

# Mine Unit 1 Restoration Report Crow Butte Uranium Project

January 10, 2000

United States Nuclear Regulatory Commission Source Materials License SUA-1534

**Submitted To:** 

**US Nuclear Regulatory Commission** 

Office of Nuclear Material Safety and Safeguards

11545 Rockville Pike

Rockville, Maryland 20850

Prepared By:

Crow Butte Resources, Inc.

P.O. Box 169

Crawford, Nebraska 69339





### **Table of Contents**

| 1 | IN  | TRODUCTION                                 | 1  |
|---|-----|--------------------------------------------|----|
| 2 | M   | NE UNIT 1 MINING HISTORY                   | 3  |
|   | 2.1 | Mine Unit 1 Description                    | 3  |
|   | 2.2 | Determination of Baseline Water Quality    | 3  |
|   | 2.3 | Establishment of Restoration Goals         |    |
|   | 2.4 | History of Mining Activities               |    |
|   | 2.5 | Mine Unit 1 Excursions                     |    |
|   | 2.6 | Determination of Post-Mining Water Quality |    |
| 3 | M   | NE UNIT 1 RESTORATION                      | 16 |
|   | 3.1 | Groundwater Transfer                       | 16 |
|   | 3.2 | Groundwater Sweep                          |    |
|   | 3.3 | Groundwater Treatment                      |    |
|   | 3.3 | .1 Ion Exchange Treatment                  | 28 |
|   | 3.3 |                                            |    |
|   | 3.3 | - · · · · · · · · · · · · · · · · · · ·    |    |
|   | 3.4 | Wellfield Recirculation                    |    |
|   | 3.5 | Post Restoration Sampling                  |    |
| 4 | ST  | ABILIZATION                                | 38 |
| 5 | EF  | FECTIVENESS OF MINE UNIT 1 RESTORATION     | 43 |
|   | 5.1 | Restoration Summary                        | 43 |
|   | 5.2 | Restoration Results                        |    |
|   | 5.3 | Requested Action                           |    |



### Mine Unit 1 Restoration Report

### Table of Figures and Tables

| Figure 1: Mine Unit Map                                                      | 2  |
|------------------------------------------------------------------------------|----|
| Figure 2: Mine Unit 1 Map                                                    | 4  |
| Table 1: Wells Used to Establish Mine Unit 1 Baseline Groundwater Quality    | 5  |
| Table 2: Baseline Groundwater Quality Data for Mine Unit 1                   | 7  |
| Table 3: Mine Unit 1 Restoration Goals                                       | 10 |
| Table 4: Post Mining Water Quality for Mine Unit 1 Restoration Well Sampling | 13 |
| Figure 3: Water Transfer Number 1                                            | 18 |
| Figure 4: Water Transfer Number 2                                            | 19 |
| Figure 5: Water Transfer Number 3                                            | 20 |
| Figure 6: Water Transfer Number 4                                            | 21 |
| Figure 7: Restoration Process Schematic                                      |    |
| Table 5: Typical Reverse Osmosis Membrane Rejection                          | 27 |
| Figure 8: Ion Exchange Treatment Wells                                       | 29 |
| Figure 9: RO Restoration Patterns                                            | 31 |
| Table 6: Restoration Pattern Final RO Pore Volumes and Conductivity          | 32 |
| Figure 10: Recirculation Wells                                               | 34 |
| Table 7: Mine Unit 1 Post-Restoration Analytical Results                     | 36 |
| Table 8: Mine Unit 1 Stabilization Analytical Results                        | 39 |
| Figure 11: Stabilization Trends as a Percentage of UIC Permit Standard       |    |
| Table 9: Restoration Summary                                                 | 43 |
| Table 10: Mine Unit 1 Restoration Results                                    | 45 |





#### 1 INTRODUCTION

Crow Butte Resources, Inc. (CBR) operates a uranium solution mine in Dawes County, Nebraska. The permitted area includes approximately 2,800 acres in all or portions of Sections 11, 12, and 13 of Township 31N, Range 52W and Sections 18, 19, 20, 29 and 30 of Township 31N, Range 51W. The process plant is located in Section 19, Township 31 North, Range 51 West. The wellfields for current mining operations are located in Sections 18 and 19.

Solution mining involves the injection of an oxidant- and carbonate-charged solution ("lixiviant") into the production zone aquifer through injection wells. With slight pH adjustments, the reduced uranium is oxidized and dissolved by complexation with the carbonate. The uranium-rich solution ("pregnant" lixiviant) is drawn to recovery wells where it is pumped to the surface and transferred to the process plant. Injection and production flows are carried to and from the process plant through underground pipelines.

The uranium is removed from the mining solution by adsorption onto ion exchange resin. The now barren lixiviant is recharged with an oxidant and carbonate and is reinjected into the production zone for additional uranium recovery. The production cycle is continued until the ore zone is depleted to the point economic uranium recovery is no longer feasible.

During production, there is a constant movement of lixiviant through the aquifer from outlying injection wells to internal recovery wells. The injection wells and recovery wells are arranged in any of a number of geometric patterns depending upon the configuration of the orebody and the aquifer permeability. Most often, wells are placed in five- or seven-spot patterns. Monitoring wells, which are screened in appropriate stratigraphic horizons, surround the wellfield pattern area to detect any lixiviant that may migrate out of the production zone, either vertically or horizontally.

Following the completion of uranium recovery in a particular mining area, the affected groundwater is restored to appropriate standards, which include preoperational baseline conditions or pre-mining class-of-use limits.

Currently, there are seven mine units, designated as Mine Units 1 through 7, at the Crow Butte project. Of these seven mine units, Mine Units 1, 2 and 3 are in restoration and Mine Units 4 through 7 are in production. Figure 1 shows the general location of the mine units within the permitted area.

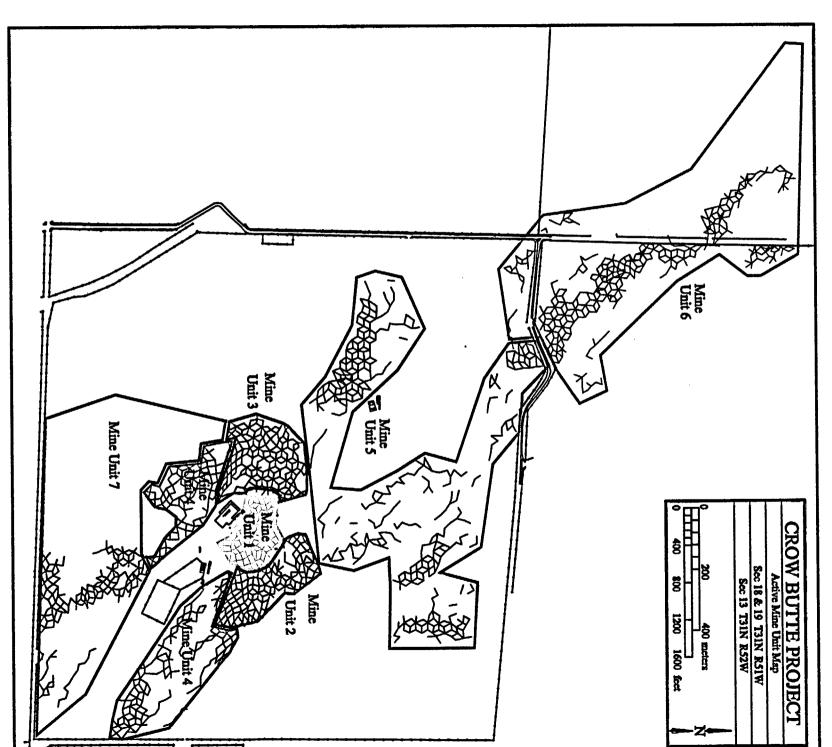



FIGURE 1

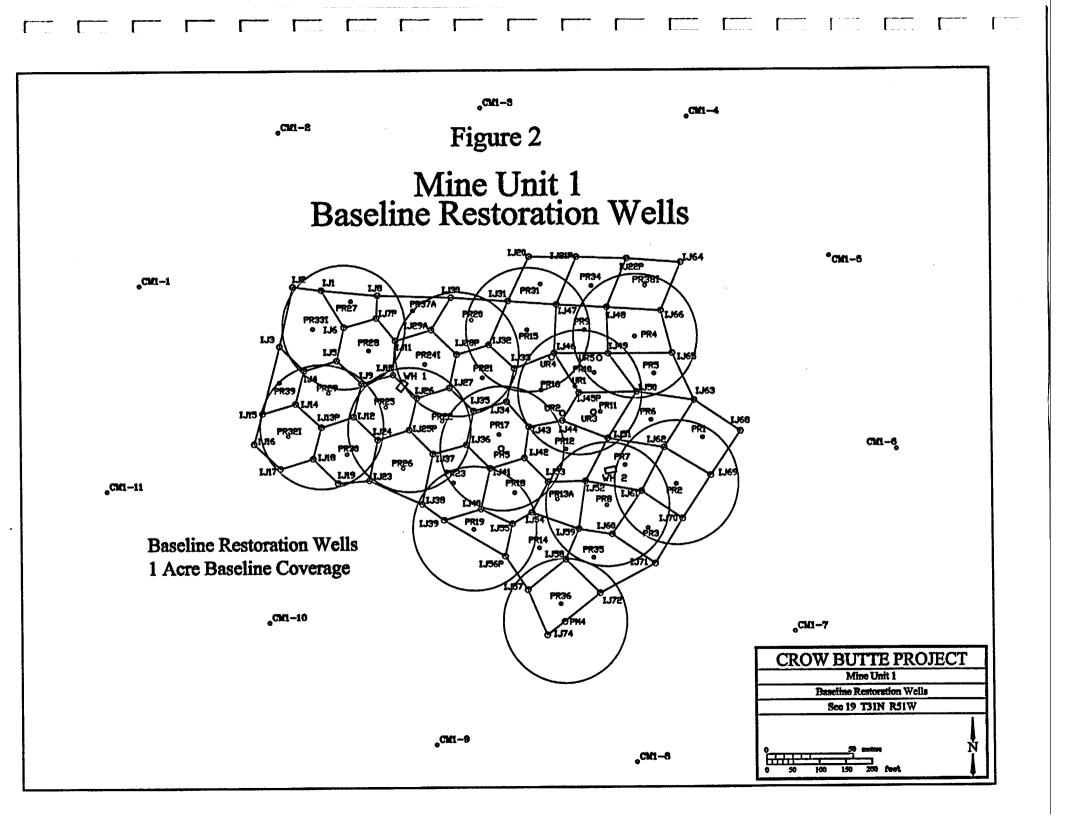




#### 2 MINE UNIT 1 MINING HISTORY

#### 2.1 Mine Unit 1 Description

Mine Unit 1 encompasses 9.3 acres immediately adjacent to the main process plant. Mine Unit 1 has an average screen thickness of approximately 20 feet and a porosity of 0.29. These parameters result in an estimated pore volume for Mine Unit 1 of 17.2 million gallons.


The mine unit consisted of 38 patterns as designed with an average pattern size of 10,624 square feet. The original design of Mine Unit 1 consisted of 38 production wells, 72 injection wells, 11 production zone monitor wells, and 3 shallow monitor wells. Included in this total were five wells that were originally mined as part of the research and development operation of the pilot plant beginning in 1986. Two additional production wells and four additional injection wells were added to Mine Unit 1 in 1992.

Mine Unit 1 includes two wellhouses (Wellhouse 1 and 2) that serve to connect main trunk lines from the process plant to injection and recovery wells. Figure 2 shows the location of Mine Unit 1 and the associated wells and wellhouses.

### 2.2 Determination of Baseline Water Quality

CBR is required to determine pre-operational baseline groundwater quality in a mine unit before mining. For Mine Unit 1, baseline groundwater quality determination was required at a minimum density of one production or injection well per one acre. These selected wells are designated as baseline restoration (BLR) wells. NDEQ requires a minimum of ten BLR wells per mine unit. Figure 2 shows the location of the twelve BLR wells in Mine Unit 1. BLR wells are shown in blue. A red circle depicts the 1-acre area for each well.

In addition to these restoration wells, License Condition 10.4A requires that one shallow monitor well per five acres must be established in the upper aquifer (Brule). Perimeter monitor wells are required in the production zone horizon (i.e., the Basal Chadron) surrounding the mine unit at a distance of 300 feet or less from the mineralized zone and not more than 400 feet apart.





### **Mine Unit 1 Restoration Report**

A minimum of three samples are collected at two-week intervals from each of the restoration, shallow monitor, and perimeter monitor wells to determine baseline groundwater quality. Based on the results of the shallow and perimeter monitor wells, upper control limits (UCLs) are established for each mine unit. The results of restoration well sampling are used to establish the restoration goals for that mine unit.

For Mine Unit 1, twelve wells were used to determine baseline restoration goals. These wells are designated PM-1 (PR-4), PM-4, PM-5, PT-5 (PR-2), PT-9 (PR-8), IJ-6, IJ-13, IJ-25, IJ-28, IJ-45, PR-15, and PR-19 and are shown in Figure 2. Many of these wells were completed before 1990 during operation of the pilot plant. Therefore, additional analytical data was available to determine baseline for these wells. Table 1 provides specific information on each well concerning the data that was used for determination of average baseline restoration goals.

Table 1: Wells Used to Establish Mine Unit 1 Baseline Groundwater Quality

| Well Number | Formation    | Dates Sampled | Number of Analyses |
|-------------|--------------|---------------|--------------------|
| PT-5        | PT-5 Chadron |               | 4                  |
| PT-9        | Chadron      | 1982 – 1984   | 7                  |
| PM-1        | Chadron      | 1982 – 1990   | 25                 |
| PM-4        | Chadron      | 1982 – 1990   | 25                 |
| PM-5        | Chadron      | 1985 – 1990   | 19                 |
| IJ-6        | Chadron      | 1990          | 3                  |
| IJ-13       | Chadron      | 1990          | 3                  |
| IJ-25       | Chadron      | 1990          | 3                  |
| IJ-28       | Chadron      | 1990          | 3                  |
| IJ-45       | Chadron      | 1990          | 3                  |
| PR-15       | Chadron      | 1990          | 3                  |
| PR-19       | Chadron      | 1990          | 3                  |



### **Mine Unit 1 Restoration Report**

PM-1 and PT-5 were relabeled later when they were used as mining wells. They became PR-4 and PR-2 respectively. In addition by the end of mining, PT-9 had become non-functional and was unable to be sampled. Therefore, CBR requested and received permission from NDEQ and NRC to replace PT-9 with PR-8. Copies of the letters regarding this matter are attached in Appendix 1.

CBR is required to determine the baseline groundwater quality for a list of 35 water quality parameters. The baseline average for each well is determined for each parameter. These well averages are then used to determine the overall mine unit average for each parameter. Table 2 lists each of the parameters and the average concentration for Mine Unit 1.

Table 2 also lists the standard deviation of the well averages for each parameter. Where a standard deviation is not listed, this is due to analytical results that were less than the reporting level for that parameter. In these cases, the numerical value of the reporting level was used to determine the average. A tabular presentation of the baseline average for each restoration well is contained in Appendix 2. Copies of the laboratory reports were previously submitted to NRC.



Mine Unit 1 Restoration Report

Table 2: Baseline Groundwater Quality Data for Mine Unit 1

| Parameter          | MU-1<br>Baseline | MU-1 Standard Deviation |
|--------------------|------------------|-------------------------|
| Alkalinity (mg/l)  | 294              | 20                      |
| Ammonium (mg/l)    | <0.37            |                         |
| Arsenic (mg/l)     | <0.002           |                         |
| Barium (mg/l)      | <0.1             |                         |
| Bicarbonate (mg/l) | 344              | 26                      |
| Boron (mg/l)       | 0.93             | 0.04                    |
| Cadmium (mg/l)     | <0.006           |                         |
| Calcium (mg/l)     | 12.5             | 3.2                     |
| Carbonate (mg/l)   | 7.2              | 3.9                     |
| Chloride (mg/l)    | 203.9            | 38                      |
| Chromium (mg/l)    | <0.03            |                         |
| Copper (mg/l)      | <0.017           |                         |
| Fluoride (mg/l)    | 0.69             | 0.04                    |
| Iron (mg/l)        | <0.044           |                         |
| Lead (mg/l)        | <0.031           |                         |
| Magnesium (mg/l)   | 3.2              | 0.8                     |
| Manganese (mg/l)   | <0.011           |                         |
| Mercury (mg/l)     | <0.001           |                         |
| Molybdenum (mg/l)  | <0.069           |                         |
| Nickel (mg/l)      | <0.034           |                         |
| Nitrate (mg/l)     | <0.05            |                         |
| Nitrite (mg/l)     | <0.01            |                         |
| pH (Std. Units)    | 8.46             | 0.2                     |



### Mine Unit 1 Restoration Report

Table 2: Baseline Groundwater Quality Data for Mine Unit 1

| Parameter                       | MU-1<br>Baseline | MU-1 Standard Deviation |
|---------------------------------|------------------|-------------------------|
| Potassium (mg/l)                | 12.5             | 1.5                     |
| Radium-226 (pCi/L)              | 229.7            | 177.1                   |
| Selenium (mg/l)                 | <0.003           |                         |
| Silica (mg/l)                   | 16.7             | 3.5                     |
| Sodium (mg/l)                   | 412              | 19.2                    |
| Specific Conductivity (µmho/cm) | 1947             | 70                      |
| Sulfate (mg/l)                  | 356              | 9.4                     |
| TDS (mg/l)                      | 1170.2           | 47.6                    |
| Uranium (mg/l)                  | 0.092            | 0.089                   |
| Vanadium (mg/l)                 | <0.066           |                         |
| Zinc (mg/l)                     | <0.036           |                         |

### **Mine Unit 1 Restoration Report**



#### 2.3 Establishment of Restoration Goals

The goal of restoration is to reduce the concentration of mobilized constituents remaining in the groundwater after the completion of mining. CBR is required to return groundwater quality to baseline as a primary goal under SUA-1534.

If baseline concentrations for the monitored parameters cannot be achieved through the reasonable application of best practicable technology, the NRC secondary goal is to return the water quality to levels consistent with pre-mining class-of-use. These secondary restoration goals are based upon standards set by the NDEQ in CBR's UIC permit.

For those parameters that have a numerical groundwater standard established in Title 118 of the NDEQ Rules and Regulations<sup>1</sup> or in other established documents, the UIC Permit requires restoration to successfully return the groundwater to that standard. However, if the baseline preoperational mean for the mine unit exceeds the standard for any parameter, the restoration standard for that parameter is set at the baseline mean plus two standard deviations. For those parameters where no standard is established in Title 118, the UIC restoration standard is calculated from the baseline average. In the case of calcium, potassium, magnesium and sodium, the restoration standard is set at one order of magnitude above the baseline mean due to the ability of some major ions to vary by this amount depending on the pH. Total carbonate is limited to 50 percent of the total dissolved solids (TDS) value. TDS is limited to the baseline mean plus one standard deviation.

If a groundwater parameter cannot be restored to its NRC primary or secondary goal after reasonable restoration efforts, then it must be demonstrated that leaving the parameter at a higher concentration would not be a threat to public health and safety and that, on a parameter-by-parameter basis, water use would not be significantly degraded. Approval of the use of an alternate standard for a parameter would require amendment of SUA-1534.

Table 3 provides the restoration goals for Mine Unit 1. The baseline concentration (NRC primary goal) is listed for each parameter. The wellfield standard deviation is also provided since it is used to calculate some of the UIC standards for which there is no standard in Title 118. The restoration standard from the UIC Permit for each parameter is also listed. Where no UIC Permit standard is listed, these parameters are included in CBR's NRC Source Materials License but are not considered a parameter of concern in the UIC permit.

Title 118 - Ground Water Quality Standards and Use Classification, NDEQ July 29, 1996.





Table 3: Mine Unit 1 Restoration Goals

| Parameter          | Baseline Average<br>(Primary Goal) | Standard Deviation | UIC Permit Standard |
|--------------------|------------------------------------|--------------------|---------------------|
| Alkalinity         | 293                                | 20                 | None                |
| Ammonium (mg/l)    | <0.37                              |                    | 10                  |
| Arsenic (mg/l)     | <0.002                             |                    | 0.05                |
| Barium (mg/l)      | <0.1                               |                    | 1.00                |
| Bicarbonate (mg/l) | 344                                | 26                 | None                |
| Boron (mg/l)       | 0.93                               | 0.04               | None                |
| Cadmium (mg/l)     | <0.006                             |                    | 0.01                |
| Calcium (mg/l)     | 12.5                               | 3.2                | 125                 |
| Carbonate (mg/l)   | 7.2                                | 3.9                | None                |
| Chloride (mg/l)    | 203.9                              | 36.0               | 250                 |
| Chromium (mg/l)    | <0.03                              |                    | None                |
| Copper (mg/l)      | <0.017                             |                    | 1.00                |
| Fluoride (mg/l)    | 0.69                               | 0.04               | 4.00                |
| Iron (mg/l)        | <0.044                             |                    | 0.30                |
| Lead (mg/l)        | <0.031                             |                    | 0.05                |
| Magnesium (mg/l)   | 3.2                                | 0.8                | 32                  |
| Manganese (mg/l)   | <0.011                             |                    | 0.05                |
| Mercury (mg/l)     | <0.001                             |                    | 0.002               |
| Molybdenum (mg/l)  | <0.069                             | ·                  | 1.00                |
| Nickel (mg/l)      | <0.034                             |                    | 0.15                |
| Nitrate (mg/l)     | <0.05                              |                    | 10.0                |
| Nitrite (mg/l)     | <0.01                              |                    | None                |
| pH (Std. Units)    | 8.46                               | 0.2                | 6.5 – 8.5           |

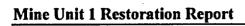





Table 3: Mine Unit 1 Restoration Goals

| Parameter                       | Baseline Average<br>(Primary Goal) | Standard Deviation | UIC Permit Standard |
|---------------------------------|------------------------------------|--------------------|---------------------|
| Potassium (mg/l)                | 12.5                               | 1.5                | 125                 |
| Radium-226 (pCi/l)              | 229.7                              | 177.1              | 584                 |
| Selenium (mg/l)                 | <0.003                             |                    | 0.01                |
| Silica (mg/l)                   | 16.7                               | 3.5                | None                |
| Sodium (mg/l)                   | 412                                | 19.2               | 4122                |
| Specific Conductivity (µmho/cm) | 1947                               | 70                 | None                |
| Sulfate (mg/l)                  | 356                                | 9.4                | 375                 |
| TDS (mg/l)                      | 1170.2                             | 47.6               | 1218                |
| Uranium (mg/l)                  | 0.092                              | 0.089              | 5.0                 |
| Vanadium (mg/l)                 | <0.066                             |                    | 0.2                 |
| Zinc (mg/l)                     | <0.036                             |                    | 5.00                |





### 2.4 History of Mining Activities

Commercial operation of Mine Unit 1 began in April 1991. Mining was completed in March 1994 and restoration was begun. During the course of mining and development of adjacent areas, other Mine Units absorbed the original Mine Unit 1 perimeter monitor wells.

#### 2.5 Mine Unit 1 Excursions

Mine Unit 1 did not have any shallow or perimeter monitor wells on excursion status during mining or during restoration. As noted in Section 2.4, all perimeter monitor wells were absorbed into adjacent Mine Units. Consequently, no additional wells need to be added to the BLR well list as required in the UIC permit.

### 2.6 Determination of Post-Mining Water Quality

Before commencing restoration activities, CBR establishes post mining water quality data for all of the required parameters. For Mine Unit 1, this consisted of sampling the designated wells and having each sample analyzed for the water quality parameters.

Mine Unit 1 was shut in on March 14, 1994. The twelve restoration wells were sampled on March 23, 1994. These samples were split with the NDEQ. Table 4 contains the results of the post-mining water quality for Mine Unit 1. The laboratory reports for these samples are contained in Appendix 3.





Table 4: Post Mining Water Quality for Mine Unit 1
Restoration Well Sampling

|                                        | PM-1 | PM-4  | PM-5 | PT-5 | IJ-6    | IJ-13        | IJ-25  | IJ-28  | IJ-45 | PR-8 | PR-15 | PR-19 |
|----------------------------------------|------|-------|------|------|---------|--------------|--------|--------|-------|------|-------|-------|
|                                        |      |       |      |      | Water Q | uality Param | eters  |        |       |      |       |       |
| Calcium (mg/l)                         | 87.9 | 87.1  | 80.8 | 87.9 | 87.6    | 93.9         | 89.4   | 89.6   | 89.9  | 85.4 | 86.7  | 98.3  |
| Magnesium<br>(mg/l)                    | 22.6 | 20.6  | 22.7 | 23.8 | 21.4    | 23.9         | 22.5   | 23.1   | 24.8  | 23.2 | 23.1  | 23.8  |
| Sodium (mg/l)                          | 1154 | 942   | 1054 | 1144 | 1054    | 1174         | 1177   | 1182   | 1126  | 1144 | 1172  | 1083  |
| Potassium (mg/l)                       | 32.7 | 26.3  | 30   | 30   | 27.2    | 31.3         | 30     | 31.3   | 32.7  | 30   | 30    | 28.6  |
| Carbonate<br>(mg/l)                    | 0    | 0     | 0    | 0    | 0       | 0            | 0      | 0      | 0     | 0    | 0     | 0     |
| Bicarbonate<br>(mg/l)                  | 1099 | 900   | 972  | 981  | 1057    | 1086         | 1111   | 1207   | 1104  | 1170 | 1170  | 959   |
| Sulfate (mg/l)                         | 1109 | 959   | 1115 | 1240 | 1031    | 1209         | 1119   | 1112   | 1134  | 1115 | 1115  | 1283  |
| Chloride (mg/l)                        | 598  | 455   | 586  | 594  | 544     | 598          | 594    | 619    | 607   | 603  | 603   | 590   |
| Ammonium<br>(mg/l)                     | 0.33 | 0.67  | 0.14 | 0.33 | 0.44    | 0.07         | < 0.05 | < 0.05 | 0.33  | 0.27 | 0.15  | 0.49  |
| Nitrate (mg/l)                         | 1.06 | < 0.1 | 0.97 | 0.99 | 1.29    | 0.74         | 0.86   | 1.3    | 1.25  | 1.46 | 1.6   | 0.46  |
| Fluoride (mg/l)                        | 0.37 | 0.26  | 0.54 | 0.45 | 0.45    | 0.37         | 0.38   | 0.45   | 0.43  | 0.43 | 0.4   | 0.35  |
| TDS (mg/l)                             | 3694 | 3121  | 3756 | 3851 | 3515    | 3899         | 3751   | 3886   | 3873  | 3820 | 3807  | 3765  |
| Conductivity (µmho/cm)                 | 5843 | 4841  | 5590 | 5964 | 5445    | 6012         | 5807   | 6025   | 5916  | 5819 | 5940  | 5819  |
| Alkalinity as CaCO <sub>3</sub> (mg/l) | 901  | 738   | 797  | 804  | 866     | 890          | 911    | 989    | 905   | 959  | 959   | 786   |
| pH (Std. units)                        | 7.65 | 6.87  | 6.85 | 7.28 | 7.16    | 7.35         | 7.65   | 7.81   | 7.37  | 7.46 | 7.78  | 6.92  |





Table 4: Post Mining Water Quality for Mine Unit 1
Restoration Well Sampling

|                      | PM-1    | PM-4    | PM-5    | PT-5    | IJ-6    | LJ-13       | IJ-25   | IJ-28   | IJ-45   | PR-8    | PR-15   | PR-19   |
|----------------------|---------|---------|---------|---------|---------|-------------|---------|---------|---------|---------|---------|---------|
|                      |         |         |         |         | Tı      | race Metals |         |         |         |         |         |         |
| Arsenic              | 0.018   | 0.007   | 0.018   | 0.017   | 0.031   | 0.028       | 0.02    | 0.028   | 0.023   | 0.028   | 0.024   | 0.011   |
| Barium (mg/l)        | < 0.1   | < 0.1   | < 0.1   | < 0.1   | < 0.1   | < 0.1       | < 0.1   | < 0.1   | < 0.1   | < 0.1   | < 0.1   | < 0.1   |
| Boron (mg/l)         | 1.17    | 1.44    | 1.09    | 1.36    | 1.06    | 1.26        | 1.13    | 1.19    | 1.15    | 1.23    | 1.25    | 1.17    |
| Cadmium (mg/l)       | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01      | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Chromium (mg/l)      | < 0.05  | < 0.05  | < 0.05  | < 0.05  | < 0.05  | < 0.05      | < 0.05  | < 0.05  | < 0.05  | < 0.05  | < 0.05  | < 0.05  |
| Copper (mg/l)        | < 0.01  | < 0.01  | 0.05    | < 0.01  | 0.02    | < 0.01      | < 0.01  | <1      | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Iron (mg/l)          | < 0.05  | < 0.05  | < 0.05  | < 0.05  | < 0.05  | < 0.05      | < 0.05  | < 0.05  | < 0.05  | < 0.05  | < 0.05  | 0.38    |
| Lead (mg/l)          | < 0.05  | < 0.05  | < 0.05  | < 0.05  | < 0.05  | < 0.05      | < 0.05  | < 0.05  | < 0.05  | < 0.05  | < 0.05  | < 0.05  |
| Manganese<br>(mg/l)  | 0.02    | 0.11    | 0.05    | 0.04    | 0.14    | 0.15        | 0.08    | 0.06    | 0.06    | 0.02    | < 0.01  | 0.16    |
| Mercury (mg/l)       | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001     | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
| Molybdenum<br>(mg/l) | 0.6     | 0.2     | 0.42    | 0.53    | 0.47    | 0.5         | 0.56    | 0.54    | 0.53    | 0.59    | 0.53    | 0.37    |
| Nickel (mg/l)        | < 0.05  | < 0.05  | < 0.05  | < 0.05  | < 0.05  | 0.12        | 0.12    | 0.12    | < 0.05  | < 0.05  | < 0.05  | < 0.05  |
| Selenium (mg/l)      | 0.139   | 0.012   | 0.129   | 0.24    | 0.112   | 0.122       | 0.1     | 0.138   | 0.149   | 0.154   | 0.148   | 0.041   |
| Vanadium (mg/l)      | 1       | 0.1     | 0.38    | 1.15    | 1.12    | 1.18        | 1.03    | 1.24    | 1.29    | 1.23    | 1.56    | 0.28    |
| Zinc (mg/l)          | < 0.01  | 0.14    | 0.11    | 0.01    | 0.11    | 0.01        | 0.02    | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  |





## Table 4: Post Mining Water Quality for Mine Unit 1 Restoration Well Sampling

|                | PM-1          | PM-4 | PM-5  | PT-5 | IJ-6 | LJ-13 | IJ-25 | IJ-28 | IJ-45 | PR-8 | PR-15 | PR-19 |
|----------------|---------------|------|-------|------|------|-------|-------|-------|-------|------|-------|-------|
|                | Radionuclides |      |       |      |      |       |       |       |       |      |       |       |
| Uranium (mg/l) | 8.63          | 6.29 | 54.52 | 9.3  | 13.9 | 9.31  | 9.9   | 2.52  | 14.83 | 5.24 | 5.18  | 6.78  |
| Ra-226 (pCi/l) | 370           | 126  | 329   | 1139 | 1113 | 1558  | 1258  | 1147  | 681   | 417  | 109   | 1182  |





#### 3 MINE UNIT 1 RESTORATION

Restoration activities include four steps that are designed to optimize restoration equipment used in treating groundwater and to minimize the number of pore volumes circulated during the restoration stage. CBR monitors the quality of selected wells during restoration to determine the efficiency of the operations and to determine if additional techniques are necessary.

#### 3.1 Groundwater Transfer

During the groundwater transfer step, water may be transferred between the mine unit commencing restoration and a mine unit commencing operations. Baseline quality water from the mine unit starting production may be pumped and injected into the mine unit in restoration. The higher TDS water from the mine unit in restoration may be recovered and injected into the mine unit commencing production. The direct transfer of water will act to lower the TDS in the mine unit being restored by displacing water affected by mining with baseline quality water.

The goal of groundwater transfer is to blend the water in the two mine units to conserve process chemicals and reduce waste production. The recovered water may be passed through ion exchange columns and filtration during this step if suspended solids are sufficient in concentration to present a problem with blocking the injection well screens. For the groundwater transfer to occur, a newly constructed mine unit must be ready to commence mining.

The ground water transfers took place in five stages. The first two transfers were conducted independent of other restoration activities, while the last three were run concurrent with the groundwater treatment stage. In four of the groundwater transfers, the transfers were in both directions. This means baseline quality water from a new wellfield was pumped into Mine Unit 1, while lixiviant was pumped out of Mine Unit 1 to a newly constructed wellfield. In order to have a direct transfer of baseline quality water to Mine Unit 1, 2-inch high-density polyethylene (HDPE) lines were laid above ground to each new wellfield that was ready for start up. These lines were connected from the individual producers of the new wellfield to the injectors in Mine Unit 1. The producers from Mine Unit 1 were pumped through ion exchange columns to remove residual uranium before pumping the solution to the injectors of the new wellfield. During these operations, Mine Unit 1 flow rates were balanced to prevent the migration of lixiviant from the surrounding mine units. As each producer in the new wellfield showed signs of lixiviant breakthrough, they were shut in and new unaffected wells were brought on line. This continued until all of the producers in the new wellfield had





er e, mesal Les estima

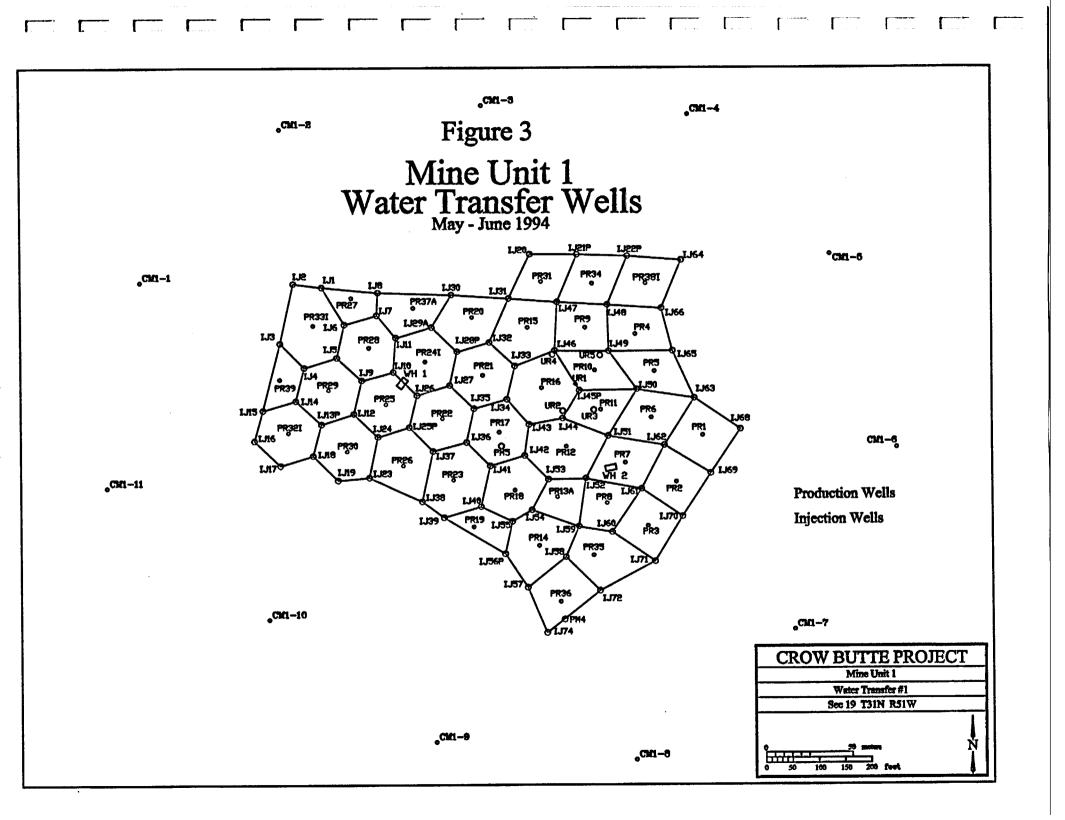
The Francisco feetagest

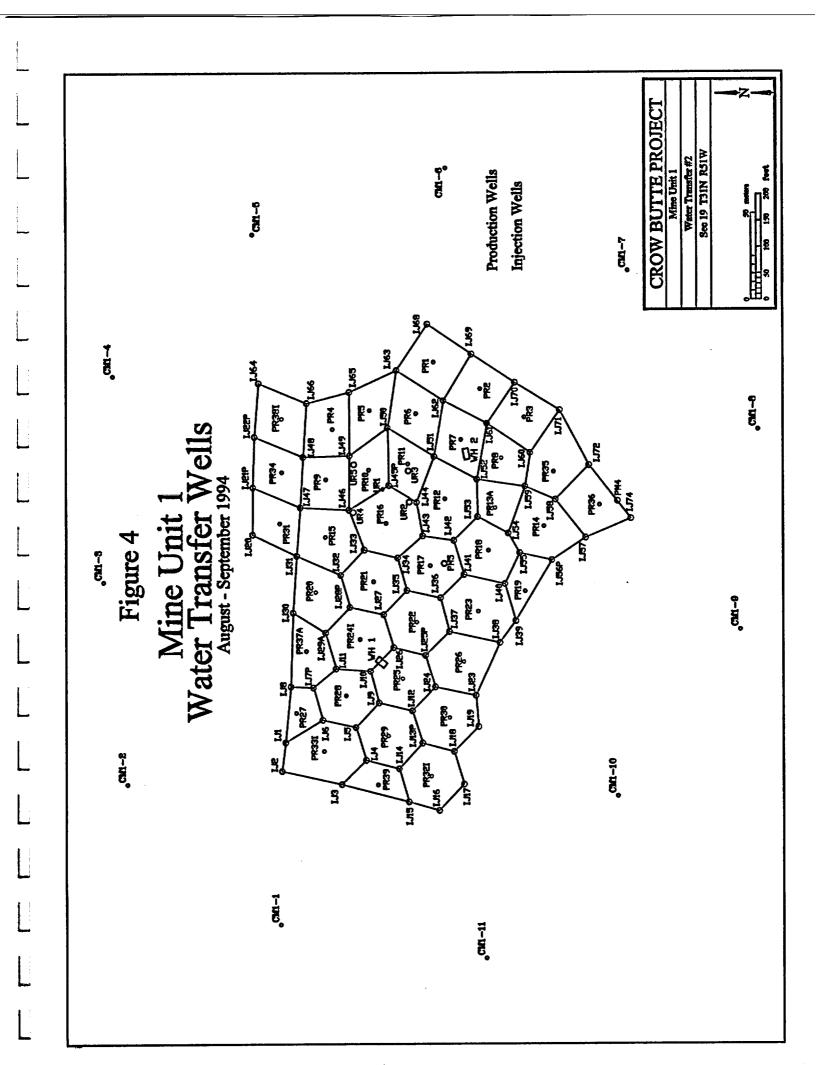
ા છે. માના માના મુખ્યો છે.

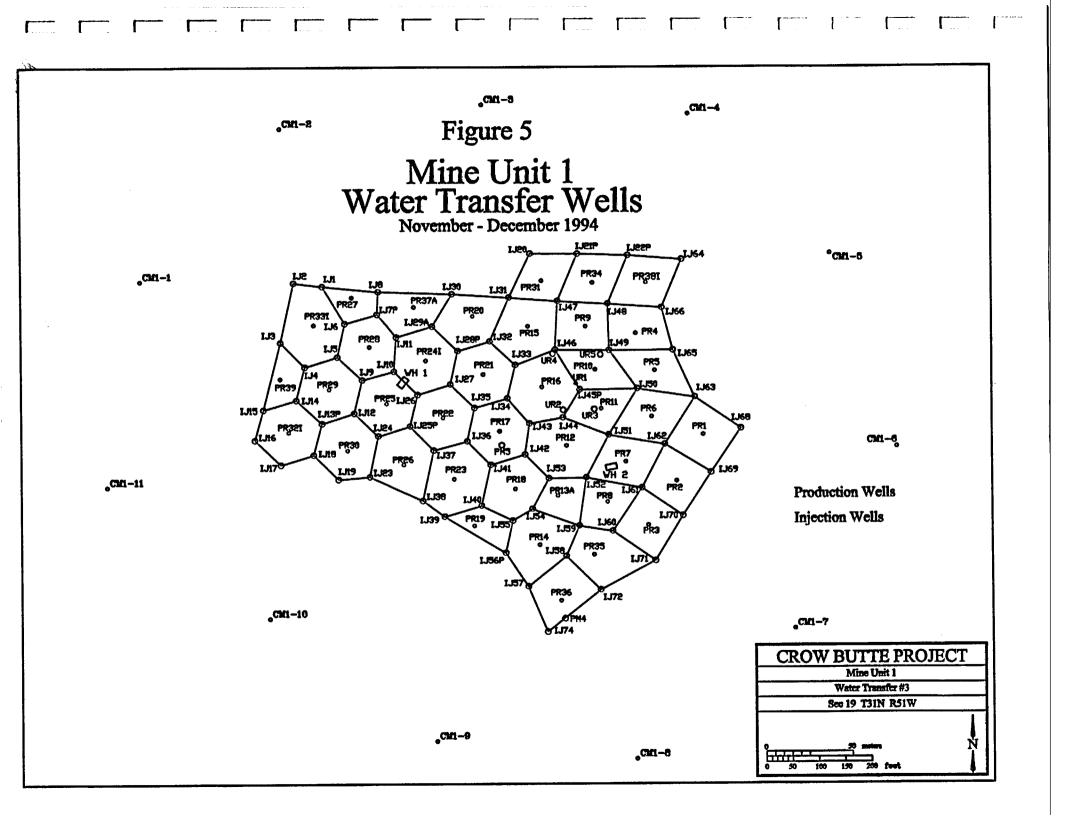
been affected. A producer was considered affected if it showed higher than baseline conductivity or an increase in headgrade.

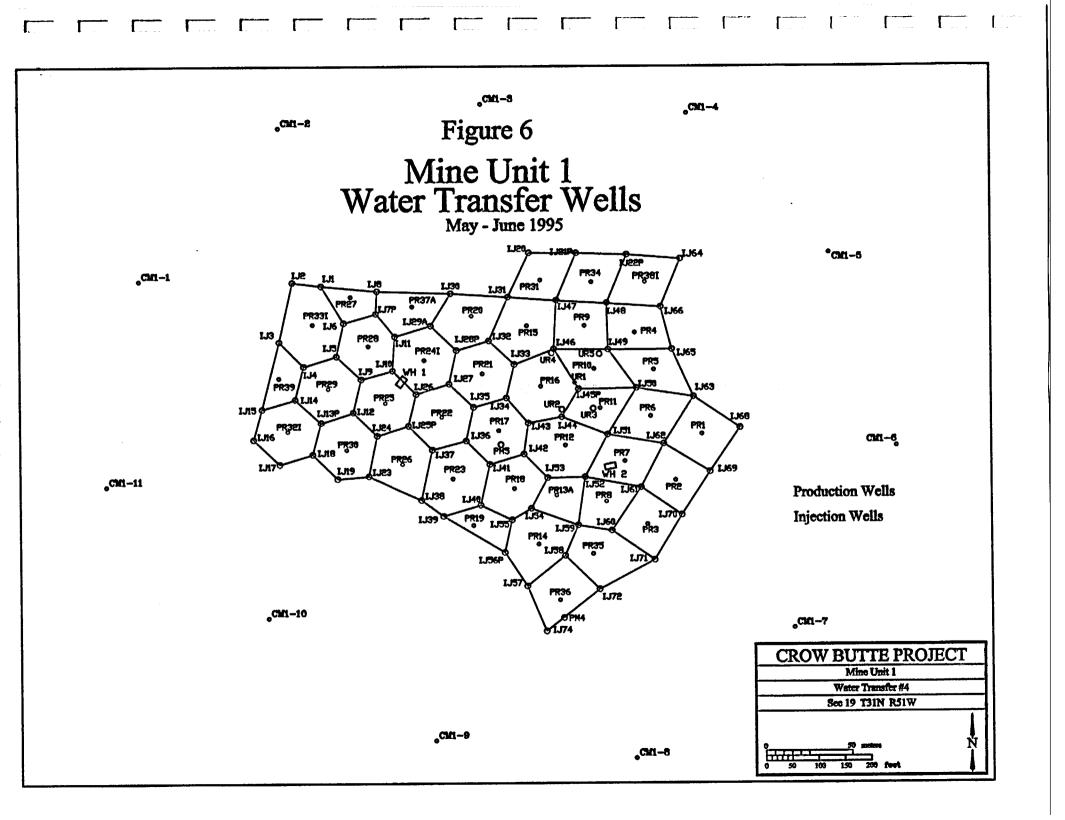
The fifth transfer was from one producer in Wellhouse 17. This transfer was a one-way transfer where baseline quality water was pumped into Mine Unit 1. This transfer was used to help balance Mine Unit 1 during a portion of the Reverse Osmosis (RO) phase of groundwater treatment.

During the first transfer, the baseline water was pumped into the injection wells situated along the boundaries between Mine Unit 1 and Mine Units 2 and 3. Successive transfers worked inward towards the center of Mine Unit 1. Figures 3 through 6 show the wells used during each transfer. The quality of the groundwater following each of the first four transfers was tracked using six of the twelve BLR wells for Mine Unit 1. The parameters used were chloride, sulfate, sodium, conductivity, and alkalinity. These parameters were chosen simply because they could be assayed on site. They were used only as a general guide. The benefits of the transfers can be seen in the average water quality data of the selected wells as presented in Appendix 4. The groundwater transfers improved the quality of the water in Mine Unit 1 without sending a large amount of water to the waste disposal system.


As noted, Mine Unit 1 was shut in on March 14, 1994. This corresponded with the approval of mining operations in Mine Unit 4. In April and May 1994 groundwater sweep activities were begun as described in Section 3.2.


Data for the five steps of groundwater transfer are as follows:


- In late May and June of 1994, 3,640,590 gallons (0.21 pore volumes) were transferred between Mine Unit 1 and Wellhouse 10 in Mine Unit 4.
- In August and September of 1994, 2,942,980 gallons (0.17 pore volume) were transferred between Mine Unit 1 and Wellhouse 11 in Mine Unit 4.
- In November and December of 1994, 3,314,915 gallons (0.19 pore volumes) were transferred between Mine Unit 1 and Wellhouse 12 in Mine Unit 4.
- In April and May 1995, 4,217,689 gallons (0.25 pore volumes) were transferred between Mine Unit 1 and Wellhouse 13 in Mine Unit 4.
- From May 1997 to July 1997, a total of 1,077,530 gallons (0.06 pore volumes) were transferred between Mine Unit 1 and P1100-17.


These separate groundwater transfer steps resulted in a total of 15,193,704 gallons or 0.89 pore volumes transferred from Mine Unit 1 to Mine Unit 4.

17













#### 3.2 Groundwater Sweep

During groundwater sweep, water is pumped without injection from the wellfield causing an influx of baseline quality water from the perimeter of the mining unit that sweeps the affected portion of the aquifer. The cleaner baseline water has lower ion concentrations that act to strip off the cations that have attached to the clays during mining. The plume of affected water near the edge patterns of the wellfield is also drawn into the boundaries of the mine unit.

During the groundwater sweep stage, one producer, IJ28P-1, was on line pumping at an average flow rate of 13 gallons per minute (gpm). This well was an injection well, which had been converted to a producer. The well was producing without injection. The main purpose of this well was to control the migration of mining solutions from Mine Unit 1 to the north and south of the mine unit. Ordinarily, groundwater sweep would be used to pull baseline quality water inside the perimeter of the mine unit. This would be the method for restoring any affected groundwater between the monitor wells and the wellfield. However, it is apparent from the location map in Figure 1 that this type of approach would not work for Mine Unit 1. At the time groundwater sweep was performed, Mine Unit 1 was surrounded on three sides by active mine units. Any attempt to do a complete groundwater sweep for Mine Unit 1 would only result in bringing in contaminated water from the other mine units. In addition, all of the Mine Unit 1 monitor wells had been discontinued from service as monitoring wells. They were removed from service as the other wellfields were brought on line. Based on this situation, the groundwater sweep effort for Mine Unit 1 was kept to a minimum.

The open areas to the north and south of Mine Unit 1 will require restoration at some point in time. CBR's future restoration plans include clean up of these areas with the restoration of the mine units surrounding Mine Unit 1.

Active restoration of Mine Unit 1 began with groundwater sweep activities. In April and May 1994, a total of 1,139,299 gallons (0.06 pore volumes) of groundwater sweep was removed from Mine Unit 1 production wells and sent to the plant production circuit. Additional groundwater sweep to main production was also performed in July 1994. The total volume for July 1994 was 569,650 gallons (0.03 pore volumes). These two periods of groundwater sweep resulted in a total of 1,708,949 gallons (0.10 pore volumes) of groundwater sweep during restoration of Mine Unit 1.

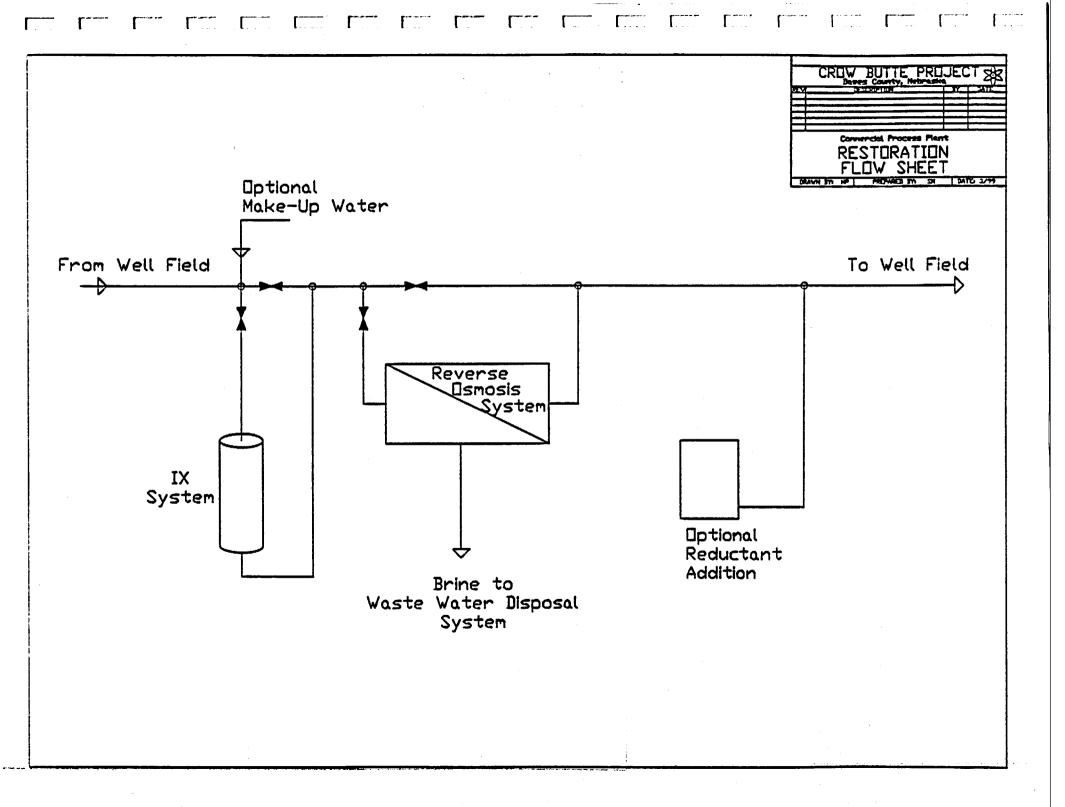




#### 3.3 Groundwater Treatment

Following groundwater sweep and the initial groundwater transfers, water is pumped from production wells to treatment equipment and then reinjected into the wellfield. Ion exchange and RO treatment equipment are utilized during this stage as shown in Figure 7. The ion exchange step uses fixed bed downflow ion exchange columns located at the main plant.

Water recovered from restoration containing a significant amount of uranium may be passed through the ion exchange system. The ion exchange columns exchange the majority of the contained soluble uranium for chloride or sulfate. Once the solubilized uranium is removed, a small amount of reductant is metered into the restoration wellfield injection to reduce any pre-oxidized minerals. The concentration and type of trace elements encountered determine the concentration of reductant injected into the formation. The goal of reductant addition is to reduce those minerals that are solubilized by carbonate complexes to prevent build-up of dissolved solids, which would increase the time required to complete restoration.


A portion of the restoration recovery water can be sent to the RO unit. The use of a RO unit has several effects:

- Reduces the total dissolved solids in the contaminated groundwater;
- Reduces the quantity of water that must be removed from the aquifer to meet restoration limits;
- Concentrates the dissolved contaminates in a smaller volume of brine to facilitate waste disposal; and
- Enhances the exchange of ions from the formation due to the large difference in ion concentration.



### Mine Unit 1 Restoration Report

This Page Intentionally Blank





### **Mine Unit 1 Restoration Report**

Before the RO unit is used to process the water, the soluble uranium is removed by the ion exchange system. The water is then filtered, the pH lowered for decarbonation to prevent calcium carbonate plugging of the membranes (this step is needed for cellulose acetate membranes only), and then pressurized by a pump. The RO unit contains membranes that pass about 60 to 80 percent of the water through, leaving 60 to 90 percent of the dissolved salts in the water that will not pass the membrane. Table 5 shows typical manufacturers specification data for removal of ion constituents. The clean water, called permeate, is reinjected, sent to storage for use in the mining process, or sent to the waste disposal system. The twenty to forty percent of water that is rejected, referred to as the brine, contains the majority of dissolved salts that contaminate the groundwater and is sent for disposal in the wastewater system. The brine stream that is bled to disposal also results in a groundwater sweep that pulls unaffected groundwater into the mine unit. However, because other active mine units border Mine Unit 1 as discussed above, a large groundwater sweep program was precluded. Therefore, Mine Unit 1 was operated as close to balanced as possible during RO operations. Clean water from several different sources was used to make up for the rejected brine.

The sodium sulfide reductant that may be added to the injection stream during this stage will reduce the oxidation-reduction potential (Eh) of the aquifer. During mining operations certain trace elements are oxidized. By adding a reductant, the Eh of the aquifer is lowered thereby decreasing the solubility of these elements.

The number of pore volumes treated and re-injected during the groundwater treatment stage depends on the efficiency of the RO unit in removing total dissolved solids and the reductant in lowering the uranium and trace element concentrations.

The groundwater treatment stage of restoration evolved slowly over time as additional equipment and piping were installed. Initially, groundwater treatment consisted of circulating Mine Unit 1 water through ion exchange columns (IX). The second step was to add treatment of the water with RO. The final step involved the addition of sodium sulfide reductant to the injection stream to Mine Unit 1.





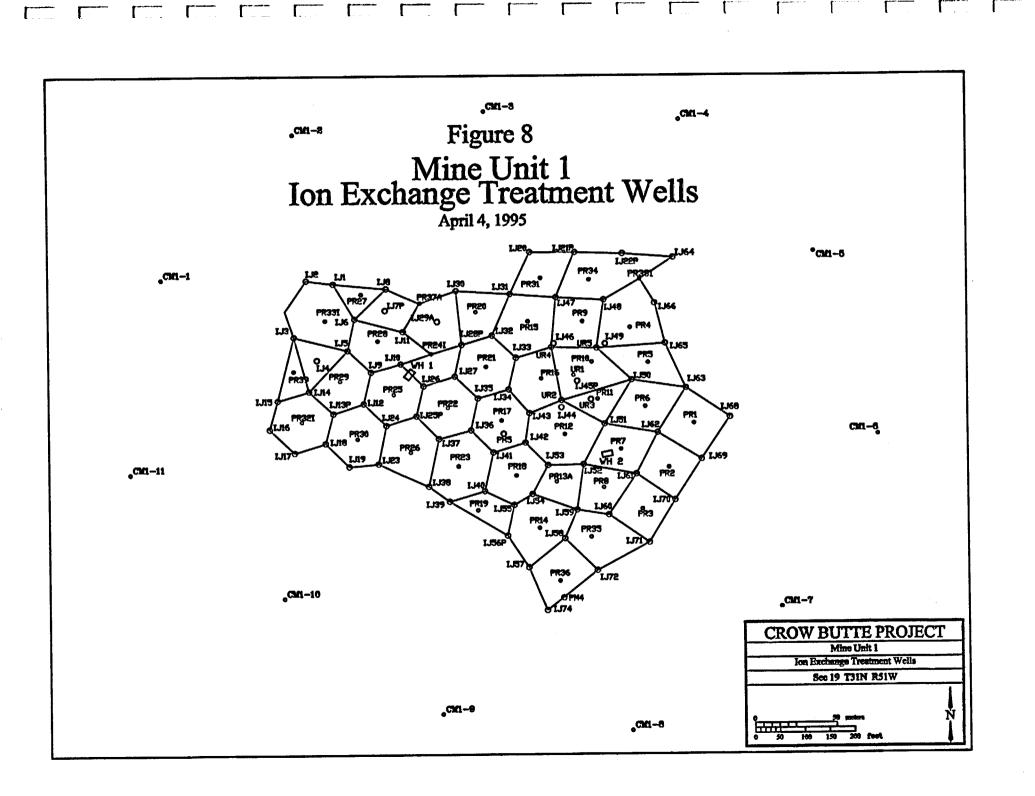
Table 5: Typical Reverse Osmosis Membrane Rejection

| NAME         | SYMBOL                 | % REJECTION    |
|--------------|------------------------|----------------|
|              | Cations                |                |
| Aluminum     | A1 <sup>+3</sup>       | 99+            |
| Ammonium     | NH4 <sup>+1</sup>      | 88-95          |
| Cadmium      | Cd <sup>+2</sup>       | 96-98          |
| Calcium      | Ca <sup>+2</sup>       | 96-98          |
| Copper       | Cu <sup>+2</sup>       | 98-99          |
| Hardness     | Ca and Mg              | 96-98          |
| Iron         | Fe <sup>+2</sup>       | 98-99          |
| Magnesium    | Mg <sup>+2</sup>       | 96-98          |
| Manganese    | Mn <sup>+2</sup>       | 98-99          |
| Mercury      | Hg <sup>+2</sup>       | 96-98          |
| Nickel       | Ni <sup>+2</sup>       | 98-99          |
| Potassium    | K <sup>+1</sup>        | 94-96          |
| Silver       | Ag <sup>+1</sup>       | 94-96          |
| Sodium       | Na <sup>+</sup>        | 94-96          |
| Strontium    | Sr <sup>+2</sup>       | 96-99          |
| Zinc         | Zn <sup>+2</sup>       | 98-99          |
|              | Anions                 |                |
| Bicarbonate  | HCO <sub>3</sub> -1    | 95-96          |
| Borate       | $B_4O_7^{-2}$          | 35-70          |
| Bromide      | Br <sup>-1</sup>       | 94-96          |
| Chloride     | Cl <sup>-1</sup>       | 94-95          |
| Chromate     | CrO <sub>4</sub> -2    | 90-98          |
| Cyanide      | CN-1                   | 90-95          |
| Ferrocyanide | Fe(CN) <sub>6</sub> -3 | 99+            |
| Fluoride     | F <sup>-1</sup>        | 94-96          |
| Nitrate      | NO <sub>3</sub> -1     | 95             |
| Phosphate    | PO <sub>4</sub> -3     | 99+            |
| Silicate     | SiO <sub>2</sub> -1    | 80-95          |
| Sulfate      | SO <sub>4</sub> -2     | 99+            |
| Sulfite      | $SO_3^{-2}$            | 98-99          |
| Thiosulfate  | $S_7O_3^{-2}$          | <del>99+</del> |



### **Mine Unit 1 Restoration Report**

The method employed by CBR during the restoration of Mine Unit 1 was restoration on a pattern-by-pattern basis. In this method, the producer of each pattern in Mine Unit 1 was brought on line to the restoration circuit and then permeate from the RO unit(s) (usually with reductant added) was circulated to every injector in that pattern to recreate the original flowpaths developed during mining. This was to ensure that the mining solutions were displaced or diluted.


Full water quality analyses of seven of the first restored patterns showed that conductivity could be used as a suitable indicator of successful restoration. The results from these analyses are contained in Appendix 5. Therefore, when the conductivity of the producer was reduced to below baseline conductivity, the pattern was considered restored.

The flowrates during groundwater treatment were balanced to prevent the migration of lixiviant from the surrounding wellfields into Mine Unit 1. There were thirty-nine original patterns in Mine Unit 1. The actual number of patterns restored was thirty-nine. During mining, a few producers became unusable; therefore, injectors were used in their place to restore the pattern.

#### 3.3.1 Ion Exchange Treatment

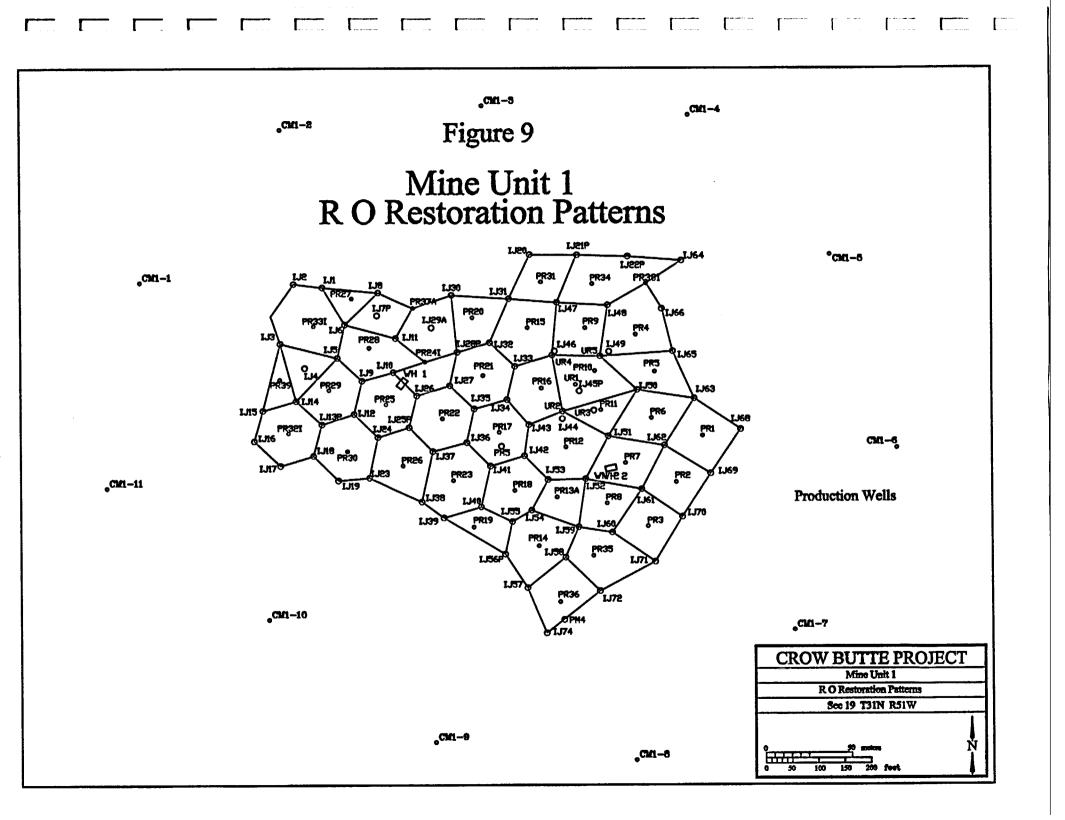
Groundwater treatment in Mine Unit 1 began on September 12, 1994 with ion exchange operations. Treatment through the ion exchange columns without RO operation was performed through September 1995. After RO treatment was begun, ion exchange treatment was continued for a portion of the restoration flow. During recirculation as discussed in Section 3.4, ion exchange treatment was continued for residual uranium removal. The total volume treated by ion exchange was 456,946,618 gallons (26.62 pore volumes). The average treatment flow rate during this ion exchange phase was 420 gpm.

The purpose for groundwater treatment through the restoration ion exchange columns was to reduce the amount of soluble uranium as much as possible. This was performed before beginning treatment with the RO unit(s). To do this, between 17 and 20 higher headgrade producers were online throughout the wellfield. Figure 8 illustrates which wells were online during the period with the highest flowrate. The results of this operation can be seen in the drop in average headgrade. At the beginning in September of 1994, the average headgrade was approximately 22 ppm. At the end of this phase of groundwater treatment, the average headgrade of the online producers had been lowered to approximately 9 ppm.








### 3.3.2 Ion Exchange and Reverse Osmosis Treatment

On September 28, 1995, treatment with RO was begun at a flow rate of 45 gpm. Groundwater treatment operations with the ion exchange columns were also continued. From October 1995 through July 1998, treatment with ion exchange and RO was performed. During this period, a total of 103,413,312 gallons (6.02 pore volumes) were treated through the RO units.

The unit used during the initial stage of restoration was a cellulose acetate membrane RO with a 50-gpm capacity. This RO was designated RO Unit 1. The initial RO capacity determined the method that CBR used to restore Mine Unit 1. Restoration was accomplished on a pattern-by-pattern basis. The method consisted of restoring a pattern and then moving to another pattern. By the end of groundwater treatment, all patterns in Mine Unit 1 had been restored with RO permeate. Figure 9 shows the final Mine Unit 1 wellfield configuration and the patterns restored by RO. Table 6 lists each production well, the total pore volumes of combined RO treatment for the associated pattern, and the final conductivity.

The final configuration of Mine Unit 1 was the result of changes during mining operations such as well reversals. A well reversal occurred when an injection well was converted to a producer and vice versa. This type of reversal was necessary for some patterns in restoration since the producer was no longer operational. Therefore, the pattern was restored using an injector. An example of this is the pattern formed by PR-16. When viewing Figure 9, it appears as if this pattern was not covered during RO restoration. PR-16 developed problems during mining, which prevented it from being used during restoration. IJ-33 was reversed with PR-16 to restore this pattern. Permeate was added to the injectors on the opposite side of the pattern in order to pull the solution across PR-16. This type of operation was used to restore PR-5 (IJ-49 as producer) and PR-14 (IJ-56P as producer).

In other cases, if a reversal had been performed and the producer was still operational, it was used as an injector to enhance restoration. PR-21, PR-32, and PR-38 are examples of patterns restored in this manner.





### Mine Unit 1 Restoration Report

Table 6: Restoration Pattern Final RO Pore Volumes and Conductivity

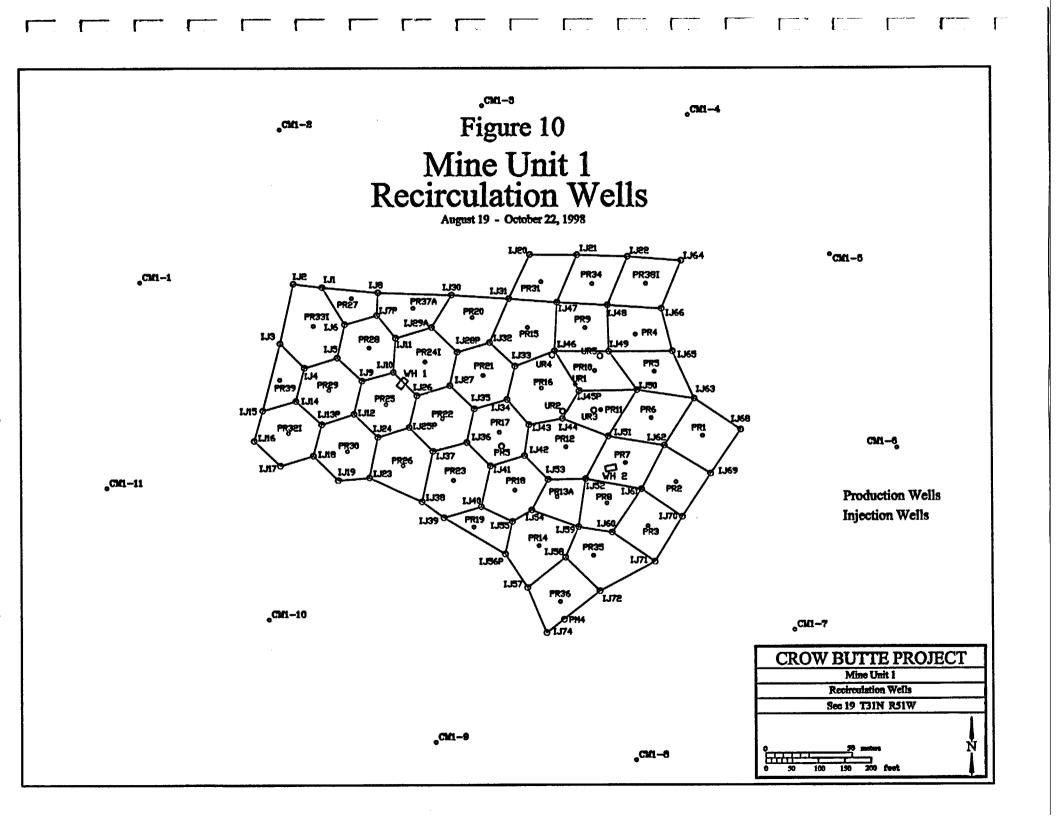
| Well Number | <b>Cumulative Pore Volume</b> | Final Conductivity (µmho/cm) |
|-------------|-------------------------------|------------------------------|
| PR1         | 2.4                           | 1813                         |
| PR2         | 25.8                          | 1890                         |
| PR3         | 1.9                           | 1803                         |
| PR4         | 5.8                           | 867                          |
| PR6         | 6.6                           | 1852                         |
| PR7         | 1.9                           | 1730                         |
| PR8         | 14.9                          | 712                          |
| PR9         | 2.9                           | 1743                         |
| PR11        | 1.2                           | 1646                         |
| PR12        | 3.9                           | 1582                         |
| PR13a       | 3.9                           | 1624                         |
| PR15        | 7.4                           | 1834                         |
| PR17        | 5.6                           | 1780                         |
| PR18        | 4.8                           | 1871                         |
| PR19        | 34.4                          | 1748                         |
| PR20        | 9.9                           | 1660                         |
| PR22        | 5.2                           | 1858                         |
| PR23        | 1.9                           | 1664                         |
| PR26        | 0.7                           | 1651                         |
| PR27        | 12.9                          | 1625                         |
| PR28        | 11.1                          | 1799                         |
| PR29        | 21.3                          | 1929                         |
| PR30        | 5.4                           | 1842                         |
| PR31        | 1.0                           | 1602                         |
| PR33        | 4.5                           | 1200                         |
| PR34        | 8.4                           | 1938                         |
| PR35        | 4.7                           | 1702                         |
| PR36        | 7.5                           | 1928                         |
| PR39        | 17.4                          | 835                          |
| IJ7p        | 4.0                           | 1373                         |
| IJ13p       | 20.4                          | 2520                         |
| IJ25p       | 5.2                           | 1786                         |
| IJ28p       | 4.5                           | 1685                         |
| IJ29p       | 1.1                           | 1374                         |
| IJ33p       | 2.0                           | 931                          |
| IJ45p       | 10.0                          | 1637                         |
| IJ49p       | 2.9                           | 1738                         |
| IJ56p       | 15.6                          | 2000                         |



### **Mine Unit 1 Restoration Report**

The number of patterns in RO restoration at any given time was dependent upon RO flow capacity. Therefore, when RO Unit 1 was brought on line, only two patterns were selected for RO restoration. At the same time, 11 to 13 other patterns were online to ion exchange treatment. As restoration progressed, new RO units were constructed. Eventually RO Unit 1 was shut down and replaced with three thin film membrane RO units. The flow capacity with these three new RO units was 200 gpm, so at the end of groundwater treatment for Mine Unit 1, there were nine patterns in RO restoration.

In addition to newer and better RO units, new restoration pipelines were installed which provided increased flow capacity and more versatile flow arrangements. This allowed for more efficient RO operations. These improvements to the restoration system should significantly reduce the number of pore volumes for the restoration of future mine units.


#### 3.3.3 Reductant Addition

In April 1996 the addition of sodium sulfide as a reductant was begun in Mine Unit 1. Groundwater treatment continued through the ion exchange and RO systems with reductant addition through July 1998.

#### 3.4 Wellfield Recirculation

At the completion of the groundwater treatment stages, wellfield recirculation may be initiated. In order to homogenize the aquifer, pumping from the production wells and reinjecting the recovered solution into injection wells can be performed to recirculate solutions.

Mine Unit 1 was placed in recirculation on August 19, 1998. Figure 10 depicts the wells that were used to recirculate the mine unit. Recirculation was conducted until February 18, 1999 when the mine unit was placed in stabilization. A total of 48,946,046 gallons, or 2.85 pore volumes, was recirculated through the ion exchange system to provide final uranium removal.



#### **Mine Unit 1 Restoration Report**



#### 3.5 Post Restoration Sampling

CBR obtained composite samples from the restoration wells on October 30, 1998. This sampling indicated that, with the exception of vanadium, all parameters met either baseline or UIC Permit restoration standards. CBR continued restoration activities to reduce the vanadium concentrations.

All restoration wells were sampled on January 22, 1999 and analyzed for vanadium. The analytical results indicated that the UIC Permit standard for vanadium had been met.

Table 7 provides the analytical data from the Mine Unit 1 post-restoration sampling. The results for all parameters except vanadium are from the October 1998 composite sampling. The vanadium results are from the January 1999 sampling. The table segregates the parameters into those that were returned to baseline and those that exceeded baseline but met the UIC Permit standards at the end of active restoration.

Based upon the results of the sampling performed in October 1998 and the vanadium sampling performed in January 1999, CBR notified the NDEQ and NRC on February 17, 1999 of the initiation of the stabilization stage.





Table 7: Mine Unit 1 Post-Restoration Analytical Results

| Parameter                          | Baseline Average<br>(Primary Goal) | UIC Permit Standard | Post-Restoration<br>Average<br>Water Quality |
|------------------------------------|------------------------------------|---------------------|----------------------------------------------|
|                                    | Parameters Re                      | turned to Baseline  |                                              |
| Ammonium (mg/l)                    | 0.37                               | 10                  | 0.08                                         |
| Barium (mg/l)                      | 0.1                                | 1.00                | <0.1                                         |
| Boron (mg/l)                       | 0.93                               | None                | 0.4                                          |
| Cadmium (mg/l)                     | 0.006                              | 0.01                | <0.005                                       |
| Carbonate (mg/l)                   | 7.2                                | None                | <1.0                                         |
| Chloride (mg/l)                    | 204                                | 250                 | 124                                          |
| Chromium (mg/l)                    | <0.03                              | None                | <0.05                                        |
| Copper (mg/l)                      | 0.017                              | 1.00                | <0.01                                        |
| Fluoride (mg/l)                    | 0.69                               | 4.00                | 0.55                                         |
| Iron (mg/l)                        | 0.044                              | 0.30                | <0.05                                        |
| Lead (mg/l)                        | 0.031                              | 0.05                | <0.05                                        |
| Manganese (mg/l)                   | 0.11                               | 0.05                | Fee: 0.01 - 1000                             |
| Mercury (mg/l)                     | 0.001                              | 0.002               | <0.001                                       |
| Molybdenum (mg/l)                  | 0.069                              | 1.00                | <0.10                                        |
| Nickel (mg/l)                      | 0.034                              | 0.15                | <0.05                                        |
| Nitrate (mg/l)                     | 0.05                               | 10.0                | <0.10                                        |
| Nitrite (mg/l)                     | 0.01                               | None                | <0.1                                         |
| pH (Std. Units)                    | 8.5                                | 6.5 – 8.5           | 7.95                                         |
| Selenium (mg/l)                    | 0.003                              | 0.01                | 0.001                                        |
| Silica (mg/l)                      | 16.7                               | None                | 13.6                                         |
| Sodium (mg/l)                      | 412.2                              | 4122                | 315                                          |
| Specific Conductivity<br>(µmho/cm) | 1947                               | None                | 1620                                         |
| Sulfate (mg/l)                     | 356.2                              | 375                 | 287                                          |
| TDS (mg/l)                         | 1170.2                             | 1218                | 967                                          |



## Mine Unit 1 Restoration Report

**Table 7: Mine Unit 1 Post-Restoration Analytical Results** 

| Parameter          | Baseline Average<br>(Primary Goal) | UIC Permit Standard          | Post-Restoration<br>Average<br>Water Quality |
|--------------------|------------------------------------|------------------------------|----------------------------------------------|
| Zinc (mg/l)        | 0.036                              | 5.00                         | <0.01                                        |
| Par                | ameters Above Baseline bu          | it Meeting UIC Permit Standa | rds                                          |
| Arsenic (mg/l)     | 0.002                              | 0.05                         | 0.024                                        |
| Radium-226 (pCi/l) | 229.7                              | 584                          | 246.7                                        |
| Vanadium (mg/l)    | 0.066                              | 0.2                          | 0.13                                         |
| Calcium (mg/l)     | 12.5                               | 125                          | 16.0                                         |
| Potassium (mg/l)   | 12.5                               | 125                          | 13.0                                         |
| Magnesium (mg/l)   | 3.2                                | 32                           | 4.4                                          |
| Uranium (mg/l)     | 0.092                              | 5.0                          | 0.963                                        |
| P                  | arameters Above Baseline           | With No UIC Permit Standard  | İs                                           |
| Alkalinity (mg/l)  | 293                                | None                         | 321                                          |
| Bicarbonate (mg/l) | 344                                | None                         | 392                                          |



### **Mine Unit 1 Restoration Report**

#### 4 STABILIZATION

Upon completion of restoration, a groundwater stabilization and monitoring program was begun in which the restoration wells were sampled and assayed. Sampling frequency was one sample per month for each well for a period of six months. The initial sample was obtained on February 19, 1999 at the beginning of the stabilization phase. NDEQ obtained split samples at the same time from all restoration wells for submittal to the State of Nebraska Health and Human Services (HHS) Environmental Testing Laboratory.

Following collection of the initial samples at the beginning of the stabilization period, CBR collected samples from each restoration well on a monthly basis. The samples were submitted to Energy Laboratories in Casper, Wyoming for full water quality analysis. Samples were collected on March 18, April 15, May 20, June 17, and July 15, 1999.

The analytical results during the stabilization period indicate that the mine unit average for all parameters is below the baseline concentration or the UIC restoration standard and are stable. Table 8 summarizes the results of each stabilization sample event. The table shows the mine unit average for each parameter for each sample event. The minimum, maximum, and average of the mine unit average data for each parameter are also shown. A comparison of the restoration standards with the maximum of the mine unit average data indicates that at no time during the stabilization period did the mine unit average exceed the UIC Permit standard for any parameter.

Figure 11 depicts the mine unit average for each parameter from each of the six sampling events. The values are shown as a percentage of the UIC Permit restoration standards.

Copies of the stabilization laboratory summary reports for each of the BLR wells is included in Appendix 6.

## Mine Unit 1 Restoration Report



Table 8: Mine Unit 1 Stabilization Analytical Results

| <b>m</b>                                       | MU-1                | UIC Permit              | Six     | Sampling Per | iods    | Stabilization         | Stabilization         | Stabilization         | Stabilization         | Stabilization         | Stabilization         |
|------------------------------------------------|---------------------|-------------------------|---------|--------------|---------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Parameter<br>(mg/l)                            | Baseline<br>Average | Restoration<br>Standard | Maximum | Minimum      | Average | Sample # 1<br>2/18/99 | Sample # 2<br>3/18/99 | Sample # 3<br>4/15/99 | Sample # 4<br>5/20/99 | Sample # 5<br>6/17/99 | Sample # 6<br>7/15/99 |
| Alkalinity                                     | 293                 | None                    | 363     | 331          | 347     | 331                   | 337                   | 342                   | 349                   | 363                   | 360                   |
| Ammonium                                       | 0.37                | 10.00                   | 0.18    | 0.07         | 0.12    | 0.07                  | 0.10                  | 0.13                  | 0.08                  | 0.15                  | 0.18                  |
| Arsenic                                        | 0.002               | 0.050                   | 0.020   | 0.016        | 0.018   | 0.016                 | 0.020                 | 0.018                 | 0.017                 | 0.018                 | 0.019                 |
| Barium                                         | 0.2                 | 1.0                     | 0.1     | 0.1          | 0.1     | <0.1                  | <0.1                  | <b>⊲</b> 0.1          | <0.1                  | <0.1                  | <0.1                  |
| Boron 0.  Cadmium 0.0  Calcium 12  Carbonate 7 | 344                 | None                    | 403     | 440          | 421     | 403                   | 409                   | 415                   | 423                   | 440                   | 435                   |
|                                                | 0.93                | N/A                     | 0.53    | 0.33         | 0.46    | 0.46                  | 0.47                  | 0.33                  | 0.47                  | 0.48                  | 0.53                  |
|                                                | 0.006               | 0.01                    | 0.005   | 0.005        | 0.005   | <0.005                | <0.005                | <0.005                | <0.005                | <0.005                | <0.005                |
|                                                | 12.5                | 125.0                   | 22.1    | 16.6         | 19.9    | 16.6                  | 19.1                  | 19.8                  | 20.3                  | 22.1                  | 21.2                  |
| Carbonate                                      | 7.2                 | None                    | 2.7     | 1.2          | 1.9     | 1.2                   | 1.5                   | 1.6                   | 2.0                   | 2.1                   | 2.7                   |
| Chloride                                       | 204                 | 250                     | 158     | 130          | 139     | 131                   | 130                   | 141                   | 141                   | 158                   | 136                   |
| Chromium                                       | <0.03               | None                    | <0.05   | <0.05        | <0.05   | <0.05                 | <0.05                 | <0.05                 | <0.05                 | <0.05                 | <0.05                 |
| Copper                                         | 0.017               | 1.0                     | 0.0     | 0.0          | 0.0     | <0.01                 | <0.01                 | <0.01                 | <0.01                 | <0.01                 | <0.01                 |
| Fluoride                                       | 0.69                | 4.00                    | 0.63    | 0.51         | 0.55    | 0.55                  | 0.52                  | 0.51                  | 0.53                  | 0.53                  | 0.63                  |
| Iron                                           | 0.044               | 0.300                   | 0.127   | 0.049        | 0.089   | 0.049                 | 0.070                 | 0.080                 | 0.090                 | 0.118                 | 0.127                 |
| Lead                                           | 0.031               | 0.05                    | 0.01    | 0.01         | 0.01    | <0.01                 | <0.01                 | <0.01                 | <0.01                 | <0.01                 | <0.01                 |
| Magnesium                                      | 3.2                 | 32.0                    | 6.1     | 4.3          | 5.3     | 4.3                   | 5.0                   | 5.2                   | 5.3                   | 5.7                   | 6.1                   |

## Mine Unit 1 Restoration Report



Table 8: Mine Unit 1 Stabilization Analytical Results

| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MU-1                | UIC Permit              | Six     | Sampling Per | iods    | Stabilization         | Stabilization         | Stabilization         | Stabilization         | Stabilization         | Stabilization         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|---------|--------------|---------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Parameter<br>(mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Baseline<br>Average | Restoration<br>Standard | Maximum | Minimum      | Average | Sample # 1<br>2/18/99 | Sample # 2<br>3/18/99 | Sample # 3<br>4/15/99 | Sample # 4<br>5/20/99 | Sample # 5<br>6/17/99 | Sample # 6<br>7/15/99 |
| Mercury         0.001         0.002         0.001         0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001         <0.001 | 0.020               | 0.024                   | 0.023   |              |         |                       |                       |                       |                       |                       |                       |
| Molybdenum         0.069         1.000         0.110         0.075         0.098         0.075         0.090         0.090         0.1           Nickel         0.034         0.15         0.01         0.01         0.01         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.001              | <0.001                  | <0.001  |              |         |                       |                       |                       |                       |                       |                       |
| Molybdenum         0.069         1.000         0.110         0.075         0.098         0.075         0.090         0.090           Nickel         0.034         0.15         0.01         0.01         0.01         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.110               | 0.110                   | 0.110   |              |         |                       |                       |                       |                       |                       |                       |
| Molybdenum         0.069         1.000         0.110         0.075         0.098         0.075         0.090           Nickel         0.034         0.15         0.01         0.01         0.01         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01               | <0.01                   | <0.01   | <0.01        |         |                       |                       |                       |                       |                       |                       |
| Molybdenum         0.069         1.000         0.110         0.075         0.098         0.075         0.090           Nickel         0.034         0.15         0.01         0.01         0.01         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1                 | <0.1                    | 0.12    | <0.1         |         |                       |                       |                       |                       |                       |                       |
| Molybdenum         0.069         1.000         0.110         0.075         0.098         0.075         0.090           Nickel         0.034         0.15         0.01         0.01         0.01         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.1                | <0.1                    | <0.1    | <0.1         |         |                       |                       |                       |                       |                       |                       |
| Molybdenum         0.069         1.000         0.110         0.075         0.098         0.075         0.090         0.090         0.110           Nickel         0.034         0.15         0.01         0.01         0.01         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.16                | 8.29                    |         |              |         |                       |                       |                       |                       |                       |                       |
| Potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.5                | 125.0                   | 14.7    | 11.7         | 13.2    | 11.7                  | 12.6                  | 13.3                  | 12.8                  | 14.7                  | 14.4                  |
| Radium-226<br>(pCi/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 230                 | 584                     | 385     | 216          | 303     | 216                   | 258                   | 286                   | 290                   | 385                   | 384                   |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.003               | 0.01                    | 0.003   | 0.001        | 0.002   | 0.001                 | 0.002                 | 0.002                 | 0.001                 | 0.002                 | 0.003                 |
| Silica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.7                | None                    | 15.4    | 13.6         | 14.4    | 13.6                  | 15.1                  | 15.4                  | 14.7                  | 13.8                  | 13.7                  |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 412                 | 4122                    | 376     | 332          | 352     | 332                   | 346                   | 355                   | 345                   | 376                   | 360                   |
| Specific<br>Conductivity<br>(µmho/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1947                | None                    | 1888    | 1702         | 1787    | 1702                  | 1728                  | 1758                  | 1815                  | 1888                  | 1833                  |
| Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 356                 | 375                     | 369     | 300          | 331     | 300                   | 313                   | 329                   | 341                   | 369                   | 334                   |
| TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1170                | 1218                    | 1153    | 1026         | 1094    | 1026                  | 1056                  | 1097                  | 1108                  | 1153                  | 1125                  |
| Uranium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.09                | 5.00                    | 2.33    | 1.09         | 1.73    | 1.09                  | 1.68                  | 1.82                  | 1.44                  | 2.33                  | 2.04                  |

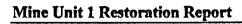
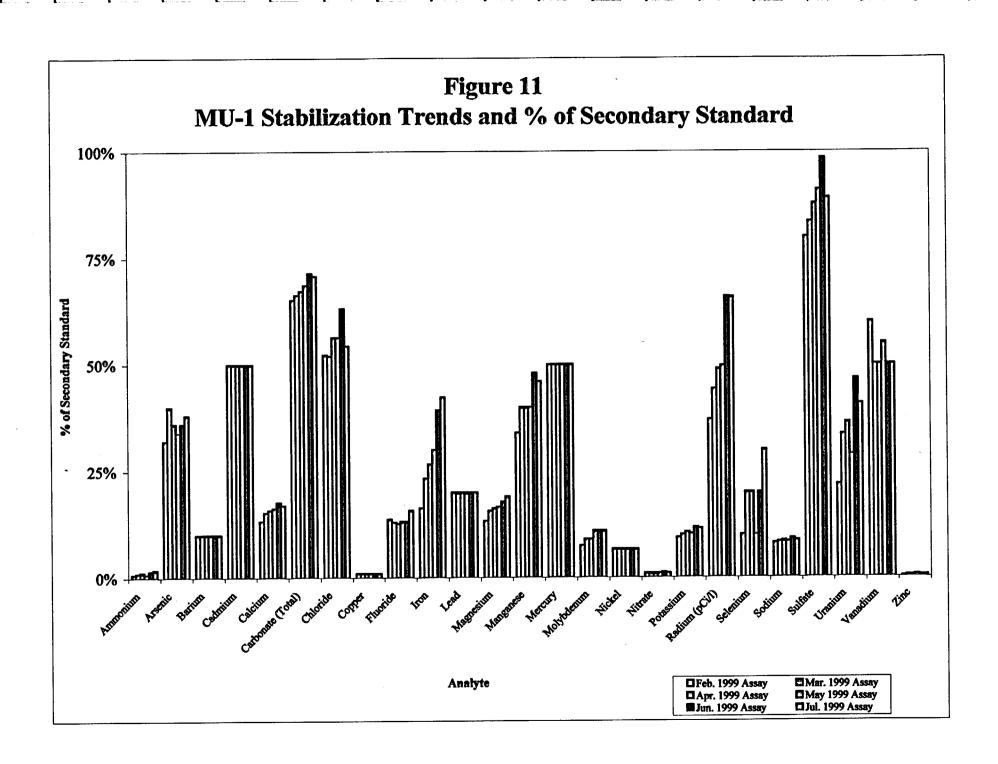






Table 8: Mine Unit 1 Stabilization Analytical Results

| Domestic de la constant | MU-1                | UIC Permit              | Six     | Sampling Per | iods    | Stabilization         | Stabilization         | Stabilization         | Stabilization         | Stabilization         | Stabilization         |
|-------------------------|---------------------|-------------------------|---------|--------------|---------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Parameter<br>(mg/l)     | Baseline<br>Average | Restoration<br>Standard | Maximum | Minimum      | Average | Sample # 1<br>2/18/99 | Sample # 2<br>3/18/99 | Sample # 3<br>4/15/99 | Sample # 4<br>5/20/99 | Sample # 5<br>6/17/99 | Sample # 6<br>7/15/99 |
| Vanadium                | 0.07                | 0.20                    | 0.12    | 0.10         | 0.11    | 0.12                  | 0.10                  | 0.10                  | 0.11                  | 0.10                  | 0.10                  |
| Zinc                    | 0.04                | 5.00                    | 0.03    | 0.01         | 0.02    | 0.01                  | 0.02                  | 0.02                  | 0.03                  | 0.02                  | 0.02                  |





## 5 EFFECTIVENESS OF MINE UNIT 1 RESTORATION

### 5.1 Restoration Summary

Restoration of Mine Unit 1 was conducted in accordance with the Restoration Plan<sup>2</sup> developed by CBR and incorporated by the NRC in SUA-1534. The restoration was accomplished using a combination of each of the restoration steps identified in the plan. A summary of the application of these steps is shown in Table 9.

**Table 9: Restoration Summary** 

| Restoration Step                      | Date Begun     | Date Completed         | Total Gallons | Total Pore<br>Volumes |
|---------------------------------------|----------------|------------------------|---------------|-----------------------|
| Groundwater<br>Transfer               | May 1994       | July 1997 <sup>1</sup> | 15,193,704    | 0.89                  |
| Groundwater<br>Sweep                  | April 1994     | July 1994              | 1,708,949     | 0.09                  |
| Groundwater Ion Exchange Treatment    | September 1994 | February 1999          | 456,946,618   | 26.62                 |
| Groundwater Reverse Osmosis Treatment | October 1995   | July 1998              | 103,413,312   | 6.02                  |
| Wellfield<br>Recirculation            | August 1998    | February 1999          | 48,946,046    | 2.85                  |
| Stabilization                         | February 1999  | August 1999            | N/A           | N/A                   |

Notes:

Groundwater Transfer was accomplished in five discreet steps during this time period.

<sup>&</sup>lt;sup>2</sup> Crow Butte Resources, Inc., Groundwater Restoration Plan, Revision 1, November 26, 1996.



### **Mine Unit 1 Restoration Report**

#### 5.2 Restoration Results

The results of the monitoring performed during the stabilization period indicate that CBR has successfully completed restoration of Mine Unit 1 to a stable condition that meets baseline concentrations or UIC Permit standards for all parameters. As shown in Table 10, seventeen of the monitored water quality parameters have been returned to an average concentration that is below the baseline concentrations. All of the remaining monitored parameters are below the UIC restoration standards established by the NDEQ.

The mine unit average for each parameter on each successive sampling event during the stabilization period was below the appropriate standards. There are no important trends in the data for any parameter as shown in Figure 11.





**Table 10: Mine Unit 1 Restoration Results** 

| Parameter   | Baseline<br>Water Quality | UIC Permit<br>Restoration Standard | Post-Mining<br>Average<br>Water Quality | Post-Restoration<br>Average<br>Water Quality | Stabilization Period<br>Average<br>Water Quality |
|-------------|---------------------------|------------------------------------|-----------------------------------------|----------------------------------------------|--------------------------------------------------|
| Alkalinity  | 293                       | None                               | 875                                     | 321                                          | 347                                              |
| Ammonium    | 0.37                      | 10                                 | 0.277                                   | 0.08                                         | 0.12                                             |
| Arsenic     | 0.002                     | 0.05                               | 0.021                                   | 0.024                                        | 0.017                                            |
| Barium      | 0.1                       | 1.00                               | <0.10                                   | <0.10                                        | <0.10                                            |
| Bicarbonate | 344                       | None                               | 1068                                    | 392                                          | 421                                              |
| Boron       | 0.93                      | N/A                                | 1.22                                    | 0.4                                          | 0.46                                             |
| Cadmium     | 0.006                     | 0.01                               | <0.01                                   | <0.005                                       | <0.005                                           |
| Calcium     | 12.5                      | 125                                | 88.7                                    | 16.0                                         | 19.9                                             |
| Carbonate   | 7.2                       | None                               | 0                                       | <1.0                                         | 1.9                                              |
| Chloride    | 204                       | 250                                | 583                                     | 124                                          | 139                                              |
| Chromium    | <0.03                     | None                               | <0.05                                   | <0.05                                        | <0.05                                            |
| Copper      | 0.017                     | 1.00                               | 0.035                                   | <0.01                                        | <0.01                                            |
| Fluoride    | 0.69                      | 4.00                               | 0.41                                    | 0.55                                         | 0.54                                             |
| Iron        | 0.044                     | 0.30                               | 0.078                                   | <0.05                                        | 0.09                                             |
| Lead        | 0.031                     | 0.05                               | <0.05                                   | <0.05                                        | <0.01                                            |
| Magnesium   | 3.2                       | 32                                 | 23                                      | 4.4                                          | 5.3                                              |
| Manganese   | 0.11                      | 0.05                               | 0.075                                   | 0.01                                         | 0.02                                             |
| Mercury     | 0.001                     | 0.002                              | <0.001                                  | <0.001                                       | <0.001                                           |
| Molybdenum  | 0.069                     | 1.00                               | 0.487                                   | <0.10                                        | 0.10                                             |





Table 10: Mine Unit 1 Restoration Results

| Parameter                       | Baseline<br>Water Quality | UIC Permit<br>Restoration Standard | Post-Mining<br>Average<br>Water Quality | Post-Restoration<br>Average<br>Water Quality | Stabilization Period<br>Average<br>Water Quality |
|---------------------------------|---------------------------|------------------------------------|-----------------------------------------|----------------------------------------------|--------------------------------------------------|
| Nickel                          | 0.034                     | 0.15                               | 0.068                                   | <0.05                                        | <0.01                                            |
| Nitrate                         | 0.05                      | 10.0                               | 1.01                                    | <0.10                                        | <0.11                                            |
| Nitrite                         | 0.01                      | None                               |                                         | <0.10                                        | <0.1                                             |
| pH (Std. Units)                 | 8.5                       | 6.5 - 8.5                          | 7.35                                    | 7.95                                         | 8.18                                             |
| Potassium                       | 12.5                      | 125                                | 30.0                                    | 13.0                                         | 13.2                                             |
| Radium-226 (pCi/l)              | 229.7                     | 584                                | 786                                     | 246.7                                        | 303                                              |
| Selenium                        | 0.003                     | 0.01                               | 0.124                                   | 0.001                                        | <0.002                                           |
| Silica                          | 16.7                      | None                               |                                         | 13.6                                         | 14.4                                             |
| Sodium                          | 412.2                     | 4122                               | 1117                                    | 315                                          | 352                                              |
| Specific Conductivity (µmho/cm) | 1947                      | None                               | 5752                                    | 1620                                         | 1787                                             |
| Sulfate                         | 356.2                     | 375                                | 1128                                    | 287                                          | 331                                              |
| TDS                             | 1170.2                    | 1218                               | 3728                                    | 967                                          | 1094                                             |
| Uranium                         | 0.092                     | 0.44                               | 12.2                                    | 0.963                                        | 1.73                                             |
| Vanadium                        | 0.066                     | 0.2                                | 0.96                                    | 0.26                                         | 0.11                                             |
| Zinc                            | 0.036                     | 5.00                               | 0.038                                   | <0.01                                        | <0.02                                            |



## Appendix 1

**Baseline Restoration Well Correspondence** 

# FERRET EXPLORAT ON COMPANY OF NEBRAS...A, INC.

P.O. Box 169 Crawford, Nebraska 69339 Office (308) 665-2215 FAX (308) 665-2341



March 22, 1994

Mr. U. Gale Hutton Nebraska Department of Environmental Quality P.O. Box 98922 Lincoln, Nebraska 68509-8922

Dear Gale:

In the Notice of Intent to Operate Mine Unit 1 submittal dated December 17, 1990, FEN designated well PT-9 as a baseline restoration well. FEN has ceased mining activities in Mine Unit 1 and is preparing to establish post-mining water quality by sampling all designated restoration wells in the mine unit. Well PT-9 has become non-functional and FEN is unable to obtain a water sample from the well. FEN proposes to use the nearest well, PR-6 as a replacement for PT-9. Both wells are screened in a similar manner in the Chadron Sandstone.

Discussion with personnel from your office indicated this is an acceptable replacement well. FEN plans to sample all designated restoration wells in Mine Unit 1 this week and split these samples with the Department. FEN also plans to plug PT-9 in accordance with the approved Plugging and Abandonment Plan. Should you have any questions regarding this matter, please do not hesitate to contact me.

Sincerely,

Ralph Knode Vice President

Polph & mode

bc: spc Frank Mills/NDEQ

# FERRET EXPLORALION COMPANY OF NEBRASIA. INC.

216 Sixteenth Street Mall, Suite 810 Denver, Colorado 80202

(303) 825-2266 (303) 825-1544 - FAX



March 21, 1994

Mr. Ramon Hall U.S. Nuclear Regulatory Commission Uranium Recovery Field Office P.O. Box 25325 Denver, Colorado 80225

RE: Docket No. 40-8943 License No. SUA-1534

Dear Mr. Hall:

The cover letter to License Amendment No. 22 asked FEN to propose appropriate revision to License SUA-1534 as a result of revision in 10 CFR Part 20 which became effective January 1, 1994.

The following changes are necessary to correct reference to 10 CFR 20.

|                      | Old 10 CFR 20  | New 10 CFR 20 |
|----------------------|----------------|---------------|
| License Condition 17 | 20.203 (e) (2) | 20.1902(e)    |
| License Condition 23 | 20.103 (a) (2) | 20.1201       |
| •                    | 20.103 (b) (2) | 20.1702       |
| License Condition 30 | 20.203 (d)     | 20.1003       |
| License Condition 52 | 20.103         | 20.1204       |

In the Notice of Intent to Operate Mine Unit 1, submittal dated December 17, 1990, FEN designated well PT-9 as a baseline restoration well. FEN has ceased mining activities in Mine Unit 1 and is preparing to establish post mining water quality by sampling all designated restoration wells in the Mine Unit. Well PT-9 has become non-functional and is unable to be sampled. FEN proposes to use the nearest well, PR-8 as a replacement for PT-9. Both wells are screened in a similar manner in the production zone. FEN requests that your agency approve PR-8 as a replacement restoration well for PT-9, and reference to this letter be added to License Condition 44 if necessary.

Mr. Ramon Hall March 21, 1994 Page Two

FEN also requests that License Condition 11 be changed to allow the disposal of waste byproduct material from the Crow Butte facility at any mill tailings or other waste facility that is licensed by USNRC or Agreement State to accept the material. This will allow FEN more flexibility in waste disposal and eliminate the need for a license amendment each time the name of the disposal facility changes.

(

If you need any further information, please contact me.

Sincerely,

Steve Cling

Stephen P. Collings

President



## Appendix 2

Preoperational Baseline Sampling Results

### Mine Unit 1

| well number                                                                                                                                                                                                                      |            |            | pm-1   | pm-4   | pm-5   | pt-5   | <b>U-6</b> | pt-9   | U-13   | pr-15        | pr-19        | IJ-25        | <b>JJ-28</b> | N-45   | 7         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------|--------|--------|--------|------------|--------|--------|--------------|--------------|--------------|--------------|--------|-----------|
| 2nd Well Number                                                                                                                                                                                                                  |            |            | pr-4   |        |        | pr-2   |            | pr-8*  | ]      | 1            | <b>'</b>     | }            |              | ł      | 1         |
| 90-1                                                                                                                                                                                                                             |            |            | 1      | l      |        |        |            |        |        | 1            | į            | l            |              | 1      | Weilfield |
| -                                                                                                                                                                                                                                | r lons     | _          | bl_avg | bl_avg | bl_avg | bl_avg | bl_avg     | bl_avg | bl_avg | bl_avg       | bl_avg       | bi_avg       | bl_avg       | bl_avg | Average   |
| calclum                                                                                                                                                                                                                          | Ca         | mg/l       | 14.7   | 15.3   | 15.5   | 8.2    | 12.7       | 13.0   | 9.5    | 13.2         | 14.0         | 8.7          | 17.3         | 7.6    | 12.5      |
| magnesium                                                                                                                                                                                                                        | Mg         | mg/l       | 3.5    | 3.6    | 3.9    | 2.3    | 3.1        | 2.1    | 2.8    | 3.9          | 3.8          | 2.5          | 4.6          | 2.2    | 3.2       |
| sodlum                                                                                                                                                                                                                           | Na         | mg/l       | 402.5  | 398.6  | 400.0  | 464.8  | 429.7      | 407.7  | 401.7  | 398.7        | 406.7        | 402.3        | 410.7        | 423.3  | 412.2     |
| potassium                                                                                                                                                                                                                        | K          | mg/l       | 12.8   | 11.6   | 11.8   | 15.4   | 11.3       | 13.4   | 10.6   | 11.1         | 12.3         | 12.8         | 12.1         | 14.9   | 12.5      |
| carbonate                                                                                                                                                                                                                        | CO3        | mg/l       | 6.8    | 3.4    | 6.5    | 17.4   | 5.6        | 13.6   | 5.6    | 5.9          | 4.9          | 5.8          | 4.2          | 7.1    | 7.2       |
| bicarbonato                                                                                                                                                                                                                      | HCO3       | mg/l       | 370.4  | 373.3  | 365.4  | 305.0  | 334.7      | 358.0  | 314.7  | 361.7        | 348.7        | 306.7        | 371.7        | 314.7  | 344       |
| sulfate                                                                                                                                                                                                                          | 504        | mg/l       | 355.7  | 354.2  | 355.5  | 330.5  | 365.3      | 351.7  | 358.3  | 352.3        | 361.3        | 360.3        | 363.7        | 365.7  | 356       |
| chloride                                                                                                                                                                                                                         | a          | mg/i       | 186.8  | 182.4  | 186.5  | 316.5  | 216.7      | 186.6  | 190.3  | 180.3        | 188.7        | 204.3        | 189.3        | 218.0  | 204       |
| ammonlum                                                                                                                                                                                                                         | NH4        | mg/l       | 0.38   | 0.40   | 0.38   | 0.39   | 0.41       | 0.44   | 0.35   | 0.53         | 0.28         | 0.39         | 0.32         | 0.19   | 0.37      |
| etitiin                                                                                                                                                                                                                          | NO2        | mg/l       | 0.01   | 0.008  | 0.01   | 0.00   | 0.01       | 0.01   | 0.01   | 0.03         | 0.01         | 0.02         | 0.01         | 0.01   | 0.01      |
| nitrate                                                                                                                                                                                                                          | NO3        | mg/l       | 0.04   | 0.04   | 0.03   | 0.04   | 0.06       | 0.10   | 0.03   | 0.05         | 0.03         | 0.13         | 0.02         | 0.02   | 0.05      |
| fluoride                                                                                                                                                                                                                         | F          | mg/i       | 0.63   | 0.63   | 0.63   | 0.75   | 0.74       | 0.66   | 0.73   | 0.69         | 0.69         | 0.70         | 0.68         | 0.71   | 0.69      |
| sifica                                                                                                                                                                                                                           | 5102       | mg/l       | 13.2   | 13.3   | 12.0   | 11.4   | 18.8       | 16.1   | 22.0   | 16.7         | 17.2         | 22.9         | 17.9         | 18.5   | 16.7      |
| Non-Metals                                                                                                                                                                                                                       | 5          | •          |        |        |        |        | <u> </u>   | i      |        |              |              | 1            |              |        |           |
| total dissolved solids                                                                                                                                                                                                           | TDS        | mg/l       | 1156   | 1148   | 1147   | 1302   | 1196       | 1176   | 1129   | 1137         | 1154         | 1126         | 1173         | 1197   | 1170.2    |
| conductivity (umholem)                                                                                                                                                                                                           | Cond       | umho/cm    | 1897   | 1871   | 1889   | 2136   | 1964       | 1866   | 1974   | 1867         | 1994         | 1970         | 1980         | 1951   | 1946.6    |
| atkatinity as CaCO3                                                                                                                                                                                                              | Alk        | ma/l       | 310.3  | 309.5  | 302.0  | 279.1  | 283.7      | 323.9  | 267.3  | 306.7        | 294.0        | 261.0        | 311.7        | 270.0  | 293.3     |
| pH (std units)                                                                                                                                                                                                                   | pH         | std. units | 8.22   | 8.16   | 8.15   | 8.54   | 8.56       | 8.60   | 8.57   | 8.55         | 8.47         | 8.60         | 8.43         | 8.68   | 8.5       |
| Trace Meta                                                                                                                                                                                                                       | la         |            |        |        |        |        |            |        |        |              |              |              |              |        |           |
| aluminum                                                                                                                                                                                                                         | AI         | mg/l       | 0.10   | 0.10   | 0.10   | n/a    | 0.10       | 0.15   | 0.10   | 0.40         | 240          | 0.40         | 0.00         | 0.40   | 0.40      |
| arsenia                                                                                                                                                                                                                          | As         | mg/l       | 0.002  | 0.002  | 0.001  | 0.004  | 0.001      | 0.13   | 0.004  | 0.10         | 0.10         | 0.10         | 0.10         | 0.10   | 0.10      |
| bertum                                                                                                                                                                                                                           | Ва         | mg/l       | 0.10   | 0.10   | 0.10   | 0.10   | 0.10       | 0.10   | 0.10   | 0.10         |              |              | 0.001        | 0.001  | 0.002     |
| boron                                                                                                                                                                                                                            | 8          | mg/l       | 0.93   | 0.94   | 0.90   | 0.10   | 0.91       | 0.10   | 0.10   | 0.10         | 0.10         | 0.10         | 0.10         | 0.10   | 0.10      |
| cadmium                                                                                                                                                                                                                          | Cq         | mg/l       | 0.001  | 0.001  | 0.001  | 0.001  | 0.010      | 0.002  | 0.010  | 0.010        | 0.94         | 0.93         | 0.95         | 0.92   | 0.92      |
| chromlum                                                                                                                                                                                                                         | Cr         | mg/l       | 0.00   | 0.00   | 0.01   | 0.01   | 0.05       | 0.002  | 0.05   | 0.010        | 0.010        | 0.010        | 0.010        | 0.010  | 0.008     |
| copper                                                                                                                                                                                                                           | Cu         | mg/l       | 0.01   | 0.01   | 0.10   | 0.01   | 0.03       | 0.00   | 0.05   |              | 0.05         | 0.05         | 0.05         | 0.05   | 0.03      |
| iron                                                                                                                                                                                                                             | Fe         | mg/i       | 0.03   | 0.03   | 0.10   | 0.01   | 0.05       | 0.01   | 0.05   | 0.01         | 0.01         | 0.01         | 0.01         | 0.01   | 0.017     |
| lead                                                                                                                                                                                                                             | Pb         | mg/l       | 0.01   | 0.03   | 0.03   | 0.03   | 0.05       | 0.03   | 0.05   | 0.05<br>0.05 | 0.05<br>0.05 | 0.05<br>0.05 | 0.05         | 0.05   | 0.044     |
| manganese                                                                                                                                                                                                                        | Mn         | mg/l       | 0.01   | 0.01   | 0.01   | 0.01   | 0.01       | 0.02   | 0.03   | 0.05         | 0.05         |              | 0.05         | 0.05   | 0.031     |
| mercury                                                                                                                                                                                                                          | Hg         | mg/l       | 0.00   | 0.00   | 0.00   | 0.00   | 0.00       | 0.02   | 0.00   | 0.00         | 0.01         | 0.01         | 0.01         | 0.01   | 0.011     |
| molybdenum                                                                                                                                                                                                                       | Mo         | mg/l       | 0.02   | 0.02   | 0.02   | 0.00   | 0.10       | 0.05   | 0.10   | 0.00         |              |              | 0.00         | 0.00   | 0.001     |
| nickel                                                                                                                                                                                                                           | M          | mg/l       | 0.01   | 0.01   | 0.02   | 0.01   | 0.15       | 0.03   | 0.10   | 0.10         | 0.10<br>0.05 | 0.10         | 0.10         | 0.10   | 0.069     |
| selentum                                                                                                                                                                                                                         | Se         | mg/i       | 0.00   | 0.00   | 0.00   | 0.00   | 0.00       | 0.02   | 0.00   | 0.00         |              | 0.05         | 0.05         | 0.05   | 0.034     |
| vanadium                                                                                                                                                                                                                         | V          | mg/l       | 0.01   | 0.01   | 0.01   | 0.01   | 0.10       | 0.05   | 0.10   | 0.00         | 0.00         | 0.00         | 0.00         | 0.00   | 0.003     |
| zinc                                                                                                                                                                                                                             | Zn         | mg/l       | 0.10   | 0.09   | 0.10   | 0.03   | 0.01       | 0.03   | 0.10   | 0.10         | 0.10<br>0.01 | 0.10         | 0.10<br>0.02 | 0.10   | 0.066     |
| Radiometric                                                                                                                                                                                                                      | •          |            | :      |        |        |        |            |        |        |              |              |              | 3.3.2        | İ      |           |
| الكيمان العلامة المرابعة المر<br>المرابعة المرابعة ال |            |            | 0 0E44 | 00450  |        | 0.0070 |            | 0.0040 |        |              |              |              |              |        |           |
|                                                                                                                                                                                                                                  | U-nat      | mg/l       | 0.0511 | 0.0152 | 0.0378 | 0.0870 | 0.1083     | 0.3040 | 0.2412 | 0.0558       | 0.0361       | 0.0348       | 0.0594       | 0.0727 | 0.092     |
| radium 228 (pCI/I)                                                                                                                                                                                                               | Ra228      | pCi/I      | 129.2  | 68.9   | 333.4  | 467,8  | 156.7      | 420.4  | 566.3  | 18.5         | 250.7        | 148.2        | 108.3        | 88.1   | 229.7     |
| radium 226 precision                                                                                                                                                                                                             | Ra228_pred | 73 J       | 4.8    | 3.6    | 9.0    | 12.1   | 4.6        | 4.7    | 8.9    | 1.0          | 6.4          | 4.5          | 3.9          | 3.4    | 5.6       |

<sup>\*</sup> PT9 was replaced by PR8; See letter submitted March 21,1994.

7.74

| Mine Unit 1             |               |              | ŀ    | ŀ    | ŀ        | ŀ            |              |        | Ī           | ŀ        | ŀ        | ŀ                                       | ŀ     | ŀ    | ı       | - 1  | ŀ     |                     | ſ    | ŀ        | ŀ        | ŀ     | ł       | - 1      | ŀ        | ſ    |
|-------------------------|---------------|--------------|------|------|----------|--------------|--------------|--------|-------------|----------|----------|-----------------------------------------|-------|------|---------|------|-------|---------------------|------|----------|----------|-------|---------|----------|----------|------|
| NDW DV                  |               | E            | _    |      |          |              | Ē            | Ē.     | Į.          | _        | -        |                                         | _     |      |         |      |       | <u>1</u>            |      | _        |          | _     | _       |          |          | Į.   |
| ž                       |               | E E          |      | 1 1  | Į        | 13           | į            | ij     | įį          | L        | i ž      | 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |       | 19   | 18      | 13   | Į     | į                   | į    | įį       | Į        | ıj    | 1 8     | <u> </u> | 18       | 18   |
| Neise In                | ,             | _            |      |      |          | _            | _            | :      | !           |          |          |                                         |       |      |         |      | _     |                     |      | _        |          |       |         |          |          | _    |
|                         |               | _            |      | _    |          | £ :          |              | 8      |             |          |          |                                         | _     |      | _       |      |       | 44                  |      | _        | -        | _     | _       |          | -        | n :  |
|                         | 3 \$          |              |      |      |          | :            | -            | 3:     | 3 :         | _        |          |                                         | _     |      |         |      | _     | 7:                  |      | _        | -        |       | -       |          | -        |      |
|                         |               |              |      |      | _        | 1 8          | -            |        | 200         |          |          |                                         |       | _    |         |      | _     | į                   |      | _        | -        |       | -       |          | _        |      |
|                         | _             |              |      | -    | -        | 170          |              | 991    | 150         | _        | -        |                                         |       | _    |         |      | _     | 9 !!                | _    | -        | _        |       | _       |          |          | 11   |
|                         | _             |              |      | _    |          | 2            |              | 8      | 2           |          | _        |                                         |       |      |         |      |       | 9                   | _    |          | _        | -     |         |          | -        |      |
| brombonne               | _             | 1 370. E     |      |      |          | 374.0        |              | 347.0  | 376         |          |          |                                         |       |      | _       | _    |       | 376.0               | _    |          |          |       | -       |          |          | 06   |
| Į                       |               | _            |      |      |          | 365.0        |              | 363.0  | 330.0       | _        |          | _                                       | _     |      |         | _    |       | 363.0               |      | _        | _        |       | _       |          |          | 9.   |
| chicage                 |               | 196.8        |      |      |          | 13.0         | -            | 3#5    | 7 °         |          |          |                                         | _     |      | _       |      | _     | 1820                | _    |          |          |       | -       | _        |          | 9    |
|                         |               | _            |      | _    |          | ង្គ          | _            | g 17   | Ę           | -        | _        | _                                       |       |      | _       |      |       | 4                   | _    |          |          |       |         |          | _        | n    |
|                         |               | <u> </u>     | -    | _    |          | 5            | _            | 2      | 5           |          |          |                                         |       | _    |         |      |       | 5                   |      |          |          |       |         |          |          | 5    |
|                         | -             | <u> </u>     |      |      |          | ₹            |              | ₹      | マ           |          | _        |                                         |       |      | _       | _    |       | 5                   |      |          |          |       |         | _        |          |      |
| alica .                 | . §           |              | 15.0 | § 5  | R 5      | 2 2          | 8 9          | 8 5    | 3 5         | 5 3      | 8 2      | 2 5 5                                   | 251   | 27.0 | 2 2 2   | ę :  | 8 :   | 3 6                 | 2 :  | g =      | 3 2      | 5.5   | 0.57    | 8 :      | 170      | 30.  |
|                         |               |              |      |      |          | <u> </u>     |              |        | !           |          |          |                                         |       |      |         |      |       | i                   |      |          |          |       |         |          |          |      |
|                         |               | _            | -    | _    |          |              |              |        |             |          |          |                                         | -     | _    |         |      | -     |                     |      | _        | _        |       | -       | _        | _        |      |
| total demotived solice. | <b>E</b>      | 201          |      | -    |          | <u>\$</u>    | Ē            | ĕ      | 5           |          |          | _                                       |       |      |         |      | -     | 2                   |      | _        |          |       |         |          | _        | 8    |
| (Managery (managery)    | 5             | 1871         | Ī.   | 2    | Ē        | Ē            | Ř            | Ř      | 86          | 5        | Ī        |                                         | - SEE | - E  |         |      | ĭ     | 1352                | Š    | _        |          |       | 200     | Ī        |          | 8    |
| SCHOOL SECTION          | ¥ :           | _            |      | _    |          | 310          | 2360         | 220    | 200         |          |          |                                         |       |      | _       | _    |       | 8                   | _    | _        |          |       |         | _        |          | 9    |
|                         | i<br>i        |              |      |      |          | 3            | 3            | 3      | 3           |          |          |                                         |       |      | 3 11.17 | 103  |       | 5                   |      | 8        | ŋ        | R.    |         |          | 7 8 7    | 8    |
| Tree Men                | 4             |              |      |      |          |              |              |        |             |          |          |                                         |       |      |         |      |       |                     |      |          |          |       |         |          |          |      |
|                         | ₹             | A   A 10553  |      | _    |          | 7            | 7            | ⊽      | 612         | _        |          |                                         | -     | _    |         |      |       | ⊽                   |      |          |          |       |         |          | _        | _    |
| I                       | E Z           | 400127       | =    | _    | -        | <b>\$00</b>  | 8            | g      | 8           |          |          |                                         | _     |      |         |      |       | 8                   |      | _        |          |       |         |          | _        | ā    |
|                         | e<br>Z        | A (1979)17   | _    |      |          | 600          | 800          | 8      | 7           |          |          |                                         |       |      |         |      |       | Ţ                   |      |          |          |       |         |          | _        |      |
|                         | ٠.            |              | _    |      | _        | 3            | 8            | £      | 3           |          |          | _                                       |       | -    | -       | _    |       | Ę                   |      |          | _        |       |         |          |          | 8    |
|                         | 8 t           |              | ( )  |      | 5        | Ę į          | 5 1          | £ ;    | 200         | E (      | Ş (      |                                         |       | E 1  | § !     | § !  | \$    | 8                   | 8    | 8        | <u> </u> | 800   | \$      | \$       | 8        | 8    |
| Didde                   |               | 400          | _    | _    |          | }            | 3 8          | -<br>- |             |          |          |                                         |       |      |         |      |       |                     |      |          |          |       |         | -        | _        | G 8  |
| E                       | •             | <u> </u>     | _    | _    |          | Ş            | 8            | - f    | 96          |          |          |                                         |       |      |         |      |       | 8                   |      |          |          |       |         |          |          |      |
| 1                       | •             |              |      | _    | _        | ŝ            | \$60         | £      | 8           |          |          |                                         |       |      | _       | _    | -     | <b>8</b> 0 <b>y</b> |      |          | -        | -     | -       |          | _        | 8    |
|                         | Ę             | F 401195     |      |      | _        | <b>689</b>   | ê            | £      | 8           |          |          |                                         |       |      |         |      |       | 9000                |      |          |          |       |         |          |          | 달    |
|                         | E.            | A 0000712    | _    | _    | <u> </u> | <b>C0007</b> | <b>C0007</b> | £      | 999         | <u></u>  | _        | _                                       |       | -    |         | _    | _     | × 0002              | _    | <u>.</u> | _        | _     | _       |          | _        | 8    |
|                         | #<br><b>!</b> | A 07.75      |      | -    | 7        | Ş            | \$           | £      | 8           |          |          |                                         |       |      | _       | _    |       | 0700                |      |          |          |       |         | _        |          | 8    |
|                         | e :           | ADITA        |      | _    |          | <u>چ</u>     | 5            | £      | 5           |          |          |                                         | _     |      |         | _    | _     | 5                   |      |          | _        |       |         | _        | _        | 8    |
|                         | _             | <u> </u>     |      |      | _        | 5            | 5            | £      | Ē           | _        | _        |                                         | _     |      | _       | _    | _     | \$                  | _    | -        |          | -     |         |          | -        | δ    |
|                         | _             | STONE IN     | 5    | ê    |          | Ş<br>—       | Ş            | \$     | <b>1</b> 00 |          |          |                                         | -     |      | _       |      |       | 5                   | _    | _        |          | _     | _       |          |          | 5    |
| Ī.                      | -             | 14 ALI 10029 | _    | Ê    |          | \$           | 5            | f      | 6020        | _        |          |                                         |       |      | _       |      | _     | 9130                | _    |          | _        |       |         |          | _        | _    |
| Parlicement             | .#            |              |      |      |          |              |              |        |             |          |          |                                         |       |      |         |      |       |                     | _    |          |          |       |         |          |          |      |
| رسسه مجمعة (سيار)       |               |              |      |      | 1900     | 9003         | 9000         | 9007   | 5           | _        | _        | _                                       |       |      |         |      |       | 200                 |      | _        |          |       | _       |          | _        | 3    |
| 100 (CV)                | Partie P.C.A. | 252          | 8    | 47.6 | 4        | ğ            | 8            | ş      | 970         | <u> </u> | <u> </u> | 183                                     | 1529  | 5251 | 9 147.0 | 1700 | 167.0 | 185.0               | 1986 | 011      | 265      | 162.6 | 1760 15 | 1540     | <u> </u> | 1160 |
| SOURCE OF THE PERSON    | Kalin pres    |              | ┨    | ᅥ    | 1        | =            | =            | 2      | ដ           | ┥        | ᅥ        | 4                                       | ┪     | ┨    | -1      | 4    | ᅱ     | 19.1                | 7    | -1       | ᅱ        | ┥     | ᅱ       | 7        | -1       | ,    |
|                         |               |              |      |      |          |              |              |        |             |          |          |                                         |       |      |         |      |       |                     | !    |          | i        | Ì     | ĺ       | 1        |          |      |

| 20 17 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |           |          |              | 1         | 1     | 1      | 1            | 1    | 1        | 1   | 1      | 1   | 1     | į     |            | 7   | į        | 1        | 1           | ŀ            | ŀ   | ŀ          | ŀ         |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|----------|--------------|-----------|-------|--------|--------------|------|----------|-----|--------|-----|-------|-------|------------|-----|----------|----------|-------------|--------------|-----|------------|-----------|---------|
| ZND Well Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | i<br>E    | į        | į            |           | l     | _      | -            |      | ***      | -   | _      |     |       | -     | Ł          |     | _        |          |             | _            | L   | L          | L         | L       |
| ě                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 8-E-5     | 5        | 1            | 4         | 5     | 5      | 7            |      | - Z      | ,   | , X    |     | }<br> |       |            | 1   | _        |          |             | -            |     |            |           | _       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |           |          |              |           |       | _      | _            | _    | -        | _   | _      | _   | _     | 3     |            | Į   | Ĭ        |          | <u> </u>    | <u> </u>     |     | <u> </u>   | <b>Y</b>  | Ŗ       |
| Major Iona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Average   | Ī        | 7            | ¥         |       |        | _            | _    | -        |     |        |     | _     | 712   | <b>MIS</b> |     |          |          |             | _            |     |            | Š         | š       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8          | 3         | 3        | 140          | 55        | 3     | 9      | 200          | 3    | 181      | 123 | 3 16.6 | 651 | 5     | 2     | 125        | 7   | =        | 3        | ¥           | 27           | -   | -          | *         | :       |
| Hammer Charles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N N        |           | ສ        | ដ            | =         | _     | _      | -            |      |          | _   |        | -   | _     | 3.5   |            | _   |          | _        |             | -            | -   | _          | <u> </u>  | 1       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | _         | 9        | 390.0        | 7100      |       |        | _            |      | -        |     |        | _   |       | 4150  | 9          |     |          | _        |             | -            | -   | -          | 3         | 9       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 11.0      | 2        | 11.0         | 2         |       |        | -            |      |          | _   | _      |     |       | 113   | 11.2       |     | _        | -        |             | _            | -   | _          | =         | -       |
| Outposes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |           | 8        | 2<br>0<br>2  | ⊽         | _     |        | _            | -    | -        | _   | _      |     |       | 9     | 90         |     | _        | _        | _           | _            |     |            | 9         | 9       |
| Vicerbones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           | 3860     | 360.0        | 330       | _     |        |              | -    |          | _   | _      | _   | _     | -     |            |     |          | _        |             |              |     |            | 2         |         |
| e die                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | _         | 359.0    | 3700         | 158.0     | _     | _      | _            |      |          | _   | _      |     |       |       |            |     | _        | _        |             | -            |     |            |           | } ;     |
| delende                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | _         | 127.0    | 1700         | 1203      | -     |        | _            | _    |          |     |        | _   | _     |       |            |     | _        |          | _           | _            | _   | -          |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | _         | 9        | 3            |           |       |        | -            | -    | _        |     | _      | _   | _     | į.    | 2          | _   | _        | -        | _           | _            | -   | -          | ?         | 86      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | _         |          | ;            | j ;       | _     | _      | _            |      |          | _   |        | -   | -     | \$    | *          |     | _        | _        |             | -            | _   | _          | ş         | R       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | _         | 5        | 5            | 5         |       | _      | _            |      | _        |     |        |     |       | 8     | 8          |     | _        | _        | _           | -            | -   |            | ş         | \$<br>* |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | _         | 200      | Ş            | Ţ         | _     |        | _            | _    | -        | -   |        | _   | -     | 5     | Ş          |     | _        | _        | _           | _            |     | -          | 5         | Ţ       |
| There are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 3         | 8        | 8            | 8         | _     | _      | _            |      | _        | -   |        |     |       | 63    | 3,0        | _   |          | _        | _           |              |     | _          | 900       | R       |
| <u>a</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |           | 120      | 3            | 160       | -     |        | -            |      |          | _   |        |     |       | 128   | 27         |     | -        | _        |             |              | _   |            | =         | 2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |          |              |           |       |        |              | _    |          |     |        |     |       |       |            |     |          |          |             |              |     |            | !         | !       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |           |          |              |           | _     |        |              |      |          |     |        | -   | _     |       |            |     |          |          |             | _            |     |            |           | _       |
| total directions society                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F          | _         | ន្ទ      | 200          | <u>=</u>  | -     | _      | -            | -    |          | _   |        | -   | _     | 13.54 | Š          | _   | -        | _        | _           |              |     |            |           | 17.1    |
| conductivity (underson)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cond unday |           | 2        | Ě            | <u>\$</u> | _     |        | -            |      | _        |     |        | _   | _     | 1     |            | _   |          | _        |             | _            |     |            | <b>§</b>  |         |
| aliminary as CoOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | を          | 309.5     | 316.0    | SE SE        | ä         | 317.0 | 337.0  | 333.0        | 2000 | 3040     | 200 | 016    | 3   | Š     | 3,00  |            | 1   |          | 97       |             | 1            | -   |            |           |         |
| piri (sed urants)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *          | -         | \$23     | 8            | 8         |       | _      |              | _    | _        |     |        | _   | -     | 2     |            | _   | -        | _        | -           | _            | -   |            |           | 2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | _         | ]        | }            | }         |       |        |              | _    |          |     |        | _   |       | 3     | 6          | -   | -        | _        |             |              | _   |            | R         | តី      |
| Three Mana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _          |           |          |              |           |       |        |              |      |          |     |        |     |       |       |            |     |          |          |             |              |     |            |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7          | -0.100951 | £        | ⊽            | Ţ         | _     | _<br>7 | _            | _    | _        | _   | _      | _   | _     |       | _          | _   | _        |          | _           | -            | _   | _          | ;         | ;       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥          | A.001875  | 600      | 8            | 8         | _     |        | _            | -    |          | _   |        |     | _     |       | _          | _   | _        |          |             | _            |     |            | , (       | - 8     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | -0.097083 | 000      | Ţ            | 7         | 7     | 7      | 7            |      | 10       | 7   | ·      | 7   | ;     | ;     | ;          | ;   | ·<br>; ; | ;        | 3 ;         | ·            | § ; | <u> </u>   | 3 ;<br>,  | 5       |
| Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ī          | 0.935     | 60.      | 930          | 1.00      |       |        | _            |      | _        | _   |        | _   | _     |       |            | -   |          |          | _           | _            | _   | _          | ; į       | ; [     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3          | A.001338  | <b>E</b> | 8            | 5         | _     | ŝ      | _            | _    | _        | _   |        |     | _     | _     |            | -   |          |          |             | -            | _   | _          |           | 3 8     |
| E CONTROL OF THE CONT | To do      | -0.004652 | ŝ        | ê            | ž         | _     | ê      | _            | _    |          | _   |        |     |       |       |            |     | _        |          | _           |              | _   | _          | 3 8       | 5 8     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ð          | <0.0095   | 0.00     | 8            | 5         | -     | ş      | _            |      | _        | _   |        |     | _     |       | _          | _   | _        |          |             | -            |     |            | 3 3       | 3 8     |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F<br>2     | A.(10725  | 0.00     | \$           | ŝ         | _     | 9639   |              |      | _        |     |        | _   | -     |       |            | _   | _        |          |             |              |     | _          | , E       | 3 5     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F<br>e     | <0.005167 | ş        | 8            | Ş         | _     | 500    |              |      | _        | _   |        |     | _     | _     |            | -   | _        |          |             | _            | _   | -          | , ,       | 3 8     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          | A COLORA  | 0.00     | 7            | Ş         | _     | 500    |              | _    | _        | _   |        | _   | _     |       | _          | -   | _        | _        |             |              |     |            |           | 3 5     |
| Í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ľ          | <0.000212 | 600V     | , 000 ×      | 8000      | -     | 2000   | _            | ÷    | _        | _   | _      | _   | _     | ***   |            | _   | _        | _        |             | _            | _   |            |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ł          | 4000017   | 800      | 2203         | 7         |       | 5      | _            |      | _        | _   |        |     | _     | _     | _          | _   | _        | _        |             | _            | _   | _          |           | 1       |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ī          | Amiss     | 5        | <b>C00</b> 2 | 8         |       | 5      |              | _    |          |     | _      |     | -     |       | _          | -   | _        | _        |             |              | _   |            | 3 5       | 3 5     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T .        | 4000000   | Š        | 200          | Ş         | -     | 2002   |              |      | _        | _   | _      | _   |       | _     | -          | _   | _        | _        |             | _            | -   | -          | 5 1       | 5       |
| CALIFORNIA AND AND AND AND AND AND AND AND AND AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _          | 40.01375  | 0.000    | 200          |           | _     | 5      | _            |      | _        | _   |        | _   | _     | _     | _          | _   |          | _        |             | _            | _   | _          | <b>5</b>  | Ē       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |           |          |              | ;         |       | 5 5    | _            | _    | _        | _   |        | _   | -     | _     | _          | _   | _        |          |             | _            | _   | _          | <u>\$</u> | ê       |
| <b>[</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _          | <b>K</b>  | 401      | E C          | 5         |       | 9      | <del>-</del> |      | _        |     |        | -   | _     |       |            | _   | _        | -        |             | _            |     | _          | 9         | 9       |
| Parferentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |           |          | <u> </u>     |           |       |        |              |      |          |     |        |     | _     |       |            |     | _        |          |             |              | -   | _          |           |         |
| Committee of Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 200       | 2        | 8            |           | _     | _      | _            |      | _        |     |        | _   |       |       |            |     | _        | -        | _           |              |     |            |           | _       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           | }        | }            | ;         |       |        |              | T T  | aron con |     | 77070  |     | 8     |       | 200        | 200 |          | 를<br>158 | 0012   0022 | 8<br>8<br>21 |     | 800<br>800 | 000       | 9100    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1        | 1:        |          |              | _         | -     |        | ^<br>=<br>{  | _    | -        |     |        | _   | Ž     | 7     | ĝ          |     | -        | _        | _           |              | -   | 950        | 570       | 21.8    |
| J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1          |           | 2        | =            | 4         | ┪     | 4      | ┪            | ┥    | -        | -   | -      | 7   | 7.6   | ::    | ::         | -   | -        | _        | _           | _            | -   | -          | **        | 0,      |

4 2 2 2 2 2 2 2 3 3 3 3 3 3 3 5 5 5 5 5 5 ē : 翌日の長当年長美色なできまむ a e fi a 13 8 E E 15. E 日本学日 i F S S 2 K C 35 3 5 1 1 T 9200 7 400 8.072 5740 74.8 \$\frac{1}{2}\$ \frac{1}{2}\$ \fra SE SE 0023 352.0 55.00 5.70 201 201 201 201 201 201 201 Z # : SE S E E B 2 PAT A 17.0 4.0 4.0 197.0 197.0 197.0 197.0 197.0 197.0 197.0 E H E # F F 02.53 15.33 15.33 15.33 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30 10 % S 2 % 2 E 5 5 8 8 ¥ 3 \$ \$ £ \$ 3 29.2 5 % S 150 150 57 **新華麗祖** A132 189.0 170 2833 0053 301.6 6.4 1147 1883 302.0 8.15 0.03 333.4 F erreritere e \*\*\*\*\*\*\*\*\*\*\*\* ACL SEEDS スイルスを対象をよるななのではない。 Resignation of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Co unied dismolved solids ordenierry (units/ore) altoierry as CeCO3 pH (net unes)

| CAD Well Namber               |      |         | £ 3      | £ 3           | £ 3      | ž 7          | 3                                     | 3        | 3           | 3         | 1          | 27       | 27       | 27         | 27       | £i       | î.       | 2 ;         | 111   | E E       | 3     | 3        |
|-------------------------------|------|---------|----------|---------------|----------|--------------|---------------------------------------|----------|-------------|-----------|------------|----------|----------|------------|----------|----------|----------|-------------|-------|-----------|-------|----------|
| ž.                            |      | Dec-88  |          |               |          | 200          | 76-F9                                 | 8        | X See See   | Xee-30    | 7          | i        | 1        | Ş          | <u> </u> | <u> </u> | 1        | Ę           | X 90  | 8         | None  | 2        |
| Major Iona                    |      | Average | <b>3</b> |               |          | ±            | Y                                     |          |             |           | Y ATT      | <b>3</b> | \$       | 3          |          |          | *        | 5           |       | _         | Ş     | \$       |
| S marries                     | _    | 2       | 2.7      | _             | _        | 10.0         | E,                                    | _        |             |           | 13.6       | 2        | 150      | 5          |          |          | 9<br>9   | 2           | 3     |           | 5     | 2        |
| E                             | F    | 2       | 3        | _             |          | 22           | 7                                     | _        | _           |           | 7          | ដ        | ກ        | ន          |          | _        | 2        | គ           | 2     |           | ដ     | Ħ        |
|                               | - ,  | \$ :    | 0        | 92            | 9        | 8            | 23                                    | 900      | 900         | 00        | 407.7      | 900      | Š.       | 900        | 900      | 9        | og :     | 46.0        | E.    | 9307      | 410.0 | ě.       |
| and a second                  |      | 1       | 7 5      | _             |          | , i          | 3:                                    | _        |             |           |            | 2        | 2 :      | <u>2</u>   |          |          | 99       | 8 S         | ğ;    |           | 2 :   | <u>.</u> |
| bicortomes HCO3               | 1    | 30.5    | , y      |               |          | 3 6          | 3 2                                   |          |             |           | 45         | e e      | 92.5     | v į        | -        |          | 92 5     | 9 5         | 3 5   | _         | 2 9   | 27 5     |
| ,                             |      | 2000    |          |               | _        |              | 3                                     |          |             |           | 151.7      | 3 2      | 1500     | 200        |          |          | 0.10     |             |       |           |       | 7.70     |
| chilorate                     |      | 316.5   | e E      | _             |          | 2            | 787                                   |          |             |           | 186.6      | 180      | 1800     | 3          |          |          | 9 5      | 9 9 8       | 3     |           | 13.0  | Ē        |
| HIN SERVICE                   |      | ĝ       | 25       |               |          | ដូ           | 3                                     | _        |             |           | 25         | ğ        | 9        | 5          |          |          | Ş        | 5           | 3     |           | 5     | 5        |
|                               | _    | E0#     | 8        | _             |          | E 000        | 2                                     | _        |             | -         | 4.01       | P. P.    | <u>6</u> | 900        |          |          | 10.0     | 5           | 4.9   |           | 90    | 8        |
|                               | F    | 3       | 68       |               |          | 8            | 8                                     | _        |             |           | ¥          | 8        | 9        | ਵ          |          | _        | ē        | ā           | ALES. |           | g     | 5        |
| Thursday 1                    | _    | 2       | 3        |               |          | 3            | 5                                     |          |             |           | 266        | 80       | R        | 8.0        | -        | _        | 23       | 8           | S.    |           | 210   | Ķ        |
|                               | _    | 1       | <u>-</u> | _             |          | 2            | 25                                    |          |             |           | - F        | នួ       | 3        | ñ          | _        |          | 92       | 3           | ដ     | _         | न     | Ř        |
| Non-Merals                    | **** |         |          |               |          |              |                                       |          |             |           |            |          |          |            |          |          |          |             |       |           |       |          |
| ects dissolved solids TDS     | Ŧ    | 1302    | _        |               |          | <u> </u>     | 11%                                   | Ū        | 1167        | <b>5</b>  | 11.76      | 55       | Ä        | 1162       | _        |          |          | <u> </u>    | 1129  | <u>\$</u> | ***   | 2        |
| 2                             |      | 2136    | -        |               |          | 5061         | ¥                                     | Ē        | Ř           | 50        | 1866       | 0061     | 52       | 85         | -        |          |          | 8           | 14    | Ř         | E     | Ř        |
| Mediumy at CaCO3 All.         | Ī    | E       | ğ        | 2000          | Ē        | 303.0        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ę.       | ñ           | 976       | 922        | XZZ.0    | 320      | 33.0       | 310.0    | 20.00    | 3360     | 200         | 267.3 | Ê         | 273   | 25       |
| Hd (see mans) Hd              |      | 3       | _        |               |          | 3            | 3                                     | 23       | 162         | 2         | 8,60       | ដ        | 2        | 3          |          |          |          | R           | 5     | 7         | 5     | S        |
| Trass Metals                  |      |         |          |               |          |              |                                       |          |             |           |            |          |          |            |          |          |          |             |       |           |       |          |
| A terminals                   | Ŧ    | £       | 1        |               |          | £            | ₹                                     | ā        | ŧ           | ā         | A.146      | \$       | 90.0     | ê          | _        | 900      |          | 001         | ŧ     | 4         | 8     | á        |
| PA STREET                     | F    |         | _        |               | _        | - FOO (00-   | 48                                    | 88       | 88          | <b>E</b>  | <0.007     | 0.014    | 0.007    | <b>6</b> 0 | 808      | 200 B    | ·        | 100         | A.004 | 8         | 6000  | 100      |
|                               | Ē    |         |          |               | _        | ē            | ₹                                     | ğ        | ē           | ŧ         | Ŧ          | 9 0      | ₹        | _          |          | ₹        |          | -           | ₹     | 룡         | ā     | Ŧ        |
|                               | F    |         | _        |               |          | 82           | 200                                   | 0.60     | 2           | E         | 5          | 8        | 8        |            | _        | 8        |          | 91          | 5     | 828       | 85    | Ę        |
| 3 0                           | ì    |         |          | E 6           | E 8      | E 8          | £ £                                   | ê 6      | 8<br>8<br>8 | £ 5       | 40023      | Ş ;      | \$       | ₹ .        | 8        | Ę į      |          | \$          | £ 4   | 8         | 9     | \$ 1     |
| 100                           | 1    | _       |          |               |          | 200          | } E                                   | 3 6      | § §         | 9 6       | 1          |          |          |            | _        | 8 1      |          |             | 8     | g ;       | 8 8   | S 3      |
|                               | F    | 9       |          | _             |          | \$ <b>\$</b> | 4                                     | 4        | 8           | 8         | 4.046167   |          | 8        |            |          | 5 8      |          | 101         | 4     | 8 8       | 5 8   | 5 8      |
| £                             | F    | -       | _        |               |          | 9000         | A C                                   | 8        | 8           | £         | <0.006833  | _        | 8        | _          | -        | 8        |          | 8           | 4     | 8         | 8     | 8        |
| •                             | F    | -       |          | _             | -        | SEC. 02      | F                                     | Ą        | 8           | 2         | A.072333   |          | 7        |            |          | 8        | _        | 8           | 4     | ê         | 60    | E G      |
|                               | Ŧ    |         | _        | _             | _        | 20000        | E E                                   | <b>E</b> | <b>8</b>    | <b>F</b>  | 4,000      |          | 1000     | _          | _        | 2000     |          | 8           | 4.00  | 8         | 8     | <b>8</b> |
|                               | Ŧ    |         | _        |               | -        |              | ₹.                                    | ē        | ŧ           | ē         | A.O.T.O.T. |          | 600      |            | _        | 907      | _        | -<br>\$     | ₹     | ਵ         | å     | ē        |
|                               | F    |         | _        | _             |          | <b>5</b>     | ¥.                                    | ê<br>S   | 8           | 8         | 4933       |          | 100      | _          |          | ê        | _        | <u>ڤ</u>    | Ą     | 88        | 6.    | 808      |
| 8                             | F    |         | _        |               |          | £            |                                       | <b>A</b> | 8           | 100       | A.02667    | _        | 2000     |            |          | 100      | _        | 5           | 1     | É         | 8     | E        |
| > <b>1</b>                    | •    | _       | _        | <u>.</u><br>E | <u> </u> | <b>5</b>     | 4                                     | ਵ<br>ਵ   | ਵ<br>ਵ      | ŧ         | 40000      | _        | 3        | -          | _        | 8        | _        | 8           | ₹     | ₹         | Ē     | 륟        |
| <b>5</b>                      | F    |         |          |               |          | E            | 2013                                  | 000      | 808         | 8         | A.015667   |          | 880      |            |          | Ę        | <u> </u> | Ē           | 4013  | 859       | £     | 9100     |
| Retionment                    |      |         |          |               |          | <del></del>  |                                       |          |             |           |            |          |          |            |          |          | _        | <del></del> |       |           |       |          |
| urmenn second (mg/l) U.cat mg | Ŧ    | 9,087   |          |               | _        | £            | 6168                                  | a110     | 0.146       | <b>\$</b> | 75         | 24.0     | 0330     |            | _        |          |          | <u> </u>    | 24    | 813       | 0.72  | 23       |
|                               | ð    | 8.79    | 2        | 8             | 9219     | 37.0         | 156.7                                 | 19.0     | 150.0       | 286       | 170.4      | 607.0    | 0.70     | Ş          | 30.00    | 250      | 0.78     | 94          | 3     | 2540      | 4130  | 477.0    |
| TANKS - D DESCRIPTION   PACES |      | 177     | ┨        | -1            | 4        | 113          | 70                                    | •        | 11          | 42        |            | ۶        | •        | -          | _        | _        | -        |             |       |           |       |          |

| Andreas (CC) temps: | 1                       |             |     |          |     |          |             |           |   |          |           |        |           |       |          |         |          |           |                     |            |                        |                            |         |      |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |            |            |          |          | _                     |            |        |                |
|---------------------|-------------------------|-------------|-----|----------|-----|----------|-------------|-----------|---|----------|-----------|--------|-----------|-------|----------|---------|----------|-----------|---------------------|------------|------------------------|----------------------------|---------|------|---------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|------------|------------|----------|----------|-----------------------|------------|--------|----------------|
|                     | Radiomeri<br>Rama (mg/) |             |     |          | j   |          | ,           |           | ] | [ ]      |           | CHOME  |           |       |          |         | Contrast | Trace Men | (Military true) Lad |            | Strategy (Carrier of ) | COLUMN CHARGO PARTE SCHOOL | Nontida |      | Chornda | 1        |          | The Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Pa | chiomie | and then | bearbones  | carbones   | Militare |          | Partition of the last | Major for  | ř      | Well Marriag   |
| 2                   | F                       | 2           | 1   | : %      | 1   | í        | 1           | i         | F | , 5      | ß         | ų.     | Ω         | 9     | P        | *       | 2        |           | 3                   | }          | 9                      | ğ                          |         | Ş    | 71      | ğ        | Š        | Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ω       | Ş        | ğ          | 8          | ×        | 7        | <b>F</b> 1            | 9          |        |                |
| 1 2                 | 4                       | ł           |     | . }      | 4   | . }      | . 4         | 4         | 4 | 4        | 1         | 4      | 1         | 3     | 1        | 1       | 1        |           | 1                   | Š          |                        | 1                          |         | Ĭ    | Ī       | ł        | 1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1       | 1        | 1          | 1          | 1        | į        | 1                     | l          |        |                |
| 3 8                 | 2                       | Serioras    | Ą   | 100      | 8   | 4        | 1000        | a s       | 8 | 5        | A         | 8      | 4         | 297   | 2        | 2,004   | A        |           | 8.57                | 20/2       | 1974                   | 1129                       |         | 120  | 3       | 48       | A        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Š       | 382      | 314.7      | 2          | Ē        | 1        | 2 1                   | Average    | No.    | נו-נו          |
| 120                 | 29                      | 0.020       | ₽   | 9        | 9   | A        | 8           | A         | A | â        | 6         | â      | 80        | 0.978 | ē        | 000     | A        | -         | £                   | 77.0       | 1914                   | Ē                          |         | 19.7 | 2       | ŝ        | ê        | ę                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ã       | ž.       | 5          | <u></u>    | = {      | 1        | -<br>5 }              |            | 07.9   | E1-13          |
| 72 55               | 2<br>E                  |             | -   | _        |     |          |             | _         |   | _        |           | â      | _         |       |          |         |          |           |                     | _          | 28                     |                            |         |      |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | _        |            |            |          |          |                       |            | Non-20 | 1 U-13         |
| 70                  |                         |             |     | -        |     |          |             |           |   |          |           | 8      | -         |       | _        |         | _        |           |                     | _          | Ä                      |                            |         |      |         |          | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | _        |            |            |          |          |                       | : a        | - X    | 13 U-13        |
|                     |                         |             |     |          |     |          |             |           |   |          | _         |        | _         |       | _        | -       | _        |           |                     | -          |                        | -                          |         | 7    | •       |          | <u> </u> | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ě       | ·        | <b>6</b>   | ~          | 7 (      |          |                       | - u        | 8      | ===            |
|                     | 2                       | A           | . 4 | A        | A   | Δ        | A           | 2         | A | A        | A         | A      | A         | 2     | Δ        | A       | <u> </u> |           | 94                  | - 14       | <u> </u>               |                            |         | _    | •       | _        | A        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =       | بيو      | نيا        | 1          |          | _        | _                     | . >        | 3      | -              |
| 15 65               |                         |             |     |          |     | _        |             |           |   |          | _         | A      | _         |       | _        | _       | _        |           |                     |            | 1367                   |                            |         | _    |         | _        | _        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          | _          | -          | -        |          | -                     | 1          | Noweyo | Pr-15          |
| = %                 |                         |             | -   | _        | _   |          |             | _         |   |          |           | 8      |           |       |          |         |          |           |                     | 0.0        | 73                     | <u> </u>                   |         | 15.0 | \$<br>_ | <u> </u> | <u>ê</u> | ន្ធ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2       | 570      | 8 :        | <b>6</b>   |          | \$ E     | 3 4                   | <b>.</b> ≅ | 95     | Par 15         |
| 3 8                 |                         |             | _   | _        |     |          | _           |           | _ |          |           | ê<br>8 | _         | _     |          | _       | _        |           | 8                   | 0,00       | 1939                   | 1                          |         | Ē    | 8       | 3        | ã        | ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00    | 3920     | ¥ :        | 2          | 5 8      | 2        | ě                     | 8          | You    | ¥<br>C         |
| = =                 | ş                       | 3           | 4   | 1        | â   | <u>*</u> | 1           | 3         | â | å        | 3         | å      | 4         | 1     | 2        | 4       | <u>A</u> |           | 5                   | ğ          | 3                      | 3                          |         | \$   | 5       | ã        | 3        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3       | ě        | ¥ !        | ا بت       | 3 8      |          | 1 5                   | 5          | Ī      | Ĩ              |
|                     |                         | ····        |     | _        |     |          | _           |           |   |          |           |        |           |       |          |         |          |           |                     |            |                        | •                          |         |      |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |            |            |          |          |                       |            |        |                |
| 2 7                 | ğ                       | A<br>E      | 2   | 2001     | Ā   | A        | 8           | 2         | 8 | A        | 2         | A      | 2         | S     | Ê        | 203     | A        |           | 5                   | 5          | 3                      | 1154                       |         | 17.  | \$      | 6        | \$       | Ş                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1847    | Ë        | 127        | 5          |          | į        | į                     | ) in a     | News   | 7.19           |
| 340<br>67           | 041                     | <b>A</b> 01 | 8   | 9000     | 8   | A        | <b>4001</b> | 8         | 8 | <u>A</u> | <u>a</u>  | â      | 80        | 0.910 | ê        | 2001    | <u>8</u> |           | 231                 | 293.0      | <b>15</b>              | <u>=</u>                   |         | Ē    | 9       | <u> </u> | 8        | Ç.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.16    | 300      | 33.0       | <b>=</b> { | į        | <u></u>  | 3                     | E          | 8      | 61-kd          |
| e g                 | Coo                     | 0010        | ≜   | 2000     | 200 | Ą        | 8000        | â         | Ą | 8        | 60        | ŝ      | 8         | 0.93  | <u>8</u> | 2001    | â        |           | 5                   | 37.0       | 3                      | Ī                          |         | Ē    | ŝ       | ŝ        | <u>a</u> | น์                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7       | 53       | § 8        | î į        | į        | <u>-</u> | : 5                   | S          | 7      | 72.5           |
| e ğ                 | 200                     | 2000        | ě   | 8        | A   | ٥        | 9           | <u>\$</u> | 8 | å        | <u>\$</u> | å      | 60        | 3     | A        | 6       | ≜        |           | ī                   | 775        | 3                      | =<br>8                     | -       | Ę    | ã       | ŝ        | ŝ        | ្ឌ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3       | 1        | £ (        | <b>:</b> { | 3 8      |          | ;                     | E          | 7      | 77.            |
|                     |                         |             |     |          |     |          |             |           |   |          |           |        |           |       |          |         |          |           |                     |            |                        |                            |         |      |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |            | -          |          |          |                       |            |        |                |
| s ž                 | 2.63%                   | ECTO D      | 2   | A.091    | A   | A        | A001        | 202       | A | A        | A<br>2    | A      | 4         | 2.933 | A        | A<br>32 | A        |           | 8                   | 261.0      | 1970                   | 1126                       |         | 22.9 | 270     | £        | 4        | Ç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ě       |          | ž          | ŝį         | 3 6      | ı        | 2                     | À          | Nov-90 | 27.77          |
| ۵<br>نو             | 0006                    | 203         | ≜   | 400      | 8   | A        | 41001       | \$        | â | A<br>3   | ŝ         | ŝ      | 9         | 200   | A        | ŝ       | ě        |           | E                   | į          | 316                    | Ī                          |         |      | _       | _        | _        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | _        |            | _          |          | _        | _                     | 5          | 0      | Ę              |
| 39.8<br>3.7         |                         | 4           | 2   | 800      | 2   | A        | 2003        | 2         | A | <u>A</u> | â         | è      | <u>\$</u> | ş     | <u>B</u> | A<br>83 | ≜        |           | 157                 | 470        | 3                      | Ē                          |         | ŭ    | ŝ       | 2        | 2        | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110     | 1        | 1          | \$         |          | ¥        | : ¥                   | 5          | Ĭ      | Ę,             |
| # E                 | 3                       | ŝ           | ≜   | 4        | 2   | A        | A 000       | å         | â | â        | 6         | ĝ      | <u>\$</u> | 3     | ŝ        | 9       | å        |           | 5                   | y<br>e     | 3                      | ğ                          |         | ť    | 2       | 8        | 9        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3       | 5 (      | 3 ;        | <b>=</b> [ | 37.0     | š        | 2                     | 5          | 3      | 뛽              |
|                     | <u> </u>                |             |     | <u> </u> | _   | <u> </u> | _           | _         | _ |          | _         | _      | _         |       | _        | _       |          |           |                     |            |                        |                            |         |      |         |          | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          | _          |            |          |          |                       |            |        |                |
| 1082                |                         | 2.017       | _   | _        | _   | _        |             | _         | _ | _        | _         |        | _         | _     | _        | _       | _        | _         | E                   | _          |                        |                            |         | 17.9 | 2       | 3        | 2        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2       | 5        | 1          | t į        |          | 5        | 3                     | Ì          | 797.90 | 11-28          |
| t mo                |                         |             |     | _        | _   | _        | _           |           |   | _        | _         | _      | -         |       | _        | _       | -        |           |                     | 011<br>011 | Ĭ                      | 3                          |         | Ĕ    | ŝ       | 2        | 2        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          | 1          | 3 6        | ě        | 3        | Ş                     | Ē          | 3      | इस्त इस्त इस्त |
| 1 0 II              |                         |             |     |          | _   |          |             | _         |   |          | -         |        | _         |       |          | _       | _        |           |                     |            |                        |                            |         | 17.1 | 3       | 2        |          | ik :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ž.      | 1        | Š :        |            |          | ā        | F                     | s          | Ĭ      | ឱ              |
| 101.0<br>3 1        | ĝ                       | 2003        | ē   | 8        | ŝ   | é        | 8           | 200       | ŝ | ġ        | 9         | ŝ      | á         | 3     | Ê        | ŝ       | é        |           | 5                   | JIQO       | 1913                   | =                          |         | 본    | 3       | <u> </u> | 6        | ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3       | 1        | <b>X</b> : | i i        | 0.20     | ä        | ų.                    | \$         | X .    | ជួ             |

| 1             | <u> </u>    | Now.90               |            | <u> </u>  | 2 | 40.0   | 17.6            | 27        | 345.0      | 9860  | 98.0    | 88      | 10 to   | 20.00   | 22.0     | 127   | <del></del> |                      | 5 1 |                   | 3 :             |    |          |            | 1000     | ĩ  | e 2 a    | 5        | 8          | 000 | S 1 | 9 8 | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 100      | ē | 5   |   |   | 7 200 |
|---------------|-------------|----------------------|------------|-----------|---|--------|-----------------|-----------|------------|-------|---------|---------|---------|---------|----------|-------|-------------|----------------------|-----|-------------------|-----------------|----|----------|------------|----------|----|----------|----------|------------|-----|-----|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|---|-----|---|---|-------|
| ł             | <u> </u>    | 7.<br>2.<br>2.<br>2. | 5          |           |   | _      | 94              | _         | 900        | _     | -       | _       | _       | 900     | _        |       |             | -                    | i j |                   | -               |    |          | ğ          | Ť        |    | -        |          |            | _   | _   | S & |     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ | <u> </u> |   | _   |   |   |       |
|               | Ĩ           | 878                  | 5          | 3         | 2 | 000    | 911             | 3         | ñ          | 364.0 | 3       | អូ      | Ą       | 0.0     | 0.62     | 7     |             |                      |     | Ş                 |                 | ş  |          | Ą          | <b>8</b> | ŧ  | Ę        | 1000     | e<br>E     | 50  |     | § 8 | į   | ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 | 1000     | 룜 | 900 |   | - | E I   |
|               | 3           | Nev-90               | Average    | 7.6       | 2 | 127    | 14.9            | 7.1       | 3147       | 365.7 | 218.0   | <0.1933 | 5       | A.01667 | 6.71     | 281   |             | :                    |     |                   | 3               | 8  |          | 4          | c4.001   | 41 | 625      | 5        | ę,         | 5 1 |     | Ę   | 200 | ę                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A | A.00     | f | 5   |   |   | 3     |
|               |             |                      |            | F         | F | F      | F               | F         | F          | Ē     | Ē       | Ē       | F       | F       | ì        | F     |             | ì                    |     | ī                 |                 |    |          | Ī          | Ī        | Ī  | Ī        | Ŧ        | Ē          | ř   | ì   | 1   | i   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 | Ī        | I | F   |   | 1 |       |
|               |             |                      | •          | đ         | Ž | Ź      | ×               | 8         | 8          | ğ     | ប       | Į       | ğ       | 2       | k.       | Si02  | .5          |                      | į   |                   | Į 9             | Ē, |          | ₹          | 2        | £  | <b>#</b> | ਰ (      | <b>5</b> ( | 8   | 2 4 | \$  | 4   | ! \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z | 3        | > | ន   | , |   |       |
| , ille 1 mg 1 | Well Number | å                    | Major losa | Coliciona |   | a dist | <b>Software</b> | carbonate | Department |       | chiande |         | action. |         | fluorida | a die | MondAen     | Aller Sandanish bear |     | Albahony as C.CO3 | ref (red trees) | (  | Thee Men | churrent a |          |    |          | Code and |            |     | [ ] |     |     | - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - September - Sept | 1 | Rapport  |   | ı   | 1 |   |       |

.



Burn Bar

## Appendix 3

Mine Unit 1 Post-Mining Water Quality Sampling Results



#### **ENERGY LABORATORIES, INC.**

P.O. BOX 3258 • CASPER, WY 82602 • PHONE (307) 235-0515 254 NORTH CENTER, SUITE 100 • CASPER, WY 82601 • FAX (307) 234-1639

inap

```
FERRET EXPLORATION OF NEBRASKA, INC.
  PROJECT: MU-1 Initial Restoration
   Sample Identification:
                                                                                                                                 1J-25
 Sample Date:
Report Date:
Laboratory I.D. #:
MAJOR IONS mg:1
Ca - Calcium
Mg - Magnesium
Na - Sodium
K - Potassium
CO3 - Carbonate
HCO3 - Bicarbonate
HCO3 - Bicarbonate
SO4 - Sulfate
Cl - Chloride
NH4 - Anmonium
NO2 - Nitrite
NO3 - Nitrate
F - Fluoride
SiO2 - Silica
TDS - Total Dissolved Solids
TSS - Total Dissolved Solids
EC - Conductivity (umho/cm)
Alk - Alkalinity as CaCO3 (CaCO3)
pH (std units)
                                                                                                                                89.4
1177
30.0
1111
TRACE METALS mg/l:
Al - Aluminum
As - Arsenic
Ba - Barium
B - Boron
Cd - Cadmium
Cr - Chromium
Cu - Copper
Fe - Iron
Pb - Lead
Mn - Manganese
Hg - Mercury
Mo - Molybdenum
Ni - Nickel
Se - Selenium
V - Vanadium
Zn - Zinc
                                                                                                                             <0.10
0.020
<0.10
<0.01
<0.01
                                                                                                                            RADIOMETRIC pci/1:
U-nat - Uranium Natural (mg/1)
Ra226 - Radium 226
Radium 226 Precision
 Quality Assurance Data:
Anion Milliequivalents
Cation Milliequivalents
WDFO A/C Bal. &
Calculated TDS mg/l
TDS Balance A/C &
                                                                                                                                 58.35
58.31
-0.03
3618
1.04
 Report Approved By: A.a. Leading
```



## **ENERGY LABORATORIES, INC.**

P.O. BOX 3258 • CASPER, WY 82602 • PHONE 13071 235-0515 254 NORTH CENTER, SUITE 100 • CASPER, WY 82601 • FAX 13071 234-1639

| FERRET EXPLORATION OF NEBRASKA, I                                                                                                                                                                                                                                                                                                                | NC.                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| PROJECT: MU-1 Initial Restoration                                                                                                                                                                                                                                                                                                                | מו                                                                                                                  |
| Sample Identification:                                                                                                                                                                                                                                                                                                                           | 1J-6                                                                                                                |
| Sample Date:<br>Report Date:<br>Laboratory I.D. #:                                                                                                                                                                                                                                                                                               | 03-23-94<br>04-13-94<br>94-8713                                                                                     |
| MAJOR IONS mg:1 Ca - Calcium Mg - Magnesium Na - Sodium K - Potassium CO3 - Carbonate HCO3 - Bicarbonate SO4 - Sulfate Cl - Chloride NH4 - Ammonium NO2 - Nitrite NO3 - Nitrate F - Fluoride F - Fluoride TDS - Total Dissolved Solids TSS - Total Suspended Solids EC - Conductivity (umho/cm) Alk - Alkalinity as CaCO3 (CaCO3) pH (std units) | 87107 531 4119535 5466 6 16 7 5 6 16 7 6 16 16 16 16 16 16 16 16 16 16 16 16 1                                      |
| TRACE METALS mg/l: Al - Aluminum As - Arsenic Ba - Barium B - Boron Cd - Cadmium Cr - Chromium Cu - Copper Fe - Iron Pb - Lead Mn - Manganese Hg - Mercury Mo - Molybdenum Ni - Nickel Se - Selenium V - Vanadium Zn - Zinc                                                                                                                      | <pre>&lt;0.10 &lt;0.031 &lt;0.106 &lt;0.05 &lt;0.05 &lt;0.05 &lt;0.05 &lt;0.14 &lt;0.075 &lt;0.112 0.112 0.11</pre> |
| RADIOMETRIC pCi/l:<br>U-nat - Uranium Natural (mg/l)<br>Ra226 - Radium 226<br>Radium 226 Precision                                                                                                                                                                                                                                               | 13.90<br>1113<br>11.4                                                                                               |
| Ouality Assurance Data: Anion Milliequivalents Cation Milliequivalents WDEO A/C Bal. Calculated TDS mg/l TDS Balance A/C t  Report Approved By: A.A. Louling                                                                                                                                                                                     | 54.25<br>52.74<br>-1.41<br>3334<br>1.05                                                                             |
| Report Approved By: R.a. Maching                                                                                                                                                                                                                                                                                                                 |                                                                                                                     |



## **ENERGY LABORATORIES, INC.**

P.O. BOX 3258 • CASPER, WY 82602 • PHONE 13071 235-0515 254 NORTH CENTER, SUITE 100 • CASPER, WY 82601 • FAX 13071 234-1639

1 2 2 3 16 3 6

| FERRET EXPLORATION OF NEBRASKA,                                                                                                                                                                                                                                                                                                           | INC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT: MU-1 Initial Restoration                                                                                                                                                                                                                                                                                                         | מכ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sample Identification:                                                                                                                                                                                                                                                                                                                    | IJ-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample Date:<br>Report Date:<br>Laboratory i.D. #:                                                                                                                                                                                                                                                                                        | 03-23-94<br>04-13-64<br>94-6714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MAJOR IONS mg:1 Ca - Calcium Mg - Magnesium Na - Sodium K - Potassium CO3 - Carbonate HCO3 - Bicarbonate SO4 - Sulfate Cl - Chloride NH4 - Ammonium NO2 - Nitrite NO3 - Nitrite F - Fluoride SiO2 - Silica TDS - Total Dissolved Solids TSS - Total Suspended Solids EC - Conductivity (umbo/cm) Alk - Alkalinity as CaCO3 pH (std units) | 9213<br>9213<br>9213<br>9213<br>9213<br>9213<br>9213<br>9213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TRACE METALS mg/l: Al - Aluminum As - Arsenic Ba - Barium B - Boron Cd - Cadmium Cr - Chromium Cu - Copper Fe - Iron Pb - Lead Mn - Manganese Hg - Mercury Mo - Molybdenum Ni - Nickel Se - Selenium V - Vanadium Zn - Zinc                                                                                                               | <pre>&lt; 0.10 8 0.108 &lt; 0.126 &lt; 0.051 &lt; 0.0555 &lt; 0.0552 &lt; 0.122 /pre> |
| RADIOMETRIC pCi/1:<br>U-nat - Uranium Natural (mg/1)<br>Ra226 - Radium 226<br>Radium 226 Precision                                                                                                                                                                                                                                        | 9.31<br>1558<br>18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Quality Assurance Data: Anion Milliequivalents Cation Milliequivalents WDEO A/C Bal. { Calculated TDS mg/l TDS Balance A/C { Report Approved By: A.A. Lock                                                                                                                                                                                | 59.91<br>58.56<br>-1.14<br>3711<br>. 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| lemie 8712for                                                                                                                                                                                                                                                                                                                             | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



## **ENERGY LABORATORIES, INC.**

P.O. BOX 3258 • CASPER. WY 82602 • PHONE (307) 235-0515 254 NORTH CENTER. SUITE 100 • CASPER. WY 82601 • FAX (307) 234-1639

```
FERRET EXPLORATION OF NEBRASKA, INC.
      PROJECT: MU-1 Initial Restoration
       Sample Identification:
                                                                                                                                                                                                                                                                                                                                     IJ-28
      Sample Date:
Report Date:
Laboratory I.D. #:
                                                                                                                                                                                                                                                                                                                                    03-23-94
04-13-94
94-8715
MAJOR IONS mg:1
Ca - Calcium
Mg - Magnesium
Na - Sodium
K - Potassium
CO3 - Carbonate
HCO3 - Bicarbonate
SO4 - Sulfate
Cl - Chloride
NH4 - Ammonium
NO2 - Nitrite
NO3 - Nitrate
F - Fluoride
SiO2 - Silica
TDS - Total Dissolved Solids
TDS - Total Suspended Solids
EC - Conductivity (umho/cm)
Alk - Alkalinity as CaCO3 (CaCO3)
pH (std units)
                                                                                                                                                                                                                                                                                                                                   3886
                                                                                                                                                                                                                                                                                                                               6025
989
7.81
    pH (std units)
   TRACE METALS mg/1:
Al - Aluminum
As - Arsenic
Ba - Barium
B - Boron
                                                                                                                                                                                                                                                                                                                      <0.100
0.100
0.1101
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.00
  Ba - Barium
B - Boron
Cd - Cadmium
Cr - Chromium
Cu - Copper
Fe - Iron
Pb - Lead
                  o - Bead

n - Manganese

g - Mercury

o - Molybdenum

l - Nickel

e - Selenium

- Vanadium

n - Zinc
   E GOHE
                                                                                                                                                                                                                                                                                                                       <0.001
0.54
0.12
0.138
1.24
<0.01
  RADIOMETRIC pCi/1:
U-pat - Uranium Natural (mg/1)
Ra226 - Radium 226
Radium 226 Precision
 Ouality Assurance Data:
Anion Milliequivalents
Cation Milliequivalents
WDEO A/C Bal.;
Calculated TDS mg/l
TDS Balance A/C
                                                                                                                                                                                                                                                                                                                            60.50
58.62
-1.58
3698
1.05
Report Approved By: R.O. Lauling
```



## **ENERGY LABORATORIES, INC.**

P.O. BOX 3258 • CASPER, WY 82602 • PHONE 1307) 235-0515 254 NORTH CENTER, SUITE 100 • CASPER, WY 82601 • FAX 1307) 234-1639

| FERRET EXPLORATION OF NEBRASKA,                                                                                                                                                                                                                                                                                                          | INC.                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| PROJECT: MU-1 Initial Restorati                                                                                                                                                                                                                                                                                                          | on                                             |
| Sample Identification:                                                                                                                                                                                                                                                                                                                   | PR-15                                          |
| Sample Date:<br>Report Date:<br>Laboratory I.D. #:                                                                                                                                                                                                                                                                                       | 03-23-94<br>04-13-94<br>94-8716                |
| MAJOR IONS mg:1 Ca - Calcium Mg - Magnesium Na - Sodium K - Potassium CO3 - Carbonate HCO3 - Bicarbonate SO4 - Sulfate Cl - Chloride NH4 - Ammonium NO2 - Nitrite NO3 - Nitrate F - Fluoride SiO2 - Silca TDS - Total Dissolved Solids TSS - Total Suspended Solids EC - Copductivity (umho/cm) Alk - Alkalinity as CaCO3 PH (std units) | 863.7.7.12.30<br>113.5.7.20<br>113.5.10<br>110 |
| TRACE METALS mg/1: Al - Aluminum As - Arsenic Ba - Barium B - Boron Cd - Cadmium Cr - Chromium Cu - Copper Fe - Iron Pb - Lead Mn - Manganese Hg - Mercury Mo - Molykel Se - Selenium V - Vanadium Zn - Zinc                                                                                                                             | <pre>     104     105151515168</pre>           |
| RADIOMETRIC pCi/l:<br>U-nat - Uranium Natural (mg/l)<br>Ra226 - Radium 226<br>Radium 226 Precision                                                                                                                                                                                                                                       | 5.18<br>109<br>3.5                             |
| Quality Assurance Data: Anion Milliequivalents Cation Milliequivalents WDEO A/C Bal. Calculated TDS mg/l TDS Balance A/C &                                                                                                                                                                                                               | 59.53<br>58.53<br>3653<br>1.04                 |
| TDS Balance A/C &  Report Approved By: A.A. Leading                                                                                                                                                                                                                                                                                      | 7                                              |

235-0515 • FAX (307) 234-1639 P.O. BOX 3258 . CASPER, WY 82602 . PHONE (307) 254 NORTH CENTER, SUITE 100 . CASPER, WY 82601

```
FERRET EXPLORATION OF NEBRASKA, INC.
```

| Restoration | PR-19    |
|-------------|----------|
| Initial     | cation:  |
| : MU-1      | Identifi |
| PROJECT     | Sample   |

| PR-19                  | 03-23-94<br>04-13-94<br>94-8717                    | 111ds<br>CaCo3) 56 31000000000000000000000000000000000000                                     | 000-000                                                                                        |
|------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Sample Identification: | Sample Date:<br>Report Date:<br>Laboratory I.D. #: | mg:1 sium sium lum sonate acte lde lde lite acte lite lca lca lca lca lca lca lca lca lca lca | TRACE METALS mg/l: Al - Aluminum As - Arsenic Ba - Barium B - Boron Cd - Cadmium Cr - Chromium |

| 6,78<br>11,82<br>11,82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (mg/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
| l:<br>Vatural<br>26<br>sion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • |
| RADIOMETRIC PCi/1:<br>U-pat - Uranium Natural<br>Ra226 - Redium 226<br>Radium 226 Precision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| IOMETH<br>26 - 1<br>1um 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| RACE<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Ban<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Baron<br>Ban | ( |

Report Approved By: R.A. Lachin

200 - W-I 200 - HO 100 

# **ENERGY LABORATORIES, INC.**

P.O. BOX 3258 • CASPER, WY 82602 • PHONE (307) 235-0515 254 NORTH CENTER, SUITE 100 • CASPER, WY 82601 • FAX (307) 234-1639

| FERRET EXPLORATION OF NEBRASKA, I                                                                                                                                                                                                                                                                                                                  | NC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT: MU-1 Initial Restoration                                                                                                                                                                                                                                                                                                                  | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sample Identification:                                                                                                                                                                                                                                                                                                                             | PR-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sample Date:<br>Report Date:<br>Laboratory I.D. #:                                                                                                                                                                                                                                                                                                 | 03-23-94<br>04-13-94<br>94-8718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MAJOR IONS mg:1 Ca - Calcium Mg - Magnesium Na - Sodium K - Potassium CO3 - Carbonate HCO3 - Bicarbonate SO4 - Sulfate Cl - Chloride NH4 - Ammonium NO2 - Nitrite NO3 - Nitrate F - Fluoride \$102 - Silica TDS - Total Dissolved Solids TSS - Total Suspended Solids EC - Conductivity (umho/cm) Alk - Alkalinity as CaCO3 (CaCO3) pH (std units) | 82130116001033 855.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| B - Barrum<br>Cd - Cadmium<br>Cr - Chromium                                                                                                                                                                                                                                                                                                        | <pre>&lt; 0.1028 &lt; 0.1031 &lt; 0.1031 &lt; 0.1031 &lt; 0.1031 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.0000 &lt; 0.000</pre> |
| RADIOMETRIC pCi/1:<br>U-pat - Uranium Natural (mg/1)<br>Ra226 - Radium 226<br>Radium 226 Precision                                                                                                                                                                                                                                                 | 5124<br>6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Quality Assurance Data: Anion Milliequivalents Cation Milliequivalents WDEO A/C Bal. & Calculated TDS mg/l TDS Balance A/C & Report Approved By: A.O. Localina                                                                                                                                                                                     | 59.53<br>56.75<br>-2.39<br>3626<br>1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Report Approved By: A.a. Leadur                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



# **ENERGY LABORATORIES, INC.**

P.O. BOX 3258 • CASPER. WY 82602 • PHONE (307) 235-0515 254 NORTH CENTER. SUITE 100 • CASPER. WY 82601 • FAX (307) 234-1639

. . . .

| FERRET EXPLORATION OF NEBRASRA,                                                                                                                                                                                                                                                                                                                  | 7 1177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PROJECT: MU-1 Initial Restorati                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sample Identification:                                                                                                                                                                                                                                                                                                                           | PT-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sample Date:<br>Report Date:<br>Laboratory I.D. #:                                                                                                                                                                                                                                                                                               | 03-23-94<br>04-13-94<br>94-8719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MAJOR IONS mg:1 Ca - Calcium Mg - Magnesium Na - Sodium K - Potassium CO3 - Carbonate HCO3 - Bicarbonate SO4 - Sulfate Cl - Chloride NH4 - Anmonium NO2 - Nitrite NO3 - Nitrite F - Fluoride SiO2 - Silica TDS - Total Dissolved Solids TSS - Total Suspended Solids EC - Conductivity (umho/cm) Alk - Alkalinity as CaCO3 (CaCO3 pH (std units) | 9840 0 316571 4 8<br>7310 829 45 642<br>821500023 587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TRACE METALS mg/1: Al - Aluminum As - Arsenic Ba - Barium B - Boron Cd - Cadmium Cr - Chromium Cu - Copper Fe - Iron Pb - Lead Mn - Manganese Hg - Mercury Mo - Molybdenum Ni - Nickel Se - Selenium Y - Vanadium Zn - Zinc                                                                                                                      | <0.107 <0.1017 <0.136 <0.0015 <0.0015 <0.00401 <0.005041 <0.005045 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 |
| RADIOMETRIC pCi/1:<br>U-nat - Uranium Natural (mg/1)<br>Ra226 - Radium 226<br>Radium 226 Precision                                                                                                                                                                                                                                               | 9,30<br>1139<br>11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Quality Assurance Data: Anion Milliequivalents Cation Milliequivalents WDEO A/C Bal. Calculated TDS mg/l TDS Balance A/C & Report Approved By: A.Q. Louding                                                                                                                                                                                      | 58.74<br>56.93<br>3640<br>1.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| kmk 8712fer                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



### **ENERGY LABORATORIES, INC.**

P.O. BOX 3258 • CASPER, WY 82602 • PHONE 13071 235-0515 254 NORTH CENTER, SUITE 100 • CASPER, WY 82601 • FAX 13071 234-1639

FERRET EXPLORATION OF NEBRASKA, INC. PROJECT: MU-1 Initial Restoration Sample Identification: IJ-45 Sample Date: Report Date: Laboratory I.D. #: MAJOR IONS mg:1
Ca - Calcium
Mg - Magnesium
Na - Sodium
K - Potassium
CO3 - Carbonate
HCO3 - Bicarbonate
SO4 - Sulfate
Cl - Chloride
NH4 - Ammonium
NO2 - Nitrite
NO3 - Nitrate
F - Fluoride NO3 - Nitrate
F - Fluoride
0.43
SiO2 - Silica
TDS - Total Dissolved Solids
TSS - Total Suspended Solids
EC - Conductivity (umho/cm)
Alk - Alkalinity as CaCO3 (CaCO3)
905
pH (std units)
7.37 TRACE METALS mg/1: Al - Aluminum As - Arsenic Ba - Barium <0.10 0.023 <0.10 1.15 <0.01 Ba - Barlum
B - Boron
Cd - Cadmium
Cr - Chromium
Cu - Copper
Fe - Iron
Pb - Lead
Mn - Manganese
Hg - Mercury
Mo - Molybdenum
Ni - Nickel
Se - Selenium
V - Vanadium
Zn - Zinc <0.05 <0.05 <0.05 <0.05 <0.139 1.29 RADIOMETRIC pCi/1: U-nat - Uranium Natural (mg/1) Ra226 - Radium 226 Radium 226 Precision 14.83 681 9.2 Quality Assurance Data: Anion Milliequivalents Cation Milliequivalents WDEO A/C Bal.; Calculated TDS mg/1 TDS Balance A/C ; 58.40 56.20 36.01 1.08 Report Approved By: A.O. Learling



### **ENERGY LABORATORIES, INC.**

P.O. BOX 3258 • CASPER, WY 82602 • PHONE (307) 235-0515 254 NORTH CENTER, SUITE (00 • CASPER, WY 8260) • FAX (307) 234-1639

FERRET EXPLORATION OF NEBRASKA, INC. PROJECT: MU-1 Initial Restoration Sample Identification: PM-5 Sample Date: Report Date: Laboratory I.D. #: MAJOR IONS mg:1
Ca - Calcium
Mg - Magnesium
Na - Sodium
K - Potassium
CO3 - Carbonate
HCO3 - Bicarbonate
SO4 - Sulfate
Cl - Chloride
NH4 - Ammonium
NO2 - Nitrite
NO3 - Nitrate
F - Fluoride
SiO2 - Silica
TDS - Total Dissolved Solids
TSS - Total Suspended Solids
EC - Conductivity (umbo/cm)
Alk - Alkalinity as CaCO3 (CaCO3)
pH (std units) ãŏ.o 0915000033 7161095 75000033 TRACE METALS mg/1:
Al - Aluminum
As - Arsenic
Ba - Barium
B - Boron
Cd - Cadmium
Cr - Chromium
Cu - Copper
Fe - Iron
Pb - Lead
Mn - Manganese
Hg - Mercury
Mo - Molybdenum
Ni - Nickel
Se - Selenium
V - Vanadium
Zn - Zinc RADIOMETRIC pCi/1: U-nat - Uranium Natural (mg/1) Ra226 - Radium 226 Radium 226 Precision Quality Assurance Data: Anion Milliequivalents Cation Milliequivalents WDEO A/C Bal. Calculated TDS mg/l TDS Balance A/C \* 55.78 52.56 -2.58 3415 1.10 Report Approved By: A.a. Leading



kmk 8712fer

### **ENERGY LABORATORIES, INC.**

P.O. BOX 3258 • CASPER, WY 82602 • PHONE 13071 235-0515 254 NORTH CENTER, SUITE 100 • CASPER, WY 82601 • FAX 13071 234-1639

FERRET EXPLORATION OF NEBRASKA, INC. PROJECT: MU-1 Initial Restoration Sample Identification: PM-1 Sample Date: Report Date: Laboratory I.D. #: MAJOR IONS mg:1
Ca - Calcium
Mg - Magnesium
Na - Sodium
CO3 - Carbonate
HCO3 - Bicarbonate
HCO3 - Bicarbonate
SO4 - Sulfate
Cl - Chloride
NH4 - Ammonium
NO2 - Nitrite
NO3 - Nitrate
F - Fluoride
SiO2 - Silica
TD5 - Total Dissolved Solids
TSS - Total Suspended Solids
EC - Conductivity (umho/cm)
Alk - Alkalinity as CaCO3 (CaCO3)
pH (std units) TRACE METALS mg/1:
Al - Aluminum
As - Arsenic
Ba - Barium
B - Boron
Cd - Cadmium
Cr - Chromium
Cu - Copper
Fe - Iron
Pb - Lead
Mn - Manganese
Hg - Mercury
Mo - Molybdenum
Ni - Nickel
Se - Selenium
V - Vanadium
Zn - Zinc RADIOMETRIC pCi/1: U-nat - Uranium Natural (mg/1) Ra226 - Radium 226 Radium 226 Precision Ouality Assurance Data: Anion Milliequivalents Cation Milliequivalents WDEO A/C Bal. Calculated TDS mg/l TDS Balance A/C \$ 58.07 57.33 -0.64 3585 1.03 Report Approved By: A.Q. Lealing



kmk 8712fer

### **ENERGY LABORATORIES, INC.**

P.O. BOX 3258 • CASPER. WY 82602 • PHONE 13071 235-0515 254-NORTH CENTER, SUITE 100 • CASPER. WY 82601 • FAX 13071 234-1639

FERRET EXPLORATION OF NEBRASKA, INC. PROJECT: MU-1 Initial Restoration Sample Identification: PM-4 Sample Date: Report Date: Laboratory I.D. #: MAJOR IONS mg:1
Ca - Calcium
Mg - Magnesium
Na - Sodium
Na - Sodium
CO3 - Carbonate
HCO3 - Bicarbonate
HCO3 - Bicarbonate
HCO3 - Bicarbonate
SO4 - Sulfate
C1 - Chloride
NH4 - Ammonium
NO2 - Nitrite
NO3 - Nitrite
NO3 - Nitrate
F - Fluoride
SiO2 - Silica
TDS - Total Dissolved Solids
TDS - Total Suspended Solids
TSS - Total Suspended Solids
EC - Conductivity (umho/cm)
Alk - Alkalinity as CaCO3 (CaCO3) 738
PH (std units) TRACE METALS mg/l:
Al - Aluminum
As - Arsenic
Ba - Barium
B - Boron
Cd - Cadmium
Cr - Chromium
Cu - Copper
Fe - Iron
Pb - Lead
Mn - Manganese
Mg - Mercury
Mo - Molybdenum
Ni - Nickel
Se - Selenium
Zn - Zinc <0.107
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.007
<1.0 RADIOMETRIC pCi/1: U-nat - Uranium Natural (mg/1) Ra226 - Radium 226 Radium 226 Precision Quality Assurance Data: Anion Milliequivalents Cation Milliequivalents WDEO A/C Bal Calculated TDS mg/1 TDS Balance A/C \$ A.a. learling Report Approved By:



kmk 8712fer

## **ENERGY LABORATORIES, INC.**

P.O. BOX 3258 • CASPER. WY 82602 • PHONE 13071 235-0515 254 NORTH CENTER. SUITE 100 • CASPER, WY 82601 • FAX 13071 234-1639

FERRET EXPLORATION OF NEBRASKA, INC.

PROJECT: MU-1 Initial Restoration Samples

```
MAJOR IONS mg:1
Ca - Calcium
Mg - Magnesium
Na - Sodium
K - Potassium
CO3 - Carbonate
HCO3 - Bicarbonate
SO4 - Sulfate
Cl - Chloride
NH4 - Ammonium
NO2 - Nitrite
NO3 - Nitrate
F - Fluoride
SiO2 - Silica
TDS - Total Dissolved Solids
TSS - Total Suspended Solids
EC - Conductivity (umho/cm)
Alk - Alkalinity as CaCO3 (CaCO3)
pH (std units)
                                                                                                                                                                  Det.
0.10
0.10
0.10
0.10
                                                                                                                                                                                          Limit
 TRACE METALS mg/1:
A1 - Aluminum
As - Arsenic
Ba - Barium
Ba - Barlum
B - Boron
Cd - Cadmium
Cr - Chromium
Cu - Copper
Fe - Iron
Pb - Lead
Mn - Manganese
Hg - Mercury
Mo - Molybdenum
Ni - Nickel
Se - Selenium
V - Vanadium
Zn - Zinc
 RADIOMETRIC pci/1:
U-nat - Vranium Natural (mg/1)
Ra226 - Radium 226
Radium 226 Precision
Quality Assurance Data:
Anion Milliequivalents
Cation Milliequivalents
WDFO A/C Bal. &
Calculated TDS mg/l
TDS Balance A/C &
                                                                                                                                                                 Acceptable Range
                                                                                                                                                                 -5 - +5
                                                                                                                                                                 0.90-1.10
 Report Approved By:
```

Report Date: 64-26-94

QUALITY ASSURANCE REPORT -

ELI #(1): 94:8712-8723 Dup #1 Dup #2 Spk #1 Spt #2 DATE MAJOR IONS mg/1: METHOD 4, % ANALYST SAMPLE ANALYZED Calcium EPA-200.7 100 100 PG 03-31-94 Magnesium EPA-200.7 100 ٠, 100 PO 03-31-94 Sodium EPA-200.7 104 104 PO 03 - 31 - 94Potassium EPA-258.1 100 100 PO 03-31-94 Carbonate EPA-310.1 100 100 RK 03 - 28 - 94Bicarbonate EPA-310.1 100 100 RK 03-28-94 .Sulfate EPA-375.3 98 98 RK 03-29-94 Chloride EPA-325.3 98 101 RK 03-30-94 Ammoslum EPA-350.1 92 -98 RK 04-05-94 Nitrite EPA-354.1 100 85 RK 04-04-94 Nitrate EPA-353.2 100 97 RK 04-01-94 Fluoride EPA-340,2 105 100 DC 03 - 30 - 94Silica EPA-200.7 102 104 CP 04-01-94 TDS @ 180 C EPA-160.1 100 RCB 03-31-94 Cond (um ho/em) EPA-120.1 100 RCB 03-30-94 Alkalinity EPA-310.1 100 100 RK 03-28-94 pH (units) EPA-150.1 100 RK 03-28-94 TRACE METALS mg/l: Aluminum EPA-200.7 100 80 CP 04-01-94 Arrenic EPA-206.3 109 Q£ PG 04-06-94 Barium EPA-200.7 100 103 CP 04-11-94 Boros EPA-200.7 103 100 CP 04-11-94 Cadmium EPA-200.7 100 94 CP 04-11-94 Chromium EPA-200.7 100 93 CP 04-11-94 Copper EPA-200.7 100 95 CP 04-11-94 Iron EPA-200.7 100 100 CP 04-11-94 Lead EPA-239.2 100 107 CP 04-11-94 Manganese EPA-200.7 100 101 CP 04-11-94 Mercury EPA-245.2 100 106 PG 03-28-94 Molybdenum EPA-200.7 100 98 CP 04-01-94 Nickel EPA-200.7 100 92 CP 04-01-94 Selenium EPA-270.3 100 110 PG 04-07-94 Vanadlum EPA-200.7 99 101 CP 04-01-94 Ziac EPA-200.7 100 100 CP 04-01-94 Dup #1 Dup #2 Spk #1 Spk #2 DATE **RADIOMETRIC: METHOD** % % % % ANALYST SAMPLE ANALYZED Uranium EPA-908.1 126 123 DB 03-30-94 Ra226 EPA-903.0 97 DB 04-05-94 USEPA-ESML-LV INTERCOMPARISON STUDY RESULTS Radiometric Method **ELI Value** Standard Difference Analyst Date Uranium EPA-908.1 20.73 25.30 -4.57 DB 08-13-93 Ra226 EPA-903.1 15.23 14.90 0.33 DB 09-17-93 R:228 EPA-904.1 16.13 20.40 -4.27 DB 09-17-93 Gross Alpha EPA-900.0 16.00 20.00 -4.00 DB 10-29-93 Gross Beta EPA-900.0 19.00 15.00 4.00 DB 10-29-93 Report Approved By:

Ferret Exploration of Nebraska, Inc.

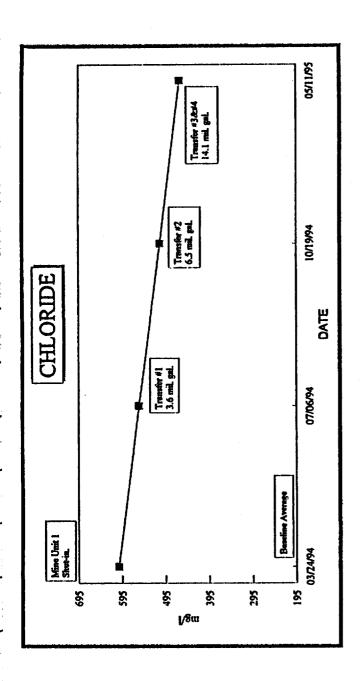
## CROW BUTTE RESOURCES, INC.

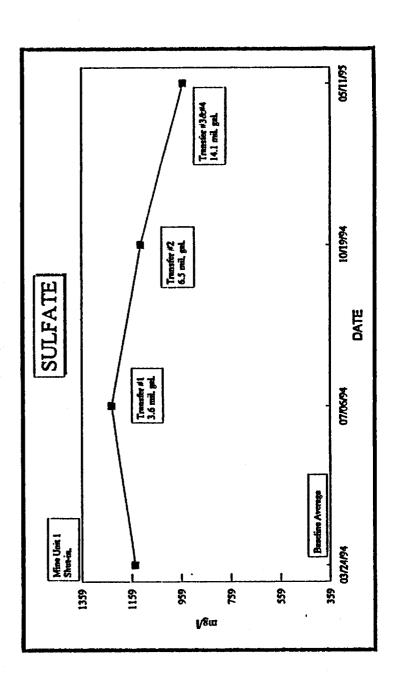


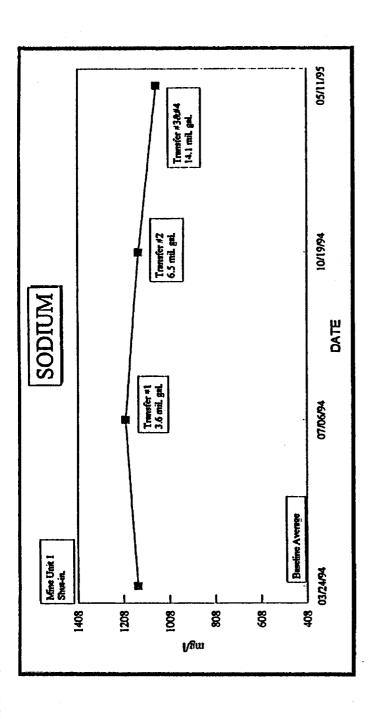
## Appendix 4

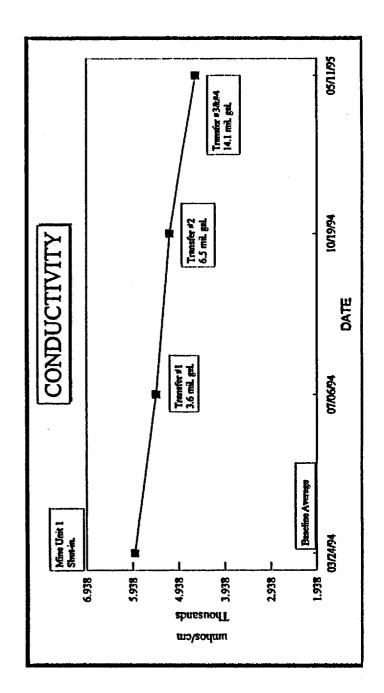
Affect of Groundwater Transfer on Selected Parameters

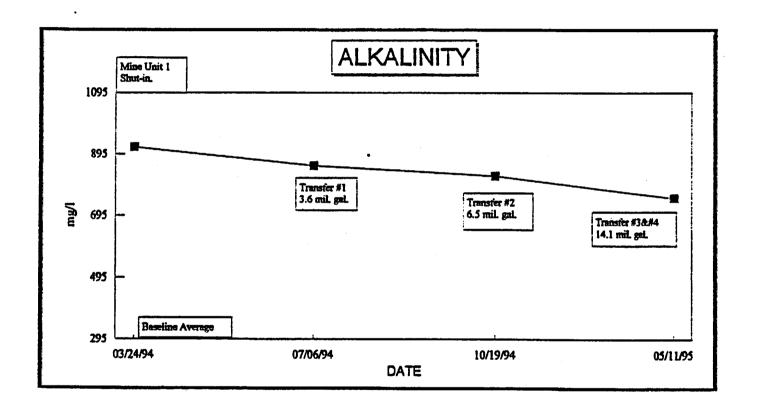
# Periodic Water Analysis of Selected Wells in Mine Unit 1


| -  | Andrew Control |         |         |             |               |         |         |         |
|----|----------------|---------|---------|-------------|---------------|---------|---------|---------|
|    |                |         |         | Chloride An | alysis (mg/l) |         |         |         |
| Ī  | Sample         |         |         | W           | e!l           |         | ···     |         |
| L, | Date           | U 28P-1 | J 28P-1 | J 45P-2     | PR 8-2        | PR 18-1 | PR 18-1 | Average |
| •  | Baseline       | 204     | 189     | 218         | 187           | 180     | 189     | 195     |
| 10 | 03/24/94       | 594     | 619     | 607         | 603           | 603     | 590     | 603     |
| 1  | 37/06/94       | 596     | 596     | 596         | 467           | 524     | 560     | 557     |
| 11 | 10/19/94       | 506     | 525     | 493         | 519           | 495     | 512     | 508     |
| L  | 05/11/95       | 456     | 495     | 440         | 503           | 417     | 468     | 483     |


|          |          |          | Sulfate Ana | lysis (mg/l) | •       |         |         |
|----------|----------|----------|-------------|--------------|---------|---------|---------|
| Sample   |          |          | W           | e II         |         |         |         |
| Date     | IJ 25P-1 | IJ 28P-1 | IJ 45P-2    | PR 8-2       | PR 18-1 | PR 19-1 | Average |
| Baseline | 360      | 364      | 366         | 352          | 352     | 381     | 359     |
| 03/24/94 | 1,119    | 1,112    | 1,134       | 1,115        | 1,115   | 1,283   | 1,146   |
| 07/06/94 | 1,333    | 1,191    | 1,414       | 1,007        | 1,117   | 1,361   | 1,237   |
| 10/19/94 | 1,139    | 1,148    | 1,086       | 1,118        | 1,088   | 1,148   | 1.121   |
| 05/11/95 | 953      | 1,042    | 873         | 1,055        | 838     | 957     | 953     |


|                  |         |          | Sodium Ana |        |         |         | ·       |
|------------------|---------|----------|------------|--------|---------|---------|---------|
| Sample           |         |          | W          | e II   |         |         |         |
| Date             | J 25P-1 | IJ 28P-1 | IJ 45P-2   | PR 8-2 | PR 16-1 | FR 19-1 | Average |
| - Baseline       | 402     | 411      | 423        | 408    | 399     | 407     | 408     |
| 03/24/9          | 4 1,177 | 1,182    | 1,126      | 1,144  | 1,172   | 1,083   | 1,147   |
| 07/06/9          | 4 1,309 | 1,260    | 1,276      | 979    | 1,199   | 1,177   | 1,200   |
| 10/19/9          | 1,133   | 1,177    | 1,122      | 1,133  | 1.172   | 1,128   | 1,144   |
| - <u>05/11/9</u> | 5 1,012 | 1,111    | 962        | 1,100  | 952     | 1,243   | 1,063   |


| L | -        |         |          | Conductivity Ana | lysis (umhos/cm) |         | <del></del> |         |
|---|----------|---------|----------|------------------|------------------|---------|-------------|---------|
|   | Sample   |         |          | We               |                  |         |             |         |
|   | Date     | U 25P-1 | IJ 28P-1 | IJ 45P-2         | PR 8-2           | PR 15-1 | PR 19-1     | Average |
|   | Baseline | 1,070   | 1,980    | 1,951            | 1,866            | 1,867   | 1,994       | 1,938   |
|   | 03/24/94 | 5,807   | 6,025    | 5,916            | 5,819            | 5,940   | 5,819       | 5,888   |
|   | 07/06/94 | 5,800   | 5,630    | 5,760            | 4,750            | 5,170   | 5,470       | 5,430   |
|   | 10/19/94 | 5,140   | 5,340    | 4,980            | 5,130            | 5,090   | 5,110       | 5,132   |
|   | 05/11/95 | 4,510   | 4,900    | 4,290            | 4,880            | 4,160   | 4,690       | 4,572   |


|   |                      |            |            | Alkalinity Ar | nalysis (mg/l)  |            |            |            |
|---|----------------------|------------|------------|---------------|-----------------|------------|------------|------------|
|   | Sample<br>Date       | IJ 26P-1   | I J 28P-1  | W<br>1J 45P-2 | ell<br>I PR 6-2 | PR 15-1    | PR 19-1    | Average    |
| Ц | Baseline<br>03/24/94 | 261<br>911 | 312<br>989 | 270<br>905    | 324<br>959      | 307<br>959 | 294<br>786 | 295<br>918 |
| 1 | 07/06/94<br>10/19/94 | 920<br>825 | 948<br>880 | 840<br>800    | 780<br>800      | 880<br>850 | 770<br>788 | 856<br>824 |
|   | 05/11/95             | 739        | 810        | 700           | 780             | 700        | 790        | 753        |











## CROW BUTTE RESOURCES, INC.



# Appendix 5

Conductivity Indicator Data

| date of sampt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | date of sample (end of initial restoration | pration)   |          | 21-Mar-96    | 11-Apr-96    | 2-May-96    | 7-Feb-96     | 19.50-95     | 1-Dec-96     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------|----------|--------------|--------------|-------------|--------------|--------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | 1          | OEGN     |              |              |             |              |              |              |
| Cicium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ca                                         | 4          | 12       | 23.7         | 14.2         | 16          | £81          | 19.1         | 2            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>š</b> 1                                 |            | <b>#</b> | 6.7          | 3.7          | <br>        | ٠.           | 5.7          | 16           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŗ,                                         |            | - E      | <b>1</b> 3   | 281          | ğ           | 32           | 35           | ¥            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                          |            | ¥ 6      | i .          | <b>9</b>     |             | 12.7         | 7.4          | 15           |
| Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Separate Sep | 3 7                                        | _          | > į      | <b>-</b>     | <b>-</b>     | •           | •            | •            | •            |
| 246000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38                                         |            | <u> </u> | <b>5</b>     | ğ            | <b>1</b>    | 310          | *            | ä            |
| DICETEOGRACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 2                                        |            |          | 3 8          | 3 6          | 247         | 242          | 25           | 774          |
| Selizate .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | į                                          |            |          |              | 101          | 3           | <u> </u>     | 25           | 55           |
| chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ω                                          |            | 250      | 2            | Ē            | 2           | 2 6          | » 600        | 3 6          |
| smmonium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ZZ                                         |            | 5<br>    | <u>A</u>     | A).03        | 9.03        | . S          | . E          | £67          |
| simite .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                          |            | _        | <u>A</u>     | <u>4</u> .10 | <u>a</u>    | <u>A</u>     | <u>A</u>     | <u>\$.10</u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 3                                        |            | <b>5</b> | <b>A</b> .76 | 93           | 9           | 2.           | 0.46         | <b>≙.10</b>  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٤                                          | -          | - ;      | 3 3          | 2 27         | 203         | 0.71         | 253          | 29           |
| THOTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                          |            | 4        | <u>.</u>     | IJ. <b>8</b> | 17.4        | 13.6         | 15.7         | 17.5         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |            |          | •            |              |             |              |              |              |
| Non-Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |            | <u> </u> | •            | •            | Ŗ           | 1            | 25           |              |
| total dissolved solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |            | 1170     | 112/         | 3            | ě           | 1000         |              | 3            |
| conductivity (umho/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cond                                       |            | 1912     | 7013         | 3            | 1 2         | 7 700        | 3 3          | 1 2          |
| altalinity as CaCO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            | 7 mg/      |          | ¥            | 244          | 771         | Ç            | 9            |              |
| pH (std saits)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            | sed, units | 28.23    | 7.87         | 7.97         | 7.84        | \$.18        | 7.77         | 7.96         |
| Trace Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b></b>                                    |            |          |              |              |             |              | •            |              |
| niveries est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≥                                          | - Záta     | _        | <u>A</u>     | <u>A</u>     | <u>a.10</u> | <u>\$.10</u> | Ą            | 40.10        |
| Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>}</b>                                   | <u>.</u>   | 93       | 2.034        | 0.029        | 0.046       | 0.039        | 2.083        | 0.066        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |            | _        | Ą            | <u>A</u>     | <u>4</u>    | 40           | <u>a</u>     | <u>a</u>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * }                                        |            | •        | 3            | 0.67         | 2.68        | 2.24         | 265          | 0.67         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 ,                                        |            | 2        | 3 :          | 3            | <u>a</u>    | <u>A</u>     | A<br>O       | <u>a</u>     |
| CHURCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ? ?                                        |            |          | 3 :          | 2            | 3           | <u>A</u>     | <u>a</u>     | A            |
| CHICARIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ָר בְ                                      | Tagy!      | •        | )<br>2<br>5  | 2 5          | 201         | A :          | <u>4</u>     | <u> </u>     |
| copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , 5                                        | T Comp     | 3 -      | 2 5          | 3 5          | A :         | 8            | <u>a</u>     | <u> </u>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>;</b> a                                 | 199        | 2 6      | 3 8          | 3 3          | 8           | 8            | A<br>St      | <u>A</u>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>F</b> 3                                 | 1 2        | 2 8      |              | 2            | 20          | 00           | 2            | 2            |
| Banganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            | Trans.     | 3 8      | 9 9          | 3 5          | 3 5         | 3 :          | 3            | 3            |
| mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ₹                                          | New Year   | 0.002    | 49,001       | 9.00         | 6.00        | 6.001        | 2 5 5        | 217          |
| melybdessum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                          | 7          | _        | 9.16         | 0.12         | 9.1         | . 5          | , e          | 3 5          |
| eichei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                          | 4          | 25       | <u>A</u> .05 | A.03         | a<br>S      | 8            | <b>40,03</b> | 20.05        |
| xterior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                          | 2          | <u> </u> | 2061         | 0.014        | 2018        | 0.021        | 0.022        | 0.009        |
| va sactiviti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < ;                                        | <b>3</b>   | 2        | 9.93         | 0.78         | 2.65        | 23           | 25           | 954          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                          |            | <b>A</b> | =            | 3            | 2           | 9            | 900          | 80           |
| 296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                          | T TOTAL    | _        | 11.3         |              |             | 4.40         |              |              |
| Radiometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |            |          |              |              |             | ì            | •            | •            |
| uranium natural (mg/l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | <u> </u>   | ٠,       | LA33         | 2361         | 1.509       | 0.923        | 1.981        |              |
| radium 226 (pCM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 22 X                                     | 2          | ¥        | 399          | 8.           | 20.8        | 36.          | 127          | 3            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |            | 1        | n            | 3            | 33          | 23           | 31           | <u></u>      |

## CROW BUTTE RESOURCES, INC.



## Appendix 6

Stabilization Water Quality Sampling Results



ENERGY LABORATORIES, INC.
SHIPPING: 2393 SALT CREEK HIGHWAY • CASPER, WY 82601
MAILING: P.O. BOX 3258 • CASPER, WY 82602
E-mail: energy@trib.com • FAX: (307) 234-1639 • PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

| 1367<br>Rossid 1<br>99-16097<br>Water<br>01-19-99 | Nound 2<br>99-20130<br>Water<br>03-18-99 | 136<br>Royal 3<br>97-2439<br>Water<br>41-15-99 | Rand 4<br>99-2017<br>Water<br>05-10-99 | U6<br>Round 8<br>99-30542<br>Water<br>86-17-99 |
|---------------------------------------------------|------------------------------------------|------------------------------------------------|----------------------------------------|------------------------------------------------|
| 267                                               | ž                                        | 9.0                                            | 341                                    |                                                |
| Round 1                                           | Round 2                                  | Royad 3                                        | Round 4                                |                                                |
| 99-16097                                          | 99-20150                                 | 651317-64                                      | \$9-28317                              |                                                |
| Water                                             | Water                                    | Water                                          | Water                                  |                                                |
| 02-19-95                                          | 03-18-99                                 | 66-51-118                                      | 85-20-99                               |                                                |
| March 12, 1999                                    | April 12, 1999                           | May 6, 1999                                    | June E, 1999                           |                                                |
| •                                                 |                                          |                                                |                                        | L                                              |

| Major Jons             |           | Cartes  | Reporting Limit | Results | Results | Results    | Retults | Results | Results |
|------------------------|-----------|---------|-----------------|---------|---------|------------|---------|---------|---------|
| Calcium                | C         | 7J. 2ue | 0.0             | 16.7    | 6.31    | 6.31       | 0.01    | 1.31    | 0.31    |
| Magnesium              | Mg        | T/Sus   | 1.0             | 4.4     | 4.9     | 3.0        | 5.0     | 1.6     | 5.4     |
| Sudham                 | N4        | 7/24    | 1.0             | 347     | 354     | 353        | 345     | 352     | 353     |
| Potassium              | <b>7</b>  | T/Zee   | 0.0             | 11.9    | 12.5    | 12.7       | 82.2    | 13,6    | N.0     |
| Carthynate             | 8         | T/Jus   | 0.1             | < 1.0   | 0.1 >   | < 1.0      | 5.7     | 5.2     | 1.3     |
| Bicarbunate            | IICO,     | 7/3ml   | 9.6             | 409     | 423     | 427        | 428     | 432     | 438     |
| Sulfate                | so.       | J/Jan   | 0.0             | 325     | 225     | 342        | 31.0    | 332     | 323     |
| Chloride               | Ω         | 7/2m    | 0.1             | 101     | 126     | <b>3CI</b> | 129     | KI      | 126     |
| Ananonium as N         | NI.       | 7/200   | 0.03            | 0.05    | 80.0    | 0.14       | < 0.03  | 0.13    | 0.15    |
| Nutric as N            | NO.       | 7/34    | 0.10            | < 0.10  | < 0.10  | < 0.10     | < 0.10  | < 0.10  | < 9.10  |
| Nitrate + Nitrite as N | NO, + NO, | mg/L    | 0.10            | < 0.10  | < 0.10  | < 0.10     | < 0.10  | < 0.10  | < 0.10  |
| horlde                 | F         | mg/L    | 0.10            | 0.61    | 19.0    | 0.69       | 0.70    | 0.71    | 9.80    |
| STIRCE                 | sio,      | 7/548   | 0.1             | 15.3    | 1.11    | 16.4       | 17.0    | 15.6    | 14.4    |

| Non-Aletals                    |       |              |      |      |      |      |      |      |      |
|--------------------------------|-------|--------------|------|------|------|------|------|------|------|
| Total Disselved Solids @ 180°C | 1D\$  | mg/L         | 2.0  | 1040 | 0501 | 1080 | 080  | 1120 | 1060 |
|                                |       | personal con | 1.0  | 1720 | 1740 | 1730 | 1780 | 1730 | 1800 |
| Altalinity                     | CaCO, | T/Sut        | 1.0  | 336  | 347  | 330  | 339  | 362  | 368  |
| PH                             |       | std. units   | 0.10 | 8.08 | 8.25 | 1.18 | 8.37 | 8.33 | 8.41 |
|                                |       |              |      |      |      |      |      |      |      |
|                                |       |              |      |      |      |      |      |      |      |

| CHESSE STRAE |                  |              |       |         | •              |             |         |                |         |
|--------------|------------------|--------------|-------|---------|----------------|-------------|---------|----------------|---------|
| Alumham      | ≥                | T) Slue      | 01.0  | < 0 10  | < 0.10         | < 0.10      | < 0.10  | < 0.10         | < 0.10  |
| Arsenic      | 1A               | mg/l.        | B.001 | 0.003   | 6,003          | 0.003       | 0.002   | 0,002          | 100.9   |
| Berlum       | 8.0              | 7/3m         | 9.10  | < 0.10  | <b>₹ 6</b> .j0 | < 0.10      | < 0.10  | < 0.10         | < 0.10  |
| Durum        |                  | <b>™</b> 6/L | 0.10  | 0.44    | 6.43           | 0.30        | 0.45    | 0.44           | 6.54    |
| Cadmium      | ro<br>L          | 1,8us        | 0.005 | < 0 003 | \$00.0         | < 0.003     | < 0.005 | < 0.003        | < 0.003 |
| Chromium     | Ω                | 1/3m         | 6.03  | < 0.03  | < 0.03         | < 0.05      | < 0.05  | < 0.03         | < 0.03  |
| Capper       | C                | 1/300        | 10.0  | < 001   | 100>           | < 0.01      | < 0.01  | < 0.01         | 10.0 >  |
| ron non      | Fe               | T/Sun        | 10.0  | 0.01    | < 0.01         | 0.01        | < 0.01  | 9.01           | 10.0    |
| Lead         | 7                | Trans.       | 10.0  | < 0.01  | < 0.01         | < 0.01      | < 0.01  | < 0.01         | < 0.01  |
| Mangazese    | Mn               | 77.m         | 10.0  | 0.01    | 10.0           | 0.01        | 0.01    | 0.01           | 10.0    |
| Mercury      | 1 <sup>1</sup> 1 | T/Zee        | 0.001 | < 0 001 | < 9.001        | < 0.001     | < 0.001 | < 0.001        | < 0.001 |
| Molyhdenum   | Mo               | TV Bas       | 10.0  | < 0.03* | < 0.01         | 0.02        | 0.03    | 0.03           | 0.03    |
| Nichel       | K                | ang/L        | 0.01  | < 0.01  | < 0.01         | < 0.01      | < 0.01  | < 0.01         | < 0.01  |
| Selenium     | ×                | J/Jes        | 0.001 | 0 001   | 0.001          | 0.002       | 9.001   | 0.002          | 9,003   |
| Vanadlum     | ٧                | 7,244        | 10 0  | 9.04    | 0 02           | 0.02        | 9.01    | 0.01           | 10.0    |
| Zhoc         | Z,               |              | 10.0  | < 0.01  | A 001          | ^<br>0<br>2 | 82      | A <b>0</b> .01 | A 0.01  |

| Radiometrics            |      |               |        |       |       |       |       |       |       |
|-------------------------|------|---------------|--------|-------|-------|-------|-------|-------|-------|
| Uranium                 | ilm  | Jy Bus        | 0 0003 | 0.204 | 0 291 | 0.345 | 0.269 | 0.347 | 0.314 |
| Radiom 226              | JPR4 | <b>1</b> 2.24 | 0.2    | 127   | 113   | 124   | 133   | 130   | 163   |
| Radium Error Estimate 4 |      |               |        | 5.1   | 2.0   | 3.4   | 3.6   | 3.3   | 2.7   |
|                         |      |               |        |       |       |       |       |       |       |

| Quality Assurance Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | Target Range         |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |       |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|
| Anlim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | port   |                      | 17.22 | 17.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 06 | 17.73 | 18.09 | 17.69 |
| Carlon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | had    |                      | 16.61 | 17.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.06 | 16.70 | 16.98 | 17.03 |
| WYDEQ A/C Balance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×      | .5 . +3              | -1.Bo | -0,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2.84 | -3.07 | -3.15 | -1.75 |
| Calc TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17.8m  |                      | 1031  | 1071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1101  | 1078  | 1096  | 1080  |
| TDS A/C Balance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dec. S | drc. \$ 0 \$0 - 1.20 | 0.96  | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.98  | 1.00  | 1.02  | 0.98  |
| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |        |                      |       | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |       |       |       |       |



ENERGY LABORATORIES, INC.
SHIPPING: 2393 SALT CREEK HIGHWAY • CASPER, WY 82601
MAILING: P.O. BOX 3258 • CASPER, WY 82602
E-mail: energy@irib.com • FAX: (307) 234-1639 • PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

LABORATORY ANALYSIS REPORT - CROW BUTTE RESOURCES

biatory ID: ple Matrixi emple ID:

|                  | •                 | •            | •                                              | April 15, 1999  |                 |
|------------------|-------------------|--------------|------------------------------------------------|-----------------|-----------------|
| . August 13, 199 | July 8, 1999      | June 6, 1999 | May 6, 1999                                    | April 12, 1999  | March 12, 1999  |
| 07-13-99         | 66-17-99          | 85-20-99     | 64-15-99                                       | 63-18-99        | 92-19-99        |
| Water            | Water             | Water        | Water                                          | Water           | Water           |
| 99.3333          | <b>99-30543</b> . | 99-28321     | 99-24861                                       | 99-20859        | 99-16100        |
| Rotind &         | Round 8           | Round 4      | . Round 3                                      | Reund 3         | Round (         |
|                  | PR-IS             | P78-15       | 72-15                                          | PR-15           | PR-15           |
|                  |                   |              | oratory analysis report - crow butte resources | REPORT - CROW I | RATORY ANALYSIS |

| Conditional Conditions |                                   | CMAI  | Harry Juniteday | KOOKS  | Resuns | F2136  | Results  | Results | : RESERS : |
|------------------------|-----------------------------------|-------|-----------------|--------|--------|--------|----------|---------|------------|
| Calelum                | c                                 | mg/L  | 1.0             | 11.4   | 13.6   | 13.6   | 11.2     | 3.01    | 11.2       |
| Magnesium              | Mg                                | mg/L  | 1.0             | 2.7    | 8.6    | 3.2    | 2.6      | 2.6     | 2          |
| Sodium                 | ž                                 | 1/100 | 1.0             | 210    | 214    | 214    | 217      | 25      | 22         |
| Potassium              | 7                                 | 7/844 | 1.0             | 10.9   | 11.5   | 12.0   | £11      | 12.9    | 0.0        |
| Carbonate              | Ş                                 | mg/L  | 0.0             | 3.7    | C.C    | 3.4    | <u>.</u> | 5.3     | 7.5        |
| Bicarbonate            | IICO,                             | mg/L  | 1.0             | 289    | 687    | 191    | 356      | ž       | 225        |
| Sulfate                | so.                               | mg/L  | 1.0             | 160    | 951    | 163    | 152      | 155     | 139        |
| Chloride               | Ω                                 | mg/L  | 5               | 07.7   | 16.2   | 92.5   | 0.18     | 8.28    | 71.0       |
| Assmonium as N         | NI.                               | mg/L  | 0.03            | < 0.03 | 9.06   | 0.06   | < 0.03   | 0.07    | 0.13       |
| Niche as N             | Š                                 | 1/200 | 0.10            | < 0.10 | < 0.10 | < 0.10 | < 0.10   | < 0.10  | < 0.10     |
| Nicrate + Nicrite as N | NO <sub>3</sub> + NO <sub>3</sub> | 1/3m  | 0.10            | < 0.10 | < 0 10 | < 0.10 | < 0.10   | < 0.10  | < 0.10     |
| Fluoride               | 7                                 | me/L  | 0.10            | 0.51   | 0.47   | 0.49   | 85.0     | 0.59    | 0.68       |
| Stica                  | SIO,                              | 1/3kt | 1.0             | 13.6   | E      | 13.5   | 13.0     | 13.0    | 12.0       |
| N. do. c               |                                   |       |                 |        |        |        |          |         |            |
| Non-Men Man            | ,                                 |       |                 |        |        |        |          |         | •          |

| Non-Aletais                    |       |           |      |      |      |      |      |      | -    |
|--------------------------------|-------|-----------|------|------|------|------|------|------|------|
| Total Dissolved Solids @ 180°C | SQL   | J/Jun     | 2.0  | 909  | 631  | 670  | 873  | 83   | 669  |
| Conductivity                   |       | presho/q  | 1.0  | 0%01 | 0111 | 1090 | 118  | 8    | 56   |
|                                | Caco, | mg/L      | 1.0  | 243  | 342  | 244  | 28.  | 292  | 316  |
| Pi                             |       | ard. unit | 0.10 | 8.35 | 16.8 | 8.31 | 1.34 | 6.42 | 82.3 |
| Trace fietals                  |       |           |      |      |      |      |      |      |      |
|                                |       |           |      |      |      |      |      |      |      |

| BOOK BUSINESS |     |        |        |         |         |         |               |                   |                |
|---------------|-----|--------|--------|---------|---------|---------|---------------|-------------------|----------------|
| Alembrom      | Λ   | L'Bu   | 0.10   | < 0.10  | < 0.10  | < 0.10  | < 0.70        | < 0.10            | < <b>9</b> .10 |
| Arsentc       | ۸.  | 1,0    | 0.001  | 0.033   | 0,030   | 0.034   | 0.041         | 9.043             | 0.043          |
| Barium        | 6.  | 7,5    | 0.10   | < 0.10  | < p. 10 | × 0.10  | <b>~ 0.10</b> | <b>^</b> 0.70     | A 0.10         |
| Boroa         | *   | Ą      | e<br>5 | 0.41    | e.43    | 0.25    | o. 8          | e. 8              | 0.49           |
| Cadmitum      | C   | 1/3m   | 0.003  | < 0.003 | < 0.003 | < 0.003 | < 0.003       | <b>&lt;</b> 0.003 | < 0.003        |
| Chromium      | Cr. | 7, Jan | 0.05   | × 0.5   | A 0.03  | ^ e.3   | A 0.03        | ^ o.R             | × 0.83         |
| Copper        | Ç,  | Ty Bus | 0.01   | 10.0 >  | < 0.02  | < 0.01  | 10.01         | < 0.01            | < 0.01         |
| fron          | 7   | T/But  | 0.01   | 0.02    | 0.02    | 0.02    | < 0.01        | 0.02              | 9.03           |
|               | 78  | T) But | 0.01   | 10.0 >  | < 0.01  | < 0.01  | < 0.01        | < 0.01            | < 0.01         |
| Manganese     | Ma  | J/Bus  | 0.01   | 10.0 >  | < 0.01  | 10.0 >  | < 0.01        | < 0.01            | < 0.01         |
| Mercury       | =   | 1/348  |        | 100.0 > | < 0.001 | 100.0 > | < 0.001       | < 0.001           | < 0.001        |
| Molybdenum    | Mo  | J. Bus |        | 0.13    | 0.14    | 0.12    | 0.16          | 0.15              | 0.14           |
| Nickel        | M   | Trans. | 9.01   | 10.0 >  | < 0.01  | 10.0 >  | 10.0 >        | 10.01<br>*        | 10.0 V         |
| Selenbern     | Se. | mg/L   | 0.001  | 0.002   | 0.002   | 0.002   | 0.003         | 0.003             | 0.003          |
| Venadlum      | ٧   | ang/L  |        | 0.32    | 0.39    | 0.33    | 0.42          | 0,38              | 0,31           |
| Zhe           | 2   | 2      | 2      | 2       |         |         | 0.00          | 0.01              |                |

|       |       |       |       |       |       | Target Runge |       | 1     | Quality Assurance Data  |
|-------|-------|-------|-------|-------|-------|--------------|-------|-------|-------------------------|
| rı    | 1.5   | 1.7   | 1.7   | 13    | 0.7   |              |       |       | Radium Error Estimate ± |
| 31.7  | 25.5  | 30.4  | 29.5  | 25.0  | 12.8  | 0.2          | PCVI. | 77 R. | Radium 226              |
| 0.862 | 0.808 | 0.468 | 0.403 | 0.420 | 0.307 | C(XXI)       | ₽g/î. | 2     | Uranium                 |
|       |       |       |       |       |       |              |       |       | Radiometrics            |

| Quality Assurance Data |         | Target Range |       |       |       |       |       |       |
|------------------------|---------|--------------|-------|-------|-------|-------|-------|-------|
| Anion                  | meq     |              | 10.70 | 10.55 | 16.01 | 11.11 | 13.51 | 11.33 |
| Cation                 | gree q  |              | 10.23 | 10.57 | 85.01 | 10.52 | 11.11 | 11.11 |
| WYDEQ A/C Balance      | 2       | 3 - +3       | .2.23 | 0.11  | -1.57 | -2.70 | -2.37 | -0.99 |
| Cale TDS               | 2, Mars | 1            | 646   | 647   | 662   | 199   | 693   | 674   |
| TDS A/C Balance        | dec. %  | 0.80 - 1.20  | 0.94  | 1.01  | 1.01  | 1.02  | 0.99  | 0.99  |
|                        |         |              |       |       |       |       |       |       |

ation/pr15115538 st



SHIPPING: 2393 SALT CREEK HIGHWAY . CASPER, WY 82601

MAILING: P.O. BOX 3258 • CASPER, WY 82602

E-mail: energy@trib.com • FAX: (307) 234-1639 • PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

#### LABORATORY ANALYSIS REPORT - CROW BUTTE RESOURCES

Sample ID:
Round:
Laboratory ID:
Sample Matriz:
Sample Date:
Report Date:
Report Date:

| PR-19          | PR-19          | PR-19       | PR-17        | FR-19        | FR-19           |
|----------------|----------------|-------------|--------------|--------------|-----------------|
| Royal I        | Raund 3        | Round 3     | Round 4      | Round &      | Round &         |
| 99-16101       | 99-20858       | 99-24862    | 99-28328     | 99-30542     | 99-35539        |
| Water          | Water          | Water       | Water        | Water .      | Water :         |
| 02-19-99       | 63-1E-99       | 64-15-99    | 63-28-99     | 66-17-99     | 07-15-95        |
| March 12, 1999 | April 12, 1999 | May 6, 1999 | June 8, 1999 | July 8, 1999 | August 13, 1999 |
|                | April 15, 1999 | •           | •            | •            | 11.00           |

| Major le             | 47                                | Units | Reporting Limit | Results | Resulta | Results | Results | Results | Recults |
|----------------------|-----------------------------------|-------|-----------------|---------|---------|---------|---------|---------|---------|
| Calcium              | Cı                                | mg/L  | 1.0             | 26.4    | 27.8    | 30.7    | 35,0    | 51.2    | 67,0    |
| Magnesium            | Mg                                | mg/L  | 1.0             | 6.3     | 6.9     | 7.7     | 0.5     | 13.2    | 18,0    |
| Sodium               | Na                                | mg/L  | 1.0             | 346     | 359     | 381     | 383     | 513     | 616     |
| Potassium            | K                                 | mg/L  | 1.0             | 11.3    | 12.0    | 13.6    | 14.0    | 19.5    | 24.0    |
| Carbonate            | co,                               | mg/L  | 1.0             | < 10    | < 1.0   | < 1.0   | < 1.0   | < 1.0   | < 1.0   |
| Blearhonate          | IICO,                             | mg/L  | 1.0             | 406     | 412     | 429     | 414     | 534     | 607     |
| Sulfate              | \$0,                              | ang/L | 1.0             | 320     | 341     | 391     | 402     | 587     | 696     |
| Chloride             | п                                 | mg/L. | 1.0             | 145     | 141     | 172     | 170     | 263     | 313     |
| Ammonium as N        | MII,                              | mg/L  | 0.05            | 0.06    | 0.15    | 0.17    | 0,14    | 0.23    | 0.36    |
| Nivite as N          | NO <sub>2</sub>                   | mg/L  | 0.10            | < 0.10  | < 0.10  | < 0.10  | < 0.10  | < 0.10  | < 0.10  |
| Nivate + Nivite as N | NO <sub>1</sub> + NO <sub>2</sub> | mg/L  | 0.10            | < 0.10  | < 0.10  | < 0.10  | < 0,10  | < 0.10  | < 9.10  |
| Fleuride             | F                                 | mg/L  | 0.10            | 0.44    | 0.42    | 0,40    | 0.41    | 0.37    | 0.36    |
| SRIca                | SIO,                              | mg/L  | 1.0             | 9.8     | 10.9    | 10.6    | 11.0    | 10.8    | 10.5    |

| TDS   | mg/L       | 2.0       | 1060                                       | 1130                 | 1200                                                       | 1280 | 1740                                                                                 | 2120                                                                                                |
|-------|------------|-----------|--------------------------------------------|----------------------|------------------------------------------------------------|------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|       | penshes/cm | 1.0       | 1770 ,                                     | 1820                 | 1930                                                       | 2090 | 2650                                                                                 | 3300                                                                                                |
| CrCO, | mg/L       | 1.0       | 333                                        | 3.38                 | 352                                                        | 365  | 438                                                                                  | 498                                                                                                 |
|       | std. wnits | 0.10      | 8.07                                       | 7.93                 | 7.90                                                       | 7.98 | 7.90                                                                                 | 8,30                                                                                                |
|       | CsCO,      | husper/cm | μπ/κι/cm 1.0<br>CsCO <sub>2</sub> mg/L 1.0 | pmhs/cm   1.0   1770 | pmhs/cm   1.0   1770 , 1820   CeCO, mg/L   1.0   333   338 |      | pmbs/cm   1.0   1770   1820   1930   2090   CsCO, mg/L   1.0   333   334   352   365 | mnhu/cm   1.0   1770   1820   1930   2090   2630   CsCO,   mg/L   1.0   333   338   332   365   438 |

| Trace M    | etals | ]     |       |         |         |         |         |         |         |
|------------|-------|-------|-------|---------|---------|---------|---------|---------|---------|
| Aluminum   | AI    | mg/L  | 0.10  | < 0.10  | < 0.10  | < 0.10  | < 0.10  | < 0.10  | < 0.10  |
| Arsenic    | As    | mg/l. | 0,001 | 0.016   | 0.016   | 0,020   | 0.018   | 810.0   | 8.018   |
| Batium     | Ba    | mg/L  | 0.10  | < 0.10  | < 6.10  | < 0.10  | < 0.10  | < 0.10  | < 0.10  |
| Borne      |       | mg/L  | 0,10  | 0.50    | 0.52    | 0.39    | 0.55    | 0.63    | 0.85    |
| Cadmium    | CA    | mg/L  | 0.003 | < 0 005 | < 0.005 | < 0.003 | < 0.003 | < 0.005 | < 0.005 |
| Clumhum    | Ct    | mg/L  | 0.05  | < 0.05  | < 0.05  | < 0.05  | < 0.03  | < 0.05  | < 0.05  |
| Cupper     | C     | mg/L  | 10.0  | < 0.0)  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 6.01  |
| Iron       | Fe    | mg/L  | 0.01  | 0.09    | 0.19    | 0.28    | 0.40    | 0.46    | 6.70    |
| Lead       | Ph    | mg/L  | 0.01  | < 0.01  | < 8.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Manganese  | Mn    | mg/L  | 0.01  | 0.03    | 6.03    | 0.04    | 0.04    | 6.06    | 6.09    |
| Mercury    | lig   | mg/L  | 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
| Molyhdenum | Ma    | mg/L  | 0.01  | < 0.05° | 80.0    | 6.08    | 0.11    | 0.14    | 0.13    |
| Nickel     | Ni    | mg/L  | 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | 0.01    |
| Selenium   | Se    | mg/L  | 0.001 | 0.001   | 0.002   | 6,002   | 9.002   | 0.003   | 9.004   |
| Vanadium   | v     | mg/L  | 0.01  | 0.09    | 0.07    | 0.06    | 6.06    | 0 07    | 0.08    |
| Zinc       | Za    | mg/L  | 0.01  | 0.01    | 004     | 0.03    | 8,07    | 0.04    | 0.64    |

| Radiometrics            |        | 1    |         |      |      |      |      |      |      |
|-------------------------|--------|------|---------|------|------|------|------|------|------|
| Uranium                 | H-(1   | mg/L | 6,000,1 | 1,05 | 1.54 | 1.66 | 1.19 | 2.70 | 4,17 |
| Radium 226              | III Ra | PCVL | 0.2     | 439  | 623  | 730  | 711  | 1600 | 1910 |
| Radium Error Estimate ± |        |      |         | 7.5  | 7.2  | 8.3  | 8.5  | 11.6 | 13.3 |

| Quality Assurance Data |        | Target Range |       |       |       |       |       |       |
|------------------------|--------|--------------|-------|-------|-------|-------|-------|-------|
| Anion                  | Meq    |              | 17.44 | 17 87 | 20.06 | 20.49 | 28.47 | 33.30 |
| Cation                 | #Icq   |              | 17.20 | 17 92 | 19.13 | 19.60 | 26.52 | 32.33 |
| WYDEQ A/C Balance      | ×      | .5 . +5      | -0.70 | 0 14  | -2.37 | -2.22 | -3.53 | -1.48 |
| Calc TDS               | mg/L   |              | 1009  | 1106  | 1223  | 1250  | 1728  | 2050  |
| TDS A/C Balance        | dec. % | 0.80 - 1.20  | 0.99  | 1.02  | 0.98  | 1.02  | 1.01  | 1.03  |

<sup>\*</sup>Molyhdenum was analyzed at a detection limit of 0 05 for this Round.

msj r:heports\ellents99\erow\_butte\haveline\_restoration\pr19\35539.xfs

ing In No. 34403



SHIPPING: 2393 SALT CREEK HIGHWAY . CASPER, WY 82601

MAILING: P.O. BOX 3258 . CASPER, WY 82602

E-mail: energy € trib.com • FAX: (307) 234-1639 • PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

| Laboratory analysis report - Crow Butte resources |
|---------------------------------------------------|
|---------------------------------------------------|

Sämple ID:
Reundi
Läbörstory ID:
Sample Matris:
Rämple Date:
Report Date:
Report Date:

| 13-38 L        | 13-31-1        | U-11-P      | 13-16-5      | 13-21-7      | 13.32.0        |
|----------------|----------------|-------------|--------------|--------------|----------------|
| Rosad I        | Round 8        | Round 3     | Round 4      | Round &      | Resed          |
| 99-16099       | 99-20856       | 97-1464     | 97-28319     | 99-30545     | \$9-19346      |
| Water          | Water          | Water       | Water        | Water        | Water          |
| 81-19-99       | 03-18-97       | 64-13-99    | 85-20-99     | 94-17-99     | 67-48-51       |
| March 12, 1999 | April 12, 1929 | May 6, 1999 | June 8, 1999 | July 8, 1999 | August (3; 199 |
|                | April 15, 1979 | •           | •            | •            |                |

| Major lo               | 18                                | Units | Reporting Limit | Results | Results | Results | Results | Results  | Reiture      |
|------------------------|-----------------------------------|-------|-----------------|---------|---------|---------|---------|----------|--------------|
| Calchem                | C.                                | me/L  | 1.0             | 18.5    | 20,3    | 19.4    | 20,0    | 19.2     | 12.0         |
| Magnestum              | Mg                                | mg/l. | 1.0             | 4.5     | 5.1     | 3.6     | 1.5     | 4.8      | 5,3          |
| Sodium                 | No.                               | mg/L, | 10              | 335     | 342     | 357     | 3,16    | 357      | 340          |
| otassium               | K                                 | mg/L  | 1.0             | 9.7     | 10.2    | 11.3    | 11.6    | 12.0     |              |
| Carbonate              | CO,                               | mg/L  | 1.0             | < 1.0   | < 1.0   | < 1.6   | < 1.0   | < 1.0    | 12.0         |
| Bicarbonate            | HCO,                              | mg/L  | 1.0             | 405     | 418     | 428     | 424     | 429      | 4.8          |
| Collete                | \$0.                              | mg/L  | 1.0             | 291     | 307     | 310     |         |          | 416          |
| Chlerkie               | CI                                | mg/L  | 1.0             | 130     | 131     | 133     | 312     | 332      | 299          |
| Ammonium as N          | NII.                              | mg/L  | 0.05            |         |         |         | 131     | 140      | 122          |
| Utrite as N            |                                   |       | <del> </del> }  | 0.03    | 6.11    | 8.11    | 6.06    | <u> </u> | 0.14         |
|                        | NO,                               | mg/L  | 0.10            | < 0.10  | < 9.10  | < 8.10  | < 0.10  | < 6.10   | · < 0.10     |
| ilirate + Nitrite as N | NO <sub>1</sub> + NO <sub>2</sub> | mg/l. | 0.10            | 0 27    | < 0.10  | < 0.10  | < 0.10  | < 0.10   | < 0.10       |
| luoride                | F                                 | mg/L  | 0.10            | 0 38    | 0.54    | 0.33    | 0.56    |          |              |
| like                   | SIO,                              | mg/L  | 1.0             | 14.0    | 14.8    | 15,7    | 14.0    | 0.59     | 0.68<br>14.2 |

| Non Metals                     |      | 1          |      |      |      |      |      |      |      |       |
|--------------------------------|------|------------|------|------|------|------|------|------|------|-------|
| Lutal Dissulved Solids @ 180°C | 1D\$ | mg/L       | 2.0  | Into | 1050 | 1010 | 1050 | 1060 | 1020 | 1     |
| Canductivity                   |      | pmholem    | 1.0  | 1630 | 1740 | 1740 | £150 | 1700 | 1700 | ł     |
| Alkelinity                     | CaCO | my/L.      | 1.0  | 333  | 343  | 351  | 348  | 352  | 348  | 1354. |
| el .                           | ···· | and, works | 0,10 | 8.17 | 7,99 | 8.23 | 8.12 | 8.13 | 8,31 | í     |

| Trace Ale  | tals    | 1     |       |               |         |         |         |         |                 |
|------------|---------|-------|-------|---------------|---------|---------|---------|---------|-----------------|
| Aluminum   | Al      | mg/l. | 8.10  | < 8 10        | < 0.10  | < 0.10  | < 0.10  | < 9.10  | < 0.10          |
| Atsenic    | As      | me/L  | 0.001 | 0 022         | 6.023   | 0.026   | 0.025   | 0.027   |                 |
| Barlum     | 84      | mg/L  | 6.10  | < 0.10        | < 8.10  | < 0.10  | < 0.10  | < 0.10  | 0,029<br>< 0.10 |
| Buren      | В       | mg/L  | 6.10  | 9.44          | 0.46    | 0.31    | 0.44    | 0.44    |                 |
| Cadmium    | CI      | mg/L  | 6,005 | < 0.005       | < 0.005 | < 8.005 | < 6.003 |         | 0.53            |
| Chromium   | Cr      | mg/L  | 0.05  | < 0.03        | < 0.03  | < 0.03  | < 0.03  | < 8.003 | < 0.003         |
| Copper     | Cv      | mg/L  | 8.01  | < 0.01        | < 601   | < 0.01  |         | < 0.03  | < 0.03          |
| from       | Fe      | mg/L  | 10.0  | 0.64          | 0.01    | 0.05    | < 0.01  | < 0.01  | < 0.01          |
| Lesi       | Ph      | mg/L  | 0.01  | < 0.01        | < 0.01  |         | 0.06    | 8.06    | 0.06            |
| Manganese  | Ma      | mg/L  | 0.01  | 0.01          |         | < 0.01  | < 0.01  | < 9.01  | < 0.01          |
| Mercury    | Itg     | mg/L  | 100.0 | [ <del></del> | 0.01    | 8 83    | 0.64    | 0.01    | 6.03            |
| Midyhdenum | Mo      | mg/L  | 0.01  | < 0 001       | < 9 001 | < 6,001 | < 0 001 | < 0.001 | < 0.001         |
| Mickel     | NI NI   |       |       | 0.08          | 0.11    | 0.12    | 6,10    | 0,11    | 9.10            |
| Selenium   |         | mg/L  | 10.0  | < 0.01        | < 8.81  | < 0.01  | < 0.01  | < 0.01  | < 0.01          |
|            | Se Se   | mg/L  | 0.001 | 0.002         | 0.003   | 6.003   | 0.003   | 8.033   | 0.003           |
| Venedium   | <u></u> | mg/L  | 0.01  | 0.16          | 0.16    | 0.13    | 0.14    | 0.14    | 0.13            |
| Zinc       | Zn      | my/L  | 0.01  | < 0.01        | 0.02    | 6 0,1   | 0.63    | 0.02    | 0.01            |

| Radiometrics            |       |              |          |       |       |       |       |       | 3.7<br>3.1 |          |
|-------------------------|-------|--------------|----------|-------|-------|-------|-------|-------|------------|----------|
| Urankum                 | =     | mg/L         | 0.000,1  | 0 463 | 0.739 | 0.734 | 0.456 | 0.756 | 6,710      | 7        |
| Radium 226              | 25-Ra | <b>PCIAL</b> | 0.2      | 160   | 192   | 212   | 203   | 206   | 183        | $\dashv$ |
| Radium Errer Estimate ± |       |              | <u> </u> | 4.5   | 4.1   | 4.4   | 4.4   | 4.1   | 4.1        | $\neg$   |

| Quality Assurance Data | <del> </del> | Targel Range |         |        |       |       |       | ***   |
|------------------------|--------------|--------------|---------|--------|-------|-------|-------|-------|
| Anion                  | meq          |              | 16.43   | 16.98  | 17.26 | 17.19 | 17,94 | 16.67 |
| Cation                 | med          |              | 16 13   | 16 87  | 17.23 | 16.32 | 17,22 | 16.43 |
| WYDEQ A/C Balance      | 2            | .5 . 45      | -0 93   | 49 33  | -0 07 | -2.58 | -2.06 | -0.66 |
| Calc TDS               | eng/L        |              | \$1X7\$ | 1047   | 1067  | 1042  | 1095  | 1024  |
| TDS A/C Balance        | dec. K       | 0.80 - 1.20  | 1.03    | 1 (10) | 1.01  | 1.01  | 4.97  | 1.00  |

ms) erbejoutsleffents99k now\_hanethavellne\_perturation(1)|28e435540 ptg

Log No No. 54403



SHIPPING: 2393 SALT CREEK HIGHWAY . CASPER, WY 82601

MAILING: P.O. BOX 3258 . CASPER, WY 82602

E-mail: energy@trib.com • FAX: (307) 234-1639 • PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

|                                | •              |                 | LABOI           | riey.Iama yrota | REPORT - CROW B | ipter resources |              |              | ***              |
|--------------------------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------|--------------|------------------|
| Sample ITh                     |                |                 | 1               | 1J-15 F         | 13-25-7         | 13-13-P         | 11-15-P      | U-11-F       | 1 11-11-1        |
| Reend                          |                |                 |                 | Round           | Raved 2         | Round 3         | Round 4      | Round &      |                  |
| Laboratory IIIs                |                |                 |                 | 97-16078        | 99-20237        | 99-1414         | 97-28318     | 99-20347     | Herite 6         |
| Sample Matrix                  |                |                 |                 | Water           | Water           | Water           | Water        | Water        | Water, & a       |
| Sample Date                    |                |                 |                 | 82-19-99        | 63-18-97        | 84-13-99        | 65-26-99     | 86-17-99 .   | 07-15-99         |
| Report Date:                   |                |                 |                 | Afarch 12, 1999 | April 12, 1999  | Blay 6, 1999    | June 8, 1999 | July E, 1999 | August U. 1999 ; |
| Revised Report Date:           |                |                 | į               |                 | April 15, 1999  | •               | •            | •            | e december       |
| 2000                           | <u> </u>       | <del></del>     |                 |                 |                 | ·               |              |              |                  |
| Alajor lens .                  |                | Units           | Reporting Lieux | Ravits          | Results         | Results         | Results      | Resistra     | . Refielte       |
| Celclum                        | Co.            | ang/L           | 1.0             | 19.0            | 18 6            | 18,3            | 17.6         | 16.9         | 16.0             |
| Magneslum                      | Mg             | mg/L            | 1.0             | 4.8             | 4.8             | 4.5             | 4.5          | 4.1          | 4.7              |
| Sodium                         | Ne             | mg/L            | 1.6             | 316             | 331             | 333             | 329          | 351          | 341              |
| Putassium                      | K              | mg/L            | 1.0             | 13.2            | 13.2            | 13.2            | 12.5         | 14.3         | 14.4             |
| Carbonate                      | co,            | mg/L            | 1.0             | < 1.6           | < 1.0           | < 1.0           | < 1.0        | < 1.0        | < 1.0            |
| Blearhonate                    | HCO,           | mg/L            | 1.6             | 419             | 410             | 409             | 421          | 425          | 430              |
| Sulfate                        | \$0.           | mg/L            | 1.0             | 310             | 304             | 315             | 313          | 331          | 302              |
| Chioride                       | CI             | ang/L           | 1.0             | 127             | 120             | 133             | 127          | 138          | 1111             |
| Ammentum as N                  | MI4            | mg/L            | 0.03            | 9.97            | 6.11            | 0.11            | < 0.03       | 9.10         | 6.15             |
| Hir he as N                    | NO,            | mg/L            | 6.10            | < 0.10          | < 0.10          | < 0.10          | < 0.10       | < 0.10       | < 0.10           |
| Titrate + Mitrite as N         | NO, 4 NO,      | mg/L            | 0.10            | < 0 10          | < 0.10          | < 0.10          | < 0.10       | 0.16         | < 0.10           |
| Please kile                    |                | mg/L            | 6.10            | 0.36            | 0,57            | 0.58            | 0,60         | 0.43         | 0.67             |
| illica                         | \$10,          | mg/L            | 1.0             | 13.7            | 14.3            | 13.6            | 14.0         | 13.3         | 13.4             |
| ntal Dissolved Solids @ \$50°C | TDS            | mg/L            | 2.0             | 1030            | 1030            | 1030            | tota I       | 8070         | 1030             |
| Innductivity                   |                | prohoven        | 1.0             | 1690            | 1620            | 1670            | 1720         | 1670         | 1710             |
| Akalinky                       | CeCO,          | mg/L            | 1.0             | 344             | 337             | 336             | 346          | 349          | 253              |
| at                             |                | std, units      | 0.10            | 8.10            | 7.97            | €,06            | 6.11         | 8.15         | 0.21             |
| W Trace Metals                 |                | 1               |                 |                 |                 |                 |              |              |                  |
| Numbrum                        | Al             |                 |                 |                 | <del></del>     |                 |              | ·            |                  |
| Usenic                         |                | mg/L            | 0.10            | < 6.10          | < 0.10          | < 0.10          | < 0.10       | < 0.10       | < 0.10           |
| lar lum                        | As             | _ <u>PPE/L.</u> | 100.9           | 8.070           | 0.020           | 0.025           | 0.023        | e.025        | 0.027            |
| lutori                         | - Ba           | me/L            | 8.10            | < 8.10          | < 0.10          | < €.10          | < 0.10       | < €.10       | < 0.10           |
| Cadmium                        | <u>C1</u>      | Rog/L           | 8.10            | 8 49            | 0.51            | E.35            | 0.51         | €.50         | 8.64             |
| bronlen                        | C              | mg/L            | 6.003           | < 6.003         | < 8.003         | < 8.003         | < 8.903      | < 8.003      | < 0.005          |
| reper                          | - <del>c</del> | my/L            | 6.65            | < 0.03          | < 6 63          | < €.03          | < 0.03       | < 0.05       | < 0.03           |
| un                             | Fe             | mg/l.           | 0.01            | < 0.01          | < 0.01          | < 8.01          | < 0.01       | < 9.01       | < 0.01           |
| end                            |                | ing/L           |                 | 0.04            | 0.04            | 9.06            | 8.03         | 0.05         | 9.04             |
| fangtnese                      | Ph             | mg/L            | 0.01            | < 0.01          | < 0.01          | < 0.01          | < 0.01       | < 0.01       | < 0.01           |
| lercury                        | Mn             | mg/L            | 0.01            | 6.02            | 0.02            | 6.02            | 9.02         | 0.62         | 0.62             |
| lulyhdenum                     | - Dig          | mg/L            | 6.001           | < 0.001         | < 0.001         | < 0.001         | < 0.001      | < 0.001      | < 6.001          |
| lickel                         | Mo             | mg/L            | 0.01            | 6.07            | €.10            | 6.10            | 6.11         | 6.11         | 0.10             |
| elenium                        | M              | ang/L.          | 0.01            | < 0.01          | < 8 81          | < 0.01          | < 6.01       | < 0.01       | < 0.03           |
|                                |                | INE/L           | 8,001           | 0.002           | 6.002           | 6 003           | 6.002        | 0.002        | 0.003            |
| anadlum                        |                | mert.           | 0.01            | 0.01            | 6.07            | 0.07            | 0.09         | 8.09         | 6.10             |
| Inc I                          |                |                 | 6.01 I          | < 6 61          | 0.02            | 0.03            | 8,64         | € 02         | 0.01             |

| S.Z. 1943 Englometrics  |                   |      |        |       |      |       |       |      |      |
|-------------------------|-------------------|------|--------|-------|------|-------|-------|------|------|
| Uranium                 | 1104              | mg/L | 0,0003 | 0.757 | 1.61 | 6,966 | 0.666 | 1.12 | 1,26 |
| Radium 226              | I <sup>M</sup> Ra | PCVL | 0.2    | 253   | 218  | 236   | 225   | 242  | 202  |
| Radium Error Estimate & |                   |      |        | 3.4   | 4.4  | 4.7   | 4.7   | 4.5  | 4.3  |
|                         |                   |      |        |       |      |       |       |      | ·    |

| Quality Assurance Data |        | Target Range |       |       |       |       |       | ****  |
|------------------------|--------|--------------|-------|-------|-------|-------|-------|-------|
| Anton                  | med    |              | 16.93 | 16.49 | 17.07 | 17.10 | 17.81 | 16,72 |
| Cathus                 | macq   |              | 16.32 | 16 44 | 16.13 | 15.85 | 16.83 | 16.41 |
| WYDEQ A/C Belince      | *      | -5 - +5      | -1.91 | -0.19 | -2.8) | -3.78 | -2.78 | -0.93 |
| Calc TDS               | mg/L   |              | 1015  | 1021  | 1037  | 1031  | 1083  | 1026  |
| TDS A/C Balance        | dec. S | 0.00 - 1.20  | 9.00  | 1.03  | 1.01  | 1.81  | 8.99  | 1.00  |



ENERGY LABORATORIES, INC.
SHIPPING: 2393 SALT CREEK HIGHWAY • CASPER, WY 82601
MAILING: P.O. BOX 3258 • CASPER, WY 82602
E-msll: energy@trlb.com • FAX: (307) 234-1639 • PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

LABORÁTORY ANALYSIS REFORT - CROW BUTTE RESOURCES

|                     | •            | •            | •           | April 13, 1999 | •               |
|---------------------|--------------|--------------|-------------|----------------|-----------------|
| , Adjun 13;         | July 8, 1999 | Junt E, 1999 | May 6, 1999 | April 12, 1999 | Merch 12, 1999  |
| H21-78              | 66-17-99     | 05-20-99     | 64-15-99    | 8J-12-99       | 82-19-99        |
| HIM.                | Water        | Water        | Water       | Water          | Water           |
| , ; <b>99</b> .3556 | P9-30546     | 99-28322 .   | 97-24160    | 99-20160       | <b>39.16106</b> |
| Royal               | Round 8      | Ronad 4      | Round 3     | Report of      | Reund 9         |
| 11.11               | U-IJ P       | 2117         | U-13 7      | 11:107         | 70.0            |

| Alafor long.           |                  | Units  | Reporting Limit | Results | Results | Results | Results | Results | Results           |
|------------------------|------------------|--------|-----------------|---------|---------|---------|---------|---------|-------------------|
| Calcium                | c                | mg/l.  | 1.0             | 16.0    | 19.7    | 20,2    | 0.12    | 9.00    | 19.6              |
| Magnesium              | Ng               | 7,3ut  | 1.0             | 4.2     | 5.2     | 5.3     | 5.3     | 5.4     | 3.7               |
| Sodium                 | Na.              | ang /L | 0.0             | 332     | )30 '   | 354     | 225     | 367     | 3.C               |
| Petasslum              | ×                | mg/L   | 1.0             | II.3    | 12.3    | 12.7    | 12.0    | 13.7    | 13.4              |
| Carbonate              | co,              | mg/L   | 1.0             | < 1.0   | 9.1     | 0.1 >   | 0.8     | 6.1     | 2                 |
| Bicarbonate            | IICO,            | mg/L   | 1.0             | 402     | 419     | 432     | 424     | 439     | £                 |
| Sulfate                | <b>3</b> 0.      | 1      | 1.0             | 306     | 326     | 335     | 186     | 353     | 319               |
| Chloride               | Ω                | 7,35   | J. 60           | 126     | 125     | 139     | 135     | 145     | 123               |
| Ammonium as N          | NIC              | mg/L   | 9.83            | 0.03    | 0.13    | 0.24    | 0.13    | 0.26    | 0.30              |
| Nitrite 21 X           | ŅĢ               | 7,gm   | 0.10            | < 0.10  | < 0.10  | < 0.10  | < 0.10  | < 6.10  | < 9.70            |
| Nitrate + Nitrite as N | NO, + NO,        | mg/L   | 0.10            | < 0.10  | < 0.10  | < 0.10  | < 0.10  | 0.25    | ^ <del>2.</del> ⊠ |
| Fisorida               | •                | Toget. | 0.10            | 0.39    | 0.64    | 0.63    | 0.61    | 0.62    | 0.72              |
| Stike                  | SiO <sub>1</sub> | 7/3m   | 1.0             | 14.0    | 13.8    | 14.2    | 15.0    | 13.9    | 14.2              |
|                        |                  |        |                 |         |         |         |         |         |                   |

| Ron-Nictats                    |      |           |       |                      |        |                |        |        |               |
|--------------------------------|------|-----------|-------|----------------------|--------|----------------|--------|--------|---------------|
| Total Dissolved Solids @ 180°C | Sat  | J/Zm      | 0.0   | 1060                 | 0201   | 110            | 8      | 1120   | 1050          |
| Conductivity                   |      | pmho/e    | 9.1   | 1720                 | 1740   | 1750           | 1820   | 1760   | - 785         |
| Alkalishy                      | (00) | ang/L     | 0.1   | 330                  | 351    | 354            | 556    | 369    | 385           |
| 114                            |      | sid. wals | 0.10  | 6.16                 | 8.33   | 8.28           | 16.3   | 6,39   | 5.45          |
| Trace Melab                    |      |           | ·     |                      |        |                |        |        |               |
| Aluminum                       | 1V   | mg/L      | 01.0  | < 0.10               | < 0.10 | < <b>0</b> .10 | < 0.10 | < 0.TQ | <b>4 9.10</b> |
| Americ                         | Ş    | PAG/L     | 100.0 | 0.008                | 2,012  | 9.617          | 630.0  | 910.9  | 0.016         |
| Ear bern                       | 2    | 37 See    | 0.10  | < 0.10               | < 0.10 | < 0.10         | < 0.10 | < 0.10 | < 0.10        |
|                                |      |           |       | The second named and |        |                |        |        |               |

| Trace Alciels |     |        |       |         |             |                |               |              |          |
|---------------|-----|--------|-------|---------|-------------|----------------|---------------|--------------|----------|
| Aluminum      | λ   | 77.8m  | D. 10 | < 0.10  | < 0.10      | <b>^ 0.10</b>  | < 0.10        | < e.70       | <u>^</u> |
| Arsenic       | ۸,  | 1,5m   | 100.0 | 0.006   | 210.0       | 8.017          | 9.023         | 8.016        |          |
| Barlum        | Ba  | 1, See | 0.10  | < 0.10  | < 0.10      | <b>₹ 0.10</b>  | <b>^ 9.30</b> | ۸ <u>و</u> ح | < 0.10   |
| Boren         | 8   | 1/ See | 0.10  | 0.43    | 0.01        | 0.28           | 2.0           | 0.45         | 2        |
| Cadmium       | Cd  | 1/Jus  | 0.003 | < 0.003 | < 0.003     | < 0.003        | < 0.003       | < 0.003      | 76 >     |
| Chromium      | Ç   | mg/L   | 0.03  | < 0.03  | < 6.03      | <b>\$ 9.83</b> | ^ O.B.        | A 0.83       | 20 V     |
| Capper        | Ç   | Tripm  | 10.0  | 10.0 >  | 10.5 >      | < 0.01         | < 0.0t        | ¥ 0.01       | <b>~</b> |
| 100           | Fe  | mg/L   | 0.01  | 0.02    | 0.10        | 0.13           | 9.83          | 0.07         | 0.0      |
| Lend          | 3   | mg/l.  | 0.01  | < 0.01  | 19.0 >      | < 0.01         | 10.0 >        | 10.0 >       | 0.0 >    |
| Manganese     | Ma  | mg/L   | 0.01  | 0.01    | 0.02        | 0.02           | 0.02          | 0.02         | 6.02     |
| Mercury       | 116 | mg/L   | 0.001 | < 0.001 | 100.0 >     | ¥ 0,001        | < 0.001       | 100.0 >      | < 6.001  |
| Molybdenum    | Mo  | ang/L  | 0.01  | < 0.03* | <b>0.10</b> | 0.13           | 0.21          | 0.19         | 0.1      |
| Nickel        | 3   | mg/L   | 10.0  | < 0.01  | 10.0 >      | < 0.01         | < 0.01        | < 0.01       | 10.0 >   |
| Selenium      | Sc  | mg/L   | 0.001 | 0.001   | 11310       | 0.001          | 0.001         | 100.0        | 0.00     |
| Vertadium     | ٧   | mg/L   | 0.01  | 0.03    | £0.0        | 0.02           | 0.02          | 0.02         | 0.02     |
| Zine          | 2   |        | 0.0   | < 0.01  | 10.0 >      |                |               | < 0.01       | × 0.01   |

|   | Radium 226              | JMR2 | SCINE. | 0.2                | 376   | 663   | 181   | 770   | 920   | βΉ    |
|---|-------------------------|------|--------|--------------------|-------|-------|-------|-------|-------|-------|
| ı | Radium Error Estimate ± |      |        |                    | 6.3   | 7.6   | 2.3   | 1.7   | 8.7   | 9.1   |
|   |                         |      |        |                    |       |       |       |       |       |       |
|   | Quality Assurance Data  | Data |        | Target Range       |       |       |       |       |       |       |
|   | Anlog                   |      | meq    |                    | 16.36 | 17.37 | 10.01 | 18.25 | 18.87 | 97'61 |
| ł | Cation                  |      | anc d  |                    | 15.89 | 16.98 | 17.21 | 16.56 | 17.84 | 16.88 |
|   | WYDEQ A/C Balance       |      | М      | 3. +3              | -2.07 | -1.15 | .2.30 | -4.85 | -2.81 | 19.1- |
|   | Cak TDS                 |      | 784    |                    | 1012  | 1069  | 1601  | 1096  | 1146  | 2301  |
| - | TOS A/C Balance         |      | dec. X | dec. % 0.80 · 1.20 | 1.03  | 1.01  | 1.01  | 1.00  | 0.98  | 10.1  |

studyzed at a detection limit of 0.05 for this Round



SHIPPING: 2393 SALT CREEK HIGHWAY . CASPER, WY 82601

MAILING: P.O. BOX 3258 • CASPER, WY 82602

E-mail: energy@trib.com • FAX: (307) 234-1639 • PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

|                                |                     |           | LABOR           | RÅTORY ANALYSIS | REPORT - CROW  | BUTTE RESOURCES | •            |              | * (1)                       |
|--------------------------------|---------------------|-----------|-----------------|-----------------|----------------|-----------------|--------------|--------------|-----------------------------|
| Sample ID:                     | ı                   |           |                 | PAI-5           | FA1-5          | TAI-S           | F3.1-3       | PA1-S        | PAI-8                       |
| Round                          |                     |           | No.             | Round f         | Round 2        | Reund 3         | Round 4      | Round S      | Ranha 6 gr                  |
| Laboratory III                 |                     |           |                 | 97-16102        | 97-20853       | 97-34166        | 99-28323     | 99-30548     | . 99-35343                  |
| Bample Mateix                  |                     |           |                 | Water           | Water          | Water           | Water        | Water        | Water                       |
| Sample Date                    |                     |           |                 | 62-19-99        | 63-12-99       | 64-15-99        | 65-20-99     | . 96-17-99   | 07-15-59                    |
| Report Date                    |                     |           |                 | Alarch 12, 1999 | April 13, 1999 | May 6, 1999     | June 8, 1999 | July 8, 1999 | August 13, 1999             |
| Revised Report Date            | •                   |           | •               | •               | April 18, 1999 | • .             | •            |              | Linden A Con                |
|                                |                     |           | · · · · ·       |                 |                |                 |              |              | <u>, a saint de distant</u> |
| Atajor Ions                    |                     | Units     | Reporting Limit | Results         | Résults        | Results         | Results      | Rienki       | Réinlis                     |
| Calcium                        | Ca                  | mg/L      | 1.0             | 13.6            | 19.3           | 29.4            | 38.0         | 39.4         | 25.0                        |
| Magnesium                      | Mg                  | mg/L      | 1.0             | 3.8             | 5.5            | 8.5             | 10.1         | 10.8         | 7.0                         |
| Sodium                         | Na                  | mg/L      | 1.0             | 349             | 387            | .466            | 477          | 555          | 441                         |
| Petasslum                      | K                   | mg/L      | 1.6             | 14.4            | 17.0           | 19.2            | 20.0         | 23.1         | 19.0                        |
| Carbonate                      | co,                 | mg/L      | 1.0             | < 1.0           | < 1.0          | < 1.0           | < 1.0        | < 1.0        | < 1.0                       |
| Bicarbonate                    | IICO,               | mg/L      | 1.0             | 418             | 436            | 494             | 519          | 560          | 483                         |
| Sulfate                        | 504                 | mg/L      | 1.0             | 306             | 358            | 459             | 514          | 595          | 437                         |
| Chloride                       | CI                  | mg/L      | 1.0             | 132             | 152            | 201             | 226          | 267          | 184                         |
| Ammonium as N                  | NII.                | mg/L      | 0.03            | < 0.05          | 0.07           | 0.12            | 0.03         | 0.17         | 0.16                        |
| Kitake sa N                    | NO <sub>1</sub>     | mg/L      | 0.10            | < 0.10          | < 0.10         | < 0.10          | < 0.10       | < 0.10       | < 6.10                      |
| Nivate + Nivite as N           | NO, + NO,           | mg/L      | 0.10            | < 0.10          | < 0.10         | < 0.10          | < 0.10       | < 0.10       | < 6.10                      |
| Fluoride                       | F                   | mg/L      | 0.10            | 0.42            | 0.10           | 0.16            | 0.39         | 0.39         | 0.46                        |
| Silice                         | SiO,                | mg/L      | 1.0             | 13.3            | 14.5           | 16.7            | 15.0         | 14,5         | 16,4                        |
| VII.43                         | 3.01                | INE.C     | ,               |                 | 14.5           | 10.1            |              | 14.5         |                             |
| Non-Metals                     |                     | ]         |                 |                 |                |                 | ·            |              |                             |
| Total Dissolved Solids @ 180°C | 1DS                 | mg/L      | 2.0             | 1070            | 1180           | 1460            | 1610         | 1760         | 1420                        |
| Conductivity                   |                     | µmho/c    | 1.0             | 1770            | 1920           | 2330            | 2560         | 2680         | 2270                        |
| Afkatinky                      | CaCO,               | mg/L      | 1.0             | 343             | 357            | 406             | 426          | 459          | 396                         |
| pli                            | 1                   | aid, unit | 0.10            | 8,21            | 8.05           | 8,22            | 8.08         | 8.13         | E.11                        |
| Trace Aletals                  |                     | 1         |                 |                 |                |                 |              |              |                             |
| Aluminum                       | Al                  | mg/L      | 0.10            | < 0.10          | < 0.10         | < 0.10          | < 0.10       | < 0.10       | < 0.10                      |
| Arsenic                        | As                  | mg/L      | 0.001           | 0.013           | 0.011          | 0.013           | 0.012        | 0.012        | 0.013                       |
| Darlum                         | Ba                  | mg/L      | 6.10            | < 0.10          | < 0.10         | < 0.10          | < 0.10       | < 0.10       | < 0.10                      |
| Boron                          | 1 - 1               | mg/L      | 0.10            | 0.43            | 0.54           | 0.46            | 0.60         | 0.64         | 0.45                        |
| Cadmium                        | Cd                  | mg/L      | 6.005           | < 0.005         | < 0.005        | < 0.003         | < 0.005      | < 0.003      | < 0.005                     |
| Chromlum                       | G C                 | mg/L      | 6.05            | < 0.05          | < 0.05         | < 0.03          | < 0.03       | < 0.05       | < 0.03                      |
| Copper                         | C.                  | mg/L      | 8.01            | < 0.01          | < 0.01         | < 0.01          | < 0.01       | < 0.01       | 0.01                        |
| Iren                           | Fe                  | mg/L      | 8.01            | < 0.01          | 0.01           | 8.03            | 0.06         | 0.06         | 6.04                        |
| Lead                           | Po                  | mg/L      | 0.01            | < 0.01          | < 0.01         | < 0.01          | < 0.01       | < 0.01       | < 0.01                      |
| Manganese                      | Ma                  | mg/L      | 0.01            | < 0.01          | 6.61           | 0.03            | 0.03         | 10.0         | 0.02                        |
| Mercury                        |                     |           | 0.001           | < 0.001         | < 6.001        | < 0.001         | < 0.03       | < 0.001      | < 0.001                     |
|                                | I IIg               | mg/L      |                 |                 |                |                 | 0.06         | 0.07         | 0.08                        |
| Molybdenum<br>Nichol           | Mo                  | mg/L      | 6.01            | < 0.05*         | 0.08           | 0.06            |              |              | < 0.01                      |
| Nickel<br>Saturbura            | NI NI               | mg/L      | 0.01            | < 0.01          | < 0.01         | < 0.01          | < 0.01       | < 0.01       | 6.003                       |
| Jeremun                        | Se                  | mg/L      | 0.001           | 0.001           | 6.002          | 0.003           | 0.002        | 0.003        |                             |
| Vanadium                       | <u> </u>            | mg/L      | 0.01            | 0.20            | 6.19           | 0.15            | 0.20         | 8.17         | 6.14                        |
| Zinc                           | Zn                  | mg/L      | 0.01            | 0.01            | 6.03           | 0.02            | 0.04         | 0.03         | 0.02                        |
| Radiometrics                   |                     | 1         |                 |                 |                |                 |              |              |                             |
| Uranium                        | N-U                 | mg/L      | 0.0003          | 3.03            | 3.65           | 5.26            | 5.01         | 9.35         | 6,54                        |
| Radium 226                     | P <sup>276</sup> Ra | PCI/I.    | 0.2             | 35.8            | 38.5           | 119             | 172          | 202          | 114                         |
| Radium Error Estimate ±        | ×                   | PC-012    | <u> </u>        | 2.2             | 2.3            | 3.3             | 4.0          | 4.1          | 3.3                         |
|                                |                     |           |                 |                 |                |                 |              |              |                             |
| Quality Asturance D            | iola .              |           | Target Range    |                 |                | <del></del>     |              | 90 10        | 1                           |
| Anion                          |                     | med       |                 | 16.98           | 18.91          | 23.37           | 25.62        | 29.12        | 22.24                       |
| Cation                         |                     | med       | <u> </u>        | 16.56           | 18.70          | 22.97           | 24.02        | 27.62        | 21.52                       |
| WYDEQ A/C Balance              |                     | 7         | -5 - +5         | -1.27           | • <b>⊓.\$4</b> | -0.13           | -3.23        | -2.65        | -1,64                       |
| Calc TDS                       |                     | mg/L      |                 | 1012            | 1172           | 1449            | 1561         | 1786         | 1370                        |
|                                |                     |           |                 | 1.01            | 1 41           | 1.01            | 1 83         |              | 181                         |

\*Molybdenum was analyzed at a detection limb of 0.05 for this Round.

msf ttraports/clients97/crow\_butte/haselfoe\_testrention/pm-3135543, tls

TDS A/C Balance

1.mg Im No. 5440)

1.04



SHIPPING: 2393 SALT CREEK HIGHWAY . CASPER, WY 82601

MAILING: P.O. BOX 3258 • CASPER, WY 82602

E-mail: energy@trib.com • FAX: (307) 234-1639 • PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

| 4 4 2 4 4 4 4 4 4 4 4 | ANIA VALUE DE DATE : ADAM ELIZADE DESALUEADE |
|-----------------------|----------------------------------------------|
| LABUKATURY            | ANALYSIS REPORT - CROW BUTTE RESOURCES       |
|                       |                                              |

Sample ID:
Raundi
Laboratory ID:
Sample Natrice
Sample Date:
Report Date:
Rabled Report Dates

| PN-4            | PA1-4          | <b>*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***</b> | Ph1-4        | PA1-4          | Phi-4 :         |
|-----------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|-----------------|
| Round I         | Round 2        | Round 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Round 4      | Round \$       | Rodina 6. A     |
| 99-16107        | 99-20354       | \$7-24263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97-28324     | 99-30549       | 99.33344        |
| Water           | Water          | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water        | Water          | c. Water se:    |
| <b>02-19-97</b> | 83-18-97       | 64-15-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85-25-99     | . 66-17-99     | A 07-15-99      |
| Jarch 12, 1999  | April 12, 1999 | \$1sy 6, 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | June 8, 1999 | . July 8, 1999 | Autist 13; 1999 |
|                 | April 15, 1999 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , •          | • .            | varied at       |

| Stalor Ion             |                  | Units | Reporting Limit | Results | Resite | Results | Reinits | Results | Results 🔆 |
|------------------------|------------------|-------|-----------------|---------|--------|---------|---------|---------|-----------|
| Calcium                | Ca               | mg/L  | 1.0             | 16.2    | 18.2   | 17.0    | 15.0    | 15,3    | 15.2      |
| Magnesium              | Mg               | mg/L  | 1.0             | 4.4     | 5.1    | 4.8     | 4,4     | 4.2     | 4,7       |
| Sodium                 | Na               | mg/L  | 1.0             | 334     | 350    | 345     | 319     | 319     | 314       |
| l'etassium             | K                | mg/1. | 1.0             | 12.0    | 13.1   | 13.2    | 12.0    | 13.0    | 13.0      |
| Carbonate              | co,              | mg/L  | 1.0             | < 1.0   | < 1.0  | < 1.0   | < 1.0   | < 1.0   | < 1.0     |
| Bicarbonate            | HCO,             | mg/L  | 1.0             | 429     | 421    | 399     | 396     | 393     | 393       |
| Sulfate                | SU,              | mg/l. | 1.0             | 300     | 307    | 304     | 306     | 298     | 278       |
| Chloride               | a                | mg/L  | 1.0             | 144     | 136    | 133     | 125     | 129     | F12       |
| Ammonium as N          | NII,             | mg/L  | 0.05            | 0.10    | 0.13   | 0.13    | 0.09    | 0.14    | 6,17      |
| Nicke as N             | NO,              | mg/L  | 0.10            | < 0.10  | < 0.10 | < 6.10  | < 0.10  | < 0.10  | < 0.10    |
| Nikrate + Nitrite as N | NO, + NO,        | mg/L  | 0.10            | < 0.10  | < 0.10 | < 0.10  | < 0.10  | < 0.10  | < 0.10    |
| Fluoride               | F                | mg/L  | 0.10            | 0.50    | 0.47   | 0.48    | 0.50    | 0.51    | 0,60      |
| Stilca                 | SIO <sub>2</sub> | mg/L  | 1.0             | 12.3    | 13.7   | 14.4    | 14.0    | 12.3    | 12.7      |

| Non-Metals                     |      |          |      |      |      |      |      |      | ·    |
|--------------------------------|------|----------|------|------|------|------|------|------|------|
| Total Dissolved Solids @ 180°C | TDS  | mg/L     | 2.0  | 1080 | 1060 | 1050 | 997  | 982  | 960  |
| Conductivity                   |      | µmho/e   | 1.0  | 1790 | 1750 | 1710 | 1670 | 1970 | 1600 |
| Alkalinity                     | CaCO | mg/L     | 1.0  | 352  | 346  | 327  | 325  | 323  | 323  |
| pli                            |      | sid. unk | 0.10 | 8.28 | 8,23 | 8.26 | 8,16 | 8.16 | 8.28 |

| Trace M    | étals | 7     |       |         |         |         |         |         | ·       |
|------------|-------|-------|-------|---------|---------|---------|---------|---------|---------|
| Aluminum   | Al    | mg/L  | 0.10  | < 0.10  | < 0.10  | < 0.10  | < 8.10  | < 8,10  | < 0.10  |
| Arsenic    | As    | mg/L  | 0.001 | ( 0.001 | < 0.001 | 0.001   | < 0.001 | < 0.001 | < 0.001 |
| Barlum     | Ba    | mg/L  | 6.10  | < 0.10  | < 0.10  | < 0.10  | < 0.10  | < 0.10  | < 0.10  |
| Boren      | 8     | mg/l. | 0.10  | 0.49    | 0.50    | 0.35    | 0.49    | 0.47    | 0.46    |
| Cadmium    | Cd    | mg/L  | 0.005 | < 0.005 | < 0.005 | < 0.003 | < 0.005 | < 0.005 | < 0.005 |
| Chromlum   |       | Ing/L | 0.05  | < 0.05  | < 0.03  | < 0.03  | < 0.05  | < 0.03  | < 0.05  |
| Copper     | Cu    | mg/l. | 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| fron       | Fe    | mg/L  | 0.01  | b.05    | 0.03    | 0,03    | 0.06    | 8.06    | 0.03    |
| Lesd       | 1%    | mg/L  | 6.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Manganese  | Mn    | mg/L  | 0.01  | 0.02    | 0.02    | 0.02    | 6.02    | 0.01    | 0.01    |
| Mercury    | 11g   | mg/L  | 0,001 | < 0.001 | < 0.001 | < 0.001 | < 8.001 | < 6.001 | < 0.001 |
| Molybdenum | Mo    | mg/L  | 0.01  | 0,10    | 0.12    | 0.12    | 0.15    | 0.16    | 0.17    |
| Nickel     | NI    | mg/L  | 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  | < 0.01  |
| Selenium   | Se    | mg/L  | 0.001 | 100.00  | 0.002   | 100.0   | < 0.001 | < 0.001 | 0.001   |
| Versidlum  | v     | mg/L  | 0.01  | < 0.10° | < 0.01  | < 0.01  | < 0.01  | < 0.0t  | < 0.01  |
| Zinc       | Zn    | mg/L  | 0.01  | < 0.01  | 6.02    | 0.01    | < 0.01  | G.G1    | 0.01    |

| Radiometrics .          |        |       |        |       |       |       |       |       | :     |
|-------------------------|--------|-------|--------|-------|-------|-------|-------|-------|-------|
| Uranium                 | P=U    | mg/L  | 0.0003 | 6.172 | 0.158 | 0,122 | 0.103 | 0.129 | 0,130 |
| Radium 226              | 234 Ra | PCIA. | 0.2    | 174   | 173   | 184   | 160   | 161   | 157   |
| Radium Error Estimate ± |        |       |        | 4.4   | 3.9   | 4.2   | 3.9   | 3.6   | 3.9   |

| Quality Assurance Data | <u> </u> | Target Range |       |        |       |       | ·     |       |
|------------------------|----------|--------------|-------|--------|-------|-------|-------|-------|
| Anlon                  | tneq     |              | 17.38 | 17.18  | 16.65 | 16.43 | 16.34 | 15.45 |
| Cation                 | meq      |              | 16.03 | 16.91  | 16.61 | 15.32 | 15.34 | 15.16 |
| WYDEQ A/C Balance      | 7        | .5 . +5      | -4.04 | -0.7E  | -0.12 | -3.51 | -3.13 | -0.92 |
| Calc TDS               | mg/L     |              | 1039  | \$1155 | 1032  | 995   | 989   | 948   |
| TDS A/C Balance        | dec. %   | 0.80 - 1.20  | 1.04  | 8,400  | 1.02  | 1.00  | 0,99  | 1.01  |

<sup>\*</sup>Vanadium was analyzed at a detection limit of 0.10 for this Round.

mid extreports/effents99/crow\_homethaseline\_restoration/pon4135544, als

Log for No. 54403



ENERGY LABORATORIES, INC.
SHIPPING: 2393 SALT CREEK HIGHWAY • CASPER, WY 82601
MAILING: P.O. BOX 3258 • CASPER, WY 82602
E-mall: energy@lrib.com • FAX: (307) 234-1639 • PHONE: (307) 235-0515 • TOLL FREE; (888) 235-0516

Laboratory analysis report - crow butte resources

Láboratory ID:

|            | •                | •            | •            | April 13, 1979 | •              |
|------------|------------------|--------------|--------------|----------------|----------------|
| Adgüit i3, | . July 8, 1999 . | June 8, 1999 | Atay 6, 1999 | April 12, 1999 | March 12, 1999 |
| . 67-85    | 96-17-99         | 83-20-99     | 64-15-99     | 93-18-99       | 92-19-99       |
| WATER TO   | Water            | Water        | N'eler       | Water          | Water          |
| 21.44      | 99-30331         | 99-21327     | 99-34869     | 99-20853       | 99-16103       |
| Round      | Round \$         | Nound 4      | Round 3      | Round 2        | Round I        |
| 78.        | 77.4             | 12.7         | 7R-6         | 77.4           | 78.2           |

| Blajor lond          |                  | Units   | Reporting Limit | Keplu  | Elleso | Results | Résulté . | Results | Rendu (       |
|----------------------|------------------|---------|-----------------|--------|--------|---------|-----------|---------|---------------|
| Catelorn             | C                | Tu Bus  | 1.0             | 15.0   | 7.31   | 17.5    | 17.0      | 18.9    | 0.81          |
| Magnesium            | Ng.              | J, Ju   | 0.1             | 3.9    | 8.6    | 4.6     | 1.5       | 4.7     | 3.0           |
| Sodium               | X.               | Tr Bea  | 0.1             | 371    | 936    | 313     | 366       | 387     | 371           |
| Potashum             | ×                | 1/Jus   | 0.1             | 10.9   | 11.9   | 12.1    | 12.0      | 13.6    | 13.0          |
| Carbonate            | co,              | Tr Jean | 1.0             | < 1.0  | < 1.0  | < 1.0   | < 1.0     | ^ T.O   | < 1.6         |
| Bicarbonate          | HCO.             | T) But  | 1.0             | 100    | 429    | 403     | 421       | 433     | 428           |
| Sulfate              | SO.              | 7,340   | 0.1             | 352    | 556    | 343     | 368       | 384     | 3.5           |
| Chloride             | α                | J/Bus   | 0.0             | 157    | 150    | 163     | 152       | 2       | 121           |
| Ammonium as N        | NI.              | 7, In   | 0.03            | 0.13   | 0.12   | 0.17    | 0.13      | 0.18    | 6.23          |
| Muke B N             | NO.              | T/See   | 0.10            | < 0.10 | × 0.10 | < 0.10  | < 0.10    | < 0.70  | <b>* 0.10</b> |
| Nivate + Nivite as N | NO. + NO.        | 7/344   | 0.10            | < 0.10 | < 0.10 | < 0.10  | < 6.10    | < 0.70  | <b>♦ 0.10</b> |
| Phoride              | ţ                | 1/3m    | 0.10            | 0.39   | 0.53   | 0.48    | 0.52      | 15.0    | 0.60          |
| Silica               | SIO <sub>2</sub> | 1/3m    | 1.0             | 12.6   | 14.5   | 15.2    | 14.0      | 12.7    | 0.3           |

| Non-Metali                     |      |          |      |      |      |      |      |      |      |
|--------------------------------|------|----------|------|------|------|------|------|------|------|
| Total Dissolved Solids @ 180°C | SOL  | 1/3m     | 2.0  | 1160 | 0911 | 1150 | 1160 | 1190 | 156  |
| Conductivity                   | ١    | pinhole  | 1.0  | 1960 | 0061 | 0031 | 1830 | 1920 | 1870 |
| Alkalinhy                      | (00) | 7/14     | 1.0  | 353  | tst  | וננ  | 346  | 355  | ä    |
| 114                            |      | id. enit | 0.10 | 8.11 | 60.8 | 8.30 | 8.17 | 8.04 | 1.23 |
|                                |      | •        |      |      |      |      |      |      |      |
|                                |      |          |      |      |      |      |      |      |      |

| Mercery<br>Molybeknum<br>Mickel<br>Mickel<br>Sekentum<br>Vanadium | Mercery<br>MolyAdenum<br>McLef<br>Selenium | Mercury<br>Molybdenum<br>Nickel | Mercury<br>Molybdenum | Mercery |         | Manganeso | Lead   | tron | Capper | Chromium      | Cadmium | Boron | ป็นในส        | Argenic | Aluminum      | Tract Mictals |
|-------------------------------------------------------------------|--------------------------------------------|---------------------------------|-----------------------|---------|---------|-----------|--------|------|--------|---------------|---------|-------|---------------|---------|---------------|---------------|
| < %                                                               | *                                          |                                 | 3                     | Mo      | 916     | Ma        | 3      | 17   | Ç      | Cr            | Ω       |       | <b>81</b>     | 8       | Α             |               |
|                                                                   | 2 de 1.                                    | 1,3m                            | T/Sun                 | mg/L    | Jr3m    | mg/l.     | J. Bun | mg/L | Ing/L  | .mg∕L         | mg/L    | mg/L  | 1/2cm         | mg/L    | mg/L          |               |
|                                                                   | 10.0                                       | 100.0                           | 0.01                  | 10.0    | 0.001   | 6.01      | 10.0   | 0.01 | 0.01   | 0.05          | 0.003   | 0.10  | <b>6</b> .10  | 0.001   | 0.10          |               |
|                                                                   | 0.17                                       | 0.001                           | < 0.01                | €.06    | < 9.001 | 0.02      | < 9.01 | 0.12 | < 0.01 | < 0.03        | < 0.005 | 0.47  | < 0.10        | 0.025   | < 0.10        |               |
| 2                                                                 | \$0.0                                      | 9.013                           | < 0.01                | 0.07    | - 0.001 | 0.02      | < 0.01 | 0.17 | < 0.01 | A 0.03        | < 0.003 | 0.50  | A 0.13        | 6.021   | < 0.10        |               |
| 8 63                                                              | 0.03                                       | 0.003                           | < 0.01                | 0.0\$   | < 0.001 | 0.02      | < 0.01 | 0.13 | < 0.01 | A 0.03        | < 6.003 | 0.32  | <b>4 8.10</b> | 6.624   | < 0.10        |               |
| 0.02                                                              | 0.03                                       | 0.003                           | < 0.01                | 0.09    | < 0.001 | 0.02      | < 0.01 | 0.23 | < 0.01 | ^ 0.83        | < 0.003 | 0.47  | < 0.10        | 0.022   | <b>^ 0.10</b> |               |
| 0.01                                                              | 0.63                                       | 0.004                           | < 0.01                | 0.09    | < 0,001 | 0.02      | < 0.01 | 0.25 | < 0.01 | <b>^ 0.83</b> | < 0.005 | 0.47  | < 0.10        | 0.023   | × 0.10        |               |
| 9.93                                                              | 0.91                                       | 0.82                            | × 0.01                | 0.03    | < 0.001 | 0,02      | < 0.01 | 6.20 | < 0.01 | × 0.8         | ▲ 0.003 | 17.0  | < 0.10        | 2002    | × 0.10        |               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |     | 1 10 | 3.1 | 1.63 | 101 | - 36 |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-----|------|-----|------|-----|------|-----|
| C. married                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |        | -   |      |     |      |     |      |     |
| Radium 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13°F2 | ٦<br>ج | a.2 | 201  | 190 | 18.4 | 199 | 206  | 182 |
| Radium Error Estimate 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |        |     | 5    | :   | 1.1  | •.  | 2.2  |     |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |       |        |     |      |     |      |     |      |     |

| Quality Assurance Data |        | Target Range       |       |       |       |       |       |       |
|------------------------|--------|--------------------|-------|-------|-------|-------|-------|-------|
| Anion                  | Pare 4 |                    | 18.83 | 18.70 | 17.83 | 18.90 | 19.75 | 15.20 |
| Carlos                 | MCG.   |                    | 17.51 | JE.43 | 17.91 | 17.43 | 18.55 | 17.52 |
| WYDEQ A/C Balance      | ×      | .J. +5             | -3.69 | 0.12  | 0.22  | J.91  | 3.14  | iæ    |
| Cale TDS               | 37.    |                    | 1139  | 1136  | CIN   | 1146  | (20)  | 1122  |
|                        | dic. % | dcc. % 0.80 - 1.20 | 1.02  | 1,00  | 1.03  | 1.01  | 0.99  | i.es  |
|                        |        |                    |       |       |       |       |       |       |

mpr8133535.sh



SHIPPING: 2393 SALT CREEK HIGHWAY . CASPER, WY 82601

MAILING: P.O. BOX 3258 • CASPER, WY 82602

E-mail: energy@trlb.com • FAX: (307) 234-1639 • PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

| Sample III:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . •                                                                 |                                                              | 1                                                                                                                                                             | U-43 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11-45 P                                                                                                   | U-45 P                                                                                  | U-45 P                                                        | U-45 F                                             | .11-25 P                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|
| Reimds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |                                                              |                                                                                                                                                               | Round 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Round 3                                                                                                   | Round J                                                                                 | Round 4                                                       | Regard &                                           | Raund 6                                                                       |
| Laboratory III:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                                                   |                                                              |                                                                                                                                                               | 99-16104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99-20351                                                                                                  | 97-24270                                                                                | 97-28326                                                      | 97-30544                                           | 99-35540                                                                      |
| Sample Mateins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                     |                                                              |                                                                                                                                                               | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Waler                                                                                                     | Water                                                                                   | Water                                                         | Water                                              | Water 3                                                                       |
| Bâmple Dates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |                                                              | ÷                                                                                                                                                             | 92-19-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03-18-99                                                                                                  | 84-15-99                                                                                | 85-10-99                                                      | . 66-17-99                                         | 67-45-79                                                                      |
| Report Dates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |                                                              |                                                                                                                                                               | Atarch 12, 1979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | April 13, 1999                                                                                            | Alay 6, 1999                                                                            | June 8, 1999 .                                                | July 8, 1999                                       | .August 13; 1999                                                              |
| Rethed Report Datel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |                                                              |                                                                                                                                                               | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | April 15, 1999                                                                                            | •                                                                                       | •                                                             |                                                    | 63 6 3 ist                                                                    |
| Call Street of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |                                                              |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                         |                                                               |                                                    | ن الفلام ، •                                                                  |
| Major lons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     | Units                                                        | Reporting Limit                                                                                                                                               | Keels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Results                                                                                                   | Renits                                                                                  | Results                                                       | Reulti                                             | Results                                                                       |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ca                                                                  | nog/L                                                        | 1.0                                                                                                                                                           | 15.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18,1                                                                                                      | 17.6                                                                                    | 17.0                                                          | 18.7                                               | 18.1                                                                          |
| Asgneslum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mg                                                                  | mg/L                                                         | 1.0                                                                                                                                                           | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.8                                                                                                       | 4.7                                                                                     | 5.0                                                           | 4.8                                                | 5.2                                                                           |
| Sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Na                                                                  | mg/L                                                         | 1.0                                                                                                                                                           | 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 349                                                                                                       | 353                                                                                     | 334                                                           | 355                                                | 343                                                                           |
| Potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     | mg/L                                                         | 1.0                                                                                                                                                           | 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.8                                                                                                      | 13.1                                                                                    | 12.6                                                          | 13.9                                               | 14.0                                                                          |
| Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CO,                                                                 | mg/L                                                         | 1.0                                                                                                                                                           | < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 1.0                                                                                                     | < 1.0                                                                                   | < 1.0                                                         | < 1.0                                              | < 1.0                                                                         |
| Ikarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HCO <sub>1</sub>                                                    | mg/L                                                         | 1.0                                                                                                                                                           | 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 401                                                                                                       | 402                                                                                     | 399                                                           | 403                                                | 412                                                                           |
| ulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SO <sub>4</sub>                                                     | mg/L                                                         | 1.0                                                                                                                                                           | 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 312                                                                                                       | 319                                                                                     | 339                                                           | 347                                                | 313                                                                           |
| Thloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.                                                                 | mg/L                                                         | 1.0                                                                                                                                                           | 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 136                                                                                                       | 140                                                                                     | 145                                                           | 149                                                | 127                                                                           |
| monte N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NII4                                                                | mg/L                                                         | 0.05                                                                                                                                                          | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                                                                      | 0.06                                                                                    | < 0.05                                                        | 0.09                                               | 0,12                                                                          |
| liulte as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NO <sub>1</sub>                                                     |                                                              |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                         |                                                               |                                                    |                                                                               |
| litrate + Mitrite as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     | mg/L                                                         | 0.10                                                                                                                                                          | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.10                                                                                                    | < 0.10                                                                                  | < 0.10                                                        | < 0.10                                             | < 0.10                                                                        |
| horide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NO, + NO,                                                           | mg/L                                                         | 8.10<br>8.10                                                                                                                                                  | < 8.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.10                                                                                                    | 0.12                                                                                    | < 0.10                                                        | < 8.10                                             |                                                                               |
| Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SiO <sub>2</sub>                                                    | mg/L<br>mg/L                                                 | 1.0                                                                                                                                                           | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.55<br>17.2                                                                                              | 0.54                                                                                    | 0.55<br>17.0                                                  | 0.56<br>15.8                                       | 16.0                                                                          |
| 1124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3101                                                                | ME/L                                                         | 1.0                                                                                                                                                           | 13.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.8                                                                                                      | 1                                                                                       | 17.0                                                          |                                                    | 10.0                                                                          |
| Non-Metals .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | <u> </u>                                                     |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                         |                                                               |                                                    |                                                                               |
| istal Dissolved Solids @ 160°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TDS                                                                 | mg/L                                                         | 2.0                                                                                                                                                           | 1060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1070                                                                                                      | 1020                                                                                    | 1090                                                          | 1080                                               | 1090                                                                          |
| anductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     | pemba/e                                                      | 1.0                                                                                                                                                           | 1790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1740                                                                                                      | 1750                                                                                    | 1760                                                          | 1710                                               | 1730                                                                          |
| Vikalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CaCO                                                                | mg/L                                                         | 1.0                                                                                                                                                           | 332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 332                                                                                                       | 330                                                                                     | 328                                                           | 330                                                | 338                                                                           |
| )!!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                                                   | std. unit                                                    | 6,10                                                                                                                                                          | 7.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,99                                                                                                      | 6.17                                                                                    | 8.00                                                          | 6,01                                               | <b>8.27</b>                                                                   |
| Aluminom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Al                                                                  |                                                              | 6,10                                                                                                                                                          | < 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 0.10                                                                                                    | a 8 10                                                                                  | 4 9 10                                                        | 4 7 10                                             | < 0.10                                                                        |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | As                                                                  | mg/L                                                         | 8.001                                                                                                                                                         | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.10                                                                                                    | < 0.10                                                                                  | < 0.10                                                        | < 0.10                                             | 9,035                                                                         |
| lar lum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B <sub>a</sub>                                                      | mg/L                                                         | 8.10                                                                                                                                                          | < 8.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.033<br>< 0.10                                                                                           | 6.037                                                                                   | 0,031<br>< 0,10                                               | 6.033                                              | < 6.10                                                                        |
| HALI BERTIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     | mg/L                                                         |                                                                                                                                                               | 6.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.55                                                                                                      | < 0.10<br>0.39                                                                          | 0.51                                                          | < 6.10<br>6.53                                     | 0.51                                                                          |
| loren .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                                              |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                         | V.31                                                          | 4.33                                               | 0.31                                                                          |
| loren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B                                                                   | mg/L                                                         | 8.10                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                                         | 4 0 000                                                       | 4 8 000                                            |                                                                               |
| admium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cd                                                                  | mg/L                                                         | 0.003                                                                                                                                                         | < 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.005                                                                                                   | < 0.003                                                                                 | < 6.003                                                       | < 8.005                                            | < 9.003                                                                       |
| Telegraphical Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company | Cd<br>Cr                                                            | mg/L<br>mg/L                                                 | 0.003<br>0.03                                                                                                                                                 | < 0.003<br>< 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 9.005<br>< 9.05                                                                                         | < 0.003<br>< 0.03                                                                       | < 0.03                                                        | < 0.03                                             | < 9.85                                                                        |
| Indenlum<br>Toronlum<br>Topper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cr<br>Cr                                                            | mg/L<br>mg/L                                                 | 0.003<br>6.03<br>0.01                                                                                                                                         | < 0.003<br>< 0.03<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 9.003<br>< 9.03<br>< 9.01                                                                               | < 0.003<br>< 0.03<br>< 0.01                                                             | < 0.03<br>< 0.01                                              | < 0.03<br>< 0.01                                   | < 0.03<br>< 0.01                                                              |
| Indenium<br>Thromium<br>Copper<br>con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cd<br>Cr<br>Cu<br>Fe                                                | mg/L<br>mg/L<br>mg/L<br>mg/L                                 | 0.003<br>0.03<br>0.01<br>0.01                                                                                                                                 | < 0.003<br>< 0.03<br>< 0.01<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 9.003<br>< 9.03<br>< 9.01<br>8.10                                                                       | < 0.003<br>< 0.03<br>< 0.01<br>0.10                                                     | < 0.03<br>< 0.01<br>0.12                                      | < 0.03<br>< 0.01<br>0.26                           | < 0.03<br>< 0.01<br>0.20                                                      |
| Indialus<br>Chromlum<br>Copper<br>ron<br>ead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cd<br>Cr<br>Cu<br>Fe<br>Fe                                          | mg/L<br>mg/L<br>mg/L<br>mg/L                                 | 0.003<br>0.03<br>0.01<br>0.01<br>0.01                                                                                                                         | < 0.003<br>< 0.03<br>< 0.01<br>0.10<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 9.003<br>< 9.03<br>< 9.01<br>9.10<br>< 6.01                                                             | < 0.003<br>< 0.03<br>< 0.01<br>0.10<br>< 0.01                                           | < 0.03<br>< 0.01<br>0.12<br>< 0.01                            | < 0.03<br>< 0.01<br>0.26<br>< 0.01                 | < 0.03<br>< 0.01<br>0.20<br>< 0.01                                            |
| Indmium<br>Chromium<br>Copper<br>ron<br>ead<br>Ianganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cd<br>Cr<br>Cu<br>Fe<br>Pb<br>Mn                                    | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                         | 0.003<br>0.05<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                 | < 0.003<br>< 0.03<br>< 0.01<br>0.10<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.003<br>< 0.03<br>< 0.01<br>0.10<br>< 0.01<br>0.02                                                     | < 0.003 < 0.03 < 0.01 < 0.10 < 0.01  6.02                                               | < 0.03<br>< 0.01<br>0.12<br>< 0.01<br>6.02                    | < 0.03<br>< 0.01<br>0.26<br>< 0.01<br>0.03         | < 0.03<br>< 0.01<br>0.20<br>< 0.01<br>0.02                                    |
| Indmium<br>Chromium<br>Copper<br>ron<br>ead<br>Angenese<br>Jercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cd<br>Cr<br>Cu<br>Fe<br>Pb<br>Mn                                    | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L                 | 0.003<br>0.03<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                         | < 0.003 < 0.03 < 0.01 0.10 < 0.01 0.02 < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.003<br>< 0.03<br>< 0.01<br>0.10<br>< 0.01<br>6.02<br>< 0.001                                          | < 0.003 < 0.03 < 0.01 0.10 < 0.01  0.02 < 0.001                                         | < 0.03 < 0.01 0.12 < 0.01 0.02 < 0.001                        | < 0.03 < 0.01 0.26 < 0.01 0.03 < 0.001             | < 0.05 < 0.01 0.20 < 0.01 0.02 < 0.001                                        |
| Indmium Chromium Copper ron and fangenese fercery Tolybdenem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cd<br>Cr<br>Cu<br>Fe<br>Pb<br>Mn<br>Hg                              | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L         | 0.003<br>0.03<br>0.01<br>0.01<br>0.01<br>0.01<br>0.001                                                                                                        | < 0.003 < 0.03 < 0.01 0.10 < 0.01 0.02 < 0.001 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.003<br>< 0.03<br>< 0.01<br>0.10<br>< 0.01<br>6.02<br>< 0.001<br>0.16                                  | < 0.003 < 0.03 < 0.01 0.10 < 0.01  6.02 < 0.001  0.15                                   | < 0.03 < 0.01 0.12 < 0.01 8.02 < 0.001 0.16                   | < 0.03 < 0.01 0.26 < 0.01 0.03 < 0.001 0.16        | < 0.05 < 0.07 0.20 < 0.01 0.02 < 0.001 0.16                                   |
| Indmium Copper Copper Con And And And And And And And And And An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cd<br>Cr<br>Cv<br>Fe<br>Fb<br>Mn<br>Hg<br>Mo                        | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L | 0.003<br>0.05<br>0.01<br>0.01<br>0.01<br>0.01<br>0.001<br>0.001                                                                                               | < 0.003 < 0.03 < 0.01 0.10 < 0.01 0.02 < 0.001 0.16 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.003 < 0.03 < 0.01 0.10 < 0.01 6.02 < 0.001 0.16 < 0.001                                               | < 0.003 < 0.03 < 0.01                                                                   | < 0.03 < 0.01 0.12 < 0.01 0.02 < 0.001 0.16 < 0.01            | < 0.03 < 0.01 0.26 < 0.01 0.03 < 0.001 0.16 < 0.01 | < 0.03 < 0.01 0.00 < 0.01 0.02 < 0.001 0.16 < 0.01                            |
| Indmium Copper Copper Con And And And And And And And And And An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cd<br>Cr<br>Cu<br>Fe<br>Pb<br>Min<br>Hig<br>Mia<br>NI               | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L | 0.003<br>0.03<br>0.01<br>0.01<br>0.01<br>0.01<br>0.001<br>0.01<br>0.                                                                                          | < 0.003 < 0.03 < 0.01 0.10 < 0.01 0.02 < 0.001 0.16 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.003 < 0.03 < 0.01 < 0.01 0.10 < 0.01 8.02 < 0.001 0.16 < 0.01                                         | < 0.003 < 0.03 < 0.01 0.10 < 0.01 6.02 < 0.001 0.13 < 0.01                              | < 0.03 < 0.01 0.12 < 0.01 8.02 < 0.001 0.16 < 0.01            | < 0.03 < 0.01                                      | < 0.03 < 0.01 0.00 < 0.01 0.02 < 0.001 0.16 < 0.01 0.002                      |
| admium Aromium Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper App | Cd<br>Cr<br>Cu<br>Fe<br>Pb<br>Min<br>Hig<br>Mia<br>NI<br>Se         | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                      | 0.003<br>0.03<br>0.01<br>0.01<br>0.01<br>0.01<br>0.001<br>0.01<br>0.                                                                                          | < 0.003 < 0.03 < 0.01 0.10 < 0.01 0.02 < 0.001 0.16 < 0.01 0.002 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.003 < 0.03 < 0.01 0.10 < 0.01 0.00 < 0.01 0.16 < 0.001 0.16 < 0.01 0.02 0.22                          | < 0.003 < 0.03 < 0.01 0.10 < 0.01 0.02 < 0.001 0.13 < 0.01                              | < 0.03 < 0.01 0.12 < 0.01 8.02 < 0.001 0.16 < 0.01 0.001      | < 0.03 < 0.01                                      | < 0.03 < 0.01                                                                 |
| Indmium Copper Copper Con And And And And And And And And And An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cd<br>Cr<br>Cu<br>Fe<br>Pb<br>Min<br>Hig<br>Mia<br>NI               | mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L | 0.003<br>0.03<br>0.01<br>0.01<br>0.01<br>0.01<br>0.001<br>0.01<br>0.                                                                                          | < 0.003 < 0.03 < 0.01 0.10 < 0.01 0.02 < 0.001 0.16 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.003 < 0.03 < 0.01 < 0.01 0.10 < 0.01 8.02 < 0.001 0.16 < 0.01                                         | < 0.003 < 0.03 < 0.01 0.10 < 0.01 6.02 < 0.001 0.13 < 0.01                              | < 0.03 < 0.01 0.12 < 0.01 8.02 < 0.001 0.16 < 0.01            | < 0.03 < 0.01                                      | < 0.63 < 0.01 0.20 < 0.01 0.02 < 0.001 0.16 < 0.01 0.002                      |
| admium Copper Copper Copper Cop Sed Sengunese Serewy Slekel Selectum Send Send Send Send Send Send Send Send                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cd<br>Cr<br>Cu<br>Fe<br>Pb<br>Min<br>Hig<br>Mu<br>Nil<br>Se<br>V    | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                      | 0.003<br>0.03<br>0.01<br>0.01<br>0.01<br>0.01<br>0.001<br>0.01<br>0.                                                                                          | < 0.003 < 8.03 < 0.01 0.10 < 0.01 0.02 < 0.001 0.16 < 0.01 0.002 < 0.003 < 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.003 < 0.03 < 0.03 < 0.01 0.10 < 0.01 0.02 < 0.001 0.02 0.002 0.002 0.002                              | < 0.003 < 0.03 < 0.01 0.10 < 0.01 < 0.01 < 0.02 < 0.001  0.15 < 0.01  0.002 0.22 0.03   | < 0.03 < 0.01 6.12 < 0.01 6.02 < 0.001 0.16 < 0.001 0.21 0.02 | < 0.03 < 0.01                                      | < 0.03 < 0.01                                                                 |
| admium Copper Copper Con End Engrace Fercury Lokybdenum Lickel Selenium Fanadium Linc Linc Linc Linc Linc Linc Linc Linc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cd<br>Cr<br>Cu<br>Fe<br>Pb<br>Mn<br>Hg<br>Mo<br>Nl<br>Nl<br>V<br>Zn | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                      | 0.003<br>0.05<br>0.01<br>0.01<br>0.01<br>0.01<br>0.001<br>0.01<br>0.0                                                                                         | < 0.003 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.003 < 0.03 < 0.01 0.10 < 0.01 0.02 < 0.001 0.16 < 0.002 0.002 0.22 0.03                               | < 0.003 < 0.01 < 0.01 0.10 < 0.01 0.02 < 0.001 0.15 < 0.01 0.002 0.22 0.003             | < 0.03 < 0.01 6.12 < 0.01 6.02 < 0.001 0.16 < 0.01 0.21 0.02  | < 0.03 < 0.01                                      | < 0.03 < 0.01 0.20 < 0.01 0.02 < 0.001 0.16 < 0.01 0.002 0.16 0.002           |
| admium Copper Copper Copper Cop Sed Sengunese Serewy Slekel Selectum Send Send Send Send Send Send Send Send                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cd<br>Cr<br>Cu<br>Fe<br>Pb<br>Min<br>Hig<br>Mu<br>Nil<br>Se<br>V    | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                      | 0.003<br>0.03<br>0.01<br>0.01<br>0.01<br>0.01<br>0.001<br>0.01<br>0.                                                                                          | < 0.003 < 8.03 < 0.01 0.10 < 0.01 0.02 < 0.001 0.16 < 0.01 0.002 < 0.003 < 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.003 < 0.03 < 0.03 < 0.01 0.10 < 0.01 0.02 < 0.001 0.02 0.002 0.002 0.002                              | < 0.003 < 0.01 < 0.01 0.10 < 0.01 0.02 < 0.001 0.15 < 0.01 0.002 0.22 0.003             | < 0.03 < 0.01                                                 | < 0.03 < 0.01                                      | < 0.03 < 0.01 0.20 < 0.01 0.02 < 0.001 0.16 < 0.01 0.002 0.16 0.002 0.18 0.02 |
| admium Copper Copper Con End Engrace Fercury Lokybdenum Lickel Selenium Fanadium Linc Linc Linc Linc Linc Linc Linc Linc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cd<br>Cr<br>Cu<br>Fe<br>Pb<br>Mn<br>Hg<br>Mo<br>Nl<br>Nl<br>V<br>Zn | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                      | 0.003<br>0.05<br>0.01<br>0.01<br>0.01<br>0.01<br>0.001<br>0.01<br>0.0                                                                                         | < 0.003 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.003 < 0.03 < 0.01 0.10 < 0.01 0.02 < 0.001 0.16 < 0.002 0.002 0.22 0.03                               | < 0.003 < 0.01 < 0.01 0.10 < 0.01 0.02 < 0.001 0.15 < 0.01 0.002 0.22 0.003             | < 0.03 < 0.01 6.12 < 0.01 6.02 < 0.001 0.16 < 0.01 0.21 0.02  | < 0.03 < 0.01                                      | < 0.03 < 0.01 0.20 < 0.01 0.02 < 0.001 0.16 < 0.01 0.002 0.16 0.002           |
| Admium Aromium Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper Apper App | Cd Cr Cr Cr Cr Fe Fe Fb Min Hg Mto Nil Se V Zn Francisco            | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                      | 0.003<br>0.05<br>0.01<br>0.01<br>0.01<br>0.01<br>0.001<br>0.01<br>0.0                                                                                         | < 0.003 < 0.003 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 0.003 < 0.03 < 0.03 < 0.01 0.10 < 0.01 0.02 < 0.001 0.16 < 0.03 0.002 0.22 0.03                         | < 0.003 < 0.01 < 0.01 0.10 < 0.01 0.02 < 0.001 0.15 < 0.01 0.002 0.22 0.003             | < 0.03 < 0.01                                                 | < 0.03 < 0.01                                      | < 0.03 < 0.01 0.20 < 0.01 0.02 < 0.001 0.16 < 0.01 0.002 0.18 0.02            |
| admium hromium hopper non end fanganese fercury lohybdenum lickel elenium /snadium /snadium Ladium 226 Radium Error Estimate ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cd Cr Cr Cr Cr Fe Fe Fb Min Hg Mto Nil Se V Zn Francisco            | mg/L ung/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m              | 0.003<br>0.05<br>0.01<br>0.01<br>0.01<br>0.01<br>0.001<br>0.01<br>0.0                                                                                         | < 0.003 < 0.01 < 0.01 0.10 < 0.01 0.02 < 0.001 0.16 < 0.01 0.002 0.12 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.003 < 0.03 < 0.03 < 0.01 0.10 < 0.01 0.02 < 0.001 0.16 < 0.002 0.002 0.22 0.003 1.20 431 6.2          | < 0.003 < 0.03 < 0.01                                                                   | < 0.03 < 0.01                                                 | < 0.03 < 0.01                                      | < 0.03 < 0.01                                                                 |
| admium Aromium | Cd Cr Cr Cr Cr Fe Fe Fb Min Hg Mto Nil Se V Zn Francisco            | mg/L ung/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m              | 0.003<br>0.05<br>0.01<br>0.01<br>0.01<br>0.01<br>0.001<br>0.01<br>0.0                                                                                         | < 0.003 < 0.003 < 0.001 0.10 < 0.001 0.02 < 0.001 0.16 < 0.001 0.002 0.22 < 0.001 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 | < 0.003 < 0.03 < 0.01                                                                                     | < 0.003 < 0.03 < 0.01                                                                   | < 0.03 < 0.01                                                 | < 0.03 < 0.01                                      | < 0.03 < 0.01                                                                 |
| admium Aromium | Cd Cr Cr Cr Cr Fe Fe Fb Min Hg Mto Nil Se V Zn Francisco            | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                      | 0.003 0.05 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 | < 0.003 < 0.003 < 0.001 0.100 < 0.001 0.16 < 0.001 0.002 0.002 < 0.001 0.002 0.22 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 0.003 < 0.03 < 0.03 < 0.01 0.10 < 0.01 0.02 < 0.001 0.16 < 0.01 0.02 0.22 0.22 0.32 0.03  1.20 4.31 6.2 | < 0.003 < 0.03 < 0.01 0.10 < 0.01 0.10 < 0.01 0.13 < 0.01 0.002 0.22 0.03  1.18 447 6.2 | < 0.03 < 0.01                                                 | < 0.03 < 0.01                                      | < 0.63 < 0.01                                                                 |
| admium Aromium | Cd Cr Cr Cr Cr Fe Fe Fb Min Hg Mto Nil Se V Zn Francisco            | mg/L ung/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L m              | 0.003<br>0.05<br>0.01<br>0.01<br>0.01<br>0.01<br>0.001<br>0.01<br>0.0                                                                                         | < 0.003 < 0.003 < 0.001 0.10 < 0.001 0.02 < 0.001 0.16 < 0.001 0.002 0.22 < 0.001 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.72 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 < 0.73 | < 0.003 < 0.03 < 0.01                                                                                     | < 0.003 < 0.03 < 0.01                                                                   | < 0.03 < 0.01                                                 | < 0.03 < 0.01                                      | < 0.03 < 0.01                                                                 |

and echeports clients 95 cerew hunetheretine perform hand \$15pt 155-16 als



ENERGY LABORATORIES, INC.
SHIPPING: 2393 SALT CREEK HIGHWAY • CASPER, WY 82601
MAILING: P.O. BOX 3258 • CASPER, WY 82602
E-mail: energy@trib.com • FAX: (307) 234-1639 • PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

LARORATORY ANALYSIS REPORT - CROW BUTTE RESOURCES

| •            | •            | •           | April 13, 1999 |                 |
|--------------|--------------|-------------|----------------|-----------------|
| July 8, 1999 | June 8, 1999 | May 6, 1999 | April 12, 1999 | March 12, 1999  |
| 08-17-99     | 85-20-99     | 64-15-99    | 93.12.99       | 82-19-99        |
| Water        | Water        | Water       | Water          | Water           |
| 99-30550     | 99-22323     | 99-34361    | 99.20852       | <b>99-16103</b> |
| Round 8      | Round 4      | Round 3     | Round 2        | Round I         |
| PT-3 PR-3    | 21.4 P.A.    | 77-5 FR-3   | 77.5 FR.1      | rr-5 rr-3       |

| Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Consti |                  | Units       | Reporting Link | Results | Results | Results | Results .    | Results | Results |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|----------------|---------|---------|---------|--------------|---------|---------|
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ω                | 1, Par      | 1.0            | 12.9    | 15.4    | 14.8    | 14.0         | 14.6    | 0.11    |
| Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N.               | 7,34        | 0.1            | 3.5     | C       | 1.1     | 4.0          | 4.0     | 4.4     |
| Sodism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                | 7,34        | 1.0            | 346     | 556     | 360     | 349          | 355     | 351     |
| Petassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | я                | 'V Sue      | 0.1            | 10.3    | 11.2    | 12.0    | 11.2         | 12.2    | 12.0    |
| Carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | co,              | 73m         | 0.1            | < 1.0   | a:1 >   | < 1.0   | < 1.0        | < 1.0   | < 1.0   |
| Dicarbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HCO,             | <b>1</b> /2 | 1.0            | 405     | 407     | 421     | <b>\$</b> 00 | 403     | 100     |
| Selfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | Tr Jim      | 1.0            | 302     | 325     | 334     | 352          | 356     | 334     |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q                | <b>√3</b> ™ | 1.0            | 127     | 127     | 134     | 135          | 141     | 126     |
| Ammonium as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MI.              | 7/34        | 0.03           | 6.03    | 0.06    | 0.09    | 6.08         | 0.09    | 0.14    |
| Niate Is N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | YO,              | 7/8us       | 0.10           | < 0.10  | < 0.10  | < 0.10  | < 0.10       | < 0.10  | < 0.10  |
| Nivate + Nivite as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO, + NO,        | 7/3us       | 0.10           | < 0.10  | < 0.10  | < 0.10  | < 0.10       | < 0.10  | < 0.10  |
| Phoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ţ                | J/gre       | 0.10           | 0.51    | 69.0    | 0.51    | 0.50         | 0.49    | 0.53    |
| Silica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SIO <sub>2</sub> | 1/3m        | 1.0            | 14.0    | 1.31    | 16.8    | 2.21         | . 14.2  | 2.21    |

| Total Dissolved Solida @ 180°C TDS mg/L 2.0 1070 1070 1080 1100 1090 1050 1050 1050 1050 1050 105                                                                                                                                                                                                                                                                           |           | l         | _            |                                | _           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|--------------|--------------------------------|-------------|
| Imp/L         2.0         1070         1020         1080         1100         1090           penharit         1.0         1730         1740         1760         1790         1740           mp/L         1.0         312         334         343         328         332           sid. minh         0.10         8.06         8.06         8.22         8.13         8.09 | pH        | Alkalinky | Conductivity | Total Dissolved Solids @ 180°C | Non-Aletals |
| 2.9 1070 1050 1040 1100 1090 1090 1.0 1090 1090 1090 1090                                                                                                                                                                                                                                                                                                                   |           | ١.        |              |                                |             |
| 1070 1020 1080 1100 1090 1090 1750 1740 1750 1750 1740 1750 1750 1750 1750 1750 1750 1750 175                                                                                                                                                                                                                                                                               | sid. unii | Water 1   | penha/e      | mg/L                           |             |
| 1020 1080 1180 1090 1740 1740 1740 1756 238 232 8.13 8.09                                                                                                                                                                                                                                                                                                                   | 0.10      | 1.0       | 1.0          | 2.0                            |             |
| 1060 1100 1090 1090 1740 1740 321 321 322 8.13 8.09                                                                                                                                                                                                                                                                                                                         | <br>8.06  | 332       | 1750         | 1070                           |             |
| 1100 9090<br>1790 1740<br>328 312<br>8.13 8.09                                                                                                                                                                                                                                                                                                                              | <br>\$.06 | 334       | 1740         | 1010                           |             |
| 1090<br>1740<br>332<br>8.09                                                                                                                                                                                                                                                                                                                                                 | 8.22      | 343       | 1760         | 1010                           |             |
|                                                                                                                                                                                                                                                                                                                                                                             | 8.13      | 328       | 1790         | 1100                           |             |
| 1050<br>1750<br>329<br>6.17                                                                                                                                                                                                                                                                                                                                                 | 8.09      | 3)2       | 1740         | 1090                           |             |
|                                                                                                                                                                                                                                                                                                                                                                             | 6.17      | 329       | 1750         | 1050                           |             |

| _        | DIRECT PISTAGE |                |               |        |         |         |         |              |         |                   |
|----------|----------------|----------------|---------------|--------|---------|---------|---------|--------------|---------|-------------------|
| ı.       | Aluminum       | λ              | "VIIII        | 0.10   | < 0.10  | < 0.10  | < 0.10  | < 0.10       | < 0.10  | < 0.10            |
|          | Arpenic        | λı             | 17.3mt        | 0.1101 | 110.0   | 9.011   | 0.014   | 0.010        | 0.012   | 0.011             |
|          | Darlum         | P.             | <b>mg/1</b> . | 0.10   | < 0.10  | < 0.10  | < 0.10  | < 0.10       | < 0.10  | <b>&lt; 0.1</b> 0 |
|          | Daron          | æ              | 1/34          | 0.10   | 0.41    | 0.42    | 0.27    | 0.39         | 0.39    | 0.39              |
|          | Cadreluni      | 5              | 7,34          | 0.003  | < 0.015 | < 0.003 | SUD:0 > | < 0.003      | < 0.003 | < 0.003           |
|          | Chromium       | Cr             | 3.8 J.        | 0.83   | < 0.05  | < 0.03  | < 0.03  | < 0.03       | < 0.03  | <b>&lt; 0.03</b>  |
|          | Copper         | C <sub>1</sub> | 7/34          | 0.01   | < 0.01  | < 0.01  | 10.0 >  | 10.0 >       | 10.0 >  | < 0.01            |
|          | fron           | Fe             | Tulke         | 0.01   | 0.07    | 0.03    | 0.04    | 0.07         | 0.07    | 0.07              |
|          | Lead           | 3              | 1/3m          | 0.01   | < 0.01  | < €.01  | < 0.01  | < 0.01       | < 0.01  | < 0.01            |
| <u>.</u> | Manganese      | Min            | 7, Jus        | C.01   | 0.01    | 0.02    | 0.01    | <b>8</b> .01 | 0.01    | 10.0              |
|          | Mercury        | 311            | 1/3m          | 0.001  | < 0.001 | < 0.001 | < 0.001 | A 0.001      | A 0.001 | <b>&lt; 6.901</b> |
|          | Molybdenum     | Мо             | 3/2           | 0.01   | 0.05    | 0.06    | 0.05    | 0.07         | 6.07    | 0.93              |
|          | Nickel         | M              | mg/L          | 0.01   | < 0.01  | < 0.01  | < 6.01  | < 0.01       | < 0.01  | < 0.01            |
|          | Selenium       | Se             | 7,344         | 0.001  | 0.001   | 0.002   | 0.002   | 0.001        | 0.002   | 0.902             |
| 1        | Vanadiem       | ٧              | 7/34          | 0.01   | 0.09    | 0.08    | 0.09    | 0.07         | 0.07    | 0.06              |
|          | Zinc           | Zn             | 7,344         | 0.01   | < 0.01  | 0.03    | 0.02    | 0.03         | 0.02    | 0,02              |
|          |                |                |               |        |         |         |         |              |         |                   |

| Quality Assurance Data |        | Target Range |       |       |       |       |       |       |
|------------------------|--------|--------------|-------|-------|-------|-------|-------|-------|
| Anton                  | anc q  |              | 16.35 | 17.06 | 17.67 | 17.73 | 18.06 | 17.13 |
| Cation                 | P)     |              | 16.27 | 16.37 | 17.07 | 16.57 | 16.83 | 16.66 |
| WYDEQ A/C Balance      | ×      | .5 . 15      | -0.81 | .n.36 | -1.72 | -3.54 | -3.52 | -1.37 |
| Cale TDS               | mg/L   |              | 1020  | 1059  | 1087  | 1042  | 1101  | 1057  |
| TDS A/C Balance        | dec. % | 0.\$0 - 1.20 | 7.83  | 1.00  | 0.99  | 1.02  | 0.99  | 0.99  |
|                        |        |              |       |       |       |       |       |       |

PSP 2135547.sh



SHIPPING: 2393 SALT CREEK HIGHWAY . CASPER, WY 82601

MAILING: P.O. BOX 3258 • CASPER, WY 82602

E-mall: energy@trlb.com • FAX: (307) 234-1639 • PHONE: (307) 235-0515 • TOLL FREE: (888) 235-0515

#### LABORATORY ANALYSIS REPORT - CROW BUTTE RESOURCES

Bample titte
Reund:
Läbörstory ET:
Bämple Matria:
Bample Datet
Report Datet
Rärbed Report Dates

| PR-4           | PR-4 (PA1-1)   | FR-4 (F31-1) | PR-4 (PM-1)  | PR-4 (PA9-1) | PRA (FALA)       |
|----------------|----------------|--------------|--------------|--------------|------------------|
| Raund 1        | Round 2        | Round 3      | Round 4      | Round S      | Round 8          |
| 97-16103       | 99-20861       | 97-24367     | 99-28323     | 99-30352     | . 99-35543       |
| Water          | Water          | Water        | Water        | Water        | White x          |
|                | 83-18-99       | 64-13-99     | 85-20-99     | 06-17-97     | 07-13-99         |
| 62-19-99       |                | Atay 6, 1999 | June 8, 1999 | July E. 1999 | August 13, 1999  |
| March 12, 1999 | April 12, 1999 | MARY W. 1777 |              |              | Commenter Select |
|                | April 15, 1999 | •            |              |              |                  |

|                       |           |       | Reporting Limit | Results | Resnks | Results | Results | Results | Results |
|-----------------------|-----------|-------|-----------------|---------|--------|---------|---------|---------|---------|
| Major lond            |           | Units |                 | 16.8    | 21.5   | 20.4    | 19.6    | 21.1    | 14.0    |
| Catchim               | Ca        | mg/L  | 1.0             |         |        | 5.4     | 5.5     | 5.4     | 4.2     |
| Magnesium             | Mg        | mg/L  | 1.0             | 4.4     | 9.6    | 369     | 348     | 365     | 271     |
| Sodium                | Na        | mg/L  | 1.0             | 341     | 362    |         |         | 14.6    | 11.0    |
| Potassium             | ĸ         | mg/L  | 1.0             | 11.8    | 13.2   | 13.8    | 13.0    |         | < 1.0   |
| Carbonate             | CO        | mg/L  | 1.0             | < 1.0   | < 1.0  | 9.7     | < 1.6   | < 1.0   |         |
| Bicarbonate           | lico,     | mg/L  | 1.0             | 413     | 442    | 444     | 460     | 468     | 399     |
|                       |           |       | 1.0             | 319     | 345    | 337     | 347     | 354     | 225     |
| Sulfate               | \$0,      | mg/L  |                 | 124     | 130    | 132     | 130     | 134     | 76.0    |
| Chloride              |           | mg/L  | 1.0             |         |        | 9.11    | 0.08    | 0.11    | 0.15    |
| Ammonium as N         | M114      | mg/L  | 0.03            | 0.07    | 0.07   |         |         | < 0.10  | < 0.10  |
| Nivhe as N            | NO.       | mg/L  | 0.10            | < 0.10  | < 8.10 | < 0.10  | < 0.10  |         |         |
| Nizate + Nitrite as N | NO, + NO, | mg/l. | 0.10            | < 0.10  | < 0.10 | < 0.10  | < 0.10  | < 0.10  | < 0.10  |
|                       | - 1       |       | 6.10            | 0.59    | 0.48   | 0.42    | 0.44    | 0.43    | 0.79    |
| Fluoride              |           | mg/L  |                 |         | 17.9   | 19.0    | 17.0    | 15.9    | 14.5    |
| Silica                | 510,      | mg/t. | 1.6             | 14.5    | 17.7   |         |         | ·       |         |

| Non-Metals                     | <del></del> | 1           |      |      |      |      |      |       |      |
|--------------------------------|-------------|-------------|------|------|------|------|------|-------|------|
| Total Dissolved Solids @ 180°C | TDS         | mg/L        | 2.0  | 1040 | 1130 | 1140 | 1120 | 937   | 839  |
|                                | 103         | mmho/e      | 1.0  | 1760 | 1860 | 1810 | 1820 | 2420  | 1340 |
| Cenductivity                   |             | <del></del> |      | 339  | 362  | 372  | 377  | 384   | 327  |
| Alkalinky                      | CaCO        | mg/L        | 1.0  |      | 8,20 | 8.36 | 8,18 | \$.21 | 8.21 |
| lett · · ·                     |             | std. unit   | 0.10 | 8.24 | 9,20 | 5.5- |      |       |      |

| Trace Me   | lais    | 1      | •     |          |         |         |         |          |         |
|------------|---------|--------|-------|----------|---------|---------|---------|----------|---------|
| Members    | I AI    | mg/L   | 0.10  | < 0.10   | < 0.10  | < 0.10  | < 0.10  | < 0.10'' | < 0.10  |
| Arsenic    | As      | mg/L   | 0.001 | 0.004    | 9,804   | 0.003   | 0.002   | 0,002    | 0.002   |
|            | Ba      | mg/L   | 0.10  | < 0.10   | < 0.10  | < 0.10  | < 0.10  | < 0.10   | < 0.10  |
| Darlum     |         |        | 0.10  | 0.42     | 0.41    | 0.26    | 8.37    | 0.36     | 0.33    |
| Boren      | <u></u> | mg/L.  | 0.003 | < 0.005  | < 0.003 | < 0.005 | < 0.003 | < 0.003  | < 0.005 |
| Cadmium    | CI      | mg/L _ |       |          | < 0.03  | < 0.03  | < 0.03  | < 0.03   | < 0.03  |
| Chromium   | <u></u> | mg/L   | 0.03  | < 0.05   |         | < 0.01  | < 0.01  | < 0.01   | < 0.01  |
| Соррег     | Cu      | mg/L   | 0.01  | < 0.01   | < 0.01  |         | < 0.01  | 0.03     | 0.01    |
| lron       | Fe      | mg/L   | 0.01  | 0.01     | 0.0)    | 0.04    |         | < 0.01   | < 0.01  |
| Lead       | Pb      | mg/L   | 0.01  | < 0.01   | < 0.01  | < 0.01  | < 6.01  |          |         |
| Manganese  | Me      | mg/L   | 0.01  | 0.01     | 0.02    | 0.02    | 8.02    | 0.02     | 6.01    |
|            | lig     | mg/L   | 0.001 | < 6.001  | < 0.001 | < 0.001 | < 0.001 | < 0.001  | < 0.001 |
| Mercury    | No      | mg/L   | 0.01  | < 0.05 ⋅ | 0.03    | 6.64    | 0.01    | 0.07     | 0.04    |
| Molybdenum | NI NI   |        | 0.01  | < 0.01   | < 0.01  | < 0.01  | < 0.01  | < 0.01   | < 0.01  |
| Nickel     |         | mg/L   |       | 0.001    | 100.0   | 6,002   | < 0.001 | 0.001    | 6.001   |
| Selenium   | Se_     | mg/L   | 0.001 |          | 0.02    | 0.01    | 0.02    | 0.01     | 0.01    |
| Venedium   |         | me/L   | 6.01  | 0.04     | 6.61    | 0.01    | 0.02    | 0.01     | < 0.01  |
| Zhc        | Zn      | ang/l. | 0.01  | < 0.01   | 0,01    | 9.01    |         |          |         |

|                        |                   | 1       |             |      |      |      | •    | · · · · · · · · · · · · · · · · · · · |      |
|------------------------|-------------------|---------|-------------|------|------|------|------|---------------------------------------|------|
| Radiometrics           | Mary              | me/L    | 0,0003      | 1.62 | 5.44 | 5.74 | 4.08 | 5.88                                  | 3.56 |
| Uranium<br>Radium 226  | I <sup>M</sup> Ra | PCM.    | 0.1         | 105  | 168  | 195  | 155  | 166                                   | 99.1 |
| Radium Free Estimate 4 | - 88              | Pr. 21. | <del></del> | 3.7  | 3.8  | 3.6  | 3.8  | 3.7                                   | 3.6  |

| Quality Assurance Data |        | Target Range |       | ·     |       |         |       | 13.42 |
|------------------------|--------|--------------|-------|-------|-------|---------|-------|-------|
| 7.5                    | 1      |              | 16,96 | 18.12 | 18.21 | 18.46   | 18.86 |       |
| Anion                  | meq    |              | 16.35 | 17,64 | 17.89 | \$6.90  | 17.77 | 13.14 |
| Cation                 | med    |              | 10.33 |       |       | -4,40   | -2.97 | -1.05 |
| WYDEQ A/C Balance      | 7      | .5 . 15      | -1.81 | -1.35 | -0.88 |         |       |       |
|                        |        |              | 1039  | 1117  | 1124  | 1111    | 1145  | 816   |
| Cale TDS               |        |              |       | 1,01  | 1.01  | 1.01    | 0.82  | 1.63  |
| TDS A/C Balance        | dec. S | 0,80 - 0.20  | 1.02  | 1.01  | 1.01  | <u></u> |       |       |

<sup>\*</sup>Molybdenum was analyzed at a detection limit of 0 05 for this Round.

ans retreports cheras 90 crow hunethaseline restoration pr413546. als

1.ng to No. 54403

## CROW BUTTE RESOURCES, INC.



## Appendix 7

NDEQ Acceptance of Mine Unit 1 Restoration

# STATE OF NEBRASKA



Mike Johanns Governor DEPARTMENT OF ENVIRONMENTAL QUALITY

Suite 400, The Atrium 1200 'N' Street P.O. Box 98922 Lincoln, Nebraska 68509-8922 Phone (402) 471-2186

NOV 1 8 1999

Mr. Steve Collings Crow Butte Resources, Inc. 1670 Broadway, Suite 3450 Denver, CO 80202

Dear Mr. Collings:

As per the Departments request for a submittal of monitoring well locations for the boundaries of mine units 2 and 3, the locations were presented via telephone on October 22, 1999 by Mr. Michael Griffin of CBR. Three production/injection wells (PR8, IJ13, and PR15) which meet the screened interval requirements were proposed for this purpose. Wells PR8 and PR15 would monitor the boundary of Mine Unit 2 and well IJ13 would monitor the boundary of Mine Unit 3. It was also proposed that sampling of the three monitoring wells would be completed at the time restoration was completed for each Mine Unit.

The Department has reviewed this proposal and determined that the location and construction of the proposed monitoring wells is acceptable. However, sampling of these three monitoring wells should be the same as the current production zone monitoring well schedule (biweekly) for each Mine Unit.

The Department hereby accepts the restoration of Mine Unit 1. All production/injection and monitoring wells associated with Mine Unit 1 may be abandoned according to Title 122, Chapter 36 and Title 178, Chapter 12.

If you have any questions concerning this matter, please contact David Miesbach of my staff at (402) 471-0096. Thank-you.

Sincerely,

Michael Linder

Director

ML/ML/dlm dave/cbr/letter/muldon2.doc pc: Dave Carlson, NDEQ Mike Griffin, CBR