ACTIONS** The Actions are modified by a Note that indicates that the provisions of LCO 3.0.4 are not applicable. As a result, a MODE change is allowed when the containment particulate radioactivity monitor, the containment gaseous radioactivity monitor, and the containment air cooler condensate level monitor are inoperable. This allowance is provided because other instrumentation is available to monitor RCS leakage. # A.1.1,
A.1.2, and A.2 With the required containment atmosphere particulate radioactivity monitor inoperable, no other form of sampling can provide the #### **ACTIONS** # A.1.1, A.1.2, and A.2 (continued) equivalent information; however, the containment atmosphere gaseous radioactivity monitor or the containment air cooler condensate level monitor will provide indications of changes in leakage. Together with the atmosphere gaseous monitor or the condensate level monitor, the periodic surveillance for RCS water inventory balance, SR 3.4.13.1, must be performed at an increased frequency of 24 hours or grab samples of the containment atmosphere must be taken and analyzed once per 24 hours to provide information that is adequate to detect leakage. Restoration of the required Particulate radioactivity monitor to OPERABLE status within a Completion Time of 30 days is required to regain the function after the monitor's failure. This time is acceptable, considering the Frequency and adequacy of the RCS water inventory balance or containment grab sample analyses required by Required Action A.1.1 or A.1.2. ## B.1.1, B.1.2, and B.2 With both the required gaseous containment atmosphere radioactivity monitoring instrumentation channel and the required containment air cooler condensate level monitoring instrumentation channel inoperable, alternative action is required. Either grab samples of the containment atmosphere must be taken and analyzed or water inventory balances, in accordance with SR 3.4.13.1, must be performed to provide alternate periodic information. With a sample obtained and analyzed or water inventory balance performed every 24 hours, the reactor may be operated for up to 30 days to allow restoration of at least one of the required containment monitors. The 24 hour interval provides periodic information that is adequate to detect leakage. The 30 day Completion Time recognizes at least one other form of leakage detection is available. # C.1 and C.2 If a Required Action of Condition A or B cannot be met, the plant must be brought to a MODE in which the requirement does not apply. To #### **ACTIONS** # C.1 and C.2 (continued) achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## <u>D.1</u> With all required monitors inoperable, no automatic means of monitoring leakage are available, and immediate plant shutdown in accordance with LCO 3.0.3 is required. # SURVEILLANCE REQUIREMENTS #### SR 3.4.15.1 SR 3.4.15.1 requires the performance of a CHANNEL CHECK of the required containment atmosphere radioactivity monitor. The check gives reasonable confidence that the channel is operating properly. The Frequency of 12 hours is based on instrument reliability and is reasonable for detecting off normal conditions. #### SR 3.4.15.2 SR 3.4.15.2 requires the performance of a COT on the required containment atmosphere radioactivity monitor. The test ensures that the monitor can perform its function in the desired manner. The test verifies the alarm setpoint and relative accuracy of the instrument string. The Frequency of 92 days considers instrument reliability, and operating experience has shown that it is proper for detecting degradation. # SR 3.4.15.3 and SR 3.4.15.4 These SRs require the performance of a CHANNEL CALIBRATION for each of the RCS leakage detection instrumentation channels. The calibration verifies the accuracy of the instrument string, including the instruments located inside containment. The Frequency of 18 months is a typical refueling cycle and considers channel reliability. Again, operating experience has proven that this Frequency is acceptable. # **REFERENCES** - 1. 10 CFR 50, Appendix A, Section IV, GDC 30. - 2. Regulatory Guide 1.45. - 3. FSAR, Section 5.2.7. # B 3.4 REACTOR COOLANT SYSTEM (RCS) B 3.4.16 RCS Specific Activity ## **BASES** #### **BACKGROUND** The maximum dose to the whole body and the thyroid that an individual at the site boundary can receive for 2 hours during an accident, or for the duration of the accident at the Low Population Zone, is specified in 10 CFR 100 (Ref. 1). The limits on specific activity ensure that the doses are held to an appropriate fraction of the 10 CFR 100 limits (i.e., a small fraction of or well within the 10 CFR 100 limits depending on the specific accident analysis) during analyzed transients and accidents. The RCS specific activity LCO limits the allowable concentration level of radionuclides in the reactor coolant. The LCO limits are established to minimize the offsite radioactivity dose consequences in the event of a steam generator tube rupture (SGTR) or main steam line break (MSLB) accident. The LCO contains specific activity limits for both DOSE EQUIVALENT I-131 and gross specific activity. The allowable levels are intended to limit the 2 hour dose at the site boundary to an appropriate fraction of the 10 CFR 100 dose guideline limits. The limits in the LCO are standardized, based on parametric evaluations of offsite radioactivity dose consequences for typical site locations. The parametric evaluations showed the potential offsite dose levels for a SGTR or main steam line break (MSLB) accident were an appropriately small fraction of the 10 CFR 100 dose guideline limits. Each evaluation assumes a broad range of site applicable atmospheric dispersion factors in a parametric evaluation. # APPLICABLE SAFETY ANALYSES The LCO limits on the specific activity of the reactor coolant ensures that the resulting doses will not exceed an appropriate fraction of the 10 CFR 100 dose guideline limits following a SGTR accident. The SGTR safety analysis (Ref. 2) assumes the specific activity of the reactor coolant at the LCO limit and an existing reactor coolant steam generator (SG) tube leakage rate of 150 gpd per SG. The main steam line break (MSLB) analysis assumes a steam generator tube # APPLICABLE SAFETY ANALYSES (continued) leakage of 11.8 gpm in the faulted loop, and 0.1 gpm (approximately 150 gpd) in each of the intact loops (total leakage of 12 gpm). This analysis resulted in offsite doses bounded by a small fraction (i.e., 10%) of the 10 CFR 100 guidelines using Regulatory Guide 1.109 Dose Conversion Factors (DCFs). The initial RCS specific activity assumed was 0.30 μ Ci/gm DOSE EQUIVALENT I-131 with an iodine spike. The safety analysis assumes for both the SGTR and MSLB the specific activity of the secondary coolant at its limit of 0.1 μ Ci/gm DOSE EQUIVALENT I-131 from LCO 3.7.16, "Secondary Specific Activity." The analysis for the MSLB accident establishes the acceptance limits for RCS specific activity. Reference to this analysis is used to assess changes to the unit that could affect RCS specific activity, as they relate to the acceptance limits. The SGTR analysis assumes an RCS coolant activity of 0.5 μ Ci/gm DOSE EQUIVALENT I-131. The MSLB analysis considers two cases of reactor coolant specific activity. One case assumes specific activity at 0.30 μ Ci/gm DOSE EQUIVALENT I-131 with a concurrent large iodine spike that increases the I-131 activity release rate into the reactor coolant by a factor of 500 immediately after the accident. The second case assumes the initial reactor coolant iodine activity at 18.0 μ Ci/gm DOSE EQUIVALENT I-131 due to a pre-accident iodine spike caused by an RCS transient. In both cases, the noble gas activity in the reactor coolant assumes 1% failed fuel, which closely equals the LCO limit of 100/E μ Ci/gm for gross specific activity. The SGTR analysis also assumes a loss of offsite power coincident with a reactor trip. The SGTR causes a reduction in reactor coolant inventory. The reduction initiates a reactor trip from a low pressurizer pressure signal or an RCS overtemperature ΔT signal. The coincident loss of offsite power causes the steam dump valves to close to protect the condenser. The rise in pressure in the ruptured SG discharges radioactively contaminated steam to the atmosphere through the SG power operated relief valves and the main steam safety valves. The unaffected SGs remove core decay heat by venting steam to the atmosphere until the cooldown ends. The main steam line break (MSLB) analysis assumes a double-ended guillotine break of a main steamline outside of containment. The affected steam generator will rapidly depressurize and release both # APPLICABLE SAFETY ANALYSES (continued) the radionuclides initially contained in the secondary coolant, and the primary coolant activity transferred via SG tube leakage, directly to the outside atmosphere. A portion of the iodine activity initially contained in the intact SGs and noble gas activity due to SG tube leakage is released to the atmosphere through either the SG atmospheric relief valves (ARVs) or the SG safety relief valves. The safety analysis assumes an accident initiated iodine spike and shows the radiological consequences of a MSLB accident are within a small fraction of the Reference 1 dose guideline limits. Operation with iodine specific activity levels greater than the LCO limit is permissible, if the activity levels do not exceed the limits shown in Figure 3.4.16-1, in the applicable specification, for more than 48 hours. The MSLB safety analysis has concurrent and pre-accident iodine spiking levels up to 18.0 μ Ci/gm DOSE EQUIVALENT I-131. The remainder of the above limit permissible iodine levels shown in Figure 3.4.16-1 are acceptable because of the low probability of a MSLB accident occurring during the established 48 hour time limit. The occurrence of a MSLB accident at these permissible levels could increase the site boundary dose levels, but still be within 10 CFR 100 dose guideline limits. The limits on RCS specific activity are also used for
establishing standardization in plant personnel radiation protection practices. RCS specific activity satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). #### LCO The specific iodine activity is limited to 0.5 μ Ci/gm DOSE EQUIVALENT I-131 for the SGTR analysis and 0.30 μ Ci/gm DOSE EQUIVALENT I-131 for the MSLB analysis, and the gross specific activity in the reactor coolant is limited to the number of μ Ci/gm equal to 100 divided by \tilde{E} (average disintegration energy of the sum of the average beta and gamma energies of the coolant nuclides). The limit on DOSE EQUIVALENT I-131 ensures the thyroid dose to an individual during the Design Basis Accident (DBA) will be an appropriate fraction of the allowed thyroid dose. The limit on gross specific activity ensures the 2 hour whole body dose to an individual at the site boundary during the DBA will be a small fraction of the allowed whole body dose. # LCO (continued) The SGTR (Ref. 2) and MSLB accident analyses show that the 2 hour site boundary dose levels are within acceptable limits. Violation of the LCO may result in reactor coolant radioactivity levels that could, in the event of an SGTR or MSLB, lead to site boundary doses that exceed the dose guideline limits. ## **APPLICABILITY** In MODES 1 and 2, and in MODE 3 with RCS average temperature ≥ 500°F, operation within the LCO limits for DOSE EQUIVALENT I-131 and gross specific activity are necessary to contain the potential consequences of an SGTR or MSLB to within the acceptable site boundary dose values. For operation in MODE 3 with RCS average temperature < 500°F, and in MODES 4 and 5, the release of radioactivity in the event of a SGTR is unlikely since the saturation pressure of the reactor coolant is below the lift pressure settings of the main steam safety valves. ## **ACTIONS** # A.1 and A.2 With the DOSE EQUIVALENT I-131 greater than the LCO limit, samples at intervals of 4 hours must be taken to demonstrate that the limits of Figure 3.4.16-1 are not exceeded. The Completion Time of 4 hours is required to obtain and analyze a sample. Sampling is done to continue to provide a trend. The DOSE EQUIVALENT I-131 must be restored to within limits within 48 hours. The Completion Time of 48 hours is required, if the limit violation resulted from normal iodine spiking. A Note to the Required Action of Condition A excludes the MODE change restriction of LCO 3.0.4. This exception allows entry into the applicable MODE(S) while relying on the ACTIONS even though the ACTIONS may eventually require plant shutdown. This exception is acceptable due to the significant conservatism incorporated into the specific activity limit, the low probability of an event which is limiting due to exceeding this limit, and the ability to restore transient specific activity excursions while the plant remains at, or proceeds to power operation. # ACTIONS (continued) # <u>B.1</u> With the gross specific activity in excess of the allowed limit, the unit must be placed in a MODE in which the requirement does not apply. The change within 6 hours to MODE 3 and RCS average temperature < 500°F lowers the saturation pressure of the reactor coolant below the setpoints of the main steam safety valves and prevents venting the SG to the environment in an SGTR event. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 below 500°F from full power conditions in an orderly manner and without challenging plant systems. ## <u>C.1</u> If a Required Action and the associated Completion Time of Condition A is not met or if the DOSE EQUIVALENT I-131 is in the unacceptable region of Figure 3.4.16-1, the reactor must be brought to MODE 3 with RCS average temperature < 500°F within 6 hours. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 below 500°F from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS #### SR 3.4.16.1 SR 3.4.16.1 requires performing a gamma isotopic analysis as a measure of the gross specific activity of the reactor coolant at least once every 7 days. While basically a quantitative measure of radionuclides with half lives longer than 15 minutes, excluding iodines, this measurement is the sum of the degassed gamma activities and the gaseous gamma activities in the sample taken. This Surveillance provides an indication of any increase in gross specific activity. Trending the results of this Surveillance allows proper remedial action to be taken before reaching the LCO limit under normal operating conditions. The Surveillance is applicable in MODES 1 and 2, and in MODE 3 with T_{avg} at least 500°F. The 7 day Frequency considers the unlikelihood of a gross fuel failure during the time. # B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) #### B 3.5.1 Accumulators #### **BASES** ## **BACKGROUND** The functions of the ECCS accumulators are to supply water to the reactor vessel during the blowdown phase of a loss of coolant accident (LOCA), to provide inventory to help accomplish the refill phase that follows thereafter, and to provide Reactor Coolant System (RCS) makeup for a small break LOCA. The blowdown phase of a large break LOCA is the initial period of the transient during which the RCS departs from equilibrium conditions, and heat from fission product decay, hot internals, and the vessel continues to be transferred to the reactor coolant. The blowdown phase of the transient ends when the RCS pressure falls to a value approaching that of the containment atmosphere. In the refill phase of a LOCA, which immediately follows the blowdown phase, reactor coolant inventory has vacated the core through steam flashing and ejection out through the break. The core is essentially in adiabatic heatup. The balance of accumulator inventory is then available to help fill voids in the lower plenum and reactor vessel downcomer so as to establish a recovery level at the bottom of the core and ongoing reflood of the core with the addition of safety injection (SI) water. The accumulators are pressure vessels partially filled with borated water and pressurized with nitrogen gas. The accumulators are passive components, since no operator or control actions are required in order for them to perform their function. Internal accumulator tank pressure is sufficient to discharge the accumulator contents to the RCS, if RCS pressure decreases below the accumulator pressure. Each accumulator is piped into an RCS cold leg via an accumulator line and is isolated from the RCS by a motor operated isolation valve and two check valves in series. The accumulator motor operated isolation valves are maintained in the open position with power to the valve removed when pressurizer pressure is ≥ 2000 psig. Should the valves be inadvertently closed below 2000 psig, the requirements of this LCO would ensure that the valves would be returned to their correct position in a timely manner or the plant would be taken out of the Mode of Applicability. The valves will # BACKGROUND (continued) automatically open, however, as a result of an SI signal. These features and requirements ensure that the accumulators will be available for injection. The accumulator size, water volume, and nitrogen cover pressure are selected so that two of the three accumulators are sufficient to partially cover the core before significant clad melting or zirconium water reaction can occur following a LOCA. The need to ensure that two accumulators are adequate for this function is consistent with the LOCA assumption that the entire contents of one accumulator will be lost via the RCS pipe break during the blowdown phase of the LOCA. # APPLICABLE SAFETY ANALYSES The accumulators are assumed OPERABLE in both the large and small break LOCA analyses at full power (Ref. 1). These are the Design Basis Accidents (DBAs) that establish the acceptance limits for the accumulators. Reference to the analyses for these DBAs is used to assess changes in the accumulators as they relate to the acceptance limits. In performing the LOCA calculations, conservative assumptions are made concerning the availability of ECCS flow. In the early stages of a LOCA, with or without a loss of offsite power, the accumulators provide the sole source of makeup water to the RCS. The assumption of loss of offsite power is also considered to determine if it is most limiting, and if so, imposes a delay wherein the ECCS pumps cannot deliver flow until the emergency diesel generators start, come to rated speed, and go through their timed loading sequence. In cold leg break scenarios, the entire contents of one accumulator are assumed to be lost through the break. The limiting large break LOCA is a double ended guillotine break in the cold leg. During this event, the accumulators discharge to the RCS as soon as RCS pressure decreases to below accumulator pressure. As a conservative estimate, no credit is taken for ECCS pump flow until an effective delay has elapsed. This delay accounts for the diesels starting and the pumps being loaded and delivering full flow. The delay time is conservatively set with an additional 2 seconds to account for SI signal generation. During this time, the accumulators are analyzed as providing the sole source of emergency core cooling. No operator action is assumed during the blowdown stage of a large break LOCA. # APPLICABLE SAFETY ANALYSES (continued) The worst case small break LOCA analyses also assume a time delay before pumped flow reaches the core. For the larger range of small breaks, the rate of blowdown is such that the increase in fuel clad temperature is terminated solely by the accumulators, with pumped flow then providing continued cooling. As break size decreases, the accumulators and centrifugal charging pumps both play a part in terminating the rise in clad temperature. As break size continues to decrease, the role of the accumulators continues
to decrease until they are not required and the centrifugal charging pumps become solely responsible for terminating the temperature increase. This LCO helps to ensure that the following acceptance criteria established for the ECCS by 10 CFR 50.46 (Ref. 2) will be met following a LOCA: - a. Maximum fuel element cladding temperature is ≤ 2200°F; - b. Maximum cladding oxidation is ≤ 0.17 times the total cladding thickness before oxidation; - c. Maximum hydrogen generation from a zirconium water reaction is ≤ 0.01 times the hypothetical amount that would be generated if all of the metal in the cladding cylinders surrounding the fuel, excluding the cladding surrounding the plenum volume, were to react; and - d. Core is maintained in a coolable geometry. Since the accumulators discharge during the blowdown phase of a LOCA, they do not contribute to the long term cooling requirements of 10 CFR 50.46. For both the large and small break LOCA analyses, a nominal contained accumulator water volume is used. The contained water volume is the same as the deliverable volume for the accumulators, since the accumulators are emptied, once discharged. For large breaks, an increase in water volume can be either a peak clad temperature penalty or benefit, depending on downcomer filling and subsequent spill through the break during the core reflooding portion of the transient. The safety analysis assumes values of 7331 gallons for the accumulator, and 337 gallons for the accumulator discharge line. To allow for instrument inaccuracy, values of 7,555 gallons and 7,780 gallons are specified. These values include the volume of water in the accumulator discharge line. # APPLICABLE SAFETY ANALYSES (continued) The minimum boron concentration setpoint is used in the post LOCA boron concentration calculation. The calculation is performed to assure reactor subcriticality in a post LOCA environment. Of particular interest is the large break LOCA, since no credit is taken for control rod assembly insertion. A reduction in the accumulator minimum boron concentration would produce a subsequent reduction in the available containment sump concentration for post LOCA shutdown and an increase in the maximum sump pH. The maximum boron concentration is used in determining the cold leg to hot leg recirculation injection switchover time and minimum sump pH. The large and small break LOCA analyses are performed at the minimum nitrogen cover pressure for small break LOCA and nominal nitrogen cover pressure for large break LOCA, since sensitivity analyses have demonstrated that higher nitrogen cover pressure results in a computed peak clad temperature benefit. A sensitivity study is performed for the BE LOCA (large break LOCA) to determine the sensitivity of PCT to accumulator pressure. This study, in addition to several others, is incorporated into a PCT response surface in order to generate a 95/95 PCT. The maximum nitrogen cover pressure limit prevents accumulator relief valve actuation, and ultimately preserves accumulator integrity. The effects on containment mass and energy releases from the accumulators are accounted for in the appropriate analyses (Ref. 2). The accumulators satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO The LCO establishes the minimum conditions required to ensure that the accumulators are available to accomplish their core cooling safety function following a LOCA. Three accumulators are required to ensure that 100% of the contents of two of the accumulators will reach the core during a LOCA. This is consistent with the assumption that the contents of one accumulator spill through the break. If less than two accumulators are injected during the blowdown phase of a LOCA, the ECCS acceptance criteria of 10 CFR 50.46 (Ref. 2) could be violated. For an accumulator to be considered OPERABLE, the isolation valve must be fully open, power removed above 2000 psig, and the limits established in the SRs for contained volume, boron concentration, and nitrogen cover pressure must be met. #### **APPLICABILITY** In MODES 1 and 2, and in MODE 3 with RCS pressure > 1000 psig, the accumulator OPERABILITY requirements are based on full power operation. Although cooling requirements decrease as power decreases, the accumulators are still required to provide core cooling as long as elevated RCS pressures and temperatures exist. This LCO is only applicable at pressures > 1000 psig. At pressures ≤ 1000 psig, the rate of RCS blowdown is such that the ECCS pumps can provide adequate injection to ensure that peak clad temperature remains below the 10 CFR 50.46 (Ref. 2) limit of 2200°F. The Accumulator Applicability is modified by a Note which takes exception to the LCO requirements for the Accumulators to be OPERABLE in MODE 3 with RCS pressure above 1,000 psig for up to 12 hours during the performance of isolation valve testing required by SR 3.4.14.1. The applicability of the Note is restricted solely to the isolation valve testing required by SR 3.4.14.1. In order to perform the required isolation valve testing, the Accumulators must be isolated and various parameters (e.g., pressure, level) must be adjusted. The exception provided by this Note allows operation in MODE 3 with RCS pressure above 1,000 psig for up to 12 hours with Accumulators not configured per the requirements of the LCO such that the Actions for an inoperable Accumulator are not applicable. In MODE 3, with RCS pressure ≤ 1000 psig, and in MODES 4, 5, and 6, the accumulator motor operated isolation valves are closed to isolate the accumulators from the RCS. This allows RCS cooldown and depressurization without discharging the accumulators into the RCS or requiring depressurization of the accumulators. #### **ACTIONS** #### A.1 If the boron concentration of one accumulator is not within limits, it must be returned to within the limits within 72 hours. In this Condition, ability to maintain subcriticality or minimum boron precipitation time may be reduced. An average boron concentration for the injected water is assumed in the Best Estimate LOCA (large break LOCA) analysis. One accumulator up to 100 ppm below the minimum boron concentration limit, however, will have no effect on available ECCS water and an insignificant effect on post-LOCA core subcriticality. The large main steam line break analysis predicts that the accumulators would discharge following the event. However, their impact is minor and not a design limiting event. Thus, 72 hours is allowed to return the boron concentration to within limits. # ACTIONS (continued) # <u>B.1</u> If one accumulator is inoperable for a reason other than boron concentration, the accumulator must be returned to OPERABLE status within 1 hour. In this Condition, the required contents of two accumulators cannot be assumed to reach the core during a LOCA. Due to the severity of the consequences should a LOCA occur in these conditions, the 1 hour Completion Time to open the valve, remove power to the valve, or restore the proper water volume or nitrogen cover pressure ensures that prompt action will be taken to return the inoperable accumulator to OPERABLE status. The Completion Time minimizes the potential for exposure of the plant to a LOCA under these conditions. ## C.1 and C.2 If the accumulator cannot be returned to OPERABLE status within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 6 hours and RCS pressure reduced to ≤ 1000 psig within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # <u>D.1</u> If more than one accumulator is inoperable, the plant is in a condition outside the accident analyses; therefore, LCO 3.0.3 must be entered immediately. # SURVEILLANCE REQUIREMENTS # SR 3.5.1.1 Each accumulator valve should be verified to be fully open every 12 hours. This verification ensures that the accumulators are available for injection and ensures timely discovery if a valve should be less than fully open. If an isolation valve is not fully open, the rate of injection to the RCS would be reduced. Although a motor operated valve position should not change with power removed, a closed valve could result in not meeting accident analyses assumptions. This Frequency is considered reasonable in view of other administrative controls that ensure a mispositioned isolation valve is unlikely. # SURVEILLANCE REQUIREMENTS (continued) #### SR 3.5.1.2 and SR 3.5.1.3 Every 12 hours, borated water volume and nitrogen cover pressure are verified for each accumulator. This Frequency is sufficient to ensure adequate injection during a LOCA. Because of the static design of the accumulator, a 12 hour Frequency usually allows the operator to identify changes before limits are reached. Operating experience has shown this Frequency to be appropriate for early detection and correction of off normal trends. ## SR 3.5.1.4 The boron concentration should be verified to be within required limits for each accumulator every 31 days since the static design of the accumulators limits the ways in which the concentration can be changed. The 31 day Frequency is adequate to identify changes that could occur from mechanisms such as stratification or inleakage. Sampling the affected accumulator within 6 hours after a 12% level, indicated, increase (approximately 1% of tank volume) will identify whether inleakage has caused a reduction in boron concentration to below the required limit. It is not necessary to verify boron concentration if the added water inventory is from the refueling water storage tank (RWST), when the water contained in the RWST is within the accumulator boron concentration requirements. This is consistent with the recommendation of NUREG-1366 (Ref. 3). #### SR 3.5.1.5
Verification every 31 days that power is removed from each accumulator isolation valve operator when the pressurizer pressure is ≥ 2000 psig ensures that an active failure could not result in the undetected closure of an accumulator motor operated isolation valve. If this were to occur, only one accumulator would be available for injection given a single failure coincident with a LOCA. Therefore, each isolation valve operator is disconnected by a locked open disconnect device. Since power is removed under administrative control, the 31 day Frequency will provide adequate assurance that power is removed. This SR allows power to be supplied to the motor operated isolation valves when RCS pressure is < 2000 psig, thus allowing operational flexibility by avoiding unnecessary delays to manipulate the breakers during plant startups or shutdowns. # SURVEILLANCE REQUIREMENTS # **SR 3.5.1.5** (continued) Should closure of a valve occur below 2000 psig, the SI signal provided to the valves would open a closed valve in the event of a LOCA. ## **REFERENCES** - 1. FSAR, Chapter 15. - 2. 10 CFR 50.46 - 3. NUREG-1366, February 1990. ## B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) B 3.5.2 ECCS—Operating #### **BASES** #### **BACKGROUND** The function of the ECCS is to provide core cooling and negative reactivity to ensure that the reactor core is protected after any of the following accidents: - a. Loss of coolant accident (LOCA), coolant leakage greater than the capability of the normal charging system; - b. Rod ejection accident; - c. Loss of secondary coolant accident, including uncontrolled steam release or feedwater line rupture; and - d. Steam generator tube rupture (SGTR). The addition of negative reactivity is designed primarily for the loss of secondary coolant accident where primary cooldown could add enough positive reactivity to achieve criticality and return to significant power. There are three phases of ECCS operation: injection, cold leg recirculation, and hot leg recirculation. In the injection phase, water is taken from the refueling water storage tank (RWST) and injected into the Reactor Coolant System (RCS) through the cold legs. When sufficient water is removed from the RWST to ensure that enough boron has been added to maintain the reactor subcritical and the containment sumps have enough water to supply the required net positive suction head to the ECCS pumps, suction is switched to the containment sump for cold leg recirculation. After approximately 7.5 hours, the ECCS flow is shifted to the hot leg recirculation phase to provide a backflush, which would reduce the boiling in the top of the core and any resulting boron precipitation. The ECCS consists of two separate subsystems: centrifugal charging (high head) and residual heat removal (RHR) (low head). Each subsystem consists of two redundant, 100% capacity trains. The centrifugal charging system consists of three 100% capacity centrifugal pumps. The "B" centrifugal charging pump functions as a "swing" pump and may be used in either charging system train. The # BACKGROUND (continued) ECCS accumulators and the RWST are also part of the ECCS, but are not considered part of an ECCS flow path as described by this LCO. The ECCS flow paths consist of piping, valves, heat exchangers, and pumps such that water from the RWST can be injected into the RCS following the accidents described in this LCO. The major components of the subsystems are the centrifugal charging pumps, the RHR pumps and heat exchangers. Each of the two subsystems consists of two 100% capacity trains that are interconnected and redundant such that either train is capable of supplying 100% of the flow required to mitigate the accident consequences. This interconnecting and redundant subsystem design provides the operators with the ability to utilize components from opposite trains to achieve the required 100% flow to the core. During the injection phase of LOCA recovery, a suction header supplies water from the RWST to the ECCS pumps. Separate piping supplies each subsystem and each train within the subsystem. The discharge from the centrifugal charging pumps combines and then divides again into three supply lines, each of which feeds the injection line to one RCS cold leg. The discharge from the RHR pumps divides and feeds an injection line to each of the RCS cold legs. Control valves are set to balance the flow to the RCS. This balance ensures sufficient flow to the core to meet the analysis assumptions following a LOCA in one of the RCS cold legs. For small LOCAs that do not rapidly depressurize the RCS below the shutoff head of the RHR pumps, the centrifugal charging pumps supply water until the RCS pressure decreases below the RHR pump shutoff head. During this period, the steam generators are used to provide part of the core cooling function. During the recirculation phase of LOCA recovery, RHR pump suction is transferred to the containment sump. The RHR pumps then supply the centrifugal charging pumps. Initially, recirculation is through the same paths as the injection phase. Subsequently, recirculation alternates injection between the hot and cold legs. The centrifugal charging subsystem of the ECCS also functions to supply borated water to the reactor core following increased heat removal events, such as a main steam line break (MSLB). The limiting design conditions occur when the negative moderator temperature coefficient is highly negative, such as at the end of each cycle. # BACKGROUND (continued) During low temperature conditions in the RCS, limitations are placed on the maximum number of ECCS pumps that may be OPERABLE. Refer to the Bases for LCO 3.4.12, "Low Temperature Overpressure Protection (LTOP) System," for the basis of these requirements. The ECCS subsystems are actuated upon receipt of an SI signal. The actuation of safeguard loads is accomplished in a programmed time sequence. If offsite power is available, the safeguard loads start immediately in the programmed sequence. If offsite power is not available, the Engineered Safety Feature (ESF) buses shed normal operating loads and are connected to the emergency diesel generators (EDGs). Safeguard loads are then actuated in the programmed time sequence. The time delay associated with diesel starting, sequenced loading, and pump starting determines the time required before pumped flow is available to the core following a LOCA. The active ECCS components, along with the passive accumulators and the RWST covered in LCO 3.5.1, "Accumulators," and LCO 3.5.4, "Refueling Water Storage Tank (RWST)," provide the cooling water necessary to meet GDC 35 (Ref. 1). # APPLICABLE SAFETY ANALYSES The LCO helps to ensure that the following acceptance criteria for the ECCS, established by 10 CFR 50.46 (Ref. 2), will be met following a LOCA: - a. Maximum fuel element cladding temperature is ≤ 2200°F; - b. Maximum cladding oxidation is ≤ 0.17 times the total cladding thickness before oxidation; - c. Maximum hydrogen generation from a zirconium water reaction is ≤ 0.01 times the hypothetical amount generated if all of the metal in the cladding cylinders surrounding the fuel, excluding the cladding surrounding the plenum volume, were to react; - d. Core is maintained in a coolable geometry; and - e. Adequate long term core cooling capability is maintained. # APPLICABLE SAFETY ANALYSES (continued) The LCO also limits the potential for a post trip return to power following an MSLB event; the power reduction limits the amount of heat energy transferred from the RCS into containment via the faulted steam generator. A reduced amount of heat discharged into containment allows for an easier mitigation of the containment temperature transient via the containment safeguards functions (fan coolers and sprays). Each ECCS subsystem is taken credit for in a large and small break LOCA event at full power (Refs. 3 and 4). The LOCA analysis establishes the minimum flow for the ECCS pumps. These events establish the requirement for runout flow for the ECCS pumps, as well as the maximum response time for their actuation. The centrifugal charging pumps are also credited in the small break LOCA event. This event, and the LOCA mass and energy release analysis, establish the flow and discharge head at the design point for the centrifugal charging pumps. The SGTR, main feedwater line break, and MSLB events also credit the centrifugal charging pumps. The OPERABILITY requirements for the ECCS are based on the following LOCA analysis assumptions: - a. A large break LOCA event, with loss of offsite power and a single failure disabling one RHR and one centrifugal charging pump (both EDG trains are assumed to operate due to requirements for modeling full active containment heat removal system operation); and - A small break LOCA event, with a loss of offsite power and a single failure disabling one ECCS train. During the blowdown stage of a LOCA, the RCS depressurizes as primary coolant is ejected through the break into the containment. The nuclear reaction is terminated either by moderator voiding during large breaks or control rod insertion for small breaks. Following depressurization, emergency cooling water is injected into the cold legs, flows into the downcomer, fills the lower plenum, and refloods the core. The effects on containment mass and energy releases are accounted for in appropriate analyses (Refs. 3 and 4). The LCO ensures that an ECCS train will deliver sufficient water to match boiloff rates soon enough to minimize the consequences of the core being uncovered following a large LOCA. For smaller LOCAs, the centrifugal charging # APPLICABLE SAFETY ANALYSES (continued) pump delivers sufficient fluid to maintain RCS inventory. For a small break LOCA, the steam generators continue to serve as the heat sink, providing part of the required core cooling. The ECCS trains satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO In MODES 1, 2, and 3, two independent
(and redundant) ECCS trains are required to ensure that sufficient ECCS flow is available, assuming a single failure affecting either train. Additionally, individual components within the ECCS trains may be called upon to mitigate the consequences of other transients and accidents. In MODES 1, 2, and 3, an ECCS train consists of a centrifugal charging subsystem and an RHR subsystem. Each train includes the piping, instruments, and controls to ensure an OPERABLE flow path capable of taking suction from the RWST upon an SI signal and transferring suction to the containment sump. During an event requiring ECCS actuation, a flow path is required to provide an abundant supply of water from the RWST to the RCS via the ECCS pumps and their respective supply headers to each of the three cold leg injection nozzles. Each centrifugal charging pump must inject ≥ 495.6 gpm and each RHR pump must inject ≥ 3402 gpm at 40 psig RCS pressure. These flows, in conjunction with the RWST minimum boron concentration, provide sufficient cooling water and negative reactivity to ensure that the ECCS acceptance criteria are satisfied. In the long term, this flow path may be switched to take its supply from the containment sump and to supply its flow to the RCS hot and cold legs. The flow path for each train must maintain its designed independence to ensure that no single failure can disable both ECCS trains. The LCO is modified by two notes. Note 1 provides an exception to the LCO which allows the centrifugal charging subsystem flowpath or the RHR subsystem flowpath to be isolated. Both the centrifugal charging and the RHR subsystems may be isolated but not at the same time. Each ECCS subsystem flow path may be isolated for 2 hours in MODE 3, under controlled conditions, to perform pressure isolation valve testing per SR 3.4.14.1. The flow path is readily restorable. # LCO (continued) Note 2 provides an allowance of up to 4 hours to reposition the state of the power supplies for the RHR discharge to centrifugal charging pump suction valves 8706A and 8706B when transitioning from MODE 4 into MODE 3. This allowance is necessary since the required state of the power supplies for these two valves in MODE 4 is opposite the required state in MODE 3 and time is necessary to restore power to the valves when entering MODE 3 from MODE 4. # **APPLICABILITY** In MODES 1, 2, and 3, the ECCS OPERABILITY requirements for the limiting Design Basis Accident, a large break LOCA, are based on full power operation. Although reduced power would not require the same level of performance, the accident analysis does not provide for reduced cooling requirements in the lower MODES. The centrifugal charging pump performance is based on a small break LOCA, which establishes the pump performance curve and has less dependence on power. MODE 2 and MODE 3 requirements are bounded by the MODE 1 analysis. This LCO is only applicable in MODE 3 and above. Below MODE 3, the SI signal setpoints which are affected by normal mode reduction (steam line pressure-low and pressurizer pressure-low actuation signals) have been manually bypassed by operator control, and system functional requirements are relaxed as described in LCO 3.5.3, "ECCS—Shutdown." In MODES 5 and 6, plant conditions are such that the probability of an event requiring ECCS injection is extremely low. Core cooling requirements in MODE 5 are addressed by LCO 3.4.7, "RCS Loops—MODE 5, Loops Filled," and LCO 3.4.8, "RCS Loops—MODE 5, Loops Not Filled." MODE 6 core cooling requirements are addressed by LCO 3.9.4, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level," and LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level." #### **ACTIONS** #### <u>A.1</u> With one or more trains inoperable and at least 100% of the ECCS flow equivalent to a single OPERABLE ECCS train available, the inoperable components must be returned to OPERABLE status within 72 hours. The 72 hour Completion Time is based on an NRC reliability evaluation (Ref. 5) and is a reasonable time for repair of many ECCS components. An ECCS train is inoperable if it is not capable of delivering design flow to the RCS. Individual components are inoperable if they are not capable of performing their design function or supporting systems are not available. The LCO requires the OPERABILITY of a number of independent subsystems. Due to the redundancy of trains and the diversity of subsystems, the inoperability of one component in a train does not render the ECCS incapable of performing its function. Neither does the inoperability of two different components, each in a different train, necessarily result in a loss of function for the ECCS. The intent of this Condition is to maintain a combination of equipment such that 100% of the ECCS flow equivalent to a single OPERABLE ECCS train remains available. This allows increased flexibility in plant operations under circumstances when components in opposite trains are inoperable. An event accompanied by a loss of offsite power and the failure of an EDG can disable one ECCS train until power is restored. A reliability analysis (Ref. 5) has shown that the impact of having one full ECCS train inoperable is sufficiently small to justify continued operation for 72 hours. Reference 6 describes situations in which one component, such as an RHR crossover valve, can disable both ECCS trains. With one or more component(s) inoperable such that 100% of the flow equivalent to a single OPERABLE ECCS train is not available, the facility is in a condition outside the accident analysis. Therefore, LCO 3.0.3 must be immediately entered. # ACTIONS (continued) # **B.1** and **B.2** If the inoperable trains cannot be returned to OPERABLE status within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 6 hours and MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS # SR 3.5.2.1 Verification of proper valve position ensures that the flow path from the ECCS pumps to the RCS is maintained. Misalignment of these valves could render both ECCS trains inoperable. Securing these valves in position by removal of power by locking open the disconnect device to the valve operators ensures that they cannot change position as a result of an active failure or be inadvertently misaligned. These valves are of REQUIREMENTS—the type, described in Reference 6, that can disable the function of both ECCS trains and invalidate the accident analyses. SR 3.5.2.1 is modified by a Note that specifies when this SR is applicable to valves 8132 A/B. Valves 8132 A/B only have the potential to disable both ECCS trains when centrifugal charging pump "A" is inoperable. A 12 hour Frequency is considered reasonable in view of other administrative controls that will ensure a mispositioned valve is unlikely. #### SR 3.5.2.2 Verifying the correct alignment for manual, power operated, and automatic valves in the ECCS flow paths provides assurance that the proper flow paths will exist for ECCS operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these were verified to be in the correct position prior to locking, sealing, or securing. A valve that receives an actuation signal is allowed to be in a nonaccident position provided the valve will automatically reposition within the proper stroke time. This Surveillance does not require any testing or valve manipulation. Rather, it involves verification that those valves capable of being ## SURVEILLANCE REQUIREMENTS ## **SR 3.5.2.2** (continued) mispositioned are in the correct position. The 31 day Frequency is appropriate because the valves are operated under administrative control, and an improper valve position would only affect a single train. This Frequency has been shown to be acceptable through operating experience. #### SR_3.5.2.3 Periodic surveillance testing of ECCS pumps to detect gross degradation caused by impeller structural damage or other hydraulic component problems is required by Section XI of the ASME Code. This type of testing may be accomplished by measuring the pump developed head at only one point of the pump characteristic curve. For example, if measured on recirculation flow, the centrifugal charging pumps should develop a differential pressure of ≥ 2323 psid and the residual heat removal pumps should develop a differential pressure of ≥ 145 psid. This verifies both that the measured performance is within an acceptable tolerance of the original pump baseline performance and that the performance at the test flow is greater than or equal to the performance assumed in the plant safety analysis. SRs are specified in the Inservice Testing Program, which encompasses Section XI of the ASME Code. Section XI of the ASME Code provides the activities and Frequencies necessary to satisfy the requirements. #### SR 3.5.2.4 and SR 3.5.2.5 These Surveillances demonstrate that each automatic ECCS valve actuates to the required position on an actual or simulated SI signal and that each ECCS pump (centrifugal charging and RHR) starts on receipt of an actual or simulated SI signal. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The 18 month Frequency is based on the need to perform these Surveillances under the conditions that apply during a plant outage and the potential for unplanned plant transients if the Surveillances were performed with the reactor at power. The 18 month Frequency is also acceptable based on consideration of the design reliability (and confirming operating experience) of the equipment. The
actuation logic is tested as part of ESF Actuation System testing, and equipment performance is monitored as part of the Inservice Testing Program. # SURVEILLANCE REQUIREMENTS (continued) ## SR 3.5.2.6 Realignment of valves in the flow path on an SI signal is necessary for proper ECCS performance. These valves have stops (RHR valves) or locking devices (other ECCS valves) to allow proper positioning for limiting total pump flow and/or restrict flow to a ruptured cold leg, ensuring that the other cold legs receive at least the required minimum flow. The required verification for the RHR valves, 603 A/B, assures that the associated pump will not be run out. For other ECCS valves, the locking device is verified in the correct position. The 18 month Frequency is based on the same reasons as those stated in SR 3.5.2.4 and SR 3.5.2.5. # SR 3.5.2.7 Periodic inspections of the containment sump suction inlet ensure that it is unrestricted and stays in proper operating condition. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage, and the need to have access to the location. This Frequency has been found to be sufficient to detect abnormal degradation and is confirmed by operating experience. ## **REFERENCES** - 1. 10 CFR 50, Appendix A, GDC 35. - 2. 10 CFR 50.46. - 3. FSAR, Section 6, "Engineered Safety Features." - 4. FSAR, Chapter 15, "Accident Analysis." - NRC Memorandum to V. Stello, Jr., from R.L. Baer, "Recommended Interim Revisions to LCOs for ECCS Components," December 1, 1975. - 6. IE Information Notice No. 87-01. ## B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) ## B 3.5.3 ECCS—Shutdown #### **BASES** #### **BACKGROUND** The Background section for Bases 3.5.2, "ECCS—Operating," is applicable to these Bases, with the following modifications. In MODE 4, only one ECCS train consisting of two separate subsystems: centrifugal charging (high head) and residual heat removal (RHR) (low head) is required operable. The ECCS flow paths consist of piping, valves, heat exchangers, and pumps such that water from the refueling water storage tank (RWST) can be injected into the Reactor Coolant System (RCS) following the accidents described in Bases 3.5.2. # APPLICABLE SAFETY ANALYSES The Applicable Safety Analyses section of Bases 3.5.2 also applies to this Bases section. Due to the stable conditions associated with operation in MODE 4 and the reduced probability of occurrence of a Design Basis Accident (DBA), the ECCS operational requirements are reduced. It is understood in these reductions that certain automatic safety injection (SI) actuation is not available. In this MODE, sufficient time exists for manual actuation of the required ECCS to mitigate the consequences of a DBA. Only one train of ECCS is required for MODE 4. This requirement dictates that single failures are not considered during this MODE of operation. The ECCS trains satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO In MODE 4, one of the two independent (and redundant) ECCS trains is required to be OPERABLE to ensure that sufficient ECCS flow is available to the core following a DBA. In MODE 4, an ECCS train consists of a centrifugal charging subsystem and an RHR subsystem. Each train includes the piping, instruments, # (continued) and controls to ensure an OPERABLE flow path capable of taking suction from the RWST and transferring suction to the containment sump. During an event requiring ECCS actuation, a flow path is required to provide an abundant supply of water from the RWST to the RCS via the ECCS pumps and their respective supply headers to each of the three cold leg injection nozzles. In the long term, this flow path may be switched to take its supply from the containment sump and to deliver its flow to the RCS hot and cold legs. This LCO is modified by two notes. Note 1 allows a RHR train to be considered OPERABLE during alignment and operation for decay heat removal, if capable of being manually realigned (remote or local) to the ECCS mode of operation and not otherwise inoperable. This allows operation in the RHR mode during MODE 4. Note 2 provides an allowance of up to 4 hours to reposition the state of the power supplies for the RHR discharge to centrifugal charging pump suction valves 8706A and 8706B when transitioning from MODE 3 into MODE 4. This allowance is necessary since the required state of the power supplies for these two valves in MODE 3 is opposite the required state in MODE 4 and time is necessary to restore power to the valves when entering MODE 4 from MODE 3. # **APPLICABILITY** In MODES 1, 2, and 3, the OPERABILITY requirements for ECCS are covered by LCO 3.5.2. In MODE 4 with RCS temperature below 350°F, one OPERABLE ECCS train is acceptable without single failure consideration, on the basis of the stable reactivity of the reactor and the limited core cooling requirements. In MODES 5 and 6, plant conditions are such that the probability of an event requiring ECCS injection is extremely low. Core cooling requirements in MODE 5 are addressed by LCO 3.4.7, "RCS Loops—MODE 5, Loops Filled," and LCO 3.4.8, "RCS Loops—MODE 5, Loops Not Filled." MODE 6 core cooling requirements are addressed by LCO 3.9.4, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level," and LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level." ## **ACTIONS** ## **A.1** With no ECCS RHR subsystem OPERABLE, the plant is not prepared to respond to a loss of coolant accident or to continue a cooldown using the RHR pumps and heat exchangers. The Completion Time of immediately to initiate actions that would restore at least one ECCS RHR subsystem to OPERABLE status ensures that prompt action is taken to restore the required cooling capacity. Normally, in MODE 4, reactor decay heat is removed from the RCS by an RHR loop. If no RHR loop is OPERABLE for this function, reactor decay heat must be removed by some alternate method, such as use of the steam generators. The alternate means of heat removal must continue until the inoperable RHR loop components can be restored to operation so that decay heat removal is continuous. With both RHR pumps and heat exchangers inoperable, it would be unwise to require the plant to go to MODE 5, where the only available heat removal system is the RHR. Therefore, the appropriate action is to initiate measures to restore one ECCS RHR subsystem and to continue the actions until the subsystem is restored to OPERABLE status. ## **B.1** With the required ECCS centrifugal charging subsystem inoperable, and at least 100% of the ECCS flow equivalent to a single OPERABLE ECCS train available, the inoperable components must be returned to OPERABLE status within 72 hours. The 72 hour Completion Time is acceptable when the unit is in MODES 1, 2, and 3 (Ref. 5). Since MODE 4 represents less severe conditions for the initiation of a LOCA, the 72 hour Completion Time is also acceptable for MODE 4. An ECCS train is inoperable if it is not capable of delivering design flow to the RCS. Individual components are inoperable if they are not capable of performing their design function or supporting systems are not available. The intent of this Condition is to maintain a combination of equipment such that 100% of the ECCS flow equivalent to a single operable ECCS train remains available. This allows increased flexibility in plant operations under circumstances when components in the required subsystem may be inoperable, but the ECCS remains capable of delivering 100% of the required flow equivalent. # ACTIONS (continued) ## <u>C.1</u> With no ECCS centrifugal charging subsystem OPERABLE, due to the inoperability of the centrifugal charging pump or flow path from the RWST, the plant is not prepared to provide high pressure response to Design Basis Events requiring SI. The 1 hour Completion Time to restore at least one ECCS centrifugal charging subsystem to OPERABLE status ensures that prompt action is taken to provide the required cooling capacity or to initiate actions to place the plant in MODE 5, where an ECCS train is not required. ### <u>D.1</u> When the Required Actions of Condition B or C cannot be completed within the required Completion Time, a controlled shutdown should be initiated provided that adequate RHR cooling capacity exists to support reaching and maintaining MODE 5 conditions safely. With both RHR subsystems inoperable, it would be unwise to require the plant to go to MODE 5, where the only available heat removal system is the RHR. Therefore, the appropriate action is to initiate measures to restore at least one ECCS RHR subsystem and to continue the actions until the subsystem is restored to OPERABLE status. Only then would it be safe to go to MODE 5. Twenty-four hours is a reasonable time, based on operating experience, to reach MODE 5 in an orderly manner and without challenging plant systems or operators. ## SURVEILLANCE REQUIREMENTS ### SR 3.5.3.1 The applicable Surveillance descriptions from Bases 3.5.2 apply. ### SR 3.5.3.2 Verification of proper valve alignment ensures that the flow path from the ECCS pumps to the RCS is maintained. Misalignment of these valves could render the required ECCS trains inoperable. Securing these valves in position by removal of power by locking open the breaker or disconnect device for the valve operator ensures that they cannot change position as a result of an active failure or be inadvertantly misaligned. A 31 day frequency is considered reasonable in view of other administrative controls that will ensure a mispositioned valve is unlikely and this frequency has been shown to be acceptable by operating experience. | В | Α | S | Ε | S | |---|---|--------------|---|---| | u | | $\mathbf{-}$ | _ | u | REFERENCES The applicable references from Bases 3.5.2 apply. ### B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) B 3.5.4 Refueling Water Storage Tank (RWST) ### **BASES** ####
BACKGROUND The RWST supplies borated water to the Chemical and Volume Control System (CVCS) during abnormal operating conditions, to the refueling pool during refueling, and to the ECCS and the Containment Spray System during accident conditions. The RWST supplies both trains of the ECCS and the Containment Spray System through separate, redundant supply headers during the injection phase of a loss of coolant accident (LOCA) recovery. A motor operated isolation valve is provided in each header to isolate the RWST from the ECCS once the system has been transferred to the recirculation mode. The recirculation mode is entered when pump suction is manually transferred to the containment sump following receipt of the RWST—Low alarm. Use of a single RWST to supply both trains of the ECCS and Containment Spray System is acceptable since the RWST is a passive component, and passive failures are not required to be assumed to occur coincidentally with Design Basis Events. The switchover from normal operation to the injection phase of ECCS operation requires changing centrifugal charging pump suction from the CVCS volume control tank (VCT) to the RWST through the use of isolation valves. Each set of isolation valves is interlocked so that the VCT isolation valves will begin to close once the RWST isolation valves are fully open. Since the VCT is under pressure, the preferred pump suction will be from the VCT until the tank is isolated. This will result in a delay in obtaining the RWST borated water. The effects of this delay are discussed in the Applicable Safety Analyses section of these Bases. During normal operation in MODES 1, 2, and 3, the residual heat removal (RHR) pumps are aligned to take suction from the RWST. The ECCS and Containment Spray System pumps are provided with recirculation lines that ensure each pump can maintain minimum flow requirements when operating at or near shutoff head conditions. When the suction for the ECCS and Containment Spray System pumps is transferred to the containment sump, the RWST flow paths must be isolated to prevent a release of the containment sump ## BACKGROUND (continued) contents to the RWST, which could result in a release of contaminants to the atmosphere and the eventual loss of suction head for the ECCS pumps. ### This LCO ensures that: - a. The RWST contains sufficient borated water to support the ECCS during the injection phase; - Sufficient water volume exists in the containment sump to support continued operation of the ECCS and Containment Spray System pumps at the time of transfer to the recirculation mode of cooling; and - c. The reactor remains subcritical following a LOCA. Insufficient water in the RWST could result in insufficient cooling capacity when the transfer to the recirculation mode occurs. Improper boron concentrations could result in a reduction of SDM or excessive boric acid precipitation in the core following the LOCA, as well as excessive caustic stress corrosion of mechanical components and systems inside the containment. ## APPLICABLE SAFETY ANALYSES During accident conditions, the RWST provides a source of borated water to the ECCS and Containment Spray System pumps. As such, it provides containment cooling and depressurization, core cooling, and replacement inventory and is a source of negative reactivity for reactor shutdown (Ref. 1). The design basis transients and applicable safety analyses concerning each of these systems are discussed in the Applicable Safety Analyses section of B 3.5.2, "ECCS—Operating"; B 3.5.3, "ECCS—Shutdown"; and B 3.6.6, "Containment Spray and Cooling Systems." These analyses are used to assess changes to the RWST in order to evaluate their effects in relation to the acceptance limits in the analyses. The RWST must also meet volume, boron concentration, and temperature requirements for non-LOCA events. The volume is not an explicit assumption in non-LOCA events since the required volume is a small fraction of the available volume. The deliverable volume limit is set by the LOCA and containment analyses. For the RWST, the deliverable volume is different from the total volume contained ## APPLICABLE SAFETY ANALYSES (continued) since, due to the design of the tank, more water can be contained than can be delivered. The minimum boron concentration is an explicit assumption in the main steam line break (MSLB) analysis to ensure the required shutdown capability. The minimum boron concentration limit is an important assumption in ensuring the required shutdown capability. The maximum boron concentration is an explicit assumption in the inadvertent ECCS actuation analysis, although the results are very insensitive to small changes in boron concentrations. The minimum temperature is an assumption in both the MSLB and inadvertent ECCS actuation analyses. The MSLB analysis has considered a delay associated with the interlock between the VCT and RWST isolation valves, and the results show that the departure from nucleate boiling design basis is met. The delay has been established as 27 seconds, with offsite power available, or 42 seconds without offsite power. This response time includes 2 seconds for electronics delay, a 10 second stroke time for the RWST valves, and a 15 second stroke time for the VCT valves. For a large break LOCA analysis, the minimum water volume limit of 321,000 gallons and the lower boron concentration limit of 2300 ppm are used to compute the post LOCA sump boron concentration necessary to assure subcriticality. The large break LOCA is the limiting case since the safety analysis assumes that all control rods are out of the core. A water volume of 506,600 gallons and the upper limit on boron concentration of 2500 ppm are used to determine the maximum allowable time to switch to hot leg recirculation following a LOCA. The purpose of switching from cold leg to hot leg injection is to avoid boron precipitation in the core following the accident. In the ECCS analysis, the containment spray temperature is assumed to be equal to the RWST lower temperature limit of 35°F. If the lower temperature limit is violated, the containment spray further reduces containment pressure, which decreases the rate at which steam can be vented out the break and increases peak clad temperature. An upper temperature assumption of 120°F is used in the small break LOCA analysis and containment OPERABILITY analysis. Exceeding this temperature would result in a higher peak clad temperature, because there would be less heat transfer from the core to the ## APPLICABLE SAFETY ANALYSES (continued) injected water for the small break LOCA and higher containment pressures due to reduced containment spray cooling capacity. For the containment response following an MSLB, the lower limit on boron concentration and the upper assumption on RWST water temperature are used to maximize the total energy release to containment. The RWST satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO The RWST ensures that an adequate supply of borated water is available to cool and depressurize the containment in the event of a Design Basis Accident (DBA), to cool and cover the core in the event of a LOCA, to maintain the reactor subcritical following a DBA, and to ensure adequate level in the containment sump to support ECCS and Containment Spray System pump operation in the recirculation mode. To be considered OPERABLE, the RWST must meet the water volume, boron concentration, and temperature limits established in the SRs. ## **APPLICABILITY** In MODES 1, 2, 3, and 4, RWST OPERABILITY requirements are dictated by ECCS and Containment Spray System OPERABILITY requirements. Since both the ECCS and the Containment Spray System must be OPERABLE in MODES 1, 2, 3, and 4, the RWST must also be OPERABLE to support their operation. Core cooling requirements in MODE 5 are addressed by LCO 3.4.7, "RCS Loops—MODE 5, Loops Filled," and LCO 3.4.8, "RCS Loops—MODE 5, Loops Not Filled." MODE 6 core cooling requirements are addressed by LCO 3.9.4, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level," and LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level. ### **ACTIONS** **A.1** With RWST boron concentration or borated water temperature not within limits, they must be returned to within limits within 8 hours. Under these conditions neither the ECCS nor the Containment Spray ### **ACTIONS** ## A.1 (continued) System can perform its design function. Therefore, prompt action must be taken to restore the tank to OPERABLE condition. The 8 hour limit to restore the RWST temperature or boron concentration to within limits was developed considering the time required to change either the boron concentration or temperature and the fact that the contents of the tank are still available for injection. ### <u>B.1</u> With the RWST inoperable for reasons other than Condition A (e.g., water volume), it must be restored to OPERABLE status within 1 hour. In this Condition, neither the ECCS nor the Containment Spray System can perform its design function. Therefore, prompt action must be taken to restore the tank to OPERABLE status or to place the plant in a MODE in which the RWST is not required. The short time limit of 1 hour to restore the RWST to OPERABLE status is based on this condition simultaneously affecting redundant trains. ## C.1 and C.2 If the RWST cannot be returned to OPERABLE status within the associated Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ### SR 3.5.4.1 The RWST borated water temperature should be verified every 24 hours to be above
the minimum limit assumed in the accident analyses. This Frequency is sufficient to identify a temperature change that would approach the limit and has been shown to be acceptable through operating experience. ## SURVEILLANCE REQUIREMENTS ## SR 3.5.4.1 (continued) The SR is modified by a Note that eliminates the requirement to perform this Surveillance when ambient air temperature is within the operating limit of the RWST. With ambient air temperature within the limit, the RWST temperature should not exceed the limit. ### SR 3.5.4.2 The RWST water volume should be verified every 7 days to be above the required minimum level in order to ensure that a sufficient initial supply is available for injection and to support continued ECCS and Containment Spray System pump operation on recirculation. Since the RWST volume is normally stable and is protected by an alarm, a 7 day Frequency is appropriate and has been shown to be acceptable through operating experience. ## SR 3.5.4.3 The boron concentration of the RWST should be verified every 7 days to be within the required limits. This SR ensures that the reactor will remain subcritical following a LOCA. Further, it assures that the resulting sump pH will be maintained in an acceptable range so that boron precipitation in the core will not occur and the effect of chloride and caustic stress corrosion on mechanical systems and components will be minimized. Since the RWST volume is normally stable, a 7 day sampling Frequency to verify boron concentration is appropriate and has been shown to be acceptable through operating experience. ### REFERENCES 1. FSAR, Chapter 6 and Chapter 15. ## B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) B 3.5.5 Seal Injection Flow ### **BASES** ### **BACKGROUND** This LCO is applicable only to those units that utilize the centrifugal charging pumps for safety injection (SI). The function of the seal injection throttle valves during an accident is similar to the function of the ECCS throttle valves in that each restricts flow from the centrifugal charging pump header to the Reactor Coolant System (RCS). The restriction on reactor coolant pump (RCP) seal injection flow limits the amount of ECCS flow that would be diverted from the injection path following an accident. This limit is based on safety analysis assumptions that are required because RCP seal injection flow is not isolated during SI. ### APPLICABLE SAFETY ANALYSES One ECCS train (i.e. one RHR and one centrifugal charging pump) is assumed to fail during a large break loss of coolant accident (LOCA) at full power (Ref. 1). The LOCA analysis establishes the minimum flow for the ECCS pumps. The centrifugal charging pumps are also credited in the small break LOCA analysis. This analysis, and the LOCA mass and energy release analysis, establish the flow and discharge head at the design point for the centrifugal charging pumps. The steam generator tube rupture, main feedwater line break, and main steam line break event analyses also credit the centrifugal charging pumps, but are not limiting in their design. Reference to these analyses is made in assessing changes to the Seal Injection System for evaluation of their effects in relation to the acceptance limits in these analyses. This LCO ensures that seal injection flow with the seal water injection flow control valve full open, will be sufficient for RCP seal integrity but limited so that the ECCS trains will be capable of delivering sufficient water to match boiloff rates soon enough to minimize uncovering of the core following a large LOCA. It also ensures that the centrifugal charging pumps will deliver sufficient water for a small LOCA and sufficient boron to maintain the core subcritical. For smaller LOCAs, the charging pumps alone deliver sufficient fluid to overcome the loss and maintain RCS inventory. Seal injection flow satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). LCO The intent of the LCO limit on seal injection flow is to make sure that flow through the RCP seal water injection line is low enough to ensure that sufficient centrifugal charging pump injection flow is directed to the RCS via the injection points (Ref. 2). The LCO is not strictly a flow limit, but rather a flow limit based on a flow line resistance. In order to establish the proper flow line resistance, a pressure and flow must be known. The flow line resistance is established by adjusting the reactor coolant pump seal injection needle valves to provide a total seal injection flow in the Acceptable Region of Figure 3.5.5-1 at a given pressure differential between the charging header pressure and the pressurizer pressure. The centrifugal charging pump discharge header pressure remains essentially constant through all the applicable MODES of this LCO. A reduction in RCS pressure would result in more flow being diverted to the RCP seal injection line than at normal operating pressure. The valve settings established at the prescribed centrifugal charging pump discharge header pressure result in a conservative valve position should RCS pressure decrease. The additional modifier of this LCO, the seal water injection flow control valve being full open, is required since the valve is designed to fail open for the accident condition. With the discharge pressure and control valve position as specified by the LCO, a resistance limit is established. It is this resistance limit that is used in the accident analyses. The limit on seal injection flow (operation in the Acceptable Region of Figure 3.5.5-1) and an open wide condition of the seal water injection flow control valve, must be met to render the ECCS OPERABLE. If these conditions are not met, the ECCS flow will not be as assumed in the accident analyses. ### **APPLICABILITY** In MODES 1, 2, and 3, the seal injection flow limit is dictated by ECCS flow requirements, which are specified for MODES 1, 2, 3, and 4. The seal injection flow limit is not applicable for MODE 4 and lower, however, because high seal injection flow is less critical as a result of the lower initial RCS pressure and decay heat removal requirements in these MODES. Therefore, RCP seal injection flow must be limited in MODES 1, 2, and 3 to ensure adequate ECCS performance. ### <u>A.1</u> With the seal injection flow exceeding its limit, the amount of charging flow available to the RCS may be reduced. Under this Condition, action must be taken to restore the flow to below its limit. The operator has 4 hours from the time the flow is known to be above the limit to perform SR 3.5.5.1 and correctly position the manual valves and thus be in compliance with the accident analysis. The Completion Time minimizes the potential exposure of the plant to a LOCA with insufficient injection flow and provides a reasonable time to restore seal injection flow within limits. This time is conservative with respect to the Completion Times of other ECCS LCOs; it is based on operating experience and is sufficient for taking corrective actions by operations personnel. ### B.1 and B.2 When the Required Actions cannot be completed within the required Completion Time, a controlled shutdown must be initiated. The Completion Time of 6 hours for reaching MODE 3 from MODE 1 is a reasonable time for a controlled shutdown, based on operating experience and normal cooldown rates, and does not challenge plant safety systems or operators. Continuing the plant shutdown begun in Required Action B.1, an additional 6 hours is a reasonable time, based on operating experience and normal cooldown rates, to reach MODE 4, where this LCO is no longer applicable. ### SURVEILLANCE REQUIREMENTS ### SR 3.5.5.1 Verification every 31 days that the manual seal injection throttle valves are adjusted to give a flow within the limits (operation in the acceptable region of Figure 3.5.5-1) ensures that proper manual seal injection throttle valve position, and hence, proper seal injection flow, is maintained. A differential pressure that is above the reference minimum value is established between the charging header (PT-121, charging header pressure) and the pressurizer, and the total seal injection flow is verified to be within the limits determined in accordance with the ECCS safety analysis. The Frequency of 31 days is based on engineering judgment and is consistent with other ECCS valve Surveillance Frequencies. The Frequency has proven to be acceptable through operating experience. ## SURVEILLANCE REQUIREMENTS ## SR 3.5.5.1 (continued) As noted, the Surveillance is not required to be performed until 4 hours after the RCS pressure has stabilized within a \pm 20 psig range of normal operating pressure. The RCS pressure requirement is specified since this configuration will produce the required pressure conditions necessary to assure that the manual valves are set correctly. The exception is limited to 4 hours to ensure that the Surveillance is timely. ## **REFERENCES** - 1. FSAR, Chapter 6 and Chapter 15. - 2. 10 CFR 50.46. ## B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) B 3.5.6 ECCS Recirculation Fluid pH Control System ### **BASES** ### **BACKGROUND** The Recirculation Fluid pH Control System is a passive system designed to raise the long term pH of the solution in the containment sump following a Design Basis Accident (DBA). The Recirculation Fluid pH Control System consists of three storage baskets containing trisodium phosphate (TSP) as Na₃PO₄ • 12H₂O • ½NaOH. An equivalent amount of trisodium phosphate compound with a different chemical formula may be used. When equivalent compounds are used, the allowable weights/volumes may be different; however, the equivalent amount of trisodium phosphate compound must raise the pH of the recirculating solution into the range of 7.5 to 10.5. In the event of a loss of coolant accident (LOCA), the TSP contained in the storage baskets will be dissolved in the Reactor Coolant System (RCS) and Refueling Water Storage Tank (RWST) inventories lost through the pipe break.
The resulting increase in the recirculation solution pH into the range of 7.5 to 10.5 assures that iodine is retained in solution and that chloride induced stress corrosion on mechanical systems and components is minimized (Ref. 1). The Recirculation Fluid pH Control System performs no function during normal plant operation. Radioiodine in its various forms is the fission product of primary concern in the evaluation of a DBA. Fuel damage following a DBA will cause iodine to be released into the reactor coolant and containment atmosphere. Iodine released to the containment atmosphere is absorbed by the containment spray and washed into the containment sump. Since the ECCS water is borated for reactivity control, the recirculation solution in the containment sump will initially be acidic with a pH of approximately 4.5. In a low pH (acidic) solution, some of the dissolved iodine will be converted to a volatile form and evolve out of solution into the containment atmosphere. In order to reduce the potential for elemental iodine evolution, the ECCS recirculation solution is adjusted (buffered) to achieve a long term alkaline pH of no less than 7.5. An alkaline pH promotes iodine hydrolysis, in which iodine is converted to nonvolatile forms. In addition to ensuring iodine is retained in solution, an alkaline recirculation solution will minimize chloride induced stress corrosion cracking of austenitic stainless steel ## BACKGROUND (continued) ECCS and containment spray components exposed to the high temperature borated water during the recirculation phase of operation after a DBA. A long term recirculation solution pH of 7.5 to 10.5 also serves to minimize the hydrogen produced by the corrosion of galvanized surfaces and zinc-based paints. In addition, the determination of this pH range also considered the environmental qualification of equipment in containment that may be subjected to the containment spray. In order to achieve the desired pH range of 7.5 to 10.5 in the post-LOCA recirculation solution a total of between 10,000 pounds (185 ft³) and 12,900 pounds (215 ft³) of TSP (or appropriate weights/volumes for equivalent compounds) is required. The three TSP storage baskets are designed and located to permit the TSP to be dissolved into the containment recirculation sump solution as the post-LOCA water level rises. The stainless steel mesh screen storage baskets are located in the containment sump area anchored to the filler slab at elevation 105-ft 6-in. The post-LOCA ECCS recirculation and containment spray provide mixing to achieve a uniform solution pH. TSP, because of its stability when exposed to radiation and elevated temperature and its non-toxic nature, is the preferred buffer material. The dodecahydrate form of TSP is used because of the high humidity in the containment during normal operation. Since the TSP is hydrated, it will not absorb large amounts of water from the humid atmosphere and will be less susceptible to physical and chemical change than the anhydrous form of TSP. ### APPLICABLE SAFETY ANALYSES Following the assumed release of radioactive material from a DBA to the containment atmosphere, the containment is assumed to leak at its design value. The LOCA radiological dose analysis assumes the amount of radioactive material available for release to the outside atmosphere is reduced by the operation of the containment spray system. The analysis also assumes the long term pH control of the recirculation fluid retains the dissolved iodine in solution which prevents the iodine from becoming available for release to the atmosphere (Ref. 2). The radiological consequences of a LOCA may ## APPLICABLE SAFETY ANALYSES (continued) be increased if the long term pH of the recirculation solution is not adjusted to 7.5 or greater. Therefore, long term pH control of the post-LOCA recirculation fluid helps ensure the offsite and control room thyroid doses are within the limits of 10 CFR 100 and 10 CFR 50, Appendix A, General Design Criterion 19 respectively. The Recirculation Fluid pH Control System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO The OPERABILITY of the Recirculation Fluid pH Control System ensures sufficient TSP is maintained in the three TSP storage baskets to increase the long term recirculation fluid pH to between 7.5 and 10.5 following a LOCA. A pH range of 7.5 to 10.5 is sufficient to prevent significant amounts of iodine released from fuel failure and dissolved in the recirculation fluid, from converting to a volatile form and evolving from solution into the containment atmosphere during the ECCS recirculation phase. In addition, an alkaline pH in this range will minimize chloride induced stress corrosion cracking of austenitic stainless steel components, and minimize the hydrogen produced by the corrosion of galvanized surfaces and zinc-based paints. In order to achieve the desired pH range of 7.5 to 10.5 in the post-LOCA recirculation solution a total of between 10,000 pounds (185 ft³) and 12,900 pounds (215 ft³) of TSP (or appropriate weights/volumes for equivalent compounds) is required. The required amount of TSP is determined considering the volume of water involved, the target pH range, and the density of different vendor types of TSP that are available. Although the amount of TSP required is based on mass, a required volume is verified since it is not feasible to weigh the entire amount of TSP in containment. ## **APPLICABILITY** In MODES 1, 2, 3, and 4 a DBA could cause the release of radioactive material in containment requiring the operation of the ECCS Recirculation Fluid pH Control System. The ECCS Recirculation Fluid pH Control System assists in reducing the amount of radioactive material available for release to the outside atmosphere after a DBA. # APPLICABILITY (continued) In MODES 5, and 6, the probability and consequences of an event requiring the ECCS Recirculation Fluid pH Control System are reduced due to the pressure and temperature limitations in these MODES. Thus, the ECCS Recirculation Fluid pH Control System is not required OPERABLE in MODES 5 and 6. ### **ACTIONS** ### <u>A.1</u> With the ECCS Recirculation Fluid pH Control System inoperable, the system must be restored to OPERABLE status within 72 hours. The ability to adjust the recirculation fluid pH to the required range and the resulting iodine retention and corrosion protection may be reduced in this condition. The 72 hour Completion Time is based on the passive nature of the system design and the low probability of an event occurring during this time that would require the ECCS Recirculation Fluid pH Control System function. ### **B.1** and **B.2** If the ECCS Recirculation Fluid pH Control System cannot be restored to OPERABLE status within the required Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours and in MODE 5 within 84 hours. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner without challenging plant systems. The extended interval to reach MODE 5 allows additional time for restoration of the system and is reasonable considering that the driving force for a release of radioactive material from the RCS is reduced in MODE 3. ## SURVEILLANCE REQUIREMENTS ## SR 3.5.6.1 In order to achieve the desired pH range of 7.5 to 10.5 in the post-LOCA recirculation solution a total of between 10,000 pounds (185 ft³) and 12,900 pounds (215 ft³) of TSP (or appropriate weights/volumes for equivalent compounds) is required. A visual inspection is performed to verify the structural integrity and content volume of the ### SURVEILLANCE REQUIREMENTS ## SR 3.5.6.1 (continued) three TSP storage baskets. The baskets are marked with a minimum and maximum fill level that corresponds to a total TSP volume of between 185 ft³ and 215 ft³. The verification that the storage baskets contain the required amount of trisodium phosphate is accomplished by verifying that the TSP level is between the indicated fill marks on the baskets. The intent of the surveillance requirement is to verify containment of the TSP by visual inspection. Therefore, broken, crimped, or oxidized screen mesh is acceptable as long as the contents are contained. Also, lumps/caking is an analyzed condition. The 18 month frequency is based on the passive nature of the system and the low probability of an undetected change in the TSP volume occurring during the surveillance interval. ### **REFERENCES** - 1. FSAR, Section 6.2. - 2. FSAR, Section 15. ### **B 3.6 CONTAINMENT SYSTEMS** B 3.6.1 Containment ### **BASES** ### **BACKGROUND** The containment consists of the concrete reactor building, its steel liner, and the penetrations through this structure. The structure is designed to contain radioactive material that may be released from the reactor core following a Design Basis Accident (DBA). Additionally, this structure provides shielding from the fission products that may be present in the containment atmosphere following accident conditions. The containment is a reinforced concrete structure with a cylindrical wall, a flat foundation mat, and a shallow dome roof. The inside surface of the containment is lined with a carbon steel liner to ensure a high degree of leak tightness during operating and accident conditions. The cylinder wall is prestressed with a post tensioning system in the vertical and horizontal directions, and the dome roof is prestressed utilizing a three way post tensioning system. The concrete reactor building is required for structural integrity of the containment under DBA conditions. The steel liner and its penetrations establish the leakage limiting boundary of the containment. Maintaining the containment OPERABLE limits the leakage of fission product radioactivity from the containment to the environment. SR 3.6.1.1
leakage rate requirements comply with 10 CFR 50, Appendix J, Option B (Ref. 1), as modified by approved exemptions. The isolation devices for the penetrations in the containment boundary are a part of the containment leak tight barrier. To maintain this leak tight barrier: - a. All penetrations required to be closed during accident conditions are either: - capable of being closed by an OPERABLE automatic containment isolation system, or ## BACKGROUND (continued) - 2. closed by manual valves, blind flanges, or de-activated automatic valves secured in their closed positions, except as provided in LCO 3.6.3, "Containment Isolation Valves"; - b. Each air lock is OPERABLE, except as provided in LCO 3.6.2, "Containment Air Locks"; - c. All equipment hatches are closed; and - d. The sealing mechanism associated with each penetration (e.g., welds, bellows or O-rings) is OPERABLE. ## APPLICABLE SAFETY ANALYSES The safety design basis for the containment is that the containment must withstand the pressures and temperatures of the limiting DBA without exceeding the design leakage rate. The DBAs that result in a challenge to containment OPERABILITY from high pressures and temperatures are a loss of coolant accident (LOCA), a steam line break, and a rod ejection accident (REA) (Ref. 2). In addition, release of significant fission product radioactivity within containment can occur from a LOCA or REA. In the DBA analyses, it is assumed that the containment is OPERABLE such that. for the DBAs involving release of fission product radioactivity, release to the environment is controlled by the rate of containment leakage. The containment was designed with an allowable leakage rate of 0.15% of containment air weight per day for the first 24 hours and 0.075% thereafter (Ref. 3). This leakage rate, used to evaluate offsite doses resulting from accidents, is defined in 10 CFR 50, Appendix J, Option B (Ref. 1), as La: the maximum allowable containment leakage rate at the calculated peak containment internal pressure (Pa) resulting from the limiting design basis LOCA. The allowable leakage rate represented by La forms the basis for the acceptance criteria imposed on all containment leakage rate testing. L. is assumed to be 0.15% per day in the safety analysis at $P_{a} = 43 \text{ psig (Ref. 3)}.$ Satisfactory leakage rate test results are a requirement for the establishment of containment OPERABILITY. The containment satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO Containment OPERABILITY is maintained by limiting leakage to ≤ 1.0 L_a, except prior to the first startup after performing a required Containment Leakage Rate Testing Program leakage test. At this time, the applicable leakage limits must be met. Compliance with this LCO will ensure a containment configuration, including equipment hatches, that is structurally sound and that will limit leakage to those leakage rates assumed in the safety analysis. Individual leakage rates specified for the containment air lock (LCO 3.6.2) and purge valves with resilient seals (LCO 3.6.3) are not specifically part of the acceptance criteria of 10 CFR 50, Appendix J, Option B. Therefore, leakage rates exceeding these individual limits only result in the containment being inoperable when the leakage results in exceeding the overall acceptance criteria of 1.0 L_a. ### **APPLICABILITY** In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material into containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, containment is not required to be OPERABLE in MODE 5 to prevent leakage of radioactive material from containment. The requirements for containment during MODE 6 are addressed in LCO 3.9.3, "Containment Penetrations." ### **ACTIONS** ### A.1 If the requirements of SR 3.6.1.2 are not met, the structural integrity of the containment is in a degraded state. SR 3.6.1.2 ensures that the structural integrity of the containment will be maintained in accordance with the provisions of the Containment Tendon Surveillance Program. If a limit of the Program is not met, Condition A allows 24 hours to restore the structural integrity to within limits. The 24-hour Completion Time allows for the correction of minor problems while providing a limit to the amout of time that the structural integrity of containment may be in a degraded condition during at-power conditions. # ACTIONS (continued) ## <u>B.1</u> In the event containment is inoperable for reasons other than Condition A, containment must be restored to OPERABLE status within 1 hour. The 1 hour Completion Time provides a period of time to correct the problem commensurate with the importance of maintaining containment during MODES 1, 2, 3, and 4. This time period also ensures that the probability of an accident (requiring containment OPERABILITY) occurring during periods when containment is inoperable is minimal. ### C.1 and C.2 If containment cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.6,1.1 Maintaining the containment OPERABLE requires compliance with the visual examinations and leakage rate test requirements of the Containment Leakage Rate Testing Program. Failure to meet air lock and purge valve with resilient seal leakage limits specified in LCO 3.6.2 and LCO 3.6.3 does not invalidate the acceptability of these overall leakage determinations unless their contribution to overall Type A, B, and C leakage causes that to exceed limits. As left leakage prior to the first startup after performing a required Containment Leakage Rate Testing Program leakage test is required to be < 0.6 La for combined Type B and C leakage, and ≤ 0.75 La for overall Type A leakage. At all other times between required leakage rate tests, the acceptance criteria is based on an overall Type A leakage limit of ≤ 1.0 L_a. At ≤ 1.0 L_a the offsite dose consequences are bounded by the assumptions of the safety analysis. SR Frequencies are as required by the Containment Leakage Rate Testing Program. These periodic testing requirements verify that the containment leakage rate does not exceed the leakage rate assumed in the safety analysis. # ACTIONS (continued) ## SR 3.6.1.2 For ungrouted, post tensioned tendons, this SR ensures that the structural integrity of the containment will be maintained in accordance with the provisions of the Containment Tendon Surveillance Program. Testing and Frequency are consistent with the recommendations of Regulatory Guide 1.35 (Ref. 4). ## **REFERENCES** - 1. 10 CFR 50, Appendix J, Option B. - 2. FSAR, Chapter 15. - 3. FSAR, Section 6.2. - 4. Regulatory Guide 1.35, Revision 2. ### **B 3.6 CONTAINMENT SYSTEMS** B 3.6.2 Containment Air Locks ### **BASES** ### **BACKGROUND** Containment air locks form part of the containment pressure boundary and provide a means for personnel access during all MODES of operation. The personnel air lock is nominally a right circular cylinder, 10 ft in diameter, with a door at each end. The auxiliary hatch is nominally a right circular cylinder, 6 ft in diameter, with a door at each end. The doors are interlocked to prevent simultaneous opening. During periods when containment is not required to be OPERABLE, the door interlock mechanism may be disabled, allowing both doors of an air lock to remain open for extended periods when frequent containment entry is necessary. Each air lock door has been designed and tested to certify its ability to withstand a pressure in excess of the maximum expected pressure following a Design Basis Accident (DBA) in containment. As such, closure of a single door supports containment OPERABILITY. Each of the doors contains double gasketed seals and local leakage rate testing capability to ensure pressure integrity. To effect a leak tight seal, the air lock design uses pressure seated doors (i.e., an increase in containment internal pressure results in increased sealing force on each door). Each personnel air lock is provided with limit switches and mechanical pointers for both doors that provide local indication of door position. With power supplied to the door operators, this indication is provided by position indication lights. With power removed from the door operators, this indication is provided by mechanical pointers located beside each door's manual handwheels. A set of handwheels, indicating lights, and manual pointers is located inside the air locks, and on the outside of the air locks on both the auxiliary building and containment sides. The containment air locks form part of the containment pressure boundary. As such, air lock integrity and leak tightness is essential for maintaining the containment leakage rate within limit in the event of a DBA. Not maintaining air lock integrity or leak tightness may result in a leakage rate in excess of that assumed in the unit safety analyses. ## APPLICABLE SAFETY ANALYSES The DBAs that result in a release of radioactive material within containment are a loss of coolant accident, a rod ejection accident, and a fuel handling accident in containment (Ref. 2). In the analysis of each of these accidents, it is assumed that containment is OPERABLE such that release of fission products to the environment is controlled by the rate of containment leakage. The containment was designed with an allowable leakage rate of 0.15% of containment air weight per day (Ref. 2). This leakage rate is defined in 10 CFR 50, Appendix J, Option B, as La, the maximum allowable containment
leakage rate at the calculated peak containment internal pressure, Pa (43 psig), following a design basis LOCA. This allowable leakage rate forms the basis for the acceptance criteria imposed on the SRs associated with the air locks. The containment air locks satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO Each containment air lock forms part of the containment pressure boundary. As part of the containment pressure boundary, the air lock safety function is related to control of the containment leakage rate resulting from a DBA. Thus, each air lock's structural integrity and leak tightness are essential to the successful mitigation of such an event. Each air lock is required to be OPERABLE. For the air lock to be considered OPERABLE, the air lock interlock mechanism must be OPERABLE, the air lock must be in compliance with the Type B air lock leakage test, and both air lock doors must be OPERABLE. The interlock allows only one air lock door of an air lock to be opened at one time. This provision ensures that a gross breach of containment does not exist when containment is required to be OPERABLE. Closure of a single door in each air lock is sufficient to provide a leak tight barrier following postulated events. Nevertheless, both doors are kept closed when the air lock is not being used for normal entry into or exit from containment. ## **APPLICABILITY** In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and # APPLICABILITY (continued) temperature limitations of these MODES. Therefore, the containment air locks are not required in MODE 5 to prevent leakage of radioactive material from containment. The requirements for the containment air locks during MODE 6 are addressed in LCO 3.9.3, "Containment Penetrations." ### **ACTIONS** The ACTIONS are modified by a Note that allows entry and exit to perform repairs on the affected air lock component. If the outer door is inoperable, then it may be easily accessed for most repairs. It is preferred that the air lock be accessed from inside primary containment by entering through the other OPERABLE air lock. However, if this is not practicable, or if repairs on either door must be performed from the barrel side of the door then it is permissible to enter the air lock through the OPERABLE door, which means there is a short time during which the containment boundary is not intact (during access through the OPERABLE door). The ability to open the OPERABLE door, even if it means the containment boundary is temporarily not intact, is acceptable due to the low probability of an event that could pressurize the containment during the short time in which the OPERABLE door is expected to be open. After each entry and exit, the OPERABLE door must be immediately closed. If ALARA conditions permit, entry and exit should be via an OPERABLE air lock. A second Note has been added to provide clarification that, for this LCO, separate Condition entry is allowed for each air lock. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable air lock. Complying with the Required Actions may allow for continued operation, and a subsequent inoperable air lock is governed by subsequent Condition entry and application of associated Required Actions. In the event the air lock leakage results in exceeding the overall containment leakage rate, Note 3 directs entry into the applicable Conditions and Required Actions of LCO 3.6.1, "Containment." ## A.1, A.2, and A.3 With one air lock door in one or more containment air locks inoperable, the OPERABLE door must be verified closed (Required ## A.1, A.2, and A.3 (continued) Action A.1) in each affected containment air lock. This ensures that a leak tight containment barrier is maintained by the use of an OPERABLE air lock door. This action must be completed within 1 hour. This specified time period is consistent with the ACTIONS of LCO 3.6.1, which requires containment be restored to OPERABLE status within 1 hour. In addition, the affected air lock penetration must be isolated by locking closed the OPERABLE air lock door within the 24 hour Completion Time. The 24 hour Completion Time is reasonable for locking the OPERABLE air lock door, considering the OPERABLE door of the affected air lock is being maintained closed. Required Action A.3 verifies that an air lock with an inoperable door has been isolated by the use of a locked and closed OPERABLE air lock door. This ensures that an acceptable containment leakage boundary is maintained. The Completion Time of once per 31 days is based on engineering judgment and is considered adequate in view of the low likelihood of a locked door being mispositioned and other administrative controls. Required Action A.3 is modified by a Note that applies to air lock doors located in high radiation areas and allows these doors to be verified locked closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted. Therefore, the probability of misalignment of the door, once it has been verified to be in the proper position, is small. The Required Actions have been modified by two Notes. Note 1 ensures that only the Required Actions and associated Completion Times of Condition C are required if both doors in the same air lock are inoperable. With both doors in the same air lock inoperable, an OPERABLE door is not available to be closed. Required Actions C.1 and C.2 are the appropriate remedial actions. The exception of Note 1 does not affect tracking the Completion Time from the initial entry into Condition A, only the requirement to comply with the Required Actions. Note 2 allows use of the air lock for entry and exit for 7 days under administrative controls if both air locks have an inoperable door. This 7 day restriction begins when the second air lock is discovered inoperable. Containment entry may be required on a ## A.1, A.2, and A.3 (continued) periodic basis to perform Technical Specifications (TS) Surveillances and Required Actions, as well as other activities on equipment inside containment that are required by TS or activities on equipment that support TS-required equipment. This Note is not intended to preclude performing other activities (i.e., non-TS-required activities) if the containment is entered, using the inoperable air lock, to perform an allowed activity listed above. This allowance is acceptable due to the low probability of an event that could pressurize the containment during the short time that the OPERABLE door is expected to be open. ### B.1, B.2, and B.3 With an air lock interlock mechanism inoperable in one or more air locks, the Required Actions and associated Completion Times are consistent with those specified in Condition A. The Required Actions have been modified by two Notes. Note 1 ensures that only the Required Actions and associated Completion Times of Condition C are required if both doors in the same air lock are inoperable. With both doors in the same air lock inoperable, an OPERABLE door is not available to be closed. Required Actions C.1 and C.2 are the appropriate remedial actions. Note 2 allows entry into and exit from containment under the control of a dedicated individual stationed at the air lock to ensure that only one door is opened at a time (i.e., the individual performs the function of the interlock). Required Action B.3 is modified by a Note that applies to air lock doors located in high radiation areas and allows these doors to be verified locked closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted. Therefore, the probability of misalignment of the door, once it has been verified to be in the proper position, is small. ### C.1, C.2, and C.3 With one or more air locks inoperable for reasons other than those described in Condition A or B, Required Action C.1 requires action to ## C.1, C.2, and C.3 (continued) be initiated immediately to evaluate previous combined leakage rates using current air lock test results. An evaluation is acceptable, since it is overly conservative to immediately declare the containment inoperable if both doors in an air lock have failed a seal test or if the overall air lock leakage is not within limits. In many instances (e.g., only one seal per door has failed), containment remains OPERABLE, yet only 1 hour (per LCO 3.6.1) would be provided to restore the air lock door to OPERABLE status prior to requiring a plant shutdown. In addition, even with both doors failing the seal test, the overall containment leakage rate can still be within limits. Required Action C.2 requires that one door in the affected containment air lock must be verified to be closed within the 1 hour Completion Time. This specified time period is consistent with the ACTIONS of LCO 3.6.1, which requires that containment be restored to OPERABLE status within 1 hour. Additionally, the affected air lock(s) must be restored to OPERABLE status within the 24 hour Completion Time. The specified time period is considered reasonable for restoring an inoperable air lock to OPERABLE status, assuming that at least one door is maintained closed in each affected air lock. ## D.1 and D.2 If the inoperable containment air lock cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant
systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.6.2.1 Maintaining containment air locks OPERABLE requires compliance with the leakage rate test requirements of the Containment Leakage ## SURVEILLANCE REQUIREMENTS ## **SR 3.6.2.1** (continued) Rate Testing Program. This SR reflects the leakage rate testing requirements with regard to air lock leakage (Type B leakage tests). The acceptance criteria were established during initial air lock and containment OPERABILITY testing. The periodic testing requirements verify that the air lock leakage does not exceed the allowed fraction of the overall containment leakage rate. The Frequency is required by the Containment Leakage Rate Testing Program. The SR has been modified by two Notes. Note 1 states that an inoperable air lock door does not invalidate the previous successful performance of the overall air lock leakage test. This is considered reasonable since either air lock door is capable of providing a fission product barrier in the event of a DBA. Note 2 has been added to this SR requiring the results to be evaluated against the acceptance criteria which is applicable to SR 3.6.1.1. This ensures that air lock leakage is properly accounted for in determining the combined Type B and C containment leakage rate. ### SR 3.6.2.2 The air lock interlock is designed to prevent simultaneous opening of both doors in a single air lock. Since both the inner and outer doors of an air lock are designed to withstand the maximum expected post accident containment pressure, closure of either door will support containment OPERABILITY. Thus, the door interlock feature supports containment OPERABILITY while the air lock is being used for personnel transit in and out of the containment. Periodic testing of this interlock demonstrates that the interlock will function as designed and that simultaneous opening of the inner and outer doors will not inadvertently occur. Due to the purely mechanical nature of this interlock, and given that the interlock mechanism is not normally challenged when the containment air lock door is used for entry and exit (procedures require strict adherence to single door opening), this test is only required to be performed every 24 months. The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage, and the potential for loss of containment OPERABILITY if the surveillance were performed with the reactor at power. The 24 month Frequency for the interlock is justified based on generic operating experience. The Frequency is based on engineering judgment and is considered adequate given that the interlock is not challenged during the use of the airlock. ### **REFERENCES** - 1. 10 CFR 50, Appendix J, Option B. - 2. FSAR, Section 6.2. B 3.6.2-8 ### **B 3.6 CONTAINMENT SYSTEMS** B 3.6.3 Containment Isolation Valves ### **BASES** ### **BACKGROUND** The containment isolation valves form part of the containment pressure boundary and provide a means for fluid penetrations not serving accident consequence limiting systems to be provided with two isolation barriers that are closed on a containment isolation signal. These isolation devices are either passive or active (automatic). Manual valves, de-activated automatic valves secured in their closed position (including check valves with forward flow through the valve secured), blind flanges, and closed systems are considered passive devices. Check valves, or other automatic valves designed to close without operator action following an accident, are considered active devices. Two barriers in series are provided for each penetration so that no single credible failure or malfunction of an active component can result in a loss of isolation or leakage that exceeds limits assumed in the safety analyses. One of these barriers may be a closed system. These barriers (typically containment isolation valves) make up the Containment Isolation System. Automatic isolation signals are produced during accident conditions. Containment Phase "A" isolation occurs upon receipt of a safety injection signal. The Phase "A" isolation signal isolates nonessential process lines in order to minimize leakage of fission product radioactivity. Containment Phase "B" isolation occurs upon receipt of a containment pressure High-High-High signal and isolates the remaining process lines, except systems required for accident mitigation. In addition to the isolation signals listed above, the purge and exhaust valves receive an isolation signal on a containment high radiation condition. As a result, the containment isolation valves (and blind flanges) help ensure that the containment atmosphere will be isolated from the environment in the event of a release of fission product radioactivity to the containment atmosphere as a result of a Design Basis Accident (DBA). The OPERABILITY requirements for containment isolation valves help ensure that containment is isolated as assumed in the safety analyses. Therefore, the OPERABILITY requirements provide assurance that the containment function assumed in the safety analyses will be maintained. # BACKGROUND (continued) # Shutdown Purge System (48-inch purge valves CBV-HV-3198A, 3198D, 3196, 3197) The Shutdown Purge System operates to supply outside air into the containment for ventilation and cooling or heating and may also be used to reduce the concentration of noble gases within containment prior to and during personnel access. The supply and exhaust lines each contain two isolation valves. Because of their large size, the 48-inch purge valves are not qualified for automatic closure from their open position under DBA conditions. Therefore, the 48-inch purge valves are normally maintained closed in MODES 1, 2, 3, and 4 to ensure the containment boundary is maintained. Minipurge System (8-inch purge valves CBV-HV-2866C, 2866D, 2867C, 2867D) The Minipurge System operates to: - Maintain radioactivity levels in the containment consistent with occupancy requirements with continuous system operation; and - b. Equalize internal and external pressures with continuous system operation. Since the valves used in the Minipurge System are designed to meet the requirements for automatic containment isolation valves, these valves may be opened as needed in MODES 1, 2, 3, and 4. References to purge valves in the technical specifications apply to both the Shutdown and Minipurge System unless otherwise stated. ## APPLICABLE SAFETY ANALYSES The containment isolation valve LCO was derived from the assumptions related to minimizing the loss of reactor coolant inventory and establishing the containment boundary during major accidents. As part of the containment boundary, containment isolation valve OPERABILITY supports leak tightness of the containment. Therefore, the safety analyses of any event requiring isolation of containment is applicable to this LCO. The DBAs that result in a release of radioactive material within containment are a loss of coolant accident (LOCA) and a rod ejection ## APPLICABLE SAFETY ANALYSES (continued) accident (Ref. 1). In the analyses for each of these accidents, it is assumed that containment isolation valves are either closed or function to close within the required isolation time following event initiation. This ensures that potential paths to the environment through containment isolation valves (including containment purge valves) are minimized. The safety analyses assume that the 48-inch purge valves are closed at event initiation. The DBA analysis assumes that, except for containment minipurge valves, isolation of the containment is complete and leakage terminated except for the design leakage rate, La, prior to significant activity release. The containment minipurge isolation total response time of 6 seconds includes signal delay, and containment isolation valve stroke times. The single failure criterion required to be imposed in the conduct of plant safety analyses was considered in the original design of the containment minipurge valves. Two minipurge valves in series on each purge line provide assurance that both the supply and exhaust lines could be isolated even if a single failure occurred. The inboard and outboard minipurge isolation valves on each line are provided with diverse power sources, pneumatically operated spring closed valves that will fail closed on the loss of power or air. This arrangement was designed to preclude common mode failures from disabling both minipurge valves on a purge line. The 48-inch purge valves may be unable to close in the environment following a LOCA. Therefore, each of the 48-inch purge valves is required to remain sealed closed during MODES 1, 2, 3, and 4. In this case, the single failure criterion remains applicable to the 48-inch containment purge valves due to failure in the control circuit associated with each valve. Again, the shutdown purge system valve design precludes a single failure from compromising the containment boundary as long as the system is operated in accordance with the subject LCO. The containment isolation valves satisfy Criterion 3 of 10 CFR 50.36 (c)(2)(ii). ### LCO This specification is governing for the containment purge supply and exhaust isolation penetration leakage and 48-inch isolation valve position. The 8-inch containment minipurge supply and exhaust isolation valves may be open for safety-related reasons. Safety-related reasons for venting containment during operation (MODES 1-4) include controlling containment pressure and reducing airborne radioactivity. Containment isolation valves form a part of the containment boundary. The containment isolation valves' safety function is related to minimizing the loss of reactor coolant inventory and establishing the containment boundary during a DBA. The automatic power operated isolation valves are required to have isolation times within limits and to actuate on an automatic isolation signal. The 48-inch purge valves must
be maintained sealed closed. The valves covered by this LCO are listed along with their associated stroke times in the FSAR (Ref. 2). The normally closed isolation valves are considered OPERABLE when manual valves are closed, automatic valves are de-activated and secured in their closed position, blind flanges are in place, and closed systems are intact. These passive isolation valves/devices are those listed in Reference 2. Purge valves with resilient seals must meet additional leakage rate requirements. The other containment isolation valve leakage rates are addressed by LCO 3.6.1, "Containment," as Type C testing. This LCO provides assurance that the containment isolation valves and purge valves will perform their designed safety functions to minimize the loss of reactor coolant inventory and establish the containment boundary during accidents. ## **APPLICABILITY** In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, the containment isolation valves are not required to be OPERABLE in MODE 5. The requirements for containment isolation valves during MODE 6 are addressed in LCO 3.9.3, "Containment Penetrations." The ACTIONS are modified by a Note allowing penetration flow paths, except for 48-inch purge valve penetration flow paths, to be unisolated intermittently under administrative controls. These administrative controls consist of stationing a dedicated operator at the valve controls, who is in continuous communication with the control room. In this way, the penetration can be rapidly isolated when a need for containment isolation is indicated. Due to the size of the containment purge line penetration and the fact that those penetrations exhaust directly from the containment atmosphere to the environment, the penetration flow path containing these valves may not be opened under administrative controls. A single purge valve in a penetration flow path may be opened to effect repairs to an inoperable valve, as allowed by SR 3.6.3.1. A second Note has been added to provide clarification that, for this LCO, separate Condition entry is allowed for each penetration flow path. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable containment isolation valve. Complying with the Required Actions may allow for continued operation, and subsequent inoperable containment isolation valves are governed by subsequent Condition entry and application of associated Required Actions. The ACTIONS are further modified by a third Note, which ensures appropriate remedial actions are taken, if necessary, if the affected systems are rendered inoperable by an inoperable containment isolation valve. In the event the isolation valve leakage results in exceeding the overall containment leakage rate, Note 4 directs entry into the applicable Conditions and Required Actions of LCO 3.6.1. ## A.1 and A.2 In the event one containment isolation valve in one or more penetration flow paths is inoperable except for purge valve penetration leakage not within limit, the affected penetration flow path must be isolated. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single ### **ACTIONS** ## A.1 and A.2 (continued) active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic containment isolation valve, a closed manual valve, a blind flange, and a check valve with forward flow through the valve secured. For a penetration flow path isolated in accordance with Required Action A.1, the device used to isolate the penetration should be the closest available one to containment. Required Action A.1 must be completed within 4 hours. The 4 hour Completion Time is reasonable, considering the time required to isolate the penetration and the relative importance of supporting containment OPERABILITY during MODES 1, 2, 3, and 4. For affected penetration flow paths that cannot be restored to OPERABLE status within the 4 hour Completion Time and that have been isolated in accordance with Required Action A.1, the affected penetration flow paths must be verified to be isolated on a periodic basis. This is necessary to ensure that containment penetrations required to be isolated following an accident and no longer capable of being automatically isolated will be in the isolation position should an event occur. This Required Action does not require any testing or device manipulation. Rather, it involves verification, through a system walkdown, that those isolation devices outside containment and capable of being mispositioned are in the correct position. The Completion Time of "once per 31 days for isolation devices outside containment" is appropriate considering the fact that the devices are operated under administrative controls and the probability of their misalignment is low. For the isolation devices inside containment, the time period specified as "prior to entering MODE 4 from MODE 5 if not performed within the previous 92 days" is based on engineering judgment and is considered reasonable in view of the inaccessibility of the isolation devices and other administrative controls that will ensure that isolation device misalignment is an unlikely possibility. Condition A has been modified by a Note indicating that this Condition is only applicable to those penetration flow paths with two containment isolation valves. For penetration flow paths with only one containment isolation valve and a closed system, Condition C provides the appropriate actions. #### **ACTIONS** # A.1 and A.2 (continued) Required Action A.2 is modified by a Note that applies to isolation devices located in high radiation areas and allows these devices to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted. Therefore, the probability of misalignment of these devices, once they have been verified to be in the proper position, is small. # <u>B.1</u> With two containment isolation valves in one or more penetration flow paths inoperable, the affected penetration flow path must be isolated within 1 hour. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic valve, a closed manual valve, and a blind flange. The 1 hour Completion Time is consistent with the ACTIONS of LCO 3.6.1. In the event the affected penetration is isolated in accordance with Required Action B.1, the affected penetration must be verified to be isolated on a periodic basis per Required Action A.2, which remains in effect. This periodic verification is necessary to assure leak tightness of containment and that penetrations requiring isolation following an accident are isolated. The Completion Time of once per 31 days for verifying each affected penetration flow path is isolated is appropriate considering the fact that the valves are operated under administrative control and the probability of their misalignment is low. Condition B is modified by a Note indicating this Condition is only applicable to penetration flow paths with two containment isolation valves. Condition A of this LCO addresses the condition of one containment isolation valve inoperable in this type of penetration flow path. ## C.1 and C.2 With one or more penetration flow paths with one containment isolation valve inoperable, the inoperable valve flow path must be restored to OPERABLE status or the affected penetration flow path must be isolated. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a ## **ACTIONS** # C.1 and C.2 (continued) single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic valve, a closed manual valve, and a blind flange. A check valve may not be used to isolate the affected penetration flow path. Required Action C.1 must be completed within the 72 hour Completion Time. The specified time period is reasonable considering the relative stability of the closed system (hence, reliability) to act as a penetration isolation boundary and the relative importance of maintaining containment integrity during MODES 1, 2, 3, and 4. In the event the affected penetration flow path is isolated in accordance with Required Action C.1, the affected penetration flow path must be verified to be isolated on a periodic basis. This periodic verification is necessary to assure leak tightness of containment and that containment penetrations requiring isolation following an accident are isolated. The Completion Time of once per 31 days for verifying that each affected penetration flow path is isolated is appropriate because the valves are operated under administrative controls and the probability of their misalignment is low. Condition C is modified by a Note indicating that this Condition is only applicable to those penetration flow paths with only one containment isolation valve and a closed system. The closed system must meet the requirements of Ref. 5. This Note is necessary since this Condition is written to specifically address those penetration flow paths in a closed system. FSAR Table 6.2-31 identifies the following containment isolation valves as being in a Type III penetration (closed system): CCW-HV3095 (CCW to excess letdown/RCDT heat exchanger) and Q1/2 B13V026B (Pressurizer pressure generator). Required Action C.2 is modified by a Note that applies to valves and blind flanges located in high radiation areas and allows these devices to be verified closed by use of administrative means.
Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted. Therefore, the probability of misalignment of these valves, once they have been verified to be in the proper position, is small. # ACTIONS (continued) # D.1, D.2, and D.3 In the event one or more penetration flow paths containing containment purge valves, have penetration leakage such that the sum of the leakage for all Type B and C tests is not within limits, purge valve penetration leakage must be restored such that the overall Type B and C testing limit is not exceeded, or the affected penetration flow path must be isolated. The method of isolation must be by the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic valve, closed manual valve, or blind flange. A purge valve with resilient seals utilized to satisfy Required Action D.1 must have been demonstrated to support the penetration meeting the leakage requirements of SR 3.6.3.5. The specified Completion Time is reasonable, considering that one containment purge valve remains closed so that a gross breach of containment does not exist. In accordance with Required Action D.2, this penetration flow path must be verified to be isolated on a periodic basis. The periodic verification is necessary to ensure that containment penetrations required to be isolated following an accident, which are no longer capable of being automatically isolated, will be in the isolation position should an event occur. This Required Action does not require any testing or valve manipulation. Rather, it involves verification, through a system walkdown, that those isolation devices outside containment capable of being mispositioned are in the correct position. For the isolation devices inside containment, the time period specified as "prior to entering MODE 4 from MODE 5 if not performed within the previous 92 days" is based on engineering judgment and is considered reasonable in view of the inaccessibility of the isolation devices and other administrative controls that will ensure that isolation device misalignment is an unlikely possibility. For the containment penetration containing a containment purge valve with resilient seal that is isolated in accordance with Required Action D.1, SR 3.6.3.5 must be performed at least once every 92 days. This assures that degradation of the resilient seal is detected and confirms that the leakage rate of the containment purge valve penetration does not increase during the time the penetration is isolated. The normal Frequency for SR 3.6.3.5, 184 days, was established as part of the generic resolution by the NRC staff of Generic Issue B-20 (Ref. 3). Since more reliance is placed on #### **ACTIONS** # D.1, D.2, and D.3 (continued) a single valve while in this Condition, it is prudent to perform the SR more often. Therefore, a Frequency of once per 92 days was chosen and has been shown to be acceptable based on operating experience. ## E.1 and E.2 If the Required Actions and associated Completion Times of Condition A, B, C, or D are not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # <u>F.1</u> In the event one or more penetration flow paths containing containment purge valves have penetration leakage which exceeds the individual purge valve penetration leakage limit, purge valve penetration leakage must be reduced to within the limit prior to the next time that the unit transitions from MODE 5 to MODE 4. Provided that the penetration flow path leakage does not cause the total leakage from all Type B and C tests to exceed the limits, no additional action is required (i.e., isolation or unit shutdown). If the leakage is sufficient to cause the total leakage from all Type B and C tests to exceed the limits, Condition D also applies. # SURVEILLANCE REQUIREMENTS # SR 3.6.3.1 Each 48-inch containment purge valve (CBV-HV-3198A, 3198D, 3196, 3197) is required to be verified sealed closed at 31 day intervals. This Surveillance is designed to ensure that a gross breach of containment is not caused by an inadvertent or spurious opening of a containment purge valve. Detailed analysis of the purge valves failed to conclusively demonstrate their ability to close during a LOCA in time to limit offsite doses. Therefore, these valves are required to be in the sealed closed position during MODES 1, 2, 3, and 4. A containment purge valve that is sealed closed must have motive power to the valve operator removed. This can be accomplished by de-energizing the ## SURVEILLANCE REQUIREMENTS # SR 3.6.3.1 (continued) source of electric power or by removing the air supply to the valve operator. In this application, the term "sealed" has no connotation of leak tightness. The Frequency is a result of the generic resolution by the NRC staff of Generic Issue B-24 (Ref. 4), related to containment purge valve use during plant operations. In the event purge valve leakage requires entry into Condition D, the Surveillance permits opening one purge valve in a penetration flow path to perform repairs. ## SR 3.6.3.2 This SR requires verification that each containment isolation manual valve and blind flange located outside containment and not locked, sealed, or otherwise secured and required to be closed during accident conditions is closed. The SR helps to ensure that post accident leakage of radioactive fluids or gases outside of the containment boundary is within design limits. This SR does not require any testing or valve manipulation. Rather, it involves verification, through a system walkdown, that those containment isolation valves outside containment and capable of being mispositioned are in the correct position. Since verification of valve position for containment isolation valves outside containment is relatively easy, the 31 day Frequency is based on engineering judgment and was chosen to provide added assurance of the correct positions. The SR specifies that containment isolation valves that are open under administrative controls are not required to meet the SR during the time the valves are open. This includes RHR-MOV-8701A and RHR-MOV-8702A which may be opened and power removed under administrative controls when the plant is in MODE 4 (for ensuring over-pressure protection system operability). This SR does not apply to valves that are locked, sealed, or otherwise secured in the closed position, since these were verified to be in the correct position upon locking, sealing, or securing. The Note applies to valves and blind flanges located in high radiation areas and allows these devices to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted during MODES 1, 2, 3 and 4 for ALARA reasons. Therefore, the probability of misalignment of these containment isolation valves, once they have been verified to be in the proper position, is small. # SURVEILLANCE REQUIREMENTS (continued) ## SR 3.6.3.3 This SR requires verification that each containment isolation manual valve and blind flange located inside containment and not locked. sealed, or otherwise secured and required to be closed during accident conditions is closed. The SR helps to ensure that post accident leakage of radioactive fluids or gases outside of the containment boundary is within design limits. For containment isolation valves inside containment, the Frequency of "prior to entering MODE 4 from MODE 5 if not performed within the previous 92 days" is appropriate since these containment isolation valves are operated under administrative controls and the probability of their misalignment is low. The SR specifies that containment isolation valves that are open under administrative controls are not required to meet the SR during the time they are open. This SR does not apply to valves that are locked, sealed, or otherwise secured in the closed position, since these were verified to be in the correct position upon locking, sealing, or securing. Note 1 allows valves and blind flanges located in high radiation areas to be verified closed by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted during MODES 1, 2, 3, and 4, for ALARA reasons. Therefore, the probability of misalignment of these containment isolation valves, once they have been verified to be in their proper position, is small. Note 2 provides an allowance to only verify the blind flange on the fuel transfer canal flange after each draining of the canal. ## SR 3.6.3.4 Verifying that the isolation time of each power operated or automatic containment isolation valve in the IST Program is within limits is required to demonstrate OPERABILITY. The isolation time test ensures the valve will isolate in a time period less than or equal to that assumed in the safety analyses. The isolation time and Frequency of this SR are in accordance with the Inservice Testing Program. # SR 3.6.3.5 For containment purge valves with resilient seals, additional leakage rate testing beyond the test requirements of 10 CFR 50, Appendix J, Option B, is required to ensure OPERABILITY. The containment # SURVEILLANCE REQUIREMENTS ## **SR 3.6.3.5** (continued) purge and exhaust penetration leakage limit is based on not exceeding the total combined leakage rate limit for all Type B and C testing specified in 5.5.17, Containment Leakage Rate Testing Program. Operating experience has
demonstrated that this type of seal has the potential to degrade in a shorter time period than do other seal types. Based on this observation and the importance of maintaining this penetration leak tight (due to the direct path between containment and the environment), a Frequency of 184 days was established as part of the generic resolution by the NRC staff of Generic Issue B-20, "Containment Leakage Due to Seal Deterioration" (Ref. 3). Additionally, this SR must be performed within 92 days after opening the valve. The 92 day Frequency was chosen recognizing that cycling the valve could introduce additional seal degradation (beyond that occurring to a valve that has not been opened). Thus, decreasing the interval (from 184 days) is a prudent measure after a valve has been opened. ## SR 3.6.3.6 Automatic containment isolation valves close on a containment isolation signal to prevent leakage of radioactive material from containment ollowing a DBA. This SR ensures that each automatic containment isolation valve will actuate to its isolation position on a containment isolation signal (Phase A or Phase B). This surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage, during the COLD SHUTDOWN or REFUELING MODES or defueled, and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass this Surveillance when performed at the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. ## REFERENCES - 1. FSAR, Section 15. - 2. FSAR, Section 6.2. - 3. Generic Issue B-20, "Containment Leakage Due to Seal Deterioration." - 4. Generic Issue B-24. - 5. Standard Review Plan 6.2.4. # **B 3.6 CONTAINMENT SYSTEMS** # **B 3.6.4 Containment Pressure** #### **BASES** #### BACKGROUND The containment pressure is limited during normal operation to preserve the initial conditions assumed in the accident analyses for a loss of coolant accident (LOCA) or steam line break (SLB). An inadvertent actuation of the Containment Spray System is not part of the containment pressure response licensing basis for Farley. Containment pressure is a process variable that is monitored and controlled. The containment pressure limits are derived from the input conditions used in the containment functional analyses and the containment structure external pressure analysis. Should operation occur outside these limits coincident with a Design Basis Accident (DBA), post accident containment pressures could exceed calculated values. # APPLICABLE SAFETY ANALYSES Containment internal pressure is an initial condition used in the DBA analyses to establish the maximum peak containment internal pressure. The limiting DBAs considered, relative to containment pressure, are the LOCA and SLB, which are analyzed using computer pressure transients. The worst case SLB generates larger mass and energy release than the worst case LOCA. Thus, the SLB event bounds the LOCA event from the containment peak pressure standpoint (Ref. 1). The initial pressure condition used in the containment analysis was 17.7 psia (3.0 psig). This resulted in a maximum peak pressure from a SLB of 52.4 psig. The containment analysis (Ref. 1) shows the maximum peak calculated containment pressure, Pa, resulting from the limiting LOCA. The maximum containment pressure resulting from the worst case LOCA, 43.0 psig, does not exceed the containment design pressure, 54 psig. The containment was also designed for an external pressure load equivalent to -3.0 psig to account for the external loading from tornado depressurization. # APPLICABLE SAFETY ANALYSES (continued) For certain aspects of transient accident analyses, maximizing the calculated containment pressure is not conservative. In particular, the cooling effectiveness of the Emergency Core Cooling System during the core reflood phase of a LOCA analysis increases with increasing containment backpressure. Therefore, for the reflood phase, the containment backpressure is calculated in a manner designed to conservatively minimize, rather than maximize, the containment pressure response in accordance with 10 CFR 50, Appendix K (Ref. 2). Containment pressure satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). ## **LCO** Maintaining containment pressure at less than or equal to the LCO upper pressure limit ensures that, in the event of a DBA, the resultant peak containment accident pressure will remain below the containment design pressure. Maintaining containment pressure at greater than or equal to the LCO lower pressure limit ensures that the containment will not exceed the design negative differential pressure due to tornado induced atmospheric depressurization. # **APPLICABILITY** In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment. Since maintaining containment pressure within limits is essential to ensure initial conditions assumed in the accident analyses are maintained, the LCO is applicable in MODES 1, 2, 3, and 4. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, maintaining containment pressure within the limits of the LCO is not required in MODE 5 or 6. ALCOHOLOGICAL (ALCOHOLOGICA) The Control of Co Bush Charletter to the on the plantage experience of ## **ACTIONS** ## **A.1** When containment pressure is not within the limits of the LCO, it must be restored to within these limits within 1 hour. The Required Action is necessary to return operation to within the bounds of the containment analysis. The 1 hour Completion Time is consistent with the ACTIONS of LCO 3.6.1, "Containment," which requires that containment be restored to OPERABLE status within 1 hour. #### **B.1** and **B.2** If containment pressure cannot be restored to within limits within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS ## SR 3.6.4.1 Verifying that containment pressure is within limits ensures that unit operation remains within the limits assumed in the containment analysis. The 12 hour Frequency of this SR was developed based on operating experience related to trending of containment pressure variations during the applicable MODES. Furthermore, the 12 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal containment pressure condition. #### **REFERENCES** - 1. FSAR, Section 6.2. - 2. 10 CFR 50, Appendix K. #### **B 3.6 CONTAINMENT SYSTEMS** ## B 3.6.5 Containment Air Temperature #### **BASES** #### **BACKGROUND** The containment structure serves to contain radioactive material that may be released from the reactor core following a Design Basis Accident (DBA). The containment average air temperature is limited during normal operation to preserve the initial conditions assumed in the accident analyses for a loss of coolant accident (LOCA) or steam line break (SLB). The containment average air temperature limit is derived from the input conditions used in the containment functional analyses and the containment structure external pressure analyses. This LCO ensures that initial conditions assumed in the analysis of containment response to a DBA are not violated during unit operations. The total amount of energy to be removed from containment by the Containment Spray and Cooling systems during post accident conditions is dependent upon the energy released to the containment due to the event, as well as the initial containment temperature and pressure. The higher the initial temperature, the more energy that must be removed, resulting in higher peak containment pressure and temperature. Exceeding containment design pressure may result in leakage greater than that assumed in the accident analysis. Operation with containment temperature in excess of the LCO limit violates an initial condition assumed in the accident analysis. # APPLICABLE SAFETY ANALYSES Containment average air temperature is an initial condition used in the DBA analyses that establishes the containment environmental qualification operating envelope for both pressure and temperature. The limit for containment average air temperature ensures that operation is maintained within the assumptions used in the DBA analyses for containment (Ref. 1). The limiting DBAs considered relative to containment OPERABILITY are the LOCA and SLB. The DBA LOCA and SLB are analyzed using computer codes designed to predict the resultant containment # APPLICABLE SAFETY ANALYSES (continued) pressure transients. No two DBAs are assumed to occur simultaneously or consecutively. The postulated DBAs are analyzed with regard to Engineered Safety Feature (ESF) systems, assuming the loss of one ESF bus, which is the worst case single active failure, resulting in one train each of the Containment Spray System, Residual Heat Removal System, and Containment Cooling System being rendered inoperable. The limiting DBA for the maximum peak containment air temperature is an SLB. The initial containment average air temperature assumed in the design basis analyses (Ref. 1) is 127°F. This resulted in a maximum containment air temperature of 383°F. The design air temperature is 378°F. The temperature limit is used to establish the environmental qualification
operating envelope for containment. The maximum peak containment air temperature was calculated to exceed the containment design air temperature for only a few seconds during the transient. The basis of the containment design air temperature, however, is to ensure the performance of safety-related equipment inside containment (Ref. 2). Thermal analyses showed that the time interval during which the containment air temperature exceeded the containment design air temperature was short enough that the equipment surface temperatures remained below the equipment design temperature. Therefore, it is concluded that the calculated transient containment air temperature is acceptable for the DBA SLB. The temperature limit is also used in the depressurization analyses to ensure that the minimum pressure limit is maintained following an inadvertent actuation of the Containment Spray System. The containment pressure transient is sensitive to the initial air mass in containment and, therefore, to the initial containment air temperature. The limiting DBA for establishing the maximum peak containment internal pressure is a SLB. The temperature limit is used in this analysis to ensure that in the event of an accident the maximum containment internal pressure will not be exceeded. Containment average air temperature satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). #### LCO During a DBA, with an initial containment average air temperature less than or equal to the LCO temperature limit, the resultant containment structure peak accident temperature is maintained below the containment design temperature. As a result, the ability of containment to perform its design function is ensured. #### **APPLICABILITY** In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Therefore, maintaining containment average air temperature within the limit is not required in MODE 5 or 6. #### **ACTIONS** # <u>A.1</u> When containment average air temperature is not within the limit of the LCO, it must be restored to within limit within 8 hours. This Required Action is necessary to return operation to within the bounds of the containment analysis. The 8 hour Completion Time is acceptable considering the sensitivity of the analysis to variations in this parameter and provides sufficient time to correct minor problems. #### B.1 and B.2 If the containment average air temperature cannot be restored to within its limit within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. # SURVEILLANCE REQUIREMENTS # SR 3.6.5.1 Verifying that containment average air temperature is within the LCO limit ensures that containment operation remains within the limit assumed for the containment analyses. In order to determine the containment average air temperature, an arithmetic average is calculated using measurements taken at four of the following sensor locations with at least two being containment air cooler intake sensors: | Instrument Number | Selisor Location | |---------------------|-------------------------------| | TE3187 E, F, G, & H | Containment Air Cooler Intake | | TE3188 H & I | Lower Compartment | | TE3188 J | Reactor (lower) | The 24 hour Frequency of this SR is considered acceptable based on observed slow rates of temperature increase within containment as a result of environmental heat sources (due to the large volume of containment). Furthermore, the 24 hour Frequency is considered adequate in view of other indications available in the control room, including alarms, to alert the operator to an abnormal containment temperature condition. ## REFERENCES - 1. FSAR, Section 6.2. - 2. 10 CFR 50.49. #### **B 3.6 CONTAINMENT SYSTEMS** # B 3.6.6 Containment Spray and Cooling Systems #### **BASES** #### **BACKGROUND** The Containment Spray and Containment Cooling systems provide containment atmosphere cooling to limit post accident pressure and temperature in containment to less than the design values. Reduction of containment pressure and the iodine removal capability of the spray reduces the release of fission product radioactivity from containment to the environment, in the event of a Design Basis Accident (DBA), to within limits. The Containment Spray and Containment Cooling systems are designed to meet the requirements of 10 CFR 50, Appendix A, GDC 38, "Containment Heat Removal," GDC 39, "Inspection of Containment Heat Removal Systems," GDC 40, "Testing of Containment Heat Removal Systems," GDC 41, "Containment Atmosphere Cleanup," GDC 42, "Inspection of Containment Atmosphere Cleanup Systems," and GDC 43, "Testing of Containment Atmosphere Cleanup Systems" (Ref. 1). The Containment Cooling System and Containment Spray System are Engineered Safety Feature (ESF) systems. They are designed to ensure that the heat removal capability required during the post accident period can be attained. The Containment Spray System and the Containment Cooling System provide redundant cooling methods to limit and maintain post accident conditions to less than the containment design values. ## Containment Spray System The Containment Spray System consists of two separate trains of equal capacity, each capable of meeting the design bases. Each train includes a containment spray pump, spray headers, nozzles, valves, and piping. Each train is powered from a separate ESF bus. The refueling water storage tank (RWST) supplies borated water to the Containment Spray System during the injection phase of operation. In the recirculation mode of operation, containment spray pump suction is transferred from the RWST to the containment sump(s). The Containment Spray System provides a spray of cold borated water into the upper regions of containment to reduce the containment pressure and temperature and to reduce fission products ## **BACKGROUND** # Containment Spray System (continued) from the containment atmosphere during a DBA. The RWST solution temperature is an important factor in determining the heat removal capability of the Containment Spray System during the injection phase. In the recirculation mode of operation, heat is removed from the containment sump water by the residual heat removal heat exchangers. Each train of the Containment Spray System provides adequate spray coverage to meet the system design requirements for containment heat removal. The Containment Spray System is actuated either automatically by a containment High-3 pressure signal or manually. An automatic actuation opens the containment spray pump discharge valves, starts the two containment spray pumps, and begins the injection phase. A manual actuation of the Containment Spray System requires the operator to actuate two separate switches on the main control board to begin the same sequence. The injection phase continues until an RWST level Low-Low alarm is received. The Low-Low level alarm for the RWST signals the operator to manually align the system to the recirculation mode. The Containment Spray System in the recirculation mode maintains an equilibrium temperature between the containment atmosphere and the recirculated sump water. Operation of the Containment Spray System in the recirculation mode is controlled by the operator in accordance with the emergency operating procedures. #### **Containment Cooling System** Two trains of containment cooling, each of sufficient capacity to supply 100% of the design cooling requirement, are provided. Each train consists of two fan units supplied with cooling water from a separate train of service water (SW). However, under post-accident conditions, a single fan unit with at least 600 gpm SW flow provides sufficient cooling capacity to meet post accident heat removal requirements. Air is drawn into the coolers through the fan and discharged to the steam generator compartments, pressurizer compartment, and outside the secondary shield in the lower areas of containment. During normal operation, up to four fan units are operating. The fans are normally operated at high speed with SW supplied to the cooling coils. The Containment Cooling System is designed to limit the #### **BACKGROUND** # Containment Cooling System (continued) ambient containment air temperature during normal unit operation to less than the limit specified in LCO 3.6.5, "Containment Air Temperature." This temperature limitation ensures that the containment temperature does not exceed the initial temperature conditions assumed for the DBAs. In post accident operation following an actuation signal, unless an LOSP signal is present, the Containment Cooling System fans are designed to start automatically in slow speed if not already running. If an LOSP signal is present, only the two fans selected (one per train) will receive an auto-start signal and will start in slow speed. If running in high (normal) speed, the fans automatically shift to slow speed. The fans are operated at the lower speed during accident conditions to prevent motor overload from the higher mass atmosphere. In addition, if temperature at the cooler discharge reaches 135°F, fusible links holding dropout plates will open and the fan discharge will no longer be directed through the common discharge header. This function helps to protect the fans in a post-accident environment by reducing the back pressure on the fans. The temperature of the SW is an important factor in the heat removal capability of the fan units. ## APPLICABLE SAFETY ANALYSES The Containment Spray System and Containment Cooling System
limit the temperature and pressure that could be experienced following a DBA. The limiting DBAs considered are the loss of coolant accident (LOCA) and the steam line break (SLB). The LOCA and SLB are analyzed using computer codes designed to predict the resultant containment pressure and temperature transients. No DBAs are assumed to occur simultaneously or consecutively. The postulated DBAs are analyzed with regard to containment ESF systems, assuming the loss of one ESF bus, which is the worst case single active failure and results in one train of the Containment Spray System and Containment Cooling System being rendered inoperable. The analysis and evaluation show that under the worst case scenario, the highest peak containment pressure is 52.4 psig (experienced during an SLB). The analysis shows that the peak containment temperature is 383°F (experienced during an SLB). Both results meet the intent of the design basis. (See the Bases for LCO 3.6.4, "Containment Pressure," and LCO 3.6.5 for a detailed discussion.) # APPLICABLE SAFETY ANALYSES (continued) The analyses and evaluations assume a unit specific power level of 102%, one containment spray train and one containment cooling fan operating, and initial (pre-accident) containment conditions of 127°F and -1.0 to +3.0 psig. The analyses also assume a response time delayed initiation to provide conservative peak calculated containment pressure and temperature responses. For certain aspects of transient accident analyses, maximizing the calculated containment pressure is not conservative. In particular, the effectiveness of the Emergency Core Cooling System during the core reflood phase of a LOCA analysis increases with increasing containment backpressure. For these calculations, the containment backpressure is calculated in a manner designed to conservatively minimize, rather than maximize, the calculated transient containment pressures in accordance with 10 CFR 50, Appendix K (Ref. 2). The effect of an inadvertent containment spray actuation has been analyzed. An inadvertent spray actuation results in a -2.9 psig containment pressure and is associated with the sudden cooling effect in the interior of the leak tight containment. Additional discussion is provided in the Bases for LCO 3.6.4. The modeled Containment Spray System actuation from the containment analysis is based on a response time associated with exceeding the containment High-3 pressure setpoint to achieving full flow through the containment spray nozzles. The Containment Spray System total response time of 56 seconds includes diesel generator (DG) startup (for loss of offsite power), block loading of equipment, containment spray pump startup, and spray line filling (Ref. 4). Containment cooling train performance for post accident conditions is given in Reference 3. The result of the analysis is that each train having at least one OPERABLE fan unit with at least 600 gpm SW flow can provide 100% of the required peak cooling capacity during the post accident condition. The train post accident cooling capacity under varying containment ambient conditions, required to perform the accident analyses, is also shown in Reference 5. The modeled Containment Cooling System actuation from the containment analysis is based upon a response time associated with exceeding the containment High-1 pressure setpoint to achieving full Containment Cooling System air and safety grade cooling water flow. # APPLICABLE SAFETY ANALYSES (continued) The Containment Cooling System total response time of 87 seconds, includes signal delay, DG startup (for loss of offsite power), and service water pump startup times (Ref. 4). The Containment Spray System and the Containment Cooling System satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). # LCO During a DBA, a minimum of one containment cooling train with a single OPERABLE fan unit and one containment spray train are required to maintain the containment peak pressure and temperature below the design limits (Ref. 3). Additionally, one containment spray train is also required to remove iodine from the containment atmosphere and maintain concentrations below those assumed in the safety analysis. To ensure that these requirements are met, two containment spray trains and two containment cooling trains with a single OPERABLE fan unit per cooling train with at least 600 gpm SW flow must be OPERABLE. Therefore, in the event of an accident, at least one train in each system operates, assuming the worst case single active failure occurs. Each Containment Spray System typically includes a spray pump, spray headers, nozzles, valves, piping, instruments, and controls to ensure an OPERABLE flow path capable of taking suction from the RWST upon an ESF actuation signal and manually transferring suction to the containment sump. Each Containment Cooling System typically includes cooling coils, dampers, fans, instruments, and controls to ensure an OPERABLE flow path. #### **APPLICABILITY** In MODES 1, 2, 3, and 4, a DBA could cause a release of radioactive material to containment and an increase in containment pressure and temperature requiring the operation of the containment spray trains and containment cooling trains. In MODES 5 and 6, the probability and consequences of these events are reduced due to the pressure and temperature limitations of these MODES. Thus, the Containment Spray System and the Containment Cooling System are not required to be OPERABLE in MODES 5 and 6. ## **ACTIONS** ## <u>A.1</u> With one containment spray train inoperable, the inoperable containment spray train must be restored to OPERABLE status within 72 hours. In this Condition, the remaining OPERABLE spray and cooling trains are adequate to perform the iodine removal and containment cooling functions. The 72 hour Completion Time takes into account the redundant heat removal capability afforded by the Containment Spray System, reasonable time for repairs, and low probability of a DBA occurring during this period. The 10 day portion of the Completion Time for Required Action A.1 is based upon engineering judgment. It takes into account the low probability of coincident entry into two Conditions in this Specification coupled with the low probability of an accident occurring during this time. Refer to Section 1.3, "Completion Times," for a more detailed discussion of the purpose of the "from discovery of failure to meet the LCO" portion of the Completion Time. ## **B.1** and **B.2** If the inoperable containment spray train cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 84 hours. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems. The extended interval to reach MODE 5 allows additional time for attempting restoration of the containment spray train and is reasonable when considering the driving force for a release of radioactive material from the Reactor Coolant System is reduced in MODE 3. ## <u>C.1</u> With one of the required containment cooling trains inoperable, the inoperable required containment cooling train must be restored to OPERABLE status within 7 days. The components in this degraded condition provide iodine removal capabilities and are capable of providing at least 100% of the heat removal needs. The 7 day Completion Time was developed taking into account the redundant heat removal capabilities afforded by combinations of the #### **ACTIONS** ## C.1 (continued) Containment Spray System and Containment Cooling System and the low probability of DBA occurring during this period. The 10 day portion of the Completion Time for Required Action C.1 is based upon engineering judgment. It takes into account the low probability of coincident entry into two Conditions in this Specification coupled with the low probability of an accident occurring during this time. Refer to Section 1.3 for a more detailed discussion of the purpose of the "from discovery of failure to meet the LCO" portion of the Completion Time. #### **D.1** With two required containment cooling trains inoperable, one of the required containment cooling trains must be restored to OPERABLE status within 72 hours. The components in this degraded condition provide iodine removal capabilities and are capable of providing at least 100% of the heat removal needs after an accident. The 72 hour Completion Time was developed taking into account the redundant heat removal capabilities afforded by combinations of the Containment Spray System and Containment Cooling System, the iodine removal function of the Containment Spray System, and the low probability of DBA occurring during this period. ### E.1 and E.2 If the Required Action and associated Completion Time of Condition C or D of this LCO are not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. #### F.1 With two containment spray trains or any combination of three or more containment spray and cooling trains inoperable, the unit is in a condition outside the accident analysis. Therefore, LCO 3.0.3 must be entered immediately. ## SURVEILLANCE REQUIREMENTS ## SR 3.6.6.1 Verifying the correct alignment for manual, power operated, and automatic valves in the containment spray flow path provides assurance that the proper flow paths will exist for Containment Spray System operation. This SR does not apply to valves that are locked, sealed, or
otherwise secured in position, since these were verified to be in the correct position prior to locking, sealing, or securing. This SR does not require any testing or valve manipulation. Rather, it involves verification, through a system walkdown, that those valves outside containment (only check valves are inside containment) and capable of potentially being mispositioned are in the correct position. ## SR 3.6.6.2 Operating each required containment cooling train fan unit for ≥ 15 minutes ensures that all trains are OPERABLE and that all associated controls are functioning properly. It also ensures that blockage, fan or motor failure, or excessive vibration can be detected for corrective action. The fans are started from the control room (unless already operating). The 31 day Frequency was developed considering the known reliability of the fan units and controls, the two train redundancy available, and the low probability of significant degradation of the containment cooling train occurring between surveillances. It has also been shown to be acceptable through operating experience. #### SR 3.6.6.3 Verifying that the SW flow rate to each containment cooling train is ≥ 1600 gpm provides assurance that the design flow rate will be achieved (Ref. 3). However, safety analyses show that, under post-accident conditions, a flow rate of 600 gpm to one fan unit is sufficient to meet the post-accident heat removal requirements. The Frequency was developed considering the known reliability of the Cooling Water System, the two train redundancy available, and the low probability of a significant degradation of flow occurring between surveillances. # SR 3.6.6.4 Verifying each containment spray pump's developed head at the flow test point is greater than or equal to the required developed head ensures that spray pump performance has not degraded during the ## SURVEILLANCE REQUIREMENTS # SR 3.6.6.4 (continued) cycle. On recirculation flow each pump develops a discharge pressure of ≥ 210 psig. Flow and differential pressure are normal tests of centrifugal pump performance required by Section XI of the ASME Code (Ref. 6). Since the containment spray pumps cannot be tested with flow through the spray headers, they are tested on recirculation flow. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice tests confirm component OPERABILITY, trend performance, and detect incipient failures by abnormal performance. The Frequency of the SR is in accordance with the Inservice Testing Program. ## SR 3.6.6.5 and SR 3.6.6.6 These SRs require verification that each automatic containment spray valve actuates to its correct position and that each containment spray pump starts upon receipt of an actual or simulated actuation of a containment High-3 pressure signal. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The 18 month Frequency is based on the need to perform these Surveillances under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillances were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillances when performed at the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. The surveillance of containment sump isolation valves is also required by SR 3.5.2.5. A single surveillance may be used to satisfy both requirements. ## SR 3.6.6.7 This SR requires verification that each containment cooling train actuates upon receipt of an actual or simulated safety injection signal. The 18 month Frequency is based on engineering judgment and has been shown to be acceptable through operating experience. See SR 3.6.6.5 and SR 3.6.6.6, above, for further discussion of the basis for the 18 month Frequency. # SURVEILLANCE REQUIREMENTS (continued) ## SR 3.6.6.8 With the containment spray inlet valves closed and the spray header drained of any solution, low pressure air or smoke can be blown through test connections. This SR ensures that each spray nozzle is unobstructed and provides assurance that spray coverage of the containment during an accident is not degraded. Due to the passive design of the nozzle, a test at 10 year intervals is considered adequate to detect obstruction of the nozzles. # **REFERENCES** - 1. 10 CFR 50, Appendix A, GDC 38, GDC 39, GDC 40, GDC 41, GDC 42, and GDC 43. - 2. 10 CFR 50, Appendix K. - 3. FSAR, Section 6.2. - 4. FSAR, Section 7.3. - 5. FSAR, Section 15. - 6. ASME, Boiler and Pressure Vessel Code, Section XI. ## **B 3.6 CONTAINMENT SYSTEMS** # **B 3.6.7 Hydrogen Recombiners** #### **BASES** #### **BACKGROUND** The function of the hydrogen recombiners is to eliminate the potential breach of containment due to a hydrogen oxygen reaction. Per 10 CFR 50.44, "Standards for Combustible Gas Control Systems in Light-Water-Cooled Reactors" (Ref. 1), and GDC 41, "Containment Atmosphere Cleanup" (Ref. 2), hydrogen recombiners are required to reduce the hydrogen concentration in the containment following a loss of coolant accident (LOCA) or steam line break (SLB). The recombiners accomplish this by recombining hydrogen and oxygen to form water vapor. The vapor remains in containment, thus eliminating any discharge to the environment. The hydrogen recombiners are manually initiated since flammable limits would not be reached until several days after a Design Basis Accident (DBA). Two 100% capacity independent hydrogen recombiner systems are provided. Each consists of controls located in the control room, a power supply and a recombiner. Recombination is accomplished by heating a hydrogen air mixture above 1150°F. The resulting water vapor and discharge gases are cooled prior to discharge from the recombiner. A single recombiner is capable of maintaining the hydrogen concentration in containment below the 4.0 volume percent (v/o) flammability limit. Two recombiners are provided to meet the requirement for redundancy and independence. Each recombiner is powered from a separate Engineered Safety Features bus, and is provided with a separate power panel and control panel. # APPLICABLE SAFETY ANALYSES The hydrogen recombiners provide for the capability of controlling the bulk hydrogen concentration in containment to less than the lower flammable concentration of 4.0 v/o following a DBA. This control would prevent a containment wide hydrogen burn, thus ensuring the pressure and temperature assumed in the analyses are not exceeded. The limiting DBA relative to hydrogen generation is a LOCA. Hydrogen may accumulate in containment following a LOCA as a result of: # APPLICABLE SAFETY ANALYSES (continued) - a. A metal steam reaction between the zirconium fuel rod cladding and the reactor coolant; - B. Radiolytic decomposition of water in the Reactor Coolant System (RCS) and the containment sump; - c. Hydrogen in the RCS at the time of the LOCA (i.e., hydrogen dissolved in the reactor coolant and hydrogen gas in the pressurizer vapor space); or - d. Corrosion of metals exposed to containment spray and Emergency Core Cooling System solutions. To evaluate the potential for hydrogen accumulation in containment following a LOCA, the hydrogen generation as a function of time following the initiation of the accident is calculated. Conservative assumptions recommended by Reference 3 are used to maximize the amount of hydrogen calculated. Based on the conservative assumptions used to calculate the hydrogen concentration versus time after a LOCA, the hydrogen concentration in the primary containment would reach 3.5 v/o about 13 days after the LOCA and 4.0 v/o about 5 days later if no recombiner was functioning (Ref. 3). Initiating the hydrogen recombiners when the primary containment hydrogen concentration reaches 3.5 v/o will maintain the hydrogen concentration in the primary containment below flammability limits. The hydrogen recombiners are designed such that, with the conservatively calculated hydrogen generation rates discussed above, a single recombiner is capable of limiting the peak hydrogen concentration in containment to less than 4.0 v/o (Ref. 4). The Post Accident Hydrogen Purge System is designed such that it is an adequate backup to the redundant hydrogen recombiners. The hydrogen recombiners satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). LCO Two hydrogen recombiners must be OPERABLE. This ensures operation of at least one hydrogen recombiner in the event of a worst case single active failure. # LCO (continued) Operation with at least one hydrogen recombiner ensures that the post LOCA hydrogen concentration can be prevented from exceeding the flammability limit. # **APPLICABILITY** In MODES 1 and 2, two hydrogen recombiners are required to control the hydrogen concentration within containment below its flammability limit of 4.0 v/o following a LOCA, assuming a worst case single failure. In MODES 3 and 4, both the hydrogen production rate and the total hydrogen produced after a LOCA would be less than that calculated for the DBA LOCA. Also, because of the limited time in these MODES, the probability of an accident requiring the hydrogen recombiners is low. Therefore, the hydrogen recombiners are not required in MODE 3 or 4. In MODES 5 and 6, the probability and consequences of a LOCA are low, due to the pressure and temperature limitations in these MODES. Therefore, hydrogen recombiners are not required in these MODES. #### **ACTIONS** # A.1 With one containment hydrogen recombiner inoperable, the inoperable recombiner must be restored to OPERABLE status within 30 days. In this condition, the remaining OPERABLE hydrogen recombiner is adequate to perform the hydrogen control function. However, the overall reliability is reduced because a single failure in the OPERABLE recombiner could result in reduced hydrogen
control capability. The 30 day Completion Time is based on the availability of the other hydrogen recombiner, the small probability of a LOCA or SLB occurring (that would generate an amount of hydrogen that exceeds the flammability limit), and the amount of time available after a LOCA or SLB (should one occur) for operator action to prevent hydrogen accumulation from exceeding the flammability limit. Required Action A.1 has been modified by a Note that states the provisions of LCO 3.0.4 are not applicable. As a result, a MODE change is allowed when one recombiner is inoperable. This #### **ACTIONS** # A.1 (continued) allowance is based on the availability of the other hydrogen recombiner, the small probability of a LOCA or SLB occurring (that would generate an amount of hydrogen that exceeds the flammability limit), and the amount of time available after a LOCA or SLB (should one occur) for operator action to prevent hydrogen accumulation from exceeding the flammability limit. ## B.1 and B.2 With two hydrogen recombiners inoperable, the ability to perform the hydrogen control function via alternate capabilities must be verified by administrative means within 1 hour. The alternate hydrogen control capabilities are provided by the containment Post Accident Hydrogen Purge System. The 1 hour Completion Time allows a reasonable period of time to verify that a loss of hydrogen control function does not exist. Both the initial verification and all subsequent verifications may be performed as an administrative check by examining logs or other information to determine the availability of the alternate hydrogen control system. It does not mean to perform the Surveillances needed to demonstrate OPERABILITY of the alternate hydrogen control system. If the ability to perform the hydrogen control function is maintained, continued operation is permitted with two hydrogen recombiners inoperable for up to 7 days. Seven days is a reasonable time to allow two hydrogen recombiners to be inoperable because the hydrogen control function is maintained and because of the low probability of the occurrence of a LOCA that would generate hydrogen in the amounts capable of exceeding the flammability limit. ## <u>C.1</u> If the inoperable hydrogen recombiner(s) cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours. The Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS #### SR 3.6.7.1 Performance of a system functional test for each hydrogen recombiner ensures the recombiners are operational and can attain and sustain the temperature necessary for hydrogen recombination. In particular, this SR verifies that the minimum heater sheath temperature increases to $\geq 700^{\circ}$ F in ≤ 90 minutes. After reaching 700°F, the power is increased to maximum power for approximately 2 minutes and power is verified to be ≥ 60 kW. Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. #### SR 3.6.7.2 This SR ensures there are no physical problems that could affect recombiner operation. Since the recombiners are mechanically passive, they are not subject to mechanical failure. The only credible failure involves loss of power, blockage of the internal flow, missile impact, etc. A visual inspection is sufficient to determine abnormal conditions that could cause such failures (i.e., loose wiring or structural connections, deposits of foreign materials, etc.). The 18 month Frequency for this SR was developed considering the incidence of hydrogen recombiners failing the SR in the past is low. #### SR 3.6.7.3 This SR requires performance of a resistance to ground test for each heater phase to ensure that there are no detectable grounds in any heater phase. This is accomplished by verifying that the resistance to ground for any heater phase is $\geq 10,000$ ohms following the performance of the required functional test. The 18 month Frequency for this Surveillance was developed considering the incidence of hydrogen recombiners failing the SR in the past is low. er en en en en en en en # **BASES** #### **REFERENCES** - 1. 10 CFR 50.44. - 2. 10 CFR 50, Appendix A, GDC 41. - 3. Regulatory Guide 1.7, Revision 1. - 4. FSAR Section 6.2. $(1,2,\ldots,1,2n)$, where $(2,2,\ldots,2n)$ is the second of the $(2,2,\ldots,2n)$ # **B 3.6 CONTAINMENT SYSTEMS** B 3.6.8 Hydrogen Mixing System (HMS) #### **BASES** #### **BACKGROUND** The HMS reduces the potential for breach of containment due to a hydrogen oxygen reaction by providing a uniformly mixed post accident containment atmosphere, thereby minimizing the potential for local hydrogen burns due to a pocket of hydrogen above the flammable concentration. Maintaining a uniformly mixed containment atmosphere also ensures that the hydrogen monitors will give an accurate measure of the bulk hydrogen concentration and give the operator the capability of preventing the occurrence of a bulk hydrogen burn inside containment per 10 CFR 50.44, "Standards for Combustible Gas Control Systems in Light-Water-Cooled Reactors" (Ref. 1), and 10 CFR 50, GDC 41, "Containment Atmosphere Cleanup" (Ref. 2). The post accident HMS is an Engineered Safety Feature (ESF) and is designed to withstand a loss of coolant accident (LOCA) without loss of function. The System has two independent trains, each consisting of two fans with their own motors and controls. Each train is sized for 15,000 cfm. The two trains are initiated automatically on a Safety Injection signal. Each train is powered from a separate emergency power supply. Since a single fan can provide 100% of the mixing requirements, the System will provide its design function with a limiting single active failure. Air is drawn from the steam generator compartments by the locally mounted mixing fans and is discharged toward the upper regions of the containment. This complements the air patterns established by the containment air coolers, which take suction above the operating floor level and discharge to the lower regions of the containment, and the containment spray, which cools the air and causes it to drop to lower elevations. The systems work together such that potentially stagnant areas where hydrogen pockets could develop are eliminated. When performing their post accident hydrogen mixing function, the hydrogen mixing fans are designed to prevent motor overload in a post accident high pressure environment. The design flow rate is based on the minimum air distribution requirements to eliminate stagnant hydrogen pockets. Each train is redundant (in excess of full required capacity) and is powered from an independent ESF bus. # APPLICABLE SAFETY ANALYSES The HMS provides the capability for reducing the local hydrogen concentration to approximately the bulk average concentration. The limiting DBA relative to hydrogen concentration is a LOCA. Hydrogen may accumulate in containment following a LOCA as a result of: - a. A metal steam reaction between the zirconium fuel rod cladding and the reactor coolant; - b. Radiolytic decomposition of water in the Reactor Coolant System (RCS) and the containment sump; - Hydrogen in the RCS at the time of the LOCA (i.e., hydrogen dissolved in the reactor coolant and hydrogen gas in the pressurizer vapor space); or - d. Corrosion of metals exposed to containment spray and Emergency Core Cooling System solutions. To evaluate the potential for hydrogen accumulation in containment following a LOCA, the hydrogen generation as a function of time following the initiation of the accident is calculated. Conservative assumptions recommended by Reference 3 are used to maximize the amount of hydrogen calculated. If the maximum calculated flow rate is used, the total ventilation system requirements needed to handle any break location are 5058, 2319, and 1932 SCFM if based upon allowable compartmental hydrogen limits of 3.0, 3.5, and 4.0 percent, respectively. These valves are based on taking the case where the sum of the required flow rates for each compartment, on a consistent basis, is maximized (Ref.4). With each fan capable of delivering 7500 SCFM, a single fan is capable of fulfilling the flow requirements. The HMS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). LCO Two HMS trains must be OPERABLE, with power to each from an independent, safety-related power supply. Each train consists of two fans with their own motors and controls and is automatically initiated (continued) STREAM OF THE BUT IN THE COURSE OF FE # LCO (continued) by a Safety Injection signal. Only one fan per train is required OPERABLE for the train to be considered OPERABLE. Operation with at least one HMS fan provides the mixing necessary to ensure uniform hydrogen concentration throughout containment. # **APPLICABILITY** In MODES 1 and 2, the two HMS trains ensure the capability to prevent localized hydrogen concentrations above the flammability limit of 4.0 volume percent in containment assuming a worst case single active failure. In MODE 3 or 4, both the hydrogen production rate and the total hydrogen produced after a LOCA would be less than that calculated for the DBA LOCA. Also, because of the limited time in these MODES, the probability of an accident requiring the HMS is low. Therefore, the HMS is not required in MODE 3 or 4. In MODES 5 and 6, the probability and consequences of a LOCA or steam line break (SLB) are reduced due to the pressure and temperature limitations in these MODES. Therefore, the HMS is not required in these MODES. #### **ACTIONS** ## <u>A.1</u> With one HMS train inoperable, the
inoperable train must be restored to OPERABLE status within 30 days. In this Condition, the remaining OPERABLE HMS train is adequate to perform the hydrogen mixing function. However, the overall reliability is reduced because a single failure in the OPERABLE train could result in reduced hydrogen mixing capability, although the capacity of a single fan is sufficient to provide adequate mixing. The 30 day Completion Time is based on the availability of the other HMS train, the small probability of a LOCA or SLB occurring (that would generate an amount of hydrogen that exceeds the fiammability limit), the amount of time available after a LOCA or SLB (should one occur) for operator action to prevent hydrogen accumulation from exceeding the flammability limit, and the availability of the hydrogen recombiners, Containment Spray System, Post Accident Hydrogen Purge System, and hydrogen monitors. ## **ACTIONS** # A.1 (continued) Required Action A.1 has been modified by a Note that states the provisions of LCO 3.0.4 are not applicable. As a result, a MODE change is allowed when one HMS train is inoperable. This allowance is based on the availability of the other HMS train, the small probability of a LOCA or SLB occurring (that would generate an amount of hydrogen that exceeds the flammability limit), and the amount of time available after a LOCA or SLB (should one occur) for operator action to prevent hydrogen accumulation from exceeding the flammability limit. # **B.1** and **B.2** With two HMS trains inoperable, the ability to perform the hydrogen control function via alternate capabilities must be verified by administrative means within 1 hour. The alternate hydrogen control capabilities are provided by the containment Post Accident Hydrogen Purge System or a hydrogen recombiner. The 1 hour Completion Time allows a reasonable period of time to verify that a loss of hydrogen control function does not exist. Both the initial verification and all subsequent verifications may be performed as an administrative check, by examining logs or other information to determine the availability of the alternate hydrogen control system. It does not mean to perform the Surveillances needed to demonstrate OPERABILITY of the alternate hydrogen control system. If the ability to perform the hydrogen control function is maintained, continued operation is permitted with two HMS trains inoperable for up to 7 days. Seven days is a reasonable time to allow two HMS trains to be inoperable because the hydrogen control function is maintained and because of the low probability of the occurrence of a LOCA that would generate hydrogen in the amounts capable of exceeding the flammability limit. # <u>C.1</u> If an inoperable HMS train cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours. The allowed Completion Time of 6 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.6.8.1 Operating each HMS train for ≥ 15 minutes ensures that each train is OPERABLE and that all associated controls (including starting from the control room) are functioning properly. It also ensures that blockage, fan and/or motor failure, or excessive vibration can be detected for corrective action. The 92 day Frequency is consistent with Inservice Testing Program Surveillance Frequencies, operating experience, the known reliability of the fan motors and controls, and the two train redundancy available. #### SR 3.6.8.2 Verifying that each HMS fan speed is ≥ 1320 rpm ensures that each train is capable of maintaining localized hydrogen concentrations below the flammability limit. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. # SR 3.6.8.3 This SR ensures that each HMS train responds properly to a Safety Injection actuation signal. The Surveillance verifies that each fan starts from the nonoperating condition. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. ## **REFERENCES** - 1. 10 CFR 50.44. - 2. 10 CFR 50, Appendix A, GDC 41. - 3. Regulatory Guide 1.7, Revision 1. - 4. WCAP 7901, Revision 1. #### **B 3.6 CONTAINMENT SYSTEMS** B 3.6.9 Reactor Cavity Hydrogen Dilution System (RCHDS) #### **BASES** #### BACKGROUND The RCHDS reduces the potential for breach of containment due to a hydrogen oxygen reaction by providing a uniformly mixed post accident containment atmosphere, thereby minimizing the potential for local hydrogen burns due to a pocket of hydrogen above the flammable concentration. Maintaining a uniformly mixed containment atmosphere also ensures that the hydrogen monitors will give an accurate measure of the bulk hydrogen concentration and give the operator the capability of preventing the occurrence of a bulk hydrogen burn inside containment per 10 CFR 50.44 "Standards for Combustible Gas Control Systems in Light-Water-Cooled Reactors" (Ref. 1), and 10 CFR 50, GDC 41, "Containment Atmosphere Cleanup" (Ref. 2). The post accident RCHDS is an Engineered Safety Feature (ESF) and is designed to withstand a loss of coolant accident (LOCA) without loss of function. The System has two independent trains, each consisting of one fan with its own motor and controls. Each train is sized for 270 cfm (Unit 1) and 1570 cfm (Unit 2). The two trains are initiated automatically on a Safety Injection signal. Each train is powered from a separate emergency power supply. Since each train fan can provide 100% of the mixing requirements. the System will provide its design function with a limiting single active failure. The RCHDS ventilates the reactor cavity to ensure that this volume is available for the dilution of containment hydrogen, and to maintain hydrogen concentrations in this volume in equilibrium with that of the remainder of the containment. The RCHDS fans discharge into the reactor cavity through a circular header embedded in the cavity wall at an elevation approximately coincident with that of the lower reactor vessel head. The RCHDS discharge flows from the cavity upward around the reactor vessel and outward through the incore instrument chase. The RCHDS fans take suction from the periphery of the containment just below the operating floor. The design flow rate is based on the minimum air distribution requirements to eliminate stagnant hydrogen pockets. The RCHDS and Hydrogen Mixing System work together such that potentially stagnant areas where hydrogen pockets could develop are eliminated. # APPLICABLE SAFETY ANALYSES The RCHDS provides the capability for reducing the local hydrogen concentration to approximately the bulk average concentration. The limiting DBA relative to hydrogen concentration is a LOCA. Hydrogen may accumulate in containment following a LOCA as a result of: - a. A metal steam reaction between the zirconium fuel rod cladding and the reactor coolant; - b. Radiolytic decomposition of water in the Reactor Coolant System (RCS) and the containment sump; - Hydrogen in the RCS at the time of the LOCA (i.e., hydrogen dissolved in the reactor coolant and hydrogen gas in the pressurizer vapor space); or - d. Corrosion of metals exposed to containment spray and Emergency Core Cooling System solutions. To evaluate the potential for hydrogen accumulation in containment following a LOCA, the hydrogen generation as a function of time following the initiation of the accident is calculated. Conservative assumptions recommended by Ref. 3 are used to maximize the amount of hydrogen calculated. The RCHDS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). # LCO Two RCHDS trains must be OPERABLE, with power to each from an independent, safety related power supply. Each train consists of one fan with its own motor and controls which is automatically actuated by a Safety Injection signal. Operation with at least one RCHDS train provides the mixing necessary to ensure uniform hydrogen concentration throughout the reactor cavity and containment. # **APPLICABILITY** In MODES 1 and 2, the two RCHDS trains ensure the capability to prevent localized hydrogen concentrations above the flammability limit of 4.0 volume percent in containment assuming a worst case single active failure. # APPLICABILITY (continued) In MODE 3 or 4, both the hydrogen production rate and the total hydrogen produced after a LOCA would be less than that calculated for the DBA LOCA. Also, because of the limited time in these MODES, the probability of an accident requiring the RCHDS is low. Therefore, the RCHDS is not required in MODE 3 or 4. In MODE 5 or 6, the probability and consequences of a LOCA or steam line break (SLB) are reduced due to the pressure and temperature limitations in these MODES. Therefore, the RCHDS is not required in these MODES. #### **ACTIONS** ## <u>A.1</u> With one RCHDS train inoperable, the inoperabale train must be restored to OPERABLE status within 30 days. In this Condition, the remaining OPERABLE RCHDS train is adequate to perform the hydrogen mixing function. However, the overall reliability is
reduced because a single failure in the OPERABLE train could result in reduced hydrogen mixing capability. The 30 day Completion Time is based on the availability of the other RCHDS train, the small probability of a LOCA or SLB occurring (that would generate an amount of hydrogen that exceeds the flammability limit), the amount of time available after a LOCA or SLB (should one occur) for operator action to prevent hydrogen accumulation from exceeding the flammability limit, and the availability of the hydrogen recombiners, Containment Spray System, Post Accident Venting System, and hydrogen monitors. Required Action A.1 has been modified by a Note that states the provisions of LCO 3.0.4 are not applicable. As a result, a MODE change is allowed when one RCHDS train is inoperable. This allowance is based on the availability of the other RCHDS train, the small probability of a LOCA or SLB occurring (that would generate an amount of hydrogen that exceeds the flammability limit), and the amount of time available after a LOCA or SLB (should one occur) for operator action to prevent hydrogen accumulation from exceeding the flammability limit. #### <u>B.1</u> If an inoperable RCHDS train cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a #### **B 3.7 PLANT SYSTEMS** # B 3.7.1 Main Steam Safety Valves (MSSVs) ## **BASES** The primary purpose of the MSSVs is to provide overpressure protection for the secondary system. The MSSVs also provide protection against overpressurizing the reactor coolant pressure boundary (RCPB) by providing a heat sink for the removal of energy from the Reactor Coolant System (RCS) if the preferred heat sink, provided by the Condenser and Circulating Water System, is not available. Five MSSVs are located on each main steam header, outside containment, upstream of the main steam isolation valves, as described in the FSAR, Section 10.3.7 (Ref. 1). The MSSVs must have sufficient capacity to limit the secondary system pressure to ≤ 110% of the steam generator design pressure in order to meet the requirements of the ASME Code, Section III (Ref. 2). The MSSV design includes staggered setpoints, according to Table 3.7.1-2 in the accompanying LCO, so that only the needed valves will actuate. Staggered setpoints reduce the potential for valve chattering that is due to steam pressure insufficient to fully open all valves following a turbine reactor trip. In addition, each MSSV has a 16 sq. in. orifice to limit steam flow. # APPLICABLE SAFETY ANALYSES The design basis for the MSSVs comes from Reference 2 and its purpose is to limit the secondary system pressure to ≤ 110% of design pressure for any anticipated operational occurrence (AOO) or accident considered in the Design Basis Accident (DBA) and transient analysis. The events that challenge the relieving capacity of the MSSVs, and thus RCS pressure, are those characterized as decreased heat removal events, which are presented in the FSAR, Section 15.2 (Ref. 3). Of these, the full power turbine trip without steam dump is typically the limiting AOO. This event also terminates normal feedwater flow to the steam generators. The safety analysis demonstrates that the transient response for turbine trip occurring from full power without a direct reactor trip presents no hazard to the integrity of the RCS or the Main Steam System. # APPLICABLE SAFETY ANALYSES (continued) One turbine trip analysis is performed assuming primary system pressure control via operation of the pressurizer relief valves and spray. This analysis demonstrates that the DNB design basis is met. Another analysis is performed assuming no primary system pressure control, but crediting reactor trip on high pressurizer pressure and operation of the pressurizer safety valves. This analysis demonstrates that RCS integrity is maintained by showing that the maximum RCS pressure does not exceed 110% of the design pressure. All cases analyzed demonstrate that the MSSVs maintain Main Steam System integrity by limiting the maximum steam pressure to less than 110% of the steam generator design pressure. In addition to the decreased heat removal events, reactivity insertion events may also challenge the relieving capacity of the MSSVs. The uncontrolled rod cluster control assembly (RCCA) bank withdrawal at power event is characterized by an increase in core power and steam generation rate until reactor trip occurs when either the Overtemperature ΔT or Power Range Neutron Flux-High setpoint is reached. Steam flow to the turbine will not increase from its initial value for this event. The increased heat transfer to the secondary side causes an increase in steam pressure and may result in opening of the MSSVs prior to reactor trip, assuming no credit for operation of the atmospheric or condenser steam dump valves. The FSAR Section 15.2.2 safety analysis of the RCCA bank withdrawal at power event for a range of initial core power levels demonstrates that the MSSVs are capable of preventing secondary side overpressurization for this AOO. The FSAR safety analyses discussed above assume that all of the MSSVs for each steam generator are OPERABLE. If there are inoperable MSSV(s), it is necessary to limit the primary system power during steady state operation and AOOs to a value that does not result in exceeding the combined steam flow capacity of the turbine (if available) and the remaining OPERABLE MSSVs. The required limitation on primary system power necessary to prevent secondary system overpressurization may be determined by system transient analyses or conservatively arrived at by simple heat balance calculation. In some circumstances it is necessary to limit the primary side heat generation that can be achieved during an AOO by reducing the setpoint of the Power Range Neutron Flux-High reactor trip function. For example, if more than one MSSV on a single SG is inoperable, an uncontrolled RCCA bank withdrawal at power event occurring from a partial power level may result in an increase in reactor power that exceeds the combined steam flow capacity of the turbine and the remaining OPERABLE MSSVs. Thus, for multiple inoperable # APPLICABLE SAFETY ANALYSES (continued) MSSVs on the same steam generator it is necessary to prevent this power increase by lowering the Power Range Neutron Flux-High setpoint to an appropriate value. When the Moderator Temperature Coefficient (MTC) is positive, the reactor power may increase above the initial value during an RCS heatup event (e.g., turbine trip). Thus, for any number of inoperable MSSVs it is necessary to reduce the trip setpoint if a positive MTC may exist at partial power conditions, unless it is demonstrated by analysis that a specified reactor power reduction alone is sufficient to prevent overpressurization of the steam system. The maximum allowable power levels specified in Table 3.7.1-1 are overly conservative at middle and end-of-life conditions, when the MTC is not positive. Therefore, a specific analysis which credits a middle-of-life MTC was performed to relax the power reduction associated with one inoperable MSSV per steam generator. In addition, for the above case, no reduction in the Power Range Neutron Flux-High trip setpoint is required. The middle-of-life analysis assumes a -10 pcm/degree F MTC and demonstrates that the maximum allowable power level associated with one inoperable MSSV per steam generator can be relaxed to 87% RTP when core average burnup is ≥ 14,000 MWD/MTU. The MTC value at 14,000 MWD/MTU is verified to be more negative than -10 pcm/degree F for each reload cycle. The MSSVs are assumed to have two active and one passive failure modes. The active failure modes are spurious opening, and failure to reclose once opened. The passive failure mode is failure to open upon demand. The MSSVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). #### LCO The accident analysis requires that five MSSVs per steam generator be OPERABLE to provide overpressure protection for design basis transients occurring at 102% RTP. The LCO requires that five MSSVs per steam generator be OPERABLE in compliance with Reference 2, and the DBA analysis. The OPERABILITY of the MSSVs is defined as the ability to open upon demand within the setpoint tolerances, to relieve steam generator overpressure, and reseat when pressure has been reduced. The OPERABILITY of the MSSVs is determined by periodic surveillance testing in accordance with the Inservice Testing Program. # LCO (continued) This LCO provides assurance that the MSSVs will perform their designed safety functions to mitigate the consequences of accidents that could result in a challenge to the RCPB or Main Steam System integrity. # **APPLICABILITY** In MODES 1, 2, and 3, five MSSVs per steam generator are required to be OPERABLE to prevent Main Steam System overpressurization. In MODES 4 and 5, there are no credible transients requiring the MSSVs. The steam generators are not normally used for heat removal in MODES 5 and 6, and thus cannot be overpressurized; there is no requirement for the MSSVs to be OPERABLE in these MODES. ## **ACTIONS** The ACTIONS table is modified by a Note indicating that separate Condition entry is allowed for each MSSV. With one or more MSSVs inoperable, action must be taken so that the available MSSV relieving capacity meets Reference 2 requirements. Operation with less than all five MSSVs OPERABLE for each steam generator is permissible, if THERMAL POWER is limited to the relief capacity of the remaining MSSVs. This is accomplished by restricting THERMAL POWER so that the energy transfer to the most limiting steam generator is not greater than the available relief capacity in that steam generator. # <u>A.1</u> In the case of only a single inoperable MSSV on one or more steam generators, when the Moderator Temperature Coefficient is not positive, a reactor power reduction alone is sufficient to limit primary side heat
generation such that overpressurization of the secondary side is precluded for any RCS heatup event. Furthermore, for this case there is sufficient total steam flow capacity provided by the #### **ACTIONS** ## A.1 (continued) turbine and the remaining OPERABLE MSSVs to preclude overpressurization in the event of an increased reactor power due to reactivity insertion, such as in the event of an uncontrolled RCCA bank withdrawal at power. Therefore, Required Action A.1 requires an appropriate reduction in power within 4 hours. The maximum THERMAL POWER corresponding to the heat removal capacity of the remaining OPERABLE MSSVs is determined via a conservative heat balance calculation as described in the attachment to Reference 6, with an appropriate allowance for calorimetric power uncertainty. #### **B.1** and **B.2** In the case of multiple inoperable MSSVs on one or more steam generators, with a reactor power reduction alone there may be insufficient total steam flow capacity provided by the turbine and the remaining OPERABLE MSSVs to preclude overpressurization in the event of an increased reactor power due to reactivity insertion, such as in the event of an uncontrolled RCCA bank withdrawal at power. Furthermore, for a single inoperable MSSV on one or more steam generators when the Moderator Temperature Coefficient is positive the reactor power may increase as a result of an RCS heatup event such that the flow capacity of the remaining OPERABLE MSSVs is insufficient. Therefore, in addition to reducing THERMAL POWER within 4 hours as required by Required Action B.1, the Power Range Neutron Flux-High trip setpoint must be reduced to less than or equal to the applicable value corresponding to the number of OPERABLE MSSVs specified in Table 3.7.1-1 within 36 hours as required by Required Action B.2 (applicable in MODE 1 only). The safety analysis of the loss of load/turbine trip event analyzed from part power conditions to specifically support the requirements of Table 3.7.1-1. explicitly credits the Power Range Neutron Flux-High trip function to ensure that the peak power does not exceed an acceptable level. With two or more MSSVs inoperable on one or more steam generators, the reduced Power Range Neutron Flux-High trip setpoints will also limit the peak power to an acceptable level for an RCCA withdrawal at power transient occurring from similar conditions. The 4 hour Completion Time for Required Action B.1 is consistent with A.1. An additional 32 hours is allowed in Required Action B.2 to reduce the setpoints. The Completion Time of 36 hours is based on a #### **ACTIONS** # B.1 and B.2 (continued) reasonable time to correct the MSSV inoperability, the time required to perform the power reduction, operating experience in resetting all channels of a protective function, and on the low probability of the occurrence of a transient that could result in steam generator overpressure during this period. The maximum THERMAL POWER corresponding to the heat removal capacity of the remaining OPERABLE MSSVs is determined via a conservative heat balance calculation as described in the attachment to Reference 6, with an appropriate allowance for Nuclear Instrumentation System trip channel uncertainties. Required Action B.2 is modified by a Note, indicating that the Power Range Neutron Flux-High reactor trip setpoint reduction is only required in MODE 1. In MODES 2 and 3, the reactor protection system trips specified in LCO 3.3.1, "Reactor Trip System Instrumentation," provide sufficient protection. The allowed Completion Times are reasonable based on operating experience to accomplish the Required Actions in an orderly manner without challenging unit systems. # <u>C.1 and C.2</u> If the Required Actions are not completed within the associated Completion Time, or if one or more steam generators have ≥ 4 inoperable MSSVs, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # SURVEILLANCE REQUIREMENTS # SR 3.7.1.1 This SR verifies the OPERABILITY of the MSSVs by the verification of each MSSV lift setpoint in accordance with the Inservice Testing Program. The plant Inservice Testing Program incorporates the requirements of the applicable edition of the ASME Code, Section XI (Ref. 4) as ## SURVEILLANCE REQUIREMENTS # <u>SR 3.7.1.1</u> (continued) modified with any approved relief requests. These requirements include the use of ASME/ANSI OM Standard (Ref. 5) for safety and relief valve testing as modified with any approved relief requests. The ANSI/ASME Standard requires that all valves be tested every 5 years, and a minimum of 20% of the valves be tested every 24 months. The ASME Code specifies the activities and frequencies necessary to satisfy the requirements. Table 3.7.1-2 allows a \pm 3% setpoint tolerance for OPERABILITY; however, the valves are reset to \pm 1% during the Surveillance to allow for drift. The lift settings, according to Table 3.7.1-2 in the accompanying LCO, correspond to ambient conditions of the valve at nominal operating temperature and pressure. This SR is modified by a Note that allows entry into and operation in MODE 3 prior to performing the SR. The MSSVs may be either bench tested or tested in situ at hot conditions using an assist device to simulate lift pressure. If the MSSVs are not tested at hot conditions, the lift setting pressure shall be corrected to ambient conditions of the valve at operating temperature and pressure. #### REFERENCES - 1. FSAR, Section 10.3.7. - 2. ASME, Boiler and Pressure Vessel Code, Section III, Article NC-7000, Class 2 Components, 1971 edition. - 3. FSAR, Section 15.2. - 4. ASME, Boiler and Pressure Vessel Code, Section XI, 1989 edition. - 5. ASME OM Code 1990, Appendix I. - 6. NRC Information Notice 94-60, "Potential Overpressurization of the Main Steam System," August 22, 1994. #### B 3.7 PLANT SYSTEMS # B 3.7.2 Main Steam Isolation Valves (MSIVs) #### **BASES** #### **BACKGROUND** The MSIVs isolate steam flow from the secondary side of the steam generators following a high energy line break (HELB). MSIV closure terminates flow from the unaffected (intact) steam generators. Two MSIVs are located in each main steam line outside containment. The MSIVs are downstream from the main steam safety valves (MSSVs) and auxiliary feedwater (AFW) pump turbine steam supply, to prevent MSSV and AFW isolation from the steam generators by MSIV closure. Closing the MSIVs isolates each steam generator from the others, and isolates the turbine, Steam Dump System, and other auxiliary steam supplies from the steam generators. The MSIVs close on a main steam isolation signal generated by either high steam line flow coincident with low-low T_{avg} , low steam line pressure or high-high containment pressure. Each MSIV is provided with a normally open, three-way solenoid valve which, when deenergized, provides instrument air to the actuator cylinder. As the solenoid valves are normally deenergized, loss of dc power will not cause the MSIV to close. An air reservoir is also provided for each MSIV, to allow it to remain open upon loss of instrument air. Each solenoid valve receives a separate signal from the ESF actuation system and has a separate 125 V dc power supply. When the solenoid valve is energized, it vents the air reservoir and actuator cylinder to the atmosphere and closes the MSIV. Each set of MSIVs has two series of MSIV bypass valves. Although these bypass valves are normally closed, they receive the same emergency closure signal as do their associated MSIVs. The MSIVs may also be actuated manually. A description of the MSIVs is found in the FSAR, Section 10.3 (Ref. 1). # APPLICABLE SAFETY ANALYSES The design basis of the MSIVs is established by the containment analysis for the large steam line break (SLB) inside containment, # APPLICABLE SAFETY ANALYSES (continued) discussed in the FSAR, Section 6.2 (Ref. 2). It is also affected by the accident analysis of the secondary system pipe rupture events presented in the FSAR, Section 15.4.2 (Ref. 3). The design precludes the blowdown of more than one steam generator, assuming a single active component failure (e.g., the failure of one MSIV to close on demand). Since two MSIVs are available, the failure of a single MSIV is not significant. A large SLB inside containment at 102% power is the limiting case for the release of steam mass and energy resulting in a peak containment temperature; a large SLB inside containment at 30% power is the limiting case for the release of steam mass and energy resulting in a peak containment pressure. For SLB events at full power, the SG temperature is at its maximum, which maximizes the available energy release to containment. At lower powers, the steam generator inventory is at its maximum, which maximizes the available release to the containment. Since the MSIVs stop flow only in the forward direction, the total energy release to containment includes the entire steam piping volume downstream of the isolation valves for the steam generators, including the steam line header and steam piping. With the most reactive rod cluster control assembly assumed stuck in the fully withdrawn position, there is an increased possibility that the core will become critical and return to power. The core is ultimately shut down by the boric acid injection delivered by the Emergency Core Cooling System. The accident analysis compares several different SLB events against different acceptance criteria. A large SLB at hot zero power is the limiting cooldown case for a post trip return to power. The analysis includes scenarios with offsite power available, and with a loss of offsite power
following turbine trip. With offsite power available, the reactor coolant pumps continue to circulate coolant through the steam generators, maximizing the Reactor Coolant System cooldown. With a loss of offsite power, the response of mitigating systems is delayed. Significant single failures considered include failure of one ECCS train. The MSIVs serve only a safety function and remain open during power operation. These valves operate under the following situations: a. An HELB inside containment. For this accident scenario, steam is discharged into containment from all steam generators until the # APPLICABLE SAFETY ANALYSES (continued) MSIVs close. After MSIV closure, steam is discharged into containment only from the affected steam generator and from the residual steam in the main steam header downstream of the closed MSIVs in the unaffected loops. Closure of the MSIVs isolates the break from the unaffected steam generators. A large SLB inside containment at 102% power is the limiting case for the release of steam mass and energy resulting in a peak containment temperature; a large SLB inside containment at 30% power is the limiting case for the release of steam mass and energy resulting in a peak containment pressure. The analysis includes the scenario with offsite power available in which the reactor coolant pumps continue to circulate coolant through the SGs, maximizing the primary to secondary heat transfer. Significant single failures considered include failure of an ESF train (one Containment Spray System train and one Containment Air Cooler) and main feedwater flow control. - b. A break outside of containment and upstream from the MSIVs is not a containment pressurization concern. The uncontrolled blowdown of more than one steam generator must be prevented to limit the potential for uncontrolled RCS cooldown and positive reactivity addition. Closure of the MSIVs isolates the break and limits the blowdown to a single steam generator. - c. A break downstream of the MSIVs will be isolated by the closure of the MSIVs. - d. Following a steam generator tube rupture, closure of one MSIV and bypass valve isolates the ruptured steam generator from the intact steam generators to minimize radiological releases. - e. The MSIVs are also utilized during other events such as a feedwater line break. The MSIVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). LCO This LCO requires that all MSIVs in the steam lines be OPERABLE. The MSIVs are considered OPERABLE when the isolation times are within limits, and they close on an isolation actuation signal. # LCO (continued) This LCO provides assurance that the MSIVs will perform their design safety function to mitigate the consequences of accidents that could result in offsite exposures comparable to the 10 CFR 100 (Ref. 4) limits. # **APPLICABILITY** The MSIVs must be OPERABLE in MODE 1, and in MODES 2 and 3 except when one MSIV in each steam line is closed, when there is significant mass and energy in the RCS and steam generators. When the MSIVs are closed, they are already performing the safety function. In MODE 4, normally most of the MSIVs are closed, and the steam generator energy is low. In MODE 5 or 6, the steam generators do not contain much energy because their temperature is below the boiling point of water; therefore, the MSIVs are not required for isolation of potential high energy secondary system pipe breaks in these MODES. ## **ACTIONS** A Note has been added to the ACTIONS to clarify the application of the Completion Time rules. The Conditions of this Specification may be entered independently for each steam line. The Completion Time(s) of the inoperable MSIV Systems will be tracked separately for each steam line starting from the time the Condition was entered for that steam line. ## **A.1** With one MSIV inoperable in one or more steam lines in MODE 1, action must be taken to restore the inoperable MSIV to OPERABLE status within 72 hours. Some repairs to the MSIV can be made with the unit at power. The 72 hour Completion Time is reasonable, considering the low probability of an accident occurring during this time that would require the MSIVs to close and the remaining OPERABLE MSIV in the steam line. This Completion Time is also consistent with the Completion Times provided for a single inoperable train in other ESF systems that contain redundant trains of equipment. # ACTIONS (continued) # <u>B.1</u> With two MSIVs inoperable in one or more steam lines in MODE 1, action must be taken to restore one MSIV to OPERABLE status in the affected steam line(s) within 4 hours. In this Condition, the affected steam line has no OPERABLE automatic isolation capability. The 4-hour Completion Time allows for minor repairs or trouble shooting that may prevent a unit shutdown to MODE 2 and is reasonable considering the low probability of an accident occurring during this time that would require the MSIVs to close and the reduced potential for a plant transient (shutdown to MODE 2) provided by the 4 hours allowed for restoration. # <u>C.1</u> If the MSIV cannot be restored to OPERABLE status within the required Completion Time, the unit must be placed in a Mode in which the ACTIONS provide the option to close the inoperable MSIV and accomplish the required safety function by isolating the affected steam line. To achieve this status, the unit must be placed in MODE 2 within 6 hours and Condition D or E entered. The Completion Time is reasonable, based on operating experience, to reach MODE 2 in an orderly manner without challenging unit systems. #### **D.1** Required Action D.1 is applicable when one or more steam lines have a single inoperable MSIV in MODE 2 or 3. Since the MSIVs are required OPERABLE in MODES 2 and 3, the inoperable MSIV(s) may either be restored to OPERABLE status or the affected steam line isolated by closing at least one MSIV in that steam line. When closed, the MSIVs are already in the position required by the assumptions in the safety analysis. The 7 day Completion Time is reasonable considering the plant condition, the low probability of an event occurring that would require the MSIV to close, and the remaining OPERABLE redundant MSIV in the affected steam line(s). For inoperable MSIVs that cannot be restored to OPERABLE status within the specified Completion Time, and the affected steam line is isolated by a closed MSIV, the MSIV must be verified on a periodic basis to be closed. This is necessary to ensure that the assumptions #### **ACTIONS** # D.1 (continued) in the safety analysis remain valid. The 7-day Completion Time is reasonable, based on engineering judgment, in view of MSIV status indications available in the control room, and other administrative controls, to ensure that these valves are in the closed position. # <u>E.1</u> With two MSIVs inoperable in one or more steam lines in MODE 2 or 3, action must be taken to restore one MSIV to OPERABLE status or verify one MSIV closed in the affected steam line(s) within 4 hours. In this condition, the affected steam line has no OPERABLE automatic isolation capability. Verifying one MSIV system closed ensures the safety function is accomplished for that steam line. The 4-hour Completion Time is reasonable considering the low probability of an accident occurring during this time that would require a MSIV to close. For inoperable MSIVs that cannot be restored to OPERABLE status and are closed, the MSIV must be verified closed on a periodic basis. Verification that the MSIV is closed on a periodic basis is necessary to ensure that the safety analysis assumptions remain valid. The 7-day Completion Time is reasonable, based on engineering judgment, considering the MSIV indications available in the control room, and other administrative controls, to ensure that these valves are closed. # F.1 and F.2 If the MSIVs cannot be restored to OPERABLE status or are not closed within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed at least in MODE 3 within 6 hours, and in MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from MODE 2 conditions in an orderly manner and without challenging unit systems. # SURVEILLANCE REQUIREMENTS # SR 3.7.2.1 This SR verifies that MSIV closure time is ≤ 7 seconds on an actual or simulated actuation signal. The MSIV closure time is assumed in the ## SURVEILLANCE REQUIREMENTS # SR 3.7.2.1 (continued) accident and containment analyses. This Surveillance is normally performed upon returning the unit to operation following a refueling outage. The Frequency is in accordance with the Inservice Testing Program. Operating experience has shown that these components usually pass the Surveillance when performed in accordance with the Inservice Testing Program. Therefore, the Frequency is acceptable from a reliability standpoint. This test is conducted in MODE 3 with the unit at operating temperature and pressure, as discussed in Reference 5 exercising requirements. This SR is modified by a Note that allows entry into and operation in MODE 3 prior to performing the SR. This allows a delay of testing until MODE 3, to establish conditions consistent with those under which the acceptance criterion was generated. ## **REFERENCES** - 1. FSAR, Section 10.3. - 2. FSAR, Section 6.2. - 3. FSAR, Section 15.4.2. - 4. 10 CFR 100.11. - 5. ASME, Boiler and Pressure Vessel Code, Section XI. #### **B 3.7 PLANT SYSTEMS** B 3.7.3 Main Feedwater Stop Valves and Main Feedwater Regulation Valves (MFRVs) and Associated Bypass Valves #### **BASES** #### **BACKGROUND** The MFRVs provide the primary main feedwater (MFW) flow isolation to the secondary side of the steam generators following a high energy line break (HELB). The safety related function of the Main FW Stop Valves is to provide a diverse backup isolation of MFW flow to
the secondary side of the steam generators following an HELB. Closure of the MFRVs and associated bypass valves or Main FW Stop Valves terminates flow to the steam generators, terminating the event for feedwater line breaks (FWLBs) occurring upstream of the MFRVs or Main FW Stop Valves. The consequences of events occurring in the main steam lines or in the MFW lines downstream from the valves will be mitigated by their closure. Closure of the MFRVs and associated bypass valves, or Main FW Stop Valves, effectively terminates the addition of feedwater to an affected steam generator, limiting the mass and energy release for steam line breaks (SLBs) or FWLBs inside containment, and reducing the cooldown effects for SLBs. The Main FW Stop Valves isolate the nonsafety related portions from the safety related portions of the system. In the event of a secondary side pipe rupture inside containment, the valves limit the quantity of high energy fluid that enters containment through the break, and provide a pressure boundary for the controlled addition of auxiliary feedwater (AFW) to the intact loops. One MFRV and associated bypass valve, and one Main FW Stop Valve, are located on each MFW line, outside containment. The Main FW Stop Valves and MFRVs are located upstream of the AFW injection point so that AFW may be supplied to the steam generators following Main FW Stop Valve or MFRV closure. The piping volume from these valves to the steam generators is accounted for in calculating mass and energy releases, and refilled prior to AFW reaching the steam generator following either an SLB or FWLB. The MFRVs and associated bypass valves close on receipt of a T_{avg} —Low coincident with reactor trip (P-4), Safety Injection, or steam generator water level — high high signal. The Main FW Stop Valves close on a SGFP trip signal which is initiated by high-high SG water level or SI. These valves may also be actuated manually. The # BACKGROUND (continued) MFRVs and associated bypass valves, or the Main FW Stop Valves isolate the feedwater line penetrating containment, and ensure that the consequences of events do not exceed the capacity of the containment heat removal systems. The MFRVs and the Main FW Stop Valves are part of the Condensate and Feedwater System as described in the FSAR, Section 10.4.7 (Ref. 1). # APPLICABLE SAFETY ANALYSES The design basis of the MFRVs and Main FW Stop Valves is primarily established by the analyses for the large SLB. Although the Main FW Stop Valves are not specifically credited in the accident analyses, these islation valves provide a diverse backup isolation function to the MFRVs. Closure of the MFRVs and associated bypass valves, or Main Feedwater Stop Valves, may also be relied on to terminate an SLB for core response analysis and excess feedwater event upon the receipt of a steam generator water level—high high signal. Failure of a Main FW Stop Valve and MFRV, or Main FW Stop Valve and MFRV bypass valve to close following an SLB or an excess feedwater event can result in additional mass and energy being delivered to the steam generators, contributing to cooldown. This failure also results in additional mass and energy releases following an SLB or FWLB event. The MFRVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). # **LCO** This LCO ensures that the MFRVs and their associated bypass valves or Main FW Stop Valves will isolate MFW flow to the steam generators, following an excess feedwater event or main steam line break. These valves will also isolate the nonsafety related portions from the safety related portions of the system. This LCO requires that three MFRVs and associated bypass valves and three Main FW Stop Valves be OPERABLE. The MFRVs and the associated bypass valves and the Main FW Stop Valves are considered OPERABLE when isolation times are within limits and they close on the appropriate signal(s). # (continued) Failure to meet the LCO requirements can result in additional mass and energy being released to containment following an SLB inside containment. If a feedwater isolation signal on high high steam generator level is relied on to terminate an excess feedwater flow event, failure to meet the LCO may result in the introduction of water into the main steam lines. #### **APPLICABILITY** The Main FW Stop Valves and MFRVs and their associated bypass valves must be OPERABLE whenever there is significant mass and energy in the Reactor Coolant System and steam generators. This ensures that, in the event of an HELB, a single failure cannot result in the blowdown of more than one steam generator. In MODES 1 and 2, the Main FW Stop Valves and MFRVs and their associated bypass valves are required to be OPERABLE to limit the amount of available fluid that could be added to containment in the case of a secondary system pipe break inside containment. When the valves are closed and de-activated or isolated by a closed manual valve, they are already performing their safety function. In MODES 3, 4, 5, and 6, AFW and RHR are used for heat removal. Therefore, the Main FW Stop Valves and the MFRVs and their associated bypass valves are normally closed since MFW is not required. #### **ACTIONS** The ACTIONS table is modified by a Note indicating that separate Condition entry is allowed for each valve. #### A.1 and A.2 With one Main FW Stop Valve in one or more flow paths inoperable, action must be taken to restore the affected valves to OPERABLE status, or to close or isolate inoperable affected valves within 72 hours. When these valves are closed or isolated, they are performing their required safety function. The 72 hour Completion Time takes into account the redundancy afforded by the remaining OPERABLE valves and the low probability of an event occurring during this time period that would require #### **ACTIONS** # A.1 and A.2 (continued) isolation of the MFW flow paths. The 72 hour Completion Time is reasonable, based on operating experience. Inoperable Main FW Stop Valves that are closed or isolated must be verified on a periodic basis that they are closed or isolated. This is necessary to ensure that the assumptions in the safety analysis remain valid. The 7 day Completion Time is reasonable, based on engineering judgment, in view of valve status indications available in the control room, and other administrative controls, to ensure that these valves are closed or isolated. # **B.1** and **B.2** With one MFRV in one or more flow paths inoperable, action must be taken to restore the affected valves to OPERABLE status, or to close or isolate inoperable affected valves within 72 hours. When these valves are closed or isolated, they are performing their required safety function. The 72 hour Completion Time takes into account the redundancy afforded by the remaining OPERABLE valves and the low probability of an event occurring during this time period that would require isolation of the MFW flow paths. The 72 hour Completion Time is reasonable, based on operating experience. Inoperable MFRVs, that are closed or isolated, must be verified on a periodic basis that they are closed or isolated. This is necessary to ensure that the assumptions in the safety analysis remain valid. The 7 day Completion Time is reasonable, based on engineering judgment, in view of valve status indications available in the control room, and other administrative controls, to ensure that the valves are closed or isolated. ## C.1 and C.2 With one associated bypass valve in one or more flow paths inoperable, action must be taken to restore the affected valves to OPERABLE status, or to close or isolate inoperable affected valves within 72 hours. When these valves are closed or isolated, they are performing their required safety function. #### **ACTIONS** ## C.1 and C.2 (continued) The 72 hour Completion Time takes into account the redundancy afforded by the remaining OPERABLE valves and the low probability of an event occurring during this time period that would require isolation of the MFW flow paths. The 72 hour Completion Time is reasonable, based on operating experience. Inoperable associated bypass valves that are closed or isolated must be verified on a periodic basis that they are closed or isolated. This is necessary to ensure that the assumptions in the safety analysis remain valid. The 7 day Completion Time is reasonable, based on engineering judgment, in view of valve status indications available in the control room, and other administrative controls, to ensure that these valves are closed or isolated. #### <u>D.1</u> With the combination of inoperable Main FW Stop Valves, MFRVs and associated bypass valves such that a feedwater line has no OPERABLE means of isolation, action must be taken to restore one of the isolation valves to OPERABLE status or isolate the affected feedwater line within 8 hours. The feedwater lines may be isolated by either a single Main FW Stop Valve or the combination of a MFRV and its associated bypass valve. With one means of isolation restored to OPERABLE status, operation may continue with any of the remaining inoperable valves being addressed by the appropriate Condition(s) (A, B and/or C) of this LCO. With the affected feedwater line isolated, the isolation safety function is accomplished and power operation is limited accordingly. The Completion Time is reasonable considering the low probability of an event occurring that would require feedwater isolation during this time, and in most cases, the only action necessary for feedwater line isolation would be to close and deactivate the necessary valve(s). #### E.1 and E.2 If the Main FW Stop Valves and MFRV(s) and their associated bypass valve(s) cannot be restored to OPERABLE status, or closed, or isolated within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours. The allowed Completion Time is reasonable,
based on operating #### **ACTIONS** # E.1 and E.2 (continued) experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.7.3.1 This SR verifies that the closure time of each Main FW Stop Valve and MFRV and its associated bypass valve is in accordance with the requirements of the Inservice Testing Plan. The Main FW Stop Valve and MFRV closure times are assumed in the accident and containment analyses. This Surveillance is normally performed during return of the unit to operation following a refueling outage. These valves should not be tested at power since even a part stroke exercise increases the risk of a valve closure with the unit generating power. This is consistent with the ASME Code, Section XI (Ref. 2). The Frequency for this SR is in accordance with the Inservice Testing Program. Operating experience has shown that these components usually pass the Surveillance when performed in accordance with the Inservice Testing Program. #### REFERENCES - 1. FSAR, Section 10.4.7. - 2. ASME, Boiler and Pressure Vessel Code, Section XI. #### **B 3.7 PLANT SYSTEMS** # B 3.7.4 Atmospheric Relief Valves (ARVs) #### **BASES** #### **BACKGROUND** The ARVs provide a method for cooling the unit to residual heat removal (RHR) entry conditions should the preferred heat sink via the Steam Dump System to the condenser not be available, as discussed in the FSAR, Section 10.3 (Ref. 1). This is done in conjunction with the Auxiliary Feedwater System providing cooling water from the condensate storage tank (CST). The ARVs may also be required to meet the design cooldown rate during a cooldown when steam pressure drops too low for maintenance of a vacuum in the condenser to permit use of the Steam Dump System. One ARV line for each of the three steam generators is provided. Each ARV line consists of one ARV and two associated manual isolation valves. The ARVs are provided with upstream manual isolation valves to provide an alternate means of isolation. The ARVs are equipped with pneumatic controllers to permit control of the cooldown rate. The ARVs are provided with an alternate air supply consisting of two redundant air compressors which, on a loss of pressure in the normal instrument air supply, may be aligned to supply air to the ARVs for remote or local control of the valves. A description of the ARVs is found in Reference 1. The ARVs are OPERABLE when they can be operated remotely, either automatically or manually; or locally, either pneumatically or manually. Handwheels are provided for local manual operation. # APPLICABLE SAFETY ANALYSES The design basis (size) of the ARVs is established by the capability to cool the unit to RHR entry conditions. The valve size is determined by the design cooldown rate in the last hour of plant cooldown when the SG shell side pressure is reduced. The ARVs provide the capability for the removal of reactor decay heat during periods when the main condenser is not available to cool down # APPLICABLE SAFETY ANALYSES (continued) the unit to RHR entry conditions. The limiting design basis accident for the ARVs is established by the Steam Generator Tube Rupture (SGTR) event (Ref. 2). The SGTR event is analyzed for two cases to determine that the offsite doses meet the NRC acceptance criteria. That is, for the case of an accident initiated lodine spike, the doses from the accident are a small fraction of the limits defined in 10 CFR 100 and for the case of a pre-accident lodine spike, the doses from the accident are within the limits defined in 10 CFR 100. The SGTR event assumes recovery with and without offsite power. The loss of offsite power assumption results in the ARVs being relied upon to reduce RCS temperature to recover from an SGTR and also to reduce RCS temperature and pressure to RHR entry conditions. The accident analysis does not assume a specific method of valve operation to mitigate the accident. The analysis assumes the SG tube break flow is terminated within 30 minutes of the initiation of the accident. The recovery from the SGTR event requires a rapid cooldown to establish adequate subcooling as a necessary step to allow depressurization of the RCS to terminate the primary to secondary break flow in the ruptured steam generator. The time required to terminate the primary to secondary break flow in the SGTR event is more critical than the time required to cool the RCS down to RHR entry conditions for this event and other accident analyses. Thus, the SGTR is the limiting event for the ARVs. Each ARV is equipped with two manual isolation valves in the event an ARV spuriously fails to open or fails to close during use. The ARVs satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). LCO. Three ARV lines are required to be OPERABLE. One ARV line is required from each of three steam generators to ensure that at least one ARV line is available to conduct a unit cooldown following an SGTR, in which one steam generator becomes unavailable, accompanied by a single, active failure of a second ARV line on an unaffected steam generator. At least one manual isolation valve must be OPERABLE to isolate a failed open ARV line. A closed manual isolation valve does not render it or its ARV line inoperable. The accident analysis does not model a specific method of valve operation and allows 30 minutes to terminate the SG tube break flow. Sufficient time is available to unisolate and manually operate the ARV. # LCO (continued) Failure to meet the LCO can result in the inability to cool the unit to RHR entry conditions following an event in which the condenser is unavailable for use with the Steam Dump System. An ARV is considered OPERABLE (even if isolated) when it is capable of providing controlled relief of the main steam flow and capable of fully opening and closing on demand, either remotely or locally via manual control. #### **APPLICABILITY** In MODES 1, 2, and 3, the ARVs are required to be OPERABLE. In MODE 4, the pressure and temperature limitations are such that the probability of an SGTR event requiring ARV operation is low. In addition, the RHR system is available to provide the decay heat removal function in MODE 4. Therefore, the ARVs are not required to be OPERABLE in MODE 4 to satisfy the safety analysis assumptions of the DBA. However, the capability to remove decay heat from a SG required to be OPERABLE in MODE 4 by LCO 3.4.6, "RCS Loops—MODE 4" is implicit in the requirement for an OPERABLE SG and may require the associated ARV be capable of removing that heat if the normal decay heat removal system (steam dump) is not available. In MODE 5 or 6, an SGTR is not a credible event. #### **ACTIONS** # <u>A.1</u> With one required ARV line inoperable, action must be taken to restore OPERABLE status within 7 days. The 7 day Completion Time allows for the redundant capability afforded by the remaining OPERABLE ARV lines, a nonsafety grade backup in the Steam Dump System, and MSSVs. Required Action A.1 is modified by a Note indicating that LCO 3.0.4 does not apply. #### **B.1** With two or more ARV lines inoperable, action must be taken to restore all but one ARV line to OPERABLE status. Since the manual isolation valves can be closed to isolate an ARV, some repairs may ## **ACTIONS** # B.1 (continued) be possible with the unit at power. The 24 hour Completion Time is reasonable to repair inoperable ARV lines, based on the availability of the Steam Dump System and MSSVs, and the low probability of an event occurring during this period that would require the ARV lines. # C.1 and C.2 If the ARV lines cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 4 within 18 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # SURVEILLANCE REQUIREMENTS # SR 3.7.4.1 To perform a controlled cooldown of the RCS, the ARVs must be able to be opened either remotely or locally and throttled through their full range. This SR ensures that the ARVs are tested through a full control cycle at least once per fuel cycle. Performance of inservice testing or use of an ARV during a unit cooldown may satisfy this requirement. Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency. The Frequency is acceptable from a reliability standpoint. # SR 3.7.4.2 The function of the manual isolation valve is to isolate a failed open ARV. Cycling the manual isolation valve both closed and open demonstrates its capability to perform this function. Performance of inservice testing or use of the manual isolation valve during unit cooldown may satisfy this requirement. Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency. The Frequency is acceptable from a reliability standpoint. **REFERENCES** - 1. FSAR, Section 10.3. - 2. FSAR, Section 15.4.3. #### **B 3.7 PLANT SYSTEMS** # B 3.7.5 Auxiliary Feedwater (AFW) System ## **BASES** #### **BACKGROUND** The AFW System automatically supplies feedwater to the steam generators to remove decay heat from the Reactor Coolant System upon the loss of normal feedwater supply. The turbine-driven and motor-driven AFW pumps take suction through separate and independent suction lines (one for the turbine-driven pump and one shared by both motor-driven pumps) from the condensate storage tank (CST) (LCO 3.7.6) and pump to the steam generator secondary side via separate and independent lines up to the common connection to the main feedwater (MFW) piping to each steam generator outside containment. The steam generators function as a
heat sink for core decay heat. The heat load is dissipated by releasing steam to the atmosphere from the steam generators via the main steam safety valves (MSSVs) (LCO 3.7.1) or atmospheric relief valves (ARVs) (LCO 3.7.4). If the main condenser is available, steam may be released via the steam dump valves and recirculated to the CST. The AFW System consists of two motor driven AFW pumps and one steam turbine driven pump configured into three trains. The pumps are equipped with recirculation lines to prevent pump operation against a closed system. Each motor driven AFW pump is powered from an independent Class 1E power supply and feeds all steam generators through a common header. The steam turbine driven AFW pump receives steam from two main steam lines upstream of the main steam isolation valves. Each of the steam feed lines will supply 100% of the requirements of the turbine driven AFW pump. The turbine driven AFW pump supplies a common header capable of feeding all steam generators via DC solenoid air operated control valves actuated by the Engineered Safety Feature Actuation System (ESFAS). Thus, the requirement for diversity in motive power sources for the AFW System is met. The AFW System is capable of supplying feedwater to the steam generators during normal unit startup, shutdown, and hot standby conditions. One pump at full flow is sufficient to remove decay heat and cool the unit (normal cooldown) to residual heat removal (RHR) entry conditions. # BACKGROUND (continued) The design of the AFW system ensures that the RCS can be cooled down to less than 350°F (RHR entry conditions) from normal operating conditions in the event of any of the following incidents: - Loss of Normal Feedwater, - Loss of Offsite Power, - Feed Line Break, - Main Steam Line Break, - Accidental Depressurization of the SGs, - SG Tube Rupture, - High Energy Line Break, - Small Break LOCA. - Cooldown following a Reactor Trip, - Station Blackout. Each motor-driven AFW pump delivers a total of at least 285 gpm to all SGs which are at a pressure of 1138 psia. The minimum flow requirement for a motor-driven AFW pump is based on a high energy line break in the steam supply line to the turbine-driven AFW pump. In this scenario, only one motor-driven AFW pump will be the source of AFW. The turbine-driven AFW pump delivers a total of at 350 gpm to all SGs which are at a pressure of 1138 psia. The minimum requirement for the turbine-driven AFW pump is based on a station blackout event. In this scenario, the turbine-driven AFW pump will be the only source of AFW. Additionally, any single AFW pump (turbine or motor-driven) is capable of providing sufficient flow (350 gpm) to all SGs at a pressure of 1020 psia to cooldown the RCS to RHR entry conditions during a normal cooldown of the unit (not a reactor trip). For all other incidents listed above, except for the high energy line break in the steam supply to the turbine-driven AFW pump, the station blackout event, and the normal unit cooldown discussed previously, two out of three AFW pumps (motor or turbine-driven combination) are required to satisfy the flow demand. The AFW System is designed to supply sufficient water to the steam generator(s) to remove decay heat with steam generator pressure at the setpoint of the MSSVs. Subsequently, the AFW System supplies sufficient water to cool the unit to RHR entry conditions, with steam released through the ARVs. The motor-driven AFW pumps actuate automatically on the following signals: a. Trip of both SG main feedwater pumps; # BACKGROUND (continued) - b. Low-low water level signals from two out of three level transmitters on any one SG; - c. Safety Injection signal; and - d. Loss of offsite power. The steam supply to the turbine-driven AFW pump is automatically actuated on the following signals: - a. Loss of power signal (two out of three reactor coolant pump bus undervoltage); and - b. Low-low water level signals from two out of three level transmitters on any two out of three SGs. The AFW System is discussed in the FSAR, Section 6.5 (Ref. 1). ## APPLICABLE SAFETY ANALYSES The AFW System mitigates the consequences of any event with loss of normal feedwater. The design basis of the AFW System is to supply water to the steam generator to remove decay heat and other residual heat by delivering at least the minimum required flow rate to the steam generators at pressures corresponding to the lowest steam generator safety valve set pressure plus 3% and setpoint tolerance plus any accumulation. In addition, the AFW System must supply enough makeup water to replace steam generator secondary inventory lost as the unit cools to MODE 4 conditions. Sufficient AFW flow must also be available to account for flow losses such as pump recirculation and line breaks. However, the operability of the AFW System in MODE 4 is not assumed in the safety analysis. The limiting Design Basis Accidents (DBAs) and transients for the AFW System are as follows: - a. Feedwater Line Break (FWLB); - b. Main Steam Line Break (MSLB); and - c. Loss of MFW. # **APPLICABLE** SAFETY ANALYSES (continued) Two of the three AFW pumps are required to ensure the flow demand for the most limiting DBAs and transients is satisfied. In addition, the minimum available AFW flow and system characteristics are serious considerations in the analysis of a small break loss of coolant accident (LOCA). The AFW System design is such that it can perform its function following an FWLB between the MFW isolation valves and containment, combined with a loss of offsite power following turbine trip, and a single active failure. In such a case, the ESFAS logic may not detect the affected steam generator if the backflow check valve to the affected MFW header worked properly. The AFW flow delivered to the broken MFW header is limited by the flow restrictor installed in the AFW line until flow is terminated by the operator. Sufficient flow would be delivered to the intact SGs after isolation. The ESFAS automatically actuates the AFW turbine driven pump and associated power operated valves and controls when required to ensure an adequate feedwater supply to the steam generators during loss of power. DC solenoid air operated valves are provided for each AFW line to control the AFW flow to each steam generator. The AFW System satisfies the requirements of Criterion 3 of 10 CFR 50.36(c)(2)(ii). # LCO This LCO provides assurance that the AFW System will perform its design safety function to mitigate the consequences of accidents that could result in overpressurization of the reactor coolant pressure boundary. Three independent AFW pumps in three diverse trains (steam and electrical power) are required to be OPERABLE to ensure the availability of RHR capability for all events accompanied by a loss of offsite power and a single failure. This is accomplished by powering two of the pumps from independent emergency buses. The third AFW pump is powered by a different means, a steam driven turbine supplied with steam from a source that is not isolated by closure of the MSIVs. The AFW System trains are configured into two flowpaths, one for the motor-driven pumps and one for the turbine-driven pump. The AFW System is considered OPERABLE when the components and flow paths required to provide redundant AFW flow to the steam # (continued) generators are OPERABLE. This requires that the two motor-driven AFW pump trains be OPERABLE with one shared flow path, each supplying AFW to all steam generators. In addition, the turbine driven AFW pump train is required to be OPERABLE with redundant steam supplies from each of two main steam lines upstream of the MSIVs, and shall be capable of supplying AFW to any of the steam generators via its associated flow path. The control room manual actuation switches for each AFW pump shall also be OPERABLE. The piping, valves, instrumentation, and controls in the required flow paths also are required to be OPERABLE. A flow path is operable when it is capable of supporting the required AFW flow. #### **APPLICABILITY** In MODES 1, 2, and 3, the AFW System is required to be OPERABLE in the event that it is called upon to function when the MFW is lost. In addition, the AFW System is required to supply enough makeup water to replace the steam generator secondary inventory, lost as the unit cools to MODE 4 conditions. In MODE 4 the AFW System may be used for heat removal via the steam generators. However, the OPERABILITY of the AFW system in MODE 4 is not assumed in the safety analysis and this LCO does not require the AFW system OPERABLE in MODE 4. In MODE 5 or 6, the steam generators are not normally used for heat removal, and the AFW System is not required. #### **ACTIONS** #### <u>A.1</u> If one of the two steam supplies to the turbine driven AFW train is inoperable, action must be taken to restore OPERABLE status within 7 days. The 7 day Completion Time is reasonable, based on the following reasons: - a. The redundant OPERABLE steam supply to the turbine driven AFW pump; - b. The availability of redundant OPERABLE motor driven AFW pumps; and #### **ACTIONS** # A.1 (continued) c. The low probability of an event occurring that requires the inoperable steam supply to the turbine driven AFW pump. The second Completion Time for Required Action A.1 establishes a limit on the maximum time allowed for any combination of Conditions to be inoperable during any continuous failure to meet this LCO. The 10 day Completion Time provides a limitation time allowed in this specified Condition after discovery of failure to meet the LCO. This limit is considered reasonable for situations in which Conditions A and B are entered concurrently. The <u>AND</u> connector between 7 days and 10 days dictates that both Completion Times apply simultaneously, and the more restrictive must be met. ## <u>B.1</u> With one of the required AFW trains (pump or flow path) inoperable for reasons other than Condition A, action must be
taken to restore OPERABLE status within 72 hours. A flow path is inoperable if it is blocked such that the required AFW flow cannot be delivered. This Condition includes the loss of two steam supply lines to the turbine driven AFW pump. The 72 hour Completion Time is reasonable, based on redundant capabilities afforded by the AFW System, time needed for repairs, and the low probability of a DBA occurring during this time period. The second Completion Time for Required Action B.1 establishes a limit on the maximum time allowed for any combination of Conditions to be inoperable during any continuous failure to meet this LCO. The 10 day Completion Time provides a limitation time allowed in this specified Condition after discovery of failure to meet the LCO. This limit is considered reasonable for situations in which Conditions A and B are entered concurrently. The <u>AND</u> connector between 72 hours and 10 days dictates that both Completion Times apply simultaneously, and the more restrictive must be met. # C.1 and C.2 When Required Action A.1 or B.1 cannot be completed within the required Completion Time, or if two AFW trains are inoperable, the #### **ACTIONS** # C.1 and C.2 (continued) unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 4 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. In MODE 4, AFW is not required since the RHR system is available. ## <u>D.1</u> If all three AFW trains are inoperable, the unit is in a seriously degraded condition with no safety related means for conducting a cooldown, and only limited means for conducting a cooldown with nonsafety related equipment. In such a condition, the unit should not be perturbed by any action, including a power change, that might result in a trip. The seriousness of this condition requires that action be started immediately to restore one AFW train to OPERABLE status. Required Action D.1 is modified by a Note indicating that all required MODE changes or power reductions are suspended until one AFW train is restored to OPERABLE status. In this case, LCO 3.0.3 is not applicable because it could force the unit into a less safe condition. ## SURVEILLANCE REQUIREMENTS #### SR 3.7.5.1 Verifying the correct alignment for manual, power operated, and automatic valves in the AFW System water and steam supply flow paths provides assurance that the proper flow paths will exist for AFW operation. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since they are verified to be in the correct position prior to locking, sealing, or securing. This SR also does not apply to valves that cannot be inadvertently misaligned, such as check valves. This Surveillance does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. # SURVEILLANCE REQUIREMENTS # SR 3.7.5.1 (continued) This surveillance is modified by a Note that provides an exception for the AFW flow control valves. The verification of the AFW flow control valves in the full open position is not required during low power operation (≤ 10% RTP) or when the AFW system is not in automatic control. The system is considered in automatic control when it is in standby for AFW automatic initiation and not being operated manually. The provisions of this note allow operation such as a normal unit startup or shutdown and required AFW pump testing at power to be performed without violating the requirements of this SR. In addition, this surveillance includes verification that the stop check valves 3350A, 3350B, and 3350C are in the open position with the breaker to the valve operators locked open. The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions. ## SR 3.7.5.2 Verifying that each AFW pump's developed head at the flow test point is greater than or equal to the required developed head ensures that AFW pump performance has not degraded during the cycle. Flow and differential head are normal tests of centrigufal pump performance required by Section XI of the ASME Code (Ref 2). Because it is undesirable to introduce cold AFW into the steam generators while they are operating, this testing is performed on recirculation flow. This test confirms one point on the pump design curve and is indicative of overall performance. Such inservice tests confirm component OPERABILITY, trend performance, and detect incipient failures by indicating abnormal performance. Performance of inservice testing discussed in the ASME Code, Section XI (Ref. 2) (only required at 3 month intervals) satisfies this requirement. This SR is modified by a Note indicating that the SR should be deferred until suitable test conditions are established. This deferral is required because there is insufficient steam pressure to perform the test. ## SURVEILLANCE REQUIREMENTS (continued) ### SR 3.7.5.3 This SR verifies that AFW can be delivered to the steam generators in the event of any accident or transient that generates an ESFAS, by demonstrating that each automatic valve in the flow path actuates to its correct position on an actual or simulated actuation (automatic pump start) signal. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. The 18 month Frequency is acceptable based on operating experience and the design reliability of the equipment. ## SR 3.7.5.4 This SR verifies that the AFW pumps will start in the event of any accident or transient that generates an ESFAS by demonstrating that each AFW pump starts automatically on an actual or simulated actuation signal in MODES 1, 2, and 3. The motor-driven pumps must be verified to start on SI, SG water level low-low in any SG, and loss of offsite power. The turbine-driven pump must be verified to start on under-voltage on two out of three RCP buses and SG water level low-low in two SGs. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. This SR is modified by a Note that indicates the SR may be deferred until suitable test conditions are established. This deferral is required because there is insufficient steam pressure to perform the test. #### SR 3.7.5.5 This SR verifies that the air stored in turbine-driven AFW pump steam admission valve air accumulators is sufficient to open valves Q1(2)N12V001A-A and Q1(2)N12V001B-B. Each steam admission valve has an air accumulator associated with it. The air accumulators provide sufficient air to ensure the operation of the steam admission valves for turbine-driven AFW pump during a loss of power or other ## SURVEILLANCE REQUIREMENTS # SR 3.7.5.5 (continued) failure of the normal air supply. The 18 month frequency is based on the need to perform this surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. The 18 month frequency is acceptable based on operating experience and the passive nature of the air accumulator operation. ## REFERENCES - 1. FSAR, Section 6.5. - 2. ASME, Boiler and Pressure Vessel Code, Section XI. ## B 3.7.6 Condensate Storage Tank (CST) ### **BASES** ### **BACKGROUND** The CST provides a safety grade source of water to the steam generators for removing decay and sensible heat from the Reactor Coolant System (RCS). The CST provides a passive flow of water, by gravity, to the Auxiliary Feedwater (AFW) System (LCO 3.7.5). The steam produced is released to the atmosphere by the main steam safety valves or the atmospheric relief valves. The AFW pumps operate with a continuous recirculation to the CST. When the main steam isolation valves are open, the preferred means of heat removal is to discharge steam to the condenser by the nonsafety grade path of the steam dump valves. The condensed steam can be returned to the CST by a condensate pump. This has the advantage of conserving condensate while minimizing releases to the environment. Because the CST is a principal component in removing residual heat from the RCS, it is designed to withstand earthquakes and other natural phenomena, including missiles that might be generated by natural phenomena. The CST is designed to Seismic Category I to ensure availability of the feedwater supply. Feedwater is also available from alternate sources. A description of the CST is found in the FSAR, Section 9.2.6 (Ref. 1). ## APPLICABLE SAFETY ANALYSES The CST provides cooling water to remove decay heat and to cool down the unit following all events in the accident analysis as discussed in the FSAR, Chapters 6 and 15 (Refs. 2 and 3, respectively). For anticipated operational occurrences and accidents that do not affect the OPERABILITY of the steam generators, the analysis assumption is generally 30 minutes at MODE 3, steaming through the MSSVs, followed by a cooldown to residual heat removal (RHR) entry conditions at the design cooldown rate. ## APPLICABLE SAFETY ANALYSES (continued) The limiting event for the condensate volume is the large feedwater line break coincident with a loss of offsite power. Single failures that also affect this event include the following: - a. Failure of the diesel
generator powering the motor driven AFW pump to the unaffected steam generator (requiring additional steam to drive the remaining AFW pump turbine); and - b. Failure of the steam driven AFW pump (requiring a longer time for cooldown using only one motor driven AFW pump). These are not usually the limiting failures in terms of consequences for these events. The CST inventory calculation includes an allowance for a break in the AFW pump recirculation line and 30 minutes for operator action to reduce the break flow. The CST satisfies Criteria 2 and 3 of 10 CFR 50.36(c)(2)(ii). ## LCO To satisfy accident analysis assumptions, the CST must contain sufficient cooling water to remove decay heat for 30 minutes following a reactor trip from 102% RTP, and then to cool down the RCS to RHR entry conditions, assuming a coincident loss of offsite power and the most adverse single failure. In doing this, it must retain sufficient water to ensure adequate net positive suction head for the AFW pumps during cooldown, as well as account for any losses from the steam driven AFW pump turbine, or before isolating AFW to a broken line. The OPERABILITY of the CST is based on having sufficient water available to maintain the RCS in MODE 3 for 9 hours with steam discharge to the atmosphere concurrent with a total loss of offsite power. The CST minimum required water level of 150,000 gallons fulfills this requirement and bounds the design bases requirement of holding the unit in MODE 3 for 2 hours, followed by a 4 hour cooldown to RHR entry conditions of 350°F at a rate of 50°F/hour (Refs. 4 and 5). The OPERABILITY of the CST is determined by maintaining the tank level at or above the minimum required level. ## **APPLICABILITY** In MODES 1, 2, and 3, the CST is required to be OPERABLE. In MODE 4, 5, or 6, the CST is not required because the AFW System is not required. ### **ACTIONS** ## A.1 and A.2 If the CST is not OPERABLE, the OPERABILITY of the backup supply (Service Water System) should be verified by administrative means within 4 hours and once every 12 hours thereafter. OPERABILITY of the backup feedwater supply must include verification that the flow paths from the Service Water supply to the AFW pumps are OPERABLE, and that the Service Water System is capable of supplying water to the AFW pumps. The CST must be restored to OPERABLE status within 7 days, because the Service Water System does not supply the preferred quality of SG feedwater and may be performing this function in addition to its normal functions. The 4 hour Completion Time is reasonable, based on operating experience, to verify the OPERABILITY of the backup water supply. Additionally, verifying the backup water supply every 12 hours is adequate to ensure the backup water supply continues to be available. The 7 day Completion Time is reasonable, based on an OPERABLE backup water supply being available, and the low probability of an event occurring during this time period requiring the CST. ## B.1 and B.2 If the CST cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 4, within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.7.6.1 This SR verifies that the CST contains the required volume of cooling water. The 12 hour Frequency is based on operating experience and the need for operator awareness of unit evolutions that may affect the CST inventory between checks. Also, the 12 hour Frequency is considered adequate in view of other indications in the control room, including alarms, to alert the operator to abnormal deviations in the CST level. ## REFERENCES * - 1. FSAR, Section 9.2.6. - 2. FSAR, Chapter 6. - 3. FSAR, Chapter 15. - 4. AFW FSD A-181010. - 5. CALC. BM 95-0961-001, Rev. 1, Verification of CST Sizing Basis. ## B 3.7.7 Component Cooling Water (CCW) System ### **BASES** ### **BACKGROUND** The CCW System provides a heat sink for the removal of process and operating heat from safety related components during a Design Basis Accident (DBA) or transient. During normal operation, the CCW System also provides this function for various nonessential components, as well as the spent fuel storage pool. The CCW System serves as a barrier to the release of radioactive byproducts between potentially radioactive systems and the Service Water System, and thus to the environment. The CCW System is arranged as two independent, full capacity cooling loops with one shared pump and spare heat exchanger, and has isolatable nonsafety related components. Each safety related train includes a full capacity pump, heat exchanger, piping, valves, instrumentation, and a shared surge tank, with a separate section to serve each train. Each safety related train is powered from a separate bus. An open surge tank in the system ensures that sufficient net positive suction head is available. The pump in each train is automatically started on receipt of a safety injection signal, and all nonessential components are isolated. Additional information on the design and operation of the system, along with a list of the components served, is presented in the FSAR, Section 9.2.2 (Ref. 1). The principal safety related function of the CCW System is the removal of decay heat from the reactor via the Residual Heat Removal (RHR) System. This may be during a normal or post accident cooldown and shutdown. # APPLICABLE SAFETY ANALYSES The design basis of the CCW System is for one CCW train to remove the post loss of coolant accident (LOCA) heat load from the containment sump during the recirculation phase, with a maximum CCW temperature of 135°F (Ref. 1). The Emergency Core Cooling System (ECCS) LOCA and containment OPERABILITY LOCA each model the maximum and minimum performance of the CCW System, respectively. The normal temperature of the CCW is 105°F, and, during unit cooldown to MODE 5 (Tcold < 200°F), a worst ## APPLICABLE SAFETY ANALYSES (continued) case maximum temperature of 132.8°F is assumed. This prevents the containment sump fluid from increasing in temperature during the recirculation phase following a LOCA, and provides a gradual reduction in the temperature of this fluid as it is supplied to the Reactor Coolant System (RCS) by the ECCS pumps. The CCW System is designed to perform its function with a single failure of any active component, assuming a loss of offsite power. The CCW System also functions to cool the unit from RHR entry conditions ($T_{cold} < 350^{\circ}F$), to MODE 5 ($T_{cold} < 200^{\circ}F$), during normal and post accident operations. The time required to cool from 350°F to 200°F is a function of the number of CCW and RHR trains operating. One CCW train is sufficient to remove decay heat during subsequent operations with $T_{cold} < 200^{\circ}F$. This assumes a worst case post LOCA maximum service water temperature of 97.3°F occurring simultaneously with the maximum heat loads on the system. The CCW System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## **LCO** The CCW trains are independent of each other to the degree that each has separate controls and power supplies and the operation of one does not depend on the other. In the event of a DBA, one CCW train is required to provide the minimum heat removal capability assumed in the safety analysis for the systems to which it supplies cooling water. To ensure this requirement is met, two trains of CCW must be OPERABLE. At least one CCW train will operate assuming the worst case single active failure occurs coincident with a loss of offsite power. A CCW train is considered OPERABLE when: - a. The pump and associated surge tank section are OPERABLE; and - b. The associated piping, valves, heat exchanger, and instrumentation and controls required to perform the safety related function are OPERABLE. The isolation of CCW from other components or systems not required for safety may render those components or systems inoperable but does not affect the OPERABILITY of the CCW System. ## **APPLICABILITY** In MODES 1, 2, 3, and 4, the CCW System is a normally operating system, which must be prepared to perform its post accident safety functions, primarily RCS heat removal, which is achieved by cooling the RHR heat exchanger. In MODE 5 or 6, the OPERABILITY requirements of the CCW System are determined by the systems it supports. ### **ACTIONS** ## <u>A.1</u> Required Action A.1 is modified by a Note indicating that the applicable Conditions and Required Actions of LCO 3.4.6, "RCS Loops—MODE 4," be entered if an inoperable CCW train results in an inoperable RHR loop. This note is only applicable in MODE 4. This is an exception to LCO 3.0.6 and ensures the proper actions are taken for these components. If one CCW train is inoperable, action must be taken to restore OPERABLE status within 72 hours. In this Condition, the remaining OPERABLE CCW train is adequate to perform the heat removal function. The 72 hour Completion Time is reasonable, based on the redundant capabilities afforded by the OPERABLE train, and the low probability of a DBA occurring during this period. ## **B.1** and **B.2** If the CCW train cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # SURVEILLANCE REQUIREMENTS ## SR 3.7.7.1 This SR is modified by a Note indicating that the
isolation of the CCW flow to individual components may render those components inoperable but does not affect the OPERABILITY of the CCW System. The Note is applicable to CCW loads and does not include components required for CCW OPERABILITY. Verifying the correct alignment for accessible manual, power operated, and automatic valves in the CCW flow path provides assurance that the proper flow paths exist for CCW operation. The accessibility of the CCW valves is evaluated on a case by case basis considering such things as ALARA concerns and personnel safety as well as valve enclosures or barricades blocking access to the valves. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since these valves are verified to be in the correct position prior to locking, sealing, or securing. This SR also does not apply to valves that cannot be inadvertently misaligned, such as check valves. This Surveillance does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. The 31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions. ## SR 3.7.7.2 This SR verifies proper automatic operation of the CCW valves on an actual or simulated Safety Injection actuation signal. The CCW System is a normally operating system that cannot be fully actuated as part of routine testing during normal operation. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency. Therefore, the Frequency is acceptable from a reliability standpoint. ## SURVEILLANCE REQUIREMENTS (continued) ## SR 3.7.7.3 This SR verifies proper automatic operation of the CCW pumps on an actual or simulated actuation signal. The CCW System is a normally operating system that cannot be fully actuated as part of routine testing during normal operation. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency. Therefore, the Frequency is acceptable from a reliability standpoint. ### REFERENCES 1. FSAR, Section 9.2.2. B 3.7.8 Service Water System (SWS) ### BASES ### **BACKGROUND** The SWS provides a heat sink for the removal of process and operating heat from safety related components during a Design Basis Accident (DBA) or transient. During normal operation, and a normal shutdown, the SWS also provides this function for various safety related and nonsafety related components. The safety related function is covered by this LCO. The SWS consists of two separate, 100% capacity, safety related, cooling water trains. Each train consists of two 50% capacity pumps, one shared 50% capacity spare pump, piping, valving, and instrumentation. The pumps and valves are remote and manually aligned, except in the unlikely event of a loss of coolant accident (LOCA). The pumps are automatically started upon receipt of a safety injection signal or a loss of offsite power (LOSP) signal, and all essential valves are aligned to their post accident positions. The SWS also provides emergency makeup to the Diesel Generator Jacket Water Systems and is the backup water supply to the Auxiliary Feedwater System. Additional information about the design and operation of the SWS, along with a list of the components served, is presented in the FSAR, Section 9.2.1 (Ref. 1). The principal safety related function of the SWS is the removal of decay heat from the reactor via the CCW System. ## APPLICABLE SAFETY ANALYSES The design basis of the SWS is for one SWS train, in conjunction with the CCW System and a 100% capacity containment cooling system, to remove core decay heat following a design basis LOCA as discussed in the FSAR, Section 6.2 (Ref. 2). This prevents the containment sump fluid from increasing in temperature during the recirculation phase following a LOCA and provides for a gradual reduction in the temperature of this fluid as it is supplied to the Reactor Coolant System by the ECCS pumps. The SWS is designed to perform its function with a single failure of any active component, assuming the loss of offsite power. ## APPLICABLE SAFETY ANALYSES (continued) The SWS, in conjunction with the CCW System, also cools the unit from residual heat removal (RHR), as discussed in the FSAR, Sections 5.1 and 9.2.1, (Refs. 3 and 1) entry conditions to MODE 5 during normal and post accident operations. The time required for this evolution is a function of the number of CCW and RHR System trains that are operating. One SWS train is sufficient to remove decay heat during subsequent operations in MODES 5 and 6. This assumes a worst case maximum post LOCA SWS Temperature of 97.3°F, which bounds the maximum normal operating SWS temperature of 95°F, occurring simultaneously with maximum heat loads on the system. The SWS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO Two SWS trains are required to be OPERABLE to provide the required redundancy to ensure that the system functions to remove post accident heat loads, assuming that the worst case single active failure occurs coincident with the loss of offsite power. An SWS train is considered OPERABLE during MODES 1, 2, 3, and 4 when: - a. Two pumps are OPERABLE; and - b. The associated piping, valves, and instrumentation and controls required to perform the safety related function are OPERABLE. # **APPLICABILITY** In MODES 1, 2, 3, and 4, the SWS is a normally operating system that is required to support the OPERABILITY of the equipment serviced by the SWS and required to be OPERABLE in these MODES. In MODES 5 and 6, the OPERABILITY requirements of the SWS are determined by the systems it supports. ### **ACTIONS** ### <u>A.1</u> If one SWS train is inoperable, action must be taken to restore OPERABLE status within 72 hours. In this Condition, the remaining OPERABLE SWS train is adequate to perform the heat removal function. However, the overall reliability is reduced because a single failure in the OPERABLE SWS train could result in loss of SWS function. Required Action A.1 is modified by two Notes. The first Note indicates that the applicable Conditions and Required Actions of LCO 3.8.1, "AC Sources—Operating," should be entered if an inoperable SWS train results in an inoperable emergency diesel generator. The second Note indicates that the applicable Conditions and Required Actions of LCO 3.4.6, "RCS Loops — MODE 4." should be entered if an inoperable SWS train results in an inoperable decay heat removal train. This is an exception to LCO 3.0.6 and ensures the proper actions are taken for these components. The 72 hour Completion Time is based on the redundant capabilities afforded by the OPERABLE train, and the low probability of a DBA occurring during this time period. ## <u>B.1</u> With one automatic turbine building isolation valve inoperable in each SWS train, the inoperable valves must be restored to OPERABLE status within 72 hours. With the unit in this condition, the remaining OPERABLE SWS turbine building isolation valves in each train are adequate to perform the SWS non-essential load isolation function; however, the overall reliability of the function is reduced. The 72 hour Completion Time is based on the fact that the remaining OPERABLE automatic turbine building isolation valves in each SWS train ensure the SWS trains remain fully capable of performing the required safety function and the low probability of an event occurring during this time period that would require the isolation function of these valves. ### C.1 and C.2 If the SWS train cannot be restored to OPERABLE status within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours and in MODE 5 within 36 hours. ## **ACTIONS** ## C.1 and C.2 (continued) The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.7.8.1 This SR is modified by a Note indicating that the isolation of the SWS components or systems may render those components inoperable, but does not affect the OPERABILITY of the SWS. The Note is applicable to SWS loads and does not include components required for SWS OPERABILITY. Verifying the correct alignment for accessible manual, power operated, and automatic valves in the SWS flow path provides assurance that the proper flow paths exist for SWS operation. The accessibility of the SWS valves is evaluated on a case by case basis considering such things as ALARA concerns and personnel safety as well as valve enclosures or barricades blocking access to the valves. This SR does not apply to valves that are locked, sealed, or otherwise secured in position, since they are verified to be in the correct position prior to being locked, sealed, or secured. This SR does not require any testing or valve manipulation; rather, it involves verification that those valves capable of being mispositioned are in the correct position. This SR does not apply to valves that cannot be inadvertently misaligned, such as check valves. The
31 day Frequency is based on engineering judgment, is consistent with the procedural controls governing valve operation, and ensures correct valve positions. ## SR 3.7.8.2 This SR verifies proper automatic operation of the SWS valves on an actual or simulated Safety Injection actuation signal. The SWS is a normally operating system that cannot be fully actuated as part of normal testing. This Surveillance is not required for valves that are locked, sealed, or otherwise secured in the required position under administrative controls. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply ## SURVEILLANCE REQUIREMENTS ## SR. 3.7.8.2 (continued) during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency. Therefore, the Frequency is acceptable from a reliability standpoint. ### SR 3.7.8.3 This SR verifies proper automatic operation of the SWS pumps on an actual or simulated actuation signal. The SWS is a normally operating system that cannot be fully actuated as part of normal testing during normal operation. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a unit outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency. Therefore, the Frequency is acceptable from a reliability standpoint. ## SR 3.7.8.4 This SR requires a visual inspection be made of the ground area immediately surrounding the SWS buried piping. The performance of a visual inspection of the ground provides an indication of SWS piping integrity (leak tightness) by monitoring the surrounding ground for excessive moisture or erosion. The 18 month Frequency is acceptable based on operating experience and the passive nature of the buried piping. #### REFERENCES - 1. FSAR, Section 9.2.1. - 2. FSAR, Section 6.2. - 3. FSAR, Section 5.1. B 3.7.9 Ultimate Heat Sink (UHS) ## **BASES** ### **BACKGROUND** The UHS, or Service Water Pond, provides a heat sink for processing and operating heat from safety related components during a transient or accident, as well as during normal operation. This is done by utilizing the Service Water System (SWS) and the Component Cooling Water (CCW) System. The UHS storage pond as discussed in the FSAR, Section 9.2.5 (Ref. 1) provides two principal functions: the dissipation of residual heat after reactor shutdown; and dissipation of residual heat after an accident. The basic performance requirements are that a 30 day supply of water be available, and that the design basis temperatures of safety related equipment not be exceeded. Additional information on the design and operation of the system, along with a list of components served, can be found in Reference 1. ## APPLICABLE SAFETY ANALYSES The UHS is the sink for heat removed from the reactor core following all accidents and anticipated operational occurrences in which the unit is cooled down and placed on residual heat removal (RHR) operation. After the unit switches from injection to recirculation, the containment cooling systems and RHR are required to remove the core decay heat. The operating limits are based on conservative heat transfer analyses for the worst case LOCA. Reference 1 provides the details of the assumptions used in the analysis, which include worst expected meteorological conditions, conservative uncertainties when calculating decay heat, and worst case single active failure (e.g., single failure of a train). The UHS is designed in accordance with Regulatory Guide 1.27 (Ref. 2), which requires a 30 day supply of cooling water in the UHS. The UHS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO The UHS is required to be OPERABLE and is considered OPERABLE if it contains a sufficient volume of water at or below the maximum temperature that would allow the SWS to operate for at least 30 days following the design basis LOCA without the loss of net positive suction head (NPSH), and without exceeding the maximum design temperature of the equipment served by the SWS. To meet this condition, the UHS temperature should not exceed 95°F and the level should not fall below 184 ft mean sea level during normal unit operation. ## **APPLICABILITY** In MODES 1, 2, 3, and 4, the UHS is required to support the OPERABILITY of the equipment serviced by the UHS and required to be OPERABLE in these MODES. In MODE 5 or 6, the OPERABILITY requirements of the UHS are determined by the systems it supports. ## **ACTIONS** ## A.1 and A.2 If the UHS water level or temperature are not within the required limits, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 4 within 48 hours and in MODE 5 within 60 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ## SURVEILLANCE REQUIREMENTS # SR 3.7.9.1 This SR verifies that adequate long term (30 day) cooling can be maintained. The specified level also ensures that sufficient NPSH is available to operate the SWS pumps. The 24 hour Frequency is based on operating experience related to trending of the parameter variations during the applicable MODES. This SR verifies that the UHS water level is ≥ 184 ft mean sea level. ## SURVEILLANCE REQUIREMENTS (continued) ## SR 3.7.9.2 This SR verifies that the SWS is available to cool the CCW System to at least its maximum design temperature with the maximum accident or normal design heat loads for 30 days following a Design Basis Accident. The 24 hour Frequency is based on operating experience related to trending of the parameter variations during the applicable MODES. This SR verifies that the water temperature at the discharge of the Service Water Pumps is ≤ 95°F. ### **REFERENCES** - 1. FSAR, Section 9.2.5. - 2. Regulatory Guide 1.27. B 3.7.10 Control Room Emergency Filtration/Pressurization System (CREFS) ### **BASES** ### **BACKGROUND** The CREFS provides a protected environment from which operators can control the unit following an uncontrolled release of radioactivity. The Unit 1 and 2 control room is a common room served by a shared CREFS. The CREFS consists of two independent, redundant trains that recirculate and filter the control room air in conjunction with the CRACS, and two independent, redundant trains that pressurize the control room with filtered outside air. Each train consists of a prefilter, a high efficiency particulate air (HEPA) filter, an activated charcoal adsorber section for removal of gaseous activity (principally iodines), and a fan. Each pressurization train contains a heater, ductwork, valves or dampers, and instrumentation which also form part of the system. The CREFS is an emergency system, parts of which may also operate during normal unit operations in the standby mode of operation. Upon receipt of the actuating signal(s), normal air supply to the control room is isolated, and the stream of ventilation air is recirculated through the system filter trains. The prefilters remove any large particles in the air to_prevent excessive loading of the HEPA filters and charcoal adsorbers. Continuous operation of each pressurization train for at least 10 hours per month, with the heaters energized, reduces moisture buildup on the HEPA filters and adsorbers. Continuous heater operation during the 10 hour test is assured by operating the heaters with fan flow and allowing only the protective thermal cutout features of the heater controls to be functional. The heater is important to the effectiveness of the charcoal adsorbers. Actuation of the CREFS places the system in the emergency recirculation mode of operation. Actuation of the system to the emergency recirculation mode of operation, closes the unfiltered outside air intake and unfiltered exhaust dampers, and aligns the system for recirculation of the control room air through the redundant trains of HEPA and the charcoal filters. The emergency recirculation mode of operation also initiates pressurization and filtered ventilation of the air supply to the control room. # BACKGROUND (continued) The normal outside air supply is filtered, diluted with building air from the computer rooms, and added to the air being recirculated from the control room. Pressurization of the control room prevents infiltration of unfiltered air from the surrounding areas of the building. The air entering the control room is continuously monitored by radiation detectors. One detector output above the setpoint will cause the control room ventilation to be isolated. The CREFS is then started manually. A single train will pressurize the control room to about 0.125 inches water gauge. The CREFS operation in maintaining the control room habitable is discussed in the FSAR, Section 6.4 (Ref. 1). Redundant supply and recirculation trains provide the required filtration should an excessive pressure drop develop across the other filter train. Normally open isolation dampers are arranged in series pairs so that the failure of one damper to shut will not result in a breach of isolation. The CREFS is designed in accordance with Seismic Category I requirements. The CREFS is designed to maintain the control room environment for 30 days of continuous occupancy after a Design Basis Accident (DBA) without exceeding a 5 rem whole body dose or its equivalent to any part of the body. ## APPLICABLE SAFETY ANALYSES The CREFS components are arranged in redundant, safety related ventilation trains. The location of components and ducting within the control room
envelope ensures an adequate supply of filtered air to all areas requiring access. The CREFS provides airborne radiological protection for the control room operators, as demonstrated by the control room accident dose analyses for the most limiting design basis loss of coolant accident, fission product release presented in the FSAR, Chapter 15 (Ref. 2). The worst case single active failure of a component of the CREFS, assuming a loss of offsite power, does not impair the ability of the system to perform its design function. The CREFS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). ### LCO Two independent and redundant CREFS trains are required to be OPERABLE to ensure that at least one is available assuming a single failure disables the other train. Total system failure could result in exceeding a dose of 5 rem to the control room operator in the event of a large radioactive release. The CREFS is considered OPERABLE when the individual components necessary to limit operator exposure are OPERABLE in both trains. A CREFS train is OPERABLE when the associated: - a. Fans are OPERABLE; (recirculation, filtration, Pressurization, and CRACS Fans) - HEPA filters and charcoal adsorbers are not excessively restricting flow, and are capable of performing their filtration functions; and - c. Heater, ductwork, valves, and dampers are OPERABLE, and air circulation can be maintained. In addition, the control room boundary must be maintained, including the integrity of the walls, floors, ceilings, ductwork, and access doors. ### **APPLICABILITY** With either unit in MODES 1, 2, 3, or 4 or during movement of irradiated fuel assemblies or during CORE ALTERATIONS, CREFS must be OPERABLE to control operator exposure during and following a DBA. During movement of irradiated fuel assemblies and CORE ALTERATIONS, the CREFS must be OPERABLE to cope with the release from a fuel handling accident. ### **ACTIONS** ### **A.1** When one CREFS train is inoperable, action must be taken to restore OPERABLE status within 7 days. In this Condition, the remaining OPERABLE CREFS train is adequate to perform the control room protection function. However, the overall reliability is reduced because a single failure in the OPERABLE CREFS train could result ### **ACTIONS** ## A.1 (continued) in loss of CREFS function. The 7 day Completion Time is based on the low probability of a DBA occurring during this time period, and ability of the remaining train to provide the required capability. ## **B.1** and **B.2** In MODE 1, 2, 3, or 4, if the inoperable CREFS train cannot be restored to OPERABLE status within the required Completion Time, the unit must be placed in a MODE that minimizes accident risk. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ## C.1, C.2.1, and C.2.2 During movement of irradiated fuel assemblies or during CORE ALTERATIONS, if the inoperable CREFS train cannot be restored to OPERABLE status within the required Completion Time, action must be taken to immediately place the OPERABLE CREFS train in the emergency recirculation mode. This action ensures that the remaining train is OPERABLE, that no failures preventing automatic actuation will occur, and that any active failure would be readily detected. An alternative to Required Action C.1 is to immediately suspend activities that could result in a release of radioactivity that might require isolation of the control room. This places the unit in a condition that minimizes risk. This does not preclude the movement of fuel to a safe position. ## D.1 and D.2 During movement of irradiated fuel assemblies or during CORE ALTERATIONS, with two CREFS trains inoperable, action must be taken immediately to suspend activities that could result in a release of radioactivity that might enter the control room. This places the unit in a condition that minimizes accident risk. This does not preclude the movement of fuel to a safe position. # ACTIONS (continued) ## <u>E.1</u> If both CREFS trains are inoperable in MODE 1, 2, 3, or 4, the CREFS may not be capable of performing the intended function and the unit is in a condition outside the accident analyses. Therefore, LCO 3.0.3 must be entered immediately. ## SURVEILLANCE REQUIREMENTS ## SR 3.7.10.1 Standby systems should be checked periodically to ensure that they function properly. As the environment and normal operating conditions on this system are not too severe, testing each train (CREFS and Pressurization) once every month provides an adequate check of this system. The CREFS trains are initiated from the control room with flow through the HEPA and charcoal filters. Monthly heater operations dry out any moisture accumulated in the charcoal from humidity in the ambient air. Systems with heaters must be operated for \geq 10 continuous hours with the heaters energized. Systems without heaters need only be operated for \geq 15 minutes to demonstrate the function of the system. The 31 day Frequency is based on the reliability of the equipment and the two train redundancy availability. ### SR 3.7.10.2 This SR verifies that the required CREFS testing is performed in accordance with the Ventilation Filter Testing Program (VFTP). The CREFS filter tests are in accordance with ASME N510-1989 (Ref. 3). The VFTP includes testing the performance of the HEPA filter, charcoal adsorber efficiency, flow rate, and the physical properties of the activated charcoal. Specific test Frequencies and additional information are discussed in detail in the VFTP. ### SR 3.7.10.3 This SR verifies that each CREFS train starts and operates on an actual or simulated Safety Injection (SI) actuation signal. The Frequency of 18 months is specified in Regulatory Guide 1.52 (Ref. 4). This SR is modified by a note which provides an exception to the requirement to meet this SR in MODES 5 and 6. This is acceptable since the automatic SI actuation function is not required in these MODES. ## SURVEILLANCE REQUIREMENTS (continued) ## SR 3.7.10.4 This SR verifies the integrity of the control room enclosure, and the assumed inleakage rates of the potentially contaminated air. The control room positive pressure, with respect to atmosphere, is periodically tested to verify proper functioning of the CREFS. During the emergency mode of operation, the CREFS is designed to pressurize the control room ≥ 0.125 inches water gauge positive pressure with respect to the outside atmosphere in order to prevent unfiltered inleakage. The CREFS is designed to maintain this positive pressure with one train. The Frequency of 18 months is adequate and has been shown to be acceptable by operating experience. ## **REFERENCES** - 1. FSAR, Section 6.4. - 2. FSAR, Chapter 15. - 3. ASME N510-1989. - 4. Regulatory Guide 1.52, Rev. 2. ## B 3.7.11 Control Room Air Conditioning System (CRACS) ### **BASES** ### **BACKGROUND** The CRACS provides temperature control for the control room following isolation of the control room. The Unit 1 and 2 control room is a common room served by a shared CRACS. The CRACS consists of two independent and redundant trains that provide cooling of recirculated control room air. Each train consists of cooling coils, instrumentation, and controls to provide for control room temperature control. The CRACS is a subsystem providing air temperature control for the control room. The CRACS is a normal and emergency system. A single train will provide the required temperature control. The CRACS operation in maintaining the control room temperature is discussed in the FSAR, Section 6.4 (Ref. 1). ## APPLICABLE SAFETY ANALYSES The design basis of the CRACS is to maintain the control room temperature for 30 days of continuous occupancy. The CRACS components are arranged in redundant, safety related trains. During emergency operation, the CRACS maintains the temperature at or below the continuous duty rating for equipment and instrumentation. A single active failure of a component of the CRACS, with a loss of offsite power, does not impair the ability of the system to perform its design function. Redundant detectors and controls are provided for control room temperature control. The CRACS is designed in accordance with Seismic Category I requirements. The CRACS is capable of removing sensible and latent heat loads from the control room, which include consideration of equipment heat loads and personnel occupancy requirements, to ensure equipment OPERABILITY. The CRACS satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO Two independent and redundant trains of the CRACS are required to be OPERABLE to ensure that at least one is available, assuming a single failure disabling the other train. Total system failure could result in the equipment operating temperature exceeding limits in the event of an accident. The CRACS is considered to be OPERABLE when the individual components necessary to maintain the control room temperature are OPERABLE in both trains. These components include the cooling coils and associated temperature control instrumentation. In addition, the CRACS must be operable to the extent that air circulation can be maintained. CRACS recirculation provides the motive force for heat removal and control room filtration cleanup in conjunction with the CREFS recirculation and filtration units. The loss of CRACS cooling on only one train will not degrade the associated train of CREFS cleanup filtration. ## **APPLICABILITY** With either unit in MODES 1, 2, 3, 4, or during movement of irradiated fuel assemblies or during CORE ALTERATIONS, the CRACS must be OPERABLE to ensure that the control room temperature will not exceed equipment operational requirements following isolation of the control room. ## **ACTIONS** ### **A.1** With one
CRACS train inoperable, action must be taken to restore OPERABLE status within 30 days. In this Condition, the remaining OPERABLE CRACS train is adequate to maintain the control room temperature within limits. However, the overall reliability is reduced because a single failure in the OPERABLE CRACS train could result in loss of CRACS function. The 30 day Completion Time is based on the low probability of an event requiring control room isolation, the consideration that the remaining train can provide the required protection, and that alternate safety or nonsafety related cooling means are available. # ACTIONS (continued) ## B.1 and B.2 In MODE 1, 2, 3, or 4, if the inoperable CRACS train cannot be restored to OPERABLE status within the required Completion Time, the unit must be placed in a MODE that minimizes the risk. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ### C.1, C.2.1, and C.2.2 During movement of irradiated fuel, or during CORE ALTERATIONS, if the inoperable CRACS train cannot be restored to OPERABLE status within the required Completion Time, the OPERABLE CRACS train must be placed in operation immediately. This action ensures that the remaining train is OPERABLE, that no failures preventing automatic actuation will occur, and that active failures will be readily detected. An alternative to Required Action C.1 is to immediately suspend activities that present a potential for releasing radioactivity that might require isolation of the control room. This places the unit in a condition that minimizes accident risk. This does not preclude the movement of fuel to a safe position. ## D.1 and D.2 During movement of irradiated fuel assemblies, or during CORE ALTERATIONS, with two CRACS trains inoperable, action must be taken immediately to suspend activities that could result in a release of radioactivity that might require isolation of the control room. This places the unit in a condition that minimizes risk. This does not preclude the movement of fuel to a safe position. ### **E.1** If both CRACS trains are inoperable in MODE 1, 2, 3, or 4, the control room CRACS may not be capable of performing its intended function. Therefore, LCO 3.0.3 must be entered immediately. ## SURVEILLANCE REQUIREMENTS ## SR 3.7.11.1 This SR verifies that the heat removal capability of the system is sufficient to remove the heat load assumed in the safety analyses in the control room. This SR consists of system testing. The 18 month Frequency is appropriate since significant degradation of the CRACS is slow and is not expected over this time period. REFERENCES 1. FSAR, Section 6.4. # B 3.7.12 Penetration Room Filtration (PRF) System ### **BASES** ### **BACKGROUND** The PRF System filters airborne radioactive particulates from the area of the fuel pool following a fuel handling accident or ECCS pump rooms and penetration area of the Auxiliary Building following a loss of coolant accident (LOCA). The PRF System consists of two independent and redundant trains. Each train consists of a heater, a prefilter, a high efficiency particulate air (HEPA) filter, an activated charcoal adsorber section for removal of gaseous activity (principally iodines), and a recirculation fan and an exhaust fan. Ductwork, valves or dampers, and instrumentation also form part of the system. The heater is not credited in the analysis but serves to reduce the relative humidity of the air stream. The system initiates filtered ventilation of the spent fuel pool room following receipt of a high radiation signal or a low air flow signal from the normal ventilation system. The system initiates filtered ventilation of the ECCS pump rooms and penetration area following receipt of a containment isolation actuation system (CIAS) Phase B signal and manual isolation of the spent fuel pool room. The PRF System is a standby system normally aligned to filter the spent fuel pool room. During emergency operation the PRF System filters the spent fuel pool room or the ECCS pump rooms and penetration area with fan actuation signals and damper re-alignments to the ECCS pump rooms and penetration area (to support each respective area). Upon receipt of the actuating Engineering Safety Feature Actuation System signal for post LOCA conditions or upon receipt of a high radiation signal or a low air flow signal from the normal spent fuel pool room ventilation system, the PRF fans are started and the ventilation air stream discharges through the system filter trains. The PRF System is discussed in the FSAR, Sections 6.2.3, 9.4.2, and 15.4 (Refs. 1, 2, and 3, respectively) which detail the post accident, atmospheric cleanup functions. The prefilters remove any large particles in the air to prevent excessive loading of the HEPA filters and charcoal adsorbers. ## APPLICABLE SAFETY ANALYSES The PRF System design basis is established by the consequences of the limiting Design Basis Accidents (DBAs), which are a fuel handling accident and a large break loss of coolant accident (LOCA). The analysis of the fuel handling accident, given in Reference 3, assumes that all fuel rods in an assembly are damaged. The analysis of the LOCA assumes that radioactive materials leaked from the Emergency Core Cooling System (ECCS) are filtered and adsorbed by the PRF System. The PRF System also functions following a small break LOCA with a Phase B signal or manual operator actuation in those cases where the ECCS goes into the recirculation mode of long term cooling, to clean up releases of smaller leaks, such as from valve steam packing. The DBA analysis of the fuel handling accident and LOCA assumes that only one train of the PRF System is functional due to a single failure that disables the other train. The accident analysis accounts for the reduction in airborne radioactive material provided by the one remaining train of this filtration system. The amount of fission products available for release from the spent fuel pool room is determined for a fuel handling accident and ECCS leakage for a LOCA. The analysis of the effects and consequences of a fuel handling accident and a LOCA are presented in Reference 3. The assumptions and the analysis for the fuel handling accident follow the guidance provided in Regulatory Guide 1.25 (Ref. 4). The PRF System satisfies Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO Two independent and redundant trains of the PRF System are required to be OPERABLE to ensure that at least one train is available, assuming a single failure that disables the other train, coincident with a loss of offsite power. During movement of irradiated fuel in the spent fuel pool room both trains of PRF are required to be aligned to the spent fuel pool room. Total system failure could result in the atmospheric release from the spent fuel pool room or ECCS pump rooms exceeding 25% of the 10 CFR 100 (Ref. 5) limits in the event of a fuel handling accident or LOCA respectively. The PRF System is considered OPERABLE when the individual components necessary to control exposure in the spent fuel pool room, ECCS pump rooms, and penetration area are OPERABLE in both trains. A PRF train is considered OPERABLE when its associated: a. Recirculation and exhaust fans are OPERABLE; # LCO (continued) - b. HEPA filter and charcoal adsorber are not excessively restricting flow, and are capable of performing their filtration function; and - c. Ductwork, valves, and dampers are OPERABLE, and air circulation can be maintained. ## **APPLICABILITY** In MODE 1, 2, 3, or 4, the PRF System is required to be OPERABLE to provide fission product removal associated with ECCS leaks due to a LOCA. In MODE 5 or 6, the PRF System is not required to be OPERABLE since the ECCS is not required to be OPERABLE. During movement of irradiated fuel in the spent fuel pool area, two trains of PRF are required to be OPERABLE and aligned to the spent fuel pool room to alleviate the consequences of a fuel handling accident. ### **ACTIONS** ### <u>A.1</u> With one PRF train inoperable, action must be taken to restore OPERABLE status within 7 days. During this period, the remaining OPERABLE train is adequate to perform the PRF function. The 7 day Completion Time is based on the risk from an event occurring requiring the inoperable PRF train, and the remaining PRF train providing the required protection. ### B.1 and B.2 In MODE 1, 2, 3, or 4, when Required Action A.1 cannot be completed within the associated Completion Time, or when both PRF trains are inoperable, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in MODE 3 within 6 hours, and in MODE 5 within 36 hours. The Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. # ACTIONS (continued) ## C.1 and C.2 When Required Action A.1 cannot be completed within the required Completion Time, during movement of irradiated fuel assemblies in the spent fuel pool room, the OPERABLE PRF train must be started immediately or fuel movement suspended. This action ensures that the remaining train is OPERABLE, that no undetected failures preventing system operation will occur, and that any active failure will be readily detected. If the system is not placed in operation, this action requires suspension of fuel movement, which precludes a fuel handling accident. This does not preclude the movement of fuel assemblies to a safe position. ## **D.1** When two trains of the PRF System are inoperable during movement of irradiated fuel assemblies in the spent fuel pool room, action must be taken to place the unit in a condition in which the LCO does
not apply. Action must be taken immediately to suspend movement of irradiated fuel assemblies in the spent fuel pool room. This does not preclude the movement of fuel to a safe position. ## SURVEILLANCE REQUIREMENTS ## SR 3.7.12.1 During movement of irradiated fuel in the spent fuel pool room, the two PRF trains are required to be aligned to the spent fuel pool room. When moving irradiated fuel, periodic verification of the PRF system alignment is required. During movement of irradiated fuel the potential exists for a fuel handling accident. Verification of the PRF train alignment when moving irradiated fuel provides assurance the correct system alignment is maintained to support the assumptions of the fuel handling accident analysis regarding the OPERABILITY of the PRF System. The 24-hour Frequency specified for this verification is adequate to confirm the PRF System alignment and has been shown to be acceptable by operating experience. This surveillance is modified by a note which clarifies that the surveillance need only be performed during the movement of irradiated fuel in the spent fuel pool room. ## SURVEILLANCE REQUIREMENTS (continued) ### SR 3.7.12.2 Standby systems should be checked periodically to ensure that they function properly. As the environmental and normal operating conditions on this system are not severe, testing each train once every month provides an adequate check on this system. This Surveillance requires that the operation of the PRF System be verified in the applicable alignment (post LOCA and/or refueling accident). The surveillance is applied separately to each operating mode of the PRF System as required by plant conditions. In MODE 1-4, operational testing in the post LOCA alignment is required to verify the capability of the system to perform in this capacity. Operational testing of the PRF System in the refueling accident alignment is only required to be performed to support the movement of irradiated fuel in the spent fuel pool storage room (when the potential exists for a fuel handling accident). Systems that do not credit the operation of heaters need only be operated for \geq 15 minutes to demonstrate the function of the system. The system is initiated from the control room with flow through the HEPA and charcoal filters. The 31 day Frequency is based on the known reliability of the equipment and the two train redundancy available. ### SR 3.7.12.3 This SR verifies that the required PRF System testing is performed in accordance with the Ventilation Filter Testing Program (VFTP). The PRF System filter tests are in accordance with ASME N510-1989 (Ref. 6). The VFTP includes testing HEPA filter performance, charcoal adsorber efficiency, system flow rate, and the physical properties of the activated charcoal (general use and following specific operations). Specific test frequencies and additional information are discussed in detail in the VFTP. ## SR 3.7.12.4 This SR verifies that each PRF train starts and operates on an actual or simulated Phase B actuation signal. In addition, the normal spent fuel pool ventilation system must be verified to isolate on an actual or simulated spent fuel pool ventilation low differential pressure signal and on an actual or simulated spent fuel pool high radiation signal. The 18 month Frequency is consistent with Reference 7. ## SURVEILLANCE REQUIREMENTS (continued) ## SR 3.7.12.5 This SR verifies the integrity of the ECCS pump rooms and penetration area boundary. The ability of the boundary to maintain negative pressure with respect to potentially uncontaminated adjacent areas is periodically tested to verify proper function of the PRF System. During the post-LOCA mode of operation, the PRF System is designed to maintain a slight negative pressure in the ECCS pump rooms and penetration area boundary, to prevent unfiltered LEAKAGE. The PRF System is designed to maintain \leq -0.125 inches water gauge with respect to adjacent area pressure (as measured by the ΔP between the PRF mechanical equipment room and the RHR Heat Exchanger Room) at a flow rate of \leq 5,500 cfm. An 18 month Frequency (on a STAGGERED TEST BASIS) is consistent with Reference 7. ## SR 3.7.12.6 During the fuel handling mode of operation, the PRF is designed to maintain a slightly negative pressure in the spent fuel pool room with respect to atmospheric pressure and surrounding areas at a flow rate of $\leq 5,500$ cfm, to prevent unfiltered leakage. The slightly negative pressure is verified by using a non-rigorous method that yields some observable identification of the slightly negative pressure. Examples of non-rigorous methods are smoke sticks, hand held differential pressure indicators, or other measurement devices that do not provide for an absolute measurement. ## REFERENCES - 1. FSAR, Section 6.2.3. - 2. FSAR, Section 9.4.2. - 3. FSAR, Sections 15.4.1 and 15.4.5. - 4. Regulatory Guide 1.25. - 5. 10 CFR 100. - 6. ASME N510-1989. - 7. Regulatory Guide 1.52 (Rev. 2). ## B 3.7.13 Fuel Storage Pool Water Level ### **BASES** ### **BACKGROUND** The minimum water level in the fuel storage pool meets the assumptions of iodine decontamination factors following a fuel handling accident. The specified water level shields and minimizes the general area dose when the storage racks are filled to their maximum capacity. The water also provides shielding during the movement of spent fuel. A general description of the fuel storage pool design is given in the FSAR, Section 9.1.2 (Ref. 1). A description of the Spent Fuel Pool Cooling and Cleanup System is given in the FSAR, Section 9.1.3 (Ref. 2). The assumptions of the fuel handling accident are given in the FSAR, Section 15.4.5 (Ref. 3). ## APPLICABLE SAFETY ANALYSES The minimum water level in the fuel storage pool meets the assumptions of the fuel handling accident described in Regulatory Guide 1.25 (Ref. 4). The resultant 2 hour thyroid dose per person at the site boundary is well within the 10 CFR 100 (Ref. 5) limits. According to Reference 4, there is 23 ft of water between the top of the damaged fuel bundle and the fuel pool surface during a fuel handling accident. With 23 ft of water, the assumptions of Reference 4 can be used directly. In practice, this LCO preserves this assumption for the bulk of the fuel in the storage racks. In the case of a single bundle dropped and lying horizontally on top of the spent fuel racks, however, there may be < 23 ft of water between the top of the fuel bundle and the surface, indicated by the width of the bundle. To offset this small nonconservatism, the analysis assumes that all fuel rods fail, although analysis shows that only the first few rows fail from a hypothetical maximum drop. The fuel storage pool water level satisfies Criteria 2 and 3 of 10 CFR 50.36(c)(2)(ii). ## LCO The fuel storage pool water level is required to be ≥ 23 ft over the top of irradiated fuel assemblies seated in the storage racks. The specified water level preserves the assumptions of the fuel handling accident analysis (Ref. 3). As such, it is the minimum required for fuel storage and movement within the fuel storage pool. ## **APPLICABILITY** This LCO applies during movement of irradiated fuel assemblies in the fuel storage pool, since the potential for a release of fission products exists. ## **ACTIONS** ## **A.1** Required Action A.1 is modified by a Note indicating that LCO 3.0.3 does not apply. When the initial conditions for prevention of an accident cannot be met, steps should be taken to preclude the accident from occurring. When the fuel storage pool water level is lower than the required level, the movement of irradiated fuel assemblies in the fuel storage pool is immediately suspended to a safe position. This action effectively precludes the occurrence of a fuel handling accident. This does not preclude movement of a fuel assembly to a safe position. If moving irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODES 1, 2, 3, and 4, the fuel movement is independent of reactor operations. Therefore, inability to suspend movement of irradiated fuel assemblies is not sufficient reason to require a reactor shutdown. # SURVEILLANCE REQUIREMENTS # SR 3.7.13.1 This SR verifies sufficient fuel storage pool water is available in the event of a fuel handling accident. The water level in the fuel storage pool must be checked periodically. The 7 day Frequency is appropriate because the volume in the pool is normally stable. Water level changes are controlled by plant procedures and are acceptable based on operating experience. ## SURVEILLANCE REQUIREMENTS ## SR 3.7.13.1 (continued) During refueling operations, the level in the fuel storage pool is in equilibrium with the refueling canal, and the level in the refueling canal is checked daily in accordance with SR 3.9.6.1 (refueling cavity water level verification). #### **REFERENCES** - 1. FSAR, Section 9.1.2. - 2. FSAR, Section 9.1.3. - 3. FSAR, Section 15.4.5. - 4. Regulatory Guide 1.25, Rev. 0. - 5. 10 CFR 100.11. #### **B 3.7 PLANT SYSTEMS** B 3.7.14 Fuel Storage Pool Boron Concentration #### **BASES** #### **BACKGROUND** Fuel assemblies are stored in high density racks. The spent fuel storage racks contain storage locations for 1407 fuel assemblies. Westinghouse 17X17 fuel assemblies with initial enrichments less than or equal to 5.0 weight percent U-235 can be stored in any location in the spent fuel storage pool provided the fuel burnup-enrichment combinations are within the limits specified in Figure 3.7.15-1 of the Technical Specifications. Fuel assemblies that do not meet the burnup-enrichment combination of Figure 3.7.15-1 may be stored in the spent fuel storage pool in accordance with the patterns described in Figures 4.3.1-1 through 4.3.1-5. The acceptable storage configurations are based on the "Westinghouse Spent Fuel Rack Criticality Analysis Methodology",
WCAP-14416-NP-A, Rev. 1, (Ref. 4) as implemented in the "Farley Units 1 and 2 Spent Fuel Rack Criticality Analysis Using Soluble Boron Credit," CAA-97-138, Rev. 1 (Ref. 7). This methodology ensures that the spent fuel pool storage rack multiplication factor, K_{eff} , is less than or equal to 0.95, as recommended by ANSI 57.2-1983 (Ref. 3) and NRC Guidance (Refs. 1, 2, and 6). A storage configuration is defined using K_{eff} calculations to ensure that K_{eff} will be less than 1.0 with no soluble boron under normal storage conditions including tolerances and uncertainties. Soluble boron credit is then used to maintain K_{eff} less than or equal to 0.95. A spent fuel pool boron concentration of 400 ppm will ensure that K_{eff} will be less than or equal to 0.95 for all analyzed combinations of storage patterns, enrichments, and burnups. The treatment of reactivity equivalencing uncertainties, as well as the calculation of postulated accidents crediting soluble boron is described in Ref.4. The above methodology was used to evaluate storage of Westinghouse 17X17 fuel assemblies with initial enrichments less than or equal to 5.0 weight percent U-235 in the FNP spent fuel storage pool. The resulting enrichment and burnup limits are shown in Figure 3.7.15-1. Checkerboard loading patterns are defined to allow storage of fuel assemblies that are not within the acceptable burnup domain of Figure 3.7.15-1. These storage requirements are shown in Technical Specification Figures 4.3.1-1 through 4.3.1-5. A # BACKGROUND (continued) spent fuel pool boron concentration of 2000 ppm ensures that no credible boron dilution event will result in a Keff greater than 0.95. Eleven damaged Westinghouse 17X17 fuel assemblies can be stored in the Unit 1 spent fuel storage pool in the 12 storage cell configuration shown in Technical Specification Figure 4.3.1-6. The 11 fuel assemblies contain a nominal enrichment of 3.0 weight percent U-235. ## APPLICABLE SAFETY ANALYSES Three accidents can be postulated for each storage configuration which could increase reactivity beyond the analyzed condition. The three postulated accidents include a loss of the spent fuel pool cooling system, dropping a fuel assembly into an already loaded storage cell, and the misloading of a fuel assembly into a cell for which the restrictions on location, enrichment, or burnup are not satisfied. An increase in the temperature of the water passing through the stored fuel assemblies causes a decrease in water density which would normally result in an addition of negative reactivity. However, since Boraflex is not considered to be present in the criticality analysis, and the spent fuel pool water contains a high concentration of boron, a density decrease results in a positive reactivity addition. The effect of an increase in reactivity due to an increase in temperature is bounded by the misload accident. In the case of a fuel assembly dropped into an already loaded storage cell, the upward axial leakage of that cell will be reduced. However, the overall effect on the storage rack activity would be insignificant, since only the upward axial leakage of a single cell is minimized. In addition, the neutronic coupling between the dropped fuel assembly and the already loaded assembly will be low due to a several inch separation of the active fuel regions due to the fuel assembly bottom nozzle. The effects of this accident are also bounded by the misload accident. The fuel assembly misloading accident involves the placement of a fuel assembly into a storage location for which the requirements on location, enrichment, or burnup are not met. This misload would result in a positive reactivity addition increasing Keff toward 0.95. The amount of soluble boron required to compensate for the positive reactivity added is 850 ppm, which is well below the LCO limit of 2000 ppm. # APPLICABLE SAFETY ANALYSES (continued) A spent fuel pool boron dilution evaluation determined that the volume of water necessary to dilute the spent fuel pool from the LCO limit of 2000 ppm to 400 ppm (the boron concentration required to maintain K_{eff} less than or equal to 0.95) is approximately 480,000 gallons. A spent fuel pool dilution of this volume is not a credible event, since it would require this large volume of water to be transferred from a source to the spent fuel pool, ultimately overflowing the pool. This event would be detected and terminated by plant personnel prior to exceeding a K_{eff} of 0.95. The concentration of dissolved boron in the fuel storage pool satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). #### LCO The fuel storage pool boron concentration is required to be \geq 2000 ppm. The specified concentration of dissolved boron in the fuel storage pool preserves the assumptions used in the analyses of the potential criticality accident scenarios as described in Reference 5. The specified boron concentration of 2000 ppm ensures that the spent fuel pool K_{eff} will remain less than or equal to 0.95 due to a postulated fuel assembly misload accident (850 ppm) or boron dilution event (400 ppm). #### **APPLICABILITY** This LCO applies whenever fuel assemblies are stored in the spent fuel storage pool. #### **ACTIONS** #### A.1 and A.2 The Required Actions are modified by a Note indicating that LCO 3.0.3 does not apply. When the concentration of boron in the fuel storage pool is less than required, immediate action must be taken to preclude the occurrence of an accident or to mitigate the consequences of an accident in progress. This is most efficiently achieved by immediately suspending the movement of fuel assemblies. Action is also initiated to restore the concentration of boron simultaneously with suspending movement of fuel assemblies. ## **ACTIONS** # A.1 and A.2 (continued) If the LCO is not met while moving irradiated fuel assemblies in MODE 5 or 6, LCO 3.0.3 would not be applicable. If moving irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the fuel movement is independent of reactor operation. Therefore, inability to suspend movement of fuel assemblies is not sufficient reason to require a reactor shutdown. ## SURVEILLANCE REQUIREMENTS ## SR 3.7.14.1 This SR verifies that the concentration of boron in the fuel storage pool is within the required limit. As long as this SR is met, the analyzed accidents are fully addressed. The 7 day Frequency is appropriate because no major replenishment of pool water is expected to take place over such a short period of time. ## REFERENCES - USNRC Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants, LWR Edition, NUREG-0800, June. 1987. - 2. USNRC Spent Fuel Storage Facility Design Bases (for Comment) Proposed Revision 2, 1981. - 3. ANS, "Design Requirements for Light Water Reactor Spent Fuel Storage Facilities at Nuclear Power Stations," ANSI/ANS-57.2-1983. - 4. WCAP-14416-NP-A, Rev. 1, "Westinghouse Spent Fuel Rack Criticality Analysis Methodology," November, 1996. - 5. FSAR, Section 4.3.2.7.2. - NRC, Letter to all Power Reactor Licensees from B.K. Grimes, "OT Position for Review and Acceptance of Spent Fuel Storage and Handling Applications," April 14, 1978. - 7. "Farley Units 1 and 2 Spent Fuel Rack Criticality Analysis Using Soluble Boron Credit," CAA-97-138, Rev. 1. #### **B 3.7 PLANT SYSTEMS** ## B 3.7.15 Spent Fuel Assembly Storage ## **BASES** ## **BACKGROUND** Fuel assemblies are stored in high density racks. The spent fuel storage racks contain storage locations for 1407 fuel assemblies. Westinghouse 17X17 fuel assemblies with initial enrichments less than or equal to 5.0 weight percent U-235 can be stored in any location in the spent fuel storage pool provided the fuel burnup-enrichment combinations are within the limits specified in Figure 3.7.15-1 of the Technical Specifications. Fuel assemblies that do not meet the burnup-enrichment combination of Figure 3.7.15-1 may be stored in the spent fuel storage pool in accordance with the patterns described in Figures 4.3.1-1 through 4.3.1-5. The acceptable storage configurations are based on the "Westinghouse Spent Fuel Rack Criticality Analysis Methodology," WCAP-14416-NP-A, Rev. 1, (Ref. 1) as implemented in "Farley Units 1 and 2 Spent Fuel Rack Criticality Analysis Using Soluble Boron Credit," CAA-97-138, Rev. 1 (Ref. 2). The following storage configurations and enrichment limits were evaluated in the spent fuel rack criticality analysis: Westinghouse 17X17 fuel assemblies with nominal enrichments less than or equal to 2.15 weight percent U-235 can be stored in any cell location as shown if Figure 4.3.1-2. Fuel assemblies with initial nominal enrichments greater than these limits must satisfy a minimum burnup requirement as shown in Figure 3.7.15-1. Westinghouse 17X17 fuel assemblies with nominal enrichments less than or equal to 5.0 weight percent U-235 can be stored in a 2 out of 4 checkerboard arrangement as shown in Figure 4.3.1-2. In the 2 out of 4 checkerboard storage arrangement, 2 fuel assemblies can be stored corner adjacent with empty storage cells. Westinghouse 17X17 fuel assemblies can be stored in a burned/fresh checkerboard arrangement of a 2X2 matrix of storage cells as shown in Figure 4.3.1-2. In the burned/fresh 2X2 checkerboard arrangement, three of the fuel assemblies must have an initial nominal enrichment less than or equal to 1.6 weight percent U-235, or satisfy a minimum burnup requirement for higher initial enrichments as shown in Figure 4.3.1-1. # BACKGROUND (continued) The fourth fuel assembly must have an initial nominal enrichment less than or equal to 3.9 weight percent U-235, or satisfy a minimum Integral Fuel Burnable Absorber requirement for higher initial enrichments to maintain the reference fuel assembly K∞ less than or equal to 1.455 at 68°F. Eleven damaged Westinghouse 17X17 fuel assemblies can be stored in the Unit 1 spent fuel storage pool in a 12 storage cell configuration surrounded
by empty cells as shown in Technical Specification Figure 4.3.1-6. The 11 fuel assemblies contain a nominal enrichment of 3.0 weight percent U-235. # APPLICABLE SAFETY ANALYSES Three accidents can be postulated for each storage configuration which could increase reactivity beyond the analyzed condition. The three postulated accidents include a loss of the spent fuel pool cooling system, dropping a fuel assembly into an already loaded storage cell, and the misloading of a fuel assembly into a cell for which the restrictions on location, enrichment, or burnup are not satisfied. An increase in the temperature of the water passing through the stored fuel assemblies causes a decrease in water density which would normally result in an addition of negative reactivity. However, since Boraflex is not considered to be present in the criticality analysis, and the spent fuel pool water contains a high concentration of boron, a density decrease results in a positive reactivity addition. The effect of an increase in reactivity due to an increase in temperature is bounded by the misload accident. In the case of a fuel assembly dropped into an already loaded storage cell, the upward axial leakage of that cell will be reduced. However, the overall effect on the storage rack activity would be insignificant, since only the upward axial leakage of a single cell is minimized. In addition, the neutronic coupling between the dropped fuel assembly and the already loaded assembly will be low due to a several inch separation of the active fuel regions due to the fuel assembly bottom nozzle. The effects of this accident are also bounded by the misload accident. # APPLICABLE SAFETY ANALYSES (continued) The fuel assembly misloading accident involves the placement of a fuel assembly into a storage location for which the requirements on location, enrichment, or burnup are not met. This misload would result in a positive reactivity addition increasing K_{eff} toward 0.95. The amount of soluble boron required to compensate for the positive reactivity added is 850 ppm, which is well below the LCO limit of 2000 ppm. The configuration of fuel assemblies in the fuel storage pool satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). ## LCO The restrictions on the placement of fuel assemblies within the spent fuel pool ensure the K_{eff} of the spent fuel storage pool will always remain < 0.95, assuming the pool to be flooded with borated water. The combination of initial enrichment and burnup are specified in Figure 3.7.15-1 for the All Cell Storage Configuration. Other acceptable enrichment, burnup, and checkerboard storage configurations are specified in Figures 4.3.1-1 through 4.3.1-6. ## **APPLICABILITY** This LCO applies whenever any fuel assembly is stored in the spent fuel storage pool. #### **ACTIONS** #### <u>A.1</u> Required Action A.1 is modified by a Note indicating that LCO 3.0.3 does not apply. When the configuration of fuel assemblies stored in the spent fuel storage pool is not in accordance with the acceptable combination of initial enrichments, burnup, and storage configurations, the immediate action is to initiate action to make the necessary fuel assembly movement(s) to bring the configuration into compliance with Figure 3.7.15-1 or Specification 4.3.1.1. If unable to move irradiated fuel assemblies while in MODE 5 or 6, LCO 3.0.3 would not be applicable. If unable to move irradiated fuel assemblies while in MODE 1, 2, 3, or 4, the action is independent of reactor operation. Therefore, inability to move fuel assemblies is not sufficient reason to require a reactor shutdown. ## SURVEILLANCE REQUIREMENTS ## SR 3.7.15.1 This SR verifies by administrative means (e.g., Core Loading Plan, Tote computer code output or TrackWorks program) that the initial enrichment and burnup of the fuel assembly is within the acceptable burnup domain of Figure 3.7.15-1. For fuel assemblies in the unacceptable range of Figure 3.7.15-1, performance of this SR will also ensure compliance with Specification 4.3.1.1. The frequency of within 7 days following the relocation or addition of fuel assemblies to the spent fuel storage pool ensures that fuel assemblies are stored within the configuration analyzed in the spent fuel rack criticality analysis. This surveillance would be performed after all of the fuel handling is completed during a refueling outage, or new fuel assemblies are placed into the spent fuel pool. This SR does not have to be performed following interruptions in fuel handling during defined fuel movements as described above (i.e., it is only required after all fuel movement associated with refueling operations is completed) or if only certain fuel assemblies are relocated to different storage locations within the pool (only the moved assemblies must be verified). The 7 day allowance for completion of this Surveillance provides adequate time for completion of a spent fuel pool inventory verification while minimizing the time that a fuel assembly could be misloaded during a refueling or the placement of new fuel assemblies into the spent fuel pool. The boron concentration required by Specification 3.7.14 ensures that the spent fuel rack Keff remains within limits until the spent fuel pool inventory verification is performed. # REFERENCES - 1. WCAP-14416-NP-A, Rev. 1, "Westinghouse Spent Fuel Rack Criticality Analysis Methodology," November, 1996. - 2. "Farley Units 1 and 2 Spent Fuel Rack Criticality Analysis Using Soluble Boron Credit," CAA-97-138, Rev. 1. #### **B 3.7 PLANT SYSTEMS** B 3.7.16 Secondary Specific Activity #### **BASES** ### **BACKGROUND** Activity in the secondary coolant results from steam generator tube outleakage from the Reactor Coolant System (RCS). Under steady state conditions, the activity is primarily iodines with relatively short half lives and, thus, indicates current conditions. During transients, I-131 spikes have been observed as well as increased releases of some noble gases. Other fission product isotopes, as well as activated corrosion products in lesser amounts, may also be found in the secondary coolant. A limit on secondary coolant specific activity during power operation minimizes releases to the environment because of normal operation, anticipated operational occurrences, and accidents. This limit is lower than the activity value that might be expected from a 420 (Unit 1) or 450 (Unit 2) gallons per day tube leak (LCO 3.4.13, "RCS Operational LEAKAGE") of primary coolant at the limit of 0.30 μ Ci/gm (LCO 3.4.16, "RCS Specific Activity"). The steam line failure is assumed to result in the release of the noble gas and iodine activity contained in the steam generator inventory, the feedwater, and the reactor coolant LEAKAGE. Most of the iodine isotopes have short half lives (i.e., < 20 hours). With the specified activity limit, the resultant 2 hour thyroid dose to a person at the site boundary would be within the limits of 10 CFR 20.1001–20.2402 if the main steam safety valves (MSSVs) and Atmospheric Relief Valves (ARVs) are open for 2 hours following a trip from full power. Operating at the allowable limits results in a 2 hour site boundary exposure well within the 10 CFR 100 (Ref. 1) limits. ## APPLICABLE SAFETY ANALYSES The accident analysis of the main steam line break (MSLB), as discussed in the FSAR, Chapter 15 (Ref. 2) assumes the initial secondary coolant specific activity to have a radioactive isotope concentration of 0.10 μ Ci/gm DOSE EQUIVALENT I-131. This assumption is used in the analysis for determining the radiological ## APPLICABLE SAFETY ANALYSES (continued) consequences of the postulated accident. The accident analysis, based on this and other assumptions, shows that the radiological consequences of an MSLB do not exceed a small fraction of the site boundary limits (Ref. 1) for whole body and thyroid dose rates. With the loss of offsite power, the remaining steam generators are available for core decay heat dissipation by venting steam to the atmosphere through the MSSVs and steam generator atmospheric relief valves (ARVs). The Auxiliary Feedwater System supplies the necessary makeup to the steam generators. Venting continues until the reactor coolant temperature and pressure have decreased sufficiently for the Residual Heat Removal System to complete the cooldown. In the evaluation of the radiological consequences of this accident, the activity released from the steam generator connected to the failed steam line is assumed to be released directly to the environment. The unaffected steam generator is assumed to discharge steam and any entrained activity through the MSSVs and ARVs during the event. Since no credit is taken in the analysis for activity plateout or retention, the resultant radiological consequences represent a conservative estimate of the potential integrated dose due to the postulated steam line failure. Secondary specific activity limits satisfy Criterion 2 of 10 CFR 50.36(c)(2)(ii). ## LCO As indicated in the Applicable Safety Analyses, the specific activity of the secondary coolant is required to be $\leq 0.10~\mu\text{Ci/gm}$ DOSE EQUIVALENT I-131 to limit the radiological consequences of a Design Basis Accident (DBA) to a small fraction of the required limit (Ref. 1). Monitoring the specific activity of the secondary coolant in the steam generators ensures that when secondary specific activity limits are exceeded, appropriate actions are taken in a timely manner to place the unit in an operational MODE that would minimize the radiological consequences of a DBA. ## **APPLICABILITY** In MODES 1, 2, 3, and 4, the limits on secondary specific activity apply due to the potential for secondary steam releases to the atmosphere. In MODES 5 and 6, the steam generators are not being used for heat removal. Both the RCS and steam generators are depressurized, and primary to secondary LEAKAGE is minimal. Therefore, monitoring of secondary specific activity is not
required. #### **ACTIONS** ## A.1 and A.2 DOSE EQUIVALENT I-131 exceeding the allowable value in the secondary coolant, is an indication of a problem in the RCS and contributes to increased post accident doses. If the secondary specific activity cannot be restored to within limits within the associated Completion Time, the unit must be placed in a MODE in which the LCO does not apply. To achieve this status, the unit must be placed in at least MODE 3 within 6 hours, and in MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging unit systems. ## SURVEILLANCE REQUIREMENTS #### SR 3.7.16.1 This SR verifies that the secondary specific activity in the steam generators is within the limits of the accident analysis. A gamma isotopic analysis of the secondary coolant, which determines DOSE EQUIVALENT I-131, confirms the validity of the safety analysis assumptions as to the source terms in post accident releases. It also serves to identify and trend any unusual isotopic concentrations that might indicate changes in reactor coolant activity or LEAKAGE. The 31 day Frequency is based on the detection of increasing trends of the level of DOSE EQUIVALENT I-131, and allows for appropriate action to be taken to maintain levels below the LCO limit. #### **REFERENCES** - 1. 10 CFR 100.11. - 2. FSAR, Chapter 15. #### **B 3.8 ELECTRICAL POWER SYSTEMS** B 3.8.1 AC Sources—Operating #### **BASES** #### **BACKGROUND** The unit Class 1E AC Electrical Power Distribution System AC sources consist of the offsite power sources (preferred power sources, normal and alternate), and the onsite standby power sources (Train A and Train B diesel generators (DGs)). As required by 10 CFR 50, Appendix A, GDC 17 (Ref. 1), the design of the AC electrical power system provides independence and redundancy to ensure an available source of power to the Engineered Safety Feature (ESF) systems. The onsite Class 1E AC Distribution System is divided into redundant load groups (trains) so that the loss of any one group does not prevent the minimum safety functions from being performed. Each train has connections to two preferred offsite power sources and a single DG set. DG set A consists of the 1-2A and 1C DGs. DG set B consists of the 1B DG (Unit 1) and the 2B DG (Unit 2). Offsite power is supplied to the 230 kV and 500 kV switchyard(s) from the transmission network by five transmission lines. From the 230 kV switchyard, two electrically and physically separated circuits provide AC power, through startup auxiliary transformers, to the 4.16 kV ESF buses. A detailed description of the offsite power network and the circuits to the Class 1E ESF buses is found in the FSAR. Chapter 8 (Ref. 2). An offsite circuit consists of all breakers, transformers, switches, interrupting devices, cabling, and controls required to transmit power from the offsite transmission network to the onsite Class 1E ESF bus(es). In addition to providing a pre-determined sequence of loading the DGs, the train A and train B automatic load sequencers also function to actuate the required ESF loads on the offsite circuits. When offsite power is available, the automatic load sequencers function to simultaneously start the required ESF loads upon receipt of an SI actuation signal. The onsite standby power source is provided from 4 DGs (1-2A, 1B, 2B, and 1C). The DGs are of two different sizes. The 1B, 2B, and # BACKGROUND (continued) 1-2A DGs are rated at 4075 kW and the 1C DG is rated at 2850 kW. DG 1-2A and 1-C are assigned to the redundant load group train A. The train A load group is supplied from 4160V emergency Buses, F, H, and K. The 4160V H bus does not supply any design basis required loads by itself but is required to support the operation of DG 1C to supply the emergency Buses F and K which in turn supply design basis required loads. DGs 1B and 2B are assigned to the redundant load group train B. The train B load group is supplied from 4160V emergency Buses G, J, and L. The 4160V bus J does not supply any design basis required loads and is only required for the response to a station blackout which is not a design basis accident. DGs 1B and 2B are dedicated to train B of Unit 1 and Unit 2, respectively, and each DG comprises a required DG set for its associated unit. DGs 1-2A and 1C are dedicated to train A but are shared between both units and together comprise a required DG set for both units. However, there are no design basis events in which DG 1-2A or 1C are required to supply power to the safety loads of both units simultaneously. In all events, DG 1-2A and 1C are assigned to only one of the two units depending on the event. The 4.16 kV emergency busses required to supply equipment essential for safe shutdown of the plant at F, G, H, J, K, and L for each unit. These are supplied by two startup transformers on each unit connected to the offsite source during normal and emergency operating conditions. In the event one startup transformer on a unit fails, three of the emergency busses on that unit will be de-energized with their loss annunciated in the Main Control Room. The respective busses Diesel Generators will start and LOSP loads will be sequenced on to those busses. In the event Diesels fail, manual action will be required to re-energize the affected busses from the other startup transformer for that unit. A DG starts automatically on a safety injection (SI) signal (i.e., low pressurizer pressure or high containment pressure signals) or on an ESF bus degraded voltage or undervoltage signal (refer to LCO 3.3.5, "Loss of Power (LOP) Diesel Generator (DG) Start Instrumentation"). After the DG has started, it will automatically tie to its respective bus after offsite power is tripped as a consequence of ESF bus undervoltage or degraded voltage, independent of or coincident with an SI signal. The DGs will also start and operate in the standby mode without tying to the ESF bus on an SI signal alone. Following the trip of offsite power, a sequencer strips nonpermanent loads from the ESF # BACKGROUND (continued) bus. When the DG is tied to the ESF bus, loads are then sequentially connected to its respective ESF bus by the automatic load sequencer. The sequencing logic controls the permissive and starting signals to motor breakers to prevent overloading the DG by automatic load application. In the event of a loss of preferred power, the ESF electrical loads are automatically connected to the DGs in sufficient time to provide for safe reactor shutdown and to mitigate the consequences of a Design Basis Accident (DBA) such as a loss of coolant accident (LOCA). Certain required unit loads are returned to service in a predetermined sequence in order to prevent overloading the DG in the process. Within 1 minute after the initiating signal is received, all loads needed to recover the unit or maintain it in a safe condition are returned to service. Ratings for Train A and Train B DGs satisfy the requirements of Regulatory Guide 1.9 (Ref. 3). The continuous service rating of each DG is 2850 kW for DG 1C and 4075 kW for DGs 1-2A, 1B, and 2B. DG 1C has a 2000 hour rating of 3100 kW and overload permissible up to 3250 kW for 300 hours per year. DGs 1-2A, 1B, and 2B have a 2000 hour rating of 4353 kW and overload permissible up to 4474 kW for 2 hours in any 24 hour period with a maximum of 300 hours cumulative per year. The ESF loads that are powered from the 4.16 kV ESF buses are listed in Reference 2. # APPLICABLE SAFETY ANALYSES The initial conditions of DBA and transient analyses in the FSAR, Chapter 6 (Ref. 4) and Chapter 15 (Ref. 5), assume ESF systems are OPERABLE. The AC electrical power sources are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System (RCS), and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems. ## APPLICABLE SAFETY ANALYSES (continued) The OPERABILITY of the AC electrical power sources is consistent with the initial assumptions of the Accident analyses and is based upon meeting the design basis of the unit. This results in maintaining at least one train of the onsite or offsite AC sources OPERABLE during Accident conditions in the event of: - a. An assumed loss of all offsite power or all onsite AC power; and - b. A worst case single failure. The AC sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). #### LCO Two qualified circuits (i.e., consistent with the requirements of GDC 17) consisting of two physically independent transmission lines from the offsite transmission network to the switchyard and two independent circuits between the switchyard and the onsite Class 1E Electrical Power System along with separate and independent DG sets for each train ensure availability of the required power to shut down the reactor and maintain it in a safe shutdown condition after an anticipated operational occurrence (AOO) or a postulated DBA. Qualified offsite circuits are those that are described in the FSAR and are part of the licensing basis for the unit. In addition, one automatic load sequencer per train must be OPERABLE (B1F, B2F, B1G, and B2G). Each offsite circuit must be capable of maintaining rated frequency and voltage, and accepting required loads during an accident, while connected to the ESF buses. Two physically independent circuits between the transmission network and the onsite system may consist of any combination that includes two of the five transmission lines normally supplying the 230 and 500 kV switchyards and both independent circuits from the 230 kV switchyard to the Class 1E buses via Startup Auxiliary
Transformers 1A (2A) and 1B (2B). The two of five combination of transmission lines may be shared between Unit 1 and 2. If either of the transmission lines are 500 kV, one 500/230 kV Autotransformer connecting the 500 and 230 kV switchyards is available. If both of the transmission lines are 500 kV, both 500/230 kV Autotransformers # (continued) connecting the 500 and 230 kV switchyards are available. Any combination of 500 and 230 kV circuit breakers required to complete the independent circuits is permissible. Each DG must be capable of starting, accelerating to rated speed and voltage, and connecting to its respective ESF bus on detection of bus undervoltage. This will be accomplished within 12 seconds. Each DG must also be capable of accepting required loads within the assumed loading sequence intervals, and continue to operate until offsite power can be restored to the ESF buses. For DG 1C this capability requires the support of the 4160 V H bus to enable DG 1C to supply the 4160 V buses F and K. These capabilities are required to be met from a variety of initial conditions such as DG in standby with the engine hot and DG in standby with the engine at ambient conditions. Additional DG capabilities must be demonstrated to meet required Surveillance, e.g., capability of the DG to revert to standby status on an ECCS signal while operating in parallel test mode. Proper sequencing of loads, including tripping of nonessential loads, is a required function for DG OPERABILITY. The AC sources in one train must be separate and independent (to the extent possible) of the AC sources in the other train. For the DGs, separation and independence are complete. For the offsite AC sources, separation and independence are to the extent practical. All ESF buses, with two power sources available, have their supply breakers interlocked such that the buses can receive power from only one source at a time. ## **APPLICABILITY** The AC sources and sequencers are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure that: - Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients; and - Adequate core cooling is provided and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA. # APPLICABILITY (continued) The AC power requirements for MODES 5 and 6 are covered in LCO 3.8.2, "AC Sources—Shutdown." #### **ACTIONS** ## <u>A.1</u> To ensure a highly reliable power source remains with one offsite circuit inoperable, it is necessary to verify the OPERABILITY of the remaining required offsite circuit on a more frequent basis. Since the Required Action only specifies "perform," a failure of SR 3.8.1.1 acceptance criteria does not result in a Required Action not met. However, if a second required circuit fails SR 3.8.1.1, the second offsite circuit is inoperable, and Condition C, for two offsite circuits inoperable, is entered. ## **A.2** Required Action A.2, which only applies if the train cannot be powered from an offsite source, is intended to provide assurance that an event coincident with a single failure of the associated DG will not result in a complete loss of safety function of critical redundant required features. These features are powered from the redundant AC electrical power train. The redundant required features referred to in this Required Action include the motor driven auxiliary feedwater pump as well as the turbine driven auxiliary feedwater pump. One motor driven auxiliary feedwater pump does not provide 100% of the auxiliary feedwater flow assumed in the safety analyses. Therefore, in order to ensure the auxiliary feedwater safety function, the turbine driven auxiliary feedwater pump must be considered a redundant required feature addressed by this Required Action. The Completion Time for Required Action A.2 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action, the Completion Time only begins on discovery that both: - a. The train has no offsite power supplying it loads; and - b. A required feature on the other train is inoperable. #### **ACTIONS** ## A.2 (continued) If at any time during the existence of Condition A (one offsite circuit inoperable) a redundant required feature subsequently becomes inoperable, this Completion Time begins to be tracked. Discovering no offsite power to one train of the onsite Class 1E Electrical Power Distribution System coincident with one or more inoperable required support or supported features, or both, that are associated with the other train that has offsite power, results in starting the Completion Times for the Required Action. Twenty-four hours is acceptable because it minimizes risk while allowing time for restoration before subjecting the unit to transients associated with shutdown. The remaining OPERABLE offsite circuit and DGs are adequate to supply electrical power to Train A and Train B of the onsite Class 1E Distribution System. The 24 hour Completion Time takes into account the component OPERABILITY of the redundant counterpart to the inoperable required feature. Additionally, the 24 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period. #### **A.3** According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition A for a period that should not exceed 72 hours. With one offsite circuit inoperable, the reliability of the offsite system is degraded, and the potential for a loss of offsite power is increased, with attendant potential for a challenge to the unit safety systems. In this Condition, however, the remaining OPERABLE offsite circuit and DGs are adequate to supply electrical power to the onsite Class 1E Distribution System. The 72 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period. The second Completion Time for Required Action A.3 establishes a limit on the maximum time allowed for any combination of required AC power sources to be inoperable during any single contiguous #### **ACTIONS** ## A.3 (continued) occurrence of failing to meet the LCO. If Condition A is entered while, for instance, a DG is inoperable and that DG is subsequently returned OPERABLE, the LCO may already have been not met for up to 10 days. This could lead to a total of 13 days, since initial failure to meet the LCO, to restore the offsite circuit. At this time, a DG could again become inoperable, the circuit restored OPERABLE, and an additional 10 days (for a total of 23 days) allowed prior to complete restoration of the LCO. The 13 day Completion Time provides a limit on the time allowed in a specified condition after discovery of failure to meet the LCO. This limit is considered reasonable for situations in which Conditions A and B are entered concurrently. The "AND" connector between the 72 hour and 13 day Completion Times means that both Completion Times apply simultaneously, and the more restrictive Completion Time must be met. As in Required Action A.2, the Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time that the LCO was initially not met, instead of at the time Condition A was entered. #### **B.1** The Condition B Required Actions are modified by a Note that is applicable when only one of the three individual DGs is inoperable. The Note specifies that the provisions of LCO 3.0.4 do not apply. The allowance provided by this note, to enter the MODE of applicability with a single inoperable DG, takes into account the capacity and capability of the remaining AC sources and the fact that operation is ultimately limited by the Condition B Completion Time for the inoperable DG set. To ensure a highly reliable power source remains with an inoperable DG set, it is necessary to verify the availability of the offsite circuits on a more frequent basis. Since the Required Action only specifies "perform," a failure of SR 3.8.1.1 acceptance criteria does not result in a Required Action being not met. However, if a circuit fails to pass SR 3.8.1.1, it is inoperable. Upon offsite circuit inoperability, additional Conditions and Required Actions must then be entered. # ACTIONS (continued) ## <u>B.2</u> Required Action B.2 is intended to provide assurance that a loss of offsite power, during the period that a DG set is inoperable, does not result in a complete loss of safety function of critical systems. These features are designed with redundant safety related trains. The redundant required features referred to in this Required Action include the motor driven auxiliary feedwater pump as well as the turbine driven auxiliary feedwater pump. One motor driven auxiliary feedwater pump does not provide 100% of the auxiliary feedwater flow assumed in the safety analyses. Therefore, in order to ensure the auxiliary feedwater safety function, the turbine driven auxiliary feedwater pump must be considered a redundant required feature addressed by this Required Action. Redundant required feature failures consist of inoperable features associated with a train, redundant to the train that has an inoperable DG set.) The Completion Time for Required Action B.2 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action, the Completion Time only begins on discovery that both: - a. An inoperable DG set exists; and - b. A
required feature on the other train (Train A or Train B) is inoperable. If at any time during the existence of this Condition (one DG set inoperable) a required feature subsequently becomes inoperable, this Completion Time would begin to be tracked. Discovering one required DG set inoperable coincident with one or more inoperable required support or supported features, or both, that are associated with the OPERABLE DG set, results in starting the Completion Time for the Required Action. Four hours from the discovery of these events existing concurrently is Acceptable because it minimizes risk while allowing time for restoration before subjecting the unit to transients associated with shutdown. #### **ACTIONS** ## B.2 (continued) In this Condition, the remaining OPERABLE DG set and offsite circuits are adequate to supply electrical power to the onsite Class 1E Distribution System. Thus, on a component basis, single failure protection for the required feature's function may have been lost; however, function has not been lost. The 4 hour Completion Time takes into account the OPERABILITY of the redundant counterpart to the inoperable required feature. Additionally, the 4 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period. # B.3.1 and B.3.2 Required Action B.3.1 provides an allowance to avoid unnecessary testing of OPERABLE DG(s). If it can be determined that the cause of the inoperable DG set does not exist on the OPERABLE DG set, SR 3.8.1.6 does not have to be performed. If the cause of inoperability exists on other DG(s), the other DG set would be declared inoperable upon discovery and Condition E of LCO 3.8.1 would be entered. Once the failure is repaired, the common cause failure no longer exists, and Required Action B.3.1 is satisfied. If the cause of the initial inoperable DG set cannot be confirmed not to exist on the remaining DG set, performance of SR 3.8.1.6 suffices to provide assurance of continued OPERABILITY of that DG set. In the event the inoperable DG set is restored to OPERABLE status prior to completing either B.3.1 or B.3.2, the plant corrective action program will continue to evaluate the common cause possibility. This continued evaluation, however, is no longer under the 24 hour constraint imposed while in Condition B. According to Generic Letter 84-15 (Ref. 7), 24 hours is reasonable to confirm that the OPERABLE DG set is not affected by the same problem as the inoperable DG set. #### <u>B,4</u> Operation may continue in Condition B for a period that should not exceed 10 days. #### **ACTIONS** ## B.4 (continued) In Condition B, the remaining OPERABLE DG set and offsite circuits are adequate to supply electrical power to the onsite Class 1E Distribution System. The 10 day Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period. The second Completion Time for Required Action B.4 establishes a limit on the maximum time allowed for any combination of required AC power sources to be inoperable during any single contiquous occurrence of failing to meet the LCO. If Condition B is entered while. for instance, an offsite circuit is inoperable and that circuit is subsequently restored OPERABLE, the LCO may already have been not met for up to 72 hours. This could lead to a total of 13 days, since initial failure to meet the LCO, to restore the DG. At this time, an offsite circuit could again become inoperable, the DG restored OPERABLE, and an additional 72 hours (for a total of 16 days) allowed prior to complete restoration of the LCO. The 13 day Completion Time provides a limit on time allowed in a specified condition after discovery of failure to meet the LCO. This limit is considered reasonable for situations in which Conditions A and B are entered concurrently. The "AND" connector between the 10 day and 13 day Completion Times means that both Completion Times apply simultaneously, and the more restrictive Completion Time must be met. As in Required Action B.2, the Completion Time allows for an exception to the normal "time zero" for beginning the allowed time "clock." This will result in establishing the "time zero" at the time that the LCO was initially not met, instead of at the time Condition B was entered. ## C.1 and C.2 Required Action C.1, which applies when two offsite circuits are inoperable, is intended to provide assurance that an event with a coincident single failure will not result in a complete loss of redundant required safety functions. The Completion Time for this failure of redundant required features is reduced to 12 hours from that allowed for one train without offsite power (Required Action A.2). The rationale for the reduction to 12 hours is that Regulatory Guide 1.93 (Ref. 6) allows a Completion Time of 24 hours for two required offsite circuits inoperable, based upon the assumption that two complete #### **ACTIONS** ## C.1 and C.2 (continued) safety trains are OPERABLE. When a concurrent redundant required feature failure exists, this assumption is not the case, and a shorter Completion Time of 12 hours is appropriate. These features are powered from redundant AC safety trains. The redundant required features referred to in this Required Action include the motor driven auxiliary feedwater pump as well as the turbine driven auxiliary feedwater pump. One motor driven auxiliary feedwater pump does not provide 100% of the auxiliary feedwater flow assumed in the safety analyses. Therefore, in order to ensure the auxiliary feedwater safety function, the turbine driven auxiliary feedwater pump must be considered a redundant required feature addressed by this Required Action. The Completion Time for Required Action C.1 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action the Completion Time only begins on discovery that both: - a. All required offsite circuits are inoperable; and - b. A required feature is inoperable. If at any time during the existence of Condition C (two offsite circuits inoperable) a required feature becomes inoperable, this Completion Time begins to be tracked. According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition C for a period that should not exceed 24 hours. This level of degradation means that the offsite electrical power system does not have the capability to effect a safe shutdown and to mitigate the effects of an accident; however, the onsite AC sources have not been degraded. This level of degradation generally corresponds to a total loss of the immediately accessible offsite power sources. Because of the normally high availability of the offsite sources, this level of degradation may appear to be more severe than other combinations of two AC sources inoperable that involve one or more DGs inoperable. However, two factors tend to decrease the severity of this level of degradation: #### **ACTIONS** ## C.1 and C.2 (continued) - a. The configuration of the redundant AC electrical power system that remains available is not susceptible to a single bus or switching failure; and - b. The time required to detect and restore an unavailable offsite power source is generally much less than that required to detect and restore an unavailable onsite AC source. With both of the required offsite circuits inoperable, sufficient onsite AC sources are available to maintain the unit in a safe shutdown condition in the event of a DBA or transient. In fact, a simultaneous loss of offsite AC sources, a LOCA, and a worst case single failure were postulated as a part of the design basis in the safety analysis. Thus, the 24 hour Completion Time provides a period of time to effect restoration of one of the offsite circuits commensurate with the importance of maintaining an AC electrical power system capable of meeting its design criteria. According to Reference 6, with the available offsite AC sources, two less than required by the LCO, operation may continue for 24 hours. If two offsite sources are restored within 24 hours, unrestricted operation may continue. If only one offsite source is restored within 24 hours, power operation continues in accordance with Condition A. #### D.1 and D.2 Pursuant to LCO 3.0.6, the Distribution System ACTIONS would not be entered even if all AC sources to it were inoperable, resulting in de-energization. Therefore, the Required Actions of Condition D are modified by a Note to indicate that when Condition D is entered with no AC source to any train, the Conditions and Required Actions for LCO 3.8.9, "Distribution Systems—Operating," must be immediately entered. This allows Condition D to provide requirements for the loss of one offsite circuit and one DG, without regard to whether a train is de-energized. LCO 3.8.9 provides the appropriate restrictions for a de-energized train. Operation may continue in Condition D for a period that should not exceed 24 hours. #### **ACTIONS** # D.1 and D.2 (continued) In Condition D, individual redundancy is lost in both the offsite electrical power system and the onsite AC electrical power system. Since power system redundancy is provided by two diverse sources of power, however, the reliability of the power systems in this Condition may appear higher than that in Condition C (loss of both required offsite circuits). This difference in reliability is offset by the susceptibility of this power system configuration to a single bus or switching failure. The 24 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during
this period. ## <u>E.1</u> With all or part of Train A DG set and Train B DG set inoperable, the capacity of the remaining standby AC sources is reduced depending on which combination of individual DGs is affected. Thus, with an assumed loss of offsite electrical power, standby AC sources may be insufficient to power the minimum required ESF functions. Since the offsite electrical power system is the only source of AC power for this level of degradation, the risk associated with continued operation for a very short time could be less than that associated with an immediate controlled shutdown (the immediate shutdown could cause grid instability, which could result in a total loss of AC power). Since any inadvertent generator trip could also result in a total loss of offsite AC power, however, the time allowed for continued operation is severely restricted. The intent here is to avoid the risk associated with an immediate controlled shutdown and to minimize the risk associated with this level of degradation. With all or part of each train of DG sets inoperable, operation may continue for a given unit for different periods of time depending on the combination of individual DGs that are inoperable. The length of time allowed increases with decreasing severity in the combinations of inoperable DGs. One set must be restored to operable status in 2 hours if DGs 1-2A, 1C, and 1B on Unit 1 or DGs 1-2A, 1C, and 2B on Unit 2 are inoperable. Operability of one set must be restored in 8 hours if DGs 1-2A and 1B on Unit 1 or DGs 1-2A and 2B on Unit 2 are inoperable. Operability of one set must be restored in 24 hours if DGs 1C and 1B on Unit 1 or DGs 1C and 2B on Unit 2 are inoperable. # ACTIONS (continued) # <u>F.1</u> Condition F provides the default Required Actions for the Conditions which address two inoperable offsite circuits or two inoperable DG sets. If the inoperable AC Sources cannot be restored to OPERABLE status within the applicable Completion Time, Required Action F.1 specifies that the unit be placed in MODE 3 within 6 hours. Once shut down, the unit is in a more stable condition and the time allowed to remain in MODE 3 is ultimately limited by the Required Actions and Completion Times applicable to a single inoperable AC Source based on the time that an AC Source initially became inoperable. In addition, the Required Actions applicable to one inoperable DG set or offsite circuit would remain applicable until both inoperable DG sets or offsite circuits are restored to OPERABLE status or the unit is placed in a MODE in which the LCO does not apply (MODE 5). The allowed Completion Times are reasonable to reach the required unit conditions from full power in an orderly manner and without challenging plant systems. ## <u>G.1</u> The sequencer(s) B1F, B2F, B1G, and B2G are an essential support system to both the offsite circuit and the DG associated with a given ESF bus. Furthermore, the sequencer is on the primary success path for most major AC electrically powered safety systems powered from the associated ESF bus. Therefore, loss of an ESF bus sequencer affects every major ESF system in the train. The 12 hour Completion Time provides a period of time to correct the problem commensurate with the importance of maintaining sequencer OPERABILITY. This time period also ensures that the probability of an accident (requiring sequencer OPERABILITY) occurring during periods when the sequencer is inoperable is minimal. #### H.1 and H.2 If the inoperable AC electric power sources cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems. # ACTIONS (continued) # <u>1.1</u> Condition I corresponds to a level of degradation in which all redundancy in the AC electrical power supplies has been lost. This condition exists when any combination of sources from the categories in LCO 3.8.1 totaling three or more are not OPERABLE. At this severely degraded level, any further losses in the AC electrical power system will cause a loss of function. Therefore, no additional time is justified for continued operation. The unit is required by LCO 3.0.3 to commence a controlled shutdown. ## SURVEILLANCE REQUIREMENTS The AC sources are designed to permit inspection and testing of all important areas and features, especially those that have a standby function, in accordance with 10 CFR 50, Appendix A, GDC 18 (Ref. 8). Periodic component tests are supplemented by extensive functional tests during refueling outages (under simulated accident conditions). The SRs for demonstrating the OPERABILITY of the DGs are in accordance with the recommendations of Regulatory Guide 1.108 (Ref. 9), as addressed in the FSAR. Where the SRs discussed herein specify voltage and frequency tolerances, the following is applicable. The minimum steady state output voltage of 3740 V is 90% of the nominal 4160 V output voltage. This value, which is specified in NEMA MG1 (Ref. 12), allows for voltage drop to the terminals of 4000 V motors whose minimum operating voltage is specified as 90% or 3600 V. It also allows for voltage drops to motors and other equipment down through the 120 V level where minimum operating voltage is also usually specified as 90% of name plate rating. The specified maximum steady state output voltage of 4580 V limits bus voltage to 110% of the nominal 4160 V. The specified minimum and maximum frequencies of the DG are 58.8 Hz and 61.2 Hz, respectively. These values are equal to \pm 2% of the 60 Hz nominal frequency and are derived from the recommendations given in Regulatory Guide 1.9 (Ref. 3). # SR 3.8.1.1 This SR ensures proper circuit continuity for the offsite AC electrical power supply to the onsite distribution network and availability of offsite AC electrical power. The breaker alignment verifies that each breaker is in its correct position to ensure that distribution buses and loads are connected to their preferred power source, and that ## SURVEILLANCE REQUIREMENTS # SR 3.8.1.1 (continued) appropriate independence of offsite circuits is maintained. The 7 day Frequency is adequate since breaker position is not likely to change without the operator being aware of it and because its status is displayed in the control room. ## SR 3.8.1.2 and SR 3.8.1.6 These SRs help to ensure the availability of the standby electrical power supply to mitigate DBAs and transients and to maintain the unit in a safe shutdown condition. To minimize the wear on moving parts that do not get lubricated when the engine is not running, these SRs are modified by a Note (Note 2 for SR 3.8.1.2) to indicate that all DG starts for these Surveillances may be preceded by an engine prelube period and followed by a warmup period prior to loading. For the purposes of SR 3.8.1.2 and SR 3.8.1.6 testing, the DGs are started from standby conditions. Standby conditions for a DG mean that the diesel engine coolant and oil are being continuously circulated and temperature is being maintained consistent with manufacturer recommendations. In order to reduce stress and wear on diesel engines, some manufacturers recommend a modified start in which the starting speed of DGs is limited, warmup is limited to this lower speed, and the DGs are gradually accelerated to synchronous speed prior to loading. These start procedures are the intent of Note 3, which is only applicable when such modified start procedures are recommended by the manufacturer. During a modified start, a DG will not respond to a ESF or LOSP signal automatically. Therefore, the DG is considered inoperable with respect to response to ESF or LOSP signals during the brief duration of modified starts. If necessary, Operator action is required to place the speed control in automatic and reset the excitation system. This will immediately allow the DG to achieve normal voltage and frequency. The DG shall be verified to accelerate to at least a synchronous speed of 900 rpm for the 2850 kW generator and 514 rpm for the 4075 kW generators. ## SURVEILLANCE REQUIREMENTS # SR 3.8.1.2 and SR 3.8.1.6 (continued) SR 3.8.1.6 requires that, at a 184 day Frequency, the DG starts from standby conditions and achieves required voltage and frequency within 12 seconds. The permissive for closing the generator output breaker requires frequency to be greater than 57 Hz and voltage greater than 3952 V. The 12 second start requirement supports the assumptions of the design basis LOCA analysis in the FSAR, Chapter 15 (Ref. 5). The 12 second start requirement is not applicable to SR 3.8.1.2 (see Note 3) when a modified start procedure as described above is used. If a modified start is not used, the 12 second start requirement of SR 3.8.1.6 applies. Since SR 3.8.1.6 requires a 12 second start, it is more restrictive than SR 3.8.1.2, and it may be performed in lieu of SR 3.8.1.2. This is the intent of Note 1 of SR 3.8.1.2. The normal 31 day Frequency for SR 3.8.1.2 is consistent with Regulatory Guide 1.108 (Ref. 9). The 184 day Frequency for SR 3.8.1.6 is a reduction in cold testing consistent with Generic Letter 84-15 (Ref. 7). These Frequencies provide adequate assurance of DG OPERABILITY, while minimizing degradation resulting from testing. ## SR 3.8.1.3 This Surveillance verifies that the DGs are capable of synchronizing with the offsite electrical system and accepting loads in a range comparable to the maximum expected accident loads. A minimum run time of 60 minutes is required to stabilize engine temperatures, while minimizing the time that the DG is connected to the offsite source. Although no power factor requirements are established by this SR, the
DG is normally operated at a power factor between 0.8 lagging and 1.0. The 0.8 value is the design rating of the machine, while the 1.0 is an operational limitation to ensure circulating currents are minimized. The load band is provided to avoid routine overloading of the DG. Routine overloading may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY. ## SURVEILLANCE REQUIREMENTS ## SR 3.8.1.3 (continued) The 31 day Frequency for this Surveillance is consistent with Regulatory Guide 1.108 (Ref. 9). This SR is modified by four Notes. Note 1 indicates that diesel engine runs for this Surveillance may include gradual loading, as recommended by the manufacturer, so that mechanical stress and wear on the diesel engine are minimized. Note 2 states that momentary transients, because of changing bus loads, do not invalidate this test. Note 3 indicates that this Surveillance should be conducted on only one DG per unit at a time in order to avoid common cause failures that might result from offsite circuit or grid perturbations. Note 3 is intended to be applied on a per unit basis and is not intended to preclude testing DGs on different units at the same time. Note 4 stipulates a prerequisite requirement for performance of this SR. A successful DG start must precede this test to credit satisfactory performance. ## SR 3.8.1.4 This SR provides verification that the level of fuel oil in the day tank is at or above a level which ensures sufficient time for manual transfer of fuel oil from the DG storage tank if the automatic transfer fails. The level is expressed as an equivalent volume in gallons, and ensures adequate fuel oil for a minimum of 3 hours of DG operation at the continuous rating. The 31 day Frequency is adequate to assure that a sufficient supply of fuel oil is available, since low level alarms are provided and facility operators would be aware of any large uses of fuel oil during this period. #### SR 3.8.1.5 This Surveillance demonstrates that each required fuel oil transfer pump operates and transfers fuel oil from its associated storage tank to its associated day tank. This is required to support continuous operation of standby power sources. This Surveillance provides assurance that the fuel oil transfer pump is OPERABLE, the fuel oil piping system is intact, the fuel delivery piping is not obstructed, and the controls and control systems for fuel transfer systems are OPERABLE. ## SURVEILLANCE REQUIREMENTS # SR 3.8.1.5 (continued) The design of fuel transfer systems is such that pumps operate automatically or must be started manually in order to maintain an adequate volume of fuel oil in the day tanks during or following DG testing. In such a case, a 31 day Frequency is appropriate. ## SR 3.8.1.6 See SR 3.8.1.2. ## SR 3.8.1.7 Transfer of the unit power supply from the normal offsite circuit to the alternate offsite circuit demonstrates the OPERABILITY of the alternate circuit distribution network to power the shutdown loads. The 18 month Frequency of the Surveillance is based on engineering judgment, taking into consideration the unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. This SR is modified by a Note. The reason for the Note is that, during operation with the reactor critical, performance of this SR could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, unit safety systems. #### SR 3.8.1.8 Each DG is provided with an engine overspeed trip to prevent damage to the engine. Recovery from the transient caused by the loss of a large load could cause diesel engine overspeed, which, if excessive, might result in a trip of the engine. This Surveillance demonstrates the DG load response characteristics and capability to reject the largest single load without exceeding predetermined voltage and while maintaining a specified margin to the overspeed trip. The single load for each DG is approximately 1000 kW. This Surveillance may be accomplished by: ## SURVEILLANCE REQUIREMENTS ## <u>SR 3.8.1.8</u> (continued) - a. Tripping the DG output breaker with the DG carrying greater than or equal to its associated single largest post-accident load while paralleled to offsite power, or while solely supplying the bus; or - b. Tripping its associated single largest post-accident load with the DG solely supplying the bus. As required by Regulatory Guide 1.9 (Ref. 3), the load rejection test is acceptable if the increase in diesel speed does not exceed 75% of the difference between synchronous speed and the overspeed trip setpoint. The voltage tolerance specified in this SR is derived from Regulatory Guide 1.9 (Ref. 3) recommendations for response during load sequence interval. The voltage specified is consistent with the design range of the equipment powered by the DG. SR 3.8.1.8.b is the steady state voltage value to which the system must recover following load rejection. The 18 month Frequency is consistent with the recommendation of Regulatory Guide 1.108 (Ref. 9). # SR 3,8.1.9 As required by Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(1), this Surveillance demonstrates the as designed operation of the standby power sources during loss of the offsite source. This test verifies all actions encountered from the loss of offsite power, including shedding of the nonessential loads and energization of the emergency buses and respective loads from the DG. It further demonstrates the capability of the DG to automatically achieve the required voltage and frequency within the specified time. The DG autostart time of 12 seconds is derived from requirements of the accident analysis to respond to a design basis large break LOCA. The Surveillance should be continued for a minimum of 5 minutes in order to demonstrate that all starting transients have decayed and stability is achieved. The requirement to verify the connection and power supply of permanent and autoconnected loads is intended to satisfactorily show the relationship of these loads to the DG loading logic. In certain circumstances, many of these loads cannot actually be connected or loaded without undue hardship or potential for undesired operation. ## SURVEILLANCE REQUIREMENTS # SR 3.8.1.9 (continued) For instance, Emergency Core Cooling Systems (ECCS) injection valves are not desired to be stroked open, or high pressure injection systems are not capable of being operated at full flow, or residual heat removal (RHR) systems performing a decay heat removal function are not desired to be realigned to the ECCS mode of operation. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the DG systems to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified. The Frequency of 18 months is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(1), takes into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. This SR is modified by two Notes. The reason for Note 1 is to minimize wear and tear on the DGs during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained consistent with manufacturer recommendations. The reason for Note 2 is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. ## SR 3.8.1.10 This Surveillance demonstrates that the DG automatically starts and achieves the required voltage and frequency within the specified time (12 seconds) from the design basis actuation signal (LOCA signal) and operates for ≥ 5 minutes. The 5 minute period provides sufficient time to demonstrate stability. SR 3.8.1.10.d and SR 3.8.1.10.e ensure that permanently connected loads and emergency loads are energized from the offsite electrical power system on an ESF signal without loss of offsite power. Emergency loads are started simultaneously by logic in the load sequencers sensing the availability of offsite power. ## SURVEILLANCE REQUIREMENTS ## SR 3.8.1.10 (continued) The requirement to verify the connection of permanent and autoconnected loads is intended to satisfactorily show the relationship of these loads to the DG loading logic. In certain circumstances, many of these loads cannot actually be connected or loaded without undue hardship or potential for undesired operation. For instance, ECCS injection valves are not desired to be stroked open, or high pressure injection systems are not capable of being operated at full flow, or RHR systems performing a decay heat removal function are not desired to be realigned to the ECCS mode of operation. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the DG system to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified. The Frequency of 18 months takes into consideration unit conditions required to perform the Surveillance and is intended to be consistent with the expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. This SR
is modified by two Notes. The reason for the first Note is to minimize wear and tear on the DGs during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained consistent with manufacturer recommendations. The reason for the second Note (which only applies to SR 3.8.1.10.d and e) is that during operation with the reactor critical, performance of SR 3.8.1.10.d and e could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, unit safety systems. ## SR 3.8.1.11 This Surveillance demonstrates that DG noncritical protective functions (e.g., high jacket water temperature) are bypassed on a loss of voltage signal and/or an ESF actuation test signal, and critical protective functions (engine overspeed, generator differential current, low lube oil pressure) trip the DG to avert substantial damage to the ## SURVEILLLANCE REQUIREMENTS ## SR 3.8.1.11 (continued) DG unit. The noncritical trips are bypassed during DBAs and provide an alarm on an abnormal engine condition. This alarm provides the operator with sufficient time to react appropriately. The DG availability to mitigate the DBA is more critical than protecting the engine against minor problems that are not immediately detrimental to emergency operation of the DG. The 18 month Frequency is based on engineering judgment, taking into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint. ## SR 3.8.1.12 This surveillance requires demonstration once per 18 months that the DGs can start and run continuously at full load capability for an interval of not less than 24 hours, ≥ 2 hours of which is at a load equivalent to the 2000 hour load rating and the remainder of the time at a load equivalent to the continuous duty rating of the DG. The DG starts for this Surveillance can be performed either from standby or hot conditions. The provisions for prelubricating and warmup, discussed in SR 3.8.1.2, and for gradual loading, discussed in SR 3.8.1.3, are applicable to this SR. The steady-state generator voltage and frequency shall be maintained between 4160 \pm 420 volts and 60 \pm 1.2 Hz during this test. The 18 month Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(3), takes into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. This Surveillance is modified by a Note. The Note states that momentary transients due to changing bus loads do not invalidate this test. ## SURVEILLANCE REQUIREMENTS (continued) #### SR 3.8.1.13 This Surveillance demonstrates that the diesel engine can restart from a hot condition, such as subsequent to shutdown from normal Surveillances, and achieve the required voltage and frequency within 12 seconds. The 12 second time is derived from the requirements of the accident analysis to respond to a design basis large break LOCA. The 18 month Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(5). This SR is modified by two Notes. Note 1 ensures that the test is performed with the diesel sufficiently hot. The requirement that the diesel has operated for at least 2 hours at full load conditions prior to performance of this Surveillance is consistent with the manufacturer recommendations for achieving hot conditions. Momentary transients due to changing bus loads do not invalidate this test. Note 2 allows all DG starts to be preceded by an engine prelube period to minimize wear and tear on the diesel during testing. #### SR 3.8.1.14 As required by Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(6), this Surveillance ensures that the manual synchronization and automatic load transfer from the DG to the offsite source can be made and the DG can be returned to ready to load status when offsite power is restored. It also ensures that the autostart logic is reset to allow the DG to reload if a subsequent loss of offsite power occurs. The DG is considered to be in ready to load status when the DG is at rated speed and voltage, the output breaker is open and can receive an autoclose signal on bus undervoltage, and the load sequence timers are reset. The Frequency of 18 months is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(6), and takes into consideration unit conditions required to perform the Surveillance. This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. ## SURVEILLANCE REQUIREMENTS (continued) ## SR 3.8.1.15 Demonstration of the test mode override ensures that the DG availability under accident conditions will not be compromised as the result of testing and the DG will automatically reset to ready to load operation if a LOCA actuation signal is received during operation in the test mode. Ready to load operation is defined as the DG running at rated speed and voltage with the DG output breaker open. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified. The 18 month Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(8). ## SR 3.8.1.16 Under accident conditions, loads are sequentially connected to the bus by the automatic load sequencer. The sequencing logic controls the permissive and starting signals to motor breakers to prevent overloading of the DGs due to high motor starting currents. The 10% (or 0.5 seconds, whichever is greater) load sequence time interval tolerance ensures that sufficient time exists for the DG to restore frequency and voltage prior to applying the next load and that safety analysis assumptions regarding ESF equipment time delays are not violated. Reference 2 provides a summary of the automatic loading of ESF buses. The Frequency of 18 months is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9), paragraph 2.a.(2), takes into consideration unit conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. #### SR 3.8.1.17 In the event of a DBA coincident with a loss of offsite power, the DGs are required to supply the necessary power to ESF systems so that the fuel, RCS, and containment design limits are not exceeded. This Surveillance demonstrates the DG operation, as discussed in the Bases for SR 3.8.1.9, during a loss of offsite power actuation test signal in conjunction with an ESF actuation signal. In lieu of actual demonstration of connection and loading of loads, testing that ## SURVEILLANCE REQUIREMENTS ## SR 3.8.1.17 (continued) adequately shows the capability of the DG system to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified. The Frequency of 18 months takes into consideration unit conditions required to perform the Surveillance and is intended to be consistent with an expected fuel cycle length of 18 months. This SR is modified by two Notes. The reason for Note 1 is to minimize wear and tear on the DGs during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained consistent with manufacturer recommendations for DGs. The reason for Note 2 is that the performance of the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. ## SR 3.8.1.18 This Surveillance demonstrates the DG capability to reject a load of 1200-2400 kW without overspeed tripping or exceeding the predetermined voltage limits. The DG load rejection may occur because of a system fault or inadvertent breaker tripping. This Surveillance ensures proper engine generator load response under the simulated test conditions. This test simulates the loss of the total connected load that the DG experiences following a 1200-2400 kW load rejection and verifies that the DG does not trip upon loss of the load. These acceptance criteria provide for DG damage protection. While the DG is not expected to experience this transient during an event and continues to be available, this response ensures that the DG is not degraded for future application, including reconnection to the bus if the trip initiator can be corrected or isolated. The DG output breaker(s) must remain closed such that the DG is connected to at least one ESF bus. All fuses and breakers on the energized ESF bus(es) must be verified not to trip. This surveillance is modified by a note which states that testing of the shared Emergency Diesel Generator (EDG) set (EDG 1-2A or EDG 1C) on either unit may be used to satisfy this surveillance requirement ## SURVEILLANCE REQUIREMENTS ## SR 3.8.1.18 (continued) for these EDGs for both units. The surveillance requirement consists of sufficient testing to demonstrate that each DG, the DG output breaker, and bus fuses and breakers can successfully withstand a 1200-2400 kW load rejection on each unit. This does not require, however, that each shared DG be aligned to each unit and a load rejection be performed in a redundant fashion. This surveillance is intended to assure the correct performance of the DG voltage regulators and governors. The 5 year Frequency
is adequate and has been shown to be acceptable by operating experience. ## SR 3.8.1.19 This Surveillance demonstrates that the DG starting independence has not been compromised. Also, this Surveillance demonstrates that each engine can achieve proper speed within the specified time when the DGs are started simultaneously. The 10 year Frequency is consistent with the recommendations of Regulatory Guide 1.108 (Ref. 9). This surveillance would also be applicable after any modifications which could affect DG interdependence. This SR is modified by a Note. The reason for the Note is to minimize wear on the DG during testing. For the purpose of this testing, the DGs must be started from standby conditions, that is, with the engine coolant and oil continuously circulated and temperature maintained consistent with manufacturer recommendations. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 17. - 2. FSAR, Chapter 8. - 3. Regulatory Guide 1.9, Rev. 1, 1971. - 4. FSAR, Chapter 6. - 5. FSAR, Chapter 15. # REFERENCES (continued) - 6. Regulatory Guide 1.93, Rev. 0, December 1974. - 7. Generic Letter 84-15, "Proposed Staff Actions to Improve and Maintain Diesel Generator Reliability," July 2, 1984. - 8. 10 CFR 50, Appendix A, GDC 18. - 9. Regulatory Guide 1.108, Rev. 1, August 1977. - 10. ASME, Boiler and Pressure Vessel Code, Section XI. - 11. IEEE Standard 308-1971. - 12. NEMA MG1-1967. #### **B 3.8 ELECTRICAL POWER SYSTEMS** ## B 3.8.2 AC Sources—Shutdown ## **BASES** #### **BACKGROUND** A description of the AC sources is provided in the Bases for LCO 3.8.1, "AC Sources—Operating." ## APPLICABLE SAFETY ANALYSES The OPERABILITY of the minimum AC sources during MODES 5 and 6 and during movement of irradiated fuel assemblies ensures that: - a. The unit can be maintained in the shutdown or refueling condition for extended periods; - b. Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status; and - c. Adequate AC electrical power is provided to mitigate events postulated during shutdown, such as a fuel handling accident. In general, when the unit is shut down, the Technical Specifications requirements ensure that the unit has the capability to mitigate the consequences of postulated accidents. However, assuming a single failure and concurrent loss of all offsite or all onsite power is not required. The rationale for this is based on the fact that many Design Basis Accidents (DBAs) that are analyzed in MODES 1, 2, 3, and 4 have no specific analyses in MODES 5 and 6. Worst case bounding events are deemed not credible in MODES 5 and 6 because the energy contained within the reactor pressure boundary, reactor coolant temperature and pressure, and the corresponding stresses result in the probabilities of occurrence being significantly reduced or eliminated, and in minimal consequences. These deviations from DBA analysis assumptions and design requirements during shutdown conditions are allowed by the LCO for required systems. During MODES 1, 2, 3, and 4, various deviations from the analysis assumptions and design requirements are allowed within the Required Actions. This allowance is in recognition that certain testing ## APPLICABLE SAFETY ANALYSES (continued) and maintenance activities must be conducted provided an acceptable level of risk is not exceeded. During MODES 5 and 6, performance of a significant number of required testing and maintenance activities is also required. In MODES 5 and 6, the activities are generally planned and administratively controlled. Relaxations from MODE 1, 2, 3, and 4 LCO requirements are acceptable during shutdown modes based on: - a. The fact that time in an outage is limited. This is a risk prudent goal as well as a utility economic consideration. - b. Requiring appropriate compensatory measures for certain conditions. These may include administrative controls, reliance on systems that do not necessarily meet typical design requirements applied to systems credited in operating MODE analyses, or both. - c. Prudent utility consideration of the risk associated with multiple activities that could affect multiple systems. - d. Maintaining, to the extent practical, the ability to perform required functions (even if not meeting MODE 1, 2, 3, and 4 OPERABILITY requirements) with systems assumed to function during an event. In the event of an accident during shutdown, this LCO ensures the capability to support systems necessary to avoid immediate difficulty, assuming either a loss of all offsite power or a loss of all onsite diesel generator (DG) power. The AC sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO One offsite circuit capable of supplying the onsite Class 1E power distribution subsystem(s) of LCO 3.8.10, "Distribution Systems—Shutdown," ensures that all required loads are powered from offsite power. An OPERABLE DG (1-2A, 1C, or 1(2)B), associated with the distribution system train required to be OPERABLE by LCO 3.8.10, ensures a diverse power source is available to provide electrical power support, assuming a loss of the offsite circuit. Together, OPERABILITY of the required offsite circuit and DG ensures the availability of sufficient AC sources to operate the unit in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents). # LCO (continued) The qualified offsite circuit must be capable of maintaining rated frequency and voltage, and accepting required loads during an accident, while connected to the Engineered Safety Feature (ESF) bus(es). Qualified offsite circuits are those that are described in the FSAR and are part of the licensing basis for the unit. Two physically independent circuits between the transmission network and the onsite system may consist of any combination that includes two of the five transmission lines normally supplying the 230 and 500 kV switchyards and both independent circuits from the 230 kV switchyard to the Class 1E buses via Startup Auxiliary Transformers 1A (2A) and 1B (2B). The two of five combination of transmission lines may be shared between Unit 1 and 2. If either of the transmission lines are 500 kV, one 500/230 kV Autotransformer connecting the 500 and 230 kV switchyards is available. If both of the transmission lines are 500 kV, both 500/230 kV Autotransformers connecting the 500 and 230 kV switchyards are available. Any combination of 500 and 230 kV circuit breakers required to complete the independent circuits is permissible. The DG must be capable of starting, accelerating to rated speed and voltage, and connecting to its respective ESF bus on detection of bus undervoltage. This sequence must be accomplished within 12 seconds. The DG must be capable of accepting the required loads manually, and continue to operate until offsite power can be restored to the ESF buses. These capabilities are required to be met from a variety of initial conditions such as DG in standby with the engine hot and DG in standby at ambient conditions. Proper sequencer operation to sense loss of power or degraded voltage, initiate tripping of ESF bus offsite breakers and initiate DG start and DG output breaker closure and sequencing of shutdown loads are required functions for a DG to be considered OPERABLE. It is acceptable for trains to be cross tied during shutdown conditions, allowing a single offsite power circuit to supply both required trains. #### **APPLICABILITY** The AC sources required to be OPERABLE in MODES 5 and 6 and during movement of irradiated fuel assemblies provide assurance that: # APPLICABILITY (continued) - a. Systems to provide adequate coolant inventory makeup are available for the irradiated fuel assemblies in the core; - b. Systems needed to mitigate a fuel handling accident are available; - c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and - d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition. The AC power requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.1. ## **ACTIONS** ## **A.1** An offsite circuit would be considered inoperable if it were not available to one required ESF train. Although two trains are required by LCO 3.8.10, the one train with offsite power available may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS and fuel movement. By the allowance of the option to declare required features inoperable, with no offsite power available, appropriate restrictions will be implemented in accordance with the affected required features LCO's ACTIONS. # A.2.1, A.2.2, A.2.3, A.2.4, B.1, B.2, B.3, and B.4 With the offsite circuit not available to all required trains, the option would still exist to declare all required features inoperable. Since this option may involve undesired administrative efforts, the allowance for sufficiently conservative actions is made. With the required DG inoperable, the minimum required diversity of AC power sources is not available. It is, therefore, required to suspend CORE ALTERATIONS, movement of irradiated fuel assemblies, and operations involving positive reactivity additions. The Required Action to suspend positive reactivity additions does not preclude actions to maintain or increase reactor vessel inventory provided the required SDM is maintained. #### **ACTIONS** ## A.2.1, A.2.2, A.2.3, A.2.4, B.1, B.2, B.3, and B.4 (continued) Suspension of these activities does not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability or the occurrence of postulated events. It is further required to immediately initiate action to restore the required AC sources and to continue this action until restoration is accomplished in order to provide the necessary AC power to the unit safety systems. The Completion Time of
immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required AC electrical power sources should be completed as quickly as possible in order to minimize the time during which the unit safety systems may be without sufficient power. Pursuant to LCO 3.0.6, the Distribution System's ACTIONS would not be entered even if all AC sources to it are inoperable, resulting in de-energization. Therefore, the Required Actions of Condition A are modified by a Note to indicate that when Condition A is entered with no AC power to any required ESF bus, the ACTIONS for LCO 3.8.10 must be immediately entered. This Note allows Condition A to provide requirements for the loss of the offsite circuit, whether or not a train is de-energized. LCO 3.8.10 would provide the appropriate restrictions for the situation involving a de-energized train. ## SURVEILLANCE REQUIREMENTS #### SR 3.8.2.1 SR 3.8.2.1 requires the SRs from LCO 3.8.1 that are necessary for ensuring the OPERABILITY of the AC sources in other than MODES 1, 2, 3, and 4. SR 3.8.1.7 is not required to be met since only one offsite circuit is required to be OPERABLE. SR 3.8.1.3 is not required to be met because the required OPERABLE DG(s) is not required to undergo periods of being synchronized to the offsite circuit. SR 3.8.1.19 is excepted because starting independence is not required with the DG(s) that is not required to be operable. In addition, SR 3.8.1.9.C.2, SR 3.8.1.10, SR 3.8.1.15, SR 3.8.1.16, and SR 3.8.1.17 are not required to be met because the required operable DG is not required to respond to an SI signal or to have loads automatically sequenced on the associated ESF bus during MODES 5 and 6. ## SURVEILLANCE REQUIREMENTS ## SR 3.8.2.1 (continued) This SR is modified by a Note. The reason for the Note is to preclude requiring the OPERABLE DG(s) from being paralleled with the offsite power network or otherwise rendered inoperable during performance of SRs, and to preclude deenergizing a required 4160 V ESF bus or disconnecting a required offsite circuit during performance of SRs. With limited AC sources available, a single event could compromise both the required circuit and the DG. It is the intent that these SRs must still be capable of being met, but actual performance is not required during periods when the DG and offsite circuit is required to be OPERABLE. Therefore, if the surveillance were not performed within the required frequency (plus the extension allowed by SR 3.0.2) but the DG was required OPERABLE to meet LCO 3.8.2, it would not constitute a failure of the SR or failure to meet the LCO as described in Example 1.4-3 in Section 1.4 of these Technical Specifications. Refer to the corresponding Bases for LCO 3.8.1 for a discussion of each SR. ## REFERENCES None. and the control of the first section of the contract contrac #### **B 3.8 ELECTRICAL POWER SYSTEMS** B 3.8.3 Diesel Fuel Oil, Lube Oil, and Starting Air #### BASES #### **BACKGROUND** Each diesel generator (DG) is connected to a fuel oil storage and transfer system. The storage tanks provide the capacity to operate the required DGs for a period of 7 days while the DGs are supplying maximum post loss of coolant accident load demand discussed in the FSAR, Section 8.3.1.1.7 (Ref. 1). The maximum load demand is calculated using the assumption that a minimum of any two DGs are available. This onsite fuel oil capacity is sufficient to operate the DGs for longer than the time to replenish the onsite supply from outside sources. Fuel oil is transferred from storage tank to day tank by either of two transfer pumps associated with each storage tank. The usable fuel in a storage tank is the amount above the transfer pump suction nozzles that is available for transfer from a storage tank to a day tank. The amount of usable fuel is determined by correlating control room percent level indication to the applicable tank curve. Redundancy of pumps and piping precludes the failure of one pump, or the rupture of any pipe, valve or tank to result in the loss of more than one DG. All outside tanks, pumps, and piping are located underground. For proper operation of the standby DGs, it is necessary to ensure the proper quality of the fuel oil. ASTM-D270-65 (Ref. 2) addresses the recommended fuel oil practices as supplemented by ASTM-D975-74 (Ref. 3). The fuel oil properties governed by these SRs are the water and sediment content, the kinematic viscosity, and specific gravity (or API gravity). The DG lubrication system is designed to provide sufficient lubrication to permit proper operation of its associated DG under all loading conditions. The system is required to circulate the lube oil to the diesel engine working surfaces and to remove excess heat generated by friction during operation. The onsite storage in addition to the engine oil sump is sufficient to ensure 7 days of continuous operation. This supply is sufficient to allow the operator to replenish lube oil from outside sources. Each DG has an air start system with adequate capacity for five successive start attempts on the DG without recharging the air start receiver(s). Each air start system consists of redundant air receivers. Each receiver has sufficient capacity to perform the required number of DG starts. ## APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter 6 (Ref. 4), and in the FSAR, Chapter 15 (Ref. 5), assume Engineered Safety Feature (ESF) systems are OPERABLE. The DGs are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that fuel, Reactor Coolant System and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems. Since diesel fuel oil, lube oil, and the air start subsystem support the operation of the standby AC power sources, they satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO Stored diesel fuel oil is required to have sufficient useable supply for 7 days operation of the required DGs supplying the required loads. It is also required to meet specific standards for quality. Additionally, sufficient lubricating oil supply must be available to ensure the capability to operate at full load for 7 days. This requirement, in conjunction with an ability to obtain replacement supplies within 7 days, supports the availability of DGs required to shut down the reactor and to maintain it in a safe condition for an anticipated operational occurrence (AOO) or a postulated DBA with loss of offsite power. DG day tank fuel requirements, as well as transfer capability from the storage tank to the day tank, are addressed in LCO 3.8.1, "AC Sources—Operating," and LCO 3.8.2, "AC Sources—Shutdown." The starting air system is required to have a minimum capacity for five successive DG start attempts without recharging the air start receivers. A single air receiver on each DG is sufficient to meet this operability requirement. ## **APPLICABILITY** The AC sources (LCO 3.8.1 and LCO 3.8.2) are required to ensure the availability of the required power to shut down the reactor and maintain it in a safe shutdown condition after an AOO or a postulated DBA. Since stored diesel fuel oil, lube oil, and the starting air subsystem support LCO 3.8.1 and LCO 3.8.2, stored diesel fuel oil, lube oil, and starting air are required to be within limits when the associated DG is required to be OPERABLE. #### **ACTIONS** The ACTIONS Table is modified by a Note indicating that separate Condition entry is allowed for each DG. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable DG subsystem. Complying with the Required Actions for one inoperable DG subsystem may allow for continued operation, and subsequent inoperable DG subsystem(s) are governed by separate Condition entry and application of associated Required Actions. ## <u>A.1</u> In this Condition, the 7 day fuel oil supply for the required DG(s) is not available. However, the Condition is restricted to fuel oil level reductions that maintain at least a 6 day supply. These circumstances may be caused by events, such as full load operation required after an inadvertent start while at minimum required level, or feed and bleed operations, which may be necessitated by increasing particulate levels or any number of other oil quality degradations. This restriction allows sufficient time for obtaining the requisite replacement volume and performing the analyses required prior to addition of fuel oil to the tank. A period of 48 hours is considered sufficient to complete restoration of the required level prior to declaring the DG inoperable. This period is acceptable based on the remaining capacity (> 6 days), the fact that procedures will be initiated to obtain replenishment, and the low probability of an event during this brief period. #### <u>B.1</u> With lube oil inventory < 238 gallons for a large DG or < 167 gallons for a small DG, sufficient lubricating oil to support 7 days of continuous DG operation at full load conditions may not be available. However, the Condition is restricted to lube oil volume reductions that maintain at least a 6 day supply (204 gallons for a large DG and 143 gallons for a small DG). This restriction allows sufficient time to obtain the requisite replacement volume. A period of 48 hours is considered sufficient to complete restoration of the required volume prior to declaring the DG inoperable. This period is acceptable based on the remaining capacity (> 6 days), the low rate of usage, the fact that procedures will be initiated to obtain replenishment, and the low probability of an event during this brief period. # ACTIONS (continued) ##
<u>C.1</u> This Condition is entered as a result of a failure to meet the acceptance criterion of SR 3.8.3.3. Normally, trending of particulate levels allows sufficient time to correct high particulate levels prior to reaching the limit of acceptability. Poor sample procedures (bottom sampling), contaminated sampling equipment, and errors in laboratory analysis can produce failures that do not follow a trend. Since the presence of particulates does not mean failure of the fuel oil to burn properly in the diesel engine, and particulate concentration is unlikely to change significantly between Surveillance Frequency intervals, and proper engine performance has been recently demonstrated (within 31 days), it is prudent to allow a brief period prior to declaring the associated DG inoperable. The 7 day Completion Time allows for further evaluation, resampling and re-analysis of the DG fuel oil. ## <u>D.1</u> With the new fuel oil properties defined in the Bases for SR 3.8.3.3 not within the required limits, a period of 30 days is allowed for restoring the stored fuel oil properties. This period provides sufficient time to test the stored fuel oil to determine that the new fuel oil, when mixed with previously stored fuel oil, remains acceptable, or to restore the stored fuel oil properties. This restoration may involve feed and bleed procedures, filtering, or combinations of these procedures. Even if a DG start and load was required during this time interval and the fuel oil properties were outside limits, there is a high likelihood that the DG would still be capable of performing its intended function. ## <u>E.1</u> With both starting air receiver pressures on a DG < 350 psig for the 4075 kW DGs or < 200 psig for DG 1C, sufficient capacity for five successive DG start attempts does not exist. However, as long as at least one receiver pressure per DG is > 150 psig for the 4075 kW DGs or 90 psig for DG 1C, there is adequate capacity for at least one start attempt, and the DG can be considered OPERABLE while the air #### **ACTIONS** ## E.1 (continued) receiver pressure is restored to the required limit. A period of 48 hours is considered sufficient to complete restoration to the required pressure prior to declaring the DG inoperable. This period is acceptable based on the remaining air start capacity, the fact that most DG starts are accomplished on the first attempt, and the low probability of an event during this brief period. ## <u>F.1</u> With a Required Action and associated Completion Time not met, or one or more DG's fuel oil, lube oil, or starting air subsystem not within limits for reasons other than addressed by Conditions A through D, the associated DG may be incapable of performing its intended function and must be immediately declared inoperable. ## SURVEILLANCE REQUIREMENTS ## SR 3.8.3.1 This SR provides verification that there is an adequate inventory of useable fuel oil in the storage tanks (25,000 gallons) to support the operation of the required DG(s) for 7 days at full load. The 7 day period is sufficient time to place the unit in a safe shutdown condition and to bring in replenishment fuel from an offsite location. The 31 day Frequency is adequate to ensure that a sufficient supply of fuel oil is available, since low level alarms are provided and unit operators would be aware of any large uses of fuel oil during this period. #### SR 3.8.3.2 This Surveillance ensures that sufficient lube oil inventory is available to support at least 7 days of full load operation for each DG. The inventory may consist of a combination of lube oil in storage and the useable sump volume above the manufacturer recommended minimum sump level or a total volume of lube oil in storage that is in addition to the lube oil normally maintained in each DG sump. The 238 gal requirement for the 4075 kW DGs and the 167 gal requirement for DG 1C are based on the DG manufacturer consumption values for 7 days of operation at full rated load. Implicit in this SR is the requirement to verify the capability ## SURVEILLANCE REQUIREMENTS ## SR 3.8.3.2 (continued) to transfer the lube oil from its storage location to the DG, when the DG lube oil sump does not hold adequate inventory for 7 days of full load operation without the level reaching the manufacturer recommended minimum level. A 31 day Frequency is adequate to ensure that a sufficient lube oil supply is onsite, since DG starts and run time are closely monitored by the unit staff. ## SR 3.8.3.3 A sample from each fuel oil storage tank is analyzed for water and sediment in accordance with ASTM-D270-65 (Ref. 2). The sample is also used to ensure the oil is within the specifications of Table 1 of ASTM-D975-74 (Ref. 3) when checked for viscosity, water, and sediment. The frequency of this testing is in accordance with the DG Fuel Oil Testing Program and takes into consideration fuel oil degradation trends that indicate that particulate concentration is unlikely to change significantly between Frequency intervals. New fuel oil must meet the requirements of ASTM-D975-78 (Ref. 6) when delivered. New fuel is tested to verify acceptability. ## SR 3.8.3.4 This Surveillance ensures that, without the aid of the refill compressor, sufficient air start capacity for each DG is available. A single air receiver per DG has the capacity to meet the starting requirements. Therefore, only one receiver must be verified within the pressure limit per DG. The system design requirements provide for a minimum of five engine start cycles without recharging. A start cycle is defined by the DG vendor, but usually is measured in terms of time (seconds of cranking) or engine cranking speed. The pressure specified in this SR is intended to reflect the lowest value at which the five starts can be accomplished. ## SURVEILLANCE REQUIREMENTS # **SR 3.8.3.4** (continued) The 31 day Frequency takes into account the capacity, capability, redundancy, and diversity of the AC sources and other indications available in the control room, including alarms, to alert the operator to below normal air start pressure. #### **REFERENCES** - 1. FSAR, Section 8.3.1.1.7. - 2. ASTM-D270-65. - 3. ASTM-D975-74. - 4. FSAR, Chapter 6. - 5. FSAR, Chapter 15. - 6. ASTM-D975-78. #### **B 3.8 ELECTRICAL POWER SYSTEMS** B 3.8.4 DC Sources—Operating #### **BASES** #### **BACKGROUND** The station DC electrical power system provides the AC emergency power system with control power. It also provides both motive and control power to selected safety related equipment and preferred AC vital bus power (via inverters). As required by 10 CFR 50, Appendix A, GDC 17 (Ref. 1), the DC electrical power system is designed to have sufficient independence, redundancy, and testability to perform its safety functions, assuming a single failure. The DC electrical power system also conforms to the recommendations of Regulatory Guide 1.6 (Ref. 2) and IEEE-308 (Ref. 3). The 125 VDC electrical power system consists of two main systems. The Auxiliary Building System and the Service Water Intake Structure (SWIS) System. The Auxiliary Building 125 VDC system consists of two independent and redundant subsystems (Train A and Train B) which supply DC power to various ESF systems throughout the plant. Each Auxiliary Building subsystem (train) consists of a 125 VDC battery, an associated full capacity battery charger and all associated control equipment and interconnecting cabling. Each Auxiliary Building 125 VDC train is normally supplied by the associated battery charger (A or B). In the event of an A or B battery charger failure, battery charger C, the full capacity swing battery charger, may supply power to either train. Either train may be considered OPERABLE when supplied from battery charger C. Battery charger C input and output breakers are interlocked to prevent supplying power to a DC bus from the opposite train. Both the Auxiliary Building 125 VDC source subsystems (Train A and B) are required OPERABLE by this LCO. The SWIS 125 VDC system provides a reliable source of power for controls, power loads, annunciation and alarms primarily for the safety-related Service Water System. The SWIS 125 VDC system consists of four battery/battery charger subsystems. Each subsystem consists of a 125 VDC battery and full capacity battery charger. The subsystems are divided into Train A and Train B which are shared between the two units. Each of the 4 subsystems can supply 100% of the required capacity for the associated train. Subsystems 1 and 2 are associated with Train A, with subsystem 1 being the normal # BACKGROUND (continued) supply, and subsystem 2 the standby supply. Subsystems 3 and 4 are associated with Train B, with subsystem 3 being the normal supply and subsystem 4 the standby supply. Each train has a manual transfer switch which is used to select which of the two available SWIS subsystems supplies that train. One SWIS subsystem is required OPERABLE for each train. During normal operation, the 125 VDC load is powered from the battery chargers with the batteries floating on the system. In case of loss of normal power to the battery charger, the DC load is automatically powered from the station batteries. The Train A and Train B DC electrical power subsystems provide the control power for its associated Class 1E AC power load group, 4.16 kV switchgear, and 600 V load centers. The DC electrical power subsystems also provide DC electrical power to the inverters, which in turn power the AC vital buses. The DC power distribution system is described in more detail in Bases for LCO 3.8.9, "Distribution System—Operating," and LCO 3.8.10, "Distribution Systems—Shutdown." Each train of 125 VDC batteries is separately housed in a ventilated room apart from its charger and distribution centers. Each subsystem is located in an area separated physically and electrically from the other subsystem to ensure that a single failure in one subsystem does not cause a failure in a redundant
subsystem. There is no sharing between redundant Class 1E subsystems, such as batteries, battery chargers, or distribution panels. The Auxiliary Building batteries are stationary type consisting of 60 individual lead-calcium cells electrically connected in series to establish a nominal 125VDC power supply. Under both normal and accident conditions the batteries are capable of providing the required voltage for component operation considering an aging factor of 25% and minimum electrolyte temperature of 60°F. The battery float voltage is 2.20V per cell average and 132V total terminal voltage. During an LOSP or LOSP with SI, the Auxiliary Building batteries supply safety-related loads for a period of less than one minute duration without charger support. The design is such that subsequent to LOSP, the battery chargers are re-energized by the Diesel Generators within one minute. # BACKGROUND (continued) Although not a requirement for the mitigation of design basis events, each battery is capable of providing LOSP or LOSP plus SI loads for a period of 2 hours assuming the single failure loss of the battery charger aligned at the onset of the event. During such an occurrence, the redundant train battery with its connected charger remains fully capable of providing DC power to redundant train safety-related loads. The batteries also have the capacity to supply normal operating loads for a period of 2 hours without charger support as discussed in the FSAR Chapter 8.3 (Ref. 4). The 2 hour period of time is adequate to allow alignment of the spare battery charger to the affected battery without disrupting continued operation. The SWIS batteries are stationary type consisting of individual lead-calcium cells electrically connected in series to establish a nominal 125 VDC power supply. They are sized to furnish the anticipated vital loads without dropping below a total battery voltage of 105 V. Under both normal and accident conditions the batteries are capable of providing the required voltage for component operation considering an aging factor of 25% and a minimum electrolyte temperature of 35°F. The battery float voltage is 2.20 V per cell average and 132 V total. Each SWIS battery subsystem has adequate capacity to carry its loads without charger support for a period of at least 2 hours as discussed in the FSAR, Chapter 8.3 (Ref. 4). Each Train A and Train B DC electrical power subsystem has ample power output capacity for the steady state operation of connected loads required during normal operation, while at the same time maintaining its battery bank fully charged. Each battery charger has adequate capacity to restore its battery to full charge after the battery has been discharged while carrying steady-state normal or emergency loads. The time required to recharge the battery to full charge is compatible with the recommendation of the battery manufacturer (Ref. 4). ## APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter 6 (Ref. 6), and in the FSAR, Chapter 15 (Ref. 7), assume that Engineered Safety Feature (ESF) systems are OPERABLE. The DC electrical power system provides normal and emergency DC electrical power for the DGs, emergency auxiliaries, and control and switching during all MODES of operation. ## APPLICABLE SAFETY ANALYSES (continued) The OPERABILITY of the DC sources is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining the DC sources OPERABLE during accident conditions in the event of: - a. An assumed loss of all offsite AC power or all onsite AC power; and - b. A worst case single failure. The DC sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO Both the Auxiliary Building 125 VDC source subsystems (Train A and B) and two SWIS 125 VDC source subsystems (one in each train) including a battery charger for each Auxiliary Building and SWIS battery and the corresponding control equipment and interconnecting cabling supplying power to the associated bus within the train are required to be OPERABLE to ensure the availability of the required power to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA. Loss of any train DC electrical power subsystem does not prevent the minimum safety function from being performed (Ref. 4). An OPERABLE DC electrical power subsystem requires all required batteries and respective chargers to be operating and connected to the associated DC bus(es). ## **APPLICABILITY** The DC electrical power sources are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure safe unit operation and to ensure that: - Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients; and - b. Adequate core cooling is provided, and containment integrity and other vital functions are maintained in the event of a postulated DBA. The DC electrical power requirements for MODES 5 and 6 are addressed in the Bases for LCO 3.8.5, "DC Sources— Shutdown." #### **ACTIONS** #### **A.1** Condition A represents one train of Auxiliary Building DC electrical power with a loss of ability to completely respond to an event, and a potential loss of ability to remain energized during normal operation. It is, therefore, imperative that the operator's attention focus on stabilizing the unit, minimizing the potential for complete loss of DC power to the affected train. The 2 hour limit is consistent with the allowed time for an inoperable DC distribution system train. If one of the required DC electrical power subsystems is inoperable (e.g., inoperable battery, inoperable battery charger (s), or inoperable battery charger and associated inoperable battery), the remaining DC electrical power subsystem has the capacity to support a safe shutdown and to mitigate an accident condition. Since a subsequent worst case single failure would, however, result in the complete loss of the remaining 125 VDC electrical power subsystems with attendant loss of ESF functions, in the case of the Auxiliary Building DC power subsystem, continued power operation should not exceed 2 hours. The 2 hour Completion Time is based on Regulatory Guide 1.93 (Ref. 8) and reflects a reasonable time to assess unit status as a function of the inoperable DC electrical power subsystem and, if the Auxiliary Building DC electrical power subsystem is not restored to OPERABLE status, to prepare to effect an orderly and safe unit shutdown. #### B.1 and D.1 Conditions B and D represent one Auxiliary Building or SWIS DC electrical power subsystem with connection resistance not within the specified limit. Consistent with the guidance in IEEE-450, connection resistance not within the limit is an indication that the affected battery requires attention to restore the resistance to within the limit but is not a basis on which to declare the battery inoperable. Therefore, the 24 hour Completion Time allowed to restore the battery connection resistance to within the required limit is a reasonable time considering that variations in connection resistance do not mean the battery is incapable of performing its required safety function, but is an indication that the battery requires maintenance. # ACTIONS (continued) ## C.1 and C.2 If the inoperable Auxiliary Building DC electrical power subsystem cannot be restored to OPERABLE status or the connection resistance restored to within the limit within the required Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems. The Completion Time to bring the unit to MODE 5 is consistent with the time required in Regulatory Guide 1.93 (Ref. 8). ## <u>E.1</u> If a required SWIS DC electrical power subsystem is inoperable or the connection resistance is not restored to within the limit and the associated Completion Time has expired, the Service Water System train supported by the affected SWIS DC electrical power subsystem must be declared inoperable. The capability of the affected SWIS DC electrical power subsystem to fully support the associated train of Service Water is not assured. Therefore, consistent with the definition of OPERABILITY, the associated train of Service Water must be declared inoperable immediately, thereby limiting operation in this condition to the Completion Time associated with the affected Service Water System train. ## SURVEILLANCE REQUIREMENTS ## SR 3.8.4.1 Verifying battery terminal voltage while on float charge for the batteries helps to ensure the effectiveness of the charging system and the ability of the batteries to perform their intended function. Float charge is the condition in which the charger is applying a voltage to the battery to maintain it in a fully charged condition during normal operation. The float voltage of 2.2 V per cell or 132 V overall is higher than the nominal design voltage of 125 V and is consistent with the manufacturer's recommendations for maintaining a full charge. Verifying that terminal voltage is ≥ 127.8 V provides assurance that the average of all cell voltages is maintained greater than 2.13 V. Maintaining float voltage at the higher value of 2.2 V per cell prolongs cell life expectancy. The 7 day Frequency is consistent with IEEE-450 (Ref. 9). ## SURVEILLANCE REQUIREMENTS (continued) ## SR 3.8.4.2 Visual inspection to detect excessive corrosion on the battery terminals or connectors, or measurement of the post to post resistance of these items provides an indication of the need for cleaning and/or retorqueing.
The Surveillance Frequency for these inspections, which can detect conditions that can cause power losses due to resistance heating, is 92 days. This Frequency is considered acceptable based on operating experience related to detecting corrosion trends. ## SR 3.8.4.3 Visual inspection of the battery cells, cell plates, and battery racks provides an indication of physical damage or abnormal deterioration that could potentially degrade battery performance. The presence of physical damage or deterioration does not necessarily represent a failure of this SR, provided an evaluation determines that the physical damage or deterioration does not affect the OPERABILITY of the battery (its ability to perform its design function). The 18 month frequency for this SR is sufficient to detect abnormal deterioration and has been shown to be adequate by operating experience. # SR 3.8.4.4 and SR 3.8.4.5 Visual inspection and post to post resistance measurements of battery terminals or connectors provide an indication of the need for cleaning and/or retorqueing. The anticorrosion material is used to help ensure good electrical connections and to reduce terminal deterioration. The visual inspection for corrosion is not intended to require removal of and inspection under each terminal connection. The removal of visible corrosion is a preventive maintenance SR. The presence of visible corrosion does not necessarily represent a failure of this SR provided visible corrosion is removed during performance of SR 3.8.4.4. The 18 month frequency for this SR is sufficient to detect abnormal deterioration and has been shown to be adequate by operating experience. ## SURVEILLANCE REQUIREMENTS (continued) ### SR 3.8.4.6 This SR requires that each required battery charger be capable of supplying 536 amps (Auxiliary Building chargers) and 3 amps (SWIS chargers) at 125 V for ≥ 4 hours. These requirements are based on the design capacity of the chargers (Ref. 4). According to Regulatory Guide 1.32 (Ref. 10), the battery charger supply is required to be based on the largest combined demands of the various steady state loads and the charging capacity to restore the battery from the design minimum charge state to the fully charged state, irrespective of the status of the unit during these demand occurrences. The minimum required amperes and duration ensures that these requirements can be satisfied. The Surveillance Frequency is acceptable, given the unit conditions required to perform the test and the other administrative controls existing to ensure adequate charger performance during these 18 month intervals. In addition, this Frequency is intended to be consistent with expected fuel cycle lengths. This surveillance is modified by a Note which clarifies that it may be performed in any mode of operation provided certain conditions are met. The design is such that any battery charger may be tested while a spare or redundant battery and/or charger is in service in its place. The spare or redundant battery and/or charger must be within the 18 month surveillance frequency to maintain the DC subsystem(s) to which they are aligned OPERABLE. This operational flexibility maintains TS OPERABILITY of the applicable battery and DC train while testing the normally aligned charger. ## SR 3.8.4.7 A battery service test is a special test of battery capability, as found, to satisfy the design requirements (design load profile) of the DC electrical power system. The discharge rate and test length should correspond to the design load profile requirements as specified in Reference 4. The Surveillance Frequency of 18 months is consistent with the recommendations of Regulatory Guide 1.32 (Ref. 10), which states that the battery service test should be performed during refueling operations or at some other outage, (applicable to Auxiliary Building batteries only) with intervals between tests, not to exceed 18 months. ## SURVEILLANCE REQUIREMENTS ## SR 3.8.4.7 (continued) This SR is modified by three Notes. Note 1 allows the performance of a performance discharge test in lieu of a service test once per 60 months. Note 2 allows the performance of a modified performance discharge test in lieu of a service test at any time. The modified performance discharge test is a simulated duty cycle consisting of just two rates: the one minute rate published for the battery or the largest current load of the duty cycle, followed by the test rate employed for the performance test, both of which envelop the duty cycle of the service test. Since the ampere-hours removed by a rated one minute discharge represents a very small portion of the battery capacity, the test rate can be changed to that for the performance test without compromising the results of the performance discharge test. The battery terminal voltage for the modified performance discharge test should remain above the minimum battery terminal voltage specified in the battery service test for the duration of time equal to that of the service test. A modified discharge test is a test of the battery capacity and its ability to provide a high rate, short duration load (usually the highest rate of the duty cycle). This will often confirm the battery's ability to meet the critical period of the load duty cycle, in addition to determining its percentage of rated capacity. Initial conditions for the modified performance discharge test should be identical to those specified for a service test. The reason for Note 3 is that performing the Surveillance for the Auxiliary Building batteries would perturb the electrical distribution system and challenge safety systems. #### SR 3.8.4.8 A battery performance discharge test is a test of constant current capacity of a battery, after having been in service, to detect any change in the capacity determined by the acceptance test. The test is intended to determine overall battery degradation due to age and usage. ## SURVEILLANCE REQUIREMENTS ## SR 3.8.4.8 (continued) A battery modified performance discharge test is described in the Bases for SR 3.8.4.7. Either the battery performance discharge test or the modified performance discharge test is acceptable for satisfying SR 3.8.4.8. The modified performance discharge test may be used to satisfy SR 3.8.4.8 while simultaneously satisfying the requirements of SR 3.8.4.7 at any time. The performance discharge test may be used to satisfy 3.8.4.8 while simultaneously satisfying the requirements of SR 3.8.4.7 once per 60 months. The acceptance criteria for this Surveillance are consistent with IEEE-450 (Ref. 9). This reference recommends that the battery be replaced if its capacity is below 80% of the manufacturer's rating. A capacity of 80% shows that the battery rate of deterioration is increasing, even if there is ample capacity to meet the load requirements. The Surveillance Frequency for this test is normally 60 months. If the battery shows degradation, or if the battery has reached 85% of its expected life or 17 years, whichever comes first, the Surveillance Frequency is reduced to 18 months. Degradation is indicated, according to IEEE-450 (Ref. 9), when the battery capacity drops by more than 10% relative to its capacity on the previous performance test or when it is > 10% below the manufacturer's rating. These Frequencies are consistent with the recommendations in IEEE-450 (Ref. 9). This SR is modified by a Note. The reason for the Note is that performing the Surveillance for the Auxiliary Building batteries would perturb the electrical distribution system and challenge safety systems. ## **REFERENCES** - 1. 10 CFR 50, Appendix A, GDC 17. - 2. Regulatory Guide 1.6, March 10, 1971. - 3. IEEE-308-1971. - 4. FSAR, Section 8.3. # REFERENCES (continued) - 5. None. - 6. FSAR, Chapter 6. - 7. FSAR, Chapter 15. - 8. Regulatory Guide 1.93, December 1974. - 9. IEEE-450-1980. - 10. Regulatory Guide 1.32, February 1972. #### **B 3.8 ELECTRICAL POWER SYSTEMS** #### B 3.8.5 DC Sources—Shutdown #### **BASES** #### **BACKGROUND** A description of the DC sources is provided in the Bases for LCO 3.8.4, "DC Sources—Operating." ## APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident and transient analyses in the FSAR, Chapter 6 (Ref. 1) and Chapter 15 (Ref. 2), assume that Engineered Safety Feature systems are OPERABLE. The DC electrical power system provides normal and emergency DC electrical power for the diesel generators, emergency auxiliaries, and control and switching during all MODES of operation. The OPERABILITY of the DC subsystems is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY. The OPERABILITY of the minimum DC electrical power sources during MODES 5 and 6 and during movement of irradiated fuel assemblies ensures that: - a. The unit can be maintained in the shutdown or refueling condition for extended periods; - b. Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status; and - c. Adequate DC electrical power is provided to mitigate events postulated during shutdown, such as a fuel handling accident. The DC sources satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). #### LCO The DC electrical power sources required to support the necessary portions of AC, DC, and AC vital bus electrical power distribution subsystems required by LCO 3.8.10, "Distribution Systems—Shutdown," shall be OPERABLE. At a minimum, at least one train # LCO (continued) of DC electrical power source from the Auxiliary Building (Train A or B) and Service Water Intake Structure (Train A or B) consisting of one battery, one battery charger, and the corresponding control equipment and interconnecting cabling within the train, is required operable. In the case where the requirements of LCO 3.8.10 call for portions of a second train of the distribution subsystems to be OPERABLE (e.g., to support two trains of RHR, two trains of CREFS, or
instrumentation such as source range indication, containment purge and exhaust isolation actuation, or CREFS actuation), the required DC buses associated with the second train of distribution systems are OPERABLE if energized to the proper voltage from either: - An OPERABLE DC Source consisting of one battery, one battery charger, and the corresponding control equipment and interconnecting cabling associated with that train, or - A battery charger using the corresponding control equipment and interconnecting cabling within the train. The above requirements ensure the availability of sufficient DC electrical power sources to operate the unit in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents.) ## **APPLICABILITY** The DC electrical power sources required to be OPERABLE in MODES 5 and 6, and during movement of irradiated fuel assemblies, provide assurance that: - a. Required features needed to mitigate a fuel handling accident are available; - b. Required features necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and - c. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition. The DC electrical power requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.4. #### **ACTIONS** ## A.1, A.2.1, A.2.2, A.2.3, and A.2.4 If two subsystems are required by LCO 3.8.10, the remaining subsystem with DC power available may be capable of supporting sufficient systems to allow continuation of CORE ALTERATIONS and fuel movement. By allowing the option to declare required features inoperable with the associated DC power source(s) inoperable, appropriate restrictions will be implemented in accordance with the affected required features LCO ACTIONS. In many instances, this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of irradiated fuel assemblies, and operations involving positive reactivity additions). The Required Action to suspend positive reactivity additions does not preclude actions to maintain or increase reactor vessel inventory, provided the required SDM is maintained. Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required DC electrical power subsystems and to continue this action until restoration is accomplished in order to provide the necessary DC electrical power to the unit safety systems. The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required DC electrical power subsystems should be completed as quickly as possible in order to minimize the time during which the unit safety systems may be without sufficient power. ## SURVEILLANCE REQUIREMENTS #### SR 3.8.5.1 SR 3.8.5.1 requires performance of all Surveillances required by SR 3.8.4.1 through SR 3.8.4.8. Therefore, see the corresponding Bases for LCO 3.8.4 for a discussion of each SR. This SR is modified by a Note. The reason for the Note is to preclude requiring the OPERABLE DC sources from being discharged below their capability to provide the required power supply or otherwise rendered inoperable during the performance of SRs. It is the intent that these SRs must still be capable of being met, but actual performance is not required. ## REFERENCES - 1. FSAR, Chapter 6. - 2. FSAR, Chapter 15. and an order and an all grants are the THE STATE OF SHAPE OF THE MEN BUSINESS OF THE #### **B 3.8 ELECTRICAL POWER SYSTEMS** ## B 3.8.6 Battery Cell Parameters #### **BASES** #### **BACKGROUND** This LCO delineates the limits on electrolyte temperature, level, float voltage, and specific gravity for the DC power source batteries. A discussion of these batteries and their OPERABILITY requirements is provided in the Bases for LCO 3.8.4, "DC Sources—Operating," and LCO 3.8.5, "DC Sources—Shutdown." ## APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter 6 (Ref. 1) and Chapter 15 (Ref. 2), assume Engineered Safety Feature systems are OPERABLE. The DC electrical power system provides normal and emergency DC electrical power for the diesel generators, emergency auxiliaries, and control and switching during all MODES of operation. The OPERABILITY of the DC subsystems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining at least one train of DC sources OPERABLE during accident conditions, in the event of: - a. An assumed loss of all offsite AC power or all onsite AC power; and - b. A worst case single failure. Battery cell parameters satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). #### LCO Battery cell parameters must remain within acceptable limits to ensure availability of the required DC power to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence or a postulated DBA. Electrolyte limits are conservatively established, allowing continued DC electrical system function even with Category A and B limits not met. ## **APPLICABILITY** The battery cell parameters are required solely for the support of the associated DC electrical power subsystems. Therefore, the battery electrolyte limits of this LCO are only required to be met when the DC power source is required to be OPERABLE. Refer to the Applicability discussion in Bases for LCO 3.8.4 and LCO 3.8.5. ### **ACTIONS** ## A.1, A.2, and A.3 With one or more cells in one or more required batteries not within limits (i.e., Category A limits not met, Category B limits not met, or Category A and B limits not met) but within the Category C limits specified in Table 3.8.6-1 in the accompanying LCO, the battery is degraded but there is still sufficient capacity to perform the intended function. Therefore, the affected battery is not required to be considered inoperable solely as a result of Category A or B limits not met and operation is permitted for a limited period. The pilot cell electrolyte level and float voltage are required to be verified to meet the Category C limits within 2 hours (Required Action A.1). This check will provide a quick indication of the status of the remainder of the battery cells. Two hours provides time to inspect the electrolyte level and to confirm the float voltage of the pilot cells. Two hours is considered a reasonable amount of time to perform the required verification. Verification that the Category C limits are met (Required Action A.2) provides assurance that during the time needed to restore the parameters to the Category A and B limits, the battery is still capable of performing its intended function. A period of 24 hours is allowed to complete the initial verification because specific gravity measurements must be obtained for each connected cell. Taking into consideration both the time required to perform the required verification and the assurance that the battery cell parameters are not severely degraded, this time is considered reasonable. The verification is repeated at 7 day intervals until the parameters are restored to Category A or B limits. This periodic verification is consistent with the normal Frequency of pilot cell Surveillances. #### **ACTIONS** ## A.1, A.2, and A.3 (continued) Continued operation is only permitted for 31 days before battery cell parameters must be restored to within Category A and B limits. With the consideration that, while battery capacity is degraded, sufficient capacity exists to perform the intended function and to allow time to fully restore the battery cell parameters to normal limits, this time is acceptable prior to declaring the battery inoperable. #### **B.1** With one or more required batteries with one or more battery cell parameters outside the Category C limit for any connected cell, sufficient capacity to supply the maximum expected load requirement is not assured and the corresponding DC electrical power subsystem must be declared inoperable. Additionally, other potentially extreme conditions, such as not completing the Required Actions of Condition A within the required Completion Time or average electrolyte temperature of representative cells falling below the minimum temperature limit, or the average cell float voltage ≤ 2.13 volts, which is equivalent to overall battery terminal voltage ≤ 127.8 volts, are also cause for immediately declaring the associated DC electrical power subsystem inoperable. ## SURVEILLANCE REQUIREMENTS #### SR 3.8.6.1 This SR verifies that Category A battery cell parameters are consistent with the values specified in Table 3.8.6-1. IEEE-450 (Ref. 3) recommends regular battery inspections (at least one per month) including voltage, specific gravity, and electrolyte temperature of pilot cells. ### SR 3.8.6.2 The quarterly inspection of specific gravity and voltage is consistent with IEEE-450 (Ref. 3). In addition, within 7 days of a battery discharge < 110 V or a battery overcharge > 150 V, the battery must be demonstrated to meet Category B limits. Transients, such as motor starting transients, which may momentarily cause battery ## SURVEILLANCE REQUIREMENTS ## SR 3.8.6.2 (continued) voltage to drop to ≤ 110 V, do not constitute a battery discharge provided the battery terminal voltage and float current return to pretransient values. This inspection is also consistent with IEEE-450 (Ref. 3), which recommends special inspections following a severe discharge or overcharge, to ensure that no significant degradation of the battery occurs as a consequence of such discharge or overcharge. ## SR
3.8.6.3 This Surveillance verification that the average temperature of 10 connected representative cells is $\geq 60^{\circ}$ F for the Auxiliary Building batteries and $\geq 35^{\circ}$ F for the SWIS batteries, is consistent with a recommendation of IEEE-450 (Ref. 3), that states that the temperature of electrolytes in representative cells should be determined on a quarterly basis. Lower than normal temperatures act to inhibit or reduce battery capacity. This SR ensures that the operating temperatures remain within an acceptable operating range. This limit is based on design considerations. ## Table 3.8.6-1 This table delineates the limits on electrolyte level, float voltage, and specific gravity for three different categories. The meaning of each category is discussed below. Category A defines the normal parameter limit for each designated pilot cell in each battery. The cells selected as pilot cells are those with the lowest specific gravity and voltage from the previous quarterly surveillance. The Category A limits specified for electrolyte level are based on manufacturer recommendations and are consistent with the guidance in IEEE-450 (Ref. 3), with the extra ¼ inch allowance above the high water level indication for operating margin to account for temperatures and charge effects. In addition to this allowance, footnote a to Table 3.8.6-1 permits the electrolyte level to be above the specified maximum level during equalizing charge, provided it is ## SURVEILLANCE REQUIREMENTS ## Table 3.8.6-1 (continued) not overflowing. These limits ensure that the plates suffer no physical damage, and that adequate electron transfer capability is maintained in the event of transient conditions. IEEE-450 (Ref. 3) recommends that electrolyte level readings should be made only after the battery has been at float charge for at least 72 hours. The Category A limit specified for float voltage is ≥ 2.08 V per cell. This value is based on operating experience. This experience has shown numerous instances when at least one cell was measured at less than 2.13 volts DC at FNP. In such instances, the minimum average specific gravity was 1.197 equating to approximately 90% capacity which is well above that required by the design load profile. In addition, the float voltage limit of 2.08V is acceptable based on: 1) float voltage by itself not being a comprehensive indicator of the state of charge of a battery; 2) pilot cells exhibiting ≤ 2.13V not eliminating battery capability to perform design function; and 3) IEEE 450-1980 Appendix C1 does not consider a cell potentially degraded unless its voltage on float charge is ≤ 2.07V. The Category A limit specified for specific gravity for each pilot cell is ≥ 1.195. The manufacturers recommended fully charged specific gravity is 1.215 for the Auxiliary Building and 1.210 for the SWIS batteries. The value of 0.015 below the manufacturers recommended fully charged value for SWIS batteries has been adopted as the Category A minimum for both the Auxiliary Building and SWIS batteries. This value is characteristic of a charged cell with adequate capacity. According to IEEE-450 (Ref. 3), the specific gravity readings are based on a temperature of 77°F (25°C). The specific gravity readings are corrected for actual electrolyte temperature and level. For each 3°F (1.67°C) above 77°F (25°C), 1 point (0.001) is added to the reading; 1 point is subtracted for each 3°F below 77°F. The specific gravity of the electrolyte in a cell increases with a loss of water due to electrolysis or evaporation. Category B defines the normal parameter limits for each connected cell. The term "connected cell" excludes any battery cell that may be jumpered out. (continued) ## SURVEILLANCE REQUIREMENTS # Table 3.8.6-1 (continued) The Category B limits specified for electrolyte level and float voltage are the same as those specified for Category A and have been discussed above. The Category B limit specified for specific gravity for each connected cell is ≥ 1.190 with the average for all connected cells ≥ 1.195. The manufacturers recommended fully charged specific gravity is 1.215 for the Auxiliary Building and 1.210 for the SWIS batteries. The value of 0.020 below the manufacturers recommended fully charged value for SWIS batteries has been adopted as the Category B minimum for each connected cell for both the Auxiliary Building and SWIS batteries. The minimum specific gravity value required for each cell ensures that the effects of a highly charged or newly installed cell will not mask overall degradation of the battery. Category C defines the limits for each connected cell. These values, although reduced, provide assurance that sufficient capacity exists to perform the intended function and maintain a margin of safety. When any battery parameter is outside the Category C limits, the assurance of sufficient capacity described above no longer exists, and the battery must be declared inoperable. The Category C limits specified for electrolyte level (above the top of the plates and not overflowing) ensure that the plates suffer no physical damage and maintain adequate electron transfer capability. The Category C limits for float voltage are based on operating experience, which has shown that a cell voltage of 2.02 V or below, under float conditions and not caused by elevated temperature of the cell, indicates internal cell problems and may require cell replacement. The Category C limit of average specific gravity ≥ 1.190 is based on operating experience. In addition to that limit, if a cell is < 1.190, then it shall not have decreased more than 0.080 from the previous 92 day test. The footnotes to Table 3.8.6-1 are applicable to Category A, B, and C specific gravity. Footnote (b) to Table 3.8.6-1 requires the above mentioned correction for electrolyte level and temperature, with the exception that level correction is not required when battery charging current is < 2 amps on float charge. This current provides, in general, an indication of overall battery condition. ## SURVEILLANCE REQUIREMENTS # Table 3.8.6-1 (continued) Because of specific gravity gradients that are produced during the recharging process, delays of several days may occur while waiting for the specific gravity to stabilize. A stabilized charger current is an acceptable alternative to specific gravity measurement for determining the state of charge. This phenomenon is discussed in IEEE-450 (Ref. 3). Footnote (c) to Table 3.8.6-1 allows the float charge current to be used as an alternate to specific gravity. ## **REFERENCES** - 1. FSAR, Chapter 6. - 2. FSAR, Chapter 15. - 3. IEEE-450-1980. ## **B 3.8 ELECTRICAL POWER SYSTEMS** B 3.8.7 Inverters—Operating #### **BASES** #### BACKGROUND The inverters are the preferred source of power for the AC vital buses because of the stability and reliability they achieve. The function of the inverter is to provide AC electrical power to the vital buses. There are four Class 1E inverters that supply the four vital AC distribution panels. Each inverter is connected independently to one distribution panel. The power for the inverters is from the Class 1E 125 VDC Train A and B Auxiliary Building station batteries or their associated chargers when the batteries are on float. The four Class 1E inverters provide the preferred source of 120 V, 60 Hz power for the reactor protection system, the engineered safety feature actuation system, the nuclear steam supply system control and instrumentation, the post accident monitoring system, and the safety related radiation monitoring system. Each distribution panel can be connected to an alternate source of Class 1E 120 VAC power. The backup power source is an emergency 600 V MCC supplying a 120 V regulated panel through a constant voltage transformer (CVT). Should the normal distribution panel source fail, the inverter static transfer switch will function to supply the vital AC distribution panels from this alternate source. Specific details on inverters and their operating characteristics are found in FSAR, Chapter 8 (Ref. 1). ## APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter 6 (Ref. 2) and Chapter 15 (Ref. 3), assume Engineered Safety Feature systems are OPERABLE. The inverters are designed to provide the required capacity, capability, redundancy, and reliability to ensure the availability of necessary power to the RPS and ESFAS instrumentation and controls so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems. ## APPLICABLE SAFETY ANALYSES (continued) The OPERABILITY of the inverters is consistent with the initial assumptions of the accident analyses and is based on meeting the design basis of the unit. This includes maintaining required AC vital buses OPERABLE during accident conditions in the event of: - a. An assumed loss of all offsite AC electrical power or all onsite AC electrical power; and - b. A worst case single failure. Inverters are a part of the distribution system and, as such, satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). #### LCO The inverters ensure the availability of AC electrical power for the systems instrumentation required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA. Maintaining the required inverters OPERABLE ensures that the redundancy incorporated into the design of the RPS and ESFAS instrumentation and controls is maintained. The four inverters (two per train) ensure an uninterruptible supply of AC electrical power to the AC vital buses even if the 4.16 kV safety buses are de-energized. Operable inverters require the associated vital bus to be powered by the inverter with output
voltage and frequency within tolerances, and power input to the inverter from a 125 VDC station battery. This LCO is modified by a Note that allows two inverters to be disconnected from a common battery for ≤ 24 hours, if the vital bus(es) are powered from a Class 1E alternate power source consisting of the inverters static transfer switch and the associated CVT during the period and all other inverters are OPERABLE. This allows an equalizing charge to be placed on the associated battery. These provisions minimize the loss of equipment that would occur in the event of a loss of offsite power. The 24 hour time period for the allowance minimizes the time during which a loss of offsite power could result in the loss of equipment energized from the affected AC vital bus while taking into consideration the time required to perform an equalizing charge on the battery bank. # LCO (continued) The intent of this Note is to limit the number of inverters that may be disconnected. Only those inverters associated with the single battery undergoing an equalizing charge may be disconnected. All other inverters must be aligned to their associated batteries, regardless of the number of inverters or unit design. #### **APPLICABILITY** The inverters are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure that: - a. Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients; and - b. Adequate core cooling is provided, and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA. Inverter requirements for MODES 5 and 6 are covered in the Bases for LCO 3.8.8, "Inverters—Shutdown." #### **ACTIONS** ## <u>A.1</u> With a required inverter inoperable, its associated AC vital bus becomes inoperable until it is re-energized from its Class 1E CVT. For this reason a Note has been included in Condition A requiring the entry into the Conditions and Required Actions of LCO 3.8.9, "Distribution Systems—Operating." This ensures that the vital bus is re-energized within 8 hours. The associated static transfer switch normally provides a bumpless transfer of power to the alternate AC source (Class 1E CVT). Required Action A.1 allows 24 hours to fix the inoperable inverter and return it to service. The 24 hour limit is based upon engineering judgment, taking into consideration the time required to repair an inverter and the additional risk to which the unit is exposed because of the inverter inoperability. This has to be balanced against the risk of an immediate shutdown, along with the potential challenges to safety systems such a shutdown might entail. When the AC vital bus #### **ACTIONS** ## A.1 (continued) is powered from its constant voltage source, it is relying upon interruptible AC electrical power sources (offsite and onsite). The uninterruptible inverter source to the AC vital buses is the preferred source for powering instrumentation trip setpoint devices. ## B.1 and B.2 If the inoperable devices or components cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems. ## SURVEILLANCE REQUIREMENTS ## SR 3.8.7.1 This Surveillance verifies that the inverters are functioning properly with all required circuit breakers closed and AC vital buses energized from the inverter. The verification of proper voltage and frequency output ensures that the required power is readily available for the instrumentation of the RPS and ESFAS connected to the AC vital buses. The 7 day Frequency takes into account the redundant capability of the inverters and other indications available in the control room that alert the operator to inverter malfunctions. #### REFERENCES - 1. FSAR, Chapter 8. - 2. FSAR, Chapter 6. - 3. FSAR, Chapter 15. #### **B 3.8 ELECTRICAL POWER SYSTEMS** #### B 3.8.8 Inverters—Shutdown ### **BASES** #### **BACKGROUND** A description of the inverters is provided in the Bases for LCO 3.8.7, "Inverters—Operating." ## APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter 6 (Ref. 1) and Chapter 15 (Ref. 2), assume Engineered Safety Feature systems are OPERABLE. The DC to AC inverters are designed to provide the required capacity, capability, redundancy, and reliability to ensure the availability of necessary power to the Reactor Protection System and Engineered Safety Features Actuation System instrumentation and controls so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. The OPERABILITY of the inverters is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY. The OPERABILITY of the minimum inverters to each AC vital bus during MODES 5 and 6 ensures that: - a. The unit can be maintained in the shutdown or refueling condition for extended periods; - b. Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status; and - c. Adequate power is available to mitigate events postulated during shutdown, such as a fuel handling accident. The inverters were previously identified as part of the distribution system and, as such, satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO The inverters ensure the availability of electrical power for the instrumentation for systems required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence or a postulated DBA. Per LCO 3.8.10, "Distribution Systems—Shutdown," the necessary portions of the necessary AC vital bus electrical power distribution subsystems shall be OPERABLE to support equipment required to be OPERABLE. At a minimum, at least one train of AC vital bus electrical power subsystems energized from the associated inverters connected to the respective DC bus is required to be OPERABLE. In the case where the requirements of LCO 3.8.10 call for portions of a second train of the distribution subsystems to be OPERABLE (e.g., to support two trains of RHR, two trains of CREFS, or instrumentation such as source range indication, containment purge and exhaust isolation actuation, or CREFS actuation), the required portions of the second train of AC vital bus electrical power distribution subsystems may be energized from the associated inverter(s) connected to the respective DC bus, or the alternate Class 1E power source consisting of the inverter static transfer switch and the associated constant voltage transformer. Class 1E power and distribution systems are normally used because these systems are available and reliable. However, due to events such as maintenance or modification, portions of the Class 1E system may be temporarily unavailable. In such an instance the plant staff assesses the alternate systems to ensure that defense in depth is maintained and that risk is minimized. This ensures the availability of sufficient inverter power sources to operate the unit in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents). # **APPLICABILITY** The inverters required to be OPERABLE in MODES 5 and 6 and during movement of irradiated fuel assemblies provide assurance that: - a. Systems needed to mitigate a fuel handling accident are available; - b. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and - c. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition or refueling condition. # APPLICABILITY (continued) Inverter requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.7. #### **ACTIONS** ## A.1, A.2.1, A.2.2, A.2.3, and A.2.4 If two trains are required by LCO 3.8.10, "Distribution Systems—Shutdown," the remaining OPERABLE Inverters may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS, fuel movement, and operations with a potential for positive reactivity additions. By the allowance of the option to declare required features inoperable with the associated inverter(s) inoperable, appropriate restrictions will be implemented in accordance with the affected required features LCOs' Required Actions. In many instances, this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of irradiated fuel assemblies, and operations involving positive reactivity additions). The Required Action to suspend positive reactivity additions does not preclude actions to maintain or increase reactor vessel inventory, provided the required SDM is maintained. Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required inverters and to continue this action until restoration is accomplished in order to provide the necessary inverter power to the unit safety systems. The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required inverters should be completed as quickly as possible in order to minimize the time the unit safety systems may be without power or powered from a constant voltage source transformer. ## SURVEILLANCE REQUIREMENTS #### SR 3.8.8.1 This Surveillance verifies that the inverters are
functioning properly with all required circuit breakers closed and AC vital buses energized from the inverter. The verification of proper voltage and frequency # SURVEILLANCE REQUIREMENTS # SR 3.8.8.1 (continued) output ensures that the required power is readily available for the instrumentation connected to the AC vital buses. The 7 day Frequency takes into account the redundant capability of the inverters and other indications available in the control room that alert the operator to inverter malfunctions. ## **REFERENCES** - 1. FSAR, Chapter 6. - 2. FSAR, Chapter 15. #### **B 3.8 ELECTRICAL POWER SYSTEMS** B 3.8.9 Distribution Systems — Operating #### **BASES** #### **BACKGROUND** The onsite Class 1E AC, DC, and AC vital bus electrical power distribution systems are divided into two redundant and independent AC, DC, and AC vital bus electrical power distribution trains. The AC electrical power subsystem for each train consists of a primary Engineered Safety Feature (ESF) 4.16 kV bus and secondary 600 and 208/120 V buses, distribution panels, motor control centers and load centers. Each train of 4.16 kV ESF buses has at least one separate and independent offsite source of power as well as an onsite diesel generator (DG) source. Each 4.16 kV ESF bus is normally connected to a preferred offsite source. If all offsite sources are unavailable, the onsite emergency DG supplies power to the 4.16 kV ESF bus(es). Control power for the 4.16 kV breakers is supplied from the Class 1E batteries. Additional description of this system may be found in the Bases for LCO 3.8.1, "AC Sources—Operating," and the Bases for LCO 3.8.4, "DC Sources—Operating." The secondary AC electrical power distribution system for each train includes the safety related load centers, motor control centers, and distribution panels shown in Table B 3.8.9-1. The 120 VAC vital buses are arranged in two load groups per train and are normally powered from the inverters. The alternate power supply for the vital buses are Class 1E constant voltage source transformers powered from the same train as the associated inverter, and its use is governed by LCO 3.8.7, "Inverters—Operating." Each constant voltage source transformer is powered from a Class 1E AC bus. There are two independent 125 VDC electrical power distribution subsystems (one for each train). The list of all required distribution buses is presented in Table B 3.8.9-1. ## APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Chapter 6 (Ref. 1), and in the FSAR, Chapter 15 (Ref. 2), assume ESF systems are OPERABLE. The AC, ## APPLICABLE SAFETY ANALYSES (continued) DC, and AC vital bus electrical power distribution systems are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, Power Distribution Limits; Section 3.4, Reactor Coolant System (RCS); and Section 3.6, Containment Systems. The OPERABILITY of the AC, DC, and AC vital bus electrical power distribution systems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit. This includes maintaining power distribution systems OPERABLE during accident conditions in the event of: - a. An assumed loss of all offsite power or all onsite AC electrical power; and - b. A worst case single failure. The distribution systems satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). ## LCO The required power distribution subsystems listed in Table B 3.8.9-1 ensure the availability of AC, DC, and AC vital bus electrical power for the systems required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA. The AC, DC, and AC vital bus electrical power distribution subsystems are required to be OPERABLE. Maintaining the Train A and Train B AC, DC, and AC vital bus electrical power distribution subsystems OPERABLE ensures that the redundancy incorporated into the design of ESF is not defeated. Therefore, a single failure within any system or within the electrical power distribution subsystems will not prevent safe shutdown of the reactor. OPERABLE AC electrical power distribution subsystems require the associated buses, load centers, motor control centers, and distribution panels to be energized to their proper voltages. OPERABLE DC electrical power distribution subsystems require the associated buses to be energized to their proper voltage from either the associated # (continued) battery or charger. OPERABLE vital bus electrical power distribution subsystems require the associated buses to be energized to their proper voltage from the associated inverter via inverted DC voltage or Class 1E constant voltage transformer. In addition, tie breakers between redundant safety related AC, DC, and AC vital bus power distribution subsystems, if they exist, must be open. This prevents any electrical malfunction in any power distribution subsystem from propagating to the redundant subsystem, that could cause the failure of a redundant subsystem and a loss of essential safety function(s). If any tie breakers are closed, the affected redundant electrical power distribution subsystems are considered inoperable. This applies to the onsite, safety related redundant electrical power distribution subsystems. It does not, however, preclude redundant Class 1E 4.16 kV buses from being powered from the same offsite circuit. ## **APPLICABILITY** The electrical power distribution subsystems are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure that: - Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients: and - Adequate core cooling is provided, and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA. Electrical power distribution subsystem requirements for MODES 5 and 6 are covered in the Bases for LCO 3.8.10, "Distribution Systems—Shutdown." #### **ACTIONS** #### <u>A.1</u> With one or more required AC buses, load centers, motor control centers, or distribution panels, except AC vital buses, inoperable, and a loss of safety function has not yet occurred, the remaining AC electrical power distribution subsystems are capable of supporting the #### **ACTIONS** ## A.1 (continued) minimum safety functions necessary to shut down the reactor and maintain it in a safe shutdown condition, assuming no single failure. The overall reliability is reduced, however, because a single failure in the remaining power distribution subsystems could result in the minimum required ESF functions not being supported. Therefore, the required AC buses, load centers, motor control centers, and distribution panels must be restored to OPERABLE status within 8 hours. Condition A worst scenario is one train without AC power (i.e., no offsite power to the train and the associated DG inoperable). In this Condition, the unit is more vulnerable to a complete loss of AC power. It is, therefore, imperative that the unit operator's attention be focused on minimizing the potential for loss of power to the remaining train by stabilizing the unit, and on restoring power to the affected train. The 8 hour time limit before requiring a unit shutdown in this Condition is acceptable because of: - a. The potential for decreased safety if the unit operator's attention is diverted from the evaluations and actions necessary to restore power to the affected train, to the actions associated with taking the unit to shutdown within this time limit; and - b. The potential for an event in conjunction with a single failure of a redundant component in the train with AC power. The second Completion Time for Required Action A.1 establishes a limit on the maximum time allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition A is entered while, for instance, a DC bus is inoperable and subsequently restored OPERABLE, the LCO may already have been not met for up to 2 hours. This could lead to a total of 10 hours, since initial failure of the LCO, to restore the AC distribution system. At this time, a DC circuit could again become inoperable, and AC distribution restored OPERABLE. This could continue indefinitely. The Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in #### **ACTIONS** ## A.1 (continued) establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition A was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely. #### **B.1** With one or more AC vital buses inoperable, and a loss of safety function has not yet occurred, the remaining OPERABLE AC vital buses are capable of supporting the minimum safety functions necessary to shut down the unit and maintain it in the safe shutdown condition. Overall reliability is reduced, however, since an additional single failure could result in the minimum required ESF functions not being supported. Therefore, the required AC vital bus must be restored to OPERABLE status within 8 hours by powering the bus from the associated inverter via inverted DC or Class 1E constant voltage transformer. Condition B represents one or more AC vital buses without power; potentially both the DC source and the associated AC source are nonfunctioning. In this situation, the unit is significantly more vulnerable to a complete loss of all noninterruptible power. It is, therefore, imperative that the operator's attention focus on stabilizing the unit, minimizing the
potential for loss of power to the remaining vital buses and restoring power to the affected vital bus. This 8 hour limit is more conservative than Completion Times allowed for the vast majority of components that are without adequate vital AC power. Taking exception to LCO 3.0.2 for components without adequate vital AC power, that would have the Required Action Completion Times shorter than 8 hours if declared inoperable, is acceptable because of: The potential for decreased safety by requiring a change in unit conditions (i.e., requiring a shutdown) and not allowing stable operations to continue; #### **ACTIONS** ## **B.1** (continued) - b. The potential for decreased safety by requiring entry into numerous Applicable Conditions and Required Actions for components without adequate vital AC power and not providing sufficient time for the operators to perform the necessary evaluations and actions for restoring power to the affected train; and - c. The potential for an event in conjunction with a single failure of a redundant component. The 8 hour Completion Time takes into account the importance to safety of restoring the AC vital bus to OPERABLE status, the redundant capability afforded by the other OPERABLE vital buses, and the low probability of a DBA occurring during this period. The second Completion Time for Required Action B.1 establishes a limit on the maximum time allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition B is entered while, for instance, an AC bus is inoperable and subsequently returned OPERABLE, the LCO may already have been not met for up to 8 hours. This could lead to a total of 16 hours, since initial failure of the LCO, to restore the vital bus distribution system. At this time, an AC train could again become inoperable, and vital bus distribution restored OPERABLE. This could continue indefinitely. This Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition B was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely. ## <u>C.1</u> With Auxiliary Building DC bus(es) in one train inoperable, the remaining Auxiliary Building DC electrical power distribution subsystems are capable of supporting the minimum safety functions #### **ACTIONS** ## <u>C.1</u> (continued) necessary to shut down the reactor and maintain it in a safe shutdown condition, assuming no single failure. The overall reliability is reduced, however, because a single failure in the remaining DC electrical power distribution subsystem could result in the minimum required ESF functions not being supported. Therefore, the required DC buses must be restored to OPERABLE status within 2 hours by powering the bus from the associated battery or charger. Condition C represents one train without adequate DC power; potentially both with the battery significantly degraded and the associated charger nonfunctioning. In this situation, the unit is significantly more vulnerable to a complete loss of all DC power. It is, therefore, imperative that the operator's attention focus on stabilizing the unit, minimizing the potential for loss of power to the remaining trains and restoring power to the affected train. This 2 hour limit is more conservative than Completion Times allowed for the vast majority of components that would be without power. Taking exception to LCO 3.0.2 for components without adequate DC power, which would have Required Action Completion Times shorter than 2 hours, is acceptable because of: - a. The potential for decreased safety by requiring a change in unit conditions (i.e., requiring a shutdown) while allowing stable operations to continue; - The potential for decreased safety by requiring entry into numerous applicable Conditions and Required Actions for components without DC power and not providing sufficient time for the operators to perform the necessary evaluations and actions for restoring power to the affected train; and - c. The potential for an event in conjunction with a single failure of a redundant component. The 2 hour Completion Time for DC buses is consistent with Regulatory Guide 1.93 (Ref. 3). #### **ACTIONS** ## C.1 (continued) The second Completion Time for Required Action C.1 establishes a limit on the maximum time allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition C is entered while, for instance, an AC bus is inoperable and subsequently returned OPERABLE, the LCO may already have been not met for up to 8 hours. This could lead to a total of 10 hours, since initial failure of the LCO, to restore the DC distribution system. At this time, an AC train could again become inoperable, and DC distribution restored OPERABLE. This could continue indefinitely. This Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition C was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely. ## **D.1 and D.2** If the inoperable distribution subsystem(s) addressed by Conditions A, B, or C cannot be restored to OPERABLE status within the required Completion Time, the unit must be brought to a MODE in which the LCO does not apply. To achieve this status, the unit must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required unit conditions from full power conditions in an orderly manner and without challenging plant systems. ## <u>E.1</u> With one SWIS DC electrical power distribution subsystem inoperable, the Service Water System train supported by the affected SWIS DC electrical power distribution subsystem must be declared inoperable. The capability of the affected SWIS DC electrical power distribution subsystem to fully support the associated train of Service Water is not assured. Therefore, consistent with the definition of OPERABILITY, the associated train of Service Water must be declared inoperable immediately, thereby limiting operation in this condition to the Completion Time associated with the affected Service Water System train. # ACTIONS (continued) ## <u>F.1</u> With two trains with inoperable distribution subsystems that result in a loss of safety function, adequate core cooling, containment OPERABILITY and other vital functions for DBA mitigation would be compromised, and immediate plant shutdown in accordance with LCO 3.0.3 is required. ## SURVEILLANCE REQUIREMENTS ## SR 3.8.9.1 This Surveillance verifies that the required AC, DC, and AC vital bus electrical power distribution systems are functioning properly, with the correct circuit breaker alignment. The correct breaker alignment ensures the appropriate separation and independence of the electrical divisions is maintained, and the appropriate voltage is available to each required bus. The verification of proper voltage availability on the buses ensures that the required voltage is readily available for motive as well as control functions for critical system loads connected to these buses. The 7 day Frequency takes into account the redundant capability of the AC, DC, and AC vital bus electrical power distribution subsystems, and other indications available in the control room that alert the operator to subsystem malfunctions. #### REFERENCES - 1. FSAR, Chapter 6. - 2. FSAR, Chapter 15. - 3. Regulatory Guide 1.93, December 1974. # Table B 3.8.9-1 (page 1 of 1) AC and DC Electrical Power Distribution Systems | TYPE | VOLTAGE | TRAIN A* | TRAIN B* | |--------------------|--------------------|---------------------|---------------------| | AC Safety
Buses | 4160 V SWGR | 1/2 F and 1/2 K | 1/2 G and 1/2 L | | | 600 V LC | 1/2 D, K**, and R** | 1/2 E, L**, and S** | | DC Buses | 125 V SWGR | 1/2 A | 1/2 B | | | 125 V Dist. Panels | 1/2 M | 1/2, N | | Vital AC Buses | 120 | 1/2 A and 1/2 B | 1/2 C and 1/2 D | - Each train of the AC and DC electrical power distribution systems is a subsystem. - •• Indicates buses shared between Units 1 and 2. ## B 3.8 ELECTRICAL POWER SYSTEMS B 3.8.10 Distribution Systems—Shutdown #### BASES - #### **BACKGROUND** A description of the AC, DC, and AC vital bus electrical power distribution systems is provided in the Bases for LCO 3.8.9, "Distribution Systems—Operating." # APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident and transient analyses in the FSAR, Chapter 6 (Ref. 1) and Chapter 15 (Ref. 2), assume Engineered Safety Feature (ESF) systems are OPERABLE. The AC, DC, and AC vital bus electrical power distribution systems are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. The OPERABILITY of the AC, DC, and AC vital bus electrical power distribution system is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY. The OPERABILITY of the minimum AC, DC, and AC vital bus electrical power distribution subsystems during MODES 5 and 6, and during movement of irradiated fuel assemblies ensures that: - a. The unit can be maintained in the shutdown or refueling condition for extended periods; - b. Sufficient instrumentation and control capability is available for monitoring and maintaining the unit status; and - c. Adequate power is provided to
mitigate events postulated during shutdown, such as a fuel handling accident. The AC and DC electrical power distribution systems satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). ### LCO Various combinations of subsystems, equipment, and components are required OPERABLE by other LCOs, depending on the specific plant condition. Implicit in those requirements is the required OPERABILITY of necessary support required features. This LCO explicitly requires energization of the portions of the electrical distribution system necessary to support OPERABILITY of required systems, equipment, and components—all specifically addressed in each LCO. The necessary portions of the AC electrical power distribution subsystems are considered OPERABLE if they are energized to their proper voltages. The necessary portions of the DC electrical power subsystems are considered OPERABLE if the following criteria are satisfied: - At least one train of the necessary portions of DC electrical subsystems is energized to the proper voltage by an OPERABLE train of DC sources consisting of one battery, one battery charger, and the corresponding control equipment and interconnecting cabling associated with that train; and - In the case where portions of a second train of the DC electrical subsystems are required OPERABLE (to support two trains of RHR, two trains of CREFS, or instrumentation such as source range indication, containment purge and exhaust isolation actuation, or CREFS actuation), the required portions of the second train of DC electrical subsystems are OPERABLE when energized to the proper voltage from either: - an OPERABLE train of DC sources consisting of one battery, one battery charger, and the corresponding control equipment and interconnecting cabling associated with that train, or - a battery charger using the corresponding control equipment and interconnecting cabling within the train. (continued) # LCO (continued) The necessary portions of the AC vital bus subsystems are considered OPERABLE if the following criteria are satisfied: - At least one train of the necessary portions of AC vital bus electrical power subsystems is energized to the proper voltage by OPERABLE inverters connected to the respective DC bus; or - In the case where portions of a second train of AC vital bus subsystems are required OPERABLE (to support two trains of RHR, two trains of CREFS, or instrumentation such as source range indication, containment purge and exhaust isolation actuation, or CREFS actuation), the required portions of the second train of AC vital bus electrical power distribution subsystems are OPERABLE when energized to the proper voltage from either: - OPERABLE inverter(s) connected to the respective DC bus, or - the alternate Class 1E power source consisting of the inverter static transfer switch and the associated constant voltage transformer. Class 1E power and distribution systems are normally used because these systems are available and reliable. However due to events such as maintenance or modification, portions of the Class 1E system may be temporarily unavailable. In such an instance the plant staff assesses the alternate systems to ensure that defense in depth is maintained and that risk is minimized. Maintaining these portions of the distribution system energized ensures the availability of sufficient power to operate the unit in a safe manner to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents). ## **APPLICABILITY** The AC and DC electrical power distribution subsystems required to be OPERABLE in MODES 5 and 6, and during movement of irradiated fuel assemblies, provide assurance that: a. Systems to provide adequate coolant inventory makeup are available for the irradiated fuel in the core; # APPLICABILITY (continued) - b. Systems needed to mitigate a fuel handling accident are available; - c. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and - d. Instrumentation and control capability is available for monitoring and maintaining the unit in a cold shutdown condition and refueling condition. The AC, DC, and AC vital bus electrical power distribution subsystems requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.9. #### **ACTIONS** # A.1, A.2.1, A.2.2, A.2.3, A.2.4, and A.2.5 Although redundant required features may require redundant trains of electrical power distribution subsystems to be OPERABLE, one OPERABLE distribution subsystem train may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS and fuel movement. By allowing the option to declare required features associated with an inoperable distribution subsystem inoperable, appropriate restrictions are implemented in accordance with the affected distribution subsystem LCO's Required Actions. In many instances, this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of irradiated fuel assemblies, and operations involving positive reactivity additions). Suspension of these activities does not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required AC and DC electrical power distribution subsystems and to continue this action until restoration is accomplished in order to provide the necessary power to the unit safety systems. Notwithstanding performance of the above conservative Required Actions, a required residual heat removal (RHR) subsystem may be inoperable. In this case, Required Actions A.2.1 through A.2.4 do not adequately address the concerns relating to coolant circulation and #### **ACTIONS** ## A.1, A.2.1, A.2.2, A.2.3, A.2.4, and A.2.5 (continued) heat removal. Pursuant to LCO 3.0.6, the RHR ACTIONS would not be entered. Therefore, Required Action A.2.5 is provided to direct declaring RHR inoperable, which results in taking the appropriate RHR actions. The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required distribution subsystems should be completed as quickly as possible in order to minimize the time the unit safety systems may be without power. ## SURVEILLANCE REQUIREMENTS ## SR 3.8.10.1 This Surveillance verifies that the AC, DC, and AC vital bus electrical power distribution subsystems are functioning properly, with all the buses energized. The verification of proper voltage availability on the buses ensures that the required power is readily available for motive as well as control functions for critical system loads connected to these buses. The 7 day Frequency takes into account the capability of the electrical power distribution subsystems, and other indications available in the control room that alert the operator to subsystem malfunctions. #### REFERENCES - 1. FSAR, Chapter 6. - 2. FSAR, Chapter 15. #### **B 3.9 REFUELING OPERATIONS** #### B 3.9.1 Boron Concentration ### **BASES** #### **BACKGROUND** The limit on the boron concentrations of the filled portions of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity during refueling ensures that the reactor remains subcritical during MODE 6. Refueling boron concentration is the soluble boron concentration in the coolant in each of these volumes having direct access to the reactor core during refueling. The soluble boron concentration offsets the core reactivity and is measured by chemical analysis of a representative sample of the coolant in each of the volumes having direct access to the reactor core. The refueling boron concentration limit specified in the COLR ensures that an overall core reactivity of $k_{eff} \leq 0.95$ is maintained during fuel handling, with control rods and fuel assemblies in the most adverse configuration (least negative reactivity) consistent with the assumptions of the applicable safety analysis. GDC 26 of 10 CFR 50, Appendix A, requires that two independent reactivity control systems of different design principles be provided (Ref. 1). One of these systems must be capable of holding the reactor core subcritical under cold conditions. The Chemical and Volume Control System (CVCS) is the system capable of maintaining the reactor subcritical in cold conditions by maintaining the boron concentration. The reactor is brought to shutdown conditions before beginning operations to open the reactor vessel for refueling. After the RCS is cooled and depressurized and the vessel head is unbolted, the head is slowly removed to form the refueling cavity. The refueling canal and the refueling cavity are then flooded with borated water from the refueling water storage tank through the open reactor vessel by gravity feeding or by the use of the Residual Heat Removal (RHR) System pumps. The pumping action of the RHR System in the RCS and the natural circulation due to thermal driving heads in the reactor vessel and refueling cavity mix the added concentrated boric acid with the water in the refueling canal. The RHR System is in operation during # BACKGROUND (continued) refueling (see LCO 3.9.4, "Residual Heat Removal (RHR) and Coolant Circulation — High Water Level," and LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation — Low Water Level") to provide forced circulation in the RCS and assist in maintaining the boron concentrations in the RCS, the refueling canal, and the refueling cavity above the COLR limit. ## APPLICABLE SAFETY ANALYSES During refueling operations, the reactivity condition of the core is consistent with the initial conditions assumed for the boron dilution accident in the accident analysis and is conservative for MODE 6. The boron concentration limit specified in the COLR is based on the core
reactivity at the beginning of each fuel cycle (the end of refueling) and includes an uncertainty allowance. The required boron concentration and the plant refueling procedures that verify the correct fuel loading plan (including full core mapping) ensure that the k_{eff} of the core will remain ≤ 0.95 during the refueling operation. Hence, at least a 5% $\Delta k/k$ margin to criticality is established during refueling. During refueling, the water volume in the spent fuel pool, the transfer canal, the refueling canal, the refueling cavity, and the reactor vessel form a single mass. As a result, the soluble boron concentration is relatively the same in each of these volumes. The boron dilution event analyzed for refueling MODE requires that manual action be taken to mitigate the dilution event and prevent a loss of SHUTDOWN MARGIN. The audible count rate from the source range neutron flux monitors required OPERABLE in LCO 3.9.2 provides prompt and definite indication of any boron dilution. The count rate increase is proportional to the subcritical multiplication factor and allows operations to recognize the initiation of a boron dilution event in time to isolate the primary water makeup source before SHUTDOWN MARGIN is lost (Ref. 2). The RCS boron concentration satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). LCO The LCO requires that a minimum boron concentration be maintained in the filled portions of the RCS, the refueling canal, and the refueling cavity that have direct access to the core while in MODE 6. The # LCO (continued) boron concentration limit specified in the COLR ensures that a core k_{eff} of \leq 0.95 is maintained during fuel handling operations. Violation of the LCO could lead to an inadvertent criticality during MODE 6. ## **APPLICABILITY** This LCO is applicable in MODE 6 to ensure that the fuel in the reactor vessel will remain subcritical. The required boron concentration ensures a keff ≤ 0.95. In other MODES, the LCOs for Rod Group Alignment Limits, Shutdown Bank Insertion Limits, Control Bank Insertion Limits, and SHUTDOWN MARGIN ensure that an adequate amount of negative reactivity is available to shut down the reactor and maintain it subcritical. ## **ACTIONS** # A.1 and A.2 Continuation of CORE ALTERATIONS or positive reactivity additions (including actions to reduce boron concentration) is contingent upon maintaining the unit in compliance with the LCO. If the boron concentration of any coolant volume in the filled portions of the RCS, the refueling canal, or the refueling cavity that has direct access to the core is less than its limit, all operations involving CORE ALTERATIONS or positive reactivity additions must be suspended immediately. Suspension of CORE ALTERATIONS and positive reactivity additions shall not preclude moving a component to a safe position or normal cooling of the coolant volume for the purpose of maintaining system temperature. #### <u>A.3</u> In addition to immediately suspending CORE ALTERATIONS or positive reactivity additions, boration to restore the concentration must be initiated immediately. In determining the required combination of boration flow rate and concentration, no unique Design Basis Event must be satisfied. The only requirement is to restore the boron concentration to its required value as soon as possible. In order to raise the boron concentration as soon as possible, the operator should begin boration with the best source available for unit conditions. Once actions have been initiated, they must be continued until the boron concentration is restored. The restoration time depends on the amount of boron that must be injected to reach the required concentration. ## SURVEILLANCE REQUIREMENTS ## SR 3.9.1.1 This SR ensures that the coolant boron concentration in the filled portions of the RCS, the refueling canal, and the refueling cavity that have direct access to the core is within the COLR limits. The boron concentration of the coolant in each volume that has direct access to the core is determined periodically by chemical analysis. A minimum Frequency of once every 72 hours is a reasonable amount of time to verify the boron concentration of representative samples. The Frequency is based on operating experience, which has shown 72 hours to be adequate. ## **REFERENCES** - 1. 10 CFR 50, Appendix A, GDC 26. - 2. FSAR, Chapter 15.2.4. #### **B 3.9 REFUELING OPERATIONS** #### B 3.9.2 Nuclear Instrumentation ## **BASES** #### **BACKGROUND** The source range neutron flux monitors are used during refueling operations to monitor the core reactivity condition. The installed source range neutron flux monitors are part of the Nuclear Instrumentation System (NIS). These detectors are located external to the reactor vessel and detect neutrons leaking from the core. Temporary neutron flux detectors which provide equivalent indication may be utilized in place of installed instrumentation. The installed source range neutron flux monitors are BF3 detectors operating in the proportional region of the gas filled detector characteristic curve. The detectors monitor the neutron flux in counts per second. The instrument range covers six decades of neutron flux (1E+6 cps) with a 5% instrument accuracy. The detectors also provide continuous visual indication in the control room and an audible count rate to alert operators to a possible dilution accident. The NIS is designed consistent with the intent of the criteria presented in Reference 1. ## APPLICABLE SAFETY ANALYSES Two OPERABLE source range neutron flux monitors are required to provide a signal to alert the operator to unexpected changes in core reactivity. The audible count rate from the source range neutron flux monitors provides prompt and definite indication of any boron dilution. The count rate increase is proportional to the subcritical multiplication factor and allows operators to promptly recognize the initiation of a boron dilution event. Prompt recognition of the initiation of a boron dilution event is consistent with the assumptions of the safety analysis and is necessary to assure sufficient time is available for isolation of the primary water makeup source before SHUTDOWN MARGIN is lost (Ref. 2). The High-Flux at Shutdown Alarm, because of the delay for the neutron flux to reach the alarm setpoint, does not provide prompt indication of the initiation of a boron dilution event and the delay introduced by the alarm setpoint is not consistent with the assumptions of the safety analysis. The source range neutron flux monitors satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). ### LCO This LCO requires that two source range neutron flux monitors be OPERABLE to ensure that redundant monitoring capability is available to detect changes in core reactivity. To be OPERABLE each channel of source range instrumentation must provide visual indication in the control room. In addition, one channel of audible count rate must be available to alert the operators to the initiation of a boron dilution event. The preferred location of the required audible count rate is in the control room. In the case where the required audible count rate is only available in containment, it is acceptable to station a licensed operator in containment to communicate with the control room and alert the operators to a possible dilution accident. In the event that the required channel of audible count rate is lost, all unborated water sources must be isolated. The isolation of unborated water sources precludes a boron dilution accident. Once actions are initiated to isolate the unborated water sources, they must be continued until all the necessary flow paths are isolated. Movement of fuel may continue provided two channels of source range visual indication are available in the control room. ## **APPLICABILITY** In MODE 6, the source range neutron flux monitors must be OPERABLE to determine changes in core reactivity. There are no other direct means available to check core reactivity levels. In other MODES, the OPERABILITY requirements for these same installed source range detectors and circuitry are addressed by LCO 3.3.1, "Reactor Trip System (RTS) Instrumentation." #### **ACTIONS** #### A.1 and A.2 With only one source range neutron flux monitor OPERABLE (providing visual indication in the control room), redundancy has been lost. Since these instruments are the only direct means of monitoring core reactivity conditions, CORE ALTERATIONS and positive reactivity additions must be suspended immediately. Performance of Required Action A.1 shall not preclude completion of movement of a component to a safe position or normal cooling of the coolant volume for the purpose of maintaining system temperature. # ACTIONS (continued) ## <u>B.1</u> With no source range neutron flux monitor OPERABLE (providing visual indication in the control room), action to restore a monitor to OPERABLE status shall be initiated immediately. Once initiated, action shall be continued until a source range neutron flux monitor is restored to OPERABLE status. ## **B.2** With no source range neutron flux monitor OPERABLE (providing visual indication in the control room), there are no direct means of detecting changes in core reactivity. However, since CORE ALTERATIONS and positive reactivity additions are not to be made, the core reactivity condition is stabilized until the source range neutron flux monitors are OPERABLE. This stabilized condition is determined by performing SR 3.9.1.1 to ensure that the required boron concentration exists. The Completion Time of 12 hours is sufficient to obtain and analyze a reactor coolant sample for boron concentration and ensures that unplanned changes in boron concentration would be identified. The 12 hour Completion Time is reasonable, considering the low probability of a change in core reactivity during this time period. ### <u>C.1</u> With no audible count rate available, prompt and definite indication of a boron
dilution event, consistent with the assumptions of the safety analysis, is lost. In this situation, the boron dilution event may not be detected quickly enough to assure sufficient time is available for operations to manually isolate the unborated water sources and stop the dilution prior to the loss of SHUTDOWN MARGIN. Therefore, action must be taken to prevent an inadvertent boron dilution event from occurring. This is accomplished by isolating all the unborated water flow paths to the reactor coolant system from the Reactor Makeup Water System and the Demineralized Water System. Isolating these flow paths ensures that an inadvertent dilution of the reactor coolant boron concentration is prevented. The Completion Time of "immediately" assures a prompt response by operations and requires an operator to initiate actions to isolate an affected flow path immediately. Once actions are initiated, they must be continued until all the necessary flow paths are isolated. Movement of fuel may continue provided two channels of visual indication are available in the control room. ## SURVEILLANCE REQUIREMENTS ## SR 3.9.2.1 SR 3.9.2.1 is the performance of a CHANNEL CHECK, which is a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that the two indication channels should be consistent with core conditions. Changes in fuel loading and core geometry can result in significant differences between source range channels, but each channel should be consistent with its local conditions. The Frequency of 12 hours is consistent with the CHANNEL CHECK Frequency specified similarly for the same instruments in LCO 3.3.1. ## SR 3.9.2.2 SR 3.9.2.2 is the performance of a CHANNEL CALIBRATION every 18 months. This SR is modified by a Note stating that neutron detectors are excluded from the CHANNEL CALIBRATION. The CHANNEL CALIBRATION for the source range neutron flux monitors consists of obtaining the detector plateau or preamp discriminator curves and evaluating those curves. The CHANNEL CALIBRATION also includes verification of the audible count rate function. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage. Operating experience has shown these components usually pass the Surveillance when performed at the 18 month Frequency. #### REFERENCES - 1. 10 CFR 50, Appendix A, GDC 13, GDC 26, GDC 28, and GDC 29. - 2. FSAR, Section 15.2.4.2.2. **B 3.9.3 Containment Penetrations** BASES #### **BACKGROUND** During CORE ALTERATIONS or movement of irradiated fuel assemblies within containment, a release of fission product radioactivity within containment will be restricted from escaping to the environment when the LCO requirements are met. In MODES 1, 2, 3, and 4, this is accomplished by maintaining containment OPERABLE as described in LCO 3.6.1, "Containment." In MODE 6, the potential for containment pressurization as a result of an accident is not likely; therefore, requirements to isolate the containment from the outside atmosphere can be less stringent. The LCO requirements are referred to as "refueling integrity" rather than "containment OPERABILITY." Refueling integrity means that all potential escape paths are closed or capable of being closed. Since there is no potential for containment pressurization, the 10 CFR 50, Appendix J leakage criteria and tests are not required. The containment serves to contain fission product radioactivity that may be released from the reactor core following an accident, such that offsite radiation exposures are maintained well within the requirements of 10 CFR 100. Additionally, the containment provides radiation shielding from the fission products that may be present in the containment atmosphere following accident conditions. The containment equipment hatch, which is part of the containment pressure boundary, provides a means for moving large equipment and components into and out of containment. During CORE ALTERATIONS or movement of irradiated fuel assemblies within containment, the equipment hatch must be held in place by at least four bolts. Good engineering practice dictates that the bolts required by this LCO be approximately equally spaced. The containment air locks, which are also part of the containment pressure boundary, provide a means for personnel access during MODES 1, 2, 3, and 4 unit operation in accordance with LCO 3.6.2, "Containment Air Locks." Each air lock has a door at both ends. The doors are normally interlocked to prevent simultaneous opening when containment OPERABILITY is required. During periods of unit shutdown # BACKGROUND (continued) when refueling integrity is not required, the door interlock mechanism may be disabled, allowing both doors of an air lock to remain open for extended periods when frequent containment entry is necessary. During CORE ALTERATIONS or movement of irradiated fuel assemblies within containment, refueling integrity is required; therefore, the door interlock mechanism may remain disabled, but one air lock door must always remain closed. The requirements for refueling integrity ensure that a release of fission product radioactivity within containment will be restricted from escaping to the environment. The integrity restrictions are sufficient to restrict fission product radioactivity release from containment due to a fuel handling accident during refueling. The Containment Purge and Exhaust System includes two subsystems. The normal subsystem includes a 48-inch purge penetration and a 48-inch exhaust penetration. The second subsystem, a minipurge system, includes an 8-inch purge and an 8 inch exhaust line that utilize the 48-inch penetrations. During MODES 1, 2, 3, and 4, the two 48-inch purge valves in each of the normal purge and exhaust penetrations are secured in the closed position. The two 8-inch minipurge valves in each of the two minipurge lines may be opened in these MODES in accordance with LCO 3.6.3, "Containment Isolation Valves," but are closed automatically by the Engineered Safety Features Actuation System (ESFAS) instrumentation specified in LCO 3.3.6, "Containment Purge and Exhaust Isolation Instrumentation." Neither of the subsystems is subject to a Specification in MODE 5. In MODE 6, large air exchanges are necessary to conduct refueling operations. The normal 48-inch purge system is used for this purpose, and all four valves are closed by the ESFAS instrumentation specified in LCO 3.3.6, "Containment Purge and Exhaust Isolation Instrumentation." The minipurge system is not normally used in MODE 6. However, if the minipurge valves are opened they are capable of being closed automatically by the instrumentation specified in LCO 3.3.6, "Containment Purge and Exhaust Isolation Instrumentation." The other containment penetrations that provide direct access from containment atmosphere to outside atmosphere must be isolated on at least one side. Isolation may be achieved by a closed automatic # BACKGROUND (continued) isolation valve, a manual isolation valve, blind flange, or equivalent. Equivalent isolation methods allowed under the provisions of 10 CFR 50.59 may include use of a material that can provide a temporary, atmospheric pressure, ventilation barrier for the other containment penetrations during CORE ALTERATIONS or movement of irradiated fuel assemblies within containment (Ref. 1). ## APPLICABLE SAFETY ANALYSES During CORE ALTERATIONS or movement of irradiated fuel assemblies within containment, the most severe radiological consequences result from a fuel handling accident. The fuel handling accident is a postulated event that involves damage to irradiated fuel (Ref. 2). The fuel handling accident analyzed includes dropping a single irradiated fuel assembly. The requirements of LCO 3.9.6, "Refueling Cavity Water Level," and the minimum decay time of 100 hours prior to CORE ALTERATIONS ensure that the release of fission product radioactivity, subsequent to a fuel handling accident, results in doses that are well within the guideline values specified in 10 CFR 100. Standard Review Plan, Section 15.7.4, Rev. 1 (Ref. 3), defines "well within" 10 CFR 100 to be 25% or less of the 10 CFR 100 values. The acceptance limits for offsite radiation exposure will be 25% of 10 CFR 100 values. Containment penetrations satisfy Criterion 3 of 10 CFR 50.36(c)(2)(ii). #### LCO This LCO limits the consequences of a fuel handling accident in containment by limiting the potential escape paths for fission product radioactivity released within containment. The LCO requires any penetration providing direct access from the containment atmosphere to the outside atmosphere to be closed except for the OPERABLE containment purge and exhaust penetrations. For the OPERABLE containment purge and exhaust penetrations, this LCO ensures that these penetrations are isolable by the Containment Purge and Exhaust Isolation System. The OPERABILITY requirements for # LCO (continued) LCO 3.3.6, "Containment Purge and Exhaust Isolation Instrumentation," ensure that the automatic purge and exhaust valve closure times specified in the FSAR can be achieved and, therefore, meet the assumptions used in the safety analysis to ensure that releases through the valves are terminated, such that radiological doses are within the acceptance limit. # **APPLICABILITY** The containment penetration requirements are applicable during CORE ALTERATIONS or movement of irradiated fuel assemblies within containment because this is when there is a potential for a fuel handling accident. In MODES 1, 2, 3, and 4, containment penetration requirements are addressed by LCO 3.6.1. In MODES 5 and 6, when CORE ALTERATIONS or movement of irradiated fuel assemblies within containment are not being conducted, the potential for a fuel handling accident does not exist. Therefore, under these conditions no requirements are placed on containment penetration
status. ## **ACTIONS** # A.1 and A.2 If the containment equipment hatch, air locks, or any containment penetration that provides direct access from the containment atmosphere to the outside atmosphere is not in the required status, including the Containment Purge and Exhaust Isolation System not capable of automatic actuation when the purge and exhaust valves are open, the unit must be placed in a condition where the isolation function is not needed. This is accomplished by immediately suspending CORE ALTERATIONS and movement of irradiated fuel assemblies within containment. Performance of these actions shall not preclude completion of movement of a component to a safe position. # SURVEILLANCE REQUIREMENTS # SR 3.9.3.1 This Surveillance demonstrates that each of the containment penetrations required to be in its closed position is in that position. The Surveillance on the open purge and exhaust valves will demonstrate that the valves are not blocked from closing. Also, the Surveillance will demonstrate that each valve operator has motive power, which will ensure that each valve is capable of being closed by an OPERABLE automatic containment purge and exhaust isolation signal. ## SURVEILLANCE REQUIREMENTS # **SR 3.9.3.1** (continued) The Surveillance is performed every 7 days during CORE ALTERATIONS or movement of irradiated fuel assemblies within containment. The Surveillance interval is selected to be commensurate with the normal duration of time to complete fuel handling operations. A surveillance before the start of refueling operations will provide two or three surveillance verifications during the applicable period for this LCO. As such, this Surveillance ensures that a postulated fuel handling accident that releases fission product radioactivity within the containment will not result in a release of fission product radioactivity to the environment. ## SR 3.9.3.2 This Surveillance demonstrates that each containment purge and exhaust valve actuates to its isolation position on manual initiation or on an actual or simulated high radiation signal from each of the containment purge radiation monitoring instrumentation channels. The 18 month Frequency maintains consistency with other similar ESFAS instrumentation and valve testing requirements. In LCO 3.3.6. the Containment Purge and Exhaust Isolation instrumentation requires a CHANNEL CHECK every 12 hours and a COT every 92 days to ensure the channel OPERABILITY during refueling operations. Every 18 months a CHANNEL CALIBRATION is performed. The system actuation response time is demonstrated every 18 months, during refueling, on a STAGGERED TEST BASIS. SR 3.6.3.5 demonstrates that the isolation time of each valve is in accordance with the Inservice Testing Program requirements. These Surveillances performed during MODE 6 will ensure that the valves are capable of closing after a postulated fuel handling accident to limit a release of fission product radioactivity from the containment. #### REFERENCES - 1. GPU Nuclear Safety Evaluation SE-0002000-001, Rev. 0, May 20, 1988. - 2. FSAR, Section 15.4.5. - 3. NUREG-0800, Section 15.7.4, Rev. 1, July 1981. B 3.9.4 Residual Heat Removal (RHR) and Coolant Circulation — High Water Level # **BASES** ## **BACKGROUND** The purpose of the RHR System in MODE 6 is to remove decay heat and sensible heat from the Reactor Coolant System (RCS), as required by GDC 34, to provide mixing of borated coolant and to prevent boron stratification (Ref. 1). Heat is removed from the RCS by circulating reactor coolant through the RHR heat exchanger(s), where the heat is transferred to the Component Cooling Water System. The coolant is then returned to the RCS via the RCS cold leg(s). Operation of the RHR System for normal cooldown or decay heat removal is manually accomplished from the control room. The heat removal rate is adjusted by controlling the flow of reactor coolant through the RHR heat exchanger(s) and the bypass. Mixing of the reactor coolant is maintained by this continuous circulation of reactor coolant through the RHR System. # APPLICABLE SAFETY ANALYSES If the reactor coolant temperature is not maintained below 200°F, boiling of the reactor coolant could result. This could lead to a loss of coolant in the reactor vessel. Additionally, boiling of the reactor coolant could lead to a reduction in boron concentration in the coolant due to boron plating out on components near the areas of the boiling activity. The loss of reactor coolant and the reduction of boron concentration in the reactor coolant would eventually challenge the integrity of the fuel cladding, which is a fission product barrier. One train of the RHR System is required to be OPERABLE and in operation in MODE 6, with the water level ≥ 23 ft above the top of the reactor vessel flange, to prevent this challenge. The LCO does permit de-energizing the RHR pump for short durations, under the condition that the boron concentration is not diluted. This conditional de-energizing of the RHR pump does not result in a challenge to the fission product barrier. The RHR and Coolant Circulation — High Water Level specification satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii). fortalism in the care #### LCO Only one RHR loop is required for decay heat removal in MODE 6, with the water level ≥ 23 ft above the top of the reactor vessel flange. Only one RHR loop is required to be OPERABLE, because the volume of water above the reactor vessel flange provides backup decay heat removal capability. At least one RHR loop must be OPERABLE and in operation to provide: - a. Removal of decay heat; - b. Mixing of borated coolant to minimize the possibility of criticality; - c. Indication of reactor coolant temperature. An OPERABLE RHR loop includes an RHR pump, a heat exchanger, valves, piping, instruments, and controls to ensure an OPERABLE flow path and to determine the low end temperature. The flow path starts in one of the RCS hot legs and is returned to the RCS cold legs. The LCO is modified by a Note that allows the required operating RHR loop to not be in operation for up to 1 hour per 8 hour period, provided no operations are permitted that would cause a reduction of the RCS boron concentration. Boron concentration reduction is prohibited because uniform concentration distribution cannot be ensured without forced circulation. This permits operations such as core mapping or alterations in the vicinity of the reactor vessel hot leg nozzles and RCS to RHR isolation valve testing. During this 1 hour period, decay heat is removed by natural convection to the large mass of water in the refueling cavity. ## **APPLICABILITY** One RHR loop must be OPERABLE and in operation in MODE 6, with the water level ≥ 23 ft above the top of the reactor vessel flange, to provide decay heat removal. The 23 ft water level was selected because it corresponds to the 23 ft requirement established for fuel movement in LCO 3.9.6, "Refueling Cavity Water Level." Requirements for the RHR System in other MODES are covered by LCOs in Section 3.4, Reactor Coolant System (RCS), and Section 3.5, Emergency Core Cooling Systems (ECCS). RHR loop requirements in MODE 6 with the water level < 23 ft are located in LCO 3.9.5, "Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level." #### **ACTIONS** RHR loop requirements are met by having one RHR loop OPERABLE and in operation, except as permitted in the Note to the LCO. ### **A.1** If RHR loop requirements are not met, there will be no forced circulation to provide mixing to establish uniform boron concentrations. Reduced boron concentrations can occur by the addition of water with a lower boron concentration than the required boron concentration specified in the COLR. Therefore, actions that could result in the addition of water to the RCS with a boron concentration less than the required boron concentration specified in the COLR must be suspended immediately. ## **A.2** If RHR loop requirements are not met, actions shall be taken immediately to suspend loading of irradiated fuel assemblies in the core. With no forced circulation cooling, decay heat removal from the core occurs by natural convection to the heat sink provided by the water above the core. A minimum refueling water level of 23 ft above the reactor vessel flange provides an adequate available heat sink. Suspending any operation that would increase decay heat load, such as loading a fuel assembly, is a prudent action under this condition. #### **A.3** If RHR loop requirements are not met, actions shall be initiated and continued in order to satisfy RHR loop requirements. With the unit in MODE 6 and the refueling water level ≥ 23 ft above the top of the reactor vessel flange, corrective actions shall be initiated immediately. ## A.4, A.5, A.6.1, and A.6.2 If no RHR is in operation, the following actions must be taken: - a) the equipment hatch must be closed and secured with four bolts; - b) one door in each air lock must be closed; and - each penetration providing direct access from the containment atmosphere to the outside atmosphere must be either closed by a manual or automatic isolation valve, blind flange, or equivalent, or verified to be capable of being closed by an OPERABLE Containment Purge and Exhaust Isolation System. #### **ACTIONS** # A.4, A.5, A.6.1, and A.6.2 (continued) With RHR loop requirements not met, the potential exists for the coolant to boil and release radioactive gas to the containment atmosphere. Performing the actions described above ensures that all containment penetrations are either closed or can be closed so that the dose limits are not exceeded. The Completion Time of 4 hours allows fixing of most RHR problems and is reasonable, based on the low probability of the coolant boiling in that time. # SURVEILLANCE REQUIREMENTS # SR 3.9.4.1 This Surveillance demonstrates that the RHR loop is in operation and circulating reactor coolant. The flow rate is determined by the
flow rate necessary to provide sufficient decay heat removal capability and to prevent thermal and boron stratification in the core. The Frequency of 12 hours is sufficient, considering the flow, temperature, pump control, and alarm indications available to the operator in the control room for monitoring the RHR System. #### REFERENCES 1. FSAR, Section 5.5.7. B 3.9.5 Residual Heat Removal (RHR) and Coolant Circulation—Low Water Level #### **BASES** #### **BACKGROUND** The purpose of the RHR System in MODE 6 is to remove decay heat and sensible heat from the Reactor Coolant System (RCS), as required by GDC 34, to provide mixing of borated coolant, and to prevent boron stratification (Ref. 1). Heat is removed from the RCS by circulating reactor coolant through the RHR heat exchanger(s) where the heat is transferred to the Component Cooling Water System. The coolant is then returned to the RCS via the RCS cold leg(s). Operation of the RHR System for normal cooldown decay heat removal is manually accomplished from the control room. The heat removal rate is adjusted by controlling the flow of reactor coolant through the RHR heat exchanger(s) and the bypass lines. Mixing of the reactor coolant is maintained by this continuous circulation of reactor coolant through the RHR System. # APPLICABLE SAFETY ANALYSES If the reactor coolant temperature is not maintained below 200°F, boiling of the reactor coolant could result. This could lead to a loss of coolant in the reactor vessel. Additionally, boiling of the reactor coolant could lead to a reduction in boron concentration in the coolant due to the boron plating out on components near the areas of the boiling activity. The loss of reactor coolant and the reduction of boron concentration in the reactor coolant will eventually challenge the integrity of the fuel cladding, which is a fission product barrier. Two trains of the RHR System are required to be OPERABLE, and one train in operation, in order to prevent this challenge. The RHR and Coolant Circulation — Low Water Level specification satisfies Criterion 4 of 10 CFR 50.36(c)(2)(ii). ### LCO In MODE 6, with the water level < 23 ft above the top of the reactor vessel flange, both RHR loops must be OPERABLE. Additionally, one loop of RHR must be in operation in order to provide: - a. Removal of decay heat; - b. Mixing of borated coolant to minimize the possibility of criticality; and - c. Indication of reactor coolant temperature. # LCO (continued) An OPERABLE RHR loop consists of an RHR pump, a heat exchanger, valves, piping, instruments and controls to ensure an OPERABLE flow path and to determine the low end temperature. The flow path starts in one of the RCS hot legs and is returned to the RCS cold legs. The LCO requirements are modified by a Note which provides an exception to the requirements for one RHR loop to be OPERABLE and one RHR loop to be in operation. This exception is necessary to ensure the RHR System may be realigned as necessary for up to 2 hours to perform the required surveillance testing necessary to verify the RHR System performance in the ECCS injection mode of operation. # **APPLICABILITY** Two RHR loops are required to be OPERABLE, and one RHR loop must be in operation in MODE 6, with the water level < 23 ft above the top of the reactor vessel flange, to provide decay heat removal. Requirements for the RHR System in other MODES are covered by LCOs in Section 3.4, Reactor Coolant System (RCS), and Section 3.5, Emergency Core Cooling Systems (ECCS). RHR loop requirements in MODE 6 with the water level ≥ 23 ft are located in LCO 3.9.4, "Residual Heat Removal (RHR) and Coolant Circulation—High Water Level." #### **ACTIONS** # A.1 and A.2 If less than the required number of RHR loops are OPERABLE, action shall be immediately initiated and continued until the RHR loop is restored to OPERABLE status and to operation or until \geq 23 ft of water level is established above the reactor vessel flange. When the water level is \geq 23 ft above the reactor vessel flange, the Applicability changes to that of LCO 3.9.4, and only one RHR loop is required to be OPERABLE and in operation. An immediate Completion Time is necessary for an operator to initiate corrective actions. #### **B.1** If no RHR loop is in operation, there will be no forced circulation to provide mixing to establish uniform boron concentrations. Reduced boron concentrations can occur by the addition of water with a lower boron concentration than the required boron concentration specified in the COLR. Therefore, actions that could result in the addition of water to the RCS with a boron concentration less than the required boron concentration specified in the COLR must be suspended immediately. # ACTIONS (continued) # <u>B.2</u> If no RHR loop is in operation, actions shall be initiated immediately, and continued, to restore one RHR loop to operation. Since the unit is in Conditions A and B concurrently, the restoration of two OPERABLE RHR loops and one operating RHR loop should be accomplished expeditiously. ## B.3, B.4, B.5.1, and B.5.2 If no RHR is in operation, the following actions must be taken: - a) the equipment hatch must be closed and secured with four bolts; - b) one door in each air lock must be closed; and - c) each penetration providing direct access from the containment atmosphere to the outside atmosphere must be either closed by a manual or automatic isolation valve, blind flange, or equivalent, or verified to be capable of being closed by an OPERABLE Containment Purge and Exhaust Isolation System. With RHR loop requirements not met, the potential exists for the coolant to boil and release radioactive gas to the containment atmosphere. Performing the actions described above ensures that all containment penetrations are either closed or can be closed so that the dose limits are not exceeded. The Completion Time of 4 hours allows fixing of most RHR problems and is reasonable, based on the low probability of the coolant boiling in that time. ## SURVEILLANCE REQUIREMENTS ### SR 3.9.5.1 This Surveillance demonstrates that one RHR loop is in operation and circulating reactor coolant. The flow rate is determined by the flow rate necessary to provide sufficient decay heat removal capability and to prevent thermal and boron stratification in the core. In addition, during operation of the RHR loop with the water level in the vicinity of the reactor vessel nozzles, the RHR pump suction requirements must be met. The Frequency of 12 hours is sufficient, considering the flow, temperature, pump control, and alarm indications available to the operator for monitoring the RHR System in the control room. # SURVEILLANCE REQUIREMENTS (continued) # SR 3.9.5.2 Verification that the required pump is OPERABLE ensures that an additional RCS or RHR pump can be placed in operation, if needed, to maintain decay heat removal and reactor coolant circulation. Verification is performed by verifying proper breaker alignment and power available to the required pump. The Frequency of 7 days is considered reasonable in view of other administrative controls available and has been shown to be acceptable by operating experience. #### **REFERENCES** 1. FSAR, Section 5.5.7. Specifically support of the Company ang tanggan kalang ang kalang ang kalang ka B 3.9.6 Refueling Cavity Water Level ## **BASES** #### **BACKGROUND** The movement of irradiated fuel assemblies or performance of CORE ALTERATIONS, except during latching and unlatching of control rod drive shafts, within containment requires a minimum water level of 23 ft above the top of the reactor vessel flange. During refueling, this maintains sufficient water level in the containment, refueling canal, fuel transfer canal, refueling cavity, and spent fuel pool. Sufficient water is necessary to retain iodine fission product activity in the water in the event of a fuel handling accident (Refs. 1 and 2). Sufficient iodine activity would be retained to limit offsite doses from the accident to < 25% of 10 CFR 100 limits, as provided by the guidance of Reference 3. ## APPLICABLE SAFETY ANALYSES During CORE ALTERATIONS and movement of irradiated fuel assemblies, the water level in the refueling canal and the refueling cavity is an initial condition design parameter in the analysis of a fuel handling accident in containment, as postulated by Regulatory Guide 1.25 (Ref. 1). A minimum water level of 23 ft (Regulatory Position C.1.c of Ref. 1) allows a decontamination factor of 100 (Regulatory Position C.1.g of Ref. 1) to be used in the accident analysis for iodine. This relates to the assumption that 99% of the total iodine released from the pellet to cladding gap of all the dropped fuel assembly rods is retained by the refueling cavity water. The fuel pellet to cladding gap is assumed to contain 10% (except I-131 is 12%) of the total fuel rod iodine inventory (Refs. 1 and 6). The fuel handling accident analysis inside containment is described in Reference 2. With a minimum water level of 23 ft and a minimum decay time of 100 hours prior to fuel handling, the analysis and test programs demonstrate that the iodine release due to a postulated fuel handling accident is adequately captured by the water and offsite doses are maintained within allowable limits (Refs. 4 and 5). Refueling cavity water level satisfies Criterion 2 of 10 CFR 50.36(c)(2)(ii). ## LCO A minimum refueling cavity water level of 23 ft above the reactor vessel flange is required to ensure that the radiological consequences of a postulated fuel handling accident inside containment are within acceptable limits, as provided by the guidance of Reference 3. ## **APPLICABILITY** LCO 3.9.6 is applicable during CORE ALTERATIONS, except during latching and unlatching of control rod drive shafts, and when moving irradiated fuel assemblies within containment. Unlatching and latching of control rod drive shafts includes drag testing of the associated rod cluster
control assembly. The LCO minimizes the possibility of a fuel handling accident in containment that is beyond the assumptions of the safety analysis. If irradiated fuel assemblies are not present in containment, there can be no significant radioactivity release as a result of a postulated fuel handling accident. Requirements for fuel handling accidents in the spent fuel pool are covered by LCO 3.7.13, "Fuel Storage Pool Water Level." #### **ACTIONS** # A.1 and A.2 With a water level of < 23 ft above the top of the reactor vessel flange, all operations involving CORE ALTERATIONS or movement of irradiated fuel assemblies within the containment shall be suspended immediately to ensure that a fuel handling accident cannot occur. The suspension of CORE ALTERATIONS and fuel movement shall not preclude completion of movement of a component to a safe position. # SURVEILLANCE REQUIREMENTS # SR 3.9.6.1 Verification of a minimum water level of 23 ft above the top of the reactor vessel flange ensures that the design basis for the analysis of the postulated fuel handling accident during refueling operations is met. Water at the required level above the top of the reactor vessel flange limits the consequences of damaged fuel rods that are postulated to result from a fuel handling accident inside containment (Ref. 2). # SURVEILLANCE REQUIREMENTS # SR 3.9.6.1 (continued) The Frequency of 24 hours is based on engineering judgment and is considered adequate in view of the large volume of water and the normal procedural controls of valve positions, which make significant unplanned level changes unlikely. ### REFERENCES - 1. Regulatory Guide 1.25, March 23, 1972. - 2. FSAR, Section 15.4.5. - 3. NUREG-0800, Section 15.7.4. - 4. 10 CFR 100.10. - 5. Malinowski, D. D., Bell, M. J., Duhn, E., and Locante, J., WCAP-828, Radiological Consequences of a Fuel Handling Accident, December 1971. - 6. NUREG/CR 5009.