January 5, 2000
U. S. Nuclear Regulatory Commission

Document Control Desk
Washington, D.C. 20555-0001

Subject: McGuire Nuclear Station
Docket No. 50-370
Relief Request 98-005

Pursuant to 10CFR50.55a(g) (5) (iii), Duke Energy Corporation requests relief from some requirements of the ASME Boiler and Pressure Vessel Code as described in the attached Relief Request 98-005.

Questions should be directed to Julius Bryant, McGuire Licensing and Compliance, at (704) 875-4162.

Sincerely,

H. B. Barron, Vice President McGuire Nuclear Station

Attachment
U.S. Nuclear Regulatory Commission January 5, 2000
Page 2 of 2

CC: Mr. L. A Reyes
Regional Administrator, Region II
U. S. Nuclear Regulatory Commission

101 Marietta Street, NW, Suite 2900
Atlanta, Georgia 30323
Mr. F. Rinaldi, Project Manager
Office of Nuclear Reactor Regulation
U. S. Nuclear Regulatory Commission

One White Flint North, Mail Stop 9H3
'Washington, D.C. 20555
S. M. Shaeffer

Senior NRC Resident Inspector McGuire Nuclear Station
bxc w/att: J. W. Bryant
J. O. Barbour
R. Branch
G. J. Underwood
D. E. Caldwell
R. K. Rhyne
G. D. Scarboro

NRIA File/ELL

Duke Energy Corporation
Station: McGuire Unit $\underline{2}$
SECOND 10-YEAR INTERVAL REQUEST FOR RELIEF NO. 98-005
Pursuant to 10CFR50.55a(g) (5) (iii), Duke Energy Corporation has determined that compliance with the specified examination requirements of ASME Section XI is impractical for McGuire Nuclear Station Unit 2. Information is therefore being submitted in support of this determination and request is being sought for relief from the applicable ASME Section XI requirements.

I. System / Components(s) For Which Relief Is Requested:

Examination Category B-D
Pressurizer (Nozzle Inner Radius Section)
ID Numbers
2PZR-12R
$\frac{\text { Item Numbers }}{\text { B03. } 120.002}$
$\frac{\text { End } 0 f \text { Cycle }}{10}$

Examination Category B-F: (Pressure Retaining Dissimilar Metal Welds)

Steam Generator	(Nozzle-to-Safe End Butt Welds) Item Numbers	Itembers ID Nud Of Cycle
2SGA-INLET-SE	B05.070.001	9
2SGA-OUTLET-SE	B05.070.002	9

Piping Dissimilar Metal Butt Welds

ID Numbers	Item Numbers	End Of Cycle
	9	
2NC2F-1-2	BO5.130.003	9

Examination Category B-J: (Pressure Retaining Welds in Piping)

Branch Connection ID Numbers	Item Numbers	(NPS 4 orger) End Of Cycle
2NC16-WN8A	B09.031.001	10
2NC22-WN4	B09.031.002	9
2NC22-WN8	B09.031.003	9

ASME Section XI Class 2 Components listed below:
Examination Category C-B: (Pressure Retaining Nozzle Welds in Vessels)

Nozzle Inner Radius Section
$\frac{\text { ID Numbers }}{2 S G A-S B-02} \quad \frac{\text { Item Numbers }}{\text { C02.022.002 }} \quad \frac{\text { End of Cycle }}{9}$

II. Code Requirement:

ASME Boiler and Pressure Vessel Code, Section XI, 1989 Edition with no Addenda, Tables IWB-2500 and IWC-2500, lists the following requirements for each Examination Categories as shown below:
"Examination Category B-A, Pressure Retaining Welds in Reactor Vessels; Figure Number IWB-2500-5" Note (2) adds the words "Includes essentially 100\% of weld length."
"Examination Category B-D, Full Penetration Welds of Nozzles in Vessels- Inspection Program B; Figure Number IWB-2500-7 (a) through (d)"
"Examination Category B-F, Pressure Retaining Dissimilar Metal Welds; Figure Number IWB-2500-8"
"Examination Category B-J, Pressure Retaining Welds in Piping; Figure Number IWB-2500-9, 10 and 11" Note (3) adds the words "Includes essentially 100\% of weld length."
"Examination Category C-B, Pressure Retaining Nozzle Welds in Vessels; Figure Number IWC-2500-4 (a) or (b)" Note (1) adds the words "Includes essentially 100\% of the weld length."

Note: Duke Energy Corporation, with NRC approval, has adopted Code Case N-460 which defines "essentially 100\%" as greater than 90% coverage.
III. Code Requirement From Which Relief Is Requested:

Relief is requested from the requirement of examining essentially 100% of the weld length. Due to part geometry and actual physical barriers, obtaining greater than 90% of the weld volume as defined in Code Case N-460, which is utilized by Duke Energy, is not possible.

Examination Category B-A
Reactor Vessel (Head-to-Flange Weld)
Item Numbers Actual Coverage Obtained B01.040.001
87.78\%

See Note 1
Examination Category B-D
Reactor Vessel (Nozzle-to-Vessel Welds)
Item Numbers
Actual Coverage Obtained
43.70\%
43.70\%
43.70%
43.70\%

See Note 1 See Note 1 See Note 1 See Note 1

Reactor Vessel (Nozzle Inner Radius Section)

Item Numbers	Actual Coverage Obtained		
		See Note 1	
B03.100.005	87.70%		See Note 1
B03.100.006	87.70%	See Note 1	
B03.100.007	87.70%	See Note 1	

Pressurizer (Nozzle-to-Vessel Welds)
Item Numbers Actual Coverage Obtained
74.78%
See Note 1
B03.110.003
71.50%
See Note 1
Note 1
ASME Section V, T-441.3.2 Scanning Requirements, 1989 Edition with no addenda as modified by Code Case N-460.

This Paragraph requires scanning of the examination volume(s) using three angle beams and a straight beam from both sides of the weld.

When scanning for reflectors parallel to the weld, the angle beams shall be aimed at right angles to the weld axis, with the search unit(s) manipulated so that the ultrasonic beams pass through the entire volume of weld metal. The adjacent base metal in the examination volume must be completely scanned by two angle beams, but need not be completely scanned by both angle beams from both directions (any combination of two angle beams will satisfy the requirement).

When scanning for reflectors transverse to the weld, the angle beam search units shall be aimed parallel to the axis of longitudinal and circumferential welds. The search unit shall be manipulated so that the ultrasonic beams pass through all of the examination volume. Scanning shall be done in two directions 180 degrees to each other to the extent possible. Areas blocked by geometric conditions shall be examined from at least one direction.

Code Case N-460 allows credit for full volume coverage if it can be shown that greater than 90% of the required weld volume has been examined.

Examination Category B-D

Pressurizer (Nozzle Inner Radius Section)

Item Numbers Actual Coverage Obtained

B03.120.002 $62.86 \% \quad$ See Note 2

NOTE 2
ASME Section XI, 1989 Edition, Examination Volume shown in Figure IWB-2500-7 (b)

Examination Category B-F

Steam Generator (Nozzle-to-Safe End Butt Welds)
Item Numbers Actual Coverage Obtained

B05.070.001	75.00%	See Note 3
B05.070.002	75.00%	See Note 3

Piping Dissimilar Metal Butt Welds
Item Numbers Actual Coverage Obtained
*B05.130.002 75.00\% See Note 3
*B05.130.003 75.00% See Note 3
*Item numbers B 05.130 .002 and B 05.130 .003 no longer exist due to the Steam Generators being replaced. The new welds are no longer considered to be Dissimilar Metal Welds.

Examination Category B-J

Branch Connection Welds (NPS 4 or Larger)
Item Numbers Actual Coverage Obtained

B09.031.001	49.40%	See Note 3
B09.031.002	49.81%	See Note 3
B09.031.003	50.00%	See Note 3

Note 3
$\overline{\text { ASME Section XI, Appendix III, Paragraph III-4420, } 1989}$ Edition with no addenda as modified by Code Case N-460. "The examination shall be performed using a sufficiently long examination beam path to provide coverage of the required examination volume in two-beam path directions. The examination shall be performed from two sides of the weld where practicable, or from one side of the weld, as a minimum."

Code Case $\mathrm{N}-460$ allows credit for full volume coverage if it can be shown that greater than 90% of the required volume has been examined.

ASME Section XI Class 2 Components listed below:

Examination Category C-B

Nozzle Inner Radius Section Item Numbers Actual Coverage Obtained C02.022.002
84.30\%

See Note 4

Note 4

Limitations caused by the ratio of the nozzle $O D$ to the vessel thickness resulted in 84.30% coverage of the required volume. When the nozzle $O D$ is small in relation to the vessel thickness, more coverage can be obtained when scanning from the vessel side.

Conducting examinations from nozzle boss and OD blend radius using compound angles; determining which angles to use; metal paths to calibrate and area of coverage are not accurate with manual calculations. Duke Energy is investigating the use of computer modeling to solve the limitation problems. Radiography is not practical because of the geometry of the component, which prevents placement of the film and exposure source.

Nozzle inner radius sections are examined with the ultrasonic method to the maximum extent practical from the vessel wall. Calibration blocks and procedures are in accordance with ASME Section V, Article 4.
IV. Basis for Relief:

ASME Section XI Class 1 Components listed below:
 Examination Category B-A, Item B01.040, Pressure Retaining Welds in Reactor Vessel

During the ultrasonic examination of the Reactor Vessel Closure Head Weld 2RPV-W08 (Item Number B01.040.001) shown in Attachment 1, coverage of required examination volume could not be obtained. Geometric limitations caused by the proximity of lifting lugs and the head flange resulted in examination coverage of 87.78\%. In order to achieve greater than 90% coverage, the weld would have to be redesigned to eliminate the interferences.

Examination Category B-D, Items B03.090., B03.100., B03.110., B03.120., Full Penetration Welds of Nozzles

in Vessels and Nozzle Inner Radius Sections

During the ultrasonic examination of the Reactor Vessel Outlet Nozzle to Shell Welds

2RPV-W15 (Item Number B03.090.005A)
2RPV-W16 (Item Number B03.090.006A)
2RPV-W17 (Item Number B03.090.007A)
2RPV-W18 (Item Number B03.090.008A)
shown in Attachment 2, coverage of the required examination volume was limited to 43.70\%. Limitations caused by the nozzle geometry, i.e. the nozzle taper prevented obtaining greater than 90% coverage. In order to achieve additional coverage, the nozzle would have to be re-designed to eliminate the taper.

During the ultrasonic examination of the Reactor Vessel Outlet Nozzle to Shell Welds (Inner Radius Sections)

2RPV-W15 (Item Number B03.100.005)
2RPV-W16 (Item Number B03.100.006)
2RPV-W17 (Item Number B03.100.007)
2RPV-W18 (Item Number B03.100.008)
shown in Attachment 2, coverage of the required examination volume was limited to 87.70\%. Limitations caused by the nozzle geometry, i.e. the nozzle taper prevented obtaining greater than 90% coverage. In order to achieve additional coverage, the nozzle would have to be re-designed to eliminate the taper.

During the ultrasonic examination of the Pressurizer Nozzle to Lower Head Weld 2PZR-10 (Item Number B03.110.001) shown in Attachment 3, coverage of the required examination volume could not be obtained. The examination coverage was limited to 74.78%, due to single-sided access caused by the nozzle geometry. In order to achieve more coverage, the nozzle would have to be redesigned to allow access from both sides.

During the ultrasonic examination of the Pressurizer Nozzle to Upper Head Weld 2PZR-12 (Item Number B03.110.003) shown in Attachment 3, coverage of the required examination volume could not be obtained. The examination coverage was limited to 71.50%, due to single-sided access caused by the nozzle geometry. In
order to achieve more coverage, the nozzle would have to be redesigned to allow access from both sides.

During the ultrasonic examination of the Pressurizer Spray Nozzle to Upper Head Weld 2PZR-12R (Item Number B03.120.002) shown in Attachment 3, coverage of the required examination volume could not be obtained. The examination coverage was limited to 62.86\%. Limitations are caused by the ratio of the nozzle 0 . D. to the vessel thickness. When the nozzle 0 . D. is large in relation to the vessel thickness, less coverage can be obtained when scanning from the vessel side. Singlesided access caused by the nozzle geometry resulted in limited coverage of the required volume. In order to achieve more coverage the nozzle would have to be redesigned to allow access from both sides.

Examination Category B-F, Items B5.70., B5.130. Pressure Retaining Dissimilar Metal Welds

Note: These 4 welds were cut out and re-welded due to Steam Generator Replacement

During the ultrasonic examination of the Steam Generator Nozzle-to-Safe End Welds:

2SGA-Inlet SE (B05.070.001) and
2SGA-Outlet SE (B05.070.002)
shown in Attachment 4, coverage of required examination volume could not be obtained. The examination coverage was limited to 75.00\%. SEE NOTE 5.

During the ultrasonic examination of the Piping Dissimilar Metal Welds (Steam Generator Safe End to Pipe):

2NC2F-1-2 (B05.130.002) and
2NC2F-1-3 (B05.130.003)
shown in Attachment 4, coverage of required examination volume could not be obtained. The examination coverage was limited to 75.00\%. SEE NOTE 5.

NOTE 5

Material characteristics and single-sided access caused by the component geometry prevents two-beam path direction coverage of the examination volume.

The most effective ultrasonic technique for the examination of dissimilar metal welds uses refracted longitudinal waves. The longitudinal wave is preferred as the austenitic weld metal and buttering create highly attenuative barriers to shear wave ultrasound. The longitudinal wave is less affected by these difficulties. However, the longitudinal wave is affected by mode conversion when it strikes the inside surface of the safe end or pipe at any angle other than a right angle to the surface.

The calculations below shows that a 45° refracted longitudinal wave striking the inside surface of a pipe will produce a 22.9° refracted shear wave in addition to the normally expected 45° reflected longitudinal wave.

$$
\begin{aligned}
& \sin ^{-1}=\left(\sin 45^{\circ} \times V_{s}\right)+V_{L} \\
& =(0.707 \times 0.123) \div 0.223
\end{aligned}
$$

Where: $\sin ^{-1}$ is the shear wave angle
V_{s} is the shear wave velocity of the stainless steel safe end/pipe material in inches/ $\mu \mathrm{sec}$.
V_{L} is the longitudinal wave velocity of the stainless steel safe/pipe end material in inches/ $\mu \mathrm{sec}$.

As shown in the graph below, the mode conversion process creates two sound beams of differing intensities reflecting off of the inside surface. ${ }^{1}$ At incident angles greater than 30° the shear wave will predominate. However, the shear wave is attenuated and scattered by the austenitic weld metal and the layer of buttering. The examination sensitivity is degraded to such an extent that any examination using the second sound path leg is meaningless. Therefore, the two-beam path direction coverage requirement is impractical.

In order to obtain the required two-beam path direction coverage, welds would have to be re-designed to allow scanning from both sides.

[^0]

Examination Category B-J Item B09.031.Pressure Retaining Welds in Piping

During the ultrasonic examination of Weld Number 2NC16WN8A (B09.031.001) shown in Attachment 5, coverage of required examination volume could not be obtained. The examination coverage was limited to 49.40\%. SEE NOTE 6.

During the ultrasonic examination of Weld Number 2NC22WN4 (B09.031.002) shown in Attachment 5, coverage of required examination volume could not be obtained. The examination coverage was limited to 49.81\%. SEE NOTE 6.

During the ultrasonic examination of Weld Number 2NC22WN8 (B09.031.003) shown in Attachment 5, coverage of required examination volume could not be obtained. The examination coverage was limited to 50.00%. SEE NOTE 6.

Note 6
Single-sided access caused by the branch connection geometry prevents scanning from both sides of the weld.

Cast stainless steel characteristics mandate the use of refracted longitudinal waves. This type of ultrasonic
wave produces mode conversion at the pipe inside surface, thus preventing the use of sound path distances beyond the first "leg". Therefore, coverage of the required examination volume in two-beam path directions is not practical. In order to obtain the required two-beam path direction coverage, the branch connections and the elbow to pump weld would have to be re-designed to allow scanning from both sides of the weld over the required examination volume.

ASME Section XI Class 2 Components listed below:
Examination Category C-B, Items C2.22 Pressure Retaining Nozzle Welds in Vessels

NOTE: THIS WELD AND GENERATOR HAVE BEEN REPLACED
During the ultrasonic examination of the Feedwater Nozzle Inner Radius 2SGA-SB-02 (C02.022.002) shown in Attachment 6, coverage of the required examination volume was limited to 84.30%. Limitations were caused by the ratio of the nozzle $O D$ to the vessel thickness. When the nozzle $O D$ is small in relation to the vessel thickness, more coverage can be obtained when scanning from the vessel side. Duke Energy Corporation is investigating the use of computer modeling to solve the limitation problem.

Nozzle inner radius sections were examined with the ultrasonic method to the maximum extent practical from the vessel wall. Calibration blocks and procedures were in accordance with ASME Section V, Article 4.

V. Alternate Examinations or Testing:

The use of radiography as an alternate volumetric examination for all the above listed components is not practical due to component thickness and geometric configurations. Other restrictions making radiography impractical are the physical barriers prohibiting access for placement of source, film, image quality indicator, etc.

Since radiography is impractical, Duke Energy Corporation will continue to use ultrasonic examination procedures to obtain maximum coverage to the extent practicable of the Item Numbers referenced in Section I of this Request for Relief. No additional ultrasonic examinations or alternate exams are planned during the
current interval for the welds referenced in Section I of the request.

For the Class 1 Components listed in Section I above, Duke Energy proposes to use the pressure test to compliment the limited examination coverage. The Code requires (reference Table IWB-2500-1, Item Number B15.) that a system leakage test be performed after each refueling outage. Additionally a system hydrostatic test (reference Table IWB-2500-1, Item Number B15.) is required once during each 10-year inspection interval. These tests require a VT-2 visual examination for evidence of leakage. This testing will provide adequate assurance of pressure boundary integrity.

For the Class 2 Components listed in Section I above, Duke Energy proposes to use the pressure test to compliment the limited examination coverage. The Code requires (reference Table IWC-2500-1, Item Number C7.) that a system pressure test be performed once each period. Additionally a system hydrostatic test (reference Table IWB-2500-1, Item Number C7.) is required once during each 10 -year inspection interval. These tests require a VT-2 visual examination for evidence of leakage. This testing will provide adequate assurance of pressure boundary integrity.

VI. Justification for the Granting of Relief

Examination Category B-A, Item B01.040, Pressure Retaining Welds in Reactor Vessel

During the ultrasonic examination of the Reactor Vessel Closure Head Weld 2RPV-W08 (Item Number B01.040.001) coverage of the required volume was limited to 87.78%. This limitation is caused by the proximity of three lifting lugs and the head flange. In order to achieve greater than 90% coverage, the weld would have to be redesigned to eliminate the interfering conditions. Reference Attachment 1

The Reactor Vessel Closure Head Weld listed above is located on the McGuire Unit 2 Reactor Vessel. This weld is not exposed to significant neutron fluence and is not prone to negative material property changes (i.e., embrittlement) associated with neutron bombardment. This weld was rigorously inspected by radiography and
dye penetrant during construction and verified to be free from unacceptable fabrication defects. If a leak were to occur at the weld in question, the reactor coolant leakage calculation which is normally performed daily (and required by Technical Specifications to be performed every 72 hours) would provide an early indication of leakage. The unidentified leakage specification in Technical Specification 3.4 .13 is 1 gpm. Several other indicators such as containment radiation monitors EMF-38,-39, and -40 , the containment floor and equipment sump levels, containment humidity instruments, and the ventilation unit condensate drain tank level would provide early indication of weld leakage for prompt Operations and Engineering evaluation.

Duke Energy Corporation will continue to examine the referenced items using ultrasonic techniques to the maximum extent practical. These examinations will provide assurance of weld/component integrity. It is the belief of Duke Energy that this limited examination is the best available.

Pursuant to 10 CFR 50.55a(g) (6)(i), granting this relief for the welds listed under Examination Category B-A will provide reasonable assurance of weld/component integrity, and is authorized by law. In addition, the requested relief will not endanger life or property or the common defense and security and is otherwise in the public interest giving due consideration to the burden upon the licensee that could result if the requirements were imposed on the facility.

Examination Category B-D, Items B3.90., B3.100.r B3.110., B3.120., Full Penetration Welds of Nozzles in Vessels and Nozzle Inner Radius Sections

The Reactor Vessel (Nozzle-to-Vessel Welds) at 22, 158, 202 and 338 degrees are:

2RPV-W15 (Item Numbers B03.090.005A),
2RPV-W16 (Item Numbers B03.090.006A),
2RPV-W17 (Item Numbers B03.090.007A), and
2RPV-W18 (Item Numbers B03.090.008A).
These four Outlet Nozzle to Shell Welds were limited due to the reactor vessel nozzle configuration. Therefore, the 100% volumetric examination is impractical for this weld. The imposition of this requirement would create a considerable burden on Duke

Energy Corporation. During the examination of these welds, techniques were utilized to obtain the maximum possible coverage. Reference Attachment 2 for scan coverage.

The Reactor Vessel (Nozzle Inner Radius Sections) are:
2RPV-W15 (Item Numbers B03.100.005),
2RPV-W16 (Item Numbers B03.100.006),
2RPV-W17 (Item Numbers B03.100.007), and
2RPV-W18 (Item Numbers B03.100.008).
These four Outlet Nozzle Inner Radius Sections are limited due to the reactor vessel nozzle configuration. Therefore, the 100% volumetric examination is impractical for this weld. The imposition of this requirement would create a considerable burden on Duke Energy Corporation. During the examination of these welds, techniques were utilized to obtain the maximum possible coverage. Reference Attachment 2 for scan coverage.

The Pressurizer (Nozzle-to-Vessel Welds) are 2PZR-10 (Item Number B03.110.001/Nozzle to Lower Head), and 2PZR-12 (Item Number B03.110.003/Nozzle to Upper Head). These two Pressurizer Nozzle to Head Welds are limited due to single-sided access caused by the nozzles geometry. In order to achieve more coverage, the nozzles would have to be redesigned to allow access from both sides. Therefore, the 100% volumetric examination is impractical for this weld. The imposition of this requirement would create a considerable burden on Duke Energy Corporation. During the examination of these welds, techniques were utilized to obtain the maximum possible coverage. Reference Attachment 3 for scan coverage.

The Pressurizer (Nozzle Inner Radius Section) is: 2PZR-12R (Item Number B03.120.002). This Pressurizer Nozzle to Upper Head Weld (Inner Radius Section) is limited due to the ratio of the nozzle O.D. to the vessel thickness. When the nozzle O.D. is large in relation to the vessel thickness, less coverage can be obtained when scanning from the vessel side. Therefore, the 100% volumetric examination is impractical for this weld. The imposition of this requirement would create a considerable burden on Duke Energy Corporation. During the examination of these welds, techniques were utilized to obtain the maximum
possible coverage. Reference Attachment 3 for scan coverage.

Although the examination volume requirements as defined in ASME Section XI 1989 Edition, Figure IWB-2500-7 could not be met, the amount of coverage obtained for these examinations provides an acceptable level of quality and integrity.

The Reactor Pressure Vessel (RPV) Outlet Nozzle to Shell Welds including the Nozzle Inner Radius Welds (Weld Numbers 2RPV-W15, 2RPV-W16, 2RPV-W17, 2RPV-W18) are by definition not in the beltline area of the RPV; therefore, it is not subject to fluence levels equal to or greater than $1 \mathrm{E} 7 \mathrm{n} / \mathrm{cm} 2$. RPV materials not in the highly irradiated beltline region are not prone to negative material property changes (i.e., embrittlement) associated with neutron bombardment. Based upon 10 CFR 50.55a, the ASME Code Section XI 1989 Edition requires essentially 100% RPV weld volumetric examinations of beltline welds during every inspection interval. The RPV Outlet Nozzle Welds do not meet the requirements of a beltine weld due to a significantly lower fluence exposure, resulting in far less potential degradation of ductility. The McGuire Nuclear Station Unit 2 RPV was fabricated by the Combustion Engineering Company and is free from unacceptable fabrication defects. Combustion Engineering performed rigorous state-of-the-art RPV inspections following fabrication to ensure no significant flaws existed.

The Pressurizer Nozzle to Lower/Upper Head Welds (Weld Numbers 2PZR-10, 2PZR-12, and 2PZR-12R) are located on the lower/upper head of the pressurizer and are not part of the reactor pressure vessel. These welds are not exposed to significant neutron fluence and are not prone to negative material property changes (i.e., embrittlement) associated with neutron bombardment. The McGuire Nuclear Station Unit 2 Pressurizer was fabricated by Westinghouse and is free from unacceptable fabrication defects. Westinghouse performed rigorous state-of-the-art inspections following fabrication to ensure no significant flaws existed.

The McGuire Unit 2 RPV Outlet Nozzle geometry and Pressurizer Nozzle to Lower/Upper Head Weld geometry prevents obtaining 100\% volumetric examination coverage and the 100% examinations are impractical. Replacement or re-design of these nozzles is not a viable
alternative and would create an undue burden on Duke Energy Corporation (See Note A)

Note A: The McGuire Plant Technical Specifications require primary coolant leakage detection systems to be operable at all times or the Unit is to be taken to a shutdown condition. As per Reg. Guide 1.45, "Reactor Coolant Pressure Boundary Leakage Detection Systems", these leakage detection systems are of sufficient sensitivity so as to detect an increase in primary leakage of 1 gpm within 1 hour. Plant Technical Specifications also impose limits on the total amount of primary coolant leakage allowable during Unit operation. As a result, the Primary Coolant leakage is required to be maintained at low levels at all times and systems are in place to detect increases in the primary coolant leakage. In addition to the required leakage limits and detection systems, McGuire Engineering maintains an aggressive monitoring program to detect and trend all levels of leakage, regardless of magnitude. As a result, there is added confidence that pressure boundary leakage will be identified well within the scope of leak-before-break methodology.

Pursuant to 10 CFR 50.55a(g) (6)(i), granting this relief for the welds listed under Examination Category B-D will provide reasonable assurance of weld/component integrity, and is authorized by law. In addition, the requested relief will not endanger life or property or the common defense and security and is otherwise in the public interest giving due consideration to the burden upon the licensee that could result if the requirements were imposed on the facility.

Examination Category B-F, Items B5.70., B5.130.

 Pressure Retaining Dissimilar Metal WeldsSteam Generator (Nozzle-to-Safe End Butt Welds)

```
2SGA-INLET-SE (B05.070.001),
```

2SGA-OUTLET-SE (B05.070.002)

Piping Dissimilar Metal Butt Welds

```
2NC2F-1-2 (B05.130.002),
2NC2F-1-3 (B05.130.003)
```

These four Dissimilar Metal Butt Welds are limited due to material characteristics and single-sided access caused by the component geometry prevents two-beam path
direction coverage of the examination volume. In order to obtain the required two-beam path direction coverage, these four welds would have to be re-designed to allow scanning from both sides. The Steam Generator Nozzle-to-Safe End Butt Welds (Weld Numbers 2SGA-INLETSE and 2SGA-OUTLET-SE) are located on the inlet and outlet of the steam generators nozzles for the reactor coolant piping. Weld Numbers 2NC2F-1-2, and 2NC2F-1-3 are located on the Safe End to Reactor Coolant Piping. The weld geometry on these four welds prevented obtaining 100% volumetric examination coverage and therefore the 100% examinations are impractical. During the examination of these welds, techniques were utilized to obtain the maximum possible coverage. Reference Attachment 4 for scan coverage.

Although the examination volume requirements as defined in ASME Section XI 1986 Edition, Figure IWB-2500-8 could not be met, the amount of coverage obtained for these examinations provided an acceptable level of quality and integrity. Furthermore, these four welds were cutout and re-welded during the steam generator replacement (2EOC11 outage). These new welds received a complete radiographic examination to satisfy ASME Section III requirements. There is no safety significance to the lack of weld examination coverage for the previous cycle.

Pursuant to 10 CFR 50.55a(g)(6)(i), granting this relief for the welds listed under Examination Category $B-F$ will provide reasonable assurance of weld/component integrity, and is authorized by law. In addition, the requested relief will not endanger life or property or the common defense and security and is otherwise in the public interest giving due consideration to the burden upon the licensee that could result if the requirements were imposed on the facility.

Examination Category B-J, Item B9.31, Pressure Retaining Welds in Piping

Branch Connection Welds:
During the ultrasonic examination of the Pipe to Nozzle Branch Connection, Weld Number 2NC16-WN8A, (B09.031.001) shown in Attachment 5, coverage of the required examination volume could not be obtained. The examination coverage was limited due to single-sided access caused by the branch connection geometry that prevents scanning from both sides of the weld.

During the ultrasonic examination of the Pipe to Nozzle Branch Connection, Weld Number 2NC22-WN4 (B09.031.002) shown in Attachment 5, coverage of the required examination volume could not be obtained. The examination coverage was limited due to single-sided access caused by the branch connection geometry that prevents scanning from both sides of the weld.

During the ultrasonic examination of the Pipe to Nozzle Branch Connection, Weld Number 2NC22-WN8 (B09.031.003) shown in Attachment 5, coverage of the required examination volume could not be obtained. The examination coverage was limited due to single-sided access caused by the branch connection geometry that prevents scanning from both sides of the weld.

In order to obtain the required coverage, these welds would have to be redesigned. The 100% volumetric examination is impractical due to nozzle and weld material geometry, or branch piping interferences. Replacement or re-design of this piping Class 1 piping is not a viable alternative and would create an undue burden on Duke Energy Company. During the examination of these welds, techniques were utilized to obtain the maximum possible coverage. Reference Attachment 5 for scan coverage.

Although the examination volume requirements as defined in ASME Section XI 1989 Edition, Figures IWB-2500-9 thru -11 could not be met, the amount of coverage obtained for these examinations provides an acceptable level of quality and integrity. See Note B.

Note B: The McGuire Plant Technical Specifications require primary coolant leakage detection systems to be operable at all times or the Unit is to be taken to a shutdown condition. As per Reg. Guide 1.45, "Reactor Coolant Pressure Boundary Leakage Detection Systems", these leakage detection systems are of sufficient sensitivity so as to detect an increase in primary leakage of 1 gpm within 1 hour. Plant Technical Specifications also impose limits on the total amount of primary coolant leakage allowable during Unit operation. As a result, the Primary Coolant leakage is required to be maintained at low levels at all times and systems are in place to detect increases in the primary coolant leakage. In addition to the required leakage limits and detection systems, McGuire Engineering maintains an aggressive monitoring program
to detect and trend all levels of leakage, regardless of magnitude. As a result, there is added confidence that pressure boundary leakage will be identified well within the scope of leak-before-break methodology.

Pursuant to 10 CFR 50.55a(g) (6)(i), granting this relief for the welds listed under Examination Category $B-J$ will provide reasonable assurance of weld/component integrity, and is authorized by law. In addition, the requested relief will not endanger life or property or the common defense and security and is otherwise in the public interest giving due consideration to the burden upon the licensee that could result if the requirements were imposed on the facility.

ASME Section XI Class 2 Components listed below:

Examination Category C-B, Items C2.22 Pressure Retaining Nozzle Welds in Vessels

During the ultrasonic examination of the Feedwater Nozzle to Shell Weld 2SGA-SB-02 (C02.022.002) shown in Attachment 6, coverage of the required examination volume was limited to 84.30\%. Limitations were caused by the ratio of the nozzle $O D$ to the vessel thickness. When the nozzle $O D$ is small in relation to the vessel thickness, more coverage can be obtained when scanning from the vessel side. Duke Energy Corporation is investigating the use of computer modeling to solve the limitation problems for nozzle inner radius examinations.

Nozzle inner radius sections were examined with the ultrasonic method to the maximum extent practical from the vessel wall. Calibration blocks and procedures were in accordance with ASME Section V, Article 4.

Although the examination volume requirements as defined in ASME Section XI 1989 Edition, Figure IWC-2500-4 (a) or (b) could not be met, the amount of coverage obtained for these examinations provided an acceptable level of quality and integrity.

The steam generators and associated nozzles have been replaced and there is no safety significance to the past examination coverage. The current steam generators were fully inspected by BWI prior to installation and relief for inspection of currently installed equipment is not requested.

Pursuant to 10 CFR 50.55a(g) (6)(i), granting this relief for the welds listed under Examination Category C-B will provide reasonable assurance of weld/component integrity, and is authorized by law. In addition, the requested relief will not endanger life or property or the common defense and security and is otherwise in the public interest giving due consideration to the burden upon the licensee that could result if the requirements were imposed on the facility.

VII. Implementation Schedule:

These examinations will continue to be scheduled in accordance with the requirements of ASME Section XI for future inspection intervals at McGuire Nuclear Station, Unit 2.

Attachment 1.
Drawings of affected weld details including calculation methods for:

B01.040.001
Attachment 2.
Drawings of affected weld details including calculation methods for:

$$
\begin{aligned}
& \text { B03.090.005A } \\
& \text { B03.090.006A } \\
& \text { B03.090.007A } \\
& \text { B03.090.008A } \\
& \text { B03.100.005 } \\
& \text { B03.100.006 } \\
& \text { B03.100.007 } \\
& \text { B03.100.008 }
\end{aligned}
$$

Attachment 3.
Drawings of affected weld details including calculation methods for:

Attachment 4.
Drawings of affected weld details including calculation methods for:

$$
\begin{aligned}
& \text { B05.070.001 } \\
& \text { B05.070.002 } \\
& \text { B05.130.002 } \\
& \text { B05.130.003 }
\end{aligned}
$$

Attachment 5.
Drawings of affected weld details including calculation methods for:

$$
\begin{aligned}
& \text { B09.031.001 } \\
& \text { B09.031.002 } \\
& \text { B09.031.003 }
\end{aligned}
$$

Attachment 6.
Drawings of affected weld details including calculation methods for:
C02.022.002

The following individuals were involved in the development of this request for relief. Ken Pitser (McGuire Engineering) provided input to the engineering justification (section VI, Note A and B) for granting relief. Jim McArdle (NDE Level III) provided sections III., IV.. and V. Gary Scarboro (McGuire ISI Plan Manager) compiled and completed the request.

Remarks:

Aitachment 1
Pape 4 of 17

DUKE POWER COMPANY Limited Examination Coverage Worksheet							NDE-91-1
							Revision 0
Examination Volume/Area Defined							
区 Base Metal		$\square W$		\square Near Su	face	Boltina	\square Inner Radius
Area Calculation				Volume Calculation			
$7.0 / 2(3.5+3.8)=25.55 \times 2=51.1 \mathrm{SQ}$. IN				$\text { 51.1 SQ IN X 542" = } 27696 \text { CU. IN }$			
Coverage Calculations							
Scan \#	Angle	Beam Direction	Area Examined (sq.in.)	Length Examined (in.)	Volume Examined (cu.in.)	Volume Required (cu.in.)	Percent Coverage
1	0	N/A	51.1	52.4	26776.4	26776.4	100.00
1	0	N/A	28.7	18	516.6	919.8	56.16
2	35	S2	47.95	524	25125.8	26776.4	93.84
2	35	S2	11.7	18	210.6	919.8	22.90
3	45	S2	48.9	524	25623.6	26776.4	95.69
3	45	S2	8.4	18	151.2	919.8	16.44
4	35/45	CW	40.6	524	21274.4	26776.4	79.45
4	35/45	CW	16.8	18	302.4	919.8	32.88
5	35/45	CCW	40.6	524	21274.4	26776.4	79.45
5	35/45	ccw	16.8	18	302.4	9198	3.29

OUTLET NOZZLE TO SHELL WELDS \& OUTLET NOZZLE INSIDE RADIUS

OUTLET NOZZLE INSIDE RADIUS

ITEM NO.: B03.100.005 ITEM NO.: B03.100.006 I.D. NO.: 2RPV-W15 I.D. NO.: 2RPV-W16

ITEM NO.: B03.100.007 ITEM NO.: B03.100.008 I.D. NO.: 2RPV-W17 I.D. NO.: 2RPV-W18

CIRC $\quad 70^{\circ}$ Gets 7.82 in 2 Coverage Vertical Section
70° Gets 7.07 in 2 Coverage Horizontal Section
Covered Area $=\left(\frac{7.82}{8.76}+\frac{7.07}{8.90}\right) \times .50=84.4 \%$
AXIAL $\quad 70^{\circ}$ Gets 8.40 in 2 Coverage Vertical Section
70° Gets 7.66 in 2 Coverage Horizontal Section
Covered Area $=\left(\frac{8.40}{8.76}+\frac{7.66}{8.90}\right) \times .50=91.0 \%$
70 ${ }^{\circ}$ INSIDE RADIUS COVERAGE
$\frac{\text { AXIAL }}{91.0} \frac{\text { CIRC }}{84.4}$

OUTLET NOZZLE TO SHELL WELDS

ITEM NO.: B03.090.005/A ITEM NO.: B03.090.006/A I.D. NO.: 2RPV-W15 I.D. NO.: 2RPV-W16

ITEM NO.: B03.090.007/A ITEM NO.: B03.090.008/A I.D. NO.: 2RPV-W17 I.D. NO.: 2RPV-W18

CIR
70° Gets 6.17 in 2 Coverage Vertical Section
70° Gets 6.36 in ${ }^{2}$ Coverage Horizontal Section Covered Area $=\left(\frac{6.17}{15.07}+\frac{6.36}{15.10}\right) \times .50=41.5$
0° Gets 33.28 in 2 Coverage Vertical Section
0° Gets 16.47 in 2 Coverage Horizontal Section Covered Area $=\left(\frac{33.28}{201.28}+\frac{16.47}{189.01}\right) \times .50=12.6 \%$
$45^{\circ} \& 60^{\circ}$ Get 3.75 in 2 Weld Coverage Vertical Section $45^{\circ} \& 60^{\circ}$ Get 56.95 in $^{2} T / 2$ Coverage Vertical Section
$45^{\circ} \& 60^{\circ}$ Get 0.00 in 2 Weld Coverage Horizontal Section
$45^{\circ} \& 60^{\circ}$ Get 44.92 in $^{2} \mathrm{~T} / 2$ Coverage Horizontal Section
$45^{\circ} \& 60^{\circ}$ Covered Area $=\left[\left(\frac{56.95+3.75+3.75}{182.44+18.84+18.84}\right)\right.$

$$
\begin{aligned}
& \left.+\left(\frac{44.92+0.00+0.00}{175.93+13.08+13.08}\right)\right] \times .50 \\
& =25.8 \%
\end{aligned}
$$

OUTLET NOZZLE TO SHELL WELDS CONTINUED

AXIAL
45° Gets 12.77 in 2 Coverage Vertical Section of Near Surface
45° Gets 9.96 in 2 Coverage Horizontal Section of Near Surface Covered Area $=\left(\frac{12.77}{15.07}+\frac{9.96}{15.10}\right) \times .50=75.3 \%$
0° Gets 180.77 in 2 Coverage Vertical Section
0° Gets 124.50 in 2 Coverage Horizontal Section Covered Area $=\left(\frac{180.77}{201.28}+\frac{124.50}{189.01}\right) \times .50=77.8 \%$

45응 154.56 in 2 Coverage Vertical Section
45° Gets 155.82 in 2 Coverage Horizontal Section Covered Area $=\left(\frac{154.56}{201.28}+\frac{155.82}{189.01}\right) \times .50=79.6 \%$

AXIAL

AXIAL		
NS	0	-45
75.3	77.8	79.6

Aggregate Coverage $=$
$[75.3 \times(15.07+15.10)+(77.8+79.6) \times(201.28+189.01)$
$+41.5 \times(15.07+15.10)+(25.8+25.8)$
$x(182.44+18.84+18.84+175.93+13.08+13.08)$
$+12.6 \times(216.35+204.11)] /$
$[(15.07+15.10) \times 2+(201.28+189.01) \times 2$
$+(182.44+18.84+18.84+175.93+13.08+13.08) \times 2$
$+(216.35+204.11)]$
Aggregate Coverage $=43.7$ \%

DUKE POWER COMPANY ULTRASONIC EXAMINATION DATA SHEET FOR PLANAR REFLECTORS										Exam Start: 1005 Exam Finish: 1034			Form NDE-UT-2A Revision 4								
Station:		McGuire			Unit:	ComponentWeld ID: 2PZR-10							Date:	11/18/97							
Weld Length (in.):			76.0"		Suriace Condition:		AS GROUND			9.2.3											
Examiner: James W. Setzer arurwheteanevel III							Scans: 45 区 \qquad 49.5 dB 70 \qquad dB TV \qquad 49.5 dB 70T \qquad dB $0 \square$ \qquad $d B$ \square \qquad dB Other: \qquad $35^{\circ}-52$ dB														
Examiner: Larry Mauldin fleus houlder Level: III																					
Procedure: NDE-620				Rev:							Configura	\qquad	Flow	$\frac{L E \text { to PZR }}{S 2}$	Q LOWEF						
Calibration Sheet No: 9702098, 9702099								Scan	urface:	$O D$											
					Applies to NDE-680 only Skew Angle: N/A																
IND \#	-	$\begin{aligned} & \text { Max } \\ & \% \\ & \text { Ref } \end{aligned}$	Mp Max	$\begin{aligned} & \text { W } \\ & \text { Max } \end{aligned}$			$\stackrel{L}{\text { Max }}$	L1	12	W1	Mp1	W2	Mp2	Beam Dir.	Exam Surf.	. Scan	Damps				
		DO NOT WRITE IN THIS SPACE			20\%dac HMA 50\%dac 100\%dac						20\%dac HMA 50\%dac 100% dac	20\%dac HMA 50\%dac 100\%dac	20\%dac HMA 50\%dac 100% dac	20\%dac HMA 50\%dac 100\%dac	20\%dac HMA 50\%dac 100% dac	D \varnothing NOT IN THIS		$\begin{aligned} & \text { WRITE } \\ & \text { SPAC } \end{aligned}$			
35°	NRI																				
45°	NRI																				

Total Volume Examined - 3053.6 / Total Volume Required $4268.8=71.5 \%$ Total Coverage

DUKE POWER COMPANY ULTRASONIC EXAMINATION DATA SHEET FOR PLANAR REFLECTORS (continuation)													Form NDE-UT-2B Revision 3		
Statio	McGuire				Unit:	ComponentWeid ID: 2PZR-12							Date:	4/11/96	
IND \#	\&	Max $\%$ Ref	Mp Max	$\begin{aligned} & \text { W } \\ & \text { Max } \end{aligned}$	$\stackrel{L}{\text { Max }}$	L1	12	W1	Mp1	W2	Mp2	Beam Dir.	Exam Surf.	Scan	Damps
			$\begin{aligned} & \text { OT } V \\ & \text { IS } \end{aligned}$			20\%dac HMA 50\%dac 100\%dac	20\%dac HMA 50\%dac 100% dac	20\%dac HMA 50\%dac 100\%dac	20\%dac HMA 50\%dac 100% dac	20\%dac HMA 50\%dac 100% dac	20\%dac HMA 50\%dac 100% dac		$\begin{aligned} & \mathrm{D} \phi \\ & \mathrm{NNOT} \\ & \text { THIS } \end{aligned}$	$\begin{aligned} & \text { WRITE } \\ & \text { SPACE } \end{aligned}$	
NRI	$60^{\circ} \mathrm{L}$														

$$
\begin{aligned}
& \text { Item B03.110.003 } \\
& \text { SCAN } 7+8 \quad 60^{\circ} \\
& \begin{array}{l}
\text { NOZZLE } \\
\text { SUrFACE } 2
\end{array} \\
& \begin{array}{l}
\text { Atfachnieat } 3 \\
\text { Age } 21 \text { of } 31
\end{array}
\end{aligned}
$$

```
Item # B03.110.003
    SCAN 5+6 45 %
```


Remarks:					
Limitations: (see NDE-UT-4) \square	90\% or greater coverage obtained: yes \square no 区				Sheet ___ of
$\begin{aligned} & \text { Reviewed Bv: } \\ & \text { quipeot Leepen } \end{aligned}$	Level π	Date: $4-18: 26$	Authorized Inspector:	$\begin{gathered} \text { Date: } \\ 4-3-9.6 \end{gathered}$	$\begin{aligned} & \text { Item No: } \\ & \text { B03.120.002 } \end{aligned}$

* $60^{\circ} \& 70^{\circ}$ USED AS ONE SCAN TO OBTAIN MAXIMUM COVERAGE - NOT TO BE FIGURED
SEPARATELY.

Total Volume Examined $44 /$ Total Volume Required $70=62.86 \%$ Total Coverage

$$
P_{Z R .} S_{\text {pRAY }}
$$

AREA: $3.5 \times .5=1.75$ sg.un
Area no Scared:

A) $15^{\circ} 4$-wnue was uren to laskect weco.
 ow bevegtor 5 roce.

$$
\begin{aligned}
& \text { ANLAC DUPENTION Cass. } 500 \%
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10tal } 6055-50 x \\
& 50 \% \div 2+25 \% \\
& 100-25 \%-75 \% \text { Catemere }
\end{aligned}
$$

\qquad

A $45^{\circ} 4$-whus uns use- क lasbecr duceco.
QNE QipEctidx uns wot senvere o Due to thete ow bevertor sloc.

$$
\begin{aligned}
& \text { AXIRC DLPENT10M COSS. 50\% } \\
& \text { Cyir Lyentuon } \angle 053.0 \% \\
& \text { topal Coss - 50)X }
\end{aligned}
$$

 Que dintectidx unis not séurves Due to thete ov benceton 5 ,oct.

$$
\begin{aligned}
& \text { AxIRC DURETTAN Cass + 50\% } \\
& \text { cene Dreentuo <05.5. 0\% } \\
& \text { forac <oss-stox } \\
& \text { 50\%:2-25\% } 200-25 \%=75 \% \text { (arienge }
\end{aligned}
$$

Remarks: DID NOT SCAN WITH + 14db DUE TO SIGNAL TO NOISE RATIO

Limitations: (see NDE-UT-4) 区	90\% or greater coverage obtained: yes \square no 区				Sheet of
Reviewed Bv:	Level: 7	Date: $4-15-86$	Authorized Inspector:	$\begin{gathered} \text { Date: } \\ 4-20-46 \end{gathered}$	Item No: B09.031.001

○

Limited Exam Data Sheet

DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME INSPECTED (in percentage)
Total Cross Sectional Area Z. $1 / 2 \times$ (Number of Scans) $2=4.224$ (\% Factor)
Vessels:
Area Loss: Zone \#1
Zone \#2
Zone \#3
Total Zone Loss_ $/(\%$ Factor $)$ — $\times 100=\ldots \%$ of Loss
Lump Sum Loss from Other Limitations $+\quad \%$
Total Loss
\% 100\% - (Total Loss) $=$.\% of Coverage (Additional \% of Partial Coverage) Qualifies for Request for Relief \square Yes \square No

Piping:
Axial Scan $45^{\circ} \mathrm{L}$ W/AVE_(LOSS)____ (\% Factor) $\times 100=$ _ $\%$ of Loss Circumferential Scan Over Root Area \square Yes \square No $-\quad \%$ of Loss Axial Loss ___ Circe. Loss___ $=\ldots \quad / 2=\ldots \ldots$ Loss
Additional Losses (Due to hangers, restraints, etc.) $\quad+\quad$ \% Loss Explain: SEE ATtaChment for PerCentages 100\% - (Total Loss) $50.19=49.81 \%$ of Coverage Qualifies for Request for Relief \square Yes \square No

Disposition: \qquad

Attachment 5
v:: : $\because \therefore .$.

Limited Exam Data Sheet

 Checked By. Dey Thaubler Date .. Date 12.7 .94 Page_of

DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME $\operatorname{INSPECTED~}$ (in percentage)

Total Cross Sectional Area__ $\dot{\mathrm{x}}$ (Number of Scans)___ $=$ (\% Factor)

Vessels:

Area Loss: Zone \#1
zone \#1
zone \#2
Zone \#3 $\downarrow \square$

Total Zone Loss__ $/ 1(\%$ Factor $) \quad \times 100=\quad \%$ of Loss

Piping:

100% - (Total Loss) $50 \%=50 \% \%$ of Coverage Qualifies for Request for Relief \square Yes \square No

Disposition:
$\hat{\rho}^{\prime \prime}$ SIS Nozzle
Item ${ }^{*}$: B09.031.003

Reauried Coverage:

88.52° (.760 $1.4 \times 360^{\circ}$ in 4 Directions)
Actual Ares covered $=25 \%+12.5 \%+12.5 \%=50 \%$ OR $22.13^{4}+11.06^{\circ}+11.06^{\prime \prime}=44.25 \div 88.52=49.98 \%$
 OR 25% cover age
 0° coverage.
$45^{\circ} \operatorname{circ}\left(3^{\text {Pd }}\right.$ direction $)=.760 \times(1.4: 2) \times 20,80 \times$ direction = $11.00^{\prime \prime}$. TRansducer only Covered up to la the weld wad th Resulting $1 \mathrm{~N} 50 \%$ coverage 0 F the 25% Required. $25 \% \times 50 \%=12.5 \%$
$45^{\circ} \mathrm{Cire}\left(4^{\text {th }}\right.$ direction $)$ Same Sinuation as in. the 45° cine (3° dd reaction Coverage equals 12% or $11.06^{\prime \prime}$

Limited Exam Data Sheet

DETERMINING THE CUMULATIVE TOTAL OF WELD VOLUME INSPECTED (in percentage)
Total Cross Sectional Area__ x (Number of Scans) ___ $=\square$ (\% Factor)

Vessels:

Area Loss: Zone \#1

Zone \#2
Zone \#3

Lump Sum Loss From Other Limitations $+157 \%$
SEE ATACNED SKETCH. Total Loss 15.7% 100\% - (Total Loss) $1.5 .7=84.3 . \%$ of Coverage
(Additional ___\% of Partial Coverage)
Qualifies for Request for Relief $\quad \square$ Yes \square No

Piping:

Axial Scan (Loss)____ (\% Factor) $\times 100=\quad$ _ $\%$ of Loss Circumferential Scan Over Root Area $\quad \square$ Yes \square No $\quad \%$ of Loss Axial Loss + Cire. Loss $=-\quad / 2=$ \% Loss
Additional Losses (Due to hangers, restraints, etc.) \% Loss Explain: Total \% Loss
100\% - (Total Loss) $=\%$ of Coverage

Qualifies for Request for Relief \square Yes \square No
Disposition:

[^0]: ${ }^{1}$ Firestone, F. A. : Tricks with the Supersonic Reflectoscope, J. Soc. Nondestructive Testing, vol. 7, no. 2 Fall 1948.

