North Anna Unit 2 Cycle 14 Startup Physics Tests Report

Nuclear Analysis and Fuel Nuclear Engineering & Services

December, 1999

TECHNICAL REPORT NE-1220 - REV. 0

NORTH ANNA UNIT 2, CYCLE 14

STARTUP PHYSICS TESTS REPORT

NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING & SERVICES VIRGINIA POWER DECEMBER, 1999

PREPARED BY: M. T. Langsonwager Date

REVIEWED BY: 72 Uncel 11-29-99 T. L. Wheeler Date

REVIEWED BY: <u>R. G. Mc Andrew</u> <u>12-1-99</u> R. G. McAndrew Date

QA Category: Nuclear Safety Related

Keywords: N2C14, Startup

CLASSIFICATION/DISCLAIMER

The data, techniques, information, and conclusions in this report have been prepared solely for use by Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they have been specifically prepared. The Company therefore makes no claim or warranty whatsoever, express or implied, as to their accuracy, usefulness, or applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it. By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.

TABLE OF CONTENTS

Classification/Disclaimer 1						
Table of C	ontents	2				
List of Tab	ples	3				
List of Fig	ures	4				
Preface		5				
Section 1	Introduction and Summary	6				
Section 2	Control Rod Drop Time Measurements	17				
Section 3	Control Rod Bank Worth Measurements	22				
Section 4	Boron Endpoint and Worth Measurements	27				
Section 5	Temperature Coefficient Measurement	31				
Section 6	Power Distribution Measurements	33				
Section 7	References	40				
APPENDI	X Startup Physics Test Results and Evaluation Sheets	41				

LIST OF TABLES

TITLE

PAGE

~

1.1	Chronology of Tests	11
2.1	Hot Rod Drop Time Summary	19
3.1	Control Rod Bank Worth Summary	24
4.1	Boron Endpoints Summary	29
4.2	Boron Worth Coefficient	30
5.1	Isothermal Temperature Coefficient Summary	32
6.1	Incore Flux Map Summary	35
6.2	Comparison of Measured Power Distribution Parameters With Their Core Operating Limits	36

LIST OF FIGURES

FIGURE

TITLE

PAGE(S)

1.1	Core Loading Map	2,13
1.2	Beginning of Cycle Fuel Assembly Burnups	14
1.3	Available Incore Moveable Detector Locations	15
1.4	Control Rod Locations	16
2.1	Typical Rod Drop Trace	20
2.2	Rod Drop Time - Hot Full Flow Conditions	21
3.1	Control Bank B Integral Rod Worth - HZP	25
3.2	Control Bank B Differential Rod Worth - HZP	26
6.1	Assemblywise Power Distribution - 30% Power	37
6.2	Assemblywise Power Distribution - 75% Power	38
6.3	Assemblywise Power Distribution -100% Power	39

PREFACE

This report presents the analysis and evaluation of the physics tests which were performed to verify that the North Anna Unit 2, Cycle 14 core could be operated safely, and makes an initial evaluation of the performance of the core. It is not the intent of this report to discuss the particular methods of testing or to present the detailed data taken. Standard testing techniques and methods of data analysis were used. The test data, results and evaluations, together with the detailed startup procedures, are on file at the North Anna Power Station. Therefore, only a cursory discussion of these items is included in this report. The analyses presented include a brief summary of each test, a comparison of the test results with design predictions, and an evaluation of the results.

The North Anna Unit 2. Cycle 14 startup physics tests results and evaluation sheets are included as an appendix to provide additional information on the startup test results. Each data sheet provides the following information: 1) test identification, 2) test conditions (design), 3) test conditions (actual), 4) test results, 5) acceptance criteria, and 6) comments concerning the test. These sheets provide a compact summary of the startup test results in a consistent format. The design test conditions and design values (at design conditions) of the measured parameters were completed prior to the startup physics testing. The entries for the design values were based on the calculations performed by Virginia Electric and Power Company's Nuclear Analysis and Fuel Group'. During the tests, the data sheets were used as guidelines both to verify that the proper test conditions were met and to facilitate the preliminary comparison between measured and predicted test results, thus enabling a quick identification of possible problems occuring during the tests.

SECTION 1

INTRODUCTION AND SUMMARY

On September 12, 1999 Unit No. 2 of the North Anna Power Station shut down for its thirteenth refueling. During this shutdown, 93 of the 157 fuel assemblies in the core were replaced with 64 fresh Batch 16 assemblies, four North Anna 1 Batch 14B assemblies last irradiated in N1C13, eight North Anna 1 Batch 13B assemblies last irradiated in N1C12, eight Batch 12B assemblies last irradiated in N2C11, eight Batch 13B assemblies last irradiated in N2C12, and one North Anna 1 Batch 11B fuel assembly (3A4) last irradiated in N1C9. Sixty-four assemblies from Cycle 13 are being reused in Cycle 14. The fresh fuel consists of Batch 16A (28 assemblies), and Batch 16B (36 assemblies).

Special features of the N2C14 reload core include: burnable poison inserts with a 127.2 inch axial absorber region, one reconstituted fuel assembly, and the incorporation of vibration suppression damping assemblies (VSDAs) to prevent grid to rod fretting caused by assembly vibration. The reconstituted assembly, 3A4, had eight additional fuel rods removed. These were replaced with ZIRLO clad fuel rods that were irradiated for three cycles in North Anna Unit 1 in Westinghouse demonstration assembly AM2.

Cycle 14 marks the first use of a BPRA product with an active absorber length of 127.2 inches. The 127.2 inch design is similar to the 126 inch design used in Cycle 13 with the only exception being the location of the bottom of the absorber. The 127.2 inch design is located such that the bottom of the absorber is approximately 9 inches above the bottom of the active fuel length and the top of the absorber is approximately 7.8 inches below the top of the active fuel length relative to the NAIF/P+Z fuel design. The BP assembly and pellet design are the same for both products.

Cycle 14, similar to Cycle 13, incorporated the burnable poison rod design made of B_4C in Alumina, which is available in various enrichments of B_4C . There are no thimble plugging devices or secondary sources inserted in N2C14. There are 28 vibration suppression damping assemblies (VSDAs) inserted in peripherally loaded fuel assemblies, as well as one VSDA inserted in the core center fuel assembly, to help prevent grid to rod fretting caused by assembly vibration. Reference 1 provides a more detailed description of the Cycle 14 core.

The core loading pattern and the design parameters for each sub-batch are shown in Figure 1.1, as well as the location and number of burnable poison rods and VSDAs for Cycle 14. Beginning of cycle fuel assembly burnups are given in Figure 1.2 and documented in Reference 6. The available incore moveable detector locations used for the flux map analyses are identified in Figure 1.3. Figure 1.4 identifies the location and number of control rods in the Cycle 14 core.

On October 9, 1999 at 15:38, the Cycle 14 core achieved initial criticality. Prior to and following criticality, startup physics tests were performed as outlined in Table 1.1.

The measured drop time of each control rod was within the 2.7 second limit of Technical Specification 3.1.3.4. Westinghouse, however, has performed an analysis to determine an appropriate drop time testing criterion which excludes the seismic component but retains other necessary conservatism's relating to component mechanical design tolerances and hydraulic performance uncertainties. The Westinghouse recommended drop time limit is 2.13 seconds for RCCA entry into the dashpot region. Technical Report NE-1205, Rev 1, dated September 1999, further analyzed Rod Drop Time criteria and concluded that the 2.13 second time limit is not adequate to ensure compliance with the safety analysis basis for control rod drop time in all conceivable cases. Because of higher outlet plenum cross flows in the vicinity of the outlet nozzles, the RCCA drop times for Control Bank A rods could exceed the 2.7 seconds when seismic effects are considered. Since the basis for rod drop times is to ensure the collective group of rods insert the required negative reactivity, and Control Bank A rods, located on the outer core periphery, have a minimal impact on trip reactivity, NA&F has determined that the following rod drop time criteria should be used:

- All Control Rods EXCEPT the 8 Control Bank A Rods: ≤ 2.03 seconds
- Each of the 8 Control Bank A Rods: ≤2.25 seconds
- AVERAGE of the 8 Control Bank A Rods: ≤2.03 seconds

All of these new criteria were met for North Anna Unit 2 Cycle 14.

Individual control rod bank worths were measured using the rod swap technique^{2,5}. The sum of the individual measured control rod bank worths was within 0.015% of the design prediction and the reference bank worth was within 1.39% of its design prediction. The other control rod banks were within 4.99% of the design predictions. These results are within the design tolerances of $\pm 15\%$ for individual banks worth more than 600 pcm ($\pm 10\%$ for the rod swap reference bank worth), ± 100 pcm for individual banks worth 600 pcm or less. and $\pm 10\%$ for the sum of the individual control rod bank worths.

Measured critical boron concentrations for two control bank configurations were within 23 ppm of the design predictions. These results were within the design tolerances and also met the Technical Specification 4.1.1.1.2 criterion that the overall core reactivity balance shall be within $\pm 1\%$ $\Delta k/k$ of the design prediction.

The boron worth coefficient measurement was within 2.0% of the design prediction, which is within the design tolerance of $\pm 10\%$.

The measured isothermal temperature coefficient (ITC) for the all-rods-out (ARO) configuration was within 0.22 pcm/°F of the design prediction. This result is within the design tolerance of ± 3 pcm/°F. The measured ITC of -2.45 pcm/°F meets the Core

design tolerance of ± 3 pcm/°F. The measured ITC of -2.45 pcm/°F meets the Core Operating Limits Report (COLR) 2.1.1 criterion that the moderator temperature coefficient (MTC) be less than or equal to +6.0 pcm/°F. When the Doppler temperature coefficient and a 0.5 pcm/°F uncertainty are accounted for in the MTC limit. the MTC requirement is satisfied as long as the ITC is less than or equal to +3.76 pcm/°F.

Mode 1 (see Reference 4) core power distributions were within established design tolerances. Generally, the measured core power distributions were within 1.0% of the design predictions. The heat flux hot channel factors, F-Q(Z), and enthalpy rise hot channel factors, F-DH(N), were within the limits of COLR Sections 2.5.1 and 2.6, respectively.

In summary, all startup physics test results were acceptable. Detailed results, specific design tolerances and acceptance criteria for each measurement are presented in the following sections of this report.

Table 1.1

				Reference
Test	Date	Time	Power	Procedure
Hot Rod Drop-Hot Full Flow	10/8/99	2319	HSD	2-PT-17.2
Zero Power Testing Range	10/9/99	1620	HZP	2-PT-94.0
Reactivity Computer Checkout	10/9/99	1700	HZP	2-PT-94.0
Boron Endpoint - ARO	10/9/99	1725	HZP	2-PT-94.0
Temperature Coefficient - ARO	10/9/99	2110	HZP	2-PT-94.0
Bank B Worth	10/9/99	2215	HZP	2-PT-94.0
Boron Endpoint - B in	10/10/99	0230	HZP	2-PT-94.0
Bank D Worth - Rod Swap	10/10/99	0248	HZP	2-PT-94.0
Bank C Worth - Rod Swap	10/10/99	0344	HZP	2-PT-94.0
Bank A Worth - Rod Swap	10/10/99	0416	HZP	2-PT-94.0
Bank SB Worth - Rod Swap	10/10/99 -	0446	HZP	2-PT-94.0
Bank SA Worth - Rod Swap	10/10/99	0525	HZP	2-PT-94.0
Flux Map - 30% Power	10/11/99	0027	30%	2-PT-94.0
Peaking Factor Verification				2-PT-21.1
& Power Range Calibration				2-PT-21.2
	L			2-PT-22.4
Flux Map - 75% Power	10/13/99	2238	75%	2-PT-94.0
Peaking Factor Verification				2-PT-21.1
& Power Range Calibration				2-PT-21.2
				2-PT-22.4
Flux Map - 100% Power	10/20/99	1041	100%	2-PT-94.0
Peaking Factor Verification				2-PT-21.1
& Power Range Calibration				2-PT-21.2
				2-PT-22.4

NORTH ANNA UNIT 2 - CYCLE 14 STARTUP PHYSICS TESTS CHRONOLOGY OF TESTS

NE-1220 N2C14 Startup Physics Tests Report

Page 11 of 57

Figure 1.1 NORTH ANNA UNIT 2 - CYCLE 14 CORE LOADING MAP

٠

		Ą	B	ç	D	Ę,	F	<u> </u>	н	J	ĸ	Ļ	Ņ	Ņ	P	R	
		r 7	1 1 1	1 7 1	, ,	1	1	VS 3C4	VS 5D6	VS 5C8	1			t t		, !	15
		1 1 1	1 1 1	. 1	, ,	VS 3M8	RCC 2R2	3P 455	RCC 4R1	3P 4S2	RCC 2R4	VS 3M5]	!	r 7 	, , , 1	14
$\begin{array}{c c} xxP \rightarrow \# O \\ \hline & \rightarrow ASS \end{array}$	F BP RO EMBLY	•	1 1 1	,	VS 5N6	6P 4S6	19P 5S0	RCC 5R4	24P 354	RCC 4R9	19P 558	6P 4S0	VS 4N4]	· ·	; !	13
		1 1 1	;	VS 3N3	RCC 5E7	21P 458	RCC 4R2	24P 252	1R9	24P 256	RCC 3R5	21P 3S6	RCC 5E8	VS 5N0	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , ,	12
'	·	,	VS 5M9	6P 5s2	21P 5\$3	RCC 3R8	24P 185	OR8	24P 057	2R7	24P 151	RCC 4R8	21P 5\$5	6P 358	VS 5M5	- + - + - +	11
		r 7	RCC 1R6	19P 351	RCC 5R5	24P 052	RCC OR6	24P 0S3	RCC 0R7	24P 051	RCC 1R1	24p 250	RCC 5R1	19P 554	RCC 2R1	1 1 - 1	10
No. of		VS 4C9	3P 353	RCC 5R8	24P 2S5	1R8	24P 154	RCC 3R7	2R9	RCC 4R7	24P 158	OR3	24P 157	RCC 4R5	3P 350	VS 4C5	9
	270 -	VS 6D1	RCC 5R2	24P 651	2R0	24P 159	RCC 1R7	4R0	VS 3A4	4R6	RCC OR4	24P 054	2R5	24P 454	RCC 3R9	VS 5D2	90 8
-		VS 3C9	3P 4S9	RCC 3R1	24P 257	OR1	24P 251	RCC 5R3	3R4	RCC 4R4	24P 0S9	1R0	24P 258	RCC 3R6	3P 5S9	VS 5C9	7
A		:	RCC 1R5	19P 5s1	RCC 5R0	249 152	RCC OR5	24P 056	RCC OR2	24P 0S5	RCC 1R2	24P 1S3	RCC 3R3	199 653	RCC 1R4		6
			VS 5M1	6P 2S9	21P 650	RCC 5R7	24P 150	1R3	24P 2S3	OR9	24P 058	RCC 5R9	21P 4S1	6P 359	VS 5M4		5
NORTH		· ·		VS 5N8	RCC 6E0	21P 556	RCC 6R0	24P 254	2R8	24P 156	RCC 4R3	21P 652	RCC 5E9	VS 6N0			4
-INCORE DEVIC					VS 4N1	6P 5\$7	19P 3S5	RCC 3R2	24P 654	RCC 5R6	19P 357	6P 4S7	VS 4N6				3
	NABLE	POISO	ROD	LUSTER		VS 4H1	RCC 2R3	3P 352	RCC 3R0	3P 4S3	RCC 2R6	VS 2M9					2
6P - 6 BUR 19P - 19 BUR 21P - 21 BUR	NABLE NABLE	POISON POISON	{ ROD ({ ROD (LUSTER			L	VS 6C0	VS 507	VS 3C0			J 				1
24P - 24 BUR VS - VIBRAT									180	J							
n					[FUEL	ASSE	MBLY E			METER JB-BAT						·
					N1/1	1B	2B	N1/13B	13B	N1/1		1/15B	-15A	15B	16A	10	5B
*		ASSEN	ABLY I	Ds	3A	4 #	M#	#C#	#N#	#D	# #	E#	0R1- 2R8	2R9- 6R0	0S1- 2S8		59- 54
	INI		NRICH		4.19	23 4.1	2012	4.2097	4.2061	4.20	48 4.1	2097	4.1026	4.2489	4.160		434
) U-235.														
	B		PAT BO D MITU		257	84 41	021	41614	42814	394	30 24	1383	25530	22311	0)
~ ~		ASSEM	BLY TY	ΈĒ	17x	17 17	7x17	17x17	17x17	17x	17 17	7x17	17x17	17x17	17x1	7 17:	(17
	NUM	BER OI	FASSE	MBLIES	1		8	8	8	4		4	28	32	28	3	6
			RODS PI EMBLY		264	1 2	:64	264	264	264	4 2	264	264	264	264	20	54
The accembly in this sub bate				haanta			for all and		1.1.1.1	<u> </u>				<u>_</u>			

The assembly in this sub-batch contains one dummy fuel rod, and eight high burnup rods from Assembly AM2.

NE-1220 N2C14 Startup Physics Tests Report

Page 12 of 57

Figure 1.1 (continued)

NORTH ANNA UNIT 2 - CYCLE 14 CORE LOADING MAP

CORE LOC	ASSM ID	BP IDENT
G14 J13 F13 H13 E12 J12 C11 F11 F11 K11 K11 K11 K11 K11 C10 E10 J10	452 452 552 455 555 455 555 555 555 105 155 555 105 155 555 105 155 555 105 155 555 105 155 555 105 155 555 105 155 555 105 1555 1005 1055 1005 1055 1005 1005 1005 1005 1005 1005 1005 10	BP792 BP793 BP827 BP808 BP780 BP809 BP824 BP804 BP773 BP774 BP816 BP825 BP801 BP802 BP801 BP802 BP818 BP825 BP811 BP825 BP811 BP785 BP786

BP CORE LOCATIONS

CORE LOC	ASSM ID	BP IDENT
L10 N10 B09 D09 F09 K09 P09 C08 E08 L08 N08 B07 F07 K07 F07 K07 F07 C06 E06 G06 J06	250 554 353 255 158 157 350 159 454 459 255 255 255 255 152 055 055	BP803 BP812 BP797 BP772 BP784 BP775 BP779 BP769 BP769 BP769 BP769 BP781 BP783 BP783 BP783 BP788 BP776 BP782 BP782 BP789

CORE	ASSM	BP
LOC	ID	IDENT
LO6	1S3	BP804
N0555555555555555555555555555555555555	653 259 650 253 058 451 359 556 452 555 652 355 657 355 657 355 453 453 453	BP813 BPC015 BP820 BP798 BP766 BP805 BP819 BP822 BP817 BP770 BP777 BP814 BP807 BP778 BP806 BP823 BP791 BP790

Figure 1.2

NORTH ANNA UNIT 2 - CYCLE 14 BEGINNING OF CYCLE FUEL ASSEMBLY BURNUPS

А	В	C	D	Ē	F	G	Н	J	К	L	Μ	Ν	Р	R
	<u> </u>	÷		-	•	<u> </u>	• •		••				-	

						41874	39398	41336						
				40503	25288	0	19679	0	25224	40547				
			42111	0	0	23605	0	23888	0	0	42419			
		43407	24410	0	24982	0	26032	0	25096	0	24276	42950		
	41370	0	. 0	20987	0	25713	0	25596	0	20583	0	0	41771]
	25097	0	24374	0	25488	0	25968	0	25265	0	24950	0	24847	
1009	0	24078	0	25607	0	20559	19935	20775	0	25805	0	23350	0	42109
9287	19654	0	25990	0	26038	19465	25784	19791	26001	0	26044	0	19863	39235
2063	0	23717	0	25572	0	20886	20121	20754	0	25696	0	24054	0	41513
	25005	0	25062	0	25311	0	25935	0	25392	0	24962	0	25006	
	41676	0	0	20544	0	25488	0	25597	0	21094	0	0	41619	
	L	42886	24404	0	24444	0	25627	0	24881	0	24444	43908		J
			42397	0	0	24105	0	23847	()	0	42411		I	
			<u>. </u>	40504	25035	0	19847	U	25171	40176		I		
				L		41333	39799	41672		L	I			

NE-1220 N2C14 Startup Physics Tests Report

Page 14 of 57

Figure 1.3

NORTH ANNA UNIT 2 - CYCLE 14 AVAILABLE INCORE MOVEABLE DETECTOR LOCATIONS

D С В A Е F Κ J Н G Ł R р Ν Μ MD ** MD MD

MD - Moveable Detector

* - Locations Not Available For

Flux Mapping System for Cycle 14

- Location Not Available For ** Flux Map 03 for Cycle 14

1

2

3

4

5

6

7

8

9

10

11

12


13

14

15

Figure 1.4

NORTH ANNA UNIT 2 - CYCLE 14 CONTROL ROD LOCATIONS

NE-1220 N2C14 Startup Physics Tests Report

Page 16 of 57

مر سر

SECTION 2

CONTROL ROD DROP TIME MEASUREMENTS

The drop time of each control rod was measured at hot full-flow reactor coolant system (RCS) conditions in order to verify that the time from initiation of the rod drop to the entry of the rod into the dashpot was less than or equal to the maximum allowed by Technical Specification 3.1.3.4. The control rod drop times were measured in Mode 3⁴ -with the RCS Tavg above 500 °F and all reactor coolant pumps operating.

The rod drop times were measured by withdrawing a rod bank 229 steps and then removing the moveable gripper coil fuse and stationary gripper coil fuse for the particular rod of the bank to be dropped. This allowed the rod to drop into the core as it would during a plant trip. The stationary gripper coil voltage and the Individual Rod Position Indication (IRPI) primary coil voltage signals were recorded to determine the rod drop time. This procedure was repeated for each control rod.

As shown on the sample rod drop trace in Figure 2.1, the initiation of the rod drop is indicated by the decay of the stationary gripper coil voltage when the stationary gripper coil fuse is removed. As the rod drops, a voltage is induced in the IRPI primary coil. The magnitude of this voltage is a function of control rod velocity. As the rod enters the dashpot region of the guide tube, its velocity slows causing a voltage decrease in the IRPI

coil. This voltage reaches a minimum when the rod reaches the bottom of the dashpot. Subsequent variations in the trace are caused by rod bouncing.

The measured drop times for each control rod are recorded on Figure 2.2. The slowest, fastest, and average drop times are summarized in Table 2.1. Technical Specification 3.1.3.4 specifies a maximum rod drop time from loss of stationary gripper coil voltage to dashpot entry of 2.7 seconds with the RCS at hot, full flow conditions. Technical Report NE-1205 Rev. 1. however, cited the following criteria to be achieved as well:

• All Control Rods EXCEPT the 8 Control Bank A Rods: ≤2.03 seconds

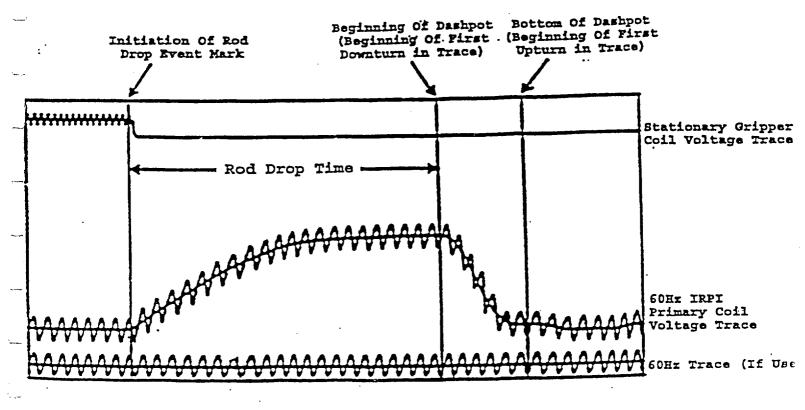
- Each of the 8 Control Bank A Rods: ≤2.25 seconds
- AVERAGE of the 8 Control Bank A Rods: ≤2.03 seconds

These test results satisfied the above limits. In addition, rod bounce was observed at the end of each trace, which demonstrated that no control rod stuck in the dashpot region.

Table 2.1

NORTH ANNA UNIT 2 - CYCLE 14 STARTUP PHYSICS TESTS HOT ROD DROP TIME SUMMARY

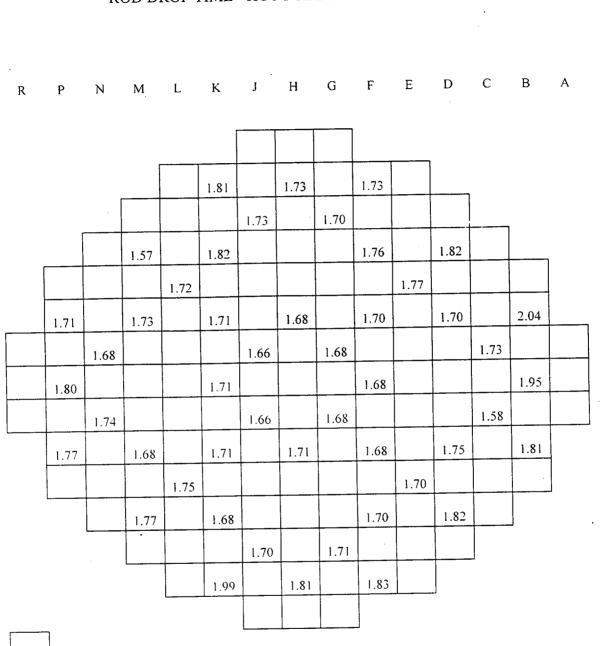
ROD DROP TIME TO DASHPOT ENTRY


SLOWEST ROD	FASTEST ROD	AVERAGE TIME
B-06 2.04 sec.	M-04 1.57 sec.	1.74 sec.

NE-1220 N2C14 Startup Physics Tests Report

Page 19 of 57

NORTH ANNA UNIT 2 - CYCLE 14 STARTUP PHYSICS TESTS TYPICAL ROD DROP TRACE


ROD DROP TIME MEASUREMENT

NE-1220 N2C14 Startup Physics Tests Report

Page 20 of 57

Figure 2.2

ۍ.

NORTH ANNA UNIT 2 - CYCLE 14 STARTUP PHYSICS TESTS ROD DROP TIME - HOT FULL FLOW CONDITIONS

 $|_{X,XX}$ === Rod drop time to dashpot entry (sec.)

NE-1220 N2C14 Startup Physics Tests Report

Page 21 of 57

SECTION 3

CONTROL ROD BANK WORTH MEASUREMENTS

Control rod bank worths were measured for the control and shutdown banks using the rod swap technique^{2, 5}. The initial step of the rod swap method diluted the predicted most reactive control rod bank (hereafter referred to as the reference bank) into the core and measured its reactivity worth using conventional test techniques. The reactivity changes resulting from the reference bank movements were recorded continuously by the reactivity computer and were used to determine the differential and integral worth of the reference bank. For Cycle 14, Control Bank B was used as the reference bank.

After the completion of the reference bank reactivity worth measurement, the reactor coolant system temperature and boron concentration were stabilized with the reactor near critical and the reference bank fully inserted. Initial statepoint data for the rod swap maneuver were obtained with the reference bank at its fully inserted position and all other banks fully withdrawn, recording the core reactivity and moderator temperature. From this point, a rod swap maneuver was performed by withdrawing the reference bank several steps and then inserting one of the other control rod banks (i.e., a test bank) to balance the reactivity of the reference bank withdrawal. This sequence was repeated until the test bank was fully inserted and the reference bank was positioned such that the core was just critical or near the initial statepoint condition. This measured critical position (MCP) of the reference bank with the test bank fully inserted was used to

NE-1220 N2C14 Startup Physics Tests Report

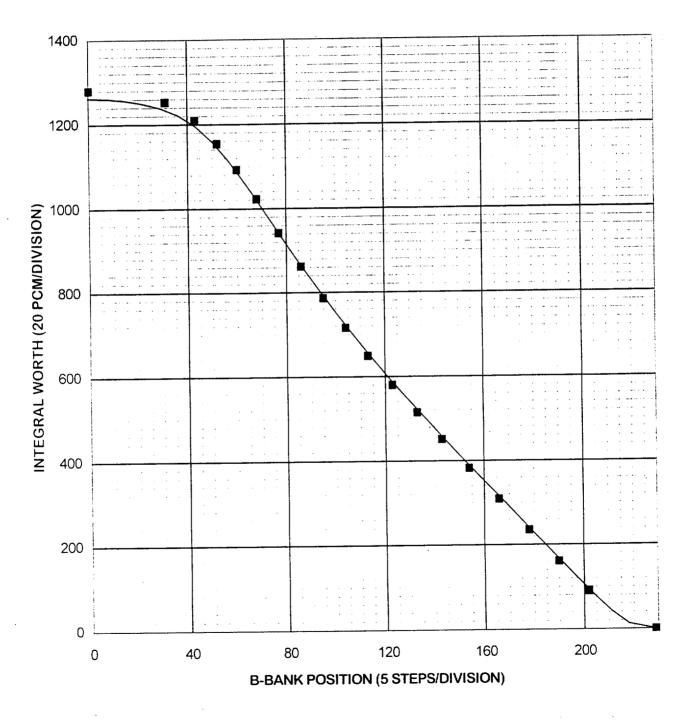
Page 22 of 57

determine the integral reactivity worth of the test bank. The core reactivity, moderator temperature, and the differential worth of the reference bank were recorded with the reference bank at the MCP. The rod swap maneuver then was repeated in reverse such that the reference bank again was fully inserted with the test bank fully withdrawn from the core. This rod swap process was then repeated for each of the other control and shutdown banks.

A summary of the test results is given in Table 3.1. As shown in this table and the Startup Physics Test Results and Evaluation Sheets given in the Appendix, the individual measured bank worths for the control and shutdown banks were within the design tolerance ('10% for the reference bank, ±15% for test banks of worth greater than 600 pcm, and ±100 pcm for test banks of worth less than or equal to 600 pcm.) The sum of the individual measured rod bank worths was within 0.015% of the design prediction. This is well within the design tolerance of ±10% for the sum of the individual control rod bank worths.

The integral and differential reactivity worths of the reference bank (Control Bank B) are shown in Figures 3.1 and 3.2, respectively. The design predictions and the measured data are plotted together in order to illustrate their agreement. In summary, the measured rod worth values were satisfactory.

Table 3.1

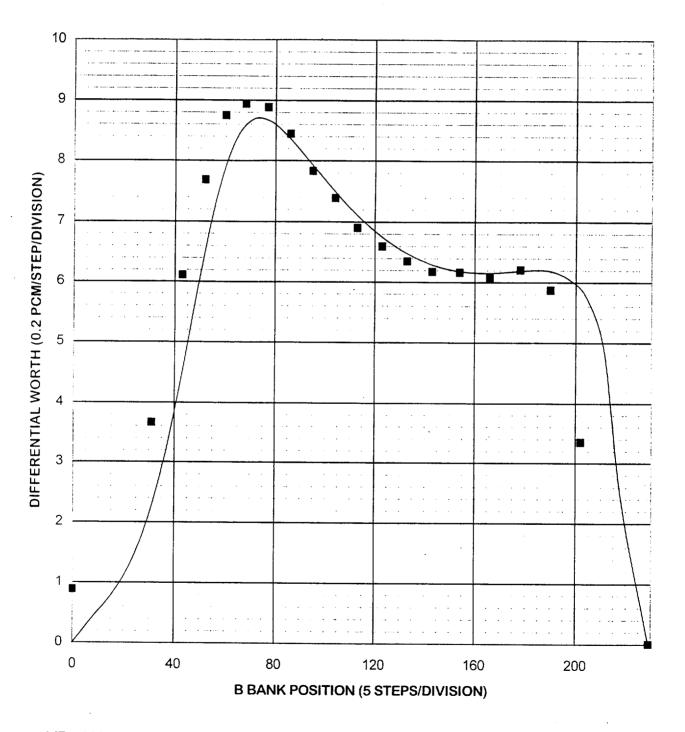

MEASURED PREDICTED PERCENT WORTH DIFFERENCE (%) WORTH BANK (PCM) (M-P)/P X 100 (PCM) B-Reference Bank 1280.5 1263 1.39 D 993.3 1016.5 -2.28 С 810.9 833.8 -2.75 A 4.77* 329.6 314.6 SB1107.1 1139.2 -2.82 SA 4.99 947.3 902.3 Total Worth 5468.7 5469.5 -0.01

NORTH ANNA UNIT 2 - CYCLE 14 STARTUP PHYSICS TESTS CONTROL ROD BANK WORTH SUMMARY

* Difference is less than 100 pcm.

Figure 3.1

NORTH ANNA UNIT 2 - CYCLE 14 STARTUP PHYSICS TESTS CONTROL BANK B INTEGRAL ROD WORTH - HZP ALL OTHER RODS WITHDRAWN



NE-1220 N2C14 Startup Physics Tests Report

Page 25 of 57

Figure 3.2

NORTH ANNA UNIT 2 - CYCLE 14 STARTUP PHYSICS TESTS CONTROL BANK B DIFFERENTIAL ROD WORTH - HZP ALL OTHER RODS WITHDRAWN

NE-1220 N2C14 Startup Physics Tests Report

Page 26 of 57

SECTION 4

J,

BORON ENDPOINT AND WORTH MEASUREMENTS

Boron Endpoint

With the reactor critical at hot zero power, reactor coolant system (RCS) boron concentrations were measured at selected rod bank configurations to enable a direct comparison of measured boron endpoints with design predictions. For each critical boron concentration measurement, the RCS conditions were stabilized with the control banks at or very near a selected endpoint position. Adjustments to the measured critical boron concentration values were made to account for off-nominal control rod position and moderator temperature, if necessary.

The results of these measurements are given in Table 4.1. As shown in this table and in the Startup Physics Test Results and Evaluation Sheets given in the Appendix, the measured critical boron endpoint values were within their respective design tolerances. The ARO endpoint comparison to the predicted value met the requirements of Technical Specification 4.1.1.1.2 regarding core reactivity balance. In summary, the boron endpoint results were satisfactory.

Boron Worth Coefficient

The measured boron endpoint values provide stable statepoint data from which the boron worth coefficient or differential boron worth (DBW) was determined. By

relating each endpoint concentration to the integrated rod worth present in the core at the time of the endpoint measurement, the value of the DBW over the range of boron endpoint concentrations was obtained.

A summary of the measured and predicted DBW is shown in Table 4.2. As indicated in this table and in the Appendix, the measured DBW was well within the design tolerance of $\pm 10\%$. In summary, the measured boron worth coefficient was satisfactory.

Table 4.1

NORTH ANNA UNIT 2 - CYCLE 14 STARTUP PHYSICS TESTS BORON ENDPOINTS SUMMARY

Control Rod Configuration	Measured Endpoint (ppm)	Predicted Endpoint (ppm)	Difference M-P (ppm)
ARO	2141	2118	23
B Bank In	1949	1948*	1

* The predicted endpoint for the B Bank In configuration was adjusted for the difference between the measured and predicted values of the endpoint taken at the ARO configuration as shown in the boron endpoint Startup Physics Test Results and Evaluation Sheet in the Appendix.

NE-1220 N2C14 Startup Physics Tests Report

Page 29 of 57

Table 4.2

NORTH ANNA UNIT 2 - CYCLE 14 STARTUP PHYSICS TESTS BORON WORTH COEFFICIENT

Measured	Predicted .	Percent		
Boron Worth	Boron Worth	Difference (%)		
(pcm/ppm)	(pcm/ppm)	(M-P)/P x 100		
-6.67	-6.54	2.0		

SECTION 5

TEMPERATURE COEFFICIENT MEASUREMENT

The isothermal temperature coefficient (ITC) at the all-rods-out condition is measured by controlling the reactor coolant system (RCS) temperature with the steam dump valves to the condenser, establishing a constant heatup or cooldown rate, and monitoring the resulting reactivity changes on the reactivity computer.

Reactivity was measured during the RCS cooldown of 3.4°F and RCS heatup of 3.0°F. Reactivity and temperature data were taken from the reactivity computer and strip chart recorders. Using the statepoint method, the temperature coefficient was determined by dividing the change in reactivity by the change in RCS temperature. An X-Y plotter, which plotted reactivity versus temperature, confirmed the statepoint method in calculating the measured ITC.

The predicted and measured isothermal temperature coefficient values are compared in Table 5.1. As can be seen from this summary and from the Startup Physics Test Results and Evaluation Sheet given in the Appendix, the measured isothermal temperature coefficient value was within the design tolerance of '3 pcm/°F. The moderator temperature coefficient was determined to be -0.70 pcm/°F which met the requirements of COLR Section 2.1.1. In summary, the measured results were satisfactory.

Table 5.1

NORTH ANNA UNIT 2 - CYCLE 14 STARTUP PHYSICS TESTS ISOTHERMAL TEMPERATURE COEFFICIENT SUMMARY

BANK POSITION (STEPS)	TEMPERATURE RANGE (^o F)	BORON CONCENTRATION (ppm)	ISOTHERMAL TEMPERATURE COEFFICIENT (PCM/ºF)				
			C/D	H/U	AVE MEAS	PRED	DIFFER (M-P)
D/211	545.5 to 548.9	2135	-2.06	-2.83	-2.45	-2.67	0.22

SECTION 6

POWER DISTRIBUTION MEASUREMENTS

The core power distributions were measured using the moveable incore detector flux mapping system. This system consists of five fission chamber detectors which traverse fuel assembly instrumentation thimbles in up to 50 core locations. Figure 1.3 shows the available locations monitored by the moveable detectors for the ramp to full power flux maps for Cycle 14. For each traverse, the detector voltage output is continuously monitored on a strip chart recorder, and scanned for 61 discrete axial points (map 1), or 610 discrete axial points (maps 2, 3, and 4), by the plant computer. Full core, three-dimensional power distributions are determined from this data using a Virginia Power modified version of the Combustion Engineering computer program, CECOR³. CECOR couples the measured voltages with predetermined analytic power-to-flux ratios in order to determine the power distribution for the whole core.

A list of the full-core flux maps taken during the startup test program and the measured values of the important power distribution parameters are given in Table 6.1. A comparison of these measured values with their COLR limits is given in Table 6.2. Flux map 1 was taken at 30% power to verify the radial power distribution (RPD) predictions at low power. Figure 6.1 shows the measured RPDs from this flux map. Flux maps 2, 3, and 4 were taken at 43%, 75%, and 100% power, respectively, with different control rod configurations. These flux maps were taken to check at-power design predictions and to

NE-1220 N2C14 Startup Physics Tests Report

Page 33 of 57

measure core power distributions at various operating conditions. The radial power distributions for maps 3 and 4 are given in Figures 6.2 and 6.3, respectively. The radial power distributions for the maps given in Figures 6.1, 6.2, and 6.3 show that the measured relative assembly power values were generally within 1.0% of the predicted values. Further, the measured F-Q(Z) and F-DH(N) peaking factor values for the at-power flux maps were within the limits of COLR Sections 2.5.1 and 2.6, respectively. Flux map 2 was also used to perform power range detector calibrations. The flux map analyses are documented in References 7, 8, and 9 (for maps 1, 3, and 4. Map 2 is documented in PM-0816, 0A).

In conclusion, the power distribution measurement results were considered to be acceptable with respect to the design tolerances, the accident analysis acceptance criteria, and the COLR. It is therefore anticipated that the core will continue to operate safely throughout Cycle 14.

Table 6.1

NORTH ANNA UNIT 2 - CYCLE 14 STARTUP PHYSICS TESTS INCORE FLUX MAP SUMMARY

	- 	<u> </u>	Burn		Bank	Peak 1	F-Q(Z)	Hot(1)	F-DH	I(N) Hot	Соге	F(Z)	(2)		Axial	No.
Map	Map		up	Pwr	D	1	innel F			nel Factor	M	ax	Core 7	Filt	off	of
- F	•	Date	MWD/	%	Steps	Assy	Axial	F-Q(Z)	Assy	F-DH(N)	Axial	F(Z)	Max	Loc		Thim
Description	1.0.	Duit	MTU				Point				point				(%)	bles
Low Power	1	10/11/99		30	151	N05	28	2.086	E04	1.470	29	1.332	1.0081	NE	0.64	48
Int. Pwr (3)	-	10/12/99	22	43	171	B07	28	1.916	E04	1.429	27	1.250	1.0074	NE	-0.04	48
Int. Pwr (3)	2	10/13/99	56	75	190	B07	36	1.819	E04	1.400	27	1.195	1.0063	NE	-1.24	47
Hot Full Pwr	1	10/20/99	289	100	229	B07	36	1.741	E04	1.364	31	1.141	1.0045	NE	-0.27	48

- NOTES: Hot spot locations are specified by giving assembly locations (E.G. H-8 is the center-of-core assembly) and core height (in the "Z" direction the core is divided into 61 axial points starting from the top of the core).
 - (1) F-Q(Z) includes a total uncertainty of 1.05×1.03 .
 - (2) CORE TILT defined as the average quadrant power tilt from CECOR.
 - (3) Int. Pwr intermediate power flux map.
 - (4) Map 2 was used for power range detector calibrations.

Table 6.2

NORTH ANNA UNIT 2 - CYCLE 14 STARTUP PHYSICS TESTS COMPARISION OF MEASURED POWER DISTRIBUTION PARAMETERS WITH THEIR CORE OPERATING LIMITS

	Peak	$\overline{F-Q(Z)}$	Hot		F-Q(Z) Hot		F-DH(N) Hot		
Map	Channel Factor*			Channel	Factor*	Channel Factor				
				(At No	inimum					
No.	Meas.	Limit	Node	Meas.	Limit	Node	Margin	Meas.	Limit	Margin
							(%)			(%)
1	2.086	4.347	28	2.080	4.325	26	51.9	1.470	1.803	18.5
2	1.916	4.347	28	1.909	4.325	26	55.9	1.429	1.743	18.0
3	1.819	2.937	36	1.808	2.900	26	37.7	1.400	1.604	12.7
4	1.741	2.193	36	1.741	2.193	36	20.6	1.364	1.491	8.5

*The Core Operating Limit for the heat flux hot channel factor, F-Q(Z), is a function of core height and power level. The value for F-Q(Z) listed above is the maximum value of F-Q(Z) in the core. The COLR limit listed above is evaluated at the plane of maximum F-Q(Z).

**The value for F-Q(Z) listed above is the value at the plane of minimum margin. The minimum margin values listed above are the minimum percent difference between the measured values of F-Q(Z) and the COLR limit for each map.

The measured F-Q(Z) hot channel factors include 8.15% total uncertainty.

Figure 6.1 NORTH ANNA UNIT 2 - CYCLE 14 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 30% POWER

R

Р	N	м	L	к	J	н	G	F	E	D	с	в	A			\sim
	. PC	PREDIC MEASURI CT DIFFEI	red . Ed . Rence.			. 0.231 . 0.232 . 0.4	0.257 0.256 -0.4	. 0.231 . 0.234 . 1.2			. PC:	PREDICTED MEASURED DIFFEREN	CE .		1	
				. 0.309 . 0.308 0.5	. 0.646 . 0.646 . 0.0	. 1.047 . 1.053 . 0.6	. 0.825 . 0.834 . 1.2	. 1.043 . 1.061 . 1.7	. 0.645 . 0.664 . 2.9	. 0.307 . . 0.313 . . 1.9 .					2	
			. 0.351 . 0.342 2.5	. 1.162 . 1.154 0.7	. 1.310 . 1.307 0.2	. 1.184 . 1.189 . 0.4	. 1.264 . 1.281 . 1.4	. 1.181 . 1.198 . 1.4	. 1.307 . 1.329 . 1.7	. 1.158 . . 1.175 . . 1.4 .	0.350 0.348 -0.7	•			3	
		. 0.349 . 0.354 . 1.3	. 0.871 . 0.869 0.3	. 1.360 . 1.349 0.8	. 1.273 . 1.266 0.5	. 1.242 . 1.239 0.2	. 1.176 . 1.183 . 0.6	. 1.240 . 1.252 . 0.9	. 1.272 . 1.292 . 1.6	. 1.359 . . 1.380 . . 1.5 .	0.869 0.875 0.6	. 0.348 . . 0.349 .			4	
	. 0.303 . 0.309 . 2.0	. 1.157 . 1.188 . 2.6	. 1.360 . 1.366 . 0.4	. 1.321 . 1.318 0.2	. 1.266 . 1.254 0.9	. 1.168 . 1.154 1.2	. 1.199 . 1.191 0.7	. 1.168 . 1.170 . 0.2	. 1.265 . 1.278 . 1.1	. 1.320 . . 1.349 . . 2.2 .	1.357 1.359 0.1	. 1.155 . . 1.160 . . 0.5 .	0.303 . 0.299 . -1.1 .		5	~
	. 0.642	. 1.305	. 1.272 . 1.268 0.3	. 1.266 . 1.234 . ~2.5	. 1.059 . 1.041 1.7	. 1.203 . 1.179 2.0	. 1.144 . 1.120 2.1	. 1.204 . 1.195 0.7	. 1.059 . 1.061 . 0.2	. 1.265 . . 1.275 . . 0.8 .	1.271 1.278 0.5	. 1.304 . . 1.319 . . 1.1 .	0.642 . 0.656 . 2.3 .		6	-
. 0.230 . 0.231 . 0.4	. 1.041 . 1.050 . 0.9	. 1.180 . 1.190 . 0.9	. 1.240 . 1.235 0.4	. 1.168 . 1.148 1.7	. 1.204 . 1.181 2.0	. 1.212 . 1.180 2.6	. 1.219 . 1.198 1.7	. 1.212 . 1.202 0.9	. 1.203 . 1.198 0.4	. 1.167 . . 1.168 . . 0.1 .	1.239 1.242 0.2	. 1.181 . . 1.202 . . 1.8 .	1.043 . 1.094 . 4.8 .	0.230 . 0.240 . 4.3 .	7	
. 0.257 . 0.253	. 0.823 . 0.830 . 0.9	. 1.262 . 1.276 . 1.1	. 1.175 . 1.172 0.3	. 1.197 . 1.172 2.1	. 1.144 . 1.125 1.7	. 1.218 . 1.198 1.7	. 1.079 . 1.065 1.2	. 1.218 . 1.208 0.8	. 1.144 . 1.133 0.9	. 1.197 . . 1.194 . 0.3 .	1.175 1.180 0.4	. 1.262 . . 1.282 . . 1.6 .	0.823 . 0.848 . 3.1 .	0.257 . 0.263 . 2.5 .	8	
. 0.230 . 0.231 . 0.4	. 1.043 . 1.052 . 0.8	. 1.181 . 1.190 . 0.8	. 1.239 . 1.239 . 0.0	. 1.167 . 1.156 0.9	. 1.202 . 1.190 1.0	. 1.210 . 1.196 1.1	1.214 1.204 -0.8	. 1.210 . 1.208 0.1	. 1.203 . 1.183 1.7	. 1.167 . . 1.160 . 0.6 .	1.239 1.240 0.1	. 1.179 . . 1.190 . . 0.9 .	1.040 . 1.056 . 1.5 .	0.230 . 0.227 . -1.3 .	9	-
	. 0.642 . 0.648 . 0.9	. 1.304 . 1.318	. 1.270 . 1.277 . 0.5	. 1.264 . 1.267 . 0.2	. 1.058 . 1.055 0.2	. 1.202 . 1.190 1.0	. 1.141 . 1.131 0.9	. 1.201 . 1.191 0.8	. 1.058 . 1.047 1.1	. 1.265 . . 1.257 . 0.6 .	1.271 1.269 -0.2	. 1.305 . . 1.309 . . 0.4 .	0.641 0.651 1.5		10	
	. 0.303 . 0.305 0.8	. 1.155	. 1.356 . 1.367 . 0.8	. 1.319 . 1.336 . 1.3	. 1.264 . 1.268 . 0.3	. 1.166 . 1.163 0.3	. 1.197 . 1.183 1.1	. 1.167 . 1.153 1.2	. 1.265 . 1.242 1.7	. 1.320 . . 1.313 . 0.6 .	1.359 1.354 -0.4	. 1.157 . . 1.155 . 0.2 .	0.303 0.304 0.4		11	
		. 0.347 . 0.345 0.9	. 0.869 . 0.874 . 0.6	. 1.358 . 1.368 . 0.7	. 1.271 . 1.277 . 0.5	1.239 1.246 0.5	1.175 . 1.169 0.5	. 1.241 . 1.228 1.0	. 1.272 . 1.251 . - 1.6	. 1.359 . . 1.343 . 1.2 .	0.871 0.864 -0.7	. 0.349 . . 0.343 . 1.7 .			12	~~~
			. 0.350 . 0.352 . 0.5	. 1.157 . 1.164 . 0.6	. 1.306 . 1.311 . 0.4	. 1.180 . 1.182 . 0.2	. 1.263 . 1.256 0.5	. 1.183 . 1.177 0.5	. 1.309 . 1.276 2.5	. 1.161 . . 1.141 . 1.7 .	0.351 0.346 -1.4				13	
				. 0.307 . 0.308	. 0.645 . 0.647	. 1.042 . 1.045	. 0.824 . 0.831	. 1.046 . 1.074	. 0.646 . 0.643	. 0.309 . . 0.305 . 1.4 .		••			14	~
	• • • • •	STANDA DEVIAT =0.79	ION . 7 .			. 0.226 2.0	. 0.257 . 0.258 . 0.5	. 0.236 . 2.2				AVERAGE T DIFFEREN = 1.0			15	_
			• • • • • • • •			~	ummary									
	Cor		2-14-01 d Positior 151 Steps			F-DH	10/11/2 (N) = 2.0 (N) = 1.4)86 170			Powe QPT	er: 30.01 R:	% 0.9964 1.0000		1.0081).9955	
						F(Z) Burnu	= 1.3 1p = 4.8		MTU		A.C). = 0.639)			

NE-1220 N2C14 Startup Physics Tests Report

Page 37 of 57

Figure 6.2 NORTH ANNA UNIT 2 - CYCLE 14 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 75% POWER

R	Р	N	м	L	к	J	н	G	F	E	D	с	В	A		
-		. PC1	PREDICT MEASURE DIFFER	ED. D. ENCE.			. 0.253 . 0.252 0.2	. 0.290 . 0.286 1.3	. 0.253 . 0.253 . 0.0	• • •		. PCT	PREDICTE MEASURED DIFFERE	0. NCE.		1
					0.314 0.311 -0.9	. 0.656 . 0.654 0.3	. 1.081 . 1.082 . 0.1	. 0.919 . 0.920 . 0.1	. 1.078 . 1.082 . 0.4	. 0.656 . 0.659 . 0.6	. 0.312 . 0.314 . 0.5			• • • •		2
-				. 0.352 . 0.341 3.1	1.126 1.113 -1.1	. 1.272 . 1.266 0.5	. 1.181 . 1.185 . 0.4	. 1.271 . 1.277 . 0.5	. 1.178 . 1.185 . 0.5	. 1.270 . 1.278 . 0.6	. 1.123 . 1.129 . 0.6	. 0.351 . 0.345 1.7				3
			0.350 0.352 0.5	. 0.852 . 0.845 0.8	1.305 1.286 -1.5	. 1.239 . 1.229 0.8	. 1.218 . 1.214 0.4	. 1.166 . 1.170 . 0.4	. 1,217 . 1.224 . 0.5	. 1.238 . 1.248 . 0.8	. 1.304 . 1.317 . 1.0	. 0.851 . 0.853 . 0.3	. 0.349 . 0.350 . 0.3			4
		. 0.308 . . 0.311 . . 1.0 .	1.122 1.140 1.6	. 1.305 . 1.306 . 0.1	1.289 1.289 0.0	. 1.258 . 1.247 0.8	. 1.168 . 1.154 1.2	. 1.189 . 1.187 0.2	. 1.168 . 1.173 . 0.5	. 1.258 . 1.270 . 1.0	. 1.288 . 1.314 . 2.0	. 1.303 . 1.304 . 0.1	. 1.120 . 1.126 . 0.5	0.308 0.307 -0.3	•	5
		. 0.652 . . 0.653 .	1.268 1.271	. 1.238 . . 1.230 .	1.259 1.229	. 1.147 . 1.131	. 1.221 . 1.209	. 1.154 . 1.152	. 1.222	. 1.147 . 1.155	. 1.258 . 1.270	. 1.237 . 1.245	. 1.268 . 1.280	0.652		6
_	. 0.253 . 0.251 0.7	. 1.076 . . 1.074 . 0.1 .	1.177 1.176 -0.1	. 1.217 . . 1.210 . 0.6 .	1.168 1.153 -1.3	. 1.222 . 1.209 1.1	. 1.231 . 1.219 0.9	. 1.232 . 1.229 0.3	. 1.231 . . 1.232 . . 0.1 .	1.222 1.227 0.4	. 1.167 . 1.173 . 0.5	. 1.217 . 1.221 . 0.3	. 1.179 . . 1.193 . . 1.2 .	1.079 . 1.116 . 3.4 .	0.252 0.260 2.8	. 7
	0.290 0.282 -2.6	. 0.918 . . 0.915 . 0.3 .	1.269 1.275 0.4	. 1.165 . 1.162 0.3	1.188 1.174 -1.2	. 1.154 . 1.147 0.6	. 1.232 . 1.227 0.4	. 1.093 . 1.091 0.2	. 1.232 . . 1.232 . . 0.0 .	1.154 1.158 0.4	. 1.188 . 1.191 . 0.2	1.165 1.168	. 1.269 . 1.274 . 0.4	0.918 . 0.928 . 1 0	0.290 0.292 0.7	. 8
~	. 0.252 . C.251 0.6	. 1.079 . . 1.079 . . 0.0 .	1.179 1.181 0.2	. 1.217 . . 1.219 . . 0.2 .	1.167 1.172 0.4	. 1.221 . 1.221 . 0.0	. 1.229 . 1.229 . 0.0	. 1.228 . 1.227 0.1	1.228 1.225 -0.3	1.222 1.213 -0.7	. 1.167 . 1.165 0.2	1.217 1.216 -0.1	. 1.177 . 1.180 . 0.2	1.076 1.080 0.4	0.253 0.245 -2.9	 . 9
-		0.652 . 0.653 . 0.1 .	1.268 1.270 0.1	. 1.237 . . 1.242 . . 0.4 .	1.257 1.265 0.6	. 1.147 . 1.150 . 0.3	. 1.220 . 1.226 . 0.5	. 1.152 . 1.152 . 0.0	. 1.219 . . 1.213 . 0.5 .	1.147 1.136 -0.9	. 1.258 . 1.253 0.4	1.238 1.233 -0.4	. 1.268 . . 1.269 . . 0.1	0.652.		10
-		0.308 . 0.308 . 0.2 .	1.120 1.124 0.3	. 1.302 . . 1.311 . . 0.7 .	1.288 1.304 1.3	. 1.257 . 1.265 . 0.6	. 1.167 . 1.171 . 0.4	. 1.188 . 1.186 0.1	. 1.167 . . 1.158 . 0.7 .	1.258 1.237 -1.6	. 1.289 . 1.288 0.1	1.305 1.305 0.0	. 1.122 . . 1.121 . . 0.0 .	0.308.		11
			0.349 0.347 -0.4	. 0.851 . . 0.856 . . 0.6 .	1.304 1.314 0.8	. 1.237 . 1.245 . 0.6	. 1.217 . 1.222 . 0.5	. 1.165 . 1.163 0.2	. 1.218 . . 1.209 . 0.7 .	1.238 1.223 -1.3	. 1.304 . 1.298 0.5	0.852	0.350 . 0.345 . -1.4 .			12
-				. 0.351 . . 0.353 . . 0.6 .	1.122 1.129 0.6	. 1.270 . 1.275 . 5.4	1.178 . 1.176 . . 0.0	. 1.270 1.262 -0.7	. 1.18C . . 1.173 . 0.6 .	1.272 1.243 -2.3	. 1.125 . 1.112 1.2	0.352 0.351 -0.4				13
-					0.312	. 0.655 . 0.656	. 1.077 . 1.075	. 0.919 . 0.918	. 1.080 . . 1.097 . . 1.5 .	C.656 0.652	. 0.314					14
-			STANDARI DEVIATIO =0.672	. ИС			. 0.244 3.6	. 0.289 0.4	0.253 . 0.256 . 1.1 .		• • • • • • • • • • • • • • • • • • •		AVERAGE DIFFEREN = 0.7	•		15
							Su	mmary								
		Conu		Position:			F-Q(Z)	10/13/9 = 1.8	19			Power QPTR	: 74.57°	0.9954		1.0063
		17 121	nik at 15	0 Steps			F(Z)	N) = 1.4 = 1.1 = 55.		MTU		A.O.	= -1.23	1.0015 9	().9968

NE-1220 N2C14 Startup Physics Tests Report

Page 38 of 57

Figure 6.3 NORTH ANNA UNIT 2 - CYCLE 14 STARTUP PHYSICS TESTS ASSEMBLYWISE POWER DISTRIBUTION 100% POWER

R	P	N	м	L	к	J	н	G	F	E	D	с	в	A		
		DICTED				0.265 . 0.264 .	0.308 0.306 -0.6	0.265 . 0.266 . 0.2 .			. M .PCT	REDICTED EASURED DIFFERENC			1	
				0.316 .	0.658 .	1.085 .	0.964 0.964	. 1.082 . . 1.087 . . 0.4 .	0.658 . 0.667 . 1.3 .	0.314 . 0.317 . 0.8 .				·	2	
		•	0.353 .	1.099 .	1.247 .	1.173 .	1.268	. 1.171 . . 1.174 . . 0.2 .	1.245 .	1.103	0.349 .	•			3	_
	. 0 . 0	.351 .	0.843 . 0.836 .	1.275 .	1.221	1.209 .	1.162	. 1.208 . . 1.211 .	1.220 1.227 0.6	1.275 . 1.285 . 0.8 .	0.842 . 0.841 . -0.1 .	0.350.			4	
	. 0.311 . 1 . 0.314 . 1 . 1.2 .	.096 . .116 .	1.275 . 1.274 .	1.273	. 1.261	1.173	. 1.191	. 1.176 .	1.271	. 1.297 .	1.264	. 1.095 .	0.313		5	~
	. 0.655 . 1 . 0.656 . 1	.244 . .246 .	1.220	1.261	. 1.207	1.23B 1.230	. 1.165 . 1.159 0 5	. 1.239 . . 1.241 .	1.206 1.213	. 1.261 . . 1.270 . . 0.7	1.220 1.222 0.2	. 1.244 . . 1.250 . . 0.5 .	0.655 0.665 1.5	•	6	~
. 0.265 . 0.264 0.5	. 1.080 . 1 . 1.079 . 1 0.2 .	.170 . .167 . -0.2 .	1.208 1.198 -0.8	1.173 1.157 -1.4	. 1.240 . 1.229 0.9	. 1.243 . 1.239 0.3	. 1.242 . 1.241 0.1	. 1.244 . . 1.247 . . 0.3 .	1.239 1.244 0.4	. 1.173 . 1.178 . 0.4	1.208 1.209 0.1	. 1.171 . . 1.181 . . 0.8 .	1.083 1.115 2.9	. 0.264 . . 0.270 . . 2.3 .	7	
. 0.308 . 0.304 1.5	. 0.963 . 1 . 0.960 . 1 0.3 .	.267 . .265 . -0.2 .	1.162 1.155 -0.6	. 1.190 . 1.174 1.3	. 1.166 . 1.159 0.6	. 1.242 . 1.240 0.1	. 1.109	. 1.250 . . 0.6 .	1.171	. 1.192 . 0.2	. 1.163 . 0.1	. 1.266 .	0.971 0.8	. 0.309 .	8	
. 0.264	. 1.083 . 1 . 1.079 . 1		1.208 1.206	. 1. 173 . 1.177	. 1.238 . 1.239	. 1.242 . 1.243	. 1.239	1.242	1.239	. 1.173	. 1.208	. 1.170 . . 1.173 .	1.080 1.087 0.6	. 0.265 . 0.258 2.5	9	
	. 0.655 . 1 . 0.652 . 1	243	1.220	. 1.260 . 1.266	. 1.206 . 1.209	. 1.238 . 1.237	. 1.164	. 1.237	. 1.206 . 1.201 -0.4	. 1.261 . 1.260 -0.1	. 1.220 . 1.221 . 0.1	. 1.244 . 1.251 . 0.6	0.655 0.668 2.0		10	
	-0.5 0.310 1 0.310 1 0.2	094 . 095 .	1.273 1.280	. 1.272	. 1.260	. 1.173	. 1.190	. 1.167	. 1.244	. 1.277	. 1.282	. 1.102	0.314	•	11	<u> </u>
	. (0.350 0.353	. 0.842	. 1.274	. 1.220	. 1.208	. 1.156	. 1.208	. 1.209	. 1.274	. 0.857	. 0.351			12	
			. 0.352	. 1.097 . 1.102	. 1.245 . 1.248	. 1.1/1 . 1.167	. 1.258	. 1.173 . 1.166 0.6	. 1.223 . 1.9	. 1.091 0.8	. 0.354	•			13	
				0 314	. 0.658	. 1.082	. 0.964	. 1.085 . 1.104 . 1.8	. 0.658	. 0.316					14	~
	. D:	TANDARI EVIATI =0.586	ON .			. 0.258 2.6	. 0.307 0.3	. 0.265 . 0.268 . 1.3				AVERAGE I DIFFERE = 0.6	NCE .		15	
							Summar									
	Cont	rol Ro	2-14-04 d Positi	on:			(Z) = 1 (H(N) = 1	.741			Pow QPT	/er: 99.8 FR: -	8% 0.99 1.00		1.0045	_
	D Ba	unkat.	229 Stej	72		F(Z)	=	1.141 289 MWI	D/MTU		A.	O. = -0.2		,		-

NE-1220 N2C14 Startup Physics Tests Report

Page 39 of 57

SECTION 7

REFERENCES

- 1. M. A. Hofmann. "North Anna Unit 2, Cycle 14 Design Report". Technical Report NE-1212, Revision 0, Virginia Power, September, 1999.
- 2. T. K. Ross, W. C. Beck, "Control Rod Reactivity Worth Determination By The Rod Swap Technique," VEP-FRD-36A, December, 1980.
- 3. T. W. Schleicher, "The Virginia Power CECOR Code Package", Technical Report NE-831, Revision 4, Virginia Power, August, 1998.
- 4. North Anna Unit 2 Technical Specifications, Sections 1.19, 3.1.3.4, 3.2.2, 3.2.3, 3.1.1.4, 4.1.1.1.2, and 4.2.2.2 and Core Operating Limits Report (COLR) for North Anna 1, Cycle 14 Pattern XY, Revision 0 (September, 1998) Sections 2.1.1, 2.5.1, and 2.6.
- Letter from W. L. Stewart (Virginia Power) to the U.S.N.R.C, "Surry Power Station Units 1 and 2, North Anna Power Station Units 1 and 2: Modification of Startup Physics Test Program - Inspector Followup Item 280, 281/88-29-01", Serial No. 89-541. December 8, 1989.
- 6. C. D. Clemens, "North Anna 2, Cycle 14 TOTE Calculations", PM-0814, Revision 0, October, 1999.
- 7. R. A. Hall, "North Anna 2, Cycle 14 Flux Map Analysis", PM-0816, Revision 0, October, 1999.
- 8. P. D. Banning, "North Anna 2. Cycle 14 Flux Map Analysis", PM-0816, Revision 0, Add. B. October, 1999.
- 9. R. A. Wright, "North Anna 2, Cycle 14 Flux Map Analysis", PM-0816, Revision 0, Add. C. October, 1999.
- 10. D. M. Knee, "Reload Safety Evaluation, North Anna 2 Cycle 14 Pattern SU", Technical Report NE-1210, Revision 0, September, 1999.
- Engineering Transmittal NAF 99-0102, Revision 0, from W. M. Oppenhimer to D. A. Sommers, "Approved Core Operating Limits Report, North Anna 2 Cycle 14", October 7, 1999.
- NE-1220 N2C14 Startup Physics Tests Report

APPENDIX

STARTUP PHYSICS TEST RESULTS AND EVALUATION SHEETS

<u> </u>	Test Description: Zero Power	Festing Rai	nge Determination			
Reference	Proc No / Section: 2-PT	-	5			
	Bank Positions (Steps)		RCS Temperature (^O F): 547			
Test			Power Level (% F.P.): 0			
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):			
(Design)	CB: 229 CC: * CD:	*	Below Nuclear Heating			
III	Bank Positions (Steps)		RCS Temperature (°F): 547.6			
Test			Power Level (% F.P.): 0			
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):			
(Actual)	CB: 229 CC: 229 CD:	93	Below Nuclear Heating			
	Date/Time Test Performed:					
	10/9/99 16:2	20				
	Reactivity Computer Initial		_4			
	Flux Background Reading		1.2×10 amps			
IV						
Test						
Results	Flux Reading At		~7			
	Point Of Nuclear Heating	4	5.0 x10 amps			
		-8	- 5			
	Zero Power Testing Range	1410	to <u>loxio</u> amps			
	Reference	Not Applic	cable			
V	FSAR/Tech Spec	Not Applic	able			
Acceptance	· · · · · · · · · · · · · · · · · · ·					
Criteria	Reference	Not Applic	cable			
	Decign Tolornas is matter					
	Design Tolerance is met** : ·					
VI	Acceptance Criteria is met** : * At The Just Critical Position		<u>S</u> <u>NO</u>			
		tonos C-it				
Comments	** Design Tolerance and Acceptance Criteria are met if ZPTR is below the Point of Nuclear Heating and above background.					
	is below the Point of Nuclear	nealing a	nu above background.			
L						

Prepared By: _

thomas 8. Pml

Reviewed By:

NE-1220 N2C14 Startup Physics Tests Report

Page 42 of 57

1	Test Description: Reactivity Co	omputer Checkout					
Reference	Proc No / Section: 2-PT-						
. 11	Bank Positions (Steps)	RCS Temperature (^O F): 547					
Test		Power Level (% F.P.): 0					
Conditions	SDA: 229 SDB: 229 CA:	229 Other (specify):					
(Design)	CB: 229 CC: * CD:	* Below Nuclear Heating					
111	Bank Positions (Steps)	RCS Temperature (^O F): 547.6					
Test		Power Level (% F.P.): 0					
Conditions	SDA: 229 SDB: 229 CA:	229 Other (specify):					
(Actual)	CB: 229 CC: 229 CD:	Selow Nuclear Heating					
	Date/Time Test Performed:						
	1019199 11	: 00					
	Manager and Descent atom						
	Measured Parameter	Pc= Measured Reactivity using ρ-computer					
	(Description)	ρ _t = Predicted Reactivity					
IV .							
Test Results	Measured Value	0= -44 00cm , +50, Spcm					
results		ρ _c = -44.0pcm , +50.5pcm ρ= -45.3pcm , +51.0pcm					
		%D= -2.1%, -1.0%					
	Design Value	%D= {($\rho_c - \rho_t$)/ ρ_t } x 100% ≤ 4.0 %					
	Reference	WCAP 7905, Rev. 1, Table 3.6					
V	FSAR/Tech Spec	Not Applicable					
Acceptance							
Criteria	Reference	Not Applicable					
	Design Tolerance is met :	YESNO					
	Acceptance Criteria is met :	YES NO					
VI	* At The Just Critical Position						
Comments	The allowable range will be	set based on the above results.					
	l č						
	Allowable R	lange = -44.0 pcm to +50.0 pcm					
L							

Prepared By: Thomas S. Put

Reviewed By: ______

NE-1220 N2C14 Startup Physics Tests Report

Page 43 of 57

	Test Description: Critical Boron	Concentration - ARO				
Reference	Proc No / Section: 2-PT-9	94.0				
· []	Bank Positions (Steps)	RCS Temperature (^O F): 547				
Test		Power Level (% F.P.): 0				
Conditions	SDA: 229 SDB: 229 CA:	229 Other (specify):				
(Design)	CB: 229 CC: 229 CD:	229 Below Nuclear Heating				
1	Bank Positions (Steps)	RCS Temperature (^O F):				
Test		Power Level (% F.P.): 0 579 0				
Conditions	SDA: 229 SDB: 229 CA:	229 Other (specify):				
(Actual)	CB: 229 CC: 229 CD:	229 Below Nuclear Heating				
	Date/Time Test Performed: 10 9 タタ ノスとう					
IV	Measured Parameter (Description)	(C _B) ^M _{ARO} ; Critical Boron Concentration - ARO				
Test Results	Measured Value (Design Conditions)	(C _B) ^M _{ARO} = 2/4/ ppm				
· · · · · · · · · · · · · · · · · · ·	Design Value (Design Conditions)	С _в = 2118 _± 50 ppm				
	Reference	Technical Report NE-1212, Rev. 0				
V	FSAR/Tech Spec	$ \alpha C_B \times C_B^D \le 1000 \text{ pcm}$				
Acceptance						
Criteria	Reference	Technical Specification 4.1.1.1.2				
	Design Tolerance is met :	YES NO				
	Acceptance Criteria is met :	YES NO				
VI Comments	$\alpha C_{B} = -6.51 \text{ pcm/ppm}$ $C_{B}^{D} = I(C_{B})^{M}_{ABO} - C_{B}I; C_{B}$	is design value				

Prepared By:

Reviewed By: Thom S.M.

NE-1220 N2C14 Startup Physics Tests Report

Page 44 of 57

	Test Description: Isothermal Te	mperature	Coefficient - ARO
Reference	Proc No / Section: 2-PT-		
	Bank Positions (Steps)		RCS Temperature (^O F): 547
Test			Power Level (% F.P.): 0
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):
(Design)	CB: 229 CC: 229 CD:	229	Below Nuclear Heating
	Bank Positions (Steps)		RCS Temperature (^o F): Power Level (% F.P.): 0 ^ታ ቻዩ.
Test			Power Level (% F.P.): 0 78.7
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):
(Actual)	CB: 229 CC: 229 CD:	2/1	Below Nuclear Heating
	Date/Time Test Performed:		
	10/9/99 21:10		
	, ,		150.
	Measured Parameter	(α _τ	ISO) _{ARO} ; Isothermal Temperature
	(Description)		Coefficient - ARO
IV			
Test	Measured Value	(α _Τ	
Results			(C _B = 2/35 ⁻ ppin)
	Design Value		
	(Actual Conditions)	(α _Τ	
			(OB- (132 bb(u))
	Design Value	,	
	(Design Conditions)	(α _T	$^{ISO})_{ARO} = -2.82 \pm 3.0 \text{ pcm/}^{O}\text{F}$ (C _B = 2118 ppm)
	Reference		Report NE-1212, Rev. 0
V	FSAR/COLR	1 .	75 pcm/ ⁰ F *
Acceptance			.75 pcm/ ⁰ F
Criteria	Reference	COLR 2.1	.1, Technical Report NE-1212, Rev. 0
	Design Tolerance is met :	V/YE	·····
	Acceptance Criteria is met :	V YE	S NO
VI		•	
Comments	*Uncertainty on $\alpha T_{MOD} = 0.5 \text{ pc}$		
	C.T. Snow to E.J. Lozito date	d June 27,	1980.)
			· · · · · · · · · · · · · · · · · · ·

Prepared By: <u>Ask Start</u>.

Reviewed By: Thomas S. Min

NE-1220 N2C14 Startup Physics Tests Report

Page 45 of 57

1	Test Description: Critical Boror	Concentration - B Bank In					
Reference	Proc No / Section: 2-PT						
11	Bank Positions (Steps)	RCS Temperature (^O F): 547					
Test		Power Level (% F.P.): 0					
Conditions	SDA: 229 SDB: 229 CA:	229 Other (specify):					
(Design)	CB: 0 CC: 229 CD:	229 Below Nuclear Heating					
	Bank Positions (Steps)	RCS Temperature (⁰ F): 547.5					
Test		Power Level (% F.P.): 0					
Conditions	SDA: 229 SDB: 229 CA:	229 Other (specify):					
(Actual)	CB: 0 CC: 229 CD:	229 Below Nuclear Heating					
	Date/Time Test Performed:						
	10/10/99 0230						
	Measured Parameter	$(C_B)^{M}_{B}$; Critical Boron Concentration,					
	(Description)	B Bank In					
IV		· ·					
Test							
Results	Measured Value	$(C_B)_B^M = 1949 \text{ ppm}$					
	(Design Conditions)						
	Design Value						
	(Design Conditions)	$C_{B} = 1925 + \Delta C_{B}^{Prev} = (10 + 126.3/ \alpha C_{B}) ppm$					
	(Design Conditions)	C _B = 1948 ± 29 ppm					
	Reference	Technical Report NE-1212, Rev. 0					
V		Not Applicable					
Acceptance		i i i i i i i i i i i i i i i i i i i					
Criteria	Reference	Not Applicable					
	Design Tolerance is met :	YES NO					
	Acceptance Criteria is met :	YES NO					
¹ VI							
Comments	$\alpha C_B = -6.54 \text{ pcm/pp}$	m					
	$\Delta C_{\rm B}^{\rm Prev} = (C_{\rm B})^{\rm M}_{\rm ABO} - 2118 \rm ppm$						

Prepared By: Move A

Reviewed By: Chinese S. Comen

NE-1220 N2C14 Startup Physics Tests Report

Page 46 of 57

1	Test Description: HZP Boron W	Vorth Coeff	icient Measurement
Reference	Proc No / Section: 2-PT-	-94.0	· · · · · · · · · · · · · · · · · · ·
1	Bank Positions (Steps)		RCS Temperature (^O F): 547
Test			Power Level (% F.P.): 0
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):
(Design)	CB: moving CC: 229 CD:	229	Below Nuclear Heating
111	Bank Positions (Steps)		RCS Temperature (^o F): S49.0
Test			Power Level (% F.P.): 0
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):
(Actual)	CB: moving CC: 229 CD:	229	Below Nuclear Heating
	Date/Time Test Performed:		
MAH	+ 10/10/99 10/9/99 2	025	
	Measured Parameter	αC _B ;	Boron Worth Coefficient
		μOg,	Boron worth Coencient
	(Description)		
IV	· · · · · · · · · · · · · · · · · · ·		
Test Results	Measured Value	$\alpha C_{\alpha} = -$	6.67 pcm/ppm
nesuits		~~g =	
		· · ·	
	Design Value	αC _B =	-6.54 ± 0.65 pcm/ppm
	(Design Conditions)		- 1 11
	Reference	Technical	Report NE-1212, Rev. 0
V	FSAR/Tech Spec	Not Applic	cable
Acceptance			
Criteria	Reference	Not Applic	cable
	Design Tolerance is met :	YE	SNO
	Acceptance Criteria is met :	YE	S <u>NO</u>
VI			
Comments			

Prepared By: Marc A

Reviewed By: Churchard A. Com

NE-1220 N2C14 Startup Physics Tests Report

Page 47 of 57

I	Test Description: Control Bank	B Worth M	easurement, Rod Swap Ref. Bank
Reference	Proc No / Section: 2-PT	-94.0	
11	Bank Positions (Steps)		RCS Temperature (^O F): 547
Test			Power Level (% F.P.): 0
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):
(Design)	CB: moving CC: 229 CD:		Below Nuclear Heating
111	Bank Positions (Steps)		RCS Temperature (^o F): 547.6
Test			Power Level (% F.P.): 0
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):
(Actual)	CB: moving CC: 229 CD:	229	Below Nuclear Heating
	Date/Time Test Performed:		-
	10/9/99 22:15		
	Measured Parameter	IBREF; Inte	gral Worth Of Control Bank B,
	(Description)	1	Other Rods Out
IV			
Test	Measured Value	IBREF /	2 <i>80.5</i> pcm
Results			
	Design Value		
	(Design Conditions)	$I_B^{REF} = 126$	3 ± 126 pcm
			· .
	Reference	Technical R	eport NE-1212, Rev. 0
		and Engine	ering Transmittal NAF 99-0107, Rev. 0
		If Design To	lerance is exceeded, SNSOC shall
V	FSAR/Tech Spec	evaluate im	pact of test result on safety analysis.
Acceptance		SNSOC ma	y specify that additional testing
Criteria		be performe	
	Reference	VEP-FRD-	36A
	Design Tolerance is met :	X YES	6 NO
	Acceptance Criteria is met :	X YES	NO
VI			
Comments			

Prepared By: Chintyle D. Clainen

Reviewed By: Marc A 14

NE-1220 N2C14 Startup Physics Tests Report -

Page 48 of 57

I	Test Description: Control Bank	D Worth M	feasurement, Rod Swap	
Reference	Proc No / Section: 2-PT-	94.0		
11	Bank Positions (Steps)		RCS Temperature (⁰ F): 547	
Test			Power Level (% F.P.): 0	
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):	
(Design)	CB: moving CC: 229 CD:	moving	Below Nuclear Heating	
111	Bank Positions (Steps)	RCS Temperature (^o F): 547.4		
Test			Power Level (% F.P.): 0	
Conditions	SDA: 229 SDB: 229 CA:	229	Other (specify):	
(Actual)	CB: moving CC: 229 CD:	moving	Below Nuclear Heating	
	Date/Time Test Performed: ノロノロノタロンンストの			
	Measured Parameter I _D ^{RS} ; (Description)		Integral Worth of Control Bank D, Rod Swap	
IV Test	Measured Value	$I_D^{RS} = 993.3$ (Adjusted Measured Critical Reference Bank Position = 169.5 steps)		
Results	Design Value (Actual Conditions)	ID ^{RS} =	1016.5 (Adjusted Measured Critical Reference Bank Position = 169.5 steps)	
	Design Value (Design Conditions)	-	1016 ± 152 pcm eference Bank Position = 177 steps)	
	Reference	Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A		
	FSAR/Tech Spec		olerance is exceeded, SNSOC shall	
V		-	npact of test result on safety analysis.	
Acceptance			ay specify that additional testing	
Criteria		be perform		
	Reference	VEP-FRD		
	Design Tolerance is met :	YE		
	Acceptance Criteria is met :	VE YE		
VI Comments				

Prepared By: Marc A. H \sim

Reviewed By: Mintylen N. Cla

Page 49 of 57

I	Test Description: Control Bar	k C Worth I	Measurement Red Swee
Reference	Proc No / Section: 2-P	T-94.0	Nedsulement, Hou Swap
	Bank Positions (Steps)		RCS Temperature (⁰ F): 547
Test			Power Level (% F.P.): 0
Conditions	SDA: 229 SDB: 229 CA	: 229	Other (specify):
(Design)	CB: moving CC: moving CD	: 229	Below Nuclear Heating
111	Bank Positions (Steps)	·····	RCS Temperature (°F): 547.4
Test			Power Level (% F.P.): 0
Conditions	SDA: 229 SDB: 229 CA	229	Other (specify):
(Actual)	CB: moving CC: moving CD	229	Below Nuclear Heating
	Date/Time Test Performed:		
	10 10 99 0344		
	Measured Parameter	Ic ^{RS} ;	Integral Worth of Control Bank C,
	(Description)		Rod Swap
IV T	Measured Value	$I_{C}^{HS} =$	810.9 (Adjusted Measured Critical
Test			Reference Bank Position = 140.0 steps)
Results	Design Value		
	(Actual Conditions)		833.8 (Adjusted Measured Critical
		<u> </u>	Reference Bank Position = I40.0 steps)
	Design Value	00	
	(Design Conditions)		831 <u>-</u> 125 pcm
			erence Bank Position = 147 steps)
	Reference		ansmittal NAF 99-0107. Rev. 0. VEP-FRD-36A
V	FSAR/Tech Spec		lerance is exceeded, SNSOC shall
Acceptance		evaluate imp	pact of test result on safety analysis.
Criteria			y specify that additional testing
Cinteria	Reference	be performe	
		VEP-FRD-	
	Design Tolerance is met :	YES	110
VI	Acceptance Criteria is met :	VES	NO
Comments			
			·

Prepared By: Marc A.

Reviewed By: Christoph O. C.C.

Page 50 of 57

	Test Description: Control Bank	A Worth M	Aeasurement, Rod Swap		
Reference	Proc No / Section: 2-PT-				
	Bank Positions (Steps)		RCS Temperature (^o F): 547		
Test			Power Level (% F.P.): 0		
Conditions	SDA: 229 SDB: 229 CA:	moving	Other (specify):		
(Design)	CB: moving CC: 229 CD:	229	Below Nuclear Heating		
111	Bank Positions (Steps)		RCS Temperature (°F): 547.45 CA		
Test			Power Level (% F.P.): 0		
Conditions	SDA: 229 SDB: 229 CA:	moving	Other (specify):		
(Actual)	CB: moving CC: 229 CD:	229	Below Nuclear Heating		
	Date/Time Test Performed:				
	10/10/99 04/6				
			<u> </u>		
	Measured Parameter	I _A RS;	Integral Worth of Control Bank A,		
	(Description)	Rod Swap			
IV	Measured Value	$I_A^{RS} = 329.6$ (Adjusted Measured Critical			
Test		Reference Bank Position = 76 steps)			
Results	Design Value				
	(Actual Conditions)	$I_A^{RS} = 3/7.6$ (Adjusted Measured Critical			
			Reference Bank Position = 76 steps)		
	Design Value				
	(Design Conditions)	$I_{A}^{RS} = 313 \pm 100 \text{ pcm}$			
		(Critical R	eference Bank Position = 76 steps)		
	Reference	Engineering	ngineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A		
	FSAR/Tech Spec	If Design 1	Folerance is exceeded, SNSOC shall		
V		evaluate ir	mpact of test result on safety analysis.		
Acceptance		SNSOC m	ay specify that additional testing		
Criteria		be perforn	ned.		
	Reference	VEP-FR	D-36A		
	Design Tolerance is met :		SNO		
	Acceptance Criteria is met :		IS NO		
VI VI					
Comments					
	•				

Prepared By: Christophy A. Commen

Reviewed By: Marc, A . [

Page 51 of 57

Reference Proc No / Section: 2-PT-94.0 II Bank Positions (Steps) RCS Temperature (⁰ F): 547 Test Power Level (% F.P.): 0 Other (specify): Conditions SDA: 229 SDB: moving CA: 229 III Bank Positions (Steps) RCS Temperature (⁰ F): 547 Power Level (% F.P.): 0 Conditions SDA: 229 SDB: moving CA: 229 Catual) CB: moving CC: 229 Other (specify): Measured Parameter Iss ^{RS} ; Integral Worth of Shutdown Bank B, (Description) Rod Swap ///0?./ //0?./ IV Measured Value Iss ^{RS} ; Integral Worth of Shutdown Bank B, (Design Value Iss ^{RS} ; Iss ^{RS} ; (Adjusted Measured Critical Reference Bank Position = /%? steps) Design Value Iss ^{RS} = 1140 = 171 pcm (Critica	I	Test Description: Shutdown Ba	ank B Wort	h Measurement, Rod Swap		
Test Power Level (% F.P.): 0 Conditions SDA: 229 SDB: moving CA: 229 Other (specify): Bank Positions (Steps) Bank Positions (Steps) RCS Temperature (°F): 547, 4/ III Bank Positions (Steps) RCS Temperature (°F): 547, 4/ Conditions SDA: 229 SDB: moving CA: 229 Other (specify): Conditions SDA: 229 SDB: moving CA: 229 Other (specify): (Actual) CB: moving CC: 229 CD: 229 Design Tolerance (Description) CB: moving CC: 229 CD: 229 Below Nuclear Heating Neasured Parameter Isg ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap (Description) Rod Swap IV Measured Value Isg ^{RS} = 1/2577 Results Design Value Isg ^{RS} = 1140 = 171 pcm (Actual Conditions) Isg ^{RS} = 1140 = 171 pcm (Critical Reference Bank Position = 197 steps) Reference Reference Engineering Transmital NAF 99-0107, Rev. 0, VEP-FRD-36A V SNSOC may specify that additional testing V Reference VEP-FRD-36A Portical Reference VEP-FRD-36A V Reference VEP-FRD-36A V </td <td>Reference</td> <td>Proc No / Section: 2-PT</td> <td>-94.0</td> <td></td>	Reference	Proc No / Section: 2-PT	-94.0			
Conditions SDA: 229 SDB: moving CA: 229 Other (specify): Below Nuclear Heating III Bank Positions (Steps) RCS Temperature (⁰ F): 547, 47 Test Power Level (% F.P.): 0 Other (specify): Below Nuclear Heating Conditions SDA: 229 SDB: moving CA: 229 Other (specify): Below Nuclear Heating Conditions SDA: 229 SDB: moving CA: 229 Other (specify): Below Nuclear Heating Conditions SDA: 229 SDB: moving CA: 229 Other (specify): Below Nuclear Heating Date/Time Test Performed: Isback Isback Date/Time Test Performed: Isback IV Measured Parameter (Description) Isback Isback IV Measured Value Isback Isback IV Design Value Isback Isback IV Isback	l II -	Bank Positions (Steps)		RCS Temperature (^O F): 547		
(Design) CB: moving CC: 229 CD: 229 Below Nuclear Heating III Bank Positions (Steps) RCS Temperature (⁰ F): 547, 47 Test SDA: 229 SDB: moving CA: 229 Conditions SDA: 229 SDB: moving CA: 229 (Actual) CB: moving CC: 229 CD: 229 Date/Time Test Performed: 13/3/3/99 O44465 O44465 Measured Parameter Isg ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap IV Measured Value 1/02.1 CHOMANT Test Design Value Isg ^{RS} = 1123.7.4 (Adjusted Measured Critical Reference Bank Position = /35 steps) Design Value Isg ^{RS} = 1140 = 171 pcm (Critical Reference Bank Position = 197 steps) Design Value Isgin Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. V Reference VEP-FRD-36A VI Design Tolerance is met : V Reference Criteria is met : V YES NO	Test			Power Level (% F.P.): 0		
III Bank Positions (Steps) RCS Temperature (°F;: 5*7, 4' Test SDA: 229 SDB: moving CA: 229 Other (specify): (Actual) CB: moving CC: 229 CD: 229 Below Nuclear Heating Date/Time Test Performed: Isp ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap IV Measured Parameter (Description) Isp ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap IV Measured Value Isp ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap IV Measured Value Isp ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap IV Measured Value Isp ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap IV Measured Value Isp ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap IV Measured Value Isp ^{RS} = 1/25 (Adjusted Measured Critical Reference Bank Position = 195 steps) Design Value (Design Conditions) Isp ^{RS} = 1140 = 171 pcm (Critical Reference Bank Position = 197 steps) Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A V FSAR/Tech Spec If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing * V Reference VEP-FRD-36A V Reference VEP-FRD-36A Design Tolerance is	Conditions	SDA: 229 SDB: moving CA:	229	Other (specify):		
Test Power Level (% F.P.): 0 Conditions SDA: 229 SDB: moving CA: 229 Other (specify): (Actual) CB: moving CC: 229 CD: 229 Below Nuclear Heating Date/Time Test Performed: ///0?/99 Other (specify): Measured Parameter Isg ^{RS} ; Integral Worth of Shutdown Bank B, (Description) Rod Swap IV Measured Value I/0?./2/97 //0?./2/97 Test Design Value Isg ^{RS} / //2/97 (Adjusted Measured Critical Reference Bank Position = /87 steps) Design Value (Design Conditions) Isg ^{RS} / /35. $(Adjusted Measured CriticalReference Bank Position = //37 steps) Design Value(Design Conditions) IsgRS = 1140 = 171 pcm(Critical Reference Bank Position = 197 steps) Reference Engineering Transmital NAF 99-0107. Rev. 0, VEP-FRD-36A V FSAR/Tech Spec If Design Tolerance is exceeded, SNSOC shallevaluate impact of test result on safety analysis.SNSOC may specify that additional testingbe performed. Reference VEP-FRD-36A Design Tolerance is met : _V Acceptance Criteria is met : _V Vi NO $	(Design)	CB: moving CC: 229 CD:	229	Below Nuclear Heating		
Conditions SDA: 229 SDB: moving CA: 229 (Actual) Other (specify): Below Nuclear Heating Date/Time Test Performed: ISB ^{RS} Date/Time Test Performed: ISB ^{RS} Date/Time Test Performed: ISB ^{RS} IV Measured Parameter (Description) IsB ^{RS} Integral Worth of Shutdown Bank B, Rod Swap IV Measured Value ISB ^{RS} Integral Worth of Shutdown Bank B, Rod Swap IV Measured Value ISB ^{RS} ISB ^{RS} Ist State Results Design Value (Actual Conditions) IsB ^{RS} ISB ^{RS} (Adjusted Measured Critical Reference Bank Position = /%% steps) Design Value (Design Conditions) ISB ^{RS} 1140 = 171 pcm (Critical Reference Bank Position = 197 steps) Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A FSAR/Tech Spec If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. Reference VEP-FRD-36A VEP-FRD-36A Design Tolerance is met Y YES NO Acceptance Criteria Design Tolerance is met Y YES NO VI Design Tolerance is met Y YES NO	111	Bank Positions (Steps)	RCS Temperature (^O F): 547, 4			
(Actual) CB: moving CC: 229 CD: 229 Below Nuclear Heating Date/Time Test Performed: 13/13/94 C4465 Below Nuclear Heating IV Measured Parameter Ise ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap IV Measured Value 1/07.1 C42677 Test Reference Bank Position = 1/85 steps) Design Value Ise ^{RS} = 1/35 2 (Adjusted Measured Critical Reference Bank Position = 1/85 steps) Design Value Ise ^{RS} = 1140 = 171 pcm (Critical Reference Bank Position = 197 steps) Engineering Transmital NAF 99-0107, Rev. 0, VEP-FRD-36A V Reference Engineering Transmital NAF 99-0107, Rev. 0, VEP-FRD-36A V SNSOC may specify that additional testing be performed. Reference VEP-FRD-36A Design Tolerance is met : YES Design Tolerance is met : YES VI Acceptance Criteria is met : YES	Test			Power Level (% F.P.): 0		
V Measured Parameter (Description) IsB ^{RS} , Integral Worth of Shutdown Bank B, Rod Swap IV Measured Parameter (Description) IsB ^{RS} = []:2:5:4] (Adjusted Measured Critical Reference Bank Position = /%? steps) Test Results Design Value (Actual Conditions) IsB ^{RS} = []:2:5:4] (Actual Conditions) IsB ^{RS} = []:2:5:4] (Adjusted Measured Critical Reference Bank Position = /%? steps) Design Value (Design Conditions) IsB ^{RS} = 1140 = 171 pcm (Critical Reference Bank Position = 197 steps) Reference Engineering Transmital NAF 99-0107, Rev. 0, VEP-FRD-36A V FSAR/Tech Spec If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. VI Design Tolerance is met : YES NO VI VI Ising Tolerance is met : YES NO	Conditions	SDA: 229 SDB: moving CA:	229	Other (specify):		
IV Measured Parameter IsB ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap IV Measured Value ISB ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap IV Measured Value ISB ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap IV Measured Value ISB ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap IV Measured Value ISB ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap Test Reference Value ISB ^{RS} = II22577 (Adjusted Measured Critical Reference Bank Position = /8% steps) Design Value ISB ^{RS} = II40 = 171 pcm (Adjusted Measured Critical Reference Bank Position = 197 steps) Design Conditions) ISB ^{RS} = 1140 = 171 pcm (Critical Reference Bank Position = 197 steps) Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A V SNSOC may specify that additional testing V SNSOC may specify that additional testing V Reference VEP-FRD-36A Design Tolerance is met : YES NO VI VI YES NO	(Actual)	CB: moving CC: 229 CD:	229	Below Nuclear Heating		
IV Measured Parameter (Description) IsB ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap IV Measured Value 1/0?.1 Test IsB ^{RS} = 1/25.7 (Adjusted Measured Critical Reference Bank Position = 785 steps) Design Value (Actual Conditions) IsB ^{RS} = 1/37.2 (Adjusted Measured Critical Reference Bank Position = 755 steps) Design Value (Design Conditions) IsB ^{RS} = 1140 = 171 pcm (Critical Reference Bank Position = 197 steps) Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A V Reference If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. VI Pesign Tolerance is met : YES NO VI VI VEP-FRD-36A		Date/Time Test Performed:				
IV Measured Parameter (Description) IsB ^{RS} ; Integral Worth of Shutdown Bank B, Rod Swap IV Measured Value 1/0?.1 Test IsB ^{RS} = 1/25.7 (Adjusted Measured Critical Reference Bank Position = 785 steps) Design Value (Actual Conditions) IsB ^{RS} = 1/37.2 (Adjusted Measured Critical Reference Bank Position = 755 steps) Design Value (Design Conditions) IsB ^{RS} = 1140 = 171 pcm (Critical Reference Bank Position = 197 steps) Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A V Reference If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. VI Pesign Tolerance is met : YES NO VI VI VEP-FRD-36A		10/13/99 0446				
IV Red Swap IV Measured Value 1007.1 1007.1 Test IsB ^{RS} = 112577 (Adjusted Measured Critical Reference Bank Position = 785 steps) Results Design Value IsB ^{RS} = 1140 = 171 pcm (Actual Conditions) IsB ^{RS} = 1140 = 171 pcm Design Value (Critical Reference Bank Position = 197 steps) Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A V FSAR/Tech Spec If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. Criteria Reference VEP-FRD-36A VI V V NO						
IV Red Swap IV Measured Value 1007.1 1007.1 Test IsB ^{RS} = 112577 (Adjusted Measured Critical Reference Bank Position = 785 steps) Results Design Value IsB ^{RS} = 1140 = 171 pcm (Actual Conditions) IsB ^{RS} = 1140 = 171 pcm Design Value (Critical Reference Bank Position = 197 steps) Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A V FSAR/Tech Spec If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. Criteria Reference VEP-FRD-36A VI V V NO		Measured Parameter	I _{SB} RS.	Integral Worth of Shutdown Bank B,		
IV Measured Value Isg ^{RS} = 1/2577 (Adjusted Measured Critical Reference Bank Position = 755 steps) Results Design Value (Actual Conditions) Isg ^{RS} = 7/35 2 (Adjusted Measured Critical Reference Bank Position = 755 steps) Design Value (Design Conditions) Isg ^{RS} = 1140 = 171 pcm (Critical Reference Bank Position = 197 steps) Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A V FSAR/Tech Spec If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. VI Pesign Tolerance is met : V VI VI VI		(Description)				
Test Results Reference Bank Position = /85 steps) Design Value (Actual Conditions) $I_{SB}^{RS} = ./.3$ (Adjusted Measured Critical Reference Bank Position = /.35 steps) Design Value (Design Conditions) $I_{SB}^{RS} = 1140 = 171 \text{ pcm}$ (Critical Reference Bank Position = 197 steps) Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A V FSAR/Tech Spec If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. VI Reference VEP-FRD-36A VI Design Tolerance is met : \checkmark YES NO NO				1107.1 CAC 1107.1 Mijagas		
Test Results Reference Bank Position = /85 steps) Design Value (Actual Conditions) $I_{SB}^{RS} = ./.3$ (Adjusted Measured Critical Reference Bank Position = /.35 steps) Design Value (Design Conditions) $I_{SB}^{RS} = 1140 = 171 \text{ pcm}$ (Critical Reference Bank Position = 197 steps) Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A V FSAR/Tech Spec If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. VI Reference VEP-FRD-36A VI Design Tolerance is met : \checkmark YES NO NO	١٧	Measured Value	I _{SB} ^{RS} =	1125 7 (Adjusted Measured Critical		
V IsB ^{RS} = 7/3 f 2 (Adjusted Measured Critical Reference Bank Position = 73% steps) V Reference V Reference FSAR/Tech Spec If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. Reference VEP-FRD-36A V Reference V Reference V SNSOC may specify that additional testing be performed. VEP-FRD-36A Design Tolerance is met : VI V	Test					
V Reference Bank Position = / 37 steps) V Reference Subscription Isse Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A If Design Tolerance If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. Reference VEP-FRD-36A V Reference V Reference V SNSOC may specify that additional testing be performed. Reference VEP-FRD-36A Design Tolerance is met : YES VI VI	Results	Design Value				
V Reference Bank Position = / 37 steps) V Reference Subscription Isse Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A If Design Tolerance If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. Reference VEP-FRD-36A V Reference V Reference V SNSOC may specify that additional testing be performed. Reference VEP-FRD-36A Design Tolerance is met : YES VI VI		(Actual Conditions)	I _{SB} ^{RS} =	7/39 2 (Adjusted Measured Critical		
(Design Conditions) I _{SB} ^{RS} = 1140 = 171 pcm (Critical Reference Bank Position = 197 steps) Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A V FSAR/Tech Spec If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. Reference VEP-FRD-36A V Reference V Design Tolerance is met VI VEP-FRD-36A				Reference Bank Position = / 39 steps)		
V Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A V FSAR/Tech Spec If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. Criteria Reference VEP-FRD-36A Reference VEP-FRD-36A NO V Reference VEP-FRD-36A V Reference VEP-FRD-36A V Reference is met : VEP-FRD-36A V VEP-FRD-36A NO VI VI VES NO		Design Value				
Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A V FSAR/Tech Spec If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. Criteria Reference VEP-FRD-36A Design Tolerance is met YEP-FRD-36A VI VI NO		(Design Conditions)	I _{SB} ^{RS} = 1140 <u>+</u> 171 pcm			
Reference Engineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A V FSAR/Tech Spec If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. Criteria Reference VEP-FRD-36A Design Tolerance is met YEP-FRD-36A VI VI NO			(Critical Re	ference Bank Position = 197 steps)		
V FSAR/Tech Spec If Design Tolerance is exceeded, SNSOC shall evaluate impact of test result on safety analysis. SNSOC may specify that additional testing be performed. Criteria Reference VEP-FRD-36A Design Tolerance is met . . VI VI .		Reference	Engineering T	ransmittal NAF 99-0107, Rev. 0, VEP-FRD-36A		
Acceptance SNSOC may specify that additional testing Criteria be performed. Reference VEP-FRD-36A Design Tolerance is met YES VI VI		FSAR/Tech Spec	If Design T	olerance is exceeded, SNSOC shall		
Criteria be performed. Reference VEP-FRD-36A Design Tolerance is met : ✓ YES Acceptance Criteria is met : ✓ YES VI	V		evaluate im	pact of test result on safety analysis.		
Criteria be performed. Reference VEP-FRD-36A Design Tolerance is met : ✓ YES Acceptance Criteria is met : ✓ YES VI	Acceptance		SNSOC ma	ay specify that additional testing		
Reference VEP-FRD-36A Design Tolerance is met YES NO Acceptance Criteria is met YES NO VI YES NO	Criteria	· · · · · · · · · · · · · · · · · · ·				
Acceptance Criteria is met : VES NO		Reference	†			
Acceptance Criteria is met : VES NO		Design Tolerance is met :	_ YE	S NO		
VI						
Comments	VI	······································				
	Comments					

Prepared By: Christophen S. Com

Reviewed By: Mare A

Page 52 of 57

]	Test Description: Shutdown Ba	ank A Wort	h Measurement, Rod Swap	
Reference	Proc No / Section: 2-PT	-94.0		
11	Bank Positions (Steps)		RCS Temperature (^o F): 547	
Test			Power Level (% F.P.): 0	
Conditions	SDA: moving SDB: 229 CA:	229	Other (specify):	
(Design)	CB: moving CC: 229 CD:	229	Below Nuclear Heating	
	Bank Positions (Steps)		RCS Temperature (^o F): 547,4	
Test			Power Level (% F.P.): 0	
Conditions	SDA: moving SDB: 229 CA:	229	Other (specify):	
(Actual)	CB: moving CC: 229 CD:	229	Below Nuclear Heating	
	Date/Time Test Performed:			
	10/10/99 0525			
	Measured Parameter	I _{SA} RS;	Integral Worth of Shutdown Bank A,	
	(Description)	Rod Swap		
IV	Measured Value	I _{SA} ^{RS} =	947. 3 (Adjusted Measured Critical	
Test			Reference Bank Position = /62steps)	
Results	Design Value			
	(Actual Conditions)	$I_{SA}^{RS} =$	902.3 (Adjusted Measured Critical	
			Reference Bank Position = 762 steps)	
	Design Value			
	(Design Conditions)	I _{SA} ^{RS} =	899 ± 135 pcm	
		(Critical Re	ference Bank Position = 158 steps)	
	Reference	Engineering T	ransmittal NAF 99-0107, Rev. 0, VEP-FRD-36A	
	FSAR/Tech Spec	If Design T	olerance is exceeded, SNSOC shall	
V		evaluate in	npact of test result on safety analysis.	
Acceptance		SNSOC may specify that additional testing		
Criteria		be perform	ed.	
	Reference	VEP-FRD	-36A	
	Design Tolerance is met :	YE		
	Acceptance Criteria is met :	<u> </u>	SNO	
VI				
Comments				

Prepared By: Chintyfut Claren

Reviewed By: Marc A

NE-1220 N2C14 Startup Physics Tests Report

Page 53 of 57

· I	Test Description: Total Rod Wo	orth, Rod S	Swap		
Reference	Proc No / Section: 2-PT-94.0				
11	Bank Positions (Steps)		RCS Temperature (^o F): 547		
Test		Power Level (% F.P.): 0			
Conditions	SDA: moving SDB: moving CA: moving		Other (specify):		
(Design)	CB: moving CC: moving CD:	moving	Below Nuclear Heating		
111	Bank Positions (Steps)	RCS Temperature (^O F): 547. 6			
Test			Power Level (% F.P.): 0		
Conditions	SDA: moving SDB: moving CA:	moving	Other (specify):		
(Actual)	CB: moving CC: moving CD:	moving	Below Nuclear Heating		
· · · · · · · · · · · · · · · · · · ·	Date/Time Test Performed:				
	10/9/99 22:15				
		· · ·			
•	Measured Parameter	I _{Total} ;	Integral Worth of All Banks,		
	(Description)		Rod Swap		
IV	Measured Value	I _{Total} =	= 5468.7 pcm		
Test					
Results	Design Value				
	(Actual Conditions)	I _{Total} =	$I_{Total} = 5469.5 \text{ pcm}$		
	Design Value		. ~		
	(Design Conditions)	I _{Total} =	I _{Total} = 5460 <u>+</u> 546 pcm		
	Reference	Engineering 1	ngineering Transmittal NAF 99-0107, Rev. 0, VEP-FRD-36A		
	FSAR/Tech Spec	······	olerance is exceeded, SNSOC shall		
V	L L	-	npact of test result on safety analysis.		
Acceptance			testing must be performed.		
Criteria			5 ·····		
Cintonia	Reference	VEP-FRD	-36A		
	Design Tolerance is met :	YE			
	Acceptance Criteria is met :	V YE			
VI					
Comments					
Johnnents					
	1				

Prepared By: Marc A

Reviewed By: Chintipland Chan

NE-1220 N2C14 Startup Physics Tests Report

Page 54 of 57

1	Test Descrip	tion: M/D Flux Map	- At Powe	er			
Reference	Proc No / Section: 2-PT-94.0, 2-PT-21.1,			.2-PT-21.2 RCS Temperature (°F): T _{REF} ± 1			
11	Bank Positio						
Test					vel (% F.P.): ≤	30	
Conditions	SDA: 229	SDB: 229 CA:	229	Other (sp	ecify):	**	
(Design)	CB: 229	CC: * CD:	*		$e \ge 38$ thimbles		
	Bank Positio	ns (Steps)		RCS Temperature (^O F): Tref Power Level (% F.P.): 30,0 8,			
Test				Power Le	Power Level (% F.P.): 30,08		
	SDA: 229	SDB: 229 CA:	229	Other (sp	ecify):		
(Actual)	CB: 229	CC: 229 CD:	<u> 151 </u>				
(,	Date/Time T	est Performed:					
	10/11/0						
		Maximum Relative	Nuclea	Enthalpy	Total Heat	Maximum	
	Measured	Assembly	Ris	e Hot	Flux Hot	Positive Incore	
	Parameter	Power %DIFF		el Factor	Channel	Quadrant	
IV	(Description)			Factor F _Q (Z)	Power Tilt		
Test	Measured	+4.8% Fr PZ.9	1.1	ማእ	2,086	1,0081	
Results	Value	+4,3%, for P<.9	1,4	/0	d1-0-		
100000	Design Value	±10% for P; ≥0.9				≤ 1.0206	
	(Design	= 15% for P _i <0.9	N/.	A	N/A		
	Conditions)	(P, = assy power)					
	Reference	WCAP-7905, Rev. 1	Nor	ne	None	WCAP-7905, Rev. 1	
		NE-1212, Rev. 0				NE-1212, Rev. 0	
V	FSAR/COLR	None	F∆H(N)≤1.4	∋(1+0.3(1-P))	F ₀ (Z)≤4.38*K(Z)	None	
Acceptance						1	
Criteria	Reference	None	COLR	2.6	COLR 2.5.1	None	
Unterna	Reference						
	Design Tole	erance is met :	YE	ES	NC) ·	
		Criteria is met :	Y	ES	NC)	
VI	* As require						
	** Must have	at least 16 thimbles	for quarter	core maps	for multi-point ca	librations	
Comments	INIUSLIJAVE	actedat to thirdies			•		
				_			

Prepared By: John C. The M.

Reviewed By: And Areil

NE-1220 N2C14 Startup Physics Tests Report

Page 55 of 57

	Test Description: M/D Flux Map - At Power					
Reference			94.0, 2-PT-21.1			
		itions (Steps)		RCS Temperature (°F): T _{REF} ± 1		: T _{REF} ± 1
Test				Power L	_evel (% F.P.):6	5 ≤ P ≤ 75
Conditions	SDA: 229	SDB: 229 CA:	229	Other (s		
ر(Design)	CB: 229	CC: 229 CD:	*		ve ≥ 38 thimble	s**
*	Bank Positi	ons (Steps)		RCS Te	emperature (^o F)	TREF
Test					evel (% F.P.):	
Conditions	SDA: 229	SDB: 229 CA:	229	Other (s		1
(Actual)	CB: 229		190			
		Test Performed:				
	10/13/	ຊິງ ລວະ3 <i>8</i>				
		Maximum Relative	Nuclear	Enthalpy	Total Heat	Maximum
	Measured	Assembly	Rise	e Hot	Flux Hot	Positive Incore
	Parameter	Power %DIFF		el Factor	Channel	Quadrant
	(Description)		FΔH(N)	Factor Fo(Z)	Power Tilt
Test	Measured	3.4% P≥0.9	1.400		1.819	
Results	Value	-3.69. P<0.9			1.011	1.0063
	Design Value	± 10% for P _i ≥0.9				
4	(Design	±15% for P _i <0.9	N/A	N/A	≤ 1.0204	
	Conditions)	(P; = assy power)				
	Reference	WCAP-7905, Rev. 1	None	e	None	WCAP-7905, Rev. 1
V		NE-1212, Rev. 0				NE-1212, Rev. 0
•	FSAR/COLR	None	F∆H(N)≤1.49(*	1+0.3(1-P))	F _o (Z)≤{2.19/P}*K(Z)	None
Acceptance Criteria	Deferre	Niene				
Ontena	Reference	None	COLR 2.	6	COLR 2.5.1	None
	Design Tole	rance is met :	V YES		NO	
	-	Criteria is met:	√ YES		NO	
VI	* As required			······		
Comments	•	at least 16 thimbles fo	or quarter co	re maps f	or multi-point calil	brations
·						

Prepared By: Family D. Banning

That ON Reviewed By

NE-1220 N2C14 Startup Physics Tests Report

Page 56 of 57

	Test Description: M/D Flux Map - At Power					
Reference	Proc No / Section: 2-PT-94.0, 2-PT-21.1,			2-PT-21.2 BCS Terr	perature (°E).	
11			RCS Temperature (°F): $T_{REF} \pm 1$			
Test				Power Level (% F.P.):95 ≤ P ≤ 100		
Conditions		SDB: 229 CA: 229		Other (specify):		
(Design)	CB: 229	CC: 229 CD: *		Must have ≥ 38 thimbles**		
111	Bank Positio	ns (Steps)		RCS Temperature (^o F):580.7°		
Test					evel (% F.P.): 9	4.4%
Conditions		SDB: 229 CA:	229	Other (sp		•
(Actual)	CB: 229	CC: 229 CD:	229	EQ. Xeno	on	
		est Performed:				
	10/20/99	0:41				
		Maximum Relative		Enthalpy	Total Heat	Maximum
	Measured	Assembly		e Hot	Flux Hot	Positive Incore
	Parameter	Power %DIFF		el Factor	Channel	Quadrant
IV	(Description)	(M-P)/P	FΔH	(N)	Factor F _Q (Z)	Power Tilt
Test	Measured	-2 5 71 PK.9	1.36	Ч	1.741	1.0045
Results	Value	2.927 P2.9	1+50			1,0040
	Design Value	±10% for P _i ≥0.9				
	(Design	± 15% for Pi<0.9	N/.	Ą	N/A	≤ 1.0204
	Conditions)	(P _i = assy power)				
	Reference	WCAP-7905, Rev. 1	Nor	ie	None	WCAP-7905, Rev. 1
		NE-1212, Rev. 0				NE-1212, Rev. 0
·V	FSAR/COLR	None	F∆H(N)≤1.49	9(1+0.3(1-P))	F ₀ (Z)≤{2.19/P}*K(Z)	None
Acceptance						
Criteria	Reference	None	COLR	2.6	COLR 2.5.1	None
						<u> </u>
	Design Tole	rance is met :	YE	ES	NO	
		Criteria is met :	<u>/</u> YE	ES	NO	·
VI	* As require					
Comments		at least 16 thimbles	for quarter	core maps	for multi-point cal	ibrations

Prepared By: Kdut Q. Wright

Reviewed By: AMC Constrain

NE-1220 N2C14 Startup Physics Tests Report

Page 57 of 57