Transmitted) with letter, cltd. 6/25/99

GJO-99-86-TAR Rev. 1

Final Site Observational Work Plan for the UMTRA Project Site at Grand Junction, Colorado

May 1999

U.S. Department of Energy Grand Junction Office

9907010265 990625 PDR WASTE WM-54 PDR

UMTRA Ground Water Project

Final Site Observational Work Plan for the UMTRA Project Site at Grand Junction, Colorado

May 1999

Prepared by
U.S. Department of Energy
Grand Junction Office
Grand Junction, Colorado

Project Number UGW-511-0008-06-000 Document Number U0042400

Work Performed Under DOE Contract Number DE-AC13-96GJ87335

Contents

Acronyms and Abbreviationsi					
	Summary				
1.0 Intro	duction	1-1			
1.1 Gr	ound Water Compliance Strategy				
1.2 U	MTRA Project Programmatic Documents				
	elationship to Site-Specific Documents				
1.4 SC	OWP Revisions	1-2			
1.5 So	urces of Historical Data	1-2			
2.0 Regu	latory Framework	2_1			
2.1 Fe	deral Regulations	2_1			
- 2.1.1	Uranium Mill Tailings Radiation Control Act	2_1			
2.1.2	National Environmental Policy Act	 2_2			
2.1.3	Other Regulations				
2.2 Sta	ate and Tribal Regulations	7_2			
2.3 DC	DE Orders	2—3 1∕—2			
2.4 Ag	reements	·····································			
3.0 Site (Conditions				
3.1 Ph	ysical Setting and Climate				
3.2 La	nd and Ground Water Use				
3.3 Sit	e History	J—1			
3.3.1	Milling History	נ-כ ר ר			
3.3.2	Surface Remedial Action and Current Status				
3.3.3	Sources of Ground Water Contamination				
3.4 Fut	ture Uses of Land and Ground Water	C–C			
40 Field	Investigations Results				
4 1 Ge	ology	4-l			
4.1.1	Alluvial Aquifer	4-1			
	Bedrock Identification	4-1			
4.1.2 4.2 Hv	drology	4–2			
4.2.1	Alluvial Aquifor Analysia	4-2			
		4–5			
4.2.3	Dakota Sandstone and Mancos Shale Analysis	4-6			
•	1				
4.3.1		4-8			
4.3.2	Water and Sediment Chemistry Sampling and Sample Analysis	4–8			
4.3.3	Distribution Coefficients	4–32			
	Subpile Soil Analysis	4–36			
4.4.1	logical Field Investigations	4-41			
4.4.2		4-41			
4.4.3	Sampling for Chemical Analysis	4-45			
4.4.4	Abiotic Sampling	4–46			
	Biotic Sampling	4–53			
AL WILL	d Surveys	4–55			
4.U V1C	inity Property Study	4–55			
Once	ptual Site Model	5–1			
3.1 Ge0	Positional Standard I Statistics	5–1			
5.1.1	Regional Structure and Setting	5–1			

rigure 5-13. Time Concentration Plot—Molybdenum in Old Wells (745, 746) 5-38 Figure 5-15. Time Concentration Plot—Uranium in Old Wells (590, 736, 740, 742).....5-40 Figure 5-16. Time Concentration Plot—Uranium in Old Wells (745, 746)......5-41 Figure 5-18. Grand Junction Site Conceptual Model...... 5-51 Figure 5-19. Grand Junction Site Food Web...... 5-53 Figure 7-1. Compliance Selection Framework for the Grand Junction Site......7-2

Contents

Appendices

Appendix A	Monitoring Well Locations and Information	A-1
Appendix B	Lithologic/Well Completion Logs	B-1
Appendix C	Monitoring Well Static Water Locations	C-1
Appendix D	Calculation Set for Ground Water	D-1
Appendix E	Summary Data for Subsurface Waters by Upgradient, On Site,	
	Downgradient, and Dakota Wells and Preliminary Surface Water Sample	
	Descriptions	E-1
Appendix F	Calculation Set for Distribution Coefficients (K _d s)	E—1 F_1
Appendix G	Calculations Set for Subpile Samples	G-1
Appendix H	Calculation Set for Ambient Ground Water Contamination	H–1
Appendix I	Risk Assessment Data	I–1
Appendix J	Economic Feasibility Study for Treatment of Background Ground Water for Municipal Water Supply	I–1

Plates

Plate 1 Grand Junction Base Map

Plate 2 Regional Base Map

Acronyms and Abbreviations

ACL alternate concentration limit
BAF bioaccumulation factor
BLRA baseline risk assessment
BOR U.S. Bureau of Reclamation

CDPHE Colorado Department of Public Health and Environment

cm centimeter(s)

COPC chemical of potential concern DOE U.S. Department of Energy

EPA U.S. Environmental Protection Agency

ERA ecological risk assessment

ft. foot (feet)

GJO Grand Junction Office gpm gallons per minute HI hazard index HQ hazard quotient

in. inch(es)

K_d distribution coefficient

km kilometer(s)
lb pounds
m meter(s)

μg/L micrograms per liter

μm micrometers

MCL maximum concentration limit

1g/L milligrams per liter

mi mile mL milliliter

mL/g milliliters per gram

NEPA National Environmental Policy Act
ORNL Oak Ridge National Laboratory

pCi/g picocuries per gram pCi/L picocuries per liter

PEIS Programmatic Environmental Impact Statement

PVC polyvinyl chloride
RBC risk-based concentration
RRM residual radioactive materials
SEE Site Environmental Evaluation

SI saturation index

SOWP Site Observational Work Plan

TAGR Technical Approach to Groundwater Restoration

TDS total dissolved solids

UMTRA Uranium Mill Tailings Remedial Action (Project)
UMTRCA Uranium Mill Tailings Radiation Control Act

USGS U.S. Geological Survey

Executive Summary

This document is the Site Observational Work Plan (SOWP) for the Grand Junction, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The purpose of this report is to provide a strategy for achieving compliance with requirements established in the Uranium Mill Tailings Radiation Control Act (42 *United States Code* 7901 *et seq.*) and the U.S. Environmental Protection Agency's (EPA's) "Health and Environmental Protection standards for Uranium and Thorium Mill Tailings" (Title 40, *Code of Federal Regulations*, Part 192).

The compliance strategy proposed for the Grand Junction, Colorado, site is no remediation and the application of supplemental standards based on the criterion of limited use ground water. Ground water in the alluvial aquifer is not a current or potential source of drinking water because the quality of the water is naturally poor. Average uranium and selenium concentrations in background ground water of the alluvial aquifer exceed UMTRA Project maximum concentration limits. Existing institutional controls imposed by the U.S. Department of Energy, the Colorado Department of Public Health and Environment, or the City of Grand Junction prevent use of the alluvial aquifer for drinking water on site and downgradient of the site. A feasibility study indicates that treatment of the ambient ground water for municipal use would be unreasonably expensive.

The Grand Junction millsite, also known as the Climax uranium mill, began as a sugar beet mill and was operated as a uranium/vanadium mill from 1950 to 1970. During that time the mill processed more than 2 million tons of ore, which produced about 12 million pounds of uranium oxide (U₃O₈) and 46 million pounds of vanadium oxide (V₂O₅). Ore was crushed, ground, salt oasted and water leached to remove vanadium; uranium was extracted with a sulfuric acid leach. he Climax Corporation demolished most of the mill buildings and seeded the tailings piles before leaving the site in 1976. From the late 1980s to 1994 the site was used as an interim repository for mill tailings removed from Grand Junction vicinity properties as part of the UMTRA Surface Project. By the end of 1994 all tailings and the remaining buildings, except the old sugar beet warehouse, had been demolished and hauled to the Grand Junction disposal site about 18 miles southeast of Grand Junction.

The original Site Observational Work Plan (DOE 1996d) indicated that applying the criterion of widespread ambient contamination of the alluvial aquifer might be justified on the basis of high concentrations of total dissolved solids and naturally high concentrations of molybdenum, selenium, and uranium in background alluvial ground water. The Baseline Risk Assessment (BLRA)(DOE 1995a) concluded that ground water quality in the alluvial aquifer in the area is naturally poor, the aquifer is not being used as a source of drinking water, and that institutional controls were in place to prevent its future use as a source of drinking water. A list of chemicals of potential concern (COPCs) was developed and consisted of arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, ²²⁶Ra, sulfate, uranium, vanadium, and zinc. Risks to human health and the environment were considered minimal, but the BLRA recommended collection of additional information to further evaluate these risks and to further characterize the ground water.

For this 1999 Site Observational Work Plan, additional information was collected to evaluate the ound water and surface water quality and movement, determine any contribution of contamination from sediments, refine the hydrogeologic model, and provide updated information about risks to human health and the environment. Background ground water quality was

1.0 Introduction

.he U.S. Department of Energy (DOE) Grand Junction Office (GJO) in Grand Junction, Colorado, produced this Site Observational Work Plan (SOWP). Its purpose is to determine a site-specific approach to comply with the U.S. Environmental Protection Agency (EPA) ground water standards for the Grand Junction Uranium Mill Tailings Remedial Action (UMTRA) Project site (also called the Climax site). The Grand Junction SOWP presents a comprehensive summary of the site hydrogeologic data, delineates a conceptual model for the aquifer system, and discusses the origins of milling-related ground water contamination. It also defines the magnitude of ground water contamination, evaluates potential human health and ecological risks associated with ground water contamination, and proposes a compliance strategy.

Section 2.0 describes the requirements for meeting standards at UMTRA Project sites. Section 3.0 provides new information gathered in 1997 and 1998 about the site, Sections 4.0 and 5.0 provide site-specific data that support the proposed ground water compliance strategy, and Sections 6.0 and 7.0 present justification for the proposed compliance strategy.

1.1 Ground Water Compliance Strategy

The proposed ground water strategy for the Grand Junction site is no remediation and the application of supplemental standards based on the criterion of limited use ground water. Limited use ground water is ground water that is not a current or potential source of drinking water because of widespread ambient contamination that cannot be cleaned up with treatment methods reasonably employed by public water supply systems (Title 40, Code of Federal Regulations 'CFR], Part 192.11). The shallow ground water in the alluvial aquifer is considered limited use cound water. However, EPA standards require DOE to consider the effect of milling contamination on current or future beneficial uses of the ground water. Because the quality of ground water in the site area is naturally poor, and because the City of Grand Junction prevents the use of ground water for domestic consumption, potential beneficial uses would be limited to watering livestock and plants.

1.2 UMTRA Project Programmatic Documents

Programmatic documents that guide the SOWP include the UMTRA Ground Water Management Action Process (DOE 1998), the Final Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Groundwater Project (PEIS) (DOE 1996c), and the Technical Approach to Ground Water Restoration (TAGR) (DOE 1993a). The Ground Water Management Action Process document states the mission needs and objectives for the UMTRA Ground Water Compliance Program and provides an overall technical and managerial approach for conducting the program. The PEIS provides an objective programmatic decision-making framework for conducting the UMTRA Ground Water Project, assesses the potential programmatic effects of conducting the project, provides a method for determining the site-specific ground water compliance strategies, and provides data and information that can be used to prepare site-specific National Environmental Policy Act (NEPA) documents (10 CFR 1021). The TAGR provides technical guidance for conducting the ground water program.

Potential Groundwater Contamination at Grand Junction UMTRAP Vicinity Properties (Cahn and others 1988); and 45 boxes of field notes, internal reports, and other information rehived in the DOE-GJO vault. Information in these boxes was generated by various contractors performing assessment and construction work at the site.

Other publications dedicated to local ground water or associated studies include Geology and Artesian Water Supply, Grand Junction Area, Colorado, a U.S. Geological Survey Professional Paper by Lohman (1965); the Cobble Aquifer Investigation, U.S. Bureau of Reclamation (U.S. Bureau of Reclamation 1986); and U.S. Geological Survey Open-File Report 94-110 entitled Physical, Chemical and Biological Data for Detailed Study of Irrigation Drainage in the Uncompander Project Area and in the Grand Valley, West-Central Colorado, 1991-92 (Butler and others 1994).

Human health and ecological risk information is described in the Environmental Impact Statement for the millsite (DOE 1986) and in the BLRA (DOE 1995a).

An important source of information and one used extensively for this report is the Site Environmental Evaluation (SEE) UMTRA database maintained at the DOE-GJO facility. The database produces reports, tables, and graphs of surface water, ground water, and sediment chemistry, monitoring well information, lithologic and well completion data, and map coordinate information. Data for Grand Junction start in the mid-1980s. All new data generated for this report reside in SEE UMTRA. Maps that display analytical data are generated using SEE UMTRA information merged with an ArcView GIS package.

2.0 Regulatory Framework

A ground water compliance strategy is proposed for the Grand Junction site to achieve compliance with EPA ground water standards applicable to Title I UMTRA Project sites. This section identifies the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA), the EPA ground water protection standards (40 CFR Part 192), NEPA, and other regulations that are applicable to the UMTRA Ground Water Project.

2.1 Federal Regulations

2.1.1 Uranium Mill Tailings Radiation Control Act

The U.S. Congress passed UMTRCA (42 U.S.C. §7901 et seq.) in 1978 in response to public concerns about the potential health hazards from long-term exposure to uranium mill tailings. UMTRCA authorized DOE to stabilize, dispose of, and control uranium mill tailings and other contaminated materials at uranium-ore processing sites.

UMTRCA has three titles that apply to uranium-ore processing sites. Title I designates 24 inactive processing sites to undergo remediation, directs EPA to promulgate standards, mandates remedial action in accordance with standards prescribed by EPA, directs remedial action to be selected and performed with the concurrence of the NRC in consultation with states and Indian tribes, directs NRC to license the disposal sites for long-term care, and directs DOE to enter into cooperative agreements with the affected states and Indian tribes. Title II applies to active uranium mills, and Title III applies to certain uranium mills in New Mexico. The UMTRA Ground Water Project has responsibility for administering only Title I of UMTRCA.

in 1988, Congress passed the Uranium Mill Tailings Remedial Action Amendments Act (42 U.S.C. §7923 et seq.) authorizing DOE to extend without limitation the time needed to complete ground water remediation at the processing sites.

EPA Ground Water Standards

UMTRCA requires that EPA promulgate standards for protecting public health and the environment from hazardous constituents associated with processing uranium ore and with the resulting residual radioactive materials (RRM). On January 5, 1983, EPA published standards in 40 CFR 192 for the disposal and cleanup of RRM. The standards for ground water compliance were revised, and a final rule was published on January 11, 1995, and codified at 40 CFR 192.

The standards in 40 CFR 192.02 (c)(1) require that the Secretary of Energy determine which constituents listed in Appendix I of 40 CFR 192 are present in, or reasonably derived from, RRM. Those standards also require the Secretary to determine the areal extent of ground water contamination by listed constituent. Section 4.0 of this document, "Field Investigation Results," complies with these requirements and identifies the constituents of concern at the Grand Junction site.

The standards for cleanup address two ground water contamination scenarios in CFR 192.02 (c)(2). The first scenario addresses ground water contaminated as a result of RM associated with disposal cells. Future protection of ground water at the disposal sites is being addressed as part of the UMTRA Surface Project. The second scenario addresses ground

• Radiation from radionuclides other than ²²⁶Ra and its decay products is present in sufficient quantity and concentration to constitute a significant radiation hazard from RRM.

One of the four cleanup standards (i.e., clean up to background, MCLs, or ACLs, or apply supplemental standards) is selected on the basis of risk to human health and the environment. The methods available to achieve compliance include active remediation, natural flushing, and no remediation. Section 5.0, "Site Conceptual Model," presents a summary of the geology, hydrology, geochemistry, and ecology of the site. That discussion provides the information relevant to selecting a ground water compliance strategy. Section 7.0, "Ground Water Compliance Strategy," presents a discussion of the proposed compliance strategy for the Grand Junction site and includes a justification for selection of the no-remediation compliance strategy.

The regulations in 40 CFR 192.22(c) also require DOE to inform landowners and occupants of the locations affected by hazardous constituents and to solicit their comments if supplemental standards are applied.

2.1.2 National Environmental Policy Act

DOE NEPA regulations are in 10 CFR part 1021, "National Environmental Policy Act Implementing Procedures." Pursuant to NEPA, DOE finalized a PEIS for the UMTRA Ground Water Project to analyze potential effects of implementing the alternatives for conducting ground water compliance at the UMTRA Project processing sites.

A Record of Decision was published in April 1997 in which DOE's preferred alternative was selected on the basis of information available at the time. The decision gave DOE the option of nplementing one or a combination of the following compliance strategies:

- Active ground water remediation
- Natural flushing
- No ground water remediation

2.1.3 Other Regulations

In addition to EPA ground water standards and requirements of NEPA, DOE must also comply with presidential executive orders, such as those related to pollution prevention and environmental justice, that may be relevant to the work being performed. Other federal regulations include those that require protection of wetlands and floodplains, threatened and endangered species, and cultural resources.

2.2 State and Tribal Regulations

DOE must also comply with state and tribal regulations where federal authority has been delegated to the state. These include compliance with state permits required for drilling, completing, and abandoning monitoring wells; water discharge; and waste management.

3.0 Site Conditions

3.1 Physical Setting and Climate

The Grand Junction site is at an elevation of approximately 4,600 feet (ft) (1,400 meters [m]) in the broad, arid Grand Valley and has historically been referred to as the Climax site. It is located in Mesa County, Colorado (Figure 3–1), along the southern side of Grand Junction in an industrial area (Plate 1). The site is bounded on the south by the west-flowing Colorado River, which joins the Gunnison River about 0.75 mile (1.2 kilometers [km]) to the west. The Grand Valley is bounded by the Book Cliffs to the northeast, about 9 miles (15 km) from the site; the Grand Mesa to the east, about 16 miles (26 km) from the site; and the Uncompander Plateau to the west, about 5 miles (8 km) from the site. The Grand Junction site encompasses approximately 114 acres (46 hectares) that underwent surface remedial action from 1989 to 1994.

Annual precipitation in Grand Junction is approximately 9.1 inches (in.) (23 centimeters [cm]), and the mean annual temperature is 52.1°F (Lohman 1965). August and September are the wettest months; summer thunderstorms can produce more than an inch of rain. Potential evapotransporation for the area is approximately 71 in. (180 cm) per year, making the potential evapotransporation to precipitation ratio about 8:1.

3.2 Land and Ground Water Use

The original millsite was covered with 6 in. of clean soil and revegetated by 1994. Part of the viginal remedial action involved constructing wetlands, including eight ponds along the outhern boundary of the property adjacent to the Colorado River (see Figure 3–10). River flooding in 1995 eroded the ponds and reconfigured the southern boundary of the site.

The area encompassing the former millsite is administered by the City of Grand Junction Parks and Recreation Department. In 1997 a pedestrian bridge was built across the Colorado River at the southeast corner of the site. In 1995 and 1996 the Army Corps of Engineers constructed a flood control levee through the southern part of the site. A concrete sidewalk built in 1997 on top of the levee is part of the city's riverfront trail corridor connecting the north side of the Colorado River to the south side at Orchard Mesa Middle School via the foot bridge. West of the site, the Western Colorado Botanical Society, in coordination with the city, constructed the Western Colorado Botanical Gardens, which contain a variety of indoor plants and butterflies and an outdoor reconstruction of the valley's geomorphology with associated flora. The gardens are located at the south end of 7th Street at the access to the Watson Island section of the Colorado River Trail.

No ground water is being used from the site. The deed transferring the site to the City of Grand Junction from the CDPHE specifies ground water use restrictions that are controlled by the state and DOE (see Section 7.2 for details). According to information from the State Engineer's Office, no wells are recorded for properties downgradient of the site. The Botanical Gardens uses a sump near the Colorado River to pump water into a lined pond for irrigating the gardens.

3.3 Site History

3.3.1 Milling History

The millsite and the remaining brick mill building were originally part of the Colorado Sugar Manufacturing Company; the building was constructed in 1899. Later it became the Holly Sugar Corporation and processed sugar from sugar beets; the plant closed before the pre-1947 photograph shown in Figure 3–2. The site of four ponds used during the sugar processing era, located directly south of the mill, were used later for settling ponds during the uranium milling operation.

The site was reconfigured for uranium-ore processing and opened as the Climax mill in late 1950 (Mastrovich 1985). The mill was constructed and operated by the Climax Uranium Company, a subsidiary of Climax Molybdenum Corporation. The Climax mill had an initial production rate of 330 tons per day until 1955; modifications increased capacity to 500 tons per day, which was maintained until closure (Merritt 1971; Orr 1954). Figure 3-3 is an oblique aerial photograph taken about 1956 looking northwest. The photograph shows the old sugar beet mill warehouse extending from the right side of the picture up to about the stack. Various other buildings, blending vats, labs, and ponds are also visible. Ore was brought by rail and truck and stored in the area shown in the upper left portion of the photograph. Figure 3-4 is a 1954 aerial photograph that shows the size of the tailings area, the ore storage area, and the settling ponds. In 1960, Climax was incorporated into American Metals Climax, Inc., which operated the mill until closure in March 1970. Figure 3-5 is an aerial photograph from 1961 showing the two solids disposal areas in the eastern and western sections of the property, where tailings in the form of sands and slimes were pumped (Merritt 1971). Figure 3-6 from 1966 shows the three large vaporation ponds totaling 35 acres on the eastern part of the property, where effluent was pumped from the settling ponds just south of the mill.

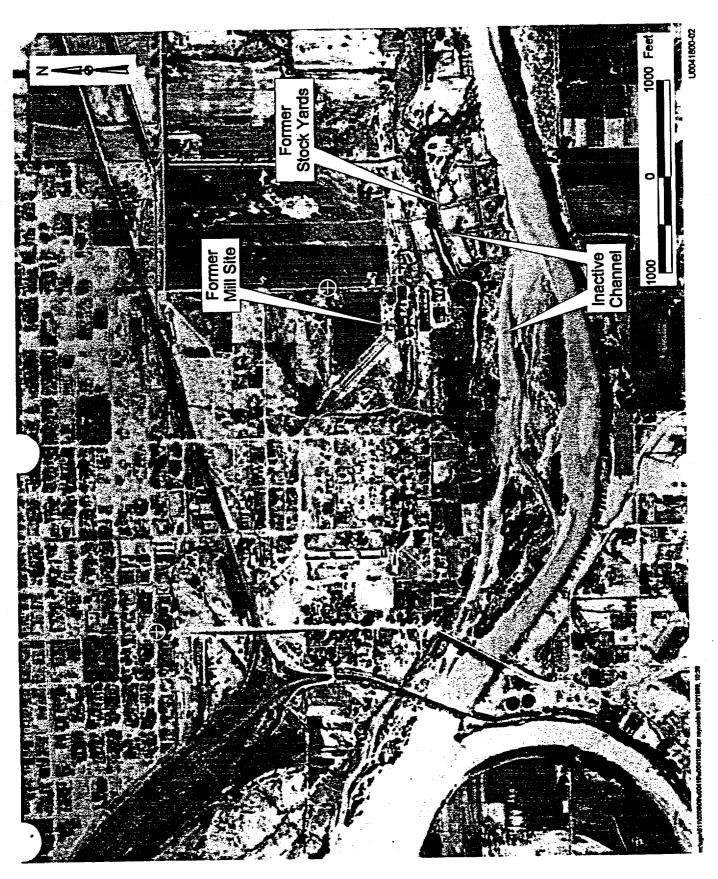
This mill was the first in the United States that was designed for uranium production with vanadium as a byproduct. Ores were predominantly sandstones from the Morrison and Chinle Formations that contained primary uranium/vanadium oxide and silicate minerals, as well as oxidized ores containing predominantly carnotite (potassium uranium vanadate) and tyuyamunite (calcium uranium vanadate). Most of the mill feed came from about 20 company-owned mines in the Uravan Mineral Belt; the remainder came from independent producers (Merritt 1971).

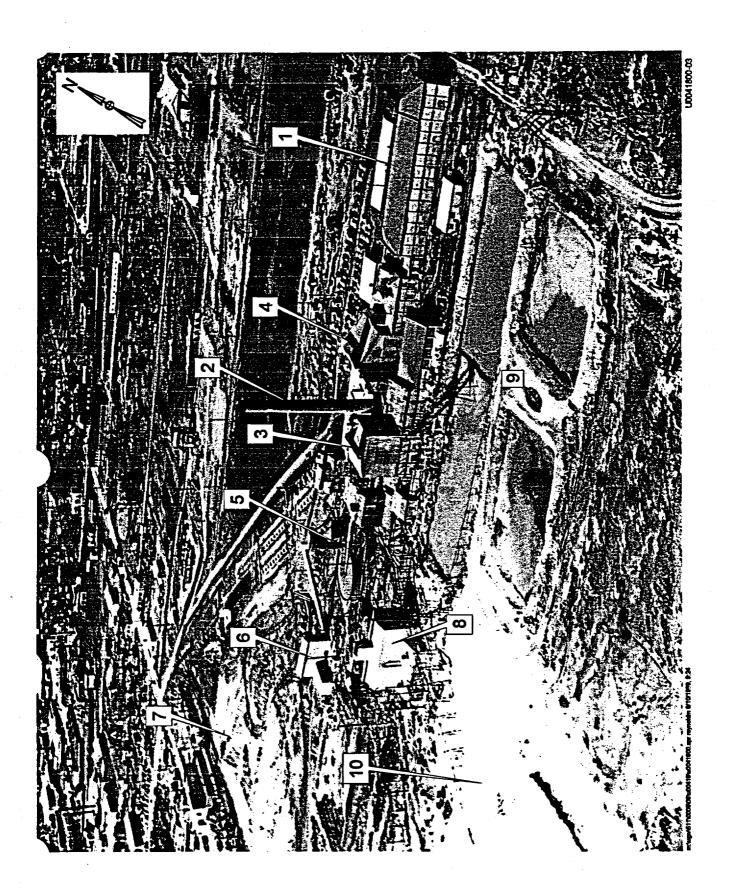
The ore was crushed and ground; uranium was initially acid leached and neutralized before sands and slimes were separated. Sands were acid leached again. After separation, the slime fraction was salt roasted and water leached to remove vanadium, and finally acid leached again to remove uranium and water-insoluble vanadium. A solvent extraction process separated uranium from vanadium. The solvent extraction raffinate solution and other intermediate products were treated with acid again to remove additional uranium and vanadium (Merritt 1971). Tailings from the washing circuit and raffinate from the solvent extraction operation were sent to one or two small holding ponds near the mill, where fines settled out before the waters were sent to one of the three separate holding ponds where liquids were allowed to evaporate. The tailings piles were stabilized with vegetation during the years of operation, and erosion of tailings into the Colorado River was minimized. This complex milling process required a number of different chemicals. lorganic chemicals included sulfuric acid, hydrochloric acid, sodium chlorate, ammonia, sodium chloride, sodium carbonate, hydrogen peroxide, and powdered iron metal; organic

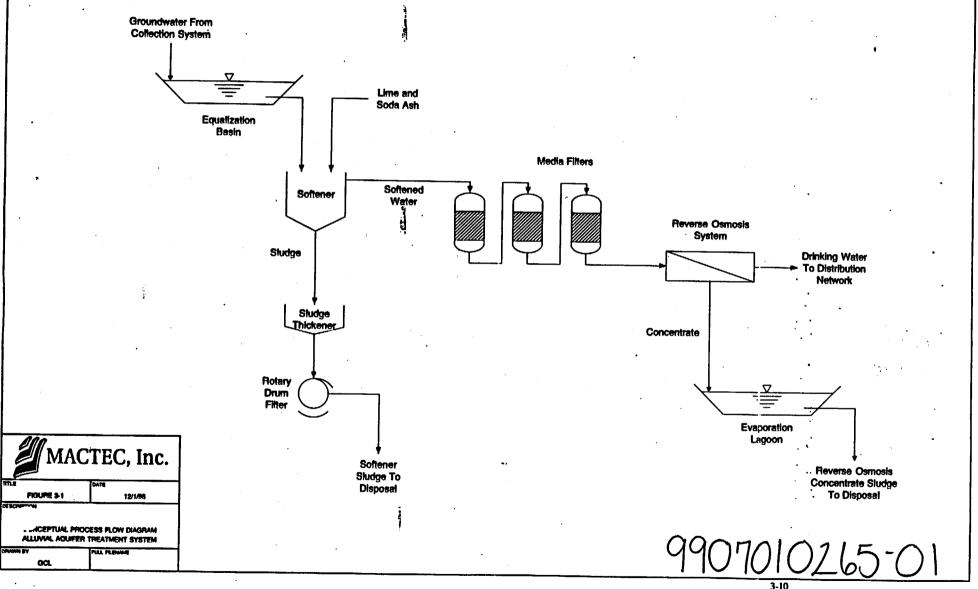
is now located outside of the fenced enclosure of the old Climax site (information from the completion report prepared by M. K. Ferguson, January 1995).

In 1994 eight ponds were constructed along the southern side of the site adjoining the Colorado River as part of a wetlands area. Floods in the spring and early summer of 1995 severely eroded some ponds and filled others with silt. The wetlands area was never reconstructed and today only indistinct traces of the eight ponds are visible. Sampling of the original ponds indicated that higher levels of contamination were present in the two westernmost ponds (DOE 1996d). However, the higher concentrations may have resulted from evaporation.

3.3.3 Sources of Ground Water Contamination


During the sugar beet milling period, excess vegetation and pulp from the sugar beets were used to feed livestock. The apparent remnants of these early stock yards can be seen in a pre-1947 photo (Figure 3-2) along the southeastern portion of the site. Later, an area along the west side of the site was used as corrals (see Plate 1). Both areas, but especially the area in the southeastern part of the site, may have contributed nitrogen to the ground water.


Ground water contamination at the site resulted from processing ore and from subsequent leaching of uranium mill tailings constituents by mill water, rain water, and ground water. During active milling, slimes and water from the operation were sent to four settling ponds located directly south of the mill (see Figure 3–3) and from there to three evaporation ponds located east and north of the mill (Figure 3–6 and Plate 1). The evaporation ponds apparently did not have enough surface area for complete evaporation of the water, and some liquids seeped into the underlying sediments. An estimated 50 million gallons (190,000 cubic meters) per year rom 1951 to 1955, and 75 million gallons (285,000 cubic meters) per year from 1956 to 1970 were used to process ore. Based on this estimate, the total amount of process water that was available to seep into the sediments underlying the site over the history of milling operations was approximately 1,900 acre-feet, or 2.3 million cubic meters (DOE 1996d).


3.4 Future Uses of Land and Ground Water

DOE deeded the Climax site to CDPHE, who in turn deeded the site to the City of Grand Junction in April 1997. The deed specified that ground water from the site could not be used for any purpose without written approval of DOE and CDPHE. The City is developing a master plan for use of the land as an open park area. Possible uses include a city pedestrian park with trees, sidewalks, and grassy areas; a recreational area including ball fields; and an engineered area for holding ponds and wetlands that temporarily store excess storm flow before it is released to the river. The City has recently named the land occupied by the former millsite "Las Colonias Park," from an earlier Latino community that existed in that part of town.

The City has also acquired some additional parcels of land downgradient (west) of the millsite. One narrow strip extends from the millsite to about 8th Street along the small northern channel of the Colorado River. Another parcel extends from 7th Street to 5th Street on the south side of Struthers Avenue. That parcel will have botanical gardens and a parking lot in the western section and already contains a building housing other botanical gardens and a butterfly house in eastern part. Currently, the City does not plan to obtain other parcels of land in the region east of the millsite and south of Struthers Avenue extending west to 5th Street. Several commercial and private landowners have property in this corridor. On the west side of 5th Street,

Document Number U0042400

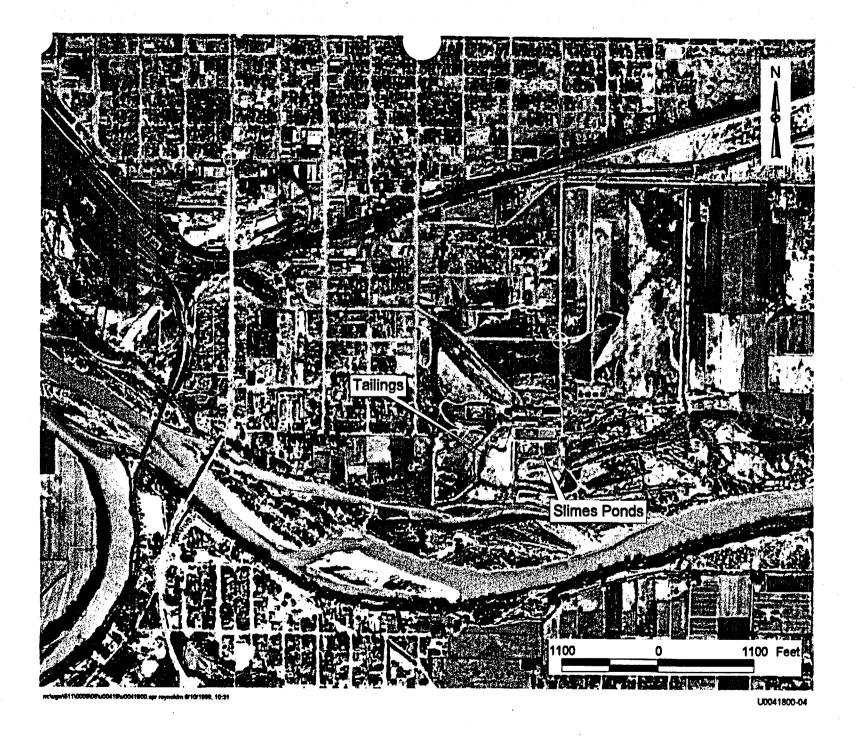


Figure 3-4. 1954 Aerial Photograph

| Junction, Colorado | Page 3–11

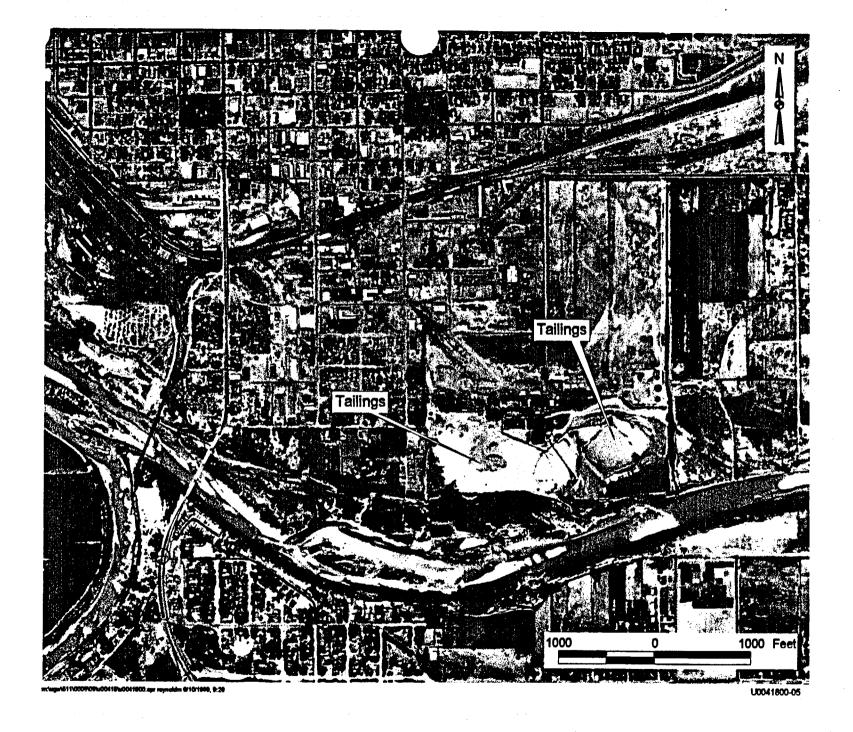
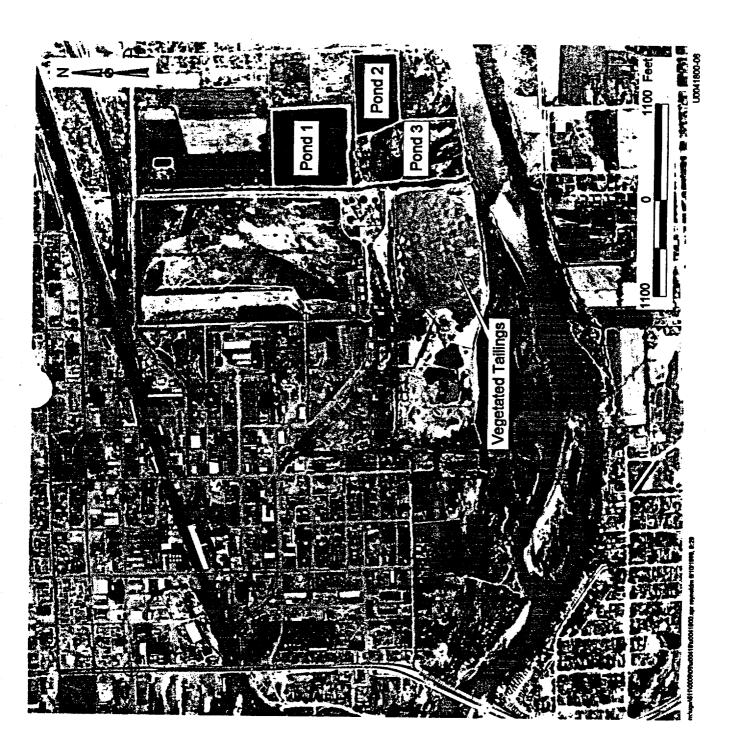
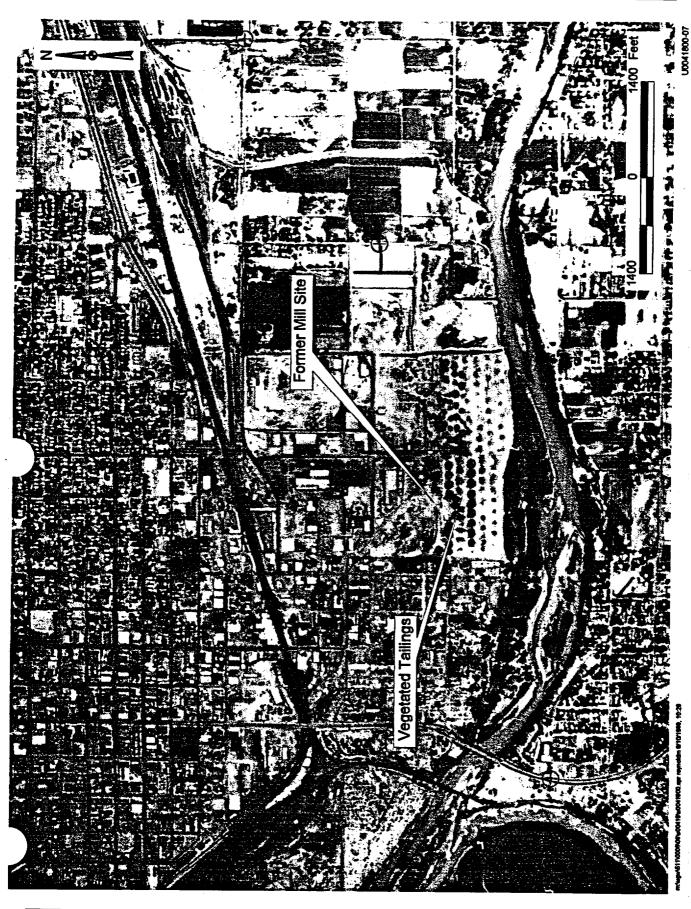




Figure 3-5. 1961 Aerial Photograph

d Junction, Colorado Page 3–13

Document Number U0042400

Figure 3-8. 1991 Photograph; Looking West at the Excavation of the Climax Tailings Piles

Site Observational Work Plan for Orand Junction, Colorado Page 3–19

Figure 3–9. 1993 Photograph; Looking West at the Excavation of the Tailings Piles

.

1. 1

1

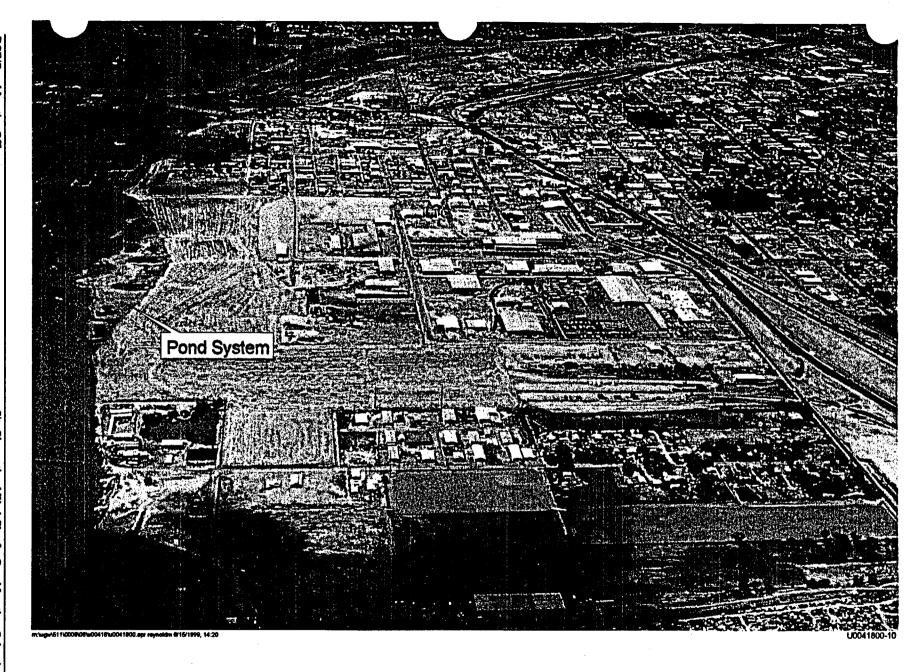


Figure 3–10. 1994 Photograph; Looking West at the Completed Reclamation of the Millsite

n, Colorado Page 3–23

4.0 Field Investigations Results

This section presents results of field studies performed to meet data needs. Application of the results is presented in Section 5, "Conceptual Site Model."

4.1 Geology

The geology near the site is structurally and stratigraphically simple. The Cretaceous marine Mancos Shale and Cretaceous marginal marine Dakota Sandstone Formations dip gently to the northeast away from the Uncompander Plateau on the west. Unconsolidated alluvial sediments of Quaternary to Recent age overlie these rocks and form the alluvial aquifer, which contains contaminated ground water associated with the Grand Junction site.

The work plan for characterizing the Grand Junction site (DOE 1997) describes the geological data needs in Quarternary stratigraphy and bedrock identification. Figure 4–1 is the A–A' geologic cross section shown on Plates 1 and 2.

4.1.1 Alluvial Aquifer

The Colorado River has been prograding updip and southward across the Grand Valley, probably as a result of the eroding shales from the north clogging the river channel. Its current channels lie against the bluffs on the south side of the river. Thickness of the river alluvium, which forms the alluvial aquifer, ranges from 8 ft (2.4 m) to more than 78 ft (24 m) in the Grand Valley J.S. Bureau of Reclamation 1986). The U.S. Bureau of Reclamation report describes the adiments near the site as Colorado River alluvium consisting of sandy to silty sediments underlain by the Cobble aquifer, which consists of unconsolidated sands, gravels, and cobbles.

Well logs developed during installation of 23 new monitoring wells are shown in Appendix B. Surface fill near the millsite is 9 to 10 ft (3 m) thick, so the upper sandy/silty zone in question was not identified with confidence as part of the alluvial aquifer. Cobbly sediments were below this zone, and depth to Dakota shale (i.e., bedrock) ranged from 13 ft (4 m) in well 1017 (nearest the river on the site) to 27 ft (8 m) in well 1019 (the northernmost well on the site). Well locations are shown in Plate 2.

An examination of background well lithologic logs indicated an organic-rich soil horizon developed in pastures and fields for the first 1 to 5 ft (0.3 to 1.5 m), with silty sands below this (wells 1024 and 1025). In most background wells and in wells in historically agricultural areas, silty sands extend from near surface to depths of 15 ft (4.6 m) or more (wells 1026 and 1028) and overlie the cobbly gravel zone. These cobbly gravels were drilled to a maximum depth of 32 ft (10 m) in well 1025. The work plan for these monitoring wells required installing 20 ft (6 m) of screened interval below the saturated zone or drilling to bedrock, whichever was less. Consequently, the alluvial aquifer was not fully penetrated in some background wells east of the site.

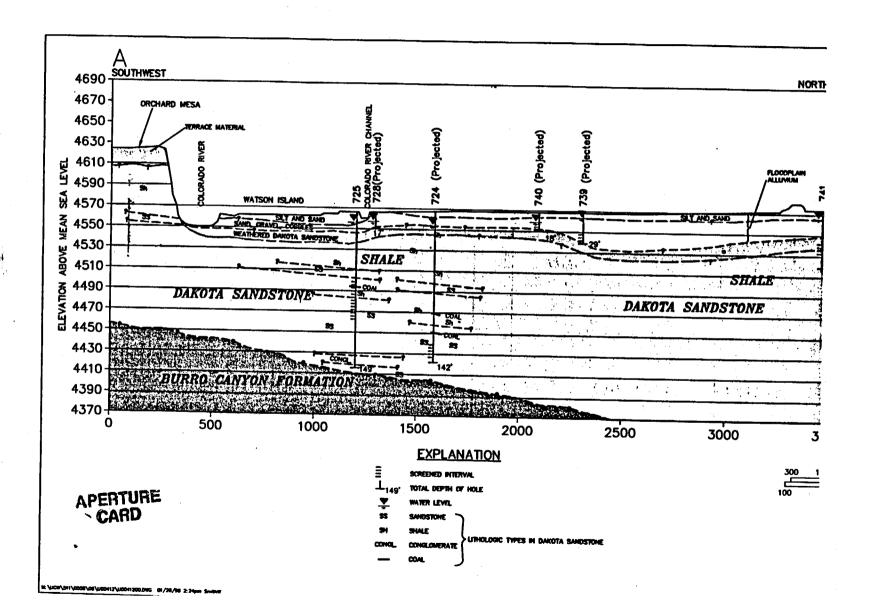
pre-1947 aerial photograph of the millsite (Figure 3-2) shows a prominent channel crossing site from east to west. Milling operations eliminated the trace of this old channel, as can be seen in subsequent photographs (Figures 3-4, 3-5, and 3-6), but its possible effect on hydrologic conditions is discussed in Section 5.1.3.

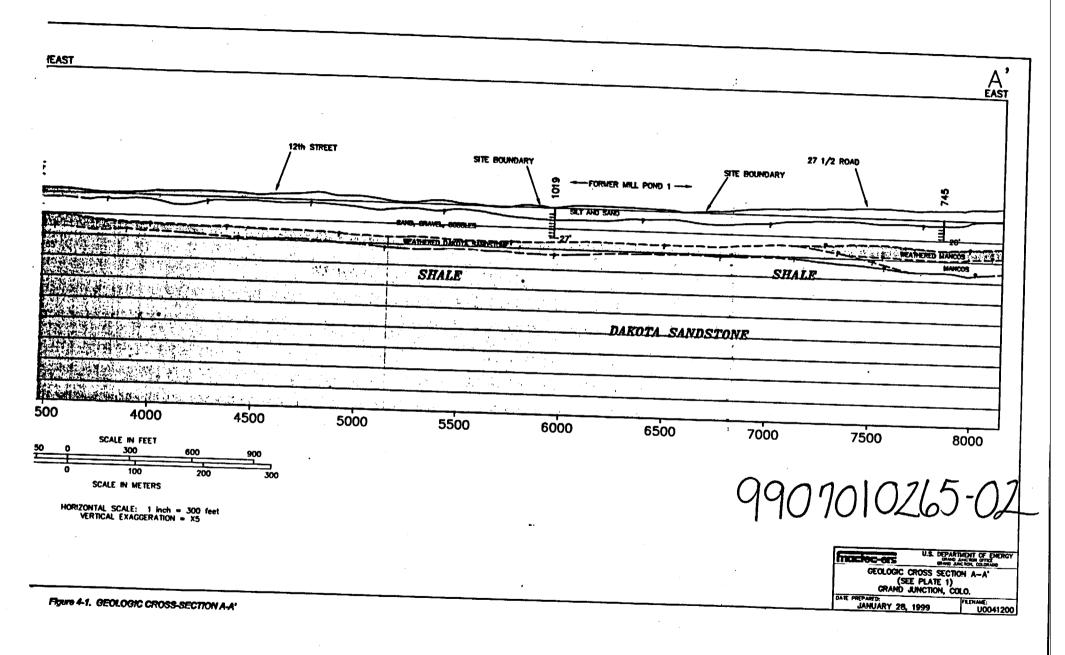
4.1.2 Bedrock Identification

Previous reports assign the shales underlying the site to the Mancos Shale (Ford, Bacon, and Davis 1977; DOE 1996c; DOE 1996d; and others). An effort was made to differentiate the gray shales of the Dakota Sandstone sequence from the gray shales of the Mancos Shale in the site area. To do this, contractor geologists requested assistance from Dr. Robert G. Young, a local consulting geologist, who had mapped these units for his dissertation. Dr. Young provided criteria for distinguishing the two formations and accompanied the contractor geologists into the field.

The criteria for distinguishing the formations are:

Dakota Sandstone Carbonaceous (to lignitic), not calcareous Silty to clavey Contains no marine fossils Some silty lenses in shales Some pyrite nodules or iron staining


Mancos Shale Calcareous (reacts to HCI), not carbonaceous Clavey with few silty layers Contains marine fossils Thin layer of white bentonite near the bottom of the unit No pyrite nodules, little or no iron staining


Rocks composing the bluffs on the south side of the Colorado River from the confluence of the Gunnison River about 2.000 ft (610 m) west of the site to approximately 2.000 ft (610 m) east of the site were field examined and evaluated using the criteria listed above. Dakota Sandstone shales crop out from a point about 100 yards (91 m) east of the 5th Street bridge eastward and dip beneath the site at about 1 to 2 degrees. The shales beneath the site area were described as Mancos Shale in earlier reports but actually belong to a middle shale unit of the Dakota Sandstone. The estimated trace of the Mancos subcrop is shown in Plate 1. It follows the estimated contact on the south side of the Colorado River (this section of the bank is overgrown with vegetation), crosses the river about 2,000 ft (610 m) upstream of the site at an elevation of about 4,570 ft (1,393 m) where a limy, resistant siltstone bed produces a small area of rapids, and continues to the northwest, where it comes within about 200 ft (61m) of the site boundary (Plate 1). Some intertonguing of these formations might be expected at this transitional contact between the marine Mancos Shale and the marginal marine Dakota Sandstone sequence. Ground water flowing from the north toward the south and southwest across the site would contain trace elements leached predominantly from the Mancos Shale as well as from the Dakota shales.

By use of these criteria, the total thickness of the Dakota Sandstone in the area of the site was determined to be about 200 ft (61 m). The same recognition criteria were applied to core from five previously drilled boreholes (724, 725, 735, 741, and 743) located near the site on the north side of the Colorado River. None of the core had these characteristics of Mancos Shale, indicating that the subcrop of Mancos is some distance north or east of the site. To further confirm this, the same criteria were used to evaluate cuttings from the bottom of wells. For all on-site wells, drilling continued through the alluvial aquifer into bedrock. Dakota shales were identified as bedrock in all wells drilled on site.

4.2 Hydrology

Hydrogeologic data needs for ground water and surface water were identified in Section 5.0 of the original SOWP (DOE 1996d) and Section 3.5 of the Work Plan for Characterization Activities at the UMTRA Grand Junction Project Site (DOE 1997b). Additional site

characterization was performed to better define the water table surface, saturated thickness, 'ithology, and hydraulic parameters of the alluvial aquifer. New monitor wells were installed and eveloped, and water levels in selected monitor wells have been measured on a continuous basis using downhole dataloggers. Aquifer pumping tests were performed in a number of monitor wells to evaluate hydraulic conductivity beneath the site. Slug tests were also done in monitor wells to estimate hydraulic conductivity throughout the site. The recharge/discharge relationship between the Colorado River and the alluvial aquifer was evaluated by measuring water levels in the river and comparing these with ground water levels in adjacent monitor wells.

4.2.1 Alluvial Aquifer Analysis

Twenty-three new monitor wells (numbered between 1010 and 1035) were installed in the alluvium to provide additional information on lithology, saturated thickness, and hydraulic parameters (lithologic logs are in Appendix B, and well locations are shown on Plate 1).

Twenty-one wells were installed during September 1997 by using a hollow-stem auger. These consisted of eight on-site wells (1012–1019), five upgradient wells (1020, 1021, 1023, 1024, 1025), four downgradient wells (1010, 1011, 1022, and 1029), and four vicinity property wells (1026, 1027, 1028, and 1030). Boreholes 1031 and 1032 were used to obtain water level measurements. A CME-75 truck-mounted auger rig was used to drill 12½-inch o.d. boreholes; the monitor wells installed were 4-inch schedule 40 PVC casing with 0.02-inch factory-slotted PVC screens and bottom caps. Soil samples were collected with a 2½-inch-diameter, 2-foot split barrel sampler using a 150-pound hydraulic drop hammer. A total of 99 split barrel samples were collected. Drilling protocol required that wells intercept bedrock or extend 20 ft into the saturated zone, whichever was less. All wells intercepted bedrock except wells 1025, 1026, 1027, and 1028 (1025 is an upgradient well, the other three are at the Regional Center). General information and surveyed locations are shown in Appendix A, and lithologic/well completion logs are in Appendix B.

All wells were developed by repeated surging and pumping. However, water production from most of the wells was still considered to be low for a typical fluvial sediment, so seven on-site wells were jetted to improve production and efficiency. Jetting consisted of using a fivehorsepower pump to force a jet of potable water outward along the screened interval of the wells. Water was constricted from a 2-inch line to a 1-inch T-nozzle jetting tool. Approximately 425 gallons (1,610 liters) of water could be expelled into the well in five minutes. This process can remove smeared clays or other debris from the slotted screen. After this procedure, production was improved by 32 percent overall, but some wells were still only producing 2 to 3 gallons (7.6 to 11.4 liters) per minute. This prompted drilling two new wells (1034 and 1035) in September 1998 by a different method to improve well efficiency and to obtain more realistic hydraulic parameters of the aquifer. Monitor wells 1034 and 1035 were drilled using a casingadvance drilling method that resulted in less disturbance to the adjacent formation materials. A factory-slotted screen was installed in monitor well 1034, and a continuous-wrapped vee-wire screen was installed in monitor well 1035. Aquifer pumping tests in these two wells indicated significantly improved well efficiencies and higher hydraulic conductivity values for the alluvial aquifer than values obtained from the wells installed by the hollow-stem auger (see Appendix D).

quifer pumping and recovery tests were performed in selected monitor wells at the site to provide an estimate of the hydraulic conductivity in the alluvial aquifer. Single-well pumping

tests were run in monitor wells 1013, 1015, 1017, 1019, and 746 during January and February 1998. Additional single well pumping tests were conducted in wells 590, 1001, and 1018 during August 1998. Multiple-well pumping tests were run in monitor wells 1034 and 1035 during September 1998; drawdown response and recovery of water levels were measured in three adjacent observation wells (1002, 1013, and 1034/1035). The calculation of hydraulic parameters (see Appendix D) focused on the multiple-well pumping tests in wells 1034 and 1035 because the most reliable data are obtained from drawdown and recovery in observation wells. Recovery data collected from the single-well tests in wells 590 and 1018 appeared reasonable, so results of those tests are also included.

Results of selected aquifer pumping test calculations (estimations) of hydraulic parameters are summarized in Table 4-1. Data collected from aquifer pumping tests in alluvial aquifer wells in the west (0590), central (1034/1035), and east (1018) portions of the site indicate that transmissivity ranges from 161 to 2,434 ft²/day (15 to 226 m²/day). Hydraulic conductivity ranges from 18 to 304 ft/day (5.5 to 93 m/day) based on saturated thickness in the alluvial aquifer ranging from 6 to 9 ft (1.8 to 2.7 m) in the wells. As expected, the values of hydraulic conductivity are variable across the site, even in the relative proximity of wells 1034 and 1035. Variation in these values is a result of several factors: (1) lateral and vertical lithologic changes typical of alluvial deposits, including the possible effects of old chamels in the alluvium, (2) the Colorado River as a boundary condition, especially near well 0590 (about 60 ft [18 m] from the river), and (3) well construction and screen type that may cause variable well efficiency and response to pumping stress (e.g., screen type in well 1035 has greater area of exposure to the aguifer than in well 1034). The average linear ground water velocity beneath the millsite is about 2.0 ft/day (0.6 m/day) based on an average estimated hydraulic conductivity of 100 ft/day (30 m/day), a hydraulic gradient of 0.004, and an effective porosity of 20 percent. Many variables affect hydraulic parameter values in an aquifer system, so the results are an approximation that provides a general idea of the characteristics of the alluvial aquifer.

Slug tests were performed in 13 monitor wells, and hydraulic conductivity was estimated where possible (water levels in some wells recovered too rapidly for meaningful estimation). Slug tests provide only a rough approximation of hydraulic conductivity, and the values should be considered as order-of magnitude estimates. Also, the area of influence of a slug test extends only a short distance from the borehoie, and results should not be inferred to be valid at any distance from the area of influence. Consequently, slug test estimates are not used in the evaluation because of their limited extent and also because of the more reliable estimates from the aquifer pumping test analyses. Hydraulic conductivity values from slug tests are summarized in Table 4–1, and calculations are on file in the Grand Junction Office.

Water levels in nine monitor wells (0590, 0743, 0744, 0746, 1001, 1002, 1013, 1017, and 1022) were measured continuously during 1998 using downhole dataloggers (locations are shown in Plate 1). Results were used to determine variations in ground water levels through time and to correlate these with fluctuations in the level of surface water in the Colorado River (see Section 4.2.3).

4.2.2 Dakota Sandstone and Mancos Shale Analysis

Since ground water in these underlying units has not been affected by site-related activities, the bedrock units have not been extensively investigated. The alluvium directly overlies both

formations, depending on the relation to the subcrop. Figure 4-2 is a contour map of the top of he Dakota Sandstone. The previous interpretation of these underlying units has been nodified with additional characterization, and the consensus is that the alluvium beneath the main portion of the processing site directly overlies shaly units of the Dakota Sandstone. Both the Dakota Sandstone and the Mancos Shale form an effective aquitard beneath the alluvial aquifer.

Table 4-1. Summary of Hydraulic Parameters in the Alluvial Aquifer at the Grand Junction Site

Well	P/O/S	D/R	· Q	ŧ	T	K	Notes
			gpm	min	ft²/day	fl/day	
1034	P	R	4	717	1613	202	Factory slotted screen
1002	0	D			556	93	
1002	0	R			408	68	
1013	0	Δ			450	5 6	
1013	0	R			340	43	
1035	0	D			N/R	N/R	Response <1 ft
1035	P	R	8 to 6	707	2261	282	Continuous-wrapped V-wire screen
1002	0	D			942	157	
1002	0	R			9 69	161	
1013	0	D			1987	249	
1013	0	R			2434	304	
1034	0	. D			1120	140	
1034	0	R	•		2290	287	
590	Р	R	30	840	408	68	
1018	Р	R	.1	820	161	18	
1012	S				•	11	On Site
1013	S				1	v: 2	On Site
1014	S					2	On Site
1015	S			:		4 ;	On Site
1016	S				1 1	2	On Site
1018	S					5	On Site
1019	S					1	On Site
1021	S					1	Background
1023	S					12	Background
1025	S	-		,		. 4	Background
1026	S					4	Resource Center
1027	S					. 3	Resource Center
1028	S	•				5	Resource Center

Notes:

discharge

hydraulic conductivity

K N/R Not reliable

observation well

pumping well

discharge rate

recovery

OPQRSIT slug test

duration of test

transmissivity

4.2.3 Surface Water Analysis

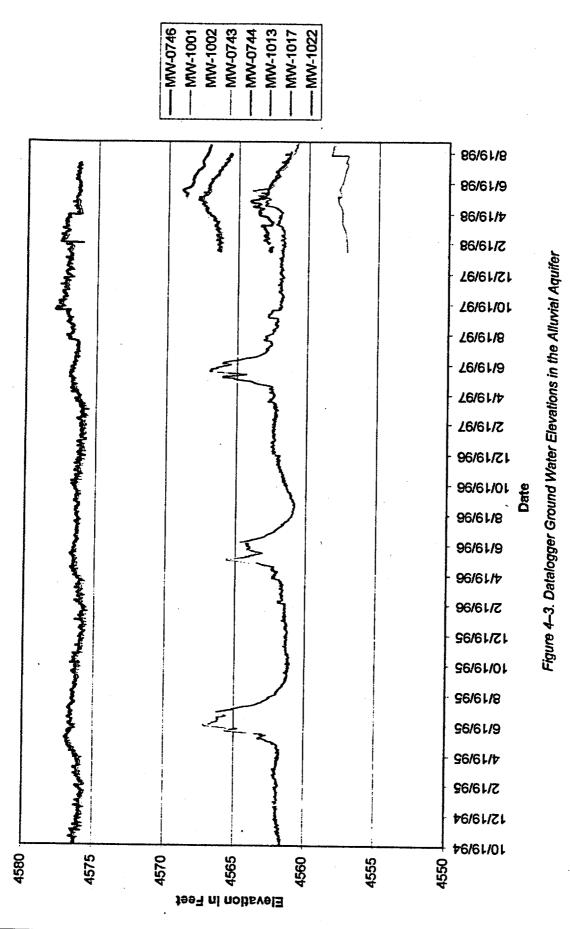
Surface water levels in the Colorado River have been continuously measured since February 1998 with a datalogger in a stilling well (SW-1033 on Figure 4-3) at the western end of the site. Manual measurements of the Colorado River were taken every 2 weeks from the footbridge at the eastern end of the site (Figure 4-3).

The stilling well was installed along the southwestern side of Watson Island in late January 1998. A transducer was placed inside a capped and perforated PVC pipe that was anchored into the river bed, with the transducer cable (also enclosed in a PVC pipe) running up the bank to an elevation considered protected from spring flooding. A steel upright pipe was cemented in and a locked cover installed to protect the transducer recorder.

Comparison of water levels with mean stream flow (in cubic feet per second) measured at the USGS gauging station at Palisade (about 15 miles [24 km] east of the millsite) shows good correlation (RVR-FLW on Figure 4-4). A comparison of water elevations in the river with fluctuations in water levels in several monitor wells near the river (wells 0744 and 1001) also shows some correlation, indicating some connection between shallow ground water and the water in the Colorado River (Figure 4-3).

4.3 Geochemistry

Surface water, ground water, soil, sediments, and alluvial aquifer materials were sampled and analyzed. Sample locations, collection methods, analytical methods, tests performed, and analytical results are presented in this section.


4.3.1 Water and Sediment Chemistry Sampling and Sample Analysis

Ground water monitoring wells were sampled in January and July 1998 to characterize the current contaminant levels. The results of sampling and analysis are presented in this section. All results reported here are for filtered samples.

Contaminants that enter the surface environment through natural discharge of ground water to the surface should be detectable by analysis of surface water and sediments. The results can be used to estimate the risk of exposure to the accessible environment. Surface water and surface sediments were sampled in October and November 1997 to supplement previous samplings. The alluvial aquifer discharges to the Colorado River. Water and sediments were sampled from the river to determine if the river's water quality is affected by millsite contaminants. Ponds are present on the Colorado River floodplain; some are seasonal and are present only after flooding, and some may be fed by ground water. Water and sediments were collected from the ponds and analyzed for chemicals of potential concern (COPCs). Because the valley alluvium is affected by irrigation, water was also sampled from several irrigation ditches.

4.3.1.1 Ground Water

Two rounds of ground water sampling were conducted in 1998—one in January and one in July. A total of 33 alluvial and 5 bedrock wells were sampled during each round. A summary of the sampling results is presented in Appendix E. As expected, the alluvial wells located on site have the highest concentrations of contaminants associated with site processes (e.g., uranium,

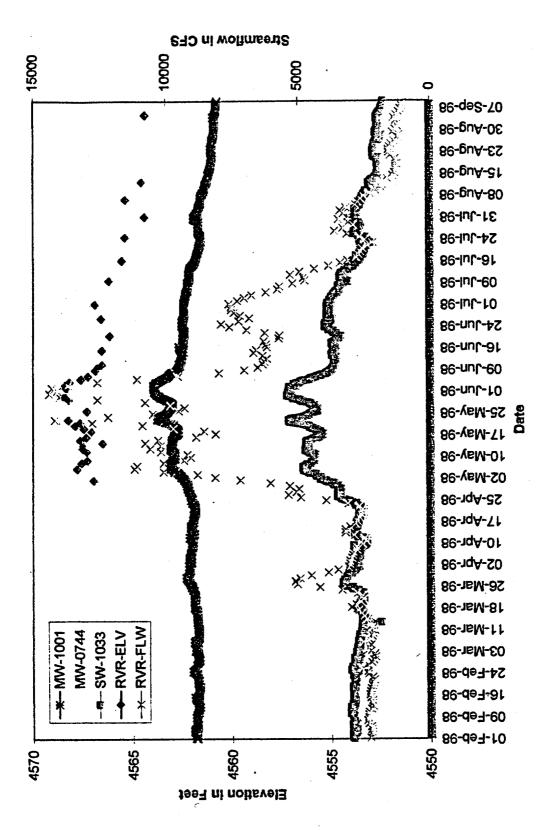
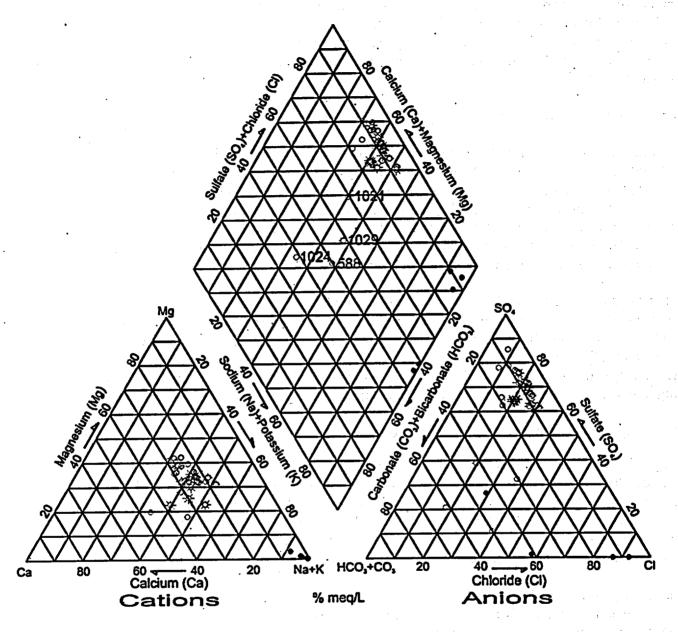


Figure 4-4. Ground Water and Colorado River Elevations

vanadium, arsenic) compared to upgradient and downgradient locations (see Section 5.3.1 for further discussion of background water quality; see Section 5.3.3 for a discussion of the extent of ontamination).

Chemistry of the ground water from bedrock wells is distinctly different from that of alluvial ground water. Bedrock wells are generally lower in gross alpha and gross beta radiation as well as in concentrations of uranium, calcium, manganese, magnesium, and potassium. Bedrock ground water is generally higher than alluvial ground water in concentrations of chloride and sodium and is slightly more basic in pH.

Ground Water Major-Ion Chemistry


Piper diagrams are commonly used to help classify water types by composition and to differentiate between water types. Major-ion chemistry data from the June 1998 sampling round were plotted on a Piper diagram (Figure 4–5). Anions in the alluvial ground water are dominated by sulfate, and cations are nearly equally distributed among calcium, magnesium, and sodium. The major-ion chemistry in the alluvium at the millsite and downgradient is similar to upgradient. Total dissolved solids concentrations are also similar among on-site, downgradient, and upgradient alluvial ground water samples (Figure 4–6).

Four locations (588, 1021, 1024, and 1029) sampled for alluvial ground water have major-ion compositions distinctly different from the norm (Figure 4-5). Location 588 is downgradient from a large pond at the Grand Valley Rendering Plant; location 1021 is west (possibly downgradient) of several large recreation ponds; location 1024 is downgradient of the Clifton Vater Works, where water is being discharged into the alluvial aquifer; and location 1029 is swngradient from a large pond at the American Auto Salvage yard. Thus, ground water at all four anomalous locations is likely to have been affected by water locally recharging the aquifer and is not representative of "typical" alluvial ground water.

The major-ion composition of Dakota Sandstone ground water is highly variable. The variability is likely due to the variable depths from which the ground water samples were collected. Some wells were sampled from the gray shales that lie at shallow depths, and others were sampled from deeper sandstones. In all cases, however, the Dakota wells are readily distinguished from alluvial wells on a Piper diagram (Figures 4–5 and 4–6). Anions in the Dakota Sandstone ground water are dominated by chloride, and cations are dominated by sodium.

Mineral precipitation and dissolution causes chemical changes in the ground water system. The chemical speciation program PHREEQC (Parkhurst 1995) was used to calculate the concentrations of aqueous species and mineral saturation indices (SIs) for the January 1998 sampling of the ground water. A mineral SI provides a measure of whether a ground water has a tendency to precipitate or dissolve a mineral. A positive SI indicates oversaturation and the tendency to precipitate the mineral, whereas a negative SI indicates undersaturation and the tendency to dissolve the mineral.

Average mineral SIs for calcite and gypsum, two commonly occurring minerals in the alluvial ruifer, are presented in Table 4–2. The alluvial aquifer ground water is nearly saturated with lcite (CaCO₃) upgradient and downgradient of the millsite and slightly oversaturated at the millsite. The differences between the on-site and upgradient averages are probably due to localized influences on sample locations. In the upgradient area, some sample locations

- o Background alluvium☼ On-site alluvium
- Downgradient alluvium
- **Dakota Sandstone Formation**

Figure 4-5. Piper Diagram of Major-Ion Chemistry in Alluvial Ground Water

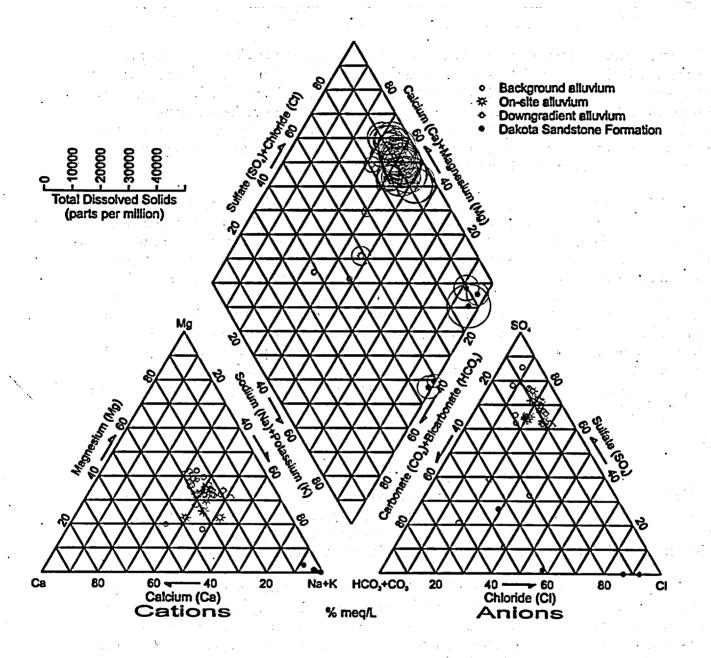


Figure 4-6. Piper Diagram Showing Total Dissolved Solids

Table 4-2. Average Mineral Saturation Indices for Calcite and Gypsum

Location	Number Of Samples	Calcite SI	Gypsum SI
Upgradient Alluvium	16	-0.04	-0.40
On-Site Alluvium	12	0.32	-0.06
Downgradient Alluvium	8	0.08	-0.14

are downgradient from standing water that probably diluted the samples. The SIs for calcite presented in Table 4-2, therefore, are all considered close to saturation and indicate that the entire aquifer (except where diluted by local recharge) is at equilibrium with calcite. Gypsum is also close to saturation except where the aquifer may be influenced by recharge. These calculated SI values are consistent with the observation that calcite and gypsum are common in the alluvial aquifer and surrounding rocks. The calculations suggest that the alluvial ground water at the millsite has reached equilibrium with the aquifer solids.

The PHREEOC program was also used to determine the speciation of one trace component present in elevated concentrations in site ground water. Analytical results for ammonia report total ammonia as NH4 (ammonium). However, to evaluate risks associated with the use of ground water, it is important to know how much of the total ammonia is actually present in the NH₃ form. NH₃ is highly volatile and is much more toxic when inhaled as a gas than is NH₄ when ingested in solution as a constituent of water. The PHREEQC program was run using the most recent chemical analysis from the on-site well with the highest total ammonia concentration (well 1017). That well, which had a total NH₄ concentration of 233 mg/L, had an actual NH₃ concentration of 1.1 mg/L. The mean total NH₄ concentration for the plume wells of 71.4 mg/L corresponds to an actual NH₃ concentration of 0.337 mg/L. These values for NH₃ were used in the updated human health risk calculations presented in Section 6.1. See Appendix I for raw data and more detail on the PHREEQC modeling results.

4.3.1.2 Surface Water

A variety of surface water locations (ponds, irrigation ditches, and Colorado River) were sampled in the Grand Junction area to characterize both background surface water quality and potential effects of site contamination on surface water at and downgradient of the millsite. Surface water sample locations are shown on Figure 4-7. Uranium was selected as a key indicator contaminant to identify the likely extent of site-related contamination.

A subset of the seld screening locations was subsequently sampled for laboratory analysis of a larger number of analytes; Table 4-3 lists locations for which laboratory data were obtained and indicates the dates of sample collection. These locations were chosen as representative of upgradient, on-site, and downgradient water quality based on field screening results and results of historical sampling. Analytical results for river and pond samples are discussed separately in the following sections. All results are for filtered water samples.

Document Number U0042400

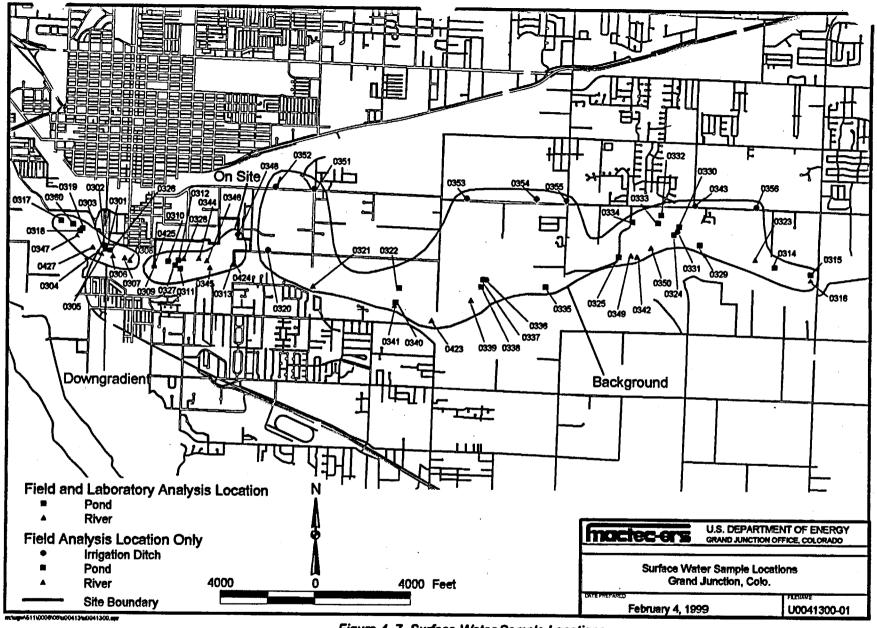


Figure 4-7. Surface Water Sample Locations

Type of Surface Location No. Location **Analytes Date Sampled** Water Sample 325, 330 Upgradient Nov 1997, Jan and June 1998 310, 312, 328 On site Nov 1997, Jan and June 1998 Pond Nov 1997, Jan and July 1998 326, 360 Downgradient As, Cd, Co. (326), July 1998 (360) F, Fe, Mn. Nov 1997 (342, 349, 350) 342, 349, 350, 423 Upgradient Mo. Ni. Jan 1998, June 1998 (all) NO₃, Se, Nov 1997 (312, 344, 346) Colorado River 312, 344, 346, 424, 425 On site SO4, U, V Jan 1998, June 1998 (all) Nov 1997 (308) 308, 427 Downgradient Jan 1998, June 1998 (all)

Table 4-3. Surface Water Samples Collected for Laboratory Analysis

Colorado River Water Quality

Historically, samples of Colorado River water have been collected from locations 423, 424, 425, and 427. Between 1991 and 1993, seven rounds of water samples were collected; an additional sampling event was conducted in December 1996. Some samples were collected at low flows to maximize the possibility of detecting contaminants. The results of these analyses indicate that site contamination has not adversely affected the water quality of the Colorado River (DOE 1996d).

On October 22, 1997, Colorado River water was sampled at eight upgradient locations (316, 321, 323, 339, 341, 342, 349, and 350), five on-site locations (309, 312, 344, 345, and 346), and six downgradient locations (304, 305, 306, 307, 308, and 347) (Figure 4–8). These samples were ollected for field screening to evaluate the effect, if any, that site-related contaminants might are on Colorado River water quality. The samples were analyzed in the field for uranium, which was selected as an indicator of contamination because it has high concentrations in the alluvial ground water at the millsite and is relatively mobile. The distribution of uranium concentrations in the Colorado River is shown in Figure 4–8. Mean concentrations at the upgradient, on-site, and downgradient locations are 0.0068, 0.0063, and 0.0055 mg/L, respectively. These results support the conclusion that the Colorado River is not affected by millsite contamination.

Additional sampling was conducted in November 1997, January 1998, and June 1998 as indicated in Table 4–3. All samples were collected for laboratory analysis of the analytes listed in Table 4–3. For all samples at all locations, concentrations of arsenic, cadmium, cobalt, iron, nickel, selenium, vanadium, and zinc were at or below method detection limits. A summary of results for the remaining analytes is presented in Table 4–4 for the three sampling events.

Analytical results of samples of river water collected over a 7-year period show that concentrations of COPCs in the Colorado River at the millsite have consistently been similar to those upgradient of the millsite. The results do not necessarily indicate that no contamination is entering the river. A small flux of contaminated ground water to the Colorado River would not be detected because dilution by the river is substantial.

Table 4-4. Concentrations of Selected Constituents in Samples of Colorado River Water Collected for Laboratory Analysis

Sampling Legation	<u> </u>	Analyte Concentration, mg/L							
Sampling Location	F.	Mn	Mo	NO ₃	SO ₄	U			
River Upgradient (432, 349, 350, 423)	Max	0.375	0.907	0.014	6.30	1810	0.025		
	Min	0.155	0.017	0.002	0.036	56	0.001		
	Mean	0.223	0.472	0.0093	3.00	905	0.012		
							•		
River On Site (312, 344, 346, 424, 425)	Max	1.26	3.03	0.088	26.4	2990	0.073		
•	Min	0.158	0.005	0.002	0.011	62.3	0.001		
	Mean	0.286	0.273	0.118	2.68	365	0.008		
River Downgradient (308, 427)	Max	0.241	0.029	0.008	0.664	156	0.003		
	Min	0.159	0.005	0.002	0.011	63.7	0.001		
	Mean	0.191	0.014	0.005	0.308	107	0.002		

Pond Water Quality

Shallow ground water in the alluvial aquifer could discharge to surface water in ponds and create an exposure pathway for humans and the environment. To investigate the extent of surface exposure, water was sampled from ponds at the millsite, and the results were compared to those from upgradient and downgradient samples.

Eight ponds were constructed on the floodplain of the Colorado River at the millsite in 1994. These ponds were fed by ground water from the millsite. The ponds were sampled in January 1995 and were subsequently destroyed by flooding later that year. Uranium concentrations up to 0.473 mg/L were measured in the 1995 samples. Much of the contamination in these ponds was attributed to evaporation (DOE 1996d).

On October 22, 1997, pond water was sampled at 12 upgradient locations (314, 315, 322, 325, 329, 330, 332, 333, 334, 335, 337, and 340), four on-site locations (310, 311, 327, and 328), and seven downgradient locations (301, 302, 303, 317, 318, 319, and 326) (Figure 4-9). These samples were analyzed in the field for uranium, which was selected as an indicator of contamination because it has high concentrations in the alluvial ground water at the millsite and is relatively mobile.

The distribution of uranium concentrations in the ponds is shown in Figure 4–9. Only two values exceeded the UMTRA uranium standard (assuming isotopic equilibrium) of 0.044 mg/L. Both samples (317 and 318) were collected from the same pond at the American Auto Salvage vicinity property. Recent soil remediation at American Auto Salvage has likely influenced the uranium concentrations in this pond. Another sample (319) collected from a nearby pond also had a relatively high uranium concentration (0.025 mg/L), which was also probably related to the remediation at American Auto Salvage.

Mean concentrations of uranium in the upgradient, on-site, and downgradient field screening samples of pond water are 0.010, 0.009, and 0.027 mg/L, respectively. If the three samples from the American Auto Salvage ponds (317, 318, and 319) are omitted, the mean downgradient uranium concentration is reduced to 0.015 mg/L.

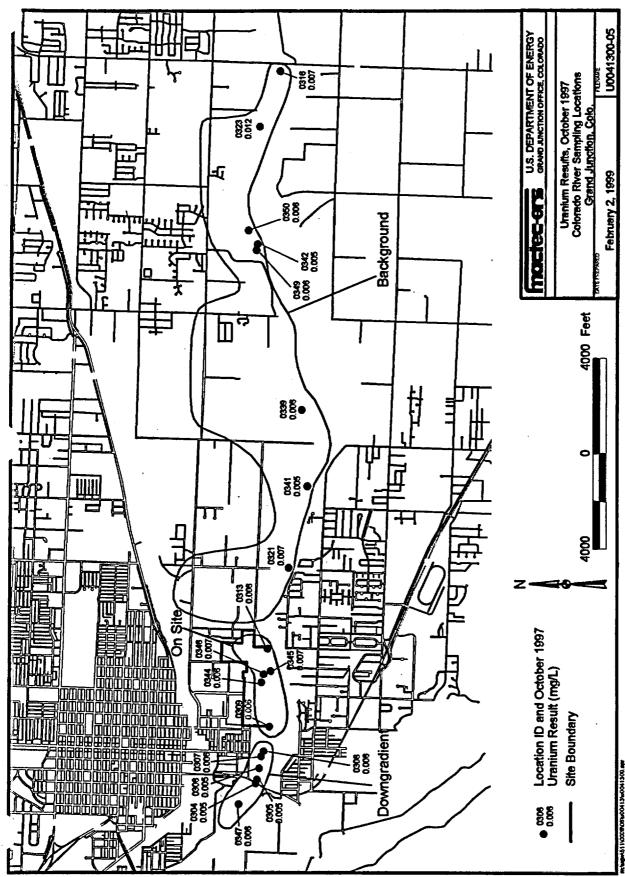


Figure 4–8. Distribution of Uranium Concentrations in the Colorado River, October 22, 1997

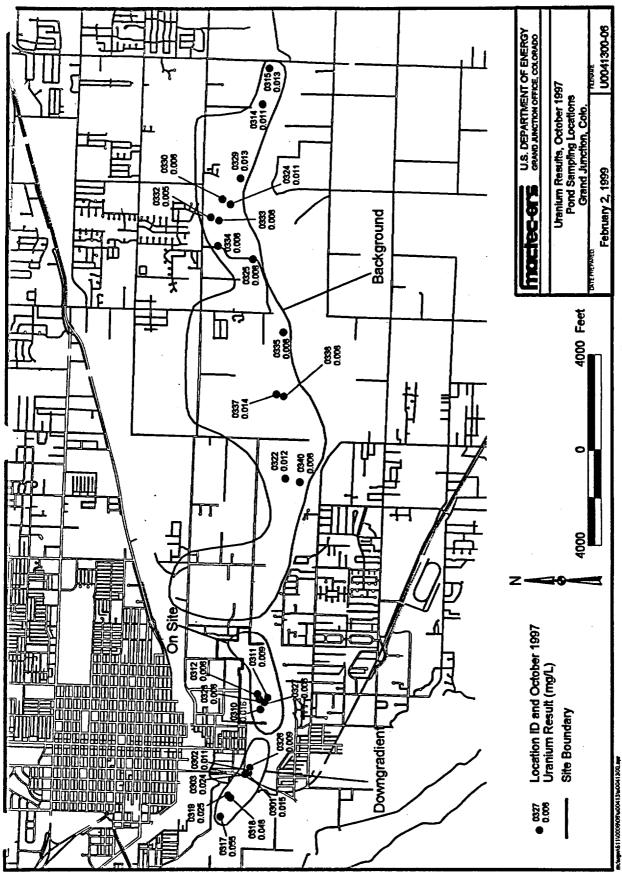


Figure 4-9. Pond Water Sample Results

Pond water analyses are more difficult to interpret than ground water analyses because of the fect of evaporation and ground water-surface water interaction. However, these results suggest that pond water near the millsite is not significantly contaminated from uranium.

Pond water sampling for laboratory analysis was conducted in November 1997, January 1998, and June 1998 as indicated in Table 4–3. All samples were analyzed for the constituents shown in the table. For all samples at all locations, concentrations of arsenic, cadmium, cobalt, iron, nickel, selenium, vanadium, and zinc were at or below method detection limits. A summary of results for the remaining analytes is presented in Table 4–5 for the three sampling events.

Mean concentrations of fluoride and molybdenum in on-site and downgradient pond samples are elevated but not significantly above concentrations in the upgradient samples. Manganese, nitrate, sulfate, and uranium concentrations are higher in the on-site ponds than in upgradient ponds. These, however, are mainly the result of sampling location 310. This location may be contaminated from ground water, or the elevated concentrations may be the result of evaporation.

Table 4–5. Concentrations of Selected Constituents in Samples of Pond Water Collected for Laboratory Analysis

Sampling Locations	Sampling Locations			Analyte concentration, mg/L							
	F	Mn	Mo	No ₃	SO ₄	U					
Ponds, Upgradient (325, 330)	Max	0.324	0.006	0.014	0.070	237	0.005				
	Min	0.097	0.001	0.002	0.021	55.9	0.001				
	Mean	0.210	0.002	0.008	0.047	161	0.004				
onds, On Site (310, 312, 328)	Max	1.21	0.928	0.026	7.07	2820	0.094				
	Min	0.119	0.006	0.002	0.011	67	0.001				
	Mean	0.372	0.200	0.009	1.20	702	0.022				
Ponds, Downgradient (360, 326)	Max	0.794	10404	10050	10440	Lesso	T				
Torids, Downgradient (300, 320)			0.104	0.056	0:113	5550	0.066				
	Min	0.132	0.001	0.008	0.011	466	0.004				
	Mean	0.438	0.032	0.031	0.040	2160	0.028				

The results show that concentrations of COPCs in most of the ponds near the millsite are typically similar to those in upgradient locations. At one sampling location at the millsite (1228 on Figure 4–15), concentrations of several COPCs are elevated, suggesting that contaminated ground water may be feeding that area. However, the contribution from contaminated ground water cannot be separated from the possible influence of evaporation. (See further discussion in Section 5.3.2.)

One sample of a white efflorescence was collected from the north (south facing) bank of a pond at sample point 1228, and a second sample was collected about 20 feet (6 m) north of the first sample from the south-facing bank of the next uphill scarp. The ground is saturated nearly to the surface in this area, and these crystalline salts probably represent desiccation of ground water by capillary action. The samples were ground to a powder and analyzed by x-ray diffraction using a Rigaku Miniflex instrument. Samples were run at diffraction angles from 3 to 60 degrees using "IK-alpha radiation and a nickel filter. A peaks search-and-match routine was used to identify a mineral phases. Results indicated that the sodium sulfate species, blödite (Na₂Mg(SO₄)₂ · 4H₂O), thenardite (Na₂SO₄), and wattevillite (Na₂Ca(SO₄)₂ · 4H₂O) as well as halite (NaCl) were

precipitating on the ground surface in these areas. These minerals are all soluble and are easily dissolved during periods of rainfall or high river waters and reprecipitated during drier periods.

4.3.1.3 Surface Sediments

A total of 30 sediment samples were collected in October 1997 from ponds, streams, and the Colorado River at a subset of field screening locations that were also sampled for water (Section 4.3.1.2). The samples were collected from beneath or close to standing water and were used to determine if mill-related contaminants were in the benthic zone. Sample locations are shown on Figure 4-10. A description of the sampling sites is included in Appendix E.

Uranium was selected as a key indicator contaminant. Samples were air dried and sieved to less than 2 mm. A 2.5-g sample was leached with 50 mL of 5 percent nitric acid by end-over-end agitation for 4 hours. The effluent was filtered through a 0.45 µm filter and analyzed for uranium by laser-induced fluorescence. Leachate and sample volumes were used to convert leachate analyses (in milligrams per liter) to sediment concentration (in milligrams per kilogram). See discussion in Section 4.3.3.2 for sample calculation. Samples were analyzed within a few days of collection.

Samples were collected upgradient, downgradient, and at the millsite (Figure 4–10). Minimum, maximum, and mean concentrations of uranium for each group are listed in Table 4-6. The downgradient samples had a higher mean uranium concentration than on-site or upgradient samples. The downgradient sample mean is skewed because of sample 317 at American Auto Salvage, which had a concentration of 4.36 mg/kg. A sample of surface water at this location also had an elevated concentration of uranium. The contamination in this newly formed pond is probably associated with the recent remediation at this vicinity property (Section 4.3.1.2). Without sample 317, the downgradient mean is 1.47 mg/kg. Thus, except for the vicinity property pond, there is no significant difference in uranium concentrations at upgradient, on-site, and downgradient sample locations.

Table 4-6. Uranium Concentrations in Nitric-Acid-Leached Sediments Collected October 22, 1997

Group	Number ^a	Minimum	Maximum	Mean
Upgradient ·	12/12	1.00	2.60	1.41
On Site .	11/11	1.04	2.20	1.53
Downgradient	7/7	1.24	4.36	1.88

number of detections/number of samples analyzed

A subset of 12 of the 30 sampling locations was selected for laboratory analysis of uranium and additional analytes. These 12 locations are the same locations used for surface water sampling in November 1997. The sediment samples were collected on October 22. Samples were leached with a 5 percent nitric acid solution; the leachate was analyzed in the Analytical Chemistry Laboratory for As, Cd, Co, F, Fe, Mn, Mo, Ni, NO₃, Se, SO₄, U, V, and Zn. Except for fluoride and selenium, COPCs had higher concentrations in either on-site or downgradient samples than in upgradient samples (Table 4-7). For some COPCs the differences in the means between onsite and upgradient locations are small. The results suggest that there is still some influence of the millsite in the sediments. The sediments probably contain small amounts of residual tailings that were not removed during remediation.

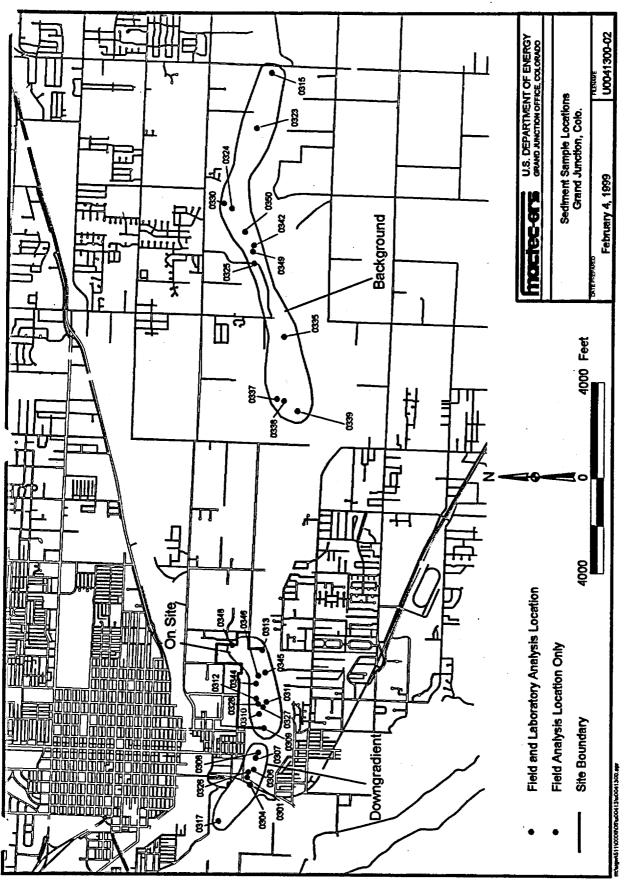


Figure 4-10. Sediment Sample Locations

Table 4-7. Analyte Concentrations in 5 Percent Acid Leachate From Sediment Samples Collected October 22, 1997

Analyte	Group	Number ^a	Minimum	Maximum	Mean
As	Downgradient	2/2	1.1	1.8	1.45
	On Site	5/5	1.5	3.4	2.2
	Upgradient	5/5	0.48	1.5	1.15
Cd	Downgradient	2/2	0.37	0.59	0.48
	On Site	5/5	0.5	1.1	0.65
	Upgradient	5/5	0.38	0.77	0.5
Co	Downgradient	2/2	1.4	2.0	1.7
	On Site	5/5	1.8	2.6	2.24
	Upgradient	5/5	1.0	2.2	1.66
F	Downgradient	2/2	43.6	69	56.3
	On Site	5/5	34.7	77.5	52.6
	Upgradient	5/5	38.7	83.0	63.0
Fe	Downgradient	2/2	1720	1890	1805
• •	On Site	5/5	2360	4170	3028
	Upgradient	5/5	1780	3240	2378
Mn	Downgradient	2/2	300	302	301
	On Site	5/5	170	342	297
	Upgradient	5/5	117	278	210
Mo	Downgradient	2/2	0.07	0.36	
	On Site	5/5	0.09	0.49	0.215
	Upgradient	5/5	0.05	0.12	0.19
Vi	Downgradient	2/2	1.8	2.6	0.09
	On Site	5/5	2.7	5.2	2.2
	Upgradient	5/5	1.4	5.3	3.7
1O ₃	Downgradient	2/2	8.6	11.7	3.22
-	On Site	5/5	6.3	15.8	10.2
	Upgradient	5/5	5.9	10.2	12.3
Se	Downgradient	0/2	. <0.04	<0.04	7.32
	On Site	0/5	<0.04		<0.04
	Upgradient	1/5	<0.04	<0.04	<0.04
O ₄	Downgradient	2/2	387	0.11 2,140	0.054
	On Site	5/5	515	4,100	1,264
	Upgradient	5/5	226		1,265
	Downgradient	2/2	0.58	701	485
	On Site	5/5	0.65	1.6	1.09
	Upgradient	5/5	0.65	1.5	1.02
	Downgradient	2/2	4.0	2.5	1.01
	On Site	5/5	7.4	4.4	4.2
	Upgradient	5/5		34.8	15.6
n	Downgradient	2/2	3.1	6.7	5.12
	On Site	5/5	16.1	43.5	29.8
	Upgradient		17.5	50.9	32.0
mber of detection	s/number of samples analyzed	5/5	15.8	51.2	31.0

4.3.2 Distribution Coefficients

Distribution coefficient (K_d) is a measure of the degree of interaction between a dissolved contaminant and the aquifer minerals. Distribution coefficients were measured during this investigation to aid in predicting contaminant transport. Details of the experimental methods and calculations are shown in Appendix F, calculation U0032900, a summary of which is presented below. Laboratory data were collected using ASTM procedure D4646-87, "Standard Test Method for 24-h Batch-Type Measurement of Contaminant Sorption by Soils and Sediments." A representative portion of a core sample was air dried at room temperature. All samples were collected in upgradient areas to avoid the complication of having contamination present in the solid before the analysis. The samples were sieved to less than 10 mesh (2 mm). A synthetic solution was prepared that simulates ground water at the Grand Junction site. The pH was adjusted to about 7.0, and the measured alkalinity was about 260 mg/L as CaCO₃. Five grams of each core sample was placed in a 125-mL Nalge bottle with 100 mL of the synthetic ground water. Samples were agitated for 24 hours, centrifuged, and filtered through a 0.45 µm filter. They were then preserved with 1 percent nitric acid and submitted to the Analytical Chemistry Laboratory for analysis of arsenic, cadmium, molybdenum, and uranium. These contaminants were selected because previous sampling indicated that they were present in concentrations that exceed background and because they are the regulated COPCs. For additional detail on calculations and data used, see Appendix F.

The results of single-point K_d measurements are presented in Table 4–8. K_d values for arsenic range from 75 to 8,241 milliliters per gram (mL/g) and have a mean of 1,149 mL/g. The sample with the K_d value of 8,241 mL/g was collected in soil immediately above the alluvial aquifer. K_d values for the alluvial aquifer (omitting the soil sample) range from 75 to 1,168 mL/g and have a mean of 361 mL/g. The two alluvial aquifer samples with the highest K_d values (1,168 and 635 mL/g) had plant roots in them; some of the arsenic present may be a result of root uptake. Even without the root-bearing samples, however, K_d values are relatively high, ranging from 75 to 358 mL/g with a mean of 207 mL/g. The high K_d values indicate that arsenic migration will be retarded as ground water migrates through the alluvial aquifer.

Table 4–8. Calculated K_d Values (mL/g)

Well Number	Description ^a	Depth (Ft)	Arsenic	Cadmium	Molybdenum	Uranium
1020	Sandy gravel	10-12	84	182	0.10	2.41
1021	Silty sand, dark brown	5–7	358	356	0.72	3.64
1023	Soil, clayey silt	5–7	8,241	248	1.27	1.79
1023	Silty sand, dark brown	10–12	75	49	0.10	0.97
1023	Sandy gravel	15-15.4	137	64	0.51	1.08
1024	Silty sand, dark brown	5-7	356	134	0.72	3.35
1025	Clayey silt, dark brown, roots	5–7	635	280	1.27	2.29
1025	Clayey silt ,dark brown, roots	10–12	1,168	279	1.50	2.67
1025	Silty sand, dark brown	15-17	228	64	0.30	1.43
1028	Clayey silty gravel, dark brown	5–7	209	181	0.41	1.91
Mean			1,149	184	0.69	2.15

All samples are alluvial aquifer except 1023, 5-7ft, which is soil.

K_d values for cadmium range from 49 to 356 mL/g and have a mean of 184 mL/g. K_d values for he alluvial aquifer (omitting the sample collected from the soil above the alluvial aquifer) have a nean of 177 mL/g. This mean is nearly the same as that of arsenic and indicates that cadmium migration also will be retarded as ground water migrates through the alluvial aquifer. As with arsenic, K_d values for the root-bearing sediments are well above the mean, suggesting that some cadmium may have been sorbed by the roots.

 K_d values for molybdenum range from 0.1 to 1.50 mL/g and have a mean of 0.69 mL/g. All the final concentrations are within 10 percent of the initial concentration and within the analytical uncertainty; some of the K_d values could be close to 0 mL/g. One of the three highest K_d values is from the soil just above the alluvial aquifer. When this value is omitted, the mean of the alluvial aquifer K_d values is 0.6 mL/g. The other two highest values are from the root-bearing samples. Without the three highest values, the mean is 0.4 mL/g. The results indicate that molybdenum is relatively mobile in the alluvial aquifer.

Single-point K_d values for uranium range from 1.08 to 3.64 mL/g and have a mean of 2.15 mL/g (Table 4–8). The values show little correlation to sample type (such as root-bearing samples). These results indicate that uranium migration is slightly retarded in the alluvial aquifer but much less so than migration of arsenic or cadmium.

 K_d values sometimes vary with the concentration of contaminant. Therefore, multiple K_d determinations for uranium were made on two samples collected from well 1023. In Figure 4–11, the final concentration of dissolved uranium is plotted against the mass of sediment used for one of the samples (depth 10 to 12 feet). Data are plotted with 10 percent error bars (a reasonable 'alue for analytical uncertainty) and are compared to calculated curves for various K_d values. /ithin the 10 percent uncertainty, all but one data point are consistent with a K_d value of 1 mL/g. Data from the other sample are plotted on Figure 4–12. Within the 10 percent error bars, these data are also consistent with a K_d value of 1 mL/g. The results indicate that, at least for uranium, transport models do not need to be corrected for variable uranium concentrations.

The K_d results indicate that migration of arsenic and cadmium is much more retarded in the alluvial aquifer sediments than the migration of molybdenum or uranium. This finding is consistent with observations at other uranium mill tailings sites, where typically the mill-related uranium and molybdenum have migrated farther from the processing sites than have the mill-related arsenic or cadmium. Recommended K_d values for the alluvial aquifer are provided in Table 4–9. Values for arsenic, cadmium, and molybdenum are the means of the alluvial aquifer samples excluding the soil sample collected above the alluvial aquifer. The value for uranium is the best fit to the plots of the multiple-point determinations.

Table 4-9. Recommended K_d Values for the Grand Junction Alluvial Aquifer

COPC	K₀ (m∐g)
As	361
Cd	177
Mo	0.6
U	1.0

Well 1023 10-12 ft 10 % Error Bars

Field Investigations Results

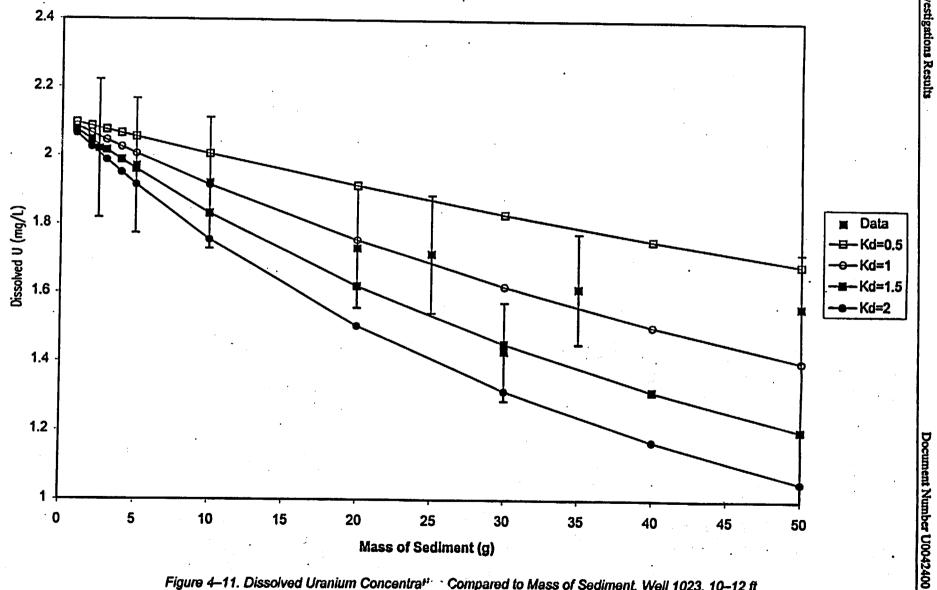
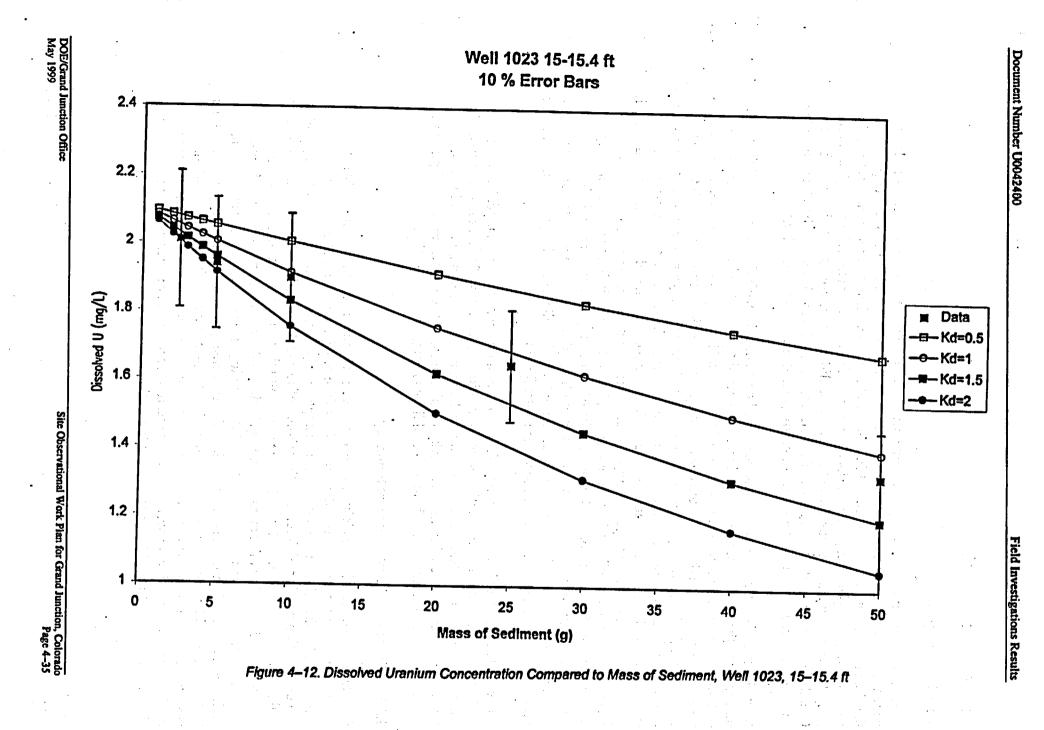



Figure 4–11. Dissolved Uranium Concentration Compared to Mass of Sediment, Well 1023, 10–12 ft

4.3.3 Subpile Soil Analysis

4.3.3.1 Background

During the uranium milling and processing operations at the Grand Junction site, several ponds were used for disposal and evaporation of process-related fluids. Mill tailings from operations at the site and from remediation of Grand Junction vicinity properties were temporarily stored in and around the evaporation ponds. Surface cleanup of the Grand Junction site took place in the early 1990s, and material contaminated with radionuclides was removed and disposed of in the Grand Junction disposal site southeast of Grand Junction. Disturbed areas of the Grand Junction site were covered with at least 6 inches of clean soil and sown with vegetation.

Remediation of the Grand Junction site was based on standards in 40 CFR Part 12. Subpart B, that apply to the cleanup of residual radioactive material from land and buildings. The standards call for remediation until the concentration of ²²⁶Ra in land averaged over any area of 100 square meters does not exceed the background level by more than 5 picocuries per gram (pCi/g) in the first 15 cm of soil below the surface and 15 pCi/g in 15-cm-thick layers of soil more than 15 cm below the surface. The purpose of these standards for land cleanup is to limit the risk from inhalation of radon decay products in houses built on land contaminated with tailings and to limit gamma radiation exposure to people using contaminated land. However, milling-related radionuclides and nonradionuclides remaining in place after remediation to surface cleanup standards may still pose a potentially unacceptable source of ground water contamination.

Leachate from the former evaporation ponds and tailings piles may have migrated downward and contaminated the underlying soils. Therefore, these "subpile soils" have the greatest potential for acting as a continuing source of ground water contamination.

To evaluate the possibility that subpile soils are a continuing contaminant source, leaching studies were conducted on soils collected from locations representing former on-site evaporation ponds and tailings piles (see Plate 1) to estimate the amount of remaining contamination; samples were also collected from three background locations for comparison. The subpile soil testing procedure is summarized below. For additional detail, see Appendix G.

4.3.3.2 Subpile Soil Test Procedure Summary

Samples were collected from eight on-site and three background locations (Figure 4–13). Samples were collected from two depths at five of the on-site and one of the background locations. The objective of the study was to sample soil horizons below the former tailings piles and evaporation ponds and determine the amount of residual contamination. Soils, as opposed to sediments or rocks, are more likely to serve as a continuing contaminant source through adsorption and retention of contaminants, largely due to their fine-grained nature and high organic content. However, an examination of the well logs for Grand Junction sample locations indicates that most, if not all, samples collected were actually of alluvial material. Any true soils that once existed on site were probably removed and replaced by fill during remediation. Because the Grand Junction climate is arid, and because the borehole sample locations are near the Colorado River and other surface drainage features, no well-developed soil horizons were observed during drilling at the subpile sample locations.

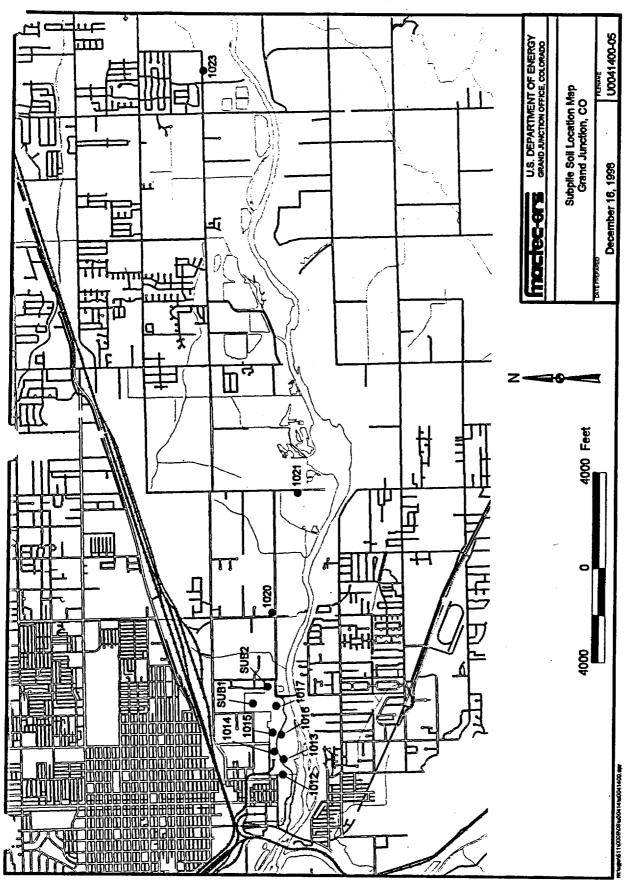


Figure 4-13. Subpile Soil Sample Locations

Samples were sieved to separate the <2 mm size fraction for further testing. This fraction was 'eached in a 5 percent nitric acid solution. The nitric acid solution is assumed to extract all eachable contaminants but not the contaminants locked in recalcitrant minerals such as apatites or other heavy mineral grains. The extractants from the leaching tests were analyzed for several COPCs regulated under UMTRA—arsenic, cadmium, molybdenum, ²²⁶Ra, and uranium. Results of the leachate analyses were used along with volume of material extracted to estimate the amount of extractable contaminant per volume of soil (i.e., an estimated soil concentration that represents a continuing source term; see Table 4–10). For example, for the arsenic analysis for sample SUB1, 2 g of sample were extracted with 200 mL of 5 percent nitric acid. The concentration of arsenic in milligrams per kilogram (mg/kg) of soil is calculated as follows:

Volume of nitric acid solution = 200 mL Volume of soil sample used = 2 g Concentration of arsenic in leachate = 9.8 micrograms per liter (µg/L)

$$\frac{200 \text{ mL}}{2 \text{g}} \times \frac{9.8 \text{ µg}}{\text{L}} \times \frac{1 \text{ L}}{1,000 \text{ mL}} \times \frac{1 \text{ mg}}{1,000 \text{ µg}} \times \frac{1,000 \text{ g}}{\text{kg}} = 0.98 \text{ mg/kg (concentration of arsenic in soil)}$$

A statistical analysis comparing concentrations of contaminants in on-site subpile soil samples to background soil samples indicates that on-site sample concentrations are not significantly elevated over background concentrations in cadmium and ²²⁶Ra at the 95 percent confidence level. On-site samples do contain elevated concentrations of arsenic, molybdenum, and uranium.

Distribution coefficients calculated for site samples (as described in Section 4.3.2) were used in onjunction with subpile soil analyses to give a rough estimate of the importance of subpile soils a continuing contaminant source (Table 4–10). Calculations were performed to determine the concentration of contaminants in water that would be in equilibrium with the calculated soil concentrations.

For example, for the concentration of arsenic in sample SUB1 as calculated above, and the recommended K_d for arsenic of 361 L/kg, the equilibrium water concentration for arsenic is determined by:

$$C_{\text{water, As mg/L}} = C_{\text{soil mg/kg}} \div K_{\text{d L/kg}}$$
$$= 0.98 \text{ mg/kg} \div 361 \text{ L/kg}$$
$$= 0.00271 \text{ mg/L}$$

Results indicate that concentrations of arsenic and cadmium in subpile soils are so low that partitioning to ground water is expected to be insignificant. However, uranium and molybdenum concentrations are high enough in subpile soils and their K_d values are low enough that significant amounts of these contaminants (exceeding UMTRA standards) could partition to the ground water. Water concentrations calculated for some of the uranium and molybdenum samples are probably unrealistic based on known solubility data; however, results can be used ualitatively to assess the potential of these contaminants to act as a continuing source of ground ater contamination.

Table 4–10. Results of Subpile Soil Testing

	1	5 percent	Nitric Acid	Extraction							
			Calculated	l Soll Conc	entrations			Equilit	rium Wate	r Concentr	ations
Sample	Area	Depth (ft)	As (mg/kg)	Cd (mg/kg)	Mo (mg/kg)	Ra-226 (pCl/g)	U (mg/kg)	Cw - As (mg/L) Kd=361	Cw - Cd (mg/L) Kd=177	Cw - Mo (mg/L) Kd=0.6	Cw - U (mg/L) Kd=1.0
								144-001	170-177	1XU-0.0	Ku-1.0
SUB 1	pile/pond	.5'+	0.98	0.4	0.33	0.602	1.2	0.00271	0.0023	0.55	1.20
SUB 2	pile/pond	1'+	1.8	0.22	0.5	0.614	1.4	0.00499	0.0012	0.83	1,40
1012-1 .	pile	12-13.25'	0.74	0.4	1.4	0.473	1.5	0.00205	0.0023	2.33	1.50
013-1	pile	9-11'	3.3	0.28	7.5	0.423	23.9	0.00914	0.0016	12.5	23.90
013-2	pile	11-13'	3.7	0.23	3.5	0.289	10.4	0.01025	0.0013	5.833	10.40
1014-1	pile	13-14.25	3.2	0.97	1.3	0.492	45.2	0.00886	0.0055	2.167	45.20
014-2	pile	17-19'	1.4	0.73	0.8	0.309	7.7	0.00388	0.0041	1.333	7.70
1015-1	pile	10-12'	1.1	0.36	0.79	0.443	0.95	0.00305	0.0020	1.317	0.95
1015-2	pile	14-15.4'	0.82	0.37	1	0.249	0.58	0.00227	0.0021	1.667	0.56
016-1	pile	9-11'	1.5	0.18	0.77	0.229	1.7	0.00416	0.0010	1.283	1.70
016-2	pile	13-14.3'	1.2	0.23	0.34	0.319	0.6	0.00332	0.0013	0.567	0.60
017-1	pond	9-11'	1	0.29	0.68	0.472	0.99	0.00277	0.0016	1.133	0.99
017-2	pond	11-13'	1.6	0.18	0.53	0.38	0.59	0.00443	0.0010	0.883	0.59
020-1	bkgd	5-7'	1.2	0.4	0.3	0.646	0.78	0.00332	0.0023	0.5	0.78
021-1	bkgd	5-7	0.9	0.32	0.33	0.472	1.1	0.00249	0.0018	0.55	1.10
023-1	bkgd	5-7'	1	0.42	0.14	0.611	0.74	0.00277	0.0024	0.233	0.74
023-2	bkgd	10-12'	0.92	0.25	0.21	0.24	0.44	0.00255	0.0014	0.35	0.44
MTRA STA	NDARDS (n	ng/L)	0.05	0.01	0.1	5.0	0.044				

However, because of the high mobility of these contaminants, they would be expected to flush from the aquifer in a relatively short period of time (see further discussion in Section 5.3).

4.4 Ecological Field Investigations

Ecological investigations at the former millsite and surrounding areas were conducted to satisfy data needs to update the baseline risk assessment (BLRA; DOE 1995a). Section 5.2 of the Work Plan for Characterization Activities at the UMTRA Grand Junction Project Site (DOE 1997b) identified the following ecological data needs:

- Characterization of current plant communities overlying contaminated ground water and projections of the future plant ecology of the area given land-use scenarios.
- Selection and characterization of the plant ecology of a reference (background) area.
- Comparison of ecological COPCs in vegetation, sediment, and surface water, on site and in the reference areas, with ecotoxicity benchmarks.
- Screening assessment of ecological risks associated with irrigation ponds constructed at the botanical gardens since publication of the BLRA.

4.4.1 Plant Ecology Investigation

Vegetation at the former millsite and at the reference area was characterized using a miquantitative relevé technique (Bonham 1989). The species composition and relative bundance of plant communities were evaluated by subjectively selecting representative stands of each vegetation type, walking through the stands, and compiling a list of all species observed. Each species was then assigned one of six cover classes. Cover was not measured precisely. The millsite and reference area were traversed on May 12, 1998.

4.4.1.1 Millsite Ecology

The millsite was seeded with a mixture of grasses, forbs, and shrubs after the removal of tailings in 1994. Since then, two types of upland vegetation and two types of riparian vegetation have developed on the site (See Figure 4–14). In one small area the seeding of crested wheatgrass (Agropyron cristatum) was successful. No other seeded grasses, forbs, or shrubs were found. The rest of the upland area is dominated by the invasive weed kochia (Kochia scoparia). A few young greasewood (Sarcobatus vermiculatus) shrubs are also present in this area. Overall, the millsite revegetation was unsuccessful.

Two riparian vegetation types along the Colorado River were identified on the basis of the relative abundance of tamarisk and cottonwood. The tamarisk type is dominated by tamarisk (Tamarix ramosissima) with some reed canarygrass (Phalaris arundinaceae), willows (Salix exigua), and cottonwood seedlings (Populus fremontii). Downgradient from the plume and mainly on Watson Island is the cottonwood type, which is dominated in the canopy by ttonwoods and has a weedy subcanopy of tamarisk, Russian olive (Eleagnus angustifolia), and ainese elm (Ulmus pumila). The understory consists of a variety of grasses; the most prevalent are slender wheatgrass (Elymus trachycaulus spp. trachycaulus), inland saltgrass (Distichlis

spicata), blue wildrye (Elymus glauca), and reed canarygrass. There are also forbs in the understory, both native plants and invasive weeds such as Russian knapweed (Centaurea repens). Table 4-11 details the cover class of each species in the different vegetation types.

Table 4–11. Releyé Data Showing Species Cover of Plant Types at the Grand Junction Site

Latin Name	Common Name	Kochia Type	Wheat Grass Type	Tamarisk Type	Cotton- Wood Type
Agropyron cristatum	Crested wheatgrass	1	3		1
Aster sp.	Aster				1
Atriplex canescens	Fourwing saltbush	•			+
Bromus inerme	Smooth brome	2			
Bromus tectorum	Cheatgrass		•		1
Centaurea repens	Russian knapweed				1
Chenopodium simplex	Goosefoot				1
Conyza canadensis	Horseweed				+
Descurania pinnata	Tansy mustard		1		+
Distichlis spicata	Inland saltgrass				2
Eleagnus angustifolia	Russian olive			1	2
Elymus elymoides	Bottlebrush squirreltail				1
Elymus sp.	Wildrye				2
Elymus trachycaulis	Slender wheatgrass				2
Kochia scoparia	Kochia	4	2	3	2
Phalaris arundinaceae	Reed canary grass			2	2
Phragmites communis	Common reed				1
Polygonum sp.	Knotweed			.+.	
Populus fremontii	Cottonwood			2	3
Salix exigua	Sandbar willow			2	1
Sarcobatus vermiculatus	Greasewood	+	· · · · · · · · · · · · · · · · · · ·		
Scirpus acutus	Bulrush			1	1
Sporobolis airoides	Alkali sacaton .				1
Typha latifolia	Cattail			1	
Tamarix ramosissima	Tamarisk			4	3
Ulmus pumila	Chinese elm			1	2
Xanthium strumarium	Cocklebur			11	

COVER CLASSES: +: <1 percent, 1: 1-5 percent, 2: 5-25 percent, 3: 2: 30 percent, 4: 50-75 percent, 5: 75-100 percent

4.4.1.2 Reference Area Ecology

The reference area is upgradient of the millsite at the Wildlife Area section of Colorado River State Park. It consists of wildlife habitat areas and a series of ponds created from reclaimed gravel pits. The ponds are lined with cattails, common reed, and sandbar willow and provide habitat for geese, ducks, herons, and other waterfowl. The upland area is on a bench between the ponds and a small channel of the Colorado River. Characteristic upland vegetation continues east of the ponds. A pedestrian trail traverses these upland areas. The upland vegetation on this site is a good example of the potential vegetation of the millsite. It captures the range of conditions that demonstrate possible pathways of succession at the millsite, depending on future land-use scenarios.

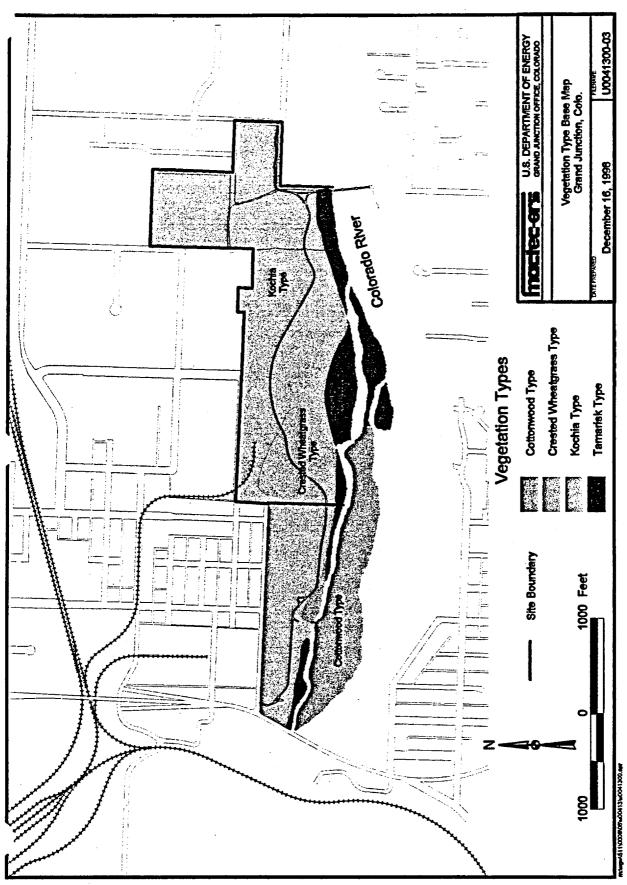


Figure 4-14. Base Map of Vegetation Types

the millsite. Ammonium was used in the uranium milling process to neutralize acids used to leach ores in the early processing stage (Merritt 1971). Ammonium concentrations are elevated 1 downgradient wells to about 5th Street, then decrease to background (0.093 mg/L) beyond this point.

Arsenic. The highest concentrations of arsenic are in on-site wells, though all concentrations are below the MCL of 0.05 mg/L. Concentrations in nearly all the off-site wells, both upgradient and downgradient, are at or near the detection limit of 0.001 mg/L. The lack of significant off-site migration of the arsenic "plume" is consistent with the K_d calculated for arsenic (see Section 4.3.1), which indicated that arsenic should be relatively immobile.

Iron. In general, the most consistently high concentrations of iron are in on-site wells, and the spatial distribution of concentrations displays no well-defined pattern or trend. Downgradient well 1010 has one of the highest concentrations (16.2 mg/L) but is separated from the site by downgradient wells with very low iron concentrations.

Manganese. The most consistently high concentrations of manganese are in on-site wells and in wells directly downgradient of the site. Manganese concentrations generally decrease with distance from the site. However, it is difficult to actually define a "plume" that is attributable to site activities because of the relatively high concentrations of manganese in background wells (the average background concentration is 1.44 mg/L).

Molybdenum. The highest concentrations of molybdenum are from samples collected from onsite wells. A number of wells have concentrations exceeding the MCL of 0.1 mg/L. Off-site, molybdenum concentrations generally decrease, though two background wells have oncentrations that exceed the MCL.

Sulfate. Sulfate concentrations show no well-defined pattern. Concentrations in on-site and off-site wells are generally high and exceed the secondary drinking water standard of 250 mg/L at all locations except in well 588.

Uranium. The highest concentrations of uranium are in on-site and downgradient wells. Concentrations in most of these wells exceed the MCL of 0.044 mg/L. Because of the high mobility of uranium predicted by measured K_ds (see Section 4.3.1), it is reasonable to infer that wells immediately downgradient of the site are affected by site contamination. However, because of the high background concentrations of uranium (mean of 0.047 mg/L), it is difficult to accurately define the boundary of site-related contamination.

Vanadium. Highest vanadium concentrations are in the on-site wells, although these concentrations vary considerably. Vanadium concentrations generally decrease with distance downgradient. Significant differences in concentration (almost two orders of magnitude) exist between the most contaminated on-site wells and wells located off-site. Based on the high K_ds calculated for vanadium, the relative immobility of vanadium is to be expected. Only on-site wells exceed risk-based concentrations for vanadium.

Historical Changes in Ground Water Chemistry

igures 5-2 through 5-9 are updated plots of figures prepared for the characterization work plan for the site (DOE 1997b), which were based on data collected from sampling events that took

place from 1985 to 1996. Many of the higher contaminant concentrations, particularly for metals, were in some of the earliest samples collected and tended to be from one location (well 584). The 1998 sampling data indicates that many of these contaminant concentrations have decreased to levels below detection or are indistinguishable from background.

A comparison of average values and ranges of COPCs identified in the original SOWP (DOE 1996d) with averages and ranges of the same constituents detected in the 1998 sampling indicates that, qualitatively, nearly all COPCs have decreased in concentration. Only results for uranium and nitrate appear to be inconclusive. However, historical and 1998 data come from different wells, and historical data were collected over a number of years. Therefore, only a qualitative comparison of these data sets is made here.

Time-concentration plots for selected wells and contaminants are shown in Figures 5–10 through 5–17. Data from three sets of wells were examined in an attempt to discern any trends in concentration through time. Wells 590, 736, and 740 are generally downgradient of the site, and 742 is in a former ore-storage area; all have data going back to the early 1980s. These wells were selected to identify changes in the plume through time. Wells 745 and 746 have historically been regarded as upgradient wells and also have data collected as far back as the early 1980s. Wells 1000, 1001, and 1002 are on-site wells; these were installed following surface remediation and have data extending back to early 1995.

The older plume wells (Figures 5–10, 5–12, 5–13, 5–14, 5–15, and 5–16) do not show any clearly consistent upward or downward concentration trends through time. Concentrations show considerable fluctuation from 1990 through 1993, though inflection points for many wells appear to be coincident (though not consistently increasing or decreasing even for the same contaminant). These large fluctuations may be related to changing conditions associated with millsite surface remediation. Excavation of tailings piles and ponds, particularly in areas where the water table is shallow, would be expected to affect ground water chemistry.

A prominent inflection point in the 1992 time frame is present even for background wells. This suggests that changes in concentrations were related to an event more far-reaching than remediation activities.

Post-remediation on-site wells (Figures 5–11 and 5–17) indicate a generally decreasing trend for uranium and molybdenum (two contaminants that can be attributed to site activities). However, the limited range in concentration and the small number of data points available make this conclusion tentative.

Isotopic concentrations of ²³⁴U and ²³⁸U were measured for one round of samples from background and plume locations. Tables 5–5 and 5–6 show the results of background and plume analyses. Isotopic concentrations of combined ²³⁴U and ²³⁸U were converted to total uranium in milligrams per liter to compare with the 0.044 mg/L standard (which assumes secular equilibrium between the two isotopes). Ratios of ²³⁴U: ²³⁸U indicate that the two isotopes are not in equilibrium and that ²³⁴U is the dominant radionuclide. No significant difference exists between the mean concentrations in plume and background wells, though the isotopic ratios for plume samples span a wider range. These data also indicate that a lower total elemental uranium standard would be applicable for the Grand Junction site than the 0.044 mg/L to adjust for disequilibrium conditions. An adjusted standard of approximately 0.037 or 0.038 mg/L would be

11/5/98 7:30:51 AM

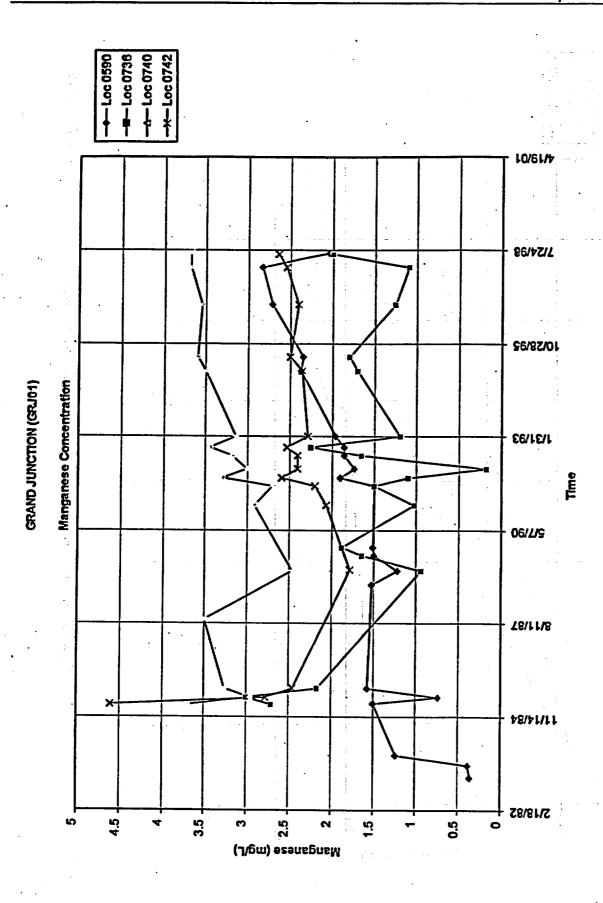
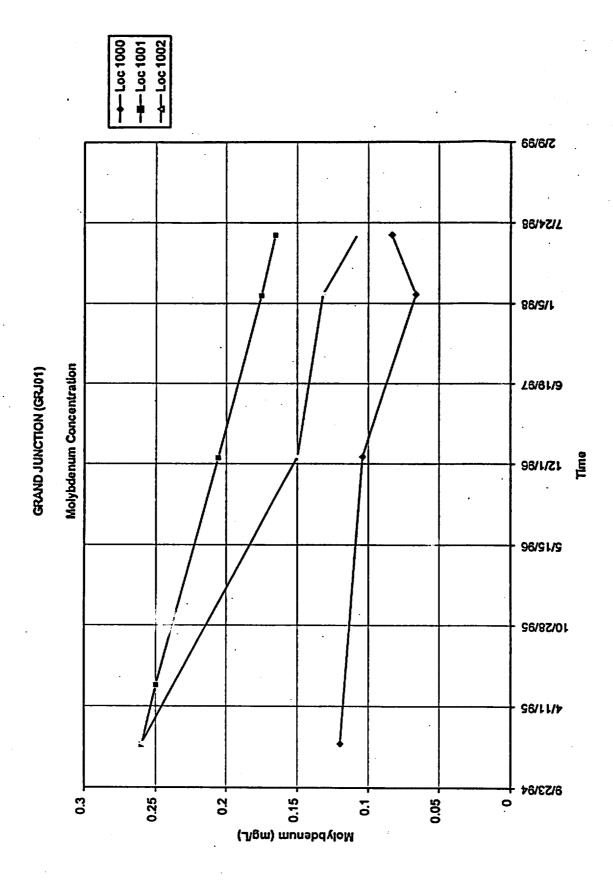



Figure 5-10. Time Concentration Plot-Manganese in Old Wells

GRAND JUNCTION (GRJ01)

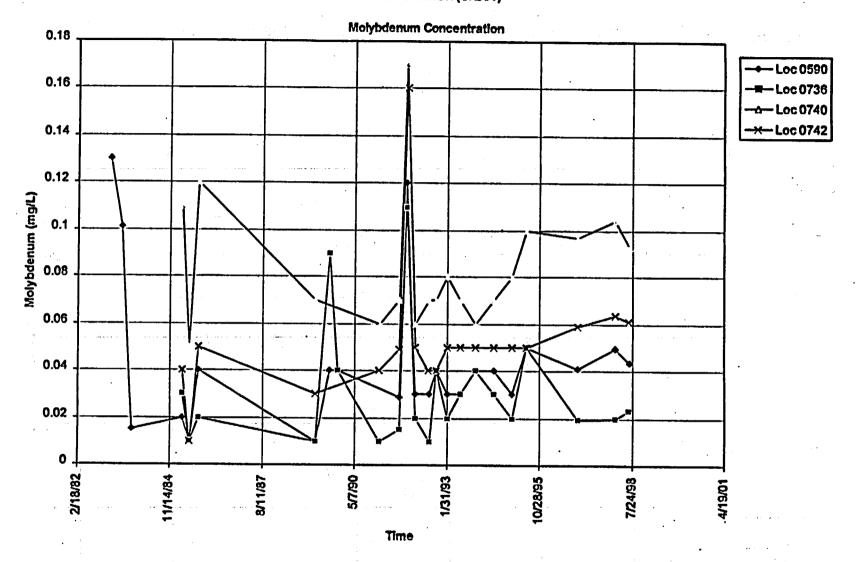
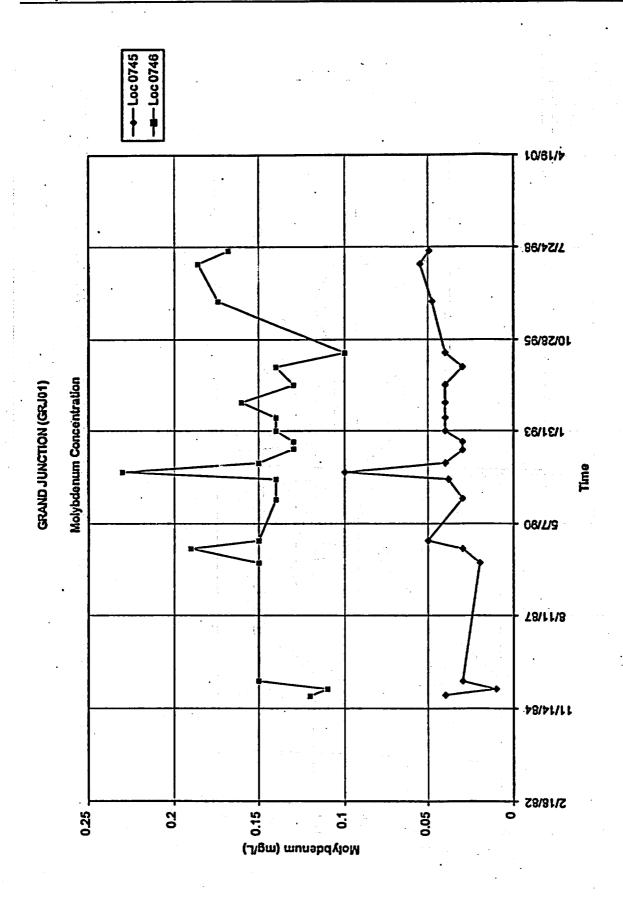
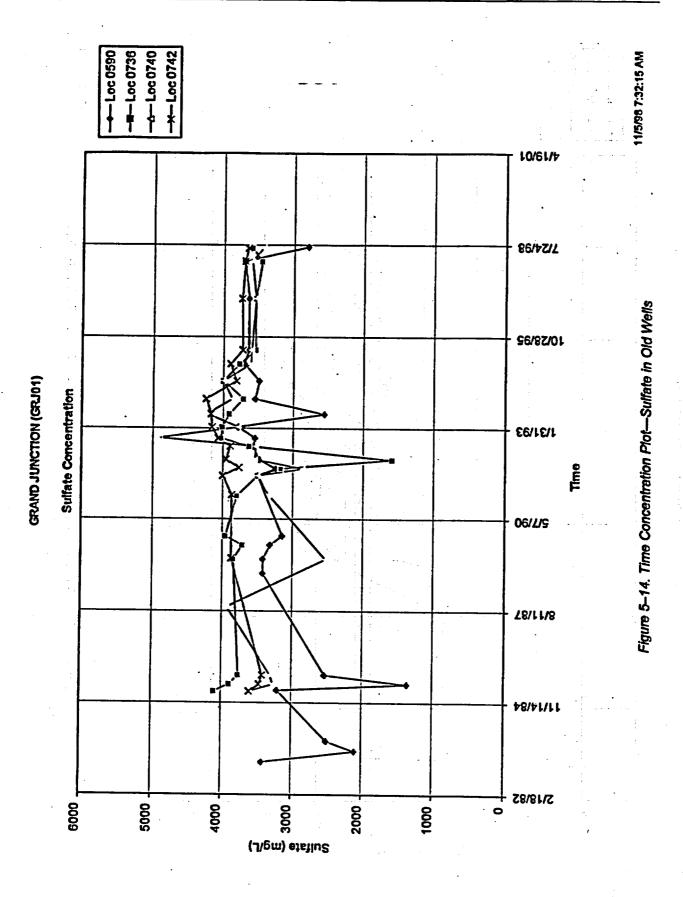




Figure 5-12. Time Concentration Plot—Molybdenum in Old Wells (590, 736, 740, 742)

11/5/98 7:31:33 AM

GRAND JUNCTION (GRJ01)

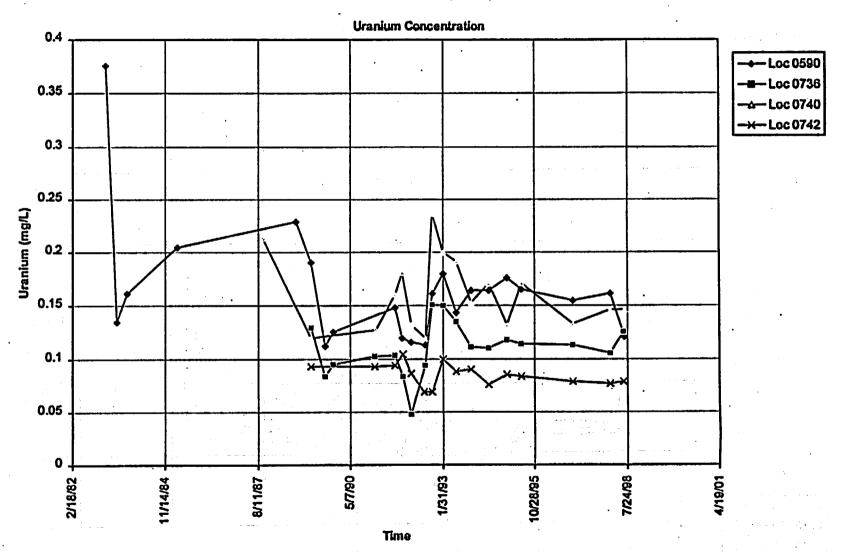


Figure 5-15. Time Concentration Plc* I Iranium in Old Wells (590, 736, 740, 742)

1:/5/98 7:25:01 AM

Conceptual Site Model

Document Number U0042400

Document Number U0042400

GRAND JUNCTION (GRJ01)

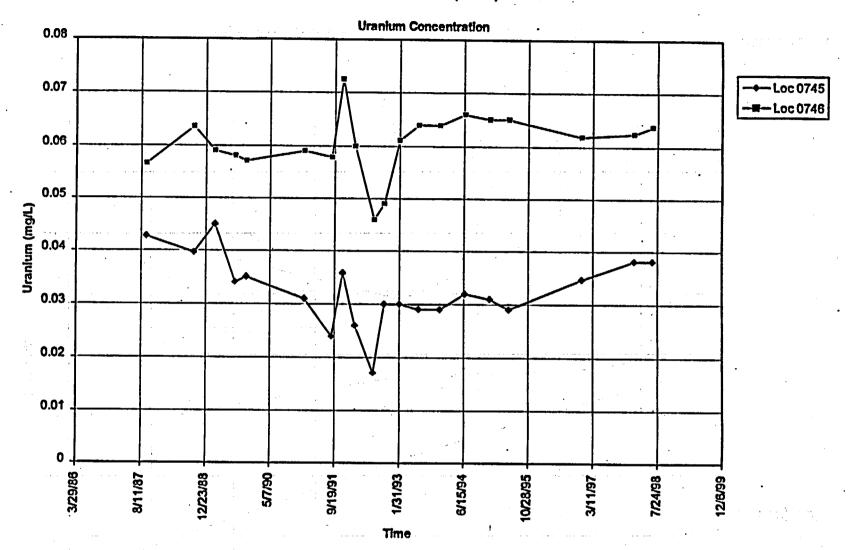
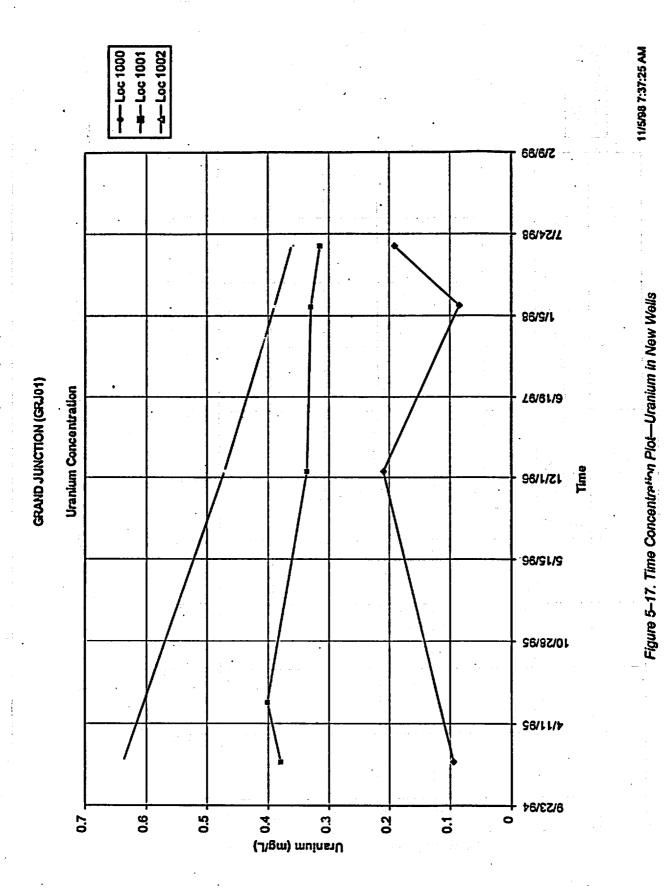



Figure 5-16. Time Concentration Plot—Uranium in Old Wells (745, 746)

11/5/98 7:41:31 AM

more appropriate to account for site-specific uranium concentrations and the higher proportion of ²³⁴U.

5.3.4 COPC Fate and Transport

This section presents discussion of the evolution of the contaminated ground water system. Understanding the chemistry of the ground water will aid in making quantitive predictions or assessing general trends to be expected of the migration of the contaminant plume and the fate of contaminated sediments. Geochemical considerations that influence transport modeling and a general discussion of the fate of individual COPCs are also presented. The geochemical considerations presented below, together with knowledge of the milling history and the ground water flow characteristics, indicate that the average contaminant concentrations in the alluvial aquifer, surface water, and surface sediments should decrease over time. However, some areas may show interim increases as constituents migrate before eventual decreases occur.

5.3.4.1 Evolution of Ground Water Geochemistry After Uranium Milling

Because of its importance to regulatory compliance, this discussion focuses on uranium.

The milling process at the Grand Junction site used acids to extract uranium from the ores. The acids produced low pH and oxidizing conditions. Under these conditions, uranium forms a uranyl cation (UO₂²⁺) that favors uranium partitioning to the aqueous phase. Probably much of this acidic solution was neutralized before it was released from the mill. However, when the mill was operating, remnant uranyl-bearing, acidic solution entered the ground water from tailings pond seepage. The water table would have been mounded at the site due to the elevated flux of rater recharging from the ponds. The mounding would have caused the contamination to spread apidly. Due to the high rate of ground water flow and the chemical conditions that favored partitioning to the aqueous phase, it is likely that much of the plume migration occurred during and shortly after the milling.

As the acidic solutions passed through the alluvial aquifer they interacted with aquifer minerals. Dissolution of carbonate minerals caused addition of carbonate to the aqueous phase and a rise in pH due to consumption of H⁺. Mixing with carbonate-bearing ground water also caused the pH to increase. Reactions with silicate minerals such as feldspars and clays also caused neutralization of the acidic solutions but at a slower rate than reaction with carbonate minerals. The rates of neutralization were probably high for the milling fluids that had pH values less than 2 but decreased as pH increased. It is likely that pH values increased significantly before the milling fluids migrated more than a few hundred feet from the mill ponds. No pH value less than 6.43 is currently measured in the ground water, and the pH values are similar on site, upgradient, and downgradient.

Uranium chemistry evolved as contaminated, low-pH fluids entered the ground water and became neutralized. Dissolved carbonate has a strong tendency to form aqueous complexes with uranium. The dominance of the uranyl ion in the milling solutions was replaced by uranyl dicarbonate ions [UO₂(CO₃)₂²]. Uranyl dicarbonate currently dominates the dissolved uranium distribution in the alluvial ground water both at the site and in the upgradient area. As indicated v the low distribution coefficients (about 1 mL/g), uranium is still relatively mobile in the _round water. Without carbonate complexing, the mobility would be much lower.

Table 5-5. Isotopic Uranium Concentrations—Background Locations

Uranium Disequilibrium at Grand Junction - Background Locations U-234 & U-238 U-234 & Total U U-234 U-234 (mg/L) U-238 (pCI/L) Ratio Location Easting **Northing** (mg/L)238 (pCVL) 238 (mg/L) (mg/L) Lab (pCVL) Lab Calculated Lab **pCVL** Calculated Calculated Lab 234/238 0.00000560 715 0.0602 34.9 20.1 0.060 55 0.060 1.74 713 35.2 0.0652 0.00000565 21.8 0.065 57 0.065 1.61 1020 0.0566 29.2 0.00000469 18.9 0.056 48.1 0.056 1.54 1023 0.0468 23.8 0.00000382 15.6 0.047 39.4 0.047 1.53 1025 0.0436 21.5 0.00000345 14.5 0.043 36 0.043 1.48 0.00000302 745 0.0381 18.8 12.7 0.038 31.5 0.038 1.48 0.0305 14.9 10.2 1021 0.00000239 0.030 25.1 0.030 1.46 1.55 average U-234 & **U-234 MCL U-238 MCL** U-234 & U-234 MCL Disequilibrium Ratio pCi/L **U-238 MCL** (mg/L) 238 (pCVL) (mg/L)238 (mg/L) (234/238)factor (pCVL) (pCVL) example: assumes equilibrium at std 1.0 15.0 0.00000241 15.0 30 0.045 0.045 1.55 18.2 0.00000293 11.8 actual average 0.035 0.035 30

Uranium Disequilibrium at Grand Junction - Plume Locations

Easting	Northing	Location	Total U (mg/L) Lab	U-234 (pCi/L) Lab	U-234 (mg/L) Calculated	U-238 (pCi/L) Lab	U-238 (mg/L) Calculated	U-234 & 238 (pCi/L) Lab	U-234 & 238 (mg/L) Calculated	Ratio pCi/L 234/23
		1015	0.0641	37.8	0.00000607	21.4	0.064	59.2	0.064	1.77
		1017	0.0241	13.2	0.00000212	8.1	0.024	21.3	0.024	1.63
		1019	0.0486	25.7	0.00000412	16.2	0.048	41.9	0.048	1.59
and the second	16	736	0.105	49	0.00000786	35.2	0.105	84.2	0.105	1.39
*		1018	0.0862	39.1	0.00000627	28.8	0.086	67.9	0.086	1.36
		1010	0.0637	25.4	0.00000408	21.3	0.064	46,7	0.064	1.19
		1022	0.132	52.5	0.00000843	44.2	0.132	96.7	0.132	1.19
		740	0.146	57.3	0.00000920	48.7	0.146	106	0.146	1.18
		590	0.162	62.6	0.00001005	54.1	0.162	116.7	0.162	1.16
·.		1012	0.22	84.7	0.00001359	73.5	0.220	158.2	0.220	1.15
		1016	0.113	42.2	0.00000677	37.6	0.112	79.8	0.112	1.12
		1011	0.199	73.5	0.00001180	66.5	0.199	140	0.199	1.11
		1013	0.604	220	0.00003531	202	0.604	422	0.604	1.09
·		1000	0.0816	30.6	0.00000491	28.2	0.084	58.8	0.084	-1.09
		1001	0.33	115	0.00001845	110	0.329	225	0.329	1.05
		1002	0.391	136	0.00002183	131	0.392	267	0.392	1.04
		1014	2.5	833	0.00013368	835	2.496	1668	2.496	1.00
				Ì				·	average	1.24
		Disequilibrium factor	Ratio pCi/L (234/238)	U-234 MCL (pCl/L)	U-234 MCL (mg/L)	U-238 MCL (pCi/L)	U-238 MCL (mg/L)	U-234 & 238 (pCi/L)	U-234 &	
example	e; assumes e	quilibrium at std	1.0	15.0	0.00000241	15.0	0.045	30	0.045	
174		actual average	1.24	16.6	0.00000267	13.4	0.040	30	0.040	

After the mill closed, the infiltration of contaminated processing fluids ceased, which significantly reduced the amount of contaminants entering the ground water. At that time the only contribution to ground water contamination was percolation of water through the tailings. The percolating water was a combination of atmospheric precipitation and water applied to irrigate vegetation used to stabilize the tailings. During this period, some of the tailings pores probably still contained residual low-pH fluids. As water percolated through the tailings, these contaminated low-pH fluids were gradually swept into the ground water. After removal of the tailings, the flux of contamination to ground water was essentially eliminated. As indicated by the soil-leaching tests, however, there is still some leachable uranium in the subpile soils. The contribution of contaminants from these soils is much less than from the former tailings. Residual uranium is also present in the aquifer solids and is gradually being leached out as cleaner water passes through.

The major-ion chemistry of the alluvial ground water at the millsite is similar to that of the upgradient area, as indicated by their similar locations on a Piper diagram (Figures 4–5 and 4–6). The chemical composition of the alluvial aquifer system at the millsite is apparently dominated by the same factors (e.g., interaction with the aquifer solids, irrigation practices, recharge and evaporation rates) that control its composition in the upgradient area. The entire alluvial aquifer is nearly at equilibrium with calcite and gypsum, indicating that these minerals are partially controlling the major-ion composition.

5.3.4.2 Fate and Transport of Individual COPCs

As contaminated ground water migrates through soils and rocks, some of the contaminants transfer between the solid and liquid phases. This phenomenon causes the contaminants to travel at a slower rate than the average ground water velocity. The chemical processes that cause this retardation include adsorption, absorption, precipitation, diffusion into immobile porosity, transfer to vapor phases, and accumulation in plants. Although it is generally not possible to differentiate among these processes, for many aquifer systems a bulk parameter (the distribution coefficient, or K_d) has been used with some success to describe the retardation of contaminant migration. Most numerical ground water models use the K_d concept to simulate contaminant transport. Thus, a laboratory study was conducted during this investigation to determine K_d values applicable to the alluvial aquifer.

Distribution coefficients (K_ds) were determined for the regulated COPCs (As, Cd, Mo, and U). The K_d value is a measure of the degree of chemical interaction between the dissolved component and the aquifer solids. High values of K_d indicate more partitioning to the solid phases. K_d values give no direct indication of the chemical mechanisms responsible for the partitioning.

To use K_d values for ground water transport modeling, the following assumptions must be made: (1) the 24-hour shake time is sufficient to bring the system to chemical equilibrium, (2) the modeled system is always in chemical equilibrium, (3) an adequate portrayal of the areal and vertical distributions of K_d values is manifested in the model domain, (4) K_d values do not vary within the range of major-ion chemistry or pH values present (or expected) in the ground water, (5) processes such as mineral precipitation or preferential extraction by plant roots do not occur, and (6) K_d values do not vary with contaminant concentrations present in the ground water.

Some studies have shown that K_d values decrease as the concentration of adsorbate increases 'assumption 6). At low concentrations this effect is usually minimal; that is, for low contaminant oncentrations the adsorption isotherm is usually linear. If high concentrations are present a nonlinear isotherm such as the Freudlich isotherm is required for more accurate simulations. Although the effect of nonlinearity of the isotherm is likely to exert only a small effect on plume migration compared to other factors (such as aquifer heterogeneity, dispersion, ground water flow velocities, or retardation by mechanisms other than adsorption), an isotherm for uranium was measured. Within experimental uncertainties the isotherm is linear, supporting the use of a K_d for transport modeling. Because other COPCs are present at lower concentrations than uranium, it is reasonable to use a K_d approach as a first approximation to simulate plume migration.

Mineral precipitation can occur if concentrations of the dissolved components increase to saturation. If COPCs transfer to or from the solid phases by precipitation/dissolution, the K_d modeling approach is unlikely to produce a realistic simulation of plume migration. Therefore, it is useful to examine conditions that may cause mineral precipitation. It was determined that calcite and gypsum are nearly at equilibrium with the aquifer. These minerals in part control the concentrations of Ca, HCO_3^- , and SO_4^{2-} , and the pH in the aquifer. Some of the COPCs, including uranium, will partition somewhat into calcite.

Although it is likely that sorption is the predominant retardation mechanism for the COPCs, other mechanisms may control migration under specific circumstances. All the COPCs except fluoride are sensitive to oxidation-reduction changes. A general discussion of retardation mechanisms that may exert control on the specific COPCs (As, Cd, Co, F, Fe, Mn, Mo, Ni, NO₃, Se, SO₄, U, V, and Zn) follows.

Arsenic. Arsenic occurs in ground water predominantly in two oxidation states: arsenite (As³⁺) and arsenate (As⁵⁺). The monovalent species H₂AsO₄⁻ predominates between about pH 3 and 7, and the divalent species HAsO₄²⁻ dominates at higher pH. Some metal arsenates have low solubilities, which may control arsenic concentrations in ground water. In particular, arsenic is able to coprecipitate with ferric iron. At low oxidation states, arsenic can precipitate as native arsenic metal.

Adsorption to alluvial aquifer mineral grains, which are mostly quartz, feldspar, and clay, is expected to be relatively minor unless the grains have oxide or oxyhydroxide coatings. Arsenic, however, is known to adsorb to ferric oxyhydroxides in relatively high concentrations (Dzombak and Morel 1990). Arsenic adsorption would increase in those portions of the aquifer that have higher concentrations of iron and manganese oxides.

Cadmium. Cadmium is present in ground water as the uncomplexed cation Cd²⁺ or complexed with an anion (e.g., CdSO₄°). Cadmium readily substitutes for Ca in carbonate minerals. Coprecipitation with calcite ([Ca, Cd]CO₃) is the most likely mechanism for removal of Cd from the alluvial ground water. Since the aquifer is saturated with calcite, this mechanism is likely to keep Cd concentrations low. Cadmium can precipitate as Greenockite (CdS) under sulfate-reducing conditions. Cadmium will also effectively adsorb to ferric oxyhydroxides.

obalt. Cobalt occurs in the 2+ and 3+ oxidation states in aqueous solution and readily oprecipitates with ferric iron and manganese oxyhydroxides. This coprecipitation is most likely

the limiting mechanism for Co transport in the alluvial aquifer. Under sulfate-reducing conditions. Co can form CoS. Cobalt will also adsorb to ferric oxyhydroxides.

Fluoride. Fluoride exists mainly as the uncomplexed F in ground water. It is likely that the F concentrations in the alluvial aquifer are too low to form minerals; however, with high concentrations of Ca²⁺, fluoride can form the mineral fluorite (CaF₂). Although some ion exchange may occur with the clay minerals in the aquifer, most of the fluoride probably remains in solution as a conserved species.

Iron. Iron occurs in two oxidation states in ground water: ferrous (Fe²⁺) and ferric (Fe³⁺). At the pH values in the alluvial aquifer, transport occurs as ferrous iron, which will complex with aqueous anions such as chloride (e.g., FeCl₂). Ferric iron forms insoluble oxyhydroxide precipitates. Thus, oxidizing conditions in the aquifer tend to immobilize iron. Ferric oxyhydroxides are believed to migrate in aquifers in colloidal suspension; however, there is limited evidence that this is a dominant transport mechanism. Reducing conditions in the aquifer will mobilize iron through dissolution of the oxyhydroxide phases. Ferric oxyhydroxides are capable of adsorbing many of the COPCs; thus, the iron cycle is likely to be important in understanding the migration behavior of many of these contaminants. Under sulfate-reducing conditions, iron can form insoluble sulfide minerals such as FeS and FeS2.

Manganese. Manganese occurs in the 2+ and 4+ oxidation states in the alluvial aquifer. In the dissolved state it is present mainly as the Mn²⁺ ion. Its redox chemistry is similar to that of iron in that oxidation will promote the precipitation of hydroxide or oxide minerals. Manganese will substitute readily for Ca in calcite. Because the alluvial aquifer is saturated with calcite, this mechanism could be important at the Grand Junction site. Like iron, manganese minerals are effective scavengers of many COPCs.

Molybdenum. Molybdenum occurs naturally in the 4+ and a 6+ oxidation states, but the 6+ state is most likely present in the Grand Junction ground water because of the high oxidation potential. Dissolved molybdenum species are dominated by the molybdate anion (MoO₄²) in the pH range of interest. At low pH, HMoO₄ or H₂MoO₄ may become important, High concentrations of sodium and calcium can form sodium and calcium molybdate complexes (e.g., NaMoO4 and Ca MoO_4^0).

Because of the low concentrations in ground water at the site, no molybdenum minerals are expected to form unless reducing conditions are present in the aquifer. At low redox states, Mo can precipitate as ferrous molybdate (FeMoO₄) or under sulfate-reducing conditions as molybdenite (MoS₂). Adsorption to alluvial aquifer mineral grains, which are mostly quartz. feldspar, and clay, is expected to be relatively minor unless the grains have oxide or oxyhydroxide coatings. Molybdenum, is known to adsorb to ferric oxyhydroxides in relatively high concentrations (Morrison and Spangler 1993). Molybdenum adsorption would increase in those portions of the aquifer that have higher concentrations of iron and manganese oxides.

Nickel. Nickel is present in ground water mainly as the uncomplexed Ni²⁺ species. Nickel can coprecipitate with calcite and form sulfide minerals under sulfate-reducing conditions. Nickel can also adsorb to ferric oxyhydroxides.

Nitrate. Nitrate (NO₃) does not complex significantly with other ions under ground water conditions. It is transported without significant interaction with the rock matrix. If appropriate nitrate-reducing microbiota and nutrients are present, nitrate can undergo reduction to nitrogen gas (N₂). Significant denitrification is not expected to occur without a suitable organic nutritional cource such as acetate. Therefore, nitrate probably transports nearly conservatively through the quifer. Concentrations decrease by mixing with other ground water and by dispersion. If the aquifer is within about 50 feet of the ground surface, plants will remove nitrate from the ground water.

Selenium. Aqueous selenium occurs predominately as selenate (SeO₄²) or selenite (SeO₃²); selenate is probably favored under the oxidized conditions of the alluvial aquifer. Concentrations of selenium are not high enough to precipitate selenium minerals. Selenium can substitute for sulfur in sulfur-bearing minerals and can precipitate as ferroselite (FeSe₂) or coprecipitate with pyrite (FeS₂) under reducing conditions. Plants, such as the genus Astragalus, common to the Grand Junction area, can preferentially utilize Se if the ground water is shallow. Selenium is not likely to adsorb appreciably to the mineral grains. Both selenite and selenate, however, will adsorb to ferric oxyhydroxides (Dzombak and Morel 1990). Selenate adsorption requires low pH and is not likely to be significant in the alluvial aquifer. Thus, selenium is likely to remain in solution with concentration gradients developed mainly by advection and dispersion.

Sulfate. In alluvial ground water, dissolved sulfur occurs mainly as the unassociated sulfate ion (SO₄²). The only mechanism likely to partition significant amounts of sulfate into the solid phase is the precipitation of gypsum. The amount that precipitates is likely to be relatively minor compared to the high concentrations of sulfate in solution. Therefore, most of the concentration gradient is produced by mixing with other ground water and dispersion. Under reducing conditions brought about by microbial stimulation, sulfate can form sulfide minerals.

ranium. Most naturally occurring uranium is either in the uranyl (6+) or uranous (4+) oxidation state. The uranyl form is predominant in oxidized ground water. The uranyl ion forms strong aqueous complexes with carbonate, and uranyl dicarbonate [UO₂(CO₃)₂²] is the dominant aqueous uranium species at the Grand Junction site.

Uranyl concentrations in the alluvial aquifer are too low to form uranium minerals. Uranous minerals would precipitate if the aquifer were to become reduced. Adsorption of uranyl to mineral grains in the alluvial aquifer is likely to be insignificant. However, uranyl is known to adsorb to ferric oxyhydroxide in relatively high concentrations (Morrison et al. 1995). It is likely that adsorption to ferric or manganese minerals is the principal mode that retards uranium migration at the site.

Vanadium. Vanadium exists in the 3+ and 5+ oxidation states in aquifers. Dissolved vanadium exists mainly as vanadate (VO_4^3) oxyanions such as H_2VO_4 . Vanadate can combine with cations to form minerals such as $Ca_3(VO_4)_2$. Under reducing conditions it forms insoluble minerals such as paramontroseite (V_2O_4) . Vanadate adsorbs effectively on ferric oxyhydroxides. Vanadium can combine with uranium to form low-solubility uranyl vanadates such as carnotite $[K_2(UO_2)_2(VO_4)_2]$.

Zinc. Zinc is present in ground water as Zn²⁺ and readily complexes with many anions such as chloride. Zinc substitutes for Ca²⁺ in calcite, which is a likely retardation mechanism in the luvial aquifer. Under sulfate-reducing conditions, zinc forms sphalerite (ZnS). Zinc also effectively adsorbs on ferric oxyhydroxides.

5.4 Ecological Risk Assessment Model

The purpose of the ecological risk assessment (ERA) is to identify and characterize adverse effects, if any, on the ecosystem at the Grand Junction site. For ecological risks to occur at the Grand Junction site, pathways must exist for exposure of biological receptors to biotic and abiotic media contaminated by ground water. The Grand Junction ERA is based on EPA guidance provided in Guidelines for Ecological Risk Assessment (EPA 1998b) and Framework for Ecological Risk Assessment (EPA 1992). A screening-level assessment of ecological risks at the site, the BLRA (DOE 1995a), evaluated COPCs, potential pathways, receptors, and adverse effects. This section presents a conceptual ecological risk model. Section 6.2 is an update of the BLRA based on this conceptual model and the results of the 1998 field investigations (Section 4.4). The risk assessment methodology and calculations are presented in Appendix I.

Conceptual models for ecological risk assessments are developed from information about stressors, potential exposure, and predicted effects on an ecological entity (the assessment endpoint). Conceptual models consist of two principal components (EPA 1998b):

- A set of risk hypotheses that describe predicted relationships among stressor, exposure, and assessment endpoint response, along with the rationale for their selection.
- A diagram that illustrates the relationships presented in the risk hypotheses.

5.4.1 Risk Hypothesis

Milling operations at the Grand Junction site have resulted in low levels of ground water contamination. Hydrogeologic information regarding plume migration suggests that contaminatic might be present in the Colorado River adjacent to and downgradient of the Grand Junction site. This could result in contaminant exposure directly or indirectly to wildlife and plant receptors that use or inhabit the site. Figure 5–18 illustrates current and potential exposure pathways based on all the available data.

An exposure pathway is the mechanism by which a contaminant in an environmental medium (i.e., the source) contacts an ecological receptor. A complete exposure pathway includes

- Contaminant source
- Release mechanism that allows contaminants to become mobile or accessible
- Transport mechanism that moves contaminants away from the release
- Ecological receptor
- Route of exposure (e.g., dermal or direct contact, inhalation, or ingestion).

Ecological receptors that could potentially be exposed to COPCs were identified in the BLRA (DOE 1995a) and included mammalian and avian species. A food web for the Grand Junction site (Figure 5–19) illustrates the significant dietary interactions between the terrestrial and aquatic receptors.

 The food web also depicts the major trophic-level interactions and describes nutrient flow and transfer of matter and energy through these levels. It was developed from the species lists and consideration of the exposure pathways. The food web diagram was used to portray potential

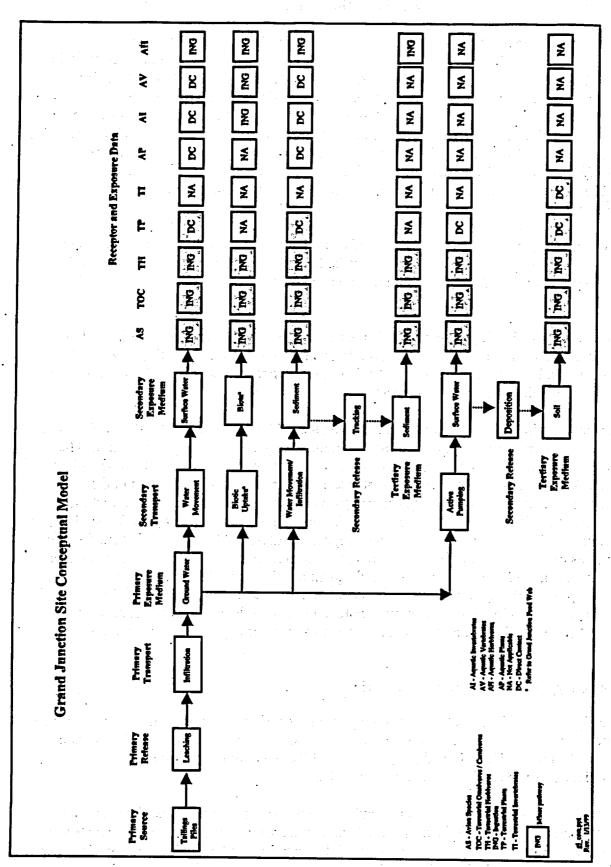


Figure 5-18. Grand Junction Site Conceptual Model

habitat at the site is a storm-water discharge canal on the western property boundary. Consequently, surface water ingestion was not evaluated for the terrestrial habitat.

The riparian and aquatic habitats associated with the Colorado River at the Grand Junction site represent the areas of significant potential exposure. Contaminated ground water associated with the former milling operations discharges into the Colorado River where COPCs may be deposited in sediment or may be present in the surface water as well as downstream of the site. Phreatophytes rooted in sediment may uptake contaminants through their root systems. Such species include sandbar willow (Salix exigua), cattail (Typha sp.), cottonwood (Populus fremontii), common reed (Phragmites communis), bulrushes, tamarisk (Tamarix ramosissima), and reed canarygrass (Phalaris arundinaceae). As mentioned in the characterization work plan (DOE 1997b), elevated concentrations of some constituents were present in the wetlands mitigation ponds.

Although the prominent boundaries of these ponds no longer exist, remnants of these ponds may still contain some elevated concentrations of COPCs. In addition, the sediments may act as sinks for COPCs in ground water discharging into the area and thus represent potential sources of contamination.

Terrestrial receptors such as foxes, coyotes, skunks, raccoons, deer, and rodents are likely to use the riparian corridor for food items and as a drinking water source. Consequently, they are also exposed to potentially contaminated sediments. These terrestrial receptors typically do not spend most of their time in the riparian or aquatic areas.

Aquatic receptors living in the riparian and aquatic habitats adjacent to and downstream from the millsite have the potential to ingest contaminated sediment, surface water, and vegetation. These species have the potential for the greatest exposures. Larger herbivores prefer to browse on leafy material; smaller mammals and birds seek plant seeds and roots. Field observations in the reference area found evidence of wildlife browsing on cattails. Beaver (an herbivore) and muskrat (an omnivore that feeds chiefly on aquatic plants) forage on the types of vegetation found along the river banks. Higher trophic receptors such as coyotes, eagles, and hawks may in turn feed on small mammals or birds that have ingested contaminated food items. Aquatic avian species such as the great blue heron, ducks, geese, and killdeer frequent the Colorado River and represent ecological receptors with significant exposure potential. Aquatic invertebrates, amphibians, reptiles, and fish are also in direct contact with potentially contaminated sediment, surface water, and aquatic vegetation. These receptors can also serve as prey for eagles, herons, and other wildlife.

5.4.2 Future Hypothetical Exposure Scenario

Because no significant habitat changes from the present scenario are expected, the future exposure scenario includes all of the current exposure scenarios associated with the riparian and aquatic habitats on the Colorado River. Localized flooding will likely continue to erode the vestiges of the wetlands mitigation ponds and reshape the river banks.

Without institutional controls, ground water could possibly be pumped and used for irrigation and livestock watering or other industrial uses. This would create a source for ground water and surface water ingestion, direct contact with terrestrial vegetation, and deposition of ground water and surface water on the soil. The soil would then represent an additional source medium for

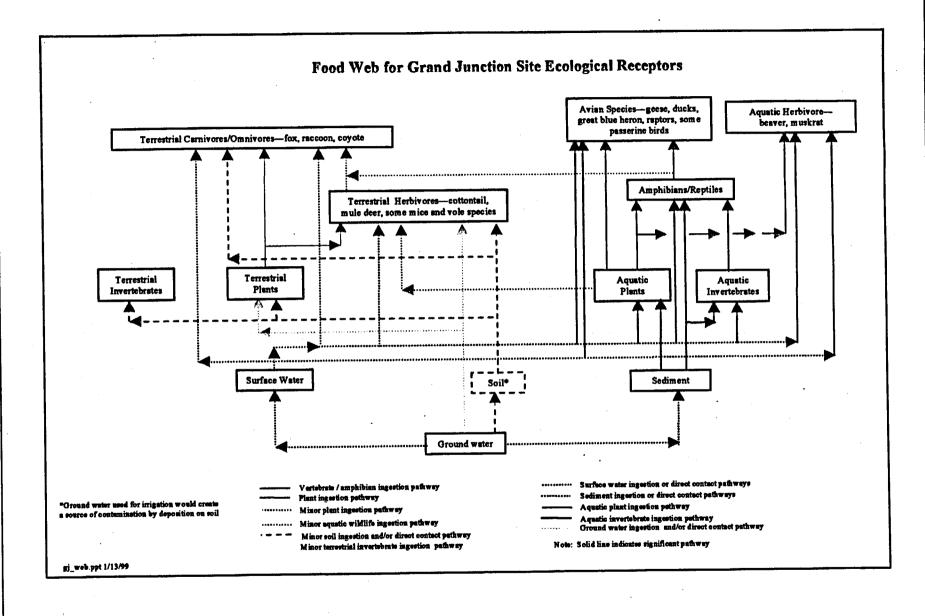


Figure 5-19. Grand Junction Site Food Web

ingestion and direct contact. At present, both of these secondary exposure routes are considered incomplete since ground water is not currently used for these purposes, nor is ground water likely o be pumped in the future. Large-scale irrigation with ground water is not considered a likely future pathway because surface water is the main source of irrigation water in the Grand Junction area. As long as there is the possibility of pumping ground water for agricultural purposes, it is assumed that the potential exists for these two hypothetical exposure pathways.

The land use plans for the Grand Junction site have not been made final. One possible use is the construction of a recreation area, which would likely include the planting of various tree species. Since the potential exists for phreatophytes (e.g., cottonwood, willow, and greasewood) to inhabit the terrestrial portion of the site, contaminants in ground water could be taken up by those plants through extensive root systems. Contaminants could possibly bioaccumulate in various plant parts and exert a range of influences, depending on the specific COPC. Plant uptake rates and toxicities vary greatly among species and are affected by factors such as soil characteristics (e.g., pH, redox potential, organic matter), plant sensitivity, input-output balance, and cumulative effects. Foraging wildlife could be indirectly exposed to contaminants in ground water by ingesting plants that have bioaccumulated certain contaminants.

End of current text

: 11

6.0 Summary of Human Health and Ecological Risk

5.1 Human Health Risk Assessment

A baseline risk assessment was previously prepared for the Grand Junction site (DOE 1995a) according to methods provided in the Final Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE 1996c). Much of the data used in that risk analysis was collected before completion of surface remediation (data for characterizing the contaminant plume were collected from 1983 to 1989). As described in Section 5.3.3, additional wells were installed during the 1990s and more recent samples were collected. Many contaminants have shown significant changes, mainly decreases, in concentration since completion of the original BLRA. This necessitates a reevaluation of COPC identification and assessment of associated risks. The intent of this BLRA update is to use those earlier results and conclusions as a starting point from which to evaluate the more recent data.

6.1.1 Summary of 1995 Risk Assessment Methodology and Results

The 1995 BLRA identified 19 contaminants associated with the Grand Junction site as being at levels statistically above background concentrations for the area. This initial list of contaminants was screened first to eliminate contaminants in concentrations within nutritional ranges and then to eliminate contaminants of low toxicity and high dietary ranges. These two steps eliminated three contaminants each, resulting in the following COPC list: arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, ²²⁶Ra, sulfate, uranium, vanadium, and zinc. These contaminants were retained for further risk analysis.

a number of potential routes of exposure were evaluated: ingestion of ground water as drinking water in a residential setting, dermal contact with ground water while bathing, ingestion of garden produce irrigated with ground water, ingestion of milk/livestock watered with ground water, ingestion of fish from the Colorado River, and recreational exposure to Colorado River water. Results indicated that adverse toxic responses from exposure to contaminants from routes other than drinking water would not be expected. Therefore, it was determined that ingesting ground water as drinking water would be the primary contributor to total exposure. Consequently, the use of ground water as drinking water in a residential setting was evaluated probabilistically. For additional information on other potential exposure routes and for the probabilistic methodology, see the BLRA (DOE 1995a).

Results of the BLRA showed that the most severe noncarcinogenic health effects could occur from the water's sulfate and manganese content and to a lesser extent from fluoride, vanadium, cadmium, iron, arsenic, molybdenum, zinc, and nickel. Refer to the BLRA for specific toxicological effects (DOE 1995a). The estimated risk levels for maximum detected concentrations of the carcinogens arsenic, $^{234+238}$ U, and 226 Ra each exceeded the highest EPA-recommended excess lifetime cancer risk of 1×10^{-4} .

Potential public health effects from using background water as drinking water were also assessed in the BLRA by calculating point-exposure doses and comparing the exposure doses to toxic effect levels observed for the COPCs. Background exposure doses were calculated for all plume-slated COPCs. Maximum concentrations of the constituents in the upgradient and regional background wells were used in these calculations. Selenium was also evaluated because it is detected in high concentrations in regional ground water (as discussed in Section 5.3.1). The

- 11

potential receptors assessed were infants, children, and adults. The exposure dose calculations followed UMTRA Ground Water Project methodology (DOE 1996c).

The results of the assessment indicated that, if the regional alluvial ground water were ingested as drinking water, sulfate, selenium, manganese, sodium, chloride, and fluoride have the potential to cause adverse health effects. The individual excess lifetime cancer risk calculated for the upgradient background ground water shows that the cancer risk for arsenic (8×10^{-4}) exceeds the upper end EPA-recommended risk level of 1×10^{-4} . The point-exposure dose evaluation and comparison to standards of upgradient and regional background water substantiates the conclusion that the background water quality in the Grand Junction area is poor. That is, drinking the background alluvial ground water could cause adverse health effects. In addition, the water is unpalatable because of high levels of sulfate, TDS, manganese, iron, fluoride, and chloride.

6.1.2 BLRA Update

6.1,2.1 COPC List Update

This BLRA update uses the COPC list from the original BLRA as a starting point to evaluate current data. Table 6-1 lists the COPCs identified in the 1995 BLRA along with a summary of historical plume data (from the 1996 SOWP and BLRA) and current (1998) plume and background data. In addition to the 13 COPCs from the original BLRA, nitrate also is included at the request of CDPHE; ammonia is included because it is present in significantly elevated concentrations at the site and was an important constituent in the ecological risk evaluation. MCLs and risk-based concentrations (RBCs) are also included for comparison of data to benchmarks (EPA 1998a). Background locations were determined as described in Section 5.3.1 of this document. Plume data include on-site wells and wells immediately downgradient of the site that can reasonably be assumed to be influenced by site activities. Table 6-1 lists wells included in both plume and background groupings for 1998 data.

The risk-based concentration presented in Table 6-1 for a given contaminant represents a concentration in drinking water that would be protective of human health provided that

- A residential exposure scenario is appropriate.
- Ingestion of contaminated drinking water is the only exposure pathway. [Note: Does not apply to ammonia. See discussion in Section 6.1.2.2.]
- The contaminant contributes nearly all of the health risk.
- EPA's risk level of 1×10^{-6} for carcinogens and a hazard index of 1 for noncarcinogens is appropriate.

If any of these assumptions is *not* true, contaminant levels at or below RBCs cannot automatically be assumed to be protective. For example, if multiple contaminants are present in drinking water, a single contaminant may be below its RBC but still be a significant contributor to the total risk posed by drinking the water. However, if an RBC is exceeded, it is an indication that further evaluation of the contaminant is warranted. RBCs are intended to be used in screening-level evaluations.

Table 6-1. Grand Junction Site Data Summary

Contaminant	No.	Minimum (mg/L)	Maximum (mg/L)	Mean (mg/L)	MCL (mg/L)	RBC* (mg/L)	% exceeding benchmark ^b
Ammonia (as NH ₄)	110.	(mg.c)	(1119:4)	(1118/12)	(mg/L/	0.2N (as NH ₃)	Denominark
Background	8/8	0.014	0.321	0.093	-	43 (as NH ₄) ^d	0
Current Plume	17/17	0.017	233	71.4		45 (a5 H1 u)	65
Historical Plume ^c	N/A	N/A	N/A	N/A			- 00
Arsenic	1071	1077		TWA	0.05	0.011N	· · · · · · · · · · · · · · · · · ·
Background	3/15	0.001	0.0014	N/A	1	0.000045C	0
Current Plume	18/34	0.001	0.0349	0.005	 		0
Historical Plume		0.007	0.18	0.007	 	;	
Cadmium					0.01		· · · · · · · · · · · · · · · · · · ·
Background	0/15	0.001	0.001	N/A	0.01		0
Current Plume	2/34	0.001	0.0013	N/A			0
Historical Plume		0.073	0.42	1.2			
Cobalt		0.070		1,000	1	2.2N	
Background	0/15	0.006	0.008	N/A	 	2.211	0
Current Plume	6/34	0.006	0.0162	N/A	1		0
Historical Plume		0.055	0.66	0.14			<u> </u>
Fluoride			3.30	U.17	4	2.2N	
Background	15/15	0.453	1.62	0.895	 	2.214	0
Current Plume	34/34	0.335	7.57	1.93	1		9/24
Historical Plume	0 7/0 1	4.3	4.8	4.6	1		6/24
ron	.	7.5	4.0	7.0		11N	
Background	10/15	0.003	3.13	0.552		1114	0.00
Current Plume	29/34	0.003	21.2	3.88			12
Historical Plume	20,01	1.3	16	11	1		14
Manganese	<u> </u>	1				1.7N	
Background	15/15	0.233	2.22	1.4		1.714	53
Current Plume	34/34	0.436	4.54	2.82			97
Historical Plume	01/01	1.8	10	4.1			01
^{34 + 238} U (pCi/L)		1.0		7.1	30 pCi/L		
Background	7/7	25.1	57	42	130 PORE		86
Current Plume	17/17	21.3	1668	215.3			. 94
Historical Plume	11111	21.5	1000	210.0			. 84
Molybdenum					0.1	0.18	
Background	15/15	0.0158	0.124	0.0587	0.1	0.16	13
Current Plume	34/34	0.0147	0.299	0.101	1		38
Historical Plume		0.13	0.53	0.28			30
lickel	-		11 4 41	0.20		0.73	
Background	10/15	0.0074	0.0281	0.015		0.73	0
Current Plume	28/34	0.01	0.111	0.035			0
Historical Plume	20,01	0.28	0.38	0.32	-		
litrate	:	O.LO		0.02	44		
Background	15/15	0.0579	71.4	21.85			20
Current Plume	31/34	0.0378	65	5.43			3
Historical Plume	J 1707	<.01	50	J.73			<u>_</u>
²⁶ Ra (pCi/L)					5 cCin	<u> </u>	
Background	7/15	0.04	0.34	N/A	5 pCi/L		
Current Plume	17/34	0.04	0.62	0.167	,	<u> </u>	0
CONTENT FIGURE	1110	U.U+	U.UZ	. U. 10/	1		0

Table 6-1 (continued). Grand Junction Site Data Summary

Contaminant	No.	Minimum (mg/L)	Maximum (mg/L)	Mean (mg/L)	MCL (mg/L)	RBC* (mg/L)	% exceeding benchmark ^b
Sulfate		•			N/A	N/A	
Background	15/15	416	3720	256 6		٠.	
Current Plume	34/34	1650	3700	3154			
Historical Plume		3100	4900	3945·			
Uranium					0.044		
Background	15/15	0.0228	0.0662	0.0469			53
Current Plume	34/34	0.0241	2.5	0.304		2. T	94
Historical Plume		0.29	0.45	0.3		-	·
Vanadium						0.26N	
Background	10/15	0.001	0.0049	0.0019			0
Current Plume	16/34	0.001	0.832	0.0857			18
Historical Plume		5.2	14	7.1			
Zinc			-			11N	
Background	1/17	0.004	0.0051	N/A			0.
Current Plume	19/34	0.004	0.352	0.0349			0
Historical Plume		2.6	6.7	4.5			
Background Wells: 71:	3, 715, 745	, 1020, 1021,	1023, 1025,	CW21	·		!
Plume Wells: 590, 736	, 740, 100	0-1002, 1010-	1019, 1022				100

MCL=maximum concentration limit

RBC = risk based concentration

For contaminants with MCLs, it is interesting to compare these with calculated RBCs. For example, the MCL for arsenic is 0.05 mg/L; the RBCs are 0.001 and 0.000045 mg/L for noncarcinogenic and carcinogenic effects, respectively. Thus the MCL was set at a level higher than that believed to result in some adverse health effect. On the other hand, the MCL for molybdenum is 0.1 mg/L and the RBC is 0.18 mg/L. Therefore, the MCL is more protective than the RBC. There are a variety of contaminant-specific reasons for differences between MCLs and RBCs; however, for purposes of risk management and decision making, it is necessary to have some appreciation of what these benchmarks mean.

A comparison of historical and current plume data indicates that concentrations of many constituents have decreased. This is true for all COPCs except uranium and nitrate, though maximum plume concentrations for iron and fluoride are higher compared to historical data. A comparison of current background and plume data indicates that plume concentrations for nitrate and ²²⁶Ra + ²²⁸Ra (which is mostly ²²⁶Ra) are within the range obtained for background. Mean plume concentrations of nitrate are far below the average background mean; plume and background mean concentrations for ²²⁶Ra + ²²⁸Ra are essentially the same. Therefore, on the basis of a comparison to background, it is possible to eliminate nitrate and ²²⁶Ra + ²²⁸Ra from further consideration as COPCs.

The presence of fluoride in elevated levels associated with the site is problematic. Although fluoride is a process-related contaminant at other uranium milling sites, research of milling operations at the Grand Junction site gave no indication that fluoride was used in any form. However, the maximum and mean concentrations of fluoride in plume-related wells are four-times and two-times that of background, respectively. Although process knowledge would seem

N—noncarcinogenic risk, C—carcinogenic risk

Benchmark = MCL if available; risk-based concentration (RBC) used if no MCL.

[&]quot;Historical data were collected 1983 to 1989.

Site-specific value determined through geochemical modeling; inhalation pathway.

reason to eliminate fluoride as a site-related contaminant, it is retained for further analysis rending some explanation for its elevated concentrations in alluvial ground water at the site.

Sulfate is present in alluvial ground water throughout the Grand Valley in relatively high concentrations, though concentrations are higher, on average, in association with the Grand Junction site. Sulfuric acid was used in processing operations at the site, and some of the ores processed were known to contain sulfide minerals. Therefore, sulfate is a site-related contaminant. However, the highest background concentration of sulfate exceeds any values detected in plume-related wells. Also, sulfate in ground water near the site shows no distribution, such as decreasing concentrations with distance from the site, as would be expected for a plume that is clearly associated with site practices. In terms of risk to human health, there is still no consensus regarding what levels of sulfate intake are detrimental. A secondary drinking water standard of 250 mg/L has been established on the basis of aesthetic concerns, though significantly higher concentrations are believed to produce no ill effects in humans. Because of the lack of an established risk-based benchmark for sulfate, it is not carried through the risk calculations presented in this section. However, because of the elevated levels that are present in plume-related ground water, it is retained as a COPC.

Through a qualitative evaluation, all the other COPCs are deemed to be present in concentrations sufficiently elevated above background to be retained for further consideration in the update of risk calculations.

6.1.2.2 Risk Assessment Methodology

As mentioned previously, the original BLRA considered several potential routes of exposure to ontaminants and eliminated all but one, ingestion of ground water in a residential setting, as an insignificant. Therefore, the ground water ingestion pathway is the only route of exposure considered in this BLRA update (with the exception of ammonia as discussed below). Note that all risks discussed in this document are hypothetical with respect to human health. Based on current ground water use, no risks are present because no exposure pathways are complete. Thus, this assessment concerns only potential risks that could exist in the future if land and water usage changes.

Risk calculations presented here follow EPA's Risk Assessment Guidance for Superfund Methodology (EPA 1989a), which involves determining a point estimate for excess cancer risk from current or potential carcinogenic exposures and a hazard quotient (HQ; ratio of exposure intake to an acceptable intake) for noncarcinogenic exposures. It is assumed that the receptors for ground water are residents who use alluvial ground water as their primary source of drinking water. This is an unlikely scenario because of current land use in the vicinity of the site and because of the institutional controls in place (see Section 7.2) but is consistent with the scenario evaluated in the original BLRA. However, for the purpose of making risk management decisions, results of these risk calculations are based on very conservative assumptions.

The original BLRA calculated noncarcinogenic risks using a probabilistic approach. Essentially, this means that instead of using a single value for each parameter required in the risk calculations (e.g., ground water concentration, body weight, frequency of exposure), a range of values with a ven probability distribution was used. By performing numerous iterations of the standard risk alculations, with a value selected at random from each parameter distribution, a range of

exposures and associated risks results. The original BLRA reported results for the most sensitive receptor population modeled—children.

In this update, which uses point-exposure doses, single values are used for each parameter required in the risk calculations. Calculations to determine contaminant intakes use standard exposure factors for the adult population (EPA 1989b). Ground water concentrations used to calculate risks associated with ingestion of plume-related ground water are the maximum concentrations detected during the 1998 sampling events, most of which were from on-site wells. Although use of adult exposure data is probably less conservative than use of the exposure data for children, use of maximum ground water concentrations and point-exposure dose calculations is probably more conservative; the net effect is to produce comparably conservative results. For the purpose of making risk management decisions, results of both methodologies are usable and both have advantages and limitations.

Risks associated with ammonia were generally calculated as described above for other noncarcinogens with one important exception. For all contaminants except ammonia, risks were determined for ingestion of contaminated ground water (i.e., an oral exposure route) in a residential setting. The major risk from ammonia is not through oral ingestion in ground water, but rather from inhalation of gaseous ammonia through volatilization in ground water. Risks were calculated using default inhalation exposure parameters for a residential setting (EPA 1991). The volatilization factor for ammonia and the fraction of ammonia actually present as the dissolved gas, NH3, were determined through site-specific geochemical modeling with the PHREEQC modeling code (see Section 4.3.3.1 and Appendix I for more details).

Risks associated with ammonia for a residential setting require that exposure occur within a closed structure (i.e., a residence) in which volatilized ammonia is trapped through its use for all other purposes (drinking, bathing, laundry, etc.). For exposure scenarios where a closed structure is absent (e.g., irrigation and agricultural), volatilized ammonia would quickly dissipate to the atmosphere and risks would be negligible (at least at the concentrations present in ground water at the Grand Junction site). Therefore, exposure to ammonia is only evaluated here for a residential setting.

The same methodology was used to calculate carcinogenic risks for this BLRA update as was used in the original BLRA (i.e., receptors are adults with exposure averaged over 70 years). For all risk calculations, benchmarks for acceptable contaminant intakes (e.g., reference doses, slope factors) are best available data from standard EPA sources (e.g., Integrated Risk Information System, Region III Risk-Based Concentration Table).

6.1.2.3 Results

Results of the risk calculations are included in Tables 6-2 and 6-3. Table 6-2 shows risk calculations for maximum and mean plume concentrations for both noncarcinogenic and carcinogenic contaminants. Values for ammonia represent concentrations present as NH3 as determined through geochemical modeling. Table 6-3 shows the same calculations for maximum background concentrations. The tables also show the percentage that each noncarcinogenic contaminant contributes to the total hazard index (HI) (or overall risk).

Table 6-2. Risk Calculations for 1998 Maximum and Mean Plume Concentrations

on Carcinogen	s—Ground W	ater Ingesi	tion Only (A	iults)		1
Jontaminant	CW-MAX	HQ-MAX	%Risk	CW-MEAN	HQ-MEAN	%Risk
	mg/L			mg/L		
Arsenic	0.0349	3.187	8.13	0.005	0.4566	6.42
Cadmium	0.0013	0.071	0.18	0.001	0.0548	0.77
Cobalt	0.0162	0.007	0.02	0.007	. 0.0032	0.04
Fluoride	7.57	3:457	8.81	1.93	0.8813	12.39
iron	21.2	1.936	4.94	3.88	0.3543	4.98
Manganese	4.54	2.646	6.75	2.82	1.6438	23.12
Molybdenum	0.299	1.638	4.18	0.101	0.5534	7.78
Nickel	0.111	0.152	0.39	0.035	0.0479	0.67
Uranium	2.5	22.831	58.22	0.304	2.7763	39.05
Vanadium	0.832	3.256	8.30	0.0857	0.3354	4.72
Zinc	0.352	0.032	80.0	0.0349	0.0032	0.04
	HI=	39.215		HI=	7.1103	3.3 .
Non carcinogens	-Inhalation t	hrough wa	ater use in re	sidential setting*		
Ammonia	0.655	4.706	100	0.201	1.444	100

^{*}IR = 15 m³/day of air default; concentration in air = water concentration x site-specific volatilization factor x conversion factor For Grand Junction, volatilization factor =0.000595; conversion factor is 1,000L/m³

Maximum NH₃ in Grand Junction ground water is 1.1 mg/L, mean is 0.337 mg/L

Contaminant		CW	Risk ·
Arsenic	max	0.0349	6.15E-04
mg/L	mean	0.005	8.81E-05
U234+238	max	1668	1.86E-03
pCi/L	2nd	422	4.71E-04
	mean	2.15E+02	2.41E-04

Table 6–3. Risk Calculations for 1998 Maximum Background Concentrations

Non Carcinogens—Background Ground Water Ingestion Only (Adults)

Contaminant		cw	HQ	%Risk
		ng/L		
Arsenic		0.0014	0.128	2.82
Selenium		0.437	0.751	16.53
Fluoride	* * *	1.62	0.740	16.29
İron	1	3.13	0.286	6.30
Manganese		2.22	1.294	28.50
Molybdenum		0.124	0.679	14.96
Nicke!		0.0281	0.038	0.85
Uranium		0.0662	0.605	13.32
Vanadium		0.0049	0.019	0.42
Zinc		0.0051	0.000	0.01
	4.	HI=	4.540	

Carcinogens—Ground Water Ingestion Only (Adults)

Contaminant		cw	Risk
rsenic	mg/L	0.0014	2.47E-05
234+238	pCi/L	57	6.37E-05

gjbksprd.xls, sht 2

The following major observations are based on these results:

- Risks associated with maximum concentrations of contaminants in plume ground water greatly exceed the acceptable HI of 1 for noncarcinogens. Risks calculated using mean contaminant concentrations are significantly lower, though still unacceptable.
- Uranium is the main risk contributor to noncarcinogenic risks posed by plume ground water (58 percent contribution to the HI using maximum concentrations).
- All carcinogenic risks calculated for $^{234}U + ^{238}U$ associated with plume ground water exceed the upper end of EPA's acceptable risk range (1 × 10⁻⁴ to 1 × 10⁻⁶). Carcinogenic risks calculated for background ground water are within EPA's risk range.
- Noncarcinogenic risks posed by background ground water (calculated using maximum detected contaminant concentration) exceed the acceptable HI of 1.

It was noted previously that several metals identified as COPCs in the original BLRA have decreased significantly in concentration since that time, though they still were somewhat above background. These metals include cadmium, cobalt, nickel, and zinc. The relative contribution of these contaminants to overall noncarcinogenic risk indicates that they are insignificant, both individually and collectively. These four metals make up less than 1 percent of the total risk considering maximum plume concentrations and less than 2 percent for mean concentrations. Therefore, these contaminants can be eliminated from further consideration as final COPCs for the site.

As mentioned above, the major risk contributor for ground water ingestion is uranium. Other significant risk contributors (4 percent or greater) are the same for maximum and average calculations, though relative contributions vary. Those other contaminants are arsenic, fluoride, iron, manganese, molybdenum, and vanadium. Risks associated with inhalation of ammonia exceed acceptable levels. In terms of carcinogenic risk, maximum plume concentrations of arsenic exceed EPA's acceptable risk range, though the mean risk values lie within this range. All levels of ²³⁴U + ²³⁸U, from mean to maximum, exceed EPA's acceptable risk range.

Several of the contaminants included as significant risk contributors do not exceed their individual RBCs. However, they cannot be eliminated from further consideration because, in terms of collective risk posed by ground water, they are important. Likewise, although arsenic does not exceed its MCL, from a risk perspective it is still a significant contributor to site risks.

The greatest contributors to background risks through ground water ingestion are manganese selenium, fluoride, and molybdenum; uranium is of lesser importance. However, those contaminants collectively responsible for the majority of background and plume risks are the same, with two exceptions. Vanadium makes up a significant amount of risk for plume ground water but is unimportant in terms of background. Selenium, which is essentially nondetectable in plume wells, is a significant contributor to background risk. Other than these two constituents, the majority of risk in both instances is made up of arsenic, fluoride, iron, manganese, molybdenum, and uranium. (Risks were not determined for inhalation of ammonia because of insignificant concentrations of actual NH₃.)

To summarize, ingestion of either site-related or background ground water as the sole source of drinking water would result in unacceptable human health risks. Site-related ground water may sose both carcinogenic and noncarcinogenic risks, both of which are primarily attributed to uranium (in isotopic and chemical forms). The other significant contributors to risk are ammonia (through inhalation), arsenic, fluoride, and vanadium, and to a lesser extent iron, manganese, and molybdenum. Background water quality is a threat to human health from a noncarcinogenic standpoint; carcinogenic risks are within the EPA acceptable range. Noncarcinogenic risks for background ground water are primarily due to manganese, molybdenum, selenium, and fluoride, and to a lesser extent iron and arsenic. A summary of the updated evaluation of COPCs is presented in Table 7–2.

Although risks posed by sulfate were not assessed due to lack of acceptable toxicity data, sulfate concentrations are high in both plume and background ground water. Sulfate should be considered a potential threat to human health for plume and background ground water pending additional guidance on assessing sulfate-related risks.

All risk estimates are based on the assumption that contaminated ground water will be used as the primary source of drinking water in a residential setting. This is a worst case assumption because of the poor water quality of the alluvial aquifer and the availability of a municipal water supply. No human health risks are currently posed by contaminated ground water, nor are any expected, as water is not currently or likely to be used for residential purposes. As long as ground water use is prohibited for this use, no exposure pathway is complete and no risks exist.

6.2 Ecological Risk Assessment

he BLRA prepared for the Grand Junction site (DOE 1995a) included a screening-level assessment of ecological risks. The BLRA identified ecological COPCs and potential exposure pathways, receptors, and adverse effects. During the 1998 investigation (Section 4.4) additional field data were collected to evaluate risks associated with the exposure pathways. Results were used to update the BLRA. The approach used for the BLRA update was based on guidance in *Guidelines for Ecological Risk Assessment* (EPA 1998b) and *Framework for Ecological Risk Assessment* (EPA 1992).

This section summarizes the 1995 BLRA and the results of the 1999 BLRA update. Appendix I contains the complete BLRA update.

6.2.1 Summary of 1995 Risk Assessment

The 1995 BLRA (DOE 1995a) evaluated potential exposure of terrestrial and aquatic organisms to contaminated ground water and to surface water or sediment contaminated by ground water. Known concentrations of ecological COPCs in ground water, surface water, and sediment were compared to toxicity standards and guidelines for various ecological receptors.

6.2.1.1 Potential Receptors

The 1995 BLRA identified ecological receptors that could be exposed to site-related contaminants. The information was derived from qualitative surveys and observations made efore tailings were removed and, therefore, is not necessarily indicative of current conditions or auture land use.

Before tailings were removed, the ecology of the site consisted of an interspersion of riparian and aquatic habitats. Riparian vegetation dominated by salt cedar thickets covered several small islands and shorelines formed by Colorado River side channels and backwaters. Cottonwood, Russian olive, and willow, which broke up the salt cedar thickets in some places, were less abundant. The understory vegetation consisted of several dense, open stands of reed canary grass, spotted knapweed, and giant reed with rushes, sedges, spikerushes, bullrush, and arrowhead common along the shores of side channels and in small wetlands on the islands. Yellow warbler, mourning dove, song sparrow, and black-billed magpie were observed in the salt cedar and willow stands. Mallard and great blue heron were common on the water or on the shore. Evidence of beaver, muskrat, raccoon, and skunk was also common, as was evidence of bull frog and leopard frog. Bald eagles, the only endangered terrestrial species potentially exposed to site contaminants, are known to winter in the area.

The following aquatic organisms were observed in the vicinity of surface water sampling locations in the Colorado River: mayfly nymphs, damselfly nymphs, dragonfly nymphs, water striders, backswimmers, and Cyprindae minnows. Game fish known to inhabit the area include green sunfish, bluegill, largemouth bass, black crappie, black bullhead, and channel catfish. Bluehead sucker, flannelmouth sucker, common carp, roundtail chub, red shiner, sand shiner, and fathead minnow also inhabit the area. Threatened or endangered fish potentially exposed to site contaminants include the humpback chub, bonytail chub, Colorado squawfish, and razorback sucker.

After the removal of tailings in 1994, the site was seeded with a mixture of grasses, forbs, and shrubs, and eight ponds were constructed along the southern boundary of the site between the flood control levee and the Colorado River. The ponds were constructed as part of a U.S. Army Corps of Engineers effort to reestablish wetland habitat destroyed as a consequence of site remediation. The ponds were fed by contaminated ground water from the site. Colorado River flooding during the late spring and early summer of 1995 mostly destroyed the eight ponds.

6.2.1.2 Ecological Chemicals of Potential Concern

Ecological COPCs were defined in the 1995 BLRA as those constituents that exceeded background concentrations (Table 6-4). The water quality of upgradient wells was considered to be representative of background conditions (DOE 1995a). Two categories of surface water were defined: Colorado River water and water in ponds constructed as part of a wetlands mitigation project. Colorado River COPCs were those constituents with higher concentrations downstream of the millsite than upstream. COPCs in the wetlands mitigation ponds were determined by comparing concentrations in the ponds and in the upgradient ground water wells (DOE 1996d). Sediment COPCs were determined by comparing data from Colorado River sediment sampled upstream, downstream, and adjacent to the site (DOE 1995a).

6.2.1.3 Potential Adverse Effects

The 1995 BLRA evaluated the following potential exposure using data available at the time:

- Plant uptake of ground water
- Use of ground water to water livestock or irrigate crops
- Exposure of aquatic life in Colorado River water and sediments

- Livestock and terrestrial wildlife ingestion of surface water from ponds fed by site ground water
- Exposure of aquatic life in ground-water-fed ponds
- Use of pond water for crop irrigation

Table 6–4. Summary of Ecological Chemicals of Potential Concern in Ground Water, Surface Water, and Sediments

Constituents Above Background in Ground Water	COPC in Ground Water	Ecological COPC In Colorado River Water	Ecological COPC in Water in Wetlands Mitigation Ponds	Ecological COPC in Colorado River Sediment
Ammonium		X		
Arsenic	X		X	
Cadmium	X		X	
Cobalt	X	,	X	
Copper		X		
Fluoride	X		X	
Iron	X	X	X	
Manganese	X		X	
Molybdenum	X		X	X
Nickel	X		X	
²²⁶ Ra	X	X	X	
Selenium		Superior Broad		X
Strontium .	X			X
Sulfate	X		X	X
Uranium	X	X	7 % X	X
Vanadium	X	X	X	
Zinc	X		X	

Phreatophytes, plants that have the potential to root into contaminated ground water, were not sampled. Concentrations of COPCs in plant tissue were estimated using published soil-to-plant concentration ratios (DOE 1995a). The potential for adverse effects was evaluated by comparing the tissue estimates to published benchmark concentrations that can result in phytotoxicity (Will and Suter 1994). HIs were calculated by dividing the plant tissue concentration by the benchmark concentration; an HI greater than one indicates a possible phytotoxic effect. HIs for arsenic, manganese, vanadium, and zinc ranged from 3.5 to 34. HIs for cobalt and copper were only slightly greater than one (DOE 1996d).

Ground water pumped from the most contaminated area of the plume may be toxic if used to water livestock or wildlife or to irrigate crops. Sulfate and TDS concentrations may be toxic if ingested by livestock or wildlife. Comparisons of ground water concentrations with toxicity benchmarks indicate that cobalt, fluoride, iron, manganese, molybdenum, vanadium, and zinc exceed levels that may have adverse effects on irrigated crops.

Contaminant concentrations in the two wetlands mitigation ponds at the southwestern edge of the site were higher than concentrations in nearby upgradient ground water wells (DOE 1996d). For xample, in 1995 the uranium concentration in surface water of the westernmost pond was 0.473 mg/L, and the concentration in ground water 200 ft (60 m) upgradient (well 1000) was 0.096 mg/L. The higher concentration in the pond was attributed to evaporation. Water chemistry

data for samples taken from the wetlands mitigation ponds before they were destroyed by floods, when compared to water quality standards, indicate that cadmium, manganese, and vanadium concentrations exceeded chronic toxicity benchmarks for aquatic life; and manganese, molybdenum, sulfate, and vanadium concentrations exceeded toxicity benchmarks for livestock watering, crop irrigation, and ingestion by wildlife.

6.2.2 BLRA Update

The 1998 ecological investigation (Section 4.4) was conducted to provide the following data to update the 1995 BLRA:

- Characterization of current plant communities overlying contaminated ground water and projections of the future plant ecology of the area given land-use scenarios.
- Selection and characterization of the plant ecology of a reference (background) area.
- Comparison of ecological COPC concentrations in vegetation, sediment, and surface water, on site and in the reference areas, with ecotoxicity benchmarks.
- Screening assessment of ecological risks associated with irrigation ponds constructed at the botanical gardens since publication of the BLRA.

The results of the 1998 ecological sampling and analyses (Appendix I) indicate generally low levels of a few COPCs in sediment, surface water, and plant tissues. The occurrences of significantly elevated concentrations coincide with sampling locations that are known to be either remnants of the wetlands mitigation ponds or ponded areas that receive little or no regular surface water flushing.

Based on sample size and variability, the strongest line-of-evidence factors for basing risk conclusions are the surface water and sediment results. In spite of necessarily smaller sample sizes, the biota data serve as an additional but significant line of evidence. Tissue results show that for the majority of the analytes, Grand Junction site concentrations are the same as or less than the reference area concentrations.

The majority of the data indicate no significant differences between Grand Junction site and reference area mean analyte concentrations in both abiotic and biotic media. To maintain a conservative approach, the following constituents were retained as COPCs even though their occurrences appear to be isolated. In most cases, the occurrences coincide with Grand Junction site location 1228. On the basis of an initial evaluation of the analytical data for the 1998 ecological sampling, it is recommended that the following COPCs be retained:

- Ammonia in surface water
- Nickel in surface water
- Uranium in surface water
- Vanadium in surface water
- Arsenic in reed canarygrass stems
- Vanadium in reed canarygrass stems
- Manganese in cattail stems
- Molybdenum in cattail stems

Molybdenum in cattail roots

One of the objectives of the 1998 field investigation was to collect data from areas that might have the highest contaminant levels. The highest values were obtained from ponded areas (locations 1226. 1228, and 1235, see Figure 4-15) where the Colorado River provides little or no natural flushing.

Because the occurrences are localized, elevated concentrations of ammonia and some metals in surface water and vegetation at these locations probably do not present an unacceptable ecological risk. Although unlikely, the possibility remains that an isolated effect or mortality could be associated with these locations; however, no negative ecological effects have been observed.

Location 1226 (Figure 4-15) is located at the Botanical Gardens pond. This pond is small, fenced. and provides no significant ecological habitat. The ecological sampling for surface water at this location did not include all parameters listed on the State of Colorado agricultural standards (Colorado Department of Health, Water Quality Control Commission, The Basic Standards for Ground Waters, Section 3.11.0, amended April 1996). For those analytes that were included on this list, only the pH value of 9.07 was elevated over the recommended maximum value of 8.5. Based strictly on the surface water results for the ecological sampling event, there is no indication that this pond should not be used to irrigate the plants in the arboretum.

The other ponded areas (Figure 4-15, locations 1228 and 1235) are very small and are located on a braided portion of the river. Their small size (estimated to be no more than 1,000 square feet each) restricts the numbers and types of ecological receptors that rely solely on them for surface water. forage, or prey species. In addition, wildlife receptors typically utilize a variety of prey or forage items.

Manganese concentrations in cattail stems averaged 860 mg/kg at the Grand Junction site and 300 mg/kg at the reference area. Before the bioaccumulation factors for manganese were calculated, the plant tissue concentrations were plotted against the sediment concentrations to detect a linear correlation. A correlation coefficient of 0.77 was obtained for the manganese data, and an r^2 of 0.6 was calculated for the linear regression trend line. Bioaccumulation factors were obtained by dividing the maximum co-located tissue concentration by the minimum co-located sediment concentration. Bioaccumulation factors calculated for manganese were approximately equal for the Grand Junction site and reference area (4.5 and 3.9, respectively). The manganese sediment concentrations for the Grand Junction site and reference area locations did not differ significantly and were all between 200 and 300 mg/kg. The screening benchmark for terrestrial plant phytotoxicity is given as 500 mg/kg in soil (ORNL 1996). A mature leaf tissue manganese concentration range of 200 to 1,000 mg/kg (dry weight) was cited as toxic in the BLRA (Kabata-Pendias and Pendias 1992, cited in DOE 1995a). Manganese appears to bioaccumulate in cattail stems to a significant level at both the millsite locations and the reference area.

According to Kabata-Pendias and Pendias (1992), "the Mn compounds are known for their rapid oxidation and reduction under variable soil environments, and thus oxidizing conditions may greatly reduce the availability of Mn and associated micronutrients, whereas reducing conditions may lead to the ready availability of these elements even up to the toxic range."

.herefore, it is possible that under stagnant conditions manganese may become highly bioavailable to cattails, thereby producing a high concentration such as that observed at Location Therefore, it is possible that under stagnant conditions manganese may become highly bioavailable to cattails, thereby producing a high concentration such as that observed at Location 1226 (914 mg/kg wet weight). Reducing conditions at the other two Grand Junction site locations (1231 and 1235) might also account for the elevated-manganese concentrations in cattails. It is noteworthy that most elevated concentrations of metals in biota occurred at generally stagnant ponded areas that represent the remnants of the mitigation wetlands ponds, especially locations 1228 and 1235.

Since the data evaluation did not indicate an unacceptable ecological risk at the Grand Junction site, the ecological risk assessment concludes with the analysis phase (See Appendix I). Exposure estimates and stress-response profiles were not calculated, and no risk characterization was performed.

Some residual milling-related constituents apparently persist at the Grand Junction site, as shown by the occasional elevated concentrations of metals and ammonia in surface water and biota. Based on a review of the analytical data and screening criteria, these isolated occurrences are not likely to present significant ecological risks.

Natural flushing is expected to diminish ground water COPC concentrations to background levels and prevent bioaccumulation of contaminants through phreatophytes growing in the terrestrial habitat. This situation depends on the future land use at the millsite.

Elevated concentrations of COPCs in surface water, sediment, and biota are expected to diminish over time as a result of natural ground water flushing. The sediment concentrations do not indicate site-related contamination, although elevated concentrations in some of the biota suggests that some degree of bioaccumulation is occurring. Constituent concentrations in sediment and biota a likely to persist for a longer period of time. Periodic flooding of the Colorado River adjacent to the site will tend to disperse these contaminants and remove the remaining boundaries of the wetlands ponds.

7.0 Ground Water Compliance Strategy

1.1 Process

The proposed ground water compliance strategy for the Grand Junction site is illustrated in Figure 7-1; the figure is based on the compliance strategy selection framework described in Section 2.1 of the Final Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE 1996c).

Three compliance strategies are available in the selection framework:

- No remediation. Application of the no-remediation strategy would mean that compliance
 with EPA ground water protection standards would be met for a particular constituent
 without altering the ground water or cleaning it up in any way. This strategy could be applied
 at sites where chemicals of potential concern are below the MCL or background, or at sites
 that have contamination above MCLs or background levels but qualify for supplemental
 standards or ACLs.
- Natural flushing. Natural flushing relies on natural ground water movement and
 geochemical processes to decrease contaminant concentrations to levels within regulatory
 limits in a given time period. This strategy could be applied at sites where ground water
 compliance would be achieved with natural flushing in 100 years, where effective monitoring
 and institutional controls could be maintained, and where the ground water is not currently
 and is not projected to be a drinking water source.
- Active ground water remediation. Active ground water remediation requires the application of engineered ground water remediation methods such as gradient manipulation, ground water extraction and treatment, and in situ ground water treatment to achieve compliance with EPA ground water protection standards.

7.2 Site-Specific Compliance

To achieve compliance with Subpart B of 40 CFR 192 at the Grand Junction site, the DOE proposed action is no remediation and application of supplemental standards based on the criteria for limited use ground water (40 CFR 192.21[g]). For ground water to be classified as limited use, at least one of three criteria must be met:

- TDS concentrations are at least 10,000 mg/L.
- Widespread ambient contamination not due to ore-processing activities exists that cannot be cleaned up using treatment methods reasonably employed in public water supply systems.
- The quantity of water reasonably available for sustained continuous use is less than 150 gallons per day.

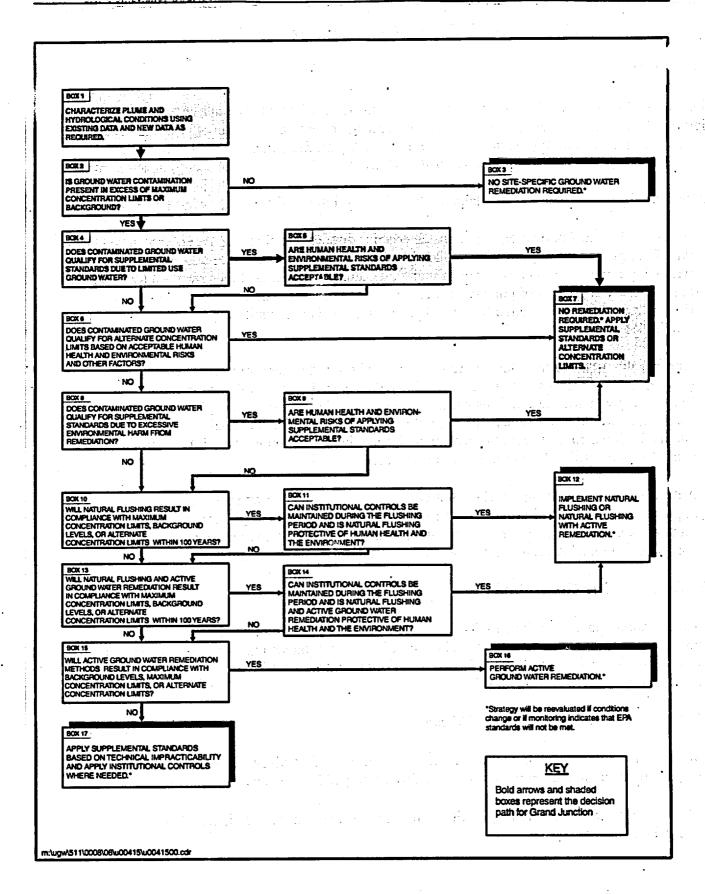


Figure 7-1. Compliance Selection Framework for the Grand Junction Site

The second criterion applies to alluvial ground water at the Grand Junction site and is the basis for the classification of limited use. Ground water in the uppermost aquifer is not a current or otential source of drinking water.

The applicability of supplemental standards at the Grand Junction site is described in this section, and the potential risk to human health and the environment was addressed in the BLRA (DOE 1995a) updated risk information is presented in Section 6 of this document. This proposed action was determined by applying the compliance strategy selection framework shown in Figure 7–1.

7.2.1 Assessment of Environmental Data

7.2.1.1 Background

The original SOWP (DOE 1996d) indicated that the criterion of widespread ambient contamination in the alluvial aquifer of the Grand Valley might be justified. This premise was based on the following evidence:

- Naturally occurring levels of molybdenum, selenium, and uranium in upgradient and regional ground water exceed UMTRA Project MCLs or national primary drinking water standards. A study of northwestern Colorado municipal water systems, which did not include Grand Junction specifically, concluded that ground water with types and levels of contaminants similar to those in the alluvial aquifer would not be adequately cleaned up for human consumption using reasonably available treatment systems. From discussions with U.S. Bureau of Reclamation personnel, it was learned that water would continue to leak out of unlined canals upgradient of the site and leach naturally occurring constituents from the Mancos Shale, further contributing to widespread ambient contamination.
- The BLRA concluded that alluvial ground water quality in the area is naturally poor, was not currently being used, and that local institutional controls required new developments to hook up to city water. Water that was being discharged into the Colorado River did not appear to represent unacceptable risks to human health or the environment.

7.2.1.2 Hydrologic Assessment

The first step in the decision process was an assessment of both historical and new environmental data collected to characterize hydrogeologic conditions and the extent of ground water contamination related to uranium-ore processing at the site. The three main hydrogeologic units beneath the Grand Junction site are the unconfined alluvial aquifer, the underlying aquitard composed primarily of shale units in the Cretaceous Dakota Sandstone, and the confined aquifer in sandstones of the Dakota Sandstone. The alluvial aquifer is considered the uppermost aquifer at the site. Surface components of the hydrologic system in the area include the Colorado River along the south boundary of the site and irrigation canals and ditches north of the site.

The alluvial aquifer is composed of unconsolidated clays, silts, sands, gravels, and cobbles. Ground water is unconfined in the alluvial aquifer; depth to the water table ranges from zero near 'he river to approximately 20 ft (6 m) at the northern end of the site. The saturated thickness of ne aquifer ranges from 5 to 20 ft (1.5 to 6 m). Ground water generally flows to the southwest toward the Colorado River at a horizontal gradient of approximately 0.004. The alluvial aquifer

is recharged by infiltration of precipitation directly on the site, leakage from upgradient irrigation canals and ditches in the area, and infiltration of river water during spring runoff in the Colorado River. Seasonal fluctuations in water levels beneath the site range from 2 to 5 ft (0.6 to 1.5 m) in response to changes in river stage. Limited amounts of recharge also occur as upward leakage of ground water from the underlying Dakota Sandstone aquifer. Ground water discharge is primarily limited to drainage into the river during low stage. Some discharge also occurs as evapotranspiration from vegetation growing in areas of shallow ground water depth near the Colorado River. Hydraulic conductivity in the alluvial aquifer ranges from 20 to over 200 ft/day, based on aquifer pumping tests in several monitor wells. The variability is a result of lateral and vertical facies changes typical of alluvial depositions and from other boundary conditions in the vicinity. The average linear ground water velocity beneath the site is 2.0 ft/day, based on an estimated average hydraulic conductivity of 100 ft/day, a hydraulic gradient of 0.004, and an effective porosity of 0.20.

Underlying the alluvial aquifer is a shale aquitard composed of low-permeability shale units in the Dakota Sandstone. Thickness of the shale aquitard in the Dakota may be as much as 50 ft; depths to the top of the aquitard range from less than 10 ft to more than 75 ft below the ground surface. Although the shale unit is regarded as an aquitard, wells completed within the unit indicate that it is saturated with ground water. Horizontal hydraulic conductivity for the aquitard is variable depending on the degree of weathering of the unit, but the lower end of the range for unweathered material may be as low as 0.02 ft/day. Previously collected data indicate that vertical hydraulic gradients are generally upward, with a few exceptions noted during high water levels in the alluvial aquifer associated with high river stages.

The confined aquifer in sandstones of the Dakota Sandstone underlies the shale aquitard. This aquifer has not been extensively characterized during site investigations because of the presence of the overlying aquitard and vertical upward hydraulic gradients that minimize the potential for any infiltration of contamination from the alluvial aquifer. Recharge to the Dakota Sandstone occurs as infiltration of precipitation on outcrops to the south. Ground water flow direction in the Dakota beneath the site likely follows regional gradients, which vary between a northwest and a northeast orientation. Sparse information on hydraulic conductivity for this unit indicates a range from 0.02 to 0.13 ft/day.

7.2.1.3 Ground Water Contaminants

The second step in the decision process was to compare the list of ground water contaminants to MCLs or to concentrations in background ground water. A modified list of COPCs identified in the 1995 BLRA was evaluated using 1998 sampling data. Potential risks calculated using the recent data for a residential scenario indicated that the major risk contributors were uranium, ammonia, iron, manganese, molybdenum, and vanadium. Although there is no consensus as to what concentration of sulfate is acceptable in drinking water, concentrations detected in the site ground water are sufficiently high to be of probable concern. A discussion of COPCs is presented in section 6.1.2, and data are presented in Table 6–1.

7.2.1.4 Applicability of Supplemental Standards

The third step in the decision process determines whether contaminated ground water qualifies for supplemental standards on the basis of limited use ground water. Ground water in the unconfined alluvial aquifer is of limited use because of widespread, elevated concentrations of naturally occurring uranium and selenium.

Background Concentrations

Uranium values for background ground water average 0.047 mg/L (the MCL is 0.044 mg/L). Activity concentrations for ²³⁴U + ²³⁸U average 42 pCi/L, well above the 30 pCi/L MCL. Analytical data for the background ground water quality are shown in Table 7–1 and Appendixes D and H.

Background selenium values average 0.04 mg/L; the UMTRA MCL is 0.01 mg/L. Selenium concentrations are high in some wells and not detected in others. The population is bimodal; if the nondetect values are assumed to be the detection limits, the average of 0.04 mg/L is above the MCL of 0.01 mg/L. Previous studies by the U.S. Geological Survey found concentrations of selenium in valley ground water up to 0.88 mg/L (Butler et al. 1994).

The source of uranium and selenium in background ground water is thought to be the dark marine shales in the Mancos Shale (discussed in Section 5.1.2.2). Black shales are known to contain unusually high concentrations of uranium (Levinson 1980), and Late Cretaceous marine shales, such as the Mancos, are known to have high concentrations of selenium (USGS 1997). These shales underlie most of the valley and are leached by ground water moving to the south und southwest.

Other constituents in background ground water that have concentrations above the secondary drinking water standards in the Safe Drinking Water Act include chloride, iron, manganese, sulfate, and TDS (Table 7–1). Although the secondary drinking water standards are not enforceable, they do indicate that the background ground water is of poor quality. The mean TDS concentration for background ground water is 5,238 mg/L, which is below the 10,000 mg/L that defines a limited-use aquifer, but still elevated. The data for uranium and selenium concentrations support the use of the criterion of widespread ambient contamination in the alluvial aquifer.

Reasonableness of Ground Water Treatment

Ground water from the alluvial aquifer is not a current or potential source of drinking water. Potable water is readily available from the municipal water system in the vicinity of the site. Ground water from the alluvial aquifer has no current use, and there is no historical record of wells completed in this unit beneath or downgradient of the site. Future use of ground water from the alluvial aquifer is unlikely based on historical information and the planned future development of a park and recreational facilities in the area. Therefore, the current and reasonably projected uses of site-affected ground water would be preserved with the application of supplemental standards.

Table 7-1. Summary of 1998 Alluvial Ground Water Quality

	Maximum	Mean	MCL mg/l	SMCL mg/L	RBC mg/L
Contaminant	mg/L	mg/L	mg/L	mg/L	1119/15
Ammonia (as NH4)					0.20 (00 114)
Plume	233	71.4			0.20 (as NH ₃)
Background	0.321	0.093			
Arsenic					0.00411
Plume	0.0349	0.005	0.05		0.001N
Background	0.0014	n/a			0.000045C
Chloride					
Plume	1,160	796		250	
Background	991	437			
Fluoride					<u> </u>
Plume	7.57	1.93	4	2	2.2N
Background	1.62	0.895			
1				·	•
lron	24.3	3.88		0.3	11N
Plume	21.2	0.552		0.5	1114
Background	3.13	0.552			<u> </u>
Manganese					•
Plume	4.54	2.82		0.05	1.7N
Background	2.22	1.4			
Mak dan m					
Molybdenum		0404	0.1		0.18
Plume	0.299	0.101	0.1		V.10
Background	0.124	0.0587			
Selenium		-			
Plume	0.016	n/a	J.01		0.18
Background	0.137	0.036			the state of the state of
Sulfate					
Plume	3,700	3,154		250	
Background	3,720	2,566			
234 _{U is} 238 _U		•			
Plume	1,668	215.3	30 pCi/L		
Sackground	57	42			
Uranium (total)	0.5	0.304	0.044		
Plume	2.5	0.304	U.U44		
Background	0.0662	0.0469	•		
Vanadium					
Plume	0.832	0.0857			0.26
Background	0.0049	0.0019			
T-1-1 Di					
Total Dissolved Solids Plume	7,840	6,525		500	
Background	7,400	5,238		 	

NOTE: SMCL—secondary maximum contaminant level RBC—risk based concentration (human health)

N—noncarcinogenic risk
C—carcinogenic risk

Even though ground water has no current or projected use, a study was performed to test how reasonable the costs would be to treat contaminated ambient ground water for municipal potable use. The study addressed the criterion in 40 CFR 192.11(e)(2) that the water cannot be treated by "methods reasonably employed in public water systems." Appendix J describes the results of this study, which was based on information provided by contractor personnel and guidance in Guidelines for Ground-Water Classification Under the EPA Ground-Water Protection Strategy (EPA 1988). The study shows that the cost of producing potable water from the alluvial aquifer is conservatively estimated at \$680 per household per year. This value exceeds the threshold of \$300 per household per year provided by the EPA 1988 guidelines; adjusted for inflation of 3 percent per year, which results in a current threshold of \$400 per year, the cost is still well above the threshold. The three sources of municipal water in the Grand Valley are Grand Junction city water, Clifton water, and Ute water. Mr. Terry Franklin, Grand Junction Water Superintendent, provided average private household domestic costs for local water. The average household uses about \$,000 gallons per month; therefore the cost for each is

Grand Junction: \$222 per year per household
Clifton water: \$222 per year per household
Ute water: \$216 per year per household

These amounts are about one-third the estimated cost of treating alluvial ground water.

7.2.1.5 Human Health and Ecological Risks

The fourth step in the decision process considers whether the human health and environmental risks of applying supplemental standards are acceptable. Assessment of site conditions and consideration of potential effects on environmental resources indicate that supplemental standards will be protective of human health and the environment.

The BLRA (DOE 1995a) and the update presented in this SOWP indicate that residential use of ground water, mainly as drinking water, presents the only unacceptable pathway for exposure to ground water at the site. If site ground water were used exclusively for residential consumption, risks would exceed EPA's acceptable level of 1×10^{-6} for carcinogens and a total HI of 1 for noncarcinogens. The largest contribution to noncarcinogenic risks from site ground water would be from uranium, ammonium, arsenic, fluoride, iron, manganese, molybdenum, and vanadium. Uranium would also produce the largest carcinogenic risk (see Table 6–2). Table 7–2 lists the COPCs discussed in the 1995 BLRA and presents a summary of the rationale for retaining them in or deleting them from the 1998 update.

Although risks calculated for use of site ground water in a residential setting are unacceptably high, no risks currently exist at the site because no pathways for human use of ground water are complete at this time. Risks associated with ground water at the site will continue to be acceptable in the future as long as no significant changes in ground water use occur. Because institutional controls on site ground water are in place and are likely to continue (see Section 7.3.1), current and future human health risks are acceptable.

Ground Water Compliance Strategy

Table 7–2. Human Health and Ecological Risk COPC Update Summary

СОРС	UMTRA MCL mg/L	Updated COPC for Human Health Risk*	Update COPC for Ecological Risk ^b	Comments and Rationale for Retaining as a COPC HR: Human Health Risk ER: Ecological Risk
Ammonia ^e		Y	Y	HR: HI ^d > 1 for inhalation in residential setting ER: One surface water concentration exceeded RBC ^e
Arsenic	0.05	Y	N	HR: Risks higher than acceptable; MCL not exceeded
Cadmium	0.01	N	. N	HR: Insignificant contribution to total risk
Cobalt		. N	N	HR: Insignificant contribution to total risk
Fluoride		N	N	HR: No evidence of use at millsite
Iron	-	Υ	N	HR: HQ' > 1
Manganese		Y	Υ	HR; HQ > 1
Molybdenum	0.10	Y	Y	HR: HQ > 1 ER: Concentration in cattail stems 2 to 3 times greater in site area than in reference area
Nickel		N	N	HR: Insignificant contribution to total risk
Nitrate	44	N	N	HR: Plume concentrations are within background range
²²⁶ Ra	5 pCi/g	N	N	HR: Plume concentrations are within background range
Sulfate		Y	N	HR: Toxicity data are currently under evaluation by EPA, but concentrations are high enough to be of probable concern
Uranium	C.084	Y	Y	HR: Primary carcinogenic and noncarcinogenic risk contributor ER: Concentration in one surface water sample exceeded EPA's Ecotox threshold and lowest chronic value
Vanadium		Υ	Y	HR: Concentrations exceed RBC but have decreased two orders of magnitude from historical values ER: Concentration in one surface water sample exceeded EPA's Ecotox threshold and lowest chronic value
Zinc		N	N	HR: Insignificant contributor to total risk

^{*}Identified as a COPC if concentrations exceeded the calculated acceptable risk for a hypothetical residential exposure scenario.
*Identified as a COPC if concentrations exceeded an ecological benchmark or threshold.
*Screened out as a COPC in the original BLRA through evaluation of ground water ingestion only; retained here for evaluation through inhalation pathway.

*HI = Hazard index

*RBC = Risk-based concentration (EPA 1998a)

*HQ = Hazard quotient

Ecological Risk

'cological risk assessments evaluate the likelihood that adverse ecological effects are occurring or might occur as a result of exposure to a physical, chemical, or biological entity. Section 6.2 and Appendix I describe the collection and evaluation of information from surface water, sediment, and vegetation to determine risks to the environment. Samples were collected from the plume area and from a reference area located in an ecologically similar environment about 3 miles (5 km) east (upgradient) along the Colorado River.

Results of this sampling indicate generally low levels of a few COPCs in sediment, surface water, and plant tissues. Some residual levels of millsite-related constituents still remain in ponded areas along the Colorado River that receive little or no regular surface water flushing. Nearly all the data indicate no significant differences between the Grand Junction site and the reference area for concentrations of COPCs in biotic and abiotic media. Because isolated maximum values for some constituents exceeded threshold values, it is recommended that ammonia in surface water, uranium in surface water, vanadium in surface water, vanadium in reed canarygrass stems, manganese in cattail stems, and molybdenum in cattail stems be retained as COPCs. Because data evaluation did not indicate an unacceptable ecological risk for the Grand Junction site, no further ecological risk assessment was performed. Table 7–2 lists the COPCs discussed in the 1995 BLRA and presents a summary of the rationale for retaining them in or deleting them from the 1999 update.

7.2.1.6 Compliance Strategy Selection

The fifth and final step in the decision process is the selection of an appropriate compliance trategy to meet the EPA ground water protection standards. The selected strategy is no emediation and application of supplemental standards based on the criterion of limited use ground water (40 CFR 192.21[g]). Ground water in the uppermost aquifer is not a current or potential source of drinking water because "widespread, ambient contamination not due to activities involving residual radioactive materials from a designated processing site exists that cannot be cleaned up using treatment methods reasonably employed in public water systems..." (40 CFR 192.11[e][2]).

7.3 Implementation of Supplemental Standards

7.3.1 Institutional Controls

7.3.1.1 On-Site Controls

The State of Colorado, through the Colorado Department of Public Health and Environment (the Grantor), transferred the Climax millsite property to the City of Grand Junction (the Grantee) via two quitclaim deeds recorded in the Mesa County Courthouse, Book 2320, pages 882 to 886, on March 29, 1997. As part of the agreement, the City agrees "not to use ground water from the site for any purpose, and not to construct wells or any means of exposing ground water on the property unless prior written approval of construction plans, designs and specifications is given by the Grantor and the U.S. Department of Energy."

7.3.1.2 Downgradient Controls

Several controls are in place for private landowners downgradient of the millsite. The question o institutional controls has been investigated in the past.

Considerable research found no evidence that anyone was drinking water from the alluvial aquifer in the area of the millsite (see Appendix J). This conclusion resulted from inquiries with the Colorado State Engineer's Office for well permits, the City of Grand Junction water service records, visual physical inspections, and contact with about 40 percent of the landowners in the affected area.

As of 1998 the State Engineer's Office has no records of wells installed in the alluvial aquifer on or downgradient of the site. The nearest alluvial wells are south of the Colorado River on Orchard Mesa, which is not in the flow path of ground water from the alluvial aquifer.

Although the City of Grand Junction will not prevent someone from drilling a well, it does require citizens to hook up to municipal water lines for potable water.

The Western Colorado Botanical Gardens has a sump near the Colorado River for pumping water to the ponds on the western side of their property. Water from the lowermost and largest pond is used for watering the gardens but not for human consumption. The pond is lined to prevent surface water from contacting ground water and is fenced to prevent access. Analysis of pond water indicates uranium levels are below the MCL.

7.3.1.3 Public Involvement Plan

A Public Involvement Plan (MAC-GWGRJ 11.6.2) was prepared for the Grand Junction site. The plan describes the history of the UMTRA Project legislation and scope, a brief history of the Climax mill, Phase I (surface remedial action) at the site, the reasons for soliciting public involvement, and a summary of results from information gathered for this study. It also describes the types of public responses that were recorded at the public meeting conducted June 22, 1995. The public comments received at the meeting are included in Volume II of the PEIS (DOE 1996c).

A meeting was held in March 1999 with the City Council, other representatives from the city and county, the State Engineer's Office, CDPHE, and the public (see Table 7–3). Discussions included information gathered for this study, risks to human health and the ecology, and the supplemental standards compliance strategy based on the classification of limited use ground water. The purpose of the meeting was to inform the public about decisions that affect the community and to solicit comments for consideration during planning of the final compliance strategy.

Table 7–3. Public Participation Activities To Be Conducted Before Completion of the Environmental Assessment, SOWP, and Compliance Strategy

Activity	Scheduled Date
Send letter describing the proposed compliance	
strategy to:	
City Council	February 19, 1999
County Commissioners Planning Commission	
State Engineer's Office	
Send letter to adjacent property owners	February 26, 1999
Make presentation to City Council during regularly scheduled meeting. (D. Metzler, DOE-GJO)	March 3, 1999
Press releases (as needed)	July 15, 1999
Publish public notice in the Daily Sentinel twice a week for two months before issuing the Finding of No Significant Impact (FONSI)	July 15, 1999
Public meeting	To Be Determined

The Public Involvement Plan also provides a schedule for producing the Environmental Assessment and the Finding of No Significant Impact and for holding any meetings deemed necessary during this process (see Table 7–4). These documents are planned for completion in fiscal year 1999.

Table 7–4. Scheduled Public Participation Activities for Preparing the Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site

Activities	Scheduled Date
Review of draft Environmental Assessment by the State of Colorado	April 1999
Notification of Environmental Assessment availability : News release Federal Register notice (not required)	May 1999
Transmit draft Environmental Assessment to interested stakeholders, other agencies, public (upon request)	June 1999
Place copies of Environmental Assessment in public locations: • Mesa County Library • DOE-GJO Reading Room • Other	June 1999
Hold public meetings	As Needed
Comments received from stakeholders	July 1999
Comments addressed	July 1999
News release of Finding of No Significant Impact (FONSI) approval	August 1999
Final Environmental Assessment and Finding of No Significant Impact issued to the public, stakeholders, and agencies	September 1999
Place copies of Environmental Assessment in public locations: • Mesa County Library • DOE-GJO Reading Room • Other	September 1999

7.4 Future Activities and Contingencies

Future activities for the site will include verification of institutional controls to ensure continued protection of human health and the environment. Verification will be conducted annually for the next 5 years and will consist of consultation and documentation of discussions with the Grand Junction City Engineering Department, the State Engineer's Office, and the local office of the Colorado State Water Quality Division. If no changes are found or if no issues arise that might compromise established institutional controls, contacts will subsequently be made every 5 years for the next 20 years. Documentation of the contacts will consist of telephone logs sent to the UMTRA Ground Water Project file for the Grand Junction site. All future activities will be conducted through the Long-Term Surveillance and Monitoring Program.

Limited ground water monitoring is proposed as a best management practice to determine when concentrations of site-related constituents are at a level that certain uses of ground water may no longer be restricted. Determination of concentration levels and potential uses of ground water will be made on a case-specific basis by DOE, the State of Colorado, and the City of Grand Junction. Monitoring locations will include on-site monitor wells 1014 (the well with highest contaminant levels) and 1001 (directly downgradient from 1014), off-site and downgradient monitor well 590, background monitor well 745, and surface water location 427 (Colorado River downgradient from the millsite). Analytes will include ammonia (as NH₄), molybdenum, and uranium. Samples will be collected and analyzed annually for the first 5 years by the Long-Term Surveillance and Monitoring (LTSM) Program. If concentrations in ground water are steady or decreasing after this time, samples will be collected and analyzed every 5 years. If analyte concentrations are consistently below MCLs or baseline values during these 5-year intervals, the analyte list may be modified. Monitoring will continue for 5-year increments and be evaluated at these times until all analytes are below MCLs or baseline values, or until the monitoring progran is modified or terminated.

Natural flushing is expected to decrease the concentrations of site-related constituents (ammonia, molybdenum, and uranium) in the alluvial aquifer over time. Natural processes such as dilution. dispersion, and sorption are the mechanisms that reduce contaminant concentrations in ground water. Since natural flushing was not part of the compliance strategy for ground water protection at the Grand Junction site, the collection of data and level of activity necessary to support a quantitative modeling study was not warranted. However, in a qualitative sense, it is estimated that natural flushing processes in the alluvial aquifer should significantly reduce site-related contaminants in ground water within a 100-year period. This estimation is based on an average hydraulic conductivity of 100 ft/day, a horizontal gradient of 0.004, and an effective porosity of 20 percent, which gives an average linear ground water velocity of 2 ft/day (730 ft/yr). Based on this linear ground water velocity, contaminant particles at the upgradient end of the area of siterelated contamination would take approximately 8 years to traverse the 6,000 ft downgradient (southwest) to the discharge point in the Colorado River. If it were to conservatively take 10 pore volumes of ground water to flush significant amounts of contaminants from the aquifer, ground water quality would likely be approaching background levels in 80 to 100 years. Uranium in ground water beneath the site is relatively mobile, as predicted by the measured K_d, which has a value of approximately 1.0. A number of physical and chemical factors enter into the processes and affect the actual time required for changes to take place in the aquifer. For example, upgradient ground water migrating on site has naturally elevated concentrations of certain constituents. Evaluation of decreasing concentration levels and potential future uses of ground water in the vicinity of the Grand Junction site will be made by DOE, the State of Colorado, and

the City of Grand Junction in conjunction with the best management practice of limited ground water monitoring.

DOE/Grand Junction Office May 1999 End of current text

8.0 References

Albrethsen, H. Jr, and McGinley, F.E., 1982. Summary History of Domestic Uranium Procurement Under U.S. Atomic Energy Commission Contracts—Final Report, Open-File Report GJBX-220 (82), U.S. Department of Energy, Grand Junction Area Office.

ASTM, 1987. Standard Test Method for 24-h Batch-Type Measurement of Contaminant Sorption by Soils and Sediments, ASTM D 4646-87, American Society for Testing and Materials.

Bonham, C.D., 1989. Measurements for Terrestrial Vegetation, John Wiley and Sons, New York.

Butler, D.L., G.W. Winfield, D.A. Hahn, P. Krueger, and B.C. Osmundson, 1994. *Physical, Chemical, and Biological Data for Detailed Study of Irrigation Drainage in the Uncompander Project Area and in the Grand Valley, West-Central Colorado, 1991–1992*, U.S. Geological Survey Open-File Report 94-110, Denver.

Cahn, L.S., M.R. Meininger, and J.E. Price, 1988. *Potential Groundwater Contamination at Grand Junction UMTRAP Vicinity Properties*, DOE/ID/12584-33, prepared by UNC Geotech for U.S. Department of Energy, Grand Junction Projects Office, Grand Junction, Colorado.

Dzombak, D.A., and F.M.M. Morel 1990. Surface Complexation Modeling—Hydrous Ferric Oxide, New York, John Wiley.

'ord, Bacon, and Davis, 1977. Phase I—Title 1 Engineering Assessment of Inactive Uranium Mill Tailings, Grand Junction Site, Grand Junction, Colorado, GJT-9, FB&DU 130-08, prepared for the U.S. Department of Energy, Grand Junction, Colorado, October.

Gilbert, R.O., 1987. Statistical Methods for Environmental Pollution Monitoring, Van Nostram Reinhold, New York, 320 p.

Kabata-Pendias, Alina, and Henry K. Pendias, 1992. Trace Elements in Soils and Plants, 2nd ed., CRC Press, Boca Raton, Florida.

Kluth, C.F., and P.J. Coney, 1981. "Plate Tectonics of the Ancestral Rocky Mountains," *Geology*, 9:10–15.

Kruseman, G.P., and N.A deRidder, 1990. Analysis and Evaluation of Pumping Test Data, 2nd Ed., International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands.

Larkin, H.W., and H.G. Beyers, 1941. Selenium Occurrence in Certain Soils in the United States, with a discussion of Related Topics—Sixth Report, U.S. Department of Agriculture Technical Bulletin 783.

Levinson, A.A., 1980. Introduction to Exploration Geochemistry, Applied Publishing Ltd., Vilmette, Illinois.

Lohman, S.W., 1965. Geology and Artesian Water Supply, Grand Junction Area, Colorado, U.S. Geological Survey Professional Paper 451.

-, 1981. The Geologic Story of Colorado National Monument, U.S. Geological Survey Bulletin 1508.

Mason, Brian, and C.B. Moore, 1982. Principles of Geochemistry, John Wiley and Sons, Toronto, Canada.

Mastrovich, Anthony, 1971. Unpublished statement of Anthony M. Mastrovich, Vice President of AMAX Uranium Corporation, before the Joint Committee of Atomic Energy, October 29.

Mastrovich, Anthony, 1985. Unpublished interview with Anthony Mastrovich, conducted by Denise Bierley of Roy F. Weston, Inc., Albuquerque, New Mexico, conducted in Grand Junction, Colorado, on November 4.

Mickle, D.G., and G.W. Mathews, 1978. Geologic Characteristics of Environments Favorable for Uranium Deposits, GJBX-67(78), Bendix Field Engineering Corporation, prepared for the U.S. Department of Energy Grand Junction Operations Office, Grand Junction, Colorado.

Merritt, R.C., 1971. The Extractive Metallurgy of Uranium, Colorado School of Mines Research Institute, 576 p.

Moench, Allen F., 1995. Combining the Neuman and Boulton Models for Flow to a Well in an Unconfined Aquifer, Groundwater, 33(3):378-384.

Morrison, S.J. and R.R. Spangler, 1993. "Chemical Barriers for Controlling Groundwater Contamination," Environmental Progress, 12(3):175-181.

Morrison, S.J., V.S. Tripathi, and R.R. Spangler, 1995. "Coupled reaction/transport modeling of a chemical barrier for controlling uranium (VI) contamination in groundwater." Journal of Contaminant Hydrology, 17:347-363.

ORNL, 1996. Screening Benchmarks for Ecological Risk Assessment Database, BENCH version 1.6, Oak Ridge National Laboratory, Oak Ridge, Tennessee, October.

Orr. W., 1954, "The AEC's King-Sized Test Tube," Uranium Information Digest, 1(3):8-12.

Parkhurst, D.L., 1995, User's Guide to PHREEQC-A Computer Program for Speciation, Reaction-Path, Advective-Transport, and Inverse Geochemical Calculation, Water-Resources Investigations Report 95-4227, U.S. Geological Survey, Lakewood, Colorado.

Schneider, E.J., 1975. Surficial Geology of the Grand Junction-Fruita Area, Mesa County, Colorado, M.S. Thesis, Colorado State University, Ft. Collins, Colorado.

Todd, D.K., 1980. Groundwater Hydrology, 2nd ed., John Wiley & Sons, New York, New York.

- U.S. Bureau of Reclamation, 1986. *Cobble Aquifer Investigation*, Colorado River Basin Salinity Control Project, Grand Valley Unit—Stage II, Geology Branch, Grand Junction Projects Office, Frand Junction, Colorado.
- U.S. Department of Energy, 1986. Final Environmental Impact Statement for Remedial Actions at the Climax Uranium Millsite, Grand Junction, Colorado, prepared for the U.S. Department of Energy, Grand Junction Projects Office, Grand Junction, Colorado.
- ———, 1991. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site at Grand Junction, Colorado, UMTRA-DOE-AL-050505, September.
- ———, 1993a. Technical Approach to Groundwater Restoration, Final, DOE/AL/62350-20F, prepared by the U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico, November.
- ———, 1993b. Recommendations for the Preparation of Environmental Assessments and Environmental Impact Statements, Office of NEPA Oversight, Washington, D.C, May.
- ———, 1995a. Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado, DOE/AL/62350-104, Rev. 2, prepared by the U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico, September.
- ——, 1995b. Grand Junction, Colorado, Process Site Draft Completion Report, Volume 1, prepared by MK-Ferguson Company for the U.S. Department of Energy, Albuquerque Operations Office, Albuquerque, New Mexico, January.
- ———, 1996a. Addendum to the Sampling and Analysis Plans for the UMTRA Ground Water Project, P-GJPO-2353, prepared for the U.S. Department of Energy Grand Junction Projects Office, Grand Junction, Colorado, October.
- ——, 1996b. Data Logger Management Plan, DOE/AL/62350-230, Rev. 0, prepared by the U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico, March.
- ——, 1996c. Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project, DOE/EIS-0198, prepared by the U.S. Department Of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico, October.
- ———, 1996d. Site Observational Work Plan for the UMTRA Project Site at Grand Junction, Colorado, DOE/AL/62350-215, Rev. 0, prepared by the U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico, March.
- ——, 1997a. Management Plan for Field-Generated Investigation Derived Waste, MAC-GWADM 21.1, prepared for the U.S. Department of Energy, Grand Junction Office, Frand Junction, Colorado.

- U.S. Department of Energy, 1997b. Work Plan for Characterization Activities at the UMTRA Grand Junction Site, MAC-GWGRJ1.8 and U0013700, prepared by MACTEC Environmental Restoration Services, LLC, for the U.S. Department of Energy, Grand Junction Office, Grand Junction, Colorado, and Albuquerque Operations Office, Albuquerque, New Mexico, September. -, 1997b. Organic Constituents in Groundwater at UMTRA Sites, MAC-2013, prepared by the U.S. Department of Energy, Grand Junction Office, Grand Junction, Colorado. -, 1998. UMTRA Ground Water Project Management Action Process (MAP) Document, MAC-GWADM 1.1, Rev. 1, Grand Junction Office, Grand Junction, Colorado, May. -, 1999. Ground Water Study at Two UMTRA Project Vicinity Properties in Grand Junction, Colorado, GJO-99-87-TAR, prepared by MACTEC Environmental Restoration Services, LLC, for the U.S. Department of Energy Grand Junction Office, Grand Junction. Colorado, February. U.S. Environmental Protection Agency, 1988. Guidelines for Ground-Water Classification Under the EPA Ground-Water Protection Strategy, Office of Ground Water Protection. Washington, D.C., June. -, 1989a. Risk Assessment Guidance for Superfund, Vol. 1, Human Health Evaluation Manual, EPA/5401/1-89/002, Office of Emergency and Remedial Response, Washington, D.C. -, 1989b. Exposure Factors Handbook, EPA /600/8-89/043, Office of Health and Environmental Assessment. -, 1991. Risk Assessment Guidance for Superfund: Volume I—Human Health Evaluation Manual, Part B, "Development of Risk-based Preliminary Remediation Goals, Interim." Publication 9285.7-01B, Office of Emergency and Remedial Response, Washington, D.C. -, 1992. Framework for Ecological Risk Assessment, EPA/630/R-92/001, U.S. EPA Risk Assessment Forum. -, 1993. Data Quality Objectives Process for Superfund: Interim Final Guidance, EPA/540/R-93/071. -, 1998a. Risk-Based Concentration Table, Region III EPA, by Jennifer Hubbard, 841 Chestnut Building, Philadelphia, PA 19107, October 1, 1998. -, 1998b. "Guidelines for Ecological Risk Assessment," Federal Register, Vol. 63, No. 93, pp 26846-26924, May 14, 1998; also accessible through the EPA website, document
- U.S. Geological Survey, 1997. Methods To Identify Areas Susceptible to Irrigation-Induced Selenium Contamination in the Western United States, Fact Sheet FS-038-97, National Irrigation Water Quality Program, U.S. Government Printing Office, Washington, D.C.

EPA/630/R-95/002Fa; copies available for purchase from NTIS, document PB98-117-849.

WASTREN-GJ, undated. Handbook of Analytical and Sample-Preparation Procedures, Volumes I, II, III, and IV, U.S. Department of Energy, Grand Junction Office, Grand Junction, 'olorado.

Will, M.E., and G.W. Suter, 1994. Toxicological Benchmarks for Screening Potential Constituents of Concern for Effects on Terrestrial Plants, ES/ER/TM-85/RI, 1994 Revision, Oak Ridge National Laboratory, Oak Ridge Tennessee.

Willis, G.C., 1994. Geologic Map of the Harley Dome Quadrangle, Grand County, Utah, Utah Geological Survey, Map 157, scale 1:24,000.

Young, R.G., 1959. Cretaceous Deposits of the Grand Junction Area, Garfield, Mesa, and Delta Counties, Colorado, Rocky Mountain Association of Geologists Guidebook, pp 17-25.

End of current text

Appendix A

Monitoring Well Locations and Information

LOCATION CODE	NORTH COORD. (FT STATE- PLANE)	EAST COORD. (FT STATE- PLANE)	GROUND ELEV. (FT NGVD)	BORE HOLE DEPTH (FT BLS)	BORE HOLE DIA. (INCHES)	TOP OF CASING ELEV. (FT NGVD)	CASING LENGTH (FT)	CASING DIAMETER (INCHES)	SCREEN DEPTH (FT BLS)	SCREEN LENGTH (FT)	FLOW CODE	ZONE OF COMPL
0588	459315	1135627	4570.6	16.1	6.6	4570.3	16.8	4.0	7.1	10.0	U	AL
0590	459399	1130965	4564.2	15.5	6.6	4566.7	18.0	4.0	7.2	8.3	D	AL
0713	462539	1149188	4611.9	39.0	4.0	4611.9	37.6	•	•	•	U	AL
0715	465065	1149497	4632.7	59.0	4.0	4633.1	59.4	. •	•	•	U	AL
0724	459762	1131040	4563.9°	142.0	6.0	4565.8	142.8	2.0	129.0	10.0	U	KD
0726	459261	1130926	4566.7	140.0	6.3	4568.6	141.9	· 4.0	109.5	30.0	U	KD:
0732	461158	1129019	4564.6	21.0	6.0	4566.7	23.1	2.0	14.0	1.0	D	AL :
0735	460079	1130930	4563.8	50.0	6.0	. 4565.7	39.9	2.0	26.0	10.0	D	KD
0736	460066	1130939	4564.1	15.5	6.0	4565.9	16.8	2.0	8.0	5.0	D	AL
0740	459776	1131670	4565.3	18.0	6.0	4567.9	19.5	2.0	10.0	5.0 ·	D	AL .
0741	460664	1132717	4573.7	55.5	6.0	4574.0	45.4	2.0	33.0	10.0	C	KD [:]
0742	460642	1132716	4573.7	23.0	6.0	4574.2	23.5	2.0	16.0	5.0	C	AL 1
0743	459359	1136737	4574.1	50.0	6.0	4576.1	37.0	2.0	23.0	10.0	U	KD
0744	459360	1136718	4573.9	15.0	6.0	4576.2	17.2	2.0	8.0	5.0	U	AL
0745	460907	1136625	4578.8	22.0	6.0	4580.8	21.9	2.0	13.0	5.0	U	AL
0746	462232	1135474	4585.8	25.0	6.0	4587.9	27.0	2.0	18.0	5:0	U	AL
1000	459213	1132560	4564.6	. 9.2	8.0	4566.8	10.9	4.0	3.7	5.0	0	AL ,
1001	459288	1132654	4567.2	12.1	8.0	4569.7	14.1	4.0	6.6	5.0	0	AL
1002	459477	1132900	4570.2	13.3	8.0	4572.6	15.8	4.0	8.3	5.0	0	AL
1010	459680	1130096	4567.5	23.9	12.3	4570.1	25.4	4.0	12.4	10.0	D	AL :
1011	459320	1131707	4565.4	15.0	12.3	4567.7	16.9	4.0	6.4	8.0	D	AL
1012	459540	1132242	4566.2	13.3	12.3	4568.6	15.5	4.0	4.9	8.0	ó	AL
1013	459476	1132880	4570.7	16.3	12.3	4573.6	18.9	4.0	5.8	10.0	0	AL
1014	459839	1133223	4572.3	18.5	12.3	4574.3	20.0	4.0	7.8	10.0	0	AL
1015	459873	1134015	4571.8	17.3	12.3	4573.5	18.4	4.0	8.4	8.0	0	AL .

MONITOR WELL REPORT (USEE300) FOR SITE GRJ01, GRAND JUNCTION REPORT DATE: 2/11/1999 8:47 am

LOCATION CODE	NORTH COORD. (FT STATE- PLANE)	EAST COORD. (FT STATE- PLANE)	GROUND ELEV. (FT NGVD)	BORE HOLE DEPTH (FT BLS)	BORE HOLE DIA. (INCHES)	TOP OF CASING ELEV. (FT NGVD)	CASING LENGTH (FT)	CASING DIAMETER (INCHES)	SCREEN DEPTH (FT BLS)	SCREEN LENGTH (FT)	FLOW	ZONE OF COMPL
1016	459525	1133926	4569.4	15.0	12.3	4571.9	16.8	4.0	6.1	8.0	0	AL
1017	459663	1135119	4570.5	13.3	12.3	4572.7	15.2	4.0	7.7	5.0	0	AL
1018	460091	1134921	4573.9 ·	15.1	12.3	4575.9	16.5	4.0	6.2	8.0	0	AL
1019	460949	1134933	4579.0	27.0	12.3	4581.0	28.9	4.0	6.7	20.0	ο;	AL
1020	459638	1139021	4580,9	17.0	12.3	4582.9	18.2	4.0	5.9	10.0	U	AL
1021	458331	1143968	4586.3	10.7	12.3	4586.4	10.5	4.0	5.0	5.0	U	AL
1022	459743	1130948	4563.0	19.0	12.3	4562.8	17.5	4.0	7.4	10.0	D.	AL .
1023	461340	1161786	4628.5	22.0	12.3	4630.2	23.4	4.0	8.5	13.0	U	AL
1024	463785	1168175	4638.3	15.3	12.3	4640.2	16.7	4.0	6.5	8.0	U	AL
1025	461546	1152752	4615.2	35.0	12.3	4617.6	34.7	4.0	12.0	20.0	U	AL
1026	462343	1140482	4593.7	27.0	12.3	4593.8	26.6	4.0	9.4	16.8	U.	AL
1027	462389	1140321	4593.2	33.0	12.3	4593.3	29.9	4.0	9.4	20.0	U	AL
1028	462559	1140584	4594.9	34.0	12.3	4595.0	31.9	4.0	11.5	20.0	U.	AL
1029	460999	1128375	4556.2	23.5	12.3	4558.6	24.6	4.0	7.0	15.0	D _i	AL
1030	464340	1125985	4555.6	30.5	12.3	4555.9	28.9	4.0	8.2	20.0	D	AL
1031	464433	1126303	4550.8	12.0	12.3		• ,	n 🖜	. .	-	Ð	AL
1032	464844	1126056	4552.2	13.0	12.3	•	• ,	•	•		D	AL
1034	459478	1132919	4569.9	18.0	9.3	4571.7	19.8	4.0	7.7	10.0	0	AL
1035	459509	1132921	4570.6	19.5	9.3	4572.2	19.6	4.0	7.7	10.0	0	AL
CW21	467031	1170549	4646.0	10.0	4.8	4647.8	11.8	2.0	5.0	4.8	U	AL.

....NITOR WELL REPORT (USEE300) FOR SITE GRJ01, GRAND JUNCTION REPORT DATE: 2/11/1999 8:47 am

•	NORTH	EAST	 BORE	BORE	TOP OF			 -	
LOCATION CODE		COORD. (FT STATE- PLANE)	HOLE DEPTH (FT BLS)	HOLE DIA. (INCHES)	CASING ELEV. (FT NGVD)	CASING DIAMETER (INCHES)	 SCREEN LENGTH (FT)	FLOW	ZONE OF COMPL.

RECORDS: SELECTED FROM USEE300 WHERE site_code='GRJ01' AND location_code

in(0588,'0590,'0732,'0735,'0736,'0740,'0741,'0742,'0743,'0744,'0746,'0713,'0715,'0724,'0726,'1000,'1001,'1002,'1007,'1008,'1010,'1011,'1012,'1013,'1014,'1015,'1016,'1017,'1018,'1019,'1020,'1021,'1022,'1023,'1024,'1025,'1026,'1027,'1028,'1029,'1030,'1031,'1032,'1034,'1035,'CW21)

U UPGRADIENT

D DOWN GRADIENT

FLOW CODES: C CROSS GRADIENT

ZONES OF COMPLETION: AL ALLUVIUM

KD **DAKOTA SANDSTONE**

O ON-SITE

Appendix B

Lithologic/Well Completion Logs

<u> </u>	MONITORING WELL	COMPLETION	I LOG GRJ01-0590
LOCATION GRAI	A GROUND WATER NORTH COOR STATE OF THE COORD NOTION HOLE DEPTH WELL DEPTH	(FT) 1130964.95 (FT) 15.50	DATE DRILLED 1/4/83 SURFACE ELEV. (FT NGVD) 4564.22 TOP OF CASING (FT) 4566.69 MEAS. PT. ELEV. (FT) 4566.69
SURFACE CASING: BLANK CASING:	WELL INSTALLATION INT 4 in. PVC Casing -2.47	ERVAL (FT)	SLOT SIZE (IN) BIT SIZE(S) (IN) 6.63 ILLING METHOD
WELL SCREEN: SUMP/END CAP: SURFACE SEAL: GROUT:		to 15.5 SAI DA' WA	MPLING METHOD TE DEVELOPED TER LEVEL (FT BMP) 8.8
SEAL: UPPER PACK: LOWER PACK:	Seal 0.0 Fitter Pack 3.3	to 3.3 REI	GGED BY
DEPTH (FT BGL) ELEV: (FT NGVD) BLOWS COUNTS	WELL DIAGRAM	GRAPHIC	LITHOLOGIC DESCRIPTION
		Unknown li	thology
+			:
4 1	Seal		
	PVC	·	
4560-	Casing		
	- Filter Pack		
1 1	*		
1 1			
4555 -			
10-		•	
	Screen		
- 4			
nactec-	U.S. DEPARTME	NT OF ENER	GY PAGE 1 OF 2 1/28/99

	-		MON	IJΤ	ORING	WELL C	OMPL	LETION LOG GRJ01-0590
PROJ	ECT	UI	ITRA GI	ROU	ND WATE	R		/ELL NUMBER 0590
SITE		RAND	JUNCTI	ON			DA	ATES DRILLED 1/4/83
	-					Continu	ed from Pr	Previous Page
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
	4550-							
 	- -							Bottom of boring at 15.5 ft
-20-	4545-							
-	4540-							
- 25-								
F	GE	ter	-er		U.S. D	EPARTN	IENT C	OF ENERGY PAGE 2 OF 2 1/28/99

. .

										GRJ01-071	13		
PRO.	JECT .	UMTR	A GROU	ND!	WATER	NORTH COO EAST COOR!	RD. (FT)	62539.06	DAT	E DRILLED 9/1			
LOCA	ATION	GRA	ND JUNG	CTIC	N, CO	EAST COOR). (FT)11	49187.61	SUR	FACE ELEV. (FT			
WELL	NIIME	IED JU	0713			HOLE DEPTH WELL DEPTH	I (FT) 39.	<u>00</u>	TOP	OF CASING (FT) S. PT. ELEV. (FT	461	11.92	·
'''	- NOHIL	··· –	•						MEA	T SIZE (IN)) <u>40</u>	11.92	
			WELI	L IN	STALLATI	ION INT	TERVAL (FI)	BIT	SIZE(S) (IN) 4	0	-	
	ACE C		: PVC				1	DRI		ETHOD CONTI		S ELIGHT AL	IGED
	. SCRE		FVC					SAI	IPLING I	METHOD	1000	OT EIGHT AC	JOLIN
	/END							DAT	TE DEVE	LOPED			
	ACE S							WA'	TER LEV	EL (FT BMP)			
GROU SEAL	JT:							LOC	GED BY	W. Phillips			
	R PAC	К:						REA	MARKS	No Well Constr	uction	Information.	
	R PAC							<u></u>		· · · · · · · · · · · · · · · · · · ·		<u> </u>	
]	Π.	T									
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	<u>e</u>	E			ဋ	-					
E	可克	83	2	EXTENT	WELL	. DIAGRAM	1 ₹8		LITHOL	OGIC DESCRIP	TION		
g F	۳F	필요	SAMPLE 1D	ă			GRAPHIC LOG		, =				
	0		6	<u> </u>						:			
	_				ļ ·			Silty clay, d	ry to wet, s	oft light brown CL-N	iL.		
	4610-							!					
- 1	4010-				•								
					1								
	-	·											
- 5 -	: 4												
اٽا						1							
_ 1													
- 1	4605			-									·
	- 4												
- 4	4												
-10-													
	1	1				ŀ							Į
٠ ٦	1]											l
{	4600												l
. 4	4	i											ŀ
.]			İ										ł
	ا											•	ı
-15-		1								• •			
٠ ١	- 1									1			
. 4	4595-		- 1							:		•	
. 4		- 1											
- 1			ŀ										- I
7				1									1
-20-	1			i			accenta	Gravel GW		· ·			
4	4												- 1
4	4590-		ŀ	- 1						•			1
	4	Ì	ļ	-									[
7	. [i	- 1										1
1	7		I		l							•	·
			1										
2	1		- C	ב נ	J.S. DI	EPARTM	ENT OF	ENER	GY	PAGE 1 OF	= 2	1/29/00	
	<i>1</i> 51	ÇC.	-er£	3	GRAN	D JUNCTION	OFFICE, C	OLORADO) 12	PAGE I UI	- 2	1/28/99	1

PROJ SITE	ECT _		MTRA GI JUNCTI		ND WATE	R			0713 9/14/77	
				.		Continu	ed from Pro	vious Page		
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	LITHOL	OGIC DESCRIPTION	•
· -	4585									
-30- 	4580-									
-35 40	4575— -					٠		MANCOS SHALE: sha	ale, dry, hard Bottom of boring at 39 ft	
· -	4570- - -									
-45 - - -	4565 - -									
-50 - - - -55	4580 - - -									

έī

MONITORING WELL COMPLETION LOG GRJ01-0715

WELL DIAGRAM WELL DIAGRAM Sitty clay, damp to wet soft, brown CL-ML	
4625- 4620- 4615- 4615- 4616- Note: Free water in mud/grading to more clay below 20.0. firm	.0 and more

	٠		MON	NT(ORING	WELL (COMPL	ETION LO	G GRJ01-07	15	·
PROJ	ECT	U	ITRA GI	ROU	ND WATE	R	WE	LL NUMBER	0715		
SITE		SRAND	JUNCT	ON		· · · · · · · · · · · · · · · · · · ·	DA	TES DRILLED_	9/19/77		
						Continu	ed from Pro	vious Page			
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	ЦПН	IOLOGIC DESCRI	PTION	
								•			
	4605-							Gravel GW			,
 -30-	-1										
 	-										
	4600-									·	
35 	; -		-								
-	4595								:	•	
-40 -	-										
	4590-										
 -45-	-				÷						
	- 4585									· .	
- 50-	- -				٠.						
	-	1			;				·		
-	4580-								• •		
-55- 								MANCOS SHALE	: shale,dry hard	· · · · · · · · · · · · · · · · · · ·	
6		ter	-er		U.S. D	EPARTI	MENT O	F ENERGY	PAGE 2	OF 3 1/2	28/99

PROJ SITE	FCT							
	-		UTRA G		ND WAT	ER		LL NUMBER
						Continu		evious Page
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE 1D.	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
_	4575-							
-60-					•			Bottom of boring at 59 ft
	4570-							
-65	=				,			
4	4565-		!		•			
-70-	-							•
.	4					•		
75-	4560							·
-	. =							
	4555							
80-]							·
	4550							•
85-								
1	4545-							

MONITORING WELL COMPLETION LOG GRJ01-0724 PROJECT UMTRA GROUND WATER NORTH COORD. (FT) 459762.41 LOCATION GRAND JUNCTION, CO EAST COORD. (FT) 1131040.16 SITE GRAND JUNCTION HOLE DEPTH (FT) 142.00 WELL NUMBER 0724 WELL DEPTH (FT) 141.00 DATE DRILLED 2/17/85 to 3/8/85 SURFACE ELEV. (FT NGVD) 4563.93 TOP OF CASING (FT) 4565.75 MEAS. PT. ELEV. (FT) 4565.75 SLOT SIZE (IN) 0.01 BIT SIZE(S) (IN) 6.0/6.0/6.0 WELL INSTALLATION INTERVAL (FT) SURFACE CASING: 6 in. Stee! 21.0 -2.0 to BLANK CASING: 2 in. PVC Sch 40 DRILLING METHOD ROTARY CORE (NX) -2.0 to 129.0 WELL SCREEN: 2 in. Machine Slotted PVC SAMPLING METHOD SPLIT SPOON 129.0 to 139.0 SUMP/END CAP: 2 in. PVC Sch 40 139.0 DATE DEVELOPED 3/12/85 to 141.0 **SURFACE SEAL:** WATER LEVEL (FT BMP) 11.2 GROUT: Cement - Bentonite 0.0 124.0 to LOGGED BY _ W. Wood SEAL: **Bentonite Pellets** 124.0 to 126.5 REMARKS **UPPER PACK: LOWER PACK:** 1/4" Pea Gravel 126.5 to 142.0 ELEV. (FT NGVD) BLOWS GRAPHIC LOG DEPTH (FT BGL) EXTENT SAMPLE **WELL DIAGRAM** LITHOLOGIC DESCRIPTION 0-2 ft. Fill, sandy clay, medium plasticity, grayish brown CLS Fill, clayey sand, fine grained, low-medium plasticity, brown SC 2-4 ft. Sandy silt, no plasticity, brown MLS 4560 Silty sand, fine, no plasticity, brown SM 4-6 ft. Casino Sitty snavel with cobbles, porly graded to 0.7', subrounded, no 6-8 ft. plasticity, light brown. Note: occasional seam with sandy day. GP-GM 8-10 8 10-12 ft. 12-14 ft. PVC Sch DAKOTA SANDSTONE; Shale, extremely weathered, very soft, very 4550 light grey to dark gray. 14-16 ft. 16-18 R. 18-20 ft 20 Begin coring at 22 4540 30 4530 4520 Note: 6" sandstone seam at 47' occasional thin seams throughout

mactec-ers

U.S. DEPARTMENT OF ENERGY GRAND JUNCTION OFFICE, COLORADO

PAGE 1 OF 3 2/1/99

PROJECT UMTRA GROUND WATER SITE GRAND JUNCTION Continued from Previous Page Continued from Previous Page LITHOLOGIC DESCRIPTION LITHOLOGIC DESCRIPTION Searn of soft, white claystone (benttonite) 1' thick. Intercalated sandstone and shale lenses, Lt. grey to motified dark and the sandstone and shale lenses, Lt. grey to motified dark Shale, carbonaceous, black. Occasional seam of hard, it. grey sandstone									TION LOG	0724	
Continued from Previous Page LITHOLOGIC DESCRIPTION Camert - 4500 - 45						ND WATER					
Seam of soft, white claystone (benttonite) 1' thick. Shale, carbonaceous, black. Occasional seam of hard, it. grey sandstone		<u>G</u>	KAND	JUNCTI	UN		0				
Cement - 4500 - 4500 - 4500 - 4500 - 4490 - 4490 - 4490 - 4490 - 4490 - Shale, carbonaceous, black. Occasional seam of hard, it. grey sandstone		· - 1			_		Continu		nous rage		
Seam of soft, white claystone (benttonite) 1' thick. Add	(FT BGL)	(FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL DIAG	GRAM	GRAPHIC LOG	LITHOL	OGIC DESCRIPTION	
-400- -4460- -410-	-80- 	4510-		3					Intercalated sandston	e and shale lenses, Lt. grey to	

.

	1		MON	TIV	OR	ING	WELL (COMPL	ETION LO	G GRJ	01-0726	
PROJ	ECT	U	VITRA G	ROU	ND V	VATE	R	WE	LL NUMBER	0726		
SITE	_	SRAND	JUNCT	ION				DAT	res DRILLED_	2/14/85	to 3/7/85	
							Continu	ed from Pre	vious Page			
	ŝ	- 10	0						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11.0	,
ОЕРТН (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLEID	EXTENT	W	ÆLL C	DIAGRAM	GRAPHIC LOG	LITH	IOLOGIC E	DESCRIPTION	·
	-										100 mg/s	
	4510-								+ 20 T .			
- -60-	-						a u		· · · · · · · ·			
	-		·									* *
	4500										•	
-70- 	-	•					Bentonite Pellets					•
┡ -												
┡ -	4490-								Sandstone, fine to	medium, it. (Ot eA	
<u> </u>	4490-											
-80- -									e e e e e e e e e e e e e e e e e e e	•		
-	-								1 · · · · ·			
- -90-	4480]					1/4" Pea				· · · · · · · · · · · · · · · · · · ·	#
	-						Gravel					
	4470-											
-100-	-			·					•			
<u> </u>	-		‡							·	• 1	
- -110-	4450-											•
-		_								•		
m	۵E	tec	-er	3	U.S	S. DI GRAN	EPARTN ID JUNCTIO	IENT O N OFFICE,	F ENERGY COLORADO	PAC	GE 2 OF 3	2/1/99

! .

<u></u>	MONITORING WELL COMPLETION LOG GRJ01-0726										
PROJECT UMTRA GROUND WATER					ND WATER		WELL NUMBER 0726				
SITE			JUNCT								
	Continued from Previous Page										
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL DIAGRAM		GRAPHIC LOG	LITHOLOGIC DESCRIPTION			
-120-	4440-	•	•			0.01* Slotted PVC					
-140	4420-	-				•	7 H 2 D		Bottom of boring at 140 ft	•	
-150	4410-										
-160 - - - - - - -	4400-	-									
fr.	4390-		ere	. U	I.S. DEPA	RTM	ENT OF	ENERGY	PAGE 3 OF 3	2/4/00	

l. i

LOCATION GRAN SITE · GRAND JUI WELL NUMBER	0732 WELL DEPTH	0. (FT) 1129019.45 (FT) 21.00 (FT) 21.00	SURFACE ELEV. (FT NGVD) 4564.61 TOP OF CASING (FT) 4566.69 MEAS. PT. ELEV. (FT) 4566.69 SLOT SIZE (IN) 0.01		
SURFACE CASING: BLANK CASING: WELL SCREEN: SUMP/END CAP: SURFACE SEAL: GROUT: SEAL: UPPER PACK: LOWER PACK:	WELL INSTALLATION INT 2 in. PVC Sch 40 -2.0 2 in. Machine Slotted PVC 14.0 2 in. PVC Sch 40 19.0 Bentonite 0.0 Bentonite Pellets 10.0 1/4" Pea Gravel 12.0	to 15.0 SAMI to 21.0 DATE WATI to 10.0 LOGO to 12.0 REM	BIT SIZE(S) (IN) 6.0 RILLING METHOD ROTARY WITH 6" BUTTON BIT AMPLING METHOD ATE DEVELOPED VATER LEVEL (FT BMP) OGGED BY P. Mckenzie EMARKS		
DEPTH (FT BGL) ELEV. (FT NGVD) BLOWS COUNTS	SAMPLE TO SAMPLE TO WELL DIAGRAM	GRAPHIC	LITHOLOGIC DESCRIPTION		
4560- -5- -10- 4555-	Bentonite		el, well graded, occasional cobble GWS		
mactec	U.S. DEPARTM GRAND JUNCTION	ENT OF ENERGIOFFICE, COLORADO	GY PAGE 1 OF 2 2/1/99		

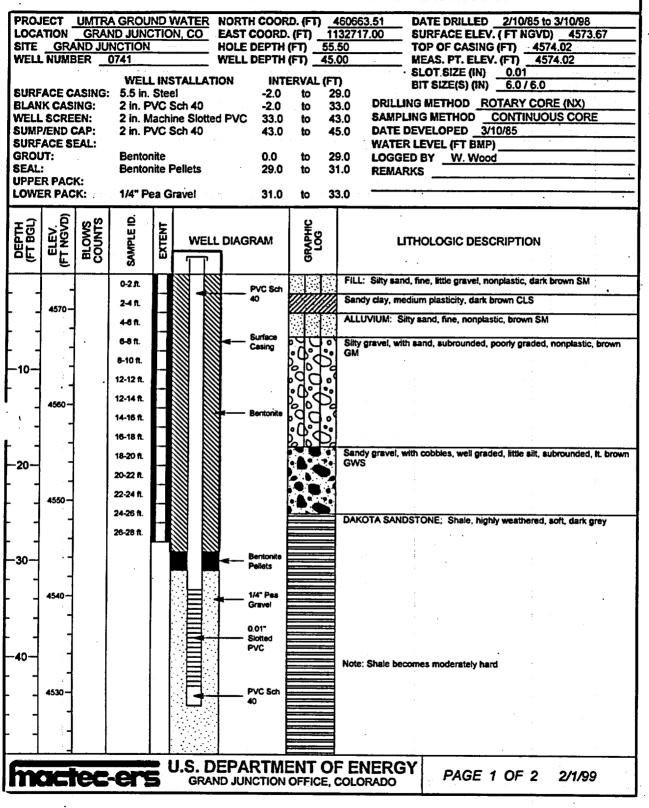
PROJECT UMTRA GROUND WATER SITE GRAND JUNCTION					ND WATER	WELL NUMBER 0732 DATES DRILLED 2/25/85			
					Conti	nued from Pre	vious Page		
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL DIAGRAM	GRAPHIC			
-15	4550-				0.01° Slotted PVC		DAKOTA SANDSTONE; S	hale, dark grey	
,	: -						Botto	m of boring at 21.0 ft	
	4540								
25									

MONITORING WELL COMPLETION LOG GRJ01-0735 PROJECT UMTRA GROUND WATER LOCATION GRAND JUNCTION, CO EAST COORD. (FT) 460079.45 EAST COORD. (FT) 130930.41 HOLE DEPTH (FT) 50.00 WELL NUMBER 0735 WELL DEPTH (FT) 38.00 DATE DRILLED 2/18/85 to 3/10/85 SURFACE ELEV. (FT NGVD) 4563.82 TOP OF CASING (FT) 4565.73 MEAS. PT. ELEV. (FT) 4565.73 SLOT SIZE (IN) 0.01 **WELL INSTALLATION** INTERVAL (FT) BIT SIZE(S) (IN) 6.0 / 6.0 SURFACE CASING: 5.5 in. Steel -2.0 to 18.9 **BLANK CASING:** 2 in. PVC Sch 40 -2.0 to DRILLING METHOD ROTARY CORE (NX) 26.0 WELL SCREEN: SAMPLING METHOD <u>CONTINUOUS CORE</u> DATE DEVELOPED <u>3/12/85</u> 2 in. Machine Slotted PVC 26.0 36.0 to SUMP/END CAP: 2 in. PVC Sch 40 36.0 to 38.0 **SURFACE SEAL:** WATER LEVEL (FT BMP) **GROUT: Bentonite** 22.0 0.0 to LOGGED BY W. Wood SEAL: **Bentonite Pellets** 22.0 to 24.0 REMARKS **UPPER PACK: LOWER PACK:** 1/4" Pea Gravel 26.0 24.0 to ELEV. (FT NGVD) DEPTH (FT BGL) GRAPHIC LOG EXTENT SAMPLE **WELL DIAGRAM** LITHOLOGIC DESCRIPTION Sandy clay, medium, plasticity, dark brown CLS 0-2 ft. Sandy silt, fine sand, nonplastic, brown MLS 2-4 ft. 4560 ALLUVIUM; Sitty sand, fine, nonplastic, brown SM 4-6 ft. 6-8 ft. **PVC Sch** 4555 B-10 ft 10-12 8 12-14 ft. DAKOTA SANDSTONE; Shale, highly weathered, soft, dark grey 4550 14-16 R. 16-18 ft. 4545 20 U.S. DEPARTMENT OF ENERGY

GRAND JUNCTION OFFICE, COLORADO

PAGE 1 OF 2

2/1/99


	: .		MOI	NIT	ORII	VG V	WELL (COMPL	ETION	LOG	GRJ01-0736	**************************************
LOCA'	TION GRA	GRAN IND JUI	A GROU ND JUNG NCTION 0736	CTIO	N, CO	EAS HO	RTH COORD ST COORD LE DEPTH LL DEPTH	(FT) <u>1</u> 1 (FT) 15.		SURF TOP	E DRILLED 2/24/85 FACE ELEV. (FT NG) OF CASING (FT) 4 S. PT. ELEV. (FT)	/D) <u>4564.11</u> 565.90
SURF	ACE C	ASING:		L INS	STALLA	MOIT	INT	ERVAL (F1		BIT S	SIZE (IN) 0.01 SIZE(S) (IN) 6.0	
WELL SUMP	K CASI SCRE /END C	EN: CAP:	2 in. N	lachi	Sch 40 ine Slot Sch 40	ted P\	-2.0 /C 8.0 13.0	to 1	3.0 SAI 5.0 DA	MPLING M TE DEVEL	OPED	ITH DRAG BIT
GROU SEAL:	1		Bento: Bento:		Pellets		0.0 4.0		.0 LO		EL (FT BMP) P. Mckenzie	
	R PACI		1/4" Po	ea G	iravel		6.0	to 8	.0		· · · · · · · · · · · · · · · · · · ·	•
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WE	LL Di/	AGRAM	GRAPHIC		LITHOL	OGIC DESCRIPTION	
	5 5 8		•						ALLUVIUM	: Sandy gra	ivel, well graded, occasion	nal cobbles GWS
4	· •								·	•		
							Bentonite					
	4560-						* ********					
5 —	-					◀-	Bentonite Pellets		·	•		
							1/4" Pea					
							Gravel					•
	4555-									٠	•	
10-	-						0.01" — Slotted PVC					
	;										•	
		ec	er.						F ENEF		PAGE 1 OF 2	2/1/99

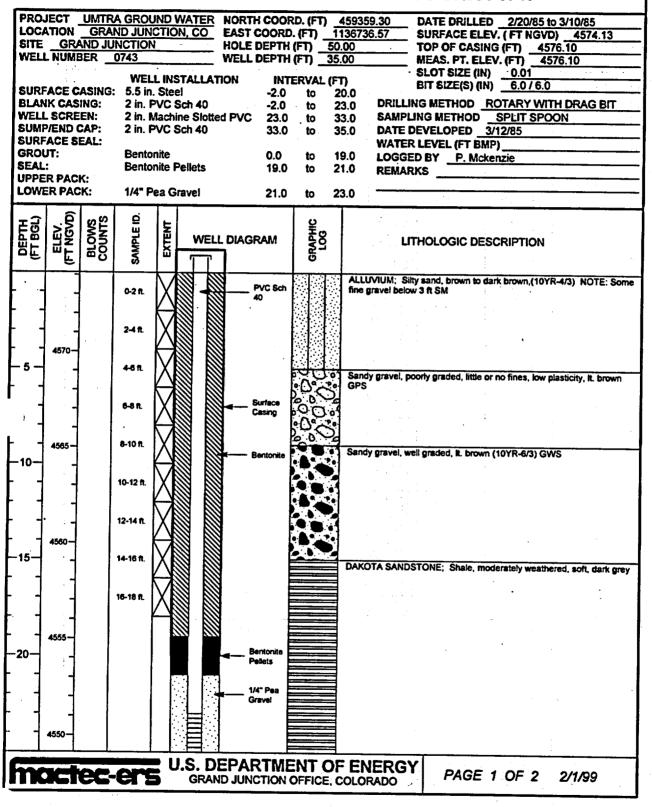
	4		MON	TIV.	ORING WELL	COMPL	ETION LOG	GRJ01-0	736	. ,
PROJ	ECT _	U	UTRA GI	ROU	IND WATER		ELL NUMBER	0736		
SITE		SRAND	JUNCT	ON		DA	TES DRILLED	2/24/85		
					Contin	ued from Pr	evious Page			
πij	, VD)	SI	9	닏		၌	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID	EXTENT	WELL DIAGRAM	GRAPHIC	LITHO	DLOGIC DESC	RIPTION	
마	F.	™ X	3	3		<u> </u>		- ·		-
							- :		•	÷ .
	-									
	4550-				PVC Sci					*,
	7000						, , , , , , , , , , , , , , , , , , ,		e to the second	
-15	-					• • • •	DAKOTA SANDSTO	ONE; Shale, grey		
					10.00 (Sec.)			Bottom of borin		
-	_									
} -	-									
					,					
_	1									
	4545-									•
–20 –										
						*				
-	_						•			
† 1	-									
									•	
	4540-									
-25 -										
	1								•	
┡╶╡										•
} -	-							• .	٠	
					II & DEDARTA	RENT O	E ENEDOY		:	
m	3 E	tec	-er	<u> </u>	U.S. DEPARTN	N OFFICE.	COLORADO	PAGE 2	? OF 2	2/1/99

MONITORING WELL COMPLETION LOG GRJ01-0740 PROJECT UMTRA GROUND WATER LOCATION GRAND JUNCTION, CO EAST COORD. (FT) 131669.57 SITE GRAND JUNCTION HOLE DEPTH (FT) 18.00 WELL NUMBER 0740 WELL DEPTH (FT) 17.00 DATE DRILLED 2/22/85 to 2/23/85 SURFACE ELEV. (FT NGVD) 4565.31 TOP OF CASING (FT) 4567.86 MEAS. PT. ELEV. (FT) 4567.86 SLOT SIZE (IN) 0.01 BIT SIZE(S) (IN) 6.0 **WELL INSTALLATION** INTERVAL (FT) SURFACE CASING: **BLANK CASING:** 2 in. PVC Sch 40 DRILLING METHOD ROTARY WITH BUTTON BIT -2.0 10.0 to SAMPLING METHOD SPLIT SPOON WELL SCREEN: 2 in. Machine Slotted PVC 10.0 . to 15.0 SUMP/END CAP: 2 in. PVC Sch 40 15.0 **DATE DEVELOPED** to 17.0 **SURFACE SEAL:** WATER LEVEL (FT BMP) GROUT: **Bentonite** 0.0 6.0 to LOGGED BY P. Mckenzie SEAL: **Bentonite Pellets** 6.0 to 8.0 REMARKS **UPPER PACK:** LOWER PACK: 1/4" Pea Gravel 8.0 10.0 to ELEV. (FT NGVD) BLOWS COUNTS SAMPLE ID DEPTH (FT BGL) EXTENT GRAPHIC LOG **WELL DIAGRAM** LITHOLOGIC DESCRIPTION ALLUVIUM: Sitty day, low plasticity, brown to dark brown CL-ML 4565 0-2 ft Clayey sitt, with fine sand, low plasticity, dark yellowish brown (10YR-4/4) OL 2-4 ft. Sand and gravel, brown to dark brown (10YR-4/3) GWS 4-6 ft. 4560 6-8 ft. 8-10 ft. 10 4555 10-12 ft. **U.S. DEPARTMENT OF ENERGY** PAGE 1 OF 2 2/1/99 GRAND JUNCTION OFFICE, COLORADO

			MON	TIV	ORING	WELL C	COMPL	ETION LOG GRJ01-0740	
PROJ	ECT	U	MTRA G	ROU	ND WATE	R	WE	ELL NUMBER 0740	
SITE			JUNCT				DA	TES DRILLED 2/22/85 to 2/23/85.	
	:					Continu	ed from Pri	revious Page	
	<u>a</u>	0	٠	Ι.			[
рертн (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	
EF)	A P	Ser	¥.	2			8		
	=			\			2 (1 12)		
			12-14 ft.	IV		0.01" Slotted			
	-	-		I۸		PVC			
<u> </u>									
	-			$\mathbb{N}/$		•			
_ _15_			14-16 R	IX	F				
	4550-			М					
	•			\vdash	1	PVC Sch		DAKOTA SANDSTONE; Shale, medium to high plasticity, da	rk grev
	-			1				(7YR-3/0)	
	-			1					
						•		Bottom of boring at 18 ft	
	-						10		
	-								
–20 –									
	4545-								
					i i				
	-								
<u> </u>									
	-								
	-			.					
ļ · -									
	-								
-25-									
	4540								
L .						=			
	-						1		
L .									
	-						'		
L						,			
	L -							•	
				=	U.S. D	EPARTM	ENT O	F ENERGY PAGE 2 OF 2 2/1/2	0
m	QE	rec	-er	5	GRAN	ID JUNCTION	NOFFICE,	COLORADO PAGE 2 OF 2 2/1/9	3

l_i i

			MON	TIV	ORING	WELL C	OMPL	ETION LO	G GRJ01-0741	·
PROJ	_				IND WATE	R		LL NUMBER	0741	
SITE		RAND	JUNCT	ION				TES DRILLED	2/10/85 to 3/10/98	
				_		Continu	ed from Pr	evious Page		
ОЕРТН (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	LITH	OLOGIC DESCRIPTION	
	4520~					1/4" Pea Gravel			Bottom of boring at 55.5 ft	
- 60	-		•						Bottom or boning at 55.5 it	
	. 4510—									
70-	-									
	4500— -									
80 	4490—		·					:		•
 -90 	- - 4480	-	-							
100-										
	- 4470-			•						
- -110-	- -									· :
m	4460-	lec	-er		U.S. D	EPARTM ND JUNCTION	ENT O	F ENERGY COLORADO	PAGE 2 OF 2	2/1/99


!. '

mactec-ers

U.S. DEPARTMENT OF ENERGY GRAND JUNCTION OFFICE, COLORADO

PAGE 1 OF 2 2/1/99

			MOI	VIT	ORING WELL	COMPL	ETION LOG GRJ01-0742
PROJ	ECT	UI	WTRA G	ROU	ND WATER	WE	ELL NUMBER 0742
SITE	-		JUNCT			DA	TES DRILLED 2/24/85
					Continu	ued from Pri	evious Page
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
	<u>u</u>	-0	S	igspace		72 17 17 17 17 17 17 17 17 17 17 17 17 17	
	4580-		·		Bentonite Pellets		
-15-	-				1/4" Pea Gravel		
	-						
	4555	•	•		0.01" Slotted PVC		
20	-						
-	-				PVC Sch 40		DAKOTA SANDSTONE; Shale
							Bottom of boring at 23 ft
	4550—						
-25-							
	-						
							E BUEDOV
m	ac	lec	-er	Ē	U.S. DEPARTN GRAND JUNCTION	IENIO NOFFICE,	FENERGY PAGE 2 OF 2 2/1/99

MONITORING WELL COMPLETION LOG GRJ01-0744 PROJECT UMTRA GROUND WATER LOCATION GRAND JUNCTION, CO EAST COORD. (FT) 459359.70 SITE GRAND JUNCTION HOLE DEPTH (FT) 15.00 WELL NUMBER 0744 WELL DEPTH (FT) 15.00 DATE DRILLED 2/26/85 SURFACE ELEV. (FT NGVD) 4573.94 TOP OF CASING (FT) 4576.15 MEAS. PT. ELEV. (FT) 4576.15 MEAS. PT. ELEV. (FT) SLOT SIZE (IN) 0.01 **WELL INSTALLATION** INTERVAL (FT) BIT SIZE(S) (IN) 6.0 SURFACE CASING: DRILLING METHOD ROTARY WITH 6" BUTTON BIT **BLANK CASING:** 2 in. PVC Sch 40 -2.0 to 0.8 WELL SCREEN: 2 in. Machine Slotted PVC **SAMPLING METHOD** 8.0 to 13.0 2 in. PVC Sch 40 **DATE DEVELOPED** SUMP/END CAP: 13.0 to 15.0 SURFACE SEAL: WATER LEVEL (FT BMP) **GROUT: Bentonite** 0.0 to. 4.0 LOGGED BY P. Mckenzie **Bentonite Pellets** SEAL: 4.0 to 6.0 REMARKS **UPPER PACK: LOWER PACK:** 1/4" Pea Gravel 6.0 to 8.0 ELEV. (FT NGVD) BLOWS SAMPLE 1D DEPTH (FT BGL) **WELL DIAGRAM** LITHOLOGIC DESCRIPTION ALLUVIUM; Sandy gravel, well graded, subrounded GWS 4570-1/4" Pea 4585 0.01" Slotted PVC **U.S. DEPARTMENT OF ENERGY** mactec-ers PAGE 1 OF 2

GRAND JUNCTION OFFICE, COLORADO

2/1/99

	1		MON	1IT	ORING WELL	COMPL	ETION LOG	≩RJ01-0744	
PROJ SITE	_		MTRA GI		JND WATER	Angua de la Calaba)74/ /26/85	
31.2		710110				nued from Pr			
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE 10.	EXTENT		GRAPHIC	1	OGIC DESCRIPTION	
	4560-			,	PVC Sci		DAKOTA SANDSTONE	i; Shale	•
-15-								Bottom of boring at 15 ft	
	- 455 5								
20- 	-								•
	_						*		
	4550 <i>-</i>								
25	-		-		U.S. DEPARTI	MENTO	EENEDGY	PAGE 2 OF 2	2/1/99

MONITORING WELL COMPLETION LOG GRJ01-0745 PROJECT UMTRA GROUND WATER NORTH COORD. (FT) 460907.05 LOCATION GRAND JUNCTION, CO EAST COORD. (FT) 1136625.46 DATE DRILLED 2/20/85 to 2/21/85 LOCATION GRAND JUNCTION, CO SITE GRAND JUNCTION WELL NUMBER 0745 FAST COORD. (FT) 1136625.46 HOLE DEPTH (FT) 22.00 WELL DEPTH (FT) 20.00 SURFACE ELEV. (FT NGVD) 4578.84 TOP OF CASING (FT) 4580.76 MEAS. PT. ELEV. (FT) 4580.76 SLOT SIZE (IN) 0.01 WELL INSTALLATION INTERVAL (FT) BIT SIZE(S) (IN) 6.0 **SURFACE CASING: BLANK CASING:** DRILLING METHOD ROTARY WITH DRAG BIT 2 in. PVC Sch 40 -2.0 13.0 WELL SCREEN: -2 in. Machine Slotted PVC SAMPLING METHOD SPLIT SPOON 13.0 to 18.0 2 in. PVC Sch 40 SUMP/END CAP: 18.0 20.0 **DATE DEVELOPED** to SURFACE SEAL: WATER LEVEL (FT BMP) GROUT: Bentonite 0.0 9.0 to LOGGED BY P. Mckenzie SEAL: **Bentonite Pellets** 9.0 to 11.0 REMARKS **UPPER PACK:** 1/4" Pea Gravel **LOWER PACK:** 11.0 to 13.0 ELEV. (FT NGVD) DEPTH (FT BGL) GRAPHIC LOG SAMPLE **WELL DIAGRAM** LITHOLOGIC DESCRIPTION ALLUVIUM: Silty clay, medium plasticity, It.greyish brown (10YR-6/2) NOTE: rootless in upper 2ft CL 0-2 ft. PVC Sch 2-4 ft. 4575 4-6 ft Silty clay, medium to high plasticity, light brownish grey (10YR-6/2) CH 6-8 ft. 6-10 ft. 10 10-12 ft.

mactec-ers

U.S. DEPARTMENT OF ENERGY GRAND JUNCTION OFFICE, COLORADO

1/4" Pea Grave!

PAGE 1 OF 2

Sand, well graded, little silt, brown (10YR-5/3) SW

1/28/99

MONITORING WELL COMPLETION LOG GRJ01-0746 PROJECT UMTRA GROUND WATER NORTH COORD. (FT) 462231.93 LOCATION GRAND JUNCTION, CO EAST COORD. (FT) 1135473.93 DATE DRILLED 3/15/85 SURFACE ELEV. (FT NGVD) 4585.84 LOCATION GRAND JUNCTION, CO EAST COORD. (FT) 1135-SITE GRAND JUNCTION HOLE DEPTH (FT) 25.00 TOP OF CASING (FT) 4587.85 WELL NUMBER 0746 MEAS. PT. ELEV. (FT) 4587.85 WELL DEPTH (FT) 25.00 SLOT SIZE (IN) 0.01 **WELL INSTALLATION** INTERVAL (FT) BIT SIZE(S) (IN) 6.0 **SURFACE CASING:** DRILLING METHOD ROTARY WITH REVERT MUD **BLANK CASING:** 2 in. PVC Sch 40 -1.9 to 18.0 SAMPLING METHOD SPLIT SPOON 2 in. Machine Slotted PVC WELL SCREEN: 18.0 to 23.0 2 in. PVC Sch 40 **DATE DEVELOPED** SUMP/END CAP: 25.0 23.0 to SURFACE SEAL: WATER LEVEL (FT BMP) 0.0 14.0 LOGGED BY R. Crockett **Bentonite GROUT:** to **Bentonite Pellets** 14.0 16.0 SEAL: to REMARKS **UPPER PACK:** 1/4" Pea Gravel 18.0 LOWER PACK: 16.0 to GRAPHIC LOG DEPTH (FT BGL) EXTENT SAMPLE WELL DIAGRAM LITHOLOGIC DESCRIPTION ALLUVIUM: Clayey sand, some gravel and cobble, fine,lt. brown SC PVC Sch 4585 0-2 ft. Clay, high plasticity, brown CH 2-4 ft. 4-6 ft 4580 6-8 ft. 8-10 ft. 10 4575 10-12 ft.

U.S. DEPARTMENT OF ENERGY GRAND JUNCTION OFFICE, COLORADO

PAGE 1 OF 2 1/28/99

Gravel, sandy, fine to medium grain, sub-angular to rounded, grey to

	WONITORING WELL COMPLETION LOG GRJ01-1000
PROJECT UMTRA LOCATION GRAN SITE GRAND JUI WELL NUMBER 1	000 WELL DEPTH (FT) 8.74 MEAS. PT. ELEV. (FT) 4566.80
SURFACE CASING:	WELL INSTALLATION INTERVAL (FT) SLOT SIZE (IN) BIT SIZE(S) (IN) 8.0
BLANK CASING: WELL SCREEN:	4 in. PVC Sch 40 -1.96 to 3.74 DRILLING METHOD HOLLOW STEM AUGER 4 in. Machine Slotted PVC 3.74 to 8.74 SAMPLING METHOD
SUMP/END CAP: SURFACE SEAL: GROUT:	Concrete 0.0 to 2.0 WATER LEVEL (FT BMP) 3.3 LOGGED BY T. Monks
SEAL: UPPER PACK:	Bentonite Pellets 2.0 to 3.5 REMARKS Slow drilling due to high percentage of small cobbles from 5' to 9.3'.
LOWER PACK:	20-40 Silica Sand 3.5 to 8.74
ELEV. (FT BGL) ELEV. (FT NGVD) BLOWS COUNTS	WELL DIAGRAM SES LITHOLOGIC DESCRIPTION
4560-	ALLUVIUM; Clay with some gravet, 50% fines, 40% fine sands, 10% gravet, pale yellow brown, (10YR-4/2) CL. PVC Sch Bentonite Phothy graded gravet with sitt and cobbles, 50% subrounded to angular gravet, 30% cobbles 3/4 inch, 20% fines-days, pale yellow brown, (10YR-4/2) GP-GM Slottom of boring 9.24 ft
mactec	U.S. DEPARTMENT OF ENERGY GRAND JUNCTION OFFICE, COLORADO PAGE 1 OF 1 1/28/99

This page intentionally blank

LOCATION GRAI SITE GRAND JU WELL NUMBER SURFACE CASING: BLANK CASING: WELL SCREEN: SUMP/END CAP: SURFACE SEAL: GROUT: SEAL: UPPER PACK: LOWER PACK:	NCTION HOLE DEPTH 1001 WELL DEPTH WELL INSTALLATION INT	132654.44 SURFACE ELEV. (FT NGVD) 12.13 TOP OF CASING (FT) 4569.6	4567.22 9 59 AUGER
DEPTH (FT BGL) ELEV. (FT NGVD) BLOWS COUNTS	WELL DIAGRAM	LITHOLOGIC DESCRIPTION	
4565-	PVC Sch 40 Bentonite Pellets		HCL, pale
4560-	20-40 Silica Sand	10% subrounded to angular gravet; no plasticity; react pale brown (10YR 6/2). SM	
4555-	U.S. DEPARTMI	Sandy clay, 80% fines, 40% fine sand, reaction to HCL, pale brown (10YR-6/2) CLS DAKOTA SANDSTONE; Shale Bottom of boring 12.13 ft ENT OF ENERGY I OFFICE, COLORADO PAGE 1 OF 1 2	low plasticity,

This page intentionally blank

VELL SCREEN: SUMP/END CAP: SURFACE SEAL: SROUT: SEAL: JPPER PACK: OWER PACK:	WELL INSTALLATION 4 in. PVC Sch 40 4 in. Machine Slotted PVC Concrete Bentonite Pellets	PTH (FT) 13.2 PTH (FT) 13.2 INTERVAL (FT) 1.78 to 8.2 3.29 to 13 0.0 to 2.5 2.5 to 5.0 5.0 to 13.	MEAS. PT. ELEV. (FT) 4572.62 SLOT SIZE (IN) 0.02 BIT SIZE(S) (IN) 8.0 PRILLING METHOD HOLLOW STEM AUGER SAMPLING METHOD DATE DEVELOPED WATER LEVEL (FT BMP) 8.45 LOGGED BY T. Monks REMARKS Fast drilling, very little gravel
(FT BGL) ELEV (FT NGVD) BLOWS COUNTS	WELL DIAGRA	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
4570- - - - - - - - - - - - - - - - - - -	PVC Bent Pelle 30-40	onite state of the	ALLUVIUM; Well graded sand with silt nodules, 70% fine sand, 20% silt nodules, no plasticity, reation to HCL, yellowish brown, (10YR-2/20) SW-SC Organic silt with sand, 90% fines, 10% finesand, low plasticity, reation with HCL, (10TY-2/2), yellow brown OH DAKOTA SANDSTONE; Shale Bottom of borehole 13.29 ft

This page intentionally blank

MONITORING WELL COMPLETION LOG GRJ01-1010 PROJECT UMTRA GROUND WATER NORTH COORD. (FT) 459680.06 LOCATION GRAND JUNCTION, CO EAST COORD. (FT) 1130095.63 11/4/97 DATE DRILLED EAST COORD. (FT) 1130 HOLE DEPTH (FT) 23.85 SURFACE ELEV. (FT NGVD) TOP OF CASING (FT) 4570.05 SITE GRAND JUNCTION 4570.05 WELL NUMBER 1010 WELL DEPTH (FT) 22,77 MEAS. PT. ELEV. (FT) SLOT SIZE (IN) 0.02 **WELL INSTALLATION** INTERVAL (FT) BIT SIZE(S) (IN) 12.25 SURFACE CASING: DRILLING METHOD HOLLOW STEM AUGER **BLANK CASING:** 4 in. PVC Sch 40 -2.6 to 12.4 WELL SCREEN: SAMPLING METHOD SPLIT SPOON 4 in. Machine Slotted PVC 12.4 to 22.4 SUMP/END CAP: 4 in. PVC Sch 40 22.77 DATE DEVELOPED 12/8/97 22 4 to **SURFACE SEAL:** Concrete 0.0 to 3.3 WATER LEVEL (FT BMP) 15.56 **GROUT:** LOGGED BY L. Spencer SEAL: Bentonite Pellets 3.3 to 8.3 REMARKS **UPPER PACK:** 16-40 Silica Sand 8.3 9.8 to LOWER PACK: 10-20 Silica Sand 22.77 9.8 to ELEV. (FT NGVD) BLOWS GRAPHIC LOG DEPTH (FT BGL) EXTENT SAMPLE **WELL DIAGRAM** LITHOLOGIC DESCRIPTION FILL; Silty sand; yellowish brown (10 YR 5/4); 60% sand, 25% silt, 10% gravel, 5%clay; well graded subrounded cobbles to 1/4" gravel; slight plasticity when wet; dry. SM PVC Sch 4565 Sity sand fine to medium grained; yellowish brown (10YR 5/4); 60% sand, 30% sit, 10% gravel; subrounded, well sorted; slight plasticity when wet; dry SM Pellets No recovery - cobble in shoe. Poor sample. 37 21 Gravel; 80% gravel, 20% sand; subrounded to subangular, well graded: moist, GW Gravelly sand; yellowish brown (10YR 5/6); 60% sand, 30% gravel (subrounded), 10% silt; well graded; wet. SWG 10 Clayey silt; dark brown (10YR 4/3); 70% silt, 25% sand (fine to medium grained), 5% clay; poorly graded; low plasticity; moist. CL No recovery 13 Road base; black (10YR 2/1); 60% sand, 30% silt, 10% gravel; subrounded to subangular; well graded; moist. SM 10 15 10-20 Gravely sand; light yellowish brown (10YR 6/4); 60% gravel, 30% sand, 10% silt: subrounded to subangular; well graded; moist. GWS Silty sand; yellowish brown (10YR 5/4); 60% sand, 35% gravel, 5% 2 silt; subrounded to subangular, well graded; moist. Some dark road 50/2

11-13 R

U.S. DEPARTMENT OF ENERGY GRAND JUNCTION OFFICE, COLORADO

base sands. SM No recovery - rock in shoe

> PAGE 1 OF 2 1/28/99

			MOI	TIV	ORING	WELL C	OMPL	ETION LOG GRJ01-1010				
PROJ	ECT	UI	MTRA G	ROU	ND WATE	<u></u>	WE	ELL NUMBER 1010				
SITE			JUNCT				DATES DRILLED 11/4/97					
						Continu	ed from Pr	evious Page				
	<u> </u>		Ġ.									
DEPTH (FT 9GL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION				
	-	3		X	¥							
┡ -		17						Sandy gravel; 60% gravel, 50% sand, 10% silt; subrounded to				
-15-	·-	21 11						subangular, well graded; wet. Oily odor and asphalt chips. GWS ALLUVIUM; Sandy gravel; very dark gray (10YR 3/1); 70% gravel (subrounded from 1/4" to cobbles), 25% sand (fine grained to medium grained), 5% sitt well graded; saturated. GWS				
	-	23						Slough - No recovery				
-		25 17						Sandy gravel; very dark gray (10YR 3/1); 70% gravel (subrounded from 1/4° to cobbles), 25% sand (fine grained to medium grained), 5% silt; well graded; saturated. GWS				
F	4550-	5				0.02* Slotted PVC		Sand: very dark gray (10YR 3/1); 100% sand; fairly clean, fine to coarse grained; poorly graded; subrounded; saturated. Red, yellow, green and black mineral grains, some carbon? Yellowish white tiny chert chips. SP				
	-	18						Gravelly sand; very dark gray (10Y 3/1); fairly clean fine to coarse grained with gravel from 1/4" to 2"; well graded; saturated. SWG Note: drilling became hard at 22.0 feet. Suspect weathered bedrock				
-20-	_	50						at this point. Over-drilled due to running sands/gravets coming into the auger. SWG				
├ -	<u>-</u>						• (). a. o.					
<u> </u>	4545-					PVC Sch 40		DAKOTA SANDSTONE; Sandstone; gray (10YR 6/1); fine grained, a small amount of carbon, a few read and yellow mineral grains; mostly clean quartzose sandstone, weathered.				
	-					Slough		Date of basis at 21 St foot				
-	·							Bottom of boring at 23.85 feet.				
-25-				:								
-	_											
<u> </u>	4540-											
						N - 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
m	Œ	tec	-er			EPARTM ND JUNCTION		FENERGY PAGE 2 OF 2 1/28/99				

MONITORING WELL COMPLETION LOG GRJ01-1011 PROJECT UMTRA GROUND WATER LOCATION GRAND JUNCTION, CO EAST COORD. (FT) 459320.39 EAST COORD. (FT) 1131706.55 HOLE DEPTH (FT) 15.00 DATE DRILLED 11/3/97 SURFACE ELEV. (FT NGVD) TOP OF CASING (FT) 4567.67 MEAS. PT. ELEV. (FT) 4567.67 HOLE DEPTH (FT) 15.00 WELL DEPTH (FT) 14.65 WELL NUMBER 1011 SLOT SIZE (IN) 0.02 **WELL INSTALLATION** INTERVAL (FT) BIT SIZE(S) (IN) 12.25 **SURFACE CASING:** DRILLING METHOD HOLLOW STEM AUGER **BLANK CASING:** 4 in. PVC Sch 40 -2.2 64 to SAMPLING METHOD WELL SCREEN: 4 in. Machine Slotted PVC 6.4 to 14.4 SUMP/END CAP: 4 in. PVC Sch 40 DATE DEVELOPED 11/25/97 14.4 to 14.65 **SURFACE SEAL:** Concrete 0.0 WATER LEVEL (FT BMP) 8.27 2.0 to **GROUT:** LOGGED BY L. Spencer SEAL: **Bentonite Pellets** 2.0 4.5 to REMARKS **UPPER PACK:** 16-40 Silica Sand 4.5 5.0 to 10-20 Silica Sand LOWER PACK: 5.0 to 14.65 ELEV. (FT NGVD) SAMPLE 1D. GRAPHIC LOG DEPTH (FT BGL) **WELL DIAGRAM** LITHOLOGIC DESCRIPTION FILL; Silty sand, yellowish brown (10 YR 5/4) 60% sand, 30% silt, 5% 4565 gravel, 5% day, subrounded poorly graded low plasticity, moist, a few roots/root hairs. CL PVC Sch 5 Sand No recovery. 4560 10-20 Sand Sity sand, yellowish brown (10 YR 5/6) 60% sand, 20% sitt, 15% gravel, subrounded, 1/4" to cobble and 5% clay, well graded, moist. SM No recovery-cobble in shoe. -10-0.02* 2 4555 Slotted 2 12 ALLUVIUM; Sand, dark grayish brown (10 YR 4/2) fine grained to medium, 100% sand, poorly graded, saturated. SP

U.S. DEPARTMENT OF ENERGY GRAND JUNCTION OFFICE, COLORADO

PAGE 1 OF 2 1/28/99

								ETION LOG GRJ01-1011
PROJ	_				ND WATE	ER	_	ELL NUMBER 1011
SITE		GRAND	JUNCT	ON			DA	TES DRILLED 11/3/97
						Continu	ed from Pr	evious Page
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
	·	10 . 6 .						Gravel 80%, sand 15%, silt 5%, subrounded, well graded, saturated. SW Sand, fine to medium grained, dark yellowish brown (10 YR 4/6) quartzose, red, yellow, and black mineral grains, some bits of black carbon, poorly graded, subrounded, 100% sand, saturated. SP
15	- 4550	2 0 41				PVC Sch 40 Slough	* * * *	Sand, 100% fine grained dark gray (10 YR 4/1) quartzose, red, yellow, and black mineral grains, some carbon poorly graded, subrounded, saturated. SP Gravel 60%, sand 35%, silt 5%, subrounded well sorted from cobblea to 1/4", saturated. GW DAKOTA SANDSTONE: Bedrock, weathered siltstone, very dark gray (10 YR 3/1) slightly carbonaceous, moist, Noncalcareous. Bottom of boring 15.0 ft
	-	·						Solom of Boring 15.0 R
	-		• ,		•			
-20-	4545-			٠		·		
	_						:	
-25-	4540—				• •			
			•					

LOCATION GRASITE GRAND JU	A GROUND WATER ND JUNCTION, CO INCTION 1012 WELL INSTALLA	EAST COORD HOLE DEPTH WELL DEPTH	(FT) <u>1</u> (FT) <u>13</u>	1132241.70 SURFACE ELEV. (FT NGVD) 4566.24 3.25 TOP OF CASING (FT) 4568.61 3.17 MEAS. PT. ELEV. (FT) 4568.61 SLOT SIZE (IN) 0.02
SURFACE CASING BLANK CASING: WELL SCREEN: SUMP/END CAP: SURFACE SEAL: GROUT: SEAL: UPPER PACK: LOWER PACK:		-2.5	to 4 to 1 2 to 1 to 1	### BIT SIZE(S) (IN) 12.25 ### 12.92 DRILLING METHOD HOLLOW STEM AUGER ### 12.92 SAMPLING METHOD SPLIT SPOON ### 13.17 DATE DEVELOPED 11/25/97 ### 15.5 WATER LEVEL (FT BMP) 5.74 ### LOGGED BY L. Spencer ### 4.0 REMARKS
DEPTH (FT BGL) ELEV. (FT NGVD) BLOWS COUNTS	SAMPLE ID. EXTENT	L DIAGRAM	GRAPHIC	LITHOLOGIC DESCRIPTION
4565-		Concrete PVC Sch		Fil.L: Sitty sand, pale brown (10 YR 6/3) 60% sand, 30% sitt, 10% gravel up to 2" long, poorly graded, subrounded, dry (when wet slightly plastic) a few root hairs (of the gravel, 1% cobbles over 3"). SM
	¥.	Bentonite Pellets		
5 4560		Säica Sand		
10-		0.02** Slotted PVC		
4555 - 25 29	12-13.25 ft.	PVC Sch	٥٩٥٥	ALLUVIUM; Silty sand, fine grained, light yellowish brown (10 YR 6/4), 80% sand, 30% gravel up to 2-1/2" long, 10% silt, well graded, subrounded, saturated. SM Gravel 70%, sand 25%, silt 5%, subrounded. GM
		40		DAKOTA SANDSTONE: Shale, very dark gray (10 YR 3/1) tiny shiny flecks, moist, calcareous, carbonaceous?, very weathered, siltstone? Bottom of boring 13.25 ft
nacted	ers U.S. D	DEPARTMIND JUNCTION		PAGE 1 OF 1 1/28/99

This page intentionally blank

MONITORING WELL COMPLETION LOG GRJ01-1013 UMTRA GROUND WATER NORTH COORD. (FT) 459475.69 PROJECT DATE DRILLED 10/30/97 EAST COORD. (FT) 1132 HOLE DEPTH (FT) 16.25 LOCATION GRAND JUNCTION, CO 1132879.56 SURFACE ELEV. (FT NGVD) SITE GRAND JUNCTION TOP OF CASING (FT) 4573.60 MEAS. PT. ELEV. (FT) 4573.60 WELL DEPTH (FT) 16.00 WELL NUMBER 1013 SLOT SIZE (IN) 0.02 **WELL INSTALLATION** INTERVAL (FT) BIT SIZE(S) (IN) 12.25 SURFACE CASING: DRILLING METHOD HOLLOW STEM AUGER **BLANK CASING:** 4 in. PVC Sch 40 -2.5 to 5.75 WELL SCREEN: 4 in. Machine Slotted PVC SAMPLING METHOD 15.75 5.75 to SUMP/END CAP: 4 in, PVC Sch 40 DATE DEVELOPED 11/25/98 15.75 to 16.0 WATER LEVEL (FT BMP) 11.13 **SURFACE SEAL:** Concrete 0.0 to 2.0 **GROUT:** LOGGED BY L. Spencer SEAL: **Bentonite Pellets** 2.0 to 4.5 REMARKS **UPPER PACK: LOWER PACK:** 10-20 Silica Sand 4.5 16.0 to ELEV. (FT NGVD) BLOWS COUNTS GRAPHIC LOG EXTENT SAMPLE **WELL DIAGRAM** LITHOLOGIC DESCRIPTION FILL; Fine grained, sitty sand, light yellowish brown (10 YR 6/4). SM 4570 Concrete PVC Sch **Pellets** 10-20 Fine grained, sitty sand, light yellowish brown (10 YR 6/4), 15% gravel up to 2-1/2", dry, color to light brown (7.5 YR 6/4) SM Silica 4565 11 2 Lost ALLUVIUM; Silty sand, fine grained dark gray (10 YR 4/1) 85% sand, 15% silt. Red, yellow, and black mineral grains, poorly graded, 7 subrounded, wet. SP Sitty sand, fine grained dark gray (10 YR 4/1) 85% sand, 15% sitt. Red, yellow, and black mineral grains, poorly graded, subrounded, wet, with some organic matter saturated. SP 10-0.02** 4560 32 Slotted PVC Gravel 60%, sand fine grained 35%, sitt 5% cobbles, gravel up to 3". 10 dark gray (10 YR 4/1), subrounded, well graded, saturated. GM **U.S. DEPARTMENT OF ENERGY** PAGE 1 OF 2 1/28/99 **GRAND JUNCTION OFFICE, COLORADO**

	:		MON	liT.	ORING	WELL C	OMPL	ETION LOG GRJ01-1013
PROJ	ECT	UN	MTRA GI	ROU	ND WATE	R	WE	LL NUMBER 1013
SITE		RAND	JUNCTI	ON			DA	TES DRILLED 10/30/97
						Continu	ed from Pr	vious Page
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE 1D.	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
		38						Sand, fine grained dark gray (10 YR 4/1) 40% gravel, 50% sand, 10% silt, well graded, subrounded, saturated. SM
	_	23 19 30				· • · · · · ·		Lost.
15	4555-	4 12				PVC Sch		Gravel 60%, sand fine grained 35%, silt 5% cobbles, gravel up to 2-1/2*, dark gray (10 YR 4/1), subrounded, well graded, saturated. GM
					*****	40 - , -		DAKOTA SANDSTONE; Shale, very dark gray, (10 YR 3/1) tiny shiny flecks, moist, (weathered) carbonaceous. Tiny fossil shell imprint in one of the flakes, Bottom of boring 18.25 ft
-								вошом от роли в техности
	: - :							
-20-	:							
	4550-						1	
-	•							
-25-	-							
-	4545-							
- - -	_		<u>.</u>					
m	Œ	tec	-er		U.S. D	EPARTN ND JUNCTION	ENT O	F ENERGY PAGE 2 OF 2 1/28/99

1.

MONITORING WELL COMPLETION LOG GRJ01-1014							
SURFACE CASING: BLANK CASING: WELL SCREEN: SUMP/END CAP: SURFACE SEAL: GROUT: SEAL: UPPER PACK: LOWER PACK:	WELL INSTALLATION INTERVAL (FT) BIT SIZE(S) (IN) 0.02 12.25 4 in. PVC Sch 40 -2.0 to 7.75 DRILLING METHOD HOLLOW STEM AUGER 4 in. Machine Slotted PVC 7.75 to 17.75 SAMPLING METHOD 4 in. PVC Sch 40 17.75 to 18.0 DATE DEVELOPED 11/24/97 Concrete 0.0 to 2.0 WATER LEVEL (FT BMP) 8.96 LOGGED BY L. Spencer Bentonite Pellets 2.0 to 5.0 16-40 Silica Sand 5.0 to 6.0 10-20 Silica Sand 6.0 to 18.0						
DEPTH (FT BGL) ELEV. (FT NGVD) BLOWS COUNTS	WELL DIAGRAM SES LITHOLOGIC DESCRIPTION						
4570 -5 -3 -5 -5 -5 -1 1 2 3	FILL: Sity sand, brown (10 YR 6/3) 60% sand, 20% sit, 20% gravel including cobbles over 3", well graded, subrounded, slightly plastic when wet, dry. SM Bentonite Peliets Sitca Sand Sity sand fine to medium grained, brownish yellow (10 YR 6/6) 60% sand, 20% sit, 15% gravel, 5% clay up to 1-1/2" long, well graded, subrounded to subangular, slightly plastic, moist. SM						
-10- -10- 	Sitty sand, brownish yellow (10 YR 6/6) 80% sand, 10% sitt, 5% gravel up to 1 inch long and 5% clay, subrounded to subangular, well graded, moist. SM 0.02* Stotted pvc Lost.						
mactec-	U.S. DEPARTMENT OF ENERGY PAGE 1 OF 2 1/28/99						

	MONITORING WELL COMPLETION LOG GRJ01-1014								
PROJ	ECT _	U	MTRA G	ROU	ND WATE	R	WE	LL NUMBER 1014	
SITE GRAND JUNCTION							DATES DRILLED 10/31/97		
		 				Continu	ed from Pr	evious Page	
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	
	-	31 14 22 50/3*						ALLUVIUM; Silty sand, fine to medium grained, grayish brown (10 YR 5/2)-50% sand, 40% gravel up to 2-1/2", 10% silt, subrounded well graded, saturated. SM	
	:	50/3				•		No recovery.	
-15-	:	29 504°					ai.		
-	-					• .			
-	4555-	•				PVC Sch 40		Gravel 80% subrounded, sand 30%, silt 10%, well graded, subrounded, saturated. GM	
[]	-	14				Slough	X	DAKOTA SANDSTONE; Gray sittstone (10 YR 5/1) weathered, noncalcareous, very homogeneous, dry, Note; sample off center bit.	
20 	1 1							Bottom of boring 18.5 ft	
	4550-								
	-								
	4545 -								
m		ec	-er	5	U.S. DI GRAN	EPARTM D JUNCTION	ENT O	F ENERGY PAGE 2 OF 2 1/28/99	

PROJECT UMTRA GROUND WATER SITE GRAND JUNCTION					ND WATE	ER	WELL NUMBER 1015 DATES DRILLED 11/1/97			
	`	<u> </u>	00:101	-		Continu		Previous Page		
_	<u> </u>					Conunt		18Vious Page		
(FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLEID	EXTENT	WELL	DIAGRAM	GRAPHIC	LITHOLOGIC DESCRIPTION		
		43 48 50				12				
15—	-	4 5	. 79					Gravel 60%, fine grained sand 35%, 5% silt, dark grayish brown (10 YR 4/2) well graded, subrounded 1/4" to cobbles, saturated, dark grayish brown, (10 YR 4/2). GM		
		50/1"					-/10-10-	Cobble in shoe, no sample.		
1	٠	•				PVC Sch				
-	4555-					Slough	* * * * * * * * * *	sand, homogeneous, moist, fairly soft.		
4	4							Bottom of boring 17.3 ft		
	4					. •				
20-	-									
	4	:						•		
-	4550-									
	-									
	4					• •				
25-	4									
	-				,					
	4545-				į					
4							·			

mactec-ers U.S.

U.S. DEPARTMENT OF ENERGY GRAND JUNCTION OFFICE, COLORADO

PAGE 1 OF 2

1/28/99

PROJ SITE	-		JUNCT		ND WATE	R		ELL NUMBER 1016 ATES DRILLED 11/1/97
						Continu	ed from Pri	revious Page
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION
-	4555-	6 30				PVC Sch 40	xxxxx xxxxx xxxxx xxxxx 0.0000000000000	DAKOTA SANDSTONE; Weathered siltstone, very dark gray, 15% sand very fined grained, low plasticity (sample is fairly soft) tiny bits of carbon, moist, (10 YR 3/1). Siltstone, gray (10 YR 5/1) moist, noncalcareous.
-15						e e e e e e e e e e e e e e e e e e e		Bottom of boring 15.0 ft
					,	. •		
-20—	4550		•					
J.	•							
	-							
25—	4545—		i .		e to the second			
	-		÷					
, -	_							

MONITORING WELL COMPLETION LOG GRJ01-1017 11/1/97 PROJECT UMTRA GROUND WATER NORTH COORD. (FT) 459662.89 LOCATION GRAND JUNCTION, CO EAST COORD. (FT) 1135119.26 SITE GRAND JUNCTION HOLE DEPTH (FT) 13.33 DATE DRILLED SURFACE ELEV. (FT NGVD) TOP OF CASING (FT) 4572.72 HOLE DEPTH (FT) 13.33 WELL DEPTH (FT) 12.95 SITE GRAND JUNCTION MEAS. PT. ELEV. (FT) 4572.72 WELL NUMBER 1017 0.02 SLOT SIZE (IN) INTERVAL (FT) **WELL INSTALLATION** BIT SIZE(S) (IN) 12.25 SURFACE CASING: DRILLING METHOD HOLLOW STEM AUGER -2.3 4 in. PVC Sch 40 to **BLANK CASING: SAMPLING METHOD** 12.7 WELL SCREEN: 4 in. Machine Slotted PVC 7.7 to DATE DEVELOPED 11/24/97 4 in. PVC Sch 40 12.7 to. 12.95 SUMP/END CAP: WATER LEVEL (FT BMP) 5.93 SURFACE SEAL: Concrete 0.0 to 2.0 LOGGED BY L. Spencer **GROUT: Bentonite Pellets** 2.0 to 4.0 REMARKS SEAL: **UPPER PACK:** 10-20 Silica Sand 12.95 4.0 to **LOWER PACK:** ELEV. (FT NGVD) BLOWS DEPTH (FT BGL) GRAPHIC LOG EXTENT SAMPLE **WELL DIAGRAM** LITHOLOGIC DESCRIPTION FILL; Sitty sandy, yellowish brown (10 YR 5/4) 60% sand, 20% sitt, 10% gravel, 10% day, subrounded from cobbles to 1/4°, tow plasticity 4570 when wet, well graded, moist, a few root hairs. SM PVC Sch 40 Silty sandy, brown (7.5 YR 5/4) 60% sand, 20% silt, 10% gravel, 10% **Pedets** clay, subrounded from cobbles to 1/4", low plasticity when wet, well graded, moist, a few root hairs, brown, (7.5 YR 5/4). SM 3 Silty sand, yellowish brown (10 YR 5/4) 60% sand, 30% silt, 5% gravel, 5% clay, subrounded to angular, well graded, medium plasticity, moist. No recovery rock in shoe Sity sand, yellowish brown (10 YR 5/4) 60% sand, 30% sitt, 5% gravel, 5 2 4565 10-20 5% clay, subrounded to angular, well graded, medium plasticity, moist, with some brown (7.5 YR 5/4) colored material in sample. SM 2 17 Cobble in shoe, no recovery. 26 11 28 ALLUVIUM; Gravel, 60%, sand fine to medium grain, 30% silt, 10% 0.02 -10 well graded,, saturated. Red yellow and white chert grains in quartzose Slotted 4560 sand. SM No recovery-cobble in shoe. 18 Graveley sand, fine to coarse grain 60% sand, 35% gravel up to 3 in., 5% sitt, well graded, subrounded, saturated SM DAKOTA SANDSTONE; Weathered bedrock, siltstone, very dark 27 XX gray (10 YR 3/1) tiny shiny flecks of mica, homogeneous moist, fairly soft. Noncalcareous. Bottom of boring 13.33 ft U.S. DEPARTMENT OF ENERGY PAGE 1 OF 1 1/28/99 **GRAND JUNCTION OFFICE, COLORADO**

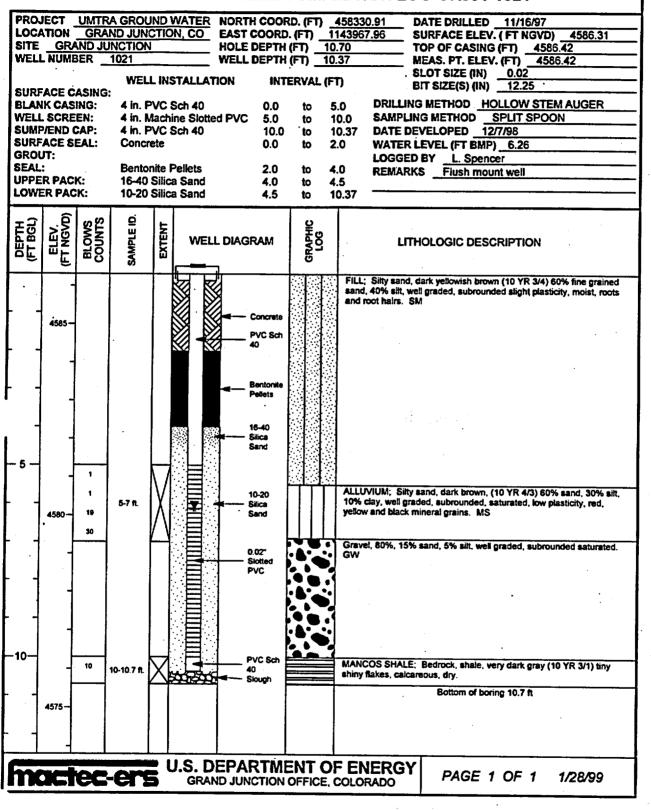
This page intentionally blank

MONITORING WELL COMPLETION LOG GRJ01-1018 PROJECT UMTRA GROUND WATER NORTH COORD. (FT) 460091.24 LOCATION GRAND JUNCTION, CO EAST COORD. (FT) 1134920.84 NORTH GOOD, (FT) 11345 EAST COORD, (FT) 15.10 DATE DRILLED 11/2/97 SURFACE ELEV. (FT NGVD) TOP OF CASING (FT) 4575.91 MEAS. PT. ELEV. (FT) 4575.91 GRAND JUNCTION WELL NUMBER 1018 MEAS. PT. ELEV. (FT) WELL DEPTH (FT) 14.45 SLOT SIZE (IN) 0.02 **WELL INSTALLATION** INTERVAL (FT) BIT SIZE(S) (IN) 12.25 SURFACE CASING: DRILLING METHOD HOLLOW STEM AUGER **BLANK CASING:** 4 in. PVC Sch 40 -1.9 to 6.2 WELL SCREEN: SAMPLING METHOD 4 in. Machine Slotted PVC 6.2 to 14.2 SUMP/END CAP: 4 in. PVC Sch 40 DATE DEVELOPED 11/24/97 14.2 14.45 · to SURFACE SEAL: Concrete 0.0 2.0 WATER LEVEL (FT BMP) 7.63 to **GROUT:** LOGGED BY L. Spencer SEAL: **Bentonite Pellets** 2.0 5.0 to REMARKS **UPPER PACK:** 16-40 Silica Sand 5.0 to 5.5 LOWER PACK: 10-20 Silica Sand 14.45 to ELEV. (FT NGVD) BLOWS DEPTH (FT BGL) GRAPHIC LOG EXTENT SAMPLE **WELL DIAGRAM** LITHOLOGIC DESCRIPTION FILL: Sitty sand, yellowish brown, (10 YR 5/4) 60% sand, 25% sitt, 10% gravel, 5% clay, well graded, subrounded, moist. Sight plasticity when wet, a few root hairs from 0-2 feet only. Water Level about 7.0 feet. SM PVC Sch Pellets 4570 16-40 10-20 No recovery. Silty sand, brown (10 YR 5/3), 60% sand, 20% silt, 10% gravei 18 4565 subrounded, 10% clay, slight plasticity saturated, roots. SM ALLUVIUM; Gravel, 60% subrounded, 30% sand, 10% sitt, sell graded, no plasticity, saturated. GM 0.02 10 No recovery. 12 Slotted PVC 26 Sand, fine to medium grain, fairly clean, red, yellow and black mineral U.S. DEPARTMENT OF ENERGY PAGE 1 OF 2 1/28/99 GRAND JUNCTION OFFICE, COLORADO

		•	MON	IJΤ	ORING	WELL C	OMPL	ETION LOG GRJ01-1018			
PROJ	ECT _	U	MTRA GI	₹ <u></u>	ND WATE	R		ELL NUMBER 1018			
SITE		RAND	JUNCTI	ON	· ••		DATES DRILLED 11/2/97				
				_		Continu	ed from Pr	evious Page			
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE JD.	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION			
	4580-	41 50/3*						grains, white to yellow tiny cherts, tiny amount of carbon bits. 100% sand, poorly graded, subrounded, saturated. SP Gravel, 80%, sand 35%, 5% silt, subrounded 1/4" gravel to cobbles, subrounded well graded saturated. GM No recovery-rock in shoe.			
-15-	-	34				PVC Sch 40 Slough	× × × × × × × × × × × × × × × × × × ×	DAKOTA SANDSTONE; Weathered bedrock, siltstone, very dark gray (10 YR 3/1) carbonaceous, tine flecks of shiny mica, moist. Noncalcareous.			
-	1	·						Bottom of boring 15.1 ft			
	•		-			• .					
	-										
	4555-				·						
–20 –	_										
	-										
_	-					•	•				
- · -	4550-						,				
-25-			. :								
	-				•						
m	٥٥	tec	-er	 3	U.S. DI GRAN	EPARTM D JUNCTION	ENT O	F ENERGY PAGE 2 OF 2 1/28/99			

MONITORING WELL COMPLETION LOG GRJ01-1019

SURFACE CASING: BLANK CASING: WELL SCREEN: SUMP/END CAP: SURFACE SEAL: GROUT: SEAL: UPPER PACK: LOWER PACK:		to 26.7 SAM to 26.95 DAT to 2.0 WAT LOG to 4.33 REM	MEAS. PT. ELEV. (FT) 4580.9 SLOT SIZE (IN) 0.02 BIT SIZE(S) (IN) 12.25 LING METHOD HOLLOW STEM A IPLING METHOD SPLIT SPOON E DEVELOPED 11/22/97 FER LEVEL (FT BMP) 9.84 IGED BY L. Spencer IARKS	
DEPTH (FT BGL) ELEV. (FT NGVD) BLOWS	SAMPLE 10 EXTENT WELL DIAGRAM	СОС	LITHOLOGIC DESCRIPTION	
- 4575- - 5	PVC Sch 40 Bentonite Pellets 16-40 Salica Sand 10-20 Silica Sand	subrounded graded, slig!	ellowish brown (10 YR 5/4) 60% sand, 30%	0% sit, well SM
-10- 2 2 4 4 4 4 4		subrounded graded, slight shit more placed with the state of the state	from 14" to cobbles 3.0 inches or larger, 10 http plasticity moist. A few root hairs/roots. A saticity. Note: 9.9 to 10.0 saturated. SM Sand, fine to medium grain, yellowish brow pellow, and black mineral grains, subroundethips, poorly graded, saturated. SP cobble in shoe.	0% sitt, well Angular gravel, in (10 YR 5/4) d tiny yellowish


			MON	IIT	ORING WELL	COMPL	ETION LOG GRJ01-1019				
PROJ	ECT	UI	MTRA GI	ROU	JND WATER	WE	LL NUMBER 1019				
SITE		SRAND	JUNCTI	ON	<u> </u>	DA	DATES DRILLED 11/2/97				
					Contin	ued from Pr	evious Page				
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION				
	_	18					(10 YR 5/4) 100%, red, yellow, and black mineral grains, subrounded tiny yellowish white chert chips, poorly graded, salar ated. SP				
	45 65 —	19 30 18 22 50 32					Gravelly sand, cobbles to 1/4" in size, 60% sand, 35% gravel, 5% slit, well graded subrounded, saturated. SWG No recovery.				
-	-	7 15 13			0.02" Slotted PVC	-	No recovery. Gravel 60% subrounded, sand fine to coarse grain 35%, silt 5% well				
	4580-	14 0 5	18-20 ft.	\bigvee			graded, saturated. GW No recovery.				
20- 	-	50/4"		$\langle V \rangle$			Cobble in shoe at 20' to 20.3'				
	1						No recovery.				
1	4555-	22/3*									
25-	-	50/5"	•								
	-	50/4"			PVC Sch	X X X X X X X X X X X X X X X X X X X	DAKOTA SANDSTONE; Weathered bedrock, very dark gray (10 YR 3/1). Weathered bedrock, siltstone, small amount of carbon, noncalcareous, moist, fairly soft. Bottom of boring 27 ft				
fm	• <u>-</u>	tec	-er		U.S. DEPARTN GRAND JUNCTION	IENT O	F ENERGY PAGE 2 OF 2 1/28/99				

Ė

MONITORING WELL COMPLETION LOG GRJ01-1020

LOCATION GRAN SITE GRAND JUI	A GROUND WATER ND JUNCTION, CO NCTION 1020		(FT) <u>11</u> (FT) <u>17.</u>	39020.66 0 0	DATE DRILLED 11/16/97 SURFACE ELEV. (FT NGVD) 4580.93 TOP OF CASING (FT) 4582.90 MEAS. PT. ELEV. (FT) 4582.90 SLOT SIZE (IN) 0.02
SURFACE CASING: BLANK CASING: WELL SCREEN: SUMP/END CAP: SURFACE SEAL: GROUT: SEAL: UPPER PACK: LOWER PACK:	WELL INSTALLAT 4 in. PVC Sch 40 4 in. Machine Slotte 4 in. PVC Sch 40 Concrete Bentonite Pellets 16-40 Silica Sand 10-20 Silica Sand	-1.9	to 10 to 2 to 4. to 5.	9 DRILI 5.9 SAMF 6.2 DATE 0 WATE LOGO 9 REMA	BIT SIZE(S) (IN) 12.25 LING METHOD HOLLOW STEM AUGER PLING METHOD SPLIT SPOON E DEVELOPED 12/8/97 ER LEVEL (FT BMP) 8.21 GED BY L. Spencer ARKS
DEPTH (FT BGL) ELEV. (FT NGVD) BLOWS COUNTS	SAMPLE ID. EXTENT	L DIAGRAM	GRAPHIC LOG	1	LITHOLOGIC DESCRIPTION
_ 4580		— Concrete PVC Sch 40		10% fine grai	silt, dark grayish brown (10 YR 4/2) 80% silt, 10% clay, ined sand, poorly graded, homogenous, subrounded asticity, moist. A few roots and root hairs. ML
5 - 1		Bentonite Pellets 16-40 Silica		No recovery.	
4575-2	5-7 ft.	Sand 10-20 Silica Sand	-	YR 4/3) 90% : saturated. Re	Sand, quartzose, fine to medium grain, dark brown (10 sand, 10% silt, subrounded, poorly graded, no plasticity, ed, yellow and black mineral grains with whitish yellow nd tiny gray chips. SP
21 50/4	10-12 ft.	0.02* Slotted PVC		No recovery.	
		DEPARTME		graded, satura	80% gravet, 15% sand, 5% sift, subrounded, well ated. 1/4" to cobble size gravet. GM

MONITORING WELL COMPLETION LOG GRJ01-1021

This page intentionally blank

MONITORING WELL COMPLETION LOG GRJ01-1022 PROJECT UMTRA GROUND WATER NORTH COORD. (FT) 459743.37 DATE DRILLED 11/3/97 EAST COORD. (FT) SURFACE ELEV. (FT NGVD) LOCATION GRAND JUNCTION, CO 1130947.60 HOLE DEPTH (FT) TOP OF CASING (FT) _4562.76 SITE GRAND JUNCTION 19.00 WELL NUMBER WELL DEPTH (FT) 17.77 1022 MEAS. PT. ELEV. (FT) 4562.76 SLOT SIZE (IN) 0.02 **WELL INSTALLATION** INTERVAL (FT) BIT SIZE(S) (IN) 12.25 SURFACE CASING: DRILLING METHOD HOLLOW STEM AUGER **BLANK CASING:** 4 in. PVC Sch 40 0.0 to 7.4 WELL SCREEN: 4 in. Machine Slotted PVC **SAMPLING METHOD** 7.4 17.4 to SUMP/END CAP: 4 in. PVC Sch 40 17.4 17.77 DATE DEVELOPED 12/10/97 to Concrete SURFACE SEAL: WATER LEVEL (FT BMP) 5.63 0.0 to 2.0 GROUT: LOGGED BY L. Spencer SEAL: **Bentonite Pellets** 2.0 to 4.33 REMARKS Flush mount well **UPPER PACK: LOWER PACK:** 10-20 Silica Sand 4.33 to 17.77 ELEV. (FT NGVD) BLOWS DEPTH (FT BGL) GRAPHIC LOG EXTENT SAMPLE **WELL DIAGRAM** LITHOLOGIC DESCRIPTION FILL: Sitty sand, yellowish brown (10 YR 5/4) 60% fine grained sand, 30% silt, 10% clay, poorly graded subrounded, slightly to low plasticity, moist. SC No recovery. 4560 2 2 2 No recovery. 4 10-20 27 Silica Sand Sitty sand, fine to medium grained, yellowish brown (10 YR 5/4) 60% 24 sand, 30% gravel, 10% silt, well graded, 1/4" to cobbles, subrounded to subangular, wet. SW 31 13 No recovery - Cobble in shoe 4555 ALLUVIUM; Gravely sand, 60% gravel from 1/4" cobbles, subrounded, 35% sand, 5% silt, well sorted, saturated. Red, yellow and black mineral grains and yellowish white tiny chert chips. SWG 28 10-31 35 Flowing sands/gravel in augers-no samples from 11.0 to 17.5 feet. U.S. DEPARTMENT OF ENERGY actec-ers PAGE 1 OF 2 1/28/99 GRAND JUNCTION OFFICE, COLORADO

MONITORING WELL COMPLETION LOG GRJ01-1023 PROJECT UMTRA GROUND WATER NORTH COORD. (FT) 461339.62 LOCATION GRAND JUNCTION EAST COORD. (FT) 1161786.21 SITE GRAND JUNCTION HOLE DEPTH (FT) 22.00 DATE DRILLED 11/16/97 SURFACE ELEV. (FT NGVD) 4628.54 TOP OF CASING (FT) 4630.22 WELL NUMBER 1023 WELL DEPTH (FT) 21.75 MEAS. PT. ELEV. (FT) 4630.22 SLOT SIZE (IN) 0.02 **WELL INSTALLATION** INTERVAL (FT) BIT SIZE(S) (IN) 12.25 SURFACE CASING: DRILLING METHOD HOLLOW STEM AUGER **BLANK CASING:** 4 in. PVC Sch 40 -1.5 to 8.5 WELL SCREEN: 4 in. Machine Slotted PVC 8.5 SAMPLING METHOD SPLIT SPOON 21.5 to SUMP/END CAP: 4 in. PVC Sch 40 21.75 DATE DEVELOPED 12/6/97 21.5 tó SURFACE SEAL: Concrete 0.0 to 2.0 WATER LEVEL (FT BMP) 8.06 GROUT: LOGGED BY L. Spencer SEAL: **Bentonite Pellets** 2.0 to 5.0 REMARKS **UPPER PACK:** 16-40 Silica Sand 5.0 6.5 ta LOWER PACK: 10-20 Silica Sand 6.5 21.75 to ELEV. (FT NGVD) BLOWS DEPTH (FT BGL) GRAPHIC LOG EXTENT SAMPLE **WELL DIAGRAM** LITHOLOGIC DESCRIPTION FILL; Sitty sand, brown (10 YR 5.3), 60% sand fine grained, 30% sitt, 10% clay, well graded subrounded, low plasticity, moist. A few roots and root hairs. SC Concrète PVC Sch Bentonite 4625 Pellets ALLUVIUM; Clayey silt, brown (10 YR 5/3) 60% silt, 30% sand, fine 2 grained, 10% clay, homogeneous, subrounded sand, medium 2 plasticity, wet, a few root hairs. ML 5-7 ft. 2 2 No recovery. 10-20 4620 10 Silty sand, dark brown, (10 YR 4/3) 80% sand, 20% silt, fine to medium grain, subrounded, well graded saturated, red, black, and yellow mineral grains, green and yellowish white tiny chert chips. A few white chert chips. NOTE: Driller hit gravel at 14 feet SW 2 10-12 ft. No recovery. **U.S. DEPARTMENT OF ENERGY** PAGE 1 OF 2 1/28/99 GRAND JUNCTION OFFICE, COLORADO

							COMPI	LETION LO	G GRJ0	1-1023			
PROJ SITE			MTRA G		IND WATE	R		WELL NUMBER 1023 DATES DRILLED 11/16/97					
						Cantin		revious Page	11770/37				
				Т		Conuni		revious Page	•	<u> </u>			
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE 10	EXTENT	WELL	DIAGRAM	GRAPHIC	LITH	IOLOGIC DE	SCRIPTION			
	4815							•			· · · · · · · · · · · · · · · · · · ·		
			No. 1							··· <u>*</u>	* * * * * * *		
-15-	:	50/5"		\bigvee		0.02" Skitted PVC	X	Sandy gravel, 80% grained, 5% silt, we No recovery.	gravel, subrou ell graded, satu	nded 1/4" to cob rated, GW	oles, 15% s	and fine	
		, ,	15-17 ft.	Δ						4 1. ·			
	4610-												
	-										•		
-20-			•										
_		21 50/1"	21-22 ft.	X		PVC Sch 40		MANCOS SHALE; shiny flakes, calcan	Bedrock, shale eous, dry.	, very dark gray	(10 YR 3/1)	tiny	
	4							·	Bottom of	boring 22 ft	•		
	4605-									-			
-25-						-						!	
	4						 			•	· - - -	•	
	+		de de la constante de la const										
m	16	ec	ers		J.S. DE GRAND	PARTMI D JUNCTION	ENT O	F ENERGY COLORADO	PAGE	2 OF 2	1/28/9	9	

[...

MONITORING WELL COMPLETION LOG GRJ01-1024 PROJECT UMTRA GROUND WATER NORTH COORD. (FT) 463784.93 LOCATION GRAND JUNCTION EAST COORD. (FT) 1168174.59 SITE GRAND JUNCTION HOLE DEPTH (FT) 15.30 DATE DRILLED 11/17/97 SURFACE ELEV. (FT NGVD) TOP OF CASING (FT) _4640.21 WELL NUMBER 1024 WELL DEPTH (FT) 14.75 MEAS. PT. ELEV. (FT) 4640.21 SLOT SIZE (IN) 0.02 **WELL INSTALLATION** INTERVAL (FT) BIT SIZE(S) (IN) 12.25 · SURFACE CASING: DRILLING METHOD HOLLOW STEM AUGER **BLANK CASING:** 4 in. PVC Sch 40 to 6.5 WELL SCREEN: 4 in. Machine Slotted PVC SAMPLING METHOD SPLIT SPOON 6.5 to 14.5 SUMP/END CAP: 4 in. PVC Sch 40 DATE DEVELOPED 12/6/97 14.5 to 14.75 SURFACE SEAL: Concrete 0.0 to 2.0 WATER LEVEL (FT BMP) 7.29 **GROUT:** LOGGED BY L. Spencer SEAL: Bentonite Pellets 2.0 5.0 to REMARKS **UPPER PACK:** 16-40 Silica Sand 5.0 to 6.0 **LOWER PACK:** 10-20 Silica Sand 6.0 14.75 to ELEV. (FT NGVD) BLOWS SAMPLE ID. DEPTH (FT BGL) EXTENT GRAPHIC LOG **WELL DIAGRAM** LITHOLOGIC DESCRIPTION TOPSOIL/FILL; Sitty sand, dark brown (10 YR 4/3) 60% sand, 35% sit, 5% day, subrounded sands, poorly graded, moist. A few roots. root hairs, and hematite staining in sands, low plasticity, moist. SM Concrete **PVC Sch** 4835 Bentonite No recovery. 16-40 5-7 ft ALLUVIUM; Silty sand, dark brown (10 YR 4/3) 60% sand, 35% silt. 10-20 5% lay, subrounded sands, poorly graded, moist. A few roots, root hairs, and hematite staining in sands, low plasticity. Wet. SM No recovery. Center bit wet at 7 feet. 4630 10 No recovery. NOTE: Driller in gravel at 10 feet. 24 0.02" Slotted **PVC** 10-12 ft 33 **U.S. DEPARTMENT OF ENERGY** PAGE 1 OF 2 1/28/99

GRAND JUNCTION OFFICE, COLORADO

			MON	IJΤ	ORING	WELL C	OMPL	ETION LOG GRJ01-1024				
PROJ	ECT	U	VITRA GI	ROU	ND WATE	R	WE	ELL NUMBER 1024				
SITE								DATES DRILLED 11/17/97				
						Continu	ed from Pr	evious Page				
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION				
	4825-							MANCOS SHALE; Weathered shale, very dark gray (10 YR 3/1) a few weathered fossils/shells, tiny shiny flecks, calcareous, dry.				
				l .		PVC Sch		weathered rossis/shells, tiny shiny flecks, calcareous, dry.				
-15-		50/3	15-15.3 ft.	\boxtimes		Slough						
								Bottom of boring 15.0 ft				
┞ -												
								in the state of t				
├ -					•							
-	4520					,						
	"											
-					1			* *				
					·							
-20-	_											
]										
-	_] :										
					}							
ŀ -	_											
} -	4815-						•					
	-013			١.								
├	_				•	1						
ľ												
-25-												
-	_											
						-						
- 1	ł											
	-											
} -	4610-											
	4010-	<u> </u>	<u> </u>	<u>_</u>		EDADT	ENTO	EENEDOV				
m	Œ	lec	-er	5	U.S. D GRAN	D JUNCTION	IENI U I OFFICE,	F ENERGY PAGE 2 OF 2 1/28/99				

MONITORING WELL COMPLETION LOG GRJ01-1025 PROJECT <u>UMTRA GROUND WATER</u> NORTH COORD. (FT) 461546.00 LOCATION <u>GRAND JUNCTION</u>, CO EAST COORD. (FT) 1152752.06 DATE DRILLED 11/17/97 EAST COORD. (FT) 1152 35.00 SURFACE ELEV. (FT NGVD) TOP OF CASING (FT) 4617.57 **GRAND JUNCTION WELL NUMBER** MEAS. PT. ELEV. (FT) 1025 WELL DEPTH (FT) 32.37 4617.57 SLOT SIZE (IN) 0.02 **WELL INSTALLATION** INTERVAL (FT) 12.25 BIT SIZE(S) (IN) **SURFACE CASING:** DRILLING METHOD HOLLOW STEM AUGER **BLANK CASING:** 4 in. PVC Sch 40 -2.2 to 120 SAMPLING METHOD SPLIT SPOON WELL SCREEN: 4 in. Machine Slotted PVC 12.0 to 32.0 4 in, PVC Sch 40 32.37 DATE DEVELOPED 11/23/97 SUMP/END CAP: 32.0 to **SURFACE SEAL:** Concrete 0.0 2.0 WATER LEVEL (FT BMP) 7.74 to **GROUT:** LOGGED BY L. Spencer SEAL: **Bentonite Pellets** 2.0 9.0 to REMARKS UPPER PACK: 16-40 Silica Sand 9.0 10.0 to LOWER PACK: 10-20 Silica Sand 10.0 to 32.37 ELEV. (FT NGVD) BLOWS COUNTS DEPTH (FT BGL) GRAPHIC LOG EXTENT SAMPLE **WELL DIAGRAM** LITHOLOGIC DESCRIPTION 4615 TOPSOIL/FILL; Silty sand, yellowish brown (10 YR 5/4) 70% sand, Concrete 25% silt, 5% day subrounded sands, poorly graded, moist. A few roots and root hairs. SW PVC Sch 40 Ţ. ALLUVIUM; Clayey silt, dark brown (10 YR 4/3) 70% silt, 20% fine grained sand, 10% clay, numerous vertical root holes, a few root hairs, Bentonite Pellets 5-7 ft. low plasticity, moist. Pale brown mottles, a few, fine, distinct. (10 YR 6/3) ML No recovery 10-40 Sand Clayey silt, dark grayish brown (10 YR 4/2) water level at 13 feet, 85% sit, 10% fine grained sand, 5% clay, homogenous, vertical root holes, a few roots, patches of clear to white fine grained sand, medium 10-12 ft 10-20 plasticity, moist, A few, medium distinct gray ML Sand No recovery 15.17 @ Sitty sand, dark brown (10 YR 4/3) 90% sand, subrounded, 10% sit, 48 well graded, saturated. SW 49 Sandy gravel, 70% gravel, 20% sand, fine to medium grain, 10% silt, subrounded, saturated, from 1/4" to cobble size. GWS 20-4595 0.02" Slotted PVC U.S. DEPARTMENT OF ENERGY mactec-er PAGE 1 OF 2 1/28/99 GRAND JUNCTION OFFICE, COLORADO

MONITORING WELL COMPLETION LOG GRJ01-1026 PROJECT UMTRA GROUND WATER NORTH COORD. (FT) 462343.40 LOCATION GRAND JUNCTION, CO EAST COORD. (FT) 1140481.70 DATE DRILLED 11/12/97 EAST COORD. (FT) 1140-HOLE DEPTH (FT) 27.00 WELL DEPTH (FT) 26.45 SURFACE ELEV. (FT NGVD) TOP OF CASING (FT) 4593.83 MEAS. PT. ELEV. (FT) 4593.83 SITE GRAND JUNCTION WELL NUMBER 1026 SLOT SIZE (IN) WELL INSTALLATION INTERVAL (FT) BIT SIZE(S) (IN) 12.25 SURFACE CASING: DRILLING METHOD HOLLOW STEM AUGER **BLANK CASING:** 4 in. PVC Sch 40 0.0 9.4 to SAMPLING METHOD SPLIT SPOON WELL SCREEN: 4 in. Machine Slotted PVC 9.4 to 26.2 DATE DEVELOPED 12/3/97 SUMP/END CAP: 4 in. PVC Sch 40 26.2 26.45 to **SURFACE SEAL:** Concrete 4.0 WATER LEVEL (FT BMP) 3.61 0.0 to GROUT: LOGGED BY L. Spencer SEAL: **Bentonite Pellets** 4.0 6.0 to REMARKS Flush mount well **UPPER PACK:** 16-40 Silica Sand 6.0 to 7.0 LOWER PACK: 10-20 Silica Sand 7.0 26.45 to ELEV. (FT NGVD) BLOWS GRAPHIC LOG DEPTH FT BGL EXTENT SAMPLE **WELL DIAGRAM** LITHOLOGIC DESCRIPTION FILL; Sandy silt, dark brown (10 YR 4/3) 60% silt, 35% sand, 5% clay. poorly graded, subrounded, low plasticity, moist. A few roots and root hairs. Mt. PVC Sch 4590 Pallets Slough - No recovery. Sandy silt, grayish brown (2.5 Y 5/2) 60% silt, 35% sand, 5% clay, a few small patches of light white colored sand grains, poorly sorted, subrounded medium plasticity, moist. W. L. 10 feet. ML 5-7 ft. 6 No recovery.

U.S. DEPARTMENT OF ENERGY GRAND JUNCTION OFFICE, COLORADO

Alluvium?

No recovery

Slough - No recovery.

vellow and black mineral grains. SP

10-20

4585

10-12 R.

10-

PAGE 1 OF 2 1/28/99

Sand, very fine to fine grained, brown (10 YR 4/3) 90% sand 5% silt, 5% clay, poorly graded, subrounded slight plasticity, saturated. Red,

MONITORING WELL COMPLETION LOG GRJ01-1027 PROJECT UMTRA GROUND WATER NORTH COORD. (FT) 462388.59 LOCATION GRAND ILINCTION CO. GRAND JUNCTION, CO EAST COORD. (FT) 11403 HOLE DEPTH (FT) 33.00 DATE DRILLED 11/14/97 SURFACE ELEV. (FT NGVD) SITE GRAND JUNCTION 4593.34 HOLE DEPTH (FT) 33.00 WELL DEPTH (FT) 29.77 TOP OF CASING (FT) 4593.34 MEAS. PT. ELEV. (FT) 4593.34 WELL NUMBER 1027 SLOT SIZE (IN) 0.02 **WELL INSTALLATION** INTERVAL (FT) BIT SIZE(S) (IN) 12.25 **SURFACE CASING:** DRILLING METHOD HOLLOW STEM AUGER **BLANK CASING:** 4 in, PVC Sch 40 0.0 9.4 to SAMPLING METHOD SPLIT SPOON WELL SCREEN: 4 in. Machine Slotted PVC 29.4 9.4 to SUMP/END CAP: 4 in. PVC Sch 40 DATE DEVELOPED 12/4/97 29 4 29.77 to **SURFACE SEAL:** Concrete 0.0 1.5 WATER LEVEL (FT BMP) 1.35 to GROUT: LOGGED BY L. Spencer SEAL: **Bentonite Pellets** 7.0 1.5 to REMARKS Flush mount well **UPPER PACK:** 16-40 Silica Sand 7.0 to 8.0 LOWER PACK: 10-20 Silica Sand 29.77 RA to NGVD BLOWS COUNTS GRAPHIC LOG DEPTH (FT BGL EXTENT SAMPLE **WELL DIAGRAM** LITHOLOGIC DESCRIPTION 햅 FILL; Sandy sitt, dark brown (10 YR 4/3) 60% sitt, 35% sand fine grained, 5% clay, poorly graded, low plasticity, moist. A few white to clear patches of fine grained sand mixed in homogenous silt. ML **PVC Sch** 4590 **Pellets** 5-7 ft 16-40 No recovery Sand 4585 10-20 10 ALLUVIUM; Sand, fine to medium grained, dark brown (10 YR 4/3) 15 90% sand, 5% silt, 5% clay, poorly graded, slight plasticity, 10-12 ft. subrounded, saturated. Red, yellow and black mineral grains, some tiny yellowish white chert chips. SP Sandy gravel, 80% gravel, 20% sand, from cobbles to 1/4". Saturated, subrounded well graded. GW No recovery 15 Sand, fine to medium grained, dark brown (10 YR 4/3) 90% sand, 5% salt, 5% clay, poorly graded, slight plasticity, subrounded, saturated. Red, yellow and black mineral grains, some tiny yellowish white chert 25 15-17 ft. 50 chips. SW Sandy gravel, dark brown (10 YR 4/3) 60% gravel from 1/4" to cobbles, 30% sand, fine to medium grained, and 10% silt, well graded, 4575 subrounded, saturated. GM 0.02 No recovery. Slotted PVC 20 Slough - No recovery. 20-22 ft. 50/2 Sandy gravel, dark brown (10 YR 4/3) 60% gravel from 1/4" to cobbles, 30% sand, fine to medium grained, and 10% silt, well graded, subrounded, saturated. GM 4570 No recovery U.S. DEPARTMENT OF ENERGY PAGE 1 OF 2 1/28/99 **GRAND JUNCTION OFFICE, COLORADO**

PROJ	-		ATRA GI JUNCTI		ND WATE	R		/ELL NUMBER 1027 ATES DRILLED 11/14/97	
						Continu	<u> </u>	Previous Page	
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	,
- 30-	4565—	•				PVC Sch 40 ■ Slough		NOTE: Driller could feel boulders/ cobbles from approximately 25 feet. Very hard, jerky drilling.	o 33
-35	4580		··· !					Bottom of boring 33.0 ft	
-45-	4550 —								:
-50 55	4545 — — — — 4540 — —								

: i

MONITORING WELL COMPLETION LOG GRJ01-1028 PROJECT UMTRA GROUND WATER NORTH COORD. (FT) 462558.95 PROJECT UMINA GROUND VIGIEN LOCATION GRAND JUNCTION, CO EAST COORD. (FT) 1140 EITE GRAND JUNCTION HOLE DEPTH (FT) 34.00 DATE DRILLED 11/15/97 1140583.78 SURFACE ELEV. (FT NGVD) TOP OF CASING (FT) 4594.99 WELL NUMBER 1028 WELL DEPTH (FT) 31.82 MEAS. PT. ELEV. (FT) 4594.99 SLOT SIZE (IN) 0.02 WELL INSTALLATION INTERVAL (FT) BIT SIZE(S) (IN) SURFACE CASING: **BLANK CASING:** DRILLING METHOD HOLLOW STEM AUGER 4 in, PVC Sch 40 0.0 to 11.45 WELL SCREEN: 4 in. Machine Slotted PVC 11.45 31.45 SAMPLING METHOD SPLIT SPOON to SUMP/END CAP: 4 in. PVC Sch 40 31.45 to 31.82 DATE DEVELOPED 12/5/97 **SURFACE SEAL:** Concrete 0.0 to 1.6 WATER LEVEL (FT BMP) GROUT: LOGGED BY L. Spencer SEAL: **Bentonite Pellets** 7.0 1.6 to REMARKS Flush mount well UPPER PACK: 16-40 Silica Sand 7.0 to 10.4 LOWER PACK: 10-20 Silica Sand 10.4 to 31.82 ELEV. (FT NGVD) BLOWS COUNTS DEPTH (FT BGL) GRAPHIC LOG SAMPLE 11 EXTENT **WELL DIAGRAM** LITHOLOGIC DESCRIPTION FILL; Sandy silt, dark grayish brown (10 YR 4/2) 60% silt, 30% sand, 5% gravel, 5% day, well graded, subrounded, low plasticity, moist. A 5-7 ft. 2 ALLUVIUM; Clayey silt, grayish brown (10 YR 5/2) 60% silt, 20% clay. 20% fine grained sand, homogenous, medium plasticity, wet. Patches PVC Sch of white to clear fine grained sand throughout sample. CL 40 No recovery 16-40 4585 Slough - No recovery. 10-12 R Silty sand, dark brown, (10 YR 4/3) 75% sand fine grained, 20% silt. 10-20 5% day, homogenous, tiny red, black, and yellow mineral grains. Silica subrounded, low plasticity, saturated. SM No recovery. Slough - No recovery. 15-17 ft. Clayey silt, yellowish brown (10 YR 5/4) mottled with dark yellowish brown (10 YR 4/6) few, fine to medium distinct, moist, 10% sand, medium plasticity. CL No recovery NOTE: Driller could feel gravel at 18 feet in depth. 4575 20 Slough - No recovery. 30 20-22 ft. Sandy gravel, subrounded, well graded from 1/4" to cobbles, 60%, sand fined grained 30%, 10% sit, saturated. GW $\,$ 23 Slotted PVC. No recovery. **U.S. DEPARTMENT OF ENERGY** PAGE 1 OF 2 1/28/99 **GRAND JUNCTION OFFICE, COLORADO**

MONITORING WELL COMPLETION LOG GRJ01-1029

LOCATION <u>GRA</u> SITE <u>GRAND JU</u> WELL NUMBER _	INCTION HOLE DEPTH 1029 WELL DEPTH WELL INSTALLATION INT	D. (FT) 1128375.26 SURFACE ELEV. (FT NGVD) 4556.18
SURFACE CASING BLANK CASING: WELL SCREEN: SUMP/END CAP: SURFACE SEAL: GROUT: SEAL: UPPER PACK: LOWER PACK:	4 in. PVC Sch 40 -2.5 4 in. Machine Slotted PVC 7.0 4 in. PVC Sch 40 22.0 Concrete 0.0 Bentonite Pellets 2.0 10-20 Silica Sand 5.0	to 7.0 DRILLING METHOD HOLLOW STEM AUGER to 22.0 SAMPLING METHOD
DEPTH (FT BGL) ELEV. (FT NGVD) BLOWS COUNTS	WANDAID LIENT EXTENT	LITHOLOGIC DESCRIPTION
4555~ 4550~ 4 15	PVC Sch 40 Bentonite Pellets 10-20 Silica Sand	
10- 4 17 4545- 23 35		Sand, medium grained, dark gray (10 YR 4/1) 90% sand, 10% silt, poorly graded, subrounded, saturated. SP Gravel, up to 2 inches 60%, fine to medium grained sand 40%, well graded, subrounded, saturated. GM No recovery.

			MON	IJТ	ORING	WELL C	COMPL	ETION LOG GRJ01-1029		
PROJ	ECT	UI	MTRA GI	ROU	ND WATE	R	WE	LL NUMBER 1029		
SITE			JUNCTI				DATES DRILLED 10/30/97			
_		.				Continu	ed from Pr	evious Page		
	6		· · · ·							
ОЕРТН (FT ВСL)	ELEV. (FT NGVD)	BLOWS	SAMPLEID	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION		
		17				0.02" Slotted PVC		Slough (large cobble in shoe) - No recovery.		
	4540-	23 23 25				10.00	•			
	1		•			·				
	4535-	5 13 35	-					Sand, fine to medium grained, dark gray (10 YR 4/1) 85% sand, 5% silt, poorly graded, subrounded saturated. Red, yellow, and black (carbonaceous?) grains, white, brown, and green cherts. SM Gravel, 10% cobbles, up to 2 inches gravel 60%, sand 30%,		
		27				PVC Sch	50	subrounded, well graded, saturated. GM		
	-	•				40	1. 1.	Slough - No recovery.		
		50				Slough		Sand, medium grained, dark gray (10 YR 4/1) saturated. SP		
	-				6		YCI ()	Gravel up to 1 inch, subrounded, saturated, GM DAKOTA SANDSTONE; Shale, carbonaceous, weathered, gray (10 YR 3/1) wet, noncalcareous. Bottom of boring 23.5 ft		
-25-	-									
	4530	İ								
	-	-								
m		ec	-er:		U.S. DI GRAN	EPARTM ID JUNCTION	ENT O	F ENERGY PAGE 2 OF 2 1/28/99		

1		.ب. د. م	MO	TIN	ORING WELL	COMPL	ETION LOG GRJ01-1031				
PROJECT UMTRA GROUND WATER NORTH COORD. (FT) LOCATION GRAND JUNCTION, CO EAST COORD. (FT) SITE GRAND JUNCTION HOLE DEPTH (FT) 12.00 TOP OF CASING (FT) WELL NUMBER 1031 WELL DEPTH (FT) 12.00 MEAS. PT. ELEV. (FT) WELL INSTALLATION INTERVAL (FT) SURFACE CASING: BLANK CASING: WELL SCREEN: 4 in. Machine Slotted PVC 0.0 to 12.0 SAMPLING METHOD SUMP/END CAP: SURFACE SEAL: GROUT: SUMPER PACK: UPPER PACK: LOWER PACK: LOWER PACK: WATER LEVEL (FT BMP) 11.0 LOGGED BY L. Spencer REMARKS Temporary boring for water level measurement. Abandoned 11-14-97.											
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION				
					O.CZ Stotted PVC		FILL: Gravelly sand 60% sand, 30% gravel, 10% silt dark grayish brown (10 YR 4/2) moist, well graded. SWG Fill, gravelly sand, 50% sand, 25% gravel, 10% silt, 15% clay, moist to 8.5 feet, saturated, 8.5 feet on well graded, subrounded. Water level about 9.0 feet below ground level SWG				
m	3'=	PC	er	₹'	J.S. DEPARTMI		COLORADO PAGE 1 OF 1 2/1/99				

This page intentionally blank

			MOI	TIV	ORING WELL (COMPL	ETION LOG GRJ01-1032				
PROJECT UMTRA GROUND WATER NORTH COORD. (FT) LOCATION GRAND JUNCTION, CO EAST COORD. (FT) SITE 'GRAND JUNCTION HOLE DEPTH (FT) 13.00 TOP OF CASING (FT) WELL NUMBER 1032 WELL DEPTH (FT) MEAS. PT. ELEV. (FT) WELL INSTALLATION INTERVAL (FT) SURFACE CASING: BLANK CASING: WELL SCREEN: 4 in. Machine Slotted PVC 0.0 to 13.0 SAMPLING METHOD SUMP/END CAP: SURFACE SEAL: DATE DRILLED 11/12/97 SURFACE ELEV. (FT NGVD) MEAS. PT. ELEV. (FT) SLOT SIZE (IN) 0.02 BIT SIZE(S) (IN) 12.25 DRILLING METHOD HOLLOW STEM AUGI											
GROU SEAL UPPE	IT:	K:					WATER LEVEL (FT BMP) 13.25 LOGGED BY L. Spencer REMARKS Temporary boring for water level measurement. Abandoned 11-12-97.				
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL DIAGRAM	GRÁPHIC LOG	LITHOLOGIC DESCRIPTION				
-5-					0.02° Slotted PVC Native soll/fill		Fill; Asphalt, gravelly sand. 60% sand, 30% gravel, 10% slit dark brown (10 YR 4/3) subrounded well graded, moist. swg Fill, gravelly sand. 60% sand, 30% gravel, 10% slit dark brown (10 YR 4/3) subrounded well graded, moist, water level approximately 11.0 feet below ground level. SWG No visual sample.				
m	36	ec	ers		J.S. DEPARTMI GRAND JUNCTION	ENT O	FENERGY PAGE 1 OF 1 2/1/99				

This page intentionally blank

MONITORING WELL COMPLETION LOG GRJ01-1034 DATE DRILLED 9/3/98 PROJECT <u>UMTRA GROUND WATER</u> NORTH COORD. (FT) LOCATION GRAND JUNCTION, CO EAST COORD. (FT) **SURFACE ELEV. (FT NGVD)** HOLE DEPTH (FT) 18.00 WELL DEPTH (FT) 18.00 SITE GRAND JUNCTION TOP OF CASING (FT) MEAS. PT. ELEV. (FT) WELL NUMBER 1034 SLOT SIZE (IN) 0.02 **WELL INSTALLATION** INTERVAL (FT) BIT SIZE(S) (IN) 9.33 SURFACE CASING: DRILLING METHOD ODEX - CASING ADVANCE **BLANK CASING:** 4 in. PVC Sch 40 -1.8 7.7 to WELL SCREEN: SAMPLING METHOD 4 in. Vee Wire Wrapped 7.7 17.7 to SUMP/END CAP: 4 in. PVC Sch 40 17.7 18.0 **DATE DEVELOPED** · to WATER LEVEL (FT BMP) 10.26 SURFACE SEAL: Concrete 0.0 to 1.7 GROUT: LOGGED BY R. Heydenburg **Bentonite Pellets** REMARKS No Samples Collected SEAL: 1.7 to 5.7 **UPPER PACK: LOWER PACK:** 10-20 Silica Sand 5.7 to 18.0 DEPTH (FT BGL) ELEV. (FT NGVD) BLOWS COUNTS SAMPLE 10. GRÁPHIC LOG EXTENT **WELL DIAGRAM** LITHOLOGIC DESCRIPTION No recovery. Concrete PVC Sch **Bentonite** Pellets 10-20 Silica Sand -10-0.02 Slotted **U.S. DEPARTMENT OF ENERGY** PAGE 1 OF 2 1/28/99 **GRAND JUNCTION OFFICE, COLORADO**

MONITORING WELL COMPLETION LOG GRJ01-1034									
PROJECTUMTRA GROUND WATER						R	WE	VELL NUMBER 1034	
SITE GRAND JUNCTION							DATES DRILLED 9/3/98		
	,					Continu	ed from Pr	Previous Page	
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL	DIAGRAM	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	
-15- 						PVC Sch 40		DAKOTA SANDSTONE; Shale. Bottom of boring at 13.0 ft	
-25-					J.S. DI	EPARTM	ENT O	OF ENERGY PAGE 2 OF 2 1/28/99	

MONITORING WELL COMPLETION LOG GRJ01-1035 PROJECT UMTRA GROUND WATER NORTH COORD. (FT) DATE DRILLED 9/3/98 to 9/4/98 LOCATION GRAND JUNCTION, CO EAST COORD. (FT) SITE GRAND JUNCTION HOLE DEPTH (FT) 19.50 SURFACE ELEV. (FT NGVD) SITE GRAND JUNCTION WELL NUMBER 1035 TOP OF CASING (FT) WELL DEPTH (FT) 18.00 MEAS. PT. ELEV. (FT) WELL INSTALLATION INTERVAL (FT) **SURFACE CASING:** DRILLING METHOD ODEX - CASING ADVANCE **BLANK CASING:** 4 in. PVC Sch 40 -1.6 to 7.7 SAMPLING METHOD 4 in. Vee Wire Wrapped WELL SCREEN: 7.7 17.7 to SUMP/END CAP: 4 in. PVC Sch 40 17.7 **DATE DEVELOPED** to 18.0 SURFACE SEAL: Concrete 0.0 WATER LEVEL (FT BMP) 9.96 to 1.7 **GROUT:** LOGGED BY R. Heydenburg REMARKS No samples collected SEAL: **Bentonite Pellets** 1.7 5.7 to **UPPER PACK: LOWER PACK:** 10-20 Silica Sand 5.7 18.0 to ELEV. (FT NGVD) BLOWS DEPTH (FT BGL) GRAPHIC LOG SAMPLE **WELL DIAGRAM** LITHOLOGIC DESCRIPTION No recovery. PVC Sch Bentonite 10-20 -10-0.02" Slotted PVC **U.S. DEPARTMENT OF ENERGY** actec-ers PAGE 1 OF 2 1/28/99 GRAND JUNCTION OFFICE, COLORADO

			10M	VIT	ORING	WELL C	OMPL	ETION	LOG	GRJ01	-1035	44	,]
PROJ	ECT	UI	MTRA GI	ROL	JND WATE	R	WE	LL NUMBE	ER	1035			_
SITE			JUNCTI				DA	TES DRILL	.ED	9/3/98 to 9)/4/98		_
						Continu	ed from Pro	evious Pag	•		·		•
DEPTH (FT BGL)	ELEV. (FT NGVD)	BLOWS	SAMPLE ID.	EXTENT	WELL	DIAGRAM	GRAPHIC LOG		LITHC	OLOGIC DE	SCRIPTION		,
15-													
						PVC Sch 40 20-40 Silica Sand		DAKOTA S	:ANDSTC	ONE; Shale	poring at 19.5 ft	•	
- 20				7,						1000 e 1			
25													
E			-er		U.S. D	EPARTM ND JUNCTION	IENT C	F ENE	RGY	PAGI	E 2 OF 2	1/28/99	_

L: i

U.S. DEPARTMENT OF ENERGY

GRAND JUNCTION OFFICE, COLORADO

PAGE 1 OF 1

1/28/99

This page intentionally blank

Appendix C

Monitoring Well Static Water Locations

This page intentionally blank

LOCATION	FLOW	TOP OF CASING ELEVATION	MEASUR	EMENT	DEPTH FROM TOP	GROUND WATER
CODE	CODE	(FT NGVD)	DATE	TIME	OF CASING (FT)	(FT NGVD)
0588	U	4570.33	01/17/83	12:00	5.58	4564.75
•		4570.33	02/01/83	10:00	5.68	4564.65
		4570.33	02/22/83	16:30	5.68	4564.65
		4570.33	01/11/84	10:25	3.98	45 66. 3 5
Marine Service		4570.33	05/05/85	12:00	-0.10	4570.43
		4570.33 ·	05/17/85	13:41	1.13	4569.20
		4570.33	07/10/85	09:19	2.95	4567.38
		4570.33	09/04/85	15:00	4.09	4566.24
		4570.33	07/23/86	17:25	3.23	4567.10
		4570.33	03/06/89	09:15	4.05	4565.28
	4 1 · ·	4570.33	01/28/91	11:25	4.18	4566.15
		4570.33	08/27/91	14:04	3.98	4566.35
		4570.33	·11/18/91	09:30	3.78	4566.55
		4570.33	02/20/92	11:00	3.82	4566.51
•		4570.33	07/15/92	16:02	3.75	4566.58
		4570.33	10/09/92	12:03	4.18	4566.15
		4570.33	02/01/93	13:15	3.73	4566.60
		4570.33	12/07/93	14:23	3.95	4566.38
		4570.33	01/28/98	ere e	3.40	4566.93
		4570.33	06/29/98	9:33:	3.02	4567.31
0590	D	4566.69	01/16/83	12:00	8.80	4557.89
		4566.69	02/02/83	10:00	8.80	4557.89
		4566.69	02/22/83	16:52	8.70	4557.9 9
		4566.69	06/06/83	19:12	5.70	4560.99
	• • .	45 66. 6 9	06/07/83	08:46	5.60	4561.09
		4566.69	06/10/83	10:24	5.60	4561.09
		4566.69	09/22/83	10:52	9.00	4557.69
		4566.69	09/23/83	09:36	9.00	4557.69
		4566.69	01/11/84 -	08:55	8.60	4558.09
		4566.69	01/14/84	16:12	8.70	4557.99
		4566.69	03/25/85	13:50	8.21	4558.48
		4566.69	05/17/85	14:48	5.88	4560.81
		4566.69	07/10/85	11:05	7.65	4559.04
		4566.69	09/09/85	13:30	9.17	4557.52
		4566.69	07/24/86	11:30	8.13	4558.56

LOCATION!	El CM4	TOP OF CASING ELEVATION	MEASURE	EMENT	DEPTH FROM TOP OF CASING	GROUND WATER ELEVATION
CODE -	CODE	(FT NGVD)	DATE	TIME	(FT)	(FT NGVD)
0590	D	4568.69	03/01/89	08:00	11.25	4555.44
		456 8.69	08/02/89	13:46	9.38	4557.31
		4566.69	10/30/89	14:30	8.07	4558.62
		4568.69	08/27/91	08:12	11.19	4555.50
	٠.	456 6.69	11/18/91	11:00	10.05	4556.64
		4566.69	02/22/92	13:35	10.00	4556.69
		456 5.69	07/16/92	13:20	10.87 : ÷	4555.82
		. 456 6.69	10/07/92	09:50	11.25	4555.44
		456 6.69	02/02/93	09:35	10.05	4556.64
		4566.69	06/27/93	09:37	8.23	4558.46
	4000	4566.69	12/07/93	13:21	9.98	4556.71
	e esta	4568.69	06/22/94	12:56	10.07	4556.62
	1.0	4566.69	01/06/95	09:20	10.07	4556.62
	. •	4568.69	06/03/95	14:42	9.02	4557.67
		4568.69	12/17/96	<u> </u>	10.32	4558.37
		4568.69	01/28/98		10.29	4556.40
		4566.69	06/29/98	10:19	9.19	4557.50
0713	U	4611.92	09/23/77	12:00	2.42	4609.50
	. *	4611.92	10/28/77	12:00	5.32	4606.60
		4611.92	11/11/77	12:00	3.22	4608.70
		4611.92	12/16/77 :	12:00	3.22	4608.70
	4 ,	4611.92	01/11/78	12:00	3.72	4608.20
	,	4611.92	03/06/78	12:00	3.92	4608.00
		4611.92	04/11/78	12:00	4.32	4607.60
		4611.92	05/08/78	12:00	3.32	4608.60
		4611.92	07/17/78	12:00	2.82	4609.10
	* .	4611.92	09/28/78	12:00	2.82	4609.10
		4611.92	02/05/79	12:00	3.22	4608.70
		4611.92	05/14/79	12:00	3.32	4608.60
		4611.92	07/19/79	12:00	3.12	4608.80
	14	4611.92	11/29/79	12:00	4611.92	•
		4611.92	05/29/80	12:00	4.92	4607.00
		4611.92	06/17/80	12:00	4.12	4607.80
	* a .	4611.92	08/05/80	12:00	3.62	4608.30
		4611.92	11/10/80	12:00	4.32	4607.60

		TOP OF CASING	MEASURE	MENT	DEPTH FROM TOP	GROUND WATER ELEVATION
LOCATION CODE	FLOW CODE	(FT NGVD)	DATE	TIME	OF CASING (FT)	(FT NGVD)
0713	U	4611.92	03/12/81	12:00	4.92	4607.00
		4611.92	05/21/81	12:00	3.72	4608.20
•		4611.92	01/27/9 8		6.77	4605.15
0715	U	4633.12	09/23/77	12:00	12.92	4620.20
		4633.12	10/28/77	12:00	14.62	4618.50
		4633.12	11/11/77	12:00	15.92	4617.20
		4633.12	12/16/77	12:00	16.12	4617.00
		4633.12	01/11/78	12:00	16.72	4616.40
		4633.12	03/06/78	12:00	17.32	4615.80
	.₹	4633.12	04/11 <i>[</i> 78	12:00	18.02	4615.10
		4633.12	05/08/78	12:00	17.52	4615.60
		4633.12	07/17/78	12:00	16.42	4616.70
		4633.12	09/28/78	12:00	16.32	4616.80
		4633.12	02/05/79	12:00	18.12	4615.00
		4633.12	04/18/79	12:00	18.12	4615.00
		4633.12	04/25/79	12:00	18.42	4614.70
	•	4633.12	05/02/79	12:00	17.12	4616.00
	: · · · ·	4633.12	05/09/79	12:00	17.52	461 5.6 0
		4633.12	05/11/79	12:00	18.12	4615.00
	e	4633.12	05/16/79	12:00	17.72	4615.40
		4633.12	05/23/79	12:00	17.72	4615.40
•		4633.12	05/30/79	12:00	17.52	4615.60
		4633.12	06/06/79	12:00	17.22	4615.90
		4633.12	06/13/79	12:00	17.32	4615.80
	• •	4633.12	06/20/79	12:00	17.32	4615.80
		4633.12	06/27/79	12:00	17.42	4615.70
•	1	4633.12	07/03/79	12:00	17.52	4615.60
		4633.12	07/11/79	12:00	16.92	4616.20
		4633.12	07/18/79	12:00	16.92	4616.20
		4633.12	07/26/79	12:00	16.92	4616.20
		4633.12	08/01/79	12:00	17.02	4616.10
		4633.12	08/08/79	12:00	17.02	4616.10
		4633.12	08/14/79	12:00	16.92	4616.20
		4633.12	08/22/79	12:00	16.72	4616.40
		4633.12	08/29/79	12:00	16.62	4616.50

STATIC GROUND WATER LEVELS (USEE700) FOR SITE GRJ01, GRAND JUNCTION REPORT DATE: 12/1/98 15:18:40 PM

LOCATION	FLOW	TOP OF CASING ELEVATION	MEASUR	EMENT	DEPTH FROM TOP OF CASING	GROUND WATER
CODE	CODE	(FT NGVD)	DATE	TIME	(FT)	(FT NGVD)
0715	U	4633.12	09/05/79	12:00	18.62	4616.50
	: •	4633.12	09/12/79	12:00	16.62	4616.50
		4633.12	09/19/79	12:00	16.52	4616.60
		4633.12	09/26/79	12:00	16.62	4616.50
		4633.12	05/29/80	12:00	17.92	4615.20
		4633.12	06/17/80	12:00	20.02	4613.10
		4633.12	08/04/80	12:00	17.32	4615.80
		4633.12	11/10/80	12:00	17.22	4615.90
		4633.12	03/12/81	12:00	18.92	4614.20
		4633.12	04/08/81	12:00	18.72	4614.40
		4633.12	05/06/81	12:00	18.02	4615.10
		4633.12	06/03/81	12:00	17.72	4615.40
		4633.12	07/08/81	12:00	17.22	4515.90
		4633.12	08/05/81	12:00	16.82	4616.30
		4633.12	09/23/81	12:00	16.52	4615.60
•		4633.12	01/06/82	12:00	17.62	4615.50
		4633.12	01/27/98		20.72	4612.40
0724	ับ	4565.75	03/30/85	15:05.	12.25	4553.50
		4565.75	05/05/85	12:00	11.85	4553.90
		4565.75	05/17/85	14:44	11.92	4553.83
		4565.75	07/10/85	10:57	11.50	4554.25
		4565.75	09/13/85	08:20	12.25	4553.50
	. 1.	4565.75	07/23/86	16:28	11.82	4553.93
	• 1.	4565.75	03/04/89	12:00	12.33	4553.42
		4565.75	08/04/89	13:00	12.18	4553.57
	-	4565.75	10/29/89	14:46	12.06	4553.69
		4565.75	06/27/93	09:34	11.45	4554.30
		4565.75	12/07/93	13:25	11.81	4553.94
		4565.75	06/29/98	8:36:	12.57	4553.18
0726	U	4568.59	05/05/85	12:00	12.33	4556.26
		4568.59 ·	05/17/85	14:53	12.26	4556.33
		4568.59	07/10/85	11:09	12.37	4556.22
	1.	4568.59	07/23/86	11:00	12.61	4555.98
	•	4568.59	03/02/89	08:00	12.09	4556.50
	• •	4568.59	10/31/89	09:32	12.99	4555.60

LOCATION	El CAA	TOP OF CASING	MEASUR	EMENT	DEPTH . FROM TOP OF CASING	GROUND WATER ELEVATION
CODE	CODE	ELEVATION (FT NGVD)	DATE	TIME	(FT)	(FT NGVD)
· 072 6	U	4568.59	06/27/93	09:39	14.80	4553.79
•,		4568.59	12/07/93	13:17	14.91	4553.68
		4568.59	12/18/9 6		14.86	4553.73
		4568.59	0 6/ 2 6/98	9:25:	12.53	4556.0 6
0732	D	4566.69	03/25/85	10:15	13.0 6	4553.63
		45 66. 6 9	05/05/85	12:00	12.07	4554.62
	* .	45 66. 6 9	05/17/85	15:15	12.27	4554.42
		4566.69	07/11/85	13:50	12.66	4554.03
. *		4566.69	09/06/85	09:53	12.97	4553.72
	•	4566.69	07/23/86	09:42	12.40	4554.29
	•	4566.69	01/02/97		19.79	4546.90
	-	4566.69	01/27/9 8		18.99	4547.70
		45 66. 6 9	06/22/98	3:16:	13.9 6	4552.73
0735	D	4565.73	03/30/85	08:06	29.29	4536.44
		4565.73	05/05/85	12:00	28.53	4537.20
		4565.73	05/17/85	15:00	21.29	4544.44
• .		4565.73	07/10/85	10:52	18.58	4547.15
		4565.73	09/16/85	10:05	7.30	4558.43
		4565.73	07/24/8 6	13:55	6.45	4559.28
		4565.73	03/03/89	08:45	5.77	4559.9 6
		4565.73	08/02/89	08:41	27.12	4538.61
		4565.73	10/29/89	08:30	31.98	4533.75
	•	4565.73	06/27/93	09:44	7.23	4558.50
		4565.73	12/07/93	13:55	7.29	4558.44
		4565.73	12/17/9 6	ţer'	6.77	.4558.96
		4565.73	06/17/98	9:40:	11.99	4553.74
0736	D	4565.90	03/22/85	15:15	6.99	4558.91
		4565.90	05/05/85	12:00	6.85	4559.05
		4565.90	05/17/85	15:01	6.37	4559.53
		4565.90	07/10/85	10:54	6.78	4559.12
		4565.90	09/10/85	11:20	7.54	4558.36
		4565.90	07/24/86	13:58	7.15	4558.75
		4565.90	02/28/89	13:45	6.70	4559.20
		4565.90	08/01/89	14:28	7.70	4558.20
		4565.90	10/29/89	10:45	8.35	4557.55

LOCATION		TOP OF CASING	MEASURE	EMENT	DEPTH FROM TOP OF CASING	GROUND WATER ELEVATION
CODE	CODE	ELEVATION (FT NGVD)	DATE	TIME	(FT)	(FT NGVD)
0736	15 D 5	4565.90	01/25/91	14:35	7.85	4558.05
		4565.90	08/27/91	09:50	7.84	4558.08
•		4565.90	11/18/91	16:30	7.35	4558.55 [°]
		4565.90	02/22/92	12:25	7.35	4558.55
		4565.90	07/16/92	14:22	7.76	4558.14
		4565.90	10/07/92	16:08	8.22	4557.68
		4565.90	02/02/93	10:50	7.17	4558.73
•		4565.90	06/27/93	09:45	6.78	4559.12
		4565.90	12/07/93	13:54	7.49	4558.41
		4565.90	06/22/94	09:40	7.67	4558.23
		4565.90	01/06/95	13:03	7.49	4558.41
		4565.90	06/03/95	13:37	7.07	4558.83
		4565.90	12/16/96		7.65	4558.25
		4565.90	06/17/98	11:14	7.89	4558.01
0740	· D	4567.86	03/22/85	14:15	6.46	4561.40
		4567.86	05/05/85	12:00	6.11	45 61.75
		4567.86	05/17/85	14:38	5.92	4561.94
		4567.88	07/10/85	10:47	6.60	4561.26
		4567.86	09/09/85	10:30	7.37	4560.49
		4567.86	07/23/86	15:50	6.86	4561.00
	Š.	4567.86	02/28/89	15:25	5.83	4562.03
	+ + 4	4567.86	01/27/91	14:02	6.85	4561.01
		4567.86	08/20/91	08:33	8.30	4559.56
		4567.86	11/17/91	15:00	7.55	4560.31
		4567.86	02/21/92	15:32	8.40	4559.46
		4567.86	07/16/92	09:45	8.31	4559.55
		4567.86	10/07/92	11:01	8.71	4559.15
		4567.86	02/02/93	12:30	7.25	4560.61
		4567.86	06/27/93	09:25	6.64	4561.22
		4567.86	12/07/93	13:48	7.32	4560,54
		4567.86	06/22/94	09:36	7.40	4560.46
		4567.86	01/06/95	15:22	7.35	4560.51
		4567.86	06/04/95	08:11	6.88	4560.98
	· .	4567.86	12/17/96		7.45	4560.41
		4567.86	01/28/98		7.41	4560.45

LOCATION	FLOW	TOP OF CASING ELEVATION	MEASUR	EMENT	DEPTH FROM TOP OF CASING	GROUND WATER ELEVATION
CODE	CODE	(FT NGVD)	DATE	TIME	(FT)	(FT NGVD)
0740	D	4567.86	06/23/98	10:29	7.41	4560.45
0741	С	4574.02	03/26/85	15:27	6.71	4567.31
		4574.02	05/05/85	12:00	6.90	4567.12
		4574.02	0 5/1 7/ 85	14:04	7.01	4567.01
	-	4574.02	07/10/85	09:43	7.42	4566.60
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4574.02	09/13/85	12:20	7.3 8	4566.64
		4574.02	07/23/86	16:16	7.07	4566.95
	250 · 1	4574.02	03/03/89	12:45	5.69	4568.33
	*	4574.02	08/04/89	08:30	7.31	4566.71
•	£14	4574.02	10/31/89	11:58	6.88	4567.14
		4574.02	01/26/91	16:00	6.18 :	4567.84
		4574.02	08/28/91	14:00	7.83	4566.19
	: .	4574.02	11/19/91	14:45	7.18	4566.84
		4574.02	02/21/92	10:18	7.93	4566.09
•		4574.02	07/15/92	17:07	7.70	4566.32
		4574.02	10/09/92	13:45 🖽	8.22	4565.80
		4574.02	02/03/93	10:30	7.33	4566.69
		4574.02	06/27/93	09:04	7.27	4566.75
	Section 1	4574.02	12/07/93	14:03	6.91	4567.11
		4574.02	12/19/96	17 "	6.72	4567.30
		4574.02	0 6/17/98	2:36:	7.87	4566.15
0742	C	4574.19	03/22/85	13:10	7.33	4566.86
		4574.19	05/05/85	12:00	6.72	4567.47
		4574.19	05/17/85	14:02	6.74	4567.45
	•	4574.19	07/10/85	09:45	7.23	4566.96
		4574.19	09/10/85	14:50	7.48	4566.71
		4574.19	07/23/86	16:18	6.91	4567.28
	. 1 .	4574.19	03/03/89	11:00	6.41	4567.78
		4574.19	01/26/91	14:42	7.41	4566.78
		4574.19	08/28/91	12:55	8.17	4566.02
	* .	4574.19	11/19/91	11:15	7.56	4566.63
		4574.19	02/21/92	09:40	7.51	4566.68
		4574.19	07/15/92	18:42	7.74	4566.45
		4574.19	10/09/92	14:24	8.23	4565.96
		4574.19	02/03/93	11:50	7.51	4566.68

		TOP OF CASING	MEASURI	EMENT	DEPTH FROM TOP	GROUND WATER
LOCATION CODE	FLOW	ELEVATION (FT NGVD)	DATE	TIME	OF CASING (FT)	(FT NGVD)
0742	С	4574.19	06/27/93	09:05	7.42	4568.77
		4574.19	12/07/93	14:01	7.90 ₁ ∵∞ ₁	4566.29
		4574.19	06/22/94	09:24	7.73	4566.46
	4441	4574.19	01/05/95	15:55	7.82	4566.37
		4574.19	06/03/95	10:27	7.28	4566.93
		4574.19	12/19/96	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	7.79 👾 🦙	4566.40
	100	4574.19	06/17/98	2:59:	8.03	4566.16
0743	U	4578.10	03/21/85	14:15	8.17	4567.93
		4576.10	05/06/85	15:30	4.69	4571.41
	. ***	4576.10	05/07/85	13:00	4.57	4571.53
		4576.10	05/08/85	07:30	4.53	4571.57
		4576.10	05/09/85	10:30	4.37	4571.73
•		4576.10	05/17/85	13:33	5.28	4570.82
	540,53	4576.10	07/10/85	09:11	6 .98	4569.12
•		4576.10	09/10/85	15:30	8.21	4567.89
		4576.10	07/23/86	17:10	7.14	4568.96
	:	4576.10	03/05/89	14:50	9.18	4566.92
		4576.10	08/03/89	08:45	8.61	4567.49
	1 :	4576.10	10/31/89	14:51	8.81	4567.29
		4576.10	06/13/91	10:35	6.51	4569.59
		4576.10	08/28/91	09:50	8.93	4567.17
		4576.10	11/17/91	12:30	8.36	4567.74
		4576.10	02/19/92	14:30	8.74	4567.36
		4576.10	07/15/92	12:00	8.51	4567.59
		4576.10	10/09/92	10:27	8.78	4567.32
	· . · · · •	4576.10	02/01/93	11:30	8.32	4567.78
	• ,	4576.10	06/27/93	08:55	5.92	4570.18
		4576.10	12/07/93	14:30	8.44	4567.66
		4576.10	12/16/96		8.25	4567.84
		4576.10	01/26/98	1.75	8.20	4567.90
		4576.10	06/29/98	12:35 g · · · g	7.88	4568.22
0744	U	4576.15	03/21/85	11:00	8.50	4567.65
		4576.15	05/06/85	15:30	4.13	4572.02
		4576.15	05/07/85	13:00	4.08	4572.07
		4576.15	05/08/85	07:30	4.08	4572.07

LOCATION	FLOW	TOP OF CASING ELEVATION	MEASUR	EMENT	DEPTH FROM TOP OF CASING	GROUND WATER ELEVATION
CODE	CODE	(FT NGVD)	DATE	TIME	(FT)	(FT NGVD)
0744	U	4576.15	05/09/85	10:30	3.96	4572.19
		4576.15	05/17/85	13:36	5.37	4570.78
	-	4576.15 🥞	07/10/85	09:13	7.47	4568.68
		4576.15	0 9/04/85	08:00	8.87	4567.28
		4576.15	07/23/86	17:14	7.47	4568.68
		4576.15	03/05/89	14:15	9.0 8	4567.07
		4576.15	08/03/89	10:20	9.02	4567.13
* 1		4576.15	10/31/89	15:50	9.37	4566.78
		4576.15	01/27/91	08:42	9.37	4566.78
		4576.15	08/27/91	12:40	9.33	4566.82
		4576.15	11/17/91	13:25	8.92	4567.23
		4576.15	02/19/92	13:30	9.23	4566.92
		4576.15	07/15/92	10:45	9.07	4567.08
		4576.15	10/09/92	09:48	9.42	4566.73
	•	4576.15	02/01/93	10:25	9.03	4567.12
		4576.15	06/27/93	08:53	5.97	4570.18
		4576.15	12/07/93	14:29	8.94	4567.21
		4576.15	01/10/95	14:23	9.16	4566.99
		4576.15	12/16/9 6		8.73	4567.42
		4576.15	01/26/98		8.63	4567.52
	* * * * * * * * * * * * * * * * * * *	4576.15	06/29/98	1:25:	8.08	4568.07
0745	ָט	4580.76	03/30/85	08:50	8.16	4572.60
		4580.76	05/05/85	12:00	6.90	4573.66
		4580.76	05/17/85	13:48	6.22	4574.54
	•	4580.76	07/10/85	09:28	7.28	4573.48
		4580.76	09/05/85	08:50	5.48	4575.28
		4580.76	07/23/86	17:00	7.17	4573.59
		4580.76	03/05/89	10:15	8.19	4572.57
		4580.76	08/03/89	11:18	8.58	4572.18
		4580.76	11/02/89	11:30	8.12	4572.64
		4580.76	01/28/91	09:55	8.65	4572.11
	1	4580.76	08/27/91	17:00	8.62	4572.14
		4580.76	11/17/91	11:00	8.25	4572.51
	\$	4580.76	02/20/92	13:39	8.55	4572.21
_		4580.76	07/15/92	14:25	8.22	4572.54

		TOP OF CASING	MEASURE	MENT	DEPTH FROM TOP OF CASING	GROUND WATER ELEVATION
CODE	CODE	ELEVATION (FT NGVD)	DATE	TIME	(FT)	(FT NGVD)
0745	U ·	4580.76	10/07/92	15:05	8.38	4572.38
	•	4580.76	02/02/93	13:37	8.25	4572.51
		4580.76	06/27/93	10:58	8.41	4572.35
	•	4580.76	12/07/93	14:14	8.65	4572.11
		4580.76	06/22/94	08:27	8.02	4572.74
		4580.76	01/05/95	10:10	8.95	4571.81
•		4580.76	06/02/95	15:13	8.18	4572.58
		4580.76	12/16/96		8.45	4572.31
	* * * * * * * * * * * * * * * * * * * *	4580.76	01/26/98		8.38	4572.38
	•	458 0.76	06/17/98	3:07:	8.77	. 4571.99
0746	Ü	4587.85	03/22/85	09:20	11.35	4576.50
	7.8	4587.85	05/05/85	12:00	9.35	4578.50
	3	4587.85	05/17/85	13:52	10.50	4577.35
		4587.85	07/10/85	09:33	10.25	4577.60
		4587.85	09/05/85	14:30	10.20	4577.65
		4587.85	07/23/86	16:23	10.50	4577.35
		4587.85	03/05/89	08:00	11.28	4576.57
	. * * * * *	4587.85	08/03/89	13:36	10,73	4577.12
		4587.85	11/01/89	09:26	10.73	4577.12
		4587.8 5	01/26/91	08:50	11.38	4576.47
		4587.85	08/28/91	11:13	11.08	4576.77
		4587.85	11/17/91	09:30	11.01	4576.84
	\$ 1.5 miles	4587.85	02/21/92	11:48	11.45	4576.40
	•	4587.85	07/16/92	15:37	10.61	4577.24
		4587.85	10/07/92	13:49	11.14	4576.71
		4587.85	02/03/93	09:08	11.11	4576.74
		4587.85	06/27/93	11:19	10.71	4577.14
		4587.85	12/07/93	14:09	11.14	4576.71
	•	4587.85	06/22/94	08:45	10.84	4577.01
		4587.85	01/05/95	13:55	10.88	4576.97
	* * .	4587.85	06/02/95	16:33	10.29	4577.56
		4587.85	12/16/96		10.98	4576.87
		4587.8 5	01/26/98		11.30	4578.55
		4587.8 5	06/17/98	2:21:	11.33	4576.52
1000	0	4568.80	01/07/95	08:20	2.98	4583.82

LOCATION	FLOW	TOP OF CASING ELEVATION	MEASUREMENT		DEPTH FROM TOP OF CASING	GROUND WATER ELEVATION
CODE	CODE	(FT NGVD)	DATE	TIME	(FT)	(FT NGVD)
1000	0	4566.80	01/08/95	08:40	3.02	4563.78
		4566.80	06/03/95	09:12	1.29	4565.51
		4566.80	12/17/9 6		3.23	4563.57
	: . · · ·	4566.80	01/28/98		2.93	4563.87
		4566.80	06/25/98	10:00	4.44	4562.3 6
1001	0 -	4569.69	01/07/95	11:45	5.77	4563.92
		4569.69	06/03/95	16:03	3.93	4565.76
		4569.69	12/17/9 6	1	5.83	4563.86
		4569.69	06/24/98	10:20	7.30	4562.39
1002	0	4572.62	01/07/95	13:36	8.26	4564.36
	•	4572.62	01/08/95	11:05	8.41	4564.21
		4572.62	06/03/95	07:40	6.88	4565.74
		4572.62	06/05/95	08:42	6.18	4566.44
		4572.62	12/17/96	14.10	8.36	4564.26
	1.1	4572.62	06/24/98	3:11:	9.66	4562.96
1010		4570.05	01/28/98	11.	15.57.	4554.48
·		4570.05	06/19/98	12:25	15.20	4554.85
1011		4567.67	01/28/98		8.72	4558.95
	•	4567.67	06/25/98	2:51:	7.34	4560.33
1012 .		4568.61	06/25/98	1:33:	6.41	4562.20
1013	-	4573.60	06/24/98	2:35:	10.65	4562.95
1014	•	4574.27	06/24/98	9:20:	9.52	4564.75
1015		4573.54	06/22/98	4:18:	7.17	4566.37
1016		4571.87	06/29/98	11:13	7.11	4564.76
1017		4572.72	06/22/98	10:35	5.71	4567.01
1018		4575.91	06/19/98	12:45	7.71	4568.20
1019		4580.99	06/19/98	11:49	6.67	4574.32
1020		4582.90	01/26/98		8.70	4574.20
		4582.90	06/22/98	9:19:	6.93	4575.97
1021		4586.42	01/26/98		6.35	4580.07
		4586.42	06/23/98	9:20:	4.32	4582.10
1022		4562.76	06/23/98	1:54:	5.23	4557.53

	= 04	TOP OF CASING	MEASURE	EMENT	DEPTH FROM TOP OF CASING	GROUND WATER ELEVATION	
LOCATION	FLOW	(FT NGVD)	DATE	TIME	(FT)	(FT NGVD)	
1023		4630.22	01/22/98	•	8.42	4621.80	
		4630.22	06/18/98	9:45:	8.00	4622.22	
1024		4640.21	01/22/98		9.35	4630.86	
		4540.21	06/18/98	1:30:	5.65	4634.56	
1025		4617.57	01/22/98		11.95	4605.62	
		4617.57	06/18/98	8:28:	9.78	4607.79	
1026	42 to 11	4593.83	01/23/98		8.32	4585.51	
1020	. •	4593.83	06/19/98	8:54:	7.17	4586.56	
1027	*	4593.34	01/23/98		8.32	4585.02	
1027		4593.34	06/19/98	10:06	7.06	4586.28	
1028		4594.99	01/23/98	<i>,</i> * +	8,14	458 6.85	
1025		4594.99	06/18/98	3:13:	7.38	4587.61	
4000	, -	4558.55	01/27/98		8.73	4549.82	
1029		4558.55	06/29/98	2:26:	7.99	4550.56	
				4.27.		4541.34	
1030	7.7	4555.93	01/27/98	40.00	14.59		
		4555.93	06/22/98	10:58	12.97	4542.96	

RECORDS: SELECTED FROM USEE700 WHERE sits_code='GRJ01' AND location_code in(1035):1034'.1030'.1029'.1028'.1027'.1028'.1028'.1028'.1028'.1028'.1028'.1028'.1028'.1028'.1028'.1028'.1028'.1028'.1028'.1028'.1028'.1028'.1028'.1001'.1000'.0748'.0745'.0744'.0743'.0742'.0 741'.0740'.0738'.0735'.0732'.0728'.0724'.0715'.0713'.0590'.0588')

FLOW CODES:

C CROSS GRADIENT
U UPGRADIENT

D DOWN GRADIENT

O ON-SITE

Appendix D

Calculation Set for Ground Water

This page intentionally blank

4	Technical	Task	Cover Sh	eet		169
. Discipline Hydroge	eology		_		Number of Sheets	in the
Project: UMTRA Ground Water Proj	ect			\$		
Site: Grand Junction, Colorado F	Processing Site (GR	J-01)	•			
Subject: Hydraulic parameter calcula	ation – based on aq	uifer pur	nping test data.	<u>.</u>		
·				• .		•
Sources of Data:						
· Field data from aquifer pum	ping tests in monito	rwells 0	590, 1002, 1013	3, 1018,	1034, and 1035.	
Data analyzed using Aquife	erTest (Version 2.52	2) by Wa	aterioo Hydroged	ologic, Ir	I C.	
See references at end of thi	s report.			•		
				•		
· · · · · · · · · · · · · · · · · · ·						
					o jeden jeden koje Partia odalje Podanja odalje	
			in the second of			
Fask Order No. MAC99-05	File	Index No		<u> </u>		
Proj. No. UGW-811-0008-06-000	Calc. No. uoo	43900	Supersedes	Calc. No.		
Calculated by Date	Checked by	Date	Approved by	Date	DOE Concurrence (if required)	Date
2 Uleysenburg 4.5x.09	D.Motsler P. Hy 984	1/21	Foliate	1/24/94		

Contents

- 1.0 Introduction
- 2.0 Hydrogeologic Setting
- 3.0 Procedures
 - 3.1 Aquifer Pumping Tests
 3.1.1 Field Procedures
 3.1.2 Analytical Methods
 - 3.2 Slug Tests
- 4.0 Results
 - 4.1 Pumping Well 1034
 - 4.2 Pumping Well 1035
 - 4.3 Pumping Well 0590
 - 4.4 Pumping Well 1018
- 5.0 Conclusions
- 6.0 References

Figures

- 1 Ground Water Elevations in the Alluvial Aquifer, Grand Junction, CO
- 2 Monitor Well Information, Aquifer Pumping Tests, Grand Junction, CO
- 3 Aquifer Test Data Pumping Well 1034 09/28/98, Grand Junction, CO
- 4 Aguifer Test Data Pumping Well 1035 09/29/98, Grand Junction, CO
- 5 Aquifer Test Data Pumping Well 0590 08/10/98, Grand Junction, CO
- 6 Aquifer Test Data Pumping Well 1018 08/11/98, Grand Junction, CO

Tables

- 1 Monitor Well Information, Grand Junction, CO
- 2 Summary of Hydraulic Parameters in the Alluvial Aquifer, Grand Junction, CO
- 3 Hydraulic Parameters in the Alluvial Aquifer, Grand Junction, CO

Attachments

Pumping Well 1034 - Recovery Data Analyses

Pumping Well 1034 - Observation Well 1002 - Drawdown and Recovery Data Analyses

Pumping Well 1034 - Observation Well 1013 - Drawdown and Recovery Data Analyses

Pumping Well 1035 - Recovery Data Analyses

Pumping Well 1035 - Observation Well 1002 - Drawdown and Recovery Data Analyses

Pumping Well 1035 - Observation Well 1013 - Drawdown and Recovery Data Analyses

Pumping Well 1035 - Observation Well 1034 - Drawdown and Recovery Data Analyses

Pumping Well 0590 - Recovery Data Analyses

Pumping Well 1018 - Recovery Data Analyses

Floppy Disk with Field Data in Microsoft® EXCEL format

1.0 Introduction

The hydrogeology and hydraulic parameters of the alluvial aquifer at the Grand Junction processing site (GRJ-01) were further characterized for the final Site Observational Work Plan (SOWP). A series of new monitor wells were installed during September 1997 and September 1998 and hydraulic parameters were estimated from data collected during aquifer pumping tests and slug tests. Analyses of the aquifer pumping tests are shown in this calculation set and are incorporated into the SOWP. Slug test analyses are not included in this report because of the limited nature and extent of the tests.

2.0 Hydrogeologic Setting

The three main hydrogeologic units beneath the Grand Junction site include the unconfined alluvial aquifer, the underlying aquitard composed primarily of shale units in the Cretaceous Dakota Sandstone, and the confined aquifer in sandstones of the Dakota Sandstone. The alluvial aquifer is considered the uppermost aquifer at the site. Surface components of the hydrologic system in the area include the Colorado River south of the site and irrigation canals and ditches north of the site.

The alluvial aquifer is composed of unconsolidated clays, silts, sands, gravels, and cobbles. Ground water is present under unconfined conditions in the alluvial aquifer, with depth to ground water ranging from zero near the river to approximately 20 ft at the northern end of the site. The saturated thickness of the aquifer ranges from 5 to 20 ft. Ground water generally flows to the southwest towards the Colorado River at a horizontal hydraulic gradient of approximately 0.004. The alluvial aquifer is recharged by infiltration of precipitation directly on the site, leakage from upgradient irrigation canals and ditches in the area, and infiltration of river water during spring runoff in the Colorado River. Seasonal fluctuations in water levels beneath the site range from 2 to 5 ft in response to changes in river stage and infiltration. Limited amounts of recharge also occur as upward leakage of ground water from the underlying confined Dakota Sandstone aquifer. Ground water discharge is primarily limited to drainage into the river during low stage. Some discharge also occurs as evapotranspiration from vegetation growing in areas of shallow ground water depth near the Colorado River.

3.0 Procedures

3.1 Aquifer Pumping Tests

3.1.1 Field Procedures

Aquifer pumping and recovery tests were performed in selected monitor wells at the site to estimate the hydraulic conductivity in the alluvial aquifer. Single-well pumping tests were run in monitor wells 1013, 1015, 1017, 1019, and 746 during January and February 1998. Additional single well pumping tests were conducted in wells 590, 1001, 1018 during August 1998. Multiple-well pumping tests were run in monitor wells 1034 and 1035 during September 1998, with drawdown response and recovery of water levels measured in three adjacent observation wells (1002, 1013, and 1034/1035). All observation wells were within a 50-ft radius of the pumping wells. This calculation focuses on the multiple-well pumping tests in wells 1034 and 1035 since the most reliable data are obtained from drawdown and recovery in observation wells. Recovery data collected from the single-well tests in 0590 and 1018 appeared reasonable, so these tests are also included. All of the wells tested were drilled to the contact with the underlying Dakota Sandstone and were fully screened in the alluvial aquifer. Saturated thickness of the aquifer in the wells ranged from 6 to 9 ft. No formal step-drawdown tests performed, but preliminary tests were run to determine optimal pumping rates. During the tests, the wells were pumped at a constant rate as much as practicable. Locations of monitor wells used in the aquifer pumping tests are shown in Figure 1 and hydrogeologic cross sections are shown in Figure 2. Monitor well information is shown in Table 1.

The wells were pumped using an above ground suction lift pump with the end of the 2-inch diameter intak set in the bottom of each well pumped. The discharge line was fitted with a control valve (to control the pump discharge) immediately followed by a flow meter to monitor the flow rate (in gpm) during the pumping period. A pressure transducer was placed in each pumping and observation well to measure drawdown during the discharge phase of the pumping test and recovery of the water level after the pump was shut off. The transducer was connected to an In-Situ Inc. HERMIT datalogger at the surface, or was a self-contained TROLL datalogger in some of the wells. Water was discharged some distance away from the pumping well so the aquifer was not recharged during the test. The pumping tests were generally run for a period of 12 to 14 hours with the recovery measured until water levels had substantially returned to pre-test levels.

3.1.2 Analytical Methods

The hydraulic parameters of transmissivity (T) and hydraulic conductivity (K) were determined for the unconfined alluvial aquifer using drawdown data from the pumping phase of the test from observation wells adjacent to pumping wells 1034 and 1035, and recovery data from all pumping and observation wells. Drawdown data from the pumping wells are generally not reliable because of turbulent conditions in the well. Data analyses were completed using curve-matching techniques available through the AquiferTest software package (Röhrich and Waterloo Hydrogeologic, Inc., version 2.52). Field data from the aquifer pumping tests were converted into Microsoft[®] EXCEL files for input into AquiferTest. Observation well drawdown data were analyzed using the Theis method (Theis 1935) and the Cooper and Jacob time-drawdown method (Cooper and Jacob 1946). All data collected during the recovery phase of the tests were analyzed using the Theis and Jacob recovery method (Theis 1935). Standard assumptions for the methods of aquifer test calculations are available in the references and documentation in AquiferTest.

3.2 Slug Tests

Slug tests were performed in 13 monitor wells and hydraulic conductivity was estimated where possible (we levels in some of the wells recovered too rapidly for meaningful estimation). Slug tests provide only a roug approximation of hydraulic conductivity, and the values should be considered as order-of-magnitude estimates. Also, the area of influence of a slug test extends only a short distance from the borehole, and results should not be inferred to be valid at any distance away from the area of influence. Consequently, slug test estimates are not used in the evaluation because of their limited extent and also because of the more reliable estimates from the aquifer pumping test analyses. Hydraulic conductivity values from slug tests are summarized in Table 2 and calculations are on file in the Grand Junction Office.

4.0 Results

Many variables determine hydraulic conductivity values in an aquifer system, so the results are an approximation that provides a general idea of the characteristics of the alluvial aquifer. Results of aquifer pumping test calculations (estimations) of hydraulic parameters are summarized in Table 2 with detailed results in Table 3.

4.1 Pumping Well 1034

The aquifer pumping test in monitor well 1034 was started at 1030 on 28 September 1998 and was run for 717 min (11.95 hr) at a constant rate of 4 gpm (Figure 3). The pump was off for about 7 min from 95-102 min. The water level recovered to within 0.2 ft during this time. When the pump was started again, the drawdown maintained a similar trend throughout the rest of the test. There was a slight increase in drawdown at about 530 min into the test that possibly represented a boundary condition or a change in lithologic character. The maximum drawdown during the test was about 4 ft with a water column in the well of about 10 ft. Estimated hydraulic conductivity from the recovery phase of the test was 202 ft/day.

The water level response in observation well 1002 was slow and steady during the pumping phase with a slow recovery after the pump was turned off. The maximum drawdown in 1002 during the test was about 0.32 ft. Estimated hydraulic conductivity ranged from 68 to 94 ft/day.

The water level in observation well 1013 responded rapidly during the pumping phase of the test with a maximum drawdown of about 0.40 during the test. Recovery was also relatively rapid. Estimated hydraulic conductivity ranged from 43 to 76 ft/day.

Since there was practically no response in observation well 1035 (maximum of 0.06 ft) these data were not used in the analyses.

4.2 Pumping Well 1035

The aquifer pumping test in monitor well 1035 was started at 1000 on 29 September 1998 and was run for 707 min (11.78 hr) at a variable rate (Figure 4). The initial discharge rate was 8 gpm for the first 257 minutes of the test, at which time the well pumped dry, and the rate was adjusted to 6 gpm. The discharge rate was somewhat irregular during the initial period of the test. The maximum drawdown during the early part of the test was about 8.5 ft with a water column in the well of about 10 ft. At the adjusted discharge rate later in the test, the maximum drawdown was less than 3 ft. Estimated hydraulic conductivity from the recovery phase of the test was 282 ft/day.

The water level response in observation well 1002 was slow and steady during the pumping phase with slow recovery. The maximum drawdown was about 0.13 ft. Estimated hydraulic conductivity ranged from 136 to 177 ft/day.

There was good water level response in observation well 1013 during the pumping phase with a maximum drawdown of 0:16 ft at both discharge rates. Estimated hydraulic conductivity ranged from 242 to 303 ft/day.

The water level in observation well 1034 also responded rapidly during the pumping phase with a maximum drawdown of 0.40 ft. The drawdown varied with the different discharge rates in the pumping well. Estimated hydraulic conductivity ranged from 88 to 286 ft/day.

4.3 Pumping Well 0590

The aquifer pumping test in monitor well 0590 was started at 0935 on 10 August 1998 and was run for 840 min at a constant rate of 30 gpm (Figure 5). In spite of the relatively high discharge rate the recovery was relatively slow. This indicates that the major source of water in the well was from the Colorado River, approximately 75 ft south of the well. The recovery period of the test represents a lower than expected hydraulic conductivity of 68 ft/day.

4.4 Pumping Well 1018

The aquifer pumping test in monitor well 1018 was started at 1335 on 11 August 1998 and was run for 820 min at a constant rate of 1 gpm (Figure 6). Recovery was relatively rapid in this well and the estimated hydraulic conductivity was 18 ft/day.

5.0 Conclusions

Data collected from aquifer pumping tests in alluvial aquifer wells in the west (0590), central (1034/1035), and east (1018) portions of the site indicate transmissivity ranging from 161 to 2434 ft²/day. Hydraulic conductivity ranges from 18 to 304 ft/day based on saturated thickness in the alluvial aquifer ranging from 6 to 9 ft in the different wells. As expected, the values of hydraulic conductivity are variable across the site, even in the relative proximity of wells 1034 and 1035. Variation in these values is a result of several factors:

Lateral and vertical lithologic changes typically found in an alluvial depositional environment — includir possible impact of old channels in the alluvium.

Colorado River as a boundary condition — particularly in the vicinity of 0590 (about 60 ft from the river).

• Well construction and screen type may cause variable well efficiency and response to pumping stress (e.g. screen type in 1035 has greater area of exposure to the aquifer than in 1034).

A general statement regarding "precision and bias" of methods used for calculation of aquifer parameters from aquifer pumping tests is quoted from ASTM D 5270 (ASTM 1994):

"It is generally not practicable to specify the precision of these test methods because the response of aquifer systems during aquifer tests is dependent upon ambient system stresses. No statement can be made about bias because no true reference values exist".

6.0 References

ASTM (American Society for Testing and Materials), 1994. ASTM Standards on Ground Water and Vadose Zone Investigations. Second Edition. ASTM. Philadelphia, PA.

Bouwer, H., 1989. The Bouwer and Rice Slug Test - An Update: Ground Water, v. 27, no. 1, pp. 304-309.

Bouwer, H. and H.C. Rice, 1976. A Slug Test for Determining Hydraulic Conductivity for Unconfined Aquifers with Completely or Partially Penetrating wells: Water Resources Research, v. 12, no. 3, p. 423-428.

Cooper, H.H. and C.E. Jacob, 1946. A Generalized Graphical Method for Evaluating Formation Constants and Summarizing Well Field History: American Geophysical Union Transactions, v. 27, p. 526-534.

DOE (U.S. Department of Energy), 1996. Site Observational Work Plan for the UMTRA Project Site at Gr. Junction, Colorado: DOE/AL/62350-215 Rev. 0.

DOE (U.S. Department of Energy), 1997. Work Plan for Characterization Activities at the UMTRA Grand Junction Project Site: MAC-GV/CiRJ 1.8.

Kruseman, G.P., and N.A. de Ridder, 1990. *Analysis and Evaluation of Pumping Test Data*, Second Edition, ILRI Publication 47: International Institute for Land reclamation and Improvements, Wageningen, Netherlands, 377 p.

Lohman, S.W., 1970. Ground-Water Hydraulics: U.S. Geological Survey Professional Paper 708, 70 p.

Neuman, S.P., 1975. Analysis of Pumping Test Data from Anisotropic Unconfined Aquifers Considering Delayed Gravity Response: Water Resources Research, v. 11, no. 2, p. 329-342.

Röhrich, T. and Waterloo Hydrogeologic, Inc., no date. User's Manual for AquiferTest - Version 2.52.

Theis, C.V., 1936. The Relationship Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Groundwater Storage: Trans. American Geophysical Union, v. 16, p. 519-524.

Figure 3 AQUIFER TEST DATA — PUMPING WELL 1034 — 09/28/98 GRAND JUNCTION, CO

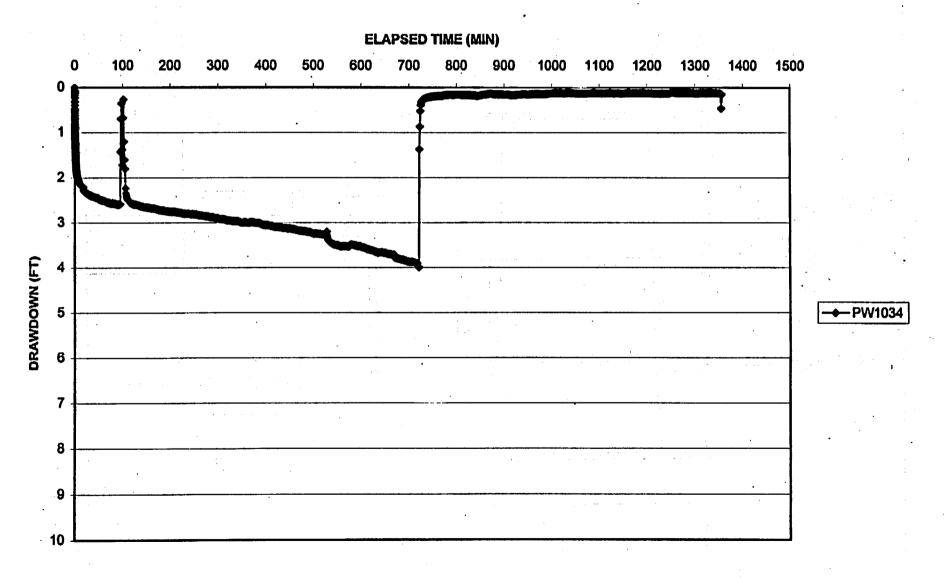
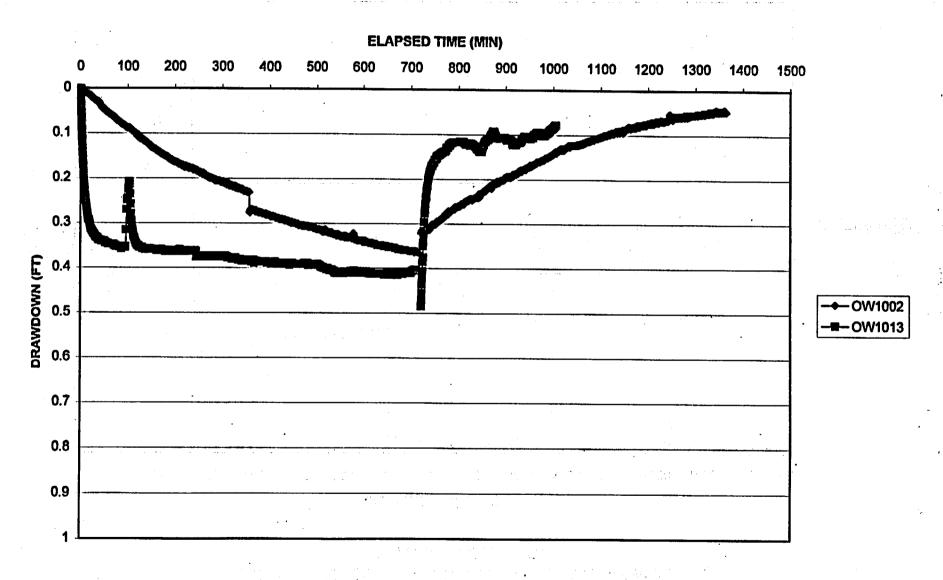
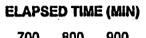




Figure 3 (Cont) AQUIFER TEST DATA -- PUMPING WELL 1034 -- 09/28/98 GRAND JUNCTION, CO

1034pr2.xls.chart5 14 january 1999 Figure 4

AQUIFER TEST DATA --- PUMPING WELL 1035 --- 09/29/98 **GRAND JUNCTION, CO**

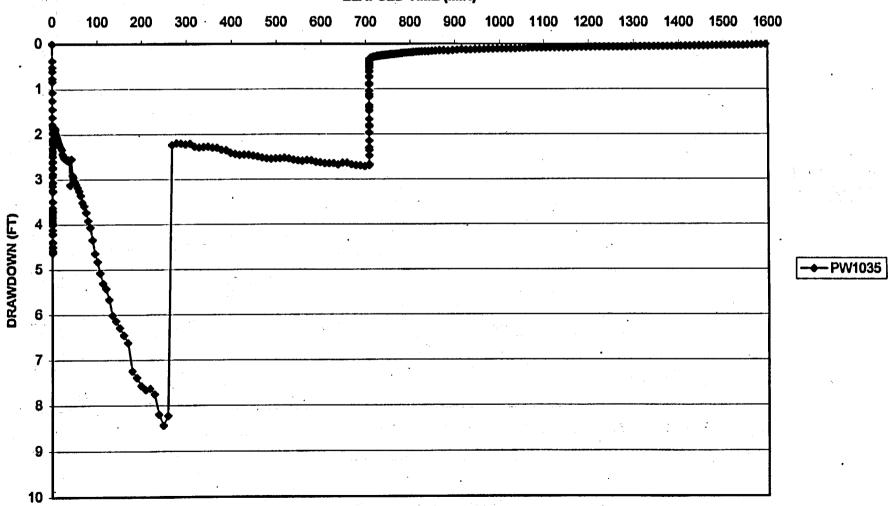
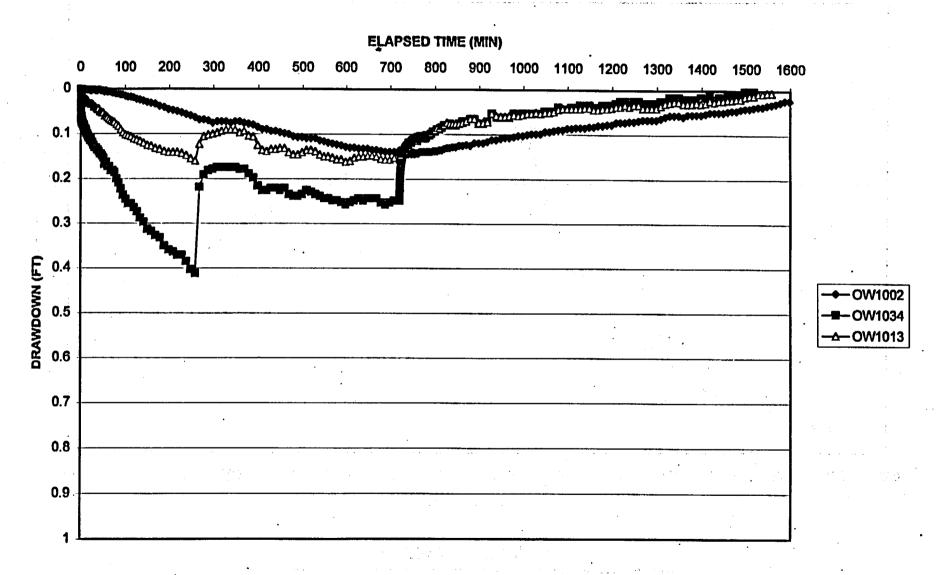



Figure 4 (cont)

AQUIFER TEST DATA — PUMPING WELL 1035 — 09/29/98 GRAND JUNCTION, CO

1035pr3.xls.chart3 14 january 1999 Figure 5 AQUIFER TEST DATA

AQUIFER TEST DATA — PUMPING WELL 0590 — 08/10/98 GRAND JUNCTION, CO

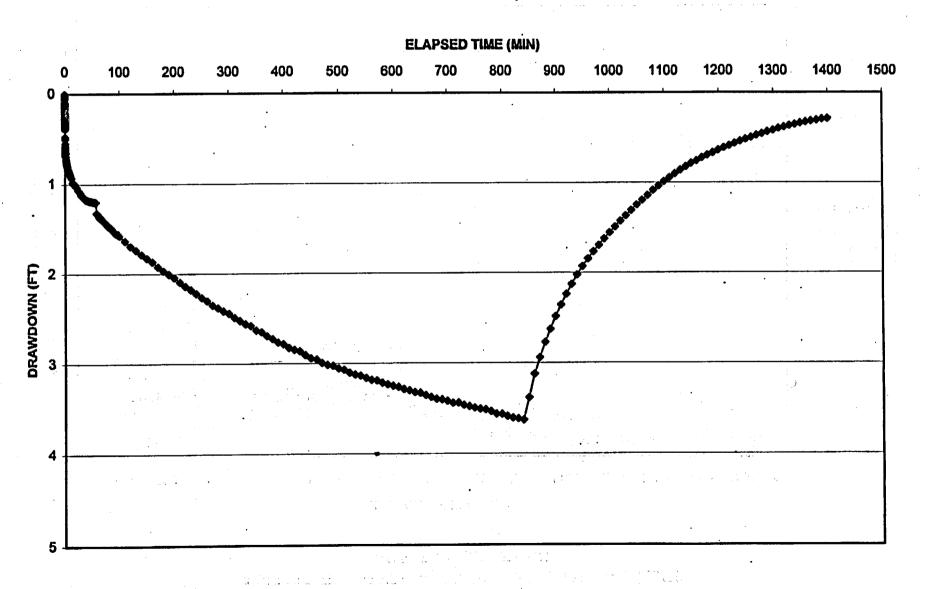
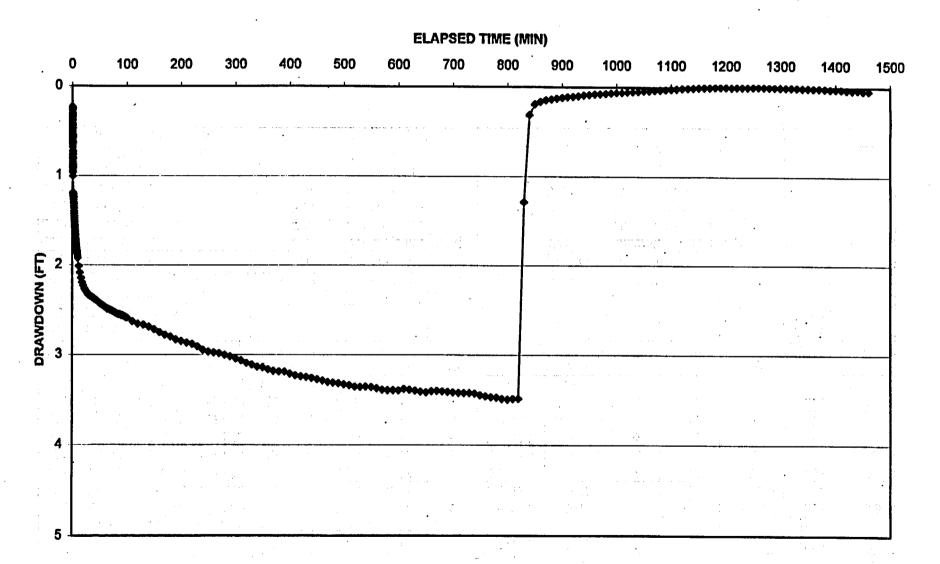



Figure 6

AQUIFER TEST DATA — PUMPING WELL 1018 — 08/11/98 GRAND JUNCTION, CO

1018pt.xls.chart3 14 january 1999

•

Monitor Well Information Grand Junction, CO

0.000	-	0	700	10.1		50	0	0		p=114	D. A.	A 9894 .	0-45%	0144	104
MW	Date	Grnd	TOC	Drlg	TD	ВН	Casing	Scrn	Scrn	Filter	Pntrn	Aq Tkn	Sat Tkn	SWL	Wtr
		elev ft	elev ft	meth	ft	R-ft	r - ft	Ingth ft	top/btm ft	top/btm ft	f/p	ft	b - ft	ft - bgs	cimn
delet				27.47		XUMEN		Mikvast	and the same						\$2 5 2[6]
590	Jan-83	4564.22	4566.69	NA	15.5	0.55	0.17	8.3	7.2-15.5	3.3-15.5	f	~10	~6	6.72	~6
746	Mar-85	4585.84	4587.85	NA	24	0.50	0.17							9.32	
1001	Sep-94	4567.22	4569.69	HS	12	0.33	0.17	5	6.6-11.6	5.0-12.0	~f	~10	~6.5	4.83	~6.5
1002	Sep-94	4570.16	4572.62	HS	13.5	0.33	0.17	5	8.5-13.5	5.0-13.5	f	~10	~5.7 (6)	8.67	5.7
1013	Oct-97	4570.74	4573.60	HS	16.3	0.51	0.17	10	5.8-15.8	4.5-16.0	f	~10	8	9.37	8
1015	Nov-97	4571.77	4573.54	HS	16.7	0.55	0.17	8	8.4-16.4	5.8-16.7	~f	~10 ·	10	5.40	10
1017	Nov-97	4570.45	4572.72	HS	13.3	0.55	0.17	5	7.7-12.7	4.0-12.4	р	~10	9.5	3.44	10
1018	Nov-97	4573.90	4575.91	HS	15.1	0.55	0.17	8	6.2-14.2	5.5-14.5	f	~10	. 9	5.70	9
1019	Nov-97	4582.97	4580.99	HS	27	0.55	0.17	20	6.7-26.7	4.8-27.0	~f	~20	20	4.71	21
1034	Sep-98	4569.90	4571.70	CA	18	0.39	0.17	10	7.7-17.7	5.7-18	f	~10	7.6 (8)	8.31	9.6
1035	Sep-98	4570.60	4572.20	CA	19.5	0.39	0.17	10	7.7-17.7	5.7-19.5	f	~10	7.7 (8)	8.29	9.8
73.94	\$\$\$\$\$\$XX	3213	KATULEN YEL		Visite's	C MIS	CHARLES					Harming.		Sin Market	
1034	pumping	well						•		-				Jun-98	
1034	observat	ion well												Sep-98	
746	other sir	gle well to	ests												
12.	MATERIAL PROPERTY.	HERENGE!		7-1-11		(child)	NACTOR.		4444		44	k i contra		High Mark	NE W
MW	monitor	well			TD total depth				Aq Tkn	aquifer t					
Grnd	ground				BH borehole radius [R]				Sat Tkn	saturat					
Elev	ft NGVD		Casing casing radius [r]				SWL static water level								
TOC	top of PVC casing		Scrn screen length				bgs below ground surface								
Drlg				Filter filter pack				Wtr	water c	olumn in v	vell				
	NA not available			Pntrn penetration											
	HS hollow stem auger		f full												
		sing adva				р	partia								

72662 Sun

Summary of Hydraulic Parameters in the Alluvial Aquifer Grand Junction, CO

/ell	P/O/S	D/R	Q	t	b	T	K	Notes
			gpm	min	ft	ft²/day	ft/day	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	المنتجاهم والمراج	व्यक्ति के दुन्ने का स्वक्त						Olis 1942 ordovanski 2 minjor i stolak savetni ne jegitek ja
1034	P	R	4	717	8	1613	202	Factory slotted screen
1002	0	D			6	556	93	
1002	.0	R			6	408	. 68	
1013	.0	D			8	450	56	
1013	0	R			8	340	43	
1035	0	D			. 8	N/R	N/R	Response <1 ft
1035	P	R	8 to 6	707	8	2261	282	Continuous-wrapped V-wire screen
1002	0	D			6	942	157	
1002	0	R			6	969	161	
1013	0	۵			8	1987	249	
1013	0	R			8	2434	304	
1034	0	D		-	8	1120	140	
1034	0	R			8	2290	287	
590	Р	R	30	840	6	408	68	
1018	Р	R	1	820	9	161	18	
					·			•
				gad Dagid				
1012	S						11	Onsite
213	S			•	,		2	**
J14	S						2	*
1015	S						4	10
1016	S						2	•
1018	S					: _	5	
1019	S						1	•
1021	S						1	Background
1023 ·	S						12	
1025	S						4	
1026	1.							Resource Center
1027 1028	S						3	10 2
1026	3						5	•
News Transport	and Samuel	USING CONSESSES	DATE OF THE PARTY	(5), 2 (1) (1) (1)	Statute a Ato		and the second	
	eggewayawak I							
								P pumping well O observation well
 								
								S slug test
 								D discharge
	-					-		R recovery
	· · ·							Q discharge rate t duration of test
								t duration of test b saturated thickness
								T transmissivity K hydraulic conductivity
_								N/R not reliable
<u> </u>								TVIN TIUL TELIADIE

Hydraulic Parameters in the Alluvial Aquifer Grand junction, CO

PW	OW	Date	Pntrn	Q	b	t	ť	P/R	Method	T	K	Notes
		start	f/p	gpm		min	t + min			ft²/day	· ft/day	
1034		9/28/98	f	4	8	717	~1400	Р	Theis		NR	Not reliable - turbulence in pumping well
								R	T/J	1612.80	201.60	i
	1002				6			Р	Theis	545.76	91.01	Slow response and slow recovery
					·			Р	C/J	565.92	94.46	
								R	T/J	407.52	67.97	
	1013				8		-	P	Theis	433.44	54.14	Good response and quick recovery
	1013			•		<u> </u>	 	P	Hantush	306.72	38.30	
								Р	C/J	610.56	76.32	
								R	T/J	339.84	42.62	
	1035				8			P	Theis		N/R	Not reliable - insignificant response (<0.1 ft)
	1000							R	T/J		N/R	
							1					

TACTEC-ERS

Grand tion, CO

PW	υW	Date	Pntrn	Q	b	t	ť'	P/R	Method	T	K	Notes
		start	f/p	gpm		min	t + min			ft²/day	ft/day	
1035	•	9/29/98	f.	8 to 6	8	707	~1600	P	Theis		N/R	Not reliable Authorous In according to
		0/20/00		0.00			1000	R	T/J	2260.80	282.24	Not reliable - turbulence in pumping well
	1002				6			Ρ	Theis	817.92	136.37	
								P	C/J	1067.04	177.12	
								R	T/J	969.12	161.28	
	1013	<u> </u>			8	······		Р	Theis	2044.80	256.32	
<u>-</u>								Р	C/J	1929.60	241.92	
								R	T/J	2433.60	303.84	
•	1034				8			P	Theis	1627.20	203.04	
								P	Hantush	1029.60	128.74	
								P	C/J	704.16	88.13	
								R	T/J	2289.60	286.56	

7266 3 (cont)

Hydraulic Parameters in the Alluvial Aquifer Grand junction, CO

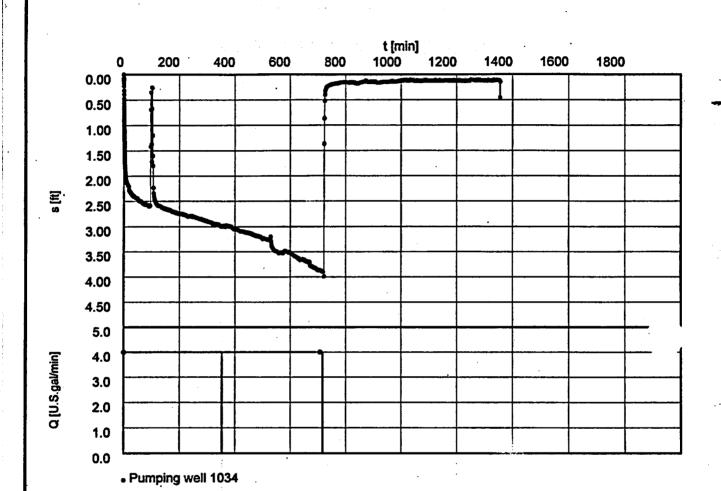
PW	OW	Date	Pntm	Q	b	t	t'	P/R	Method	T	K	Notes
	,	start	f/p	gpm		min	t + min			ft²/day	ft/day	
590		8/10/98	f	30	6	840	~1400	P	Theis		NR	Not reliable - turbulence in pumping well
								R	T/J	407.52	67.97	
1018		8/11/98	f	1	9	820	~30	Р	Theis		N/R	Not reliable - turbulence in pumping well
								R	T/J	161.28	17.86	Quick recovery - data at 10 min intervals

Calculation No.: U0043900

PUMPING WELL 1034 RECOVERY DATA ANALYSES

Pumping test-analysis Time-Drawdown plot with discharge 1034PR2.HYT, Page 1

Project: UGW - Grand Junction


Evaluated by: RJH Date: 11/19/98

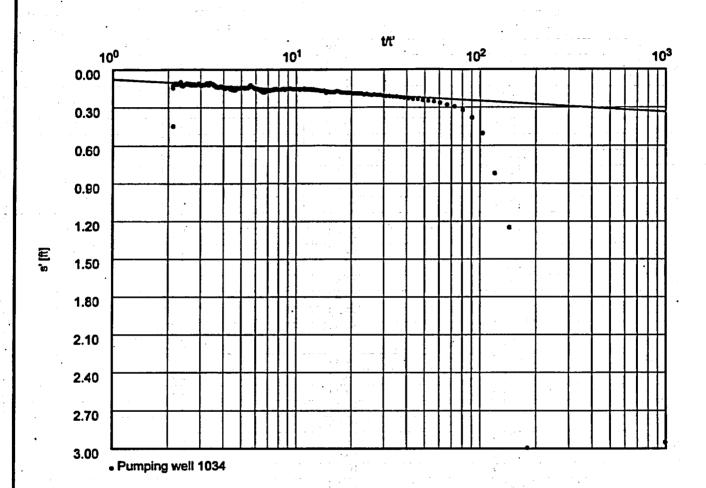
Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Pumping Well 1034

Discharge 4.00 U.S.gal/min

Pumping test enelysis Recovery method after THEIS & JACOB Unconfined aquifer


1034PR2.HYT, Page 1

Project: UGW - Grand Junction

Evaluated by: RJH | Date: 11/19/98

Test conducted on: 09/28/98 Pumping Test No. 1034 Recovery Test Pumping Well 1034 Discharge 4.00 U.S.gal/min

Pumping test duration: 717.00 min

Aquifer thickness [ft]: 8.00

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1034PR2.HYT, Page 2

Project: UGW - Grand Junction

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Pumping Well 1034

Pumping well 1034

Test conducted on: 09/28/98

Discharge 4.00 U.S.gal/min

	Time from	Water level	Residual	Corrected
	end of pumping		drawdown	drawdown
•	[min]	[ft]	[ft]	[ft]
1	0.72	14.10	3.90	2.9
2	4.00	14.19	3.99	2.9
3	5.00	11.57	1.37	1.3
4	6.00	11.07	0.87	0.
5	7.00	10.72	0.52	0.
6	8.00	10.59	0.39	0.
7	9.00	10.53	0.33	0.3
8	10.00	10.50	0.30	• 0.
9	11.00	10.49	0.29	0.3
10	12.00	10.47	0.27	0.
11	13.00	10.46	0.26	0.2
12	14.00	10.45	0.25	0.2
13	15.00	10.45	0.25	0.2
14	16.00	10.44	0.24	0.2
15	17.00	10.44	0.24	0.2
16	18.00	10.43	0.23	0.2
17	19.00		0.23	0.2
18	20.00	10.42	0.22	0.2
19	21.00	10.42	0.22	0.2
20	22.00	10.42	0.22	0.3
21	23.00	10.41	0.21	0.2
22	24.00	10.41	0.21	0.3
23 24	25.00 26.00	10.41	0.21	0.2
25	27.00	10.40 10.40	0.20	0.2
26	28.00	10.40	0.20	0.:
27	29.00	10.40	0.20 0.20	0.: 0.:
28	30.00	10.40	0.20	0
29	31.00	10.40	0.20	0.
30	32.00	10.40	0.20	0.
31	33.00	10.39	0.19	0.
32	34.00	10.39	0.19	
33	35.00	10.39	0.19	0.
34	36.00	10.39	0.19	<u>0.</u>
35	37.00	10.39	0.19	<u> </u>
36	38.00	10.39	0.19	0.
37	39.00	10.39	0.19	0.
38	40.00	10.39	0.19	0.
39	41.00	10.38	0.18	0.
40	42.00	10.38	0.18	0.
41	43.00	10.38	0.18	0.
42	44.00	10.38	0.18	0.
43	45.00	10.37	0.17	0.
44	46.00	10.37	0.17	 0.
45	47.00	10.38	0.18	
46	48:00	10.38	0.18	0.
47	49.00	10.38	0.18	0.
48	50.00	10.38	0.18	0.
49	51.00	10.38	0.18	0.
50	52.00	10.37	0.17	0.

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1034PR2.HYT, Page 3

Project: UGW - Grand Junction

Evaluated by: RJH 'Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Pumping well 1034

Pumping Well 1034

Discharge 4.00 U.S.gal/min

-1	Time from	Water level	Residual Corrected			
	end of pumping		drawdown	drawdown		
	[min]	(ft)	(ft)	(ft)		
51	53.00	10.38	0.18	0.		
52	54.00	10.37	0.17	0.		
53	55.00	10.37	0.17	0.		
54	56.00	10.37	0.17	0.		
55	57.00	10.37	0.17	. 0.		
56	58.00	10.37	0.17	0.		
57	59.00	10.37	0.17	0.		
58	60.00	10.37	0.17	0.		
59	61.00	10.36	0.16	0.		
60	62.00	10.36	0.16	0.		
61	63.00	10.36	0.16	0.		
62	64.00	10.36	0.16	0.		
63	65.00	10.36	0.16	0.		
64	66.00	10.36	0.16	0.		
65	67.00	10.36	0.16	0.		
66	68.00	10.36	0.16	0.4		
67 _.	69.00	10.36	0.16	0.		
68	70.00	10.36	0.16	0.		
69	71.00	10.35	0.15	0.1		
70	72.00	√ 10.36	0.16	0.		
71	73.00	10.36	0.16	0.		
72	74.00	10.36	0.16	0.		
73	75.00	10.36	0.16	0.1		
74	76.00	10.36	0.16	0.		
75 76	77.00	10.36	0.16	0.1		
77 77	78.00	10.36	0.16	0.1		
78	79.00 80.00	10.36 10.36	0.16	0.1		
79	81.00	10.36	0.16	0.1		
30	82.00	10.36	0.16 0.16	0.1		
81	83.00	10.36	0.16	0.		
32	84.00	10.36	0.16	0.		
33	85.00	10.36	0.16	0.		
34	86.00	10.35	0.15	0.		
35	87.00	10.35	0.15	0.		
36	88.00	10.35	0.15	0.		
37	89.00	10.36	0.16	0.		
38	90.00	10.36	0.16	0.		
39	91.00	10.36	0.16	0.		
30	92.00	10.36	0.16	0.		
31	93.00	10.36	0.16	0.		
2	94.00	10.36	0.16	0.4		
3	95.00	10.36	0.16	0.1		
34	96.00	10.36	0.16	0.1		
5	97.00	10.36	0.16	0.1		
96	98.00	10.36	0.16	0.1		
7	99.00	10.36	0.16	0.1		
8	100.00	10.36	0.16	0.1		
99	101.00	10.36	0.16	0.1		
00	102.00	10.36	0.16	0.1		

Pumping test analysis
Recovery method after
THEIS & JACOB
Unconfined aquifer

1034PR2.HYT, Page 4

Project: UGW - Grand Junction

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Pumping Well 1034

Pumping well 1034

Discharge 4.00 U.S.gal/min

$\overline{}$	Time from	Water level	Residual Corrected		
-	end of pumping		drawdown	drawdown	
	[min]	[ft]	[ft]	[ţi]	
01	103.00	10.36	0.16	0.1	
02	104.00	10.36	0.16	0.1	
03	105.00	10.36	0.16	0.1	
04	106.00	10.36	0.16	0.	
05	107.00	10.36	0.16	0.	
06	108.00	10.36	0.16	0.	
07	109.00	16.35	0.16	0.	
08	110.00	10.38	0.16	0.	
09	111.00	10.37	0.17	<u> </u>	
10	112.00	10.36	0.16 0.16		
11	113.00	10.36	0.18	<u>0.</u>	
12	114.00	10.37	0.17	0.	
13	115.00	10.37	0.17	0.	
14	116.00	10.37	0.17	0. 0.	
15	117.00	10.37	0.17	0.	
16	118.00	10.37	0.17	0.	
17	119.00	10.37	0.17	0.	
18	120.00 121.00		0.17	 0.	
19	121.00	10.37	0.17	 0 .	
20	123.00	10.37	0.17	0.	
21	124.00	10.37	0.17	0.	
22	125.00	10.38	0.18		
123	128.00	10.37	0.17	0.	
125	127.00	10.38	0.18	0.	
126	128.00	10.37	0.17	O.	
127	129.00	10.38	0.18	0.	
128	130.00	10.37	0.17	0.	
129	131.00	10.37	0.17	0.	
130	132.00	10.37	0.17	· 0.	
131	133,00	10.37	0.17	0.	
132	134.00	10.37	0.17	0.	
133	135.00	10.36	· 0.16	0.	
134	136.00	10.36	0.16	0.	
135	137.00	10.36	0.16	0	
136	138.00	10.36	0.16	0	
137	139.00	10.35	0.15	0	
138	140.00	10.35	0.15	0	
139	141.00	10.35	0.15	0	
140	142.00	10.35	0.15	0	
141	143.00	10.35	0.15	0	
142	144.00	10.35	0 .15	0	
143	145.00	10.35	0.15	0	
144	146.00	10.35	0.15		
145	147.00	10.35	0.15	7	
146	148.00	. 10.34	0.14	0	
147	149.00	10.34	0.14	O	
148	150.00	10.34	0.14	0	
149	151.00	10.34	0.14	0	
150 T	152.00	10.33	0.13		

Pumping test analysis:
Recovery method after
THEIS & JACOB
Unconfined aquifer

1034PR2.HYT, Page 5

Project: UGW - Grand Junction

Evaluated by: RJH Date: 11/19/98

E II

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Pumping Well 1034

Pumping well 1034

Discharge 4.00 U.S.gal/min

- 1	Time from	Water level	Residual Correcte	
ĺ	end of pumping .	•	drawdown	drawdown
	[min]	[ft]	[ft]	[ft]
151	153.00	10.33	0.13	0.13
152	154.00	10.33	0.13	0.13
153	155.00	10.32	0.12	0.12
154	156.00	10.33	0.13	0.13
155	157.00	10.33	0.13	0.13
156	158.00	10.33	0.13	0.13
157	159.00	10.34	0.14	0.14
158	160.00	10.34	0.14	0.14
159	161.00	10.34	0.14	0.14
160	162.00	10.35	0.15	0.15
161	163.00	10.35	0.15	0.15
162 163	164.00	10.35	0.15	0.15
164	165.00 166.00	10.35	0.15	0.15
165	167.00	10.34	0.14	0.14
166	168.00	10.34 10.34	0.14	0.14
167	169.00	10.34	0.14	0.14
168	170.00	10.34	0.14 0.14	0.14
169	171.00	10.35	0.14	0.14
170	172.00	10.35	0.15	0.15
171	173.00	10.34	0.13	0.15 0.14
172	174.00	10.35	0.15	0.15
173	175.00	10.34	0.14	0.13
174	176.00	10.35	0.15	0.15
175	177.00	10.34	0.14	0.14
176	178.00	10.34	0.14	0.14
177	179.00	10.35	0.15	0.15
78	180.00	10.34	0.14	0.14
79	181.00	10.35	0.15	0.15
80	182.00	10.35	0.15	0.15
81	183.00	10.35	0.15	0.15
82	184.00	10.35	0.15	0.15
83	185.00	10.35	0.15	0.15
84	186.00	10.35	0.15	0.15
85 86	187.00 188.00	10.35	0.15	0.15
87	188.00 189.00	10.35	0.15	0.15
88	189.00	10.35	0.15	0.15
89	190.00	10.35	0.15	0.15
90	192.00	10.35 10.35	0.15	0.15
91	193.00	10.35	0.15	0.15
92	194.00	10.36	0.15 0.16	0.15
93	195.00	10.36	0.16	0.15
94	196.00	10.36	0.16	0.16
95	197.00	10.36		0.16
96	198.00	10.36	0.16	0.16
97	199.00	10.37	0.17	0.16 0.16
98	200.00	10.37	0.17	0.16
99	201.00	10.37	0.17	0.16
00	202.00	10.36	0.16	0.16

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1034PR2.HYT, Page 6

Project: UGW - Grand Junction

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Pumping Well 1034

Pumping well 1034

Discharge 4.00 U.S.gal/min

Distance from the pumping well 1.00 ft

Static w	rater level: 10.20 ft below dat	um Pun	Pumping test duration: 717.00 min			
	Time from	Water level	Residual	Corrected		
	end of pumping		drawdown	drawdown		
	[min]	(ft)	[ft]	[ft]		
201	203.00	. 10.36	0.16	0.1		
202	204.00	10.36	0.16	0.1		
203	. 205.00	. 10.36	0.16	0.1		
204	206.00	10.36	0.16	0.1		
205	207.00	10.36	0.16	0.1		
206	208.00	10.35	0.15	0.		
207	209.00	10.36	0.16	0.		
208	210.00	10.35	0.15	0.		
209	211.00	10.35	0.15	0.		
210	212.00	10.35	0.15	0.		
211	213.00	10.35	0.15	0.		
212	214.00	10.36	0.16	0.		
213	215.00	10.35	0.15	0.		
214	216.00	10.35	0.15	Q.		
215	217.00	10.35	0.15	0.		
216	218.00	10.35	0.15	Ō.		
217	219.00	10.35	0.15	0.		
218	220.00	10.34	0.14	0.		
219	221.00	10.35	0.15	0.		
220	222.00	10.34	0.14	<u> </u>		
221	223.00	10.34	0.14	0.		
222	224.00	10.34	0.14	O.		
223	225.00	10.34	0.14	0.		
224	226.00	10.34	0.14	0.		
225	227.00	10.34	0.14	0.		
226	228.00	10.35	0.15	Ō.		
227	229.00	10.34	0.14	0.		
228	230.00	10.35	0.15	0.		
229	231.00	10.35	0.15	Ō		
230	232.00	10.35	0.15	0		
231	233.00	10.35	0.15	0.		
232	234.00	10.35	0.15	0		
233	235.00	10.35	0.15	0.		
234	236.00	10.35	0.15	0.		
235	237.00	10.34	0.14	Ō		
236	238.00	10.34	0.14	0		
237	239.00	10.35	0.15	0		
238	240.00	10.34	0.14	0		
239	241.00	10.34	0.14	0		
240	242.00	10.34	0.14	0		
241	243.00	10.34	0.14	. 0		
242	244.00	10.34	0.14	0		
243	245.00	10.34	0.14	0		
244	248.00	10.34	0.14	<u> </u>		
245	247.00	10.33	0.13	<u> </u>		
246	248.00	10.33	0.13	0		
247	249.00	10.34	0.14	. 0		
248	250.00	10.33	0.13	0		
249	251.00	10.34	0.14	, 0		
250	252.00	10.33	0.13	0		

Pumping test analysis = Recovery method after THEIS & JACOB Unconfined aquifer

1034PR2.HYT, Page 7

Project: UGW - Grand Junction

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Pumping Well 1034

Pumping well 1034

Discharge 4.00 U.S.gal/min

į.	Time from	Water level	Residual	Corrected -
	end of pumping	-	drawdown	drawdown
	[min]	[ft]	[ft]	[ft]
251	253.00	10.33	0.13	0.1
252	254.00	10.33	0.13	0.1
253	255.00	10.33	0.13	0.1
254	256.00	10.34	0.14	0.1
255	257.00	10.34	0.14	0.1
256	258.00	10.34	0.14	0.1
257	259.00	10.34	0.14	0.1
258	260.00	10.34	0.14	0.1
259	261.00	10.34	0.14	0.1
260	262.00	10.34	0.14	0.1
261	263.00	10.34	0.14	0.1
262	264.00	10.34	0.14	0.1
263	265.00	10.34	0.14	. : 0.1
264	266.00	10.34	0.14	0.1
265	267.00	10.34	0.14	0.1
266	268.00	10.34	0.14	0.1
267	269.00	10.34	0.14	0.1
268	270.00	10.33	0.13	0.1
269	271.00	10.34	0.14	0.1
270	272.00	10.33	0.13	0.1
271	273.00	10.33	0.13	0.1
272	274.00	10.33	0.13	0.1
273	275.00	10.33	0.13	0.1
74	276.00	10.32	0.12	0.1
275	277.00	10.33	0.13	0.1
76	278.00	10.33	0.13	0.1
277	279.00	10.32	0.12	0.1
78	280.00	10.32	0.12	0.1
79	281.00	10.32	0.12	0.1
280	282.00	5 10.32	0.12	. 0.1
281	283.00	10.32	0.12	0.1
282	284.00	10.31	0.11	0.1
283	285.00	10.32	0.12	0.1
284	286.00	10.31	0.11	0.1
85 86	287.00	10.31	0.11	0.1
287	288.00 289.00	10.32	0.12	0.1
288	289.00	10.31	0.11	0.1
89	290.00	10.31 10.31	0.11 0.11	0.1
90	292.00	10.31	0.11	0.1
91	293.00	10.31	0.11	0.1
92	294.00	10.31	0.11	0.1
93	295.00	10.31	0.11	0.1
94	296.00	10.31	0.11	0.1
95	297.00	10.31	0.11	0.1
96	298.00	10.31	0.11	0.1
97	299.00	10.31	0.11	0.1
98	300.00	10.31	0.11	0.1
99	301.00	10.30	0.11	0.1
300	302.00	10.30	0.10	0.1 0.1

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1034PR2.HYT, Page 8

Project: UGW - Grand Junction

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Pumping Well 1034

Pumping well 1034

Discharge 4.00 U.S.gal/min

Dischar	ge 4.00 U.S.gal/min		Distance from the pumping well 1.00 ft		
Static w	rater level: 10.20 ft below date	um	Pumping test duration: 717.00 mi	n	
· 1	Time from	Water level	Residual	Corrected	
	end of pumping	-	drawdown	drawdown	
•	[min]	[ft]	[ft]	[ft]	
301	303.00	10.31	0.11	0.1	
302	304.00	10.31	0.11	0.1	
303	305.00	10.31	0.11	0.1	
304	306.00	10.32	0.12	0.1	
305	307.00	10.32	0.12	0.	
306	308.00	10.32	0.12	0.	
307	309.00	10.32		0.	
308	. 310.00	10.32		0.	
309	311.00	10.32		0.	
310	312.00	10.32		0.	
311	313.00	10.31	0.11	0.	
312	314.00	10.31	0.11	· 0.	
313	315.00	10.31	0.11	0.	
314	316.00	10.31	0.11	0.	
315	317.00	10.31	0.11	0.	
316	318.00	10.31	0.11	0.	
317	319.00	10.31	0.11	0.	
318	320.00	10.31		0.	
319	321.00	10.31	0.11	0.	
320	322.00	10.31	1	0.	
321	323.00	10.31		0.	
322	324.00	10.31	0.11	0.	
323	325.00	10.31		0.	
324	326.00	10.31		0.	
325	327.00	10.31		0.	
326	328.00	10.32		0.	
327	329.00	10.32		0.	
328	330.00	10.32		0.	
329	331.00	10.32		0.	
330	332.00	10.32		0	
331	333.00	10.32		0	
332	334.00	10.32		0	
333	335.00	10.32		0	
334	336.00	10.32	· 1	0	
335	337.00	10.32	•	0	
336	338.00	10.32 10.32		0	
337	339.00	10.32		0	
338	340.00 341.00	10.32	1 1	0	
339		10.32		0	
340	342.00	10.32	· I	0	
341	343.00	10.32		· · · · · · · · · · · · · · · · · · ·	
342	344.00	10.32			
343	345.00		1		
344	346.00	10.32 10.32	1		
345	347.00			0	
346	348:00	10.32 10.32			
347	349.00	10.32		- 0	
348	350.00			0	
349	351.00	10.32			
350	352.00	10.33	0.13	0	

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1034PR2.HYT, Page 9

Project: UGW - Grand Junction

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on? 09/28/98

Pumping Well 1034

Pumping well 1034

Discharge 4.00 U.S.gal/min

	water level: 10.20 ft below dat		Pumping test duration: 717.00 min			
	Time from	Water level	Residual	Corrected		
	end of pumping		drawdown	drawdown		
	[min]	[ft]	[ft]	[ft]		
351	353.00	10.33	0.13	0.13		
352	354.00	10.32	0.12	0.12		
353	355.00	10.33	0.13	0.13		
354	356.00	10.32	0.12	0.13		
355	357.00	10.33	0.13	. 0.13		
356	358.00	10.32	0.12	0.12		
357	359.00	10.32	0.12	0.12		
358	360.00	10.32	0.12	0.12		
359	361.00	10.32	0.12	0.12		
360	362.00	10.32	0.12	0.12		
361	· 363.00	10.32	0.12	0.12		
362	364.00	10.32	0.12	0.12		
363	365.00	10.32	0.12	0.12		
364	366.00	10.32	0.12	0.12		
365	367.00	10.32	0.12	0.13		
3 66	368.00	10.31	0.11	0.1		
367	369.00	10.31	ş: · 0.11	0.1		
368	370.00	10.31	0.11	0.1		
369	371.00	10.31	0.11	0.1		
370	372.00	10.31	 0.11	0.1		
371	373.00	10.31	0.11	0.11		
372	374.00	10.31	0.11	0.11		
373	375.00	10.31	0.11	0.1		
374	376.00	10.31	0.11	0.11		
375	377.00	10.32	0.12	0.12		
376	378.00	10.32	0.12	0.12		
377	379.00	10.32	0.12	0.12		
378	380.00	10.32	0.12	0.12		
379	381.00	10.32	i 0.12	0.12		
380	382.00	10.32	0.12	0.12		
381	383.00	10.32	0.12	0.12		
382	384.00	10.32	0.12	0.12		
383	385.00	10.32	0.12	0.12		
384	386.00	10.32	0.12	0.12		
385	387.00	10.32	0.12	0.12		
386	388.00	10.32	0.12	0.12		
387	389.00	10.32	0.12	0.12		
388	390.00	10.32	0.12	0.12		
389	391.00	10.32	0.12	0.12		
390	392.00	10.32	0.12	0.12		
391	393.00	10.32	0.12	0.12		
392	394.00	10.32	0.12	0.12		
393	395.00	10.32	€ 0.12	0.12		
394	396.00	10.32	0.12	0.12		
395	397.00	10.32	0.12	0.12		
396	398.00	10.32	0.12	0.12		
397	399.00	10.32	0.12	0.12		
398	400.00	10.32	0.12	0.12		
399	401.00	10.32	0.12	0.12		

MACTEC-ERS 2597 B 3/4 Road

Grand Junction, CO 81503 970/248-6040 Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1034PR2.HYT, Page 10

Project: UGW - Grand Junction

Evaluated by RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Pumping Well 1034

Pumping well 1034

Discharge 4.00 U.S.gal/min

Distance from the pumping well 1.00 ft

	Time from	Water level	Residual	Corrected
	\$	AASTEL IGAGI	drawdown	drawdown
	end of pumping	ras	l l	
404	[min] 403.00	[ft] 10.32	[ft] 0.12	[ft]
401 402	404.00	10.32	0.12	- 0
402 403	405.00	10.31	0.12	0
403 404	408.00	10.31	0.11	0
404	407.00	10.31	0.11	0
406	408.00	10.31	0.11	0
407	409.00	10.31	0.11	0
408	410.00	10.32	0.12	0
409	411.00	10.32	0.12	
410	412.00	10.32	0.12	0
411	413.00	10.32	0.12	0
412	414.00	10.32	0.12	0
413	415.00	10.32	0.12	0
414	416.00	10.32	0.12	0
415	. 417.00	10.32	0.12	O
416	418.00	10.32	0.12	0
417	419.00	10.32	0.12	0
418	420.00	10.32	0.12	0
419	421.00	10.32	0.12	
120	422.00	10.31	0.11	7
421	423.00	10.32	0.12	0
122	424.00	10.32	0.12	0
423	425.00	10.32	0.12	
424	426.00	10.32	0.12	C
425	427.00	10.32	0.12	C
426	428.00	10.32	0.12	C
127	429.00	10.32	0.12	
128	430.00	10.32	0.12	O
129	431.00	10.32	0.12	0
130	432.00	10.32	0.12	
431	433.00	10.32	0.12	
432	434.00	10.32	0.12	
433	435.00	10.32	0.12	
134	436.00	10.32	0.12	
435	437.00	10.32	0.12	
436	438.00	10.32	0.12	Č
137	439.00	10.31	0.11	
138	440.00	10.31	0.11	
439	441.00	10.31	0.11	
440	442.00	10.31	0.11	
441	443.00	10.31	0.11	
442	: · · · · · · · · · · · · · · · · · · ·	10.31	0.11	
443 444	445.00 446.00	10.31 10.31	0.11	
444 445	447.00	10.31	0.11 0.11	7
445 446	448.00	10.31	0.11	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
446	449.00	10.31	0.11	
448	450.00	10.31	0.11	
449	451.00	10.32	0.11	
450	452.00	10.32	0.12	

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1034PR2.HYT, Page 11

Project: UGW - Grand Junction

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Pumping Well 1034

Pumping well 1034

Test conducted on: 09/28/98

Discharge 4.00 U.S.gal/min

Dischai	rge 4.00 U.S.gal/min		Distance from the pumping well 1.00 ft			
Static v	vater level: 10.20 ft below dat	um	Pumping test duration: 717.00 min			
	Time from end of pumping [min]	Water level	Residual drawdown [ft]	Corrected drawdown		
451	453.00	10.31	0.11	[ft] 0.1°		
452	454.00	10.32	0.12	0.12		
453	455.00	10.31	0.11	0.12		
454	456.00	10.31	0.11	0.1		
455	457.00	10.31	0.11	0.11		
456	458.00	10.31	0.11	0.11		
457	459.00	10.31	0.11	0.1		
458	460.00	10.32	0.12	0.12		
459	461.00	10.31	0.11	0.1		
460	462.00	10.32	0.12	0.12		
461	463.00	10.32	0.12	0.12		
462	464.00	10.31	0.11	0.11		
463	465.00	10.32	0.12	0.12		
464	466.00	10.32	0.12	0.12		
465	467.00	10.31	0.11	0.1		
466	468.00	10.31	0.11	0.1		
467	469.00	10.32	. 0.12	0.12		
468	470.00	10.31	0.11	0.1		
469	471.00	10.31	0.11	0.1		
470	472.00	10.32	0.12	0.12		
471	473.00	10.31	0.11	0.11		
472	474.00	10.31	0.11	0.11		
473	475.00	10.31	0.11	0.11		
474	476.00	10.31	0.11	0.11		
475	477.00	10.31	0.11	0.11		
476	478.00	10.31	0.11	0.11		
477 478	479.00	10.32	0.12	0.12		
479	480.00 481.00	10.31	0.11	0.11		
480	482.00	10.32	0.12	0.12		
481	483.00	10.32 10.32	0.12	0.12		
482	484.00	10.32	0.12	0.12		
483	485.00	10.32	0.12 0.11	0.12		
484	486.00	10.32	0.11	0.11 0.12		
485	487.00	10.32	0.12	0.12		
486	488.00	10.32		0.12		
487	489.00	10.32	0.12	0.12		
488	490.00	10.32	0.12	0.12		
489	491.00	10.32	0.12	0.12		
490	492.00	10.32	0.12	0.12		
491	493.00	10.32	0.12	0.12		
492	494.00	10.32	0.12	0.12		
493	495.00	10.32	0.12	0.12		
494	496.00	10.32	0.12	0.12		
495	497.00	10.32	0.12	0.12		
496	. 498.00	10.32	0.12	0.12		
497	499.00	10.33	0.13	0.13		
498	500.00	10.33	0.13	0.13		
499	501.00	10.33	0.13	0.13		
500	502.00	10.33	0.13	0.13		

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer

1034PR2.HYT, Page 12

Project: UGW -- Grand Junction

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Pumping Well 1034

Test conducted on: 09/28/98

Pumping well 1034

Discharge 4.00 U.S.gal/min			Distance from the pumping well 1.00 ft		
Static w	ater level: 10.20 ft below datu	ım · · · ·	Pumping test duration: 717.00 min		
	Time from	Water level	Residual	Corrected	
	end of pumping		drawdown	drawdown	
	[min]	[ft]	[ft]	[ft]	
501	503,00	10.33	0.13	0.1	
502	504.00	10.33	0.13	0.1	
503	505.00	10.33	0.13	0.1	
504	506.00	10.33	0.13	0.1	
505	507.00	10.33	0.13	0.1	
506	508.00	10.33	0.13	0.1	
507	509.00	10.32	0.12	0.1	
508	510.00	10.33	0.13	0.1	
509	511.00	10.33	0.13	0.1	
510	512.00	10.33	0.13	0.1	
511	513.00	10.33	0.13	0.1	
512	514.00	10.32	0.12	0.1	
513	515.00	10.32	0.12	0.1	
514	516.00	10.32	0.12	0.	
515	517.00	10.33	0.13	0.1	
516	518.00	10.33	0.13	σ.:	
517	519.00	10.33	0.13	0.	
518	520.00	10.33	0.13	0.	
519	521.00	10.33	0.13	<u> </u>	
520	522.00	10.33	0.13	σ.	
521	523.00	10.33	0.13	0.	
522	524.00	10.32	0.12	0. 0.	
523	525.00	10.32	0.12	0.	
524	526.00	10.33	0.13	0.	
525	527.00	10.33	0.13	0.	
526	528.00	10.33	0.13	0.	
527	529.00	10.33		0.	
528	530.00	10.32		0.	
529	531.00	10.32	•	0.	
530	532.00	10.31	0.11	0.	
531	533.00	10.30		0.	
532	534.00	10.30		0.	
533	535.00	10.30	1	0.	
534	536.00	10.30 10.30		0.	
535	537.00				
536	538.00	, 10.30 10.30			
537	539.00	10.30		0	
538	540.00 541.00	10.31			
539	542.00	10.31	, , , , , , , , , , , , , , , , , , ,	0	
540	543.00	10.31	1-	0	
541	544.00	10.31		0	
542	545.00	10.31		0	
543	546.00	10.31		5	
544	547.00	10.31	· · · · · · · · · · · · · · · · · · ·		
545	548.00	10.31			
546	549.00	10.31			
547	550.00	10.31			
548	551.00	10.31	·		
549 550	552.00	10.31	1	<u></u>	

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1034PR2.HYT, Page 13

Project: UGW - Grand Junction

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Pumping Well 1034

Discharge 4.00 U.S.gal/min

Test conducted on: 09/28/98

Pumping well 1034

Static w	rater level: 10.20 ft below date	um	Pumping test duration: 717.00 min		
	Time from	Water level	Residual Corrected		
	end of pumping		drawdown	drawdown	
	[min]	[ft]	(ft)	[ft]	
551	553.00	10.32	. 0.12	0.12	
552	554.00	10.31	0.11	0.11	
553	555.00	10.31	0.11	0.11	
554	556.00	10.32	0.12	0.12	
555	557.00	10.31	0.11	0.11	
556	558.00	10.31	0.11	0.11	
557	559.00	10.31	0.11	- 0.11	
558	560.00	10.31	0.11	0.11	
559	561.00	10.31	0.11	0.11	
560	562.00	10.31	0.11	0.11	
561	563.00	10.31	0.11	0.11	
562	564.00	10.31	0.11	0.11	
563	565.00	10.31	0.11	0.11	
564	566.00	10.31	0.11	0.11	
565	567.00	10.31	0.11	0.11	
566	568.00	10.32	0.12	0.12	
567	569.00	10.31	0.11	0.11	
568	570.00	10.31	0.11	0.11	
569	571.00	10.32	0.12	0.12	
570	572.00	10.32	0.12	0.12	
571	573.00	10.31	0.11 0.12	0.11	
572	574.00	10.32 10.32	0.12	0.12 0.12	
573 574	575.00 576.00	10.32		0.12	
575	577.00	10.32	0.12	0.12	
576	578.00	10.32	0.12	0.12	
577	579.00	10.32	0.12	0.12	
578	580.00	10.31	0.11	0.11	
579	581.00	10.32	0.12	0.12	
580	582.00	10.32	0.12	0.12	
581	583.00	10.32	0.12	0.12	
582	584.00	10.32	0.12	0.12	
583	585.00	10.32	0.12	0.12	
584	586.00	10.32	0.12	0.12	
585	587.00	10.32	0.12	0.12	
586	588.00	10.32	0.12	0.12	
587	589.00	10.32	0.12	0.12	
588	590.00	10.32	0.12	0.12	
589	591.00	10.32	0.12	0.12	
590	592.00	10.32	0.12	0.12	
591	593.00	10.32	0.12	0.12	
592	594.00	10.32	0.12	0.12	
593	595.00	10.31	0.11	0.11	
594	596.00	10.31	0.11	0.11	
595	597.00	10.32	0.12	0.12	
596	598.00	10.32	0.12	0.12	
597	599.00	10.31	0.11	0.11	
598	600.00	10.32	0.12	0.12	
599	601.00	10.31	0.11	0.11	
600	602.00	10.32	0.12	0.12	

Pumping test analysis
Recovery method after
THEIS & JACOB
Unconfined aquifer

1034PR2.HYT, Page:14

Project: UGW - Grand Junction

Evaluated by: RJH | Date: 11/19/98

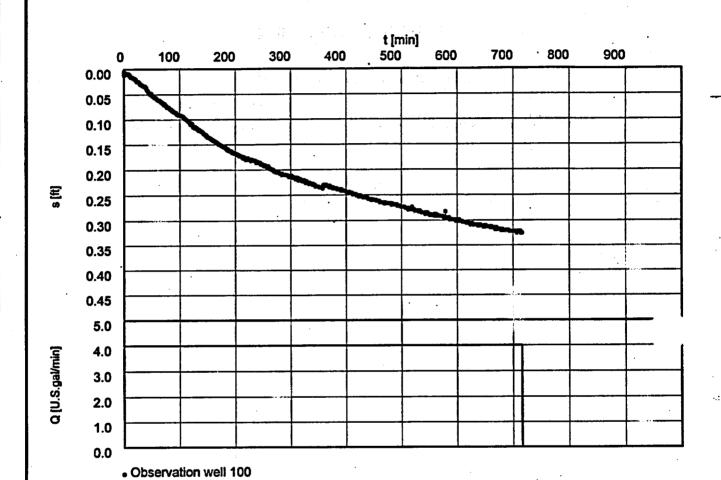
Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

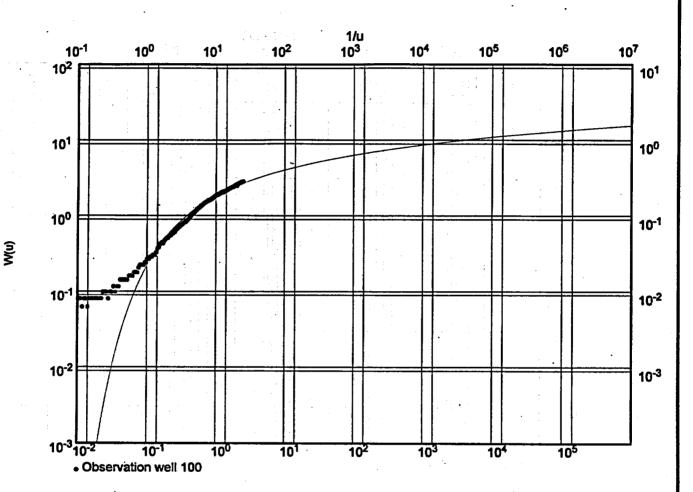
Pumping Well 1034

Pumping well 1034

Discharge 4.00 U.S.gal/min Distance from the pumping well 1.00 ft


Discharge 4.00 U.S.gal/min Static water level: 10.20 ft below datum			Pumping test duration: 717.00 min		
Stauc w		18/ster level	Residual Corrected		
	Time from	Water level	drawdown	drawdown	
-	end of pumping				
	[min]	[ft]	[ft]	[ft] 0.1:	
601	603.00	10.32	0.12	0.12	
602	604.00	10.32	0.12	0.13	
603	605.00	10.32		0.1	
604	608.00	10.32		0.1.	
605	607.00	10.32	0.12		
606	608.00	10.32		0.1	
607	609.00	10.32		0.1 0.1	
608	610.00	10.32	0.12	0.1.	
609	611.00	10.32			
610	612.00	10.32		0.13	
611	613.00	10.31	0.11	0.1	
612	614.00	10.32		0.1:	
613	615.00	10.32		0.1:	
614	616.00	10.31	0.11	0.1	
615	617.00	10.31	0.11	0.1	
616	618.00	10.31	0.11	0.1	
617	619.00	10.31	0.11	0.1	
618	620.00	10.31	0.11	0.1	
619	621.00	10.32		0.1	
620	622.00	10.32		0.1	
621	623.00	10.32		0.1	
622	624.00	10.32		0.1	
623	625.00	10.32		0.1	
624	628.00	10.32		0.1	
625	627.00	10.31		0.1	
626	628.00	10.32	1	0.1	
627	629.00	10.32		0.1	
628	630.00	10.32		0.1	
629	631.00	10.32		0.1	
630	632.00	10.32		0.1	
631	633.00	10.32		0.1	
632	634.00	10.32		0.1	
633	635.00	10.32		0.1	
634	636.00	10.32		0.1	
635	637.00	10.33		0.1	
636	638.00	10.66	· I	0.4	
637	639.00	10.35	0.15	. 0.1	
				· · · · · · · · · · · · · · · · · · ·	

PUMPING WELL 1034


OBSERVATION WELL 1002

DRAWDOWN AND RECOVERY DATA ANALYSES

MACTEC-ERS 2597 B 3/4 Road	Pumping test analysis Time-Drawdown plot with discharge	Project: UGW - Grand Junction, CC	
Grand Junction, CO 81503 970/248-6040	, , , , , , , , , , , , , , , , , , ,	Evaluated by: RJH Date: 11/19/98	
Pumping Test No. 1034 Aquifer Tes	t Test conducte	ed on: 09/28/98	
Observation Well 1002		-	
Discharge 4.00 U.S.gal/min			

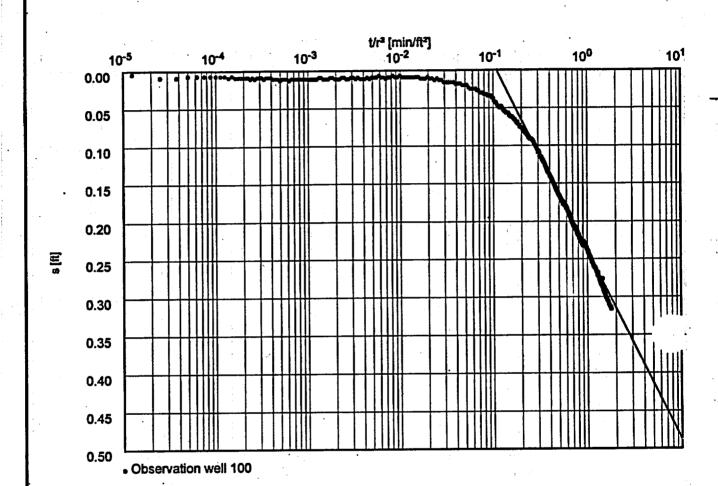
10020A2.HYT, Page 1 MACTEC-ERS Pumping test analysis 2597 B 3/4 Road Theis analysis method Project: UGW - Grand Junction, CO Unconfined aquifer Grand Junction, CO 81503 970/248-6040 Evaluated by: RJH Date: 11/19/98 Pumping Test No. 1034 Aquifer Test Test conducted on: 09/28/98 **Observation Well 1002** Discharge 4.00 U.S.gal/min

Transmissivity [ft²/min]: 3.79 x 10⁻¹

545.76 ft2/day

Hydraulic conductivity [ft/min]: 6.32 x 10⁻² 91. 01 Alday

Aquifer thickness [ft]: 6.00


Pumping test analysis Distance-Time-Drawdown-method after COOPER & JACOB Unconfined aquifer

10020A2:HYT, Page 1

Project: UGW - Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Test conducted on: 09/28/98 Pumping Test No. 1034 Aquifer Test **Observation Well 1002** Discharge 4.00 U.S.gal/min

Aquifer thickness [ft]: 6.00

Pumping test analysis Theis analysis method Unconfined aquifer 10020A2.HYT, Page 2

Project: UGW - Grand Junction, CO

e ii

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Aquifer Test

Observation Well 1002

Observation well 1002

Test conducted on: 09/28/98

Discharge 4.00 U.S.gal/min

	Pumping test duration	Water level	Drawdown ·	Corrected drawdown
_	[min]	[ft]	[ft]	[ft]
2	0.01	11.03	0.00	0.0
3	0.01	11.04	0.01	0.0
4	0.02	11.04	0.01	
5	0.02	11.04	0.01	0.0
6	0.03	11.04	0.01	0.0
7	0.03	11.04	0.01	0.0
8	0.04	11.04	0.01	0.0
9	0.04	11.04	0.01	0.0
10	0.05	11.04	0.01	0.0
11	0.05	11.04	0.01	0.0
12	0.06	11.04	0.01	0.0
13	0.06	11.04	0.01	0.0
4	0.07	11.04	0.01	0.0
15	0.07	11.04	0.01	0.0
6	0.08	11.04	0.01	0.0
7	0.08	11.04	0.01	0.0
8	0.09	11.04	0.01	0.0
9	0.09	11.04	0.01	0.0
20	0.10	11.04	0.01	0.0
21	0.10	11.04	0.01	0.0
22	0.11	11.04	0.04	0.0
3	0.11	11.04	0.01	0.0
4	0.12	11.04	0.01	0.0
5	0.13	11.04	0.01	0.0
6	0.13	11.04	0.01	0.0
7	0.14	11.04	0.01	0.0
8	0.15	11.04	0.01	0.0
9	0.16	11.04	0.01	0.0
0	0.17	11.04	0.01	0.0
1	0.18	11.04	0.01	0.0
2	0.19	11.04	0.01	0.0
3	0.20	11.04	0.01	0.0
4	0.21	11.04	0.01	0.0
5	0.22	11.04	0.01	0.0
6	0.24	11.04	0.01	0.0
7	0.25	11.04	0.01	0.0
8	0.26	11.04	0.01	0.0
9	0.28	11.04	0.01	0.0
0	0.30	11.04	0.01	0.0
1	0.31	11.04	0.01	0.0
2	0.33	11.04	0.01	0.0
3	0.35	11.04	0.01	0.0
4	0.37	11.04	0.01	0.0
5	0.40	11.04	0.01	0.0
6	0.42	11.04	0.01	0.0
7	0.44	11.04	0.01	0.0
8	0.47	11.04	0.01	0.0
9	0.50	11.04	0.01	0.0
0	0.52	11.04	0.01	0.0

Pumping test analysis Theis analysis method Unconfined aquifer

10020A2.HYT, Page 3

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Aquifer Test Test conducted on: 09/28/98 **Observation Well 1002** Observation well 1002 Discharge 4.00 U.S.gal/min Distance from the pumping well 20.00 ft

	Pumping test duration Water level Drawdown			Corrected
	,		D. G. G. G. G. G. G. G. G. G. G. G. G. G.	
•	[min]	[ft]	701	drawdown
51	0.55	11.04	[ft]	[ft]
52	0.59	11.04	0.01	0
53	0.62	11.04	0.01	0
54	0.66	11.04	0.01	0
55	0.70	11.04	0,01	0
56	0.74	11.04	0.01	0
57	0.78	11.04	0.01	0
58	0.03	11.04	0.01	0
59	0.88	11.04	0.01	. 0
60	0.03	77.87	0.01	0
61	0.98	11.04	0.01	0
62	1.04		0.01	0
63	1.10	11.04	0.01	. 0
64	1.17	11.04	0.01	0
65	1.24		0.01	0
68	1.31	11.04	0.01	٠ 0
67	1.39	11.04	0.01	0
68	1.47	11.04	0.01	0
69	1.56	11.04	0.01	0
70		11.04	0.01	0
71	1.65	11.04	0.01	0
72	1.75	11.04	0.01	0
73	1.86 1.97	11.04	0.01	0
74	2.08	11.04	0.01	0
75		11.04	0.01	0
76	2.21	11.04	0.01	0
77	2.34	11.04	0.01	0
78		, 11.04	0.01	0
79	2.63	11.04	0.01	0
80	2.79	11.04	0.01	0
81		11.04	0.01	0
82	3.13	11.04	0.01	0
83	3.32	11.04	0.01	0
84	3.51 3.72	11.04	0.01	. 0.
85	3.95	11.04	0.01	0
86	4.18	11.04	0.01	0.
87		11.04	0.01	0.
88	4.43	11.04	0.01	. 0.
89	4.69	11.04	0.01	0
90	4.97	11.04	0.01	0.
91	5.27	11.04	0.01	0.
	5.58	11.04	0.01	0.
92 93	5.91	11.04	0.01	0.
93	6.27	11.04	0.01	0.
95	6.64	11.04	0.01	0.
96	7.03	11.04	0.01	<u> </u>
	7:45	11.04	0.01	O.
97 98	7.90	11.04	0.01	0.
	8.37	11.04	0.01	0.
99	8.86	11.04	0.01	0.
00	9.39	11.04	0.01	0.

Pumping test analysis
Theis analysis method
Unconfined aquifer

10020A2.HYT, Page 4

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1002

Observation well 1002

Discharge 4.00 U.S.gal/min

	Pumping test duration	Water level	Drawdown Corrected	
				drawdown
-	[min]	[ft]	[ft]	[ft]
101	9.95	11.04	0.01	0.0
102	10.54	11.04	0.01	0.0
103	11.17	11.04	0.01	0.0
104	11.83	11.05	0.02	0.0
105	12.53	11.05	0.02	0.0
106	13.28	11.05	0.02	0.0
107	14.07	11.05	0.02	0.0
108	14.91	11.05	0.02	0.0
109	15.79	11.05	0.02	0.0
110	16.73	11.05	0.02	0.0
111	17.72	11.05	0.02	0.0
112	18.72	11.05	0.02	0.0
113	19.72	11.05	0.02	0.0
114 115	20.72	11.05	0.02	0.0
116	21.72	11.05	0.02	0.0
117	22.72	11.05	0.02	0.0
118	24.72	11.05	0.02	0.0
119	25.72	11.05 11.05	0.02	0.0
120	26.72	11.06	0.02	0.0
121	27.72	11.06	0.03	0.0
122	28.72	11.06	0.03	0.0
123	29.72	11.06	0.03	0.0
124	30.72	11.06	0.03	0.03
125	31.72	11.06	0.03	0.03
126	32.72	11.06	0.03	0.03
127	33.72	11.06	0.03	0.03
128	34.72	11.06	0.03	0.03
129	35.72	11.06	0.03	0.03
130	36.72	11.06	0.03	0.03
31	37.72	11.06	0.03	0.03
32	38.72	11.07	0.04	0.04
33	39.72	11.07	0.04	0.0
34	40.72	11.07	0.04	0.04
35	41.72	11.07	0.04	0.04
36	42.72	11.07	0.04	0.04
37	43.72	11.08	0.05	0.03
38	44.72	11.08	0.05	0.0
39	45.72	11.08	0.05	0.03
40	46.72	11.08	0.05	0.03
41	47.72	11.08	0.05	0.03
42	48.72	11.08	0.05	0.08
43	49.72	11.08	0.05	0.09
44.	50.72	11.08	0.05	0.05
45	51.72	11.08	0.05	0.0
46 47	52.72	11.09	0.06	0.0
	53.72	11.09	0.06	0.03
48	54.72	11.09	0.06	0.06
50	55.72	11.09	0.06	0.06
30	.56.72	11.09	0.06	0.08

Pumping test analysis Theis analysis method Unconfined aquifer 1002OA2.HYT, Page 5

Project: UGW - Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Aquifer Test

Observation Well 1002

Discharge 4.00 U.S.gal/min

Test conducted on: 09/28/98

Observation well 1002

Distance from the pumping well 20.00 ft

	Pumping test duration	Water level	Drawdown	Corrected drawdown
	[min]	[ft]	[ft]	[ft]
51	57.72	11.09	0.06	0.0
52	58.72	11.09	0.06	0.0
53	59.72	11.09	0.06	0.0
54	60.72	11.09	0.06	0.0
55	61.72	11.09	0.06	0.0 0.0
56	62.72	11.09	0.06	0.0
57	63.72	11.09	0.06	0.0
58	64.72	11.09	0.06	0.0
59	65.72	11.09	0.06	0.0
60	66.72	11.10	0.07	0.0
61	67.72	11.10	0.07	0.0
62	68.72	. 11.10	0.07	0.0
63	69.72	11.10	0.07	0.0
64	70.72	11.10	0.07	0.0
65	. 71.72	11.10	0.07	0.0
66	77.72	11.10	0.07	0.0
67	3.72	11.10	0.07	0.0
168	74.72	11.10	0.07	. 0. (
169	75.72	11.30	0.07	0.0
170	76.72	11.11	0.08	0.0
171	77.72	11.11	0.08	0.0
172	78.72	11.11	0.08	<u> </u>
173	79.72	11.11	0.08	0.0
174	80.72	11.11	0.08	0.
175	81.72 82.72	11.11	0.08	0.
176		11.11	0.08	0.
177	83.72 84.72	11.11	0.08	0.
178	85.72	11.11	0.08	Ō.
179	86.72	11.11	0.08	0.
180 181	87.72	11.11	0.08	0.
182	88.72	11.12	0.09	Ō.
183	89.72	11.12	0.09	<u> </u>
184	90.72	11.12	0.09	0.
185	91.72	11.12	0.09	0.
186	92.72	11.12	0.09	O.
187	93.72	11.12	0.09	0.
188	94.72	11.12	0.09	0.
189	95.72	11.12	0.09	0.
190	96.72	11.12	0.09	0.
191	97.72	11.12	0.09	0.
192	98.72	11.12	0.09	0.
193	99.72	11.12	0.09	0.
194	100.72	11.12	0.09	0.
195	101.72	11.12	0.09	7
196	102.72	11.12	0.09	0
197	103.72	11.12	0.09	0
198	104.72	11.12	0.09	0
199	105.72	11.12	0.09	0
200	106.72	11.13	0.10	0

Pumping test analysis: Theis analysis method Unconfined aquifer 1002OA2.HYT, Page 6

Project: UGW -- Grand Junction, CO

i ii

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Aquifer Test

Observation Well 1002

Observation well 1002

Test conducted on: 09/28/98

Discharge 4.00 U.S.gal/min

	Pumping test duration	Water level	Drawdown	Corrected drawdown
	[min]	[ft]	(ft)	[ft]
201	107.72	11.13	0.10	0.1
202	108.72	11.13	0.10	0.1
203	109.72	11.13	0.10	0.1
204	110.72	11.13	0.10	0.1
205	111.72	11.13	0.10	0.1
206.	112.72	11.13	0.10	0.1
207	113.72	11.13	0.10	0.1
208	114.72	11.13	0.10	0.1
209	115.72	11.13	0.10	0.1
10	116.72	11.14	0.11	0.1
211	117.72	11.14	0.11	0.1
12	118.72	11.14	0.11	0.1
13	119.72	11.14	0.11	0.1
14	120.72	11.14	0.11	0.1
16	121.72	11.14	0.11	0.1
17	122.72	11.14	0.11	0.1
18	123.72	11.15	0.12	0.1
19	124.72 125.72	11.15	0.12	0.1
20	126.72	11.15	0.12	0.1
21	120.72	11.15 11.15	0.12	0.1
22	128.72		0.12	0.1
23	129.72	11.15 11.15	0.12	0.1
24	130.72	11.15	0.12	0.1
25	131.72	11.15	0.12	0.1
26 26	132.72	11.15	0.12	0.1
27	133.72	11.15	0.12	0.1 0.1
28	134.72	11.15	0.12	0.1
29	135.72	11.15	0.12	0.1
30	136.72	11.15	0.12	0.1
31	137.72	11.15	0.12	0.1
32	138.72	11.15	0.12	0.1
33	139.72	11.15	0.12	0.1
34	140.72	11.16	0.13	0.1
35	141.72	11.16	0.13	0.1
36	142.72	11.16	0.13	0.1
37	143.72	11.16	0.13	0.1
38	144.72	11.16	0.13	0.1
39	145.72	11.16	0.13	0.1
40	146.72	11.16	0.13	0.1
41	147.72	11.16	0.13	0.1
42	148.72	11.16	0.13	0.1
43	149.72	11.17	0.14	0.1
44	150.72	11,17	0.14	0.1
45	151.72	: 11.17	0.14	0.1
46	. 152.72	11.17	0.14	0.1
47	153.72	11.17	0.14	0.1
48	154.72	11.17	0.14	0.1
49	155.72	11.17	0.14	0.1
50	156.72	11.17	0.14	0.1

Pumping test analysis: Theis analysis method Unconfined aquifer 1002OA2.HYT, Page-7:

Project: UGW - Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Aquifer Test:

Test conducted on: 09/28/98

Observation Well 1002

Observation well 1002

Discharge 4.00 U.S.gal/min

Distance from the pumping well 20.00 ft

Static water level: 11.03 ft below datum

Pu	mping test duration	Water level	Drawdown	Corrected drawdown
	[min]	[ft]	[ft]	[ft]
251	157.72	11.17	0.14	0.
252	158.72	11.17	0.14	0.
253	159.72	11.17	0.14	0.
254	160.72	. 11.17	0.14	0.
255	181.72	11.17	0.14	0.
256	162.72	11.17	0.14	0.
257	163.72	11.18	0.15	0.
258	164.72	11.18	0.15	0.
259	165.72	11.18	0.15	0.
260	166.72	11.18	0.15	0.
261	167.72	11.18	0.15	0.
262	168.72	11.18	0.15	0.
263	169.72	11.18	0.15	0.
264	170.72	11.18	0.15	0.
265	171.72	11.18	0.15	0.
266	172.72	11.18	0.15	0.
267	173.72	11.18	0.15	0.
268	174.72	11.18	0.15	0.
269	175.72	11.18	0.15	0.
270	176.72	11.18	0.15	0.
271	177.72	11.18	0.15	0.
272	178.72	11.18	0.15	0.
273	179.72	11.19	0.16	0.
274	180.72	11.19	0.16	0.
275	181.72	11.19	0.16	0.
276	182.72	11.19	0.16	0.
277	183.72	11.19	0.16	0.
278	184.72	11.19	0.16	0
279	185.72	11.19	0.16	0
280	186.72	11.19	0.16	0
281	187.72	11.19	0.16	0
282	188.72	11.19	0.16	0
283	189.72	11.19	0.16	0
284	190.72	11.19	0.16	0
285	191.72	11.19	0.16	0
286	192.72	11.19	0.16	0
287	193.72	11.20	0.17	
288	194.72	11.20	0.17	0
289	195.72	11.20	0.17	0
290	196.72	11.20	0.17	0
291	197.72	11.20	0.17	0
292	198.72	11.20	0.17	0
293	199.72	11.20	0.17	0
294	200.72	11.20	0.17	7
295	201.72	11.20	0.17	0
296	202.72	11.20	0.17	0
297	203.72	11.20	0.17	0
298	204.72	11.20	0.17	C
299	205.72	11.20	0.17	
300	206.72	11.20	0.17	C

Pumping test analysis: Theis analysis method Unconfined aquifer 10020A2:HYT, Page 8

Project: UGW - Grand Junction, CO

E is

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1002

Observation well 1002

Discharge 4.00 U.S.gal/min

	Pumping test duration	Water level	Drawdown	Corrected ·
				drawdown
	[min]	(ft)	[ft]	[ft]
301	207.72	11.20	0.17	0.17
302	208.72	11.20	0.17	0.17
303	209.72	11.20	0.17	0.17
304	210.72	11.20	0.17	0.17
305	211.72	11.21	0.18	0.17
306	212.72	11.21	0.18	0.17
307	213.72	11.21	0.18	0.17
308	214.72	11.21	0.18	0.17
309	215.72	11.21	0.18	0.17
310	216.72	11.21	0.18	0.17
311	217.72	.11.21	0.18	0.17
312	218.72	11.21	0.18	0.18
313	219.72	11.21	0.18	0.18
314	220.72	11.21	0.18	0.18
315	221.72	11.21	0.18	0.17
316	222.72	11.21	0.18	0.17
317 318	223.72	11.21	0.18	0.18
319	224.72	11.21	0.18	0.18
320	225.72 · 226.72	11.21	0.18	0.18
321	227.72	11.21 11.21	0.18	0.18
322	228.72	11.21	0.18	0.18
323	229.72	11.21	0.18 0.18	0.18
324	230.72	11.21	0.18	0.18
325	231.72	11.21	0.18	0.18 0.18
326	232.72	11.21	0.18	0.18
327	233.72	11.21	0.18	0.18
328	234.72	11.21	0.18	0.18
329	235.72	11.21	0.18	0.18
330	236.72	11.21	0.18	0.18
331	237.72	11.22	0.19	0.18
332	238.72	11.21	0.18	0.18
333	239.72	11.21	0.18	0.18
334	240.72	11.22	0.19	0.18
335	241.72	11.22	0.19	0.18
336	242.72	11.22	0.19	0.18
337	243.72	,11.22	0.19	0.18
338	244.72	11.22	0.19	0.18
339	245.72	11.22	0.19	0.19
340	246.72	11.22	0.19	0.19
41	247.72	11.22	0.19	0.19
342 343	248.72	11.22	0.19	0.19
44	249.72	11.22	0.19	0.19
44 45	250.72	11.22	0.19	0.19
945 146	251.72	11.22	0.19	0.19
46 47	252.72 253.72	11.22	0.19	0.19
48	253.72	11.22	0.19	0.19
49	254.72	11.22	0.19	0.19
50	255.72	11.22 11.22	0.19 0.19	0.19 0.19

Pumping test analysis
Theis analysis method Unconfined aquifer

1002OA2.HYT, Page 9

Distance from the pumping well 20.00 ft

Project: UGW - Grand Junction, CC

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Aquifer Test Test conducted on: 09/28/98 Observation well 1002 **Observation Well 1002**

Discharge 4.00 U.S.gal/min

	water level: 11.03 ft below dat			
	Pumping test duration	Water level	Drawdown	Corrected
	,			drawdown
	[min]	[ft]	[ft]	[ft]
351	257.72	11.23	0.20	0.
352	258.72	11.23	0.20	0.
353	259.72	11.22	0.19	0.
354	260.72	11.23	0.20	0.
355	261.72	11.23	0.20	0.
356	262.72	11.23	0.20	0.
357	263.72	11.23	0.20	0.
358	264.72	11.23	0.20	· 0.
359	265.72	11.23	0.20	· 0.
360	266.72	11.23	0.20	0.:
361	267.72	11.23	0.20	0.
362	268.72	11.23	0.20	0.
363	269.72	11.23	0.20	0.:
364	270.72	11.23	0.20	0.:
365	271.72	11.23	0.20	0.:
366	272.72	11.23	0.20	0.:
367	273.72	11.24	0.21	0.
368	274.72	11.23	0.20	0.
369	275.72	11.24	0.21	0.
370	276.72	11.24	0.21	0.
371	277.72	11.24	0.21	O.
372	278.72	11.24	0.21	0.
373	279.72	11.24	0.21	O.
374	280.72	11.24	0.21	0.
375	281.72	11.24	0.21	0.
376	282.72	11.24	0.21	0.
377	283.72	11.24	0.21	0.
378	284.72	11.24	0.21	0.
379	285.72	11.24	0.21	<u> </u>
380	286.72	11.24	0.21	0.
381	287.72	11.24	0.21	0
382	288.72	11.24	0.21	· · · · · · · · · · · · · · · · · · ·
383	289.72	11.24	0.21	Λ
384	290.72	11.24	0.21	0.
385	291.72	11.24	0.21	0
386	292.72	11.24	0.21	0.
387	293.72	11.24	0.21	0
388	294.72	11.24	0.21	0
389	295.72	11.24	0.21	- 0
390	296.72	11.24	0.21	0
391	297.72	11.24	0.21	0
392	298.72	11.24	0.21	0
393	299.72	11.24		
394	300.72	11.24	0.21	0
			0.21	0
395	301.72	11.24	0.21	0
396	302.72	11.24	0.21	0
397	303.72	11.25	0.22	0
398	304.72	11.24	0.21	. 0
399	305.72	11.25	0.22	0
400	306.72	11.25	0.22	0.

Pumping test analysis Theis analysis method Unconfined aquifer 10020A2.HYT, Page 10

Project: UGW - Grand Junction, CO

Evaluated by: RJH 'Date: 11/19/98

Pumping Test No. 1034 Aquifer Test Test conducted on: 09/28/98

Observation Well 1002 Observation well 1002

Discharge 4.00 U.S.gal/min Distance from the pumping well 20.00 ft

	Pumping test duration	Water level	Drawdown	Corrected
	İ			drawdown
	(min)	(ft)	[ft]	frd.
401	307.72	11.25	0.22	0.
402	308.72	11.25	0.22	0.3
403	309.72	11.25	0.22	0.2
404	310.72	11.25	0.22	0.2
405	311.72	11.25	0.22	. 0.2
406	312.72	11.25	0.22	0.2
407	313.72	11.25	0.22	0.2
408	314.72	11.25	0.22	0.2
409	315.72	11.25	0.22	0.2
410	316.72	11.25	0.22	0.2
411	317.72	11.25	0.22	0.2
412	318.72	. 11.25	0.22	0.2
413	319.72	11.25	0.22	0.2
414	320.72	11.25	0.22	0.2
415	321.72	11.25	0.22	0.2
416	322.72	11.25	0.22	0.2
417.	323.72	11.25	0.22	0.2
418	324.72	11.25	0.22	0.2
419	325.72	11.25	0.22	0.2
420	326.72	11.26	0.23	0.2
421	327.72	11.25	0.22	0.2
422	328.72	11.25	0.22	0.2
423	329.72	11.26	0.23	0.2
424	330.72	11.26	0.23	0.2
425	331.72	11.26	0.23	0.2
426	332.72	11.26	0.23	0.2
427	333.72	11.26	0.23	0.2
428	334.72	11.26	0.23	0.2
429	335.72	. 11.26	0.23	0.2
430	336.72	11.26	0.23	0.2
431	337.72	11.26	0.23	0.2
432	338.72	11.26	0.23	0.2
433	339.72	11.26	0.23	0.2
434	340.72	11.26	0.23	0.2
435	341.72	11.26	0.23	0.2
436	342.72	11.26	0.23	0.2
437	343.72	11.26	0.23	0.2
438	344.72	11.26	0.23	0.2
439	345.72	11.26	0.23	0.2
440	346.72	11.26	0.23	0.2
441	347.72	11.26	0.23	0.2
442	348.72	11.26	0.23	0.2
443	349.72	11.26	0.23	0.2
444	350.72	11.26	0.23	0.2
145	351.72	11.26	0.24	0.2
446	352.72	11.26	0.24	0.2
47	353.72	11.26	0.24	0.2
148	354.72	11.26	0.24	0.2
149	355.72	11.26	0.24	0.2
50	356.72	11.26	0.24	0.2

Pumping:testanalysis
Theis analysis method Unconfined aquifer

10020A2.HYT, Page 11

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1002

Observation well 1002

Discharge 4.00 U.S.gal/min

Pu	Pumping test duration				Corrected drawdown
	[min]	[ft]	[ft]	[ft]	
151	357.72	11.27	0.24	0.2	
152	358.72	11.26	0.23	0.2	
153	359.72	11.26	0.23	0.2	
154	360.72	11.26	0.23	0.2	
155	361.72	11.26	0.23	0.2	
156	362.72	11.28	0.23	0.2	
157	363.72	11.26	0.23	0.2	
158	364.72	11.26	0.23	0.2	
459	365.72	11.26	0.23	0.2	
460	366.72	11.26	0.23	0.2	
461	367.72	11.26	0.23	0.2	
462	368.72	. 11.26	0.23	0.2	
463	369.72	11.26	0.24	0.2	
464	370.72	11.26	0.23	0.2	
465	371.72	11.26	0.24	0.2	
468	372.72	11.26	0.24	0.2	
467	373.72	11.26	0.24	0.2	
468	374.72	11.26	0.24	0.2	
469	375.72	11.27	0.24	0.2	
470	376.72	11.26	0.24	0.2	
471	377.72	11.27	0.24	0.2	
472	378.72	11.27	0.24	0.2	
473	379.72	11.27	0.24	0.2	
474	380.72	11.27	0.24	0.2	
475	381.72	11.27	0.24	0.2	
476	382.72	11.27	0.24	. 0.2	
477	383.72	11.27	0.24	0.2	
478	384.72	11.27	0.24	0.2	
479	385.72	11.27	0.24	0.2	
	386.72	11.27	0.24	0.3	
480	387.72	11.27	0.24	0.3	
481	388.72	11.27	0.24	0.2	
482		11.27	0.24	0.2	
483	389.72	11.27	0.24	0.	
484	390.72	11.27	0.24	0.:	
485	391.72	11.27	0.24	0.:	
486	392.72	11.27	0.24	0.	
487	393.72	11.27	0.24	0	
488	394.72	11.27	0.24	<u> </u>	
489	395.72	11.27	0.24		
490	396.72	11.27	0.24	0.	
491	397.72		0.24	0.	
492	398.72	11.27	0.24	0.	
493	399.72	11.27		5.	
494	400.72	11.27	0.24	<u> </u>	
495	401.72	11.28	0.25		
496	402.72	. 11.28	0.25	0.	
497	403.72	11.28	0.25	0.	
498	404.72	11.28	0.25	av	
499	405.72	11.27	0.24	0.	
500	406.72	11.28	0.25	0.	

Pumping test analysis Theis analysis method Unconfined aquifer

1002OA2.HYT, Page 12

Project: UGW - Grand Junction, CO

k ki

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Aquifer Test Test conducted on: 09/28/98

Observation Well 1002 Observation well 1002

Discharge 4.00 U.S.gal/min Distance from the pumping well 20.00 ft

	Pumping test duration	ng test duration Water level Drawdown		Corrected
	[min]	[ft]	[ft]	drawdown [ft]
501	407.72	11.28	0.25	0.2
502	408.72	11.28	0.25	0.2
03	409.72	11.28	0.25	0.2
04	410.72	11.28	0.25	0.2
05	411.72	11.28	0.25	0.2
06	412.72	11.28	0.25	0.2
07	413.72	11.28	0.25	0.2
808	414.72	11.28	0.25	0.2
09	415.72	11.28	0.25	0.2
10	416.72	11.28	0.25	0.2
11	417.72	11.28	0.25	0.2
12	418.72	. 11.28	0.25	0.2
13	419.72	11.28	0.25	0.2
14	420.72	11.28	0.25	0.2
15	421.72	11.28	0.25	0.2
16	422.72	11.28	0.25	0.2
17	423.72	11.28	0.25	0.2
18	424.72	11.28	0.25	0.2
19	425.72	11.28	0.25	0.2
20	426.72	11.28	0.25	0.2
21	427.72	11.28	0.25	0.2
22	428.72	11.28	0.25	0.2
23	429.72	11.28	0.25	0.2
24	430.72	11.29	. 0.26	0.2
25	431.72	11.28	0.25	0.2
26	432.72	11.29	0.26	0.2
27	433.72	11.29	0.26	0.2
28	434.72	11.29	0.26	0.2
29	435.72	11.29	0.26	0.2
30	436.72	· 11.29	0.26	. 0.2
31	437.72	11.29	0.26	0.2
32	438.72	11.29	0.26	0.2
33	439.72	11.29	0.26	0.2
34	440.72	: 11.29	0.26	0.2
35	441.72	11.29	0.26	0.2
36	442.72	11.29	0.26	0.2
37	443.72	11.29	0.26	0.2
88	444.72	11.29	0.26	0.2
9	445.72	11.29	0.26	0.2
0	446.72	11.29	0.26	0.2
1	447.72	11.29	0.26	0.2:
2	448.72	11.29	0.26	0.23
3	449.72	11.29	0.26	0.23
4	450.72	. 11.29	0.26	0.23
5	451.72	11.29	0.26	0.23
6	. 452.72	11.29	0.26	0.23
7	453.72	11.29	0.26	0.23
8	454.72	11.29	0.26	0.26
9	455.72	11.29	0.26	0.26
0	456.72	11.29	0.26	0.26

Pumping test analysis
Theis analysis method
Unconfined aquifer

1002OA2.HYT, Page 13

Project: UGW - Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Aquifer Test

Observation Well 1002

Discharge 4.00 U.S.gal/min

Test conducted on: 09/28/98

Observation well 1002

Distance from the pumping well 20.00 ft

	Pumping test duration	Water level	Drawdown	Corrected drawdown
٠. ا	[min]	[ft]	[ft] <u>.</u>	[ft]
551	457.72	11.29	0.26	0.2
52	458.72	11.29	0.26	0.2
53	459.72	. 11.29	0.26	0.2
54	460.72	11.29	0.26	0.2
555	461.72	11.29	0.28	0.2
556	462.72	11.29	0.26	0.2
57	463.72	11.29	0.26	0.2
558	464.72	11.29	0.26	0.2
559	465.72	11.29	0.26	0.2
60	466.72	11.29	0.26	0.2
581	467.72	11.29	0.26	0.2
62	468.72	11.30	0.27	0.2
63	469.72	11.30	0.27	0.2
64	470.72	11.29	0.26	0.2
65	471.72	11.30	0.27	0.2
66	472.72	11.30	0.27	0.2
67	473.72	11.30	0.27	0.:
568	474.72	11.30	0.27	0.3
569	475.72	11.30	0.27	0.
570	476.72	11.30	0.27	0.:
571	477.72	11.30	0.27	0.
572	478.72	11.30	0.27	0.:
573	479.72	11.30	0.27	0.:
574	480.72	11.30	0.27	0.
575	481.72	11.30	0.27	0.
576	482.72	11.30	0.27	0.
577	483.72	11.30	0.27	0.
578	484.72	11.30	0.27	0.
579	485.72	11.30	0.27	0.
580	486.72	11.30	0.27	0.
581	487.72	11.30	0.27	0.
582	488.72	11.30	0.27	0.
583	489.72	11.30	0.27	0.
584	490.72	11.30	0.27	0.
585	491.72	11.30	0.27	0.
586	492.72	11.30	0.27	0.
587	493.72	11.30	0.27	0.
588	494.72	11.30	0.27	0.
589	495.72	11.30	0.27	0.
590	496.72	11.30	0.27	0.
591	497.72	11.30	0.27	0
592	498.72	11.30	0.27	0
593	499.72	11.30	0.27	0
594	500.72	11.30	0.27	
595	501.72	11.30	0.27	 0
596	502.72	11.30	0.27	0
597 597	503.72	11.30	0.27	0
598	504.72	11.30	0.27	0
599 599	505.72	11.30	0.27	
599	506.72	11.31	0.28	0

Pumping test analysis Theis analysis method Unconfined aquifer 1002OA2.HYT, Page 14

Project: UGW - Grand Junction, CO

L

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation well 1002

Observation Well 1002

Discharge 4.00 U.S.gal/min

Distance from the pumping well 20.00 ft

Static water level: 11.03 ft below datum

	Pumping test duration	Water level	Drawdown	Corrected drawdown
	[min]	fan fan		
504		[ft]	[ft]	[ft]
601	507.72	11.31	0.28	0.2
602	508.72	11.31	0.28	0.2
603	509.72	11.31	0.28	0.2
604	510.72	11.31	0.28	0.2
605	511.72	11.31	0.28	0.2
606	512.72	11.31	0.28	0.2
607	513.72	11.31	0.28	0.2
608	514.72	11.31	0.28	0.2
609	515.72	11.31	0.28	0.2
610	516.72	11.31	0.28	0.2
611	517.72	11.31	0.28	0.2
612	518.72	11.30	0.27	0.2
613	519.72	11.31	0.28	0.2
614	520.72	11.31	0.28	0.2
615	524.72	11.31	0.28	• 0.2
616	522.72	11.31	0.28	0.2
617	523.72	11.31	0.28	0.2
618	524.72	11.31	0.28	0.2
619	525.72	11.31	. 0.28	0.2
620	526.72	11.31	0.28	0.2
621	527.72	11.31	0.28	0.2
622	528.72	11.31	0.28	0.2
623	529.72	11.31	0.28	0.2
624	530.72	11.31	0.28	0.2
625	531.72	11.31	0.28	
626	532.72	11.31	0.28	0.2
627	533.72	11.31		0.2
628	534.72		0.28	0.2
629	535.72	11.31	0.28	0.2
530		11.32	0.29	0.2
631	536.72	11.32	0.29	0.2
	537.72	11.32	0.29	0.2
632	538.72	11.32	0.29	0.2
633	539.72	11.32	0.29	0.2
634	540.72	11.32	0.29	0.2
635	541.72	11.32	0.29	0.2
636	542.72	11.32	0.29	0.2
637	543.72	11.32	0.29	0.2
638	544.72	11.32	0.29	0.2
639	545.72	11.32	0.29	0.2
540	546.72	11.32	0.29	0.2
641	547.72	11.32	0.29	0.2
542	548.72	11.32	0.29	0.2
543	549.72	11.32	0.29	0.2
544	550.72	11.32	0.29	0.2
645	551.72	11.32	0.29	0.2
546	552.72	11.32	0.29	0.2
547	553.72	11.32	0.29	0.2
548	554.72	11.32	0.29	0.2
549	555.72	11.32	0.29	0.2
550	556.72	11.32	0.29	0.2

Pumping test analysis Theis analysis method Unconfined aquifer

1002OA2.HYT, Page 15

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Aquifer Test

Observation Well 1002

Discharge 4.00 U.S.gal/min

Test conducted on: 09/28/98

Observation well 1002

Distance from the pumping well 20.00 ft

	Pumping test duration Water level		Drawdown	Corrected
				drawdown
٠	(min)	[ft]	(ft)	[ft]
651	557.72	11.32	0.29	0.2
652	558.72	11.32	0.29	0.2
653	559.72	11.32	. 0.29	0.2
654	560.72	11.32	0.29	0.2
655	561.72	11.32	0.29	0.2
656	562.72	11.32	0.29	0.2
657	563.72	11.32	. 0.29	0.2
658	. 564.72	11.32	0.29	. 0.2
659	565.72	11.32	0.29	0.2
660	566.72	11.32	0.29	0.2
661	567.72	11.32	0.29	0.2
662	568.72	11.32	0.29	0.2
663 664	569.72	11.32	0.29	0.2
665	570.72	11.32	0.29	0.2
666	571.72	11.32	0.29	0.28
667	572.72 573.72	11.32	0.29	0.2
668	574.72	11.32	0.29	0.2
669	575.72	11.32 11.32	0.29	0.20
670	576.72	11.32	0.29	0.29
671	577.72	11.32	0.29	0.2
672	578.72	11.31	0.29	0.29
673	579.72	11.32	0.28	0.28
674	580.72	11.32	0.29	0.29
675	581.72	11.33	0.29 0.30	0.29
676	582.72	11.33	0.30	0.29
677	583.72	11.33	0.30	0.29 0.29
678	584.72	11.33	0.30	0.29
679	585.72	11.32	0.30	0.29
680	586.72	11.33	0.30	0.29
681	587.72	11.33	0.30	0.29
682	588.72	11.33	0.30	0.29
683	589.72	11.33	0.30	0.20
684	590.72	11.33	0.30	0.29
685	591.72	11.33	0.30	0.29
686	592.72	11.33	0.30	0.29
687	593.72	11.33	0.30	0.29
688	594.72	11.33	0.30	0.29
689	595.72	11.33	0.30	0.29
690	596.72	11.33	0.30	0.29
691	597.72	11.33	0.30	0.29
692	598.72	11.33	0.30	0.29
693	599.72	11.33	0.30	0.29
694	600.72	11.33	0.30	0.29
695	601.72	11.33	0.30	0.29
696	602.72	11.33	0.30	0.29
697	603.72	11.33	0.30	0.29
698	604.72	11.33	0.30	0.29
699	605.72	11.33	0.30	0.29
700	606.72	11.33	0.30	0.29

Pumping test analysis Theis analysis method Unconfined aquifer

1002OA2.HYT, Page 16

Project: UGW - Grand Junction, CO

Lit

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1002

Observation well 1002

Discharge 4.00 U.S.gal/min

	Pumping test duration	Water level	Drawdown	Corrected
	[min]	[ft]	[ft]	drawdown [ft]
701	607.72	11.33	0.30	0.2
702	608.72	11.33	0.30	0.2
703	609.72	11.33	0.30	0.3
704	610.72	11.33	0.30	0.3
705	611.72	11.33	0.30	0.3
706	612.72	11.33	0.30	0.3
707	613.72	11.33	0.30	0.3
708	614.72	11.33	0.30	0.3
709	615.72	11.33	0.30	0.3
710	616.72	11.34	0.31	0.3
711	· 617.72	11.34	0.31	0.3
712	618.72	11.33	0.30	0.3
713	619.72	11.33	0.30	0.3
714	620.72	11.34	0.31	0.3
715	621.72	11.34	0.31	0.3
716	622.72	11.34	0.31	0.3
717	623.72	11.34	0.31	0.3
718	624.72	11.34	0.31	0.3
719	625.72	11.34	0.31	0.3
/20	626.72	11.34	0.31	0.3
721	627.72	11.34	0.31	0.3
22	628.72	11.34	0.31	0.3
23	629.72	11.34	0.31	· 0.3
24	630.72	11.34	0.31	0.3
25	631.72	11.34	0.31	0.3
26	632.72	11.34	0.31	0.3
27	633.72	11.34	0.31	0.3
28	634.72	11.34	0.31	0.3
29	635.72	11.34	0.31	0.3
30	636.72	11.34	0.31	0.3
31	637.72	11.34	0.31	0.3
32	638.72	11.34	0.31	0.3
33	639.72	11.34	0.31	0.3
34	640.72	11.34	0.31	0.3
35	641.72	11.34	0.31	0.3
36	642.72	11.34	0.31	0.3
37	643.72	11.34	0.31	0.3
38	644.72	11.34	0.31	0.3
39	645.72	11.34	0.31	0.3
40	646.72	11.34	0.31	0.3
41	647.72	11.34	0.31	0.3
42	648.72	11.34	0.31	0.3
43	649.72	11.34	0.31	0.3
44	650.72	11.34	0.31	0.3
45	651.72	11.34	0.31	0.3
46	652.72	11.34	0.31	0.3
47	653.72	11.34	0.31	0.3
48	654.72	11.34	0.31	0.3
49	655.72	11.34	0.31	0.3
50	656.72	11.34	0.31	0.3

Pumping test analysis
Theis analysis method
Unconfined aquifer

1002OA2.HYT, Page 17

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Aquifer Test

Observation Well 1002

Discharge 4.00 U.S.gal/min

Test conducted on: 09/28/98

Observation well 1002

Distance from the pumping well 20.00 ft

static	water level: 11.03 ft below datum			
	Pumping test duration	Water level	Drawdown	Corrected drawdown
	[min]	[ft]	[ft]	[ft]
751	657.72	11.34	0.31	0
752	658.72	11.34	0.31	0
753	659.72	11.35	0.32	0
754	660.72	11.34	0.31	. 0
755	661.72	11.34	0.31	0
756	662.72	11.35	0.32	0
757	663.72	1.35	0.32	0
758	664.72	1.35	0.32	0
759	665.72	11.35	0.32	0
760	666.72	11.35	0.32	0
761	667.72	11.35	0.32	0
762	668.72	11.35	0.32	0.
763	669.72	11.35		. 0
764	670.72	11.35	0.32	0
765	671.72	11.35	0.32	0.
766	672.72	11.35	0.32	0
767	673.72	11.35	0.32	0
768	674.72	11.35	0.32	0
769	675.72	11.35	0.32	<u> </u>
770	676.72	11.35	0.32	0
771	677.72	11.35	0.32	0
772	678.72	11.35	0.32	0
773	679.72	11.35	0.32	0
774	680.72	11.35	0.32	0
775	681.72	11.35	0.32	0
776	682.72	11.35	0.32	.0
777	683.72	11.35	0.32	0
778	684.72	11.35	0.32	0
779	685.72	11.35	0.32	0
780	686.72	11.35	0.32	0
781	687.72	11.35	0.32	0
782	688.72	11.35	0.32	0
783	689.72	11.35	0.32	- 0
784	690.72	11.35	0.32	. 0
785	691.72	11.35	0.32	0
786	692.72	11.35	0.32	ď
787	693.72	11.35	0.32	0
788	694.72	11.35	0.32	0
789	695.72	11.35	0.32	
790	696.72	11.35	0.32	(.
791	697.72	11.35	0.32	<u></u>
792	698.72	11.35	0.32	0
793	699.72	11.35	0.32	0
794	700.72	11.35	0.32	• 0
795	701.72	11.35	0.32	7
796	702.72	. 11.35	0.32	C
797	703.72	11.35	0.32	
798	704.72	11.35	0.32	0
799	705.72	11.35	0.32	(
800	705.72	11.35	0.32	0

Pumping test analysis
Theis analysis method Unconfined aquifer

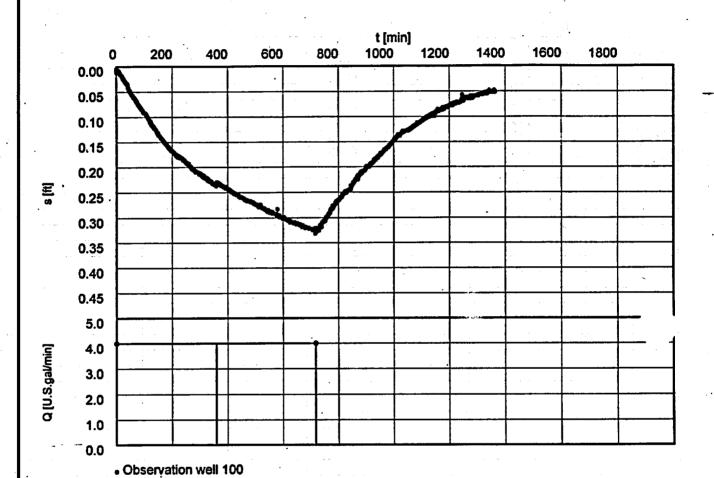
10020A2.HYT, Page 18

Project: UGW - Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98


Observation Well 1002

Observation well 1002

Discharge 4.00 U.S.gal/min

ĺ	Pumping test duration	Water level	Drawdown	Corrected
	.		· •	drawdown
	[min]	[ft]	[ft]	[ft]
801	707.72	11.35	0.32	0.31
802	708.72	11.35	0.32	0.31
803	709.72	11.35	0.32	0.31
804	710.72	11.35		0.31
805		11.35	0.32	0.31
806	711.72	11.35	0.32	
807	712.72	11.35	0.32	0.31 0.32
808	713.72 714.72	11.35	0.32	0.32
809	71572	11.33	0.32	0.32
609	715.72	11.35	0.32	<u> </u>
		·		
	<u>_</u>			
		<u> </u>		
$\neg \uparrow$				
				<u> </u>
				· · · · · · · · · · · · · · · · · · ·
\dashv			. /	
		· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·
<u></u>			· · · · · · · · · · · · · · · · · · ·	
	····			·
		·		
				•
				····
				···
				···
$\neg +$				
-	-			
-				
-+	•			
			<u> </u>	
- 1		,		

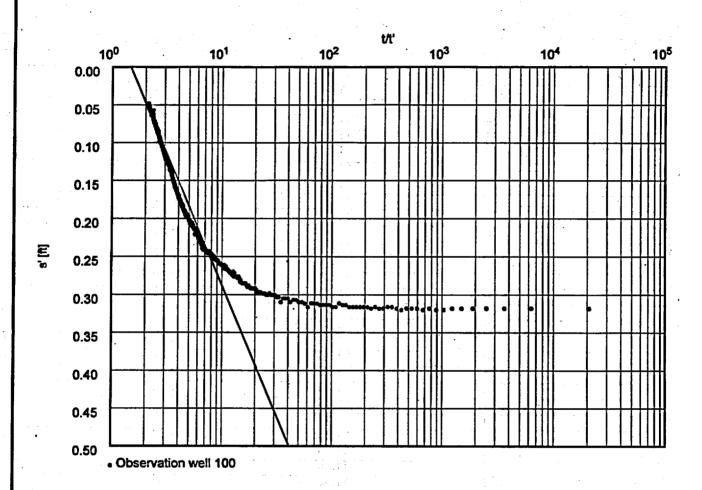
MACTEC-ERS		Pumping test analysis 1002ORZ.HYT, Page 1		age 1		
2597 B 3/4 Road Time-Drawdown plo			Project: UGW - Grand Junction, C			
Grand Junction, CO 81503 970/248-6040	with discharge	•		H Date: 11/19/98		
Pumping Test No. 1034 Recovery	Test	Test conducted	d on: 09/28/98			
Observation Well 1002			-			
Discharge 4 00 U.S. gal/min	per production					

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer

1002OR2.HYT, Page 1

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/19/98


Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Observation Well 1002

Discharge 4.00 U.S.gal/min

Pumping test duration: 717.00 min

Transmissivity [ft²/min]: 2.83 x 10⁻¹

407.52 ft 2/day

Hydraulic conductivity [fi/min]: 4.72 x 10⁻² 67.97 ft/dby

Aquifer thickness [ft]: 6.00

Pumping test analysis
Recovery method after
THEIS & JACOB
Unconfined aquifer

1002OR2.HYT, Page 2

Project: UGW -- Grand Junction, CC

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Observation Well 1002

Observation well 1002

Test conducted on: 09/28/98

Discharge 4.00 U.S.gal/min

—ı—	Time from	Water level	Residual Corre	
-	<u> </u>		drawdown	drawdown
-	end of pumping	rea	[ft]	[ft]
	[min]	[ft] 11.36	0.33	0.3
1	0.03	11.36	0.33	0.3
2	0.11	11.36	0.33	0.3
3	0.20 0.28	11.36	0.33	0.3
4	0.28	11.36	0.33	0.3
5	0.48	11.36	0.33	0.3
6	0.48	11.36	0.33	0.3
7	0.69	11.36	0.33	0.3
9	0.81	11.36	0.33	0.3
	0.93	11.36	0.33	0.3
10	1.06	11.36	0.33	0.3
11	1.20	11.38	0.33	0.3
13	1.35	11.36	0.33	0.3
14	1.51	11.36	0.33	0.3
15	1.68	11.36	0.33	0.3
18	1.85	11.36	0.33	0.:
17	2.04	11.35	0.32	0.
18	2.24	11.35	0.32	0.
19	2.45	11.38	0.33	0.
20	2.67	11.36	0.33	<u>0.</u>
21	2.90	11.35	0.32	0.
22	3.15	11.36	0.33	0.
23	3.42	11.35	0.32	0.
24	3.70	11.35	0.32	0.
25	3.99	11.35	0.32	0.
26	4.31	11.35	0.32	0.
27	4.64	11.35	0.32	0.
28	4.99	11.35	0.32	0.
29	5.36	11.35	0.32	0.
30	5.76	11.35	0.32	, 0.
31	6.18	11.35	0.32	0.
32	6.62	11.35	0.32	0.
33	7.09	11.35	0.32	. 0.
34	7.59	11.35	0.32	0.
35	8.11	11.35	0.32	: 0.
36	8.67	11.35	0.32	0.
37	9.26	11.35	0.32	. 0
38	9.89	11.35	0.32	0
39	10.55	11.35	0.32	0
40	11.26	11.35	0.32	0
41	12.00	11.35	0.32	, 0
42	12.79	11.35	0.32	0
43	13.63	11.35	0.32	0
44	14.51	11.35	0.32	0
45	15.45	11.35	0.32	
46	16.45	11.35	0.32	0
47	17.45	11.35	0.32	0
48	18.45	11.34	0.31	0
49	19.45	11.34	0.31	0
50	20.45	11.34	0.31	C

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1002OR2.HYT, Page 3

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Observation Well 1002

Observation well 1002

Discharge 4.00 U.S.gal/min

1 .	Time from	Water level	Residual Corrected		
	end of pumping		drawdown	drawdown	
3	[min]	[ft]	[ft]	[ft]	
51	21.45	11.35	0.32	0.3	
52	22.45	11.34	0.31	0.3	
53	23.45	11.34	0.31	0.3	
54	24.45	11.34	0.31	0.3	
55	25.45	11.34	0.31	0.3	
56	26.45	11.34	0.31	0.3	
57	27.45	11.34	0.31	0.3	
58	28.45	11.34	0.31	0.3	
59	29.45	11.34	0.31	0.3	
60	30.45	11.34	0.31	0.3	
61 62	31.45	11.34	0.31	0.3	
63	32.45 33.45	11.34	0.31	0.3	
64	33.45	11.33 11.34	0.30 0.31	0.3	
65	35.45	11.33	0.31	0.3 0.3	
66	36.45	11.33	0.30	0.3	
57	37.45	11.33	0.30	0.2	
58	38.45	11.33	0.30	0.2	
59	39.45	11.33	0.30	0.2	
70	40.45	11.33	0.30	0.2	
71	41.45	11.33	0.30	0.2	
72	42.45	11.33	0.30	0.2	
73	43.45	11.32	0.29	0.2	
74	44.45	11.33	0.30	0.2	
75	45.45	11.32	0.29	0.2	
76	46.45	11.32	0.29	0.2	
77	47.45	11.32	0.29	0.2	
78	48.45	11.32	0.29	0.2	
79	49.45	11.32	0.29	0.2	
30 31	50.45	11.32	0.29	0.2	
32	51.45	11.32	0.29	0.2	
33	52.45 53.45	11.32 11.32	0.29	0.2	
34	54.45	11.32	0.29 0.28	0.2 0.2	
35	55.45	11.32	0.29	0.2	
36	56.45	11.31	0.28	0.2	
37	57.45	11.31	0.28	0.2	
38	58.45	11.31	0.28	0.2	
39	59.45	11.31	0.28	0.2	
30	60.45	11.31	0.28	0.2	
71	61.45	11.31	0.28	0.2	
2	62.45	11.31	0.28	0.2	
3	63.45	11.31	0.28	0.2	
)4	64.45	11.31	0.28	0.2	
)5	65.45	11.31	0.28	0.2	
6	66.45	11.31	0.28	0.2	
7	67.45	11.31	0.28	0.2	
8	68.45	11.30	0.27	0.2	
9	69.45	11.30	0.27	0.2	

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1002OR2.HYT, Page 4

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Observation Well 1002

Observation well 1002

Discharge 4.00 U.S.gal/min

	Time from	Water level	Residual	Corrected
	end of pumping		drawdown	drawdown
	[min]	[ft]	[ft]	[ft]
101	71.45	11.30	0.27	0.
102	72.45	11.30	0.27	0.
103	73.45	11.30	0.27	0.:
104	74.45	11.30	0.27	. 0.
105	75.45	11.30	0.27	0.:
106	76.45	11.30	0.27	0.3
107	77.45	11.30	0.27	O.
108	78.45	11.30	0.27	0.:
109	79.45	11.30	0.27	0.
110	80.45	11.30	0.27	0.:
111	81.45	11.29	0.26	0.3
112	82.45	. 11.29	0.26	0.:
113	83.45	11.29	0.26	0.
114	84.45	11.29	0.26	0.
115	85.45	11.29	0.26	0.
116	86.45	11.29	0.28	0.
117	87.45	11.29	0.26	0.
118	88.45	11.29	0.26	0.
119	89.45	11.29	0.26	<u> </u>
120	90.45	11.29	0.26	δ.
121 122	91.45 92.45	11.29	0.26	0.
123	1	11.29	0.26	0.
123	93.45 94.45	(1.29 11.29	0.26 0.26	0. 0.
125	95.45	11.29	0.26	0. 0.
126	96.45	11.29	0.26	0. 0.
127	97.45	11.29	0.26	0.
128	98.45	11.29	0.26	0.
129	99.45	11.25	0.25	<u> </u>
130	100.45	17.25	0.25	<u> </u>
131	101,45	11.28	0.25	<u> </u>
132	102.45	11.28	0.25	<u> </u>
133	103.45	11.28	0.25	0.
134	104.45	11.28	0.25	0.
135	105.45	11.23	0.25	0.
136	106.45	11.28	0.25	0.
137	107.45	11.28	0.25	0.
138	108.45	11.28	0.25	0.
139	109.45	11.28	0.25	0.
140	110.45	11.28	0.25	0.
141	111.45	11.28	0.25	0.
142	112.45	11.28	0.25	0.
143	113.45	11.28	0.25	0.
144	114.45	11.28	0.25	<u> </u>
145	115.45	11.28	0.25	σ.
146	118.45	. 11.28	0.25	0.
147	117.45	11.28	0.25	0.
148	118.45	11.28	0.25	0.
: 19	119 65	11.28	0.25	0.
150	120.45	11.28	0.25	0.

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer

1002OR2.HYT, Page 5

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Observation Well 1002

Observation well 1002

Discharge 4.00 U.S.gal/min

Time from Water level		Water level	Residual Corrected		
	end of pumping		drawdown	drawdown	
	(min)	[ft]	[ft]	[ft]	
151	121.45	11.27	0.24	0.24	
152	122.45	11.27	0.24	0.24	
153	123.45	11.27	0.24	0.24	
154	124.45	11.28	0.25	0.24	
155	125.45	11.27	0.24	0.24	
156	126.45	. 11.27	0.24	0.23	
157	127.45	11.27	0.24	0.24	
158	128.45	11.27	0.24	0.23	
159	129.45	11.27	0.24	0.23	
160	130.45	11.27	0.24	0.23	
161	131.45	11.27	0.24	0.23	
162	132.45	11.26	0.24	0.23	
163	133.45	11.26	0.24	0.23	
164 165	134.45	11,26	0.23	0.23	
166	135.45	11.26	0.23	0.23	
167	136.45 137.45	11.26	0.23	0.23	
168	138.45	11.26 11.26	0.23 0.23	0.23	
169	139.45	11.26	0.23	0.23	
170	140.45	11.26	0.23	0.23	
71	141.45	11.26	0.23	0.23 0.22	
72	142.45	11.26	0.23	0.22	
73	143.45	11.26	0.23	0.22	
74	144.45	11.26	· 0.23	0.22	
75	145.45	11.25	0.22	0.22	
76	146.45	11.25	0.22	0.22	
77	147.45	11.25	0.22	0.22	
78	148.45	11.25	0.22	0.22	
79	149.45	11.25	0.22	0.22	
80	150.45	11.25	0.22	0.21	
81	151.45	11.25	0.22	0.21	
82	152.45	11.26	0.23	0.22	
83	153.45	11.25	0.22	. 0.21	
84	154.45	11.25	0.22	0.21	
85	155.45	11.25	0.22	0.21	
86 87	156.45	11.25	0.22	0.21	
88	157.45 158.45	11.25	0.22	0.21	
89	159.45	11.25 11.24	0.22	0.21	
90	160.45	11.24	0.21	0.21	
91	161.45	11.24	0.21	0.21	
92	162.45	11.24	0.21 0.21	0.21	
93	163.45	11.24	0.21	0.21 0.21	
94	164.45	11.24	0.21	1	
95	165.45	11.24	0.21	0.21 0.21	
96	. 166.45	11,24	0.21	0.21	
97	167.45	11.24	0.21	0.21	
98	168.45	11.24	0.21	0.21	
99	169.45	11.24	0.21	0.21	
00	170.45	11.24	0.21	0.21	

Pumping test analysis
Recovery method after
THEIS & JACOB
Unconfined aquifer

1002OR2.HYT, Page 6

Project: UGW - Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Observation Well 1002

Discharge 4.00 U.S. gal/min

Distance from the pumping well 20,00 ft

Discharge 4.00 U.S.gal/min		Distance from the pumping well 20.00 ft			
Static water level: 11.03 ft below datum			Pumping test duration: 717.00 min		
	Time from end of pumping	Water level	Residual drawdown	Corrected drawdown	
	[min]	[ft]	[ft] 0.21	[ft] 0.	
201	171.45	11.24 11.24		0.	
202	172.45	11.24	1	0.	
203 204	173.45 174.45	11.24		0.	
204	175.45	11.24	1	0.	
206	176.45	11.24	1	0.	
207	177.45	11.24	1	0.	
208	178.45	11.24	ł f	0.	
209	179.45	11.24		0.	
210·	180.45	11.24	,	0.	
211	181.45	11.23	, ,	Ō.	
212	182.45	11.23	· · · · · · · · · · · · · · · · · · ·	Ō.	
213	183.45	11.23		0.	
214	184.45	11.23	•	0.	
215	185.45	11.23		0.	
216	186.45	11.23	1	0.	
217	187.45	11.23		0.	
218	188.45	11.23		0.	
219	189.45	11.23	0.20	<u> </u>	
220	190.45	11.23	0.20	0.	
221	191.45	11.23	0.20	0	
222	192.45	11.23	0.20	0	
223	193.45	11.23		0	
224	194.45	11.23		. 0	
225	195.45	11.23		0	
226	196.45	11.23		/ 0	
227	197.45	11.23		0	
228	198.45	11.22		0	
229	199.45	11.23		0	
230	200.45	11.23		. 0	
231	201.45	11.22		0	
232	202.45	11.22		0	
233	203.45	11.22		0	
234	204.45	11.2		0	
235	205.45	11.22		0	
236	206.45	11.22 11.22		0	
237	207.45	11.22		0	
238	208.45	11.22		0	
239 240	209.45 210.45	11.22			
240	210.45	11.2	•	0	
241	212.45	11.2		0	
242	213.45	11.2	•	0	
244	214.45	11.2		7	
244 245	215.45	11.2	1		
246	216.45	11.2		0	
247	217.45	11.2		0	
248	218.45	11.2		<u> </u>	
249	219.45	11.2		0	
250	220.45	11.2		0	

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer

1002OR2.HYT, Page 7

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Observation Well 1002

Observation well 1002

Discharge 4.00 U.S.gal/min

Otatic t	vater level: 11.03 ft below dat		Pumping test duration: 717.00 min		
	Time from	Water level	Residual	Corrected	
	end of pumping		drawdown	drawdown	
	(min)	[ft]	[ft]	[ft]	
251	221.45	11.21	0.18	0.18	
252	222.45	11.21	0.18	0.18	
253	223.45	11.21	0.18	0.18	
254	224.45	11.21	0.18	0.18	
255	225.45	11.21	0.18	0.18	
256	226.45	11.21	0.18	0.18	
257 258	227.45	11.21	0.18	0.18	
259	228.45	11.21	0.18	0.17	
260	229.45	11.21	0.18	0.17	
261	230.45	11.21	0.18	0.17	
262	231.45	11.21	0.18	0.17	
263	232.45	11.21	0.18	0.17	
264	233.45	11.21	0.18	0.17	
265	234.45 235.45	11.20	0.17	0.17	
266	235.45	11.21	0.18	0.17	
267	235.45	11.21	0.18	0.17	
268	238.45	11.21 11.20	0.18	0.17	
269	239.45	11.20	0.17	0.17	
270	240.45	11.20	0.17	0.17	
271	241.45	11.20	0.17	0.17	
272	242.45	11.20	0.17	0.17	
273	243.45	11.20	0.17	0.17	
274	244.45	11.20	0.17	0.17	
275	245.45	11.20	0.17 0.17	0.17	
276	246.45	11.20	0.17	0.17	
277	247.45	11.20	0.17	0.17	
278	248.45	11.20	0.17	0.17 0.16	
279	249.45	11.20	0.17	0.16	
280	250.45	11.20	0.17	0.16	
281	251.45	11.20	0.17	0.16	
282	252.45	11.20	0.17	0.16	
283	253.45	11.20	0.17	0.16	
284	254.45	11.20	0.17	0.16	
285	255.45	11.19	0.16	0.16	
286	256.45	11.19	0.16	0.16	
287	257.45	11.19	0.16	0.16	
288	258.45	11.19	0.16	0.16	
289	259.45	11.19	0.16	0.16	
290	260.45	11.19	0.16	0.16	
291	261.45	11.19	0.16	0.16	
292	262.45	11.19	0.16	0.16	
293	263.45	11.19	0.16	0.16	
294	264.45	11.19	0.16	0.16	
295	265.45	11.19	0.16	0.16	
296	266.45	11.19	0.16	0.15	
297	267.45	11.19	0.16	0.15	
298	268.45	11.19	0.16	0.15	
299	269.45	11.19	0.16	0.15	
300	270.45	11.19	0.16	0.15	

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1002OR2.HYT, Page 8

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Observation Well 1002

Discharge 4.00 U.S.gal/min

Test conducted on: 09/28/98

Observation well 1002

Distance from the pumping well 20.00 ft

	Time from end of pumping	Water level	Residual drawdown	Corrected drawdown
•	[min]	(ft)	[ft]	[ft]
301	271.45	11.18	0.15	0.
302	272.45	11.18	0.15	0.
303	273.45	11.18	0.15	0.
304	274.45	11.18	0.15	. 0.
305	275.45	11.18	0.15	0.
306	276.45	11.18	0.15	0.
307	277.45	11.18	0.15	0.
308	. 278.45	11.18	0.15	0.
309	279.45	11.18	0.15	0.
310	280.45	11.18	0.15	0.
311	281.45	11.18	0.15	0.
312	282.45	11.18	0.15	· 0.
313	283.45	11.18	0.15	0.
314	284.45	11.18	0.15	0.
315	285.45	11.18	0.15	0.
316	286.45	11.17	0.14	0.
317	287.45	11.18	0.15	0.
318	288.45	11.17	0.14	0.
319	289.45	11.18	0.15	0.
320	290.45	11.17	0.14	0.
321	291.45	11.17	0.14	0.
322	292.45	11.17	0.14	0.
323	293.45	11.17	0.14	Ō.
324	294.45	11.17	0.14	0.
325	295.45	11.17	0.14	O.
326	296.45	11.17	0.14	0.
327	297.45	11.17	0.14	σ
328	298.45	11.16	0.13	0
329	299.45	11.17	0.14	0
330	300.45	11.16	0.13	0
331	301.45	11.17	0.14	0
332	302.45	. 11.17	0.14	. 0
333	303.45	11.17	0.14	0
334	304.45	11.16	0.13	0
335	305.45	11.17	0.14	0
336	306.45	11.16	0.13	0
337	307.45	11.16	0.13	. 0
338	308.45	11.16	0.13	0
339	309.45	11.16	0.13	0
340	310.45	11.16	0.13	0
341	311.45	11.16	0.13	0
342	312.45	11.16	0.13	0
343	313.45	11.16	0.13	0
344	314.45	11.16	0.13	
345	315.45	11.16	0.13	0
346	316.45	11.16	0.13	0
347	317.45	11.16	0.13	O
348	318.45	11.16	0.13	0
349	319.45	11.16	0.13	0
350	320.45	11.16	0.13	(

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer

٠,

1002OR2.HYT, Page 9

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Observation Well 1002

Observation well 1002

Discharge 4.00 U.S.gal/min

	Time from	Water level	Residual	Corrected
	end of pumping	<u> </u>	drawdown	drawdown
	[min]	[ft]	[ft]	[ft]
351	321.45	11.16	0.13	0.13
352	322.45	11.16	0.13	0.13
353	323.45	11.16	0.13	0.13
354	324.45	11.16	0.13	0.1
355	325.45	11.16	0.13	0.1
356	326.45	11.16	0.13	0.13
357	327.45	11.16	0.13	0.1
358 ·	328.45	11.16	0.13	0.13
359	329.45	11.16	0.13	0.13
360	330.45	11.16	0.13	0.13
361	· 331.45	11.16	0.13	0.13
362	332.45	11.16	0.13	0.12
363	333.45	11.16	0.13	0.13
364	334.45	11.16	0.13	0.13
365	335.45	11.16	0.13	0.12
366	336.45	11.16	0.13	0.12
367	. 337.45	11.16	0.13	0.12
368	338.45	11.16	0.13	0.12
369	339.45	11.15	. 0.12	0.12
370	340.45	11.16	0.13	0.12
371	341.45	11.15	0.12	0.12
372 373	342.45	11.15	0.12	0.12
374	343.45	11.15	0.12	0.12
375	344.45 345.45	11.15	0.12	0.12
376	346.45	11,15	0.12	0.12
377	347.45	11.15 11.15	0.12	0.12
378	348.45	11.15	0.12 0.12	0.12
379	349.45	11.15	0.12	0.12 0.12
80	350.45	11.15	0.12	0.12
81	351.45	11.15	0.12	0.12
82	352.45	11.15	0.12	0.12
883	353.45	11.15	0.12	0.12
384	354.45	11.15	0.12	0.12
85	355.45	11.15	0.12	0.12
386	356.45	11.15	0.12	0.12
387	357.45	11.15	0.12	0.12
888	358.45	11.15	0.12	0.12
89	359.45	11.15	0.12	0.12
390	360.45	11.15	0.12	0.12
391	361.45	11.15	0.12	0.12
92	362.45	11.15	0.12	0.12
93	363.45	11.15	0.12	0.11
94	364.45	11.15	0.12	0.11
95	365.45	11,15	0.12	0.11
96	366.45	11.14	0.11	0.11
97	367.45	11.14	0.11	0.11
98	368.45	11.15	0.12	0.11
99	369.45	11.14	0.11	0.11

Pumping test analysis
Recovery method after
THEIS & JACOB
Unconfined aquifer

1002OR2.HYT, Page 10

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Observation Well 1002

Discharge 4.00 U.S.gal/min

Test conducted on: 09/28/98

Observation well 1002

Distance from the pumping well 20.00 ft

Discharge 4.00 U.S.gal/min		Distance from the pumping well 20.00 ft	
Static water level: 11.03 ft below datu	m P	Pumping test duration: 717.00 min	
Time from end of pumping	Water level	Residual drawdown	Corrected drawdown
[min]	[ft]	[ft]	[ft]
401 371.45	11.14	0.11	0.1
402 372.45	11.14	0.11	0.1
403 373.45	11.14	0.11	0.1
404 374.45	11.14	0.11	0.1
405 375.45	11.14	0.11	0.1
406 376.45	11.14	0.11	0.1
407 377.45	11.14	0.11	0.1
408 378.45	11.14	0.11	0.1
409 379.45	11.14	0.11	0.1
410 380.45	11.14	0.11	0.1
411 381.45	11.14	0.11	0.1
412 382.45	11.14	0.11	0.1
413 383.45	11.14	0.11	0.1
414 384.45	11.14	0.11	0.1
415 385.45	11.14	0.11	0.1
416 386.45	11.14	0.11	0.1
417 387.45	11.14	0.11	0.1
418 388.45	11.13	0.10	0.1
419 389.45	11.13	0.10	3.1 0
420 390.45	11.13	0.10	0.1
421 391.45	11.13	0.10	0.1
422 392.45	11.13	0.10	0.1
423 393.45	11.13	0.10	0.1
424 394.45	11.13	0.10	0.1
425 395.45	11.13	0.10	0.1
426 396.45	11.13	0.10	0.1
427 397.45	11.13	0.10	0.1
428 398.45	11.13	0.10	0.1
429 399.45	11.13	0.10	0.1
430 400.45	11.13	0.10	0.1
431 401,45	11.13	0.10	0.1
432 402.45	11.13	0.10	0.1
433 403.45	11.13	0.10	0.1
434 404.45	11.13	0.10	0.1
435 405.45	11.13	0.10	0.1
436 406.45	11.13	0.10	0.1
437 407.45	11.13	0.10	0.1
438 408.45	11.13	0.10	0.1
439 409.45	11.13	0.10	0.1
440 410.45	11.13	0.10	0.1
441 411.45	11.13	0.10	0.1
442 412.45	11.13	0.10	0.1
443 413.45	11.13	0.10	0.1
444 414.45	11.13	0.10	5.1
445 415.45	11.13	0.10	0.1
446 416.45	. 11.13	0.10	0.1
447 417.45	11.13	0.10	0.1
448 418.45	11.13	0.10	0.1
449 419.45	11.13	0.10	0.1
450 420.45	11.12	0.09	0.0

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer

1002OR2.HYT, Page 11

Project: UGW - Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98 Observation Well 1002 Observation well 1002

Discharge 4.00 U.S.gal/min

	Time from	Water level	Residual	Corrected
	1	viater lever		drawdown
	end of pumping		drawdown	
454	[min]	[ft]	[ft]	[ft]
451	421.45	11.13	0.10	0.10
452	422.45	11.13	0.10	0.10
453	423.45	11.12	0.09	0.09
454	424.45	11.13	0.10	0.10
455	425.45	11.12	0.09	0.09
456	426.45	11.13	0.10	0.10
457	427.45	11.12	0.09	0.09
458	428.45	11.12	0.09	0.09
459	429.45	11.13	0.10	0.10
460	430.45	11.12	0.09	0.09
461	431.45	11.12	0.09	0.09
462	432.45	11.12	0.09	0.09
463	433.45	11.12	0.09	0.09
464	434.45	11.12	0.09	0.09
465	435.45	11.12	0.09	0.09
466	436.45	11.12	0.09	0.09
467	437.45	11.12	0.09	0.09
468	438.45	11.12	0.09	0.09
469	439.45	11.12	0.09	0.09
470	440.45	11.12	0.09	0.09
471	441.45	11.12	0.09	0.08
472	442.45	11.12	0.09	0.09
473	443.45	11.12	0.09	0.09
474	444.45	11.12	. 0.09	0.09
475	445.45	1,1.12	0.09	0.09
476	446.45	11.12	0.09	0.09
477	447.45	11.12	0.09	0.09
478	448.45	11.12	0.09	0.09
479	449.45	11.12	0.09	0.09
480	450.45	11.12	0.09	0.09
481	451.45	11.12	0.09	0.09
482	452.45	11.12	0.09	0.08
483	453.45	11.12	0.09	0.09
484	454.45	11.12	0.09	0.08
485	455.45	11.12	0.09	0.08
486	456.45	11.12	0.09	0.09
487		11.12	0.09	0.09
488	458.45	11.11	0.08	0.08
489	459.45	11.12	0.09	0.08
490	460.45	11.12	0.09	0.08
491	461.45	11.12	0.09	0.08
492	462.45	11.11	0.08	0.08
493	463.45	11.11	80.0	0.08
494	464.45	11.12	0.09	0.08
495	465.45	11.11	0.08	0.08
496	466.45	11.11	0.08	0.08
497	467.45	11.11	0.08	0.08
498	468.45	11.11	0.08	0.08
499	469.45 470.45	11.11	0.08 0.08	0.08

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1002OR2.HYT, Page 12

Project: UGW - Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Observation Well 1002

Discharge 4.00 U.S.gal/min

Test conducted on: 09/28/98

Observation well 1002

Distance from the pumping well 20.00 ft

Static water level: 11.03 ft below datum			Pumping test duration: 717.00 min		
	Time from	Water level	Residual	Corrected	
	end of pumping		drawdown	drawdown	
	[min]	(ft)	[ft]	[ft]	
501	471,45	11.11	0.08	0.0	
502	472.45	11.11	0.08	0.0	
503	473.45	. 11.11	0.08	0.08	
504	474.45	11.11	0.08	0.0	
505	475.45	11.11	0.08	0.0	
506	476.45	11.11	0.08	0.00	
507	477.45	11.11	0.08	0.00	
508	478.45	11.11	0.08	0.08	
509	479.45	11.11	0.08	0.08	
510	480.45	11.11	0.08	0.08	
511	481.45	11.11	0.08	0.08 0.08	
512 513	482.45 483.45	11.11	0.08	0.08	
514	484.45	11.11	0.08	0.08	
515	485.45	11.11	0.08	0.08	
516	486.45	11.11	0.08	0.08	
517	487.45	11.11	0.08	0.08	
518	488.45	11.10	0.07	0.07	
519	489.45	11.10	0.07	0.0	
520	490.45	11.11	0.08	0.00	
521	491.45	11.11	0.08	0.0	
522	492.45	11.10	0.07	0.0	
523	493.45	11.10	0.07	0.07	
524	494.45	11.10	0.07	0.0	
525	495.45	11.11	0.08	0.0	
526	496.45	11.10	0.07	0.0	
527	497.45	11.10	0.07	0.0	
528	498.45	11.10	0.07	0.0	
529	499.45	11.10	0.07	0.07	
530	500.45	11.10	0.07	0.0	
531	501.45	11.10	0.07	0.0	
532	502.45	11.10	0.07	0.0	
533	503.45	11.10	0.07	0.0	
534	504.45	11.10	0.07	0.0	
535	505.45	11.10	0.07	0.0	
536	508.45	11.10	0.07	0.0	
537	507.45	11.10	0.07	0.0	
538 539	508.45	11.10	0.07	0.0	
540	509.45 510.45	11.10 11.10	0.07 0.07	0.0	
541	510.45	11.10	0.07	0.0 0.0	
542	512.45	11.10	0.07	0.0	
543	513.45	11.10	0.07	0.0	
544	514.45	11.10	0.07	0.0	
545	515.45	11.10	0.07	0.0	
546	516.45	11.10	0.07	0.0	
547	517.45	11.10	0.07	0.0	
548	518.45	11.10	0.07	0.0	
549	519.45	11.10	0.07	0.0	
550	520.45	11.10	0.07	0.0	

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1002OR2.HYT, Page 13

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test Test conducted on: 09/28/98

Observation Well 1002 Observation well 1002

Discharge 4.00 U.S.gal/min Distance from the pumping well 20.00 ft

Static water level: 11.03 ft below datum			umping test duration: 717.00 min	
	Time from	Water level	Residual	Corrected
	end of pumping		drawdown	drawdown
	[min]	[ft]	[ft]	[ft]
551	521.45	11.10	0.07	0.0
552	522.45	11.10	0.07	<i>i</i> . 0.0
553	523.45	11.10	0.07	0.0
554	524.45	11.10	0.07	0.0
555	525.45	11.10	0.07	0.0
556	526.45	11.10	0.07	0.0
557	527.45	11.10	0.07	0.0
558	528.45	11.09	0.06	0.0
559	529.45	11.10	0.07	0.0
560	530.45	11.09	0.06	0.0
561	531.45	11.10	0.07	0.0
562	532.45	11.09	0.06	0.0
563	533.45	11.09	0.06	0.0
564	534.45	11.10	0.07	0.0
565	535.45	11.09	0.06	0.0
566	536.45	11.09	0.06	0.0
567	537.45	11.09	0.06	0.0
568 569	538.45	11.09	0.06	0.0
	539.45	11.09	0.06	0.00
570	540.45	11.09	0.06	0.00
571	541.45	11.09	0.06	0.00
572	542.45	11.09	0.06	0.00
573	543.45	11.09	0.06	0.0
574	544.45	11.09	0.06	0.0
575 576	545.45	11.09	0.06	0.06
,	546.45	11.09	0.06	0.06
577 578	547.45	11.09	0.06	0.06
579	548.45	11.09	0.06	0.00
580	549.45	11.09	0.06	0.08
581	550.45	11.09	0.06	0.00
582	551.45 552.45	11.09	0.06	0.06
583	553.45	11.09	0.06	0.06
584	554.45	11.09	0.06	0.06
585	555.45	11.09 11.09	0.06	0.06
86	556.45	11.09	0.06	0.06
87	557.45	11.09	0.06	0.06
88	558.45	11.09	0.06	0.06
89	559.45	11.09	0.06	0.06
90	560.45	11.09	0.06	0.06
91	561.45	11.09	0.06	0.06
92	562.45	11.09	0.06	0.06
93	563.45	11.09	0.06	0.08
94	564.45	11.09	0.06	0.08
95	565.45	11.09	0.06	0.08
96	566.45	11.09	0.06	0.06
97	567.45		0.06	0.06
98	568.45	11.09	0.06	0.06
99	569.45	11.09	0.06	0.06
00	509.45	11.09	0.06	0.06

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1002OR2.HYT, Page 14

Project: UGW - Grand Junction, CC

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Observation Well 1002

Observation well 1002

Discharge 4.00 U.S.gal/min

Discharge 4.00 U.S.gal/min			Pumping test duration: 717.00 min	
	Time from	Water level	Residual	Corrected
	end of pumping [min]	(ft)	drawdown [ft]	drawdown [ft]
601	571.45	11.09	0.06	0.0
602	572.45	11.09	0.06	0.0
603	573.45	11.09	0.06	0.0
604	574.45	11.09	0.06	0.0
605	575.45	11.09	0.06	0.0
606	576.45	.11.09	0.06	0.0
607	577.45	11.09	0.06	0.0
608	578.45	11.09	0.06	0.0
609	579.45	11.09	0.06	0.0
610	580.45	11.09	0.08	0.0
611	581.45	11.09	0.06	0.0
612	582.45	11.09	0.06	• 0.0
613	583.45	11.09	0.06	0.0
614	584.45	11.09	0.06	0.0
615	585.45	11.09	0.06	0.0
616	586.45	11.09	0.06	0.
617	587.45	11.09	0.06	0.
618	588.45	11.09	0.06	0.
619	589.45	11.09	0.06	<u>0.</u> 0.
620	590.45	11.09	0.06	0. 0.
621	591.45	11.09	0.06 0.06	0.
622	592.45	11.09 11.09	0.06	0.
623	593.45	11.09	0.06	0.
624 625	594.45 595.45	11.09	0.06	0.
626	596.45	11.09	0.06	0.
627	597.45	11.09	0.06	0.
628	509.45	11.09	0.06	0.
629	599.45	11.09	0.06	σ.
630	600.45	11.09	0.06	0.
631	601.45	11.09	0.08	0.
632	602.45	11.09	0.06	0.
633	603.45	11.09	0.06	. 0.
634	604.45	11.09	0.06	. 0.
635	605.45	11.09	0.06	0.
636	606.45	11.09	0.06	0.
637	607.45	11.09	0.06	. 0.
638	608.45	11.09	0.06	0.
639	609.45	11.08	0.05	0
640	610.45	11.09	0.06	0.
641	611.45	11.09	0.06	0
642	612.45	11.08	0.05	0
643	613.45	11.08	0.05	0
644	614.45	11.09	0.06	0
645	615.45	11.08	0.05	0
646	616.45	11.08	0.05	0
647	617.45	11.08	0.05	0
648	618.45	11.08	0.05	0
649	619.45	11.09	0.06	0
650	620.45	11.08	0.05	0

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1002OR2.HYT, Page 15

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Observation Well 1002

Observation well 1002

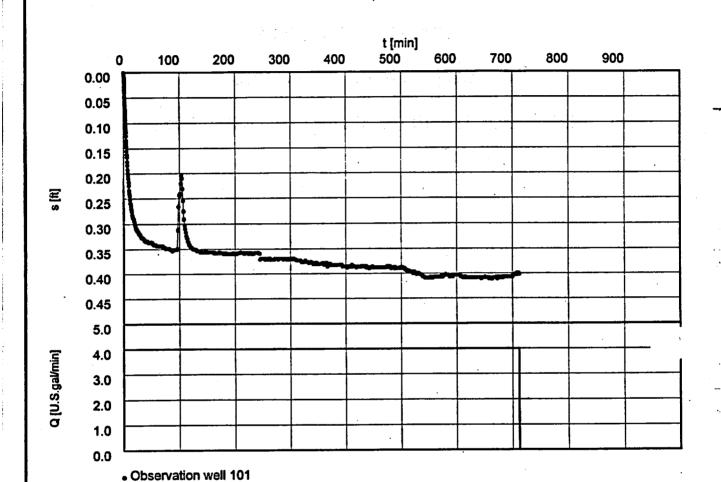
Test conducted on: 09/28/98

Discharge 4.00 U.S.gal/min

tauc w	water level: 11.03 ft below datum Pumping test duration: 717.00 min Residual Corrected			
	Time from	Water level	Residual	
l	end of pumping		drawdown	drawdown
-	[min]	[ft]	[ft]	[ft]
	621.45	11.08	0.05	0.05
551	622.45	11.08	0.05	0.05
552		11.08	0.05	0.05
553	623.45	11.08	0.05	0.05
554	624.45	11.08	0.05	. 0.05
655	625.45	11.08	0.05	0.05
656	626.45	11.08	0.05	0.05
657	627.45	11.08	0.05	0.05
658	628.45	11.08	0.05	0.05
659	629.45		0.05	0.05
660	630.45	11.08	0.05	0.05
661	631.45	11.08	0.05	0.05
662	632.45	11.08	0.05	0.05
663	633.45	11.08	0.05	0.05
664	634.45	11.08	0.05	0.05
665	635.45	11.08	0.05	0.05
666	636.45	11.08		0.05
667	637.45	11.08	0.05	0.05
668	638.45	11.08	0.05	0.05
669	639.45	11.08	0.05	0.05
670	640.45	11.08	0.05	0.05
671	641.45	11.08	0.05	
672	642.45	11.08	0.05	0.05
673	643.45	11.08	0.05	0.05
674	644.45	11.08	0.05	0.05
675	645.45	11.08	0.05	0.05
676	646.45	11.08	0.05	0.05
970				
				·
+				
+				
+				
				
			1	
 +				
				
 +				<u> </u>

This page intentionally blank

Calculation No.: U0043900


PUMPING WELL 1034 OBSERVATION WELL 1013 DRAWDOWN AND RECOVERY DATA ANALYSES

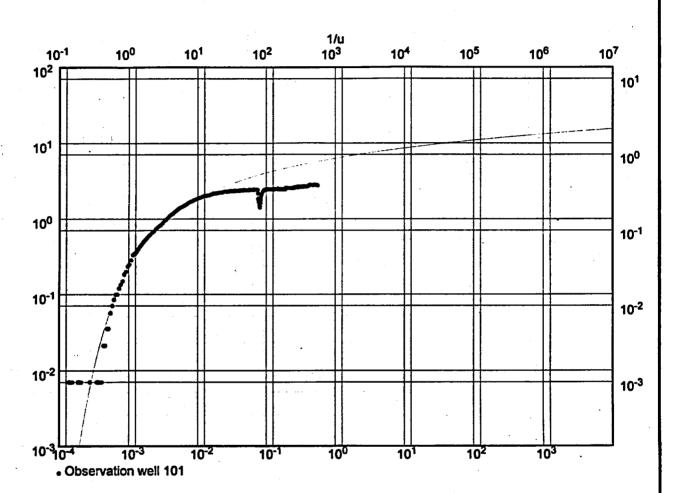
Pumping test analysis Time-Drawdown plot with discharge IUISUAZ.RTI, Page I

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1034 Aquifer Test	Test conducted on: 09/28/98	
Observation Well 1013		
Discharge 4.00 U.S.gal/min		

(□)M


Pumping test analysis Theis analysis method Unconfined aquifer

1013UAZ. [111, Fage 1

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Test conducted on: 09/28/98 Pumping Test No. 1034 Aquifer Test **Observation Well 1013** Discharge 4.00 U.S.gal/min

Transmissivity [ft²/min]: 3.01 x 10⁻¹

433:44 ft2/day

Hydraulic conductivity [ft/min]: 3.76 x 10⁻² 54. 14 ft /day

Aquifer thickness [ft]: 8.00

2597 B 3/4 Road
Grand Junction, CO 81503
970/248-6040

Project: UGW - Grand Junction, CO Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Observation Well 1013

Discharge 4.00 U.S.gal/min

10130MZ.011, Fage 1

Pumping test analysis

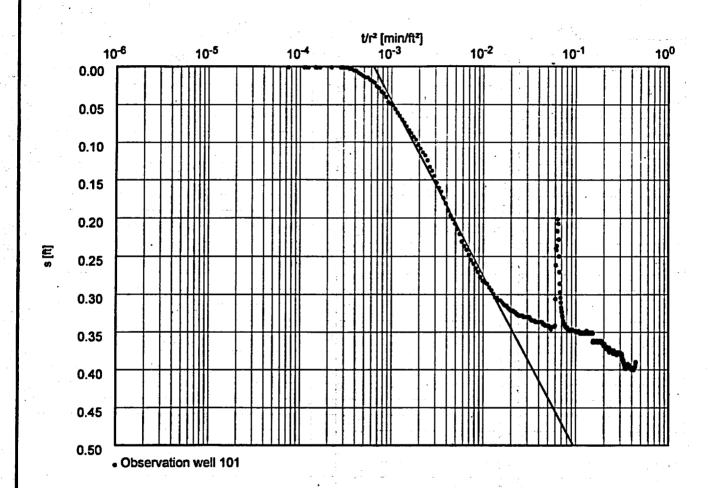
Transmissivity [ft²/min]: 2.13 x 10⁻¹

306.72 ft2/day 38.30 ft/day

Hydraulic conductivity [ft/min]: 2.66 x 10⁻²

Aquifer thickness [ft]: 8.00

MACTEC-ERS


Pumping test analysis Distance-Time-Drawdown-method after COOPER & JACOB Unconfined aquifer

10130A2.HYT, Page 1

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1034 Aquifer Test Test conducted on: 09/28/98 **Observation Well 1013** Discharge 4.00 U.S.gal/min

Transmissivity [ft²/min]: 4.24 x 10⁻¹

610.56 ft /day

Hydraulic conductivity [ft/min]: 5.30 x 10⁻²

76.32 ft/day

Aquifer thickness [ft]: 8.00

Pumping test analysis
Theis analysis method
Unconfined aquifer

1013OA2.HYT, Page 2

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation well 1013

Observation Well 1013

Discharge 4.00 U.S.gal/min

	Pumping test duration	Water level	Drawdown	Corrected drawdown
	[min]	[ft]	`[ft]	[ft]
2	0.01	12.24	-0.00	-0.00
3	0.01	12.24	-0.00	-0.00
4	0.02	12.24	-0.00	-0.00
5	0.02	12.24	-0.00	-0.00
6	0.03	12.24	-0.00	-0.00
7	0.03	12.24	-0.00	-0.00
8	0.04	12.24	-0.00	-0.00
9	0.04	12.24	-0.00	-0.00
10	0.05	12.24	-0.00	-0.00
11	0.05	12.24	-0.00	-0.00
12	0.06	12.24	-0.00	-0.00
13	0.06	12.24	-0.00	-0.00
14	0.07	12.24	-0.00	-0.00
15	0.07	12.24	-0.00	-0.00
16	0.08	12.24	-0.00	-0.00
17	0.08	12.24	-0.00	-0.00
18	0.09	12.24	-0.00	-0.0
19	0.09	12.24	-0.00	7.0
20	0.10	12.24	-0.00	٠.٥٠
21	0.10	12.24	-0.00	-0.0
22	0.11	12.24	-0.00	-0.0
23	0.11	12.24	-0.00	-0.0
24	0.12	12.24	0.00	0.0
25	0.13	12.24	-0.00	-0.0
26	0.13	12.24	-0.00	-0.0
27	0.14	12.24	-0.00	-0.0
28	0.15	12.24	-0.00	-0.0
29	.0.16	12.24	-0.00	-0.0
30	0.17	12.24	-0.00	-0.0
31	0.18	12.24	0.00	0.0
32	0.19	12.24	0.00	0.0
33	0.20	12.24	0.00	0.0
34	0.21	12.24	-0.00	-0.0
35	0.22	12.24	-0.00	-0.0
36	0.24	12.24	0.00	0.0
37	0.25	12.24	0.00	0.0
38	0.26	12.24	. 0.00	0.0
39	0.28	12.24	-0.00	-0.0
40	0.30	12.24	-0.00	-0.0
41	0.31	12.24	-0.00	-0.0
42	0.33	12.24	-0.00	-0.0
43	0.35	12.24	0.00	0.0
44	0.37	12.24	-0.00	7.0
45	0.40	12.24	-0.00	٠.٠٠
46	0.42	12.24	-0.00	-0.0
47	0.44	12.24	0.00	0.0
48	0.47	12.24	0.00	0.0
49	0.50	12.24	0.00	0.0
50	0.52	12.24	0.00	0.0

Pumping test analysis Theis analysis method Unconfined aquifer 10130A2.HYT, Page 3

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Observation Well 1013

Observation well 1013

Test conducted on: 09/28/98

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40.00 ft

Static water level: 12.24 ft below datum

- 1	Pumping test duration	Water level	Drawdown	Corrected
	1	•		drawdown
	[min]		[ft]	[ft]
51	0.55	12.24	0.00	0.0
52	0.59	12.24	0.00	0.0
53	0.62	12.24	0.00	0.0
54	0.66	12.24	0.00	0.0
55	0.70	12.25	0.01	0.0
56	0.74	12.25	0.01	0.0
57	0.78	12.25	0.01	0.0
58	0.83	12.25	0.01	0.0
59	0.88	12.25	0.01	0.0
60	0.93	12.26	0.02	0.0
61	0.98	12.26	0.02	0.0
62	1.04	12.26	0.02	• 0.0
63	1.10	12.27	0.03	0.0
64	1.17	12.27	0.03	0.0
65	1.24	12.27	0.03	0.0
66	1.31	12.27	0.03	0.0
67	1.39	12.28	0.04	0.0
68	1.47	12.29	0.05	0.0
69	1.56	12.29	0.05	0.0
70	1.65	12.29	0.05	0.0
71	1.75	12.30	0.06	0.0
72	1.86	12.30	0.06	0.0
73	1.97	12.30	0.06	0.0
74	2.08	12.31	0.07	0.0
75	2.21	12.31	0.07	0.0
76	2.34	12.32	0.08	0.00
77	2.48	12.32	0.08	0.00
78	2.63	12.33	0.09	0.09
79	2.79	12.33	0.09	0.0
80	2.95	12.34	0.10	0.10
81	3.13	28.87	0.10	0.10
82	3.32	12.35	0.11	0.1
53	3.51	12.35	0.11	0.1
84	3.72	12.36	0.12	0.13
85	3.95	12.37	0.13	0.1
86	4.18	12.37	0.13	0.1
B7	4.43	12.38	0.14	0.14
88	4.69	12.39	0.15	0.14
39	4.97	12.40	0.15	0.1
90	. 5.27	12.40	0.16	0.10
91	5.58	12.41	0.17	0.1
92	5.91	12.42	0.18	0.1
93	6.27	12.42	0.18	0.18
34	6.64	12.43	0.19	0.19
95	7.03	12.44	0.20	0.20
76	7.45	12.44	0.20	0.20
7	7.90	12.45	0.21	0.2
8	. 8.37	12.46	0.22	0.2
9	8.86	12.46	0.22	0.22
0	9.39	12.47	0.23	0.23

Pumping test analysis Theis analysis method Unconfined aquifer 10130A2.HYT, Page 4

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1013

Observation well 1013

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40.00 ft

Static water level: 12.24 ft below datum

	Pumping test duration	ng test duration Water level	Drawdown	Соггестес
.				drawdown
	[min]	(ft) ,	(ft)	[ft]
101	9.95	12.48	0.24	0.2
102	10.54	12.49	0.24	0.2
103	11.17	12.49	0.25	0.2
104	11.83	12.50	0.26	0.2
105	12.53	12.50	0.26	0.2
106	13.28	12.51	0.27	0.2
107	14.07	12.51	0.27	0.3
108	14.91	12.52	0.28	0.2
109	15.79	12.53	0.29	0.2
110	16.73	12.53	0.29	. 0.2
111	17.72	12.53	0.29	0.2
112	18.72	12.54	0.30	0.2
113	19.72	12.54	0.30	0.2
114	20.72	12.54	0.30	0.3
115	21.72	12.55	0.31	0.3
116	22.72	12.55	0.31	0.3
117	23.72	12.55	0.31	0.3
118	24.72	12.55	0.31	0.3
119	25.72	12.56	0.32	<u>7.</u> ;
120	26.72	12.56	0.32	J.:
121	27.72	12.56	0.32	0.3
122	28.72	12.56	0.32	0.3
123	29.72	12.56	0.32	0.3
124	30.72	12.57	0.33	0.3
125	31.72	12.57	0.33	0.3
126	32.72	12.57	0.33	0.3
127	33.72	12.57	0.33	0.3
128	34.72	12.57	0.33	0.3
129	35.72	12.57	0.33	0.3
130	36.72	12.57	0.33	0.3
731	37.72	12.57	0.33	0.3
132	38.72	12.57	0.33	0.3
133	39.72	12.57	0.33	0.:
134	40.72	12.57	0.33	0,:
135	41.72	12.57	0.33	0.
136	42.72	12.57	0.33	0.3
137	43.72	12.58	0.34	0.
138	44.72	12.58	0.34	0.
139	45.72	12.58	0.34	0.:
140	46.72	12.58	0.34	0.0
141	47.72	12.58	0.34	0.:
142	48.72	12.58	0.34	0.:
143	49.72	12.58	0.34	0.:
144	50.72	12.58	0.34	1.
145	51.72	12.58	0.34	j.
146	52.72	12.58	0.34	0.
147.	53.72	12.58	0.34	0.
148	54.72	12.58	0.34	0.:
149	55.72	12.58	0.34	0.3
150	56.72	12.58	0.34	0.3

Pumping test analysis Theis analysis method Unconfined aquifer 1013OA2.HYT, Page 5

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1013

Observation well 1013

Discharge 4.00 U.S.gal/min

	Pumping test duration	Water level	Drawdown	Соггесте
				drawdown
	[min]	[ft]	[ft]	(ft)
151	57.72	12.58	0.34	0.33
152	58.72	12.58	0.34	0.34
153	59.72	12.58	0.34	0.34
154	60.72	12.58	0.34	0.34
155	61.72	12.58	0.34	0.34
156	62.72	12.58	0.34	0.34
157	63.72	12.58	0.34	0.34
158	64.72	12.58	0.34	0.34
159	65.72	12.58	0.34	0.34
160	66.72	12.58	0.34	0.34
161	67.72	12.58	0.34	0.34
162	68.72	12.58	0.34	0.34
163	69.72	12.58	0.34	0.34
164	70.72	12.59	0.35	0.34
165	71.72	12.59	0.35	0.34
166	72.72	12.59	0.35	0.34
167	73.72	12.59	0.35	0.34
168	74.72	12.59	0.35	0.34
169	75.72	12.59	0.35	0.34
170	76.72	12.59	0.35	0.34
171	77.72	12.59	0.35	0.34
172	78.72	12.59	0.35	0.34
173	79.72	12.59	0.35	0.34
174	80.72	12.59	0.35	0.34
175	81.72	12.59	0.35	0.34
176	82.72	12.59	0.35	. 0.34
177	83.72	12.59	0.35	0.34
178	84.72	12.59	0.35	0.34
179	85.72	12.59	0.35	0.34
180	86.72	12.59	0.35	0.35
181	87.72	12.59	0.35	0.34
182	88.72	12.59	0.35	0.34
183	89.72	12.59	0.35	0.34
84	90.72	12.59	0.35	0.34
85	91.72	12.59	0.35	0.34
86	92.72	12.59	0.35	0.34
87	93.72	12.59	0.35	0.34
88	94.72	12.59	, 0.35	0.34
89	95.72	12.59	0.35	0.34
90	96.72	12.55	0.31	0.31
91	97.72	·12.51	0.27	0.26
92	98.72	12.48	0.24	0.24
93	99.72	12.49	0.24	0.24
94	100.72	12.48	0.24	0.24
95	101.72	12.46	0.22	0.22
96	102.72	12.44	0.20	0.20
97	103.72	12.45	0.21	0.21
98	104.72	12.47	0.23	0.23
99	105.72	12.49	0.25	0.25
00	106.72	12.51	0.27	0.27

Pumping test analysis
Theis analysis method
Unconfined aquifer

10130A2.HYT, Page 6

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Observation Well 1013

Discharge 4.00 U.S.gal/min

Test conducted on: 09/28/98

Observation well 1013

Distance from the pumping well 40.00 ft

	Pumping test duration	Water level	Drawdown	Corrected
		•		drawdown
	[min]	[ft]	[ft]	[ft]
01	107.72	12.53	0.29	0.2
02	108.72	12.54	0.30	0.3
203	109.72	12.55	0.31	0.3
04	110.72	12.56	0.32	0.3
05	111.72	12.56	0.32	0.3
06	112.72	12.57	0.33	0.3
07	113.72	12.57	0.33	0.3
08	114.72	12.57	0.33	0.3
:09	115.72	12.58	0.34	0.3
10	116.72	12.58	0.34	0.3
91	117.72	12.58	0.34	0.3
12	118.72	12.58	0.34	0.3
13	119.72	12.59	0.35	0.3 0.3
14	120.72	12.59	0.35 0.35	0.3
15	121.72	12.59	0.35	0.3
16	122.72	12.59	0.35	0.3
17	123.72	12.59	0.35	0.3
18	124.72	12.59	0.35	٦.,
19	125.72	12.59	0.35	
20	126.72	12.59	0.35	
21	127.72	12.59	0.35	0.:
22	128.72	12.59	0.35	0.:
23	129.72	12.59 12.59	0.35	0.3
24	130.72	12.59	0.35	0.:
25	131.72	12.59	0.35	0.:
26	132.72	12.59	0.35	0.:
27	133.72	12.59	0.35	• 0.:
28	134.72	12.59	0.35	0.:
29	135.72	12.60	0.36	0.
30	136.72	12.60	0.36	0.
231	137.72	12.59	0.35	0.
232 233	138.72 139.72	12.60	0.36	. d.
233 234	140.72	12.60	0.36	0.
235	141.72	12.60	0.36	
236 236	142.72	12.60	0.36	0.
237	143.72	12.60	0.36	0.
238 238	144.72	12.60	0.36	0.
239	145.72	12.60	0.36	O.
240	146.72	12.59	0.35	0.
241	147.72	12.60	0.36	0.
242	148.72	12.60	0.36	0.
243	149.72	12.60	0.36	0.
244	150.72	12.60	0.36	
245	151.72	12.60	0.36	
246	152.72	12.60	0.36	<u> </u>
247	153.72	12.60	0.36	0
248	154.72	12.60	0.36	0.
249	155.72	12.60	0.36	0.
250°	156.72	12.60	0.36	0

Pumping test analysis Theis analysis method Unconfined aquifer

1013OA2.HYT, Page 7

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1013

Observation well 1013

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40.00 ft

Static water level: 12.24 ft below datum

` `	Pumping test duration	Water level	Drawdown	Corrected
				drawdown
()	[min]	[ft]	[ft]	[ft]
251	157.72	12.60	0.36	0.35
252	158.72	12.60	0.36	0.35
253	159.72	12.60	0.36	0.35
254	160.72	12.60	0.36	0.35
255	161.72	12.60	0.36	0.35
256	162.72	12.60	0.36	0.38
257	163.72	12.60	0.36	0.3
258	164.72	12.60	0.36	0.35
259	165.72	12.60	0.36	0.39
260	166.72	12.60	0.36	0.35
261	167.72	12.60	0.36	0.35
262	168.72	12.60	0.36	0.35
263	169.72	12.60	0.36	0.35
264	· 170.72	12.60	0.36	0.35
265	171.72	12.60	0.36	0.38
266	172.72	12.60	0.36	0.38
267	173.72	12.60	0.36	0.35
268	174.72	12.60	0.36	0.35
269	175.72	12.60	0.36	0.35
270	176.72	12.60	0.36	0.35
271	177.72	12.60	0.36	0.35
272	178.72	12.60	0.36	0.35
273	179.72	12.60	0.36	0.35
274	180.72	12.60	0.36	0.35
275	181.72	12.60	0.36	0.35
276	182.72	12.60	0.36	0.35
277	183.72	12.60	0.36	0.35
278	184.72	12.60	0.36	0.35
279	185.72	. 12.60	0.36	0.35
280	186.72	12.60	0.36	0.35
281	187.72	12.60	0.36	0.35
282	188.72	12.60	0.36	0.35
283	189.72	12.60	0.36	0.35
284	190.72	12.60	0.36	0.35
285	191.72	12.60	0.36	0.35
286	192.72	12.60	0.36	0.35
287	193.72	12.60	0.36	0.35
288	194.72	12.60	0.36	0.35
289	. 195.72	12.60	0.36	0.35
290	196.72	12.60	0.36	0.35
291	197.72	12.60	0.36	0.35
292	198.72	12.60	0.36	0.35
293	199.72	12.60	0.36	0.35
294	200.72	12.60	0.36	0.35
295	201.72	12.60	0.36	0.35
296	202.72	12.60	0.36	0.35
297	203.72	12.60	0.36	0.35
298	204.72	12.60	0.36	0.35
299	205.72	12.60	0.36	0.35
300	206.72	12.60	0.36	0.35

Pumping test analysis Theis analysis method Unconfined aquifer 1013OA2.HYT, Page 8

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1013

Observation well 1013

Discharge 4.00 U.S.gal/min

	Pumping test duration	Water level	Drawdown	Corrected
		į		drawdown
	[min]	[ft]	[ft]	[ft]
301	207.72	12.60	0.36	0.3
302	208.72	12.60	0.36	0.3
303	209.72	12.60	0.36	0.3
304	210.72	12.60	0.36	0.3
305	211.72	12.60	0.36	0.3
306	212.72	12.60	0.34	0.3
307	213.72	12.60	0.36	0.3
308	214.72	12.60	0.36	0.3
309	215.72	12.60	0.36	0.3
310	216.72	12.60	0.36	0.3
311	217.72	12.60	0.36	0.3
312	218.72	12.60	0.36	0.3
313	219.72	. 12.60	0.36	0.3
314	220.72	12.60	0.36	0.3
315	221.72	12.60	0.36	0.3
316	222.72	12.60	0.36	0.3
317	223.72	12.60	0.36	0.3
318	224.72	12.60	0.36	0.3
319	225.72	12.60	0.36	N.S
320	226.72	12.60	0.36	
321	227.72	12.60	0.36	0.3
322	228.72	12.60	0.36	0.3
323	229.72	12.60	0.36	0.3
324	230.72	12.60	0.36	0.3
325	231.72	12.60	0.36	0.8
326	232.72	12.60	6.25	0.3
327	233.72	12.60	0.36	0.3
328	234.72	12.60	0.36	0.3
329	235.72	12.60	0.36	0.3
330	236.72	12.60	0.36	0.3
331	237.72	12.60	0.36	0.3
332	238.72	12.60	0.36	0.3
333	239.72	12.60	0.36	0.3
334	240.72	12.60	0.36	0.3
335	241.72	12.60	0.36	0.:
336	242.72	12.60	0.36	0.3
337	243.72	12.60	0.36	0.3
338	244.72	12.61	0.37	0.3
339	245.72	12.61	0.37	0.
340	246.72	12.61	0.37	0.3
341	247.72	12.61	0.37	0.
342	248.72	12.61	0.37	0.:
343	249.72	12.61	0.37	0.3
344	250.72	12.61	0.37	
345	251.72	12.61	0.37	
_	251.72	12.61	0.37	<u> </u>
346		12.61	0.37	0.
347	253.72	12.61	0.37	0.
348	254.72	12.61	0.37	0.
349 350	255.72 256.72	12.61	0.37	0.

MACTEC-ERS 2597 B 3/4 Road

Grand Junction, CO 81503 970/248-6040

Pumping test analysis Theis analysis method Unconfined aquifer

1013OA2.HYT, Page 9

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1013

Observation well 1013

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40.00 ft

Static water level: 12.24 ft below datum

	Pumping test duration [min]	Water level	Drawdown	Corrected drawdown [ft]
		[ft]	[ft]	
351	257.72	12.61	0.37	0.30
352	258.72	12.61	0.37	0.30
353	259.72	12.61	0.37	0.30
354	260.72	12.61	0.37	0.30
355	261.72	12.61	0.37	0.30
356	262.72	12.61	0.37	0.30
357	263.72	12.61	0.37	
358	264.72	12.61	0.37	0.30
359	265.72	12.61	0.37	0.36
360	266.72	12.61	0.37	0.30
361	267.72	12.61	4	0.30
362	268.72		0.37	0.30
363	269.72	12.61	0.37	0.30
364	270.72	12.61	0.37	0.30
365	271.72	12.61	0.37	0.30
366	271.72	12.61	0.37	0.30
367		12.61	0.37	0.30
	273.72	12.61	0.37	0.30
368	274.72	12.61	0.37	0.36
369	275.72	12.61	0.37	0.36
370	276.72	12.61	0.37	0.36
371	277.72	12.61	0.37	0.36
372	278.72	12.61	0.37	0.36
373	279.72	12.61	0.37	0.36
374	280.72	12.61	0.37	0.36
375	281.72	12.61	0.37	0.30
376	282.72	12.61	0.37	0.36
377	283.72	12.61	0.37	0.36
378	284.72	12.61	0.37	0.36
379	285.72	12.61	0.37	0.36
380	286.72	12.61	0.37	0.36
381	287.72	12.61	0.37	0.36
382	288.72	12.61	0.37	0.36
383	289.72	12.61	0.37	0.36
384	290.72	12.61	0.37	0.36
385	291.72	12.61	0.37	0.36
386	292.72	12.61	0.37	0.36
387	293.72	12.61	0.37	0.36
388	294.72	12.61	0.37	0.36
389	295.72	12.61	0.37	0.36
390	296.72	12.61	0.37	0.36
391	297.72	12.61	0.37	0.36
392	298.72	12.61	0.37	0.36
393	299.72	12.61	0.37	0.36
394	300.72	12.61	0.37	0.36
395	301.72	12.61	0.37	0.36
396	302.72	12.61	0.37	0.36
397	303.72	12.61	0.37	0.36
398	304.72	12.61	0.37	0.36
399	305.72	12.61	0.37	0.36
400	306.72	12.61	0.37	0.36

Pumping test analysis Theis analysis method Unconfined aquifer 1013OA2.HYT, Page 10

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1013

Observation well 1013

Discharge 4.00 U.S.gal/min Distance from the pumping well 40.00 ft

	Pumping test duration	test duration Water level Drawdown		Corrected
	r amping toot caracier	7 (3) (3) (3)		drawdown
	[min]	[ft]	[ft]	[ft]
401	307.72	12.61	0.37	0.3
402	308.72	12.61	0.37	0.3
403	309.72	12.61	0.37	0.3
404	310.72	12.61	0.37	0.3
405	311.72	12.61	0.37	0.3
406	312.72	12.61	0.37	0.3
407	313.72	12.61	0.37	0.3
408	314.72	12.61	0.37	0.3
409	315.72	12.61	0.37	0.3
410	316.72	12.61	0.37	0.3
411	317.72	12.61	0.37	0.3
412	318.72	12.61	0.37	0.3
413	319.72	12.62	0.38	0.3
414	320.72	12.62	0.38	0.3
415	321.72	12.62	0.38	0.3
416	322.72	12.62	0.38	0.3
417	323.72	12.62	0.38	0.3
418	324.72	12.62	0.38	0.3
419	325.72	12.62	0.38	3
420	326.72	12.61	0.37	
421	327.72	12.62	0.38	0.3
422	328.72	12.62	0.38	0.3
423	329.72	12.62	0.38	0.3
424	330.72	12.62	0.38	0.3
425	331.72	12.62	0.38	0.3
426	332.72	12.62	0.38	0.3
427	333.72	12.62	0.38	0.3
428	334.72	12.62	0.38	0.3
429	335.72	12.62	0.38	0.3
430	336.72	12.62	0.38	0.3
431	337.72	12.62	0.38	0.3
432	338.72	12.62	0.38	0.3
433	339.72	12.62	0.38	0.3 0.3
434 435	340.72 341.72	12.62 12.62	0.38 0.38	0.3
436 436	342.72	12.62	0.38	0.3
436 437	343.72	12.62	0.38	0.3
438	344.72	12.62	0.38	0.3
439	345.72	12.62	0.38	0.3
440	346.72	12.62	0.38	0.3
441	347.72	12.62	0.38	0.3
442	348.72	12.62	0.38	0.3
443	349.72	12.62	0.38	0.3
444	350.72	12.62	0.38	3
445	351.72	12.62	0.38	
446	352.72	12.62	0.38	0.3
447	353.72	12.62	0.38	0.3
448	354.72	12.62	0.38	0.3
449	355.72	12.62	0.38	0.3
450	356.72	12.62	0.38	0.3

Pumping test analysis Theis analysis method Unconfined aquifer 1013OA2.HYT, Page 11

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1013

Observation well 1013

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40.00 ft

Static water level: 12.24 ft below datum

	Pumping test duration	Water level	Drawdown	Corrected	
				drawdown	
- 1	[min]	[ft]	[ft]	[ft]	
451	357.72	12.62	0.38	0.3	
452	358.72	12.62	0.38	0.3	
453	359.72	12.62	0.38	0.3	
454	360.72	12.62	0.38	0.3	
455	361.72	12.62	0.38	0.3	
456	362.72	12.62	0.38	0.3	
457	363.72	12.62	0.38	0.3	
458	364.72	12.62	0.38	0.3	
459	365.72	12.62	0.38	0.3	
460	366.72	12.63	0.39	0.3	
461	367.72	12.62	0.38	0.3	
462	368.72	12.62	0.38	0.3	
463	369.72	12.62	0.38	0.3	
464	370.72	12.62	0.38	0.3	
465	371.72	12.62	0.38	0.3	
466	372.72	12.62	0.38	0.3	
467	373.72	12.62	0.38		
468	374.72	12.62	0.38	0.3	
469	375.72	12.62	0.38	0.3	
470	376.72	12.62		0.3	
471	377.72	12.62	0.38	0.37	
472	378.72	l l	0.38	0.37	
473	379.72	12.62	0.38	0.37	
474		12.62	0.38	0.37	
475	380.72	12.62	0.38	0.37	
476	381.72	12.62	0.38	0.37	
477	382.72	12.62	0.38	0.37	
478	383.72	12.62	0.38	0.37	
479	384.72	12.62	0.38	0.37	
180	385.72	12.62	0.38	0.37	
181	386.72	12.62	0.38	0.37	
182	387.72	12.62	0.38	0.37	
	388.72	12.62	0.38	0.37	
83	389.72	12.62	0.38	0.37	
84	390.72	12.62	0.38	0.37	
85	391.72	12.62	0.38	0.37	
86	392.72	12.62	0.38	0.37	
87	393.72	12.63	0.39	- 0.38	
88	394.72	12.63	0.39	0.38	
89	395.72	12.63	0.39	0.38	
90	396.72	12.63	0.39	0.38	
91	397.72	12.63	0.39	0.38	
92	398.72	12.63	0.39	0.38	
93	399.72	. 12.63	0.39	0.38	
94	400.72	12.63	0.39	0.38	
95	401.72	12.63	0.39	0.38	
96	402.72	12.63	0.39	0.38	
97	403.72	12.63	0.39	0.38	
98	404.72	12.63	0.39	0.38	
99	405.72	12.63	0.39	0.38	
00	406.72	12.63	0.39	0.38	

Pumping test analysis Theis analysis method Unconfined aquifer 1013OA2.HYT, Page 12

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1013

Observation well 1013

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40.00 ft

Static water level: 12.24 ft below datum

Pum	Pumping test duration	Water level	Drawdown	Corrected
			ļ.	drawdown
	[min]	[ft]	[ft]	(ft)
501	407.72	12.63	0.39	0.3
502	408.72	12.63	0.39	0.3
503	409.72	12.63	0.39	0.3
504	410.72	12.62	0.38	0.3
505	411.72	12.63	0.39	0.3
506	412.72	12.63	0.39	0.3
507	413.72	12.63	0.39	0.3
508	414.72	12.63	0.39	0.3
509	415.72	12.63	0.39	0.3
510	416.72	12.63	0.39	0.3
511	417.72	12.63	0.39	0.3
512	418.72	12.63	0.39	0.3
513	419.72	12.63	0.39	0.3
	420.72	12.63	0.39	0.3
514	421.72	12.63	0.39	0.3
515	421.72	12.63	0.39	0.3
516	423.72	12.63	0.39	0.3
517		12.63	0.39	0.3
518	424.72	12.63	0.39	7.3
519	425.72	12.63	0.39	<u> </u>
520	426.72	12.63	0.39	0.3
521	427.72		0.39	0.3
522	428.72	12.63	0.39	0.3
523	429.72	12.63	0.39	0.3
524	430.72	12.63	0.39	0.3
525	431.72	12.63	0.39	0.3
526	432.72	12.63	0.39	0.3
527	433.72	12.63		· 0.3
528	434.72	12.63	0.39	0.3
529	435.72	12.63	0.39	0.3
530	438.72	12.63	0.39	0.3
531	437.72	12.63	0.39	0.3
532	438.72	12.63	0.39	0.3
533		12.63	0.39	0.3
534		12.63	0.39	0.3
535	441.72	12.63	0.39	0
536	442.72	12.63	0.39	0
537	443.72	12.63	0.39	0
538	444.72	12.63	0.39	0.3
539	445.72	12.63	0.39	
540	446.72	12.63	0.39	0.:
541	447.72	12.63	0.39	0.:
542	448.72	12.63	0.39	0.
543	449.72	12.63	0.39	0.
544	450.72	12.63	0.39	
545	451.72	12.63	0.39	J.
546	452.72	12.63	0.39	0.
547	453.72	. 12.63	0.39	0.
548	454.72	12.63	0.39	0.
549	455.72	12.63	0.39	0.
550	456.72	12.63	0.39	0.

MACTEC-ERS 2597 B 3/4 Road Grand Junction, CO 81503

970/248-6040

Pumping test analysis Theis analysis method Unconfined aquifer 10130A2.HYT, Page 13

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1013

Observation well 1013

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40.00 ft

i *	Pumping test duration	Water level	Drawdown	Corrected
		:		drawdown
-	[min]	[ft]	[ft]	[ft]
551	457.72	12.63	0.39	0.3
552	458.72	12.63	0.39	0.3
553	459.72	12.63	0.39	0.3
554	460.72	12.63	0.39	0.3
555	461.72	12.63	0.39	0.3
556	462.72	12.63	0.39	0.3
557	463.72	12.63	0.39	0.3
558	464.72	12.63	. 0.39	0.3
559	465.72	12.63	0.39	0.3
560	466.72	12.63	0.39	0.3
561	467.72	12.63	0.39	0.33
562	468.72	12.63	0.39	0.30
563	469.72	12.63	0.39	0.30
564	· 470.72	12.63	0.39	0.30
565	471.72	12.63	0.39	0.38
566	472.72	12.63	0.39	0.30
567	473.72	12.63	0.39	0.30
568	474.72	12.63	0.39	0.38
569	475.72	12.63	0.39	0.38
570	476.72	12.63	0.39	0.38
571	477.72	12.63	0.39	0.38
572	478.72	12.63	0.39	0.38
73	479.72	12.63	0.39	1
74	480.72	12.63	0.39	0.38
75	481.72	12.63	0.39	0.38
76	482.72	12.63	0.39	0.38
77	483.72	12.63	0.39	0.38
78	484.72	12.63	0.39	0.38
79	485.72	12.63	0.39	0.38
80	486.72	12.63		0.38
81	487.72	12.63	0.39	0.38
82	488.72	12.63	0.39	0.38
83	489.72		0.39	0.38
84	499.72	12.63 12.63	0.39	0.38
85	491.72	12.63	0.39	0.38
86	491.72	12.63		. 0.38
87	492.72	•	0.39	0.38
88	493.72	12.63	0.39	0.38
89	494.72	12.63	0.39	0.38
90	•	12.63	0.39	0.38
91	496.72	12.63	0.39	0.38
91	497.72	12.63	0.39	0.38
	498.72	12.63	0.39	. 0.38
93	499.72	12.63	0.39	0.38
94	500.72	12.63	0.39	0.38
95	501.72	12.63	0.39	0.38
96	502.72	12.63	0.39	0.38
97	503.72	12.63	0.39	0.38
98	504.72	12.63	0.39	0.38
99	505.72	12.63	0.39	0.38

Pumping test analysis
Theis analysis method
Unconfined aquifer

10130A2.HYT, Page 14

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1013

Observation well 1013

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40.00 ft

Static water level: 12.24 ft below datum

г	water level: 12.24 ft below datu	Water level	Drawdown	Corrected
I	Pumping test duration	vvater level	Diawdowii	drawdown
	(min)	[ft]	[ft]	[ft]
601	507.72	12.63	0.39	0.38
602	508.72	12.63	0.39	0.38
603	509.72	12.63	0.39	0.39
604	510.72	12.63	0.39	0.39
605	511.72	12.63	0.39	0.39
606	512.72	12.63	0.39	0.39
607	513.72	12.63	0.39	0.39
608	514.72	12.64	0.40	0.39
609	515.72	12.64	0.40	0.39
610	516.72	12.64	0.40	0.39
611	517.72	12.64	0.40	0.39
612	518.72	12.64	0.40	0.39
613	519.72	12.64	0.40	0.39
614	520.72	12.64	0.40	0.39
615	521.72	12.64	0.40	0.39
616	522.72	12.64	0.40	0.39
617	523.72	12.64	0.40	0.39
618	524.72	12.64	0.40	0.39
619	525.72	12.64	0.40	2.39
620	528.72	12.64	0.40	0.39
621	527.72	12.64	0.40	0.39
622	528.72	12.64	0.40	0.39
623	529.72	12.64	0.40	0.39
624	530.72	12.64	0.40	0.39
625	531.72	12.64	0.40	0.39
626	532.72	12.64	0.40	0.39
627	533.72	12.64	0.40	0.39
628	534.72	12.64	0.40	0.39
629	535.72	12.64	0.40	0.39
630	536.72	12.64	0.40	0.39
631	537.72	12.64	0.40	0.39
632	538.72	12.65	0.41	0.40
633	539.72	12.65	0.41	0.40
634	540.72	12.65	0.41	0.40
635	541.72	12.65	0.41	0.40
636	542.72	12.65	0.41	0.40
637	543.72	12.65	0.41	0.40
638	544.72	12.65	0.41	0.40
639	545.72	12.65	0.41	0.40
640	546.72	12.65	0.41	0.40
641	547.72	12.65	0.41	0.40
642	548.72	12.65	0.41	0.40
643	549.72	12.65	0.41	0.40
644	550.72	12.65	. 0.41).40
645	551.72	12.65	0.41	0.40
646	552.72	-12.65	0.41	0.40
647	553.72	12.65	0.41	0.40
648	554.72	12.65	0.41	0.40
649	555.72	12.65	0.41	0.40
650	556.72	12.65	0.41	0.40

Pumping test analysis Theis analysis method Unconfined aquifer 1013OA2.HYT, Page 15

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Observation Well 1013

Test conducted on: 09/28/98
Observation well 1013

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40.00 ft

Static water level: 12.24 ft below datum

	Pumping test duration	Water level	Drawdown	Corrected
				drawdown
	[min]	(ft)	[ft]	
651	557.72	12.65	0.41	[ft] 0.40
652	558.72	12.65	0.41	0.40
653	559.72	12.65	0.41	0.40
654	560.72	12.65	0.41	0.40
655	561.72	12.65	0.41	0.40
656	562.72	12.65	0.41	
657	563.72	12.65	0.41	0.40
658	564.72	12.65	0.41	0.40
659	565.72	12.65	0.41	0.40
660	566.72	12.65	0.41	0.40
661	567.72	12.65		0.40
662	568.72	12.65	0.41	0.40
663	569.72		0.41	0.40
664	570.72	12.65 12.65	0.41	0.40
665	571.72		0.41	0.40
666	571.72	12.65 12.64	0.41	0.40
667	573.72		0.40	0.39
668	The state of the s	12.64	0.40	0.39
669	574.72	12.65	0.41	0.40
670	575.72	12.64	0.40	0.39
671	576.72	12.64	0.40	0.39
	577.72	12.64	0.40	0.39
672	578.72	12.64	0.40	0.39
673	579.72	12.64	0.40	0.39
674	580.72	12.64	0.40	0.39
675	581.72	12.64	0.40	0.39
676	582.72	12.64	0.40	0.39
677	583.72	12.64	0.40	0.39
678	584.72	12.64	0.40	0.39
679	585.72	12.64	0.40	0.39
680	586.72	12.65	0.41	0.40
681	587.72	12.65		0.40
682	588.72	12.64	0.40	0.39
683	589.72	12.64	0.40	0.39
684	590.72	12.65	0.41	0.40
685	591.72	12.64	0.40	0.39
686	592.72	12.65	0.41	0.40
687	593.72	12.64	0.40	0.39
688	594.72	12.64	0.40	0.39
689	595.72	12.64	0.40	0.39
690	. 596.72	12.64	0.40	0.39
691	597.72	12.64	0.40	0.39
692	598.72	12.64	0.40	0.39
693	599.72	12.64	0.40	0.39
594	600.72	12.64	0.40	0.39
595	601.72	12.64	0.40	0.39
596	602.72	12.64	0.40	0.39
697	603.72	12.64	0.40	0.39
598	604.72	12.64	0.40	0.39
599	605.72	12.64	0.40	0.39
700	606.72	12.65	0.41	0.40

Pumping test analysis Theis analysis method Unconfined aquifer

1013OA2.HYT, Page 16

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1013

Observation well 1013

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40.00 ft

	Pumping test duration	Water level	Drawdown	Corrected
				drawdown
	(min)	[ft]	[ft]	[ft]
701	607.72	12.65	0.41	0.4
702	608.72	12.65	0.41	0.4
703	609.72	12.65	0.41	0.4
704	610.72	12.65	0.41	0.4
705	611.72	12.65	0.41	0.4
706	612.72	12.65	0.41	0.4
707	613.72	12.65	0.41	0.4
708	614.72	12.65	0.41	0.4
709	615.72	12.65	0.41	0.4
710	616.72	12.65	0.41	0.4
711	617.72	12.65	0.41	0.4
712	618.72	12.65	0.41	0.4
713	619.72	12.65	0.41	0.4
714	620.72	12.65	0.41	0.4
715	621.72	12.65	0.41	0.4
716	622.72	12.65	0.41	0.4
717	623.72	12.65	0.41	0.4
718	624.72	12.65	0.41	0.4
719	625.72	12.65	0.41	7.4
720	626.72	12.65	0.41	0.4
721	627.72	12.65	0.41	. 0.4
722	628.72	12.65	0.41	0.4
723	629.72	12.65	0.41	0.4
724	630.72	12.65	0.41	0.4
725	631.72	12.65	0.41	0.4
726	632.72	12.65	0.41	0.4
727	633.72	12.65	0.41	0.4
728	634.72	12.65	0.41	0.4
729	635.72	12.65	0.41	0.4
730	636.72	12.65	0.41	0.4
731	637.72	12.65	0.41	0.4
732	638.72	12.65	0.41	0.4
733	639.72	12.65	0.41	0.4
734	640.72	12.65	0.41	0.4
735	641.72	12.65	0.41	0.
736	642.72	12.65	0.41	0.4
737	643.72	12.65	0.41	0.4
738	644.72	12.65	0.41	0.
739	645.72	12.65	0.41	0.
740	646.72	12.65	0.41	0.· 0.·
741	647.72	12.65	0.41	
742	648.72	12.65	0.41	0.
743	649.72	12.65	0.41	0.
744	650.72	12.65	0.41	<u>).</u>
745	651.72	12.65	0.41	0.
746	652.72	12.65	0.41	0.
747	653.72	12.65	0.41	0.
748	654.72	12.65	0.41	0.
749	655.72	12.65	0.41	0.

Pumping test analysis Theis analysis method Unconfined aquifer 10130A2.HYT, Page 17

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Test conducted on: 09/28/98

Observation Well 1013

Observation well 1013

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40.00 ft

Static water level: 12.24 ft below datum

P	umping test duration	Water level	Drawdown	Corrected
				drawdown
	[min]	[ft]	[ft]	[ft]
751	657.72	12.65	0.41	0.40
752	658.72	12.65	0.41	0.40
753	659.72	12.65	0.41	0.40
754	660.72	12.65	0.41	0.40
755	661.72	12.65	0.41	0.40
756	662.72	12.65	0.41	0.40
757	663.72	12.65	0.41	0.40
758	664.72	12.65	0.41	0.40
759	665.72	12.65	0.41	0.40
760	666.72	12.65	0.41	0.40
761	667.72	12.65	0.41	0.40
762	668.72	12.65	0.41	0.40
763	669.72	12.65	0.41	0.40
764	670.72	12.65	0.41	0.40
765	671.72	12.65	0.41	0.40
766	672.72	12.65	0.41	0.40
767	673.72	12.65	0.41	0.40
768	674.72	12.65	0.41	0.40
769	675.72	12.65	0.41	0.40
770	676.72	12.65	0.41	0.40
771	677.72	12.65	0.41	0.40
772	678.72	12.65	0.41	0.40
773	679.72	12.65	0.41	0.40
774	680.72	12.65	0.41	0.40
775	681.72	12.65	0.41	0.40
776	682.72	12.65	0.41	0.40
777	683.72	12.65	0.41	0.40
778	684.72	12.65	0.41	0.40
779	685.72	12.65	0.41	0.40
780	686.72	12.65	0.41	0.40
781	687.72	12.65	0.41	0.40
782	688.72	12.65	0.41	0.40
783	689.72	12.65	0.41	0.40
784.	690.72	12.65	0.41	0.40
785	691.72	12.65	0.41	0.40
786	692.72	12.65	0.41	0.40
787	693.72	12.65	0.41	0.40
788	694.72	12.65	0.41	0.40
789	695.72	12.65	0.41	0.40
790	696.72	12.65	0.41	0.40
261 .	+ 9 697.72	12.65	0.41	0.40
2691 ya -	698.72	12.65	0.41	0.40
793	699.72	12.65	0.41	0.40
794	700.72	12.64	0.40	0.39
795	701.72	12.64	0.40	0.39
796	702.72	12.64	0.40	0.39
797	703.72	12.64	0.40	0.39
798	704.72	12.64	0.40	0.39
799	705.72	12.64	0.40	0.39
800	706.72	12.64	0.40	0.39

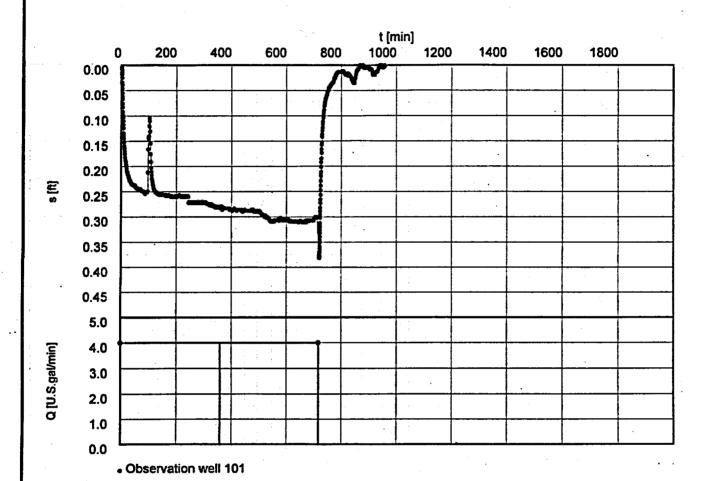
Pumping test analysis Theis analysis method Unconfined aquifer 1013OA2.HYT, Page 18

Project: UGW - Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1034 Aquifer Test

Discharge 4.00 U.S.gal/min

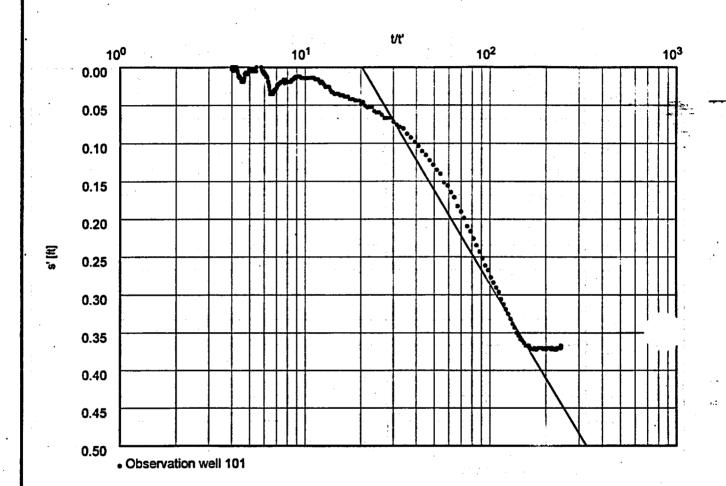

Test conducted on: 09/28/98

Observation well 1013

Distance from the pumping well 40.00 ft

	Dumming toot disasting	Water level	Droudous	Comented
	Pumping test duration	vvater level	Drawdown	Corrected drawdown
I	[min]	[ft]	(ft)	[ft]
301	707.72	12.64	0.40	0.39
02	708.72	12.64	0.40	0.39
03	709.72	12.64	0.40	0.3
04	710.72	12.64	0.40	0.3
05	711.72	12.64	0.40	0.3
				• •
			•	
			5 2	
				
				<u> </u>
				*
\rightarrow	:			
\dashv	<u> </u>			
				•
	· · · · · · · · · · · · · · · · · · ·			
				· · · · · · · · · · · · · · · · · · ·
-+				
-	:		1 .	
		•		
				-
-				1

MACTEC-ERS 2597 B 3/4 Road Grand Junction, CO 81503	Pumping test Time-Drawdo with discharg	wn plot	1013OR2.HYT, Page 1 Project: UGW Grand Junction, CO		
970/248-6040			Evaluated by: RJH Date: 11/19/98		
Pumping Test No. 1034 Recov	ery Test	Test conduct	red on: 09/28/98		
Observation Well 1013					
Discharge 4.00 U.S.gal/min			1. 计算机 1000 000 000 000 000 000 000 000 000 0		



Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer

1013OR2.HYT, Page 1 Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test	Test conducted on: 09/28/98	
Observation Well 1013		
Discharge 4.00 U.S.gal/min		
	Pumping test duration: 717.00 min	

Transmissivity [ft²/min]: 2.36 x 10⁻¹

339.84 A2/day 42.62 ft/day

Hydraulic conductivity [ft/min]: 2.96 x 10⁻²

Aquifer thickness [ft]: 8.00

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1013OR2.HYT, Page 2

Project: UGW - Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Observation Well 1013

Test conducted on: 09/28/98

Observation well 1013

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40.00 ft

	Time from Water level		Residual Corrected	
.	end of pumping	vvater level	drawdown	the state of the s
	[min]	[ft]	(ft)	drawdown [ft]
1	3.00	12.72	0.38	0.3
2	3.00	12.72	0.38	0.3
3	3.01	12.72	0.38	0.3
4	3.01	12.72	0.38	0.3
5	3.02	12.72	0.38	0.3
6	3.03	12.72	0.38	0.3
7.	3.03	12.72	0.38	0.3
8	3.04	12.72	0.38	0.3
9	3.04 .	12.72	0.38	0.3
10	3.04	12.72	0.38	0.3
11	3.05	12.72	0.38	0.3
12	3.05	12.72	0.38	• 0.3
13	3.06	12.72	0.38	0.3
14	3.07	12.72	0.38	0.3
15	3.07	12.72	0.38	0.3
16	3.08	12.72	0.38	0.3
17	3.08	12.72	0.38	0.3
18	3.08	12.72	0.38	0.3
19	3.09	12.72	0.38	0.3
20	3.09	12.72	0.38	0.3
21	3.10	12.72	0.38	0.3
22	3.11	12.72	0.38	0.37
23	3.11	12.72	0.38	0.37
24	3.12	12.72	0.38	0.37
25	3.13 .	12.72	0.38	0.37
26	3.13	12.72	0.38	0.37
27	3.14	12.72	0.38	0.37
28	3.15	12.72	0.38	0.37
29	3.16	12.72	0.38	0.37
30	3.17	12.72	0.38	0.37
31	3.18	12.72	0.38	0.37
32	3.19	12.72	0.38	0.37
33	3.20	12.72	0.38	0.37
34	3.21	12.72	0.38	0.37
35	3.22	12.72	0.38	0.37
36	3.24	12.72	0.38	0.37
37	3.25	12.72	0.38	0.37
38	3.26	12.72	0.38	0.37
39	3.28	12.72	0.38	0.37
40	. 3.30	12.72	0.38	0.37
41	3.31	12.72	0.38	0.37
42	3.33	12.72	0.38	0.37
43	3.35	12.72	0.38	0.37
44	3.37	12.72	0.38	0.37
45	3.40	12.72	0.38	0.37
46	3.42	12.72	0.38	0.37
47	3.44	12.72	0.38	0.37
48	3.47	12.72	0.38	0.37
49	3.50	12.72	0.38	0.37
50	3.52	12.72	0.38	0.37

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1013OR2.HYT, Page 3
Project: UGW -- Grand Junction, (

Evaluated by: RJH Date: 11/19/9

Pumping Test No. 1034 Recovery Test . Test conducted on: 09/28/98

Observation Well 1013 . Observation well 1013

Discharge 4.00 U.S.gal/min . Distance from the pumping well 40.00 ft

- 1	Time from	Water level	Residual	Corrected
	end of pumping		drawdown	drawdown
<i>-</i> .	[min]	[ft]	[ft]	[ft]
51	3.55	12.72	0.38	
52	3.59	12.72	0.38	
53	3.62	12.72	0.38	,
54	3.66	12.72	0.38	
55	3.70	. 12.72	0.38	······································
56	3.74	12.72	0.38	
57	3.78	12.72	0.38	
58	3.83	12.72	0.38	
59	3.88	12.72	0.38	
60	3.93	12.72	0.38	
61	3.98	12.72	0.38	
62	4.04	12.72	0.38	
63	4.10	12.72	0.38	
64	4.17	12.72	0.38	
65	4.24	12.72	0.38	
66	4.31	12.72	0.38	
67	4.39	12.72	0.38	
68	4.47	12.72	0.38	
69	4.56	12.72	0.38	<u> </u>
70	4.65	12.72	0.38	<u> </u>
71	4.75 4.86	12.71	0.37	,
72 73	4.97	12.71 12.71	0.37 0.37	
74	5.08	12.71	0.36	
75	5.21	12.70	0.36	
78	5.34	12.69	0.35	····
77	5.48	12.69	0.35	
78	5.63	12.68	0.34	
79	5.79	12.67	0.33	
80	5.95	12.67	0.33	
81	6.13	12.66	0.32	
82	6.32	12.65	0.31	
83	6.51	12.64	0.30	
84	6.72	12.64	0.30	
85	6.95	12.63	0.29	· · · · · · · · · · · · · · · · · · ·
86	7.18	12.62	0.28	
87	7.43	12.61	0.27	
88	7.69	12.61	0.27	
89	7.97	12.60	0.26	
90	8.27	12.59	0.25	
91	8.58	12.58	0.24	
92	8.91	12.57	0.23	
93	9.27	12.56	0.22	
94	9.64	12.55	0.21	
95	10.03	12.54	0.20	
96	10.45	12.53	0.19	
97	10.90	12.52	0.18	
98	11.37	12.51	0.17	
99	11.86	12.51	0.17	
00	12.39	12.50	0.16	

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1013OR2.HYT, Page 4

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Observation Well 1013

Observation well 1013

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40.00 ft

	Time from	Water level	Residual Corrected	
	end of pumping	vvater level	drawdown	drawdown
		763		
101	[min] 12.95	[ft]	[ft] 0.15	[ft]
102	,	12.49	0.15	0.13
102	13.54 14.17	12.48 12.48	0.14	0.14
104	14.83	12.47	0.14	0.13
105	15.53	12.46	0.13	0.1; 0.1;
106	16.28	12.46	0.12	0.12
107	17.07	12.45	0.12	0.13
108	17.91	12.44	0.10	0.10
109	18.79	12.44	0.10	0.10
110	19.73	12.43	0.09	0.09
111	20.72	12.43	0.09	0.09
112	21.72	12.42	0.08	0.08
113	22.72	12.42	0.08	0.08
114	23.72	12.42	0.08	0.08
115	24.72	12.41	0.07	0.07
116	25.72	12.41	0.07	0.07
117	26.72	12.41	0.07	0.07
118	27.72	12.41	0.07	0.07
119	28.72	12.40	0.06	0.06
120	29.72	12.40	0.06	0.06
121	30.72	12.40	0.06	0.06
122	31.72	12.40	0.06	0.06
123	32.72	12.39	0.05	0.05
124	33.72	12.39	0.05	0.05
125	34.72	12.39	0.05	0.03
126	35.72	12.39	0.05	· 0.0
127	36.72	12.39	0.05	0.05
128	37.72	12.39	0.05	0.05
129	38.72	12.38	0.04	0.04
130	39.72	12.38	0.04	0.04
131	40.72	12.38	0.04	0.04
132	41.72		0.04	0.04
133	42.72	12.38	0.04	0.04
134 135	43.72 44.72	12.38 12.38	0.04 0.04	0.04
136	45.72	12.38	0.04	0.04
137	46.72	12.38	0.04	0.04 0.04
138	47.72	12.38	0.04	0.04
139	48.72	12.38	0.04	0.04
140	49.72	12.38	0.04	0.04
41	50.72	12.38	0.04	0.03
42	51.72	12.38	0.04	0.03
43	52.72	12.38	0.04	0.03
44	53.72	12.38	0.04	0.03
45	54.72	12.37	0.03	0.03
46	55.72	12.37	0.03	0.03
47	56.72	12.37	0.03	0.03
48	57.72	12.37	0.03	0.03
49	58.72	12.37	0.03	0.03
50	59.72	12.37	0.03	0.0:

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1013OR2.HYT, Page 5

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Observation Well 1013

Discharge 4.00 U.S.gal/min

Test conducted on: 09/28/98

Observation well 1013

Distance from the pumping well 40.00 ft

Static water level: 12.34 ft below datum			Pumping test duration: 717.00 min	
	Time from	Water level	Residual Corrected	
	end of pumping		drawdown	drawdown
	[min]	[ft]	[ft]	[ft]
151	60.72	12.37	0.03	0.0
152	61.72	12.36	0.02	0.0
153	62.72	12.36	0.02	0.0
154	63.72	12.36	0.02	0.0
155	64.72	12.36	0.02	0.0
156	65.72	12.36	0.02	0.0
157	66.72	12.36	0.02	0.0
158	67.72	12.36	0.02	0.0
159	68.72	12.36	0.02	. 0.02
160	69.72	12.36	0.02	0.0
161	70.72	12.35	0.01	0.0
162	71.72	12.35	0.01	0.0
163	72.72	12.35	0.01	0.0
164	73.72	12.35	0.01	0.0
165	74.72	12.35	0.01	0.0
166	75.72	12.35	0.01	0.0
167	76.72	12.35	0.01	0.0
168	77.72	12.35	0.01	0.0
169 170	78.72	12.35	0.01	7.0
171	79.72	12.35	0:01	5.0
172	80.72	12.35	0.01	0.0
173	81.72 82.72	12.35 12.35	0.01	0.0
174	83.72	12.35	0.01 0.01	0.0
175	84.72	12.35	0.01	0.0
176	85.72	12.35	0.01	0.0
177	86.72	12.35	0.01	0.0
178	87.72	12.35	0.01	· 0.0
179	88.72	12.35	0.01	0.0
180	89.72	12.35	0.01	0.0
181	90.72	12.35	0.01	0.0
182	91.72	12.35	0.01	0.0
183	92.72	12.35	0.01	. 0.0
184	93.72	12.35	0.01	0.0
185	94.72	12.36	0.02	0.02
186	95.72	12.36	0.02	0.02
187	96.72	12.36	0.02	0.02
188	97.72	12.36	0.02	0.02
189	98.72	12.36	0.02	0.02
190	99.72	12.36	0.02	0.02
191	100.72	12.36	0.02	0.02
192	101.72	12.36	0.02	0.02
193	102.72	12.36	0.02	0.02
194	103.72	12.00	0.02	7.02
195	104.72	12.36	0.02	J.02
196	105.72	12.36	0.02	0.02
197	106.72	12.38	0.02	0.02
198	107.72	12.38	0.02	0.02
199	108.72	12.38	0.02	0.02
200	109.72	12.36	0.02	0.02

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1013OR2.HYT, Page 6

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Observation Well 1013

Observation well 1013

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40.00 ft

l l	Time from	Water level	Residual Corrected	
	end of pumping [min]			drawdown
		[fi]	[ft]	[ft]
201	110.72	12.36	0.02	0.02
202	111.72	12.36	0.02	0.02
203	112.72	12.36	0.02	0.02
204	113.72	12.36	0.02	0.02
205	114.72	12.36	0.02	0.02
206	115.72	12.36	0.02	0.02
207	116.72	12.36	. 0.02	0.02
208	117.72	12.36	. 0.02	0.02
209	118.72	12.36	0.02	0.02
210	119.72	12.37	0.03	0.03
211	120.72	12.37	0.03	0.03
212	121.72	12.37	0.03	0.03
213	122.72	12.37	0.03	0.03
214	123.72	12.37	0.03	0.03
215	124.72	12.37	0.03	0.03
216	125.72	12.37	0.03	0.03
217	126.72	12.38	0.04	0.03
218	127.72	12.38	0.04	0.03
219	128.72	12.38	0.04	0.03
220	129.72	12.38	0.04	0.03
221	130.72	12.37	0.03	0.03
222	131.72	12.38	0.04	0.03
223	132.72	12.37	0.03	0.03
224	133.72	12.37	0.03	0.03
225	134.72	12.36	0.02	0.02
226	135.72	12.36	0.02	0.02
227	136.72	12.36	0.02	0.02
228	137.72	12.35	0.01	0.01
229	138.72	. 12.35	0.01	0.01
230	139.72	12.35	0.01	0.01
231	140.72	12.35	0.01	0.01
232	141.72	12.35	0.01	0.01
233	142.72	12.35	0.01	0.01
234	143.72	12.35	0.01	0.01
235	144.72	12.35	0.01	0.01
236	145.72	12.35	0.01	0.01
237	146.72	12.35	0.01	0.01
238	147.72	12.35	0.01	0.00
39	148.72	12.35	0.01	0.00
40	149.72	12.34	0.00	0.00
41	150.72	12.34	0.00	0.00
42	151.72	12.34	-0.00	0.00
43	152.72	12.34	-0.00	-0.00
44	153.72	12.34	-0.00	-0.00
45	154.72	12.33	-0.01	-0.01
46	155.72	12.33	-0.01	-0.01
47	156.72	12.33	-0.01	-0.01
48	157.72	12.33	-0.01	-0.01
49	158.72	12.33	-0.01	-0.01

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1013OR2.HYT, Page 7

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Observation Well 1013

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40 00 ft

Discharge 4.00 U.S.gal/min			Distance from the pumping well 40.00 ft		
Static water level: 12.34 ft below datum			Pumping test duration: 717.00 min		
	Time from end of pumping [min]	Water level	Residual drawdown [ft]	Corrected drawdown [ft]	
251	160.72	12.34	-0.00	-0.0	
252	161.72	12.34	0.00	0.0	
253	162.72	12.35	0.01	0.0	
254	163.72	12.34	0.00	0.0	
255	164.72	12.35	0.01	0.0	
258	165.72	12.35	0.01	0.0	
257	166.72	12.34	0.00	0.0	
258	167.72	12.34	0.00	0.0	
259	168.72	12.34	0.00	0.0	
260	169.72	12.34	0.00	0.0	
261	170.72	12.34	0.00	0.0	
262	171.72	12.35	0.01	0.0	
263	172.72	· 12.34	0.00	0.0	
264	173.72	12.35	0.01	0.0	
265	174.72	12.34	0.00	0.0	
266	175.72	12.34	0.00	0.0	
267	176.72	12.34	0.00	0.0	
268	177.72	12.34	0.00	0.0	
269	178.72	12.34	0.00	0.0	
270	179.72	12.35	0.01	0.0	
271	180.72	12.35	0.01	0.0	
272	181.72	12.34	0.00	0.0	
273	182.72	12.35	0.01	0.0	
274	183.72	12.35	0.01	0.0	
275	184.72	12.35	0.01	0.0	
276	185.72	12.35	0.01	0.0	
277	186.72	12.35	0.01	0.0	
278	187.72	12.35	0.01	0.0	
279	188.72	12.35	0.01	0.0	
280 281	189.72	12.35	0.01	0.0	
282	190.72	12.35	0.01	0.0	
283	191.72	12.35	0.01	0.0	
284	192.72 193.72	12.35 12.35	0.01	0.0	
285	194.72	12.35	0.01	0.0	
286	195.72	12.35	0.01	0.0	
287	196.72	12.36	0.01	0.0 0.0	
288	197.72	12.36	0.02	0.0	
289	198.72	12.36	0.02	0.0	
290	199.72	12.36	0.02	0.0	
291	200.72	12.36	0.02	0.0	
202	201.72	12.36	0.02	0.0	
285	202.72	12.36	0.02	0.0	
294	203.72	12.36	0.02	7.0	
295	204.72	12.36	0.02	0.0	
298	205.72	12.36	0.02	0.0	
297	206.72	12.36	0.02	0.0	
298	207.72	12.35	0.02	0.0	
299	208.72	12.35	0.01	0.0	
300	209.72	12.35	0.01	0.0	

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1013OR2.HYT, Page 8

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/19/98

Pumping Test No. 1034 Recovery Test

Test conducted on: 09/28/98

Observation Well 1013

Observation well 1013

Discharge 4.00 U.S.gal/min

Distance from the pumping well 40.00 ft

		14fete desert	Pumping test duration: 717.00 min Residual Corrected		
	Time from	Water level	!	drawdown	
	end of pumping		drawdown		
	[min]	(ft)	[ft]	[ft]	
301	210.72	12.35	0.01	0.01	
302	211.72	12.35	0.01	0.01	
303	212.72	12.35	0.01	0.01	
304	. 213.72	12.35	0.01	0.01	
305	214.72	12.35	0.01	0.01	
306	215.72	12.35	0.01	0.01	
307	216.72	12.35	0.01	0.01	
308	217.72	12.35	0.01	0.01	
309	218.72	12.35	0.01	0.00	
310	219.72	12.35	0.01	0.00	
311	220.72	12.34	0.00	0.00	
312	221.72	12.34	0.00	0.00	
313	222.72	12.34	0.00	0.00	
314	223.72	12.34	0.00	0.00	
315	224.72	12.34	0.00	0.00	
316	225.72	12.34	0.00	0.00	
317	226.72	12.34	0.00	0.00	
318	227.72	12.34	0.00	0.00	
319	228.72	12.34	0.00	0.00	
320	229.72	12.34	0.00	0.00	
321	230.72	12.34	0.00	0.00	
322	231.72	12.35	0.01	0.00	
323	232.72	12.35	0.01	0.00	
324	233.72	12.34	0.00	0.00	
325	234.72	12.35	0.01	0.00	
326	235.72	12.35	0.01	0.00	
327	236.72	12.34	0.00	. 0.00	
328	237.72	12.34	0.00	0.00	
329	238.72	12.34	0.00	0.0	
330	239.72	12.34	0.00	0.00	
331	240.72	12.34	0.00	0.00	
332	241.72	12.34	-0.00	-0.0	
333	242.72	12.34	-0.00	-0.0	
334	243.72	12.34	-0.00	-0.0	
335	244.72	12.34	-0.00	-0.0	
336	245.72	12.34	-0.00	-0.0	
337	246.72	12.33	-0.01	-0.0	
338	247.72	12.33	-0.01	-0.0	
339	248.72	12.33	-0.01	-0.0	
340	. 249.72	12.33	-0.01	-0.0	
341	250.72	12.33	-0.01	-0.0	
342	251.72	12.33	-0.01	-0.0	
343	252.72	12.33	-0.01	-0.0	
344	253.72	12.33	-0.01	-0.0	
345	254.72	12.33	-0.01	-0.0	
346	255.72	12.33	-0.01	-0.0	
347	256.72	12.33	-0.01	-0.0	
348	257.72	12.33	-0.01	-0.0	
349	258.72	12.34	-0.00	-0.0	
350	259.72	12.34	-0.00	-0.0	

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1013OR2.HYT, Page 9

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/19/98

Pumping Test No. 1034 Recovery Test . Test conducted on: 09/28/98

Observation Well 1013 . Observation well 1013

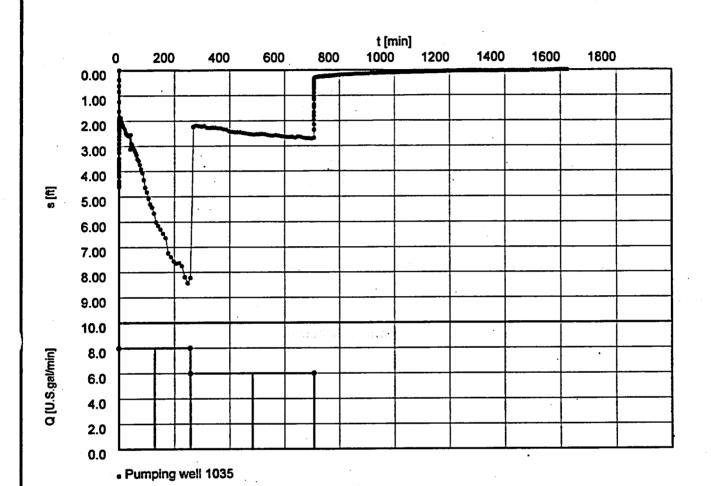
Discharge 4.00 U.S.gal/min . Distance from the pumping well 40.00 ft

Discharge 4.00 U.S.gal/min			Distance from the pumping well 40.00 ft		
Static v	ater level: 12.34 ft below dat	um .	Pumping test duration: 717.00 min		
	Time from end of pumping	Water level	Residual drawdown	Corrected	
	[min]	[ft]	[ft]	drawdown	
351	260.72	12.34	-0.00		
352	261.72	12.34	-0.00	-0.0	
353	262.72	12.34	-0.00	-0.0	
354	263.72	12.34	-0.00	-0.0	
355	.264.72	12,34	-0.00	-0.0	
356	265.72	12.34	-0.00	0.0	
357	266.72	12.34	-0.00	-0.0	
358	267.72	12.33	-0.01	-0.0	
359	268.72	12.33	-0.01	-0.0	
360	269.72	12.33	-0.01	-0.0	
361	270.72	12.33	-0.01	-0.0	
362	271.72	12.33	-0.01	-0.0	
363	272.72	12.33	-0.01	-0.0	
364	273.72	12.33	-0.01	-0.0	
365	274.72	12.33	-0.01	-0.0	
366	275.72	12.33	-0.01	-0.0	
367	276.72	12.33	-0.01	-0.01	
368	277.72	12.32	-0.02	-0.02	
369	278.72	12.32	-0.02	2.02	
370	279.72	12.32	-0.02	J.02	
371	280.72	12.32	-0.02	-0.02	
372	281.72	12.32	-0.02	-0.02	
373	282.72	12.32	-0.02	-0.02	
374	283.72	12.32	-0.02	-0.02	
375	284.72	12.32	-0.02	-0.02	
376	285.72	· 12.32	-0.02	-0.02	
377	286.72	12.32	-0.02	-0.03	
378	287.72	12.32	-0.02	-0.03	
		•			
		1.00			

Pumping test analysis Time-Drawdown plot with discharge 1035R1.HYT, Page 1

Project: UGW -- Grand Junction, CO

1


Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Pumping Well 1035

Discharge 6.73 U.S.gal/min

Test conducted on: 09/29/98

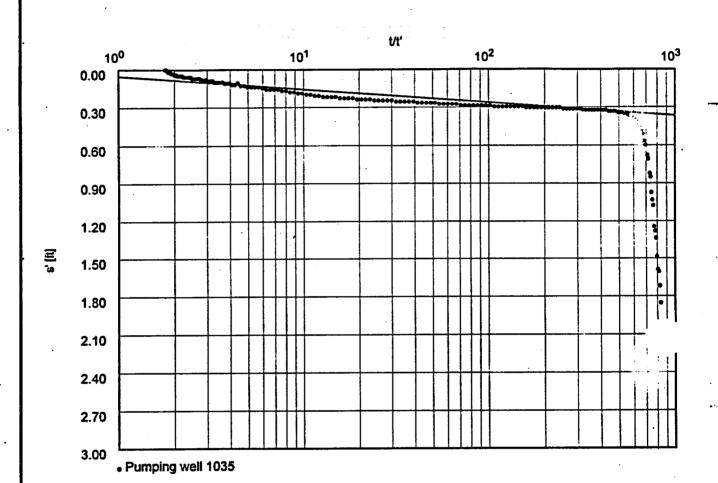
This page intentionally blank

Calculation No.: U0043900

PUMPING WELL 1035

RECOVERY DATA ANALYSES

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer


1035PR1.HYT, Page 1

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Test conducted on: 09/29/98 Pumping Test No. 1035 Recovery Test Pumping Well 1035 Discharge 6.73 U.S.gal/min

Pumping test duration: 707.00 min

Transmissivity [ft²/min]: 1.57 x 100

2260. 80 ft2/day

Hydraulic conductivity [ft/min]: 1.96 x 10⁻¹

282.24 ft/dsy

Aquifer thickness [ft]: 8.00

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer

1035PR1.HYT, Page 2

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Pumping Well 1035

Pumping well 1035

Test conducted on: 09/29/98

Discharge 6.73 U.S.gal/min

Distance from the pumping well 1.00 ft

	Time from Water level		Residual Corrected	
	end of pumping		drawdown	drawdown
	[min]	[ft]	[ft]	[ft]
1	0.74	12.91	2.67	2.2
2	0.75	12.92	2.68	2.2
3	0.76	12.92	2.68	2.2
4	0.77	12.92	2.68	2.2
5	0.78	12.91	2.67	2.2
6	0.79	12.91	2.67	2.2
7.	0.80	12.92	2.68	2.2
8	0.81	12.91	2.67	2.2
9	0.82	12.92	2.68	2.2
10	0.83	12.59	2.35	2.0
11	0.84	12.60	2.36	2.0
12	0.85	12.38	2.14	• 1.8
13	0.86	12.20	1.96	1.7
14	0.87	12.05	1.81	1.6
15	0.88	12.03	1.79	1.3
16	0.89	11.90	1.66	1.4
17	0.90	11.71	1.47	1.3
18	0.91	11.64	1.40	1.2
19	0.92	11.60	1.36	1.2
20	0.93	11.40	1.16	1.0
21	0.94	11.35	1.11	1.0
22	0.95	11.28	1.04	0.9
23	0.96	11.14	0.90	0.8
24	0.97	11.11	0.87	0.8
25	0.99	10.98	0.74	0.7
26	1.00	10.95	0.71	0.6
27	1.02	10.86	0.62	0.6
28	1.04	10.83	0.59	0.5
29	1.05	10.77	0.53	0.5
30	1.07	10.74	0.50	0.4
31	1.09	10.72	0.48	0.4
32	1.11	10.69	0.45	0.4
33	1.13	10.66	0.42	0.4
34	1.16	10.65	0.41	0.4
35	1.18	10.64	0.40	0.3
36	1.21	10.63	0.39	0.3
37	1.23	10.62	0.38	0.3
8	1.26	10.61	0.37	0.3
9	1.29	10.60	0.36	0.3
0 .	. 1.32	10.60	0.36	0.3
1	1.36	10.59	0.35	0.3
2	1.40	10.59	0.35	0.3
3	1.43	10.59	0.35	0.3
5	1.48	10.58	0.34	0.3
	1.52	10.58	0.34	0.3
5	1.57	10.58	0.34	0.3
7	1.61	10.58	0.34	0.3
8	1.67	10.57	0.33	0.3
9	1.72	10.57	0.33	0.3
0	1.78	10.57	0.33	0.3

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1035PR1.HYT, Page 3

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Pumping Well 1035

Pumping well 1035

Discharge 6.73 U.S.gal/min

Distance from the pumping well 1.00 ft

	Time from	Water level .	Residual	Corrected
	end of pumping		drawdown	drawdown
	[min]	[ft]	(ft)	[ft]
51	1.84	10.57	0.33	0.3
52	1.91	10.57	0.33	0.
53	1.98	10.57	0.33	0.
54	2.05	10.57	0.33	0.
55	2.13	10.57	0.33	0.
56	2.21	10.57	0.33	0.:
57	2.30	10.56	0.32	0.
58	2.39	10.56	0.32	0.:
59	2.49	10.56	0.32	0.:
60	2.60	10.56	0.32	0.
61	2,71	10.56	0.32	0.:
62	2.82	10.56	0.32	0.:
63	2.95	10.55	0.31	0.:
64	3.08	10.55	0.31	. 0.:
65	3.22	10.55	0.31	0. 0.
66	3.37	10.55	0.31	0.:
67	3.52	10.55	0.31 0.31	0.
68	3.69	10.55 10.55	0.31	1.
69	3.87	10.55	0.31	<u> </u>
70 71	4.05 4.25	10.55	0.31	0.
72	4.46	10.55	0.31	0.
73	4.68	10.54	0.30	0.
74	4.92	10.54	0.30	0.
75 -	5.17	10.54	0.30	0.
76	5.43	10.54	0.30	0.
77	5.71	10.54	0.30	0.
78	6.01	10.54	0.30	0.
79	6.32	10.54	0.30	0.
80	6.65	10.54	0.30	0.
81	7.00	10.53	0.29	0.
82	7.38	10.53	0.29	0.
83	7.77	10.53	0.29	0.
84	8.19	10.53	0.29	0.
85	8.63	10.53	0.29	0.
86	9.10	10.53	0.29	0.
87	9.60	10.53	0.29	· 0.
88	10.13	10.53	0.29	0.
89	10.69	10.52	0.28	0.
90	11.28	10.52	0.28	0.
91	11.91	10.52	0.28	0.
92	12.57	10.52	0.28	0.
93	13.27	10.52	0.28	0.
94	14.02	10.51	0.27	1
95	14.81	10.51	0.27	<u> </u>
96	15.64	10.51	0.27	0.
97	16.53	10.51	0.27	0.
98	17.47	10.51	0.27 0.26	0. 0.
99	18.48	10.50		
00	19.51	10.50	0.26	1

MACTEC-ERS Pumping test analysis 1035PR1.HYT, Page 4 2597 B 3/4 Road Recovery method after Project: UGW -- Grand Junction, CO Grand Junction, CO 81503 THEIS & JACOB 970/248-6040 Unconfined aquifer Evaluated by: RJH Date: 11/18/98 Pumping Test No. 1035 Recovery Test Test conducted on: 09/29/98 Pumping Well 1035 Pumping well 1035 Discharge 6.73 U.S.gal/min Distance from the pumping well 1.00 ft Static water level: 10.24 ft below datum Pumping test duration: 707.00 min Time from Water level Residua! Corrected end of pumping drawdown drawdown [min] [ft] [ft] [ft] 101 20.63 10.50 0.26 0.26 102 21.81 10.50 0.26 0.26 103 23.06 10.50 0.26 0.26 104 24.39 10.49 0.25 0.25 105 25.79 10.49 0.25 0.25 106 27.28 10.49 0.25 0.25 107 28.86 10.49 0.25 0.25 108 30.52 10.49 0.25 0.25 109 32.29 10.48 0.24 0.24 110 34.17 10.48 0.24 0.24 111 36.15 10.48 0.24 0.24 112 38.25 10.48 0.24 0.24 113 40.48 10.47 0.23 0.23 114 42.84 10.47 0.23 0.23 115 45.33 10.47 0.23 0.23 116 47.98 10.47 0.23 0.23 117 50.78 10.46 0.22 0.22 118 53.75 10.46 0.22 0.22 119 56.90 10.46 0.22 0.22 120 60.23 10.46 0.22 0.22 121 63.76 10.45 0.21 0.21 122 67.50 10.45 0.21 0.21 123 71.46 10.44 0.20 0.20 124 75.65 10.44 0.20 0.20 125 80.09 10.43 0.19 0.19 126 84.80 10.43 0.19 0.19 127 89.78 10.42 0.18 0.18 128 **95.06** 10.42 0.18 0.18 129 100.66 10.41 0.17 0.17 130 106.58 10.41 0.17 0.17 131 112.86 10.40 0.16 0.16 132 119.51 10.40 0.16 0.16 133 126.55 10.40 0.16 0.16 134 134.01 10.40 0.16 0.16 135 141.91 10.39 0.15 0.15 136 150.27 10.38 0.14 0.14 137 159,14 10.38 0.14 0.14 <u>138</u> 168.53 10.38 0.14 0.14 139 178.48 10.38 0.14 0.14 140 188.48 10.37 0.13 0.13 141 198.48 10.37 0.13 0.13 142 208.48 10.35 0.11 0.11 143 218.48 10.36 0.12 0.12 144 228.48 10.36 0.12 0.12 145 238.48 10.35 0.11 0.11 146 248.48 10.35 0.11 0.11 147 258.48 10.35 0.11

10.34

10.34

10.34

0.10

0.10

0.10

148

149

150

268.48

278.48

288.48

0.11

0.10

0.10

0.10

Pumping test analysis
Recovery method after
THEIS & JACOB
Unconfined aquifer

1035PR1.HYT, Page 5

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Pumping Well 1035

Pumping well 1035

Test conducted on: 09/29/98

Discharge 6.73 U.S.gal/min

Distance from the pumping well 1.00 ft

Static water level: 10.24 ft below datum			Pumping test duration: 707.00 min		
	Time from Water level		Residual	Corrected	
	end of pumping		drawdown	drawdown	
	[min]	[ft]	[ft]	[ft]	
151	298.48	10.34	0.10	0.1	
152	308.48	10.34	0.10	0.	
153	318.48	10.33	0.09	0.(
154	328.48	10.33	0.09	0.0	
155	338.48	10.33	0.09	0.0	
156	348.48	10.33	0.09	0.0	
157	358.48	10.32	0.08	0.0	
158	368.48	10.32	. 0.08	0.1	
159	378.48	10.32	. 0.08	0.0	
160	388.48	10.32	0.08	0.	
161	398.48	10.32	0.08	0.	
162	408.48	10.31	0.07	0.	
163	418.48	10.31	0.07	0.	
164	428.48	10.31	0.07	0.	
165	438.48	10.31	0.07	0.	
166	448.48	10.31	0.07	0. 0.	
167	458.48	10.31	0.07		
168	468.48	10.31	0.07		
169	478.48	10.31	0.07	σ.	
170	488.48	10.30	0.06	0 .	
171	498.48	10.30	0.06	0. 0.	
172	508.48	10.30	0.06	0.	
173	518.48	10.30	0.08	0.	
174	528.48	10.30	0.06	0.	
175	538.48	10.30	0.06	0.	
176	548.48	10.30	0.06	- 0.	
177	558.48	10.30	0.06	. 0.	
178	568.48	10.30	,	0	
179	578.48	10.30	0.06	0	
180	588.48	10.29	0.05	0	
181	598.48	10.29		- 0	
182	608.48	10.29	0.05	0	
183	618.48	10.29	· · · · · · · · · · · · · · · · · · ·	0	
184	628.48	10.29		0	
185	638.48	10.29 10.29		0	
186	648.48	10.29		0	
187	658.48	10.29			
188	668.48	10.28	† 1 _		
189	678.48 688.48	10.28	1		
190	698.48	10.28		<u> </u>	
191	708.48	10.28	1		
192	708.48	10.28		0	
193	,	10.27			
194	728.48	10.27			
195	738.48	10.27			
196	748.48	10.27	· · · · · · · · · · · · · · · · · · ·		
197	758.48	10.27	1		
198	768.48	10.27			
199 200	778.48 788.48	10.26	1		

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1035PR1.HYT, Page 6

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Test conducted on: .09/29/98

Pumping Well 1035

Pumping well 1035

Discharge 6.73 U.S.gal/min

Distance from the pumping well 1.00 ft

Discharge 6.73 U.S.gal/min		Distance from the pumping well 1.00 ft			
Static water level: 10.24 ft below datum			Pumping test duration: 707.00 min		
	Time from	Water level	Residual	Corrected	
	end of pumping		drawdown	drawdown	
	[min]	[ft]	(n)	[ft]	
201	798.48	10.26	0.02	0.02	
202	808.48	10.26	0.02	0.02	
203	818.48	10.26	0.02	0.02	
204	828.48	10.26	0.02	0.02	
205	838.48	10.26	0.02	0.02	
	848.48	10.25	0.01	0.01	
206	858.48	10.25	- A 64	0.01	
207	868.48	10.25	0.01	0.01	
208		10.24	0.00	0.00	
209	878.48	10.24		0.00	
210	888.48		0.00	0.00	
211	898.48	10.24	0.00	0.00	
212	908.48	10.24	0.00	0.00	
213	918.48	10.24	0.00	0.00	
	·				
				,	
		•			
-					
			·		
					
+					
	·				

This page intentionally blank

Calculation No.: U0043900

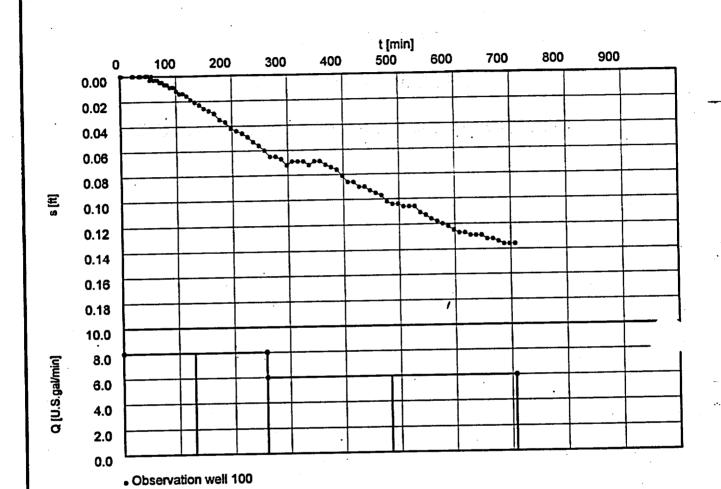
PUMPING WELL 1035

OBSERVATION WELL 1002

DRAWDOWN AND RECOVERY DATA ANALYSES

Pumping test analysis Time-Drawdown plot with discharge 10020A1.HYT, Page 1

Project: UGW - Grand Junction, CO


Evaluated by: RJH | Date: 11/18/98

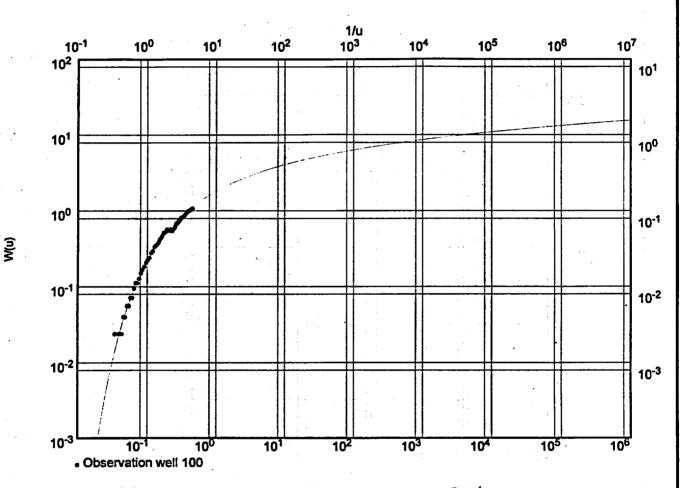
Pumping Test No. 1035 Aquifer Test

Observation Well 1002

Discharge 6.73 U.S.gal/min

Test conducted on: 09/29/98

MACTEC-ERS 2597 B 3/4 Road
Grand Junction, CO 81503
970/248-6040


Pumping test analysis Theis analysis method Unconfined aquifer

1002OA1.HYT, Page	1
-------------------	---

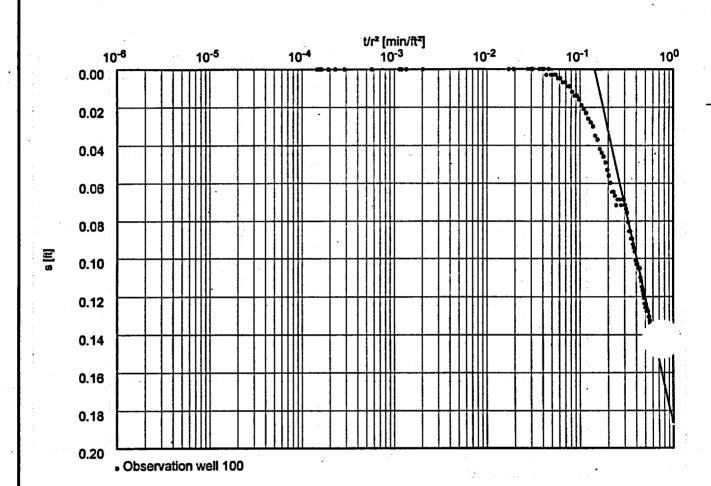
Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Test conducted on: 09/29/98 Pumping Test No. 1035 Aquifer Test **Observation Well 1002** Discharge 6.73 U.S.gal/min

Transmissivity [ft²/min]: 5.68×10^{-1} 817.92 ft²/day Hydraulic conductivity [ft/min]: 9.47×10^{-2} 136.37 ft/day

Aquifer thickness [ft]: 6.00


Pumping test analysis Distance-Time-Drawdown-method after COOPER & JACOB Unconfined aquifer

1002OA1.HYT, Page 1

Project: UGW -- Grand Junction, CC

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1035 Aquifer Test Test conducted on: 09/29/98 **Observation Well 1002** Discharge 6.73 U.S.gal/min

Transmissivity [ft²/min]: 7.41 x 10⁻¹

1067.04 ft2/day

Hydraulic conductivity [fl/min]: 1.23×10^{-1} /77.12 ft/dag

Aquifer thickness [ft]: 6.00

Pumping test analysis Theis analysis method Unconfined aquifer 10020A1.HYT, Page 2

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Aquifer Test

Test conducted on: 09/29/98

Observation Well 1002

Discharge 6.73 U.S.gal/min

Observation well 1002

Distance from the pumping well 35.00 ft

Static water level: 11 10 ft below datum

	c water level: 11.10 ft below datum			
	Pumping test duration	Water level	Drawdown	Corrected
				drawdown
	[min]	[ft]	[ft]	(ft)
2	0.01	11.10	-0.00	-0.00
3	0.01	11.10	-0.00	-0.00
4	0.02	11.10	-0.00	-0.00
5	0.02	11.10	-0.00	-0.00
6	0.03	11.10	-0.00	-0.00
7	0.03	11.10	-0.00	-0.00
8	0.04	11.10	-0.00	0.00
9	0.04	11.10	-0.00	-0.00
10	0.05	11.10	-0.00	-0.00
11	0.05	11.10	-0.00	-0.00
12	0.06	11.10	-0.00	-0.00
13	0.06	11.10	-0.00	-0.00
14	0.07	11.10	-0.00	-0.00
15	0.07	11.10	-0.00	-0.00
16	0.08	11.10	-0.00	-0.00
17	0.08	11.10	-0.00	-0.00
18	0.09	11.10	-0.00	-0.00
19	0.09	11.10	-0.00	-0.00
20	0.10	11.10	-0.00	-0.00
21	0.10	11.10	-0.00	-0.00
22	0.11	11.10	-0.00	-0.00
23	0.11	11.10	-0.00	-0.00
24	0.12	11.10	-0.00	-0.00
25	0.13	11.10	-0.00	-0.00
26	0.13	11.10	-0.00	-0.00
27	0.14	11.10	-0.00	-0.00
28	0.15	11.10	-0.00	-0.00
29	0.16	. 11.10	-0.00	-0.00
30	0.17	11.10	-0.00	-0.00
31	0.18	11.10	0.00	0.00
32	0.19	11.10	0.00	0.00
33	0.20	11.10	0.00	0.00
34	0.21	11.10	-0.00	-0.00
35	0.22	11.10	-0.00	-0.00
36	0.24	11.10	0.00	0.00
37	0.25	11.10	-0.00	-0.00
38	0.26	11.10	-0.00	-0.00
39	. 0.28	11.10	0.00	. 0.00
40	0.30	11.10	-0.00	-0.00
41	0.31	11.10	-0.00	-0.00
42	0.33	11.10	-0.00	0.00
43	0.35	11.10	0.00	0.00
44	0.37	11.10	-0.00	-0.00
45	0.40	11.10	-0.00	-0.00
46	0.42	11.10	-0.00	-0.00
47	0.44	11.10	-0.00	-0.00
48	0.47	11.10	-0.00	-0.00
49	0.50	11.10	-0.00	-0.00
50	0.52	11.10	-0.00	-0.00

Pumping test analysis Theis analysis method Unconfined aquifer 1002OA1.HYT, Page 3

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Aquifer Test

Test conducted on: 09/29/98

Observation Well 1002

Observation well 1002

Discharge 6.73 U.S.gal/min

Distance from the pumping well 35.00 ft

	water level: 11.10 ft below datu Pumping test duration	Water level	Drawdown	Corrected
ł	Pumping test duration	110.01		drawdown
		191	[ft]	[ft]
	[min]	(ft) 11.10	-0.00	-0.00
51	0.55	11.10	-0.00	-0.0
52	0.59	11.10	-0.00	-0.0
53	0.62	11.10	-0.00	-0.0
54	0.66	11.10	0.00	0.0
55	0.70 0.74	11.10	-0.00	-0.0
56	0.74	11.10	-0.00	-0.0
57	0.78	11.10	-0.00	-0.0
58	0.83	11.10	-0.00	-0.0
59	0.93	11.10	-0.00	-0.0
60 61	0.98	11.10	-0.00	-0.0
62	1.04	11.10	-0.00	-0.0
63	1.10	11.10	-0.00	-0.0
64	1.17	11.10	-0.00	-0.0
65	1.24	11.10	-0.00	-0.0
66	1.31	11.10	-0.00	-0.0
67	1.39	11.10	0.00	0.0
68	1.47	11.10	0.00	0.0
69	1.56	11.10	-0.00	0.0
7.0	1.65	11.10	0.00	0.0
71	1.75	11.10	-0.00	-0.0
72	1.86	11.10	-0.00	-0.0
73	1.97	11.10	-0.00	-0.0
74	2.08	11.10	-0.00	-0.0
75	2.21	11.10	-0.00	-0.0 -0.0
76	2.34	11.10	0.00	-0.0
77	2.48	11.10	0.00	-0.0
78	2.63	\$1.10	-0.00	-0. (
79	.2.79	11.10	-0.00	-0.(
80	2.95	11.10	-0.00	-0.i -0.i
81	3.13	11.10	-0.00	-0.
82	3.32	11.10	-0.00 -0.00	-0. -0.
83	3.51	11.10	-0.00	-0.
84	3.72	11.10	-0.00	-0.
85	3.95	11.10 11.10	-0.00	-0 .
86	4.18	11.10	-0.00	-0.
87	4.43	11.10	-0.00	-0.
88	4.69	11.10	-0.00	-0.
89	4.97 5.27	11.10	-0.00	-0.
90	5.58	11.10	-0.00	-0.
91		11.10	-0.00	-0.
92		11.10	-0.00	-0
93		11.10	-0.00	~
94	·	11.10	-0.00	`v
95		11.10	-0.00	-0
96		11.10	-0.00	-0
97		11.10	-0.00	-0
98 99		11.10	-0.00	-0
100		11.10	-0.00	-0

Pumping test analysis Theis analysis method Unconfined aquifer 1002OA1.HYT, Page 4

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1035 Aquifer Test

Test conducted on: 09/29/98

Observation Well 1002

Observation well 1002

Discharge 6.73 U.S.gal/min

Distance from the pumping well 35.00 ft

Static water level: 11.10 ft below datum

	Pumping test duration	Water level	Drawdown	Corrected
			1	drawdown
:	[min]	[ft]	[ft]	[ft]
101	9.95	11.10	-0.00	-0.00
102	10.54	11.10	-0.00	-0.00
103	11.17	11.10	-0.00	-0.00
104	. 11.83	11.10	-0.00	-0.00
105	12.53	11.10	-0.00	-0.00
106	13.28	11.10	-0.00	-0.00
107	14.07	11.10	-0.00	-0.00
108	14.91	11.10	-0.00	-0.00
109	15.79	11.10	-0.00	-0.00
110	16.73	11.10	-0.00	-0.00
111	17.72	11.10	-0.00	-0.00
112	18.78	11.10	-0.00	· -0.00
113	19.89	11.10	-0.00	-0.00
114	21.07	11.10	0.00	0.00
115	22,32	11.10	-0.00	-0.00
116	23.65	11.10	0.00	0.00
117	25,05	11.10	-0.00	-0.00
118	26.54	11.10	-0.00	-0.00
119	28.12	11.10	-0.00	-0.00
120	29.79	11.10	-0.00	-0.00
121	31.55	11.10	-0.00	-0.00
122	33.43	11.10	0.00	0.00
123	35.41	11.10	0.00	0.00
124	37.51	11.10	0.00	0.00
125	39.74	11.10	-0.00	-0.00
126	42.10	11.10	-0.00	-0.00
127	44.60	11.10	0.00	. 0.00
128	47.24	11.10	0.00	0.00
129	50.05	11.10	0.00	0.00
130	53.01	11.10	0.00	0.00
131	56.16	11.10	0.00	0.00
132	59.49	11.10	0.00	0.00
133	63.02	11.10	0.00	0.00
134	66.76	11.10	. 0.00	0.00
135	70.72	11.10	0.00	0.00
136	74.91	11.10	0.00	0.00
137	79.35	11.11	0.01	0.01
138	84.06	11.11	0.01	0.01
139	89.05	11.11	0.01	0.01
140	. 94.33	11.11	0.01	0.01
141	99.92	11.11	0.01	0.01
142	105.84	11.11	0.01	0.01
143	112.12	11.11	0.01	0.01
144	118.77	11.12	0.02	0.02
145	125.81	11.12	0.02	0.02
146	133.27	11.12	0.02	0.02
147	141.17	11.12	0.02	0.02
148	. 149.54	11.13	0.03	0.03
149	158.40	11.13	0.03	0.03
150	167.79	11.13	0.03	0.03

Pumping test analysis Theis analysis method Unconfined aquifer 1002OA1.HYT, Page 5

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Aquifer Test

Test conducted on: 09/29/98

Observation Well 1002

Observation well 1002

Discharge 6.73 U.S.gal/min

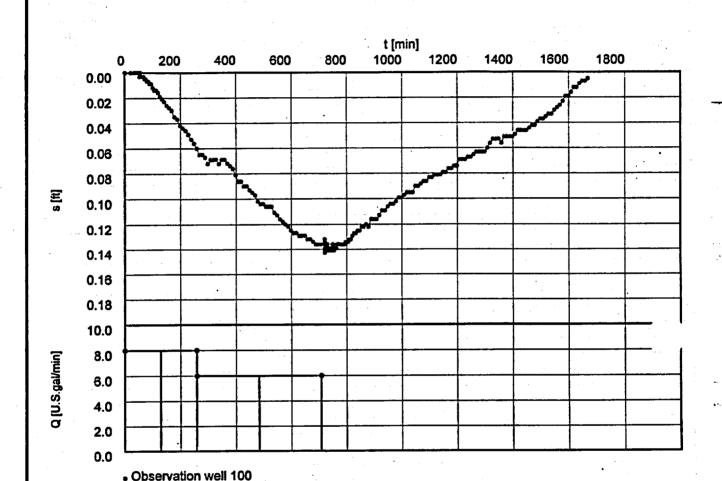
Distance from the pumping well 35.00 ft

Static water level: 11.10 ft below datum

	Pumping test duration	Water level	Drawdown	Corrected
				drawdown
	[min]	(ft)	[ft]	[ft]
151	177.74	11.13	0.03	0.03
152	187.74	11.14	0.04	0.04
153	197.74	11.14	0.04	0.04
154	207.74	11.14	0.04	0.04
155	·217.74	11.15	0.05	0.05
156	227.74	11.15	0.05	0.05
157	237.74	11.15	0.05	0.05
158	247.74	11.16	0.06	0.06
159	257.74	11.16	0.06	0.06
160	267.74	11.16	0.06	0.06
161	277.74	11.16	0.06	0.06
162	287.74	11.17	0.07	0.07
163	297.74	11.17	0.07	0.07
164	307.74	11.17	0.07	0.07
165	317.74	11.17	0.07	0.07
166	327.74	11.17	0.07	0.07
167	337.74	11.17	0.07	0.07
168	347.74	11.17	0.07	. 0.07
169	357.74	11.17	0.07	3.07
170	367.74	11.17	0.07	0.07
171	377.74	11.17	0.07	0.07
172	387.74	11.18	0.08	0.08
173	397.74	11.18	0.08	0.08
174	407.74	11.19	0.09	0.09
175	417.74	11.19	0.09	0.09
176	427.74	11.19	0.09	0.09
177	437.74	11.19	0.09	0.09
178	447.74	11.19	0.09	0.09
179	457.74	11.20	0.10	0.09
180	467.74	11.20	0.10	0.10
181	477.74	11.20	0.10	0.10
182	487.74	11.20	0.10	0.10
183	497.74	11.20	0.10	0.10
184	507.74	11.21 11.21	0.11	0,1° 0.1°
185	517.74	11.21	0.11 0.11	0.1
186	527.74 537.74	11.21	0.11	0.1
187 188	547.74	11.21	0.11	0.1
189	557.74	11.22	0.17	0.1 0.1
190	567.74	11.22	0.12	0.1
190	577.74	11.22	0.12	0.12
191	587.74	11.22	0.12	0.12
193	597.74	11.23	0.12	0.12
193	607.74	11.23	0.13	7.13 7.13
194	617.74	11.23	0.13	<u> </u>
195	627.74	11.23	0.13	0.13
197	637.74	11.23	0.13	0.13
198	647.74	11.23	0.13	0.1.
190	657.74	11.23	0.13	0.13
	667.74	11.23	i i	
200	007.74	11.23	0.13	0.13

MACTEC-ERS Pumping test analysis 10020A1.HYT, Page 6 2597 B 3/4 Road Theis analysis method Project: UGW -- Grand Junction, CO Unconfined aquifer Grand Junction, CO 81503 970/248-6040 Evaluated by: RJH | Date: 11/18/98 Pumping Test No. 1035 Aquifer Test Test conducted on: 09/29/98 **Observation Well 1002** Observation well 1002 Discharge 6.73 U.S.gal/min Distance from the pumping well 35.00 ft Static water level: 11.10 ft below datum Pumping test duration Water level Drawdown Corrected drawdown [min] [ft] [ft] [ft] 201 677.74 11.23 0.13 0.13 202 687.74 11.24 0.14 0.13 203 697.74 11.24 0.14 0.13 204 707.74 11.24 0.14 0.13

Pumping test analysis Time-Drawdown plot with discharge 1002OR1.HYT, Page 1


Project: UGW - Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Observation Well 1002

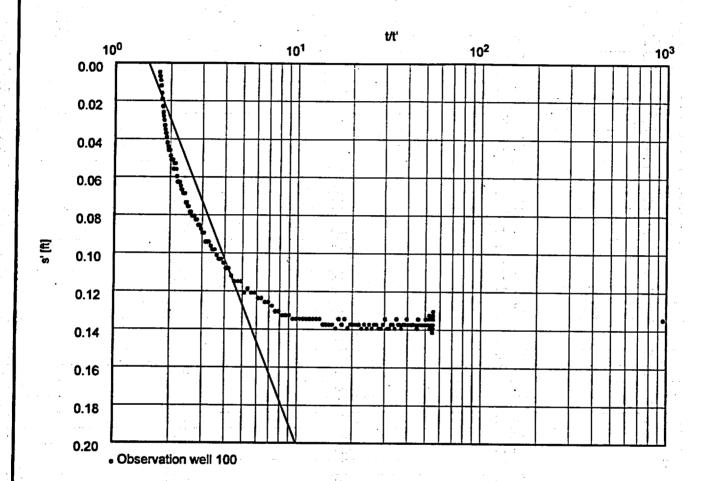
Discharge 6.73 U.S.gal/min

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer

1002OR1.HYT, Page 1

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/18/98


Pumping Test No. 1035 Recovery Test

Observation Well 1002

Test conducted on: 09/29/98

Discharge 6.73 U.S.gal/min

Pumping test duration: 707.00 min

Transmissivity [ft²/min]: 6.73 x 10⁻¹

969.12 A2/day

Hydraulic conductivity [ft/min]: 1.12 x 10⁻¹

161.28 Alday

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1002OR1.HYT, Page 2

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Observation Well 1002

Discharge 6.73 U.S.gal/min

Test conducted on: 09/29/98

Observation well 1002

Distance from the pumping well 35.00 ft

Static water level: 11.10 ft below datum			Pumping test duration: 707.00 min		
	Time from Water level		Residual Corrected		
	end of pumping		drawdown	drawdown	
	[min]	[ft]	[ft]	[ft]	
1	0.74	11.24	0.14	0.1	
2	13.00	11.24	0.14	0.1	
3	13.00	11.23	0.13	0.1	
4	13.01	11.23	0.13	0.1	
5	13.01	11.24	0.14	0.1	
6	13.02	11.24	0.14	0.1	
7	13.03	11.23	0.13	0.1	
8	13.03	11.23		0.1	
9	13.04	11.24		0.1	
10	13.04	11.23	0.13	0.1	
11	13.04	11.24		0.1	
12	13.05	11.23	0.13	0.1	
13	13.05	. 11.23		0.1	
14	13.06	11.24		0.1	
15	13.07			0.1	
16	13.07	11.24	1	0.1	
17	13.08	11.24		0.1	
18	13.08	11.24	1	0.1	
19	13.08	11.24	, , , , , , , , , , , , , , , , , , ,	0.1	
20	13.09	11.24		0.1	
21	. 13.09	11.24		0.1	
22	13.10	11.24		0.1	
23	13.11	11.24		0.1	
24	13.11	11.23		0.1	
25	13.12	11.23		0.1	
26	13.13	11.24		0.1	
27	13.13	11.24		0.1	
28	13.14	11.24		0.1	
29	13.15	11.24		0,1	
30	13.16	11.24		0.1	
31	13.17	11.23		0.1	
32	. 13.18	11.24		0.1	
33	13.19	11.24		0.1 0.1	
34	13.20	11.24		0.1	
35	13.21	11.24 11.24	· · · · · · · · · · · · · · · · · · ·	0.1	
36	13.22 13.24	11.24		0.1	
37	13.25	11.24	1	0.1	
38 39	13.26	11.24		0.1	
40	13.28	11.24	· · · · · · · · · · · · · · · · · · ·	0.1	
40	13.30	11.24		0.1	
41	13.31	11.24	· · · · · · · · · · · · · · · · · · ·	0.1	
43	13.33	11.24	1	0.1	
44	13.35	11.24	1	0.1	
45	13.37	11.24	•	0.1	
45	13.40	11.24	,	0.1	
45	13.42	11.24		0.1	
48	13.44	11.24	· · · · · · · · · · · · · · · · · · ·	0.1	
49	13.47	11.24		0.1	
50	13.50	11.24		0.1	

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1002OR1.HYT, Page 3

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Observation Well 1002

Observation well 1002

Discharge 6.73 U.S.gal/min

Distance from the pumping well 35.00 ft

Test conducted on: 09/29/98

	rater level: 11.10 ft below datum		Pumping test duration: 707.00	·
	Time from	Water level	Residual	Corrected
1	end of pumping		drawdown	drawdown
	(min)	[ft]	[ft]	[ft]
51	13.52	11.24	0.14	0.1
52	13.55	11.24	0.14	0.14
53	13.59	11.24	0.14	0.1
54	13.62	11.24	0.14	0.14
55	13.66	11.24	0.14	0.14
56	13.70	11.23	0.13	0.1
57.	13.74	11.24	0.14	0.13
58	13.78	11.24	0.14	0.13
59	13.83	11.24	0.14	0.14
60	13.88	11.24	0.14	0.14
61	13.93	11.24	0.14	0.14
62	13.98	11.24	0.14	· 0.14
63	14.04	11.24	0.14	0.14
64	14.10	11.24	0.14	0.14
65	14.17	11.24	0.14	0.14
66	14.24	11.24	0.14	0.14
67	14.31	11.24	0.14	0.13
68	14.39	11.24	0.14	0.14
69	14.47	11.24	0.14	0.14
70	14.56	11.24	0.14	0.14
71	14.65	11.24	0.14	0.14
72	14.75	11.24	0.14	0.14
73	14.86	11.24	0.14	0.14
74	14.97	11.24	0.14	0.14
75	15.08	11.24	0.14	0.14
76	15.21	11.24	0.14	0.14
77	15.34	11.24	0.14	0.14
78	15.48	11.24	0.14	0.14
79	15.63	11.24	0.14	0.14
80	15.79	11.24	0.14	0.13
81	15.95	11.24	0.14	0.14
82	16.13	11.24	0.14	0.14
83	16.32	11.24	0.14	0.14
84	16.51	11.24	0.14	0.14
85	16.72	11.24	0.14	0.14
86	16.95	11.24	0.14	0.14
87	17.18	11.24	0.14	0.14
88	17.43	11.24	0.14	0.14
89	17.69	11.24	0.14	0.14
90	17.97	11.24	0.14	0.14
91	18.27	11.24	0.14	0.13
92	18.58	11.24	0.14	0.14
93	18.91	11.24	0.14	0.14
94	19.27	11.24	0.14	0.14
95	19.64	11.24	0.14	0.14
96	20.03	11.24	0.14	0.14
97	20.45	11.24	0.14	0.14
98	. 20.90	11.24	0.14	0.13
99	21.37	11.24	0.14	0.14
50	21.86	11.24	0.14	0.14

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1002OR1.HYT, Page 4

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Observation Well 1002

Observation well 1002

Test conducted on: 09/29/98

Discharge 6.73 U.S.gal/min

	Time from Water level		Residual Corre	
	end of pumping		drawdown	drawdown
	[min]	(ft)	[ft]	(ft)
101	22.39	11.24	0,14	0.1
102	22.95	11.24	0.14	0.1
103	23.54	11.24	0.14	0.1
104	24.17	11.24	0.14	0.1
105	. 24.83	11.24	0.14	0.1
106	25.53	11.24	0.14	0.1
107	26.28	11.24	0.14	0.1
108	27.07	11.24	0.14	0.1
109	27.91	11.24	0.14	0.1
110	28.79	11.24	0.14	0.1
111	29.73	11.24	0.14	0.1
112	30.72	11.24	0.14	0.1
113	31.78	11.24	0.14	0.1
114	32.89	11.24	0.14	0.1
115	34.07	11.24	0.14	0.1
116	35.32	11.24	0.14	0.1
117	36.65	11.24	0.14	0.1
118	38.05	11.24	0.14	0.
119	39.54	11.24	0.14	<u>J.</u>
120	41.12	11.24	0.14	<u>J.</u>
121	42.79	11.24	0.14	0.
122	44.55	11.24	0.14	0.
123	46.43	11.24	0.14	0.
124	48.41	11.24	0.14	0.
125	50.51	11.24	0.14	0.
126	52.74	11.24	0.14	0. 0.
127	55.10	11.24	0.14	0.
128	57.60	11.24	0.14	0.
129	60.24	11.24	0.14	0.
130	63.05	11.24	0.14 0.14	0.
131	66.01	11.24	0.14	0.
132	69.16	11.24 11.24	0.14	0.
133	72.49	11.24	0.14	0.
134	76.02 79.76	11.24	0.14	0.
135 136	83.72	11.24	0.14	0.
136	87.91	11.23	0.13	0,
137	92.35	11.23	0.13	0.
139	97.06	11.23	0.13	0.
140	102.05	11.23	0.13	0.
141	107.33	11.23	0.13	0.
142	112.92	11.23	0.13	O.
143	118.84	11.23	0.13	0.
144	125.12	11.23	0.13	7.
145	131.77	11.23	0.13	J. J.
146	138.81	11.23	0.13	0.
147	146.27	11.22	0.12	0.
148	154.17	11.22	0.12	0
149	162.54	11.22	0.12	0
150	171.40	11.22	0.12	0

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1002OR1.HYT, Page 5

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Test conducted on: 09/29/98

Observation Well 1002

Observation well 1002

Discharge 6.73 U.S.gal/min

Time from end of pumping (ft) (Static water level: 11.10 ft below datum Pumping test duration: 707.00 min					
end of pumping						
[Ri] [Ri]		l	vvater level		ł	
151				,		
152	154					
153					0.11	
154 210.74 11.21 0.11 155 220.74 11.21 0.11 156 230.74 11.21 0.11 157 240.74 11.21 0.11 158 250.74 11.20 0.10 159 260.74 11.20 0.10 159 260.74 11.20 0.10 160 270.74 11.20 0.10 161 280.74 11.20 0.10 161 280.74 11.20 0.10 162 290.74 11.20 0.10 163 300.74 11.20 0.10 164 310.74 11.20 0.10 165 320.74 11.20 0.10 166 330.74 11.20 0.10 167 340.74 11.20 0.10 168 350.74 11.20 0.10 169 360.74 11.19 0.09 168 350.74 11.19 0.09 170 370.74 11.19 0.09 171 380.74 11.19 0.09 172 390.74 11.18 0.08 173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 177 440.74 11.18 0.08 178 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.18 0.08 185 550.74 11.19 0.09 185 550.74 11.19 0.09 186 530.74 11.19 0.09 187 450.74 11.18 0.08 189 560.74 11.19 0.09 189 560.74 11.19 0.09 189 560.74 11.19 0.09 189 560.74 11.19 0.09 189 560.74 11.19 0.09 189 560.74 11.16 0.06 189 560.74 11.16 0.06 189 560.74 11.16 0.06 189 560.74 11.16 0.06 189 560.74 11.16 0.06 189 560.74 11.16 0.06 189 560.74 11.16 0.06						
155 220.74 11.21 0.11 158 230.74 11.21 0.11 157 240.74 11.21 0.11 158 250.74 11.20 0.10 159 260.74 11.20 0.10 160 270.74 11.20 0.10 161 280.74 11.20 0.10 161 280.74 11.20 0.10 162 290.74 11.20 0.10 163 300.74 11.20 0.10 164 310.74 11.20 0.10 165 320.74 11.20 0.10 166 330.74 11.20 0.10 167 340.74 11.20 0.10 168 350.74 11.20 0.10 169 360.74 11.19 0.09 169 360.74 11.19 0.09 170 370.74 11.19 0.09 171 380.74 11.19 0.09 172 390.74 11.18 0.08 173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 178 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.19 0.09 180 470.74 11.18 0.08 179 450.74 11.19 0.09 180 470.74 11.19 0.09 181 480.74 11.19 0.09 182 480.74 11.19 0.09 183 500.74 11.19 0.09 184 500.74 11.19 0.09 185 520.74 11.19 0.09 186 530.74 11.19 0.09 187 540.74 11.19 0.09 188 550.74 11.16 0.06 189 560.74 11.16 0.06 189 560.74 11.16 0.06 189 560.74 11.16 0.06 189 560.74 11.16 0.06 189 560.74 11.16 0.06 189 560.74 11.16 0.06 189 560.74 11.16 0.06 189 560.74 11.16 0.06					0.11	
156 230.74 11.21 0.11 157 240.74 11.21 0.11 158 250.74 11.20 0.10 159 260.74 11.20 0.10 160 270.74 11.20 0.10 161 280.74 11.20 0.10 162 290.74 11.20 0.10 162 290.74 11.20 0.10 163 300.74 11.20 0.10 164 310.74 11.20 0.10 165 320.74 11.20 0.10 166 330.74 11.20 0.10 167 340.74 11.20 0.10 168 350.74 11.20 0.10 169 360.74 11.19 0.09 169 360.74 11.19 0.09 170 370.74 11.19 0.09 171 380.74 11.19 0.09 172 390.74 11.18 0.08 173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 178 450.74 11.18 0.08 179 450.74 11.18 0.08 177 440.74 11.18 0.08 178 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.18 0.08 182 490.74 11.19 0.09 183 500.74 11.19 0.09 184 510.74 11.18 0.08 187 540.74 11.18 0.08 189 550.74 11.19 0.09 189 550.74 11.17 0.07 184 550.74 11.18 0.08 189 550.74 11.17 0.07 185 530.74 11.16 0.06 190 570.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.16 0.06					0.11	
157 240.74 11.21 0.11 158 250.74 11.20 0.10 159 260.74 11.20 0.10 160 270.74 11.20 0.10 161 280.74 11.20 0.10 162 290.74 11.20 0.10 163 300.74 11.20 0.10 164 310.74 11.20 0.10 165 320.74 11.20 0.10 166 330.74 11.20 0.10 167 340.74 11.20 0.10 168 350.74 11.20 0.10 169 360.74 11.90 0.99 169 360.74 11.99 0.09 169 360.74 11.19 0.09 170 370.74 11.19 0.09 171 380.74 11.19 0.09 172 390.74 11.18 0.08 173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 178 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.19 0.09 180 470.74 11.18 0.08 179 450.74 11.19 0.09 181 480.74 11.19 0.09 182 490.74 11.19 0.09 183 500.74 11.19 0.09 184 510.74 11.19 0.09 185 520.74 11.17 0.07 185 520.74 11.17 0.07 187 540.74 11.16 0.06 189 550.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 500.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.16 0.06					0.11	
158					0.11	
159			• ,		0.11	
160 270.74 11.20 0.10 161 280.74 11.20 0.10 162 290.74 11.20 0.10 163 300.74 11.20 0.10 164 310.74 11.20 0.10 165 320.74 11.20 0.10 166 330.74 11.20 0.10 167 340.74 11.19 0.09 168 350.74 11.19 0.09 169 360.74 11.19 0.09 170 370.74 11.19 0.09 171 380.74 11.19 0.09 170 370.74 11.19 0.09 171 380.74 11.19 0.09 172 390.74 11.18 0.08 173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18					0.10	
161						
162 290.74 11.20 0.10 163 300.74 11.20 0.10 164 310.74 11.20 0.10 165 320.74 11.20 0.10 166 330.74 11.20 0.10 167 340.74 11.19 0.09 168 350.74 11.19 0.09 169 360.74 11.19 0.09 170 370.74 11.19 0.09 171 380.74 11.19 0.09 172 390.74 11.18 0.08 173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 180 470.74 11.18					0.10	
163		ľ			0.10	
164 310.74 11.20 0.10 165 320.74 11.20 0.10 166 330.74 11.20 0.10 167 340.74 11.19 0.09 168 350.74 11.19 0.09 169 360.74 11.19 0.09 170 370.74 11.19 0.09 171 380.74 11.19 0.09 172 390.74 11.18 0.08 173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 178 450.74 11.18 0.08 179 450.74 11.18 0.08 181 480.74 11.18 0.08 181 480.74 11.17 0.07 182 490.74 11.17					0.10	
165 320.74 11.20 0.10 166 330.74 11.20 0.10 167 340.74 11.19 0.09 168 350.74 11.19 0.09 169 360.74 11.19 0.09 170 370.74 11.19 0.09 171 380.74 11.19 0.09 172 390.74 11.18 0.08 173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 178 450.74 11.18 0.08 179 460.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.18 0.08 181 480.74 11.18 0.08 181 480.74 11.19 0.09 182 490.74 11.10 0.09 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.17 0.07 188 550.74 11.17 0.07 189 550.74 11.17 0.07 189 550.74 11.17 0.07 180 550.74 11.17 0.07 181 550.74 11.17 0.07 185 550.74 11.17 0.07 186 550.74 11.17 0.07 187 540.74 11.16 0.06 189 560.74 11.16 0.06 199 570.74 11.16 0.06 199 570.74 11.16 0.06 199 570.74 11.16 0.06 199 570.74 11.16 0.06 199 570.74 11.16 0.06 199 580.74 11.16 0.06 199 580.74 11.16 0.06 199 580.74 11.16 0.06 199 580.74 11.16 0.06 199 580.74 11.16 0.06 199 580.74 11.16 0.06 199 580.74 11.16 0.06					0.10 0.09	
166 330.74 11.20 0.10 167 340.74 11.19 0.09 168 350.74 11.19 0.09 169 360.74 11.19 0.09 170 370.74 11.19 0.09 171 380.74 11.19 0.09 171 380.74 11.18 0.08 172 390.74 11.18 0.08 173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 178 450.74 11.18 0.08 179 450.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.17 0.07 182 490.74 11.17 0.07 183 500.74 11.17					0.09	
167 340.74 11.19 0.09 168 350.74 11.19 0.09 169 360.74 11.19 0.09 170 370.74 11.19 0.09 171 380.74 11.19 0.09 172 390.74 11.18 0.08 173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.17 0.07 182 490.74 11.17 0.07 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17	166	•	,		0.09	
168 350.74 11.19 0.09 169 360.74 11.19 0.09 170 370.74 11.19 0.09 171 380.74 11.19 0.09 172 390.74 11.18 0.08 173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 179 450.74 11.18 0.08 179 450.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.17 0.07 182 490.74 11.17 0.07 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17	167		ı	_	0.09	
169 360.74 11.19 0.09 170 370.74 11.19 0.09 171 380.74 11.19 0.09 172 390.74 11.18 0.08 173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 177 440.74 11.18 0.08 179 450.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.18 0.08 181 480.74 11.18 0.08 181 480.74 11.17 0.07 182 490.74 11.17 0.07 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17	168		ı		0.09	
170 370.74 11.19 0.09 171 380.74 11.19 0.09 172 390.74 11.18 0.08 173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 178 450.74 11.18 0.08 179 460.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.17 0.07 182 490.74 11.17 0.07 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.16 0.06 189 550.74 11.16	169				0.09	
171 380.74 11.19 0.09 172 390.74 11.18 0.08 173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 179 460.74 11.18 0.08 179 460.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.17 0.07 182 490.74 11.17 0.07 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.16 0.06 189 560.74 11.16	170				0.09	
172 390.74 11.18 0.08 173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 178 450.74 11.18 0.08 179 460.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.17 0.07 182 490.74 11.17 0.07 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.16 0.06 189 560.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16			l l		0.09	
173 400.74 11.18 0.08 174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 178 450.74 11.18 0.08 179 460.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.17 0.07 182 490.74 11.17 0.07 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.17 0.07 188 550.74 11.16 0.06 189 560.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06					0.08	
174 410.74 11.18 0.08 175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 178 450.74 11.18 0.08 179 460.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.17 0.07 182 490.74 11.17 0.07 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.17 0.07 188 550.74 11.16 0.06 189 560.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16	173				0.08	
175 420.74 11.18 0.08 176 430.74 11.18 0.08 177 440.74 11.18 0.08 178 450.74 11.18 0.08 179 460.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.17 0.07 182 490.74 11.17 0.07 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.17 0.07 188 550.74 11.16 0.06 189 560.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06		410.74			0.08	
176 430.74 11.18 0.08 177 440.74 11.18 0.08 178 450.74 11.18 0.08 179 460.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.17 0.07 182 490.74 11.17 0.07 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.16 0.06 189 560.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.15 0.05 195 620.74 11.15 0.05 196 630.74 11.15 0.05		420.74			0.08	
177 440.74 11.18 0.08 178 450.74 11.18 0.08 179 460.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.17 0.07 182 490.74 11.17 0.07 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.17 0.07 188 550.74 11.16 0.06 189 560.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05		430.74			0.08	
178 450.74 11.18 0.08 179 460.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.17 0.07 182 490.74 11.17 0.07 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.17 0.06 189 550.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05			11.18		0.08	
179 460.74 11.18 0.08 180 470.74 11.18 0.08 181 480.74 11.17 0.07 182 490.74 11.17 0.07 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.17 0.07 188 550.74 11.16 0.06 189 560.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05			:11.18		0.08	
181 480.74 11.17 0.07 182 490.74 11.17 0.07 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.17 0.07 188 550.74 11.16 0.06 189 560.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05		•		0.08	0.08	
182 490.74 11.17 0.07 183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.17 0.07 188 550.74 11.16 0.06 189 560.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05		ı		0.08	0.08	
183 500.74 11.17 0.07 184 510.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.17 0.07 188 550.74 11.16 0.06 189 560.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05				0.07	0.07	
184 510.74 11.17 0.07 185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.17 0.07 188 550.74 11.16 0.06 189 560.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05					0.07	
185 520.74 11.17 0.07 186 530.74 11.17 0.07 187 540.74 11.17 0.07 188 550.74 11.16 0.06 189 560.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05					0.07	
186 530.74 11.17 0.07 187 540.74 11.17 0.07 188 550.74 11.16 0.06 189 560.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05					0.07	
187 540.74 11.17 0.07 188 550.74 11.16 0.06 189 560.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05					0.07	
188 550.74 11.16 0.06 189 560.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05		•			0.07	
189 560.74 11.16 0.06 190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05		· .	I		0.07	
190 570.74 11.16 0.06 191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05			,		0.06	
191 580.74 11.16 0.06 192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05			i		0.06	
192 590.74 11.16 0.06 193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05				<u></u>	0.06	
193 600.74 11.16 0.06 194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05					0.06	
194 610.74 11.16 0.06 195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05	,	,			0.06	
195 620.74 11.15 0.05 196 630.74 11.15 0.05 197 640.74 11.15 0.05					0.06	
196 630.74 11.15 0.05 197 640.74 11.15 0.05					0.06	
197 640.74 11.15 0.05		· · · · · · · · · · · · · · · · · · ·			0.05	
					0.05	
400					0.05	
100		F .			0.06	
200					0.05 0.05	

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1002OR1.HYT, Page 6

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Observation Well 1002

Observation well 1002

Test conducted on: 09/29/98

Discharge 6.73 U.S.gal/min

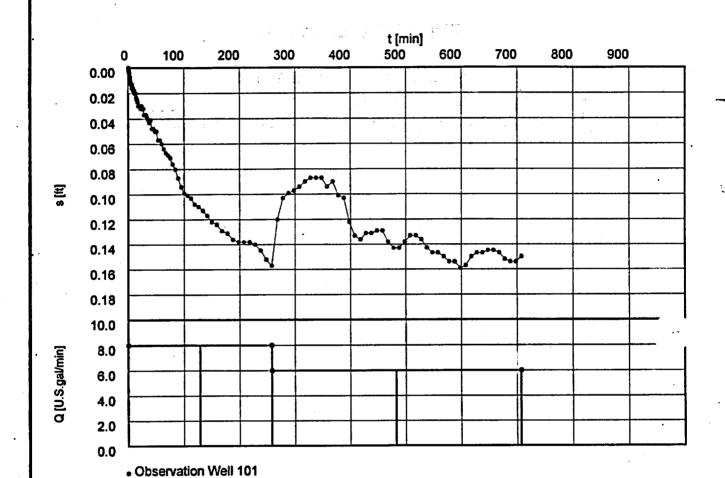
	Time from Water level		Residual Corrected	
ŀ	end of pumping	.82	drawdown	drawdown
	[min]	[ft]	(n)	[ft]
01	680.74	11.15	0.05	0.0
02	690.74	11.15	0.05	0.0
03	700.74	11.15	0.05	0.0
04	710.74	11.15	0.05	0.0
05	720.74	11.15	0.05	0.0
06	730.74	11.15	0.05	0.0
:07	740.74	11.15	0.05	0.0 0.0
08	750.74	11.14	0.04	0.0
09	760.74	11.14	. 0.04	0.0
10	770.74	11.14	0.04	0.0
11	780.74	11.14	0.04	0.0
12	790.74	11.14	0.04	0.0
13	800.74	11.14	0.04	0.0
14	810.74	11.13	0.03	0.0
15	820.74	11.13 11.13	0.03	0.0
16	830.74	11.13	0.03	0.0
17	840.74	11.13	0.03	0.0
18	850.74 860.74	11.13	0.03	7.0
19	870.74	11.12	0.02	 5.0
20	880.74	11.12	0.02	0.0
22	890.74	11.12	0.02	0.0
23	900.74	11.12	0.02	0.0
24	910.74	11.11	0.01	0.0
25	920.74	11.11	0.01	0.0
28	930.74	11.11	0.01	0.0
27	940.74	4444	0.01	0.0
28	950.74	11.11	0.01	· 0.0
229	960.74	11.10	0.00	0.0
	* · · · · · · · · · · · · · · · · · · ·			
-				
-+		•		
	· · · · · · · · · · · · · · · · · · ·			

Calculation No.: U0043900

PUMPING WELL 1035

OBSERVATION WELL 1013

DRAWDOWN AND RECOVERY DATA ANALYSES


MACTEC-ERS 2597 B 3/4 Road
Grand Junction, CO 81503
970/248-6040

Pumping test analysis Time-Drawdown plot with discharge 1013OA1.HYT, Page 1

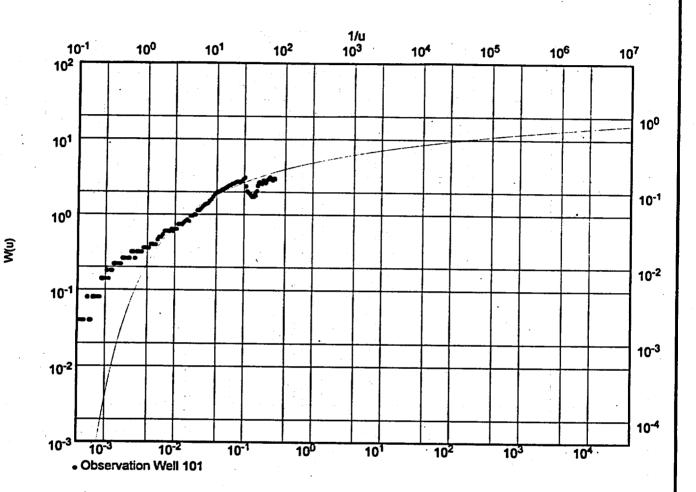
Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Aquifer Test	Test conducted on: 09/29/98
Observation Well 1013	
Discharge 6.73 U.S.gal/min	

MACTEC-ERS 2597 B 3/4 Road
Grand Junction, CO 81503
970/248-6040

Discharge 6.73 U.S.gal/min


Pumping test analysis Theis analysis method Unconfined aquifer

10130A1.HYT, Page 1

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Aquifer Test Test conducted on: 09/29/98 **Observation Well 1013**

Transmissivity [ft²/min]: 1.42 x 100

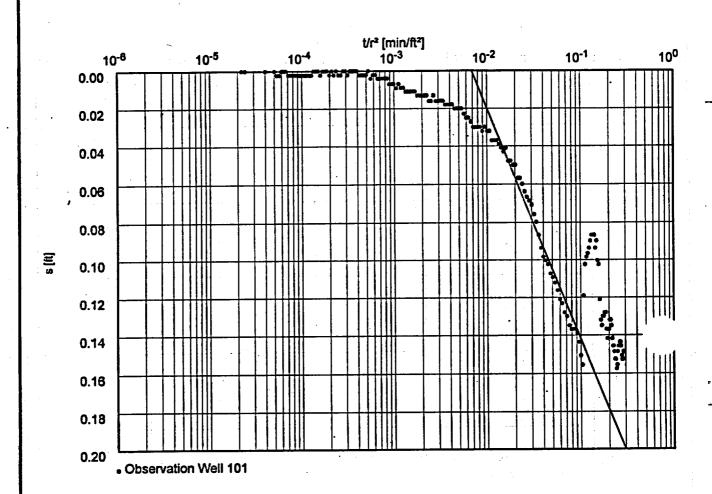
2044.80 ft /day 256.32 ft/day

Hydraulic conductivity [ft/min]: 1.78 x 10⁻¹

Pumping test analysis
Distance-Time-Drawdown-method
after COOPER & JACOB
Unconfined aquifer

1013OA1.HYT, Page 1

Project: UGW - Grand Junction, CO


Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Aquifer Test

Observation Well 1013

Discharge 6.73 U.S.gal/min

Test conducted on: 09/29/98

Transmissivity [ft²/min]: 1.34 x 100

1929.60 ft /day

Hydraulic conductivity [ft/min]: 1.68 x 10⁻¹ 241. 92 ft /day

Pumping test analysis Theis analysis method Unconfined aquifer 10130A1.HYT, Page 3

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Aquifer Test

5 -

Test conducted on: 09/29/98

Observation Well 1013

Observation Well 1013

Discharge 6.73 U.S.gal/min

Distance from the pumping well 50.00 ft

Static water level: 12.28 ft below datum

T	Pumping test duration	Water level	Drawdown	Corrected
.			•	drawdown
	[min]	(ft)	[ft]	[ft]
2	0.01	12.28	-0.00	-0.0
3	0.01	12.28	-0.00	-0.0
4	0.02	12.28	-0.00	-0.0
5	0.02	12.28	-0.00	-0.0
6	0.03	12.28	-0.00	-0.0
7	0.03	12.28	-0.00	-0.0
8	0.04	12.28	-0.00	-0.0
9	0.04	12.28	-0.00	-0.0
10 11	0.05	12.28	-0.00	-0.0
11	0.05	12.28	-0.00	-0.0
13	0.06	12.28	0.00	0.0
13	0.06 0.07	12.28	0.00	0.0
15	0.07	12.28	-0.00	-0.0
16	0.07	12.28	-0.00	-0.0
17	0.08	12.28 12.28	-0.00	-0.0
18	0.08	12.28 12.28	-0.00	-0.00
19	0.09	12.28	-0.00	-0.00
20	0.10	12.28	-0.00	-0.00
21	0.10	19 98	-0.00 0.00	-0.00
22	0.10	12.28	-0.00	0.00
23	0.11	12.28	-0.00	-0.00
24	0.12	12.28	-0.00	-0.00
25	0.13	12.28	0.00	-0.00 0.00
26	0.13	12.28	0.00	0.00
27	0.14	12.28	0.00	0.00
28	0.15	12.28	0.00	0.00
29	0.16	12.28	0.00	0.00
0	0.17	12.28	0.00	0.00
1	0.18	12.28	0.00	0.00
2	0.19	12.28	0.00	0.00
3	0.20	12.28	0.00	0.00
4	0.21	12.28	0.00	0.00
5	0.22	12.28	0.00	0.00
6	0.24	12.28	0.00	0.00
7	0.25	12.28	, 0.00	0.00
8 9	0.26	12.28	0.00	0.00
9	0.28	12.28	0.00	0.00
1	0.30 0.31	12.28	0.00	0.00
2	0.31	12.28	0.00	0.00
3	0.33	12.28 12.28	0.00	0.00
4	0.35		0.00	0.00
5	0.40	12.28 12.28	0.00	0.00
5	0.40	12.28 12.28	0.00	0.00
7	0.42	12.28 12.28	0.00	0.00
3	0.44	12.28	0.00	0.00
-	0.50	12.28	0.00	0.00
5	0.52	12.28	0.00	0.00
	0.02	12.28	0.00	0.00

Pumping test analysis Theis analysis method Unconfined aquifer 10130A1.HYT, Page 4

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Aquifer Test

Test conducted on: 09/29/98

Observation Well 1013

Observation Well 1013

Discharge 6.73 U.S.gal/min

Pu	mping test duration	g test duration Water level		Corrected drawdown
	·			
	[min]	[ft]	[ft]	[ft] 0.0
51	0.55	12.28	0.00	0.0
52	0.59	12.28	0.00	0.0
53	0.62	12.28	0.00	0.0
54	0.68	12.28	0.00	0.0
55	0.70	12.28	0.00	
56	0.74	12.28	0.00	0.0
57	0.78	12.28	0.00	0.0
58	0.83	12.28	0.00	0.0
59	0.88	12.28	0.00	0.0
60	0.93	12.28	0.00	0.0
61	0.98	12.28	0.00	0.0
62	1.04	12.28	0.00	0.0
63	1.10	12.28	0.00	0.0
64	1.17	12.28	0.00	0.0
65	1.24	12.28	0.00	0.0
66	1.31	12.28	0.00	0.0
67	1.39	12.28	0.00	0.0
68	1.47	12.28	0.00	0.0
69	1.56	12.28	0.00	<u> </u>
70	1.65	12.28	0.00	
71	1.75	12.28	0.00	0.0
72	1.86	12.28	0.00	0.0
73	1.97	12.28	0.00	0.
	2.08	12.28	0.00	0.0
74	2.21	12.29	0.01	0.0
75	2.34	12.29	0.01	0.
76	2.48	12.29	0.01	0.
77	2.63	12.29	0.01	0.
78	2.79	12.29	0.01	0.
79	2.95	12.29	0.01	0.
80	3.13	12.29	0.01	O.
81		12.29	0.01	0.
82	3.32	12.29	0.01	. 0.
83	3.51	12.29	0.01	0.
84	3.72	12.29	0.01	0.
85	3.95	12.29	0.01	0
86	4.18	12.29	0.01	0
87	4.43	12.29	0.01	
88	4.69	12.29	0.01	0
89	4.97	12.29	0.01	0
90	5.27	12.29	0.01	
91	5.58	12.29	0.02	
92	5.91	12.30	0.02	
93	6.27		0.01	
94	6.64	12.29	0.02	
95	7.03	12.30	0.02	
96	7.45	12.30	l l	
97	7.90	. 12.30	0.02	
98	8.37	12.30	0.02	
99	8.86	12.30	0.02	
100	9.39	12.30	0.02	•

Pumping test analysis Theis analysis method Unconfined aquifer

10130A1.HYT, Page 5

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Aquifer Test

Test conducted on: 09/29/98

Observation Well 1013

Observation Well 1013

Discharge 6.73 U.S.gal/min

Distance from the pumping well 50.00 ft

Static water level: 12.28 ft below datum

	Pumping test duration	Water level	Drawdown	Corrected
100				drawdown
	[min]	(ft)	[ft]	
101	. 9.95	12.30	0.02	[ft]
102	10.54	12.30	0.02	0.02
103	. 11.17	12.30	0.02	0.02
104	11.83	12.30	0.02	
105	12.53	12.30	0.02	0.02
106	13.28	12.30	0.02	0.02
107	14.07	12.30	0.02	0.02
108	14.91	12.30	0.02	0.02
109	15.79	12.30	0.02	0.02
110	16.73	12.31	. 0.03	0.02
111	17.72	12,31	0.03	0.03
112	18.78	12.31	0.03	0.03
113	19.89	12.31	0.03	0.03
114	· 21.07	12.31	0.03	0.03
115	22.32	12.31	0.03	0.03
116	23.65	12.31	0.03	0.03
117	25.05	12.31	0.03	0.03
118	26.54	12,31	0.03	0.03
119	28.12	12.32	0.04	0.04
120	29.79	12.32	0.04	0.04
121	31.55	12.32	0.04	0.04
122	33.43	12.32	0.04	0.04
123	35.41	12.32	0.04	0.04
124	37.51	12.32	0.04	0.04
125 126	39.74	12.32	0.04	0.04
127	42.10	12.33	0.05	0.05
128	44.60	12.33	0.05	0.05
129	47.24	12.33	0.05	0.05
130	50.05 53.01	12.33	0.05	0.05
131	56.16	12.34	0.06	0.06
132	59.49	12.34	0.06	0.06
133	63.02	12.34	0.06	0.06
134	66.76	12.34	0.06	0.06
135	70.72	12.35	0.07	0.07
136	74.91	12.35 12.35	0.07	0.07
137	79.35	12.36	0.07	0.07
138	84.06	12.36	0.08	0.08
139	89.05	12.37	0.08	0.08
140	94.33	12.37	0.09	0.09
141	99.92	12.38	0.09	0.09
142	105.84	12.38	0.10	0.10
143	112.12	12.38	0.10	0.10
144	118.77	12.39	0.10	0.10
145	125.81	12.39	0.11	0,11
146	133.27	12.39	0.11	0.11
147	141,17	12.40	0.11	0.11
148	149.54	12.40	0.12	0.12
149	158.40	12.40	0.12	0.12
150	167.79	12.41	0.12	0.12
		12.71	0.13	0.13

Pumping test analysis
Theis analysis method
Unconfined aquifer

10130A1.HYT, Page 6

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1035 Aquifer Test

Test conducted on: 09/29/98

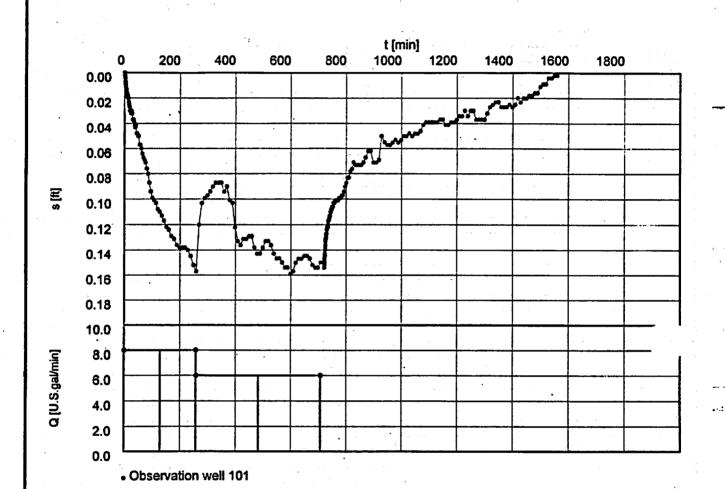
Observation Well 1013

Observation Well 1013

Discharge 6.73 U.S.gal/min

	Pumping test duration	Water level	Drawdown	Corrected drawdown
	[min]	[ft]	(ft) (n)	[ft]
151	177.74	12.41	0.13	0.1
152	187.74	12.42	0.14	0.1
153	197.74	12.42	0.14	0.1
154	207.74	12.42	0.14	0.1
155	217.74	12.42	0.14	0.1
156	227.74	12.42	0.14	0.1
157	237.74	12.43	0.15	0.1
158	247.74	12.43	0.15	d.1
159	55774	12.44	0.16	0.1
160	267.74	12.40	0.12	0.1
161	277.74	12.38	0.10	0.1
162	287.74	12.38	0.10	0.1
•	297.74	12.38	0.10	0.1
163	307.74	12.37	0.09	0.0
164	317.74	12.37	0.09	0.0
165	327.74	12.37	0.09	0.0
166	337.74	12.37	0.09	0.0
167	347.74	12.37	0.09	0.0
168	357.74	12.37	0.09	7.0
169	367.74	12.37	0.09	1.7
170	377.74	12.38	0.10	0.1
171	387.74	12.38	0.10	O.'
172	397.74	12.40	0.12	0.
173	1	12.41	0.13	0.
174	407.74	12.42	0.14	0.
175	417.74	12.41	0.13	0.
176	427.74 437.74	12.41	0.13	0.
177	447.74	12.41	0.13	0.
178	1 .1	12.41	0.13	0.
179	457.74	12.42	0.14	0.
180	467.74	12.42	0.14	0.
181	477.74	12.42	0.14	O.
182	487.74	12.42	0.14	0.
183	497.74	12.41	0.13	0.
184	507.74	12.41	0.13	0.
185	517.74	12.42	0.14	0.
186		12.42	0.14	. 0.
187		12.43	0.15	0.
188		12.43	0.15	0.
189	·	12.43	0.15	. 0
190	7	12.43	0.15	
191		12.43	0.15	
192			0.13	
193		12.44	0.16	- 0
194		12.44	0.15	
195		12.43	0.15	
196		12.43	0.15	
197		12.43	0.15	
198		12.43	•	
199		12.43	0.15	
200		12.43	0.15	_ <u>_</u>

10130A1.HYT, Page 7 **MACTEC-ERS** Pumping test analysis 2597 B 3/4 Road Theis analysis method Project: UGW - Grand Junction, CO Unconfined aquifer Grand Junction, CO 81503 Evaluated by: RJH | Date: 11/18/98 970/248-6040 Pumping Test No. 1035 Aquifer Test Test conducted on: 09/29/98 **Observation Well 1013 Observation Well 1013** Discharge 6.73 U.S.gal/min Distance from the pumping well 50.00 ft Static water level: 12.28 ft below datum Pumping test duration Water level Drawdown Corrected drawdown [min] [ft] [ft] [ft] 201 677.74 12.43 0.15 0.15 202 687.74 12.43 0.15 0.15 203 697.74 12.43 0.15 0.15 204 707.74 12.43 0.15 0.15 MACTEC-ERS
2597 B 3/4 Road
Grand Junction, CO 81503
970/248-6040


Pumping test analysis
Time-Drawdown plot with discharge

Project: UGW -- Grand Junction
Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Observation Well 1013

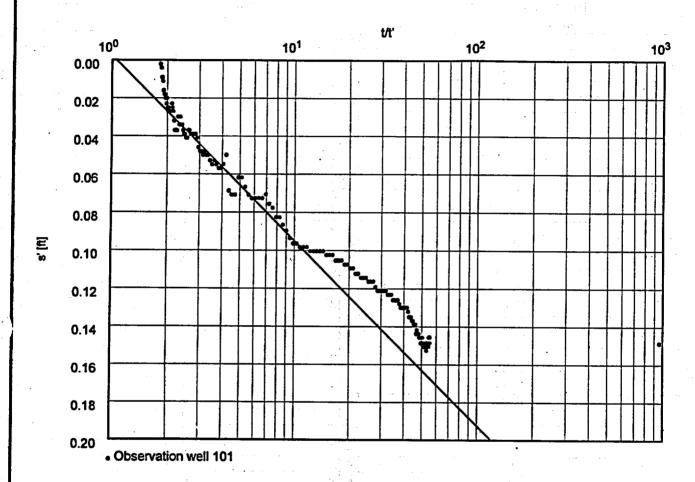
Discharge 6.73 U.S.gal/min

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer

1013OR1.HYT, Page 1

Project: UGW -- Grand Junction

Evaluated by: RJH | Date: 11/18/98


Pumping Test No. 1035 Recovery Test

Observation Well 1013

Discharge 6.73 U.S.gal/min

Test conducted on: 09/29/98

Pumping test duration: 707.00 min

Transmissivity [ft²/min]: 1.69 x 100

2433.60 ft2/day

Hydraulic conductivity [ft/min]: 2.11 x 10⁻¹

303.84 ft/day

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1013OR1.HYT, Page 2
Project: UGW - Grand Junction

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Observation Well 1013

Discharge 6.73 U.S.gal/min

Test conducted on: 09/29/98

Observation well 1013

	Time from end of pumping	Water level	Residual drawdown	Corrected drawdown
	[min]	[ft] 12.43	[ft] 0.15	[ft] O.
1	0.74	12.43	0.15	0.
2	13.00	12.43	0.15	0.
3	13.00	12.43	0.15	0.
4	13.01	12.43	0.15	0.
5	13.01	12.43	0.15	0.
6	13.02 13.03	12.43	0.15	0.
7	13.03	12.43	0.15	• 0.
8 9	13.04	12.43	0.15	0.
10	13.04	12.43	0.15	0.
11	13.04	12.43	0.15	. 0.
12	13.05	12.43	0.15	0.
13	13.05	49.49	0.15	0.
14	13.06	12.43	0.15	0.
15	13.07	12.43	0.15	0
18	13.07	12.43	0.15	0
17	13.08	12.43	0.15	. 0
18	13.08	12.43	0.15	0
19	13.08	12.43	0.15	0
20	13.09	12.43	0.15	ō
21	13.09	12.43	0.15	0
22	13.10	12.43	0.15	0
23	13.11	12.43	0.15	0
24	13.11	12.43	0.15	0
25	13.12	12.43	0.15	0
26	. 13.13	12.43	0.15	0
27	13.13	12.43	0.15	0
28	13.14	12.43	0.15	. 0
29	13.15	12.43	0.15	O
30	13.16	12.43	0.15	0
31	13.17	12.43	0.15	0
32	13.18	12.43	0.15	C
33	13.19	12.43	0.15	. (
34	13.20	12.43	0.15 0.15	
35	13.21	12.43 12.43	0.15	
36	13.22	12.43	0.15	
37	13.24 13.25	12.43	0.15	
38	13.26	12.43	0.15	· · · · · · · · · · · · · · · · · · ·
39 40	13.28	12.43	0.15	
41	13.30	12.43	0.15	
41	13.31	12.43	0.15	
42	13.33	12.43	0.15	
44	13.35	12.43	0.15	 7
45	13.37	12.43	0.15	
46	13.40	12.43	0.15	
47	13.42	12.43	0.15	
48	13.44	12.43	0.15	
49	13.47	12.43	0.15	
50	13.50	12.43	0.15	

Pumping test analysis
Recovery method after
THEIS & JACOB
Unconfined aquifer

10130R1.HYT, Page 3

Project: UGW - Grand Junction

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Observation Well 1013

Discharge 6.73 U.S.gal/min

Test conducted on: 09/29/98

Observation well 1013

17	Time from	Water level	Residual	Corrected
1.	end of pumping		drawdown	drawdown
-	[min]	[ft]	[ft]	[ft]
51	13.52	12.43	0.15	0.1
52	13.55	12.43	0.15	0.1
53	13.59	12.43	0.15	0.1
54	13.62	12.43	0.15	0.1
55	13.66	12.43	0.15	0.1
56	13.70	12.43	0.15	0.1
57	13.74	12.43	0.15	0.1
58	13.78	12.43	0.15	. 0.1
59	13.83	12.43	0.15	0.1
60	13.88	12.43	0.15	0.1
61	13.93	12.43	0.15	0.1
62	13.98	12.43	0.15	0.1
63	14.04	12.43	0.15	0.1
64	14.10	12.43	0.15	0.1
65	14.17	12.43	0.15	0.1
66	14.24	12.43	0.15	0.1
67	14.31	12.43	0.15	. 0.1
68	.14.39	12.43	0.15	0.1
69	14.47	12.43	0.15	· 0.1
70	14.56	12.43	0.15	0.1
71	14.65	12.43	0.15	0.1
72	14.75	12.43	0.15	0.1
73	14.86	12.43	0.15	0.1
74	14.97	12.43	0.15	0.1
75	15.08	12.43	0.15	0.1
76	15.21	12.43	0.15	0.1
77	15.34	12.42	0.14	0.1
78	15.48	12.43	0.15	0.1
79	15.63	12.42	0.14	0.14
80	15.79	12.42	0.14	0.1
31	15.95	12.42	0.14	0.14
32	16.13	12.42	0.14	0.1
33	16.32	12.42	0.14	0.14
34 35	16.51	12.42	0.14	0.1
36 I	16.72 16.95	12.42	0.14	0.1
37	17.18	12.42	0.14	0.1
38	17.43	12.41 12.41	0.13	0.1
39	17.69	12.41	0.13	0.13
90	17.09	12.41	0.10	0.13
31	18.27	12.41	0.13 0.13	0.1
22	18.58	12.41	0.13	0.13
3	18.91	12.41	0.13	. 0.13
34	19.27	12.41	0.13	0.13
95	19.64	12.41	0.13	0.13
75	20.03	12.41	, ,	0.13
77	20.45	12.41	0.13	0.13
8	20.90		0.13	0.13
9	21.37	12.41	0.13	0.13
00	21.86	12.40 12.40	0.12 0.12	0.12 0.12

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer

10130R1.HYT, Page 4

Project: UGW - Grand Junction

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Observation Well 1013

Test conducted on: 09/29/98 Observation well 1013

Discharge 6.73 U.S.gal/min			Distance from the pumping well 50.00 ft		
Static water level: 12.28 ft below datum			Pumping test duration: 707.00 min		
	Time from end of pumping [min]	Water level	Residual drawdown [ft]	Corrected drawdown [ft]	
101	22.39	12.40	0.12	0.	
102	22.95	12.40	0.12	0.	
103	23.54	12.40	0.12	0.	
104	24.17	12.40	0.12	0.	
105	24.83	12.40	0.12	0.	
106	25.53	12.40	0.12	0.	
107	26.28	12.40	0.12	0.	
108	27.07	12.40	0.12	0.	
109	27.91	12.40	0.12	0. 0.	
110	28.79	12.40	0.12		
111	29.73	12.40	0.12	0. 0.	
112	30.72	12.40	0.12	0.	
113	31.78	12.40	0.12	<u> </u>	
114	32.39	12.39	0.11 0.11	0.	
115	34.07	12.39	0.11	0.	
116	35.32	12.39	0.11	0.	
117	36.65	12.39	0.11	0.	
118	38.05	12.39 12.39	0.11	<u> </u>	
119	23.34	12.39	0.11	<u> </u>	
120		12.39	0.11		
121	#2:79 44:55	12.39	0.11	0.	
122	46.43	12.38	0.10	- 0.	
123	48.41	12.38	0.10	0.	
124	50.51	12.38	0.10		
125 126	52.74	12.38	0.10	0	
127	55.10	12.38	0.10	0	
128	57.60	12.38	0.10	0	
129	60.24	12.38	0.10	0	
130	63.05	12.38	0.10	0	
131	66.01	12.38	0.10	0	
132	69.16	12.38	0.10	0	
133	72.49	12.38	0.10	0	
134	76.02	12.38	0.10	0	
135	79.76	12.38	0.10	0	
136	83.72	12.37	0.09	0	
137	87.91	12.37	0.09	0	
138	92.35	12.37	0.09	0	
139	97.06	12.36	0.08	- 0	
140	102.05	12.36	0.08	0	
141	107.33	12.36	0.08	0	
142	112.92	12.36	0.08	0	
143	118.84	12.35	0.07	0	
144	125.12	12.35	0.07	0	
145	131.77	12.35	0.07	Ō	
146	138.81	12.35	0.07	C	
147	146.27	12.35	0.07	O	
148	154.17	12.35	0.07	0	
149	162.54	12.35	0.07	0	
150	171.40	12.34	0.06	C	

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer

10130R1.HYT, Page 5

Project: UGW -- Grand Junction

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Test conducted on: 09/29/98

Observation Well 1013

Observation well 1013

Discharge 6.73 U.S.gal/min

	Time from	Water level	Residual Corrected	
	end of pumping [min]	[ft]	drawdown [ft]	drawdown [ft]
151	180.79	12.34	0.06	0.0
152	190.74	12.35	0.07	0.0
153	200.74	12.35	0.07	0.0
154	210.74	12.35	0.07	0.0
155	220.74	12.33	0.05	0.0
156	230.74	12.34	0.06	0.0
157	240.74	12.34	0.06	· 0.0
158	250.74	12.34	0.06	0.0
159	260.74	12.34	0.06	0.0
160	270.74	12.33	0.05	0.0
161	280.74	12.34	0.06	0.0
162	290.74	12.33	0.05	0.0
163	300.74	12.33	0.05	0.0
164	310.74	12.33	0.05	0.0
165	320.74	12.33	0.05	0.0
166	330.74	12.33	0.05	0.03
167	340.74	12.33	0.05	0.0
168	350.74	12.33	0.05	0.0
169	360.74	12.33	0.05	0.03
170	370.74	12.32	0.04	0.04
171	380.74	12.32	0.04	0.04
172	390.74	12.32	0.04	0.04
173	400.74	12.32	0.04	0.04
174	410.74	12.32	0.04	0.04
175	420.74	12.32	0.04	0.04
176	430.74	12.32	0.04	0.04
77	440.74	12.32	0.04	. 0.04
78	450.74	12.32	0.04	0.04
79	460.74	12.32	0.04	0.04
80	470.74	12.32	0.04	0.04
81	480.74	12.32	0.04	0.04
82	490.74	12.32	0.04	0.04
83	500.74	12.31	0.03	0.03
84	510.74	12.31	0.03	0.03
85	520.74	12.31	0.03	0.03
86	530.74	12.31	0.03	0.03
87	540.74	12.31	0.03	0.03
88	550.74	12.31	0.03	0.03
89	560.74	12.32	0.04	0.04
90	570.74	12.32	0.04	0.04
91	580.74	12.32	0.04	0.04
92	590.74	12.32	0.04	0.04
93	600.74	12.31	0.03	0.03
94	610.74	12.31	0.03	0.03
95	620.74	12.30	0.02	0.02
96	630.74	12.30	0.02	0.02
97	640.74	12.30	0.02	0.02
98	. 650.74	12.31	0.03	0.03
99	660.74	12.31	0.03	0.03
00	670.74	12.31	0.03	0.03

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1013OR1.HYT, Page 6

Project: UGW - Grand Junction

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Test conducted on: 09/29/98

Observation Well 1013

Observation well 1013

Discharge 6.73 U.S.gal/min

	Time from	Water level	Residual	Corrected
			drawdown	drawdown
	end of pumping	(ft)	[ft]	(ft)
A4	[min] 680.74	12.30	0.02	0.02
01	690.74	12.31	0.03	0.03
02	700.74	12.30	0.02	0.02
204	710.74	12.30	0.02	0.02
205	710.74	12.30	0.02	0.02
	730.74	12.30	0.02	0.02
206	740.74	12.30	0.02	0.02
207	750.74	12.30	0.02	0.02
208	760.74	12.30	0.02	0.02
209	770.74	12.30	0.02	0.02
210	780.74	12.30	0.02	0.02
211	790.74	12.29	0.01	0.0
212	800.74	12.29	0.01	0.0
213	810.74	12.29	0.01	0.0
214	820.74	12.28	0.00	0.00
215	830.74	12.28	0.00	0.00
216	840.74	12.28	0.00	0.00
217 218	850.74	12.28	0.00	0.0
				:
	, .			
	•			
			<u> </u>	

Calculation No.: U0043900

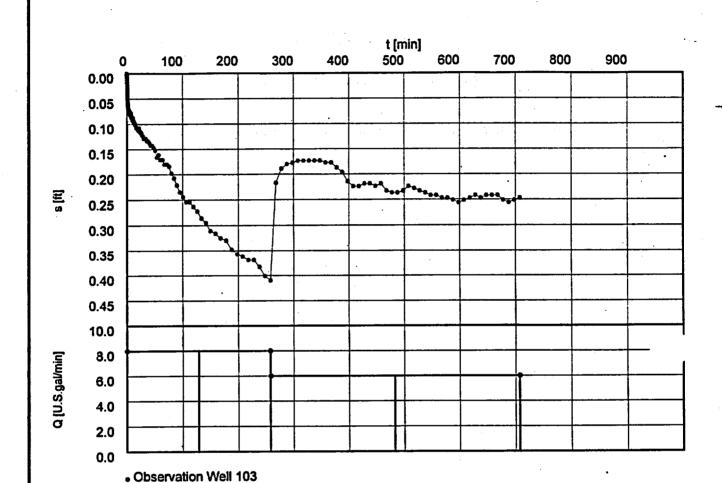
PUMPING WELL 1035

OBSERVATION WELL 1034

DRAWDOWN AND RECOVERY DATA ANALYSES

MACTEC-ERS 2597 B 3/4 Road
Grand Junction, CO 81503
970/248_8040

Pumping test analysis Time-Drawdown plot with discharge 1034OA1.HYT, Page 1


Project: UGW - Grand Junction, CO

Evaluated by: RJH | Date: 11/17/98

Pumping Test No. 1035 Aquifer Test

Observation Well 1034

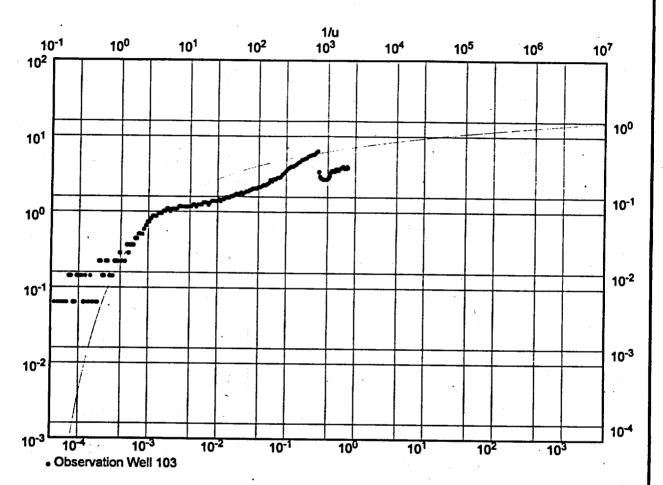
Discharge 6.73 U.S.gal/min

Pumping test analysis Theis analysis method Unconfined aquifer

10340A1.HYT, Page 1

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/17/98


Pumping Test No. 1035 Aquifer Test

Test conducted on: 09/29/98

Observation Well 1034

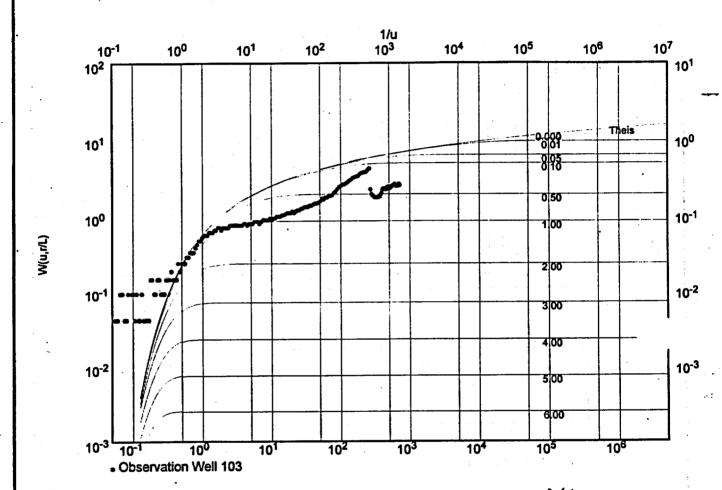
(c)

Discharge 6.73 U.S.gal/min

Transmissivity [ft²/min]: 1.13 x 100

1627.20 ft2/day

Hydraulic conductivity [ft/min]: 1.41 x 10⁻¹


203.04 Alday

Pumping test analysis HANTUSH's method Leaky aquifer, no aquitard storage 1034OA1.HYT, Page 1

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/17/98

Test conducted on: 09/29/98 Pumping Test No. 1035 Aquifer Test Observation Well 1034 Discharge 6.73 U.S.gal/min

Transmissivity [ft²/min]: 7.15 x 10⁻¹

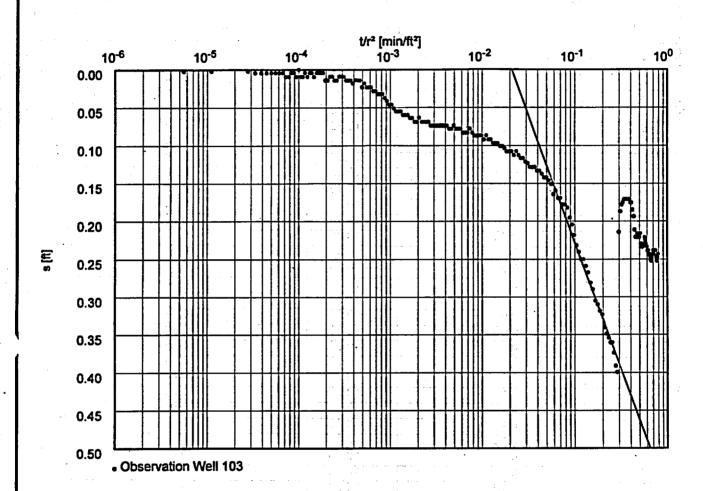
1029.60 ft²/dəy 128.74 ft/dəy

Hydraulic conductivity [ft/min]: 8.94 x 10⁻²

Pumping test analysis Distance-Time-Drawdown-method after COOPER & JACOB Unconfined aquifer

10340A1.HYT, Page 1

Project: UGW - Grand Junction, CO


Evaluated by: RJH | Date: 11/17/98

Pumping Test No. 1035 Aquifer Test

Test conducted on: 09/29/98

Observation Well 1034

Discharge 6.73 U.S.gal/min

Transmissivity [ft²/min]: 4.89 x 10⁻¹

704.16 ft²/day 1 88.12 ft/day

Hydraulic conductivity [ft/min]: 6.12 x 10⁻²

Pumping test analysis
Theis analysis method
Unconfined aquifer

10340A1.HYT, Page 2

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/17/98

Pumping Test No. 1035 Aquifer Test

Observation Well 1034

Test conducted on: 09/29/98

Observation Well 1034

Discharge 6.73 U.S.gal/min

	Pumping test duration	Water level .	Drawdown	Corrected drawdown
	[min]	[ft]	[ft]	[ħ]
2	0.01	10.38	0.00	0.0
3	0.01	10.38	0.00	0.0
4	0.02	10.38	-0.00	-0.0
5	· 0.02	10.38	-0.00	-0.0
6	0.03	10.38	0.00	0.0
7	0.03	10.38	0.00	0.0
8	0.04	10.38	0.00	0.0
9	0.04	10.38	0.00	0.0
10	0.05	10.38	0.00	0.
11	0.05	10.00	0.00	0.
12	0.06	10.38		0.
13	0.06	10.38	0.00	0.
14	0.07	10.39	0.01	0.
15	0.07	10.39	0.01	0.
16	0.08	, 0.00	0.00	0.
17	0.08	10.38	0.00	0.
18	0.09	10.39	0.01	0.
19	0.09	10.38	0.00	0.
20	0.10	10.39	0.01	5.
21	0.10	10.39	0.01	0.
22	0.11		0.00	0.
23	0.11	10.39	0.01	0.
24	0.12	10.38		0.
25	0.13	10.38	0.00	0.
26	0.13	10.00	0.01	0.
27	0.14	10.38	0.00	0.
28	0.15	10.38	0.00	. •
29	0.16	10.38	0.00	Ō.
30	0.17	10.38	0.00	0.
31	0.18	10.39	0.01	0
32	0.19	10.39	0.01	0.
33	0.20	10.39	0.01	0.
34	0.21	10.39	0.01	0
35	0.22	10.39	0.01	0
36	0.24	10.39	0.01	0
37	0.25	10.39	0.01	0
38	0.26	10.39	0.01	0
39	0.28	10.39	0.01	0
40	0.30	10.39	0.01	0
41	0.31	10.39	0.01	0
42	0.33	10.39	0.01	0
43	0.35	10.40	0.02	0
44	0.37	10.39	0.01	7
45	0.40	10.39	0.01	<u> </u>
46	0.42	10.39	0.01	0
47	0.44	10.40	0.02	0
48	0.47	10.40	0.02	0
49	0.50	10.40	0.02	3
50	0.52	10.40	0.02	

Pumping test analysis Theis analysis method Unconfined aquifer 1034OA1.HYT, Page 3

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/17/98

Pumping Test No. 1035 Aquifer Test

Test conducted on: 09/29/98

Observation Well 1034

Observation Well 1034

Discharge 6.73 U.S.gal/min

_ []	Pumping test duration	Water level	Drawdown	Соггесте
				drawdown
	[min]	[ft]	[ft]	lid.
51	0.55	10.40	0.02	0.0
52	0.59	10.41	0.03	0.0
53	0.62	10.41	0.03	0.0
54	0.66	10.41	0.03	0.0
55	0.70	10.41	0.03	0.0
56	0.74	10.41	0.03	0.0
57	0.78	10.42	0.04	0.0
58	0.83	10.42	0.04	0.0
59	0.88	10.43	0.05	0.0
60	0.93	10.43	0.05	0.0
61	0.98	10.43	0.05	0.0
62	1.04	10.43	0.05	0.0
63	1.10	10.43	0.05	0.0
64	1.17	10.43	0.05	0.0
65	1.24	10.44	0.06	0.0
66	1.31	10.44	0.06	0.0
67	1.39	10.44	0.06	0.0
68	1.47	10.44	0.06	0.0
69	1.56	10.44	0.06	0.0
70	1.65	10.45	0.07	. 0.0
71	1.75	10.45	0.07	0.0
72	1.86	10.44	0.06	0.0
73	1.97	10.45	0.07	0.0
74	2.08	10.45	0.07	0.0
75	2.21	10.45	0.07	0.0
76	2.34	10.45	0.07	0.0
77	2.48	10.45	0.07	0.0
78	2.63	10.45	0.07	0.0
79	2.79	10.45	0.07	0.0
30	2.95	10.45	0.07	0.0
31	3.13	10.45	0.07	0.0
32	7.7-	10.45	0.07	0.0
33	3.51	10.45	0.07	0.0
84	3.72	10.45	0.07	0.0
35	3.95	10.46	0.08	0.0
36	4.18	10.46	0.08	0.0
37	4.43	10.45	0.07	0.0
38 39	4.69 4.97	10.46	0.08 0.08	0.0
90	5.27	10.46 10.46	0.08	0.0
90 91	5.58	r .		0.0
91 92	5.91	10.46 10.46	80.0	0.00
92	6.27	3	80.0	0.0
	,	10.46	0.08	0.0
34	6.64	10.46	80.0	0.0
)5)C	7.03	10.46	80.0	0.0
6	7.45	10.47	0.09	0.0
7	7.90	10.47	0.09	0.0
98	8.37	10.47	0.09	0.0
افته	8.86	10.47	0.09	0.0

Pumping test analysis Theis analysis method Unconfined aquifer 10340A1.HYT, Page 4

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/17/98

Pumping Test No. 1035 Aquifer Test

Observation Well 1034

Discharge 6.73 U.S.gal/min

Test conducted on: 09/29/98

Observation Well 1034

Distance from the pumping well 30.00 ft

	Pumping test duration	Water level	Drawdown	Corrected drawdown
	[min]	[ft]	(ft)	[ft]
101	9.95	10.47	0.09	0.0
102	10.54	10.47	0.09	0.0
103	11.17	10.47	0.09	0.0
104	11.83	10.48	0.10	0.1
105	12.53	10.48	0.10	0.1
106	13.28	10.48	0.10	0.1
107	14.07	10.48	0.10	0.1
108	14.91	10.48	0.10	0.1
109	15.79	10.48	. 0.10	. 0.1
110	16.73	10.49	0.11	0.1
111	17.72	10.49	0.11	0.1
112	18.78	10.49	0.11	0.1
113	19.89	10.49	0.11	0.1
114	21.07	10.49	0.11	0.1
115	22.32	10.49	0.11	0.1
116	23.65	10.50	0.12	0.1
117	25.05	10.50	0.12	0.1
118	26.54	10.50	0.12	0.1
119	28.12	10.50	0.12	- 0.1
120	29.79	10.51	0.13	J.1
121	31.55	10.51	0.13	0.1
122	33.43	10.51	0.13	0.1
123	35.41	10.51	0.13	0.1
124	37.51	10.51	0.13	0.1
125	39.74	10.52	0.14	0.1
126	. 42.10	10.52	0.14	0.1
127	44.60	10.52	0.14	0.
128	47.24	10.53	0.15	• 0.1
129	50.05	10.53	0.15	0.1
130	53.01	10.55	0.17	0.
131	56.16	10.54	0.16	0.1
132	59.49	10.55	0.17	0.1
133	00.02	10.55	0.17	. 0.
134	66.76	10.56	0.18	0.
135	70.72	10.56	0.18	0.
136	74.91	10.56	0.18	0.1
137	79.35	10.58	0.20	0.2
138	84.06	10.59	0.21	0.:
139	89.05	10.60	0.22	0.3
140	94.33	10.62	0.24	0.2
141	99.92	10.62	0.24	0.2
142	105.84	10.63	0.25	0.2
143	112.12	10.63	0.25	0.2
144	118.77	10.64	0.26	0.2
145	125.81	10.65	0.27	J.:
146	133.27	10.67	0.29	0.2
147	141.17	10.68	0.29	0.3
148	149.54	10.69	0.31	0.3
149	158.40	10.70	0.32	0.0
150	167.79	10.71	0.32	0.

Pumping test analysis Theis analysis method Unconfined aquifer

10340A1.HYT, Page 5

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/17/98

Pumping Test No. 1035 Aquifer Test

Test conducted on: 09/29/98

Observation Well 1034

Observation Well 1034

Discharge 6.73 U.S.gal/min

l	Pumping test duration	Water level	Drawdown	Corrected
	. "			drawdown
:	[min]	[ft]	(ft)	[ft]
151	177,74	10.71	0.33	0.32
152	187.74	10.73	0.35	0.34
153	197.74	10.74	0.36	0.35
154	207.74	10.74	0.36	0.35
155	217.74	10.75	0.37	0.36
156	227.74	10.75	0.37	0.36
157	237.74	10.76	. 0.38	0.37
158	247.74	10.78	0.40	0.39
159	257.74	10.79	0.41	0.40
160	267.74	10.60	. 0.22	0.21
161	277.74	10.57	0.19	0.19
162	287.74	10.56	0.18	0.18
163	297.74	10.56	0.18	0.18
164	307.74	10.55	0.10	0.17
165	317.74	10.55	0.17	0.17
166	327.74	10.55	0.17	0.17
167	337.74	10.55	0.17	0.17
168	347.74	10.55	0.17	0.17
169	357.74	10.56	0.17	0.17
170	· · · · · · · · · · · · · · · · · · ·	10.56	0.18	0.18
	367.74		0.18	0.18
171	377.74	10.57	l .	l .
172	387.74	10.58	0.20	0.19
173	397.74	10.59	0.21	0.21
174	407.74	10.60	0.22	0.22
175	417.74	10.60	0.22	0.22
176	427.74	10.60	0.22	0.22
177	437.74	10.60	0.22	0.22
178	447.74	10.60	0.22	0.22
179	457.74	10.60	0.22	0.22
180	467.74	10.61	0.23	0.23
181	477.74	10.62	0.24	0.23
182	487.74	10.62	0.24	0.23
183	497.74	10.61	0.23	0.23
184	507.74	10.60	0.22	0.22
185	517.74	10.61	0.23	. 0.22
186	527.74	10.61	0.23	0.23
187	537.74	10.62	0.24	0.23
188	547.74	10.62	0.24	0.24
189	557.74	10.62	0.24	0.24
190	567.74	10.63	. 0.25	0.24
191	577.74	10.63	0.25	0.24
192	587.74	10.63	0.25	0.25
193	597.74	10.64	0.26	0.25
194	607.74	10.63	0.25	0.25
195	617.74	10.63	0.25	0.24
196	627.74	10.62	0.24	0.24
197	637.74	10.63	0.25	0.24
198	647.74	10.62	0.24	0.24
199	657.74	10.62	0.24	0.24
200	667.74	10.62	0.24	0.24

Pumping test analysis Theis analysis method Unconfined aquifer 10340A1.HY1, Page 6

Project: UGW -- Grand Junction, CO

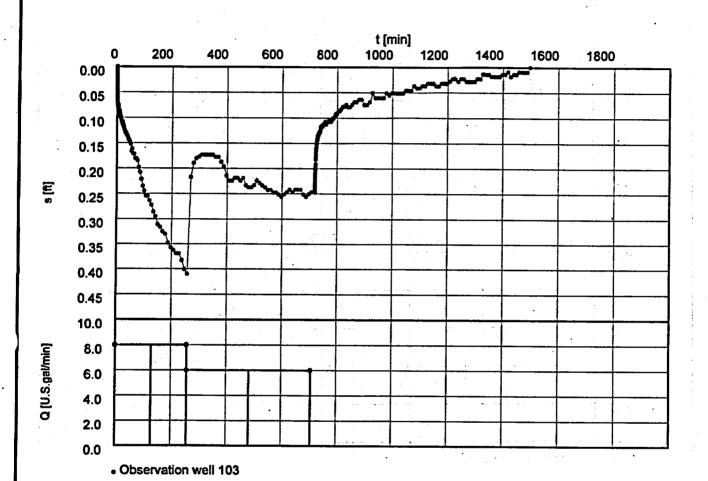
Evaluated by: RJH Date: 11/17/98

Pumping Test No. 1035 Aquifer Test	Test conducted on: 09/29/98
Observation Well 1034	Observation Well 1034
Discharge 6.73 U.S.gal/min	Distance from the pumping well 30.00 ft

	Pumping test duration	Water level ·	Drawdown	Corrected
	·			drawdown
	[min]	[ft]	[ft]	[ft]
201	677.74	10.63	0.25	0.2
202	687.74	10.64	0.26	0.2
203	697.74	10.63	0.25	
204	707.74	10.63	0.25	0.2
				· · · · · · · · · · · · · · · · · · ·
		774		
				1
	·			<u> </u>
				
-				
_		· (,		
		.,		
		A		
				·
	· · · · · · · · · · · · · · · · · · ·			
- +				
	24.3			
	# W - 2			•
				<u> </u>
			· · · · · · · · · · · · · · · · · · ·	<u> </u>
-+				·
-+	•			· · · · · · · · · · · · · · · · · · ·
$\neg \uparrow$		•	· · · · · · · · · · · · · · · · · · ·	
	k .	N. A. S. S. S. S. S. S. S. S. S. S. S. S. S.		+ ,
_				
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·	
\dashv				
				1 2

			•	
				<u> </u>
_				
-				
\dashv	4 - 4			·

Pumping test analysis Time-Drawdown plot with discharge 1034OR1.HYT, Page 1


Project: UGW -- Grand Junction, CO

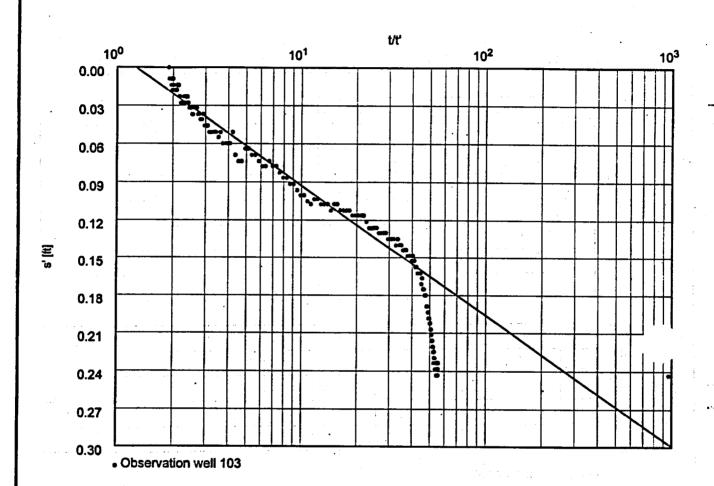
Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Observation Well 1034

Discharge 6.73 U.S.gal/min

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer


1034OR1.HYT, Page 1

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1035 Recovery Test Test conducted on: 09/29/98 **Observation Well 1034** Discharge 6.73 U.S.gal/min

Pumping test duration: 707.00 min

Transmissivity [ft²/min]: 1.59 x 100

Hydraulic conductivity [ft/min]: 1.99 x 10⁻¹

2289.60 A2/day 286.56 ft/day

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer

1034OR1.HYT, Page 2

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Test conducted on: 09/29/98

Observation Well 1034

Observation well 1035

Discharge 6 72 LLC galleria

	rge 6.73 U.S.gal/min	D	Distance from the pumping well 30.00 ft	
Static w	vater level: 10.38 ft below datum	P	umping test duration: 707.00 mir	1
	Time from end of pumping	Water level	Residual drawdown	Corrected drawdown
- 1	[min] 0.74	[ft] 10.63	[ft]	[ft]
2	13.00	10.62	0.25 0.24	0.24
3	13.00	10.62	0.24	0.23
4	13.01	10.62	0.24	0.23
5	13.01	10.62	0.24	0.23
6	13.02	10.62	0.24	0.24 0.24
7	13.03	10.62	0.24	0.24
8	13.03	10.62	0.24	0.24
9	13.04	10.62	0.24	0.24
10	13.04	10.62	0.24	0.24
11	13.04	10.62	0.24	0.24
12	13.05	10.62	0.24	0.24
13	13.05	10.62	0.24	. 0.23
14	13.06	10.62	0.24	0.24
15	13.07	10.62	0.24	0.24
16	13.07	10.62	0.24	0.24
17	13.08	10.63	0.25	0.24
18	13.08	10.62	0.24	0.24
19	13.08	10.62	0.24	0.24
20	13.09	10.62	0.24	0.24
21	13.09	10.62	0.24	0.23
22	13.10	10.62	0.24	0.24
23	13.11	10.62	0.24	0.24
24	13.11	10.62	0.24	0.24
25	13.12	10.62	0.24	0.24
26	13.13	10.62	0.24	0.24
27	13.13	10.62	0.24	0.23
28	13.14	10.62	0.24	0.24
29	13.15	10.62	0.24	0.24
30	13.16	10.62	0.24	0.24
31	13.17	10.62	0.24	0.24
32	13.18	10.62	0.24	0.24
33	13.19	10.63	0.25	0.24
34	13.20	10.62	0.24	0.24
35	13.21	10.62	0.24	0.24
36	13.22	10.63	0.25	0.24
37	. 13.24	10.62	0.24	0.24
38	13.25	10.63	0.25	0.24
39	13.26	10.62	0.24	0.24
40	13.28	10.63	0.25	0.24
41	13.30	10.62	0.24	0.24
42	13.31	10.62	0.24	0.24
43	13.33	10.62	0.24	0.24
44	13.35	10.62	0.24	0.24
45	13.37	10.62	0.24	0.24
46	13.40	10.62	. 0.24	0.24
47	13.42	10.62	0.24	0.24
48	13.44	10.62	0.24	0.24
49	13.47	10.62	0.24	0.23
50	13.50	10.62	0.24	0.24

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1034OR1.HYT, Page 3

Project: UGW -- Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Observation Well 1034

Discharge 6.73 U.S.gal/min

Test conducted on: 09/29/98

Observation well 1035

	Time from	Water level	Residual Corrected		
i	end of pumping		drawdown	drawdown	
	[min]	[ft]	[ft]	[ft]	
51	13.52	10.62	0.24	0	
52	13.55	10.62	0.24	0.	
53	13.59	10.61	0.23	0.	
54	13.62	10.61	0.23	0.	
55	13.66	10.61	0.23	0.	
56	13.70	10.61	0.23	0.	
57	13.74	10.62	0.24	0.	
58	13.78	10.61	0.23	. 0.	
59	13.83	10.61	. 0.23	0.	
60	13.88	10.60	0.22	O.	
61	13.93	10.60	0.22	Ō.	
62	13.98	10.60	0.22	0.	
63	14.04	10.60	0.22	0.	
64	14.10	10.60	0.22	0.	
65	14.17	10.59	0.21	0.	
66	14.24	10.59	0.21	0	
67	14.31	10.59	0.21	0	
68	14.39	10.59	0.21	$\frac{0}{0}$	
69	14.47	10.59	0.21		
70	14.56	10.58	0.20 0.20	0	
71	14.65	10.58	0.20	0	
72	14.75	10.58	0.20		
73	14.86	10.58	0.19		
74	14.97	10.57 10.57	0.19		
75	15.08	10.56	0.18		
76	15.21	10.56	0.18	0	
77	15.34	10.56	0.18	 0	
78	15.48 15.63	10.56	0.18	0	
79	15.79	10.56	0.18	C	
80 81	15.95	10.55	0.17		
82	16.13	10.55	0.17		
83	16.32	10.54	0.16		
84	16.51	10.54	0.16	(
85	16.72	10.54	0.16		
86	16.95	10.54	0.16		
87	17.18	10.54	0.16		
88	17.43	10.54	0.16		
89	17.69	10.53	0.15		
90	17.97	10.53	0.15		
91	18.27	10.53	0.15		
92	18.58	10.53	0.15		
93	18.91	10.53	0.15		
94	19.27	10.53	0.15		
95	19.64	10.52	0.14		
96	20.03	10.52	0.14		
97	20.45	. 10.52	0.14		
98	20.90	10.52	0.14		
99	21.37	10.52	0.14		
100	21.86	10.52	. 0,14		

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1034OR1.HYT, Page 4

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Observation Well 1034

Observation well 1035

Test conducted on: 09/29/98

Discharge 6.73 U.S.gal/min

Distance from the pumping well 30.00 ft

Statio	c water level: 10.38 ft below datum		Pumping test duration: 707.00) min
	Time from	Water level	Residual	Corrected
	end of pumping		drawdown	drawdown
	[min]	[ft]	[ft]	[ft]
101	· ·	10.52	0.14	0.1
102	1	10.52	0.14	0.1
103		10.52	0.14	0.1
104		10.52	0.14	0.1
105		10.52	0.14	0.13
106	25.53	10.51	0.13	0.1
107	1	10.51	0.13	0.13
108	27.07	10.51	. 0.13	. 0.13
109	27.91	10.51	0.13	0.13
110	28.79	10.51	. 0.13	0.1
111	29.73	10.51	0.13	0.13
112	30.72	10.51	0.13	0.13
113	31.78	10.51	0.13	0.13
114	32.89	10.50	0.12	0.13
115	34.07	10.50	0.12	0.13
116	35.32	10.50	0.12	0.12
117	36.65	10.50	0.12	0.12
118	38.05	10.50	0.12	0.12
119	39.54	10.50	0.12	0.12
120	41.12	10.49	0.11	0.1
121	42.79	10.49	0.11	0.1
122	44.55	10.49	0.11	0.1
123	46.43	10.49	0.11	0.1
124	48.41	10.49	0.11	0.1
125	50.51	10.49	0.11	0.1
126	52.74	10.49	0.11	0.11
127	55.10	10.49	0.11	0.11
128	57.60	10.49	0.11	0.11
129	60.24	. 10.49	0.11	0.11
130	63.05	10.48	0.10	0.10
131	66.01	10.48	0.10	0.10
132	69.16	10.49	0.11	0.11
133	1	10.49	0.11	0.11
134	. 76.02	10.48	0.10	0.10
135	79.76	10.48	0.10	. 0.10
136	83.72	10.48	0.10	0.10
137	87.91	10.47	0.09	0.09
138	92.35	10.47	0.09	0.09
139	97.06	10.47	0.09	0.09
140	102.05	10.47	. 0.09	0.09
141	107.33	10.46	0.08	0.08
142	112.92	10.46	0.08	. 0.08
143	118.84	10.46	0.08	0.08
144	125.12	10.45	0.07	0.07
145	131.77	10.46	0.08	0.08
146	138.81	10.46	0.08	0.08
147	146.27	10.45	0.07	0.07
148	154.17	10.45	0.07	0.07
149	162.54	10.45	0.07	0.07
150	171.40	10.44	0.06	0.06

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1034OR1.HYT, Page 5

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Observation Well 1034

Discharge 6.73 U.S.gal/min

Test conducted on: 09/29/98

Observation well 1035

Distance from the pumping well 30.00 ft

	Time from end of pumping [min]	Water level [ft]	Residual drawdown [ft]	Corrected drawdown [ft]
151	180.79	10.44	0.06	0.0
152	190.74	10.45	0.07	0.0
153	200.74	10.45	0.07	0.0
154	210.74	10.45	0.07	0.0
155	220.74	10.43	0.05	0.0
156	230.74	10.44	0.06	0.0
157	240.74	10.44	0.06	0.0
158	250.74	10.44	0.06	0.0
159	260.74	10.44	0.06	0.0
160	270.74	10.43	0.05	0.0
161	280.74	10.43	0.05	0.0
162	290.74	10.43	0.05	0.0
163	300.74	10.43	0.05	0.0
164	310.74	10.43	0.05	0.0
165	320.74	10.43	0.05	0.0
166	330.74	10.43	0.05	0.0
167	340.74	10.43	0.05	0,0 0.0
168	350.74	10.43	0.05	
169	360.74	10.43	0.05	0.0 5.0
170	370.74	10.42	0.04	0.0
171	380.74	10.42	0.04	0.0
172	390.74	10.42	0.04	0.0
173	400.74	10.42	0.04 0.04	0.0
174	410.74	10.42 10.41	0.04	0.0
175	420.74	10.41	0.03	0.0
176	430.74 440.74	10.41	0.03	0.0
177	450.74	10.42	0.04	0.0
178	450.74	10.42	0.04	0.0
179	470.74	10.42	0.03	0.0
180	480.74	10.41	0.03	0.0
181	490.74	10.41	0.03	0.0
182	500.74	10.41	0.03	0.0
183 184	510.74	10.41	0.03	- 0.0
185	520.74	10.40	0.02	0.0
186	530.74	10.41	0.02	0.0
187	540.74	10.40	0.02	0.0
188	550.74	10.40	0.02	<u> </u>
189	560.74	10.41	0.03	0.0
190	570.74	10.41	0.03	0.0
191	580.74	10.41	0.03	0.0
192	590.74	10.41	0.03	0.0
193	600.74	10.40	0.02	0.0
194	610.74	10.40	0.02	0.0
195	620.74	10.39	0.01	· 5.0
198	630.74	10.39	0.01	
197	640.74	10.39	0.01	0.
198	650.74	10.40	0.01	0.
198	660.74	10.40	0.02	0.
200	670.74	10.40	0.02	0.

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1034OR1.HYT, Page 6

Project: UGW - Grand Junction, CO

Evaluated by: RJH | Date: 11/18/98

Pumping Test No. 1035 Recovery Test

Test conducted on: 09/29/98

Observation Well 1034

Observation well 1035

Discharge 6.73 U.S.gal/min

Distance from the pumping well 30.00 ft

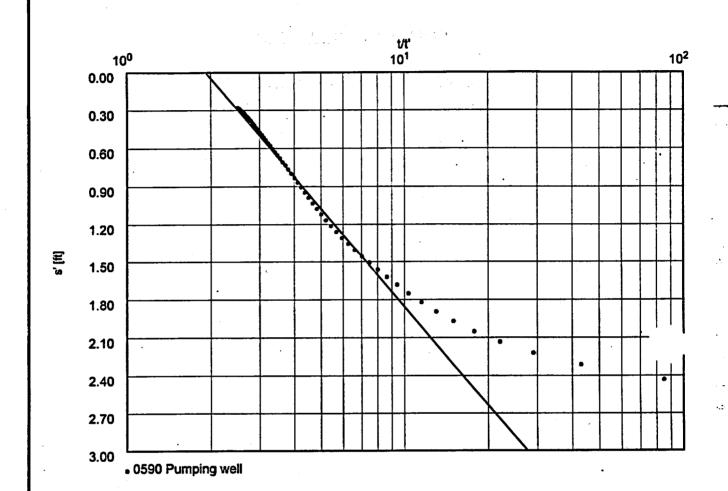
	Time from	Water level	Residual	Corrected
	end of pumping		drawdown	drawdown
	[min]	(ft)	[ft]	[ft]
201	680.74	10.40	0.02	0.02
		10.39	0.02	0.02
202	690.74		0.01	0.01
203	700.74	10.39		
204	710.74	10.39	0.01	0.01
205	720.74	10.40	0.02	0.02
206	730.74	10.39	0.01	0.01
207	740.74	10.39	0.01	0.01
208	750.74	10.39	0.01	0.01
209	760.74	10.39	0.01	0.01
210	770.74	10.39	0.01	0.01
211	780.74	10.39	0.01	0.01
212	790.74	10.38	0.00	• 0.00
		•		
				· .
	·		,	•
_		· .		
		· .		
-+		· ·		·
_				
- -				•
				· · · · · · · · · · · · · · · · · · ·
_			-	
- 1		•		

This page intentionally blank

PUMPING WELL 0590

RECOVERY DATA ANALYSES

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer


0590P1.HYT, Page 1

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/16/98

Test conducted on: 08/10/98 Pumping Test No. 0590 Recovery Test Pumping Well 0590 Discharge 30.00 U.S.gal/min

Pumping test duration: 840.00 min

Transmissivity [ft²/min]: 2.83 x 10⁻¹

407.52 At2/day

Hydraulic conductivity [ft/min]: 4.72×10^{-2} 67. 97 ft/day

Aquifer thickness [ft]: 6.00

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 0590P1.HYT, Page 2

Project: UGW - Grand Junction, CO

Evaluated by: RJH | Date: 11/16/98

Pumping Test No. 0590 Recovery Test

Test conducted on: Q8/10/98

Pumping Well 0590

0590 Pumping well

Discharge 30.00 U.S.gal/min

Distance from the pumping well 1.00 ft

Statio water	sloveli 0.77 ft belevi detiv		Distance from the pumping we				
Static water	level: 9.77 ft below datu		Pumping test duration: 840.00 min				
	Time from	Water level	Residual	Corrected			
	end of pumping		drawdown	drawdown			
	[min]	[ft]	[ft]] (ft)			
1	10.00	13.15	3.38	2.43			
2	20.00	12.90	3.13	2.31			
3	30.00	12.71	2.94	2.22			
4	40.00	12.54	2.77	2.13			
5	50.00	12.40	2.63	2.05			
6	60.00	12.26	2.49	1.97			
7	70.00	12.13	2.36	1.90			
8	80.00	12.01	. 2.24	. 1.82			
9	90.00	11.90	2.13	1.75			
10	100.00	11.79	2.02	1.68			
11	110.00	11.70	1.93	1.62			
12	120.00	11.62	1.85	1.56			
13	130.00	11.54	1.77	1.51			
14	140.00	11.47	1.70	1.46			
15	150.00	11.40	1.63	1.40			
16	160.00	11.33	1.56	1.35			
17	170.00	11.26	1.49	1.31			
18	180.00	11.20	1.43	1.26			
19	190.00	11.14	1.37	1.21			
20	200.00	11.08	1.31	1.17			
21	210.00	11.02	1.25	1.12			
22	220.00	10.96	1.19	1.08			
23	230.00	10.91	1.14	1.03			
24	240.00	10.85	1.08	0.99			
25	250.00	10.81	1.04	0.95			
26	260.00	10.76	0.99	0.91			
27	270.00	10.71	0.94	0.87			
28	280.00	10.67	0.90	0.83			
29	290.00	. 10.63	0.86	0.80			
30	300.00	10.59	0.82	0.77			
31	310.00	10.55	0.78	0.73			
32	320.00	10.53	0.76	0.71			
33	330.00	10.49	0.72	0.68			
34	340.00	10.46	0.69	0.65			
35	350.00	10.44	0.67	0.63			
36	360.00	10.41	0.64	0.60			
37	370.00	10.38	0.61	0.58			
38	380.00	10.36	0.59	0.56			
39	390.00	10.33	0.56	0.54			
40	400.00	10.31	. 0.54	0.52			
41	410.00	10.29	0.52	0.49			
42	420.00	10.27	0.50	0.48			
43	430.00	10.24	0.47	0.46			
44	440.00	10.23	0.46	0.44			
45	450.00	10.21	0.43	0.42			
46	460.00	10.19	0.42	0.40			
47	470.00	10.17	0.40	0.38			
48	480.00	10.15	0.38	0.37			
49	490.00	10.14	0.37	0.36			
50	500.00	10.12	0.35	0.34			

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 0590P1.HYT, Page 3

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/16/98

Pumping Test No. 0590 Recovery Test

Pumping Well 0590

Discharge 30.00 U.S.gal/min

Test conducted on: 08/10/98

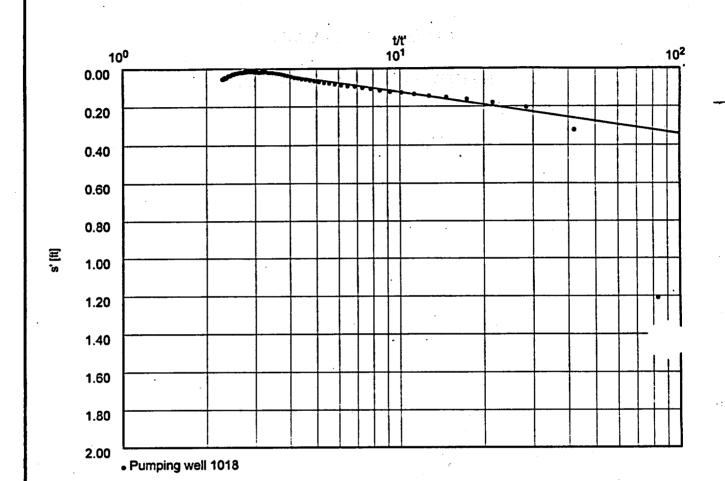
Distance from the pumping well 1.00 ft

Dischar	ge 30.00 U.S.gal/min		Distance from the pumping well 1.00 ft						
Static w	rater level: 9.77 ft below datum	La Company	Pumping test duration: 840.00 m	in					
	Time from end of pumping [min]	Water level [ft]	Residual drawdown [ft]	Corrected drawdown [ft]					
51	510.00	10.11	0.34	0.33					
52	520.00	10.10	0.33	0.32					
53	530.00	10.09	0.32	0.3					
54	540.00	10.08	0.31	0.3					
55	550.00	10.07	0.29	0.2					
56	560.00	10.06	0.29	0.2					
				31					
				, a					
	· · · · · · · · · · · · · · · · · · ·								
	•								
		11.							
		7 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1							
				` 					
				· · · · · · · · · · · · · · · · · · ·					
		144							

PUMPING WELL 1018

RECOVERY DATA ANALYSES

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer


1018PR2.HYT, Page 1

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/24/98

Test conducted on: 08/11/98 Pumping Test No. 1018 Recovery Test **Pumping Well 1018** Discharge 1.00 U.S.gal/min

Pumping test duration: 820.00 min

Transmissivity [ft²/min]: 1.12 x 10⁻¹

161.28 ft2/day

Hydraulic conductivity [ft/min]: 1.24 x 10⁻²

17.86 ft/day

Aquifer thickness [ft]: 9.00

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer

1018PR2.HYT, Page 2

Project: UGW -- Grand Junction, CO

Evaluated by: RJH | Date: 11/24/98

Pumping Test No. 1018 Recovery Test

Test conducted on: 08/11/98

Pumping Well 1018

Pumping well 1018

Static v	water level: 7.90 ft below datu	m Pur	Pumping test duration: 820.00 min				
	Time from end of pumping [min]	Water level [ft]	Residual drawdown [ft]	Corrected drawdown [ft]			
1	10.00	9.20	1.30	1.2			
2	20.00	8.23	0.33	0.3			
3	30.00	8.11	0.21	0.2			
4	40.00	8.08	0.18	0.1			
5	50.00	8.06	0.16	0.1			
6	60.00	8.05	0.15	0.1			
7	70.00	8.05	0.15	0.1			
8	80.00	8.04	0.14	0.1			
9	90.00	8.03	0.13	0.1			
10	100.00	8.02	0.12	0.1			
11	110.00	8.02	0.12	0.1			
12	120.00	8.01	0.11	0.1			
13	130.00	8.00	0.10	0.1			
14	140.00	8.00	0.10	0.0			
15	150.00	7.99	0.09	0.0			
16	160.00	7.99	0.09	0.0			
17	170.00	7.98	0.08	0.0			
18	180.00	7.98	0.08	0.0			
19	190.00	7.97	0.07	0.0			
20	200.00	7.97	0.07	0.0			
21	210.00	7.97	0.07	0.0			
22	220.00	7.96	0.06	0.0			
23	230.00	7.96	0.06	0.0			
24	240.00	7.96	0.06	0.0			
25	250.00	7.95	0.05	0.0			
26	260.00	7.95	0.05	0.0			
27	270.00	7.94	0.04	0.0			
28	280.00	7.94	0.04	0.04			
29	290.00	7.93	0.03	0.0			
30	300.00	7.93	0.03	0.03			
31	310.00	7.93	• 0.03	0.03			
32	320.00	7.92	0.02	0.02			
33	330.00	7.92	0.02	0.02			
34	340.00	7.92	0.02	0.02			
35	350.00	7.92	0.02	0.02			
36	360.00	7.92	0.02	0.02			
37	370.00	7.92	0.02	0.02			
88	380.00	7.92	0.02	0.02			
9	390.00	7.92	0.02	0.02			
11	400.00	7.92	0.02	0.02			
2	410.00	7.92	0.02	0.02			
3	420.00	7.92	0.02	0.02			
4	430.00	7.91	0.01	0.01			
	440.00	7.91	0.01	0.01			
5	450.00	7.91	0.01	0.01			
6	460.00	7.92	0.02	0.02			
7	470.00	7.92	0.02	0.02			
8	480.00	7.92	0.02	0.02			
9	490.00	7.92	0.02	0.02			
0	500.00	7.92	0.02	0.02			

Pumping test analysis Recovery method after THEIS & JACOB Unconfined aquifer 1018PR2.HYT, Page 3

Project: UGW - Grand Junction, CO

Evaluated by: RJH Date: 11/24/98

Pumping Test No. 1018 Recovery Test

Pumping Well 1018

Pumping well 1018

Discharge 1.00 U.S.gal/min

Distance from the pumping well 1.00 ft

Test conducted on: 08/11/98

	Time from	Water level	Residual	Corrected
	end of pumping		drawdown	drawdown
	[min]	[ft]	[ft]	[ft]
51	510.00	7.92	0.02	0.0
52	. 520.00	7.92	0.02	0.0
53	530.00	7.92	0.02	0.0
54	540.00	7.93	0.03	0.0
55	550.00	7.93	0.03	0.0
56	560.00	7.93	0.03	0.0
57	570.00	7.94	0.04	0.0
58	580.00	7.94	0.04	0.0
59	590.00	7.94	0.04	0.0
60	600.00	7.95	0.05	0.0
61	610.00	7.95	0.05	0.0
62	620.00	7.95	0.05	0.0
63	630.00	7.96	0.06	0.0
64	640.00	7.96	0.08	0.0
\dashv		•		· · · · · · · · · · · · · · · · · · ·
	•			
\dashv				
		,		
	<u>·</u>		•	
		· · · · · · · · · · · · · · · · · · ·		·
			<u> </u>	

Appendix E

Summary Data for Subsurface Waters by Upgradient, On Site, Downgradient, and Dakota Wells and Preliminary Surface Water Sample Descriptions This page intentionally blank

		al Downgr	adient		uvial Ons	ite	Alluvi	al Upgra	dient	Dа	kota Well	s
Analyte	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	ŀ
Alkalinity as CaCO3	422	714	504	305	545	433	227	493	203	252	1050	
Ammonia as NH4	<.0007	22.1	6.75	47	233	105	.0142	1.12	383 .154	252 .26	1852	
Arsenic	<.001	.0081	.00142	<.001	.0349	.007	<.001	.0014	.000612	.26 <.001	11.7	;
Cadmium	<.001	<.001	.0005	<.001	.0013	.000591	<.001	<.0014	.0005		.0061	. 00
Calcium	353	616	483	441	618	517	122	573	421	<.001	<.001	. (
Chloride	213	1160	951	392	887	680	133			3.41	72.2	
Cobalt	<.006	<.008	.0035	<.006	.0162	.0054	<.006	991 <.008	445	584	4040	:
Copper	<.005	<.005	.0025	<.005	<.005	.0025	<.005		00348	<.006	<.008	. (
Fluoride	.244	1.89	.876	.898	7.9	2.58	.453	<.005	.0025	<.005	<.005	. (
Gross Alpha	<48.18	142.9	80	<41.78	1930	2.56	.453 <12.85	1.82	1.12	.309	3.52	
Gross Beta	<55.32	477.3	76.3	37.4	1113	158		83.66	39.9	<16.22	<109.95	:
Iron	<.003	16.8	3.13	.156	21.2	4.18	<13.23	254.9	33.7	<17.6	2029	
Magnesium	326	491	425	173	474		<.003	3.13	.411	<.0126	2.88	
Manganese	.0815	3.69	1.85	2.57	4.54	361	64	502	355	.883	25.5	
Molybdenum	.0147	.174	.0548	.0405	.299	3.16	.233	3.08	1.63	<.008	.0999	
Nickel	<.007	.0222	.0129	.0116	.111	.126	.0158	.186	.0767	<.001	.0244	. 00
Vitrate	<.011	65	11.5	<.011	20.4	.0432	<007	.0281	.0117	<.007	.0239	.00
Potassium	9.6	66.6	21.4			3.38	<.0579	71.4	14.5	<.011	.175	. (
Radium-226	.02			14.2	61.2	37.9	4.93	16.8	9.17	2.41	9.48	!
Radium-228		.62	.105	.06	.58	.142	<.04	.34	.0888	.11	47.04	•
Redox Potential	<.4	<.9	.307	< . 48	<.9	.405	< . 4	<1	.299	<.48	29.27	
Selenium	-128	211	18.2	-141	134	1.82	-143	239	37.1	-410	-62	
Sodium	<.001	.0244	.00392	<.001	<.016	.00225	<.001	.137	.0319	<.001	<.001	(
	836	1360	1060	536	999	840	186	893	586	799	2730	:
Specific Conductance	5540	9760	7410	5740	8040	7210	1834	7760	5030	3460	12580	(
Strontium	5.6	8.99	7.15	3.93	8.12	6.77	1.71	8.09	5.34	.451	14.4	
Sulfate	572	3930	3190	1650	3680	3040	416	3720	2600	.441	1930	
Cemperature	11.3	18	15	8.3	17.1	13.6	9.7	17.2	13.8	14.5	16.6	. :
Total Dissolved Solids	5880	7840	6870	4440	6880	6270	1440	7400	5150	2030	7390	. 4
Turbidity	.66	32.4	8.08	1.72	1000	54.3	2.64	901	51.6	1.36	1000	
Jranium	.0318	.199	.104	.0241	2.5	.399	.0117	.0682	.0493	<.001	.0052	. (
Jranium-234	15.3	73.5	43.7	13.2	833	143	5.4	35.2	25.5	<.8	4.6	
Jranium-235	<1	3.2	1.69	<1	38	6.34	<1	1.1	.642	<1	<1	
Jranium-238	10.6	66.5	35.6	8.1	835	136	4.4	22.8	16.9	<1	<1	
/anadium	<.001	<.0052	.00101	<.001	.832	.13	<.001	.0049	.00101	<.001	<.0041	. (
line	<.004	.0382	.00753	< . 004	.352	.0478	<.004	.0051	.00238	< .004	.0119	.00
Н	6.43	7.68	6.94	6.84	7.57	7.12	6.45	7.77	6.94	7.19	8.53	•
				1						"•		
er en en en en en en en en en en en en en							÷			•		·
									** *			1
	,											

GRAND JUNCTION WATER SAMPLE LOCATIONS OF PRELIMINARY SITES Soil samples have been taken from all sites except 51 - 58

- 1. North side of southeast pond at southeast corner of Struthers and Hwy 50
- 2. North side of northeast pond at southeast corner of Struthers and Hwy 50
- 3. North side of northwest pond at southeast corner of Struthers and Hwy 50
- 4. North bank of Colorado River at center of Hwy 50 bridge
- 5. North bank of Colorado River ~170 ft. east of Hwy 50 bridge where braided stream rejoins channel
- 6. North Bank of braided area midpoint between Hwy 50 and Watson Island bridge
- 7. North bank of braided area at west edge of Watson Island bridge
- 8. North bank of braided area straight south of west corner of Randall Industries property. Sample taken where cobble drainage joins water flow. No drainage occurring at that time.
- 9. North bank of braided area at the west fence line of the mill site (east of Lone House).
- 10. Standing water north of braided area just at pronounced Watson Island curve. (Where 9th St. would intersect.)
- 11. Standing water north of braided area directly south of west corner of brick mill building
- 12. North bank of braided area directly south of center of brick mill building
- 13. North bank of Colorado River at west edge of the new foot bridge
- 14. West end of Corn Lake
- 15. East end of Corn Lake
- 16. North bank of Colorado river at Corn Lake boat ramp (east end of Corn Lake)
- 17. West side of pond at American Auto Salvage
- 18. East side of pond at American Auto Salvage
- 19 Standing water just north of east end of pond at American Auto Salvage. Water stinks. Possibly communicates with pond during high water
- 20. Ditch at 27 5/8ths and C1/2 Rds. Just east of GJ Byproducts
- 21. North bank of river at 28 Rd. Checked for standing water because cattails were present, but no water available to sample

- 22 Standing water just west of the south end of 28 Rd.
- 23 North bank of braided area on path west from Corn Lake, west side of corn field, east of bench. (Approx location is where 31 ½ Rd would intersect if it came all the way south to the river
- 24. Southeast end of large pond that sits between 30 ½ and 31 Rd., just north of the paved trail. This pond was originally 2 ponds, but the levee separating them has been breached on the south. The parking lot for the west end of this segment of the Corn Lake trail is at the north west corner of the pond. Call this the 31 Road Pond
- 25. Southeast end of large pond that sits west of 30 ½ Rd, just north of the paved trail. This is on private property need permission
- 26. Water pumped into north west pond at south east corner of Struthers and Hwy 50. Pump was allowed to run ~15 minutes prior to sample. Sample taken directly from pipe outflow. This is the "sump" that provides the water for the Botanical Garden's use.
- 27. Standing water north of braided area, east of location 10. (Where 10th St would intersect)
- 28. Standing water north of braided area, east of location 27, just west of location 11.
- 29. West end of private pond (Price's) south of Corn Lake trail, just east of 31 Rd. Limited access need permission
- 30. East end of the closed pond north of the 31 Road Pond (described in location 24). This pond lies west of 31 Rd., starting closer to 31 Rd., but is not as large and does not extend as far west. This pond does not appear on the aerial photos from the '94 flyover. Limited access need permission
- 31. Flowing water from Lewis Wash at inlet to 31 Road Pond
- 32. West end of the closed pond north of the 31 Road Pond
- 33 North (center) of 31 Road Pond. Straight south of the west big cottonwood tree
- 34. Northwest corner of the 31 Road Pond, adjacent to the parking area
- 35 Southeast corner of County pond at the end of 30 Rd. Limited access need key
- 36 Flowing water from ditch off 29 5/8 Rd. Near road culvert on east side. Just upstream (east) from location of beaver dam that had to be removed by backhoe Limited access need key
- 37 East end of pond just northwest of the ditch off 29 5/8 Rd.
- 38 North east end of large state-owned pond southwest of ditch crossing 29 5/8 Rd. Mined wetlands, fills from river backflow at southwest corner (lots of cobble, communicates with river at high flow)
- 39 North bank of river at inlet to the large state-owned pond, location 38
- 40 East end of state-owned pond west of 29 Road, just north of river. Would be bisected by 28 3/4 Rd. if that road went through

- 41 North bank of river just south of location 40
- 42 North bank of braided area south of the Corn Lake trail at the 31 Road Pond (~1/4 of the length of the pond, starting at the west end, ~1/2 way between the west end and the breached levee)
- 43 Flowing water from Lewis Wash at the northeast corner of 31 and D Rd.
- 44 North bank of braided area just west of the east end of Watson Island If you drew a line south from the east side of the mill building, this location would form ~ 30* angle with the southeast corner of the building.
- 45 North bank of braided area just south of the west boundary of Jones Lumber. East of the east end of Watson Island as it appears on aerial photo. In reality, at this lowered flow, Watson Island extends ~100' farther east.
- 46 North bank of braided area even with the current tip of Watson Island. On aerial photo it is ~100' past the pictured end of the island
- 47 River channel west of railroad bridge, south of brick house, where 4th St would intersect if extended
- 48 Standing ditch water at northeast corner of mill site boundary. West of second building on Bonny Lane (counting from the south end). NOTE: the property immediately northeast of this ditch is being remediated (soil removal to 6") at this time due to windborn tailings contamination.
- 49 North bank of braided area ~50 yds east of the west end of the 31 Road Pond, south of the Corn Lake Trail
- 50 North bank of the braided area south of the Corn Lake Trail. Straight south of the gazebo that sits at the south point of the breached levee
- 51 Flowing ditch water at 28 and D Rds.
- 52 Flowing ditch water at 27 3/4 and D Rds.
- 53 Flowing ditch water at 29 1/4 and D Rds.
- 54 Flowing ditch water at 29 3/4 and D Rds.
- 55 Flowing ditch water at 30 1/4 and D Rds.
- 56 Flowing ditch water at 311/2 and D Rds.
- 57 Flowing ditch water at 33 3/4 and E1/2 Rds. (Grand Valley Canal)
- 58 Flowing ditch water at 34 and F3/4 Rds (~100 yds south of G Rd) (Highline Canal)

Appendix F

Calculation Set for Distribution Coefficients (Kds)

This page intentionally blank

Discipline Geochemist	try	gilogija nastini i se god Togađeni	Number of S	iheets 7	£
			Rumper of S	/	
Project:			1		
UMTRA Groundwater	*				. • . *
		•			
Site:			<u> </u>		
Grand Junction (Climax)	and the second s			van Namas P	
•			· .		
Subject:					
Determination of Distributi	on Coefficients	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	. • .		1000
		•	4	***	
	and the second s				
D			<u> </u>	<u> </u>	4 22
Sources of Data:					
Calculated from results of che	mical analyses.	4	e Programa		
•		1.4 m	the state of the s		-
• •					
	•				
	n de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co	er en en en en en en en en en en en en en		to the first of the second of	
	in the Arman and	en grande de la Companya de la Companya de la Companya de la Companya de la Companya de la Companya de la Comp La Companya de la Companya de la Companya de la Companya de la Companya de la Companya de la Companya de la Co			
	High same and				
		terine de la companya de la companya de la companya de la companya de la companya de la companya de la company La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co		•	
			* \$		
				A STORY	
• • • • • • • • • • • • • • • • • • •					
				e e e e e e e e e e e e e e e e e e e	4
•		1.			
		,			
Task Order No. MAC98-05-13		File Index No. GWG	RJ13.1		•
Proj. No. 321413001	Calc. NoU00329		persedes Calc. No.	none	·
Calculated by Date	Checked by	Date	Annro	ved by	Date

Problem Statement: As contaminated ground water migrates through pore spaces within soils and rocks, some of the contamination transfers between the solid and liquid phases. This phenomenon causes the contamination to travel at a slower rate than the average ground-water velocity. The chemical processes tha cause this retardation can include adsorption, absorption, precipitation, diffusion into immobile porosity, transfer to vapor phases, and so on. It is generally not possible to differentiate among all of these processes. However, for many aquifer systems, a bulk parameter (the distribution coefficient or Kd) has been used with some success to describe the retardation of contamination. Most numerical ground-water models use the Kd concept in simulations of contaminant transport. Thus, a laboratory study was conducted to determine Kd values for the Grand Junction UMTRA Site.

Method of Solution: Laboratory data were collected using ASTM procedure D4646–87 titled "Standard Test Method for 24-h Batch-Type Measurement of Contaminant Sorption by Soils and Sediments". The procedure is summarized as follows:

A representative portion of a core sample is air dried at room temperature. All samples were collected in background areas so as to avoid the complication of having contamination present in the solid prior to the analysis. If contamination is present in the solids then it needs to be accounted for by measuring concentrations in both the solid and aqueous phases; whereas, if no contamination is present in the solid phase, only the aqueous solution need be analyzed. Analysis of only the aqueous phase will often result in negative values of Kd if contamination is present in the solid phase. It is assumed that the sediment mineralogy in the background areas is similar to that at the Grand Junction processing site.

The sample is sieved to less than 10 mesh (2 mm). A riffle splitter is used to separate a sample for oven drying at 105 degrees C to determine moisture content. The difference between the air-dried and oven-dried weights was always less than 2% and usually less than 1% so no correction was made for the water contents of the air-dried samples.

A synthetic solution was prepared that simulates ground water at the Grand Junction site. The solution is base the analyses provided for plume water in Table 3.4 of the SOWP Rev. 0 (DOE, 1996). The composition of the synthetic ground water is as follows (in mg/L): Na = 960, K = 99, Ca = 452, Mg = 296, SO₄ = 2965, CI = 770, and C (inorganic) = 93. Contaminants were added to the following concentrations (in mg/L): As = 0.38, Cd = 0.454, Mo = 2.01, and U = 1.95. These contaminants were selected because they are the regulated COPCs. Radium-226, also a regulated COPC was not included because a much larger sample would have been required and most concentrations that have been measured in ground water at the site were below the standard. The pH was adjusted to about 7.0 and the measured alkalinity was about 260 mg/L as CaCO₃ (approximately the pH and alkalinity at the site).

Five grams of each core sample was placed in a 125-mL Nalge bottle with 100 mL of the synthetic ground water. Samples were rotated end-over-end at 8 rpm for 24 hours. They were then centrifuged at 3000 rpm and filtered through a 0.45 um filter. Samples were preserved with 1% nitric acid and submitted to the analytical chemistry laboratory for analysis of As, Cd, Mo, and U. Controls run through the same process (but without sediment) showed no decrease in contaminant concentrations.

For uranium only, Kd values were measured for a range of final uranium concentrations. This was accomplished by varying the masses of core samples from 2.5 to 50 grams while using an initial uranium concentration of 2 mg/L.

Assumptions: To use Kd values in ground-water transport models the following assumptions must be made: (1) the 24-hour shake time is sufficient to bring the system to chemical equilibrium, (2) the modeled system is always in chemical equilibrium, (3) an adequate portrayal of the areal and vertical distributions of Kd values is manifested in the model domain, (4) Kd values do not vary within the range of major ion chemistry or pH values present in the ground water, and (5) Kd values do not vary with contaminant concentrations present in the ground water.

Assumption (5) was tested for uranium by measuring Kd values for a range of initial uranium concentrations.

Sources of Formulas and References:

ASTM Designation D 4646–87, 1993 (Reapproved). Standard Test Method for 24-h Batch-Type Measurement of Contaminant Sorption by Soils and Sediments.

DOE, 1996. Site Observational Work Plan for the UMTRA Project Site at Grand Junction, Colorado, DOE/AL/62350-215 rev. 0.

Calculation: The Kd values are calculated by:

Kd = (A - B)V where $(M_{\bullet})B$

A = Initial concentration of the COPC (mg/L)

B = final concentration of the (:OPC (mg/L)

V = volume of solution (100 mL in all cases)

M_s = mass of soil used (g)

Kd = distribution coefficient (mL/g)

Note that the Kd is the same as the Rd in the ASTM procedure. They are reported here as Kd values because the intent is to provide coefficients that can be used in modeling. It is understood that for the modeling to be realistic all of the assumptions discussed above must be met.

Discussion: Single-point Kd values were determined for As, Cd, Mo, and U on 10 samples from 6 wells. Multiple point Kd values were determined for U only on 2 samples from 1 well. The results are presented in "able 1.

Kd values for As range from 75 to 8241 mL/g and have a mean of 1149 mL/g. The sample with the Kd value of 8241 mL/g was collected in soil immediately above the alluvial aquifer. Kd values for the alluvial aquifer range from 75 to 1168 mL/g and have a mean of 361 mL/g. The two alluvial aquifer samples with the highest Kd values (1168 and 635 mL/g) have roots in them which may have caused some of the As uptake. Even without the root-bearing samples, however, Kd values are relatively high ranging from 75 to 358 mL/g and having a mean of 207 mL/g. The high Kd values indicate that As will be retarded as ground water migrates through the alluvial aquifer.

Kd values for Cd range from 49 to 356 mL/g and have a mean of 181 mL/g. Kd values for the alluvial aquifer (omitting the one sample collected from the soil above the alluvial aquifer) have a mean of 177 mL/g. This mean is nearly the same as that of As and indicates that Cd also will be retarded as ground water migrates through the alluvial aquifer. Similar to As, the Kd values for the root-bearing sediments are well above the mean suggesting that some Cd may have been sorbed by the roots.

Kd values for Mo ranged from 0.1 to 1.5 mL/g and have a mean of 0.7 mL/g. All of the final concentrations are within 10% of the initial concentration and within the analytical uncertainty some of these Kd values could be close to 0 mL/g. One of the three highest Kd values is from the soil that occurs just above the alluvial aquifer. By omitting this value, the mean of the alluvial aquifer is calculated as 0.6 mL/g. The other two highest values are from the root-bearing samples. Without the 3 highest values, the mean is 0.4 mL/g. The results indicate that Mo is relatively mobile in the alluvial aquifer.

Kd values for the single-point Kd values for U ranged from 1.0 to 3.6 mL/g and have a mean of 2.2 mL/g. The alues show little correlation to sample type (such as root-bearing samples). These results indicate that similar to .o, U is somewhat retarded in the alluvial aquifer but much less so than As or Cd.

Kd values have been shown to sometimes vary with the concentration of contaminant. Therefore, multiple Kd determinations for U were made on two samples collected from well 1023. In Figure 1, the final concentration dissolved U is plotted against the mass of sediment used for one of the samples (depth 10 to 12 feet). Data . plotted with 10% error bars (a reasonable value for analytical uncertainty) and are compared to calculated curve for various Kd values. Within the 10% uncertainty, all but one data point are consistent with a Kd value of 1 mL/g. Data from the other sample are plotted on Figure 2. Within the 10% error bars, all of these data are consistent with a Kd value of 1 mL/g.

Conclusion and Recommendations: The results indicate that As and Cd are much more retarded in the alluvial aquifer sediments than are Mo or U. This finding is consistent with the observation at other mill tailings sites at which the U and Mo plumes have migrated further from the processing sites than have the As or Cd plumes.

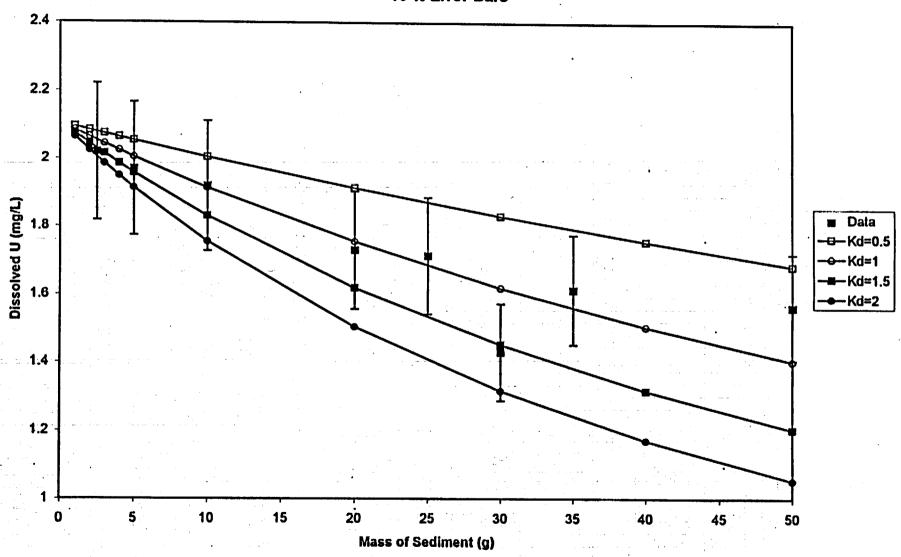
Recommended Kd values for the alluvial aquifer are as follows:

COPC	<u>Kd (mL/a)</u>
As	361
Cd	177
Mo	0.6
U	1.0

For As, Cd, and Mo these values are the means of the alluvial aquifer samples. For U the value is the best fit to the plots of the multiple-point determinations.

Computer Source: All calculations were made in an Excel spreadsheet.

	^_	В	С	D	E	F	G	Н	Γ.	1 1	K	F L	M	N	0	P	0	R
1	Table 1.	Data and	Calculat	ons for Grand Junction Kd	Values				1	<u> </u>						<u> </u>		- `` -
2						•			T	 		 	 			 		-
3	SINGLE	POINT N	MEASURE	MENTS			Initial C	ompositio	X1S	 	Final Co	mposition	15	 	Kd Vah	165		
4			Depth	Description	Fluid Vol	Sed wgt	As	Cd	Mo	Ū	As	Cd	Mo	U		Kd, Cd	Kd. Mo	Kd, U
5	No.	No.	R		mL	9	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mVg		mUg
6								T		1				-	···-			
7			10-12	Qal, sndy gr	100	5	0.38	0.454	2.01	1.95	0.0732	0.0449	2	1.74	83,83	182.23	0.1	2.414
8		1021	5-7	Qel, Sity and, dk br	100	5	0.38	0.454	2.01	1.95	0.0201	0.0241	1.94	1.65	358.1			3.636
9			5-7	Soil, Cly sit		5	0.38	0.454	2.01	1.95	0.0009	0.0338	1.89	1.79		248,64		1.788
10			10-12	Qel, Sity and, dk br	100	5	0.38	0.454	2.01	1.95	0.0798	0.132	2	1.86	75.24			0.968
11			15-15,4		100	5	0.38	0.454	2.01	1.95	0.0484	0.108	1.96	1.85	137	64.074	0.5102	1.081
12			5-7	Qal, Sity and, wet, dk br	100	5	0.38	0.454	2.01	1.95	0.0202	0.059	1.94	1.67	356.2			3.353
13			5-7	Qal, Cly sit, dk br, roots	100	5	0.38	0.454	2.01	1.95	0.0116	0.0303	1.89		635.2			2.286
14			10-12		100	5	0.38	0.454	2.01	1.95	0.0064	0.0304	1.87	1.72	1168	278.68	1,4973	2.674
15			15-17	Qal, Sit and, dk br	100	5	0.38	0.454	2.01	1.95	0.0308	0.108	1.98	1.82	228.4	64.074	0.303	1,429
16			5-7	Qal, cly sit, gr br	100	5	0.38	0.454	2.01	1.95	0.0332	0.0451	1.97	1.78	208.9	181.33	0.4061	1.91
17			na			5]	0.37	0.453	2.03	1.96				
			na	no sed, run thru process		5			<u> </u>		0.383	0.455	2	1.93				
19	B3	Blank	na	no sed, run thru process	100	5		I			0.379	0.453	2.01	1.94				
20		<u> </u>							<u> </u>									
21		<u>L:</u>	<u> </u>	<u> </u>			l							Means	1149	183.81	0.69	2.154
22				INT MEASUREMENTS														
23				Qal, Sity and, dk br		2.5			l	2.106				2.02				1.703
24				Qal, Sity and, dk br		5		<u> </u>		2.106	1			1.97				1.381
25		1023	10-12	Qal, Sity snd, dk br		10	<u> </u>			2.106		1		1.92				0.969
	4	1023	10-12	Qal, Sity and, dk br		20			<u> </u>	2.106			<u> </u>	1.731				1.083
حنت	5	1023	10-12	Qal, Sity and, dk br		25		<u> </u>	<u> </u>	2.106	ļ		<u> </u>	1.715	<u> </u>			0.912
28		1023	10-12	Qal, Sity and, dk br	100	30	ļ		<u> </u>	2.106	<u> </u>			1.431	 	1		1.572
	7	1023	10-12	Qel, Sity and, dk br		35		ļ		2.106	ļ	<u> </u>	ļ	1.614	ļ	<u> </u>	<u> </u>	0.871
30		1023	10-12	Qal, Sity and, dk br		50		ļ	↓	2.106	ļ	<u> </u>	ļ	1.564	ļ		<u> </u>	0.693
31		1023	15-15.4	Qal, Sndy gr		2.5		ļ	<u> </u>	2.106	ļ		<u> </u>	2.01	<u> </u>			1.91
32			15-15.4	Qal, Sndy gr	100	5		ļ	—	2.106	ļ	ļ <u>.</u>	ļ	1.94	1		<u> </u>	1.711
33				Qal, Sndy gr		10	 	 		2,106		1	ļ	1.899	ļ	1		1.09
34				Qel, Sndy gr		25		ļ <u>.</u>	<u> </u>	2.106	<u> </u>			1.647			<u> </u>	1.115
35		1023	15-15.4	Qal, Sndy gr		50		<u> </u>	 	2.106	ļ	<u> </u>	ļ	1.333	 	<u> </u>	<u> </u>	1.16
	14	Blank	-		100	0		ļ	ļ	2			<u> </u>	2.106			<u> </u>	
37		l	ŀ			I	1	İ	í	1	1		1	i i	1		Mean =	1.244


:

:

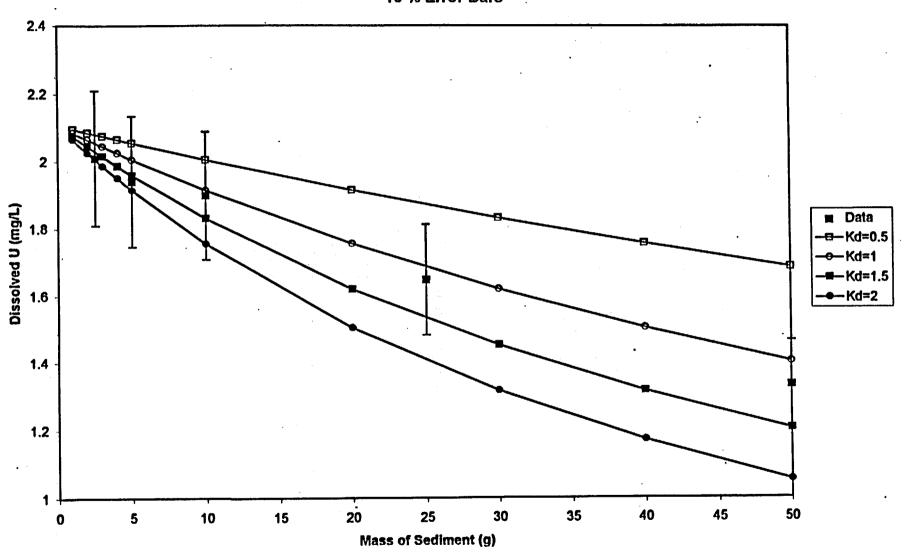

The second of th

Figure 1.

Well 1023 15-15.4 ft 10 % Error Bars

This page intentionally blank

Appendix G

Calculations Set for Subpile Samples

This page intentionally blank

Technical Task Cover Sheet

Discipline <u>G</u> e	ochemistry			Number of Sheets 15	
Project: UMTRA Ground	Water		• • • • • • • • • • • • • • • • • • • •		
Site: Grand Junction (Climax)				
Subject: Subpile Soil Inve	stigation				11.50
			e Barton Charles (1987) - Poly	en en en en en en en en en en en en en e	
Sources of Data: (1) Lithologic log	s of 9 soil boring	gs (included in Gra	nd Junction SOWP;	DOE 1999)	
(2) Descriptions	of 2 hand dug s	amples			*
(3) Analytical dat	a from 17 single	extractions			
(4) Previous docu	umentation/data	prepared for the s	ite <u>jedje</u>		
(5) SEE UMTRA	database (mos	t recent sampling o			
		•	the Charles	teritoria de la compansión de la compans	in the second
Task Order No. MA	C 99-05	•	File Index No. <u>Gw</u>	SRT 13.1	
Proj. No. <u>3314 3</u>	006	Calc. No. UDO	16500 Sup	persedes Calc. No. None	:
Calculated by	Date	Checked by	Date	Approved by	Date
Lours Commins	12/10/98	3. Agusto	2/2/59	Roberta C Bri	2/9/99

Problem Statement

During the uranium milling operations at the Grand Junction site, several ponds were used for evaporation of milling fluids; mill tailings were stored in piles on the surface of the site. Tailings recovered from vicinity properties around Grand Junction were temporarily stored in and around the evaporation ponds at the site. Tailings and radioactively contaminated soils were removed from the site for off-site disposal; removal was based strictly on radioactive cleanup criteria (everything in excess of 15 pCi/g ²²⁶Ra was removed). The potential exists for nonradiogenic contaminants to remain in the soil at levels that could pose a threat to ground water through their eventual migration into the ground water system (by infiltrating precipitation or a raising of the water table, for example).

This document provides an analysis of data collected during an investigation into the distribution of chemicals of potential concern (COPCs) in the soils underlying the former tailings piles and evaporation ponds. These results are compared with results obtained for samples collected from areas unaffected by milling activities (background samples).

Method of Solution

Subpile Soil Sampling

Samples of the soils from directly beneath the former tailings piles and evaporation ponds were collected. These samples were subjected to a one-step chemical extraction process and the extractant was analyzed. Seventeen samples from 11 locations were extracted and the extractant was analyzed. Figure G-1 shows the sample locations. One sample was collected from each of the three former mill ponds. Five locations were sampled on the former millsite; three background locations also were sampled.

Samples Sub1 and Sub2 were hand-dug through the fill material that had been placed on site during regrading after tailings removal. Samples were double-bagged in clean plastic bags and placed in 5-gallon plastic buckets for transport to the lab. All other samples were obtained by split-spoon sampling during installation of monitor wells. Split-spoon samples were boxed and sent to the laboratory.

Lithologic logs of the soil material were prepared in the field (see SOWP for Grand Junction site; DOE 1999). Up to 12 feet of fill covered actual site soil at the millsite locations. The fill was placed there during grading operations after removal of the mill tailings and is not representative of the subpile soils. Samples were obtained from beneath this fill layer. Two samples were collected from different depths at 6 of the sample locations. Sample depths are shown on Table G–1.

Sample Preparation and Chemical Extraction Methods

Samples were air-dried (no oven heat) and sieved to less than 2 millimeters (mm). Extractions were then performed on a 2-gram sample using 5% nitric acid solution. A 5% nitric acid solution will dissolve most amorphous oxides that are likely to contain adsorbed contaminants as well as any water-soluble constituents. As such, it is likely to extract more contamination than would rain water or ground water that may come in contact with the soils. As desired, 5% nitric acid will not remove contaminants locked in recalcitrant minerals such as apatites or other heavy mineral grains.

The specific steps in the extraction procedure are as follows:

- Two grams of soil (accurately weighed) was divided between two 50-mL centrifuge tubes; each tube
 was filled to a 50 mL volume with 5% nitric acid.
- Tubes were placed in an end-over-end rotary shaker for 4 hours.

- Tubes were removed from shaker and centrifuged for 30 seconds at 3000 rpm to remove particles less than 2 microns. Supernatant from both tubes was decanted to a 100 mL volumetric flask and filled to volume with 5% nitric acid.
- Centrifuge tubes were refilled to 50 mL volume with 5% nitric acid and placed in an end-over-end rotary shaker for 30 minutes.
- Tubes were removed from the shaker and centrifuged for 30 seconds at 3,000 rpm. Supernatant from both tubes was decanted to a 100 mL volumetric flask and filled to volume with 5% nitric acid.
- Contents of the two volumetric flasks were combined and filtered through a 0.45 micron filter.
 Samples were refrigerated for storage prior to submitting for laboratory analysis.
- All extracted samples were analyzed for As, Cd, Mo, ²²⁶Ra, and U.

Assumptions

- (1) The soils sampled are representative of those that could serve as a continuing contaminant source at the site.
- (2) Concentrations of contaminants extracted by 5% nitric solution represent those that could reasonably be extracted through natural processes.
- (3) Background soils and subpile soils behave similarly with respect to adsorption and leaching processes.

Sources of Formulas and References

.-etter, C.W., 1993. Contaminant Hydrogeology, Macmillan Publishing Company, New York, 458 p.

Research and Education Association, 1978. *The Statistics Problem Solver*, Research and Education Association, New York, 1044 p.

U.S. Department of Energy, 1996. Site Observational Work Plan for the UMTRA Project Site at Grand Junction, Colorado. DOE/AL/62350.215, Rev. 0.

Kd Calculation set

Calculation

Analysis of the extractant resulted in a concentration in μ g/L. To get an estimate of the amount of extractable contaminant per volume of soil, the raw values were converted to mg/kg. These values are presented in Table G–1 and were obtained as described in the following discussion, using the arsenic analysis for sample SUB1.

Two grams of sample were extracted with 200 mL of 5% nitric acid. Thus:

$$\frac{200\text{mL}}{2g} \times \frac{9.8 \mu g}{L} \times \frac{1L}{1.000 \text{mL}} \times \frac{1 \text{mg}}{1.000 \mu g} \times \frac{1,000 g}{kg} = 0.98 \text{ mg/Kg}$$

The values obtained in this manner provide estimates of the amount of leachable contaminants per volume of soil. By using these values in conjunction with the distribution coefficients (K_ds) calculated for the site, it is possible to estimate the concentration of contaminants in ground water that would be in equilibrium with the calculated soil concentrations.

The distribution coefficient is defined as:

$$K_d$$
 (units of L/kg or mL/g) = C_{soil}/C_{water}

where C_{soil} = contaminant concentration in soil C_{water} = contaminant concentration in water

Therefore,
$$C_{\text{water}} = C_{\text{soil}}/K_d$$
 (1)

Water concentrations were calculated using this equation for the soil concentrations presented in Table G–1 and are shown on that same table. K_d values used were the recommended values determined for background soils in the vicinity of the site; these are shown on the table along with the UMTRA ground-water standards for comparison.

As an example, soil concentrations for sample SUB1 were determined to be: As = 0.98, Cd = 0.4, Mo = 0.33, and U = 1.2. K_d s for As, Cd, Mo and U were calculated to be 361, 177, 0.6 and 1.0, respectively. By using equation (1) above to calculate the concentration of water in equilibrium with a soil arsenic concentration of 0.98, and a K_d of 361, the calculation is as follows:

Likewise,

$$C_{\text{water, Cd}} \text{ mg/L} = 0.4 \text{ mg/kg} + 177 \text{ L/kg} = 0.0023 \text{ mg/L}$$

$$C_{water, Mo} mg/L = 0.33 mg/kg + 0.6 L/kg = 0.055 mg/L$$

Estimated water concentrations using soil concentrations and K_ds for other samples are provided in Table G–1.

A statistical analysis was also performed to determine whether results obtained by extraction of the onsite samples were statistically different from background samples. F-test results indicated that the two groups differed in terms of population variance (F values exceed the Critical One-Tail F); therefore a t-test for sample means was performed that assumed unequal population variances. Statistics were performed using Excel software; results are attached as Tables G–2 and G–3. Because tests were being performed to determine if subpile soils had contaminant concentrations greater than background, one-sided t-test results apply. If the t Stat calculated for the two sets of data (on-site and background) exceeds the critical one-tail t, it indicates that the mean of the on-site contaminant concentrations exceed mean background concentrations at the 95% confidence level.

Discussion

Statistical analysis showed that mean values for estimated soil concentrations for on-site samples do not vary significantly from background for cadmium and Ra-226 at the 95% confidence level. For cadium, the t-statistic is 0.3308, which is less than the critical one-tail t of 1.753. For Ra-226, the t-statistic is -0.864; the critical one-tail t is 2.131. On-site samples do contain significantly elevated levels of arsenic,

molybdenum, and uranium compared to background. For all these contaminants, their computed t-statistic is greater than the computed critical one-tail t.

lualitatively, for locations where samples were obtained from two different depths, the shallower depth samples generally have higher calculated soil concentrations. For locations 1013 and 1023, well logs note the presence of organic matter at the shallower depth, which may account for a higher degree of contaminant adsorption. In addition, shallower samples are probably in less continuous contact with ground water, which may leach contaminants. For a number of locations, the shallower samples were obtained from above the water table and the deeper samples from below.

Water concentrations calculated from estimated soil concentrations and K_d values provide a "worst-case" scenario with respect to ground water contamination. The acid extraction process resulted in leaching of greater levels of contaminants than would be expected under natural conditions. In reality, contamination would be released more gradually over time. Also, as soon as leaching of soils is started, the concentration of contaminants in the soil begins to decrease, resulting in a concurrent decrease in equilibrium water concentration. Therefore, the water concentrations provided in Table 1 provide a "starting point" that would slowly diminish through time. The results are also worst case in that only finer-sized sample fractions were used in the analyses. These are the particles most likely to concentrate metals—adsorbed to clay particles, organic matter, or coatings on quartz grains. (Well logs for sampled locations are attached.) Because of this bias, calculated water concentrations should not be used in a quantitative sense as a prediction of what can actually be expected in the future. Other data such as contaminant solubilities, Eh and pH conditions, and aquifer porosity are not accounted for in this simplistic approach. However, these results are useful in a qualitative sense, in combination with observed trends, to refine future activities and guide decisions associated with the site.

Because of their high K_d values, and therefore relative immobility, water concentrations estimated for arsenic and cadmium were low—maximum estimated levels are all below UMTRA ground water standards (one analysis is just at the standard level for arsenic). Molybdenum and uranium, however, being much more mobile, have much higher calculated values that do exceed UMTRA standards. [Note hat some of the estimated levels are unrealistic based on solubility data; these values should only be sed in a qualitative sense.] Even estimated water concentrations for background samples exceed UMTRA standards for molybdenum and uranium. The high leachability of these constituents is consistent with the high concentrations at which they are observed in background locations near the site (as reported in the SOWP, some background samples exceeded standards). However, because of their high mobilities, it is possible that uranium and molybdenum can be flushed from the residual source area in a relatively short period of time.

Conclusions and Recommendations

The subpile soils data are reported in milligrams per kilogram for a leachate concentration; however, a soil and leachate volume was used to determine a leachable soil concentration. Because an acid extraction leaching solution was used in the subpile leaching tests, the leachate concentration does not necessarily represent an equilibrium concentration that would be expected in ground water. The K_d results were used in conjunction with estimated soil-leachable concentrations to get a better idea of what an equilibrium ground water concentration might be. Results of this calculation are only qualitative. Essentially the calculations show that residual soil concentrations of arsenic, cadmium, and radium-226 are neglicible in terms of serving as a continuing source of ground water contamination. This conclusion is supported by the fact that since surface remediation of the site was completed, levels of arsenic, cadmium, and radium-226 in ground water from the on-site wells have dropped below UMTRA standards (based on the most recent round of sampling; see Table G-4). The subpile soils do contain molybdenum and uranium in concentrations that could serve as a continuing source of ground water contamination. Uranium is not only detected at levels within the historical range for the ground water plume, but most recent sampling dicates levels exceeding historical values. Molybdenum is within the range of historical plume values in e vicinity of the site. However, the high mobilities of these constituents, as demonstrated by K_d results, indicate that the residual contamination should flush from the alluvial system fairly readily.

Effects of residual soil contamination at the site will be further evaluated by the ground water monitoring to be conducted for the site. Uranium and molybdenum will be included as monitoring constituents. A well located at the contaminant "hot spot" (monitor well 1014) on site will be sampled and should help in evaluating effects of residual soil contamination, if any. Downgradient locations will also be sampled to monitor the effects of hot-spot contamination on the alluvial system. The monitoring program should be sufficient to track both the progress of natural flushing and effects of any residual contamination.

U00468.WP8

					TABLE 1.	Ruits o	f Subpile S	oil Testing			
				GRAND II	INCTIONS	ITE 5% N	ITRIC ACID	EVIDACI	1011		
	<u> </u>	1	<u>!. </u>	01011000	i	116-22414	II KIC ACIL	EXTRACT	ION		
			Calculated	l Soil Cond	entrations			Equilit	rium Wate	r Concenti	ations
Sample #	Area	Depth (ft)	As mg/kg	Cd mg/kg	Mo mg/kg	Ra-226 pCi/g	U mg/kg	Cw - As mg/L	Cw - Cd mg/L	Cw - Mo	Cw - U
		•••••				powy	iliging .	Kd=361	Kd=177	mg/L Kd=0.6	mg/L Kd=1.0
SUB 1	pile/pond	.5'+	0.98	0.4	0.33	0.602	1.2	0.00271	0.0023	0.55	1,20
SUB 2	pile/pond	1'+	1.8	0.22	0.5	0.614	I	0.00499	0.0012		1.40
1012-1	pile	12-13.25'	0.74	0.4	1.4	0.473			0.0023		1.50
1013-1	pile	9-11'	3.3	0.28	7.5	0.423					
1013-2	pile	11-13'	3.7	0.23	3.5	L		0.01025			10.40
1014-1	pile	13-14.25'	3.2	0.97	1.3	0.492		0.00886	0.0055		45.20
1014-2	pile	17-19'	1.4	0.73	0.8	0.309		0.00388	0.0041	1.333	7.70
1015-1	pile	10-12'	1.1	0.36	0.79	0.443			0.0020	1.317	0.95
1015-2	pile	14-15.4'	0.82	0.37	1	0.249			0.0021	1.667	0.56
1016-1	pile	9-11'	1.5	0.18	0.77	0.229		0.00416			
1016-2	pile	13-14.3'	1.2	0.23	0.34	0.319	1		0.0013		0.60
1017-1	pond	9-11'	1	0.29	0.68	0.472	0.99	0.00277	0.0016		0.99
1017-2	pond	11-13'	1.6	0.18	0.53	0.38	J	i	0.0010	0.883	0.59
1020-1	bkgd	5-7'	1.2	0.4	0.3	0.646		0.00332	0.0023	0.5	
1021-1	bkgd	5-7'	0.9	0.32	0.33	0.472	l	0.00249	0.0018	0.55	
1023-1	bkgd	5-7'	1	0.42	0.14	0.611	0.74	0.00277	0.0024	0.233	
1023-2	bkgd	10-12'	0.92	0.25	0.21	0.24	0.44	0.00255	L		
IIMTDA ST	TANDARDS	(ma/l)	0.05	0.01	0.1	5.0	0.044				, , ,

1.

TABLE 2		
		Arsenic - onsite v. background
F-Test Two-Sample for Variances		Alseine - Chishe V. Duchground
	On Site	Background
Mean	1.718461538	1.005
Wariance	1.022497436	0.018766667
	13	4
Observations	12	3
df · · · · · · · · · · · · · · · · · · ·	54,48476568	
·	0.003571722	
P(F<=f) one-tail F Critical one-tail	8.744677871	
F Critical one-tail	0.744077071	
	1	
F-Test Two-Sample for Variances		Cadmium - On site v. bkgd
		Background
	On Site	
Mean	0.372307692	0.006091667
Variance	0.053319231	
Observations	13	
df	12	
F	8.752814901	
P(F<=f) one-tail	0.049935712	
F Critical one-tail	8.744677871	
F-Test Two-Sample for Variances		Moly - on site v. background
	On Site	Background
	On Site 1.495384615	
Mean	3.92954359	The second secon
Variance	<u>3.92954359</u> 13	
Observations	12	and the second s
df		
F	523.9391453	
P(F<=f) one-tail	0.000122003	
F Critical one-tail	8.744677871	<u> </u>

TARLE 2 (CONT.)		
st Two-Sample for Variances		Ra226- On site v. background
	On Site	Background
Mean	0.407230769	0.49225
Variance	0.015573359	. 0.033926917
Observations	13	4
df	12	. = 3
F	0.459026652	
P(F<=f) one-tail	0.715962185	
F Critical one-tail	0.114355636	
F-Test Two-Sample for Variances		Uranium - onsite v. background
	On Site	Background
Mean	7.437692308	
Variance	172.8328192	0.0729
Observations	13	4
df	12	3
F	2370.820566	
P(F<=f) one-tail	1.26961E-05	
F Critical one-tail	8.744677871	

TABLE 3			
INDEE	 		
t-Test: Two-Sample Assuming Und	equal Variances	Arsenic - On site v. background	
	On Site	Background	
Mean	1.718461538		
Variance	1.022497436	0.018766667	
Observations	13		
Hypothesized Mean Difference	. 0		
df	13		
t Stat	2.471325602		
P(T<=t) one-tail	0.014032302		·
t Critical one-tail	1.770931704		
P(T<=t) two-tail	0.028064604		· · · · · · · · · · · · · · · · · · ·
t Critical two-tail	2.16036824	·	
·			
t-Test: Two-Sample Assuming Und	equal Variances	Cadmium - on site v. background	
	On Site	Background	
Mean	0.372307692		
Variance	0.053319231		
Observations	13		
Hypothesized Mean Difference	0		
df	15	<u> </u>	
t Stat	0.330786992		
P(T<=t) one-tail	0.372690446		
t Critical one-tail	1.753051038		
P(T<=t) two-tail	0.745380892		
t Critical two-tail	2.131450856		
		·	
t-Test: Two-Sample Assuming Uni	equal Variances	Moly - on site v. background	
	On Site	Background	
Mean	1.495384615		
Variance	3.92954359		
Observations	13	<u> </u>	
Hypothesized Mean Difference	0		
df	12	·	
t Stat	2.267260575		
P(T<=t) one-tail	0.021324202		
t Critical one-tail	1.782286745		
P(T<=t) two-tail	0.042648405		
t Critical two-tail	2.178812792	<u></u>	

TABLE 3 (CONT.)		
st: Two-Sample Assuming I	Jnequal Variances	Ra226 - onsite v. background
•	On site	Background
Mean	0.407230769	<u> </u>
Variance	0.015573359	0.03392691
Observations	13	
Hypothesized Mean Difference	0	
dí	4	
t Stat	-0.864145105	
P(T<=t) one-tail	0.218124718	
t Critical one-tail	2.131846486	
P(T<=t) two-tail	0.436249436	
t Critical two-tail	2.776450856	
t-Test: Two-Sample Assuming t	Jnequal Variances	Uranium - onsite v. backgroun
	On Site	Background
Mean	7.437692308	0.76
Variance	172.8326192	0.072
Observations	13	
Hypothesized Mean Difference	0	
df	12	
। ८-व(1.828783098	
=t) one-tail	0.046189878	
ical one-tail	1.782286745	
P(T<=t) two-tail	0.092379756	•
r(I <=I) INO-IQII	0.032078730	•

GROUND WATER QUALITY DATA BY PARAMETER (USEE200) FOR SITE GRJ01, GRAND JUNCTION REPORT DATE: 11/19/98 6:59:21

PARAMETER	UNITS	LOCATION ID	SAMF DATE	PLE: ID	ZONE COMPL	FLOW	DC010 T		ALIFIEF		DETECTION	UN-
Arsenic	· mg/L	1012	01/22/98	0001		REL.	RESULT	·	DATA		LIMIT	CERTAINTY
W SCING	_				AL		0.0020	B		#	•	•
	mg/L	1012	06/25/98	0001	AL		0.0024	В		#	•	•
	mg/L	1013	01/26/98	0001	AL		0.0048	В		#	•	•
	mg/L .	1013	06/24/98	0001	AL		0.0071		,	#	•	•
	mg/L	1014	01/23/98	0001	AL:		0.0191	1		#	•	. • _{*,}
•	mg/L	1014	06/24/98	0001	AL		0.0170			#	•	
	mg/L	1014	06/24/98	0002	AL		0.0144			#	•	•
	mg/L	1015	01/23/98	0001	AL	:	0.0023	В		#	•	•
. •	mg/L	1015	06/22/98	0001	AL	•	0.0013	В		#	-	•
	mg/L	1016	01/26/98	0001	AL		0.0055			#	•	•
	mg/L	1016	06/29/98	0001	AL	1	0.0063			#	•	•
	mg/L	1017	01/23/98	0001	AL		0.0010	U		#	0.001	
	mg/L	1017	06/22/98	0001	AL		0.0010	U		#	0.001	
	mg/L	1020	01/26/98	0001	AL		0.0010	; U ,		#	0.001	•
	mg/L	1020	06/22/98	0001	AL	1	0.0010	U		#	0.001	•
	mg/L	1021	01/26/98	0001	AL		0.0010	U	L	#	0.001	.
	mg/L	1021	06/23/98	0001	AL		0.0010	U_	L	#	0.001	•
	mg/L	1023	01/22/98	0001	AL		0.0010	U		#	0.001	•
	mg/L	1023	06/18/98	0001	AL		0.0010	U		#	0.001	. •
Cadmium	mg/L	1012	01/22/98	0001	AL		0.0010	U		#	0.001	•
•	mg/L	1012	06/25/98	0001	AL		0.0010	U		#	0.001	•
	mg/L	1013	01/26/98	0001	AL		0.0010	U	1	#	0.001	- 1
	mg/L	1013	06/24/98	0001	AL		0.0010	U		#	0.001	•
	mg/L	1014	01/23/98	0001	AL		0.0010	U		#	0.001	•
	mg/L	1014	06/24/98	0001	AL	•	0.0012			#		•
	mg/L	1014	06/24/98	0002	AL		0.0014			- #		•
	mg/L	1015	01/23/98	0001	AL		0.0010	U		. #	0.001	

		LOCATION	SAME		ZONE	FLOW		QU	ALIFIE	RS: *	DETECTION	UN-
PARAMETER	UNITS	<u>ID</u>	DATE	ID.	COMPL	REL.	RESULT		DATA		LIMIT	CERTAINTY
Cadmium	mg/L	1015	06/22/98	0001	AL .		0.0010	U		#	0.001	
	mg/L	1016	01/26/98	0001	AL		0.0010	U		#.	0.001	•
	mg/L	1016	06/29/98	0001	AL		0.0010	U		#	0.001	•
1	mg/L	1017	01/23/98	0001	AL		0.0010	U		#	0.001	• .
	mg/L	1017	06/22/98	0001	AL		0.0010	U		#	0.001	•
•	mg/L	1020	01/26/98	0001	AL		0.0010	U		#	0.001	•
	mg/L	1020	06/22/98	0001	AL		0.0010	U		#	0.001	•
	mg/L	1021	01/26/98	0001	AL		0.0010	U	L	#	0.001	•
	mg/L	1021	06/23/98	0001	AL		0.0010	U	L	#	0.001	•
	mg/L	1023	01/22/98	0001	AL		0.0010	U		#	0.001	
	mg/L	1023	06/18/98	0001	AL	ě	0.0010	U		#	0.001	
Molybdenum	mg/L	1012	01/22/98	0001	AL		0.192			#	-	•
	mg/L	1012	06/25/98	0001	AL		0.188			#	, ·	• • • •
	mg/L	1013	01/26/98	0001	AL		0.108		per i	#		-
	mg/L	1013	06/24/98	0001	AL		0.0977			#	•	•
	mg/L	1014	01/23/98	0001	AL		0.299			#	•	-
	mg/L	1014	06/24/98	0001	AL		0.296			#	•	•
	mg/L	1014	06/24/98	0002	AL		0.308			#	. •	•
	mg/L	1015	01/23/98	0001	AL		0.0517		•	#	•	•
	mg/L	1015	06/22/98	0001	AL		0.0474			#	•	
	mg/L	1016	01/26/98	0001	AL		0.0421			#	. •	
	mg/L	1016	06/29/98	0001	AL		0.0405			#	- ·	•
	mg/L	1017	01/23/98	0001	AL		0.0893			#		-
	mg/L	1017	06/22/98	0001	AL		0.0894			#	•	•
	mg/L	1020	01/26/98	0001	AL		0.0279			#	•	•
	mg/L	1020	06/22/98	0001	AL		0.0286			#	• •	•
	mg/L	1021	01/26/98	0001	AL	· Parasas h	0.0311		L	#	er er i vie kan tr	

Page 2

PARAMETER	UNITS	LOCATION ID	SAMP DATE	LE: ID	ZONE COMPL	FLOW REL.	RESULT		UALIFIEI DATA		DETECTION LIMIT	UN- CERTAINTY
Molybdenum	mg/L	1021	06/23/98	0001	AL.		0.0217		L	#		-
	mg/L	1023	01/22/98	0001	AL		0.124			. #	•	•
•	mg/L	1023	06/18/98	0001	AL		0.120			#	•	•
Radium-226	pCi/L	1012	01/22/98	0001	AL		0.31			#	0.01	± 0.08
	pCi/L	1012	06/25/98	0001	AL		0.13	U		#	0.13	± 0.07
	pCVL.	1013	01/26/98	0001	ΑĹ	•	0.16			#	0.01	± 0.07
	pÇVL	1013	06/24/98	0001	AL		0.13	U		#	0.13	± 0.08
	pCi/L	1014	01/23/98	0001	AL	•	0.18			#	0.02	± 0.08
	pCVL	1014	06/24/98	0001	AL	•	0.12	U		#	0.12	± 0.07
	pCi/L	1014	06/24/98	0002	AL		0.12	U		#	0.12	± 0.07
	pCi/L	1015	01/23/98	0001	AL		0.15			.#	0.01	± 0.06
	pCi/L	1015	06/22/98	0001	AL		0.12	U		#	0.12	± 0.06
	pCVL.	1016	01/26/98	0001	AL		0.09			#	0.01	± 0.05
	pCVL	1016	06/29/98	0001	AL		0.12	U		#	0.12	± 0.06
•	pCi/L	1017	01/23/98	0001	AL		0.15			#	0.02	± 0.06
•	pCi/L	1017	06/22/98	0001	AL		0.14	U		#	0.14	± 0.07
	pCVL	1020	01/26/98	0001	AL		0.10			#	0.01	± 0.05
	pCVL	1020	06/22/98	0001	AL		0.13	U		#	0.13	± 0.07
	pCi/L	1021	01/26/98	0001	AL		0.34		L	#	0.02	± 0.10
	pCi/L	1021	06/23/98	0001	AL		0.13	U	L	#	0.13	± 0.07
	pCVL	1023	01/22/98	0001	ÁL	•	0.08			. #	0.01	± 0.04
•	pCVL	1023	06/18/98	0001	AL		0.14	U		#	0.14	± 0.07
Uranium	mg/L	1012	01/22/98	0001	AL		0.220	:		#		•
•	mg/L	1012	06/25/98	0001	AL		0.224			#	•	•
•	mg/L	1013	01/26/98	0001	AL		0.604			#	•	•
	mg/L	1013	06/24/98	0001	AL		0.582			#		•
	mg/L	1014	01/23/98	0001	AL		2.500			#	·	

□ROUND WATER QUALITY DATA BY PARAMETER (USEE200) FOR SITE □. □01, GRAND JUNCTION REPORT DATE: 11/19/98 6:59:22

The state of the s		LOCATION	SAME	PLE:	ZONE	FLOW		QUALIFIERS:	DETECTION	UN-
PARAMETER	UNITS	ID	DATE	ID	COMPL	REL.	RESULT	LAB DATA QA	LIMIT	CERTAINTY
Uranium	mg/L	1014	06/24/98	0001	AL		2.290	#		
	mg/L	1014	06/24/98	0002	AL		2.310	#	•	•
•	mg/L	1015	01/23/98	0001	AL		0.0641	#		
	mg/L	1015	06/22/98	0001	AL		0.0700	#		•
	mg/L	1016	01/26/98	0001	AL		0.113	#		•
	mg/L	1016	06/29/98	0001	AL		0.116			•
	mg/L	1017	01/23/98	0001	AL		0.0241	#	•	
	mg/L	1017	06/22/98	0001	- AL		0.0255	#	•	-
	mg/L	1020	01/26/98	0001	AL	•	0.0566	#	•	
$\mathcal{L}_{\mathcal{C}}^{(n)} = \mathcal{L}_{\mathcal{C}}^{(n)} = \mathcal{L}_{\mathcal{C}}^{(n)}$	mg/L	1020	06/22/98	0001	AL		0.0573	#		•
	mg/L	1021	01/26/98	0001	AL		0.0305	L #		•
	mg/L	1021	06/23/98	0001	AL		0.0228	L #	· •	-
	mg/L	1023	01/22/98	0001	AL		0.0468	#		
	mg/L	1023	06/18/98	0001	AL		0.0452	#		•

		LOCATION	SAMP	LE:	ZONE	FLOW		QUALIFIERS:	DETECTION	UN-
PARAMETER	UNITS	ID	DATE	ID_	COMPL	REL.	RESULT	LAB DATA QA	LIMIT	CERTAINTY

RECORDS: SELECTED FROM USEE200 WHERE site_code='GRJ01' AND location_code in(1012','1013','1014','1015','1016','1017','1020','1021','1023') AND quality_assurance = TRUE AND (NOT (data_validation_qualifiers LIKE "R" OR data_validation_qualifiers LIKE "X") OR IsNull(data_validation_qualifiers)) AND cas in('07440-38-2 ','07440-43-9 ','07440-81-1 ') AND DATE_SAMPLED between #1/1/98# and #12/30/98#

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). NO0X = Unfiltered sample. X = replicate number.

LAB QUALIFIERS:

- Replicate analysis not within control limits.
- Correlation coefficient for MSA < 0.995.
- TIC is a suspected aidol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- Z Laboratory defined (USEPA CLP organic) qualifier, see case narrative.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- Pesticide result confirmed by GC-MS.
- M GFAA duplicate injection precision not met.
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compund (TIC).
- S Result determined by method of standard addition (MSA).
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.</p>
- D Analyte determined in diluted sample.
- P > 25% difference in detected pesticide or Arochlor concentrations between 2 columns.
- X Laboratory defined (USEPA CLP organic) qualifier, see case narrative.
- Y Laboratory defined (USEPA CLP organic) qualifier, see case narrative.
- > Result above upper detection limit.

DATA QUALIFIERS:

J Estimated value.

- F Low flow sampling method used.

Less than 3 bore volumes purged prior to sampling.

U Parameter analyzed for but was not detected.

R Unusable result.

- G Possible grout contamination, pH > 9.
- X Location is undefined.

QA QUALIFIER: # = validated according to Quality Assurance guidelines.

Appendix H

Calculation Set for Ambient Ground Water Contamination

This page intentionally blank

Technical Task Cover Sheet

•	•	<u>rcommour r</u>	uon oover	<u>Oncos</u>	
Discipline Ge	ochemistry	· · · · · · · · · · · · · · · · · · ·		Number of Sheets	10
Project: UMTRA Ground	Water				
Site: Grand Junction (Climax)				
Subject:				# y - 114 - 1 + 3 - 14 - 14	
Ambient Ground	Water Contami	nation			
Sources of Data:				e e e e e e e e e e e e e e e e e e e	
40 CFR 192, 40 Baseline Risk As Grand Junction Detailed Study of Associated with	CFR 141, 40 Classessment of Gron Colorado, DC f Selenium and ith the Irrigation	round Water Conta DE/AL/62350-104, Other Constituents Drainage in the U	mination at the U Rev. 2 s in Water, Botton ncompangre Pro	Jranium Mill Tailings Site and Sediment, Soil, Alfalfa, ject Area and in the Grand restigations Report 96-41	and Biota 1 Valley,
	. •				
Task Order No. M	1C 99-05		File Index No.	GWGRJ 13.1	
Proj. No. <u>33141</u>		Calc. No. 1100		Supersedes Calc. No. No.	.
Calculated by	Date	Checked by	Date	Approved by	/ Date
<u> </u>	12/11/20	200	2/2/5-	00.00	2/1

Problem Statement:

Supplemental standards may be applied to an UMTRA ground water site if it can be demonstrated that the background concentrations of ground water contaminated by past uranium processing activities meets the definition of "limited use" ground water. According to the regulations (40 CFR Part 192.11(e)(2)), one of the definitions of limited use ground water is "groundwater that is not a current or potential source of drinking water because... (2) widespread, ambient contamination not due to activities involving residual radioactive materials from a designated processing site exists that cannot be cleaned up using treatment methods reasonably employed in public water systems..." Past studies have noted the poor quality of alluvial ground water that exists in the Grand Junction area (DOE/AL/62350-104 Rev.2; U.S.G.S. W.R.I. 96-4138). Calculations were performed to better quantify the nature of background alluvial ground water quality in the Grand Valley to help determine if it meets the limited use definition based on widespread ambient contamination.

Method of Solution:

Data from monitoring wells upgradient from the former mill processing site were evaluated to determine which wells yielded results that are representative of background conditions. Statistical analyses were performed on the selected background wells for several contaminants measured during 1998 sampling events to determine if the background population contained contaminant concentrations that could be characterized as widespread ambient contamination. UMTRA ground water standards (40 CFR 192) and Primary and Secondary Drinking Water standards (40 CFR 141 & 143) were used as benchmarks against which to make this determination.

Assumptions:

(1) Samples from alluvial wells used in the analysis are representative of background alluvial water quality in the Grand Valley, outside the influence of uranium processing activities.

Sources of Formulas and References:

All calculations were performed using Excel spreadsheets and statistical programs.

Calculation:

Wells representative of background were selected for analysis. Locations were selected that were upgradient of the Grand Junction site and outside the potential influence of UMTRA vicinity properties. Initial candidates for background wells included: 588, 713, 715, 744, 745, 746, 1020, 1021, 1023, 1024, 1025, and 1121 (see Figure 1). Well 1024 was subsequently eliminated because of its location immediately downgradient from discharge ponds at the Clifton Water Treatment Plant. Discharge from the ponds would have a dilutional effect on natural background water concentrations and therefore not be considered representative of the alluvial aquifer. Wells 588 and 744 were installed adjacent to a surface water pond and a surface drainage feature, respectively. They are also located very close to the Colorado River. Analyses from these wells were examined to determine if water actually sampled to alluvial aquifer or if it more closely resembled surface water. Major ion chemistry for those wells was compared with data from two wells farther upgradient and away from the river-wells 745 and 746along with surface water samples from location 424, collected from the river near well 588. Scattergrams for selected pairs of ions are shown in figures 2a through 3c for both the January and June 1998 sampling rounds: these plots show a fairly linear relationship for the data. River samples plot in the corner of the diagrams near the origin, while upgradient wells 745 and 746 plot farthest from that point. Wells 588 and 744 plot in between and closer to the river sample. This suggests a mixing relationship between ground and surface water, with surface water being dominant. Therefore, wells 588 and 744 were eliminated from the background data set as unrepresentative of the alluvial aquifer.

At the request of the Colorado Department of Public Health and Environment, well 746 was also eliminated from re background data set because of its proximity to a former vicinity property. The remainder of the background wells were retained and descriptive statistics were performed on the data for selected contaminants. Results for uranium expressed as total in mg/L and uranium 234&238 in pCi/L are presented in Tables 1 and 2, respectively. Results for selenium are located in Table 3. Background wells were also examined to determine concentrations of chloride, iron, manganese, sulfate, and total dissolved solids (TDS). While no UMTRA ground water standards exist for these contaminants, secondary maximum contaminant levels (SMCLs) have been developed for them largely based on considerations of taste or odor. Data for all these contaminants were obtained from the SEE UMTRA data base.

Discussion:

The statistics in Tables 1 and 2 indicate that data for uranium fit both a normal and a lognormal distribution. As noted in Table 1, with concentrations based on mass, the mean of this data set is 0.0469 mg/L, above the UMTRA MCL of 0.044 mg/L. Approximately 60% of the background analyses exceeded the UMTRA standard. Table 2, with analyses based on activities of U-234 and U-238, indicates that all but one sample exceed the 30 pCi/L standard, with a mean activity for background of 41.6 pCi/L.

For selenium (Table 3), half of the samples were at the detection limit of 0.001 mg/L; samples in which selenium was detected were all above the UMTRA MCL of .01 mg/L. Therefore the scattergrams in Table 3 show a bimodal distribution that is neither normal or lognormal. The mean of the background samples is 0.0359, more than 3 times the UMTRA selenium standard.

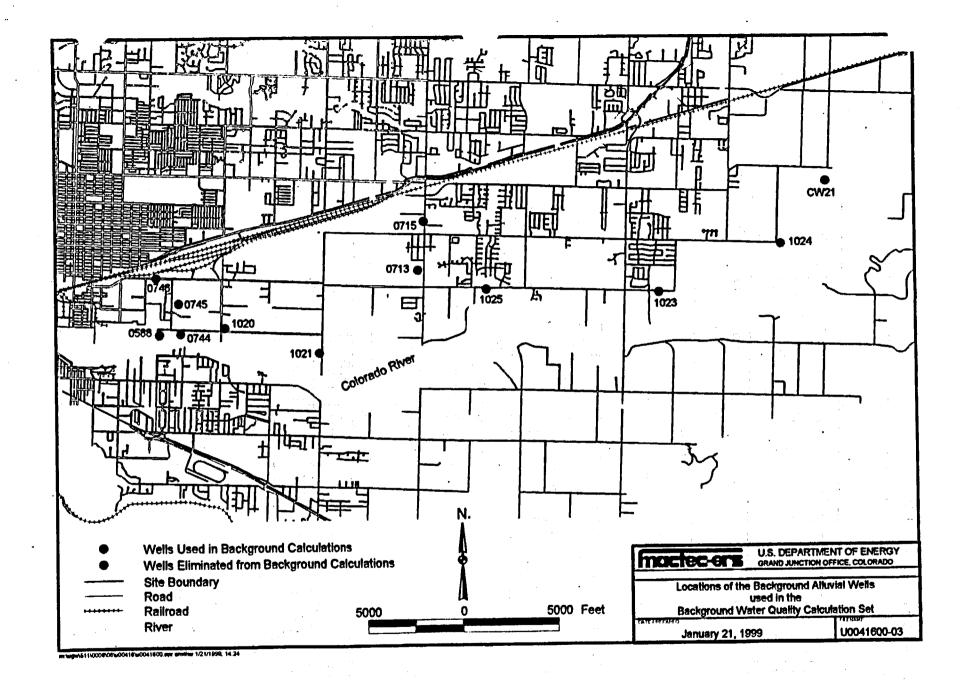
Spatially, the wells exceeding standards come from across the entire area from which background samples were collected. Therefore, the contamination does not appear to be a localized phenomenon.

or contaminants with secondary drinking water standards, only the means of the background wells for 1998 were stermined (raw data in the SEE UMTRA database). Results are as follows in mg/L:

Table 4.

Contaminant	Mean	SMCL
Chloride	437	250
Iron	0.552	0.3
Manganese	1.4	0.05
Sulfate	2566	250
TDS	5238	500

The means of all of these contaminants exceed secondary drinking water standards, particularly manganese, sulfate, and TDS.


Conclusions and Recommendations:

On the average, background alluvial water quality in the Grand Valley exceeds UMTRA ground water protection standards for uranium and selenium. SMCLs are exceeded for chloride, iron, manganese, sulfate, and TDS. Non-site-related contamination is widespread across the area. These data support the conclusion that the background alluvial water quality can be considered to be "limited use groundwater" as defined by the UMTRA regulations. 'though some background samples had contaminant concentrations below standards, particularly for selenium, re average (mean) concentrations probably more realistically approximate the concentrations that would be obtained over time from a well installed for domestic purposes into the alluvial aquifer. However, while

widespread ambient contamination exists in the Grand Valley, an evaluation must be performed to assess whether the alluvial ground water "cannot be cleaned up using treatment methods reasonably employed ir water systems" before a determination of the applicability of supplemental standards can be made for the G.d Junction UMTRA Ground Water site (calculations on costs of water treatment are currently in progress).

Computer Source:

All calculations were done using Excel spreadsheets and statistical programs.

.

1

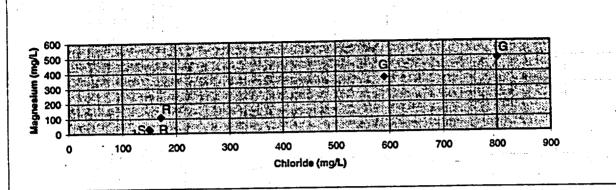


Figure 2a

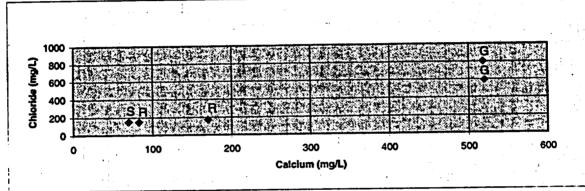


Figure 2b . .

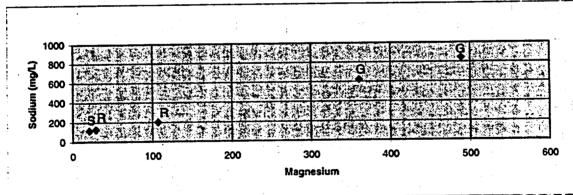


Figure 2c

S = Surface Water Location 424

R = Wells 588 and 744 Located New Colorado River

G = Background Ground Water Wells 745 and 746

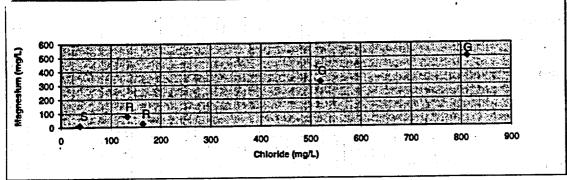


Figure 3a

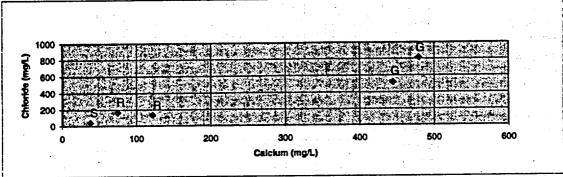


Figure 3b

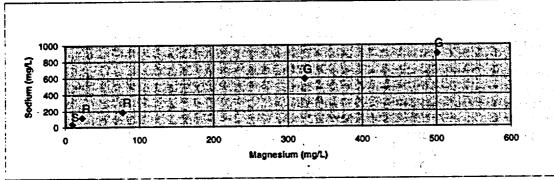
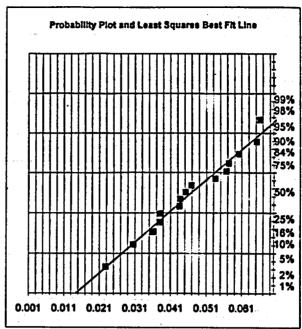


Figure 3c

- S = Surface Water Location 424
- R = Wells 588 and 744 Located New Colorado River
- G = Background Ground Water Wells 745 and 746

TABLE /. ata Description

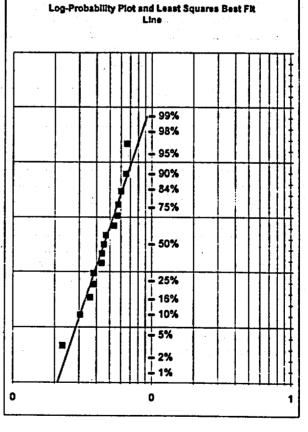

DATA EVALUATION STATISTICS

Grand Junction Background Alluvial Ground Water

. Uranium

Action Level 0.044

	1	-	
Sample Data			
UNITS - mg/L		Descriptive Statistics	45.556
0.0652		Number of Samples	15.000
0.0682 0.0602		Mean Median	0.0469 0.0452
0.0535		Standard Deviation	0.0128
0.0381		CV	0.2721
0.038		Range	0.0434
		Minimum	0.0228
4 2 3 3 4 4		Maximum	0.0662
0.0566		GM	0.0451
0.0573		GSD	1.3459
0.0305		Mean of LN(Data)	-3.0981
0.0228		SD of LN(Data)	0.2970
0.0468 0.0452		Percent > Limit	53.3333
0.0435		Normal Statistics	
		Upper (95% Cl mean) - Z	0.0534
		Lower (95% Ci mean) - Z	0.0304
		Upper (95% 1-tall CL mean) - Z	0.0523
		Upper (95%ile data) - Z	0.0879
	n<30	Upper (95% Cl mean) - Norm t	0.0540
		• • • •	0.0398
1		Upper (95% 1-tall CL mean) - Normal	
		UTL (min 95%, 95%) - K	0.0797
		UTL (avg 95%, 95%) - K	0.0701
l		Percent > Limit	59.0086
		W Test (Data)	0.9690
		Normal (a=0.05)?	Yes
		•	
		Lognormal Statistics	
ļ.	n>30	Upper (95% Cl mean) - Z	0.0548
į.	n>30	Lower (95% CI mean) - Z	0.0406
		Upper (95% 1-tail CL mean) - Z	0.0535
1		Upper (95%ile data) - Z	0.0736
i,	n<30	Upper (95% Cl mean) - LogNorm t	0.0558
		Lower (95% CI mean) - LogNorm t	0.0400
		Upper (95% 1-tail CL mean) - LogNorm	0.0540
i		UTL (min 95%, 95%) - K	0.0967
		UTL (avg 95%, 95%) - K	0.0775
ł		Percent > Limit	53.4150
		W Test (Data)	0.9448
		Normal (a=0.05)?	Yes
		1 tollines (a_0.00) !	1 5 5

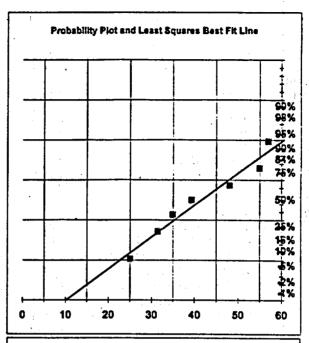

35

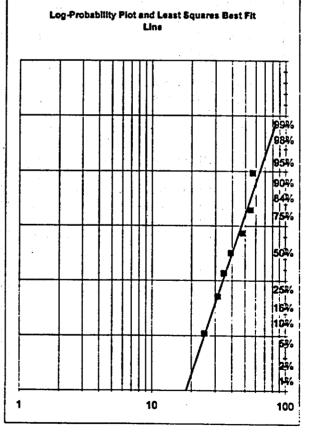
30

25

20

15

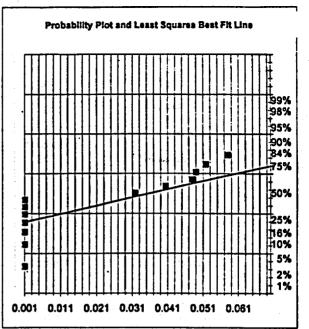


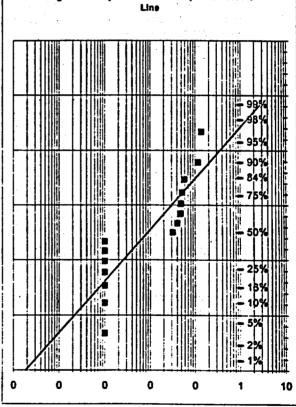

TABLE 2. sta Description

DATA EVALUATION STATISTICS Grand Junction Background Alluvial Ground Water

Action Level 30

		4	
Sample Data	7		
UNITS - DCVL		Descriptive Statistics	111
57		Number of Samples	7.000
5.5		Mean	41.5857
31.4		Median	39.4000
9		Standard Deviation	12,1218
48.1		CV	0.2915
19 19 July 25.1		Range	31.9000
39.4		Minimum	25.1000
35		Maximum	57.0000
	l	GM	40.0199
		GSD	1.3548
1900	1	Mean of LN(Data)	3.6894
	1	SD of LN(Data)	0.3036
		Percent > Limit	85.7143
		Normal Statistics	
	n>30	Upper (95% CI mean) - Z	50.5657
	n>30	Lower (95% CI mean) - Z	32.6058
		Upper (95% 1-tail CL mean) - Z	49.1225
1000		Upper (95%lie data) - Z	61.5261
	n<30	Upper (95% Cl mean) - Norm t	52.7965
	n<30	Lower (95% Cl mean) - Norm t	30.3749
	11.00	Upper (95% 1-tail CL mean) - Normal	50.4886
•		UTL (min 95%, 95%) - K	82.7877
		UTL (avg 95%, 95%) - K	66.7669
		Percent > Limit	
			83.0407
		W Test (Data)	0.9435
	· .	Normal (a=0.05)?	Yes
		•	
		Lognormal Statistics	
	n>30	Upper (95% Ci mean) - Z	52.4786
	n>30	Lower (95% CI mean) - Z	33.4663
		Upper (95% 1-tail CL mean) - Z	50.6153
		Upper (95%ile data) - Z	65.9468
		Upper (95% CI mean) - LogNorm t	55.4945
		Lower (95% CI mean) - LogNorm t	31.6476
	·	Upper (95% 1-tail CL mean) - LogNom	n 52.3774
		UTL (min 95%, 95%) - K	112.3272
* .		UTL (avg 95%, 95%) - K	75.1978
		Percent > Limit	82.8718
		W Test (Data)	0.9494
		Normal (a=0.05)?	Yes
			: :
	1	and the second s	





DATA EVALUATION STATISTICS Grand Junction Background Alluvial Ground Water

Action Level 0.010

	1		
Sample Data			
UNITS - mg/L		Descriptive Statistics	4= 000
0.048 0.049		Number of Samples Mean	15.000 0.0359
0.0340		Median	0.0359
0.0404		Standard Deviation	0.0433
0.001		CV	1.2053
0.001		Range	0.1360
0.001		Minimum	0.0010
0.001		Maximum	0.1370
0.001		GM	0.0088
0.001	٠	GSD .	8.4536
0.137		Mean of LN(Data)	-4.7342
0.116		SD of LN(Data) Percent > Limit	2.1348 53.3333
<u>0.0518</u> 0.001	-	Percent > Limit	33.3333
0.058		Normal Statistics	
		Upper (95% Cl mean) - Z	0.0579
	ก>30	Lower (95% Cl mean) - Z	0.0140
		Upper (95% 1-tail CL mean) - Z	0.0543
		Upper (95%ile data) - Z	0.1072
	n<30	Upper (95% CI mean) - Norm t	0.0599
	n<30	Lower (95% CI mean) - Norm t	0.0119
		Upper (95% 1-tail CL mean) - Normal	0.0558
•		UTL (min 95%, 95%) - K	0.1471
		UTL (avg 95%, 95%) - K	0.1147
		Percent > Limit	72.5345
		W Test (Data)	0.7914
		Normal (a=0.05)?	No
		Lannamat Statistics	- - -
		Lognormal Statistics	
		Upper (95% Cl mean) - Z	0.2527
	n>30	Lower (95% CI mean) - Z	0.0291
		Upper (95% 1-tail CL mean) - Z	0.2124
		Upper (95%ile data) - Z	0.2944
		Upper (95% CI mean) - LogNorm t	0.2797
	n<30	Lower (95% Cl mean) - LogNorm t	0.0263
		Upper (95% 1-tail CL mean) - LogNorm	0.2264
		UTL (min 95%, 95%) - K	2.1025
		UTL (avg 95%, 95%) - K	0.4269
		Percent > Limit	47.5892
		W Test (Data)	0.7436
		Normal (a=0.05)?	No
			-

Log-Probability Plot and Least Squares Best Fit

PARAMETER	UNITS	LOCATION ID	SAMF DATE	PLE:	ZONE COMPL.	FLOW REL.	RESULT	QU	ALIFIEF DATA	RS: QA	DETECTION	UN- CERTAINTY
Chloride	mg/L	0713	01/27/98	0001	NR	U	347.000			,		-
	mg/L	0713	06/24/98	0001	NR	U	338.000				<u>-</u>	-
	mg/L	0715	01/27/98	0001	NR	U	280.000					
	mg/L	0715	06/24/98	0001	NR	U	144.000			#	<u>.</u> .	_
	mg/L	0745	01/26/98	0001	AL	U	591.000			#	•	_
	mg/L	.0745	06/17/98	0001	AL	U	520.000		J			
	mg/L	0746	01/26/98	0001	AL	U	801.000		_	#	•	X = 1
	mg/L	0746	06/17/98	0001	AL	U	813.000		J	#	•	•
	mg/L	1020	01/26/98	0001	AL		991.000				•	
	mg/L	1020	06/22/98	0001	AL		899.000			#		•
	mg/L	1021	01/26/98	0001	AL		746.000		L	#	•	
	mg/L	1021	06/23/98	0001	AL	· ·	352.000		L	#		•
	mg/L	1023	01/22/98	0001	AL		253.000			#		•
	mg/L	1023	06/18/98	0001	AL		253.000			#	•	-
	mg/L	1025	01/22/98	0001	AL		307.000			Ħ	•	
	mg/L	1025	01/22/98	0002	AL.		306.000			#	.•	•
	mg/L	1025	06/18/98	0001	AL		301.000		·	#	•	•
on	mg/L	0713	01/27/98	0001	ŇR	U	0.0040	U		#	0.004	
	mg/L	0713	06/24/98	0001	NR	บ	0.0030	Ü		.#	0.003	
	mg/L	0715	01/27/98	0001	NR	U	0.0040	Ü			0.004	_
	mg/L	0715	06/24/98	0001	NR	U	0.0030	U			0.003	
	mg/L	0745	01/26/98	0001	AL	U	1.170	•			0.000	$\overline{x} = 4$
	mg/L	0745	06/17/98	0001	AL	U	1.100			#	•	- /
	mg/L	0746	01/26/98	0001	AL	υ.	0.0040	U			0.004	- ;
	mg/L	0746	06/17/98	0001	AL	U	0.0030	Ü	6,1		0.003	•
	mg/L	1020	01/26/98	0001	· AL		3.130	-				- -
	mg/L	1020	06/22/98	0001	AL		1.800	and the second				•

Page 1

PARAMETER	UNITS	LOCATION ID	SAMP DATE	LE: ID	ZONE COMPL.	FLOW REL.	RESULT	LAE	UALIFIEI B DATA	RS: QA	DETECTION LIMIT	UN- CERTAINTY	_
Iron	mg/L	1021	01/26/98	0001	· AL		0.0183	В	UL	. #	•	•	_
	mg/L	1021	06/23/98	0001	AL		0.0069	8	UL	-#		•	•
	mg/L _.	1023	01/22/98	0001	AL		0.0042	В	Ų	#	•		
	mg/L	1023	06/18/98	0001	AL		0.0030	U		. #	0.003	•	
	mg/L	1025	01/22/98	0001	AL		0.552			#	•	•	
•	mg/L	1025	01/22/98	0002	AL		0.533			#	•	•	
	mg/L	1025	06/18/98	0001	AL		0.321			#	•	•	
Manganese	mg/L	0713	01/27/98	0001	NR	U	1.780		-	*	•	•	-
	mg/L	0713	06/24/98	0001	NR	U	2.220				•	•	
	mg/L	0715	01/27/98	0001	NR	U	0.233			#	•	•	
•	mg/L	0715	06/24/98	0001	NR	U	2.080		•		•	•	
	mg/L	0745	01/26/98	0001	AL	U	1.700	•		. #	•	•	
	mg/L	0745	06/17/98	0001	. AL	U	1.670				•	· x	=1.4
•	mg/L	0746	01/26/98	0001	AL	U	1.630			#	••		•••
	mg/L	0746	06/17/98	0001	AL	U	1.840			#	•	•	
	mg/L	1020	01/26/98	0001	AL		1.080			#	•	• .	•
	mg/L	1020	06/22/98	0001	AL		0.972			#	•	•	
	mg/L	1021	01/26/98	0001	AL		0.436		L	#	•	•	
	mg/L	1021	06/23/98	0001	AL		0.514		Ł	#	•	•	
•	mg/L	1023	01/22/98	0001	AL		1.730			. #	•	•	
	mg/L	1023	06/18/98	0001	AL		. 1.760			#	•	•	
	mg/L	1025	01/22/98	0001	AL		1.940				-	•	
	mg/L	1025	01/22/98	0002	AL		1.940			#	•	•	
	mg/L	1025	06/18/98	0001	AL	•	1.950			#	•	•	
Selenium	mg/L	0713	01/27/98	0001	NR	U	0.0480			#	•	-	
	mg/L	0713	06/24/98	0001	NR	U	0.0490			#	• •.		

PARAMETER	UNITS	LOCATION	SAMI DATE	PLE: ID	ZONE COMPL.	FLOW REL.	RESULT	QU	ALIFIER DATA	S:	DETECTION	UN-	-
Selenium	mg/L	0715	01/27/98	0001	NR	U	0.0318	<u> </u>	DAIA	un #	LIMIT	CERTAINTY	• ,
	mg/L	0715	06/24/98	0001	NR	Ū.	0.0404			. #	•	•	
	mg/L	0745	01/26/98	0001	AL	Ü	0.0010	U ·		#	•	. •	
	mg/L	0745	06/17/98	0001	AL	U	0.0010	U		#	0.001	•	
	mg/L	0746	01/26/98	0001	ÂL	U	0.0010	U		#	0.001	• • • • • • • • • • • • • • • • • • • •	
	mg/L	0746	06/17/98	0001	AL	Ü	0.100			HT A	•	, •	•
	mg/L	1020	01/26/98	0001	AL	•	0.0010	U		#	•	•	
	mg/L	1020	06/22/98	0001	AL		0.0010	U		#	0.001	•	
	mg/L	1021	01/26/98	0001	AL		0.0010	U	L	. #	0.001	•	•
	mg/L	1021	06/23/98	0001	AL		0.0010	U	Ĺ	#	0.001	•	
	mg/L	1023	01/22/98	0001	AL	•	0.137	U	-	. #	0.001	•	
	mg/L	1023	06/18/98	0001	AL		0.116			#	•	•	
	mg/L	1025	01/22/98	0001	AL		0.0624			#	•	•	
	mg/L	1025	01/22/98	0002	AL	,	0.0546			#	•	•	
	mg/L	1025	06/18/98	0001	AĽ		0.0518			#	•	•	
ulfate	mg/L	0713	01/27/98	0001	NR	υ	3060.000				•		•
	mg/L	0713	06/24/98	0001	NR	υ	3140.000				· •	•	
	mg/L	0715	01/27/98	0001	NR	Ü	3720.000			# .	•	•	
	mg/L	0715	06/24/98	0001	NR	Ū	1840.000			#	•	· 🔻	= 2.74
	mg/L	0745	01/26/98	0001	AL	Ū	2680.000			#	•	• 🔨	. برير د الرير
	mg/L	0745	06/17/98	0001	AL	U	2480.000		J	#	•	•	
	mg/L	0746	01/26/98	0001	AL	U	3560.000	-		77	•		
	mg/L	0746	06/17/98	0001	AL	Ū	3550.000		J		•	•	
	mg/L	1020	01/26/98	0001	AL		2940.000		•	· #	•		
	mg/L	1020	06/22/98	0001	AL		2730.000			#	•	•	
	mg/L	1021	01/26/98	0001	AL		614.000			**	•	•	
	mg/L	1021	06/23/98	0001	AL		416.000		_	# 	•	•	

Page 3

PARAMETER	UNITS	LOCATION	SAMPI DATE	LE: ID	ZONE COMPL.	FLOW REL.	RESULT	QUALIFI LAB DAT		DETECTION LIMIT	UN- CERTAINTY
Sulfate	mg/L	1023	01/22/98	0001	AL		3720.000			•	•
	mg/L	1023	06/18/98	0001	AL		3700.000		#	•	•
	mg/L	1025	01/22/98	0001	AL		3100.000	•	#	•	•
	mg/L	1025	01/22/98	0002	AL		3100.000		#	•	•
	mg/L	1025	06/18/98	0001	AL	,	3020.000		#	•	
Uranium	mg/L	0713	01/27/98	0001	NR	U	0.0652		ď	• •	-
	mg/L	0713	06/24/98	0001	NR	U	0.0662		Ħ	•	•
	mg/L	0715	01/27/98	0001	NA	U	0.0602		#	•	• ,
	mg/L	0715	06/24/98	0001	NR	Ú	0.0535		#	•	•
	mg/L	0745	01/26/98	0001	AL	Ų	0.0381			-	•
	mg/L	0745	06/17/98	0001	AL	U	0.0380		. 4		•
	mg/L	0746	01/26/98	0001	AL	U	0.0624		4	•.	•
	mg/L	0746	06/17/98	0001	AL	U	0.0637		į	•	ė
	mg/L	1020	01/26/98	0001	AL		0.0566		•		•
	mg/L	1020	06/22/98	0001	AL		0.0573		- 1	•	•
	mg/L	1021	01/26/98	0001	AL		0.0305	L	(•
	mg/L	1021	06/23/98	0001	AL		0.0228	L	(•	•
	. mg/L	1023	01/22/98	0001	AL		0.0468		i	-	•
	mg/L	1023	06/18/98	0001	AL		0.0452		,	•	•
	mg/L	1025	01/22/98	0001	AL	-	0.0435			•	•
	mg/L	1025	01/22/98	0002	AL		0.0436			•	•
	mg/L	1025	06/18/98	0001	AL		0.0437			<u> </u>	•

GROUND WATER QUALITY DATA BY PARAMETER (USEE200) FOR SITE GRJ01, GRAND JUNCTION

REPORT DATE: 9/22/98 8:37:34

LOCATION SAMPLE: ZONE **FLOW** QUALIFIERS: DETECTION UN-PARAMETER UNITS ID DATE ID COMPL. REL. RESULT LAB DATA QA LIMIT **CERTAINTY**

RECORDS: SELECTED FROM USEE200 WHERE site_code="GRJ01" AND location_code in("0713","0715","0745","0746","1020","1023","1023","1025") AND quality_assurance = TRUE AND (NOT (data_validation_qualifiers LIKE "R" OR data_validation_qualifiers LIKE "X") OR IsNuff(data_validation_qualifiers)) AND cas in("CHLORIDE ","07439-69-6","07439-96-5","07439-96-5","07440-61-1") AND DATE_SAMPLED between #1/1/96# and #12/20/36#

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample, X = replicate number.

LAB QUALIFIERS:

- Replicate analysis not within control limits.
- + Correlation coefficient for MSA < 0.995.
- TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank,
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- Z Laboratory defined (USEPA CLP organic) qualifier, see case narrative.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- C Pesticide result confirmed by GC-MS.
- M GFAA duplicate injection precision not met.
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively Identified compund (TIC).
- S Result determined by method of standard addition (MSA).
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.</p>
- D Analyte determined in diluted sample.
- P > 25% difference in detected pesticide or Arochlor concentrations between 2 columns.
- X Laboratory defined (USEPA CLP organic) qualifier, see case narrative.
- Y Laboratory defined (USEPA CLP organic) qualifier, see case narrative.
- Result above upper detection limit.

DATA QUALIFIERS:

J Estimated value.

- Low flow sampling method used.
- L Less than 3 bore volumes purged prior to sampling.
 U Parameter analyzed for but was not detected.
- R Unusable result.

- B Possible grout contamination, pH > 9.
- X Location is undefined.

QA QUALIFIER: # = validated according to Quality Assurance guidelines.

This page intentionally blank

Appendix I

September 1997

Service Contract

Risk Assessment Data

Ecological Risk Assessment

Ecological Risk Assessment

.0 Introduction

Ecological risk assessment (ERA) is a process that evaluates the likelihood that adverse ecological effects are occurring or may occur as a result of exposure to one or more stressors (EPA 1992). A stressor is any physical, chemical, or biological entity that can induce an adverse ecological response.

1.1 Purpose

The purpose of this risk assessment is to identify and characterize adverse effects, if any, on the ecosystem at the Grand Junction site. For ecological risks to occur at the Grand Junction site, pathways must exist for exposure of biological receptors to biotic and abiotic media contaminated by ground water. Screening-level assessments of ecological risks at the site evaluated COPCs, potential pathways, receptors, and adverse effects (DOE 1995).

This ERA is based on relevant components of the EPA guidance provided in the Guidelines for Ecological Risk Assessment (EPA 1998) and the Framework for Ecological Risk Assessment (EPA 1992).

1.2 Risk Assessment Methodology

The ERA contains three main components: (1) problem formulation, (2) analysis, and (3) risk characterization. A tiered approach to the risk assessment process was followed by performing the reening-level BLRA, collecting additional samples, and evaluating recent 1998 data, with the ossibility of proceeding to a quantitative risk assessment pending the outcome of the data review. The problem formulation component is discussed in detail in the following sections. A risk assessment model for the Grand Junction site is shown in Figure I–1. Following the evaluation of the 1998 ecological data, the risk assessment process may or may not conclude with the analysis phase. Depending on the outcome of the analysis phase, risk characterization may not be necessary for this screening-level assessment.

2.0 Problem Formulation

In the problem formulation phase, the need for a risk assessment is identified, and the scope of the problem is defined. Evaluation of available data helps to develop site conceptual models, food webs, risk hypotheses, endpoints and measures. The principal product from these activities is the analysis plan, which may include activities for new data collection as well as how the existing data will be used to complete the risk assessment. The problem formulation phase typically requires the greatest amount of effort, and the success of the risk assessment depends on a thorough and technically defensible planning process.

The problem formulation phase in the risk assessment process was represented in part by the BLRA (DOE 1995), which was a screening-level risk assessment. The primary input to this phase is the integration of available information. Historical analytical data for the Grand Junction site ere reviewed to determine if concentrations of analytes in ground water, surface water, and diment might pose an ecological risk. Other inputs included information gathered on the

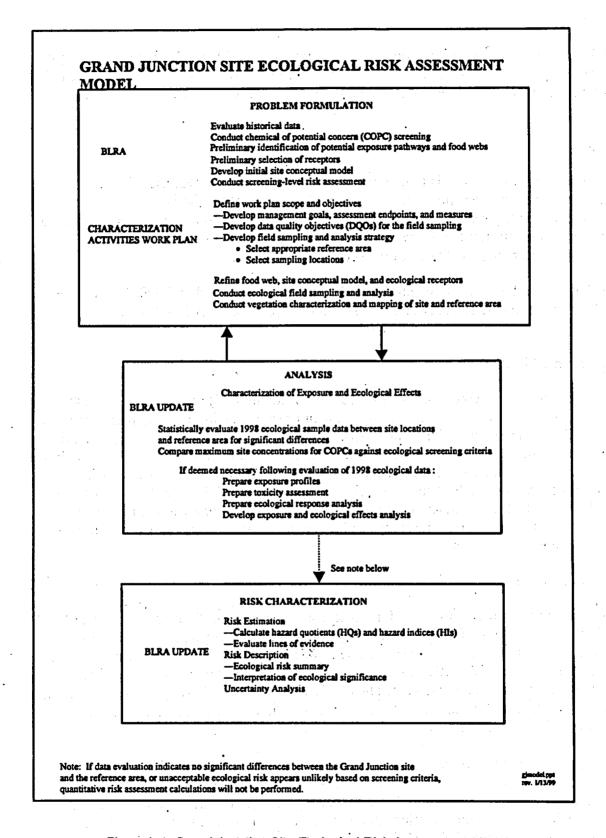


Figure I-1. Grand Junction Site Ecological Risk Assessment Model

Grand Junction geologic setting, ground water hydrology, geochemistry, and ecological habitat. Principal products of this phase included COPC screening and the preparation of a characterization ork plan (DOE 1997). Since the BLRA, additional abiotic and biotic samples have been collected. Grand Junction and an upstream reference area, and these data were incorporated into the risk assessment process.

2.1 Ecological Chemicals of potential Concern

Ecological COPCs were defined in the screening-level risk assessment as those constituents that exceeded background concentrations (Table I-1). The water quality of upgradient wells was considered to be representative of background conditions (DOE 1995). Two categories of surface water were defined: Colorado River water and water in ponds constructed as part of a wetlands mitigation project. Colorado River COPCs were those constituents with higher concentrations downstream of the millsite than upstream. COPCs in the wetlands mitigation ponds were determined by comparing concentrations in the ponds and in the upgradient ground water wells (DOE 1996d). Sediment COPCs were determined by comparing data from Colorado River sediment sampled upstream, downstream, and adjacent to the site (DOE 1995).

Table I–1. Summary of Ecological Chemicals of Potential Concern in Ground Water, Surface Water, and Sediments

Constituents Above Background in Ground Water	COPC in Ground Water	Ecological COPC in Colorado River Surface Water	Ecological COPC in Water in Wetlands Mitigation Ponds	Ecological COPC in Colorado River Sediment
M Ammonium		X		
rsenic	X		X	<u> </u>
Jadmium	X	,	X	
Cobalt	Х		X ·	
Copper		Х		
Fluoride	X	100	X	
Iron	X	X	X	
Manganese	X		X	
Molybdenum	X		X	X
Nickel	X		X	
²²⁰ Ra	X	X	X	
Selenium				X
Strontium	Х			X
Sulfate	. X		X	X
Uranium	X	X	X	i x
Vanadium	X	X	X	
Zinc	X		X	

2.2 Ecological Conceptual Site Model

Conceptual models for ecological risk assessments are developed from information about stressors, potential exposure, and predicted effects on an ecological entity (the assessment endpoint). Conceptual models consist of two principal components (EPA 1998):

- A set of risk hypotheses that describe predicted relationships among stressor, exposure, and assessment endpoint response, along with the rationale for their selection.
- A diagram that illustrates the relationships presented in the risk hypotheses.

The following is the risk hypothesis proposed for the Grand Junction site:

Risk hypothesis: Milling operations at the Grand Junction site have resulted in low levels of ground water contamination. Hydrogeologic information regarding plume migration suggests that contamination might be present in the Colorado River adjacent to and downgradient of the Grand Junction site. This could result in contaminant exposure directly or indirectly to wildlife and plant receptors that use or inhabit the site.

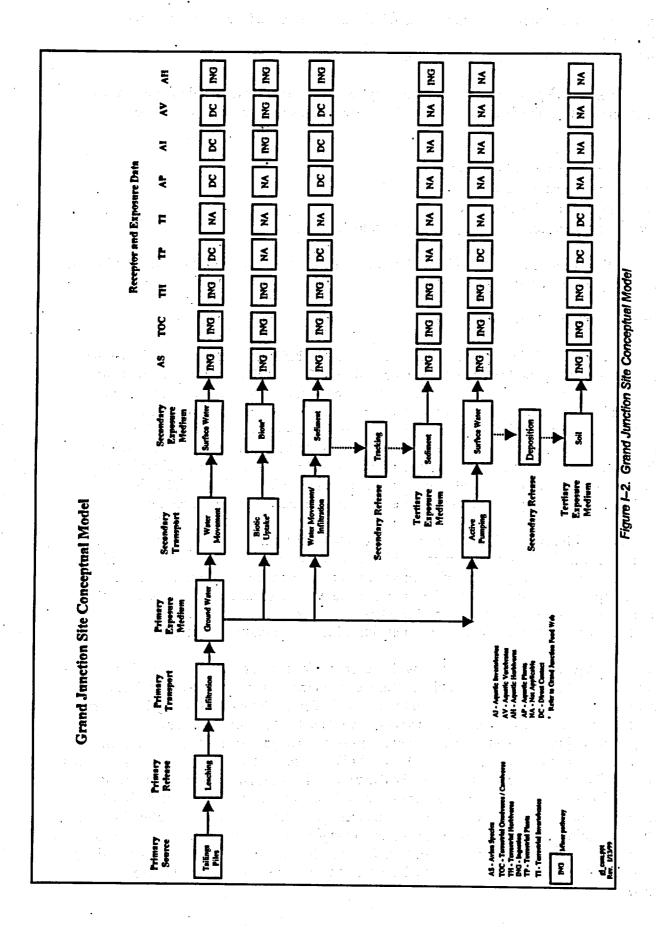
Because the stressors are chemical contaminants, the Grand Junction risk hypothesis is considered a "stressor-initiated" risk hypothesis; however, no apparent ecological effects have been observed that would provide a cause-and-effect relationship.

As part of the initial problem formulation in the BLRA, a generalized conceptual site model was developed for the Grand Junction site. That model has since been revised to address current and potential exposure pathways based on all of the available data (Figure I-2).

An exposure pathway is the mechanism by which a contaminant in an environmental medium (i.e., the source) contacts an ecological receptor. A complete exposure pathway includes:

- Contaminant source
- Release mechanism that allows contaminants to become mobile or accessible
- Transport mechanism that moves contaminants away from the release
- Ecological receptor
- Route of exposure (e.g., dermal or direct contact, inhalation, or ingestion).

Ecological receptors that could potentially be exposed to COPCs were identified in the BLRA (DOE 1995) and included mammalian and avian species. A food web for the Grand Junction site (Figure I-3) illustrates the significant dietary interactions between the terrestrial and aquatic receptors.


The food web also depicts the major trophic-level interactions and describes nutrient flow and transfer of matter and energy through these levels. It was developed from the species lists and consideration of the exposure pathways. The food web diagram was used to portray potential routes of COPCs from the ground water to biotic species at various trophic levels, with receptor species being components of this food web.

The terrestrial receptor categories include:

- Omnivores, carnivores—include fox, coyote, raccoon
- Herbivores—include mule deer, cottontail, some mice and vole species,
- Vegetation-includes phreatophytes such as black greasewood and other plant species
- Terrestrial invertebrates—include soil fauna

The aquatic receptor categories include:

- Avian species—include great blue heron, geese, ducks, some passerine birds
- Herbivores-include beaver, muskrat
- Vertebrates—include amphibians, reptiles, fish

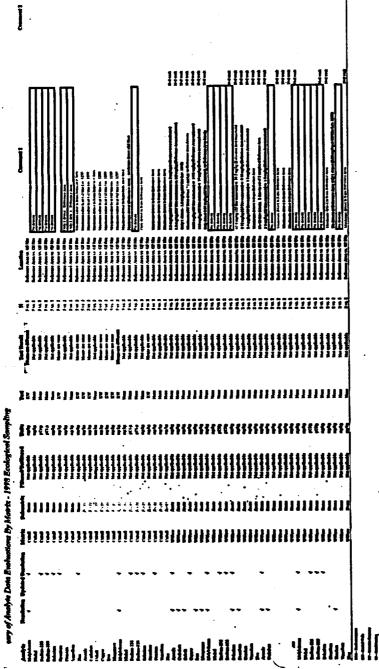
Plants—include phreatophytes such as cattail, bulrush, willow, reed canarygrass, tamarisk, common reed

• Invertebrates—include benthic invertebrates

Only complete exposure pathways are quantitatively and qualitatively evaluated in an ERA. In order to be conservative, the following potential exposure pathways were considered for evaluation:

- Surface water-ingestion, direct contact
- Soil-ingestion, direct contact
- Sediment-ingestion, direct contact
- Dietary-ingestion of forage or prey, as appropriate, by receptor

The pathways that are subsequently addressed in further detail were divided into current and future hypothetical exposure scenarios.


2.3 Current Exposure Scenario

The terrestrial ecological habitat at the Grand Junction site is limited because the area is flat, has no significant tree cover, and has been overgrown with weedy species. Some patches of crested wheatgrass (Agropyron cristatum) exist as remnants of the revegetation efforts. Although the depth to ground water is relatively shallow at the millsite, the predominant vegetation includes wheatgrasses and weedy species, which are not likely to have root systems capable of reaching the aquifer. The northern boundary of the site is primarily industrial, and large expanses of the ground in the vicinity are covered with gravel, pavement, and rock. The eastern and western boundaries are adjacent to commercial properties and private residences. Remedial actions included placing a 6-inch layer of soil over the excavated tailings area and revegetating.

The area is not used for livestock grazing and is fenced to deter larger wildlife entry; however, wildlife can enter the site through the river corridor or adjacent properties. Since the contaminated tailings have been removed, ingestion of or direct contact with contaminated soils does not represent a complete exposure pathway. The only surface water associated with the terrestrial habitat at the site is a storm-water discharge canal on the western property boundary. Consequently, surface water ingestion was not evaluated for the terrestrial habitat.

The riparian and aquatic habitats associated with the Colorado River at the Grand Junction site represent the areas of significant potential exposure. Contaminated ground water associated with the former milling operations discharges into the Colorado River where COPCs may be deposited in sediment or may be present in the surface water as well as downstream of the site. Phreatophytes rooted in sediment may uptake contaminants through their root systems. Such species include sandbar willow (Salix exigua), cattail (Typha sp.), cottonwood (Populus fremontii), common reed (Phragmites communis), bulrushes, tamarisk (Tamarix ramosissima), and reed canarygrass (Phalaris arundinaceae). As mentioned in the characterization work plan (DOE 1997), elevated concentrations of some constituents were present in the wetlands mitigation ponds. Although the prominent boundaries of these ponds no longer exist, remnants of these ponds may still contain some elevated concentrations of COPCs. In addition, the sediments may act as sinks for COPCs in ground water discharging into the area, and thus represent potential sources of contamination.

という。

9702486095

11/23 TUE 11:04 FAX

Food Web for Grand Junction Site Ecological Receptors Avian Species-geore, ducks, Aquatio Herbivoragreat blue heron, raptors, some beever, muskrat pesserine birds Terrestrial Carnivores/Omnivores-fox, rescoon, soyote Amphibians Reptices Terrestrial Herbivores-cottontail, mule deer, some mice and vote species Terrestrial Terrestrial Aquetic Aquetio Plents Invertebrates Plants Invertebrates Surface Water Sediment Ground water Vertebrate / empleibles ingestion pathway Surface water ingestion or direct contrast puller aye Plant ingestion puthway Sellment ingestion or direct contact pullways "Greand water used for intigation would create Miner plant ingustion pathway A quelic plant ingestion pathway a source of nontemination by deposition on soil Aquatic invoclabents sugestion pathway
Ground water legestion und/or direct contact pathway Minor equatio wildlife ingestion pathway Minor soil Ingestion und/or direct contact pathway Minor terrestrial invertebrate ingestion pathway Note: Solid line indicates eignificant pothwey gj_web.ppt 1/t3/99

Figure I-3. Food Web for Grand Junction Site Ecological Receptors

Terrestrial receptors such as foxes, coyotes, skunks, raccoons, deer, and rodents likely use the riparian corridor for food items and as a drinking water source. Consequently, they are also sposed to potentially contaminated sediments. These terrestrial receptors typically do not spend most of their time in the riparian or aquatic areas.

Aquatic receptors living in the riparian and aquatic habitats adjacent to and downstream from the millsite have the potential to ingest contaminated sediment, surface water, and vegetation. These species have the potential for the greatest exposures. Larger herbivores prefer to browse on leafy material; smaller mammals and birds seek plant seeds and roots. Field observations in the reference area found evidence of wildlife browsing on cattails. Beaver (an herbivore) and muskrat (an omnivore that feeds chiefly on aquatic plants) forage on the types of vegetation found along the river banks. Higher trophic receptors such as coyotes, eagles, and hawks may in turn feed on small mammals or birds that have ingested contaminated food items. Aquatic avian species such as the great blue heron, ducks, geese, and killdeer frequent the Colorado River and represent ecological receptors with significant exposure potential. Aquatic invertebrates, amphibians, reptiles, and fish are also in direct contact with potentially contaminated sediment, surface water, and aquatic vegetation. These receptors can also serve as prey for eagles, herons and other wildlife.

2.4 Future Hypothetical Exposure Scenario

Because no significant habitat changes from the present scenario are expected, the future exposure scenario includes all of the current exposure scenarios associated with the riparian and aquatic habitats on the Colorado River. Localized flooding will likely continue to erode the vestiges of the wetlands mitigation ponds and reshape the river banks.

'ithout institutional controls, ground water could possibly be pumped and used for irrigation and avestock watering or other industrial uses. This would create a source for ground water and surface water ingestion, direct contact with terrestrial vegetation, and deposition of ground water and surface water on the soil. The soil would then represent an additional source medium for ingestion and direct contact. At present, both of these secondary exposure routes are considered incomplete since ground water is not currently used for these purposes, nor is ground water likely to be pumped in the future. Large-scale irrigation with ground water is not considered a likely future pathway because surface water is the main source of irrigation water in the Grand Junction area. As long as there is the possibility of pumping ground water for agricultural purposes, it is assumed that the potential exists for these two hypothetical exposure pathways.

The land use plans for the Grand Junction site have not been made final. One possible use is the construction of a recreation area, which would likely include the planting of various tree species. Since the potential exists for phreatophytes (e.g., cottonwood, willow, and greasewood) to inhabit the terrestrial portion of the site, contaminants in ground water could be taken up by those plants through extensive root systems. Contaminants could possibly bioaccumulate in various plant parts and exert a range of influences, depending on the specific COPC. Plant uptake rates and toxicities vary greatly among species and are affected by factors such as soil characteristics (e.g., pH, redox potential, organic matter), plant sensitivity, input-output balance, and cumulative effects. Foraging wildlife could be indirectly exposed to contaminants in ground water by ingesting plants that have bioaccumulated certain contaminants.

3.0 Analysis Phase

The analysis phase consists of two principal components: (1) the characterization of exposure, an (2) the characterization of effects, the principal products of which are summary profiles that describe exposure and the stressor-response relationships. The objective in the analysis phase is to quantify contaminant exposure (i.e., from one or more stressors) and potential ecological effects. This involves evaluating receptor attributes, toxicity, and exposure profiles.

The analysis phase for this BLRA update, which is a part of the ERA process, includes an evaluation of the current data and site ecology to determine the need for a quantitative risk assessment. As part of the BLRA update, effects on the COPC list are also discussed.

Evaluation of the 1998 analytical data and field observations are the main activities associated with the analysis phase in this screening-level assessment. If the statistical evaluations for the Grand Junction site data show no significant differences, that is, if COPC concentrations are not elevated compared to those of the reference area, or if an elevated concentration does not represent a likely ecological risk, then quantitative risk estimates will not be calculated. The risk assessment will conclude with a summary of results and conclusions based on the current data. If the data evaluation and interpretation indicate a potential for unacceptable ecological risk, then the remaining four activities under the analysis phase will be performed (i.e., preparation of exposure profiles, toxicity assessment, ecological response analysis, and development of exposure and ecological effects analysis [Figure I-1]).

3.1 Data Evaluation

This BLRA update focuses on the results of the 1998 ecological sampling, which was performed address data gaps in the BLRA. Although the BLRA and characterization work plan presented a list of ecological COPCs, it is necessary to evaluate the newly collected data to update the COPC list. The following data evaluation serves as a subsequent rescreening of the data for COPCs in surface water, sediment, and vegetation based strictly on the 1998 ecological sampling. Where appropriate, maximum concentrations were compared to ecological screening criteria.

The 1995 BLRA (DOE 1995) used earlier ecological screening criteria. To be conservative, this ERA incorporates more current screening criteria where possible. In most cases, the criteria are based on 1996 versions of the Ecotox thresholds, Ambient Water Quality Criteria, SQC, and other screening benchmarks in the Oak Ridge National Laboratory database BENCH (ORNL 1996). Due to the limited number of media-specific (e.g., surface water, sediment, and biota) ecological screening benchmarks or regulatory standards, an UMTRA MCL may also be provided for comparison.

This data evaluation and screening process was used to determine whether site concentrations of inorganics exceeded the reference area concentrations or might pose an unacceptable ecological risk. A conservative screening approach was taken; no assumptions regarding bioavailability, persistence, or mobility were made. Inorganic analytes that are considered macronutrients (i.e., calcium, magnesium, potassium, and sodium) were removed from further evaluation in this BLRA update since toxicity is not expected.

To achieve a sufficient number of data points for statistical evaluation, the data sets were separate, into two populations by matrix and vegetation type (where applicable). Locations 1216 through 1225 were categorized as reference area samples, whereas locations 1226 through 1235 were

considered Grand Junction site data regardless of whether they were adjacent to or downstream of the site. In addition, no distinction was made among sampling points located on a pond, pression, or areas of open flowing water. This was done in order to achieve the necessary number of samples for statistical evaluation and to pool data from areas that potentially had the highest contaminant levels.

For each data set, on an analyte-by-analyte basis, duplicate data were incorporated by averaging the concentration in the original sample with that of its field duplicate, if available. Nondetect samples were incorporated by assigning one-half the detection limit for each nondetect. A new field, 'ecoval', was calculated for each data record that represented either the result or one-half the result (for a nondetect). No rejected data were included in the calculation of the 'ecoval' field. All statistical testing was performed on the 'ecovals' for each analyte in a data set.

Summary statistics (minimum, maximum, mean, standard deviation, number of samples, number of detects, detection frequency, and the 95 percent upper confidence limit on the arithmetic mean) for the Grand Junction site and reference area data set are included as Attachment 1

3.2 Statistical Evaluation

To evaluate the means of the analyte populations for the various matrices, a minimum of three samples was required. A sufficient number of samples was available for all the sediment and surface water data sets and for most of the vegetation species. To run a normality test using the Shapiro-Wilk W test, a minimum of five data points is required. If the data set exhibited low detection frequency (typically less than 30 percent or did not have at least three detects), no statistical testing was performed.

.ne Shapiro-Wilk W test was performed on both the Grand Junction site and reference area data sets; if the data were not normal, they were log-transformed and again tested for normality. If either the reference area data or the Grand Junction site data did not exhibit normality, the nonparametric Kruskal-Wallis (KW) test was used for those analytes to determine if the means of the Grand Junction site and reference area data sets were significantly different. If both data sets were normal or lognormal, a Bartlett test was performed to test for homogeneity of variance.

If both the reference area and the Grand Junction site data sets were homogeneous, a Student's ttest was performed to determine if the mean values from the reference area and Grand Junction site were significantly different. If they were not homogeneous, the KW test was applied to determine statistical difference in the means.

The KW test makes no assumptions concerning the underlying nature of the sample data. If the null hypothesis (H₀) is not rejected (i.e., it is accepted), then the site analyte data set was assumed to have the same mean as the reference area data set, and the analyte was not considered a COPC. If the alternative hypothesis (H₂) is not rejected (i.e., it is accepted), then the site analyte data set was assumed to *not* have the same mean as the reference area data set, and the analyte was considered a COPC. The null and alternative hypotheses for the KW test are provided below:

H_o: reference area mean = Grand Junction site mean (on an analyte-by-analyte basis) : reference area mean ≠ Grand Junction site mean (on an analyte-by-analyte basis)

The W test is considered effective for testing data sets with sample sizes less than 50 (Gilbert 1987). The W test is also applicable to lognormal distributions. For the W test, the null hypothesis, H₀, assumes the population follows a normal (or lognormal) distribution, and the alternative hypothesis, H_a, assumes that the population does not follow a normal (or lognormal) distribution. The null and alternative hypotheses for the W test are provided below:

- H_o: The Grand Junction site (or reference area) data set (on an analyte-by-analyte basis) is drawn from an underlying normal (or lognormal) population.
- H_a: The Grand Junction site (or reference area) data set (on an analyte-by-analyte basis) is not drawn from an underlying normal (or lognormal) population.

The Bartlett test was chosen as a test for homogeneity of variance since it was easily translated into a spreadsheet format. The Bartlett test is an analysis of variance test that evaluates the hypothesis that the data sets come from populations with similar variances. The test assumes that each sample set was randomly and independently drawn from a normal (or lognormal) population. The null hypothesis (H₀) assumes that the variances for the two data sets are equal. The alternative hypothesis (H₂) assumes that the variances are not equal. The null and alternative hypotheses for the Bartlett test are provided below:

Ho: reference area variance = Grand Junction site variance (on an analyte-by-analyte basis)

$$s^2$$
 reference area = s^2 site

H_a: reference area variance \neq Grand Junction site variance (on an analyte-by-analyte basis) $s^{2}_{\text{reference area}} \neq s^{2}_{\text{site}}$

If the null hypothesis was not rejected (i.e., it was accepted), then the reference area data set was not homogeneous with respect to the Grand Junction site data set. The non-homogeneous site data sets were further evaluated using the nonparametric KW test to evaluate population means in a manner analogous to the parametric Student's t-test.

The Student's t-test assumes that the data sets are drawn from populations with an asymptotically normal (or lognormal) distribution, as determined by the W and Bartlett tests, and the means of the data set are then compared. The null hypothesis, H_o, assumes that the means of the reference area and Grand Junction site data sets are the same. The alternative hypothesis, H_a, assumes that the means of the reference area and site data sets are not the same. The null and alternative hypotheses for the Student's t-test are provided below:

H_o: reference area mean = Grand Junction site mean (on an analyte-by-analyte basis)

H_a: reference area mean ≠ Grand Junction site mean (on an analyte-by-analyte basis)

If the null hypothesis (H₀) was not rejected (i.e., it was accepted), then the analyte data set was assumed to have the same mean as the reference area data set, and the analyte was not considered a COPC. If the alternative hypothesis (H₂) was not rejected (i.e., it was accepted), then the Grand Junction site analyte data set was assumed not to have the same mean as the reference area data set, and site analyte was retained as COPC.

A detailed summary of the statistical evaluations for each analyte and matrix for the ecological data is provided in Appendix I.

4.0 Results

4.1 Sediment

For all analytes in sediment, with the exceptions of molybdenum, ²²⁸Ra, and selenium, no significant differences existed in the population means between the Grand Junction site and reference area. Although a sufficient number of data points were available for both data sets, these analytes had such low detection frequencies in one or both data sets as to prevent statistical testing. Subsequent to external data validation, with the exception of location 1234 (1.4 mg/kg), all Grand Junction site locations for molybdenum were subsequently flagged as nondetects. Molybdenum was detected at 9 of 10 reference area locations. The only radium-228 detect (0.76 pCi/g) at the Grand Junction site was for location 1226 (300-series location 326). Radium-228 was detected in 5 out of 10 samples at the reference area with a maximum value of 0.83 pCi/g. Selenium was detected only once (Grand Junction site location 1234 [300-series location 328] [see Figure 4–15]). Summary statistics for analytes in sediment at the reference area and Grand Junction site are presented in Attachment 1.

4.2 Surface Water

Both filtered and unfiltered surface water data were available for the ecological sampling locations. However, at some locations the number of analytes differed slightly because the analyte list for the 300-series filtered surface water locations was not exactly the same as the analyte list or the ecological sampling locations. Table I-2 presents a summary of the analytes in surface ater for which statistical testing was not performed because of low detection frequency or the population means showed significant differences. Although the test results for uranium in filtered and unfiltered surface water did not show a significant difference between data sets, the maximum detected concentrations (0.258 mg/L for the filtered samples and 0.263 mg/L for the unfiltered samples) occurred at Grand Junction site location 1228. Both values exceed the UMTRA MCL. For some KW and Student's t-tests (i.e., ammonia [as NH₄], and uranium), the robustness of the test was in question since inclusion or exclusion of elevated values did not change the test result. In these cases, the calculated test statistic was marginally valid. For the unfiltered surface water, this apparent anomaly may be due in part to the fact that only six values were available for ammonia at the reference area (four sample locations were missing ammonia, sulfate, and fluoride results). For those data sets with sufficient detection frequency, only ammonia and strontium mean concentrations at the Grand Junction site were elevated with respect to the reference area. Summary statistics for analytes in surface water at the reference area and Grand Junction site are presented in Attachment 1.

4.3 Ground Water

Concentrations of some COPCs are elevated with respect to background wells; however, since ecological receptors are not in direct contact with this medium, no further evaluation of ground water was conducted for the ERA. The ERA focuses on the media that are potentially ontaminated as a result of contact with the contaminated ground water.

Table I–2. Summary of Analytes of Concern in Grand Junction Site Surface Water for Which Statistical Testing Was Not Performed or Population Means Showed Significant Differences

Analyte	Filtered /Unfiltered?	Test	Test Result	N	Result	Comment
Ammonia as NH4	Filtered	Kruskal- Wallis (KW)	Reference area and Grand Junction site analyte means are significantly different.	10 (reference area) vs. 9 (Grand Junction site) - not anduding high value of 89.2 mg/L (Location 1228)	Filtered results do not agree with unfiltered results.	The results were same with or without high value (Location 1228); 100 % detection frequency (DF) at Grand Junction site locations; 60% DF at reference area locations.
Fluoride	Filtered	кw	Reference area and Grand Junction site analyte means are not significantly different.	10 each at reference area and Grand Junction site	Test statistic was somewhat marginal.	DF at reference area (90%) > DF at Grand Junction site (50%) but Grand Junction site values are higher than reference area values; highest Grand Junction site detect (2.06 mg/L) was for Location 1228.
Nitrate	Filtered	None	Not applicable (NA)	5 (reference area) vs. 4 (Grand Junction site)	Grand Junction site locations showed no detects while DF at reference area was 100%; data set suspect.	Nitrate was not identified as an ecological COPC but the data were available for evaluation.
Nickel	Filtered	None	NA	10 each at reference area and Grand Junction site	No detects at reference area; Grand Junction site DF=20%	Highest detect was 0.0227 mg/L at Location 1228; other value was 0.0096 mg/L at Location 1226 (326).
Radium-226	Filtered	None	NA	10 each at reference area and Grand Junction site	Only 1 detect at all locations—Grand Junction site Location 1226 (326)	Detect is a low value (0.17 pCi/L).
Selenium	Filtered	None	NA	10 sech at reference area and Grand Junction site	Only 1 detect at all locations—reference area Location 1220	Grand Junction site DF=0%.
Uranium (Filtered	KW	Reference area and Grand Junction site analyte means are not significantly different.	10 each at reference area and Grand Junction site	Includes one high Grand Junction site-Location 1228 (0.258 mg/L)	Calculated test statistic (2.52) not far below Chi-square value (3.84) which is somewhat marginal.

Analyte	Filtered /Unfiltered?	Test	Test Result	N .	Result	Comment
Vanadium	Filtered	None	NA	10 each at reference area and Grand Junction site	Only 1 detect (0.136 mg/L) at all locations— Grand Junction site Location 1228	Low Grand Junction site DF (10%).
Ammonia as NH ₄	Unfiltered	KW and Student's t	Reference area and Grand Junction site analyte means are same	10 each at reference area and Grand Junction site	KW test statistic suspect	Results are same with or without 1, 2 or 3 highest Grand Junction site values; changing to significance level of 99% yields same results.
Arsenic	Unfiltered	Student's t	Reference area and Grand Junction site analyte means are significantly different.	10 each at reference area and Grand Junction site	Reference area mean > Grand Junction site mean	Grand Junction site concentrations less that reference area.
Molybdenum	Unfiltered	None	NA	10 each at reference area and Grand Junction site	Grand Junction site DF=100%; reference area DF=20%	
	eise in de la companya de la company				Based on revised data qualifiers, test results for filtered and unfiltered do not agree.	e de la companya de l
Nickel [*]	Unfiltered	None	NA	10 each at reference area and Grand Junction site	1 Grand Junction site detect; no detects at reference area	Low Grand Junction site DF (10%).
Radium-226	Unfiltered	None	NA	10 each at reference area and Grand Junction site	Only 1 detect (0.16 pCi/L) at all locations – Grand Junction site Location 1228	Low Grand Junction site DF (10%).
Strontium	Unfiltered	KW	Reference area and Grand Junction site analyte means are significantly different.	10 each at reference area and Grand Junction site	Grand Junction site mean > reference area mean	Reference mean > Grand Junction site inean by removal of two elevated values for Grand Junction site Locations 1226 and 1228.

Analyte	Filtered /Unfiltered?	Test	Test Result	N	Result	Comment
Uranium	Unfiltered	KW	Reference area and Grand Junction site analyte means are not significantly different.	10 each at reference area and Grand Junction site	Includes one high Grand Junction site Location 1228–0.263 mg/L.	Calculated test statistic (3.16) just below Chi-square value (3.84) which is marginal.
Vanadium	Unfiltered	None	NA .	10 each at reference area and Grand Junction site	Grand Junction detect (0.15 mg/L- Location 1228) vs. reference area maximum detect-0.11 mg/L; reference area DF=20%	Low Grand Junction site DF (10%).
Zinc	Unfiltered	None	NA	10 each at reference area and Grand Junction site	Only Grand Junction site detect— Location 1228 (0.0082 mg/L); no detects at reference area.	Low Grand Junction site DF (10%).

COPC—contaminant of potential concern N-number of samples mg/L-milligrams per liter pCi/L-picocuries per liter

4.4 Vegetation

ecause of the varying distribution of suitable phreatophytic vegetation at the ecological sampling locations, an optimum number of samples for each vegetation type could not always be obtained. This restricted the extent of statistical evaluations, since normality testing cannot be performed on analyte distributions with less than five data points. Because willow could only be collected at two sampling locations at the reference area and Grand Junction site, no statistical evaluations could be performed. The maximum values for this matrix have the highest degree of uncertainty. All root data have a higher degree of uncertainty compared to stem data because the plant roots were in direct contact with sediment and were more difficult to clean. As expected, the plant tissue data generally varied more than the abiotic data. To discern strong differences or trends in biological data, a much larger number of sampling locations is required. An optimum number of biological samples is usually limited to budget, schedule, and vegetation availability. No order-of-magnitude differences between Grand Junction site and reference area results were observed. Such a difference in values based on the number of samples for each data set might indicate a significant discrepancy. The results differed at most by a factor of 5, but more often the factors ranged between 2 and 3. Most biota analyses were nondetects, or the population means showed no significant differences, or the reference area maximum concentration exceeded the Grand Junction site maximum. Summary statistics for the vegetation samples by analyte, matrix, and submatrix are provided in Attachment 1. Table I-3 provides a summary of analytes in vegetation for which statistical testing was not performed due to low detection frequency, or the population means showed significant differences.

5.0 Risk Assessment Discussion

ne results of the ecological sampling indicate generally low levels of a few COPCs in sediment, surface water, and plant tissues. The occurrences of significant elevated concentrations coincide with sampling locations that are known to be either remnants of the wetlands mitigation ponds or ponded areas that receive little or no regular surface water flushing.

Based on sample size and variability, the strongest line-of-evidence factors for basing risk conclusions are the surface water and sediment results. In spite of the smaller sample sizes, the biota data serve as an additional but significant line-of-evidence. The tissue results show that for the majority of the analytes, Grand Junction site concentrations are the same as or less than the reference area concentrations.

The majority of the data indicate no significant differences between Grand Junction site and reference area mean analyte concentrations in both abiotic and biotic media. To maintain a conservative approach, the following constituents were retained as COPCs even though their occurrences appear to be isolated. In most cases, the occurrences coincide with Grand Junction site location 1228. On the basis of the 1998 ecological sampling, it is recommended that the following COPCs be retained:

- Ammonia in surface water
- Nickel in surface water
- Uranium in surface water
- Vanadium in surface water
 Arsenic in reed canarygrass stems
- Vanadium in reed canarygrass stems

Table I–3. Summary of Analytes of Concern in Grand Junction Site Vegetation for Which Statistical Testing Was Not Performed or Population Means Showed Significant Differences

Analyte	Vegetation	Test	Test Result	N	Result	Comment
Arsenic ·	Reed canarygrass stems	None	Not applicable (NA)	3 (reference area) vs. 5 (Grand Junction site)	Only detect at Grand Junction Site (1.55 mg/kg-Location 1228); 3 detects at reference area are less than single Grand Junction Site detect	Single detect suggests analyte is not a Grand Junction site-wide contaminant.
Molybdenum	Reed canarygrass stems	None	NA	3 (reference area) vs. 5 (Grand Junction site)	Only Grand Junction site detect is same as reference area detect	Comparable values for reference area and Grand Junction site suggest analyte is not elevated with respect to background.
Nickel	Reed canarygrass stems	None	NA .	3 (reference area) vs. 5 (Grand Junction site)	Only one detect-Grand Junction site Location 1228	Single detect suggests analyte is not a Grand Junction site-wide contaminant.
Uranium	Reed canarygrass stems	None	NA .	3 (reference area) vs. 5 (Grand Junction site)	Grand Junction site-2 detects/5 samples; only a single reference area detect	Maximum detect-Grand Junction site Location 1228 (0.195 mg/kg) vs. reference area detect (0.17 mg/kg); difference is within a reasonable margin of variability for biological data.
Vanadium	Reed canarygrass stems	None	NA .	3 (reference area) vs. 5 (Grand Junction site)	Grand Junction site-3 detects/5 samples; reference area-1 detect/3 samples	Maximum detect-Grand Junction site Location 1228 (4.6 mg/kg) vs. reference area detect (0.92 mg/kg); removal of Location 1228 value, next highest Grand Junction site value is 1.0 mg/kg-difference between these two values is within a reasonable margin of variability for biological data.
Zinc	Reed canarygrass roots	None	NA	3 (reference area) vs. 5 (Grand Junction site)	Grand Junction site maximum value (163 mg/kg) vs. reference area maximum value (159 mg/kg)	Difference between Grand Junction site and reference area maximum values is within a reasonable margin of variability for biological data.
Manganese	Cattail stems	Kruskal- Wallis (KW)	Reference area and Grand Junction site analyte means are different	5 (reference area) vs. 3 (Grand Junction site)	Grand Junction site maximum (Location 1226 (326) -914 mg/kg)) vs. reference area maximum value (452 mg/kg)	N=3 is the minimum number of sample for calculating summary statistics and is not statistically robust; all three Grand Junction site values are significantly elevated over reference area values.

yte	Vegetation	Test	Test Result		Result	Comment
Molybdenum	Cattail stems	KW	Reference area and Grand Junction site analyte means are different	5 (reference area) vs. 3 (Grand Junction site	Grand Junction site maximum (Location 1226 (326)–6.4 mg/kg)) vs. reference area maximum (1.4 mg/kg)	N=3 is the minimum number of samples for calculating summary statistics and is not statistically robust; remaining two highest Grand Junction site values are approx. 2.5-3.5 times higher than reference area values.
Molybdenum	Cattail roots	KW	Reference area and Grand Junction site analyte means are different	5 (reference area) vs. 3 (Grand Junction site	Grand Junction site maximum (Location 1235–3.7 mg/kg) vs. reference area maximum (0.98 mg/kg)	N=3 is the minimum number of samples for calculating summary statistics and is not statistically robust; remaining highest Grand Junction site values are approx. 2.5-5 times higher than reference area values.
Ra-226	Cattail roots	None	NA	5 (reference area) vs. 3 (Grand Junction site	Grand Junction site single detect = reference area maximum detect	2 detects in 5 samples at reference area.
Arsenic	Willow roots	None	NA	2 (reference area) vs. 2 (Grand Junction site	3.2 mg/kg (Grand Junction site maximum) vs. 2 mg/kg (reference area maximum)	N=2-results not conclusive; however, the difference between these values is within a reasonable distribution of natural variability for biological data.
Cadmium	Willow roots	None	NA	2 (reference area) vs. 2 (Grand Junction site	1.5 mg/kg (Grand Junction maximum) vs. 0.8 mg/kg (reference area maximum)	N=2-results not conclusive; however, the difference between these values is within a reasonable distribution of natural variability for biological data.
Cobalt	Willow roots	None	NA	2 (reference area) vs. 2 (Grand Junction site	Only 1 Grand Junction site detect–1.3 mg/kg (Location 1232)	N=2-results not conclusive; single detect suggests analyte is not a Grand Junction site-wide contaminant.
Copper	Willow roots	None	NA	2 (reference area) vs. 2 (Grand Junction site	Maximum Grand Junction site detect was 7.1 mg/kg; no reference area detects.	N=2-results not conclusive; however, based on 100/%DF, analyte may represent a contaminant.
iron special	Willow roots	None	NA	2 (reference area) vs. 2 (Grand Junction site	1,800 mg/kg (Grand Junction site maximum) vs. 1,480 mg/kg (reference area maximum)	N=2-results not conclusive; however, the difference between these values is within a reasonable distribution of natural variability for biological data.
Manganese	Willow roots	None	NA	2 (reference area) vs. 2 (Grand Junction site	116 mg/kg (Grand Junction site maximum) vs. 57 mg/kg (reference area maximum)	N=2-results not conclusive; however, the difference between these values is within a reasonable distribution of natural variability for biological data.

Analyte	Vegetation	Test	Test Result	N	Result	Comment
Molybdenum	Willow roots	None	NA	2 (reference area) vs. 2 (Grand Junction site	Only detect 0.87 mg/kg- Grand Junction site Location 1232; no reference area detects	N=2-results not conclusive; single detect suggests analyte is not a Grand Junction site-wide contaminant.
Strontium	Willow roots	None	NA NA	2 (reference area) vs. 2 (Grand Junction site	67.8 mg/kg (Grand Junction site maximum) vs. 58.2 mg/kg (reference area maximum)	N=2-results not conclusive although these values are essentially equivalent
Cadmium	Willow stems	None	NA.	2 (reference area) vs. 2 (Grand Junction site	2.3 mg/kg (Grand Junction site maximum) vs. 1.0 mg/kg (reference area maximum)	N=2-results not conclusive; however, the difference between these values is within a reasonable distribution of natural variability for biological data.
Uranium	Willow stems	None	NA NA	2 (reference area) vs. 2 (Grand Junction site	1 detect in 2 samples at Grand Junction site (0.13 mg/kg); no detects at reference area;	N=2-results not conclusive; single detect suggests analyte is not a Grand Junction site-wide contaminant.

- Manganese in cattail stems
- Molybdenum in cattail stems Molybdenum in cattail roots

Table I-4 provides additional information about the screening criteria and the potential ecological risk posed by elevated COPC concentrations. The ecological COPCs presented above are identified in bold type in the table.

One of the objectives of the characterization work plan (DOE 1997) was to collect data from areas that might have the highest contaminant levels. The highest values were obtained from ponded areas (locations 1226, 1228, and 1235, see Figure 4–15) where the Colorado River provides little or no natural flushing.

Because the occurrences are localized, elevated concentrations of ammonia and some metals in surface water and vegetation at these locations probably do not present an unacceptable ecological risk. Although unlikely, the possibility remains that an isolated effect or mortality could be associated with these locations; however, no negative ecological effects have been observed.

Location 1226 (Figure 4–15) is located at the Botanical Gardens pond. This pond is small, fenced, and provides no significant ecological habitat. The ecological sampling for surface water at this location did not include all parameters listed on the state of Colorado agricultural standards (Colorado Department of Health, Water Quality Control Commission, *The Basic Standards for Ground Waters* (Section 3.11.0, amended 4/1996). For those analytes that were included on this list, only the pH value of 9.07 was elevated over the recommended maximum value of 8.5. Based strictly on the surface water results for the ecological sampling event, there is no indication that is pond cannot be used to irrigate the plants in the arboretum.

The other ponded areas (Figure 4–15, locations 1228 and 1235) are very small and are located on a braided portion of the river. Their small size (estimated to be no more than 1,000 square feet each) restricts the numbers and types of ecological receptors that rely solely on them for surface water, forage, or prey species. In addition, wildlife receptors typically utilize a variety of prey or forage items.

Manganese concentrations in cattail stems averaged 860 mg/kg at the Grand Junction site and 300 mg/kg at the reference area. Before the bioaccumulation factors (BAFs) for manganese were calculated, the plant tissue concentrations were plotted against the sediment concentrations to detect a linear correlation. A correlation coefficient of 0.77 was obtained for the manganese data, and an r^2 of 0.6 was calculated for the linear regression trend line. BAFs were obtained by dividing the maximum co-located tissue concentration by the minimum co-located sediment concentration. The bioaccumulation factors (BAFs) calculated for manganese were approximately equal for the Grand Junction site and reference area (4.5 and 3.9, respectively). The manganese sediment concentrations for the Grand Junction site and reference area locations did not differ significantly and were all between 200 and 300 mg/kg. The screening benchmark for terrestrial plant phytotoxicity is given as 500 mg/kg in soil (ORNL 1996). A mature leaf tissue manganese concentration range of 200 to 1,000 mg/kg (dry weight) was cited as toxic in the BLRA (Kabata-Pendias and Pendias 1992, cited in DOE 195). Manganese appears to bioaccumulate in cattail stems to a significant level at both the allsite locations and the reference area.

Table I–4. Summary of Analytes of Concern by Medium, Screening Criteria, and Interpretation of Ecological Risk

Analyte	Medium	Grand Junction Site Concentration of Concern	Screening Criterion	Data Summary	Comment	Risk Interpretation
Fluoride	Sediment	7.7 mg/kg	No SQC available	Gaximum Grand Junction site detect (7.7 mg/kg) was at Location 1233; highest reference area detect was 3.2 mg/kg; 100% DF at Grand Junction site; 90% DF at reference area;	Test statistic was marginal; graphical inspection of data suggests that Grand Junction site data may be slightly elevated with respect to the reference area; next highest Grand Junction site detect was 4.9 mg/kg (Location 1235).	Based strictly on statistical testing, fluoride is not retained as a Grand Junction site COPC.
Molybdenum	Sediment	1.4 mg/kg	2.0 mg/kg-soil- terrestrial plant benchmark (Bench 1996); no SQC available	Only Grand Junction detect (1.4 mg/kg) vs. highest reference area detect (0.91 mg/kg) 10% DF at Grand Junction site; 90% DF at reference area;	Single Grand Junction site detect is at Location 1234. The difference between these values is within a reasonable distribution of natural variability for environmental data.	Low Grand Junction site DF suggests that analyte is not a COPC. Concentration is below screening benchmark for terrestrial plant phytotoxicity based on soil concentration; this benchmark is primarily for information purposes and somewhat relevant.
Radium-228	Sediment	0.76 pCi/g	For Ra-226 in sediment including daughters (ORNL 1998): 2.82E04 pCi/g-small fish 3.32E04 pCi/g-large fish	Reference area DF (50%) >DF Grand Junction site (10%) Grand Junction site detect > maximum reference area detect	Single Grand Junction site detect is at Location 1226 (326); concentration likely elevated due to evaporation at this location as no regular flushing occurs (i.e., stagnant pond).	Low Grand Junction site DF suggests that analyte is not a COPC. Grand Junction site concentration is well below both screening criteria; benchmarks are the dry weight concentrations that produce a dose rate of 1 rad/day.
Selenium	Sediment	0.43 mg/kg	1:0 mg/kg-soil- terrestrial plant benchmark (Bench 1996); no SQC available	No detects at reference area; only 1 detect at Grand Junction site (Location 1234).	Low DF would indicate analyte is not a significant problem.	Concentration is below the screening benchmark for terrestrial plant phytotoxicity based on a soil concentration; this benchmark is primarily for information purposes and somewhat relevant

Analyte	Medium	Grand Junction Site Concentration of Concern	Screening Criterion	Data Summary	Comment	Risk Interpretation
Ammonia as NH ₄	Filtered surface water	89.2 mg/L	0.0017 mg/L as ammonia –LCV for all organisms (Bench 1996) 2.4 mg/L as ammonia– LCV for aquatic plants (Bench 1996)	Detects at all Grand Junction site locations; detects at 6/10 reference area locations; 89.2 mg/L (Grand Junction site maximum–Location 1228); all but 2 Grand Junction site values < 0.1 mg/L	Means are significantly different even with removal of one high value (Location 1228); the robustness of the test is suspect for these data sets.	All but one reference area value (including non-detects at the detection limit) exceed this benchmark which suggests that it may be overly conservative. This high value may represent a localized ecological risk.
Fluoride	Filtered surface water	2.0 mg/L	None available.	KW results suggest that means are not significantly different even though reference area DF (90%) > Grand Junction site DF (50%).	Statistical test may not be sufficiently robust for these data sets. Graphical evaluation of data indicates means are similar if Locations 1226 and 1228 are not included.	Based strictly on statistical testing, analyte is not retained as a Grand Junction site COPC.
Nitrate	Filtered surface water	none	not applicable	All non-detects at Grand Junction site and all detects at reference area.	Results are suspect.	None-nitrate is not an ecological COPC.
Nickel	Filtered surface water	0.0227 mg/L	Chronic AWQC- 0.160 mg/L (Ecotox 1996) < 0.005 mg/L-LCV for all organisms (Bench 1996)	Highest detect-0.0227 mg/L occurred at Grand Junction site Location 1228.	Concentration likely elevated due to evaporation at this location as no regular flushing occurs (i.e., stagnant remnant of mitigation wetland pond).	Highest value is well below AWQC but both Grand Junction site detects (Locations 1226 and 1228) exceed LCV aquatic benchmark. These high values may represent localized ecological risks.

Appendix I

Analyte	Medium	Grand Junction Site Concentration of Concern	Screening Criterion	Data Summary	Comment	Risk Interpretation
Ra-226	Filtered surface water	0.17 pCi/L	160 pCi/L-smail fish (water) (ORNL 1998) 160 pCi/L-large fish (water) (includes short-lived progeny) (ORNL 1998) 5 pCi/L-Colorado surface water standard	Only detect (0.17 pCi/L) occurred at Grand Junction site Location 1226 (326).	Concentration likely elevated due to evaporation at this location as no regular flushing occurs (i.e., stagnant pond).	Only detect is well below screening benchmarks; ORNL benchmarks are the concentrations in water that produce a dose rate of 1 rad/day.
Uranium	Filtered surface water	0.258 mg/L	0.142 mg/L- estimated LCV for all organisms (Bench 1996) UMTRA MCL-0.044 mg/L	Highest detect (0.258 mg/L) was at Grand Junction Location 1228. All other detects were below 0.005 mg/L.	Location is stagnant remnant of mitigation wetland pond; concentration likely elevated due to evaporation at this location as no regular flushing occurs.	Concentration exceeds both criteria. The site data did not differ significantly from the reference area data even including this elevated value; the test statistic was marginal. This high value may represent a localized ecological risk.
Vanadium	Filtered surface water	0.136 mg/L	0.08 mg/L estimated LCV for all organisms (Bench 1996)	Only Grand Junction site detect was at Location 1228.	Location is stagnant remnant of mitigation wetland pond; concentration likely elevated due to evaporation at this location as	Concentration exceeds 2 of 3 criteria. This high value may represent a localized ecological risk.
		um m	1.9 mg/L-estimated LCV for daphnids (Bench 1996) 0.1 mg/L-Colorado agricultural standard		no regular flushing occurs.	

<u>f.</u>

Analyte	Medium	Grand Junction Site Concentration of Concern	Screening Criterion	Data Summary	Comment	Risk interpretation
Ammonia as NH4	Unfiltered surface water	91.7 mg/L	0.0017 mg/L as ammonia-aquatic invertebrate screening benchmark (Bench 1996) 2.4 mg/L as ammonia- LCV for aquatic plants (Bench 1996)	Detects at all Grand Junction site locations and all 6 reference area locations; Grand Junction site maximum (Location 1228–91.7 mg/L) Statistical testing indicates no significant difference in population means.	Means are not significantly different even with removal of one high value (Location 1228); the robustness of the statistical test is suspect for these data sets; graphical inspection of data reveals slightly different populations; in addition to K-W test, t-test without Location 1228 indicates means are same; this apparent anomaly may be due to N=6 for reference area for unfiltered data	Location is stagnant remnant of mitigation wetland pond; concentration likely elevated due to evaporation at this location as no regular flushing occurs. This high value may represent a localized ecological risk.
Arsenic	Unfiltered surface water	0.0088 mg/L	Chronic AWQC- 0.19 mg/L (Ecotox 1998; Bench 1996) 0.914 mg/L-LCV for all organisms (Bench 1996)	Maximum value was at Grand Junction site (0.0088 mg/L-Location 1228).	Location is stagnant remnant of mitigation wetland pond; concentration likely elevated due to evaporation at this location as no regular flushing occurs.	All detects at all locations well below AWQC and aquatic benchmark.
Molybdenum	Unfiltered surface water	0.10 mg/L	0.24 mg/L-Tier II (Ecotox 1996; Bench 1996) 0.88 mg/L-LCV for all organisms (Bench 1996)	Maximum value was at Grand Junction site (0.1 mg/L-Location 1228).	Location is stagnant remnant of mitigation wetland pond; concentration likely elevated due to evaporation at this location as no regular flushing occurs.	All detects at all locations well below Tier II value and equatic benchmark.
Nickel	Unfiltered surface water	0.0271 mg/L	Chronic AWQC- 0.16 mg/L (Bench 1996) < 0.005 mg/L-LCV for all organisms (Bench 1996)	Only detect (0.0271 mg/L) was at Grand Junction site Location 1228.	Location is stagnant remnant of mitigation wetland pond; concentration likely elevated due to evaporation at this location as no regular flushing occurs.	Only detect is below AWQC but exceeds LCV for all aquatic organisms; detection limit (0.0189 mg/L) exceeds LCV benchmark. This elevated value may represent a localized ecological risk.
Ra-226	Unfiltered surface water	0.16 pCi/L	160 pCi/L-small fish (water) (ORNL 1998) 160 pCi/L-large fish (water) (includes short-lived progeny) (ORNL 1998)	Only detect was at (0.16 pCi/L-Grand Junction site Location 1228).	Concentration likely elevated due to evaporation at this location as no regular flushing occurs; location is stagnant remnant of mitigation wetland pond.	Only detect is well below screening benchmarks; benchmarks are the concentrations in water that produce a dose rate of 1 rad/day.

1. .

Appendix I

Analyte	Medium	Grand Junction Site Concentration of Concern	Screening Criterion	Data Summary	Comment	Risk Interpretation
Strontium	Unfiltered surface water	3.18 mg/L 5.03 mg/L	42 mg/L–LCV for all organisms (Bench 1996)	Maximum values occurred at Grand Junction site Locations 1226 and 1228.	Concentration likely elevated due to evaporation at these locations as no regular flushing occurs (stagnant ponded areas).	All detects are well below screening benchmark.
Uranium	Unfiltered surface water	0.263 mg/L	0.142 mg/L- estimated LCV for all organisms (Bench 1996) UMTRA MCL-0.044 mg/L	Highest detect (0.263 mg/L) was at Grand Junction site Location 1228. All other detects were below 0.005 mg/L.	Location is stagnant remnant of mitigation welland pond; concentration likely elevated due to evaporation at this location as no regular flushing occurs.	Concentration exceeds both the screening criteria and MCL. The site data did not differ significantly from the reference area data even including this elevated value; the test statistic was somewhat marginal. This high value may represent a localized ecological risk.
Vanadium	Unfiltered surface water	0.155 mg/L	0.019 mg/L-Tier II (Ecotox 1996). 0.08 mg/L-LCV for all organisms (Bench 1996)	Only Grand Junction site detect (0.155 mg/L) was at Location 1228. Two reference area detects are below both criteria.	Concentration likely elevated due to evaporation at this location as no regular flushing occurs; location is stagnant remnant of mitigation wetland pond.	Concentration exceeds both screening benchmarks. This high value may represent a localized ecological risk.
Zinc	Unfiltered surface water	0.0082 mg/L	0.10 mg/L-Chronic AWQC (Bench 1996; Ecotox 1996) 0.12 mg/L-Acute AWQC (Bench 1996)	Only detect (0.0082 mg/L) was at Grand Junction site Location 1228.	Concentration likely elevated due to evaporation at this location as no regular flushing occurs; location is stagnant remnant of mitigation wetland pond.	Only detect is well below both AWQCs.
Arsenic	Reed canarygrass stems	1.55 mg/kg	0.621 mg/kg as arsenite—concentration in food item necessary to produce a NOAEL of 0.019 mg/kg for white-tailed deer (Bench 1996).	Maximum Grand Junction site value-1.55 mg/kg (Location 1228).	Inorganic arsenic is not generally considered a significant bioaccumulator. A BAF could not be calculated since linear correlation did not exist between sediment and tissue concentrations. Excluding one high value, all other Grand Junction site values are comparable to reference area values.	Concentration exceeds screening benchmark. Consumption of single food item is unlikely, and consideration of an AUF would diminish potential exposure. This high value may represent a localized ecological risk.

DOE/Grand Junction Office February 1999

Analyte	Medium	Grand Junction Site Concentration of Concern	Screening Criterion	Data Summary	Comment	Risk Interpretation
Nickel	Reed canarygrass stems	1.425 mg/kg	149 mg/kg as nickel sulfate hexahydrate—concentration in food item necessary to produce a NOAEL of 29.4 mg/kg for cottontail rabbit (Bench 1996).	Only detect (1.425 mg/kg) at any location (Grand Junction site Location 1228).	Low DF (10%) would indicate analyte is not a problem.	Concentration is well below screening benchmarks.
			364.3 mg/kg-as nickel sulfate hexahydrate-concentration in food item necessary to produce a NOAEL of 11.22 mg/kg for white-tailed deer (Bench 1996).			
Uranium	Reed canarygrass stems	0.195 mg/kg	14.87 mg/kg as uranyl acetate—concentration in food item necessary to produce a NOAEL of 0.458 mg/kg for white-tailed deer (Bench 1996).	Maximum Grand Junction site detect (Location 1228–0.195 mg/kg) vs. only reference area detect (0.17 mg/kg); maximum sediment value for reference area was 3.1 mg/kg; maximum sediment value for Grand Junction site was 3.0 mg/kg	Reference area—1 detect/3 samples; Grand Junction site—2 detects/5 samples These detects are essentially equivalent.	Consumption of a single food item is unlikely; consideration of an area use factor (AUF) would reduce potential exposure. Elevated concentration is below screening benchmark.

Appendix I

Analyte	Medium	Grand Junction Site Concentration of Concern	Screening Criterion	Data Summary	Comment	Risk Interpretation
Vanadium	Reed canarygrass stems	4.6 mg/kg	0.725 mg/kg as sodium metavanadate—concentration in food item necessary to produce a NOAEL of 0.143 mg/kg for cottontail rabbit (Bench 1996). 1.78 mg/kg as sodium metavanadate—concentration in food item necessary to produce a NOAEL of 0.055 mg/kg for white-tailed deer (Bench 1996).	Maximum Grand Junction site detect (4.6 mg/kg-Location 1228)	Removing maximum Grand Junction site detect (Location 1228–4.6 mg/kg), next highest value is 1.3 mg/kg (Grand Junction site Location 1230) vs. 0.92 mg/kg (reference area); the difference between these lesser values is within a reasonable distribution of natural variability for biological data.	Concentrations of Grand Junction two highest detects and single reference area detect are greater than lowest screening benchmark. This suggests that criterion may be overly conservative. Consumption of single food item unlikely; consideration of an AUF would reduce potential exposure. This high value may represent a localized ecological risk.
Zinc	Reed canarygrass roots	163 mg/kg	595 mg/kg as zinc oxide-concentration in food item necessary to produce a NOAEL of 118 mg/kg for cottontail rabbit (Bench 1996). 1,457 mg/kg as zinc oxide-concentration in food item necessary to produce a NOAEL of 44.9 mg/kg for white-tailed deer (Bench 1996).	Maximum value (163 mg/kg- Grand Junction site) vs. maximum value (159 mg/kg- reference area)	The difference in these values is within a reasonable distribution of natural variability for biological data.	These values are essentially equivalent. Maximum value is well below screening benchmarks.

DOE/Grand Junction Office February 1999

Analyte ,	Medium	Grand Junction Site Concentration of Concern	Screening Criterion	Data Summary	Comment	Risk Interpretation
Manganese	Cattail stems	914 mg/kg	802 mg/kg as Mn ₃ O ₄ — concentration in food item necessary to produce a NOAEL of 25.1 mg/kg for white-tailed deer (Bench 1996).	Maximum value (914 mg/kg— Location 1226 (326) The means for the data sets differed significantly; however, there were only 3 data points for the Grand Junction site.	Calculated BAFs for Grand Junction site (4.5) and for reference area (3.9); removing Location 1226 value, replacing with next highest value, and recalculating Grand Junction site BAF results in a Grand Junction site BAF = 4.1; this recalculated BAF and reference area BAF are essentially equivalent.	Concentration exceeds screening benchmark. Consumption of single food item unlikely; consideration of an AUF would reduce potential exposure All three Grand Junction site values may represent localized ecological risks.
Molybdenum	Cattail stems	6.4 mg/kg	1.28 mg/kg as MoO ₄ — concentration in food item necessary to produce a NOAEL of 0.04 mg/kg for white-tailed deer (Bench 1996).	6.4 mg/kg (Grand Junction site maximum–Location 1235) vs. reference area maximum 1.4 mg/kg	BAF could not be calculated since a linear correlation did not exist between sediment and tissue concentrations.	Concentration exceeds screening benchmarks. Consumption of single food item unlikely; consideration of an AUF-would reduce potential exposure. This high value may represent a localized ecological risk.
			0.52 mg/kg as MoO ₄ —concentration in food item necessary to produce a NOAEL of 0.10 mg/kg for cottontail rabbit (Bench 1996).			

Appendix I

Analyte	Medium	Grand Junction Site Concentration of Concern	Screening Criterion	Data Summary	Comment	Risk Interpretation
Molybdenum	Cattail roots	3.7 mg/kg	1.28 mg/kg as MoO₄—concentration in food item necessary to produce a NOAEL of 0.04 mg/kg for white-tailed deer (Bench 1996). 0.52 mg/kg as MoO₄—concentration in food item necessary to produce a NOAEL of 0.10 mg/kg for cottontail rabbit (Bench 1996).	3.7 mg/kg (Grand Junction site maximum–Location 1235) vs. reference area maximum 0.98 mg/kg	BAF could not be calculated since a linear correlation did not exist between sediment and tissue concentrations; The difference in these values is within a reasonable distribution of natural variability for biological data.	Concentration exceeds screening benchmarks. Root data have higher degree of uncertainty due to difficulty in cleaning of tissue prior to analysis. Consumption of single food item unlikely; consideration of an AUF would reduce potential exposure. This high value may represent a localized ecological risk.
Arsenic	Willow roots	3.2 mg/kg	0.621 mg/kg as arsenite—concentration in food item necessary to produce a NOAEL of 0.019 mg/kg for white-tailed deer (Bench 1996).	3.2 mg/kg (Grand Junction site maximum–Location 1232) vs. 2 mg/kg (reference area maximum)	The difference between these values is within a reasonable natural variability for biological data. N=2 at Grand Junction site and reference area.	Both the Grand Junction and reference area concentrations exceed the screening benchmark which suggests that the criterion may be overly conservative. Root data have higher degree of uncertainty due to difficulty in cleaning of tissue prior to analysis.

Analyte	Medium	Grand Junction Site Concentration of Concern	Screening Criterion	Data Summary	Comment	Risk Interpretation
Cadmium	Willow roots	1.5 mg/kg	8.8 mg/kg as cadmium chloride— concentration in food item necessary	1.5 mg/kg (Grand Junction site maximum–Location 1229) vs. 0.8 mg/kg (reference area maximum)	The difference between these values is within a reasonable distribution of natural variability for biological data.	Root data have higher degree of uncertainty due to difficulty in cleaning of tissue prior to analysis.
			to produce a NOAEL of 0.27 mg/kg for white- tailed deer (Bench 1996).	· · · · · · · · · · · · · · · · · · ·	N=2 at Grand Junction site and reference area	Concentration is below both screening benchmarks.
•			3.6 mg/kg as cadmium chloride—concentration in food item necessary to produce a NOAEL of 0.71 mg/kg for cottontail rabbit (Bench 1996).			
Cobalt	Willow roots	1.3 mg/kg	No wildlife screening benchmark available.	1.3 mg/kg-single Grand Junction site detect-(Location 1232)	No detects at reference area N=2 at Grand Junction site and reference area	Root data have higher degree of uncertainty due to difficulty in cleaning of tissue prior to analysis.
		,		·		Consumption of single food item unlikely; consideration of an AUF would reduce potential exposure.
Copper	Willow roots	7.1 mg/kg	139 mg/kg as copper sulfate—concentration in food item necessary to produce a	7.1 mg/kg-single Grand Junction site detect occurred at Location 1232.	No detects at reference area N=2 at Grand Junction site and reference area	Root data have higher degree of uncertainty due to difficulty in cleaning of tissue prior to analysis. Elevated concentration is well
			NOAEL of 3.4 mg/kg for white-tailed deer (Bench 1996).			below both screening benchmarks.
			56.6 mg/kg as copper sulfate— concentration in food item necessary to produce a			
•			NOAEL of 11.2 mg/kg for cottontail rabbit (Bench 1996).	and the second s		in egine Turbi Marin

<u>}</u>.

Appendix I

Analyte	Medium	Grand Junction Site Concentration of Concern	Screening Criterion	Data Summary	Comment	Risk interpretation
Iron	Willow roots	1,800 mg/kg	No wildlife screening benchmark available.	1,800 mg/kg (Grand Junction site maximum) vs. 1,480 mg/kg (reference area maximum)	The difference between these values is within a reasonable distribution of natural variability for biological data	Root data have higher degree of uncertainty due to difficulty in cleaning of tissue prior to analysis.
	•				N=2 at Grand Junction site and reference area	
Manganese	Willow roots	116 mg/kg	802 mg/kg as Mn ₃ O ₄ — concentration in food item necessary	116 mg/kg (Grand Junction site maximum) vs. 57 mg/kg (reference area maximum)	The difference between these values is within a reasonable distribution of natural variability for biological data.	Concentration is well below screening benchmark. Root data have higher degree of uncertainty due to difficulty in
			to produce a NOAEL of 25.1 mg/kg for white- tailed deer (Bench 1996).		Calculated BAFs for Grand Junction site (0.49) and for reference area (0.26) –the difference in these values is within a reasonable degree of natural variability for environmental data;	cleaning of tissue prior to analysis. Low BAFs suggest low likelihood of significant bioaccumulation in roots.
					N=2 at Grand Junction site and reference area	
Molybdenum	Willow roots	0.87 mg/kg	1.28 mg/kg as MoO₄— concentration in food item necessary	0.87 mg/kg-single detect (Grand Junction site Location 1232)	No detects at reference area N=2 at Grand Junction site and reference area	Root data have higher degree of uncertainty due to difficulty in cleaning of tissue prior to analysis.
			to produce a NOAEL of 0.04 mg/kg for white- tailed deer (Bench 1996)		1	Concentration is below screening benchmark.
Strontium	Willow roots	67.8 mg/kg	No wildlife screening benchmark available.	67.8 mg/kg (Grand Junction site maximum) vs. 58.2 mg/kg (reference area maximum)	The difference between these values is within a reasonable distribution of natural variability for biological data	Root data have a higher degree of uncertainty due to difficulty in cleaning of tissue prior to analysis.
	,		Maria de la Caracteria de la Caracteria de la Caracteria de la Caracteria de la Caracteria de la Caracteria de Caracteria de la Caracteria del Caracteria de la Caracteria del Caracteria de la C		N=2 at Grand Junction site and reference area	

DOE/Grand Junction Office February 1999

Analyte	Medium	Grand Junction Site Concentration of Concern	Screening Criterion	Data Summary	Comment	Risk Interpretation
Uranium	Willow roots	0.72 mg/kg	14.87 mg/kg as uranyl acetate—concentration in food item necessary to produce a NOAEL of 0.458 mg/kg for white-tailed deer (Bench 1996).	0.72 mg/kg (Grand Junction site maximum) vs. 0.19 mg/kg (reference area maximum)	A BAF could not be calculated since a linear correlation did not exist between sediment and tissue concentrations. The difference between these values is likely within a reasonable distribution of natural variability for biological data. N=2 at Grand Junction site and reference area	Concentration is well below screening benchmark. Root data have higher degree of uncertainty due to difficulty in cleaning of tissue prior to analysis.
Vanadium	Willow roots	3.4 mg/kg	0.725 mg/kg as sodium metavanadate—concentration in food item necessary to produce a NOAEL of 0.143 mg/kg for cottontail rabbit (Bench 1996).	3.4 mg/kg (Grand Junction site maximum) vs. 1.5 mg/kg (reference area maximum)	A BAF could not be calculated since a linear correlation did not exist between sediment and tissue concentrations. The difference between these values is within a reasonable distribution of natural variability for biological data. N=2 at Grand Junction site and reference area	Root data have higher degree of uncertainty due to difficulty in cleaning of tissue prior to analysis. Both Grand Junction site and reference area values exceed screening benchmark which suggests that criterion may be overly conservative.
Arsenic	Willow stems	0.96 mg/kg	0.621 mg/kg as arsenite—concentration in food item necessary to produce a NOAEL of 0.019 mg/kg for white-tailed deer (Bench 1996).	0.96 mg/kg (Grand Junction site maximum) vs. 0.48 mg/kg (reference area maximum)	The difference between these values is within a reasonable distribution of natural variability for biological data. N=2 at Grand Junction site and reference area	Maximum Grand Junction site value slightly exceeds screening benchmark. Root data have higher degree of uncertainty due to difficulty in cleaning of tissue prior to analysis.

į,

Analyte

DOE/Grand Junction Office February 1999

Allelyte	RIGGIGIII	of Concern	Criterion	Data Summary	Comment	Risk interpretation
Cadmium	Willow stems	2.3 mg/kg	8.8 mg/kg as cadmium chloride—concentration in food item necessary to produce a NOAEL of 0.27 mg/kg for white-tailed deer (Bench 1996).	2.3 mg/kg (Grand Junction site maximum) vs. 1.0 mg/kg (reference area maximum)	The difference between these values is within a reasonable distribution of natural variability for biological data. N=2 at Grand Junction site and reference area	Root data have higher degree of uncertainty due to difficulty in cleaning of tissue prior to analysis. Maximum value is below screening benchmarks.
	•		3.6 mg/kg as cadmium chloride—concentration in food item necessary to produce a NOAEL of 0.71 mg/kg for cottontail rabbit (Bench 1996).			
Uranium	Willow stems	0.13 mg/kg	14.87 mg/kg as uranyl acetate-concentration in food item necessary to produce a NOAEL of 0.458 mg/kg for white-tailed deer (Bench 1996).	0.13 mg/kg- only Grand Junction site detect occurred at Location 1229.	No detects at reference area N=2 at Grand Junction site and reference area	Concentration is well below screening benchmark.

Data Summary

BAFs—bloaccumulation factors
COPCs—chemicals of potential concern
DF—detection frequency
KW—Kruskal-Wallis
pCl/L—picocuries per liter
pCl/g—picocuries per gram
mg/kg—milligrams per kilogram

Grand Junction Site

Screening

Medium

mg/L—miligrams per liter
Tier II—Great Lakes Water Quality Initiative Tier II Methodology
LCV—lowest chronic value
AWQC—Ambient Water Quality Criteria
MCL—maximum concentration limit
NOAEL—no observed adverse effect level
SQC—Sediment Quality Criteria

Comment

Risk Interpretation

ORNL—Radiological Benchmarks for Screening Contaminants of Potential Concern for Effects on Aquatic Blota at Oak Ridge National Laboratory, Oak Ridge Tennessee, BJC/0R-80, July 1998. Bench—Screening Benchmarks for Ecological Risk Assessment (Oak Ridge National Laboratory, version 1.6, 10/1996). Ecolox—Ecolox Thresholds, US EPA Office of Solid Waste and Emergency Response, January 1996, EPA 540/F-95/038.

As stated in Kabata-Pendias and Pendias 1992, "... Mn compounds are known for their rapid oxidation and reduction under variable soil environments, and thus oxidizing conditions may reatly reduce the availability of Mn and associated micronutrients, whereas reducing conditions anay lead to the ready availability of these elements even up to the toxic range."

Therefore, it is possible that under stagnant conditions, manganese may become highly bioavailable to cattails, thereby producing such a high concentration as observed at Location 1226 (914 mg/kg wet-weight). Reducing conditions at the other two Grand Junction site locations (1231 and 1235) might also account for the elevated manganese concentrations in cattails. It is noteworthy that most elevated concentrations of metals in biota occurred at generally stagnant ponded areas that represent the remnants of the mitigation wetlands ponds, especially locations 1228 and 1235.

Since the data evaluation did not indicate an unacceptable ecological risk at the Grand Junction site, the ERA concludes with the analysis phase. Exposure estimates and stress-response profiles have not been calculated, and no risk characterization was performed.

Some residual milling-related constituents apparently persist at the Grand Junction site, as shown by the occasional elevated concentrations of metals and ammonia in surface water and biota. Based on a review of the analytical data and screening criteria, these isolated occurrences are not likely to present significant ecological risks.

Natural flushing is expected to diminish ground water COPC concentrations to negligible levels and prevent bioaccumulation of contaminants through phreatophytes growing in the terrestrial habitat. This situation depends on the future land use at the millsite.

levated concentrations of COPCs in surface water, sediment, and biota are expected to diminish over time as a result of natural ground water flushing. The sediment concentrations do not indicate site-related contamination, although elevated concentrations in some of the biota suggests that some degree of bioaccumulation is occurring. Constituent concentrations in sediment and biota are likely to persist for a longer period of time. Periodic flooding of the Colorado River adjacent to the site will tend to disperse these contaminants and remove the remaining boundaries of the mitigation wetlands ponds.

6.0 Ecological Risk Conclusion

Ecological risk assessments evaluate the likelihood that adverse ecological effects are occurring or might occur as a result of exposure to a physical, chemical, or biological entity. Section 6.2 describes the collection and evaluation of information from surface water, sediment, and vegetation to determine risks to the environment. Samples were collected from the plume area and from a reference area located in an ecologically similar environment about 3 miles east (upgradient) along the Colorado River.

Results of this sampling indicate generally low levels of a few COPCs in sediment, surface water, and plant tissues. Some residual levels of millsite-related constituents still remain in ponded areas along the Colorado River that receive little or no regular surface water flushing. 'early all the data indicate no significant differences between the Grand Junction site and the ierence area for concentrations of COPCs in biotic and abiotic media. To be conservative, it is recommended that ammonia, nickel, uranium and vanadium in surface water, arsenic and

vanadium in reed canarygrass stems, manganese and molybdenum in cattail stems, and molybdenum in cattail roots be retained as COPCs. Because the data evaluation did not indicate an unacceptable ecological risk for the Grand Junction site, the ERA concludes with the analysis phase. Exposure estimates and stress-response profiles were not calculated and no risk characterization was performed.

7.0 References

Kabata-Pendias, Alina, and Henry. K. Pendias, 1992. Trace Elements in Soils and Plants, 2nd ed., CRC Press, Boca Raton, Florida.

ORNL, 1998. Radiological Benchmarks for Screening Contaminants of Potential Concern for Effects on Aquatic Biota at Oak Ridge National Laboratory, Oak Ridge, Tennessee, BJC/OR-80, July.

———, 1996. Screening Benchmarks for Ecological Risk Assessment Database, BENCH version 1.6, Oak Ridge National Laboratory, October.

DOE, 1995. Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site At Grand Junction, Colorado. DOE/AL/62350-104, Rev. 2. September, 1995.

DOE, 1996. Site Observational Work Plan for the UMTRA Project Site at Grand Junction, Colorado. DOE/AL/62350-215, Rev. 0. March 1996.

DOE, 1997. Work Plan for Characterization Activities at the UMTRA Grand Junction Project Site. MAC-GWGRJ 1.8. September, 1997.

EPA (U.S. Environmental Protection Agency), 1998. Guidelines for Ecological Risk Assessment (Final), Risk Assessment Forum, EPA/630/R-95/002F, April.

——, 1996. ECO Update, Ecotox Thresholds, Intermittent Bulletin, Vol. 3, No. 2, Office of Solid Waste and Emergency Response, EPA 540/F-95/038, January.

———, 1992. Framework for Ecological Risk Assessment, Risk Assessment Forum, Washington, D.C. EPA/630/R-92/001.

———, 1989. Ecological Assessments of Hazardous Waste Sites—A Field and Laboratory Reference Document, EPA/600/3-89/013, Office of Research and Development, Washington, DC.

Attachment 1

Statistics for Ecological Risk Assessment Samples

Summary Statistics for the Reference Area—Inorganics in Sediment

Analyte	Number of Detects	Number of Samples	% Detects	Minimum	Maximum	Average	Standard Deviation	UCL 95	Units
Ammonia as NH4	10	10	100	1.60	11.50	4.47	3.59	6.55	mg/kg
Arsenic	10	10	100	4.10	6.00	5.13	0.52	5.43	mg/kg
Cadmium	10	10	100	0.17	0.67	0.28	0.14	0.36	mg/kg
Cobalt	10	10	100	2.50	4.30	3.50	0.59	3.84	mg/kg
Copper	10	10	100	5.50	14.50	9.45	2.67	10.99	mg/kg
Fluoride	10	10	100	1.10	3.20	2.07	0.69	2.47	mg/kg
ron	10	10	100	9135	12800	11043	1124	11694	mg/kg
Manganese	10	10	100	152.0	252.0	208.7	40.72	232.3	mg/kg
Molybdenum	10	10	100	0.53	0.91	0.74	0.12	0.81	mg/kg
Vickel	10	10	100	5.90	14.20	9.48	2.32	10.82	mg/kg
Radium-226	10	10	100	0.61	1.17	0.82	0.17	0.92	pCi/g
Radium-228	5	10	50	0.16	0.83	0.47	0.27	0.62	- pCi/g
Selenium	.0	10	0	0.10	0.10	0.10	0.00	0.10	mg/kg
Strontium	10	10	100	62.10	110.0	82.20	16.49	91.76	mg/kg
Sulfate	10	10	100	46.10	853.0	197.3	244.7	339.1	mg/kg
Jranium 💮 💮	10	10	100	1.70	3.10	2.46	0.42	2.70	mg/kg
/anadium	10	10	100	16.30	21.50	18.73	1.91	19.84	mg/kg
Zinc	10	10	100	33.75	85.40	53.83	13.92	61.89	mg/kg
JCL95—Upper 95	% confidence	æ limit.							
ng/kg-milligrams	per kilogran	n; pCi/g-pic	ocuries p	er gram					

Summary Statistics for the Grand Junction Site—Inorganics in Sediment

Analyte	Number of Detects	Number of Samples	% Detects	Minimum	Maximum	Average	Standard Deviation	UCL 95	Units
Ammonia as NH ₄	10	10	100	0.56	81.20	19.11	30.14	36.58	mg/kg
Arsenic	10	10	100	4.10	6.70	4.97	0.77	5.42	mg/kg
Cadmium	10	10	100	0.19	0.57	0.30	0.11	0.36	mg/kg
Cobalt	10	10	100	2.70	4.70	3.65	0.66	4.03	mg/kg
Copper	10	10	100	5.10	12.30	8.47	2.47	9.90	mg/kg
Fluoride	10	10	100	1.20	7.70	3.32	1.87	4.41	mg/kg
Iron	10	10	100	7610	14600	10808	2345	12167	mg/kg
Manganese .	10	10	100	204.0	296.0	233.4	27.39	249.3	mg/kg
Molybdenum	10	10	100	0.59	1.40	0.88	0.23	1.01	mg/kg
Nickel	10	10	100	6.30	13.40	8.62	2.44	10.03	mg/kg
Radium-226	10	10	100	0.50	1.28	0.74	0.22	0.87	pCi/g
Radium-228	1	10	10	0.11	0.76	0.29	0.18	0.39	pCi/g
Selenium	1	10	10	0.10	0.43	0.13	0.10	0.19	mg/kg
Strontium	10	10	100	69.70	105.0	82.10	11.66	88.85	mg/kg
Sulfate	10	10	100	34.20	6150	1228	2019	2398	mg/kg
Jranium	10	10	100	1.80	3.00	2.35	0.35	2.55	mg/kg
√anadium	10	10	100	14.40	28.80	21.46	5.78	24.81	mg/kg
Zinc	10	10	100	35.80	64.60	49.32	8.32	54.14	mg/kg
L95—Upper 95	% confidence	æ limit.							
.g/kg-milligrams	per kilogran	n; pCi/g—pic	ocuries p	er gram					

Analyte	Number of Detects	Number of Samples	% Detects	Minimum	Maximum	Average	Standard Deviation	UCL 95	Units
Alkalinity as CaCO3 *	5	5	100	92.0	135.0	110.8	15.51	126	mg/L
Ammonia as NH4	6	10	60	0.001	0.097	0.032	0.032	0.051	mg/L
Arsenic	- 8	10	80	0.001	0.005	0.003	0.002	0.004	mg/L
Cadmium	0	10	0	0.001	0.001	0.001	0	NA	mg/L
Calcium *	5	5	100	37.00	58.40	43.38	8.54	51.5	mg/L
Calcium Carbonate *	5	5	100	111.0	160.5	129.1	23.41	151	mg/L
Chloride *	5	5	100	39.60	87.60	49.86	21.14	70.0	mg/L
Cobalt	0	10	0	0.003	0.006	0.004	0.0013	NA	mg/L
Copper	. 0	10	0	0.003	0.003	0.003	0	NA	mg/L
Fluoride	9	10	90	0.082	0.29	0.19	0.051	0.22	mg/L
Gross Alpha *	1	5	20	1.62	8.46	3.02	3.04	5.92	pCi/L
Gross Beta *	2	5	40	1.69	6.45	3.64	2.08	5.62	рСИ
Hardness *	5	5	100	162.0	272.5	204.7	52.17	254	mg/L
ron	5	10	50	0.002	0.118	0.033	0.035	0.053	mg/L
Magnesium*	5	5	100	11.40	30.90	15.560	8.58	23.74	mg/L
Manganese	10	10	100	0.002	0.043	0.019	0.016	0.028	mg/L
Molybdenum	10	10	100	0.003	0.013	0.005	0.003	0.007	mg/L
Nickel	0	10	0	0.004	0.009	0.006	0.003	NA	mg/L
Nitrate *	5.5	5	100	0.022	0.094	0.050	0.029	0.078	mg/L
Radium-226	0	10	.0	0.065	0.130	0.087	0.021	NA	рСi/L
Radium-228	0	10	0	0.090	0.335	0.241	0.0721	NA	pCi/L
Selenium	1	10	10	0.001	0.001	0.001	0.0003	0.001	mg/L
Strontium	10	10	100	0.35	0.79	0.46	0.14	0.54.	mg/L
Sulfate	10	10	100	68.50	223.0	112.5	55.59	144.7	mg/L
Uranium	10	10	100	0.002	0.005	0.002	0.001	0.003	mg/L
Vanadium	0	10	0	0.001	0.004	0.002	0.001	NA	mg/L
Zinc	2	10	20	0.003	0.018	0.005	0.005	0.007	mg/L

Analyte Alkalinity as CaCO ₃ '* Ammonia as	Detects 4	Samples		Efining.			Standard	UCL 95	Units
CaCO ₃ '* Ammonia a s	4		Detects	Minimum	Maximum	Average	Deviation	1 7 7	511125
Ammonia as		4	100	54.00	109.0	88.00	24.26	116.5	mg/L
NH	10	10	100	0.03	89.20	9.00	28.18	25.3	mg/L
Arsenic	7	10	70	0.001	0.008	0.003	0.002	0.005	mg/L
Calcium *	- 4	4	100	37.00	204.0	78.85	83.43	177	mg/L
Calcium Carbonate *	6	6	100	102.0	1180	284.3	438.8	645.3	mg/L
Cadmium	0	10	0	0.001	0.001	0.001	0	NA	mg/L
Chloride *	4	4	100	38.50	678.0	198.6	319.6	574.6	mg/L
Cobalt	0	10	0	0.003	0.006	0.005	0.001	NA .	mg/L
Copper	0	10	0	0.003	0.003	0.003	0	NA	mg/L
Fluoride	7	10	70	80.0	2.06	0.40	0.62	0.76	mg/L
Gross Alpha *	0	- 4	0	1.49	15.34	4.97	6.91	NA	pCi/L
Gross Beta *	0	4 -	0	1.69	16.85	5.48	7.58	NA	pCi/L
Hardness *	6	6	100	143.0	2390	524.0	914.2	1276	mg/L
ron	6	10	60	0.00	0.08	0.02	0.02	0.04	mg/L
Magnesium *	4	4	100	9.37	137.0	41.45	63.70	116.4	mg/L
Manganese	10	10	100	0.00	0.84	0.09	0.26	0.24	mg/L
Molybdenum	10	10	100	0.00	0.11	0.02	0.03	0.04	mg/L
Nicke!	2	10	20	0.00	0.02	0.01	0.01	0.01	mg/L
Vitrate *	0	4	0	0.01	0.01	0.01	0	NA	mg/L
otassium *	4	4	100	1.51	18.20	5.72	8.32	15.51	mg/L
Radium-226	1	10	10	0.01	0.17	0.06	0.05	0.089	pCi/L
Radium-228	0	10	0	0.04	0.44	0.22	0.13	0.293	pCi/L
Selenium	0	10	0	0.001	0.001	0.001	0	NA	mg/L
odium *	4	4	100	30.20	614.0	176.6	291.6	519.7	mg/L
_trontium	10	10	100	0.31	4.87	1.10	1.64	2.05	mg/L
Sulfate	10	10	100	57.2	2910	488.5	956	1042	mg/L
Fotal Dissolved Solids *	4	4	100	292.0	3310	1051	1506	2823	mg/L
Jranium	10	10	100	0.001	0.26	0.03	0.08	0.07	mg/L
/anadium	1	10	10	0.001	0.14	0.02	0.04	0.04	mg/L
Zinc	1	10	10	0.003	0.01	0.003	0.002	0.004	mg/L
JCL95—Uppe						3.555			
-Not an ecol			l concern	or paramete	1				
ng/L-milligra					i i				

Analyte	Number of Detects	Number of Samples	% Detects		Maximum	Average	Standard Deviation	UCL 95	Units
Alkalinity as CaCO ₃ *	5	5	100	88.00	130.0	106.6	15.16	121.1	mg/L
Ammonia as NH4	6	6	100	0.03	0.09	0.06	0.02	0.08	mg/L
Arsenic	10	10	100	0.00	0.01	0.01	0.00	0.01	mg/L
Cadmium	0	10	0	0.00	0.00	0.00	0.00	NA	mg/L
Calcium Carbonate *	10	10	100	80.60	165.5	126.8	27.08	142.5	mg/L
Cobalt	. 0	10	0	0.01	0.01	0.01	0.00	NA	mg/L
Copper	0	10	0	0.00	0.00	0.00	0.00	NA	mg/L
Fluoride	6	6	100	0.17	0.42	0.23	0.09	0.31	mg/L
Hardness *	10	10	100	135.0	302.0	205.1	57.29	238.3	mg/L
Iron	10	10	100	0.06	1.74	0.81	0.48	1.09	mg/L
Manganese	10	10	100	0.00	0.06	0.04	0.02	0.05	mg/L
Molybdenum	10	10	100	0.00	0.01	0.01	0.00	0.01	mg/L
Nickel	0	10	0	0.01	0.01	0.01	0.00	NA	mg/L
Selenium .	0	10	0	0.00	0.00	0.00	0.00	NA	mg/L
Strontium	10	10	100	0.35	0.72	0.46	0.13	0.53	mg/L
p H *	6	6	100	7.52	8.07	7.82	0.23	8.01	none
Radium-226	0	10	0	0.01	0.07	0.04	0.02	NA	pCI/L
Radium-228	0	10	0	0.10	0.23	0.16	0.05	NA	pCi/L
Redox Potential *	6	6	100	-196.0	178.0	78.50	147.0	199.4	mV
Specific Conductance *	6	6	100	467.0	925.0	560.5	179.0	707.8	µmhos/c
Sulfate	6	6	100	71.50	226.0	125.1	63.84	177.6	mg/L
Jranium	10	10	100	0.00	0.00	0.00	0.00	0.003	mg/L
/anadium	2	10	20	0.00	0.01	0.01	0.00	0.01	mg/L
Zinc	0	10	0	0.00	0.00	0.00	0.00	NA	mo/L

UCL95—Upper 95% confidence limit.

*—Not an ecological chemical of potential concern or parameter.
mg/L—milligrams per liter; pCi/L—picocuries per liter; mV—millivolt; µmhos/cm—micromhos per centimeter

Analyte	Number of Detects	Number of Samples	% Detects		Maximum	Average	Standard Deviation	UCL 95	Units
Alkalinity as CaCO ₃ *	4	4	100	46.0	110	90.25	30.05	125.6	mg/L
Ammonia as NH4	- 10	10	100	0.033	91.7	9.27	28.96	26.06	mg/L
Arsenic	10	10	100	0.0025	0.0088	0.0053	0.0019	0.0064	mg/L
Cadmium	1	10	10	0.00055	0.00355	0.0009	0.0009	0.0014	mg/L
Calcium Carbonate *	10	10	100	109.0	1210	263.9	358.7	471.8	mg/L
Cobalt	0	10	0	0.0061	0.0061	0.0061	0.000	0.0061	mg/L
Copper	0	10	0	0.0028	0.0028	0.0028	0.000	0.0028	mg/L
Fluoride	10	10	100	0.163	2.13	0.4445	0.620	0.804	mg/L
Hardness *	10	10	100	155.0	2460	486.7	757.5	925.7	mg/L
ron	10	10	100	0.105	1.15	0.6254	0.292	0.795	mg/L
Manganese	10	10	100	0.019	1.39	0.1691	0.429	0.418	mg/L
Molybdenum	10	10	100	0.0028	0.101	0.0167	0.0321	0.035	mg/L
Nickel	1	10	10	0.0095	0.0271	0.0112	0.0056	0.014	mg/L
р Н *	4	4	100	8.36	9.07	8.64	0.302	9.00	none
Radium-226	1	10	10	0.005	0.16	0.02875	0.048	0.06	pCi/L
Radium-228	0	10	0	0.020	0.215	0.13575	0.058	0.17	pCi/L
Redox Potential *	4	4	100	69	148	105.3	32.63	143.6	mV
Selenium	0	10	0	0.0011	0.0011	0.0011	0.000	0.001	mg/L
Specific Conductance *	4	4	100	425	4410	1431	1986	3768	µmhos/cn
Strontium	10	10	100	0.336	5.03	1.10	1.644	2.05	mg/L
Sulfate	10	10	100	63.2	3050	512.52	999.8	1092	mg/L
emperature *	4	4	100	19.1	26.4	23.45	3.47	27.54	degrees (
irbidity *	2	2	100	1.96	18.4	10.18	11.62	62.08	NTU
_ranium	9	10	90	0.00098	0.263	0.0278	0.083	0.076	mg/L
/anadium	1	10	10	0.0039	0.155	0.0190	0.048	0.047	mg/L
Zinc	1	10	10	0.0034	0.0082	0.0038	0.0015	0.005	mg/L

UCL95—Upper 95% confidence limit.
*Not an ecological chemical of potential concern or parameter.
mg/L—milligrams per liter; pCi/L—picocuries/liter;
mV—millivolt; µmhos/cm—micromhos per centimeter;
C—Centigrade; NTU—normal turbidity unit

Analyte	Number of Detects	Number of Samples	% Detects	Minimum	Maximum	Average	Std. Deviation	UCL 95	Units (wet- weight)
Arsenic	5	5	100	0.61	2.90	1.92	0.91	2.79	mg/kg
Cadmium	5	5	100	0.27	0.83	0.49	0.24	0.72	mg/kg
Cobait	4	5	80	0.55	2.10	1.49	0.58	2.04	mg/kg
Copper	5	5	100	5.60	14.60	9.16	3.70	12.68	mg/kg
lron	5	5	100	854.0	3060	2241	951.5	3148	mg/kg
Manganese	5	5	100	89.90	276.5	151.3	78.43	226.1	mg/kg
Molybdenum	5	5	100	0.51	0.99	0.74	0.18	0.91	mg/kg
Nickel	1	5	20	0.85	3.90	1.46	1.36	2.76	mg/kg
Radium-226	2	5	40	0.02	0.14	0.07	0.06	0.13	pCi/g
Radium-228	0	5	0	0.03	0.09	0.08	0.03	0.08	pCi/g
Selenium	4	5	80	0.10	0.85	0.47	0.27	0.73	mg/kg
Strontium	5	5	100	42.70	81.60	62.26	15.75	77.28	mg/kg
Uranium ·	5	5	100	0.13	0.72	0.39	0.23	0.60	mg/kg
Vanadium	5	5	100	0.80	10.20	3.84	3.71	7.37	mg/kg
Zinc	5	5	100	37.30	156.0	78.58	54.39	130.4	mg/kg

Analyte	Number of Detects	Number of Samples	% Detects	Minimum	Maximum	Average	Std. Deviation	UCL 95	Units (wet- weight)
Arsenic	3	3	100	1.70	9.60	5.63	3.95	12.29	mg/kg
Cadmium	3	3	100	0.51	1.20	0.77	0.37	1.40	mg/kg
Cobalt	3	3	100	1.30	1.70	1.50	0.20	1.84	mg/kg
Copper	3	3	100	10.10	18.40	12.97	4.71	20.90	mg/kg
iron	3	3	100	2290	4730	3350	1251	5459	mg/kg
Manganese	3	3	100	224.0	418.0	347.0	106.9	527.3	mg/kg
Molybdenum	3	3	100	1.20	3.70	2.47	1.25	4.57	mg/kg
Nickel	1	3	33	0.85	1.70	1.13	0.49	1.96	mg/kg
Radium-226	1	3	33	0.04	0.14	0.07	0.06	0.17	pCi/g
Radium-228	0	. 3	0	0.02	0.25	0.16	0.12	0.36	pCi/g
Selenium	3	3	100	0.42	0.51	0.45	0.05	0.54	mg/kg
Strontium	3	3	100	60.80	92.10	81.47	17.90	111.6	mg/kg
Uranium	3	3	100	0.36	0.59	0.45	0.13	0.66	mg/kg
Vanadium	3	3	100	1.40	5.20	3.53	1.94	6.81	mg/kg
Zinc	3	3	100	86.50	114.0	98.57	14.06	122.3	mg/kg
UCL95—Upp	er 95% con	idence limit			,	· · · · · ·			
mg/kg—millig	rams per kil	ogram; pCi/	a-picocurie	es per gram	<u> </u>	 		··	 -

	Sui	nmary Sta	tistics for ti	ne Referen	ce Area—I	Metals in C	attail Stem	S	·
Analyte	Number of Detects	Number of Samples	% Detects	Minlmum	Maximum	Average	Std. Deviation	UCL 95	Units (wet- welght)
Arsenic	- 5	5	100	0.34	0.94	0.63	0.22	0.84	mg/kg
Cadmium	3	5	60	0.05	0.69	0.25	0.27	0.50	mg/kg
Cobalt	1	5	20	0.55	1.08	0.66	0.23	0.88	mg/kg
Copper	5	5	100	3.50	7.00	4.87	1.32	6.13	_mg/kg
Iron	5	5	100	217.0	535.0	330.3	122.8	447.4	mg/kg
Manganese	- 5	5	100	107.0	591.0	303.5	214.5	508.0	mg/kg
Molybdenum	5	5	100	0.18	1.40	0.85	0.48	1.31	mg/kg
Nickel	0	5	0	0.85	0.85	0.85	0.00	: NA	mg/kg
Radium-226	0	5	0	0.00	0.07	0.02	0.03	0.05	pCi/g
Radium-228	0	5	0	0.11	0.31	0.25	0.08	0.33	pCi/g
Selenium	4	5	80	0.10	1.40	0.58	0.49	1.04	mg/kg
Strontium	5	5	100	80.9	107.0	94.44	9.36	103.4	mg/kg
Uranium	1	5	20	0.05	0.23	0.09	0.08	0.16	mg/kg
Vanadium	1	5	20	0.35	1.00	0.48	0.29	0.76	mg/kg
Zinc	5	5	100	19.50	210.0	61.68	83.01	140.8	mg/kg

UCL95—Upper 95% confidence limit. mg/kg—milligrams per kilogram; pCi/g—picocuries per gram

Analyte	Number of Detects	Number of Samples	% Detects	Minimum	Maximum	Average	Std. Deviation	UCL 95	Units (wet- weight)
Arsenic	3	3	100	0.66	1.20	0.93	0.27	1.38	mg/kg
Cadmium	3	3	100	0.10	0.13	0.11	0.02	0.14	mg/kg
Cobalt	0	. 3	0	0.55	0.55	0.55	0.00	NA	mg/kg
Copper	3	- 3	100	3.00	4.20	3.43	0.67	4.56	mg/kg
iron	3	3	100	249.0	480.0	361.0	115.7	556.0	mg/kg
Manganese	3	3	100	826.0	914.0	857.7	48.91	940.1	mg/kg
Molybdenum	3	. 3	100	3.50	6.40	4.70	1.51	7.25	mg/kg
Nickel	0	3	0 :	0.85	0.85	0.85	0.00	NA	mg/kg
Radium-226	0	3	0	0.01	0.04	0.02	0.02	0.04	pCi/g
Radium-228	0	3	0	0.06	0.26	0.19	0.11	0.38	pCi/g
Selenium	3	3	100	0.50	0.77	0.65	0.14	0.88	mg/kg
Strontium	3	3	100	103.0	128.0	111.3	14.43	135.7	mg/kg
Uranium	0	3	··· 0	0.05	0.05	0.05	0.00	NA	mg/kg
Vanadium	0	3	0	0.35	0.35	0.35	0.00	0.35	mg/kg
Zinc	3	3	100	19.10	24.20	21.10	2.72	25.69	mg/kg

Analyte	Number of Detects	Number of Samples	% Detects	Minimum	Maximum	Average	Std. Deviation	UCL 95	Units (wet- weight)
Arsenic	3	3	100	2.80	7.40	5.67	2.50	9.88	mg/kg
Cadmium	3	3	100	0.74	3.80	1.85	1.70	4.71	mg/kg
Cobalt	3	3.	100	1.50	2.80	2.13	0.65	3.23	mg/kg
Copper	3	3	100	18.60	42.40	27.30	13.13	49.43	mg/kg
Iron	3-	3	100	3490	8840	5543	2884	10405	mg/kg
Manganese	3	3	100	83.80	181.0	128.6	49.04	211.3	mg/kg
Molybdenum	3	3 .	100	0.91	3.70	1.87	1.59	4.54	mg/kg
Nickel	2	. 3	67	0.85	5.70	3.28	2.43	7.37	mg/kg
Radium-226	11	3	33	0.03	0.18	0.08	0.09	0.23	pCi/g
Radium-228	0	3	0	0.07	0.33	0.19	0.13	0.41	pCi/g
Selenium	3	3	100	0.48	3.00	1.37	1.41	3.75	mg/kg
Strontium	3	- 3	100	24.10	43.90	34.87	10.01	51.75	mg/kg
Uranium	3 3	3	100	0.45	2.60	1.19	1.22	3.25	mg/kg
Vanadium	. 3	3	100	5.60	13.70	8.37	4.62	16.16	mg/kg
Zinc	- 3	3	100	64.90	159.0	118.6	48.45	200.3	mg/kg

Analyte	Number of Detects	Number of Samples	% Detects	Minimum	Maximum	Average	Std. Deviation	UCL 95	Units (wet- weight)
Arsenic	5	5	100	1.00	6.35	3.07	2.22	5.19	mg/kg
Cadmium	5	5	100	0.82	2.50	1.50	0.66	2.14	mg/kg
Cobalt	4	5	80	0.55	2.20	1.45	0.64	2.06	mg/kg
Copper	· 5	5	100	10.15	37.50	23.55	10.07	33.15	mg/kg
Iron	5	5	100	572.0	4880	2282	1799	3997	mg/kg
Manganese	5	5	100	45.70	181.0	123.8	51.95	173.4	mg/kg
Molybdenum	5	5	100	0.35	1.00	0.69	0.25	0.93	mg/kg
Nickel	3	5	60	0.85	4.55	2.55	1.70	4.17	mg/kg
Radium-226	. 0	- 5	; 0	0.01	0.05	0.02	0.01	0.04	pCi/g
Radium-228	0	5.	0	0.00	0.37	0.20	0.14	0.33	pCi/g
Selenium	5	5	100	0.29	0.94	0.66	0.26	0.91	mg/kg
Strontium	5	5	100	17.50	42.80	31.15	11.40	42.02	mg/kg
Uranium	5	5	100	0.40	1.20	0.70	0.32	1.00	mg/kg
Vanadium	5	5	100	1.30	6.80	3.56	2.25	5.70	mg/kg
Zinc	5	5	100	102.0	163.0	125.4	26.27	150.5	mg/kg

Summary Statistics for the Reference Area—Metals in Reed Canarygrass Stems

Analyte	Number of Detects	Number of Samples	% Detects	Minimum	Maximum	Average	Std. Deviation	UCL 95	Units (wet- weight)
Arsenic	3	3	100	0.51	0.59	0.54	0.04	0.61	mg/kg
Cadmium	2	3	67	0.05	0.20	0.12	0.08	0.25	mg/kg
Cobalt	0	3	0	0.55	0.55	0.55	0.00	NA	mg/kg
Copper	3	3	100	3.30	7.40	4.90	2.19	8.60	mg/kg
iron	3	3	100	237.0	486.0	382.7	129.8	601.5	mg/kg
Manganese	3	3	100	58.40	98.70	80.30	20.38	114.7	mg/kg
Molybdenum	3	3	100	0.25	0.67	0.41	0.23	0.79	mg/kg
Nickel	. 0	3	0	0.85	0.85	0.85	0.00	NA :	mg/kg
Radium-226	0	3	0	0.00	0.01	0.01	0.01	0.02	pCi/g
Radium-228	0	3	0	0.22	0.27	0.25	0.03	0.30	pCi/g
Selenium	3	. 3	100	0.30	1.10	0.61	0.43	1.33	mg/kg
Strontium	3	3	100	15.10	48.70	27.30	18.59	58.65	mg/kg
Uranium	1 11	3	33	0.05	0.17	0.09	0.07	0.21	mg/kg
Vanadium	1	3	33	0.35	0.92	0.54	0.33	1.09	mg/kg
Zinc	3	3	100	28.70	69.80	45.13	21.75	81.80	mg/kg

UCL95—Upper 95% confidence limit.

mg/kg-milligrams per kilogram; pCi/g-picocuries per gram

Analyte	Number of Detects	Number of Samples	% Detects	Minimum	Maximum	Average	Std. Deviation	UCL 95	Units (wet- weight)
Arsenic .	5	7	71	0.68	1.55	0.93	0.35	1.19	mg/kg
Cadmium	5	. 7	71	0.11	0.25	0.17	0.06	0.22	mg/kg
Cobalt	0	7	0	0.55	0.55	0.55	0.00	0.55	mg/kg
Copper	5	5	100	2.80	6.80	4.77	1.65	6.34	mg/kg
lron	. 5	. 5	100	307.0	2005	727.4	717.7	1411.7	mg/kg
Manganese	5	5	100	67.50	135.0	83.92	28.70	111.3	mg/kg
Molybdenum	5	5	100	0.40	0.84	0.65	0.16	0.80	mg/kg
Nickel	1 .	5	20	0.85	1.43	0.97	0.26	1.21	mg/kg
Radium-226	0	5	0	0.01	0.04	0.02	0.01	0.03	pCi/g
Radium-228	0	5	0	0.03	0.35	0.19	0.14	0.32	pCi/g
Selenium	5	5	100	0.23	0.70	0.49	0.17	0.66	mg/kg
Strontium	5	5	100	27.50	37.15	31.99	3.54	35.36	mg/kg
Uranium	1	4	25	0.05	0.12	0.07	0.04	0.11	mg/kg
Vanadium	3	5	60	0.35	4.60	1.52	1.77	3.21	mg/kg
Zinc	5	5	100	31.80	55.60	43.72	9.53	52.81	mg/kg

JCL95—Upper 95% confidence limit. y/kg—milligrams per kilogram; pCi/g-

-picocuries per gram

	S	ummary S	tatistics for	the Referen	ce Area—M	letals in W	llow Roots	31 L	
Analyte	Number of Detects	Number of Samples	% Detects	Minimum	Maximum	Average	Std. Deviation	UCL 95	Units (wet- weight)
Arsenic	2	2	100	0.75	2.00	1.38	0.88	5.32	mg/kg
Cadmium	2	2	. 100	0.27	0.79	0.53	0.37	2.17	mg/kg
Cobalt	0	2	0	0.55	0.55	0.55	0.00	NA	mg/kg
Copper	2	2	100	4.60	7.10	5.85	1.77	13.74	mg/kg
Iron	2	2	100	454.0	1480	967.0	725.5	4206	mg/kg
Manganes e	2	2	100	48.60	57.30	52.95	6.15	80.42	mg/kg
Molybdenum	2	2	100	0.40	0.41	0.41	0.01	0.44	mg/kg
Nickel	0	2	0	0.85	0.85	0.85	0.00	NA	mg/kg
Radium-226	0	2	0	0.01	0.05	0.03	0.03	0.15	pCi/g
Radium-228	0	2	0	0.07	0.24	0.16	0.12	0.69	pCi/g
Selenium	1	2	50	0.10	0.34	0.22	0.17	0.98	mg/kg
Strontium	2	2	100	37.00	58.20	47.60	14.99	114.5	mg/kg
Jranium ·	2	2	100	0.17	0.19	0.18	0.01	0.24	mg/kg
Vanadium V	1	2	50	0.35	1.50	0.93	0.81	4.56	mg/kg
Zinc	2	2	100	53.50	95.80	74.65	29.91	208.2	mg/kg

UCL95—Upper 95% confidence limit. mg/kg—milligrams per kilogram; pCi/g—picocuries per gram

	S	ummary S	tatistics for	Grand June	tion Site—M	letals in W	llow Roots		
Analyte	Number of Detects	Number of Samples	% Detects	Minimum	Maximum	Average	Std. Deviation	UCL 95	Units (wet- weight)
Arsenic	2	2	100	1.20	3.20	2.20	1.41	8.51	mg/kg
Cadmium	2	2	100	0.44	1.50	0.97	0.75	4.32	mg/kg
Cobalt	1	2	50	0.55	1.30	0.93	0.53	3.29	mg/kg
Copper	2	2	100	5.40	7.10	6.25	1.20	11.62	mg/kg
ron	2	2	100	374.0	1800	1087	1008	5589	mg/kg
Manganese	2	2	100	21.50	116.00	68.75	66.82	367.1	mg/kg
Molybdenum	2	2	100	0.59	0.87	0.73	0.20	1.61	mg/kg
Nickel	0	2	0	0.85	0.85	0.85	0.00	NA	mg/kg
Radium-226	0	2	0	0.02	0.03	0.02	0.01	0.05	pCl/g
Radium-228	0	2	0	0.29	0.35	0.32	0.05	0.52	pCi/g
Selenium	2	2	100	0.34	0.36	0.35	0.01	0.41	mg/kg
Strontium	2	2	100	53.00	67.80	60.40	10.47	107.1	mg/kg
Jranium :	2	2	100	0.67	0.72	0.70	0.04	0.85	mg/kg
/anadium	2	2	100	0.77	3.40	2.09	1.86	10.39	mg/kg
Zinc	2	2	100	50.90	84.40	67.65	23.69	173.4	mg/kg

UCL95—Upper 95% confidence limit. mg/kg—milligrams per kilogram; pCi/g—picocuries per gram

Summary Statistics for the Reference Area—Metals in Willow Stems

Analyte	Number of Detects	Number of Samples	% Detects	Minimum	Maximum	Average	Std. Deviation	UCL 95	Units (wet- weight)
Arsenic	2	2	100	0.35	0.48	0.42	0.09	0.83	mg/kg
Cadmium	2	2	100	0.69	1.00	0.85	0.22	1.82	mg/kg
Cobalt	0	2	0	0.55	0.55	0.55	0.00	NA	mg/kg
Copper	2	2	100	4.30	6.70	5.50	1.70	13.08	mg/kg
iron	2	2	100	171.0	314.0	242.5	101.1	694.0	mg/kg
Manganese	2	2	100	44.20	117.0	80.60	51.48	310.4	mg/kg
Molybdenum	2	2	100	0.11	0.16	0.14	0.04	0.29	mg/kg
Nickel	0	2	0	0.85	0.85	0.85	0.00	NA	mg/kg
Radium-226	0	2	0	0.00	0.01	0.01	0.01	0.04	pCi/g
Radium-228	. 0	2	0	0.28	0.31	0.29	0.02	0.37	pCi/g
Selenium	2	2	100	0.34	0.86	0.60	0.37	2.24	mg/kg
Strontium	2	2	100 .	54.90	108.0	81.45	37.55	249.1	mg/kg
Uranium	0	2	0	0.05	0.05	0.05	0.00	NA	mg/kg
Vanadium	0	2 ·	0	0.35	0.35	0.35	0.00	NA	mg/kg
Zinc	2	2 .	100	76.30	120.0	98.15	30.90	236.1	mg/kg

mg/kg-milligrams per kilogram; pCi/g-picocuries per gram

Summary Statistics for the Grand Junction Site—Metals in Willow Stems

Analyte	Number of Detects	Number of Samples	% Detects	Minimum	Maximum	Average	Std. Deviation	UCL 95	Units (wet- weight)
Arsenic	2	2	100	0.74	0.96	0.85	0.16	1.54	mg/kg
Cadmium	2	2	100	0.33	2.30	1.32	1.39	7.53	mg/kg
Cobalt,	0	2	0	0.55	0.55	0.55	0.00	NA	mg/kg
Copper	2	2	100	4.90	5.60	5.25	0.49	7.46	mg/kg
Iron	2	2	100	160.0	163.0	161.5	2.12	171.0	mg/kg
Manganese	2	2	100	43.40	82.30	62.85	27.51	185.7	mg/kg
Molybdenum	2	2	100	0.12	0.27	0.20	0.11	0.67	mg/kg
Nickel	0	2	0	0.85	0.85	0.85	0.00	NA	mg/kg
Radium-226	0	2	0	0.02	0.03	0.02	0.01	0.05	pCi/g
Radium-228	0	2	0	0.24	0.38	0.31	0.10	0.73	pCi/g
Selenium	2	2	100	0.23	0.31	0.27	0.06	0.52	mg/kg
Strontium	2	2	100	88.00	98.90	93.45	7.71	127.9	mg/kg
Uranium	1	2	50	0.05	0.13	0.09	0.06	0.34	mg/kg
Vanadium	0	2	0	0.35	0.35	0.35	0.00	NA	mg/kg
Zinc	2	2	-100	36.10	114.0	75.05	55.08	321.0	mg/kg

UCL95—Upper 95% confidence limit.
mg/kg—milligrams per kilogram; pCi/g—picocuries per gram

Attachment 2

Raw Data for Ecological Risk Assessment by Water, Sediments, and Plants Tissue

This page intentionally blank

Ecologic pling Data

Loc Id	Matrix	Date	Sample Id	As mg/kg	Cd mg/kg	Co mg/kg	Cu mg/kg	Fe mg/kg	Fluoride mg/kg	LOD	Mn mg/kg	Mo mg/kg
Refer	ence						· · · · · · · · · · · · · · · · · · ·			•		
1216	Sediment	06/30/98	00S1	5.4	.26B	3.7B	11.1	10000				
-	Bullrush Roots	06/23/98	00V4	1.2	.44B	1.8B	20.3	12800	2.8N		181N	.6BN
	Bullrush Stems	06/23/98	00V3 '	.65B	.10	1.10		1590		84.7	303	.57E
	. Cattail Roots	06/23/98	00V2	1.5	.46B	2.1B	5.4 10	471		83.1	325	.84E
	Cattail Stems	06/23/98	00V1 ·	.94B	.10	1.10	4.8	3040		85.8	111	.7в
1217	Sediment	06/30/98	0051	5.3	.23B	4.3B	10.4	535		82.7	107	1.4
	Reed Canarygrass Roots	06/23/98	00V2	2.8	.74	1.5B		12100	3.2N		์ 229พ	.53BN
	Reed Canarygrass Stems	06/23/98	00V1	.53B	.12B	1.10	18.6	3490		63.8	121	.99E
1218	Sediment	06/30/98	00V1	5.6	.27B		4 .	486		74.5	83.8	. ЗВ
	Cattail Roots	06/23/98	0051 00V2	2.9	.83	3.5B	14.5	11400	1.6BN		166N	.72BN
	Cattail Stems	06/23/98	00V2	.6B	.69	1.7B	9.8	3060		65.7	99.2	.83B
1219	Sediment	06/30/98	00V1	4.8		1.10	7	343		69.9	107	.18B
	Willow Roots	06/23/98	0031 00V2		.21B	3.1B	9.2	10300	2.4N		217N	.72BN
	Willow Stems	06/23/98	00V2	.75B	.27в	1.10	7.1	454		79.6	48.6	.4B
220	Sediment		-	.48B	. 69	1.10	6.7	314		80.3	117	.16B
220	Reed Canarygrass Roots	06/30/98	00S1	4.1	. 67	3.5B	7.5	10900	1.3BN		156N	.91BN
	• • • • • • • • • • • • • • • • • • • •	06/23/98	00V2	7.4	3.8	2.8B	42.4	8840		85.3	83.8	3.7
221	Reed Canarygrass Stems	06/23/98	00V1	.59B	.2B	1.10	7.4	425		81.8	58.4	.67B
221	Sediment	07/01/98	00S1	4.7	.25B	2.8B	5.5	8720	1.9B		247	.94B
	Sediment	07/01/98	00S2	5.1	.27B	3.2B	6₊	9550	1.8B		254	.78E
	Cattail Roots	06/24/98	00V2	2	.27B	1.10	5.6	1700		84	180	.67B
222	Cattail Stems	06/24/98	00V1	.71B	. 10	1.10	4.1	278		87.5	591	1.2
222	Sediment	06/30/98	00S1	5.3	.3B	4B	10.6	11600	1.5BN		252N	.74BN
	Cattail Roots	06/23/98	00V2	3.3	.63	1.9B	15.4	3080		92.9	251	1.2
	Cattail Roots	06/23/98	00V4	1.9	. 63	1.5B	13.8	2020		92.7	302	.778
	Cattail Stems	06/23/98	00V1	,55B	.13B	1.10	5.2	323		87.3	461	.91B
	Cattail Stems	06/23/98	00V3	.6B	.12B	1.6B	4.7.	234		87.1	444	.828
223	Sediment	06/30/98	00S1	6	.19B	4.3B	10.3	11800	2.4N		248N	.86BN
	Reed Canarygrass Roots	06/23/98	00V2	6.8	1	2.1B	20.9	4300		84	181	.91B
	Reed Canarygrass Stems	06/23/98	00V1	.51B	.10	1.10	3.3	237		75.6	98.7	.25B
224	Sediment	06/30/98	00S1	5	.17B	2.5B	5.5	9690	1.1BN		235N	.68BN
	Willow Roots	06/23/98	00V2	2	.79	· 1.10	4.6	1480		65.4	57.3	.418
	Willow Stems	06/23/98	00V1	.35B	1	1.10	4.3	171	· 	69.3	44.2	.118
225	Sediment	06/30/98	0051	4.9	· .21B	3.1B	9.6	10700	2.5N		152N	.115
	Cattail Roots	06/23/98	00V2	.61B	.27B	1.4B	5.8	854		82.7	89.9	.51B
	Cattail Stems	06/23/98	00V1	.34B	.31B	1.10	3.5	217		88.3	260	
ite	**			•					р5	00.3	200	.6B
		Company of the second			25 m			•			• •	•
226	Sediment	07/01/98	0051	5.1	.37B	3.3B	9.8	10500	2.7		261	.81B
	Cattail Roots	06/24/98	00V2	1.7	. 61	1.3B	10.4	2290		88.9	224	1.2
	Cattail Stems	06/24/98	00V1	.66B	.1B	1.10	3.1	480		85.1	914	3.5
227	Sediment	07/01/98	00S1	4.1	.19B	3.2B	7.6	8680	1.7B		204	
	Reed Canarygrass Roots	06/24/98	00V2	1.3	1.1	1.3B	37.5	927		89.8	. 160	.64B
	Reed Canarygrass Stems	06/24/98	00V1	.76B	.22B	1.10	2.8	376		72.5	135	.57B

Ecological Sampling Data

Matrix	Date	Sample Id	NH4 mg/kg	Ni mg/kg	Ra-226 pCi/g	Ra-228 pCi/g	Se mg/kg	SO4 mg/kg	Sr mg/kg	U mg/kg	V mg/kg
ence											[
Sediment	06/30/98	00S1	2.3	14.2	.9	.81	.2UN	71.5	67.1	3.1	20.4
Bullrush Roots	06/23/98	00V4		1.9B	.09	69	.59		25	.34B	3.5B
Bullrush Stems	06/23/98	00V3		1.70	.03	85	1.2		77.3	.10	1.3B
Cattail Roots	06/23/98	00V2		3.9B	.13	1	.49B		61.9	.25B	10.2
Cattail Stems	06/23/98	00V1	·	1.70	04	62	.46B	'	80.9	.10	1B
Sediment	06/30/98	00S1	5.1	9.7	.81	.72	. 2UN	305	78.5	2.4	17.9
Reed Canarygrass Roots	06/23/98	00V2		3.3B	.07	65	.63		24.1	.45B	5.8
Reed Canarygrass Stems	06/23/98	00V1		1.70	.02	52	.42B		15.1	.10	.70
Sediment	06/30/98	00S1 '	2.3	11.7	.99	.56	. 2UN	92.2	65.8	2.9	17.4
Cattail Roots	06/23/98	00V2		1.70	.14	18	.56		73.4	.72	3.28
Cattail Stems	06/23/98	00V1		1.70	01	53	.43B		107	.23B	.70
Sediment	06/30/98	00S1	9.9	9.2	.7	.55	.2UN	76.1	95.3	2.1	16.3
Willow Roots	06/23/98	00V2		1.70	.01	48	.34B		37	.17B	.70
Willow Stems	06/23/98	00V1		1.70	0	61	.86	:	108	.10	.70
Sediment	06/30/98	0051	2	8.9	1.17	.71	.2UN	103	69.9	2.8	21.4
Reed Canarygrass Roots	06/23/98	00V2		5.7	.18	.35	3		43.9	2.6	13.
Reed Canarygrass Stems	06/23/98	00V1		1.70	.02	43	1.1		48.7	.17B	. 921
Sediment	07/01/98	00S1	1.7	7.4	. 64	. 67	.20	1090N	77.8	2.1	15
Sediment	07/01/98	00S2	1.6	6.3	.63	.25	.20	616N	81.4	2.2	17.0
Cattail Roots	06/24/98	00V2		1.70	09	16	.85*		42.7	.13B	.8B
Cattail Stems	06/24/98	00V1		1.70	14	.22	1.4*		94.2	.10	.70
Sediment	06/30/98	0051	2.6	9.7	.76	.83	.2UN	65.9	97.3	2.6	17.
Cattail Roots	06/23/98	0002		1.7U	04	14	.53		83.2	.54	3.9
Cattail Roots	06/23/98	0074		1.70	04	.03	.21B		80	.41B	2.7
Cattail Stems	06/23/98	00V1		1.70	02	49	.6		95.2	.10	.70
Cattail Stems	06/23/98	0073		1.70	05	69	.39в		99	.10	.70
Sediment	06/30/98	00V3	11.5	8.6	.87	.45	. 2UN	124	110	2.5	21.
Reed Canarygrass Roots	06/23/98	00V2		1.7U	.05	.14	.48B		36.6	.53	5.6
Reed Canarygrass Stems	06/23/98	00V2		1.70	0	54	. 3B		18.1	.10	.70
Sediment	06/30/98	00V1	1.6	5.9	.61	.32	. 2UN	46.1	96.4	1.7	19.
Willow Roots	06/23/98	00V2		1.70	09	.14	.20		58.2	.19B	1.5
Willow Stems	06/23/98	00V2		1.70	02	56	.34B		54.9	.10	.70
Sediment	06/30/98	00V1	5.7	10	.79	.54	. 2UN	236	62.1	2.3	18.
Cattail Roots	06/23/98	00V2		1.70	03	05	.20		51.7	.36в	1.7
Cattail Stems	06/23/98	00V2		1.70	0	58	.20		93	.10	.70
Cattail Stems	00/23/90	0041		1.70	Ū		.20			• • • •	
Sediment	07/01/98	00S1	.56	7.4	.82	.76	. 20	654N	69.7	2.4	26.5
· Cattail Roots	06/24/98	0051 00V2	.56	1.7U	08	.04	.51*	0240	60.8	.39B	1.4
	06/24/98	00V2 00V1		1.70	07	.12	.67*		103	.10	.70
Cattail Stems											14.4
Sediment	•										2.2
Reed Canarygrass Roots											2.21
Reed Canary		grass Roots 06/24/98	grass Roots 06/24/98 00V2	grass Roots 06/24/98 00V2	grass Roots 06/24/98 00V2 1.7U	grass Roots 06/24/98 00V2 1.7U05	grass Roots 06/24/98 00V2 1.7U05 0	grass Roots 06/24/98 00V2 1.7U05 0 .87*	grass Roots 06/24/98 00V2 1.7U05 0 .87*	grass Roots 06/24/98 00V2 1.7U05 0 .87* 21.1	grass Roots 06/24/98 00V2 1.7U05 0 .87* 21.1 .66

Loc Id	Matrix	Date	Sample Id	Zn mg/kg
Refer	ence			
1216	Sediment	06/30/98	00S1	58.8
	Bullrush Roots	06/23/98	00V4	46.5
	Bullrush Stems	06/23/98	00V3	14.2
	Cattail Roots	06/23/98	00V2	45.6
	Cattail Stems	06/23/98	00V1	22.4
1217	Sediment	06/30/98	0051	55.2
	Reed Canarygrass Roots	06/23/98	00V2	64.9
	Reed Canarygrass Stems	06/23/98	00V1	36.9
1218	Sediment	06/30/98	00S1	55.3
	Cattail Roots	06/23/98	00V2	156
	Cattail Stems	06/23/98	00V1	210
1219	Sediment	06/30/98	00S1	43.7
	Willow Roots	06/23/98	00V2	53.5
	Willow Stems	06/23/98	00V1	120
1220	Sediment	06/30/98	0051	85.4
	Reed Canarygrass Roots	06/23/98	00V2	159
	Reed Canarygrass Stems	06/23/98	00V1	69.8
1221	Sediment	07/01/98	00S1	33
	Sediment	07/01/98	00S2	34.5
	Cattail Roots	06/24/98	00V2	38
	Cattail Stems	06/24/98	00V1	19.5
1222	Sediment	06/30/98	0051	62.5
	Cattail Roots	06/23/98	00V2	118
	Cattail Roots	06/23/98	00V4	114
	Cattail Stems	06/23/98	00V1	29.4
	Cattail Stems	06/23/98	00V3	30.6
1223	Sediment	06/30/98	0051	49
	Reed Canarygrass Roots	06/23/98	00V2	132
	Reed Canarygrass Stems	06/23/98	00V1	28.7
1224	Sediment	06/30/98	0051	43.5
	Willow Roots	06/23/98	00V2	95.8
1005	Willow Stems	06/23/98	00V1	76.3
1225	Sediment	06/30/98	00S1	51.1
	Cattail Roots	06/23/98	00V2	37.3
	Cattail Stems	06/23/98	00V1	26.5
Site				
1226	Sediment	07/01/98	00S1	55.7
	Cattail Roots	06/24/98	00V2	86.5
	Cattail Stems	06/24/98	00V1	20
1227	Sediment	07/01/98	0051	35.8
	Reed Canarygrass Roots	06/24/98	00V2	102
	Reed Canarygrass Stems	06/24/98	00V1	37.1
	-			

Ecological Sampling Data

Loc Id	Matrix	Date	Sample Id	As mg/kg	Cd mg/kg	Co mg/kg	Cu mg/kg	Fe mg/kg	Fluoride mg/kg	FOD	Mn mg/kg	Mo mg/kg
Site					-	· · · · · · · · · · · · · · · · · · ·						
1228	Sediment	07/01/98	00S1	4.4	.29B	2.7В	5.1	7610	3.7		221	.98B
	Reed Canarygrass Roots	06/24/98	00V2	6.7	.84	2.3B	10.1	4710		86.9	132	1.1
	Reed Canarygrass Roots	06/25/98	00V4	6	.79	2.1B	10.2	5050		86.3	101	.9B
	Reed Canarygrass Stems	06/25/98	00V1	2	.12B	1.10	5	2610	·	81.8	80.1	1
	Reed Canarygrass Stems	06/25/98	00V3	1.1	.11B	1.10	4.3	1400		84.4	58.1	.67в
1229	Sediment	07/01/98	00S1	4.2	.26B	3B	5.3	9040	1.8B		228	.64B
	Sediment	07/01/98	00S2	4.8	.29B	3.4B	5.4	10100	2		248	.9B
	Willow Roots	06/25/98	00V2	1.2	1.5	1.10	5.4	374	<u> </u>	73.3	21.5	.59B
	Willow Stems	06/25/98	00V1	.74B	2.3	1.10	5.6	163		70.4	43.4	.12B
1230	Sediment	07/01/98	0051	5.1	.26B	4B	9.9	12800	3.2		230	.96B
	Reed Canarygrass Roots	06/26/98	00V2	4.2	2.5	1.9B	20.7	3330		. 88	181	.84B
	Reed Canarygrass Stems	06/26/98	00V1	.68B	.11B	1.10	3.6	478		77.7	74.4	. 63в
1231	Sediment	07/01/98	00S1	5.2	.25B	4.7B	11.8	14600	2.8		238	.59B
	Cattail Roots	06/26/98	00V2	5.6	.51	1.5B	10.1	3030		94.5	418	2.5
	Cattail Stems	06/26/98	00V1	.92B	.13B	1.10	3	249		90.9	826	4.2
1232	Sediment	07/01/98	00S1	4.2	.36В	3.4B	6.7	8220	1.2B		296	.96B
	Willow Roots	06/25/98	00V2	3.2	.44B	1.3B	7.1	1800		80	116	.87B
	Willow Stems	06/25/98	· 00V1	.96B	.33B	1.10	4.9	160		73.4	82.3	.27B
1233	Sediment	07/01/98	00S1	5.6	.19B	3.9B	8	11700	7.7		218	.73B
	Reed Canarygrass Roots	06/26/98	00V2	2.5	1.8	1.3B	27.9	1700		87.5	116	. 69B
	Reed Canarygrass Stems	06/26/98	00V1	.79B	.16B	1.10	6	307		82.6	73.6	.71B
1234	Sediment	07/01/98	00S1	6.7 ·	.57	4.7B	12.3	13500	3.4		212	1.4
	Reed Canarygrass Roots	06/26/98	00V2	1	1.3	1.10	· 21.5	572		87.9	45.7	.35B
	Reed Canarygrass Stems	06/26/98	00V1	.88B	.25B	1.10	6.8	471		80.1	67.5	.68B
1235	Sediment	07/01/98	00S1	4.8	.22B	3.4B	8.1	10900	4.9		216	.96B
	Cattail Roots	06/26/98	00V2	9.6	1.2	1.7B	18.4	4730		95	399	3.7
	Cattail Stems	06/26/98	00V1	1.2	.1B	1.10	4.2	354		89.8	833	6.4

Ecologic: pling Data

Loc Id	Matrix		Sample Id	NH4 mg/kg	Ni mg/kg	Ra-226 pCi/g	Ra-228 pCi/g	Se mg/kg	SO4 mg/kg	Sr mg/kg	U mg/kg	V mg/kg
Site												
1228	Sediment	07/01/98	00S1	69.7	6.3	.55	21	0				
	Reed Canarygrass Roots		00V2		2.3B	.07	.21	.20	758N	70.9	2.6	14.5
	Reed Canarygrass Roots		00V4		6.8	.11	66	22B		44.2	.46B	6.1
	Reed Canarygrass Stems		00V1		2B	0	.11	.36B*		37.1	.47B	7.5
	Reed Canarygrass Stems		00V3		1.70	05	.13	.20*		42.3	.25B	6.3
1229	Sediment		00V3	14.5	6.8		.07	.368*		32	.14B	2.9B
	Sediment		00S2	6.3	6.5	.55	.31	.20	42N	75.4	1.9	16.8
	Willow Roots		00V2	0.3	ช.5 1.7ช	. 65	. 49	.20	88.5N	85.7	1.7	22.2
	Willow Stems		00V2			03	7	.34B*		53	.72	.77B
1230	Sediment		00V1	1.5	1.70	03	48	.23B*		98.9	.13B	.70
	Reed Canarygrass Roots		0031 00V2		10.8	.78	. 67	.20	3470N	78.7	2.7	28.2
	Reed Canarygrass Stems		00V2 00V1		2.6B	.05	37	.94*		42.8	1.2	4.9B
1231	Sediment				1.70	03	45	.45B*		30.6	.12B	1.3B
1231	Cattail Roots		00S1	14.2	11.2	. 1.28	.54	.20	59.9N	105	2.2	26.8
	Cattail Stems		00V2	 .	1.70	.07	41	.42B*		92.1	.59	4B
1232			00V1		1.7U	01	52	.77*		103	.10	. 70
1232	Sediment		0051	2.4	7	.72	.6	.20	101N	71	2	15
	Willow Roots		00V2	, -	1.70	.05	57	.36B*		67.8	. 67	3.4B
1233	Willow Stems		00V1	_ _	ט7.1	05	75	.31B*		88	. 10	.70
1233	Sediment		0081	81.2	7	.5	.58	.20	935N `	89.2	2.3	21.3
	Reed Canarygrass Roots		00V2	 :	3.9B	.03	55	.52*		33.7	.76 .	2.6B
1004	Reed Canarygrass Stems		00V1		1.70	.01	57	.51*		27.5	. 10	.7ט
1234	Sediment		00S1	4.1	13.4	.8	.47	.43B	53.6N	95.7	3	28.8
	Reed Canarygrass Roots		00V2		1.70	02	73	.69*		17.5	.4B	1.3B
	Reed Canarygrass Stems		00V1		ט1.7	02	69	.7		33.1	.10	18
1235	Sediment		00S1	.75	9.4	. 63	.35	.20	6150N	75.7	2.3	19.6
	Cattail Roots		00V2		1.7B	.14	~.5	:42B	·	91.5	.36в	5.2
	Cattail Stems	06/26/98	00V1		1.70	01	5	.5B		128	.10	.70

1

Ecological Sampling Data

Loc Id	Matrix	Date	Sample Id	Zn mg/kg
Site				
1228	Sediment	07/01/98	00S1	42.7
	Reed Canarygrass Roo		00V2	108
	Reed Canarygrass Roo		00V4	102
	Reed Canarygrass Ste		00V1	37.5
	Reed Canarygrass Ste		00V3	26.1
1229	Sediment	07/01/98	00S1	52.2
	Sediment	07/01/98	00S2	49.8
	Willow Roots	06/25/98	00V2	84.4
	Willow Stems	06/25/98	00V1	114
1230	Sediment	07/01/98	00S1	48.7
	Reed Canarygrass Roo		00V2	142
	Reed Canarygrass Ste	ms 06/26/98	00V1	44.4
1231	Sediment	07/01/98	00S1	53.2
	Cattail Roots	06/26/98	00V2	114
•	Cattail Stems	06/26/98	00V1	24.2
1232	Sediment	07/01/98	00S1	54.2
	Willow Roots	06/25/98	00V2	50.9
	Willow Stems	06/25/98	00V1	36.1
1233	Sediment	07/01/98	0051	40.9
	Reed Canarygrass Roo	ts 06/26/98	00V2	163
	Reed Canarygrass Ste	ns 06/26/98	00V1	49.7
1234	Sediment	07/01/98	00S1	64.6
	Reed Canarygrass Roof	ts 06/26/98	00V2	115
	Reed Canarygrass Ster	ns 06/26/98	0.0V1	55.6
1235	Sediment	07/01/98	00S1	46.4
	Cattail Roots	06/26/98	00V2	95.2
	Cattail Stems	06/26/98	00V1	19.1

Loc Id	Date	Sample Id	As mg/L	CACO3 mg/L	Cd mg/L	Co mg/L	Cu mg/L	Fe mg/L	Fluoride mg/L	Hardness mg/L	Mn mg/L	Mo mg/L	NH4 mg/L
Refe	rence												
1216	06/30/98	N001	.0108B	80.6	.00110	.01220	.0056U	.0626В	.199в	125			
1217	06/30/98	N001	.0096В	119	.00110	.01220	.00560	.919	.193B	135 184	.0048B	.0042B	.0459
1218	06/30/98	N001	.0087B	117	.00110	.01220	.00560	1.09	.173B	178	.0635	.005B	.0871
1219	06/30/98	N001	.0067B	116	.00110	.01220	.0056U	1.19	.173B	,	.0559	.0044B	.0903
220	06/30/98	N001	.0062B	160	· .0011U	.01220	.00560	.321	.415	176	.0562	.0038B	.0333
221	07/01/98	0001	.0054B	160	.0010	.0110	.0050	.106	.207	302 272	.0266	.0136	.0523
	07/01/98	0002	.0048B	161	.0010	.0110	.0050	.129		272	.0083в	.0061B	.0648
	07/01/98	N001	.0091B	166	.00110	.01220	.00560	.39	.201	273	.0199	.006B	.0712
	07/01/98	N002	.0037B	165	.00110	.01220	.00560	.296	.213	282	.0242	.0069B	.0489
1222	06/30/98	0001	.0044B	112	.0010	.0110	.00500	.290 .0401B	.226	282	.0196	.0073в	.0616
	06/30/98	N001	.0066B	116	.00110	.0122U	.00560		.175B	163	.0068B	.0027B	.0586
223	06/30/98	0001	.0041B	111	.0010	.01220	.0050	.786	1750	170	.026	.003B	
	06/30/98	N001	.0051B	115	.0010	.0122U		.0452B	.175B	162	.0074B	.0027B	.0966
224	06/30/98	0001	.0041B	148	.0010	.0110	.00560	.802		170	.0257	.003B	
	06/30/98	N001	.0078B	162	.0010		.0050	.0536В	.207	249	.0096В	.0058B	.0174B
225	06/30/98	0001	.0052B	114	.00110	.01220	.00560	1.74	477	271	.063	.0059B	
	06/30/98	N001	.0045B	117	· .0010	.0110	.0050	.0332B	.196В	177	.0364	.0046B	.0174B
			.00130	***	.00110	.01220	.00560	.805		183	.0577	.005B	~-
ite		*.							13	10.4			
									•	¥ *	*		
226	07/01/98	N001	.0072B	540	.00110	.01220	.00560	.105B	7750				
227	07/01/98	0001	.005B	102	.0010	.0110	.0050	.103B	.775B	1130	.077	.0419	. 202
	07/01/98	N001	.0039B	110	.00110	.01220	.0056U	.755	.16B	143	.0038B	.0025B	.0267
228	07/01/98	0001	.0081B	1180	.0010	.0110	.0050	.735 .0294B	.163в	156	.0303	.0029B	.033
	07/01/98	N001	.00888	1210	.00110	.01220	.00560	.774	2.06	2390	.837	.107	89.2
229	07/01/98	N001 ·	.005B	109	.00110	.01220	.00560	.774	2.13	2460	1.39	.101	91.7
	07/01/98	N002	.0062B	109	.003B	.01220	.0056U	.452	.262	157	.02	.0032В	.0394
230	07/01/98	N001	.0051B	111	.00110	.01220	.00560	.795	.199B	156	.02	.003B	.0743
231	07/01/98	0001	.0044B	103	.0010	.0110	.00500		.181B	159	.026	.0029В	.068
	07/01/98	N001	.007B	109	.0010	.01220	.0056U	.0318B	.178B	147	.0087В	.0027В	.0648
232	07/01/98	0001	.00388	104	.00110	.01220		.823	.174B	156	.0317	.0029B	.068
•	07/01/98	N001	.0025B	110	.0010	.0110 .01220	.0050	.0172B	.173B	148	.0078В	.0026B	.0403
233	07/01/98	0001	.0023B	105	.00110		.00560	.489	.21	. 157	.0216	.0029B	.0489
	07/01/98	N001	.0044B	114	.0010	.0110	.0050	.0811B	.168B	150	.008B	.0025B	.0743
234	07/01/98	N001	.0039B	109		.01220	.00560	1.15	.175B	163	.0396	.0028B	.0807
235	07/01/98	0001	.0039B	112	.0011U .001U	.01220	.0056U	.53	.223	155	.0191	.0028B	.033
	07/01/98	N001	.0046B	117		.0110	.0050	.0175B	.164B	166	.0215	.0031B	.392
	,, 50		. UUTUB	11/	.0011U	.0122U	. 0056ช	.417	.183B	174	•0352 .	.0035B	.383

Ecological Surface Water Sampling Data

Loc Id	Date	Sample Id	Ni mg/L	Ra-226 pCi/L	Ra-228 pCi/L	Se mg/L	SO4 mg/L	Sr mg/L	U mg/L	V mg/L	Zn mg/L
Refer	ence	-									
1216	06/30/98	N001	.01890	14	46	.0022U	71.5	.354	.0015B	.0078ប	.00670
1217	06/30/98	N001	.01890	1	32	.0022U	96.4	.397	.0021B	.00780	.00670
1218	06/30/98	N001	.01890	07	21	.0022U	88.1	.389	.0018B	.00780	.00670
1219	06/30/98	N001	.01890	08	24	.00220	84.3	.383	.0018B	.0078U	.00670
1220	06/30/98	N001	.01890	02	2	.00220	226	.718	.0047B	.00780	.00670
1221	07/01/98	0001	.0170	36	79	.002ប	178*	.589	.003B	.007ט	.0060
	07/01/98	0002	.0170	16	1	.0020	175*	.59	.0027B	.007U	.006U
	07/01/98	N001	.01890	05	.32	.0023B	184*	.617	.0031B	.0078U	.0067ช
	07/01/98	N002	.01890	.01	2	.00220	184*	.609	.0032B	.00780	.00670
1222	06/30/98	0001	.0170	19	18	.002U	75.4	.354	.0017B	.0070	.0060
	06/30/98	N001	.01890	07	45	.00220		.365	.0016B	.0078ប	.00670
1223	06/30/98	0001	.0170	23	42	.002U	77	.349	.0016B	.0070	.0060
	06/30/98	N001	.01890	i	34	.00220		.371	.0017B	.00780	.00670
1224	06/30/98	0001	.0170	13	42	.0020	170	.533	.003B	.0070	.0060
	06/30/98	N001	.01890	09	46	.00220		.569	· .0034B	.0092в	.00670
1225	06/30/98	0001	.0170	17	~.37	.0020	97.4	.373	.002B	.0070	.0060
	06/30/98	N001	.01890	07	31	.0022U		.397	.0021B	.0109B	.00670
Site	£ -		St. Land						•		
1226	07/01/98	N001	.01890	.1	.43	.00220	1510*	3.18	.0046B	.00780	.00670
1227	07/01/98	0001	.0170	15	42	.0020	57.2*	.314	.0011B	.0070	.0060
	07/01/98	N001	.01890	.01	.36	.00220	63.2*	.337	.0013B	.00780	.00670
1228	07/01/98	0001	.0227B	06	07	.0020	2910*	4.87	.258	.136	.006U
	07/01/98	N001	.0271B	.16	.28	.00220	3050*	5.03	.263	.155	.0082B
1229	07/01/98	N001	.01890	04	.22	.0022U	68.6*	.345	.0026B	.00780	.00670
	07/01/98	N002	.01890	05	.21	.00220	70.8*	.343	.0013B	.0078U	.00670
1230	07/01/98	N001	.01890	02	.21	.0022U	68.4*	.344	.0013B	.00780	.00670
1231	07/01/98	0001	.0170	13	37	.0020	61.4*	.324	.0013B	.0070	.0060
	07/01/98	N001	.01890	04	.26	.00220	66.7*	.336	.0013B	.0078ប	.00670
1232	07/01/98	0001	.0170	01	.28	.0020	60.5*	.327	.0012B	.0070	.0060
	07/01/98	N001	.01890	01	.2	.00220	67.8*	.343	.0013B	.00780	.00670
1233	07/01/98	0001	.0170	01	.17	.0020	61*	.33	.0013B	.0070	.0060
	07/01/98	N001	.01890	.01	.41	.00220	67.7*	.347	.0013B	.00780	.00670
1234	07/01/98	N001	.01890	01	.04	.00220	71.5*	.339	.0013B	.00780	.00670
1235	07/01/98	0001	.0170	05	.19	.002U	82.1*	.362	.0017B	.0070	.0060
	07/01/98	N001	.01890	.01	.31	.00220	90.2*	.374	.0017B	.0078ប	.00670

342 00 00 342 00 00 349 00 00 00 00 423 1	01/29/98 01/29/98 06/30/98 06/30/98 01/30/98 01/30/98 06/30/98 01/30/98 01/30/98 01/30/98 01/29/98 01/29/98 01/29/98 06/30/98	0001 N001 0001 N001 0001 N001 0001 0001 N001 0001 N001 0001 N001	239 106 108 279 111	.001U 	68.9 58.4 25.5 37 373 377 40.7 278	.001U .001U .001U .001U .001U	100 	.008U .008U .006U .006U	.0050	1117 925 465 	136 111 65 	.004U .003U .0051BU .0183BU 	.151 .292 .0971B .163U
342 00 00 342 00 00 349 00 00 00 00 423 1	01/29/98 06/30/98 06/30/98 01/30/98 01/30/98 06/30/98 01/30/98 01/30/98 01/30/98 01/30/98 01/29/98 01/29/98 06/30/98 06/30/98 06/30/98	NOO1 0001 NOO1 0001 NOO1 0001 0001 0002 NOO1 0001 0001 NOO1	125 135 130 96 92 88 239 106 108 279	.0014B .001U .0012B .001U .001U .001U	58.4 25.5 37 373 377 40.7	.001U .001U .001U .001U .001U .001U	87.6 	.006U .006U .006U 	.0050 .0050 	1117 925 465 467	136 111 65 -196	.003U .0051BU .0193BU 	.292 .0971B .163U .196
342 00 00 342 00 00 349 00 00 350 00 00 423 1	06/30/98 06/30/98 01/30/98 01/30/98 06/30/98 06/30/98 01/30/98 01/30/98 06/30/98 01/29/98 01/29/98 06/30/98 06/30/98	0001 N001 0001 N001 0001 0001 0002 N001 0001 0001 N001 0001 N001	135 130 96 92 88 239 106 108 279	.0014B .001U .0012B .001U .001U .001U	58.4 25.5 37 373 377 40.7	.001U .001U .001U .001U .001U .001U	87.6 	.006U .006U .006U 	.0050 .0050 	1117 925 465 467	136 111 65 -196	.003U .0051BU .0193BU 	.292 .0971B .163U .196
330 0 0 0 342 0 0 0 0 349 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	06/30/98 01/30/98 01/30/98 06/30/98 06/30/98 01/30/98 01/30/98 01/30/98 06/30/98 01/29/98 01/29/98 06/30/98 06/30/98	NOO1 0001 NOO1 0001 NOO1 0001 0002 NOO1 0001 0001 NOO1 0001 NOO1	130 96 92 88 239 106 108 279 111	.001U .0012B .001U .001U .001U	25.5 37 373 377 40.7	.0010 .0010 .0010 .0010 	87.6 41.9 42.7 204 204	.0060 .0060 .0080	.0050 .0050 	925 465 467	111 65 196	.003U .0051BU .0183BU .0844	.292 .0971B .163U .196
330 0 0 0 342 0 0 0 349 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01/30/98 01/30/98 06/30/98 06/30/98 01/30/98 01/30/98 01/30/98 06/30/98 01/29/98 01/29/98 06/30/98 06/30/98	0001 N001 0001 N001 0002 N001 0001 N001 0001 N001 0001	96 92 88 239 106 108 279	.001U .0012B .001U .001U .001U	25.5 37 373 377 40.7	.0010 .0010 .0010 .0010 	41.9 42.7 204 204	.008u	 .0050 	925 465 467	111 65 -196	.0051BU .0183BU .0844	.0971B .163U .196
342 0 0 0 0 0 0 349 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01/30/98 06/30/98 06/30/98 01/30/98 01/30/98 01/30/98 06/30/98 01/29/98 01/29/98 06/30/98 06/30/98	NO01 0001 N001 0001 0002 N001 0001 0001 N001 0001 N001	96 92 88 239 106 108 279	.0012B .001U .001U .001U	37 373 373 377 40.7	.0010 .0010 .0010 .0010 	41.9 42.7 204 204	.0080 .0080 	.005v 	465 467	65 -196	.0051BU .0183BU .0844	.0971B .163U .196
342 0 0 0 0 0 349 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	06/30/98 06/30/98 01/30/98 01/30/98 01/30/98 06/30/98 01/29/98 01/29/98 06/30/98 06/30/98 01/30/98	0001 N001 0001 0002 N001 0001 N001 0001 N001 N001	92 88 239 106 108 279 111	.0012B .001U .001U .001U 	37 373 373 377 40.7	.0010 .0010 .0010 .0010	42.7 204 204	.006U .008U	.005U	465 467	65 -196 	.0183BU .0844	.163U .196
342 0 0 0 0 349 0 0 0 350 0 0 0 423 1 0 0 0	06/30/98 01/30/98 01/30/98 01/30/98 06/30/98 01/29/98 01/29/98 06/30/98 06/30/98 01/30/98	N001 0001 0002 N001 0001 N001 0001 N001 0001	88 239 106 108 279 111	.001U .001U .001U .001U 	373 377 40.7	.0010 .0010 .0010 	42.7 204 204	.006U .008U .008U	.0050 	467	-196 	.0183BU .0844	.163U .196
342 0 0 0 0 349 0 0 0 350 0 0 0 423 1	01/30/98 01/30/98 01/30/98 06/30/98 06/30/98 01/29/98 01/29/98 06/30/98 06/30/98	0001 0002 N001 0001 N001 0001 N001 0001	239 106 108 279 111	.0010 .0010 .0010 	373 377 40.7	.001U .001U .001U	204 204	.008U		467	-196 	.0844	.196
349 0 0 0 0 349 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01/30/98 01/30/98 06/30/98 06/30/98 01/29/98 01/29/98 06/30/98 06/30/98	0002 N001 0001 N001 0001 N001 0001	239 106 108 279 111	.001U .001U 	377 40.7	.0010 .0010	204 204	.008U				.0844	.196
349 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01/30/98 06/30/98 06/30/98 01/29/98 01/29/98 06/30/98 06/30/98 01/30/98	N001 0001 N001 0001 N001 0001 N001	239 106 108 279 111	.001U	40.7	.0010 .0010	204	.0080					
349 0 0 0 0 0 0 0 350 0 0 0 0 0 423 1	06/30/98 06/30/98 01/29/98 01/29/98 06/30/98 06/30/98 01/30/98	0001 N001 0001 N001 0001 N001	106 108 279 111	.0010 .0010	40.7	.0010							
349 0 0 0 0 350 0 0 0 0 0 423 1	06/30/98 01/29/98 01/29/98 06/30/98 06/30/98 01/30/98	N001 0001 N001 0001 N001	108 279 111	.0010						3680	167	.0829	.198
349 0 0 0 350 0 0 0 0 423 1	01/29/98 01/29/98 06/30/98 06/30/98 01/30/98	0001 N001 0001 N001	279 111	.0010			37.1	.0060	.0050				
350 0 0 0 0 0 0 0 423 1 0	01/29/98 06/30/98 06/30/98 01/30/98	N001 0001 N001	279 111		278					504	26	.0152BU	.182
0 0 0 350 0 0 0 423 1 0	06/30/98 06/30/98 01/30/98	0001 N001	111			.0010	180	.0080		304	20 	00777	
0 350 0 0 0 423 1 0 0	06/30/98 01/30/98	N001								3120	152	.0073BU	.188
350 0 0 0 0 423 1 0 0	01/30/98		105	.0010	40	.0010	39.6	.0060	.0050	3120	152	017600	
0 0 0 423 1 0 0		0001	***							484	178	.0136BU	.175
0 0 423 1 0 0	77 /76 /66	0001		.001U	294	.0010	186	.008υ		701	170.	 0100p	
0 423 1 0 0 0	01/30/98	N001	242							3310	42	.0192B	.185
423 1 0 0 0	06/30/98	0001	110	.0011B	40.8	.0010	39.7	.0060	.005ប	3310	42		
0	06/30/98	N001	102							499	174	.0229BU	.177
0	12/18/96	N001	142	.00056B	83.6	.00110	175	.00670		1212	232		
. 0	01/23/98	0001		.0010	69	.0010	145	.0080		1212	232	1.04	.308
	01/23/98	N001	137							1103	119	.0099BU	.155
. 0	06/29/98	0001	101	.0010	37.2	.0010	37.3	.006U	.005ប	1103			
	06/29/98	N001	95				**		.0050	416	186	.0161BU	.1690
n-Site										410	100	7.7.	
	01/29/98	0001		.0010	540	.0010	886	.0080				.0135BU	1.21
	1/29/98	N001	507							6390	213	.013380	1.21
	07/01/98	0001	88	.001U	37.2	.001ប	38.5	.0060	.005U			.0107BU	.1650
	7/01/98	N001	110							447	148	.0107B0	.1030
	1/29/98	0001		.001U	73.5	.0010	151	.0080				.0116BU	.177
	1/29/98	N001	133							1179	161	.011080	
	6/30/98	0001	101	.001U	37.2	.0010	39.2	.006U	.0050			.0119BU	.170
	6/30/98	N001	97							425	69		.170
	1/29/98	0001		.0010	81.4	.0010	70.9	.0080				.0081BU	.119
	1/29/98	N001	45							1072	212	.001100	.119
	6/30/98	0001	109	.0010	37	.0010	38.5	.0060	.0050			.0103BU	.1960
	6/30/98	N001	108							443	98	.010380	.1960
	1/30/98	0001		.001U	90	.0010	167	.0080				.0058BU	
0:		N001	306							1309	- 60	.005880	.188
0	1/30/98	0001	100	.0010	37.8	.0010	39.3	.0060	.005ប			.0124BU	.176U

ř.

Surface Water Data

03330 000 000 000 000 000 000 000 000 0	01/29/98 01/29/98 06/30/98 06/30/98 01/30/98 01/30/98 06/30/98 01/30/98 01/30/98 01/30/98 01/30/98 01/30/98	0001 N001 0001 N001 0001 N001 0001 N001 0001 0002 N001	7.58 8.46J 2.2 3.32UJ 23.13U 23.09U	7.14 6.81U 3.75 3.39U	4.05 3.82 3.43 2.32	33.9 30.9 9.64	.001U .0019B 	.0147 .0129	95.4 ' 82.6	 .0204BU	.016U .007U	.0558B .0217B	8.18
03330 000 000 000 000 000 000 000 000 0	11/29/98 16/30/98 16/30/98 11/30/98 11/30/98 16/30/98 11/30/98 11/30/98 11/30/98 11/30/98 11/30/98 16/30/98	NOO1 0001 NOO1 0001 NOO1 0001 NOO1 0001 000	8.46J 2.2 3.32UJ 23.13U	3.75 3.39U	3.82 3.43 2.32	30.9 9.64	.0019B	.0129	 82.6	 .0204BU	.0070		8.18
03330 000 000 000 000 000 000 000 000 0	11/29/98 16/30/98 16/30/98 11/30/98 11/30/98 16/30/98 11/30/98 11/30/98 11/30/98 11/30/98 11/30/98 16/30/98	NOO1 0001 NOO1 0001 NOO1 0001 NOO1 0001 000	8.46J 2.2 3.32UJ 23.13U	3.75 3.39U	3.82 3.43 2.32	30.9 9.64	.0019B	.0129	82.6	.0204BU	.0070		
00 00 00 00 00 00 00 00 00 00 00 00 00	06/30/98 06/30/98 01/30/98 01/30/98 06/30/98 06/30/98 01/30/98 01/30/98 01/30/98	0001 N001 0001 N001 0001 N001 0001 0002 N001	8.46J 2.2 3.32UJ 23.13U	6.81U 3.75 3.39U	3.43	9.64						.0217B	
0330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	06/30/98 01/30/98 01/30/98 06/30/98 06/30/98 01/30/98 01/30/98 01/30/98 06/30/98	N001 0001 N001 0001 N001 0001 0002 N001	2.2 3.32UJ 23.13U	3.75 3.39U	3.43 2.32	9.64							0 07
0330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01/30/98 01/30/98 06/30/98 06/30/98 01/30/98 01/30/98 01/30/98 06/30/98	0001 N001 0001 N001 0001 0002 N001	3.32UJ 23.13U	3.39U 	2.32		.0046B						8.07
0 0 0 0 0 0 0 0 0 0 0 0	01/30/98 06/30/98 06/30/98 01/30/98 01/30/98 01/30/98 06/30/98	0001 N001 0001 0002 N001	3.32UJ 23.13U	3.39U 	2.32			.0024B	39.1		.0160	.0633B	8.91
0 342 0 0 0 0 0 0 349 0	06/30/98 01/30/98 01/30/98 01/30/98 06/30/98 06/30/98	N001 0001 0002 N001	23.13U						~- 26	.0386B	.0070	.0341B	
342 0 0 0 0 0 0 349 0	01/30/98 01/30/98 01/30/98 06/30/98 06/30/98	0001 0002 N001	23.130			11.4	.0066В	.0032В	35 	.03868	.0070		7.52
0 0 0 0 0 349 0	01/30/98 01/30/98 06/30/98 06/30/98	0002 N001						.0149	290		.016U	6.28	
0 0 0 349 0 0	01/30/98 06/30/98 06/30/98	N001	ווסח בכ	30.02U	7.12	224	.894 .907	.0149	292		.0160	6.3	
0 0 349 0 0	06/30/98 06/30/98			30.13U	7:15 	226	. 90 /	.0140					8.12
0 349 0 0 0	06/30/98				1.8	12.1	.0427	.0037В	37	.0143BU	.0070	.0942B	
349 0 0 0		0001	3.380	6.45J	1.0								8
0		N001	16.630	21.24	5.98	165	.716	.013	237		.016U	3.02	
Ō	01/29/98 01/29/98	0001 N001	10.030	21.27									8.3
-	06/30/98	0001	3.30	4.96J	1.68	11.5	.0367	.0032B	35	.002280	.0070	.0655В	7-6
Λ	06/30/98	N001											7.6
	01/30/98	0001	29.86	20.46U	6.07	176	.757	.0125	248		.016U	3.26	7.8
	01/30/98	N001									.007U	.0366В	
	06/30/98	0001	3.230	3.38UJ	1.77	11.9	.0322	.0036B	36.5	.0083BU	.0070	.03008	8
	06/30/98	N001							135			1.18	8.9
	12/18/96	N001	8.01U	9.590	4.08	23.4	.0413	.0087B .0084B	110		.0160	.896B	
	01/23/98	0001	4.47UJ	4.44U	3.23	18.9	.0187	.0000					8.6
	01/23/98	N001			1.5	9.27	.0175	.0024B	30.4	.0204BU	.0070	.121B	
	06/29/98	0001	3.37UJ	3.39U	1.5	J.21	.0175				·		8.0
0	06/29/98	N001											
	*										• .		
n-Site	e									4			
220 0	01/29/98	0001	118.2	61.150	38.2	296	.928	.0261	845		.0352B	7.07	
	01/29/98	N001						 -	•				7.7
	07/01/98	0001	3.080	3.38UJ	1.51	9.37	.0133	.0027B	30.2	.0528B	. 0070	.011U	8.3
-	07/01/98	N001								-	0160	1.08	
	01/29/98	0001	7.04	6.54	3.73	25.4	.066	.0093B	117		.016U		9.0
	01/29/98	N001			- -				31	.059В	.0070	.0110	
0	06/30/98	0001	3.06U	3.38UJ	1.54	9.68	.0104	.0026В	21	.0355			8.5
	06/30/98	N001			2.40	 22 1	.0192	.005B	77.9		.0160	1.43	
	01/29/98	0001	6.89	8.08	3.48	22.1	.0192	.0056			,		9.0
	01/29/98	N001		2 2707	1.62	9.74	.0076В	.0027B	31.1	.0528B	.0070	.0110	•
	06/30/98	0001	2.970	3.37UJ 	1.62	9.79							8.5
	06/30/98	N001	6.59	6.13U	4.11	35.5	.13	.0116	135		.016U	1.87	
	01/30/98	0001	6.59	6.130	7.22								8.3
	01/30/98 06/?* ?	N001 0001	3.15U	3.38UJ	1.54	9.88	· ~5	.0027B	31.8	.0435B	.0070	.0110	

Loc Id	Date	Sample Id	Ra-226 pCi/L	Ra-228 pCi/L	Se mg/L	SO4 mg/L	Sr mg/L	TDS mg/L	Tmp C	Turbidity NTU	U mg/L	U-234 pCi/L	U-235 pCi/I
Jpg ra	adient							•					
325	01/29/98	0001	.3	. 60	.0014B	237		688			.0054	2.60	10
	01/29/98	N001							5.4	20.5	.0054	2.60	10
	06/30/98	0001	.14U	. 56ช	.0012B	223	.792	652	. "		.0047		
	06/30/98	N001							22.8	22.6			
330	,	0001	.14	. 40	.001ប	55.9		275			.0032	1.2	10
	01/30/98	N001							5				
	06/30/98	0001	.150	.580	.0010	68.5	.414	300			.0015		
	06/30/98	N001							21.4	9.23			
342	01/30/98	0001	.14	.70	.0112	1810		3280			.025	12.9	10
	01/30/98	0002	.16	. 9ช	.0113	1810		3270			.0252	12.7	10
	01/30/98	N001	4.000						5.1	20			
	06/30/98	0001	.150	.590	.0010	82.4	.412	328			.0018		
349	06/30/98	N001							19.7	48.7			
343		0001	.19	. 80	.0065	1270		2480			.0157	8.5	10
	01/29/98 06/30/98	N001			,				5.8	17			
	06/30/98	0001	.150	. 590	.0010	74.4	.396	323			.0016		
350		N001 0001							18.5	86.7			
330	01/30/98	N001	.16	.80	.0071	1390		2610			.0184	8.6	10
	06/30/98	0001	.170	 	:				4.3	16.8			
	06/30/98	NO01	.170	. 670 	.0010	80.3	.409	335			.0017		
423	12/18/96	NO01	.44	. 9U					20.7	46.4			
723	01/23/98	0001	.18	. 6U	.0012B	163		702	3	31.4	.0039		
	01/23/98	N001	•10	. 60	.0013B	138		608			.0038	1.5*	10
	06/29/98	0001	.150	.590	.001U	 E <i>C</i> E	.347		.3	8.55			
	06/29/98	N001			.0010	56.5 	.34/	270			.0015		
	,00/25/50								18.4	13.5	alle date		
n-Si	te						•					•	
310	01/29/98	0001	.11	.80	.001Ů	2820		5860			.0948	31.2	1.5
	01/29/98	N001							10.1				
	07/01/98	0001	.120	. 65ช	.0010	66.6	.357	292			.0016		
	07/01/98	N001							19.1	18.4			
312		0001	.22	.80	.0016B	199		730			.0055	2U	10
	01/29/98	N001		'			· 		7.2	8.98			
	06/30/98	0001	.120	. 65ช	.0010	67.7	.375	295			.0016		
	06/30/98	N001			·				22.2				
28	01/29/98	0001	.24	. 4U	.0010	311		623			.0091	3.2U	10
	01/29/98	N001							10.7	8.8			
	06/30/98	0001	.210	.870	.0010	68.2	.365	307			.0016		
	06/30/98	N001							26.1				
344	01/30/98	0001	.16	. 4U	.0022B	278		822			.0072	3.7	10
	01/30/98	N001							5.2	<u>:-</u>			
	06/30/98	0001	.120	. 690	.001U	68.1	.363	285			.0016		

Loc Id	Date	Sample Id	U-238 pCi/L	V mg/L	Zn mg/L
Upgra	dient			-	
0325	01/29/98	0001	1.8	.0022В	.004U
	01/29/98	N001			
	06/30/98	0001		.0038BU	.005ປ
	06/30/98	N001			
0330	01/30/98	0001	1.1	.0011BU	.004U
	01/30/98	N001		•	
	06/30/98	0001		.003BU	.0050
	06/30/98	N001			
0342	01/30/98	0001	8.3	.0010	.0041B
	01/30/98	0002	8.4	.0010	.0045B
	01/30/98	N001			
	06/30/98	0001		.0026BU	.005บ
	06/30/98	N001			
0349	01/29/98	0001	5.2	.0010	.004U
	01/29/98	N001			
	. 06/30/98	0001		.0027BU	.0177B
	06/30/98	N001			
0350	01/30/98	0001	6.2	.001U	0040
	01/30/98	N001			
	06/30/98	0001		.0027BU	.0057B
	06/30/98	N001		. 	
0423	12/18/96	N001		.0067U	.011B
	01/23/98	0001	1.3	.0013B	.004U
	01/23/98	N001			
	06/29/98	0001	:	.0022BU	.0050
	06/29/98	N001	•		
On-Si	te				•
0310	01/29/98	0001	31.6	.0010	.004U
	01/29/98	N001			
	07/01/98	0001		.0031BU	.005ប
	07/01/98	N001			
0312	01/29/98	0001	1.8	.014	.0040
	01/29/98	N001			
	06/30/98	0001		.0042BU	.0050
	06/30/98	N001			
0328	01/29/98	0001	3.1	.0016BU	.004U
	01/29/98	N001			
	06/30/98	0001		.0035BU	.0081B
	06/30/98	N001			
0344	01/30/98	0001	2.4	.0403	.0057B
	01/30/98	N001			
	06/~ '9	0001		.0036BU	.005U
1		,		:	

Loc Id	Date	Sample Id	Alkalinity mg/L	As mg/L	Ca mg/L	Cd mg/L	Chloride mg/L	Co mg/L	Cu . mg/L	EC µmhos/cm	Eh mV	Fe mg/L	Fluoride mg/L
On-Si	ite											•	
0344	06/30/98	N001	98							458	55		
0346	01/30/98	0001		.0115	492	.0012	628	.0080	~~			.0081BU	1.26
	01/30/98	N001	398							6610	92		
	. 06/30/98	0001	96	.0010	37.3	.0010	38.1	.006ប	.005ប	+-		.0125BU	.177
	06/30/98	N001	100							444	182		
0424		N001	138	.0006B	98.8	.00110	188	.0067U		1420	238	1.31	.336
	01/29/98	0001		.0010	69.8	.0010	150	.0080				.0139BU	.174
	01/29/98	N001	133							1062	45		
	06/30/98	0001	103	.0010	37.7	.0010	38	.0060	.005ប			.0163BU	.167
	06/30/98	N001	109					. 		451	181		
0425		0001		.0010	69.1	.0010	146	.0080				.0093BU	.158
	01/29/98	N001	152							1037	62		
	06/30/98	0001	99	.0010	37.6	.0010	38.5	.0060	.005ប			.0107BU	.1630
	06/30/98	N001	98				·			453	103		
0432		N001	174	.00032В	86.6	.00110	185	.00670		1040	255	.347	.316
	12/19/96	N002		.00051B	88.4	.00110	177.	.00670	<u>:-</u>		"	.381	.306
		200		•		1.3	39				-		
Down	Gradient	** **		2 a + t		1 4						:	-
									•	• 5 5			4
0308	01/30/98	0001		.0010	69	.0010	142	.0080	·			.0093BU	.194
	01/30/98	N001	139					'		1047	105		
	06/30/98	0001	99	.0010	37.6	.0010	37.8	.006ប	. 005ช			.0128BU	.186
	06/30/98	0002		.001U	37.4	.0010	38.1	.0060	.005℧			.0113BU	.2010
	06/30/98	N001	94						, 	446 .	61		
0326		0001		.0010	181	.001U	438	.0080				.0237BU	.132
	01/30/98	N001	199							3880	158	·	
	07/01/98	0001	54	.002B	204	.0010	678	.0060	.0050			.0030	.794
	07/01/98	N001	46			•				4410	106		
0360		0001	157	.0016B	382	.0010	1850	.006ប	.0050			.0153BU	.486
	07/01/98	N001	166	,						11570	172		
0427		N001	170	.00047B	89.2	.00110	178	.00670		1296	255	. 45	.303
	01/30/98	0001		.0010	68.2	.0010	143	.0080				.0381	.159
	01/30/98	N001	144			•				1052	. 92		
	06/30/98	0001	101	.0010	36.3	.0010	37.9	.0060	.0050	"		.0121BU	.167U
-1-1	06/30/98	N001	98							443	128		

Surface Water Data

Loc Id	Date	Sample Id	GA pCi/L	GB pCi/L	K mg/L	Mg mg/L	Mn mg/L	Mo mg/L	Na mg/L	NH4 mg/L	Ni mg/L	mg/L	pH s.u.
On-Si	te	•					. *						
0344	06/30/98	N001		'									8.29
0346	01/30/98	0001	92.39	54.51	22.2	390	3.03	.0887	669		.0422	26.4	
	01/30/98	N001											7.45
	06/30/98	0001	3.170	3.39UJ	1.56	9.61	.0058B	.0027B	31.3	.0022BU	.0070	.0998B	
	06/30/98	N001											8.07
424	12/18/96	N001	9.67U	11.570	4.38	37.2	.118	.011B	155			1.45	9.45
	01/29/98	0001	5.02U	7.68	3.42	20.5	.0221	.0085B	114		.016U	.578B	
	01/29/98	N001											8.66
	06/30/98	0001	3.04U	3.37UJ ·	1.54	9.71	.0134	.0027B	31.5	.0083BU	. 007ט	.197В	
	06/30/98	N001											7.52
1425	01/29/98	0001	5.27	6.08U	3.44	20.3	.0233	.0088B	112		.016U	.587B	
	01/29/98	N001			,			'					8.67
	06/30/98	0001	2.990	3.37UJ	1.58	9.82	.0091B	.0026B	31	.0528B	.007U	.011U	
	06/30/98	N001										`	8.32
432	12/19/96	N001	9.060	11.54U	3.7.6	24.3	.0415	.0075B	136			1.4	9.03
	12/19/96	N002	8.85U	11.48U	3.85	24.9	.0426	.0078B	140		***	1.36	
own	Gradient					•	,						
					2 22		0004	00045	100		01.60	.575B	
308	01/30/98	0001	4.95U	6.04U	3.32	19.7	.0234	.0084B	106		.0160		
	01/30/98	N001		101.0				00000			.0070		8.32
	06/30/98	0001	4.18U	101.2J	1.53	9.59	.0058B	.0026B	30.4	.0374B		.011U	
	06/30/98	0002	3.080	3.37UJ	1.52	9.5	.0057B	.0025B	30.1	.0497В	.0070	.011U	
	06/30/98	N001										1130	8.28
326	01/30/98	0001	17.290	20.230	11.1	151	.0079В	.0085B	431		.0160	.113B	
	01/30/98	N001											8.84
	07/01/98	0001	30.68U	33.7UJ	18.2	137	.0161	.0426	614	.0775B	.0096B	.0110	
	07/01/98	N001											9.07
360	07/01/98	0001	110.95U	134.24UJ	25.7	693	.104	.0564	1990	.133	.0133В	.0110	
	07/01/98	N001									~~		7.89
427	12/19/96	N001	9.04U	11.49U	3.95	24.9	.0449	.0077В	140	* ==		1.33	8.48
	01/30/98	0001	4.940	6.020	3.35	19.6	.0291	.0084B	107		.0401	.577B	
	01/30/98	N001	=-									:	8.19
1. 1	06/30/98	0001	30	3.37UJ	1.5	9.23	.0052B	.0026B	29.6	.0528B	.0070	.011U	
	06/30/98	N001			'								8.29

Loc Id	Date	Sample Id	Ra-226 pCi/L	Ra-228 pCi/L	Se . mg/L	SO4 mg/L	Sr mg/L	TDS mg/L	Tmp C	Turbidity NTU	U mg/L	U-234 pCi/L	U-235 pCi/L
n-Si	ite			-								•	
344	06/30/98	N001										•	
346	01/30/98	0001	.13	.5	.017	2990			18.9				
	01/30/98	N001			.017		·	5640			.0734	32.3	1.2
	06/30/98	0001	.120	.50	.0010				11.3				
	06/30/98	N001	.120	.50		62.3	.359	293			.0015		
424	12/18/96	NO01	. 37U				***		24.9	7.74		·	
74.7	01/29/98	0001		.80	.0021B	265		878	3	26.5	.0058		
	01/29/98		.27	. 90	.0013B	151		628			.0038	1.5	10
		N001						`	3.1				
	06/30/98	0001	. 150	. 610	.001U	62	.361	297			.0016		
	06/30/98	N001							18.1	17.4			
425	01/29/98	0001	.16	.70	.0015B	150		617			.0038	1.7	10
	01/29/98	N001	***	'					3.9				
	06/30/98	0001	.140	.570	.001U	67.7	.364	345			.0016	'	
	06/30/98	NQ01							20.2				
432	12/19/96	N001	.26	.90	.0013B	183	-	747	2	11	.0043		
	12/19/96	N002	.21	.90	.0013B	176		762			.0043		
			•	,			•	, ,,			.0044		
own	Gradient												
308	01/30/98	0001	.19	. 50	.0013B	148		612			.0038	1.0	
	01/30/98	N001							2.5		.0038	1.2	10
	06/30/98	0001	.130	.560	.0010	64.9	.358	290	2.5				
	06/30/98	0002	.150	.610	.0010	64.7	.355	283			.0016		
	06/30/98	N001									.0015		
326	01/30/98	0001	.17	. 4U	.0010	1180		2510	17.2	'			
	01/30/98	N001			.0010	1100		2610			.0348	12.4	10
	07/01/98	0001	.17	. 660	.0010				9.6	13.7			
	07/01/98	N001		.000		1450	3.4	3310			.0045		
360	07/01/98	0001	.130						26.4	1.96			
-00	07/01/98	N001		.70	.0010	5550	7.34	11400	'		.0662		
427	12/19/96							,	24.9	7.69	'		
421		N001	.19	. 90	.0012B	177		750	3	14.2	.0043		
	01/30/98	0001	.17	. 4U	.0013B	147		615			.0038	1.6	10
	01/30/98	N001		·					2.3				
	06/30/98	0001	.14U	.590 '	.0010	63.7	.355	295			.0016		
٠.,	06/30/98	N001							18.1	~~			

Loc Id	Date	Sample Id	U-238 pCi/L	V mg/L	2n mg/L
On-Si	te			·····	
0344	06/30/98	N001			
0346	01/30/98	0001	24.5	.873	.0134B
	01/30/98	N001			
	06/30/98	0001		· .0023BU	.005ប
	06/30/98	N001			
0424	12/18/96	N001		.00670	.0124B
	01/29/98	0001	1.3	.0015B	.004U
	01/29/98	N001		'	
	06/30/98	0001		.0024BU	.0268B
	06/30/98	N001			
0425	01/29/98	0001	1.3	.002B	.0058B
	01/29/98	N001			
	06/30/98	0001		.0037BU	.0050
	06/30/98	N001			
0432	12/19/96	N001		.0067ช	.0095В
	12/19/96	N002		. 0067ช	.013B
Down	Gradient			•	
0308	01/30/98	0001	1.3	.0017B	.0040
	01/30/98	N001			
	06/30/98	0001		.002BU	.0050
	06/30/98	0002		.0023BU	.005ប
	06/30/98	N001			
0326	01/30/98	0001	11.6	.001U	.004U
	01/30/98	N001	·		
	07/01/98	0001		.0023BU	.005U
	07/01/98	N001		·	
0360	07/01/98	0001		.003BU	.0050
	07/01/98	N001			
0427	12/19/96	N001		. 0067ช	.0136B
	01/30/98	0001	1.3	.0024B	.004U
	01/30/98	N001			
	06/30/98	0001		.0021BU	.0058В
	06/30/98	N001		*** ***	·

Loc Id	Date ·	Sample Id	Alkalinity mg/L	As mg/L	Ca mg/L	Cd mg/L	Chloride mg/L	Co mg/L	Cu mg/L	EC µmhos/cm	Eh mV	Fe mg/L	Fluoride mg/L
Upgra	ndient	,					: -	• .		· · ·			
0588	01/28/98	0001		.0059	82.8	.0010	149	.0080				146	
	01/28/98	N001	322	'		:				1249	103	.146	.233
	06/29/98	0001	305	.0082	74.6	.0010	164	.0060	.0050	1249	-103 		
1.	06/29/98	N001	323						.0050	1158		.337	.501
713	01/27/98	0001		.0010	449	.0010	347	.0080		1130	-235 		
	01/27/98	N001	459		<u></u>					6010	101	.0040	1.3
	06/24/98	0001	433	.0010	420	.0010	338	.0060	.0050				
	06/24/98	N001	427				7		.0030	3981	176	.0030	1.62
715	01/27/98	0001		.001U	470	.0010	280	.0080		3501	1/0	004**	
	01/27/98	N001	367						·	5590	-143	.004U	1.19
	06/24/98	0001	374	.0012B	430	.0010	144	.006ប	.0050	3390	-142	.0030	
	06/24/98	N001	376	~~						4960	239		.879
744	01/26/98	0001		.001ប	170	.001ប	171	.0080			239		
	01/26/98	N001	248					* **		2130	73	.0040	. 621
	06/29/98	0001	227	.0010	122	.0010	133	.0060	.0050	2130	73		
	06/29/98	N001	242							1834	-67	.0030	.733
745	01/26/98	0001		.0012B	520	.0010	591	.0080	'	1034			
	01/26/98	N001	405							6150		1.17	.813
	06/17/98	0001	345	.0014B	· 445	.0010	520J	.0060	.005ប	9120	-24		
	06/17/98	N001	337				3200		.0050			1.1	.803J
746	01/26/98	0001		.0010	518	.0010	801	.0080		4600	-13		
	01/26/98	N001	411			.0010		.0000				.004U	1.82
	06/17/98	0001	358	.0010	480	.0010	813J	.0060		7760	93		
	06/17/98	N001	393			.0010	0130	.0060	.0050			.0030	1.63J
.020		0001		.0010	573	.0010	991	.0080		6010	210	·	
	01/26/98	N001	493				- -		==			3.13	.766
	06/22/98	0001	462	.0010	479	.001ប	899	.0060	.0050	7570	-54		
	06/22/98	N001	447					.0000	.0050			. 1.8	.849
021	01/26/98	0001		.001UL	363L	.001UL	746L	.008UL		5650	-77		
	01/26/98	N001	467L					.00001	·	3790L	1.50*	.0183BUL	.453L
	06/23/98	0001	422L	.001UL	208L	.001UL	352L	.006UL	.005UL	37306	169L		
	06/23/98	N001	449L	~-				.00001	.00501	2170L		.0069BUL	.511L
023	01/22/98	0001		.0010	474	.001ប	253	.0080		21701	98L		
	01/22/98	N001	427			**	233			6880		.0042BU	.52
	06/18/98	0001	318	.001U	439	.0010	253	.0060	.0050		106		
	06/18/98	N001	328				233		.0050		167	.003U	.796
024	01/22/98	0001		.0026B	150	.0010	159	.0080		5190	157		
	01/22/98	N001	495			.0010	139	.0080		1726	÷-	3	.324
	06/18/98	0001	355	.001U	101	.0010	70.8	.0060		1726	-62		
	06/18/98	N001	336				70.8	.0060	.0050		101	.542	. 42
025	01/22/98	0001		.0010	518	.0010	307	.0080		999	-101		
	01/22/98	0002		.0010	525	.0010						.552	1.11
	01/22/98	NO01.	433	.0010	323 ~=	.0010	306 	.008U				.533	1.12
	06/18/98	0001	415	.0010	469					5940	-15		
	-0, -0, 50	3001	747	.0010	403	.0010	301	.006ប	∙.005ʊ			.321	1.25

Groundwater Data

loc Id	Date	Sample Id	GA pCi/L	GB pCi/L	K mg/L	Mg mg/L	Mn mg/L	Mo mg/L	Na mg/L	NH4 mg/L	Ni mg/L	NO3 mg/L	pH s.u.
pgra	dient						- · · · · · · · · · · · · · · · · · · ·						, .
588		0001	5.24UJ	6.08U	6.33	25.3	.314	.0069В	125		.0160	.152B	
	01/28/98	N001	·						'.		**	**	7.8
	06/29/98	0001	18.11UJ	1183	7.3	23.4	.427	.0082B	116	16.3B	.0070	.0110	
	06/29/98	N001	70 177	41 100	10.7	450	1 70	.083	600		.0160	10.5	7.14
713	01/27/98 01/27/98	0001 N001	70.17J	41.18U	10.7	450	1.78	.083			.0100	10.5	7.19
	06/24/98	0001	63.33J	254.9	10.5	400	2.22	.0739	562	.0224B	.0105B	8.43	7.1:
	06/24/98	N001		234.5	10.5	400	2.22			.02245			6.83
715	01/27/98	0001	46.37UJ	60.2 ⁻ 60	10.3	469	.233	.057	685	·	.0160	16.3	
, 13	01/27/98	N001											6.89
	06/24/98	0001	58.02UJ	67.45U	11.4	460	2.08	.0656	686	.0224B	.0109B	16.3	
	06/24/98	N001	**			'							6.93
744		0001	12.85UJ	13.230	6.06	107	.821	.017	200		.0160	3.46	
	01/26/98	N001				•	,						7.0
	06/29/98	0001	13.71UJ	13.570	6.37	77.8	. 694	.0185	186	1.12	.0070	.238B	
	06/29/98	N001			. ==								7
745		0001	41.63UJ	43.970	6.42	361	1.7	.0549	619		.0160	.0579BU	
	01/26/98	N001			, 								7.5
	06/17/98	0001	35.12U	36.61U	5.53	323	1.67	.0494	590	.321	.0117в	.074BUJ	
: -	06/17/98	N001		 		400	1.62	.186	844		.0160	13.4	6.8
746		0001	57.81UJ	65.5U	11.7	489	1.63	.100	044			13.4	6.7
	01/26/98	NOO1 0001	80.66	54.92U	10.7	502	1.84	.168	893	.0725B	.0117в	12.8J	
	06/17/98 06/17/98	N001		34.920	10.7	502	1.01			.07235			6.8
020	01/26/98	0001	61.72J	60.680	9.59	419	1.08	.0279	853		.0160	.0694B	
020	01/26/98	N001								***			7.0
	06/22/98	0001	61.92UJ	67.5ช	8.65	347	.972	.0286	834	.0877B	.0101B	.132B	
	06/22/98	N001											6.4
021		0001	30.6JL	29.26L	16.8L	118L	.436L	.0311L	317L	'	.016UL	69.1L	
	01/26/98	N001				·				·			7.02
	06/23/98	0001	31.35JL	17.19UL	12.4L	64L	.514L	.0217L	235L	.066BL	.0088BL	.0648BL	
	06/23/98	N001					••						6.57
023	01/22/98	0001	45.17J	50.11	8.27	447	1.73	.124	659		.0215B	71	
	01/22/98	N001				, 							6.8
	06/18/98	0001	49.61	54.54U	7.52	464	1.76	.12	699	.0142B	:0281B	71.4J	
1	06/18/98	N001	'					00475					6.8
24		0001	11.11J	18.26	11.1	62.5	.551	.0047B	132	. 	.0160	.0249B	6.9
	01/22/98	N001	 	 7 04	7.00	 26 A	304	.0064B	80.9	.0264B	.0073В	.105BUJ	6.9
	06/18/98	0001	6.130	7.84	7.98	26.4	.394	.00648	80.9	.02648	.00738	.103800	6.8
125	06/18/98	N001	50.69J	4.4.19U	12.2	434	1.94	.0654	520	,	.0197B	33.4	
)25	01/22/98 01/22/98	0001 0002	54.41J	44.19U	12.2	432	1.94	.0643	530	,	0160	33.6	
	01/22/98	N001	54.415	44.190		434		.0043	770		0100	33.0	6.8
	06/8	0001	36.45	36.710	11	400	95	.0625	546	.183	.0162B	30.7J	

Loc Id	Date	Sample Id	Ra-226 pCi/L	Ra-228 pCi/L	Se mg/L	SO4 mg/L	Sr mg/L	TDS mg/L	Tmp C	Turbidity NTU	U mg/L	U-234 pCi/L	U-23! pCi/I
Jpgra	dient	-									•		
0588	01/28/98	0001	.14	.40	.0010	33.9		640	·				
	01/28/98	N001							9.4	1.55	.0022	. 80	10
	06/29/98	0001	. 130	.570	.0010	62.6	1	668	7.4 	1.55			
	06/29/98	N001			- 4-				17	.98	.0014		
713	01/27/98	0001	.04U	. 90	.048	3060		5460			.0652	 35.2	
	01/27/98	N001			`				14.1	901	.0652	33.2	1.1
	06/24/98	0001	.120	.510	.049	3140	5.94	5650			0662		
	06/24/98	N001		·					13.9	3.18	.0002		
715		0001	.14	. 60	.0318	3720		6280			.0602	34.9	1U
	01/27/98	N001		'	·				14.1	139		J4.9 	10
	06/24/98	0001	· .13U	.540	.0404	1840	7.06	6190			.0535		
	06/24/98	N001							14.9	13.6			
744		0001	.07ט	. 80	.0037B	776		1640			.0132	5.4*	10
	01/26/98	N001			i :				11.2	4.42			
	06/29/98	0001	.130	.510	.0010	653	1.71	1440			.0117		
746	06/29/98	N001						·	16.3	3.12			
745	01/26/98 01/26/98	0001	.06	. 60	.0010	2680		5310			.0381	18.8*	10
	06/17/98	N001			,				13.4	9.35			
	06/17/98	0001	.130	.520	.0010	2480J	5.9 .	5070	 .		.038		
746	01/26/98	N001 0001						`	12.3	2.64			
740	01/26/98	N001	.08	. 60	.111	3560		6950			.0624	32.1*	10
	06/17/98	0001	.14U	 					15.5	7.83	<u>-</u>		"
•	06/17/98	N001		.530	.1	3550J	8.09	7020			.0637		
020	01/26/98	0001	.1	 10					14.7	9.2			
020	01/26/98	N001	.1		.0010	2940		6340			.0566	29.2	10
	06/22/98	0001	.130	.530					12.4	25.4			
	06/22/98	N001		.530	.001U	. 2730	6.04	7400			.0573		
021	01/26/98	0001	.34L	.9UL	.001UL				13.1	6.52			
	01/26/98	N001	.512	. 301	.0010L	614L		2610L			.0305L	14.9L	1UL
	06/23/98	0001	.13UL	.5UL	.001UL	416L	2.14L	1670	9.7L	32.4L			
	06/23/98	N001			.00101	4100	-	1670L			.0228L		
023	01/22/98	0001	.08	.50	.137	. 3720		 6440	13.5L	34L			
	01/22/98	N001				. 3720		6440 			.0468	23.8*	10
	06/18/98	0001	.140	. 53U	.116	3700	4.93	6410	13.9	6.61			
	06/18/98	N001				3700	4.53	6410			.0452		
24	01/22/98	0001	.29	.70	.0010	183		1030	13.4	16.2			
	01/22/98	N001			.0010	103		1030	11.8	 4 21	.0041	20	10
	06/18/98	0001	.130	.510	.0010	113	.828	647	11.8	4.31	0054	- -	
	06/18/98	N001			.0010		.020	047	12.3		.0054		
25	01/22/98	0001	.09	. 4U	.0624	3100 '		5520	12.3	2.32			
	01/22/98	0002	.060	.70	.0546	3100		5460			.0435	21.5*	10
	01/22/98	N001			.0540			346U 	14.1	 7.69	.0436	20.5*	10
	06/18/98	0001	.130						14.1	7.69			

Loc Id	Date	Sample Id	U-238 pCi/L	V mg/L	Zn mg/L
Upgra	dient				
0588	01/28/98	0001	10	.0014B	.004U
	01/28/98	N001			
	06/29/98	0001		.0028BU	.0063B
	06/29/98	ท001			
0713	01/27/98	.0001	21.8	.0035B	·. 004U
	01/27/98	N001			
	06/24/98	0001		.0049BU	.005U
	06/24/98	N001			
0715	01/27/98	0001	20.1	.0010 '	.004U
	01/27/98	N001			
	06/24/98	0001		.0023BU	.0050
	06/24/98	N001			
0744	01/26/98	0001	4.4	.0010	.004U
	01/26/98	N001			
	06/29/98	0001		.0013BU	.0050
	06/29/98	N001			
0745	01/26/98	0001	12.7	.0010	.0040
	01/26/98	N001			
	06/17/98	0001		.0010	.005ប
	06/17/98	N001			
0746	01/26/98	0001	20.8	.0011B	.004U
	01/26/98	N001		00175	
	06/17/98	0001		.0017BU	.0050
	06/17/98	N001			
1020	01/26/98	0001	18.9	.0010	.0040
	01/26/98	N001	·	-	•
	06/22/98	0001		.0011BU	.0050
	06/22/98	N001			005101
1021	01/26/98	0001	10.2L	.001UL	.0051BL
	01/26/98	N001		0017007	005111
	06/23/98	0001		.0017BUL	.005UL
	06/23/98	N001	15.6	.0015B	.0040
1023	01/22/98	0001	15.6	.00138	.0040
	01/22/98	N001		002600	00511
	06/18/98	0001		.0026BU	.0050
	06/18/98	N001		00111	.0057B
1024	01/22/98	0001	1.4	.0010	.00375
	01/22/98	N001		.001U	.0050
	06/18/98	0001		.0010	.0050
	06/18/98	N001	14 5		.0040
1025	01/22/98	0001	14.5	.0010	.0040
	01/22/98	0002	14.6	.0013B	.0040
	01/22/98	N001		.0018BU	.0050
	06/17 178	0001		.001000	.0000

Loc Id	Date	Sample Id	Alkalinity mg/L	Mg/L	Ca . mg/L	Cd mg/L	Chloride mg/L	Co mg/L	Cu mg/L	EC pumbos/cm	Eh mV	Fe mg/L	Fluoride mg/L
pgra	dient					•							
025	06/18/98	N001	410								_		
026		0001		.0010	451	.0010	466	.0080		4500	8		
94 J	01/23/98	N001	375			.0010		.0080				.0995	1.64
	06/19/98	0001	345	.0010	424	.001ប	484	.0060	.0050	5310	25		
	06/19/98	N001	356						.0030	5050		.141	1.81
027	01/23/98	0001		.001B	519	.001U	416	.0080		5050	1	700	
	01/23/98	N001	379							6150	-32	.709 	1.63
	06/19/98	0001	360	.001ប	458	.0010	408	.0060	.0050	0130	-32	.593	
	06/19/98	N001	354							4830	-51	. 333	1.47
028	01/23/98	0001		.001U	460	.001ប	443	.0080		4030	-51	.206	1.64
	01/23/98	N001	355							6080	-12		1.04
	06/18/98	0001	359	.0010	431	.0010	439	.0060	.005ប	:		.357	1.68
	06/18/98	N001	341			-,-				4780	-21		
721		0001	420	.0010	237	.0010	229	.0060	.0050			.0573	.553
	06/22/98	N001 -	426		·					2950	-20		
	1	*	,				. •	•			•		
n-Si	.te			* * *					18	•			
	01 100 100			2221	246								
000	01/28/98	0001		.0024BL	502L	.001UL	748L	.008UL	'			1.35L	1.81L
	01/28/98	N001	305L				,	·		6880L	94L		
	06/25/98 06/25/98	0001	415L	.0032BL	549L	.0013L	392L	.006UL	.005UL			2.43L	1.47L
		N001	402L								26L		
OI	01/26/98 01/26/98	0001	470	.0318	563	.0010	860	.0080			'	10.3	3.75
	06/24/98	N001 0001	478							7910	-49		
	06/24/98	N001	484	.0349	490	.0010	857	.0162B	.0050			8.8	3.97
002	00/24/98	0001	489 							7970	-87		
JU2	01/27/98	N001	386L	.001UL	481L	.001UL	861L	.008UL				1.28L	1.94L
	06/25/98	0001	475L	.001UL	480L					7670L	120L		
	06/25/98	N001	444L	.0010L	480F	.001UL	415L	.0118BL	.005UL			1.17L	.99L
012	01/22/98	0001		.002B	533	.0010					-9L		
	01/22/98	N001	458			.0010	835	.0080			 .	3.66	1.7
	06/25/98	0001	481	.0024B	465	.0010	420	.0060		7600	-15		
	06/25/98	N001	472	.00215	403	.0010	420		.005σ	7020		4.05	1.56
13		0001	'	.0048B	547	.0010	845	.0080		7830	-42		
·	01/26/98	N001	467			.0010				7610		3.55	1.69
	06/24/98	0001	493	.0071	475	.0010	406	.0060	.0050	7610	-31		
	06/24/98	N001	492			.0010	400			77.40		3	.898
14	01/23/98	0001		.0191	562	.0010	836	.0096B	'	7740	-41		
	01/23/98	N001	545		702	.0010	030	.00968		7780		2.99	7.44
	06/24/98	0001	459	.017	472	.0012	887	.0060	.0050	7780	-38		
	06/24/98	0002		.0144	481	.0012	872	.0000	.0050			2.35	7.9
	06/24/98	N001	489		401		07Z 	.01328	.0050			1.94	7.24
15	01/23/98	0001		.0023B	618	.0010	771	.0080		8040	14		
					0.0		***	.0000				2.35	1.31

Groundwater Data

Loc Id	Date	Sample Id	GA pCi/L	GB pCi/L	K mg/L	Mg mg/L	Mn mg/L	Mo mg/L	. Na mg/L	NH4 mg/L	Ni mg/L	NO3 mg/L	pH s.u.
Upgr	adient									-			
1025	06/18/98	N001				· <u></u>					•		
1026	01/23/98	0001	42.3UJ	44.140	8.39	417	2.37	.118	652	*-			6.8
	01/23/98	N001					2.37		653 		.02B	1.37	
	06/19/98	0001	74.13J	48.58	7.98	388	2.51	.111	670	.0203B	.016B	1 27 7	7.0
	06/19/98	N001			, 					.02036	.0105	1.37J	
1027		0001	41.92UJ	44.02U	7.47	369	2.58	.105	648		.0160	1.23	6.8
	01/23/98	N001	***								.0100		7.7
	06/19/98	0001	83.66J	45.77U	7.07	349	3.08	.1	638	.0234B	.0096в	-454BJ .	7.7
	06/19/98	N001				'							6.8
1028		0001	41.65UJ	44.04U	8.62	420	2.2	.111	607		.0160	.0686BU	
	01/23/98	N001									.0100	. 0000B0	6.8
	06/18/98	0001	55.97	36.8U	8.56	395	2.19	.102	598	.0172в	.014B	.0752BUJ	
	06/18/98	N001						*					6.8
:W21		0001	37.61J	27.27ט	4.93	197	.868	.0158	302	.0256в	.0074B	.104B	
	06/22/98	N001											6.8
n-Si	+-												
11-31	· LE		25					•					
000	01/28/98	0001	149.6L	61.66UL	22 11	00.4=	0.611					***	
	01/28/98	N001		01.000L	22.1L	224L	2.61L	.0666L	918L		.0308BL	3.48L	
	06/25/98	0001	125.9JL	68UL	32.4L	284L	3.44L						7.57
	06/25/98	N001			32.40	2041	3.441	.0836L	922L	65.7L	.036BL	_. 10.7L	
001	01/26/98	0001	167.7J	77.36	61.2	368	4.43	.175	863				7.121
•	01/26/98	N001				300		.175	863 		.111	.399B	
·	06/24/98	0001	206.7J	1113	60.4	336	4.54	.165	877	100			7.0
	06/24/98	N001						.103	0// 	182	.0981	.192B	
002	01/27/98	0001	288JL	92.49L	36.9L	472L	2.64L	.132L	877L		.016UL	4 101	7.0
	01/27/98	N001							.0772		.01605	4.19L	7 22
	06/25/98	0001	216.8JL	109.1L	35.6L	419L	2.7L	.108L	920L	51.6L	.0132BL	14.3L	7.331
	06/25/98	N001					~~					14.30	7.21
012	,,	0001	201.8J	66.27U	42.8	426	2.79	.192	860 ·		.0261B	1.43	7.21
	01/22/98	N001.											7.06
	06/25/98	0001	162.7J	68.32U	44.5	391	3.31	.188	872	98.5	.0234В	.0110	7.00
	06/25/98	N001											6.9
013	01/26/98	0001	510.4J	104.1	29.6	474	2.92	.108	904		.0348B	1.02	
	01/26/98	N001			_==_								7.07
	06/24/98	0001	335.3J	174	27.7	429	3.11	.0977	916	54.9	.036B	.708B	
14	06/24/98	N001	10207	413.5									7.14
TA	01/23/98 01/23/98	0001	1930J	413.5	36.3	455	3.16	.299	909		.0481	.526B	
	01/23/98	N001 0001	 1677J		22.6								7.09
	06/24/98	0001	1677J 1521J	669.9	33.6	424	3.23	.296	969 ·	83	.0417	3.93	
	06/24/98	N001	12210	651.1	32	420	3.29	.308	972	83	.0506	3.92	
15	01/21/38	0001	41.78UJ	44.1U	20.5	 207	- 10						7.03
	/ 0	AAA1	41.7000	44.10	40.5	407	- 18	.0517	804		.0254B	.0867В	

.

Groi ter Data

			<u></u>									4.5	
Loc Id	Date	Sample Id	Ra-226 pCi/L	Ra-228 pCi/L	Se mg/L	SO4 mg/L	Sr mg/L	TDS mg/L	Tmp C	Turbidity.	U mg/L	U-234 pCi/L	U-235 pCi/L
Upgra	dient												× .
1025	06/18/98	N001		₩=									
1026	01/23/98	0001	.23	. 4U	.0066	2970			13.2	8.91			
	01/23/98	N001				2970		5490			.0622	28.7*	1
	06/19/98	0001	.130	.50	.0049B	3040	5.96	5700	14.2	6.81			
	06/19/98	N001					J. 96 	5700			.0629		~~
027		0001	.09	.7ט	.0179	3030		5530	13.7	8.58		'	
•	01/23/98	N001						5530	15.6		.0682	31.9*	1.1
	06/19/98	0001	.140	.570	.0116	2910	6.5	5490	15.6	7.38			
	06/19/98	N001					0.5	5490	15.1		.0674		
1028	01/23/98	0001	.09	.70	.001ប	2990		5430	15.1	6.07			
	01/23/98	N001						3430	13.4	8.43	.059	29.5*	10
	06/18/98	0001	.130	. 49U	.0010	2960	5.83	5500		0.43	0507		
	06/18/98	N001							13.2	12.8	.0587 		
W21	06/22/98	0001	.150	. 60	.0010	1330	2.42	2770		12.0	.036		
•	06/22/98	N001							17.2	8.44			
		1. • •						,	17.2	0.44			
n-Si	te		-	-									
000	01/28/98	0001	.31L	.9UL		2222							•
	01/28/98	N001	.515	. 506	.001UL	2920L		5820L			.0846L	30.6L	1.4L
	06/25/98	0001	.13UL	.54UL	001	1.550*			8.3L	1000>L			
	06/25/98	N001	.1301	.540L	.001UL	1650L	7.84L	6200L			.191L		
001	01/26/98	0001	.58	.6	.0010	2420			17.1L	24.1L			
	01/26/98	N001	.50		.0010	3430		6410			.33	115*	5.4
	06/24/98	0001	.26	. 620	.0011B				10.3	2.37			
	06/24/98	N001			.00116	3460	6.4	6380			.314		
.002		0001	.06L	.5UL	.001UL	3580L			15.8	3.4			
	01/27/98	N001			.00101	2200F		6880r			.391L	136L	6.2L
	06/25/98	0001	.12UL	.53UL	.001UL	1790L	6.94L	 60107	11.8L	7.54L		**	
	06/25/98	N001		.5500	.001QH	1/901	0.546	6810L			.362L		
012	01/22/98	0001	.31	.7	.0010	3440		6620	15.4L	12.1L			
	01/22/98	N001						0020	11.8		.22	84.7*	3.5
	06/25/98	0001	.130	. 560	.0010	1760	6.15	6620	11.8	12			
	06/25/98	N001					0,13	0020	13.9		.224		
013	01/26/98	0001	.16	. 60	.001ប	3550		6790	13.9	3.06 			
	01/26/98	N001		~~					12.9		. 604	220*	9.9
	06/24/98	0001	.130	.560	.001ប	1800	6.86	6820	12.9	9.35			
	06/24/98	N001							14.5	1.72	.582		
014	01/23/98	0001	.18	.7ט	.0043B	3580		6800	14.5	1.72	2.5		
	01/23/98	N001						. 	15.4	7.03	2.5	833*	38
	06/24/98	0001	.120	.50	.0072	3680	7.52	6880	13.4	7.03			~~
	06/24/98	0002	.120	.520	.008	3660	7.63	6930			2.29		
	06/24/98	N001							15	8.47	2.31		
015	01/23/98	0001	.15	.8	.0010	3330		6440		0.4/			
				• •				0110			.0641	37.8*	1.1

Groundwater Data

Loc Id	Date	Sample Id	U-238 pCi/L	V mg/L	Zn mg/L
Upgra	dient				
1025	06/18/98	N001			
1026	01/23/98	0001	20.8	.0010	.004U
	01/23/98	N001			
	06/19/98	0001		.0033BU	.0050
	06/19/98	N001			
1027	01/23/98	0001	22.8	.0011B	.004U
	01/23/98	N001			
	06/19/98	0001		.0015BU	.0050
	06/19/98	N001			
1028	01/23/98	0001	19.7	.0010	.004U
	01/23/98	N001			
	06/18/98	0001		.0023BU	.0050
	06/18/98	N001			
CW21	06/22/98	0001		.0024BU	.0050
	. 06/22/98	N001			
On-Si	te			·	•
1000	01/28/98	0001	28.2L	.0175L	.0123BL
	01/28/98	N001			
	06/25/98	0001		.0205L	.0224BL
	06/25/98	N001			
1001	01/26/98	0001	110	.063	.121
	01/26/98	N001			
	06/24/98	0001		.0704	.0832
	06/24/98	N001			
1002	01/27/98	0001	131L	.0044BL	.004UL
-	01/27/98	N001			
	06/25/98	0001		.0058BUL	.028BL
	06/25/98	NQ01	(
1012	01/22/98	0001	73.5	.0058B	.0307B
	01/22/98	N001			·
	06/25/98	0001		.0081B	.0050
	06/25/98	N001			
1013	01/26/98	0001	202	.271	.0129B
	01/26/98	N001			
	06/24/98	0001		.37	.0155B
	06/24/98	N001		25	
1014		0001	835	.26	.352
	01/23/98	N001			217
	06/24/98	0001		312	.317
	06/24/98	0002		.353	.275
1015	06/24/98 01/2 128	N001	21.4	.0010	.0174B
1013	01/~ '~8	0001	41.4	.0010	.01/48

Loc Id	Date	Sample Id	Alkalinity mg/L	As mg/L	Ca mg/L	Cd mg/L	Chloride mg/L	Co mg/L	Cu mg/L	EC µmhos/cm	Eh mV	Fe mg/L	Fluoride mg/L
On-Si	te						2						
1015	01/23/98	N001	405	· 						7120	-14		
	06/22/98	0001	433	.0013B	572	.0010	825	.0105B	.0050			2.97	1.7
	06/22/98	N001	440				. 			7470	-43		,
1016	01/26/98	0001		.0055	583	.0010	750	.0080				21.2	3.39
	01/26/98	N001	400	·						7020	-141		
	06/29/98	0001	454	.0063	495	.001ប	802	. 00 ęu	.0050			18.1	4.02
	06/29/98	N001	429							5740	-124	'.	
1017	01/23/98	0001	 -	.0010	493	.0010	565	.0080				.373	1.75
	01/23/98	N001	419			·				7660	45		
	06/22/98	0001	408	.0010	441	.0010	565	.0060	.0050			.718	1.91
	06/22/98	N001	402							7700	-13		
1018		0001		.0047B	563	.001U	508	.0080				.156	2.56
	01/26/98	N001	356							6040	108		
	06/19/98	0001	382	.0061	474	.001	477	.0096В	. 005ט			.167	2.43
	06/19/98	N001	380					200		5980	134		
1019		0001		.0010	549	.0010	668	.0080		 cr70	76	.32	1.16
	01/26/98	N001	398					006		6570	75 'S	.566L	1.51L
	06/19/98	0001	376L	.001UL	476L	.001UL	667L	.006UL	.005UL	.5930L	99L	.200L	1.511
	06/19/98	N001	376L				=			.39300	330		
Down	Gradient			*	j = v					*	. •		. •
			•	001		0014	1160	.0080			* .	.004U	.335
0590		0001	477	.0010	616	.0010	1160			9080	159		.555
	01/28/98	N001	477		395	.001U	878	.0060	.0050	 -		.0030	.972
	06/29/98	0001	487	.0010	395	.0010	0/0		.0050	6940	-69	.0050	
	06/29/98	N001	459 		438	.0010	1020	.0080			-09	.0040	.806
0732		0001		.0010	436	.0010	1020	.0080	. 	7560	162	.0040	
	01/27/98	N001 0001	470 443	.0010	409	.0010	1080	.0060	.0050	7500		.003ប	.843
	06/22/98 06/22/98	N001	480	.0010	405	.0010	1000	.0000	.0050	5540	126		
0736		0001		.0010	493	.0010	954	.0080	** **			.0040	.576
1/30	01/27/98	N001	488	.0010						9760	-86		
	06/17/98	0001	488	.0010	528	001U	991J	.0060	.005ប			.003ប	.805J
	06/17/98	N001	474							6860	211		
740		0001		.0010	510	.0010	983	.008U			~-	.0067BU	.702
,,40	01/28/98	NO01	468							8550	126		
	06/23/98	0001	459	.0010	463	.001U	914	.0060	.0050			.0218BU	.967
	06/23/98	0002	. 407	.0010	463	.0010	917	.0060	.0050		<u></u>	.0071BU	834
	06/23/98	N001	444							5670	105		
		0001		.0010	536	.0010	910	.0080				.392	.913
1742				.0010	548	.0010	910	.0080				.39	.902
0742	01/27/9R	OOUZ											
0742	01/27/98	0002 N001			340					7690	-68		
0742	01/27/98 01/27/98 06/17/98	N001 0001	451 454						.005U	7690 	-68 		

Groundwater Data

1015 01/23/98 0001 101.1J 68.04U 20.7 391 3.52 0474 872 47B .0209B .17B .06/23/98 0001 101.1J 68.04U 20.7 391 3.52 0474 872 47B .0209B .17B	Loc Id	Date	Sample Id	GA pCi/L	GB pCi/L	K mg/L	Mg mg/L	Mn mg/L	Mo mg/L	Na mg/L	NH4 mg/L	Ni mg/L	NO3 mg/L	pH s.u.
1015 01/23/98 0001 101.1J 68.04U 20.7 391 3.52 0474 872 47B .0209B .17B	On-Si	te		-				1.						
06/22/98 0001 101.1J 66.04U 20.7 391 3.52 .0414 812 418 .0298 .1.1 06/22/98 0001 75.55J 44.54U 39.1 374 2.65 .0421 760016U .266B 7.01728 .00736 8000 01.26/98 8001	1015	01/23/98	N001											7.12
1016 01/26/98 0001 75.56J 44.54U 39.1 374 2.65 0421 760 - 0.16U 263B 01/26/98 0001 75.56J 44.54U 39.1 374 2.65 0421 760 - 0.16U 263B 01/26/98 0001 75.56J 44.54U 39.1 358 3.08 0405 800 96.5 0.172B .0579B .0579B 06/29/98 0001 61.28U 256J 40.7 358 3.08 0405 800 96.5 0.172B .0579B .0579B .06/29/98 0001 41.63UJ 44.79 55.8 254 3.26 0.893 979 - 0.884 .0348BU - 7.06/29/98 0001 61.28U 44.79 55.8 254 3.26 0.893 979 - 0.884 .0348BU - 7.06/29/98 0001 61.28U 44.79 55.8 254 3.26 0.893 979 - 0.884 .0348BU - 7.06/29/98 0001 61.28U 44.79 55.8 254 3.26 0.893 979 - 0.884 .0348BU - 7.06/29/98 0001 61.28U 67.71U 56.5 240 4.14 0.894 999 233 0.828 .121B - 0.6722/98 0001 61.28U 67.79U 67.7	2020			101.1J	68.04U	20.7	391	3.52						
1016 101/26/98 W001			N001		'									
01/28/98 0001 61.28U 256J 40.7 358 3.08 .0405 800 96.5 .0172B .0579B .06/29/98 0001 61.28U 256J 40.7 358 3.08 .0405 800 96.5 .0172B .0579B .7.6 .06/29/98 0001 43.65UJ 44.79 55.8 254 3.26 .0893 9790884 .0348BU7.6 .06/29/98 0001 66.45UJ 67.71U 56.5 240 4.14 .0894 999 233 .0828 .121B7.6 .06/29/98 0001 55.18J 37.4 55.7 191 2.57 18 5360909 12.27.6 .06/29/98 0001 56.18J 37.4 55.7 191 2.57 18 5360909 12.27.6 .06/29/98 0001 56.8J 37.4 55.7 191 2.57 18 5360909 12.27.6 .06/29/98 0001 66.95J 84.37 52.7 173 2.64 159 541 189 .0907 20.4J6.6 .06/19/98 0001 86.95J 84.37 52.7 173 2.64 159 541 189 .0907 20.4J6.6 .06/19/98 0001 43.72UJ 44.22U 15	016	01/26/98	0001	75.56J										
06/29/99 NO01						-								
06/29/98 0001 43.63UJ 44.79 55.8 254 3.26 .0893 9790884 .0348BU7. 01/23/98 0001 43.63UJ 44.79 55.8 254 3.26 .0893 9790884 .0348BU7. 01/23/98 0001 66.49UJ 67.71U 56.5 240 4.14 .0894 999 233 .0828 .121B06/22/98 0001 56.18J 37.4 55.7 191. 2.57 .18 5360999 12.27. 01/26/98 0001 56.18J 37.4 55.7 191. 2.57 .18 5360999 12.27. 06/12/98 0001 66.95J 84.37 52.7 173 2.64 .159 511 189 .0907 20.4J 6.1019 01/26/98 0001 31.70 1 41.2L 417L 2.89L .0756L 685L 53L .0116BL .09578UJL 6.1019 01/26/98 0001 62.43UJL 67.76UL 14.2L 417L 2.89L .0756L 685L 53L .0116BL .09578UJL 6.90 01/28/98 0001 62.43UJL 67.76UL 14.2L 417L 2.89L .0756L 685L 53L .0116BL .09578UJL 6.90 01/28/98 0001 62.22 257.8J 21.1 326 2.05 .0436 836 13 .028 2.11 6.96/29/98 0001 82.22 257.8J 21.1 326 2.05 .0436 836 13 .028 2.11 6.96/29/98 0001 82.22 257.8J 21.1 326 2.05 .0436 836 13 .028 2.11 6.96/29/98 0001 48.18UJ 60.45U 9.6 436 .138 .052 1020016U 25.6016U														7.22
01/23/98 NOU1												.0884	.0348BU	
06/22/98 0001 66.49UJ 67.71U 56.5 240 4.14 0894 999 233 .0828 .121B	.017													7.15
06/22/98 M001 1018 01/26/98 M001									.0894	999	233	.0828	.121B	
1018 01/26/98 0001 56.18J 37.4 55.7 191 2.57 .18 5360509 12.2 7. 01/26/98 0001 86.95J 84.37 52.7 173 2.64 .159 541 189 .0907 20.4J 60/19/98 0001 43.72UJ 44.22U 15 444 2.68 .0858 667016U .032BU01/26/98 0001 43.72UJ 44.22U 15 444 2.68 .0858 667016U .032BU01/26/98 0001 62.43UJL 67.76UL 14.2L 417L 2.89L .0756L 685L 53L .0116BL .0957BUJL 6.0919/98 0001 62.43UJL 67.76UL 14.2L 417L 2.89L .0756L 685L 53L .0116BL .0957BUJL 6.0919/98 0001 62.43UJL 67.76UL 14.2L 417L 2.89L .0756L 685L 53L .0116BL .0957BUJL 6.0919/98 0001 01/28/9									-					7.13
01/26/98 N001	1018			56.18J	37.4	55.7	191	2.57						
06/19/98 NOO1			N001											7.10
06/19/98 N001		06/19/98	0001	86.95J							•.			6.84
01/26/98 0001						•								
01/26/98 NO01 06/19/98 NO01 07/19/19/19/19/19/19/19/19/19/19/19/19/19/	1019													7.0
06/19/98 N001											53L	.0116BL	.0957BUJL	
Down Gradient Down Gradient	• '													6.941
0590 01/28/98 0001 130.6J 61.95U 25.7 470 2.84 .0494 11400222B 4.79		00/13/30	MOOT		•						•			
0590 01/28/98 0001 82.22 257.8J 21.1 326 2.05 .0436 836 13 .02B 2.11 6.06/29/98 0001 82.22 257.8J 21.1 326 2.05 .0436 836 13 .02B 2.11 6.06/29/98 0001 48.18UJ 60.45U 9.6 436 .138 .052 1020016U 25.601/27/98 0001 66.02UJ 67.67U 9.67 392 .0815 .0429 1080 .0007BU .007U 19.1 6.06/22/98 0001 66.02UJ 67.67U 9.67 392 .0815 .0429 1080 .0007BU .007U 19.1 6.06/22/98 0001 78.04J 61.06U 10.7 475 1.1 .02 1140016U 9.55 6.01/27/98 0001 78.04J 61.06U 10.7 475 1.1 .02 1140016U 9.55 6.01/27/98 0001 122.1 55.32U 10.9 480 2 .0234 1110 .0172B .0161B 16.7J 6.06/17/98 0001 122.1 55.32U 10.9 480 2 .0234 1110 .0172B .0161B 16.7J 6.06/17/98 0001 86.27J 61.31U 22.8 491 3.68 .104 10700193B .542B 6.06/23/98 0001 97.47J 68.23U 21.2 423 3.69 .0932 1000 22.1B .0182B .287B 6.06/23/98 0001 97.47J 68.23U 21.2 423 3.69 .0932 1000 22.1B .0182B .287B 6.06/23/98 0001 97.47J 68.23U 21.2 423 3.69 .0932 1000 22.1B .0182B .297B 6.06/23/98 0001 97.47J 68.08U 21.5 425 3.67 .0907 999 22.1B .0141B .279B 6.06/23/98 0001 66.36J 61.11U 9.17 476 2.53 .0636 995016U .249B 6.01/27/98 0001 66.36J 61.11U 9.17 476 2.53 .0639 10200164B .258B 6.01/27/98 0001 77.15J 68.13U 9.06 469 2.64 .0611 1000 .0387B .0114B .559BJ	Down	Gradient							a 1				•	
01/28/98 N001	กรจก	01/28/98	0001	130.6J	61.950	25.7	470	2.84	.0494	1140				
06/29/98 0001 82.22 257.8J 21.1 326 2.05 .0436 836 13 .02B 2.11	,,,,,													6.6
06/29/98 N001				82.22	257.8J	21.1	326	2.05						
0732 01/27/98 0001 48.180J 60.450 9.6 436 1.06 1.07 475 1.1 .02 1140016U 9.5501/27/98 0001 78.04J 61.06U 10.7 475 1.1 .02 1140016U 9.5501/27/98 0001 122.1 55.32U 10.9 480 2 .0234 1110 .0172B .0161B 16.7J606/17/98 0001 86.27J 61.31U 22.8 491 3.68 .104 10700193B .542B .01/28/98 0001 97.47J 68.23U 21.2 423 3.69 .0932 1000 22.1B .0182B .287B .06/23/98 0001 97.47J 68.23U 21.5 425 3.67 .0907 999 22.1B .0141B .279B .06/23/98 0001 66.36J 61.11U 9.17 476 2.53 .0636 995016U .249B .01/27/98 0001			N001											
01/27/98 0001 66.02UJ 67.67U 9.67 392 .0815 .0429 1080 .0007BU .007U 19.1 06/22/98 N001	732		0001											7.6
06/22/98 N001														
06/22/98 N001 0736 01/27/98 0001 78.04J 61.06U 10.7 475 1.1 .02 1140016U 9.55 01/27/98 N001 6. 06/17/98 N001 122.1 55.32U 10.9 480 2 .0234 1110 .0172B .0161B 16.7J06/17/98 N001 06/17/98 N001 6. 0740 01/28/98 N001														6.6
0736 01/27/98 N001												.0160	9.55	
06/17/98 0001 122.1 55.32U 10.9 480 2 .0234 1110 .0172B .0161B 16.7J	0736													6.9
06/17/98 N001							480	2	.0234	1110	.0172B	.0161B		
0740 01/28/98 0001 86.27J 61.31U 22.8 491 3.68 .104 10700193B .542B				- 1					·					6.6
01/28/98 N001	0740			86.27J	61.310	22.8	. 491	3.68						7.0
06/23/98 0001 97.47J 68.23U 21.2 423 3.67 .0907 999 22.1B .0141B .279B - 06/23/98 0002 75.45J 68.08U 21.5 425 3.67 .0907 999 22.1B .0141B .279B - 06/23/98 N001 6. 0742 01/27/98 0001 66.36J 61.11U 9.17 476 2.53 .0636 995016U .249B 01/27/98 0002 62.5J 60.98U 9.21 488 2.55 .0639 10200164B .258B 01/27/98 N001		•	N001											7.0
06/23/98 0002			0001	97.47J										
06/23/98 N001												•		6.6
0742 01/27/98 0001 66.36J 61.110 9.17 476 2.55 .0639 10200164B .258B 01/27/98 0002 62.5J 60.98U 9.21 488 2.55 .0639 10200164B .258B 7. 01/27/98 N001 7. 06/17/98 0001 77.15J 68.13U 9.06 469 2.64 .0611 1000 .0387B .0114B .559BJ														
01/27/98 0002 62.5J 60.980 9.21 488 2.33 1003 1003 1003 1003 1003 1003 1003 1	0742													
01/27/98 N001														7.0
06/17/98 0001 77.150 00:150 3:00		• •									.0387В	.0114B	.559BJ	
76 / 7 ' ' 19 NOOL		06/17/98 06/17/98	N001	77.150	66.130	5.00	+-							٠ ٦

Loc [d	Date	Sample Id	Ra-226 pCi/L	Ra-228 pCi/L	Se mg/L ·	SO4 mg/L	Sr mg/L	TDS mg/L	Tmp C	Turbidity NTU	U mg/L	U-234 pCi/L	U-235 pCi/L
n-Si	te	· .									·		,
015	,,	N001							13	6.54			
	06/22/98	0001	.120	. 49ช	.0010	3440	8.12	6610			.07		
	06/22/98	N001							14.4	2.2			
016	01/26/98	0001	.09	.90	.0010	3270		6040			.113	42.2*	1.8
	01/26/98	N001				·			12.6	3.18			
	06/29/98	0001	.120	. 48U	.0010	3410	7.14	6340			.116		
	06/29/98	N001							14.5	3.38			
017		0001	.15	. 9U	.0010	3680		6180 -	•		.0241	13.2*	10
	01/23/98	N001							12.4	41.2			
	06/22/98	0001	.140	. 65	.001U	3530	7.04	6070		'	.0255		
	06/22/98	N001							14.7	9.57			
118	01/26/98	0001	.12	.5	.0123	2680		4620			.0862	39.1*	1.4
	01/26/98	N001							11.7	5.24			
	06/19/98	0001	.150	.580	.016	2520	3.93	4440			.0895		
110	06/19/98	N001						`	14.4	15.1			
119	01/26/98	0001	.1	.7	.0010	3230		6020		 .	.0486	25.7*	1ช
	01/26/98 06/19/98	N001 0001							15.1	8.17			
			.15UL	.58UL	.001UL	3230L	6.55L	6150L		,	.0529L		-
	06/19/98	N001							14.4L	8.54L			
nwo	Gradient												
590	01/28/98	0001	.040	. 4U	.0010	3700		7840			.162	62.6	2.6
	01/28/98	N001							13.1	1.63			. 2.0
	06/29/98	0001	.120	. 48U	.0010	2800	5.6	5880			.121	•	
	06/29/98	N001				·			14.6	.93			
32	01/27/98	0001	.07ช	. 90	.0081	2910		6450			.0721	35.9	1.2
	01/27/98	N001		<u></u>					15	8.24			
	06/22/98	0001	.14U	.580	.0054	3070	7.25	6680			.0681		
	06/22/98	N001							16.6	4.55			
36	01/27/98	0001	. 02U	.90	.0024B	3460		7030			.105	49	1.7
	01/27/98	N001							13.2	1.67			
	06/17/98	0001	.14U	.550	.0017B	3610J	7.77	7690			.125		
	06/17/98	N001					'		16.2	. 66			
40	01/28/98	0001	.06	.5	.0010	3600		7300			.146	57.3	2.3
	01/28/98	N001							12.4	6.55			
	06/23/98	0001	.140	.550	.0010	3440	6.65	6900			.146		
	06/23/98	0002	.120	. 48U	.0010	3440	6.65	6550			.144		
	06/23/98	N001		- ()	1				14.9	1.31			
42	01/27/98	0001	.06	. 9U	.0022B	3700		7350			.0765	36.2	1.2
	01/27/98	0002	.06	. 6U	.0022B	3690		7380	**		.0748	34.1	1.2
	01/27/98	N001				. 			15.8	1.23			
	06/17/98	0001	.180	.730	.0026B	3660J	7.8	7240			.0787		
	06/17/98	N001		·					14.7	.6			

٠. .

Groundwater Data

Loc Id	Date	Sample Id	U-238 pCi/L	V mg/L	Zn mg/L
On-Si	.te				
1015	01/23/98	N001		• ==	
	06/22/98	0001		.0010	.005ช
	06/22/98	N001			
1016	01/26/98	0001	37.6	.001U	.004U
	01/26/98	N001			
	06/29/98	0001		.003BU	.0066B
	06/29/98	N001			
1017	01/23/98	0001	8.1	.0010	.0051B
	01/23/98	N001			
	06/22/98	0001		.0021BU	.005บ
1010	06/22/98	N001			
1018	01/26/98	0001	28.8	.621	.004U
	01/26/98	N001			01000
	06/19/98	0001		.832	.0102B
1019	06/19/98	N001	 16.2		0047
1019	01/26/98	0001	16.2	.0010	.0040
	01/26/98	NO01 0001			
	06/19/98 06/19/98	N001		.0018BUL	.005UL
Down	Gradient				
0590	01/28/98	0001	54.1	.0010	.0092В
	01/28/98	N001			
	06/29/98	0001		.0019BU	.0089В
•	06/29/98	N001			
0732	01/27/98	0001	24.1	.0021B	.004U
	01/27/98	N001			
	06/22/98	0001		.0025BU	.0050
	06/22/98	N001			
0736	01/27/98	0001	35.2	.001B	.0382B
	01/27/98	N001			
	06/17/98	0001		.0022BU	.0050
	06/17/98	N001			
0740	01/28/98	0001	48.7	.0010	.004U
	01/28/98	N001			
	06/23/98	0001		.0025BU	.0050
	06/23/98	0002		.0015BU	.005ช
	06/23/98	N001			
0742	01/27/98	0001	25.5	.0010	.0040
	01/27/98	0002	25	.0010	.004U
	01/27/98	N001			
	06/17/98	0001		.0014BU	.0050
	06/17 178	N001	•		

Loc Id	Date	Sample Id	Alkalinity mg/L	As mg/L	Ca mg/L	Cd mg/L	Chloride mg/L	Co mg/L	Cu mg/L	EC µmhos/cm	Eh mV	Fe mg/L	Fluoride mg/L
Down	Gradient	4					-	•					
1010	,,	0001		.0018B	491	.0010	959	.0080				16.0	207
	01/28/98	N001	603	,						7970	-124	16.8	.387
	06/19/98	0001	654	.0022B	487	.0010	1030	.0060	·.005U	7970	-124	15.7	
	06/19/98	0002		.0022B	483	.0010	1030	.0060	.0050			15.7	.56
	06/19/98	N001	596							6420	-128	16	1.33
011	01/28/98	0001		.001UL	591L	.001UL	1060L	.008UL			-120	1.23L	1 12*
	01/28/98	N001	433L	~~						8520L	65L	1.231	1.13L
	06/25/98	0001	428	.0010	603	.0010	1100	.0060	.005ប			.0030	1.00
	06/25/98	N001	424			• • • • •				6370	91	.0030	1.89
022	01/27/98	0001		.0010	552	.0010	1040	.0080				3.09	.517
	01/27/98	N001	506							8000	-46	3.09	.517
	06/23/98	0001	476	.0010	573	.0010	1030	.0060	.005ប			3.33	.872
	06/23/98	N001	467							5750	-49	J.J.	.072
029	01/27/98	0001		.0064	407	.0010	1050	.0080				8.48	.888
	01/27/98	N001	661							7900	-114	0.40	
	06/29/98	0001	714	.0081	353	.0010	213	.0060	.0050			6.25	.244
	06/29/98	N001	708							7570	-93	0.23	.244
030	01/27/98	0001		.001ប	409	.0010	841	.0080				1.13	1.6
	01/27/98	N001	430		·					7950	-21		
	06/22/98	0001	422	.0010	372	.001U	811	.006ប	.0050		-21	.283	
	06/22/98	N001	440	,						6900	12	.203	1.67
akot	a Sandston	е	·			* .			•				
724	01/28/98	0001		.001UL	16.6L	.001UL	1210*	000				<u>.</u>	
	01/28/98	N001	1852L		10.0D	.00101	1310L	.008UL				.0694L	2.86L
	06/29/98	0001	1280	.0010	8.4	.0010				6820L	-410L		
	06/29/98	N001	1264			.0010	584	.0060	.0050			.0126BU	2.9
726	01/29/98	0001		.0061L	72.2L	.001UL	4040L			3800	-367	·	·
	01/29/98	N001	899L			.00101	40401	.008UL	·	105000	: 	2.88L	.364L
	06/26/98	0001	898L	.001UL	63.4L	.001UL	3990L	.006UL	.005UL	12580L	-235L		
	06/26/98	N001	929L			.00101	39900	.00001	.0050L	125.00*		2.22L	.793L
735	01/27/98	0001		.0018BL	3.41L	.001UL	691L	.008UL		12560L	-114L		
	01/27/98	N001	852L					.00801		3470L		.0359UL	3.52L
	06/23/98	0001	710L	.0054L	3.41L	.001UL	692L	.006UL			-117L		
	06/23/98	N001	728L					.00002	.005UL			.0716L	3.42L
741	01/27/98	0001		.001UL	30.1L	.001UL	2150L	.008UL		3460L	-240L		
	01/27/98	N001	252L				21300	.00801		66207	ćo.	.0781L	1L
	06/17/98	0001	266L	.001UL	28.6L	.001UL	2190JL	.006UL	.005UL	6620L	-62L		
	06/17/98	N001	275L		20.00	.00101	219001	.0060L		 55007	124*	.0591L	1.37JL
743	01/26/98	0001		.001U	68.4	.0010	799	.0080	· 	5590L	-134L		
	01/26/98	N001	384							6360		0758	.309
	06/29/98	0001	354	.001ប	67.2	.001v	694	.006U		63 60	-146		
	06/29/98	N001	414			.0010		.0060	.0050	 5700		083	.346
		-					==	- -		5790	-292		

Groundwater Data

Loc Id	Date	Sample Id	GA pCi/L	GB pCi/L	K mg/L	Mg mg/L	Mn mg/L	Mo mg/L	Na mg/L	NH4 mg/L	Ni mg/L	NO3 mg/L	pH s.u.
Down	Gradient										-		
1010	01/28/98	0001	63.34	67.06	24.6	413	1.46	.0179	1050	equit within	.0160	.0481B	7.23
	01/28/98	N001							1000	 7 10	.0117B	.0481BUJ	7.23
	06/19/98	0001	111.5J	68.31U	24.6	410	1.57	.0147	1080 1070	7.1B	.0117B	.0491BUJ	
	06/19/98	0002	94.47J	68.22U	25.3	407	1.57	.0149	1070	8.6B	.015	.0455500	6.7
	06/19/98	N001	142 077	61.71UL	 56.3L	404L	2.92L	.174L	922L		.0214BL	9.06L	
.011	01/28/98 01/28/98	0001 N001	142.9JL	61.710L 	26.30	4040	2.920	.1748		_ <u></u> -			7.64
	06/25/98	0001	112.3J	128.2	66.6	327	.436	.0657	859	13.2B	.0208B	65	
	06/25/98	N001	112.30	140.5									7.02
022	01/27/98	0001	109.1J	61.55U	15	47.7	2.3	.0241	1070		.016U	1.26	
	01/27/98	N001											6.99
	06/23/98	0001	89.76J	68.28U	15.1	428	2.37	.0208	1030	3.52	.016B	.14B	
	06/23/98	N001					,	· 					6.4
1029	01/27/98	0001	48.79UJ	60.38U	11.3	441	1.18	.0369	1080		.016U	.0836B	
	01/27/98	N001											7.0
	06/29/98	0001	69.79	477.3J	10.3	389	1,.24	.0335	1020	1.77	.0076B	.0110	
	06/29/98	N001										12.0	7.0
030		0001	53.4UJ	60.91U	14.6	462	2.53	.096	1360	,	.016U	12.8	6.9
	01/27/98	N001						0734	1260	.0815B	.0076В	39.4	
	06/22/98	0001	72.44UJ	68.09U	15.9	405	1.7	.0734	1260	.00136	.00705		6.6
	06/22/98	N001									•	•	•••
ako	ta Sandstor	ne										v	
724	01/28/98	0001	35.39UL	40.43UL	5.64L	4.98L	.0161L	.001UL	1620L		.016UL	.014UL	
	01/28/98	N001										•	7.9
	06/29/98	0001	35.03U	33.97UJ	3.89	2.61	.008B	.001U	1220	3.17B	.0070	.0110	
	06/29/98	N001								·			7.8
726	01/29/98	0001	74.4L	81.1UL	9.43L	19.9L	.0999L	.0047BL	2730L		.0239BL	.0301BL	7.33
	01/29/98	N001							26607	261	.007UL	.011UL	7.33
	06/26/98	0001	109.95UJL	2029L	9.48L	17.7L	.0873L	.001BL	2660L	.26L	.00701	.01105	7.19
	06/26/98	N001				0001	.033L	.0244L	812L	. 	.016UL	.0252BL	7.13
735		0001	16.22UJL	17.6UL	2.41L	.908L	.0331	.02440		-	.01002		8.53
	01/27/98	N001		10 5507	2.44L	.883L	.0426L	.0086BL	799L	1.16L	007UL	.0306BL	
	06/23/98	0001	21.67UJL 	19.55UL	2.446	.0031	.01201	.00000					8.22
741	06/23/98 01/27/98	NOO1 0001	34.15JL	30.96UL	5.16L	7.74L	.0371L	.0011BL	1430L		.016UL	.0315BL	
/41	01/27/98	N001	34.130D.	JU. JUUL	3.100								8.02
	06/17/98	0001	46.15UJL	45.2UL	5.15L	7.36UL	.0379L	.001UL	1430L	11.7BL	.007UL	.0369BUJL	,
	06/17/98	N001	40.13002										8.23
743	01/26/98	0001	35.2UJ	40.63U	6.68	25.5	.0395	.0010	1370	 .	.0216B	.175B	
	01/26/98	N001											7.7
	06/29/98	0001	41.15UJ	44.970	6.36	25	.0444	.0010	1350	3.31B	.0149B	.0468B	
	06/~ ~9	N001					-						- 7

Grov ter Data

					·								
Loc Id	Date	Sample Id	Ra-226 pCi/L	Ra-228 pCi/L	Se mg/L	SO4 mg/L	Sr mg/L	TDS mg/L	Tmp C	Turbidity NTU	U mg/L	U-234 pCi/L	U-235 pCi/L
own	Gradient												
010	01/28/98	0001	. 62	.50	.001U	3130		6690			.0637	25.4	1.1
	01/28/98	N001							15	8.95	.0037	23.4	
	06/19/98	0001	.25	.520	.0010	3220	7.25	6930		÷-	.0773		
	06/19/98	0002	.160	. 63U	.0010	3200	7.22	6890			.0774		
	06/19/98	N001							14.9	8.92		, 	
011	01/28/98	0001	.09L	.7UL	.001UL	3230L		6770L			.199L	. 73.5L	3.21
	01/28/98	N001							11.3L	32.4L			
	06/25/98	0001	.120	.52บ	.0056	2970	7.45	6400			.154		
	06/25/98	N001							18	1.39			
022	01/27/98	0001	.1	. 6บ	.0010	3550		7380			.132	52.5	2.1
	01/27/98	N001							13.4	10.5			
	06/23/98	0001	.130	. 550	.0010	3580	8.99	7280			.138		
	06/23/98	N001							14.3	9.6			
029		0001	.13	.80	.0010	2820		6460			.0471	. 22.2	10
	01/27/98	N001		**					16.5	9.12			
	06/29/98	0001	.120	. 48U	.0010	572	7.08	6390			.0483		
	06/29/98	N001							17.5	4.28	-:-		
030	01/27/98	0001	.05	.50	.0174	3930		7670			.0318	15.3	10
	01/27/98	N001							16.6	. 6 . 88			
	06/22/98	0001	.130	.510	.0244	3770	6.27	5930			.0398	'	
	06/22/98	N001						,	16.6	27.8			
akot	a Sandston	e ···											4
724	01/28/98	0001	1.38L	1UL	.001UL	94.2L		4180L			.001UL	1.3L	1UL
	01/28/98	N001	~~						16L	. 256L			
	06/29/98	0001	.120	. 48U	.0010	728	1.65	3390			.0010		
	06/29/98	N001							16.6	1.87			
726	01/29/98	0001	47.04L	19.8L	.001UL	1.39BL		7390L			.001UL	.8UL	1UL
	01/29/98	N001							14.8L	1000>L			
	06/26/98	0001	24.16L	29.271	.001UL	1.83BL	14.4L	7110L	~ ~		.001UL		
	06/26/98	N001					·		15.5L	467L			
735	01/27/98	0001	.67L	.7UL	.001UL	.2.9L		2030L			.0028L	4.6L	1UL
	01/27/98	N001		·					15.4L	159L			
	06/23/98	0001	.12UL	.5UL	.001UL	23.4L	.451L	2040L			.0052L		
	06/23/98	N001					- -		16L				
41	01/27/98	0001	1.19L	1UL	.001UL	.832BL		3740L			.001UL	.8UL	1UL
	01/27/98	N001							15.5L	34.3L			
	06/17/98	0001	.22L	.54UL	.001UL	.441BJL	3.07L	3820L			.001UL		~-
	06/17/98	N001	**						16.1L	8.82L	~~		
743	01/26/98	0001	.11	. 90	.001U	1810 ·		4310			.0010	.80	10
	01/26/98	N001							15	1.52		,	
	06/29/98	0001	.150	. 64U	.0010	1930	5.54	4340			.001ប		
	06/29/98	N001							14.5	1.36			

Groundwater Data

Loc Id	Date	Sample Id	U-238 pCi/L	V mg/L	Zn mg/L
Down	Gradient				
1010	01/28/98	0001	21.3	.001U	.0040
	01/28/98	N001			
	06/19/98			.0017BU	. 005ช
	06/19/98	0002		.0010	. 005ช
	06/19/98	N001			
1011	01/28/98	0001	66.5L	.0013BL	.0162BL
	01/28/98	N001			
	06/25/98	0001		.0052BU	.0336B
	06/25/98	N001			•
1022	01/27/98	0001	44.2	.0010	.0040
	01/27/98	N001			
	06/23/98	0001	1	.0010	. 005ช
	06/23/98	N001			
1029	01/27/98	0001	15.7	.0010	.004U
	01/27/98	N001		**	
	06/29/98	0001		.0023BU	.0050
	06/29/98	N001			
1030	01/27/98	0001	10.6	.0010	.004U
	01/27/98	N001			
	06/22/98 06/22/98	0001 N001		.0024BU	.0050
	-				
Dakot	a Sandston	ie			
0724	01/28/98	0001	1UL	.0025BL	.0045BL
	01/28/98	N001			
	06/29/98	0001	- ,-,	.0041BU	.0050
	06/29/98	N001			
0726	01/29/98	0001	1UL	.0023BL	.0069BL
	01/29/98	N001			
	06/26/98	0001		.0021BUL	.0054BL
	06/26/98	N001			
0735	01/27/98	0001	1UL	.001UL	.004UL
•	01/27/98	N001			
	06/23/98	0001		.0017BUL	.005UL
	06/23/98	N001			
0741	01/27/98	0001	1UL	.001UL	.0119BL
	01/27/98	N001	7,7		
	06/17/98	0001		.0017BUL	.0057BL
	06/17/98	N001			;
0743	01/26/98	0001	10	.0010	.004U
	01/26/98	N001			
	06/29/98	0001		.0018BU	.0061B
	06/ንና ነገዓ	N001			

Loc Id	Date	Sample From	Sample To	Sample Id	As mg/kg	Cd, mg/kg	Co mg/kg	Cu mg/kg	Fe mg/kg	Fluoride mg/kg	Kd-As mL/g	Kd-Cd mL/g	Kd-Mo mL/g	Kd-U mL/g
Upgra	adient		1									· · · · · · · · · · · · · · · · · · ·	· <u>-</u> -	
0315	10/22/97	0	0	0002										
0323	10/22/97	Ŏ	Ŏ	0002										
0324	10/22/97	Ö	ō	0002										
0325	10/22/97	Ŏ	ō.	0002		**								
	11/07/97	Õ		0002	.48	.77	1B	6.6E	•	20.7				
0330		Ŏ	0 ′	0002					1890	38.7				
	11/07/97	ō	•	0002	1.5B	. 42	2.2	9.2E	,				· 	
0335	10/22/97	ŏ	0	0002	.1.55				3240	58.6				
0337	10/22/97	Ö	ŏ	0002					~-					
0338	10/22/97	ŏ	Ö.	0002										
0339	10/22/97	Ö	0	0002										
0342	10/22/97	Ö	Ö	0002										
0312	11/06/97	Ŏ	•	0002		44								
0349	10/22/97	0	0		1.5B	. 44	1.9B	6.1E	2400	79.5				
0343	11/06/97	Ö	U	0002										
0350	10/22/97	0	0	0002	.86	.38	1.1B	2.9E	1780	55.1				·
0330	11/06/97	0	U	0002				_ = =	·			•		
1020		-	-	0002	1.4B	.5	2.1	7.9E	2580	83				
1020	02/08/98	5	7	0001	1.2	. 4B							 -	
1001	02/11/98	10	12	0001							83.83	182.23	.1	2.414
1021	02/08/98	5	7	0001	. 9B	.32В							,	
1000	02/11/98	5	7	0001							358.1	356.76	.7216	3.636
1023	02/08/98	5	7	0001	1	.42B								
	02/08/98	10	12	0001	.92B	.25B			"	·				
	02/11/98	5	7	0001	***	:	* ,	1 ===		,	8241 [.]	248.64	1.2698	1.788
	02/11/98	10	12	0001							75.24	48.788	1	.968
	02/11/98	10	12	0M01				<u>_</u>		·				1.703
	02/11/98	10	12	0M02										1.381
	02/11/98	10	12	0M03	***			,						.969
	02/11/98	10	12	OMO 4										1.083
	02/11/98	10	12	0M05				·				·		.912
	02/11/98	10	12	0M06										1.572
	02/11/98	10	12	0M07		~~								.871
	02/11/98	10	12	OM08 ·								***		.693
	02/11/98	15	15.4	0001	'						137	64.074	.5102	1.081
	02/11/98	15	15.4	0M09										1.91
	02/11/98	15	15.4	0M10	 ,			جند ر				<u> </u>		1.711
	02/11/98	15	15.4	0M11										1.09
	02/11/98	15	15.4	0M12						***				1.115
	02/11/98	15	15.4	0M13	-									1.115
1024	02/11/98	5.	7	0001							356.2	133.9		
1025	02/11/98	5	7	0001	'						635.2	279.67	.7216	3.353
	02/11/98	10	12	0001							1168		1.2698	2.286
	02/11/98	15	17	0001								278.68	1.4973	2.674
1028	02/11/98	5	7	0001	-						228.4	64.074	.303	1.429
- -	,,	•	•								208.9	181.33	. 4061	1.91

· .

1

Soil and Sediment Data

Loc Id	Date	Sample From	Sample To	Sample Id	Mn mg/kg	Mo mg/kg	Ni mg/kg	NO3 mg/kg	Ra-226 pCi/g	Se mg/kg	SO4 mg/kg	U mg/kg	V mg/kg	Zn mg/kg
Upgra	ndient											:		
0315	10/22/97	0	0	0002								1.8		
0323	10/22/97	0	0	0002				<u></u>				1.88		
0324	10/22/97	0	. 0	0002								1.08		
0325	10/22/97	0	0	0002								2.6		
	11/07/97	0		0002	149	.09B	2.7	10.2B		.11B	342	2.5	6.7	51.2
0330		0	0	0002								1.2		
	11/07/97	0		0002	117	.12B	5.3	6.5B		.040	686	.73	6.1	24.8
0335	10/22/97	0	0	0002								1.08		
0337	10/22/97	Ő.	Ō	0002								1.08	'	
0338	10/22/97	Ö	Ö	0002								1		
0339	10/22/97	Ö	Ö	0002								1.6		
0342	10/22/97	Ŏ	Ö	0002								1.2		
0312	11/06/97	Ŏ		0002	278	.1B	3.1	5.9B		.04U	701	.72	4.8	15.8
0.840	10/22/97	Ŏ	0	0002								1.08		
0343	11/06/97	Ö	. •	0002	237	.05в	1.4B	7.4B		.04U	226	.42	3.1	37.1
0360	10/22/97	Ŏ	0.	0002		.036		7.70		.040		1.36		37.1
J330			U;		267	.08B	3.6	6.6B		.040	469	.7	4.9	25.9
	11/06/97	0	-	0002										
1020	02/08/98	5	7	0001		.3В			.646			.78		
	02/11/98	10	12	0001		 ,								
1021		5	7	0001		.33B			.472			1.1		
	02/11/98	5	7	0001		77°					-			
1023		5	7	0001		.14B			.611			.74		
	02/08/98	10	12	0001		.21B			.24			.44B		
	02/11/98	5	7	0001				. **						
	02/11/98	10	12	0001					7.					
	02/11/98	10	12	0M01			***							
J.	02/11/98	10	12	0M02										
	02/11/98	10	12	0M03						 .		·		
	02/11/98	10	12	0M04					'					
	02/11/98	10	12	0M05										
	02/11/98	10	12	0M06										
	02/11/98	10	12	0M07			,							
	02/11/98	10	12	80M0										
	02/11/98	15.	15.4	0001			·							
	02/11/98	15	15.4	0м09		·								
	02/11/98	15	15.4	0M10		·		:						
	02/11/98	15	15.4	0M11		••								
	02/11/98	15	15.4	0M12										
	02/11/98	15	15.4	0M13										
1024	02/11/98	. 5	7	0001										-
		5 5	7	0001										
1025	02/11/98	_		0001										
	02/11/98	10	12											
	02/11/98	15	17.	0001										
028	02/11	5	7 '	0001								***		

Soil and ment Data

oc d	Date .	Sample From	Sample To	Sample Id	As mg/kg	Cd mg/kg	Co mg/kg	Cu mg/kg	Fe mg/kg	Fluoride mg/kg	Kd-As mL/g	Kd-Cd mL/g	Kd-Mo mL/g	Kd−t mL/q
n-Si	.te								. •					
309	10/22/97	0	0	0002									* •	
310	10/22/97	Ŏ	Ö	0002										
	11/07/97	Õ	•	0002	3.4B	1.1	2.6	11.3E	4170	77.5				
311	10/22/97	Ō	0	0002					7170	77.3				
312	10/22/97	Ŏ	Ŏ	0002										
	11/06/97	Ŏ	• .	0002	1.5B	.5	1.8B	6.6E	2360					
313	10/22/97	0 .	0	0002			1.05		2360	51				
327	10/22/97	ŏ	ő	0002										
328	10/22/97	Ö	0	0002										
,520	11/07/97	0	υ.	0002	1.9B	.55	2.4	9.5E	2620	24.7			·	
244	10/22/97	0	0		1.98				2630	34.7				
,,,44	11/06/97	0	0	0002										
345	10/22/97	0	0	0002 0002	2.5B	.59	2.1	10E	3430	60.2				
		0										:		
346	10/22/97 11/06/97	0	0	0002								•		
348		-		0002	1.7B	.51	2.3	10.7E	2550	39.5				
	10/22/97	0	0	0002		 ,								
012	02/06/98	12	13.25	0001	.74B	. 4B								
013	02/06/98	9	11	0001	3.3	.288					 .			
	02/06/98	11	13	0001	3.7	.23B								
014		13	14.25	0001	3.2	. 97							·	
	02/06/98	17	19	0001	1.4	.73						, 		
015	02/06/98	10	12	0001	1.1	.36B								
	02/06/98	14	15.4	0001	.82B	.37B	.==							
016		9	11	0001	1.5	.18B						~~		
	02/08/98	13	14.3	0001	1.2	.23B				·				
017	02/08/98	9	11	0001	1	.29B			'					
	02/08/98	11	13	0001	1.6B	.18B								
UB1	02/06/98	.5		0001	.98B	. 4B								
UB2	02/06/98	1		0001	1.8	.22B	, 					-+		
own	Gradient		*		٠							. `		
301	10/22/97	0	0	0002										
304	10/22/97	0	0	0002										
306	10/22/97	0	0	0002										
307	10/22/97	0	0	0002										
308	10/22/97	0	0	0002										
	11/06/97	Ö		0002	1.1	.37	2B	7E	1720	43.6				
317	10/22/97	Ö	0	0002										
326	10/22/97	ŏ	Ŏ	0002										
	11/07/97	Ŏ	•	0002	1.8B	.59	1.4B	10.8E	1890	69				

. }

Soil and Sediment Data

Loc	Date	Sample From	Sample To	Sample Id	Mn mg/kg	Mo mg/kg	Ni mg/kg	NO3 mg/kg	Ra-226 pCi/g	Se mg/kg	SO4 mg/kg	U mg/kg	V mg/kg	Zn mg/kg
On-Si	te													
0309	10/22/97	0	0	0002					, 			1.4		
0310	10/22/97	0	0	0002								1.88		
	11/07/97	0		0002	342	.49B	5.2	14.7B		.04U	4100	1.5	34.8	50.9
0311	10/22/97	0	0 .	0002								1.48		
0312	10/22/97	0	0	0002								1.52		
	11/06/97	0		0002	329	.1B	2.7	10.7B		.04U	581	. 65	7.6	26.2
0313	10/22/97	0	0	0002							·	1.32		
0327	10/22/97	0	0	0002								1.04		
0328	10/22/97	0	0	0002	· 							1.4		
	11/07/97	0		0002	334	.09в	3	6.3B	'	.04U	515	.8	7.4	17.5
0344		0	0	0002								2.2		
	11/06/97	0		0002	170	.18B	4.6	13.8B		.04U	490	1.3	18.2	36.7
0345	10/22/97	0	0	0002								1.44		
0346	10/22/97	0	0	0002			-;-		'			. 1.72		
	11/06/97	0		0002	312	.18	3	15.8B		.04U	637	.84	9.8	28.9
0348	10/22/97	0	0	0002						***		1.44		
1012	02/06/98	12	13.25	0001		1.4B			.473		:	1.5		
1013	02/06/98	9	11	0001		. 7 . 5			.423			23.9		. ==
	02/06/98	11	13	0001		3.5B			.289			10.4		
1014	02/06/98	13	14.25	0001		1.3B			. 492			45.2		
	02/06/98	17	19	0001		.8B			.309			7:7		
1015	02/06/98	10	12	0001		.79В			.443			. 95	•	
	02/06/98	14	15.4	0001		1B			.249			.56		
1016	02/08/98	9	- 11	0001		.77B			.229	•		1.7		
	02/08/98	13	14.3	0001		.34B		<u></u>	.319			.6		
1017	02/08/98	9	11	0001		.68B		,	.472			.99		
	02/08/98	11	13	0001	-,-	.53B		- -	.38			.59		
SUB1	02/06/98	.5		0001		.33B			. 602			1.2		
SUB2	02/06/98	1		0001		.5B			.614			1.4		
Down	Gradient				•	•					•			
0301	10/22/97	0	0	0002					·			1.28		
0304	10/22/97	0	0.	0002								1.24	1	
0306	10/22/97	0	Ö	0002					'			. 1.56		
0307	10/22/97	Ō	Ö	0002								1.28		
0308	10/22/97	0	Ö	0002								1.44		
	11/06/97	Ō		0002	300	.07B	1.8	.8.6B	·	. 04U	387	.58	4	16.1
0317	10/22/97	Ö	0	0002								4.36		
0326	10/22/97	0	Ō	0002								2		
	11/07/97	Ö	-	0002	302	.36в	2.6	11.7B		.04U	2140	1.6	4.4	43.5

l.

Attachment 3

Calculations for Human Health Risk Assessment

Calculations for Human Health Risk Assessment

This page intentionally blank

GRANL .CTION RISK CALCULATIONS 1998 PLUME DATA

Intake = $CW \times IR \times EF \times ED$

where1:

BW x AT

Intake is in (mg/kg-d)

CW = chemical concentration in water (mg/L); site-specific

IR = ingestion rate (L/d); 2 L/day adult; default

ED = exposure duration (years); 30 yrs for adult; default

EF = exposure frequency (d/yr); 350 days/yr; default

BW = body weight (kg); 70 kg adult; default

AT = averaging time; ED x 365 d/yr non-carc., 70yr x 365 d/yr carc.

Hazard Quotient (HQ) = Intake/Reference Dose (RfD)

Risk = Chronic Daily Intake (averaged over 70 years) x Slope Factor

For radionuclides, Risk = SF x CW x IR x EF x ED (slope factor accounts for average lifetime risk); concentrations expressed in pCI/L

Contaminant	CW-MAX	IR	EF	ED	BW	AT	Intake-max	RfD ²	HQ-MAX	%Risk (W-MEAN	Intake-mean	HQ-MEAN	%Risk
A	mg/L										mg/L			
Arsenic	0.0349	2	350	. 30	70	10950	0.0010	0.0003	3.187	8.13	0.005	0.000137	0.4566	6.42
Cadmium	0.0013	2	350	30	70	10950	0.0000	0.0005	0.071	0.18	0.001	0.000027	0.0548	0.77
Cobatt	0.0162	2	350	30	70	10950	0.0004	0.06	0.007	0.02	0.007	0.000192	0.0032	
Fluoride	7.57	2	350	30	70	10950		0.06	3.457					0.04
Iron	21.2		350	30						8.81	1.93		0.8813	12.39
- ·		2			70	10950		0.3	1.936	4.94	3.88	0.106301	0.3543	4.98
Manganese	4.54	2	350	30	70	10950	0.1244	0.047	2.646	6.75	2.82	0.077260	. 1.6438	23.12
Molybdenum	0.299	2	350	30	70	10950	0.0082	0.005	1.638	4.18	0.101	0.002767	0.5534	7.78
Nickel	0.111	· 2	350	30	70	10950	0.0030	0.02	0.152	0.39	0.035			0.67
Uranium	2.5	2	350	30	70	10950		0.003	22.831	58.22	0.304			
Vanadium	0.832		350											39.05
		2		30	70	10950		0.007	3.256	8.30	0.0857	0.002348	0.3354	4.72
Zinc	0.352	2	350	30	70	10950	0.0096	0.3	0.032	0.08	0.0349	0.000956	0.0032	0.04
100													5.5552	0.0 .
	÷	•					F	f1 ≈	39.215			Hi=	7.1103	

Non-carcinogens - inhalation through water use in residential setting*

Ammonia (max)	0.655	15_	350	30	70	10950	0.1346	0.0286	4.706
Ammonia (mean)	0.201	15	350	30	70	10950	0.0413	0.0286	1.444

^{*}IR = 15 m³/d of air default; concentration in air = water concentration x site-specific volatilization factor x conversion factor For Grand Junction, volatilization factor = .000595; conversion factor is 1000L/m3

Maximum NH3 in Grand Junction ground water is 1.1 mg/L, mean is .337 mg/L

Carcinogens - Groundwater Ingestion Only (Adults)

Contaminant

Arsenic	cw	IR	EF	ED	BW	AT Intake	SF ¹	Risk
U234+238	0.0349	2	350	30	70	25550 0.00041	1.5	6.15E-04
	1668 422	2 2	350 350	30 30	na na	na 3.50E+07 na 8.86E+06		

¹ All exposure factors are from EPA 1989b

² Data are mainly from EPA's Integrated Risk Information System (IRIS); other values are from EPA Region III Risk-Based Concentration Table

Attachment 4

Geochemical Modeling (PHREEQC)
For Ammonium Speciation

This page intentionally blank

2.13

```
Nh3.out
         data base.
          SOLUTION_MASTER_SPECIES SOLUTION_SPECIES
         SOLUTION_DFELL_
PHASES
EXCHANGE MASTER SPECIES
EXCHANGE SPECIES
SURFACE MASTER SPECIES
SURFACE SPECIES
FUN
Reading input data for simulation 1.
          TITLE Ammonia at GJ
          SOLUTION 1
                    units mg/L
                    pH
pE
density
                                         7.13
-0.22
                                         1.0
408.0
441.0
                    Alkalinity
Ca
Cl
                    Mg
K
                                         240.0
56.5
                    Ka
S(6)
                                         999.0
                                         3530.0
                                                  as SO4
                    X(-3)
                                         233.0 as NH4
TITLE
 Ammonia at GJ
Beginning of initial solution calculations.
                             ----Solution composition---
                                  Molality
          Elements
         Alkalinity
                                                8.206--03
                                 8.206e-03
         Ca
C1
K
                                 1.1070-02
                                                1.107+-02
                                 1.604--02
                                                1.604+-02
                                 1.454e-03
                                                1.454+-03
         Ng
N(-3)
N(5)
                                 9.936e-03
                                 1.300e-02
                                                1.300e-02
                                 1.964--06
                                                1.964e-06
                                 4.3740-02
                                                4.3744-02
         5(6)
                                                3.699e-02
                                3.699e-02
                           -----Description of solution
                                    pH =
                                              7.130
                pe = -0.220
Activity of water = 0.998
Ionic strength = 1.152
                                             1.1520-01
           Mass of water (kg) =
Total carbon (mol/kg) =
Total CO2 (mol/kg) =
                                            1.000++00
9.063+-03
                                        - 9.063
- 25.000
                                               9.063e-03
         Temperature (deg C)
Electrical balance (eq)
                                              1.994--03
                          Iterations
Total H
                                         = 1.110724++02
                              Total O
                                         - 5.568040e+01
                                  -----Redox couples----
         Redox couple
                                         pe Eh (volts)
         N(-3)/N(5)
                                    5.5015
                                                    0.3254
                            -----Distribution of species----
                                                                                           Log
Camma
         Species
                                 Molality
                                                 Activity Molality Activity
```

1.347e-07 7.413e-08 1.794e-07 -6.746 -0.124 9.043--08 -7.044 -7.130 9.063e-03 7.541e-03 7.68e-04 H20 9.9784-01 -0.001 -0.001 0.000 -2.123 -3.019 -2.230 HCO3-5.0824-03 -0.108 9.825+-04 0.012 CO2 -3.008 CaHCO3+ 1.846--04 -3.626

C,

```
-0.111
         МдНСО3+
                              1.8890-04
                                           1.461e-04
                                                          -3.724
                                                                      -3.835
                                                                      -3.971
                                                                                  0.012
                                                          -3.982
-4.825
         NaHCO3
                              1.042e-04
1.497e-05
                                           1.070--04
                                                                      -4.813
-5.429
                                                                                 0.012
                                           1.538e-05
         CeCO3
                                                          -4.998
-5.134
                              1.005--05
                                            3.721--06
         CO3-2
                                                                                  0.012
                              7.3410-06
                                           7.5390-06
         HgCO3
                                                           -5.538
                                                                      -5.650
                                                                                 -0.111
                              2.897--06
         NaCO3-
                   1.1070-02
Ca
                                                                      -2.609
                                                                                 -0.425
                              6.546e-03
                                           2.460e-03
                                                          -2.184
         Ca+2
                              4.277e-03
2.367e-04
                                                          -2.369
-3.626
                                                                      -2.357
-3.734
         Casos
                                            4.3920-03
                                                                                  0.012
                                                                                  -0.108
         CaHCO3+
                                           1.8464-04
                                            1.5380-05
                                                          -4.825
                                                                      -4.813
                                                                                  0.012
                              1.4970-05
         CaCO3
                                                                                  -0.111
                                           5.495e-09
1.907e-09
                              7.1034-09
                                                          -8.149
                                                                      -8.260
                                                          -8.608
                                                                      -8.720
         CaHSO4
                             2.465+-09
                   1.604--02
Cl
                                                                                 -0.123
                                                          -1.795
                                                                      -1.917
                              1.604--02
                                           1.2094-02
         Cl-
                   2.087-17
H(O)
                                                                     -16.970
                                                                                  0.012
                   1.043e-17
1.454e-03
         Н2
                                           1.072e-17
                                                         -16.982
ĸ
                                                                                 -0.123
                              1.370--03
                                            1.0330-03
                                                          -2.863
                                                                      -2.986
                                                                      -4.187
                                                          -4.076
         XSO4 -
                              8.397--05
                                            6.4960-05
                              4.6960-11
                                           4.8220-11
                                                         -10.328
                                                                     -10.317
                                                                                  0.012
         KOH
                   9.936e-03
5.403e-03
Ħg
                                                                      -2.673
                                                                                  -0.406
                                           2.1234-03
                                                          -2.267
         Mg+2
                                                          -2.363
-3.724
-5.134
         MgSO4
MgHCO3+
                              4.336e-03
                                            4.453e-03
                                                                      -2.351
                                                                                  0.012
                                                                                 -0.111
                              1.889e-04
                                           1.461e-04
7.539e-06
                                                                      -3.835
                                                                      -5.123
                                                                                  0.012
         MgCO3
MgOH+
                              7.3414-06
                                                                                            90 (mor)
                              1.341e-07
                                                           -6.873
                                                                      -6.984
                                                                                  -0.111
N(-3)
                   1.300e-02
                                                                                                                                 209.9
                                                                                  -0.135
                              1.166e-02
                                            8.5444-03
                                                                      -2.068
         NH4+
   14
                                                                                              89.7
                                                                                 -0.111
                              1.273--03
                                                                      -3,007
         NH4 SO4 -
                                            9.848--04
                                                          -2.895
 114
                                                                                                                                  144.8
                                                                                                            NHU 304
                                                                                                9.8
                                                          -4.194
                                                                      -4.183
                                                                                  0.012
         NH3
                              6.3960-05
                                            6.568e-05
N(5)
                                                                                                            NHS
                   1.964--06
                                                                                                                                     1. 1
                                                                                                 0.5
                                                                      -5.836
                                                                                  -0.130
                                                          -5.707
         NO3-
                              1.964e-06
                   4.374--02
Na .
                                                                      -1.490
                                                                                 -0.111
                              4.176e-02
                                            3.2340-02
                                                          -1.379
                                                          -2.727
                                                                      -2.839
                                                                                  -0.111
                              1.875e-03
                                            1.450e-03
         NaSO4 -
                                                          -3.982
-5.538
                                                                      -3.971
-5.650
                                                                                  0.012
-0.111
                              1.0420-04
                                            1.070--04
         NaHCO3
         NaCO3-
                              2.8974-06
                                            2.2414-06
                                                          -0.553
                                                                      -8.541
                                                                                  0.012
                              2.8010-09
         NaOH
0(0)
                   0.000e+00
                              0.000+00
                                           0.000e+00
                                                         -58.453
                                                                     -58.442
                                                                                  0.012
         02
5 (6)
                   3.6990-02
                                                                                  -0.449
                                                                      -2.048
         SO4-2
                              2.5140-02
                                            8.9470-03
                                                          -1.600
                                                          -2.363
         MgSO4
CaSO4
                              4.336e-03
                                            4.453e-03
                                                          -2.369
-2.727
                                                                      -2.357
-2.839
                              4.2774-03
                                            4.3920-03
                                                                                  0.012
                                                                                  -0.111
         NaSO4-
                              1.875--03
                                            1.4500-03
                              1.2730-03
                                            9.8480-04
                                                           -2.895
                                                                      -3.007
                                                                                  -0.111
         NH4 SO4 -
                              8.397e-05
8.336e-08
                                                          -4.076
                                                                      -4.187
                                                                                  -0.111
         KS04-
                                            6.4960-05
                                                           -7.079
                                                                      -7.191
                                            6.4490-08
         HSO4 -
         CaHSO4 +
                              2.465--09
                                            1.907--09
                                                           -8.608
                                                                      -8.720
                                                                                  -0.111
                             -----Saturation indices--
                                SI log IAP log KT
         Phase
                                                      CaSO4
CaCO3
         Anhydrita
                             -0.30
                                      -1.66
                                               -4.36
                                      -8.04
                                               -0.34
         Aragonite
Calcite
                              0.30
                                      -8.04
                                               -8.48
                                                       CaCO3
         CO2 (g)
                             -1.54
0.95
                                              -18.15
                                     -19.69
                                                       CO2
                                                       CaHg (CO3) 2
                                     -16.14
                                              -17.09
         Dolomite
                                                                                      -5.95
                             -0.08
                                      -4.66
                                               -4.58
                                                       CaSO4:2H20
         Gypsum
         H2 (g)
NH3 (g)
                                    -13.82
                                                0.00
                            -13.82
                                                       H2
                                     5.06
27.64
                                                                                   10
                             -5.95
         02 (g)
                            -55.48
                                               83.12
                                                       02
```

End of simulation.

Reading input data for simulation 2.

End of run.

C.JUND WATER QUALITY DATA BY PARAMETER (USEE200) FOR SITE GRAUD JUNCTION REPORT DATE: 1/7/99 11:03:27

PARAMETER	UNITS	LOCATION ID	SAMF DATE	PLE:	ZONE COMPL	FLOW REL.	RESULT		JALIFIERS: DATA QA	DETECTION	UN- CERTAINTY
Alkalinity as CaCO3	mg/L	1017	06/22/98	0001	AL	0	408		#	•	•
	mg/L	1017	06/22/98	N001	AL	0	402 .		#	•	•
Ammonia as NH4	mg/L	1017.	06/22/98	0001	AL	0	233.000		#	•	-
Arsenic	mg/L	1017	06/22/98	0001	AL	0	0.0010	U	#	0.001	•
Cadmium	mg/L	1017	06/22/98	0001	AL	0	0.0010	U	#	0.001	•
Calcium	mg/L	1017	06/22/98	0001	AL	0	441.000		#	•	-
Chloride	mg/L	1017	06/22/98	0001	AL	0	565.000		. #	•	•
Cobalt	mg/L	1017	06/22/98	0001	AL .	0	0.0060	U	#	0.006	•
Copper	mg/L	1017	06/22/98	0001	AL	0	0.0050	Ü	#	0.005	-
Fluoride	mg/L	1017	06/22/98	0001	AL	0	1.910		#	•	· ·
Gross Alpha	PCVL	1017	06/22/98	0001	AL	Ο.	66.49	U	J #	66.49	± 37.4 .
Gross Beta	PCVL	1017	06/22/98	0001	AL	0	67.71	Ú	#	67.71	± 39.7
tron	mg/L	1017	06/22/98	0001	, AL ,	. 0	0.718		#		
Magnesium	mg/L	1017	06/22/98	0001	AL	0	240.000	•	#	-	
Manganese	mg/L	1017	06/22/98	0001	AL	0	4.140		. #		
Molybdenum	mg/L	1017	06/22/98	0001	AL	Ö	0.0894		#	•	-
Nickel	mg/L	1017	06/22/98	0001	AL	0	0.0828		#		
Nitrate	mg/L	1017	06/22/98	0001	AL	0	0.121	В	#	•	_
pH	s.u.	1017	06/22/98	N001	AL	0	7.13		. #	•	•
Potassium	mg/L	1017	06/22/98	0001	AL	0	56.500		#		•
Radium-226	pCVL.	1017	06/22/98	0001	AL	0	0.14	U		0.14	± 0.07
Radium-228	PCIL	1017	06/22/98	0001	AL	0	0.65		#	0.56	± 0.34

Page 1

 $9^{\frac{13}{54}} = -0.2^{2}$

GROUND WATER QUALITY DATA BY PARAMETER (USEE200) FOR SITE GR.JO1, GRAND JUNCTION REPORT DATE: 1/7/99 11:03:28

PARAMETER	UNITS	LOCATION	SAMF DATE	PLE: ID	ZONE COMPL	FLOW REL.	RESULT	<u>/</u> ,		ALIFIERS: DATA QA	DETECTION LIMIT	UN- CERTAINTY
Redox Potential	mV	1017	06/22/98	N001	AL	Ο.	-13			#		•
Selenium	mg/L	1017	06/22/98	0001	AL	0	0.0010	U	-	#	0.001	•
Sodium	mg/L	1017	06/22/98	0001	AL	0	999.000			#	•	• ····· · · · · · · · · · · · · · · · ·
Specific Conductance	umhos/	1017	06/22/98	N001	AL	O .	7700			#		
Strontium	mg/L	1017	06/22/98	0001	AL	0	7.040			#		. •
Sulfate	mg/L	1017	06/22/98	0001	AL	0	3530.000			. #	•	
Temperature	С	1017	06/22/98	N001	AL	0	14.7			. #		. •
Total Dissolved Solids	mg/L	1017	06/22/98	0001	AL	0	6070			#	•	. •
Turbidity	NTU	1017	06/22/98	N001	AL	0	9.57			#	•	. •
Uranium	mg/L	1017	06/22/98	0001	AL	0.	0.0255			#		
Vanadium	mg/L	1017	06/22/98	0001	AL	0	0.0021	В		U #		•
Zinc	mg/L	1017	06/22/98	0001	AL	0	0.0050	U		#	0.005	

.JUND WATER QUALITY DATA BY PARAMETER (USEE200) FOR SITE GR.J., GRAND JUNCTION REPORT DATE: 1/7/99 11:03:28

		LOCATION	SAMP	LE:	ZONE	FLOW		QUALIFIERS:	DETECTION U	UN-
PARAMETER	UNITS	1D	DATE	ID	COMPL	REL.	RESULT	LAB DATA QA		TAINTY

RECORDS: SELECTED FROM USEE200 WHERE site_code='GRJ01' AND location_code in(1017') AND quality_assurance = TRUE AND (NOT (data_validation_qualifiers LIKE "R" OR data_validation_qualifiers LIKE "X") OR InNull(data_validation_qualifiers)) AND DATE_SAMPLED between #5/1/99# and #1/1/99#

SAMPLE ID CODES: 000X = Filtered sample (0.45 µm). N00X = Unfiltered sample, X = replicate number.

LAB QUALIFIERS:

- Replicate analysis not within control limits.
- Correlation coefficient for M\$A < 0.995.
- A TIC is a suspected aldol-condensation product.
- B Inorganic: Result is between the IDL and CRDL. Organic: Analyte also found in method blank.
- E Inorganic: Estimate value because of interference, see case narrative. Organic: Analyte exceeded calibration range of the GC-MS.
- Z Laboratory defined (USEPA CLP organic) qualifier, see case narrative.
- H Holding time expired, value suspect.
- I Increased detection limit due to required dilution.
- C Pesticide result confirmed by GC-MS.
- M GFAA duplicate Injection precision not met.
- N Inorganic or radiochemical: Spike sample recovery not within control limits. Organic: Tentatively identified compund (TIC).
- S Result determined by method of standard addition (MSA).
- U Analytical result below detection limit.
- W Post-digestion spike outside control limits while sample absorbance < 50% of analytical spike absorbance.
- D Analyte determined in diluted sample.
- > 25% difference in detected posticide or Arochior concentrations between 2 columns.
- X Laboratory defined (USEPA CLP organic) qualifier, see case narrative.
- Y Laboratory defined (USEPA CLP organic) qualifier, see case narrative.
- > Result above upper detection limit.

DATA QUALIFIERS:

J Estimated value.

F Low flow sampling method used,

G Possible grout contamination, pH > 9.

- L Less than 3 bore volumes purged prior to sampling.
- R Unusable result.

X Location is undefined.

U Parameter analyzed for but was not detected.

QA QUALIFIER: # = validated according to Quality Assurance guidelines.

```
Nh3.out
Reading data base.
           SOLUTION_MASTER_SPECIES SOLUTION_SPECIES
           SOLUTION_SFECT.
PHASES
EXCHANGE_MASTER_SPECIES
EXCHANGE_SPECIES
SURFACE_MASTER_SPECIES
SURFACE_SPECIES
Reading input data for simulation 1.
           TITLE Ammonia at GJ
           SOLUTION 1
                       units mg/L
                                              7.13
                       pH
pE
                                              -0.22
1.0
408.0
                       density
                       Alkalinity
                       Ca
C1
                                              441.0
565.0
                       Mg
                                              240.0
                       K
Na
                                              56.5
999.0
                                              3530.0 as SO4
0.121 as NO3
71.4 as NH4
                       S(6)
                       NISI
           END
TITLE
Beginning of initial solution calculations.
Initial solution 1.
                                         -Solution composition
           Elements
                                                       8.2044-03
           Alkalinity
                                     8.204e-03
           Ca
Cl
                                     1.107e-02
1.604e-02
                                                      1.107e-02
1.604e-02
                                      1.454e-03
                                                       1.454e-03
           Mg
N(-3)
N(5)
                                     9.9349-03
3.983e-03
                                                       9.934--03
                                                       3.983+-03
                                                       4.373e-02
          Na
S (6)
                                     4.373e-02
3.698e-02
                                                       3.698÷-02
            -----Description of solution----
                   pH = 7.130
pe = -0.220
Activity of water = 0.998
Ionic strength = 1.115e-91
             Mass of water (kg)
Total carbon (mol/kg)
Total CO2 (mol/kg)
                                                   1.000e+00
9.115e-03
                                                     9.115e-03
                                              - 25.000

- 7.022e-03

- 8

- 1.1103659+02

- 5.568052e+01
          Temperature (deg C)
Electrical balance (eq)
                             Iterations
                                  Total H
                                  Total O
                                        ----Redox couples--
                                               pe Eh (volts)
          Redox couple
                                         5.5658
          N(-3)/N(5)
                                   ----Distribution of species--
```

	Species		Activity	Log Molality	Log Activity	Log Gamma
	OH-	1.788e-07	1.348e-07	-6.748	-6.870	-0,123
	н+	9.028e-08	7.413e-06	-7.044	-7.130	-0.086
	H2O	5.551e+01	9.980e-01	-0.001	-0.001	0.000
C(4)		9.115e-03				
	HC03-	7.585+-03	5.931e-03	-2.120	-2.227	-0.107
	CO2	9.655e-04	9.9064-84	-3.015	-3.004	0.011
	CaHCO3+	2.361e-04	1.8469-04	-3.627	-3.734	-0.107
					Pa	ige 1

```
Nh3.out
          MgHCO3+
                               1.879e-04
                                            1.457e-04
                                                            -3.726
                                                                       -3.837
                                                                                   -0.110
                                                                       -3.967
-4.813
-5.426
          NaHCO3
                               1.052e-04
                                             1.080e-04
                                                            -3.978
                                                                                    0.011
                                            1.538e-05
3.752e-06
                                                           -4.824
-4.998
                                                                                    0.011
          CACO3
                               1.4990-05
          CO3-2
                                                                                   -0.427
                               1.004e-05
          MgC03
                               7.3270-06
                                             7.5170-06
                                                            -5.135
                                                                       -5.124
                                                                                    0.011
                                                           -5.535
                                                                       -5.646
                                                                                   -0.110
          NaCO3-
                               2.9160-06
                                            2.2620-06
                    1.107--02
                                             2.439e-03
                                                           -2.192
-2.357
-3.627
          Ca+2
                              6.430e-03
                                                                       -2.613
                                                                                   -0.421
                                                                       -2.346
-3.734
                                                                                   0.011
          Casol
                                            4.506e-03
                               4.391e-03
          CaHCO3+
                               2.3610-04
                                            1.846e-04
                                                                                   -0.107
          CaCO3
                               1.499--05
                                            1.538--05
                                                           -4.824
                                                                       -4.813
                                                                                   0.011
          CaOH+
                              7.028--09
                                            5-450--09
                                                           -8.153
                                                                       -8.264
                                                                                   -0.110
                              2.523e-09
                                            1.957e-09
                                                           -8.598
                                                                                   -0.110
         CaHSO4
C1
                    1.604--02
         C1-
                              1.604e-02
                                                           -1.795
                                                                       -1.916
                                                                                   -0.121
                                            1.213--02
H(0)
                    1.044e-17
1.454e-03
                                            1.072e-17
                                                                      -16.970
                                                                                   0.011
         Н2
                                                           -16.981
K
                                            1.034--03
                                                           -2.864
                                                                       -2.985
                                                                                  -0.121
                                                                       -4-172
                                                                                   -0.110
         KSO4 -
                              8.6760-05
                                            6.728--05
                                                           -4.062
                              4.7060-11
                                                          -10.327
                                                                      -10.316
         KOH
                                            4.828e-11
                                                                                   0.011
Mg
                    9.934--03
                              5.298--03
                                                           -2.276
                                                                       -2.678
                                                                                   -0.402
         Mg+2
                                            2.0990-03
         MgSO4
                              4.4410-03
                                                           -2.353
                                                                       -2.341
                                                                                   0.011
                                            1.457e-04
7.517e-06
                                                           -3.726
-5.135
                                                                       -3.837
-5.124
         MgHCO3+
                              1.879e-04
                                                                                  -0.110
                              7.327e-06
         MgCO3
                                                                                   0.011
         MgOH+
                              1.323e-07
                                            1.026e-07
                                                           -6.878
                                                                       -6.989
                                                                                  -0.110
N(-3)
                    3.983--03
                              3.561e-03
                                                                       -2.582
                                                                                   -0.133
                                            2.619e-03
                                                           -2.448
                                                           -3.395
-4.707
         NH4 SQ4 -
                              4.027e-04
                                            3.123--04
                                                                       -3.505
                                                                                  -0.110
         NH3
                              1.962*-05
                                            2.0134-05
                                                                       -4.696
                                                                                   0.011
N(5)
                    1.9644-06
                                                           -5.707
         NO3-
                              1.964e-06
                                            1.463e-06
                                                                       -5.835
                                                                                  -0.128
                    4.373--02
Na
         Na•
                              4.1694-02
                                            3.237+-02
                                                           -1.380
                                                                       -1.490
                                                                                  -0.110
                                                           -2.713
-3.978
         Naso4-
                              1.9370-03
                                            1.502e-03
1.080e-04
                                                                      -2.823
-3.967
                                                                                  -0.110
         NaHCO3
                              1.0520-04
                                                                                   0.011
         NaCO3-
                              2.916e-06
                                            2.262e-06
                                                           -5.535
                                                                       -5.646
                                                                                  -0.110
         NaOH
                              2.8064-09
                                            2.879e-09
                                                           -8.552
                                                                       -8.541
                                                                                   0.011
0(0)
                   0.000e+00
         02
                              0.000e+00
                                            0.000e+00
                                                          -58.453
                                                                      -58.442
                                                                                   0.011
                   3.698--02
5(6)
         SO4-2
                              2.5720-02
                                            9.257--03
                                                                       -2.034
                                                                                  -0.444
         MgSO4
CaSO4
                              4.441e-03
4.391e-03
                                            4.556e-03
4.506e-03
                                                           -2.353
-2.357
                                                                      -2:341
-2:346
                                                                                   0.011
         Na504-
                              1.937--03
                                            1.502e-03
                                                           -2.713
                                                                       -2.823
                                                                      -3.505
-4.172
-7.176
                                                           -3.395
-4.062
                                                                                  -0.110
-0.110
         NHA SOA -
                              4.027-04
                                           3.1230-04
                                            6.728--05
         KS04-
                                                           -7.065
         HSO4 -
                              8.604e-08
                                            6.672e-08
                                                                                  -0.110
         CallSO4
                              2.523e-09
                                           1.957e-09
                                                           -8.598
                                                                      -8.708
                                                                                  -0.110
                  --------Saturation indices-
                               SI log IAP log KT
        Anhydrite
                            -0.29
                                     -4.65
-8.04
                                               -4.36 CaSO4
                             0.30
                                               -8.34
                                                       CaCO3
         Aragonite
         Calcite
                            0.44
                                     -8.04
                                               -8.48
                                                       CaCO3
                                    -19.68
                                              -18.15
                                                       CO2
        CO2 (a)
                             0.95
                                    -16.14
                                              -17.09
                                                       CaMg (CO3) 2
```

02 (g) _____

Dolomite

Gypsum

H2 (a)

NH3 (g)

End of simulation.

Reading input data for simulation 2.

-0.07 -13.82

-6.47

-55.48

-4.65 -13.82

27.64

-4.58 0.00

11.01

83.12 02

CaSO4:2H20

H2

NH3

End of run.

Appendix J

Economic Feasibility Study for Treatment of Background Ground Water for Municipal Water Supply

This page intentionally blank

Grand Junction Alluvial Aquifer Treatability Study and Cost Estimate

Submitted to

MACTEC-ERS
Grand Junction Office
U.S. Department of Energy
2597 B¾ Road
Grand Junction, CO 81503

Attn: Dick Dayvault, P.G.

Project No.

3405.00.00.00

December 1, 1998

1819 Denver West Drive Suite 400 Golden, CO 80401

Table of Contents

1.1 PURPOSE	1.0	INTR	ODUCTION	1-1
2.0 BACKGROUND INFORMATION 2-1 2.1 INFLUENT WATER QUALITY 2-1 2.2 EFFLUENT WATER QUALITY 2-1 2.3 ESTIMATED WATER AVAILABILITY 2-1 3.0 TREATMENT TECHNOLOGY SELECTION 3-1 3.1. REVIEW OF CONSTITUENTS OF CONCERN 3-1 3.1.1 Hardness (Calcium and Magnesium) 3-1 3.1.2 Iron 3-1 3.1.3 Nitrate 3-2 3.1.4 Manganese 3-2 3.1.5 Chloride 3-2 3.1.6 Fluoride 3-2 3.1.7 Sulfate 3-2 3.1.8 Selenium 3-3 3.1.9 Uranium and Gross Alpha 3-3 3.2.1 DESCRIPTION OF COMMONLY-EMPLOYED TECHNOLOGIES 3-3 3.2.1 Technically Inapplicable Technologies 3-6 3.2.2.1 Acration and Ozonation 3-6 3.2.2.2 Chemical Softening/Precipitation 3-6 3.2.2.3 Ion Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3 Development of Conceptual Treatment System 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9	1.	.1. Pur	RPOSE	1-1
2.1 INFLUENT WATER QUALITY 2-1 2.2 EFFLUENT WATER QUALITY 2-1 2.3 ESTIMATED WATER AVAILABILITY 2-1 3.0 TREATMENT TECHNOLOGY SELECTION 3-1 3.1 REVIEW OF CONSTITUENTS OF CONCERN. 3-1 3.1.1 Hardness (Calcium and Magnesium) 3-1 3.1.2 Iron 3-1 3.1.3 Nitrate 3-2 3.1.4 Manganese 3-2 3.1.5 Chloride 3-2 3.1.6 Fluoride 3-2 3.1.7 Sulfate 3-2 3.1.8 Selenium 3-3 3.1.9 Uranium and Gross Alpha 3-3 3.2.1 Technically Inapplicable Technologies 3-6 3.2.2 Potentially Applicable Technologies 3-6 3.2.2.1 Aeration and Ozonation 3-6 3.2.2.3 Ion Exchange Softening 3-6 3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3.1 Conceptual Treatment System 3-9 3.3.1.2 Soft	1.	.2 Orc	GANIZATION	1-2
2.2 EFFLUENT WATER QUALITY 2-1 2.3 ESTIMATED WATER AVAILABILITY 2-1 3.0 TREATMENT TECHNOLOGY SELECTION 3-1 3.1 REVIEW OF CONSTITUENTS OF CONCERN 3-1 3.1.1 Hardness (Calcium and Magnesium) 3-1 3.1.2 Iron 3-1 3.1.3 Nitrate 3-2 3.1.4 Manganese 3-2 3.1.5 Chloride 3-2 3.1.6 Fluoride 3-2 3.1.7 Sulfate 3-2 3.1.8 Selenium 3-3 3.2 DESCRIPTION OF COMMONLY-EMPLOYED TECHNOLOGIES 3-3 3.2.1 Technically Inapplicable Technologies 3-6 3.2.2.1 Acration and Ozonation 3-6 3.2.2.2 Chemical Softening/Precipitation 3-6 3.2.2.3 Ion Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3.1 Conceptual Treatment System 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 Treatment System Size 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1				
2.2 EFFLUENT WATER QUALITY 2-1 2.3 ESTIMATED WATER AVAILABILITY 2-1 3.0 TREATMENT TECHNOLOGY SELECTION 3-1 3.1 REVIEW OF CONSTITUENTS OF CONCERN 3-1 3.1.1 Hardness (Calcium and Magnesium) 3-1 3.1.2 Iron 3-1 3.1.3 Nitrate 3-2 3.1.4 Manganese 3-2 3.1.5 Chloride 3-2 3.1.6 Fluoride 3-2 3.1.7 Sulfate 3-2 3.1.8 Selenium 3-3 3.2 DESCRIPTION OF COMMONLY-EMPLOYED TECHNOLOGIES 3-3 3.2.1 Technically Inapplicable Technologies 3-6 3.2.2.1 Acration and Ozonation 3-6 3.2.2.2 Chemical Softening/Precipitation 3-6 3.2.2.3 Ion Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3.1 Conceptual Treatment System 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 Treatment System Size 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1	2.	.1 INFI	LUENT WATER QUALITY	2-1
3.0 TREATMENT TECHNOLOGY SELECTION	2.	.2 Eff	LUENT WATER QUALITY	2-1
3.1 Review of Constituents of Concern	2.	.3 Est	TIMATED WATER AVAILABILITY	2-1
3.1.1 Hardness (Calcium and Magnesium) 3-1 3.1.2 Iron 3-1 3.1.3 Nitrate 3-2 3.1.4 Manganese 3-2 3.1.5 Chloride 3-2 3.1.6 Fluoride 3-2 3.1.7 Sulfate 3-2 3.1.8 Selenium 3-3 3.1.9 Uranium and Gross Alpha 3-3 3.2 DESCRIPTION OF COMMONLY-EMPLOYED TECHNOLOGIES 3-3 3.2.1 Technically Inapplicable Technologies 3-6 3.2.2 Potentially Applicable Technologies 3-6 3.2.2.1 Aeration and Ozonation 3-6 3.2.2.2 Chemical Softening/Precipitation 3-6 3.2.2.3 Ion Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.3. DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1	3.0	TREA	ATMENT TECHNOLOGY SELECTION	3-1
3.1.1 Hardness (Calcium and Magnesium) 3-1 3.1.2 Iron 3-1 3.1.3 Nitrate 3-2 3.1.4 Manganese 3-2 3.1.5 Chloride 3-2 3.1.6 Fluoride 3-2 3.1.7 Sulfate 3-2 3.1.8 Selenium 3-3 3.1.9 Uranium and Gross Alpha 3-3 3.2 DESCRIPTION OF COMMONLY-EMPLOYED TECHNOLOGIES 3-3 3.2.1 Technically Inapplicable Technologies 3-6 3.2.2 Potentially Applicable Technologies 3-6 3.2.2.1 Aeration and Ozonation 3-6 3.2.2.2 Chemical Softening/Precipitation 3-6 3.2.2.3 Ion Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.3. DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1	3.	.1 Rev	VIEW OF CONSTITUENTS OF CONCERN	3-1
3.1.2 Iron 3-1 3.1.3 Nitrate 3-2 3.1.4 Manganese 3-2 3.1.5 Chloride 3-2 3.1.6 Fluoride 3-2 3.1.7 Sulfate 3-2 3.1.8 Selenium 3-3 3.1.9 Uranium and Gross Alpha 3-3 3.2 DESCRIPTION OF COMMONLY-EMPLOYED TECHNOLOGIES 3-3 3.2.1 Technically Inapplicable Technologies 3-6 3.2.2 Potentially Applicable Technologies 3-6 3.2.2.1 Aeration and Ozonation 3-6 3.2.2.2 Chemical Softening/Precipitation 3-6 3.2.2.3 Ion Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3 DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1		•	Hardness (Calcium and Magnesium)	3-1
3.1.3 Nitrate 3-2 3.1.4 Manganese 3-2 3.1.5 Chloride 3-2 3.1.6 Fluoride 3-2 3.1.7 Sulfate 3-2 3.1.8 Selenium 3-3 3.1.9 Uranium and Gross Alpha 3-3 3.2.1 DESCRIPTION OF COMMONLY-EMPLOYED TECHNOLOGIES 3-3 3.2.1 Technically Inapplicable Technologies 3-6 3.2.2.1 Aeration and Ozonation 3-6 3.2.2.2 Detentially Applicable Technologies 3-6 3.2.2.1 Aeration and Ozonation 3-6 3.2.2.2 In Exchange Softening/Precipitation 3-6 3.2.2.3 In Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3 DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 <		3.1.2	Iron	3-1
3.1.5 Chloride 3-2 3.1.6 Fluoride 3-2 3.1.7 Sulfate 3-2 3.1.8 Selenium 3-3 3.1.9 Uranium and Gross Alpha 3-3 3.2 DESCRIPTION OF COMMONLY-EMPLOYED TECHNOLOGIES 3-3 3.2.1 Technically Inapplicable Technologies 3-6 3.2.2 Potentially Applicable Technologies 3-6 3.2.2.1 Aeration and Ozonation 3-6 3.2.2.2 Chemical Softening/Precipitation 3-6 3.2.2.3 Ion Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3 DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1		3.1.3	Nitrate	3-2
3.1.5 Chloride 3-2 3.1.6 Fluoride 3-2 3.1.7 Sulfate 3-2 3.1.8 Selenium 3-3 3.1.9 Uranium and Gross Alpha 3-3 3.2 DESCRIPTION OF COMMONLY-EMPLOYED TECHNOLOGIES 3-3 3.2.1 Technically Inapplicable Technologies 3-6 3.2.2 Potentially Applicable Technologies 3-6 3.2.2.1 Aeration and Ozonation 3-6 3.2.2.2 Chemical Softening/Precipitation 3-6 3.2.2.3 Ion Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3 DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1	-	3.1.4	Manganese	3-2
3.1.7 Sulfate		3.1.5	Chloride	3-2
3.1.8 Selenium		3.1.6	Fluoride	3-2
3.1.9 Uranium and Gross Alpha 3-3 3.2 DESCRIPTION OF COMMONLY-EMPLOYED TECHNOLOGIES 3-3 3.2.1 Technically Inapplicable Technologies 3-6 3.2.2 Potentially Applicable Technologies 3-6 3.2.2.1 Aeration and Ozonation 3-6 3.2.2.2 Chemical Softening/Precipitation 3-6 3.2.2.3 Ion Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3 DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1		3.1.7		
3.2 DESCRIPTION OF COMMONLY-EMPLOYED TECHNOLOGIES 3-3 3.2.1 Technically Inapplicable Technologies 3-6 3.2.2 Potentially Applicable Technologies 3-6 3.2.2.1 Aeration and Ozonation 3-6 3.2.2.2 Chemical Softening/Precipitation 3-6 3.2.2.3 Ion Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3 DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1 Conceptual Treatment System 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1		3.1.8	Selenium	3-3
3.2.1 Technically Inapplicable Technologies 3-6 3.2.2 Potentially Applicable Technologies 3-6 3.2.2.1 Aeration and Ozonation 3-6 3.2.2.2 Chemical Softening/Precipitation 3-6 3.2.2.3 Ion Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3 DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1				
3.2.2 Potentially Applicable Technologies 3-6 3.2.2.1 Aeration and Ozonation 3-6 3.2.2.2 Chemical Softening/Precipitation 3-6 3.2.2.3 Ion Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3 DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1	3.			
3.2.2.1 Aeration and Ozonation 3-6 3.2.2.2 Chemical Softening/Precipitation 3-6 3.2.2.3 Ion Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3 DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1.1 Conceptual Treatment System 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1			Technically Inapplicable Technologies	3-6
3.2.2.2 Chemical Softening/Precipitation 3-6 3.2.2.3 Ion Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3 DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1 Conceptual Treatment System 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1				
3.2.2.3 Ion Exchange Softening 3-7 3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3 DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1 Conceptual Treatment System 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1		3.2.	.2.1 Aeration and Ozonation	3-6
3.2.2.4 Media Filtration 3-7 3.2.2.5 Desalinization 3-8 3.3 DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1 Conceptual Treatment System 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1		3.2.	.2.2 Chemical Softening/Precipitation	3-6
3.2.2.5 Desalinization 3-8 3.3 DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1 Conceptual Treatment System 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1				
3.3 DEVELOPMENT OF CONCEPTUAL TREATMENT SYSTEM 3-9 3.3.1 Conceptual Treatment System 3-9 3.3.1.1 Aeration 3-9 3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1				
3.3.1 Conceptual Treatment System	_			
3.3.1.1 Aeration	3.			
3.3.1.2 Softening and Media Filtration 3-9 3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1				
3.3.1.3 Reverse Osmosis 3-12 4.0 ECONOMIC FEASIBILITY TEST 4-1 4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1		3.3.	1.2 G. A. will a and Madia Filtersian	2.0
4.0 ECONOMIC FEASIBILITY TEST	-	3.3.	1.2 Softening and Media Filtration	3_12
4.1 TREATMENT SYSTEM SIZE 4-1 4.2 ESTIMATED TREATMENT SYSTEM COST 4-1 4.2.1 Collection/Extraction System 4-1	<i>1</i> ∩			
4.2 ESTIMATED TREATMENT SYSTEM COST				
4.2.1 Collection/Extraction System4-1				
4.2.1 Collection/Extraction System4-1	4.			
		4.2.1	Treatment System Conital Family ment and Operating Conta	4-1 12
4.2.2.1 Chemical Costs		4.2.2	2.1 Chamical Costs	4-3 2.1 <u>/</u>
4.2.2.1 Chemical Costs				
4.2.2.2 Waste Disposal Costs	A			
4.4 Threshold Evaluation				

5.0	CONCLUSIONS	5-1
6.0	REFERENCES	

Figures

1.

Figure 3-1	Conceptual Process Flow Diagram, Aliasial Aqui	fer	
riguic 3-1	•		
	Treatment System		-10
	TIONHITAIL DISTAIL	••••••••	

Tables

Table 2-1	Background Concentrations and Applicable Regulatory Standard	2-2
Table 3-1	Common Treatment Technologies Applicability to Constituents of	
	Concern	3-4
Table 3-2	Technology Advantages, Disadvantages and Limitation	3-5
Table 3-3	Estimated Effluent Quality	3-11
Table 4-1	Estimated Treatment System Costs	4-2

This page intentionally blank

1.0 Introduction

This study and cost estimate is an addendum to the Grand Junction UMTRA Site Observation Work Plan (SOWP). As such, background information that is already included in the body of the SOWP will not be included in this addendum, unless specific references are necessary.

1.1 Purpose

The U. S. Department of Energy – Grand Junction Office (DOE-GJO) is proposing to implement supplemental standards as the compliance strategy at the Grand Junction UMTRA Site. Specifically, the "limited use ground water" standard would be applied in accordance with Title 50 Code of Federal Regulations, Part 192.11(e) (50 CFR 192.11(e)). Criteria (2) of the standard would apply to the alluvial ("uppermost") aquifer, and states:

"Wide spread, ambient contamination not due to activities involving residual radioactive materials from a designated processing site exists that cannot be cleaned up using treatment methods reasonably employed in public water systems."

This study and cost estimate will demonstrate that background water upgradient of the contamination plume meets this criteria. The "Guidelines for Ground-Water Classification Under the EPA Ground-Water Protection Strategy" (USEPA, 1988, pg. 6-1) provide the methodology for two assessments to conduct the study and cost estimate. The assessments are:

- 1. A treatment technology selection, in which all common technologies employed in the treatment of drinking water are identified and their potential applicability is determined. From this information, one or more alternative treatments or group of treatments (if any) are identified as potential treatment systems.
- 2. An economic feasibility test, in which the alternative treatment or treatments are evaluated to determine the ultimate cost to treat the water in the aquifer to drinking water standards.

The assessments and subsequent conclusions will consider numerical ground water standards established by the Environmental Protection Agency (EPA) under the Uranium Mill Tailings Radiation Control Act (UMTRCA) (40 CFR 192), the Safe Drinking Water Act (SDWA) (40 CFR 141 and 143), and any authority granted to the State of Colorado under the SDWA. Standards under UMTRCA will be given primary consideration. (In the absence of UMTRCA standards, SDWA standards and state authority will be considered.

In addition, consideration will be given to any institutional controls that have been or will be implemented by the City of Grand Junction or Mesa County.

1.2 Organization

This report is organized as follows:

- Section 2.0 presents the background information required to make the treatment technology selection and perform the two assessments.
- Section 3.0 reviews the chemistry of each of the contaminants in the ground water, describes the potential treatment technologies, and selects a conceptual treatment alternative.
- The economic feasibility assessment is performed in Section 4.0.
- The conclusions are presented in Section 5.0.

2.0 Background Information

2.1 Influent Water Quality

Table 2-1 presents the information known about the background water in the alluvial aquifer. The background levels of trace minerals and salts are presented showing the maximum, minimum and mean concentrations.

2.2 Effluent Water Quality

For purposes of the technology selection, the minimum effluent water quality must be defined. Because this is an evaluation of the aquifer as a potential source of municipal drinking water, the Maximum Contaminant Levels (MCLs) outlined under the UMTRCA (40 CFR 192, Table 1 to Subpart A) and the SDWA, (40 CFR 141.11, 141.23 and 41.62) are applicable. Secondary Maximum Contaminant Levels (SMCLs) under the SDWA (40 CFR 143.3) are applicable as guidelines for states but unenforceable. Likewise, Maximum Contaminant Level Goals (MCLGs) are applicable for evaluation purposes, but are also unenforceable (40 CFR 141.50). Table 2-1 Outlines these standards and compares them to constituents known to be found in upgradient background waters within the alluvial aquifer.

2.3 Estimated Water Availability

The following information was presented concerning how much ground water could be supplied to any potential treatment system.

- Volume of water per year flowing through the aquifer is 8,080 acre-feet per year (7.2 million gallons per day or 2.63 billion gallons per year).
- Hydraulic conductivity is estimated to be 70 feet per day.
- Aquifer is estimated to extend from 20 feet below ground surface (bgs) to 50 feet bgs where it is bounded by bedrock.

The throughput of the aquifer was estimated using an average hydraulic conductivity that is higher than that measured in the field. Because this is an overestimate of the amount of useable ground water available, using this to determine the maximum population that can be supplied by the aquifer will result in a conservative cost estimate when the per capita cost of the treatment system is calculated due to economies of scale in the treatment system.

Table 2-1. Background Concentrations and Applicable Regulatory Standards

		Backgroun	d	UMTRA		SDWA		
Constituent (mg/l)	Mean	Maximum	Minimum	MCL1	MCL ²	SMGL ³	MCLG ⁴	
Alkalinity as CaCO3	414	493	328			ļ		
Ammonia as NH4	0.099	0.321	0.014					
Arsenic	(0.001)	(0.001)	(0.001)	0.05	0.05		<u> </u>	
Cadmium	(0.001)	(0.001)	(0.001)	0.01	0.005		0.005	
Calcium	454	573	208	0.0	0.000			
Chloride	496	991	144			250		
Cobalt	0.006	0.008	(0.001)		•			
Copper	0.005	0.000	(0.001)			1.0	1.3	
Fluoride	1.02	1.82	0.45		4.0	2.0		
Gross Alpha (pCi/L)	51.0	81.0	31.0		15.0		0	
Gross Beta (pCi/L)	62	255	17					
Hardness (as CaCO ₃)	2598	3660	963			75°		
Iron	0.507	3.13	0.003			0.3		
Magnesium	384	502	64					
Manganese	1.47	2.22	0.23			0.05		
Molybdenum	0.076	0.186	0.022	0.1				
Nickel	0.009	0.02	(0.001)		0.14		0.14	
Nitrate as N	22	71	0.06	10	10		10 - 20	
pH(s.u.)	6.89	7.51	6.45			6.5 - 8.5		
Potassium	10	17 .	6					
Radium (pCi/L)	0.52	1.2	0.04	5		x 1 1		
Selenium	0.047	0.137	0.001	0.01	0.05		0.05	
Sedi um	634	893	235	-				
Strontium	5.115	8.09	2.14					
Sulfa te	2767	3720	416			250		
TOS	5611	7400	1670			500		
Uranium	0.05	0.066	0.023	0.044			0	
Vanadium	0.002	0.003	0.001					
Zinc	0.004	0.005	0.004			5		

¹ Maximum Contaminant Level, UMTRA Standard [40 CFR 192, Table 1, Subpart A]

² Maximum Contaminant Level, SDWA standard [40 CFR 141.23 and 141.62]

³ Secondary Maximum Contaminant Level [40 CFR 143.3]

⁴ Maximum Contaminant Level Goal [40 CFR 141.50 and 141.51]

⁵ While not a published SMCL, this is a number recommended by the National Society of Professional Engineers for potable water [Lindeburg, 1997, pg. 7-12].

3.0 Treatment Technology Selection

3.1 Review of Constituents of Concern

The constituents of concern (COC) in the alluvial aquifer water are those constituents listed in Table 2-1 that have concentrations greater than the MCL or the SMCL. A brief review of each of the COCs is presented below along with a description of the appropriate treatment technologies for each.

3.1.1 Hardness (Calcium and Magnesium)

Water hardness is caused by multi-valent positive metallic ions such as calcium, magnesium, iron and manganese. Hardness reacts with soap to reduce its cleansing effectiveness, and to form scum on the water surface and ring around the bathtub. Water with a hardness above 350 mg/L (as CaCO₃) is referred to as saline or brackish water.

Water containing bicarbonate (HCO₃) ions form a precipitate when heated, referred to as scale, which fouls water heaters and piping. This hardness is known as carbonate hardness. Remaining hardness due to sulfates, chlorides and nitrates is known as non-carbonate hardness (NCH).

Although high values of hardness are not organically dangerous, public acceptance of the water supply requires a hardness of well below 150 mg/L. Except for special industrial uses, potable water should have the carbonate hardness reduced to at least 40 mg/L and the total hardness should be below 75 mg/L [Lindeburg, 1997, pg. 7-11].

Calcium and magnesium can be easily removed with lime-soda softening or ion exchange softening. Softening is also appropriate for iron and manganese removal if the iron and manganese ions have been oxidized prior to the softening treatment [Kemmer, 1988, pg. 6.6].

3.1.2 Iron

Even in low concentrations, iron is objectionable because it stains bathroom fixtures, causes a brown color in laundered clothing and affects taste. The SMCL of water is 0.3 mg/L for this reason. Water originally pumped from anaerobic sources (such as ground water) may contain ferrous (Fe⁺²) ions, which are invisible and soluble. When exposed to oxygen, insoluble ferric (Fe⁺³) ions form which give the water the rust coloration.

Ferrous iron is easily treated through aeration to ferric iron that will quickly precipitate as iron hydroxide. Residual ferric iron, if any, is reduced by softening and by media filters [Kemmer, 1988, pg. 6.13].

3.1.3 Nitrate

Nitrate is the product of the natural breakdown of ammonia and comes into water from agricultural and human activities. Nitrates in ground water are rarely due to dissolving minerals. Nitrate concentrations in drinking water are limited to 44 mg/L due to its adverse health effects to humans.

Nitrate is difficult to treat. Anion exchange is the only chemical process that removes nitrate. Other desalinization technologies such as reverse osmosis and distillation are also applicable. Nitrate can be converted to gaseous nitrogen through a biological process [Kemmer, 1988, pg. 6.13].

3.1.4 Manganese

Manganese ions are similar in effect to iron ions. Manganous (Mn⁺²) manganese oxidizes to manganic (Mn⁺⁴) manganese to give water a brownish color. The SMCL for manganese is 0.05. Treatment of manganese is also the same as with iron [Lindeburg, 1997, pg. 7-12].

3.1.5 Chloride

Since almost all chloride salts are highly soluble in water, chloride is common in freshwater supplies. The recommended upper limit (SMCL) for chloride in drinking waters is 250 mg/L. This is based entirely on taste and not on any known health hazards.

Anion exchange is the only chemical process capable of removing chlorides from water. However, physical processes such as evaporation and reverse osmosis can separate feed water into two streams, one with a greatly reduced chloride content and the other with an increased content [Kemmer, 1988, pg. 6.6].

3.1.6 Fluoride

Low amounts of fluoride (between 0.8 and 1.2 mg/L) have been shown to reduce the population tooth cavity rate. However, excess fluoride concentrations cause tooth staining and brittle teeth. Although the MCL for fluoride is 4.0 mg/L, the SMCL for fluoride is 2.0 mg/L which is the level at which notable tooth damaged will be caused.

Lime precipitation (softening) will reduce the fluoride concentration as will anion exchange [Kemmer, 1988, pg. 6.13].

3.1.7 Sulfate

Sulfate is typically found in the range from 5 to 200 mg/L. The SMCL of 250 mg/L for sulfate is based on taste and its potential cathartic effect.

High sulfate levels may be reduced measurably by massive lime treatment because calcium sulfate is insoluble at levels greater than 2,000 mg/L [Kemmer, 1988, pg. 6.9]. Sulfate concentrations may also be reduced by anion exchange or by reverse osmosis if precautions are taken to ensure sulfate precipitation does not occur with the treatment unit [Lindeburg, 1997, pg. 7-32].

3.1.8 Selenium

Although a necessary nutritional factor for animals and humans, elevated concentrations of selenium are highly toxic which is why the MCL is 0.05 mg/L. Selenium can exist in three ionic forms:

- As elemental selenium (Se⁰) which is insoluble in water;
- As the selenite (Se⁺⁴) ion which is easily precipitated by lime softening; and
- As the selenate (Se⁺⁶) ion which very soluble in water and is typically removed by anion exchange or by reverse osmosis.

It should be noted that selenate and sulfate are removed equally by anion exchange in proportion to their relative concentrations in the feed water [Lewis, 1998, pg. 1].

3.1.9 Uranium and Gross Alpha

Uranium is one of the heavier radionuclides and is generally not very soluble. Because uranium is a potential source of alpha radiation (measured as gross alpha), the UMTRA MCL for uranium is 0.044 mg/L.

Soluble uranium may be removed using ion exchange and, because the uranium atom is so large, reverse osmosis is very effective. Although simple, treatment of uranium to acceptable levels is typically very expensive. This is because the treatment process may first have to remove a significant amount of more common contamination such as calcium and magnesium before the soluble radionuclides can be reduced to acceptable levels [Kemmer, 1988, pg. 6.27].

3.2 Description of Commonly-Employed Technologies

Using the methodology laid out in the "Guidelines for Ground-Water Classification Under the EPA Ground-Water Protection Strategy", USEPA, June 1988, "commonly-employed" treatment technologies must be screened to determine what, if any, technology or combination of technologies can treat the water to drinking water standards. Table 3-1 presents a list of those technologies considered "commonly-employed" in the drinking water industry and their effectiveness in treating each of the COCs listed above. The technologies in Table 3-1 are based on the list provided in the guidelines. Although the guidelines are ten years old, the list of water treatment technologies is still appropriate. The advantages, disadvantages and limitations of each potentially applicable technology are briefly presented in Table 3-2.

Table 3-1. Common Treatment Technologies Applicability to Constituents of Concern

Technology	Hardness	Chloride	Flouride	Iron	Manganese	Nitrate	Selenium	Sulfate	Uranium
Aeration	No	No	No	Yes ³	Yes ³	No	No	No	No
Air Stripping	No	No	No	No	- No	No	No	No	No
Carbon Exchange	No								
Chemical Softening/	*				1		* *	•	
Precipitation	Yes	No	No	Yes	Yes	No	Yes ³	Yes	Yes
Chlorination	No								
Fluorination	No								
Media Filtration	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²
Desalinization ¹	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Ozonation	No	No	No	Yes ³	Yes ³	No	No	No	No
						*	,		[

Includes distillation, electrodialysis, ion exchange and reverse osmosis.
 Applicable to suspended contaminants only. Will not affect dissolved contaminants.
 Effectiveness depends on the valence state of the ion.

Table 3-2. Technology Advantages, Disadvantages and Limitations

Technology	Advantages	Disadvantages	Limitations
Air Stripping/	i		
Aeration	Low Capital and O&M	Temperature sensitive	Removes only volatile
	High removal efficiencies	(cold) contaminants	contaminants
	for some contaminants	May result in air poliu-	Suspended solids in
	Pretreatment is generally	tion or a need for	influent may lead to
		Emission Control	removal efficiency
	not required for ground	Emission Control	1
	water		loss due to biological
110	Equipment purchased off	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	growth (air stripping
	the shelf		only)
Carbon Adsorption	Low energy requirements	Management of spent .	For organics removal
•	High removal efficiencies	carbon can be expensive	where concentrations
	for a wide range of contam-	and problematic	are high, frequent
	inants over a broad con-	-Regeneration	carbon regeneration
	centration range.	-Disposal	necessary
	Certuaucir taxigo.	-Replacement	Suspended solids should
	İ		
		High capital and operating	not exceed 50 mg/L
		costs	Oil & grease should not
1			exceed 10 mg/L
			Requires steady hydraulic
			loading
Chemical		i	1
Precipitation	Equipment is readily avail-	Generates large quantities	Frequent laboratory testing
· · · · · · · · · · · · · · · · · · ·	able & easy to operate	of studge which must be	required to maintain high
		treated & disposed	efficiencies
•	Low energy requirements		1
	Low capital and O&M costs	Effluent quality may vary	pH dependent
		considerably	No concentration limit
	<u> tara maja tahun tahun</u>		
Membrane Filtration,			
Reverse Osmosis	Excellent removal of charged	High energy requirements	Suspended solids must
	anions and cations	Requires extension pilot	be low to prevent fouling
	Good removal of high	analyses for each system	Operating temperatures
	molecular weight organics	Highly sophisticated	must be between 65 &
	Effective treatment for	instrumentation & control	85 F
			1 '
	removal of dissolved .	Generates a concentrated	Precipitation on membrane
:	solids	brine which may require	may be a problem
		treatment	
. ;		Pretreatment almost	
·		always required	
.*	* *	High capital & O&M costs	
Media Filtration (e.g.			
sand filters)	Highly reliable	Process generates a	Requires fairly steady
	Relatively simple; easy	backwash which must	hydraulic loads
	to operate & control	be treated	Influent suspended solids
	IN Abergia or COLICIOI	AC RESIGN	
	Multiple media can be		should not exceed
	used to improve		200 mg/L
	•		200 mg/L Pretreatment may be
	used to improve		200 mg/L
	used to improve		200 mg/L Pretreatment may be
ion Exchange	used to improve	High level of training	200 mg/L Pretreatment may be required if suspended
lon Exchange	used to improve efficiencies Synthetic resins can	High level of training necessary for operation	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L
lon Exchange	used to improve efficiencies Synthetic resins can tolerate wide range of	necessary for operation	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations
lon Exchange	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH	necessary for operation Generates concentrated	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L
ion Exchange	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety	necessary for operation Generates concentrated regenerant brine which	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L influent concentrations should not exceed 4,000 mg/L Oil & grease should not
ion Exchange	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic	necessary for operation Generates concentrated regenerant brine which must be disposed	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L
ion Exchange	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always,	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain
ion Exchange	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants	necessary for operation Generates concentrated regenerant brine which must be disposed	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g.
ion Exchange	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always,	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone)
ion Exchange	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always,	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g.
Ion Exchange	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always,	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone)
ion Exchange	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always,	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone) Filtration required as pre-
ion Exchange	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always,	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone) Fitration required as pre- treatment if suspended
	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always,	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone) Filtration required as pre- treatment if suspended solids exceed 20 mg/L
Ozonation and	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants Low energy requirements	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always, high capital and O&M	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone) Filtration required as pre- treatment if suspended solids exceed 20 mg/L in the influent
Ozonation and	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants Low energy requirements Reduces chemical	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always, high capital and O&M High capital and O&M	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone) Filtration required as pre- treatment if suspended solids exceed 20 mg/L in the influent Treats only contaminants
Ozonation and	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants Low energy requirements Reduces chemical residuals generated	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always, high capital and O&M High capital and O&M costs	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone) Fittration required as pre- treatment if suspended solids exceed 20 mg/L in the influent Treats only contaminants which can be oxidized
Ozonation and	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants Low energy requirements Reduces chemical residuals generated (particularly trihalometh-	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always, high capital and O&M High capital and O&M costs High energy	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone) Filtration required as pre- treatment if suspended solids exceed 20 mg/L in the influent Treats only contaminants which can be oxidized Does not remove iron-
Ozonation and	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants Low energy requirements Reduces chemical residuals generated (particularly trihalomethanes)	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always, high capital and O&M High capital and O&M costs High energy Requires high level of	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone) Fittration required as pre- treatment if suspended solids exceed 20 mg/L in the influent Treats only contaminants which can be oxidized
Ozonation and	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants Low energy requirements Reduces chemical residuals generated (particularly trihalometh-	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always, high capital and O&M High capital and O&M costs High energy Requires high level of training & safety pre-	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone) Filtration required as pre- treatment if suspended solids exceed 20 mg/L in the influent Treats only contaminants which can be oxidized Does not remove iron-
Ozonation and	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants Low energy requirements Reduces chemical residuals generated (particularly trihalomethanes)	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always, high capital and O&M High capital and O&M costs High energy Requires high level of	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone) Filtration required as pre- treatment if suspended solids exceed 20 mg/L in the influent Treats only contaminants which can be oxidized Does not remove iron-
Ozonation and	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants Low energy requirements Reduces chemical residuals generated (particularly trihalomethanes) No dissolved solids generated	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always, high capital and O&M High capital and O&M costs High energy Requires high level of training & safety pre-	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone) Fittration required as pre- treatment if suspended solids exceed 20 mg/L in the influent Treats only contaminants which can be oxidized Does not remove iron- cyanide complexes
Ozonation and Chemical Oxidation	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants Low energy requirements Reduces chemical residuals generated (particularly trihalomethanes) No dissolved solids generated Easily implemented	necessary for operation Generates concentrated regenerant brine which must be disposed Generatly, but not always, high capital and O&M High capital and O&M costs High energy Requires high level of training & safety pre- cautions for operation May require substantial	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone) Filtration required as pre- treatment if suspended solids exceed 20 mg/L in the influent Treats only contaminants which can be oxidized Does not remove iron- cyanide complexes Narrow range of removal
Ozonation and Chemical Oxidation	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants Low energy requirements Reduces chemical residuals generated (particularly trihalomethanes) No dissolved solids generated Easily implemented Usually highly effective	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always, high capital and O&M High capital and O&M costs High energy Requires high level of training & safety pre- cautions for operation May require substantial chemical addition	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone) Filtration required as pre- treatment if suspended solids exceed 20 mg/L in the influent Treats only contaminants which can be oxidized Does not remove iron- cyanide complexes Narrow range of removal e.g., not effective for
Ozonation and Chemical Oxidation	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants Low energy requirements Reduces chemical residuals generated (particularly trihalomethanes) No dissolved solids generated Usually highly effective for hydrocarbons with	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always, high capital and O&M costs High energy Requires high level of training & safety pre- cautions for operation May requires substantial chemical addition Generates large quan-	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L. Influent should not contain chemical oxidants (e.g. oxone) Fitration required as pre- treatment if suspended solids exceed 20 mg/L in the influent Treats only contaminants which can be oxidized Does not remove iron- cyanide complexes Narrow range of removal e.g., not effective for contaminants with density
Ozonation and Chemical Oxidation	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants Low energy requirements Reduces chemical residuals generated (particularly trihalomethanes) No dissolved solids generated Easily implemented Usually highly effective for hydrocarbons with densities near or less	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always, high capital and O&M costs High energy Requires high level of training & safety pre- cautions for operation May require substantial chemical addition Generates targe quan- tities of studge to be	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. ozone) Filtration required as pre- treatment if suspended solids exceed 20 mg/L in the influent Treats only contaminants which can be oxidized Does not remove iron- cyanide complexes Narrow range of removal e.g., not effective for
Ozonation and Chemical Oxidation Floatation	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants Low energy requirements Reduces chemical residuals generated (particularly trihalomethanes) No dissolved solids generated Easily implemented Usually highly effective for hydrocarbons with densities hear or less than that of water	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always, high capital and O&M costs High energy Requires high level of training & safety pre- cautions for operation May requires substantial chemical addition Generates large quan-	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. oxone) Fittration required as pre- treatment if suspended solids exceed 20 mg/L in the influent Treats only contaminants which can be oxidized Does not remove iron- cyanide complexes Narrow range of removal e.g., not effective for contaminants with density
Ozonation and Chemical Oxidation Floatation	used to improve efficiencies Synthetic resins can tolerate wide range of temperature and pH Can remove a variety of cationic & anionic inorganic and organic contaminants Low energy requirements Reduces chemical residuals generated (particularly trihalomethanes) No dissolved solids generated Easily implemented Usually highly effective for hydrocarbons with densities near or less	necessary for operation Generates concentrated regenerant brine which must be disposed Generally, but not always, high capital and O&M costs High energy Requires high level of training & safety pre- cautions for operation May require substantial chemical addition Generates targe quan- tities of studge to be	200 mg/L Pretreatment may be required if suspended solids exceed 100 mg/L Influent concentrations should not exceed 4,000 mg/L Oil & grease should not exceed 10 mg/L Influent should not contain chemical oxidants (e.g. oxone) Fittration required as pre- treatment if suspended solids exceed 20 mg/L in the influent Treats only contaminants which can be oxidized Does not remove iron- cyanide complexes Narrow range of removal e.g., not effective for contaminants with density

.:

3.2.1 Technically Inapplicable Technologies

From the information presented in Tables 3-1 and 3-2, several technologies are not applicable for treating the alluvial aquifer water. These technologies are air stripping, carbon adsorption, chlorination and fluorination. It should be noted that the background water in the alluvial aquifer is assumed not to contain organic chemicals or any harmful bacteria that would require disinfection, which is why most of these technologies are inapplicable.

3.2.2 Potentially Applicable Technologies

The remaining technologies are considered applicable to this situation. A brief discussion of how each technology could be applied to this situation is presented below.

3:2.2.1 Aeration and Ozonation

Aeration can be used where there is a high concentration of carbon dioxide, where tastes and odors are objectionable. In addition, where iron and manganese are present in amounts above 0.3 mg/L, aeration is used as a pretreatment to a softening step [Lindeburg, 1997, pg. 7-21].

Ozonation refers to the generation of ozone and its addition to water to chemically oxidize contaminants. Its primary use is for disinfection but it achieves the same results as aeration with respect to the treatment of iron and manganese. Ozonation is very expensive and is only used in specific instances where chemical disinfection is not effective. Ozonation is typically used to treat iron contamination.

3.2.2.2 Chemical Softening/Precipitation

Softening refers to the removal of calcium and magnesium through precipitation. This technology consists of the addition of lime and soda ash to the feed water resulting in the formation of a magnesium hydroxide and calcium carbonate precipitate. Typically, lime treatment has added benefits of disinfection, iron and manganese removal, and clarification (because it must be followed by a media filtration step).

The first step of chemical softening is the addition of lime to remove all carbonate hardness. The second step is the addition of soda ash and lime to remove the remaining NCH. These two steps are performed in large settling basins or clarifiers. After treatment, the water is treated with carbon dioxide to lower the pH and assist in precipitation. The final step in softening is the use of media filters to remove any residual suspended precipitate step [Lindeburg, 1997, pg. 7-21].

At concentrations greater than 2,000 mg/L, calcium sulfate can also be precipitated through overdosing of lime prior to the soda ash application. This results in water with

500 to 600 mg/L of calcium and 1,400 to 1,500 mg/L of sulfate. However, this approach is rarely taken in drinking water treatment for two reasons:

- 1. The excess calcium added through the lime overdosing would have to be removed by adding soda ash.
- 2. For drinking water purposes, the sulfate level achievable through precipitation will still be six times the acceptable level and some additional form of sulfate treatment will be required.

The drawback of this technology is that, in essence, it is an exercise in ion exchange. Except for the removal of carbonate hardness, this technology succeeds only in replacing calcium and magnesium ions with sodium ions. Since sodium is a smaller atom this will have some effect on the Total Dissolved Solids (TDS) content of the water, but the technology overall is not an effective treatment of high saline or briny water.

3.2.2.3 Ion Exchange Softening

This technology uses ion exchange resins to remove magnesium and calcium ions from water by replacing them with sodium ions. The sodium ions are attached to an insoluble resin and are preferentially replaced on the resin by magnesium and calcium ions. Periodically, ion exchange beds must be regenerated using a sodium chloride salt solution. This has a drawback of creating a high volume of concentrated calcium-magnesium-sodium chloride salt solution that must be disposed of [Lindeburg, 1997, pg. 7-29].

In this application, ion exchange resins have an additional drawback. In treating water with high sulfate concentrations, ion exchange softeners are prone to calcium sulfate precipitation in the resin, which is irreversible and destroys the resin. For this reason, this softening technology is not applicable as a treatment option.

3.2.2.4 Media Filtration

Filtration is used in water treatment to remove or reduce suspended solids. Media filtration consists of the use of silica sand, fine anthracite or calcium carbonate of specific sizes as the filter. The filter can be regenerated through backwashing and is very effective at suspended solids removal [Lindeburg, 1997, pg. 7-25].

Media filtration is ineffective in dissolved solids removal and therefore is not appropriate as a primary treatment in this situation. However, most water treatment processes involving coagulation and precipitation must be followed by media filtration for complete removal of suspended contaminants. If one of these technologies is used, a media filter will be required as a post treatment.

3.2.2.5 Desalinization

Desalinization refers to those technologies which are designed to produce potable water from seawater or similar feed waters with a high salt content, particularly sodium and chloride salts. Desalinization technologies include distillation, electrodialysis, ion exchange and reverse osmosis. The following is a brief description of each of the desalinization technologies [Lindeburg, 1997, pg. 7-32]:

- Distillation: The water is vaporized, leaving the salt behind. The vapor is reclaimed by condensation.
- Electrodialysis: Positive and negative ions flow through selective membranes under the influence of an induced electrical current.
- Ion exchange: Water is passed through a filter bed of exchange material. Ions in the insoluble exchange material are displaced by ions in the water. When exchange material is spent, it is regenerated with a rejuvenating solution such as sodium chloride (salt), or, in the case of common cationic resins, sulfuric and hydrochloric acids are used as regenerants.
- Membrane separation (ultrafiltration, reverse osmosis): This is the least expensive method of demineralization. Membrane filtration refers to the use of a semi-permeable membrane as a filter through which water is forced. The membrane is manufactured to have an effective pore size such that only contaminants smaller than the pore size pass through the membrane with the water. Depending on the effective pore size of the membrane, a considerable differential pressure may be required to force the water through the membrane. The contaminants larger than the effective pore size remain on the inlet side and are removed as a concentrated salt solution.

Ultrafiltration is the term used for membrane filtration systems with effective pore sizes from 10 to 100 angstroms that are designed to remove simple sugars, proteins and dyes. Reverse osmosis is the term used for membrane filtration systems with the smallest effective pore size designed for true desalination of water.

Reverse osmosis systems have pore sizes so small that most single-atom metal cations and all molecular anions can not pass through the membrane. Reverse osmosis systems produce a treated water, referred to as the permeate, that is very low in dissolved solids. Reverse osmosis has become a common technology in desalinating seawater and treating highly impacted industrial wastewaters. In these applications, they have essentially displaced all other desalinization technologies because of the savings in energy and operating costs (evaporative systems can cost as much as \$0.20 per gallon to produce drinking water from energy costs alone) [Lindeburg, 1997, pg. 7-32].

Reverse osmosis potable water systems typically operate at pressures of 400 pounds per square inch when used to desalinate seawater and produce about 2 gallons per day per square foot of membrane surface area. These systems typically operate at 75% efficiency, i.e. for every three gallons of potable water produced; one gallon of concentrate must be

disposed of. In addition to disposal of the concentrate, the other major drawback of reverse osmosis systems is their sensitivity to calcium and magnesium precipitation. For waters of any significant hardness, softening is always required as a pretreatment.

3.3 Development of Conceptual Treatment System

3.3.1 Conceptual Treatment System

Table 3-1 and the preceding discussion of technologies indicate that no single treatment technology will achieve the effluent requirements alone. However, with the information available a conceptual treatment system can be developed that will meet the requirements. An effective conceptual system is presented in Figure 3-1 and consists of aeration, lime-soda softening (including recarbonation and media filtration) and reverse osmosis.

Desalinization technologies are the only ones capable of achieving the effluent requirements for the selenium in selenate form, sodium, nitrate, chloride and fluoride. Of the desalinization technologies, reverse osmosis will be the least expensive. However, to be used in this application a softening pretreatment will be required to avoid precipitation fouling of the membranes. Furthermore, reverse osmosis will also guarantee the removal of any residual metal contaminants such as selenite, manganese and uranium that may not be completely removed by the chemical softening and precipitation pretreatment.

The process chemistry for each of the components of the system is discussed below. The estimated effluent water quality of the conceptual system is presented in Table 3-3.

3.3.1.1 Aeration

As an initial pretreatment, aeration will be used to ensure that the iron and manganese ions are fully oxidized. A significant amount of iron and manganese hydroxide precipitation is expected in the aeration lagoon. Furthermore, the aeration will ensure that any soluble iron leaving the lagoon will be easily removed by the lime-softening step. A 75% reduction of the iron and manganese is expected by this treatment.

3.3.1.2 Softening and Media Filtration

A softener will be required to remove the hardness from the water prior to the reverse osmosis step. The softening will be achieved by adding lime (calcium hydroxide) which will react with the calcium bicarbonate to form calcium carbonate that will precipitate. The reaction is as follows:

$$Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 \downarrow + 2H_2O$$

This reaction will remove all the carbonate hardness and cause a net reduction in total dissolved solids in the water. However, according to Table 2-1, calcium is present in

en de la composition de la composition de la composition de la composition de la composition de la composition La composition de la composition de la composition de la composition de la composition de la composition de la La composition de la composition de la composition de la composition de la composition de la composition de la

This page intentionally blank

Table 3-3. Estimated Effluent Quality

	Effluent	UMTRA		SDWA	
Constituent (mg/l)	Mean	MCL1	MCL ²	SMGL ³	MCLG4
Alkalinity as CaCO3	< 100				
Ammonia as NH4	< 0.01				
Arsenic	(0.001)	0.05	0.05		
Cadmium	(0.001)	0.01	0.005		0.005
Calcium.	< 35				
Chloride	< 50	1.14 /.		250	
Cobalt	(0.001)				
Copper	(0.001)			1.0	1.3
Fluoride	< 0.1		4.0	2.0	
Gross Alpha (pCi/L)	(0.001)		15.0		0
Gross Beta (pCi/L)	(0.001)				
Hardness (as CaCO ₃)	< 75			75°	
Iron	(0.001)	5211		0.3	
Magnesium	< 10	114 to 12			
Manganese	(0.001)	•		0.05	
Molybdenum	(0.001)	0.1	40,100		
Nickel	(0.001)	in the state of th	0.14		0.14
Nitrate as N	< 1	10	.10		10 - 20
pH(s.u.)	8.0			6.5 - 8.5	
Potassium	< 1				
Radium (pCi/L)	(0.001)	5			
Şelenium	(0.001)	0.01	0.05		0.05
Sodium	< 75				
Strontium	(0.001)				
Sulfate	< 75			250	
TDS	< 250			500	
Uranium	(0.001)	0.044			0
Vanadium	(0.001)			•	
Zinc	(0.001)			5 .	-

¹ Maximum Contaminant Level, UMTRA Standard [40 CFR 192, Table 1, Subpart A]

² Maximum Contaminant Level, SDWA standard [40 CFR 141.23 and 141.62]

³ Secondary Maximum Contaminant Level [40 CFR 143.3]

⁴ Maximum Contaminant Level Goal [40 CFR 141.50 and 141.51]

While not a published SMCL, this is a number recommended by the National Society of Professional Engineers for potable water [Lindeburg, 1997, pg. 7-12].

excess of the alkalinity. Therefore, an additional step will be required to remove the remaining non-carbonate hardness.

The non-carbonate hardness is reduced through the addition of soda ash (Na₂CO₃). The reactions are as follows:

$$Ca(SO_4 \text{ or } Cl_2) + Na_2CO_3 \rightarrow CaCO_3 \downarrow + Na_2(SO_4 \text{ or } Cl_2)$$

$$Mg(SO_4 \text{ or } Cl_2) + Na_2CO_3 + Ca(OH)_2 \rightarrow Mg(OH)_2 \downarrow + CaCO_3 \downarrow + Na_2(SO_4 \text{ or } Cl_2)$$

The calcium and magnesium in the effluent of the softening step is dictated by solubility chemistry. The limit of 35 mg/L of calcium carbonate and 10 mg/L of magnesium hydroxide (as calcium carbonate) is expected. Furthermore, the remaining iron and manganese are expected to be removed along with 50% of the selenium (the assumed amount of selenite ion in the feed water). In addition, uranium becomes insoluble at pH 10 and 95%+ of the uranium is expected to precipitate out in the lime softening step.

3.3.1.3 Reverse Osmosis

For the purposes of this report, the reverse osmosis step will be assumed completely effective in removing the remaining COCs to acceptable levels. The COCs coming from the softening treatment are nitrate, selenate, sulfate, sodium and chloride.

While this system will effectively treat the background water to the effluent requirements for calcium and magnesium, it will also create a significant amount of waste that must be disposed of. This waste will be either in the filter cake generated by the softening/precipitation step or in the concentrate rejected by the reverse osmosis unit.

4.0 Economic Feasibility Test

4.1 Treatment System Size

The maximum population that can be supplied with potable water by the conceptual treatment system can be estimated based on the technologies used. As previously mentioned, a conservative estimate of the treatment capability of a reverse osmosis unit is a 3 to 1 ratio of treated water to rejected concentrate. A conservative assumption can be made that the reverse osmosis unit is the only source of water loss in the treatment system and that the treatment system can provide 3 gallons of potable water for every 4 gallons of ground water treated. In practice, however, water will also be lost through evaporation from the aeration pond and in the sludge removal from the softener.

Using this assumption, 75% of the influent 7.2 million gallons per day or 5.41 million gallons per day of potable water can be provided by this system. This is equivalent to nearly 1.975 billion gallons a year. Based on the numbers provided in the ground water classification guidelines [USEPA, 1988, pg. 6-23] this would serve 19,750 households or approximately 54,000 people.

4.2 Estimated Treatment System Cost

The costs for each major piece of the treatment system are presented in Table 4-1. A brief discussion of how the costs were estimated

4.2.1 Collection/Extraction System

Given the hydraulic conductivity and depth of the aquifer, the potential production rate of a well can be estimated if a well diameter, depth of pumping drawdown and radius of influence are assumed. For the purposes of this analysis, eight-inch-diameter production wells and a conservative radius of influence of 50 feet are assumed. With these assumptions, the following formula [King, 1996, pg. 142] can be used to determine the production rate of a well.

$$Q = (K2\pi rh)dh/dr$$

Where Q is the production rate, K is the hydraulic conductivity, r is the radius of the well, h is the depth of the aquifer at the well (including drawdown), dh is the drawdown and dr is the radius of influence of the well. Using this equation, the maximum production will occur when the drawdown of the well is exactly half of the depth of the aquifer. Considering that and including our assumptions, this equation becomes:

$$Q = (70 \text{ ft/day } \times 2 \times 3.14 \times 0.33 \text{ ft } \times 15 \text{ ft}) \times 15 \text{ ft} / 30 \text{ ft}$$

$$Q = 1,088 \text{ ft}^3/\text{day} = 8,138 \text{ gallons/day}$$

Table 4-1. Estimated Treatment System Costs

System Component	Capital Cost	Operating Cost	Annualized Cost ¹	Annual Cost per Household ¹	
Aeration System	\$2,000,000	\$10,000	\$171,173	\$9	
Softener System ²	\$2,500,000	\$5,884,000	\$6,085,466	\$308	
Collection System	\$8,860,000	\$221,500	\$935,496	\$47	
Media Filter System	\$1,250,000	\$50,000	\$150,733	\$8	
Reverse Osmosis				¥	
System	\$5,000,000	\$500,000	\$902,932	\$46	
Evaporation System	\$5,000,000	\$100,000	\$502,932	\$25	
Softener Sludge			J. 11		
Disposal	\$0	\$1,638,850	\$1,638,850	\$83	
Reverse Osmosis	y a la la la la la la la la la la la la l				
Sludge Disposal	\$0	\$2,737,500	\$2,737,500	\$139	
Operating Labor	\$0	\$300,000	\$300,000	\$15	
System Totals	\$24,610,000	\$11,441,850	\$13,425,081	\$680	

¹ Annualized costs are based on a 30 year lifespan and a real discount rate of 7%.

² Includes the chemical feed system and the clarifier system.

Therefore, approximately 886 production wells would be required to produce the total potential aquifer yield of 7.2 million gallons per day.

The estimated drilling and installation cost per well is \$100 per foot of well depth or a total \$5,000 per well. For simplicity, the cost of extraction pumps and interconnecting piping required to feed the treatment system is assumed to be an additional \$5,000 per well. Routine maintenance and operating costs of \$250 per well per year are assumed for the wells and entire collection system.

4.2.2 Treatment System Capital Equipment and Operating Costs

The estimated costs for equipment were supplied by Ms. Sophia O'Halloran of the United States Filter Corporation and include estimates of the following costs:

- The equipment costs,
- The costs associated with new buildings and structures which may be required,
- The installation costs,
- The startup and shakedown costs,
- The permitting costs, if any, and
- Any other one-time costs incurred during the first year of operation.

It should be noted that land acquisition costs were specifically excluded from the capital cost. The operating cost include the following costs:

- Chemical costs,
- Maintenance costs.
- Energy costs,
- Operation labor costs,
- Ongoing permit fees, and
- Any other costs that recur on a regular basis.

Maintenance and energy cost estimates for the equipment were also provided by United States Filter. The operation labor requirements for the treatment system were estimated to be four full time employees for 24 hour operation. The operation labor requirements for the collection system were estimated to be one full time employee. The cost per full time employee is estimated at \$60,000 per year.

4.2.2.1 Chemical Costs

By far the largest operating costs will be the costs for lime and soda ash used in the softener. The chemical reactions in the softener were presented in section 3.3.1.2. From these reactions the amount of chemical required for treatment can be determined.

Calcium hydroxide is added to the softener in the form of hydrated lime that is typically 93% pure. The lime precipitation step is expected to remove an average of 414 mg/L of calcium carbonate alkalinity from the water. This requires 414 mg/L of lime as calcium

carbonate, which corresponds to 2.75 pounds of 93% pure lime per 1,000 gallons of water. Calcium hydroxide is also required for magnesium non-carbonate hardness (NCH) removal. The amount required to remove an average of 384 mg/L will be 10.4 pounds of 93% pure lime per 1,000 gallons of water. The total calcium hydroxide usage will then be 13.2 pounds of 93% pure lime per 1,000 gallons of water or approximately 17,300 tons per year of lime. The bulk price of lime delivered to Grand Junction provided by Mr. Ken Parfit of Van Waters and Rogers was \$0.12 per pound, which represents an annual cost of \$4.15 million in lime. However, this price was estimated using trucks to deliver the lime. If rail is used a delivered cost is expected to be approximately half that, \$0,06 per pound or an annual cost of \$2.08 million.

Soda ash is added in the softening process as a 59% pure sodium monoxide (Na₂O) which is equivalent to 99.2% Na₂CO₃. Soda ash will be required to precipitate both calcium NCH and magnesium NCH. The amounts required will be 6.5 and 14.2 pounds of 59% pure sodium monoxide per 1,000 gallons of water respectively. Or a total of 20.7 pounds of 59% pure sodium monoxide per 1,000 gallons of water or approximately 27,200 tons per year of soda ash. An estimate of the bulk price of soda ash delivered by rail was provided by the FMC Corporation as \$0.07 per pound, so this represents an annual cost of \$3.81 million in soda ash.

4.2.2.2 Waste Disposal Costs

The other significant operating cost of this system will be waste disposal. There will be two major waste streams from this treatment system, the softener sludge and the concentrate from the reverse osmosis system. Softener sludge is typically handled by thickening until it can be disposed at a local landfill. On the other hand, reverse osmosis concentrate is typically discharged to the environment or concentrated further by evaporation into a sludge that is then disposed of. Discharge of this sludge to the environment will not be possible due to its expected salt, selenium and uranium content.

Using the chemical reactions presented in section 3.3.1.2, the expected mass of calcium carbonate and magnesium hydroxide precipitated in the softener can be estimated. The reactions indicate that for every gram of calcium hardness removed, 5 grams of calcium carbonate will be precipitated. Likewise, for every gram of calcium NCH removed 2.5 grams of calcium carbonate will be precipitated. Lastly, for every gram of magnesium NCH removed 4 grams of calcium carbonate and 2.5 grams of magnesium hydroxide will be precipitated. Using the average concentrations of magnesium and calcium, an estimated 3,738 mg/L of solids will precipitate during the softening treatment. This corresponds to approximately 224,500 pounds per day or 112 tons per day of solids generation.

Typically, precipitated solids are disposed of at a landfill as sludge. Standard sludge handling equipment generate a sludge which is 25% by weight solids [Lindeburg, 1997, pg. 8-28]. Therefore, the softener would generate approximately 448 tons of sludge per day that must be disposed of. Typical sludge disposal costs range from \$10 to \$50 per ton depending on the transport distances. The tipping fee for sewer sludge disposal at the

Mesa County Landfill is \$7 per ton. If a \$3 per ton transport fee is assumed, a sludge disposal cost of \$10 per ton is obtained.

The reverse osmosis is expected to produce 1.8 million gallons per day of a concentrate that is expected to have approximately 25,000 mg/L of TDS. Typically, some form of an evaporation lagoon or thermal evaporator would then be used to increase the TDS to 250,000 mg/L. The concentrate would then be a sludge that would be disposed of. Using these assumptions, the reverse osmosis system would generate 180,000 gallons of 25% solids sludge per day or 750 tons of sludge per day.

Unfortunately, with this influent water quality it is likely that the sludge from the reverse osmosis concentrate would be classified as a D010 toxic hazardous waste under the Resource Conservation and Recovery Act (RCRA) (40 CFR 261.1, Table 1) due to the selenium content of the sludge. Disposal of this sludge as a hazardous waste would cost at least \$200 per ton. Using these assumptions, this would require \$54 million dollars in hazardous waste disposal per year.

However, a conservative assumption can be made that the reverse osmosis concentrate sludge will not be hazardous and can be disposed of with the softener sludge at \$10 per ton in the local landfill.

4.3 Cost Evaluation

The estimated costs for the complete treatment system are presented in Table 4-1. The costs are broken down into capital costs, operating costs, total annualized cost and the annual cost per household. The total annualized cost was calculated using the equations presented in the guidelines for ground water classification [USEPA, 1988, pg. D-4]. The equations for this calculation are the following:

Total Annualized Cost = f CC + OMC

$$f = r / (1 - 1 / (1+r)^n)$$

Where f is the annualization factor annual cost, CC is the capital cost, OMC is the operations and maintenance costs, r is the real discount rate, and n is the lifetime of the equipment in years. In order to perform this calculation, the useable lifetime of the equipment must be estimated and the real discount rate must be obtained from the Office of Management and Budget.

For the purposes of this evaluation, the following are assumed:

- All equipment has a lifetime of 30 years.
- The real discount rate over those 30 years will be 7%.
- The equipment will have no resale value at the end of its useable lifetime.

In addition, calculating the operating cost assumes that the operating cost will be fixed over the lifetime of the equipment.

4.4 Threshold Evaluation

The guidelines for ground water classification [USEPA, 1988, pg. D-23] provides a graph for use in determining the economic threshold for use in economic feasibility tests. For a system serving a population of 54,000 people, the threshold is approximately \$300 per household or \$110 per person (based on 2.75 people per household).

This threshold was determined in 1988. When indexed for inflation the threshold becomes approximately \$400 per household per year.

The second of th

and the first of the state of t

er i de la companya de la companya de la companya de la companya de la companya de la companya de la companya d La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co

in the control of the

'O: RHEYDEBURG

FROM: RCONWAY

DATE: 4/24/91

SUBJECT: GRAND JUNCTION

After extensive review and research of the Grand Junction area surrounding the processing site I conclude that there are no persons in the vicinity drinking water from the underground aquifer. This conclusion was drawn from various sources of information including; visual physical inspection, personal contact of approximately 40% of the properties in the area, documentation of State of Colorado well permit records, documentation of City of Grand Junction water service records and documentation of Ute Water District records.

Attached are maps of the City sewer lines in the area, computer listings for people on City water and Ute water, State well permit records and hand written documentation of persons contacted. If you should have any questions or require a more detailed description please contact me. I hope this satisfies the requirement necessary to satisfy the NRC.

cc: MMiller KBostick RPortillo

5.0 Conclusions

When the threshold for economic feasibility of \$400 per household is compared to the estimated treatment cost of \$680 per household, it is apparent that alluvial aquifer meets the definition of a Class III ground water. The assessments show that it is not economically feasible to use the ground water as a potable drinking water source.

It should be noted that the costs presented are conservative estimates of the cost of a treatment system. Although each of the major components of an effective system are included, some important elements have not been quantified because of the difficulty in obtaining accurate estimates in a short period of time. These elements are as follows:

- The size and cost of the property required for the system, and
- The cost of a material handling system that would be required to handle the 27,200 tons of soda ash and 17,300 tons of lime used annually.

The costs of these elements of the treatment system would not be negligible. In addition, The very real potential of creating a hazardous waste from the reverse osmosis concentrate was completely sidestepped in this evaluation using a conservative assumption.

This page intentionally blank

6.0 References

- 1. Kemmer, F.N. (ed.), 1988. The NALCO Water Handbook, second edition. McGraw-Hill Book Company, New York, New York.
- 2. King, W.C, 1996. Environmental Engineering P.E. Examination Guide & Handbook. American Academy of Environmental Engineers.
- 3. Lewis, G., 1998. "Review of Waste Water Treatment System." Memorandum to Deb Richardson (MACTEC-ERS) and Jacqui Brever (MACTEC-ERS) from G. Lewis (MACTEC, Inc.). January 16.
- 4. Lindeburg, M.R., 1990. Engineer-In-Training Reference Manual, eighth edition. Professional Publications, Inc., Belmont, California.
- 5. Lindeburg, M.R., 1997. Civil Engineering Reference Manual for the P.E. Exam, sixth edition. Professional Publications, Inc., Belmont, California.
 - 6. Sawyer, C.N. and P.L. McCarty, 1978. Chemistry for Environmental Engineering, third edition. McGraw-Hill Book Company, New York, New York.
 - 7. U.S. Environmental Protection Agency (USEPA), 1998. Guidelines for Ground-Water Classification Under the EPA Ground-Water Protection Strategy. Office of Ground water Protection, Washington, D.C, June.

This page intentionally blank